WorldWideScience

Sample records for temperature phase relationships

  1. Phenomenology of polymorphism: The topological pressure-temperature phase relationships of the dimorphism of finasteride

    Energy Technology Data Exchange (ETDEWEB)

    Gana, Ines [EAD Physico-chimie Industrielle du Medicament (EA 4066), Faculte de Pharmacie, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75006 Paris (France) and Etablissement pharmaceutique de l' Assistance Publique - Hopitaux de Paris, Agence Generale des Equipements et Produits de Sante, 7 Rue du Fer a moulin, 75005 Paris (France); Ceolin, Rene [EAD Physico-chimie Industrielle du Medicament (EA 4066), Faculte de Pharmacie, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75006 Paris (France); Rietveld, Ivo B., E-mail: ivo.rietveld@parisdescartes.fr [EAD Physico-chimie Industrielle du Medicament (EA 4066), Faculte de Pharmacie, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75006 Paris (France)

    2012-10-20

    Highlights: Black-Right-Pointing-Pointer The topological pressure-temperature phase diagram for the dimorphism of finasteride. Black-Right-Pointing-Pointer Pressure affects phase equilibria: an enantiotropic phase relationship turning monotropic at high pressure. Black-Right-Pointing-Pointer The influence of pressure on phase behavior inferred from data obtained under ordinary conditions. - Abstract: Knowledge of the phase behavior in the solid state of active pharmaceutical ingredients is important for the development of stable drug formulations. The topological method for the construction of pressure-temperature phase diagrams has been applied to study the phase behavior of finasteride. It is demonstrated that with basic calorimetric measurements and X-ray diffraction sufficient data can be obtained to construct a complete topological pressure-temperature phase diagram. The dimorphism observed for finasteride gives rise to a phase diagram similar to the paradigmatic diagram of sulfur. The solid-solid phase relationship is enantiotropic at ordinary pressure and becomes monotropic at elevated pressure, where solid I is the only stable phase.

  2. The Changing Relationship between Surface Temperatures and Indian Monsoon Rainfall with the Phase of ESI Tendency

    Directory of Open Access Journals (Sweden)

    S. B. Kakade

    2012-01-01

    Full Text Available Effective Strength Index (ESI is the relative strength of NAO and SO. ESI tendency is the algebraic difference between April-ESI and January-ESI and it represents the simultaneous evolution of NAO and SO from winter to spring. During positive (negative phase of ESI tendency, NAO restores positive (negative phase and SO restores negative (positive phase before the beginning of summer season. Thus during contrasting phases (positive and negative of ESI tendency, the evolution of NAO and SO is out of phase. In this paper we have studied the spatial and temporal variability of winter-time temperature field over Europe, Arabian Sea and Bay of Bengal during contrasting phases of ESI tendency. The study reveals that during positive (negative ESI tendency, smaller (larger region of Europe is showing significant winter-time cooling (warming at surface. The relationship between winter-time surface temperature over above regions and Indian summer monsoon rainfall (ISMR also shows spatial and temporal variability. The probable explanation for this change in the relationship is discussed in the paper. Two sets of temperature parameters for two different phases of ESI tendency are found out. Multiple regression equations are developed for the prediction of ISMR in each phase of ESI tendency. The performance of these equations is also discussed in this paper.

  3. Relationship between phase development and swelling of AISI 316 during temperature changes

    International Nuclear Information System (INIS)

    Yang, W.J.S.; Garner, F.A.

    1982-04-01

    The effect of temperature changes on radiation-induced swelling and phase development of AISI 316 has been examined for specimens irradiated in two different experiments. The formation of radiation-stable phases at low temperature appears to precede swelling but these phases tend to dissolve when subsequently subjected to higher temperature. Phases which develop at high temperature persist when the temperature is subsequently lowered. Once nucleated at low temperatures, voids tend to persist without reduction in density at higher temperatures. However, a new round of void nucleation occurs when the temperature is decreased during irradiation. If the swelling has entered the steady-state swelling regime prior to the temperature change, there is no effect on the subsequent swelling rate. For temperature changes that occur before the end of the transient swelling regime, substantial changes can occur in the swelling behavior, particularly if the changes occur in the range around 500 0 . The isothermal swelling behavior of AISI 316 is much less sensitive to irradiation temperature than previously envisioned

  4. High temperature phase equilibria and phase diagrams

    CERN Document Server

    Kuo, Chu-Kun; Yan, Dong-Sheng

    2013-01-01

    High temperature phase equilibria studies play an increasingly important role in materials science and engineering. It is especially significant in the research into the properties of the material and the ways in which they can be improved. This is achieved by observing equilibrium and by examining the phase relationships at high temperature. The study of high temperature phase diagrams of nonmetallic systems began in the early 1900s when silica and mineral systems containing silica were focussed upon. Since then technical ceramics emerged and more emphasis has been placed on high temperature

  5. Shear-driven instability in zirconium at high pressure and temperature and its relationship to phase-boundary behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, M. K.; Velisavljevic, N.; Kono, Y.; Park, C.; Kenney-Benson, C.

    2017-04-01

    Evidence in support of a shear driven anomaly in zirconium at elevated temperatures and pressures has been determined through the combined use of ultrasonic, diffractive, and radiographic techniques. Implications that these have on the phase diagram are explored through thermoacoustic parameters associated with the elasticity and thermal characteristics. In particular, our results illustrate a deviating phase boundary between the α and ω phases, referred to as a kink, at elevated temperatures and pressures. Further, pair distribution studies of this material at more extreme temperatures and pressures illustrate the scale on which diffusion takes place in this material. Possible interpretation of these can be made through inspection of shear-driven anomalies in other systems.

  6. Determination of the amplitude and phase relationships between oscillations in skin temperature and photoplethysmography-measured blood flow in fingertips.

    Science.gov (United States)

    Sagaidachnyi, A A; Skripal, A V; Fomin, A V; Usanov, D A

    2014-02-01

    It is well established that skin temperature oscillations in fingertips coexist with blood flow oscillations and there is a certain correlation between them. At the same time, the reasons for differences in waveform and the delay between the blood flow and temperature oscillations are far from being fully understood. In this study we determine the relationships between spectral components of the blood flow and temperature oscillations in fingertips, and we ascertain the frequency dependences of amplitude attenuation and delay time for the temperature oscillations. The blood flow oscillations were considered as a source of thermal waves propagating from micro-vessels towards the skin surface and manifesting as temperature oscillations. The finger temperature was measured by infrared thermography and blood flow was assessed by photoplethysmography for ten healthy subjects. The time-frequency analysis of oscillations was based on the Morlet wavelet transform. The frequency dependences of delay time and amplitude attenuation in temperature compared with blood flow oscillations have been determined in endothelial (0.005-0.02 Hz) and neurogenic (0.02-0.05 Hz) frequency bands using the wavelet spectra. We approximated the experimental frequency dependences by equations describing thermal wave propagation through the medium and taking into account the thermal properties and thickness of a tissue. Results of analysis show that with the increase of frequency f the delay time of temperature oscillations decreases inversely proportional to f(1/2), and the attenuation of the amplitude increases directly proportional to exp f(1/2). Using these relationships allows us to increase correlation between the processed temperature oscillations and blood flow oscillations from 0.2 to 0.7 within the frequency interval 0.005-0.05 Hz. The established experimental and theoretical relationships clarify an understanding of interrelation between the dynamics of blood flow and skin

  7. Determination of the amplitude and phase relationships between oscillations in skin temperature and photoplethysmography-measured blood flow in fingertips

    International Nuclear Information System (INIS)

    Sagaidachnyi, A A; Skripal, A V; Fomin, A V; Usanov, D A

    2014-01-01

    It is well established that skin temperature oscillations in fingertips coexist with blood flow oscillations and there is a certain correlation between them. At the same time, the reasons for differences in waveform and the delay between the blood flow and temperature oscillations are far from being fully understood. In this study we determine the relationships between spectral components of the blood flow and temperature oscillations in fingertips, and we ascertain the frequency dependences of amplitude attenuation and delay time for the temperature oscillations. The blood flow oscillations were considered as a source of thermal waves propagating from micro-vessels towards the skin surface and manifesting as temperature oscillations. The finger temperature was measured by infrared thermography and blood flow was assessed by photoplethysmography for ten healthy subjects. The time–frequency analysis of oscillations was based on the Morlet wavelet transform. The frequency dependences of delay time and amplitude attenuation in temperature compared with blood flow oscillations have been determined in endothelial (0.005–0.02 Hz) and neurogenic (0.02–0.05 Hz) frequency bands using the wavelet spectra. We approximated the experimental frequency dependences by equations describing thermal wave propagation through the medium and taking into account the thermal properties and thickness of a tissue. Results of analysis show that with the increase of frequency f the delay time of temperature oscillations decreases inversely proportional to f 1/2 , and the attenuation of the amplitude increases directly proportional to exp f 1/2 . Using these relationships allows us to increase correlation between the processed temperature oscillations and blood flow oscillations from 0.2 to 0.7 within the frequency interval 0.005–0.05 Hz. The established experimental and theoretical relationships clarify an understanding of interrelation between the dynamics of blood flow and skin

  8. Relationship between Neumann solutions for two-phase Lamé-Clapeyron-Stefan problems with convective and temperature boundary conditions

    Directory of Open Access Journals (Sweden)

    Tarzia Domingo Alberto

    2017-01-01

    Full Text Available We obtain for the two-phase Lamé-Clapeyron-Stefan problem for a semi-infinite material an equivalence between the temperature and convective boundary conditions at the fixed face in the case that an inequality for the convective transfer coefficient is satisfied. Moreover, an inequality for the coefficient which characterizes the solid-liquid interface of the classical Neumann solution is also obtained. This inequality must be satisfied for data of any phase-change material, and as a consequence the result given in Tarzia, Quart. Appl. Math., 39 (1981, 491-497 is also recovered when a heat flux condition was imposed at the fixed face.

  9. Characterizing Arctic mixed-phase cloud structure and its relationship with humidity and temperature inversion using ARM NSA observations

    Science.gov (United States)

    Qiu, Shaoyue; Dong, Xiquan; Xi, Baike; Li, J.-L. F.

    2015-08-01

    In this study, the characteristics of the Arctic mixed-phase cloud (AMC) have been investigated using data collected at the Atmospheric Radiation Measurement North Slope Alaska site from October 2006 to September 2009. AMC has an annual occurrence frequency of 42.3%, which includes 18.7% of single-layered AMCs and 23.6% for multiple layers. Two cloud base heights (CBHs) are defined from ceilometer and micropulse lidar (MPL) measurements. For single-layered AMC, the ceilometer-derived CBH represents the base of the liquid-dominant layer near the cloud top, while MPL-derived CBH represents base of the lower ice-dominant layer. The annual mean CBHs from ceilometer and MPL measurements are 1.0 km and 0.6 km, respectively, with the largest difference ( 1.0 km) occurring from December to March and the smallest difference in September. The humidity inversion occurrence decreases with increasing humidity inversion intensity (stronger in summer than in winter). During the winter months, AMC occurrences increase from 15% to 35% when the inversion intensity increases from 0.1 to 0.9 g/kg. On the contrary, despite a higher frequency of strong humidity inversion in summer, AMC occurrences are nearly invariant for different inversion intensities. On average, humidity and temperature inversion frequencies of occurrence above an AMC are 5 and 8 times, respectively, as high as those below an AMC. The strong inversion occurrences for both humidity and temperature above an AMC provide the moisture sources from above for the formation and maintenance of AMCs. This result helps to reconcile the persistency of AMCs even when the Arctic surface is covered by snow and ice.

  10. Thermodynamic Studies at Higher Temperatures of the Phase Relationships of Substoichiometric Plutonium and Uranium/Plutonium Oxides

    DEFF Research Database (Denmark)

    Sørensen, Ole Toft

    1976-01-01

    Partial molar thermodynamic quantities for oxygen in non-stoichiometric Pu and U/Pu oxides were determined by thermogravimetric measurements in CO/CO2 mixtures in the temperature range 900-1450°C. A detailed analysis of the thermodynamic data obtained, as well as data previously published for the...

  11. The relationships between sputter deposition conditions, grain size, and phase transformation temperatures in NiTi thin films

    Czech Academy of Sciences Publication Activity Database

    Kabla, M.; Seiner, Hanuš; Musilová, M.; Landa, Michal; Shilo, D.

    2014-01-01

    Roč. 70, May 2014 (2014), s. 79-91 ISSN 1359-6454 R&D Projects: GA ČR GA13-13616S; GA ČR(CZ) GA101/09/0702 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100761203 Program:M Institutional support: RVO:61388998 Keywords : NiTi * SMA * microstructure * phase transformation * sputtering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.465, year: 2014 http://www.sciencedirect.com/science/article/pii/S1359645414000925

  12. Phase Change Fabrics Control Temperature

    Science.gov (United States)

    2009-01-01

    Originally featured in Spinoff in 1997, Outlast Technologies Inc. (formerly Gateway Technologies Inc.) has built its entire product line on microencapsulated phase change materials, developed in Small Business Innovation Research (SBIR) contracts with Johnson Space Center after initial development for the U.S. Air Force. The Boulder, Colorado-based company acquired the exclusive patent rights and now integrates these materials into textiles or onto finished apparel, providing temperature regulation in bedding materials and a full line of apparel for both ordinary and extreme conditions.

  13. The phase lag of temperature behind global solar radiation

    International Nuclear Information System (INIS)

    El Hussainy, F.M.

    1995-08-01

    This paper presented the relationship between the air temperature and the global solar radiation, which can be conveniently represented by the three characteristics: mean, amplitude and phase lag of the first harmonic of global radiation and air temperatures. A good correlation between the air temperature and the global solar radiation has been found when the phase lag between them is nearly of 30 days. (author). 4 refs, 9 figs, 1 tab

  14. The relationship between body and ambient temperature and corneal temperature

    DEFF Research Database (Denmark)

    Kessel, Line; Johnson, Leif; Arvidsson, Henrik Sven

    2010-01-01

    Exposure to elevated ambient temperatures has been mentioned as a risk factor for common eye diseases, primarily presbyopia and cataract. The aim of the present study was to examine the relationship among ambient, cornea, and body core temperature.......Exposure to elevated ambient temperatures has been mentioned as a risk factor for common eye diseases, primarily presbyopia and cataract. The aim of the present study was to examine the relationship among ambient, cornea, and body core temperature....

  15. The relationship between insomnia and body temperatures

    NARCIS (Netherlands)

    Lack, L.C.; Gradisar, M.; van Someren, E.J.W.; Wright, H.R.; Lushington, K.

    2008-01-01

    Sleepiness and sleep propensity are strongly influenced by our circadian clock as indicated by many circadian rhythms, most commonly by that of core body temperature. Sleep is most conducive in the temperature minimum phase, but is inhibited in a "wake maintenance zone" before the minimum phase, and

  16. Relationship between alertness, performance, and body temperature in humans

    Science.gov (United States)

    Wright, Kenneth P Jr; Hull, Joseph T.; Czeisler, Charles A.

    2002-01-01

    Body temperature has been reported to influence human performance. Performance is reported to be better when body temperature is high/near its circadian peak and worse when body temperature is low/near its circadian minimum. We assessed whether this relationship between performance and body temperature reflects the regulation of both the internal biological timekeeping system and/or the influence of body temperature on performance independent of circadian phase. Fourteen subjects participated in a forced desynchrony protocol allowing assessment of the relationship between body temperature and performance while controlling for circadian phase and hours awake. Most neurobehavioral measures varied as a function of internal biological time and duration of wakefulness. A number of performance measures were better when body temperature was elevated, including working memory, subjective alertness, visual attention, and the slowest 10% of reaction times. These findings demonstrate that an increased body temperature, associated with and independent of internal biological time, is correlated with improved performance and alertness. These results support the hypothesis that body temperature modulates neurobehavioral function in humans.

  17. Uranium peroxide precipitate drying temperature relationships

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, C.; Dyck, B., E-mail: chick_rodgers@cameco.com [Cameco Corp., Saskatoon, SK (Canada)

    2010-07-01

    Cameco Corporation is in the process of revitalizing the mill at its Key Lake operation in northern Saskatchewan. The current Key Lake process employs ammonia stripping and ammonia precipitation. As part of the revitalization, the company is considering installing strong acid stripping in solvent extraction as used at its Rabbit Lake operation. This change would lead to using hydrogen peroxide for uranium precipitation. As part of the process evaluation, tests were carried out to study how changes in the temperature of an indirect fired dryer affected the properties of uranium peroxide [yellowcake] precipitate. This paper discusses the results of the test work, including the relationships between drying temperature and the following: (author)

  18. Electronic phase separation and high temperature superconductors

    International Nuclear Information System (INIS)

    Kivelson, S.A.

    1994-01-01

    The authors review the extensive evidence from model calculations that neutral holes in an antiferromagnet separate into hole-rich and hole-poor phases. All known solvable limits of models of holes in a Heisenberg antiferromagnet exhibit this behavior. The authors show that when the phase separation is frustrated by the introduction of long-range Coulomb interactions, the typical consequence is either a modulated (charge density wave) state or a superconducting phase. The authors then review some of the strong experimental evidence supporting an electronically-driven phase separation of the holes in the cuprate superconductors and the related Ni oxides. Finally, the authors argue that frustrated phase separation in these materials can account for many of the anomalous normal state properties of the high temperature superconductors and provide the mechanism of superconductivity. In particular, it is shown that the T-linear resistivity of the normal state is a paraconductivity associated with a novel composite pairing, although the ordered superconducting state is more conventional

  19. Very High Temperature Sound Absorption Coating, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Phase I demonstrated experimentally a very high temperature acoustically absorbing coating for ducted acoustics applications. High temperature survivability at 3500...

  20. Phase relationships in Cu-rich corner of the Cu-Cr-Zr phase diagram

    International Nuclear Information System (INIS)

    Zeng, K.J.; Haemaelaeinen, M.; Lilius, K.

    1995-01-01

    In the available experimental information on the Cu-Cr-Zr ternary system, there exist different opinions concerning the phase relationships in the Cu-rich corner of Cu-Cr-Zr phase diagram. Glazov et al. and Zakharov et al. investigated the Cu-rich corner of the Cu-Cr-Zr phase diagram within the composition range up to 3.5 Cr and 3.5 Zr (wt. %). A quasi-eutectic reaction L → (Cu) + αCr 2 Zr was observed to occur at 1,020 C and several isothermal sections were constructed within the temperature range from 600 to 1,000 C to show the (Cu)-αCr 2 Zr two phase equilibrium. Therefore, a pseudobinary Cu-Cr 2 Zr system was supposed. Afterwards, Dawakatsu et al, Fedorov et al, and Kuznetsov et al studied the cu-rich corner of the phase diagram in a wider composition range up to 5 Cr and 20 Zr (at.%). Contrary to Glazov et al. and Zakharov et al., they found no Cr 2 Zr phase in their samples. Hence, the pseudobinary Cu-Cr 2 Zr system does not exist. In this study an experimental investigation is presented on the phase relationships in Cu-rich corner of the Cu-Cr-Zr phase diagram at 940 C in order to clear up the confusion

  1. Relationship between body temperature and air temperature in ...

    African Journals Online (AJOL)

    Body temperatures of singing male Gryllus bimaculatus were measured for the first time. Body temperatures were strongly correlated with ambient temperature. This indicates that, unlike some other orthopterans, larger crickets are not dependent on an elevated body temperature for efficient calling. Our results confirm that it ...

  2. Low-temperature phase transformation in rubidium and cesium superoxides

    International Nuclear Information System (INIS)

    Alikhanov, R.A.; Toshich, B.S.; Smirnov, L.S.

    1980-01-01

    Crystal structures of rubidium and cesium superoxides which are two interpenetrating lattices of metal ions and oxygen molecule ions reveal a number of phase transformations with temperature decrease. Crystal-phase transformations in CsO 2 are 1-2, 2-3 and low temperature one 3-4 at 378, 190 and 10 K. Low temperature transition is considered as the instability of lattice quadrupoles of oxygen molecule ions to phase transformation of the order-disorder type. Calculated temperatures of low temperature phase transformations in PbO 2 and CsO 2 agree with experimental calculations satisfactory [ru

  3. Relationship between body temperature and air temperature In ...

    African Journals Online (AJOL)

    1992-06-22

    Jun 22, 1992 ... Considering the fact that insect stridulation may be associated with elevated body temperature, it is most appropriate to investigate the correlation between ambient temperature and body tempera- ture of calling males of this species. This is the first time that the body temperatures of a grylline cricket species ...

  4. Relationship between water temperature predictability and aquatic ...

    African Journals Online (AJOL)

    Variable seasonal stream temperatures are a critical factor in maintaining aquatic invertebrate community patterns. We investigated whether the degree of predictability in a stream's water temperature profile provides insights into the structure and functional predictability of macroinvertebrate communities. Quarterly ...

  5. Phase change based cooling for high burst mode heat loads with temperature regulation above the phase change temperature

    Science.gov (United States)

    The United States of America as represented by the United States Department of Energy

    2009-12-15

    An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.

  6. Relationship between Czech windstorms and air temperature

    Czech Academy of Sciences Publication Activity Database

    Kašpar, Marek; Müller, Miloslav; Crhová, L.; Holtanová, E.; Polášek, J. F.; Pop, Lukáš; Valeriánová, A.

    2016-01-01

    Roč. 37, č. 1 (2016), s. 11-24 ISSN 0899-8418 R&D Projects: GA ČR(CZ) GAP209/11/1990 Institutional support: RVO:68378289 Keywords : windstorm * strong wind * weather extreme * temperature anomaly * temperature gradient * seasonality * Czech Republic Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.760, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/joc.4682/abstract

  7. Relationship between body temperature and air temperature In ...

    African Journals Online (AJOL)

    1992-06-22

    Jun 22, 1992 ... Body temperatures of singing male Gryllus bimaculatus were measured for the first time. ... this can create special problems for the female, since the ... each male. Each cricket was cooled to 4°C and the thermo- couple was glued to the exoskeleton with cyano-acrylic glue. The thermocouple was connected ...

  8. PWR clad ballooning: The effect of circumferential clad temperature variations on the burst strain/burst temperature relationship

    International Nuclear Information System (INIS)

    Barlow, P.

    1983-01-01

    By experiment, it has been shown by other workers that there is a reduction in the creep ductility of Zircaloy 4 in the α+β phase transition region. Results from single rod burst tests also show a reduction in burst strain in the α+β phase region. In this report it is shown theoretically that for single rod burst tests in the presence of circumferential temperature gradients, the temperature dependence of the mean burst strain is not determined by temperature variations in creep ductility, but is governed by the temperature sensitivity of the creep strain rate, which is shown to be a maximum in the α+β phase transition region. To demonstrate this effect, the mean clad strain at burst was calculated for creep straining at different temperature levels in the α, α+β and β phase regions. Cross-pin temperature gradients were applied which produced strain variations around the clad which were greatest in the α+β phase region. The mean strain at burst was determined using a maximum local burst strain (i.e. a creep ductility) which is independent of temperature. By assuming cross-pin temperature gradients which are typical of those observed during burst tests, then the calculated mean burst strain/burst temperature relationship gave good agreement with experiment. The calculations also show that when circumferential temperature differences are present, the calculated mean strain at burst is not sensitive to variations in the magnitude of the assumed creep ductility. This reduces the importance of the assumed burst criterion in the calculations. Hence a temperature independent creep ductility (e.g. 100% local strain) is adequate as a burst criterion for calculations under PWR LOCA conditions. (author)

  9. High Temperature Bell Motor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The National Research Council (NRC) has identified the need for motors and actuators that can operate in extreme high and low temperature environments as a technical...

  10. High Temperature Rechargeable Battery Development, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This small business innovation research is intended to develop and proof the concept of a highly efficient, high temperature rechargeable battery for supporting...

  11. Novel High Temperature Strain Gauge, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced high-temperature sensor technology and bonding methods are of great interests in designing and developing advanced future aircraft. Current state-of-the-art...

  12. High Temperature Electrostrictive Ceramics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes to develop high temperature electrostrictors from bismuth-based ferroelectrics. These materials will exhibit high strain and low loss in...

  13. High Temperature Stirling Cooler, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Although Honeybee and others have made huge advances in developing mechanisms, motors, and electronics for use in high temperature/high pressure environments such as...

  14. High-temperature superconducting phase in rare earth alloys

    International Nuclear Information System (INIS)

    Vedyaev, A.V.; Molodykh, O.Eh.; Savchenko, M.A.; Stefanovich, A.V.

    1984-01-01

    A possibility of high-temperature superconducting phase existence in rare e arth alloys with aluminium: TbAl-NdAl is predicted. Such a phase is shown t o exist at t approximately 40 k, however its existence is possible only in a nar row temperature range and it might be metastable. A possibility of a supercondu cting phase occurrence in spin glass is studied. It is shown that the first kin d phase transition to superconducting state may first occur under definite condi tions in the system. But the phase in question will be a low-temperature one be cause of rather inefficient elctron-phonon interaction. Further temperature dec rease would lead to an appearance of magnetic order and to disappearance of the superconductivity

  15. Finescale Structure of the Temperature-Salinity Relationship

    National Research Council Canada - National Science Library

    Polzin, Kurt L; Ferrari, Raffaele

    2005-01-01

    The long term goal of this project is to understand the processes that establish the temperature-salinity relationship in the ocean, with emphasis on the interplay between advection at the large scale...

  16. InGaN High Temperature Photovoltaic Cells, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this Phase I project is to demonstrate InGaN materials are appropriate for high operating temperature single junction solar cells. Single junction...

  17. InGaN High Temperature Photovoltaic Cells, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objectives of this Phase II project are to develop InGaN photovoltaic cells for high temperature and/or high radiation environments to TRL 4 and to define the...

  18. Inorganic Nanostructured High-Temperature Magnet Wires, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop a high-temperature tolerant electrically-insulating coating for magnet wires. The Phase I program will result in a flexible, inorganic...

  19. Micromachined High-Temperature Sensors for Planet Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In phase I of the SBIR program, LEEOAT Company will develop, simulate, fabricate and test high-temperature piezoelectric miniature sensors (up to 800oC), for...

  20. High Temperature Fiberoptic Thermal Imaging System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase 1 program will fabricate and demonstrate a small diameter single fiber endoscope that can perform high temperature thermal imaging in a jet engine...

  1. Nanoindentation-induced phase transformations in silicon at elevated temperatures

    International Nuclear Information System (INIS)

    Ruffell, S; Bradby, J E; Williams, J S; Munoz-Paniagua, D; Tadayyon, S; Coatsworth, L L; Norton, P R

    2009-01-01

    The nanoindentation-induced phase transformation behavior of silicon at elevated temperatures (25-150 deg. C) has been studied. Nucleation of Si-III/Si-XII on unloading is enhanced with increasing temperature and at the highest temperatures in an amorphous Si matrix, occurs in a continuous fashion without a pop-out event. Interestingly, for slow unloading at the highest temperatures, formation of Si-III/Si-XII in a crystalline Si matrix was not observed. Elevated temperatures enhance the nucleation of Si-III and Si-XII during unloading but the final composition of the phase transformed zone is also dependent on the thermal stability of the phases in their respective matrices.

  2. Phase diagram of Nitrogen at high pressures and temperatures

    Science.gov (United States)

    Jenei, Zsolt; Lin, Jung-Fu; Yoo, Choong-Shik

    2007-03-01

    Nitrogen is a typical molecular solid with relatively weak van der Waals intermolecular interactions but strong intramolecular interaction arising from the second highest binding energy of all diatomic molecules. The phase diagram of solid nitrogen is, however, complicated at high pressures, as inter-molecular interaction becomes comparable to the intra-molecular interaction. In this paper, we present an updated phase diagram of the nitrogen in the pressure-temperature region of 100 GPa and 1000 K, based on in-situ Raman and synchrotron x-ray diffraction studies using externally heated membrane diamond anvil cells. While providing an extension of the phase diagram, our results indicate a ``steeper'' slope of the δ/ɛ phase boundary than previously determined^1. We also studied the stability of the ɛ phase at high pressures and temperatures. Our new experimental results improve the understanding of the Nitrogen phase diagram. 1. Gregoryanz et al, Phys. Rev. B 66, 224108 (2002)

  3. Effect of nonthermal distributed electrons and temperature on phase ...

    Indian Academy of Sciences (India)

    The effects of the ion to electron temperature parameter and the nonthermal electrons parameter on the phase shift are studied. It is shown that the properties of the interaction of IASWs in different geometries are very different. Keywords. Interaction; head-on collision; solitary waves; nonthermal electrons; phase shifts.

  4. Nonequilibrium Phase Chemistry in High Temperature Structure Alloys

    Science.gov (United States)

    Wang, R.

    1991-01-01

    Titanium and nickel aluminides of nonequilibrium microstructures and in thin gauge thickness were identified, characterized and produced for potential high temperature applications. A high rate sputter deposition technique for rapid surveillance of the microstructures and nonequilibrium phase is demonstrated. Alloys with specific compositions were synthesized with extended solid solutions, stable dispersoids, and specific phase boundaries associated with different heat treatments. Phase stability and mechanical behavior of these nonequilibrium alloys were investigated and compared.

  5. Heat capacity characterization at phase transition temperature of Agl superionic

    International Nuclear Information System (INIS)

    Widowati, Arie

    2000-01-01

    The phase transition of Agl superionic conductor was investigated by calorometric. A single phase transition was found at (153±5) o C which corresponds to the α - β transition. Calorimetric measurement showed an anomalously high heat capacity with a large discontinues change in the Arrhenius plot, was found above the transition temperature of β - α phase. The maximum heat capacity was found to be ±19.7 cal/gmol. Key words : superionic conductor, thermal capacity

  6. Luminous transmittance and phase transition temperature of VO 2 ...

    African Journals Online (AJOL)

    The phase transition temperature (τc) of the films was obtained from both the transmittance and sheet resistance against temperature curves. A change in sheet resistance of 2 to 3 orders of magnitude was observed for both undoped and Ce-doped VO2 films. Comparison between undoped and doped VO2 films revealed ...

  7. Structure determination at room temperature and phase transition ...

    Indian Academy of Sciences (India)

    Unknown

    Structure determination at room temperature and phase transition studies above Tc in ABi4Ti4O15 (A = Ba, Sr or Pb). G NALINI and T N GURU ROW*. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India. MS received 9 May 2002. Abstract. The room temperature structure of three ...

  8. Phase Change Material Systems for High Temperature Heat Storage

    OpenAIRE

    David Perraudin; Selmar Binder; Ehsan Rezai; Alberto Ortona; Sophia Haussener

    2015-01-01

    Efficient, cost effective, and stable high-temperature heat storage material systems are important in applications such as high-temperature industrial processes (metal processing, cement and glass manufacturing, etc.), or electricity storage using advanced adiabatic compressed air. Incorporating phase change media into heat storage systems provides an advantage of storing and releasing heat at nearly constant temperature, allowing steady and optimized operation of the downstream processes. Th...

  9. Phase Change Material Systems for High Temperature Heat Storage.

    Science.gov (United States)

    Perraudin, David Y S; Binder, Selmar R; Rezaei, Ehsan; Ortonaa, Alberto; Haussener, Sophia

    2015-01-01

    Efficient, cost effective, and stable high-temperature heat storage material systems are important in applications such as high-temperature industrial processes (metal processing, cement and glass manufacturing, etc.), or electricity storage using advanced adiabatic compressed air energy storage. Incorporating phase change media into heat storage systems provides an advantage of storing and releasing heat at nearly constant temperature, allowing steady and optimized operation of the downstream processes. The choice of, and compatibility of materials and encapsulation for the phase change section is crucial, as these must guarantee good and stable performance and long lifetime at low cost. Detailed knowledge of the material properties and stability, and the coupled heat transfer, phase change, and fluid flow are required to allow for performance and lifetime predictions. We present coupled experimental-numerical techniques allowing prediction of the long-term performance of a phase change material-based high-temperature heat storage system. The experimental investigations focus on determination of material properties (melting temperature, heat of fusion, etc.) and phase change material and encapsulation interaction (stability, interface reactions, etc.). The computational investigations focus on an understanding of the multi-mode heat transfer, fluid flow, and phase change processes in order to design the material system for enhanced performance. The importance of both the experimental and numerical approaches is highlighted and we give an example of how both approaches can be complementarily used for the investigation of long-term performance.

  10. [Metereology and health. The relationship between environmental temperature and mortality].

    Science.gov (United States)

    Ballester Díez, F

    1996-01-01

    The results are presented of a series of recent works which analyse the relationships between meteorological phenomena, especially the temperature, and mortality. An increase in mortality in winter, is a well-known phenomenon which has been examined in many countries. The most common cause of death due to temperature changes is illness affecting the breathing apparatus and circulation system. The form and magnitude of the relationship between mortality and temperature depends on a series of factors, which include the characteristics of the population and the study zone. Not only the cold, but also "heat waves", have been associated with an increase in the mortality rate. The results of several works referred to suggest that the relationship between the atmospheric temperature and mortality take the for of a "V", with the lowest rates occurring on days when the average temperature is between 16 degrees and 28 degrees, depending on the climate in the zone being studied. An important aspect to be taken into account, is the delayed effect of the variations in temperature upon mortality. This work also refers to the role that other meteorological factors such as dampness and wind might play with regard to health. Finally, consideration is given to the potential impact on health, of temperature increases owing to climatic change.

  11. Relationships Between Canopy Openness, Snow Cover and Ground Temperature.

    Science.gov (United States)

    Mattson, L.

    2004-05-01

    Red pine stands, which have undergone varying degrees of thinning and site preparation, are examined with a view to identifying the relationships which exist between canopy openness, snow cover and ground temperature. More specifically, eight red pine stands, which have been intentionally harvested at varying densities within the National Petawawa Research Forest, have been heavily instrumented for detailed measurements of canopy openness, snow cover characteristics, above and subsurface temperature profiles as well as micro-meteorological conditions. Results allow for the specification of relationships between the effect of thinning and site preparation on the soils thermal regime which, in turn, impacts upon the natural regeneration of the pine.

  12. Are Karakoram temperatures out of phase compared to hemispheric trends?

    Science.gov (United States)

    Asad, Fayaz; Zhu, Haifeng; Zhang, Hui; Liang, Eryuan; Muhammad, Sher; Farhan, Suhaib Bin; Hussain, Iqtidar; Wazir, Muhammad Atif; Ahmed, Moinuddin; Esper, Jan

    2017-05-01

    In contrast to a global retreating trend, glaciers in the Karakoram showed stability and/or mass gaining during the past decades. This "Karakoram Anomaly" has been assumed to result from an out-of-phase temperature trend compared to hemispheric scales. However, the short instrumental observations from the Karakoram valley bottoms do not support a quantitative assessment of long-term temperature trends in this high mountain area. Here, we presented a new April-July temperature reconstruction from the Karakoram region in northern Pakistan based on a high elevation ( 3600 m a.s.l.) tree-ring chronology covering the past 438 years (AD 1575-2012). The reconstruction passes all statistical calibration and validation tests and represents 49 % of the temperature variance recorded over the 1955-2012 instrumental period. It shows a substantial warming accounting to about 1.12 °C since the mid-twentieth century, and 1.94 °C since the mid-nineteenth century, and agrees well with the Northern Hemisphere temperature reconstructions. These findings provide evidence that the Karakoram temperatures are in-phase, rather than out-of-phase, compared to hemispheric scales since the AD 1575. The synchronous temperature trends imply that the anomalous glacier behavior reported from the Karakoram may need further explanations beyond basic regional thermal anomaly.

  13. Phase change material for temperature control and material storage

    Science.gov (United States)

    Wessling, Jr., Francis C. (Inventor); Blackwood, James M. (Inventor)

    2011-01-01

    A phase change material comprising a mixture of water and deuterium oxide is described, wherein the mole fraction of deuterium oxide is selected so that the mixture has a selected phase change temperature within a range between 0.degree. C. and 4.degree. C. The mixture is placed in a container and used for passive storage and transport of biomaterials and other temperature sensitive materials. Gels, nucleating agents, freezing point depression materials and colorants may be added to enhance the characteristics of the mixture.

  14. Improved relationships for the thermodynamic properties of carbon phases at detonation conditions

    International Nuclear Information System (INIS)

    Stiel, L I; Baker, E L; Murphy, D J

    2014-01-01

    Accurate volumetric and heat capacity relationships have been developed for graphite and diamond carbon forms for use with the Jaguar thermochemical equilibrium program for the calculation of the detonation properties of explosives. Available experimental thermodynamic properties and Hugoniot values have been analyzed to establish the equations of state for the carbon phases. The diamond-graphite transition curve results from the equality of the chemical potentials of the phases. The resulting relationships are utilized to examine the actual phase behaviour of carbon under shock conditions. The existence of metastable carbon states is established by analyses of Hugoniot data for hydrocarbons and explosives at elevated temperatures and pressures. The accuracy of the resulting relationships is demonstrated by comparisons for several properties, including the Hugoniot behaviour of oxygen-deficient explosives at overdriven conditions.

  15. Multicomponent phase change microfibers prepared by temperature control multifluidic electrospinning.

    Science.gov (United States)

    Wang, Nü; Chen, Hongyan; Lin, Ling; Zhao, Yong; Cao, Xinyu; Song, Yanlin; Jiang, Lei

    2010-09-15

    Multicomponent phase change microfibers, which can storage and release thermal energy in a stepwise manner, are firstly prepared through a facile one-step multifluidic compound-jet electrospinning with temperature control. The multiresponsive effect benefits from a special multichannel tubular microstructure that could controllably encapsulate different phase change materials into the channels independently. Aside from the fabrication of multicomponent phase change microfibers, the melt multifluidic compound-jet electrospinning is promising for applications related to microencapsulation and multifunctional material fields. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Pressure-temperature phase diagram of SeO2. Characterization of new phases

    International Nuclear Information System (INIS)

    Orosel, D.; Leynaud, O.; Balog, P.; Jansen, M.

    2004-01-01

    We have investigated SeO 2 at high pressures and high temperatures. Two new phases (β-SeO 2 and γ-SeO 2 ) and the boundary separating them have been found, following experimental runs performed at pressures up to 15 GPa and temperatures up to 820 deg. C. The two phases crystallize in the orthorhombic system in space group Pmc2 1 (no. 26) with a=5.0722(1) A, b=4.4704(1) A, c=7.5309(2) A, V=170.760(9) A 3 and Z=4 for the β-phase, and with a=5.0710(2) A, b=4.4832(2) A, c=14.9672(6) A, V=340.27(3) A 3 and Z=8 for the γ-phase. Both phases are stable at ambient pressure and temperature below -30 deg. C. At ambient temperature the phases return to the starting phase (α-SeO 2 ) in a few days. We discuss our findings in relation to a previous report of in-situ measurements at high pressures and ambient temperature

  17. Forest canopy temperatures: dynamics, controls, and relationships with ecosystem fluxes

    Science.gov (United States)

    Still, C. J.; Griffith, D.; Kim, Y.; Law, B. E.; Hanson, C. V.; Kwon, H.; Schulze, M.; Detto, M.; Pau, S.

    2017-12-01

    Temperature strongly affects enzymatic reactions, ecosystem biogeochemistry, and species distributions. Although most focus is on air temperature, the radiative or skin temperature of plants is more relevant. Canopy skin temperature dynamics reflect biophysical, physiological, and anatomical characteristics and interactions with the environment, and can be used to examine forest responses to stresses like droughts and heat waves. Thermal infrared (TIR) imaging allows for extensive temporal and spatial sampling of canopy temperatures, particularly compared to spot measurements using thermocouples. We present results of TIR imaging of forest canopies at eddy covariance flux tower sites in the US Pacific Northwest and in Panama. These forests range from an old-growth temperate rainforest to a second growth semi-arid pine forest to a semi-deciduous tropical forest. Canopy temperature regimes at these sites are highly variable. Canopy temperatures at all forest sites displayed frequent departures from air temperature, particularly during clear sky conditions, with elevated canopy temperatures during the day and depressed canopy temperatures at night compared to air temperature. Comparison of canopy temperatures to fluxes of carbon dioxide, water vapor, and energy reveals stronger relationships than those found with air temperature. Daytime growing season net ecosystem exchange at the pine forest site is better explained by canopy temperature (r2 = 0.61) than air temperature (r2 = 0.52). At the semi-deciduous tropical forest, canopy photosynthesis is highly correlated with canopy temperature (r2 = 0.51), with a distinct optimum temperature for photosynthesis ( 31 °C) that agrees with leaf-level measurements. During the peak of one heat wave at an old-growth temperate rainforest, hourly averaged air temperature exceeded 35 °C, 10 °C above average. Peak hourly canopy temperature approached 40 °C, and leaf-to-air vapor pressure deficit exceeded 6 kPa. These extreme

  18. Phase Relationship Between Sunspot Number, Flare Index and ...

    Indian Academy of Sciences (India)

    Abstract. To understand better the variation of solar activity indicators originated at different layers of the solar atmosphere with respect to sunspot cycles, we carried out a study of phase relationship between sunspot number, flare index and solar radio flux at 2800 MHz from. January 1966 to May 2008 by using ...

  19. Phase Relationship Between Sunspot Number, Flare Index and ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... To understand better the variation of solar activity indicators originated at different layers of the solar atmosphere with respect to sunspot cycles, we carried out a study of phase relationship between sunspot number, flare index and solar radio flux at 2800 MHz from January 1966 to May 2008 by using ...

  20. Effects of calcium impurity on phase relationship, ionic conductivity ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 3. Effects of calcium impurity on phase relationship, ionic conductivity and microstructure of Na + - β / b e t a " -alumina solid electrolyte. SUNG-TAE LEE DAE-HAN LEE SANG-MIN LEE SANG-SOO HAN SANG-HYUNG LEE SUNG-KI LIM. Volume 39 Issue 3 ...

  1. TEMPERATURE INFLUENCE ON PHASE STABILITY OF ETHANOL-GASOLINE MIXTURES

    Directory of Open Access Journals (Sweden)

    Valerian Cerempei

    2011-06-01

    Full Text Available The article investigates phase stability of ethanol-gasoline mixtures depending on their composition, water concentration in ethanol and ethanol-gasoline mixture and temperature. There have been determined the perfect functioning conditions of spark ignition engines fueled with ethanol-gasoline mixtures.

  2. High-temperature phase transition in hadron matter

    International Nuclear Information System (INIS)

    Bugrij, A.I.; Trushevsky, A.A.

    1976-01-01

    A possible phase transition in hadronic systems at temperatures of few of GeV is shown in the framework of the S-matrix formulation of statistical mechanics given by Dashen, Ma, Bernstein by using Regge pole model for the scattering amplitude

  3. In-situ High Temperature Phase Transformations in Ceramics

    Science.gov (United States)

    2009-07-28

    dissertations from U.S. & Canadian institutions. 1861-present in ProQuest 29 SciELO : Scientific Electronic Library Online Identifies scientific...literature published in Spain and coverage dates that vary with resource in SciELO 19 High Temperature Phase Transformations in Oxide Ceramics

  4. Phase diagrams of high temperature and high density QCD

    International Nuclear Information System (INIS)

    Fukushima, Kenji

    2012-01-01

    It is extremely difficult to solve QCD non-perturbatively in general, but at very high temperature and pressure perturbative calculation becomes possible to a certain extent, and it is possible to find out the nontrivial vacuum structure more or less. It is not necessarily a dream anymore at present to investigate the phase structure from the QCD itself, but it is rather general to discuss the phase transitions and the phase structures on the basis of effective models haring the global symmetry in common. It is indispensable to understand the QCD calculations to know the applicability of the models, since various experience obtained in the study of the perturbative calculations are reflected there. At first the finite temperature field theory is introduced. The calculation of grand distribution function Z is described in detail. Then finite temperature Yang-Mills theory is taken up. Finally finite temperature quark effect is studied. Within the limited space of the present note farther descriptions are spared. But it is necessary to go further by constructing the Polyakov loop potential to describe the extended Weiss potentials non-perturbatively for the proper deconfined phase transitions. And it is necessary to assume the setup of the model to break the chiral symmetry spontaneously and so on. (S. Funahashi)

  5. Prediction and measurement of selected phase transformation temperatures of steels

    Directory of Open Access Journals (Sweden)

    Martiník O.

    2017-01-01

    Full Text Available The study deals with precise determination of phase transformation temperatures of steel. A series of experimental measurements were carried out by Differential Thermal Analysis (DTA and Direct Thermal Analysis (TA to obtain temperatures very close to the equilibrium temperatures. There are presented results from the high temperatures region, above 1000°C, with focus on the solidus temperatures (TS, peritectic transition (TP and liquidus (TL of multicomponent steels. The data obtained were verified by statistical evaluation and compared with computational thermodynamic and empirical calculations. The calculations were performed using 15 empirical equations obtained by literature research (10 for TL and 5 for TS, as well as by software InterDendritic Solidification (IDS and Thermo-Calc (2015b, TCFE8; TC. It was verified that both thermo-analytical methods used are set correctly; the results are reproducible, comparable and close to equilibrium state.

  6. Phase coordination and phase-velocity relationship in metameric robot locomotion.

    Science.gov (United States)

    Fang, Hongbin; Li, Suyi; Wang, K W; Xu, Jian

    2015-10-29

    This research proposes a new approach for the control of metameric robot locomotion via phase coordination. Unlike previous studies where global wave-like rules were pre-specified to construct the actuation sequence of segments, this phase coordination method generates robot locomotion by assigning the actuation phase differences between adjacent segments without any global prerequisite rules. To effectively coordinate the phase differences, different symmetry properties are introduced. Optimization is then carried out on various symmetrically coordinated phase-difference patterns to maximize the average steady-state velocity of the robot. It is shown that the maximum average velocity is always achieved when the reflectional symmetry is included in the phase-difference pattern, and the identical-phase-difference (IPD) pattern is preferred for implementation because it reduces the number of independent phase variables to only one without significant loss in locomotion performance. Extensive analytical investigations on the IPD pattern reveal the relationship between the average locomotion velocity and some important parameters. Theoretical findings on the relationship between the average velocity and the phase difference in the IPD pattern are verified via experimental investigations on an 8-segment earthworm-like metameric robot prototype. Finally, this paper reveals an interesting result that the optimized phase-difference pattern can naturally generate peristalsis waves in metameric robot locomotion without global prerequisite wave-like rules.

  7. Electron temperature and density relationships in coronal mass ejections

    Science.gov (United States)

    Hammond, C. M.; Phillips, J. L.; Balogh, A.

    1995-01-01

    We examine 10 coronal mass ejections from the in-ecliptic portion of the Ulysses mission. Five of these CMEs are magnetic clouds. In each case we observe an inverse relationship between electron temperature and density. For protons this relationship is less clear. Earlier work has shown a similar inverse relationship for electrons inside magnetic clouds and interpreted it to mean that the polytropic index governing the expansion of electrons is less than unity. This requires electrons to be heated as the CME expands. We offer an alternative view that the inverse relationship between electron temperature and density is caused by more rapid cooling of the denser plasma through collisions. More rapid cooling of denser plasma has been shown for 1 AU measurements in the solar wind. As evidence for this hypothesis we show that the denser plasma inside the CMEs tends to be more isotropic indicating a different history of collisions for the dense plasma. Thus, although the electron temperature inside CMEs consistently shows an inverse correlation with the density, this is not an indication of the polytropic index of the plasma but instead supports the idea of collisional modification of the electrons during their transit from the sun.

  8. The thickness dependence of the phase transition temperature in PVDF

    Energy Technology Data Exchange (ETDEWEB)

    Mai, M. [Institute of Electrical Engineering Physics, Saarland University, D-66123 Saarbruecken (Germany); Fridkin, V. [Institute of Crystallography of Russian Academy of Sciences, 119333 Moscow (Russian Federation); Martin, B., E-mail: b.martin@mx.uni-saarland.de [Institute of Electrical Engineering Physics, Saarland University, D-66123 Saarbruecken (Germany); Leschhorn, A.; Kliem, H. [Institute of Electrical Engineering Physics, Saarland University, D-66123 Saarbruecken (Germany)

    2013-07-15

    It was found recently that in the Langmuir–Blodgett ultrathin vinylidene fluoride (PVDF) films there is ferroelectric phase transition of the first order. Earlier in the bulk PVDF this phase transition was not observed because the melting temperature of this ferroelectric polymer (∼170 °C) is lower than the point of the possible phase transition. Therefore this polymer was treated for a long time as pyroelectric. In the present work we investigate PVDF Langmuir–Blodgett films at the nanoscale and the film thickness interval, where ferroelectric phase transition disappears and transition from ferroelectric to pyroelectric state takes place. This phenomenon is explained by the finite-size effect at the nanoscale using Landau–Ginzburg–Devonshire (LGD) theory and by the Weiss mean field model.

  9. The relationship between indoor and outdoor temperature, apparent temperature, relative humidity, and absolute humidity.

    Science.gov (United States)

    Nguyen, J L; Schwartz, J; Dockery, D W

    2014-02-01

    Many studies report an association between outdoor ambient weather and health. Outdoor conditions may be a poor indicator of personal exposure because people spend most of their time indoors. Few studies have examined how indoor conditions relate to outdoor ambient weather. The average indoor temperature, apparent temperature, relative humidity (RH), and absolute humidity (AH) measured in 16 homes in Greater Boston, Massachusetts, from May 2011 to April 2012 was compared to measurements taken at Boston Logan airport. The relationship between indoor and outdoor temperatures is nonlinear. At warmer outdoor temperatures, there is a strong correlation between indoor and outdoor temperature (Pearson correlation coefficient, r = 0.91, slope, β = 0.41), but at cooler temperatures, the association is weak (r = 0.40, β = 0.04). Results were similar for outdoor apparent temperature. The relationships were linear for RH and AH. The correlation for RH was modest (r = 0.55, β = 0.39). Absolute humidity exhibited the strongest indoor-to-outdoor correlation (r = 0.96, β = 0.69). Indoor and outdoor temperatures correlate well only at warmer outdoor temperatures. Outdoor RH is a poor indicator of indoor RH, while indoor AH has a strong correlation with outdoor AH year-round. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. High temperature creep behavior in the (α + β) phase temperature range of M5 alloy

    International Nuclear Information System (INIS)

    Trego, G.

    2011-01-01

    The isothermal steady-state creep behavior of a M5 thin sheet alloy in a vacuum environment was investigated in the (α + β) temperature, low-stress (1-10 MPa) range. To this aim, the simplest approach consists in identifying α and β creep flow rules in their respective single-phase temperature ranges and extrapolating them in the two-phase domain. However, the (α + β) experimental behavior may fall outside any bounds calculated using such creep flow data. Here, the model was improved for each phase by considering two microstructural effects: (i) Grain size: Thermo-mechanical treatments applied on the material yielded various controlled grain size distributions. Creep tests in near-α and near-β ranges evidenced a strong grain-size effect, especially in the diffusional creep regime. (ii) Chemical contrast between the two phases in the (α + β) range: From thermodynamic calculations and microstructural investigations, the β phase is enriched in Nb and depleted in O (the reverse being true for the α phase). Thus, creep tests were performed on model Zr-Nb-O thin sheets with Nb and O concentrations representative of each phase in the considered temperature range. New α and β creep flow equations were developed from this extended experimental database and used to compute, via a finite element model, the creep rates of the two-phase material. The 3D morphology of phases (β grains nucleated at α grain boundaries) was explicitly introduced in the computations. The effect of phase morphology on the macroscopic creep flow was shown using this specific morphology, compared to other typical morphologies and to experimental data. (author) [fr

  11. Statistical Model for Predicting Weather Through Lunar Phase - Meteorological Phenomena Relationships in Makassar City

    OpenAIRE

    Hasanah, Nur

    2012-01-01

    ome scientist had made an evidence to proof the relationship between lunar phase and meteorological phenomena in their own area. Here we also did the assignment statistically in the case of Makassar City, Indonesia. We were using official meteorologist data, such as rainfall, clouds, and temperature, covering a period 28 years from January 1984 to December 2011. The statistical analyses were done using discriminant analysis and persistence. Further, we tested the result with cross validation ...

  12. Acoustic and Slow Sausage Oscillations in the Stratified Solar Photosphere: Hinode Observations and Phase Relationships

    Science.gov (United States)

    Tsap, Y. T.; Stepanov, A. V.; Kopylova, Y. G.

    2016-11-01

    Based on the linearized magnetohydrodynamic (MHD) equations within the framework of the thin flux tube approximation, the phase relationships between the disturbed quantities of evanescent acoustic and slow sausage MHD modes excited in the adiabatically stratified solar atmosphere are considered. It has been shown that the sign of the phase differences (equal to ±π/2) between the velocity and other disturbed quantities such as pressure, density, magnetic field, and temperature, depends on the wave frequency ω. The obtained phase relationships agree well with SOT/ Hinode observations obtained by Fujimura and Tsuneta ( Astrophys. J. 702, 1443, 2009) when ω≈ωc, where ωc is the cutoff frequency. The role of various modes excited in the solar atmosphere in the light of the chromospheric and coronal heating problems are discussed.

  13. Cooling vests with phase change material packs: the effects of temperature gradient, mass and covering area.

    Science.gov (United States)

    Gao, Chuansi; Kuklane, Kalev; Holmer, Ingvar

    2010-05-01

    Phase change material (PCM) absorbs or releases latent heat when it changes phases, making thermal-regulated clothing possible. The objective of this study was to quantify the relationships between PCM cooling rate and temperature gradient, mass and covering area on a thermal manikin in a climatic chamber. Three melting temperatures (24, 28, 32 degrees C) of the PCMs, different mass, covering areas and two manikin temperatures (34 and 38 degrees C) were used. The results showed that the cooling rate of the PCM vests tested is positively correlated with the temperature gradient between the thermal manikin and the melting temperature of the PCMs. The required temperature gradient is suggested to be greater than 6 degrees C when PCM vests are used in hot climates. With the same temperature gradient, the cooling rate is mainly determined by the covering area. The duration of the cooling effect is dependent on PCM mass and the latent heat. STATEMENT OF RELEVANCE: The study of factors affecting the cooling rate of personal cooling equipment incorporated with PCM helps to understand cooling mechanisms. The results suggest climatic conditions, the required temperature gradient, PCM mass and covering area should be taken into account when choosing personal PCM cooling equipment.

  14. Temperature dependence of gas-phase polycyclic aromatic hydrocarbon and organochlorine pesticide concentrations in Chicago air

    Science.gov (United States)

    Sofuoglu, Aysun; Odabasi, Mustafa; Tasdemir, Yucel; Khalili, Nasrin R.; Holsen, Thomas M.

    The temperature dependence of gas-phase atmospheric concentrations of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides measured in Chicago, IL between June and October 1995 were investigated using plots of the natural logarithm of partial pressures (ln P) vs. reciprocal mean temperatures (1/ T). For the eight lowest molecular weight PAHs, temperature dependence was statistically significant (at the 95% confidence level) and temperature accounted for 23-49% of the variability in gas-phase concentrations. The relatively higher slopes for most of the PAHs suggested that volatilization from local sources and short-range transport influenced their concentrations. For pesticides, temperature dependence was statistically significant for DDD and for trans-nonachlor (at the 95% and 90% confidence levels), and was not statistically significant for the other five compounds (2-18% of the variability in their gas-phase concentrations). The relatively lower slopes for individual pesticides suggested that they have mostly non-urban and distant sources. Results of back trajectory analyses suggested that the region, southwest of Chicago, might be an important local or regional source sector for PAHs and organochlorine pesticides. No statistically significant relationship was observed between wind speed and PAH or pesticide concentrations. None of the variables (temperature, wind speed, wind direction, local and regional sources) could fully explain the variation in their concentrations measured in Chicago, therefore, this variation can be attributed to the combined effect of those factors.

  15. Low temperature phase transition in KOH and KOD

    International Nuclear Information System (INIS)

    Bastow, T.J.; Elcombe, M.M.; Howard, C.J.

    1986-01-01

    Dielectric constant and differential scanning calorimetry measurements have shown a transition to a new phase in both KOH (at 233 K) and KOD (at 257 K); the shape of the dielectric anomaly suggests electrical ordering at low temperature. Structural parameters obtained from high resolution neutron powder diffraction data demonstrate the ordering to be antiferroelectric. A preliminary account is given of the structures at 293 K and 77 K. (author)

  16. Experiments on Quantum Hall Topological Phases in Ultra Low Temperatures

    International Nuclear Information System (INIS)

    Du, Rui-Rui

    2015-01-01

    This project is to cool electrons in semiconductors to extremely low temperatures and to study new states of matter formed by low-dimensional electrons (or holes). At such low temperatures (and with an intense magnetic field), electronic behavior differs completely from ordinary ones observed at room temperatures or regular low temperature. Studies of electrons at such low temperatures would open the door for fundamental discoveries in condensed matter physics. Present studies have been focused on topological phases in the fractional quantum Hall effect in GaAs/AlGaAs semiconductor heterostructures, and the newly discovered (by this group) quantum spin Hall effect in InAs/GaSb materials. This project consists of the following components: 1) Development of efficient sample cooling techniques and electron thermometry: Our goal is to reach 1 mK electron temperature and reasonable determination of electron temperature; 2) Experiments at ultra-low temperatures: Our goal is to understand the energy scale of competing quantum phases, by measuring the temperature-dependence of transport features. Focus will be placed on such issues as the energy gap of the 5/2 state, and those of 12/5 (and possible 13/5); resistive signature of instability near 1/2 at ultra-low temperatures; 3) Measurement of the 5/2 gaps in the limit of small or large Zeeman energies: Our goal is to gain physics insight of 5/2 state at limiting experimental parameters, especially those properties concerning the spin polarization; 4) Experiments on tuning the electron-electron interaction in a screened quantum Hall system: Our goal is to gain understanding of the formation of paired fractional quantum Hall state as the interaction pseudo-potential is being modified by a nearby screening electron layer; 5) Experiments on the quantized helical edge states under a strong magnetic field and ultralow temperatures: our goal is to investigate both the bulk and edge states in a quantum spin Hall insulator under

  17. Thermal analysis of high temperature phase transformations of steel

    Directory of Open Access Journals (Sweden)

    K. Gryc

    2013-10-01

    Full Text Available The series of thermal analysis measurements of high temperature phase transformations of real grain oriented electrical steel grade under conditions of two analytical devices (Netzsch STA 449 F3 Jupiter; Setaram SETSYS 18TM were carried out. Two thermo analytical methods were used (DTA and Direct thermal analysis. The different weight of samples was used (200 mg, 23 g. The stability/reproducibility of results obtained by used methodologies was verified. The liquidus and solidus temperatures for close to equilibrium conditions and during cooling (20 °C/min; 80 °C/min were determined. It has been shown that the higher cooling rate lead to lower temperatures for start and end of solidification process of studied steel grade.

  18. On the Relationship of Rainfall and Temperature across Amazonia

    Science.gov (United States)

    Ribeiro Lima, C. H.; AghaKouchak, A.

    2017-12-01

    Extreme droughts in Amazonia seem to become more frequent and have been associated with local and global impacts on society and the ecosystem. The understanding of the dynamics and causes of Amazonia droughts have attracted some attention in the last years and pose several challenges for the scientific community. For instance, in previous work we have identified, based on empirical data, a compounding effect during Amazonia droughts: periods of low rainfall are always associated with positive anomalies of near surface air temperature. This inverse relationship of temperature and rainfall appears at multiple time scales and its intensity varies across Amazonia. To our knowledge, these findings have not been properly addressed in the literature, being not clear whether there is a causal relationship between these two variables, and in this case, which one leads the other one, or they are just responding to the same causal factor. Here we investigate the hypothesis that high temperatures during drought periods are a major response to an increase in the shortwave radiation (due to the lack of clouds) not compensating by an expected increase in the evapotranspiration from the rainforest. Our empirical analysis is based on observed series of daily temperature and rainfall over the Brazilian Amazonia and reanalysis data of cloud cover, outgoing longwave radiation (OLR) and moisture fluxes. The ability of Global Circulation Models (GCMs) to reproduce such compounding effect is also investigated for the historical period and for future RCP scenarios of global climate change. Preliminary results show that this is a plausible hypothesis, despite the complexity of land-atmosphere processes of mass and energy fluxes in Amazonia. This work is a step forward in better understanding the compounding effects of rainfall and temperature on Amazonia droughts, and what changes one might expect in a future warming climate.

  19. Phase Transformations and Phase Equilibria in the Fe-N System at Temperatures below 573 K

    DEFF Research Database (Denmark)

    Malinov, S.; Böttger, A.J.; Mittemeijer, E.J.

    2001-01-01

    The phase transformations of homogeneous Fe-N alloys of nitrogen contents from 10 to 26 at. pct were investigated by means of X-ray diffraction analysis upon aging in the temperature range from 373 to 473 K. It was found that precipitation of alpha double prime-Fe16N2 below 443 K does not only oc...

  20. Phase transition temperatures of Sn-Zn-Al system and their comparison with calculated phase diagrams

    Czech Academy of Sciences Publication Activity Database

    Smetana, B.; Zlá, S.; Kroupa, Aleš; Žaludová, M.; Drápala, J.; Burkovič, R.; Petlák, D.

    2012-01-01

    Roč. 110, č. 1 (2012), s. 369-378 ISSN 1388-6150 R&D Projects: GA MŠk(CZ) OC08053 Institutional support: RVO:68081723 Keywords : Sn-Zn-Al system * DTA * phase transition temperatures Subject RIV: BJ - Thermodynamics Impact factor: 1.982, year: 2012

  1. Relationship between transport properties and phase transformations in mixed-conducting oxides

    International Nuclear Information System (INIS)

    Deng, Z.Q.; Yang, W.S.; Liu, W.; Chen, C.S.

    2006-01-01

    To elucidate the relationship between transport properties and phase transformations in mixed-conducting oxides, Sr 0.9 Ca 0.1 Co 0.89 Fe 0.11 O 3- δ (SCCFO) and SrCoO 3- δ (SCO) were chosen as the model materials and have been investigated in detail. Oxygen permeation measurements verified that both oxides are well permeable to oxygen at elevated temperatures, e.g., at 900 deg. C during a cooling procedure, oxygen permeation rates as large as 1.5 and 2.0 mL/min/cm 2 could be obtained with disk-shaped SCCFO and SCO membranes of thickness 1.5 mm, respectively. But when cooled to critical temperatures, the oxygen permeability of these kinds of oxides diminished sharply, which could be recovered by increasing the temperature again to certain values. Abrupt changes on electrical conductivity were also observed for both oxides around the same region of temperature as that of oxygen permeability. As indicated by high-temperature X-ray diffraction and thermal analysis, the SCCFO and SCO systems undergo phase transformation between a low-temperature orthorhombic brownmillerite structure (B) or a hexagonal 2H-type structure (H) and a high-temperature cubic perovskite structure (C), respectively. The present results suggest the observed abrupt changes in transport properties versus temperature are attributed to such phase transformation, which may be directly associated with the order-disorder transition of oxygen vacancies. Moreover, compared to the B/C transformation that mainly involves an order-disorder transition on the oxygen sublattice, the H/C one necessarily also involves the cooperative long-range reorganization on the cation sublattice. Therefore it occurs at a higher temperature and absorbs more heat quantity than those of B/C transformation

  2. Assessment of brain temperatures during different phases of the menstrual cycle using diffusion-weighted imaging thermometry.

    Science.gov (United States)

    Tsukamoto, Taro; Shimono, Taro; Sai, Asari; Sakai, Koji; Yamamoto, Akira; Sakamoto, Shinichi; Miki, Yukio

    2016-04-01

    To investigate changes in brain temperature according to the menstrual cycle in women using diffusion-weighted imaging (DWI) thermometry and to clarify relationships between brain and body temperatures. In 20 healthy female volunteers (21.3-38.8 years), DWI of the brain was performed during the follicular and luteal phases to calculate the brain temperature. During DWI, body temperatures were also measured. Group comparisons of each temperature between the two phases were performed using the paired t test. Correlations between brain and body temperatures were analyzed using Pearson's correlation coefficient test. Mean diffusion-based brain temperature was 36.24 °C (follicular) and 36.96 °C (luteal), showing a significant difference (P < 0.0001). Significant differences were also seen for each body temperature between the two phases. Correlation coefficients between diffusion-based brain and each body temperature were r = 0.2441 (P = 0.1291), -0.0332 (0.8387), and -0.0462 (0.7769), respectively. In women of childbearing age, brain and body temperatures appear significantly higher in the luteal than in the follicular phase. However, brain and body temperatures show no significant correlations.

  3. Phase Stability Diagrams for High Temperature Corrosion Processes

    Directory of Open Access Journals (Sweden)

    J. J. Ramos-Hernandez

    2013-01-01

    Full Text Available Corrosion phenomena of metals by fused salts depend on chemical composition of the melt and environmental conditions of the system. Detail knowledge of chemistry and thermodynamic of aggressive species formed during the corrosion process is essential for a better understanding of materials degradation exposed to high temperature. When there is a lack of kinetic data for the corrosion processes, an alternative to understand the thermodynamic behavior of chemical species is to utilize phase stability diagrams. Nowadays, there are several specialized software programs to calculate phase stability diagrams. These programs are based on thermodynamics of chemical reactions. Using a thermodynamic data base allows the calculation of different types of phase diagrams. However, sometimes it is difficult to have access to such data bases. In this work, an alternative way to calculate phase stability diagrams is presented. The work is exemplified in the Na-V-S-O and Al-Na-V-S-O systems. This system was chosen because vanadium salts is one of the more aggressive system for all engineering alloys, especially in those processes where fossil fuels are used.

  4. The low-temperature phase of morpholinium tetrafluoroborate

    Directory of Open Access Journals (Sweden)

    Tadeusz Lis

    2008-04-01

    Full Text Available The crystal structure of the low-temperature form of the title compound, C4H10NO+·BF4−, was determined at 80 K. Two reversible phase transitions, at 158/158 and 124/126 K (heating/cooling, were detected by differential scanning calorimetry for this compound, and the sequence of phase transitions was subsequently confirmed by single-crystal X-ray diffraction experiments. The asymmetric unit at 80 K consists of three BF4− tetrahedral anions and three morpholinium cations (Z′ = 3. Hydrogen-bonded morpholinium cations form chains along the [100] direction. The BF4− anions are connected to these chains by N—H...F hydrogen bonds. In the crystal structure, two different layers perpendicular to the [001] direction can be distinguished, which differ in the geometry of the hydrogen bonds between cationic and anionic species.

  5. Temperature-stress phase diagram of strain glass Ti48.5Ni51.5

    International Nuclear Information System (INIS)

    Wang, Y.; Ren, X.; Otsuka, K.; Saxena, A.

    2008-01-01

    The temperature and stress dependence of the properties of a recently discovered strain glass Ti 48.5 Ni 51.5 , which is a glass of frozen local lattice strains, was investigated systematically. It was found that the ideal freezing temperature (T 0 ) of the strain glass decreases with increasing stress. When the stress exceeds a critical value σ c (T), the pseudo-B2 strain glass transforms into B19' martensite. However, the stress-strain behavior associated with such a stress-induced transition showed a crossover at a crossover temperature T CR , which is ∼20 K below T 0 . Above T CR , the sample showed superelastic behavior; however, below T CR , the sample demonstrated plastic behavior. More interestingly, the σ c vs. temperature relation for unfrozen strain glass obeys the Clausius-Clapyeron relationship, whereas that for frozen strain glass disobeys this universal thermodynamic law. A phenomenological explanation is provided for all the phenomena observed, and it is shown that all the anomalous effects come from the broken ergodicity of the glass system and a temperature-dependent relative stability of the martensitic phase. Based on experimental observations, a temperature-stress phase diagram is constructed for this strain glass, which may serve as a guide map for understanding and predicting the properties of strain glass

  6. The Influence of Mixing in High Temperature Gas Phase Reactions

    DEFF Research Database (Denmark)

    Østberg, Martin

    1996-01-01

    The objective of this thesis is to describe the mixing in high temperature gas phase reactions.The Selective Non-Catalytic Reduction of NOx (referred as the SNR process) using NH3 as reductant was chosen as reaction system. This in-furnace denitrification process is made at around 1200 - 1300 K...... diffusion. The SNR process is simulated using the mixing model and an empirical kinetic model based on laboratory experiments.A bench scale reactor set-up has been built using a natural gas burner to provide the main reaction gas. The set-up has been used to perform an experimental investigation...... of the mixing in the SNR process using injection of NH3 with carrier gas into the flue gas in crossflow by a quartz nozzle.Experiments were made with variation in NH3 flow, carrier gas flow, carrier gas composition (O2 concentration) and reactor temperature. Natural gas has been used as an addition...

  7. Self-Healing Phase Change Salogels with Tunable Gelation Temperature.

    Science.gov (United States)

    Karimineghlani, Parvin; Palanisamy, Anbazhagan; Sukhishvili, Svetlana A

    2018-04-19

    Chemically cross-linked polymer matrices have demonstrated strong potential for shape stabilization of molten phase change materials (PCM). However, they are not designed to be fillable and removable from a heat exchange module for an easy replacement with new PCM matrices and lack self-healing capability. Here, a new category of shapeable, self-healing gels, "salogels", is introduced. The salogels reversibly disassemble in a high-salinity environment of a fluid inorganic PCM [lithium nitrate trihydrate (LNH)], at a preprogrammed temperature. LNH was employed as a high latent heat PCM and simultaneously as a solvent, which supported the formation of a network of polyvinyl alcohol (PVA) chains via physical cross-linking through poly(amidoamine) dendrimers of various generations. The existence of hydrogen bonding and the importance of low-hydration state of PVA for the efficient gelation were experimentally confirmed. The thermal behavior of PCM salogels was highly reversible and repeatable during multiple heating/cooling cycles. Importantly, the gel-sol transition temperature could be precisely controlled within a range of temperature above LNH's melting point by the choice of dendrimer generation and their concentration. Shape stabilization and self-healing properties of the salogels, taken together with tunability of their temperature-induced fluidization make these materials attractive for thermal energy storage applications that require on-demand removal and replacement of used inorganic PCM salt hydrates.

  8. Relationship between foot eversion and thermographic foot skin temperature after running.

    Science.gov (United States)

    Priego Quesada, Jose Ignacio; Gil-Calvo, Marina; Jimenez-Perez, Irene; Lucas-Cuevas, Ángel G; Pérez-Soriano, Pedro

    2017-07-01

    The main instruments to assess foot eversion have some limitations (especially for field applications), and therefore it is necessary to explore new methods. The objective was to determine the relationship between foot eversion and skin temperature asymmetry of the foot sole (difference between medial and lateral side), using infrared thermography. Twenty-two runners performed a running test lasting 30 min. Skin temperature of the feet soles was measured by infrared thermography before and after running. Foot eversion during running was measured by kinematic analysis. Immediately after running, weak negative correlations were observed between thermal symmetry of the rearfoot and eversion at contact time, and between thermal symmetry of the entire plantar surface of the foot and maximum eversion during stance phase (r=-0.3 and p=0.04 in both cases). Regarding temperature variations, weak correlations were also observed (r=0.4 and pfoot eversion. However, these results open interesting future lines of research.

  9. Climate-change impact on the 20th-century relationship between the Southern Annular Mode and global mean temperature.

    Science.gov (United States)

    Wang, Guojian; Cai, Wenju

    2013-01-01

    The positive phase of the El Niño-Southern Oscillation (ENSO) increases global mean temperature, and contributes to a negative phase of the Southern Annular Mode (SAM), the dominant mode of climate variability in the Southern Hemisphere. This interannual relationship of a high global mean temperature associated with a negative SAM, however, is opposite to the relationship between their trends under greenhouse warming. We show that over much of the 20th century this relationship undergoes multidecadal fluctuations depending on the intensity of ENSO. During the period 1925-1955, subdued ENSO activities weakened the relationship. However, a similar weakening has occurred since the late 1970s despite the strong ENSO. We demonstrate that this recent weakening is induced by climate change in the Southern Hemisphere. Our result highlights a rare situation in which climate change signals emerge against an opposing property of interannual variability, underscoring the robustness of the recent climate change.

  10. Dual Phase Membrane for High Temperature CO2 Separation

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Lin

    2007-06-30

    This project aimed at synthesis of a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Metal-carbonate dual-phase membranes were prepared by the direct infiltration method and the synthesis conditions were optimized. Permeation tests for CO{sub 2} and N{sub 2} from 450-750 C showed very low permeances of those two gases through the dual-phase membrane, which was expected due to the lack of ionization of those two particular gases. Permeance of the CO{sub 2} and O{sub 2} mixture was much higher, indicating that the gases do form an ionic species, CO{sub 3}{sup 2-}, enhancing transport through the membrane. However, at temperatures in excess of 650 C, the permeance of CO{sub 3}{sup 2-} decreased rapidly, while predictions showed that permeance should have continued to increase with temperature. XRD data obtained from used membrane indicated that lithium iron oxides formed on the support surface. This lithium iron oxide layer has a very low conductivity, which drastically reduces the flow of electrons to the CO{sub 2}/O{sub 2} gas mixture; thus limiting the formation of the ionic species required for transport through the membrane. These results indicated that the use of stainless steel supports in a high temperature oxidative environment can lead to decreased performance of the membranes. This revelation created the need for an oxidation resistant support, which could be gained by the use of a ceramic-type membrane. Work was extended to synthesize a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Helium permeance of the support before and after infiltration of molten carbonate are on the order of 10{sup -6} and 10{sup -10} moles/m{sup 2} {center_dot} Pa {center_dot} s respectively, indicating that the molten carbonate is able to sufficiently infiltrate the membrane. It was found that La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (LSCF) was a suitable candidate for the support

  11. Complex half-Heusler phases as high temperature thermoelectric materials

    Science.gov (United States)

    Culp, Slade Roland

    The potential of n-type MNiSn and p-type MCoSb (M=Ti, Zr, Hf) half-Heusler phases, as thermoelectric elements, for high temperature power generation applications is explored. Chapter 1 describes the background and theory behind the thermoelectric effects and physical characteristics common to promising thermoelectric materials. Chapter 2 is a review of half-Heusler alloys and their value as thermoelectric materials. In chapter 3, a description of material synthesis and thermoelectric properties characterization techniques is given. The effects of compositional changes on the thermoelectric properties of MNiSn alloys are studied and analyzed in chapter 4. In this system, Sb doping at the Sn site is shown to partially mitigate the compensated behavior observed in these materials, resulting in an increase of both the figure of merit, ZT, and the temperature at which ZT is maximized. The effects of alloying at the M and Ni sites, which modifies the band structure, resulting in changes in the electronic transport properties, and introduces phonon scattering centers, thereby decreasing the lattice thermal conductivity, are reported. In addition to the benefits of increased alloying at the M site, on the thermal conductivity and thermoelectric transport properties, chapter 5 also presents an examination of Sn substitution on the Sb sublattice of MCoSb. This substitution is shown to transition these materials from semimetals to robust n-type and p-type thermoelectric materials. The significant lack of p-type thermoelectric materials, which operated at temperature above 700°C, make these materials appealing for study. In chapter 6, the effect of alloy and boundary scattering on the high temperature lattice thermal conductivity is also studied and analyzed. Alloy scattering at high temperature is analyzed using the Klemens-Callaway model, while a model for boundary scattering from grains, is adapted from the work of Sharp, Poon, and Goldsmid. These models are found to be

  12. Ultra High Temperature (UHT) SiC Fiber (Phase 2)

    Science.gov (United States)

    Dicarlo, James A.; Jacobson, Nathan S.; Lizcano, Maricela; Bhatt, Ramakrishna T.

    2015-01-01

    Silicon-carbide fiber-reinforced silicon-carbide ceramic matrix composites (SiCSiC CMC) are emerginglightweight re-usable structural materials not only for hot section components in gas turbine engines, but also for controlsurfaces and leading edges of reusable hypersonic vehicles as well as for nuclear propulsion and reactor components. Ithas been shown that when these CMC are employed in engine hot-section components, the higher the upper usetemperature (UUT) of the SiC fiber, the more performance benefits are accrued, such as higher operating temperatures,reduced component cooling air, reduced fuel consumption, and reduced emissions. The first generation of SiCSiC CMC with a temperature capability of 2200-2400F are on the verge of being introduced into the hot-section components ofcommercial and military gas turbine engines.Today the SiC fiber type currently recognized as the worlds best in terms ofthermo-mechanical performance is the Sylramic-iBN fiber. This fiber was previously developed by the PI at NASA GRC using patented processes to improve the high-cost commercial Sylramic fiber, which in turn was derived from anotherlow-cost low-performance commercial fiber. Although the Sylramic-iBN fiber shows state-of-the art creep and rupture resistance for use temperatures above 2550oF, NASA has shown by fundamental creep studies and model developmentthat its microstructure and creep resistance could theoretically be significantly improved to produce an Ultra HighTemperature (UHT) SiC fiber.This Phase II Seedling Fund effort has been focused on the key objective of effectively repeating the similar processes used for producing the Sylramic-iBN fiber using a design of experiments approach to first understand the cause of the less than optimum Sylramic-iBN microstructure and then attempting to develop processconditions that eliminate or minimize these key microstructural issues. In so doing, it is predicted that that theseadvanced process could result in an UHT Si

  13. Ice Surface Temperature Variability in the Polar Regions and the Relationships to 2 Meter Air Temperatures

    Science.gov (United States)

    Hoyer, J.; Madsen, K. S.; Englyst, P. N.

    2017-12-01

    Determining the surface and near surface air temperature from models or observations in the Polar Regions is challenging due to the extreme conditions and the lack of in situ observations. The errors in near surface temperature products are typically larger than for other regions of the world, and the potential for using Earth Observations is large. As part of the EU project, EUSTACE, we have developed empirical models for the relationship between the satellite observed skin ice temperatures and 2m air temperatures. We use the Arctic and Antarctic Sea and sea ice Surface Temperatures from thermal Infrared satellite sensors (AASTI) reanalysis to estimate daily surface air temperature over land ice and sea ice for the Arctic and the Antarctic. Large efforts have been put into collecting and quality controlling in situ observations from various data portals and research projects. The reconstruction is independent of numerical weather prediction models and thus provides an important alternative to modelled air temperature estimates. The new surface air temperature data record has been validated against more than 58.000 independent in situ measurements for the four surface types: Arctic sea ice, Greenland ice sheet, Antarctic sea ice and Antarctic ice sheet. The average correlations are 92-97% and average root mean square errors are 3.1-3.6°C for the four surface types. The root mean square error includes the uncertainty of the in-situ measurement, which ranges from 0.5 to 2°C. A comparison with ERA-Interim shows a consistently better performance of the satellite based air temperatures than the ERA-Interim for the Greenland ice sheet, when compared against observations not used in any of the two estimates. This is encouraging and demonstrates the values of these products. In addition, the procedure presented here works on satellite observations that are available in near real time and this opens up for a near real time estimation of the surface air temperature over

  14. Relationship between permeability and damage in concretes at high temperature

    International Nuclear Information System (INIS)

    Dal Pont, St.

    2004-09-01

    Due to its technical and economical advantages, concrete is nowadays the most used building material in civil engineering. Even if its use is known since nearly two centuries, its behavior has not been yet completely explained due to the complexity of its porous microstructure. This fact is quite evident under particular conditions such as, by instance, during an elevation of temperature. This condition can mainly occur in two cases: due to a casualty (e.g. a fire) or in normal use conditions (e.g. storage of nuclear rejects). This work aims at contributing to the study of the phenomena that can be observed in concrete exposed to high temperatures and, in particular, focuses on the study of the evolution of intrinsic permeability. The characterisation of permeability (which is hardly measurable in hot conditions) is necessary for describing and modelling transport phenomena which occur in porous media. An experimental study has been made in collaboration with the CEA. A real-scale hollow cylinder has been instrumented with gauges for studying the evolution of temperature and gas pressure fields inside concrete. Later, the cylinder has been then numerically modelled by means of a thermo-hydro-chemical (THC) and a thermo-hydro-chemo-mechanical (THCM) model. The THC model, implemented by means of the finite volume method, has allowed a first, qualitative study of the behaviour of concrete submitted to high temperature. This model, which, for sake of simplicity, has neglected all mechanical effects, has allowed the description of the main phenomena occurring inside concrete: mass transport, phase changes, microstructure evolution. Later, the modelling has been completed by means of the THCM model using the Hitecosp code, implemented by means of the finite element method at the university of Padua. This code allows a very complete description of the phenomena occurring inside concrete and takes into consideration the mechanical behavior of concrete by means of an

  15. Temperature-field phase diagram of extreme magnetoresistance.

    Science.gov (United States)

    Fallah Tafti, Fazel; Gibson, Quinn; Kushwaha, Satya; Krizan, Jason W; Haldolaarachchige, Neel; Cava, Robert Joseph

    2016-06-21

    The recent discovery of extreme magnetoresistance (XMR) in LaSb introduced lanthanum monopnictides as a new platform to study this effect in the absence of broken inversion symmetry or protected linear band crossing. In this work, we report XMR in LaBi. Through a comparative study of magnetotransport effects in LaBi and LaSb, we construct a temperature-field phase diagram with triangular shape that illustrates how a magnetic field tunes the electronic behavior in these materials. We show that the triangular phase diagram can be generalized to other topological semimetals with different crystal structures and different chemical compositions. By comparing our experimental results to band structure calculations, we suggest that XMR in LaBi and LaSb originates from a combination of compensated electron-hole pockets and a particular orbital texture on the electron pocket. Such orbital texture is likely to be a generic feature of various topological semimetals, giving rise to their small residual resistivity at zero field and subject to strong scattering induced by a magnetic field.

  16. Rheology of phase A at high pressure and high temperature

    Science.gov (United States)

    Hilairet, N.; Amiguet, E.; Wang, Y.; Merkel, S.

    2013-12-01

    Subduction zones are locations where a tectonic plate slides and bends under another one. Materials there undergo large and heterogeneous deformations and stresses which are released through seismicity, occasionally. Thus plasticity of minerals filling faults and shear zones is a critical parameter for understanding the stress balance of whole subduction zones. We present a deformation study on a hexagonal hydrous phase that can exist in shear zones within subducting slabs, phase A, after dehydration of serpentine into pyroxene + phase A. Pure phase A samples were synthesized at 11 GPa and ca. 1100K, in the multi-anvil facility in Clermont-Ferrand, France, with N. Bolfan and D. Andrault. Three samples were deformed at 11 GPa confining pressure, and 673K or 973K, using a D-DIA apparatus [1] at 13B-MD at GSE-CARS, APS, in uniaxial shortening up to -0.24 strain and at 5.10-5 s-1. Lattice strains (a proxy for macro-stress), texture and strain were measured in-situ, using synchrotron radiation. Results from lattice strain and texture analysis show a decrease in flow stress and a change in deformation mechanisms with temperature, coherent with the findings in transmission electron microscopy on samples recovered in relaxation experiments from [2]. The slip systems involved during deformation were further analyzed using Visco-Plastic Self-Consistent (VPSC) simulations [3]. The model inputs were known slip systems for hexagonal materials, including the ones observed by [2], with tunable strengths, the strain rate, final strain, and either a random texture or the starting experimental texture. The final experimental textures could be reproduced. The slip systems that had to be activated for matching the experimental texture confirm the observations by [2]: at 673K, the most active slip systems are prismatic and pyramidal, with the requirement of a smaller activity on the basal system, and at 973K the basal system is the main slip system activated. [1] Wang et al, Review for

  17. Nonequilibrium phase formation in oxides prepared at low temperature: Fergusonite-related phases

    International Nuclear Information System (INIS)

    Mather, S.A.; Davies, P.K.

    1995-01-01

    Sol-gel methods have been developed to prepare YNbO 4 , YTaO 4 , and other rare-earth niobates and tantalates with fergusonite-related crystal structures. At low temperatures, all of the fergusonites, with the exception of SmTaO 4 , crystallize in a metastable tetragonal (T') structure similar to that of tetragonal zirconia. Although all of the equilibrium forms of these oxides adopt a crystal structure containing an ordered distribution of the trivalent and pentavalent cations, a random cation distribution is obtained in the metastable T' phase. Metastable phase formation is often ascribed solely to kinetically limited topotactic crystallization. However, the changes in the grain size and unit-cell volumes that accompany the metastable-to-equilibrium fergusonite conversions imply that other physical phenomena induced by small-particle synthesis, namely the Gibbs-Thompson pressure effect and the increased contribution of surface energy, cannot be ignored

  18. The responses of microbial temperature relationships to seasonal change and winter warming in a temperate grassland.

    Science.gov (United States)

    Birgander, Johanna; Olsson, Pål Axel; Rousk, Johannes

    2018-01-18

    Microorganisms dominate the decomposition of organic matter and their activities are strongly influenced by temperature. As the carbon (C) flux from soil to the atmosphere due to microbial activity is substantial, understanding temperature relationships of microbial processes is critical. It has been shown that microbial temperature relationships in soil correlate with the climate, and microorganisms in field experiments become more warm-tolerant in response to chronic warming. It is also known that microbial temperature relationships reflect the seasons in aquatic ecosystems, but to date this has not been investigated in soil. Although climate change predictions suggest that temperatures will be mostly affected during winter in temperate ecosystems, no assessments exist of the responses of microbial temperature relationships to winter warming. We investigated the responses of the temperature relationships of bacterial growth, fungal growth, and respiration in a temperate grassland to seasonal change, and to 2 years' winter warming. The warming treatments increased winter soil temperatures by 5-6°C, corresponding to 3°C warming of the mean annual temperature. Microbial temperature relationships and temperature sensitivities (Q 10 ) could be accurately established, but did not respond to winter warming or to seasonal temperature change, despite significant shifts in the microbial community structure. The lack of response to winter warming that we demonstrate, and the strong response to chronic warming treatments previously shown, together suggest that it is the peak annual soil temperature that influences the microbial temperature relationships, and that temperatures during colder seasons will have little impact. Thus, mean annual temperatures are poor predictors for microbial temperature relationships. Instead, the intensity of summer heat-spells in temperate systems is likely to shape the microbial temperature relationships that govern the soil-atmosphere C

  19. The effect of temperature and atmosphere on spinel phase formation of nano-manganese ferrite

    Directory of Open Access Journals (Sweden)

    B. Nasr

    2006-03-01

    Full Text Available  Phase formation of manganese ferrite prepared by co-precipitation method is studied at different annealing temperatures. It is shown that the spinel phase is formed by quenching only in inert gas. XRD patterns show that the background picks fall in intensity by increasing annealing temperature and the single phase is achieved by magnetic separation.

  20. Neutron diffraction study of phase relationship of Ti-C-H system

    International Nuclear Information System (INIS)

    Khidirov, I.; Mukhtarova, N.N.; Mirzaev, B.B.; Serikbaev, B.T.; Zaginaichenko, S.Yu.; Schur, D.V.; Pishuk, V.K.; Kuzmenko, L.V.; Garbuz, V.V.; Nuzhda, S.V.; Pishuk, O.V.

    2006-01-01

    Full text: Due to such properties as high temperature of melting, solidity, stability in aggressive environments, etc., titanium carbide is widely used in modern techniques. It is necessary to know the phase relationships in Ti-C system for scientifically proved using. According to the phase diagram of Ti-C system, there are three phases in it: the solid solutions of carbon in the hexagonal lattice of α-Ti and in the body-centered cubic (BCC) lattice of β-Ti with rather limited solubility and also the face-centered cubic (FCC) titanium carbide TiC x with wide homogeneity range (TiC 0,32 / TiC 1,00 ). A number of the ordered phases was observed on the basis of FCC-phase. It is known, that even insignificant hydrogen impurity strongly influences at the phase relations in Ti-C system. At the same time because of specificity of some technologies of titanium carbide reception, it contains an impurity of hydrogen in its composition. However influence of hydrogen on phase relations of Ti-C system is not investigated enough. The aim of the work is to study hydrogen influence on the phase relations in Ti-C system by neutron (λ =1.085 A) and X-ray ( λ =1.5418 A) diffraction methods. Samples of TiC x H y (x = C/Ti, y H/Ti) were synthesized in the wide interval of carbon and hydrogen concentrations by sintering method from the powder of titanium of PTS trade-mark containing 0,35 mass % of hydrogen, by addition both of given quantity of TiH 2 and of soot of the trade-mark 'very pure'; the samples were studied by neutron and X-ray diffraction methods. Quartz ampoules with briquettes of the samples were pumped out up to vacuum of 1.33 10'-'4 Pa at the room temperature and were sintered in the furnace using the special regime selected by us. The briquettes were annealed from the temperature of 600 deg. C. As our experiments show, at this temperature the formation of Ti 2 C 1-x H 2-x solid solution and rapid absorption of hydrogen by this solution were observed. Also at this

  1. Orientational relationships between phases in the γ→α transformations for uranium-molybdenum alloys

    International Nuclear Information System (INIS)

    Brun, G.

    1966-04-01

    A crystallographic study has been made of the γ → α + γ transformation in the alloy containing 3 per cent by weight of molybdenum using electronic micro-diffraction; it has been possible to establish the orientational relationships governing the germination of the α phase in the γ phase. One finds: (111)γ // (100) α, (112-bar)γ // (010) α, (11-bar 0)γ // (001)α. By choosing a monoclinic lattice containing the same number of atoms as the orthorhombic lattice for defining the γ mother phase, the change in structure has been explained by adding a homogeneous (112-bar)γ [111]γ shearing deformation to a heterogeneous deformation brought about by slipping of the atoms which are not situated at the nodes of this lattice. The identity of the orientation relationships γ/α and γ/α''b and the loss of coherence γ /α as a function of temperature or of time lead to the conclusion that, in the range studied, the γ → α transformation begins with a martensitic process and continues by germination and growth. (author) [fr

  2. Is there a relationship between fledge age and nest temperature in Western Bluebirds (Sialia mexicana)?

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Emily Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Thompson, Brent E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hathcock, Charles Dean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-30

    Extensive research has been done on temperature during bird incubation periods, but little has been done during nestling development, and to our knowledge, no studies have been done on Western Bluebird (Sialia mexicana) nestling development. In this study, dataloggers were used to monitor nest temperatures during the nestling development phase of Western Bluebirds to determine if there was a relationship between fledge age and temperature. The study was conducted in an existing nestbox network at Los Alamos National Laboratory and the surrounding area in north-central New Mexico. Based on the age of the nestlings at fledging, the nestboxes (n=65) were split into three groups: early (16 and 17 days old, n=13), average (fledged at or between 18 and 20 days old, n=32), and late (21 days or older, n=20). The temperatures of the early and average (n=45) groups were not significantly different (p=0.32, W=3831000). There was a significant difference in the temperatures between the early and late groups (p=0.000, W=2965600). The early and average groups were then combined, tested against the late group, and were found to be significantly different (p=0.000, W=11315000). Analysis showed a difference within the first seven days post-hatch of 1.42°C between the early/average and late groupings. The results suggest that warmer nest temperatures during the nestling stage may influence the fledge date and may lead to faster fledging. There may be numerous explanations for this, such as a correlation with nestling development, and higher temperatures may allow for faster development. Brood size was non-significant and was not factored into the analysis. Future work should be directed in this area.

  3. The relationship between temperature and standard rate of ...

    African Journals Online (AJOL)

    teleost) fishes, while largely unknown, is essential to an understanding of the effects of temperature on fish energetics. This study quantifies the effect of temperature on the standard rate of metabolism in the African lungfish, Protopterus aethiopicus.

  4. Temperature and prey capture: opposite relationships in two predator taxa

    DEFF Research Database (Denmark)

    Kruse, Peter Dalgas; Toft, Søren; Sunderland, Keith

    2008-01-01

    moulded by light conditions depending on whether the predator is diurnally or nocturnally active. It was hypothesised that flying Diptera are vulnerable to carabid beetles only at low temperatures and over the full temperature range for spiders because carabids, in contrast to spiders, are not built...... on the predation rate of two carabid beetles (Pterostichus versicolor and Calathus fuscipes) and two spiders (Clubiona phragmitis and Pardosa prativaga) using fruit flies (Drosophila melanogaster) as prey. 3. All four predators and the fruit fly increased their locomotory activity at higher temperatures. Activity...... of the carabid beetles peaked at intermediate temperatures; spiders and fruit flies were most active at the highest temperatures. Predation rate of the spiders increased with temperature whereas the beetles caught flies only at low temperatures (5 and 10 °C). 4. Diurnal variation in temperature may bring...

  5. Pressure Controlled Heat Pipe for Precise Temperature Control, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The principal Phase II objective is to refine and further develop the prototype PCHP into a useful thermal management tool. The Phase I program established the...

  6. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment.

    Science.gov (United States)

    Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng

    2017-12-26

    The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  7. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2017-12-01

    Full Text Available The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  8. Phase dependent impedance and temperature dependent response of microwave SQUID

    International Nuclear Information System (INIS)

    Callegari, A.C.

    1978-01-01

    We report measurements of the microwave impedance of superconducting point contacts as a function of the quantum mechanical phase difference phi. They yield a conductance of the form G(phi) = G/sub o/(1+alpha cos phi) where alpha is a dimensionless parameter reflecting an interference between the Cooper pairs and the quasiparticles. Experimental results agree with a negative alpha approximately equal to -.5 which can be interpreted in terms of a phenomenological model that follows essentially the Time Dependent Landau Ginzburg theory (TDLG). In the second part we report measurements of the response of a microwave SQUID using a Ta point contact at various temperatures. They give a progression of operating conditions from the non-hysteretic to the hysteretic mode. The responses calculated by Soerensen and by Burhman and Jackel are in qualitative agreement with the measurements. We also present a theory based on a calculation of the reflection coefficient from the point contact. This theory reproduces the results of Bunhman and Jackel and Soerensen and is directly adaptable to our microwave geometry. In the last chapter we present a calculation that exhibits explicitly the dependence of the response on OMEGA = PHI/sub o/nu/I/sub X sub/R where nu is the microwave frequency, I/sub c/ and R the critical current and resistance of the junction and PHI/sub o/ fluxoid quantum, and that agrees with their data and their interpretation of it in terms of a limiting time tau for the supercurrent response with tau varies as DELTA(T)/sup -1/ where DELTA (T) is the BCS gap parameter

  9. Simultaneous Temperature and Velocity Diagnostic for Reacting Flows, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A diagnostic technique is proposed for measuring temperature and velocity simultaneously in a high temperature reacting flow for aiding research in propulsion. The...

  10. High Temperature Electrical Insulation Materials for Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's future space science missions cannot be realized without the state of the art high temperature insulation materials of which higher working temperature, high...

  11. Low Temperature Phase Transformations in Copper-Quenched Ti-44.5Al-8Nb-2.5V Alloy

    Directory of Open Access Journals (Sweden)

    Shouzhen Cao

    2017-02-01

    Full Text Available In this study, an easily controlled transformation similar to the β + α → β + α + γ and the analysis of metastable phases in a β solidifying Ti-44.5Al-8Nb-2.5V alloy were investigated. Therefore, a liquid alloy copper-quenching followed by annealing at an application temperature (850 °C has been carried out. Following quenching, a microstructure composed of several supersaturated phases—the basket-weave β0 (βbv phase, the plate-like α2 (αp phase and the stripe-like γ (γs phase—was obtained. In the annealing processes, phase transformations in the prior βbv and αp phases domain corresponded nicely to the β + α → β + α + γ transformation during solidification. Also, in the annealed γs phase, the kinetics of the phase transformations involving the metastable L12 phase was firstly detected by transmission electron microscopy (TEM. The L12 phase had a lattice structure similar to the γ phase, whereas the composition of the phase was similar to the α2 phase. The formation of the γ pre-twin phase with an anti-phase boundary (APB was detected in the γs phase of the matrix. The orientation relationships between the γs and precipitated: γ (γp phase are <101]γs//<114]γp, (10 1 ¯ γs//( 1 ¯ 10γp and (0 1 ¯ 0γs//(22 1 ¯ γp.

  12. Temperature-induced order-disorder structural phase transitions of two-dimensional isostructural hexamethylenetetramine co-crystals.

    Science.gov (United States)

    Chia, Tze Shyang; Quah, Ching Kheng

    2017-10-01

    Hexamethylenetetramine-benzoic acid (1/2) (HBA) and hexamethylenetetramine-4-methylbenzoic acid (1/2) (HMBA) co-crystals undergo order-disorder structural phase transition from a low-temperature monoclinic crystal structure to a high-temperature orthorhombic crystal structure at the transition temperatures of 257.5 (5) K (Pn ↔ Fmm2) and 265.5 (5) K (P2 1 /n ↔ Cmcm), respectively, using variable-temperature single-crystal X-ray diffraction analysis. The observed phase transitions were confirmed to be reversible first-order transitions as indicated by the sharp endothermic and exothermic peaks in the differential scanning calorimetry measurement. The three-molecule aggregate of HBA and HMBA consists of a hexamethylenetetramine molecule and two benzoic acid or two 4-methylbenzoic acid molecules, respectively. The acid molecules are ordered at the low-temperature phase and are equally disordered over two positions, which are related by a mirror symmetry, at the high-temperature phase. The two-dimensional supramolecular constructs common to both co-crystals are formed by three-molecule aggregates via weak intermolecular C-H...O and C-H...π interactions into molecular trilayers parallel to the ac plane with small XPac dissimilarity indices and parameters. The PIXEL interaction energies of all corresponding molecular contacts were calculated and the results are comparable between HBA and HMBA co-crystals, resulting in similar lattice energies and transition temperatures despite their two-dimensional isostructural relationship. The observed phase transitions of these two energetically similar co-crystals are triggered by similar mechanisms, i.e. the molecular rotator ordering and structural order-disorder transformation, which induced non-merohedral twinning with similar twin matrices in the low-temperature crystal form of both co-crystals.

  13. Ab Initio Simulations of Temperature Dependent Phase Stability and Martensitic Transitions in NiTi

    Science.gov (United States)

    Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.

    2016-01-01

    For NiTi based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. In particular, we show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing these phase transformations is discussed.

  14. Fiber Optic Temperature Sensors for Thermal Protection Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase 1, Intelligent Fiber Optic Systems Corporation (IFOS), in collaboration with North Carolina State University, successfully demonstrated a Fiber Bragg...

  15. Characterization of phase change materials for thermal control of photovoltaics using Differential Scanning Calorimetry and Temperature History Method

    International Nuclear Information System (INIS)

    Hasan, A.; McCormack, S.J.; Huang, M.J.; Norton, B.

    2014-01-01

    Highlights: • Five PCM are characterized using tow techniques for PV temperature regulation. • Thermophysical properties of interest are determined and compared with literature. • Determined PCM properties are discussed as criteria for PV temperature regulation. • One PCM identified as potential candidate for PV temperature regulation. - Abstract: Five solid–liquid phase change materials comprising three basic classes, paraffin waxes, salt hydrates and mixtures of fatty acids were thermophysically characterized for thermal regulation applications in photovoltaics. The PCM were investigated using Differential Scanning Calorimetry and Temperature History Method to find their thermophysical properties of interest. The relationship between thermophysical properties of the PCM and their choice as temperature regulators in photovoltaics is discussed in relation to the ambient conditions under which PV systems operate

  16. Pressure Controlled Heat Pipe for Precise Temperature Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research project will develop Pressure Controlled Heat Pipes (PCHPs) for precise temperature control (milli-Kelvin level). Several...

  17. Improvements in X-band transmitter phase stability through Klystron body temperature regulation

    Science.gov (United States)

    Perez, R. M.

    1992-01-01

    This article describes the techniques used and experimental results obtained in improving transmitter stability by control of the klystron body temperature. Related work in the measurement of klystron phase control parameters (pushing factors) is also discussed. The contribution of wave guide temperature excursions to uplink phase stability is presented. Suggestions are made as to the direction of future work in this area.

  18. Temperature-dependent structure, elasticity, and entropic stability of Bi phases on Cu(111)

    NARCIS (Netherlands)

    van Gastel, Raoul; Kaminski, D; Vlieg, E.; Poelsema, Bene

    2014-01-01

    We have used low energy electron microscopy (LEEM) to characterize the structure and stability of Bi phases on Cu{111}. As a function of temperature we find that the Cu{111}(3√×3√)R30∘-Bi surface alloy phase gradually dealloys and is fully depleted from Bi at a temperature of 803 K. The dealloying

  19. Simulation of phase separation with temperature-dependent viscosity using lattice Boltzmann method.

    Science.gov (United States)

    Wang, Heping; Zang, Duyang; Li, Xiaoguang; Geng, Xingguo

    2017-12-27

    This paper presents an exploration of the phase separation behavior and pattern formation in a binary fluid with temperature-dependent viscosity via a coupled lattice Boltzmann method (LBM). By introducing a viscosity-temperature relation into the LBM, the coupling effects of the viscosity-temperature coefficient [Formula: see text] , initial viscosity [Formula: see text] and thermal diffusion coefficient [Formula: see text] , on the phase separation were successfully described. The calculated results indicated that an increase in initial viscosity and viscosity-temperature coefficient, or a decrease in the thermal diffusion coefficient, can lead to the orientation of isotropic growth fronts over a wide range of viscosity. The results showed that droplet-type phase structures and lamellar phase structures with domain orientation parallel or perpendicular to the walls can be obtained in equilibrium by controlling the initial viscosity, thermal diffusivity, and the viscosity-temperature coefficient. Furthermore, the dataset was rearranged for growth kinetics of domain growth and thermal diffusion fronts in a plot by the spherically averaged structure factor and the ratio of separated and continuous phases. The analysis revealed two different temporal regimes: spinodal decomposition and domain growth stages, which further quantified the coupled effects of temperature and viscosity on the evolution of temperature-dependent phase separation. These numerical results provide guidance for setting optimum temperature ranges to obtain expected phase separation structures for systems with temperature-dependent viscosity.

  20. Molecular dynamics simulation of ZnO wurtzite phase under high and low pressures and temperatures

    Science.gov (United States)

    Chergui, Y.; Aouaroun, T.; Hadley, M. J.; Belkada, R.; Chemam, R.; Mekki, D. E.

    2017-11-01

    Isothermal and isobaric ensembles behaviours of ZnO wurtzite phase have been investigated, by parallel molecular dynamics method and using Buckingham potential, which contains long-range Coulomb, repulsive exponential, and attractive dispersion terms. To conduct our calculations, we have used dl_poly 4 software, under which the method is implemented. We have examined the influence of the temperature and pressure on molar volume in the ranges of 300–3000 K and 0–200 GPa. Isothermal-isobaric relationships, fluctuations, standard error, equilibrium time, molar volume and its variation versus time are predicted and analyzed. Our results are close to available experimental data and theoretical results.

  1. luminous transmittance and phase transition temperature of vo2:ce ...

    African Journals Online (AJOL)

    nb

    molybdenum, niobium and fluorine. Although tungsten (W) doping has shown incredible reduction in τc to room temperature (Batista et al. 2011), W-doped VO2 films are reported to have lower infrared transmittance at room temperature compared with the undoped films. (Wang et al. 2005), and hence unsuitable for high.

  2. Advanced High Temperature Structural Honeycomb TPS, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this NASA Phase I SBIR program, MATECH proposes to leverage successfully developed laboratory and pilot scale manufacturing technologies to produce low cost...

  3. High Temperature, High Frequency Fuel Metering Valve, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Active Signal Technologies and its subcontractor Moog propose to develop a high-frequency actuator driven valve intended to achieve TRL 6 by the end of Phase II....

  4. Silicon photonics thermal phase shifter with reduced temperature range

    Science.gov (United States)

    Lentine, Anthony L; Kekatpure, Rohan D; DeRose, Christopher; Davids, Paul; Watts, Michael R

    2013-12-17

    Optical devices, phased array systems and methods of phase-shifting an input signal are provided. An optical device includes a microresonator and a waveguide for receiving an input optical signal. The waveguide includes a segment coupled to the microresonator with a coupling coefficient such that the waveguide is overcoupled to the microresonator. The microresonator received the input optical signal via the waveguide and phase-shifts the input optical signal to form an output optical signal. The output optical signal is coupled into the waveguide via the microresonator and transmitted by the waveguide. At an operating point of the optical device, the coupling coefficient is selected to reduce a change in an amplitude of the output optical signal and to increase a change in a phase of the output optical signal, relative to the input optical signal.

  5. The relationship of lung function with ambient temperature.

    Science.gov (United States)

    Collaco, Joseph M; Appel, Lawrence J; McGready, John; Cutting, Garry R

    2018-01-01

    Lung function is complex trait with both genetic and environmental factors contributing to variation. It is unknown how geographic factors such as climate affect population respiratory health. To determine whether ambient air temperature is associated with lung function (FEV1) in the general population. Associations between spirometry data from two National Health and Nutrition Examination Survey (NHANES) periods representative of the U.S. non-institutionalized population and mean annual ambient temperature were assessed using survey-weighted multivariate regression. The NHANES III (1988-94) cohort included 14,088 individuals (55.6% female) and the NHANES 2007-12 cohort included 14,036 individuals (52.3% female), with mean ages of 37.4±23.4 and 34.4±21.8 years old and FEV1 percent predicted values of 99.8±15.8% and 99.2±14.5%, respectively. After adjustment for confounders, warmer ambient temperatures were associated with lower lung function in both cohorts (NHANES III p = 0.020; NHANES 2007-2012 p = 0.014). The effect was similar in both cohorts with a 0.71% and 0.59% predicted FEV1 decrease for every 10°F increase in mean temperature in the NHANES III and NHANES 2007-2012 cohorts, respectively. This corresponds to ~2 percent predicted difference in FEV1 between the warmest and coldest regions in the continental United States. In the general U.S. population, residing in regions with warmer ambient air temperatures was associated with lower lung function with an effect size similar to that of traffic pollution. Rising temperatures associated with climate change could have effects on pulmonary function in the general population.

  6. The relationship of lung function with ambient temperature.

    Directory of Open Access Journals (Sweden)

    Joseph M Collaco

    Full Text Available Lung function is complex trait with both genetic and environmental factors contributing to variation. It is unknown how geographic factors such as climate affect population respiratory health.To determine whether ambient air temperature is associated with lung function (FEV1 in the general population.Associations between spirometry data from two National Health and Nutrition Examination Survey (NHANES periods representative of the U.S. non-institutionalized population and mean annual ambient temperature were assessed using survey-weighted multivariate regression.The NHANES III (1988-94 cohort included 14,088 individuals (55.6% female and the NHANES 2007-12 cohort included 14,036 individuals (52.3% female, with mean ages of 37.4±23.4 and 34.4±21.8 years old and FEV1 percent predicted values of 99.8±15.8% and 99.2±14.5%, respectively.After adjustment for confounders, warmer ambient temperatures were associated with lower lung function in both cohorts (NHANES III p = 0.020; NHANES 2007-2012 p = 0.014. The effect was similar in both cohorts with a 0.71% and 0.59% predicted FEV1 decrease for every 10°F increase in mean temperature in the NHANES III and NHANES 2007-2012 cohorts, respectively. This corresponds to ~2 percent predicted difference in FEV1 between the warmest and coldest regions in the continental United States.In the general U.S. population, residing in regions with warmer ambient air temperatures was associated with lower lung function with an effect size similar to that of traffic pollution. Rising temperatures associated with climate change could have effects on pulmonary function in the general population.

  7. Depth Dependent Relationships between Temperature and Ocean Heterotrophic Prokaryotic Production

    OpenAIRE

    Lønborg, Christian; Cuevas, L. Antonio; Reinthaler, Thomas; Herndl, Gerhard J.; Gasol, Josep M.; Morán, Xosé Anxelu G.; Bates, Nicholas R.; Álvarez-Salgado, Xosé A.

    2016-01-01

    Marine prokaryotes play a key role in cycling of organic matter and nutrients in the ocean. Using a unique dataset (>14,500 samples), we applied a space-for-time substitution analysis to assess the temperature dependence of prokaryotic heterotrophic production (PHP) in epi- (0–200 m), meso- (201–1000 m) and bathypelagic waters (1001–4000 m) of the global ocean. Here, we show that the temperature dependence of PHP is fundamentally different between these major oceanic depth layers, with an est...

  8. Seasonality in mortality and its relationship to temperature among the older population in Hanoi, Vietnam.

    Science.gov (United States)

    Xuan, Le Thi Thanh; Egondi, Thaddaeus; Ngoan, Le Tran; Toan, Do Thi Thanh; Huong, Le Thi

    2014-01-01

    Several studies have established a relationship between temperature and mortality. In particular, older populations have been shown to be vulnerable to temperature effects. However, little information exists on the temperature-mortality relationship in Vietnam. This article aims to examine the monthly temperature-mortality relationship among older people in Hanoi, Vietnam, over the period between 2005 and 2010, and estimate seasonal patterns in mortality. We employed Generalized Additive Models, including smooth functions, to model the temperature-mortality relationships. A quasi-Poisson distribution was used to model overdispersion of death counts. Temporal trends, seasonality, and population size were adjusted for while estimating changes in monthly mortality over the study period. A cold month was defined as a month with a mean temperature below 19°C. This study found that the high peak of mortality coincided with low temperatures in the month of February 2008, during which the mean temperature was the lowest in the whole study period. There was a significant relationship between mean monthly temperature and mortality among the older people (ppopulation in Hanoi, Vietnam, and there were gender differences. Necessary preventive measures are required to mitigate temperature effects with greater attention to vulnerable groups.

  9. A relationship between temperature and aggression in NFL football penalties

    Directory of Open Access Journals (Sweden)

    Curtis Craig

    2016-06-01

    Conclusion: These results indicate that even in the aggressive context of football, warmer weather contributes to increased violence. Further, the presence of the heat-aggression relationship for the home team suggests that the characteristics of interacting groups may influence whether heat would have an adverse effect on the outcome of those interactions.

  10. Real-time Thermal Stir Weld Temperature Monitor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal stir welding (TSW) is a solid state welding process which has shown promise in joining high strength, high temperature metals needed for space launch...

  11. Passive Wireless Temperature Sensor for Harsh Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Wireless Sensor Technologies has for several years been developing a passive Wireless Temperature Sensor (WTS) for gas turbine engine and other harsh environment...

  12. Novel High Temperature Membrane for PEM Fuel Cells, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed in this STTR program is a high temperature membrane to increase the efficiency and power density of PEM fuel cells. The NASA application is...

  13. High Temperature Solid State Lithium Battery, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Reliable energy systems with high energy density capable of operating at high temperatures, pressures and radiation levels are needed for certain NASA missions....

  14. Extreme Environment High Temperature Communication Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to develop and demonstrate a communications system capable of operation at extreme temperatures and pressures in hostile and corrosive...

  15. High Temperature Acoustic Noise Reduction Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is to use combustion synthesis techniques to manufacture ceramic-based acoustic liners capable of withstanding temperatures up to 2500?C....

  16. Extreme Temperature, Rad-Hard Power Management ASIC, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Ridgetop Group will design a rad-hard Application Specific Integrated Circuit (ASIC) for spacecraft power management that is functional over a temperature range of...

  17. High Temperature Radiators for Electric Propulsion Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The VASIMR propulsion system uses a high temperature Loop Heat Pipe (LHP) radiator to reject heat from the helicon section. The current baseline radiator uses...

  18. Temperature Sensing Solution for Cryogenic Space Engines, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic systems, heavily used in rocket ground testing, space station operations, shuttle launch systems, etc, require a large number of temperature sensors for...

  19. Lightweight, High-Temperature Radiator Panels, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Lightweight, high-temperature radiators are needed for future, high-efficiency power conversion systems for Nuclear Electric Propulsion (NEP). Creare has developed...

  20. Lightweight, High-Temperature Radiator Panels, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Lightweight, high-temperature radiators are needed for future, high-efficiency power conversion systems for Nuclear Electric Propulsion (NEP). Creare has developed...

  1. Electronic Modeling and Design for Extreme Temperatures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop electronics for operation at temperatures that range from -230oC to +130oC. This new technology will minimize the requirements for external...

  2. High Power Room Temperature Terahertz Local Oscillator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build a high-power, room temperature compact continuous wave terahertz local oscillator for driving heterodyne receivers in the 1-5 THz frequency...

  3. Durability of lightweight concrete : Phase I : concrete temperature study.

    Science.gov (United States)

    1968-08-01

    This report describes a study conducted to determine the temperature gradient throughout the depth of a six inch concrete bridge deck. The bridge deck selected for study was constructed using lightweight concrete for the center spans and sand and gra...

  4. Double Bag VARTM for High Temperature Composites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Cost and size are limiting factors in efforts to produce high strength, high stiffness, and high temperature composite parts. To address these issues, new processes...

  5. High Temperature Sound Absorption Coating - Soundown HT, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — MPAC and UMR are proposing development of an Acoustic Control System for high temperature gas flow in ducts. This control system is based on a passive inorganic...

  6. High Temperature Capacitors for Venus Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — High temperature power electronics have become a vital aspect of future designs for power converters in spacecraft, battle zone electric power, satellite power...

  7. Lightweight Superconducting Magnets for Low Temperature Magnetic Coolers, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's future science missions to investigate the structure and evolution of the universe require efficient, very low temperature coolers for low noise detector...

  8. Highly Effective Thermal Regenerator for Low Temperature Cryocoolers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future missions to investigate the structure and evolution of the universe require highly efficient, low-temperature cryocoolers for low-noise detector systems. We...

  9. Depth Dependent Relationships between Temperature and Ocean Heterotrophic Prokaryotic Production

    KAUST Repository

    Lønborg, Christian

    2016-06-07

    Marine prokaryotes play a key role in cycling of organic matter and nutrients in the ocean. Using a unique dataset (>14,500 samples), we applied a space-for-time substitution analysis to assess the temperature dependence of prokaryotic heterotrophic production (PHP) in epi- (0-200 m), meso- (201-1000 m) and bathypelagic waters (1001-4000 m) of the global ocean. Here, we show that the temperature dependence of PHP is fundamentally different between these major oceanic depth layers, with an estimated ecosystem-level activation energy (E) of 36 ± 7 kJ mol for the epipelagic, 72 ± 15 kJ mol for the mesopelagic and 274 ± 65 kJ mol for the bathypelagic realm. We suggest that the increasing temperature dependence with depth is related to the parallel vertical gradient in the proportion of recalcitrant organic compounds. These Ea predict an increased PHP of about 5, 12, and 55% in the epi-, meso-, and bathypelagic ocean, respectively, in response to a water temperature increase by 1°C. Hence, there is indication that a major thus far underestimated feedback mechanism exists between future bathypelagic ocean warming and heterotrophic prokaryotic activity.

  10. Phase Transformation of Hot Dipped Aluminium during High Temperature Oxidation

    International Nuclear Information System (INIS)

    Zaifol Samsu; Muhammad Daud; Hishamuddin Husain; Mohd Saari Ripin; Rusni Rejab; Zaiton Selamat; Mohd Shariff Sattar

    2014-01-01

    Low alloy carbon steel was coated by hot-dipping into a molten aluminum bath. Isothermal oxidations were carried out at 750 degree Celsius in static air to study the oxidation behaviour of the hot-dipped aluminide steel. The phase transformation in the aluminide layer during diffusion at 750 degree Celsius in static air was analyzed by SEM-EDX and XRD. After hot-dip treatment, the coating layers consisted of three phases, where Al, thinner layer of FeAl 3 , and thicker layer of Fe 2 Al 5 were detected from external topcoat to the aluminide/ steel substrate. After oxidation, the Fe 2 Al 5 formed during the immersion process completely transformed to Fe 2 Al 5 , FeAl 2 , FeAl and Al-Fe(Al) phases because of the composition gradient and the chemical diffusion by oxidation. After oxidation, there are some voids were found at the coating/ substrate interface due to the rapid inter-diffusion of iron and aluminium during oxidation. The FeAl phase kept growing with increasing exposure time at 750 degree Celsius, while the Fe 2 Al 5 was consumed during oxidation. After 168 hrs oxidation, the Fe 2 Al 5 phase was going disappeared as the aluminum layer was consumed. (author)

  11. Interferometric Measurement of the Current-Phase Relationship of a Superfluid Weak Link

    Directory of Open Access Journals (Sweden)

    S. Eckel

    2014-09-01

    Full Text Available Weak connections between superconductors or superfluids can differ from classical links due to quantum coherence, which allows flow without resistance. Transport properties through such weak links can be described with a single function, the current-phase relationship, which serves as the quantum analog of the current-voltage relationship. Here, we present a technique for inteferometrically measuring the current-phase relationship of superfluid weak links. We interferometrically measure the phase gradient around a ring-shaped superfluid Bose-Einstein condensate containing a rotating weak link, allowing us to identify the current flowing around the ring. While our Bose-Einstein condensate weak link operates in the hydrodynamic regime, this technique can be extended to all types of weak links (including tunnel junctions in any phase-coherent quantum gas. Moreover, it can also measure the current-phase relationships of excitations. Such measurements may open new avenues of research in quantum transport.

  12. Phase Equilibria Relationships of High-Tc Superconductors

    International Nuclear Information System (INIS)

    Wong-Ng, Winnie

    2011-01-01

    As an integral part of a R and D program partially supported by the Electricity Delivery and Energy Reliability Office of DOE, we have determined phase equilibria data and phase diagrams for the three generations of superconductor materials: 1st generation, (Bi,Pb)-Sr-Ca- Cu-O systems; 2nd generation, Ba-R-Cu-O systems (R=lanthanides and yttrium); and 3rd generation, MgB2 systems. Our studies involved bulk materials, single crystals and thin films. This report gives a summary of our accomplishments, a list of publications, and 15 selected journal publications.

  13. Relationship of pressure to temperature rise in overfilled cylinders

    International Nuclear Information System (INIS)

    Barber, E.J.

    1979-01-01

    Mild steel pressure vessels containing uranium hexafluoride are heated in 96-inch diameter autoclaves to allow the feed material to enter the gaseous diffusion process equipment for enrichment in the uranium 235 isotope. For purposes of safety analysis it is necessary to establish the ability of the instrumentation to shut off the steam supply to the autoclave prior to cylinder rupture if the cylinder has been overfilled. To make this determination requires estimates of the rate of change of pressure with respect to change of temperature at constant volume as a function of the temperature at which the ullage disappears. The paper presents the calculations for the estimation of this rate of change for liquid uranium hexafluoride using the ratio of the coefficients of expansion and compressibility using empirical liquid density data and the Eyring equation of state for liquids. 5 figs. (MB)

  14. Microstructure, Processing, Performance Relationships for High Temperature Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Thomas M. Lillo

    2011-04-01

    This work evaluates the suitability of iron aluminide coatings for use in high temperature fossil fuel combustion environments, such as boiler applications. The coatings are applied using High Velocity Oxy-Fuel (HVOF) thermal spray techniques. Iron aluminide coatings, with the nominal composition of Fe3Al, were applied to various high temperature structural materials (316 Stainless Steel, 9Cr-1Mo steel and Inconel 600) that typically lack inherent resistance to environmental degradation found in fossil fuel combustion atmospheres. Coating/substrate combinations were subjected to thermal cycling to evaluate the effect of HVOF parameters, coating thickness, substrate material and substrate surface roughness on the resistance to coating delamination and cracking. It was found that substrate surface roughness had a profound influence on the performance of a given substrate/coating system and that surface preparation techniques will need to be tailored to the specific substrate material. Also, higher particle velocity during HVOF thermal spray deposition of the iron aluminide coatings tended to result in better-performing coating/substrate systems with less delamination at the coating/substrate interface. Some combinations of HVOF parameters, coating thickness and substrate materials were found to perform extremely well even at temperatures up to 900oC. However, in some cases, substantial reactions at the interface were observed.

  15. Diffusion Concept in Phase Stability of High Temperature Composites

    National Research Council Canada - National Science Library

    Zhao, Ji-Cheng

    2003-01-01

    A high-efficiency "diffusion multiple" approach was employed to determine the phase diagrams of nine ternary systems Nb-Ti-Si, Nb-Cr- Si, Nb-Cr-Ti, Ti-Cr-Si, Nb-Si-Al, Nb-Cr-Al, Nb-Ti-Al, Ti-Si-Al, and Ti-Cr-Al...

  16. Circulatory osmotic desalination driven by a mild temperature gradient based on lower critical solution temperature (LCST) phase transition materials.

    Science.gov (United States)

    Mok, Yeongbong; Nakayama, Daichi; Noh, Minwoo; Jang, Sangmok; Kim, Taeho; Lee, Yan

    2013-11-28

    Abrupt changes in effective concentration and osmotic pressure of lower critical solution temperature (LCST) mixtures facilitate the design of a continuous desalination method driven by a mild temperature gradient. We propose a prototype desalination system by circulating LCST mixtures between low and high temperature (low T and high T) units. Water molecules could be drawn from a high-salt solution to the LCST mixture through a semipermeable membrane at a temperature lower than the phase transition temperature, at which the effective osmotic pressure of the LCST mixture is higher than the high-salt solution. After transfer of water to the high T unit where the LCST mixture is phase-separated, the water-rich phase could release the drawn water into a well-diluted solution through the second membrane due to the significant decrease in effective concentration. The solute-rich phase could be recovered in the low T unit via a circulation process. The molar mass, phase transition temperature, and aqueous solubility of the LCST solute could be tuneable for the circulatory osmotic desalination system in which drawing, transfer, release of water, and the separation and recovery of the solutes could proceed simultaneously. Development of a practical desalination system that draws water molecules directly from seawater and produces low-salt water with high purity by mild temperature gradients, possibly induced by sunlight or waste heat, could be attainable by a careful design of the molecular structure and combination of the circulatory desalination systems based on low- and high-molar-mass LCST draw solutes.

  17. Insight into the Am-O Phase Equilibria: A Thermodynamic Study Coupling High-Temperature XRD and CALPHAD Modeling.

    Science.gov (United States)

    Epifano, Enrica; Guéneau, Christine; Belin, Renaud C; Vauchy, Romain; Lebreton, Florent; Richaud, Jean-Christophe; Joly, Alexis; Valot, Christophe; Martin, Philippe M

    2017-07-03

    In the frame of minor actinide transmutation, americium can be diluted in UO 2 and (U, Pu)O 2 fuels burned in fast neutron reactors. The first mandatory step to foresee the influence of Am on the in-reactor behavior of transmutation targets or fuel is to have fundamental knowledge of the Am-O binary system and, in particular, of the AmO 2-x phase. In this study, we coupled HT-XRD (high-temperature X-ray diffraction) experiments with CALPHAD thermodynamic modeling to provide new insights into the structural properties and phase equilibria in the AmO 2-x -AmO 1.61+x -Am 2 O 3 domain. Because of this approach, we were able for the first time to assess the relationships between temperature, lattice parameter, and hypostoichiometry for fcc AmO 2-x . We showed the presence of a hyperstoichiometric existence domain for the bcc AmO 1.61+x phase and the absence of a miscibility gap in the fcc AmO 2-x phase, contrary to previous representations of the phase diagram. Finally, with the new experimental data, a new CALPHAD thermodynamic model of the Am-O system was developed, and an improved version of the phase diagram is presented.

  18. Investigations of Temperatures of Phase Transformations of Low-Alloyed Reinforcing Steel within the Heat Treatment Temperature Range

    Directory of Open Access Journals (Sweden)

    Kargul T.

    2017-06-01

    Full Text Available The paper presents the results of DSC analysis of steel B500SP produced in the process of continuous casting, which is intended for the production reinforcement rods with high ductility. Studies were carried out in the temperature range below 1000°C in a protective atmosphere of helium during samples heating program. The main objective of the study was to determine the temperature range of austenite structure formation during heating. As a result of performed experiments: Ac1s, Ac1f – temperatures of the beginning and finish of the eutectoid transformation, Ac2 – Curie temperature of the ferrite magnetic transformation and the temperature Ac3 of transformation of proeutectoid ferrite into austenite were elaborated. Experimental determination of phase transformations temperatures of steel B500SP has great importance for production technology of reinforcement rods, because good mechanical properties of rods are formed by the special thermal treatment in Tempcore process.

  19. Low-temperature thermal expansion of metastable intermetallic Fe-Cr phases

    International Nuclear Information System (INIS)

    Gorbunoff, A.; Levin, A.A.; Meyer, D.C.

    2009-01-01

    The thermal expansion coefficients (TEC) of metastable disordered intermetallic Fe-Cr phases formed in thin Fe-Cr alloy films prepared by an extremely non-equilibrium method of the pulsed laser deposition are studied. The lattice parameters of the alloys calculated from the low-temperature wide-angle X-ray diffraction (WAXRD) patterns show linear temperature dependencies in the temperature range 143-293 K and a deviation from the linearity at lower temperatures. The linear thermal expansion coefficients determined from the slopes of the linear portions of the temperature-lattice parameter dependencies differ significantly from phase to phase and from the values expected for the body-centered cubic (b.c.c.) Fe 1-x Cr x solid solutions. Strain-crystallite size analysis of the samples is performed. Predictions about the Debye temperature and the mechanical properties of the alloys are made.

  20. Structure determination at room temperature and phase transition ...

    Indian Academy of Sciences (India)

    Unknown

    displacement of Bi atoms along the 'a' axis might be responsible for ferroelectricity in these compounds. The high temperature X-ray data above Tc indicate no structural transition for A = Ba and Pb while A = Sr transforms to the tetragonal structure. Keywords. ab initio structure; powder XRD; Rietveld refinement; Aurivillius ...

  1. Low-temperature structural phase transition in deuterated and protonated lithium acetate dihydrate

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, F., E-mail: schroeder@kristall.uni-frankfurt.d [Goethe-Universitaet Frankfurt am Main, Institut fuer Geowissenschaften, Abt. Kristallographie, Altenhoeferallee 1, 60438 Frankfurt am Main (Germany); Winkler, B.; Haussuehl, E. [Goethe-Universitaet Frankfurt am Main, Institut fuer Geowissenschaften, Abt. Kristallographie, Altenhoeferallee 1, 60438 Frankfurt am Main (Germany); Cong, P.T.; Wolf, B. [Goethe-Universitaet Frankfurt am Main, Physikalisches Institut, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); Avalos-Borja, M. [Instituto Potosino de Investigacion Cientifica y Tecnologica, A.C. Camino a la Presa San Jose 2055, Col. Lomas 4 seccion CP 78216, San Luis Potosi (Mexico); Quilichini, M.; Hennion, B. [Laboratoire Leon Brillouin, CEN Saclay, 91191 Gif-sur-Yvette (France)

    2010-08-15

    Heat capacity measurements of protonated lithium acetate dihydrate show a structural phase transition at T = 12 K. This finding is in contrast to earlier work, where it was thought that only the deuterated compound undergoes a low temperature structural phase transition. This finding is confirmed by low temperature ultrasound spectroscopy, where the structural phase transition is associated with a velocity decrease of the ultrasonic waves, i.e. with an elastic softening. We compare the thermodynamic properties of the protonated and deuterated compounds and discuss two alternatives for the mechanism of the phase transition based on the thermal expansion measurements.

  2. Cold exposure and/or fasting modulate the relationship between sleep and body temperature rhythms in mice.

    Science.gov (United States)

    Sato, Nobuo; Marui, Shuri; Ozaki, Makoto; Nagashima, Kei

    2015-10-01

    We assessed the relationship between core temperature (Tc) and sleep rhythms in mice, and examined the effects of ambient temperature and fasting. Tc, electroencephalograms (EEG), electromyograms (EMG), and spontaneous activity in male ICR mice (n=9) were measured by telemetry for 3 days under a 12:12h dark-light cycle. Mice were fed or fasted at an ambient temperature (Ta) of 27°C or 20°C for the final 30h of the experiment. The vigilance state was categorized into a wake state, rapid-eye movement (REM) sleep, and non-REM (NREM) sleep, and the total sleep time (TST) was assessed. Relationships between Tc and TST, NREM periods, and REM sleep were estimated using Pearson's correlation coefficient. During cold exposure, Tc decreased during the dark and light phases, and TST and the periods of NREM and REM sleep decreased during the dark phase. Throughout the fasting period, Tc also decreased during the dark and light phases. Furthermore, the decrease in Tc was augmented when fasting and cold were combined. TST and NREM sleep periods decreased in the light and dark phases, respectively, whereas REM sleep periods decreased in both phases. Negative linear correlations (r=-0.884 to -0.987) were observed between Tc and TST, NREM sleep periods, and REM sleep periods, except for Tc and REM sleep periods where fasting and cold conditions were combined. The correlations between sleep and Tc rhythms were well maintained during cold exposure and fasting. However, when cold and fasting were combined, REM sleep and Tc rhythms were desynchronized. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Battery Internal Temperature Estimation for LiFePO4 Battery Based on Impedance Phase Shift under Operating Conditions

    Directory of Open Access Journals (Sweden)

    Jiangong Zhu

    2017-01-01

    Full Text Available An impedance-based temperature estimation method is investigated considering the electrochemical non-equilibrium with short-term relaxation time for facilitating the vehicular application. Generally, sufficient relaxation time is required for battery electrochemical equilibrium before the impedance measurement. A detailed experiment is performed to investigate the regularity of the battery impedance in short-term relaxation time after switch-off current excitation, which indicates that the impedance can be measured and also has systematical decrement with the relaxation time growth. Based on the discussion of impedance variation in electrochemical perspective, as well as the monotonic relationship between impedance phase shift and battery internal temperature in the electrochemical equilibrium state, an exponential equation that accounts for both measured phase shift and relaxation time is established to correct the measuring deviation caused by electrochemical non-equilibrium. Then, a multivariate linear equation coupled with ambient temperature is derived considering the temperature gradients between the active part and battery surface. Equations stated above are all identified with the embedded thermocouple experimentally. In conclusion, the temperature estimation method can be a valuable alternative for temperature monitoring during cell operating, and serve the functionality as an efficient implementation in battery thermal management system for electric vehicles (EVs and hybrid electric vehicles (HEVs.

  4. Analysis for transient temperature distribution two phase flow using test section QUEEN-02

    International Nuclear Information System (INIS)

    Ainur Rosidi; Joko Prasetio; Edy Sumarno; Kiswanta; Heru Bambang

    2013-01-01

    Experiments on the transient temperature distribution using a two-phase flow test facility QUEEN-02 and BETA test loop was conducted. Purpose of the experiment is to study temperature distribution during the transient cooling process. Experiments performed with the variation of the initial temperature of hot rod test section QUEEN-02 of 350 °C and 500 °C as well as the flow of cooling water temperature is 90 °C with the direction of flow from the bottom up from the BETA test loop. The analysis shows that temperature have the same downward trend in its every point thermocouple for the same initial temperature during cooling. Initial temperature of 350 °C hot rods produced when temperatures drop to 90 °C (the same as the temperature of the cooling water) for 78 seconds while the initial temperature of 500 °C produces hot rod drop time 190 seconds. (author)

  5. Structure of the high-temperature phase of tetrafluoromethane CF4

    Science.gov (United States)

    Klimenko, N. A.; Gal'tsov, N. N.; Prokhvatilov, A. I.

    2008-11-01

    X-Ray studies of the structure of the high-temperature β phase and the α-β orientational phase transition of carbon tetrafluoride have been performed. It has been found that β-CF4 possesses a monoclinic cell with the parameters a =13.732Å, b =12.815Å, c =13.429Å, and β =93.6°, which is similar to the unit cell of the high-temperature phase of silane SiH4. In both substances, the high-temperature phase contains molecules which are oriented in 32 different ways in the monoclinic lattice. It is pointed out that the structures determined for β-CF4 and β-SiH4 are related to the structures of the low-temperature phases of heavy methane tetrahalides α-CCl4 and α-CBr4. It is suggested that the orientational structures of β-CF4 and the low-temperature phases of heavy methane tetrahalides are very similar to one another. It is determined that the phase transition in CF4 is first-order phase transition, just as in silane, and is accompanied by a large volume jump reaching ΔV /V=4.5%.

  6. Temperature dependence of muonium reaction rates in the gas phase

    International Nuclear Information System (INIS)

    Fleming, D.G.; Garner, D.M.; Mikula, R.J.; British Columbia Univ., Vancouver

    1981-01-01

    A study of the temperature dependence of reaction rates has long been an important tool in establishing reaction pathways in chemical reactions. This is particularly true for the reactions of muonium (in comparison with those of hydrogen) since a measurement of the activation energy for chemical reaction is sensitive to both the height and the position of the potential barrier in the reaction plane. For collision controlled reactions, on the other hand, the reaction rate is expected to exhibit a weak T 1 sup(/) 2 dependence characteristic of the mean collision velocity. These concepts are discussed and their effects illustrated in a comparison of the chemical and spin exchange reaction rates of muonium and hydrogen in the temperature range approx.300-approx.500 K. (orig.)

  7. Relationships between membrane water molecules and Patman equilibration kinetics at temperatures far above the phosphatidylcholine melting point.

    Science.gov (United States)

    Vaughn, Alexandra R; Bell, Thomas A; Gibbons, Elizabeth; Askew, Caitlin; Franchino, Hannabeth; Hirsche, Kelsey; Kemsley, Linea; Melchor, Stephanie; Moulton, Emma; Schwab, Morgan; Nelson, Jennifer; Bell, John D

    2015-04-01

    The naphthalene-based fluorescent probes Patman and Laurdan detect bilayer polarity at the level of the phospholipid glycerol backbone. This polarity increases with temperature in the liquid-crystalline phase of phosphatidylcholines and was observed even 90°C above the melting temperature. This study explores mechanisms associated with this phenomenon. Measurements of probe anisotropy and experiments conducted at 1M NaCl or KCl (to reduce water permittivity) revealed that this effect represents interactions of water molecules with the probes without proportional increases in probe mobility. Furthermore, comparison of emission spectra to Monte Carlo simulations indicated that the increased polarity represents elevation in probe access to water molecules rather than increased mobility of relevant bilayer waters. Equilibration of these probes with the membrane involves at least two steps which were distinguished by the membrane microenvironment reported by the probe. The difference in those microenvironments also changed with temperature in the liquid-crystalline phase in that the equilibrium state was less polar than the initial environment detected by Patman at temperatures near the melting point, more polar at higher temperatures, and again less polar as temperature was raised further. Laurdan also displayed this level of complexity during equilibration, although the relationship to temperature differed quantitatively from that experienced by Patman. This kinetic approach provides a novel way to study in molecular detail basic principles of what happens to the membrane environment around an individual amphipathic molecule as it penetrates the bilayer. Moreover, it provides evidence of unexpected and interesting membrane behaviors far from the phase transition. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Relationships between secchi disk visibility, water temperature and dissolved oxygen in freshwater fishpond

    OpenAIRE

    Ali, M.H.; Cagauan, A.G.

    2007-01-01

    A study was conducted to determine the relationships between secchi disk variability, water temperature and dissolved oxygen in fish ponds. Multiple regression correlation analysis was done to evaluate the relationships between the variables. Results indicated that the ranges of secchi disk visibility, water temperature and dissolved oxygen in the study ponds were just within the ranges of the variables for tilapia culture. Multiple regression correlation showed no (or insignificant) relation...

  9. Rugged Low Temperature Actuators for Tunable Fabry Perot Optical Filters, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — During our Phase I SBIR research, we propose to integrate a novel low-temperature large-strain actuator technology into Fabry-Perot optical filters. The resulting...

  10. Ceramic Composite Mechanical Fastener System for High-Temperature Structural Assemblies, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Under Phase I, the feasibility of a novel thermal stress-free ceramic composite mechanical fastener system suitable for assembly of high-temperature composite...

  11. Phase change nanocomposites with tunable melting temperature and thermal energy storage density.

    Science.gov (United States)

    Liu, Minglu; Wang, Robert Y

    2013-08-21

    Size-dependent melting decouples melting temperature from chemical composition and provides a new design variable for phase change material applications. To demonstrate this potential, we create nanocomposites that exhibit stable and tunable melting temperatures through numerous melt-freeze cycles. These composites consist of a monodisperse ensemble of Bi nanoparticles (NPs) embedded in a polyimide (PI) resin matrix. The Bi NPs operate as the phase change component whereas the PI resin matrix prevents nanoparticle coalescence during melt-freeze cycles. We tune melting temperature and enthalpy of fusion in these composites by varying the NP diameter. Adjusting the NP volume fraction also controls the composite's thermal energy storage density. Hence it is possible to leverage size effects to tune phase change temperature and energy density in phase change materials.

  12. Acoustic emission during low temperature phase transformations in plutonium

    International Nuclear Information System (INIS)

    Khejpl, K.; Karpenter, S.

    1988-01-01

    To study the nature of phase transformations in plutonium and plutonium-gallium alloys (0.3 and 0.57% Ga) the measurement of acoustic emission is conducted. The presence of acoustic emission testifies to martensitic character of transformation, related to sharp local changes in the volume, which cause elastic waves. It is detected that during α reversible β transformations in non-alloyed plutonium acoustic emission is absent, and that testifies to nonmartensitic nature of the transformations. σ reversible α transformation in plutonium-gallium alloys is accompanied by the appearance of acoustic emission, i.e. it is of martensitic origin

  13. Stability of phases at high temperatures in CoRe based alloys being developed for ultra-high temperature applications

    Science.gov (United States)

    Gilles, R.; Strunz, P.; Mukherji, D.; Hofmann, M.; Hoelzel, M.; Roesler, J.

    2012-02-01

    In the development of new high-temperature alloys for gas turbine applications various candidates are under consideration. This contribution deals with a CoRe based alloy strengthened by Cr23C6 type carbide and Cr2Re3 type σ phase precipitations (here designated as CoRe-1 alloy). High-temperature cycling experiments show how the influence of heating, cooling and the hcpfcc phase transformation of the Co-matrix on the stability of these phases. Neutron diffraction experiments with high-temperature vacuum furnace show that Cr23C6 carbides starts to dissolve around 1100°C and above 1250°C are almost completely dissolved. On the other hand σ phase is still present at 1300°C. This contribution describes the evolution of the different phases during the heating and cooling cycles which are repeated two times. Further, the influence of boron addition to CoRe-1 alloy was studied for samples in the first heating/cooling cycle. A newly developed tensile rig was also tested up to 980°C to combine in situ loading and heating for the neutron diffraction measurements.

  14. The orientation phase of the nurse-client relationship: how long does it take?

    Science.gov (United States)

    Forchuk, C

    1992-01-01

    As Hildegard Peplau has established, the orientation phase of the nurse-client relationship represents the first stage of therapeutic work. The author studied the length of the orientation phase with clients with chronic mental illness. Findings suggested that the orientation phase was related to the number and length of hospitalizations, while demographic variables such as psychiatric diagnosis were unrelated to the length of the orientation phase. A return to the orientation phase can be triggered by a change of staff, even for brief periods, or internal factors within the client, such as worsening of paranoia or depression.

  15. Brillouin suppression in a fiber optical parametric amplifier by combining temperature distribution and phase modulation

    DEFF Research Database (Denmark)

    Lorenzen, Michael Rodas; Noordegraaf, Danny; Nielsen, Carsten Vandel

    2008-01-01

    We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation.......We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation....

  16. A Mixed Enthalpy-Temperature Finite Element Method For Generalized Phase-Change Problems

    DEFF Research Database (Denmark)

    krabbenhøft, Kristian; Damkilde, Lars

    2003-01-01

    In a large number of problems of engineering interest the transition of the material from one phase to another is of vital importance in describing the overall physical behaviour. Common applications include metal casting, freezing and thawing of foodstuffs and other biological materials, ground...... freezing and solar energy storage. The phase-change problem is characterized by an abrupt change in enthalpy per unit temperature in a narrow temperature range around the freezing point....

  17. Two-phase materials for high-temperature service

    CSIR Research Space (South Africa)

    Nabarro, FRN

    2000-09-01

    Full Text Available for high-temperature service F.R.N. Nabarro a,b,* aDivision of Manufacturing and Materials, CSIR, PO Box 395, Pretoria 0001, South Africa bCondensed Matter Physics Research Unit, University of the Witwatersrand, Johannesburg, Private Bag 3, WITS 2050, South... that ratcheting creep may present serious problems in the system TiA`/Ti3A`. 2. Summary of the plastic properties of the C13/C130 and TiAl/Ti3Al structures We summarize here some of the properties described in more detail in Ref. [1]. 2.1. Current superalloys...

  18. Epitaxial relationships for hexagonal-to-cubic phase transition in a block copolymer mixture

    DEFF Research Database (Denmark)

    Schulz, M.F.; Bates, F.S.; Almdal, K.

    1994-01-01

    Small-angle neutron scattering experiments have revealed an epitaxial relationship between the hexagonal cylinder phase, and a bicontinuous cubic phase with Ia3dBAR space group symmetry, in a poly(styrene)-poly(2-vinylpyridine) diblock copolymer mixture. Proximity to the order-disorder transition...

  19. Phase degradation in BxGa1-xN films grown at low temperature by metalorganic vapor phase epitaxy

    Science.gov (United States)

    Gunning, Brendan P.; Moseley, Michael W.; Koleske, Daniel D.; Allerman, Andrew A.; Lee, Stephen R.

    2017-04-01

    Using metalorganic vapor phase epitaxy, a comprehensive study of BxGa1-xN growth on GaN and AlN templates is described. BGaN growth at high-temperature and high-pressure results in rough surfaces and poor boron incorporation efficiency, while growth at low-temperature and low-pressure (750-900 °C and 20 Torr) using nitrogen carrier gas results in improved surface morphology and boron incorporation up to 7.4% as determined by nuclear reaction analysis. However, further structural analysis by transmission electron microscopy and x-ray pole figures points to severe degradation of the high boron composition films, into a twinned cubic structure with a high density of stacking faults and little or no room temperature photoluminescence emission. Films with peaks, near-band-edge photoluminescence emission at 362 nm, and primarily wurtzite-phase structure in the x-ray pole figures. For films with >1% TEB flow, the crystal structure becomes dominated by the cubic phase. Only when the TEB flow is zero (pure GaN), does the cubic phase entirely disappear from the x-ray pole figure, suggesting that under these growth conditions even very low boron compositions lead to mixed crystalline phases.

  20. Atomistic description for temperature-driven phase transitions in BaTiO3

    Science.gov (United States)

    Qi, Y.; Liu, S.; Grinberg, I.; Rappe, A. M.

    2016-10-01

    Barium titanate (BaTiO3) is a prototypical ferroelectric perovskite that undergoes the rhombohedral-orthorhombic-tetragonal-cubic phase transitions as the temperature increases. In this paper, we develop a classical interatomic potential for BaTiO3 within the framework of the bond-valence theory. The force field is parametrized from first-principles results, enabling accurate large-scale molecular dynamics (MD) simulations at finite temperatures. Our model potential for BaTiO3 reproduces the temperature-driven phase transitions in isobaric-isothermal ensemble (N P T ) MD simulations. This potential allows for the analysis of BaTiO3 structures with atomic resolution. By analyzing the local displacements of Ti atoms, we demonstrate that the phase transitions of BaTiO3 exhibit a mix of order-disorder and displacive characters. Besides, from a detailed observation of structural dynamics during phase transition, we discover that the global phase transition is associated with changes in the equilibrium value and fluctuations of each polarization component, including the ones already averaging to zero, Contrary to the conventional understanding that temperature increase generally causes bond-softening transition, the x -polarization component (the one which is polar in both the orthorhombic and the tetragonal phases) exhibits a bond-hardening character during the orthorhombic-to-tetragonal transition. These results provide further insight about the temperature-driven phase transitions in BaTiO3.

  1. Thermal characteristics of shape-stabilized phase change material wallboard with periodical outside temperature waves

    International Nuclear Information System (INIS)

    Zhou, Guobing; Yang, Yongping; Wang, Xin; Cheng, Jinming

    2010-01-01

    Thermal characteristics of shape-stabilized phase change material (SSPCM) wallboard with sinusoidal temperature wave on the outer surface were investigated numerically and compared with traditional building materials such as brick, foam concrete and expanded polystyrene (EPS). One-dimensional enthalpy equation under convective boundary conditions was solved using fully implicit finite-difference scheme. The simulation results showed that the SSPCM wallboard presents distinct characteristics from other ordinary building materials. Phase transition keeping time of inner surface and decrement factor were applied to analyze the effects of PCM thermophysical properties (melting temperature, heat of fusion, phase transition zone and thermal conductivity), inner surface convective heat transfer coefficient and thickness of SSPCM wallboard. It was found that melting temperature is one important factor which influences both the phase transition keeping time and the decrement factor; for a certain outside temperature wave, there exist critical values of latent heat of fusion and thickness of SSPCM above which the phase transition keeping time or the decrement factor are scarcely influenced; thermal conductivity of PCM and inner surface convective coefficient have little effect on the phase transition keeping time but significantly influence the decrement factor; and the phase transition zone leads to small fluctuations of the original flat segment of inner surface temperature line. The results aim to be useful for the selection of SSPCMs and their applications in passive solar buildings.

  2. Phase transitions in cerium at high pressure up to 15 GPa and at high temperatures

    International Nuclear Information System (INIS)

    Tsiok, O.B.; Khvostantsev, L.G.

    2001-01-01

    The phase transitions in cerium are studied through the electric resistance measurement method at pressures up to 15 GPa and high temperatures. It is determined that cerium at pressures above 10 GPa constitutes the mixture of stable and metastable phases, whereby its composition depends on thee trajectory on the P-T-plane, leading to the point with the given P-T-parameters. The transitions in the stable and metastable components of this mixture, proceeding more or less independently, demonstrate the entangled picture of the phase transitions. It was supposed that only the α (Fcc) and α' (α-U) phases are stable in the area of pressures above the well-known γ-α-transition; the remainder phases are metastable. The proposed cupola-shaped equilibrium phase diagram includes extremely wide hysteresis area, wherein the stable and metastable phases may coexist. However after heating above 500 deg C at 15 GPa there remains only one phase α (Fcc) [ru

  3. Electromagnetic losses in a three-phase high temperature superconducting cable determined by calorimetric measurements

    DEFF Research Database (Denmark)

    Traeholt, C.; Veje, E.; Tønnesen, Ole

    2002-01-01

    A 10 m long high temperature superconducting (HTS) cable conductor was placed in a plane three-phase arrangement. The test-bed enabled us to study the conductor losses for different separations between the phases. The superconductor was fixed symmetrically in the centre, whilst the two outer conv...

  4. The Cu-Te-Sb phase system at temperatures between 300 and 1000 degree C

    DEFF Research Database (Denmark)

    Karup-Møller, Sven

    1997-01-01

    Phase relations were determined in the Cu-Te-Sb phase system at 300, 350, 400, 500, 600, 700, 800, 900 and 1000 degree C. At temperatures between 400 and 900 degree C a cubic primitive ternary phase A exists. It has the empirical formula Cu(10.32-0.97x)Te(x)Sb(4-x) (Z=2, a=7.682 Å). A small liquid...

  5. Thermal Stability Test of Sugar Alcohols as Phase Change Materials for Medium Temperature Energy Storage Application

    OpenAIRE

    Solé, Aran; Neumann, Hannah; Niedermaier, Sophia; Cabeza, Luisa F.; Palomo, Elena

    2014-01-01

    Sugar alcohols are potential phase change materials candidates as they present high phase change enthalpy values, are non-toxic and low cost products. Three promising sugar-alcohols were selected: D-mannitol, myo-inositol and dulcitol under high melting enthalpy and temperature criterion. Thermal cycling tests were performed to study its cycling stability which can be determining when selecting the suitable phase change material. D-mannitol and dulcitol present poor thermal stability...

  6. Temperature induced reversible polymorphic phase transformations in a bis-hydrazone compound

    Science.gov (United States)

    Jayant, Vikrant; Das, Dinabandhu

    2018-03-01

    Two reversible polymorphic phase transformation of 2,3-butanedione, 2,3- bis[4,4‧-bis(diethylamino)benzophenone hydrazone] (DEBH) have been identified in DSC experiment. Topotactic phase transformation of three polymorphs has been observed in variable temperature Single Crystal X-ray Diffraction experiment. The reversible phase transformation of bulk material has been confirmed by Powder X-ray diffraction study.

  7. Low temperature phase selective deposition of MnS films

    Science.gov (United States)

    Sivakumar, R.; Dhandayuthapani, T.; Girish, M.; Sanjeeviraja, C.

    2017-05-01

    Rock salt α-MnS, Wurzite γ-MnS and mixed metastable MnS films have been successfully synthesized by chemical bath deposition method at relatively low temperature. The formation of rock salt α-MnS, wurzite γ-MnS and metastable MnS were confirmed by X-ray diffraction. Raman analysis revealed a peak at 580 cm-1 for α-MnS, 612 cm-1 for γ-MnS and 650 cm-1 for metastable MnS. α-MnS and metastable MnS exhibit a strong blue emission, whereas, γ-MnS exhibit strong yellow emission as observed from PL study.

  8. Investigation of medium and high temperature phase change materials

    Science.gov (United States)

    Heine, D.; Kraehling, H.

    1979-01-01

    A detailed description of the programs for acquisition and analysis of the test results is given. Basically it concerns three programs. The TEST program controls the recording of the test data. With the THELLI program it is possible to follow the temperature curve recorded for each individual thermoelement during the test. With the AUSW program the test data can be analyzed, to determine, for example, the melting point and the start of melting. The first results of the service life tests are discussed. From these it is attempted to draw inferences for the subsequent tests. An attempt is made to focus on the determination of the area-related mass loss, the reduction in thickness and the corrosion rate as well as optical and scanning electron microscope evaluation.

  9. Primary collector wall local temperature fluctuations in the area of water-steam phase boundary

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O.; Klinga, J.; Simo, T. [Energovyzkum Ltd., Brno (Switzerland)

    1995-12-31

    A limited number of temperature sensors could be installed at the primary collector surface in the area of water - steam phase boundary. The surface temperatures as well WWER 440 steam generator process data were measured and stored for a long time and off-line evaluated. Selected results are presented in the paper. (orig.). 2 refs.

  10. Temperature and Violent Crime in Dallas, Texas: Relationships and Implications of Climate Change

    Directory of Open Access Journals (Sweden)

    Janet L. Gamble

    2012-08-01

    Full Text Available Introduction: To investigate relationships between ambient temperatures and violent crimes to determine whether those relationships are consistent across different crime categories and whether they are best described as increasing linear functions, or as curvilinear functions that decrease beyond some temperature threshold. A secondary objective was to consider the implications of the observed relationships for injuries and deaths from violent crimes in the context of a warming climate. To address these questions, we examined the relationship between daily ambient temperatures and daily incidents of violent crime in Dallas, Texas from 1993–1999.Methods: We analyzed the relationships between daily fluctuations in ambient temperature, other meteorological and temporal variables, and rates of daily violent crime using time series piece-wise regression and plots of daily data. Violent crimes, including aggravated assault, homicide, and sexualassault, were analyzed.Results: We found that daily mean ambient temperature is related in a curvilinear fashion to daily rates of violent crime with a positive and increasing relationship between temperature and aggravated crime that moderates beyond temperatures of 80 F and then turns negative beyond 90 F.Conclusion: While some have characterized the relationship between temperature and violent crime as a continually increasing linear function, leaving open the possibility that aggravated crime will increase in a warmer climate, we conclude that the relationship in Dallas is not linear, but moderatesand turns negative at high ambient temperatures. We posit that higher temperatures may encourage people to seek shelter in cooler indoor spaces, and that street crime and other crimes of opportunity are subsequently decreased. This finding suggests that the higher ambient temperatures expected with climate change may result in marginal shifts in violent crime in the short term, but are not likely to be

  11. Ag-In transient liquid phase bonding for high temperature stainless steel micro actuators

    OpenAIRE

    Andersson, Martin

    2013-01-01

    A stainless steel, high temperature, phase change micro actuator has been demonstrated using the solid-liquid phase transition of mannitol at 168°C and In-Ag transient liquid phase diffusion bonding. Joints created with this bonding technique can sustain temperatures up to 695°C, while being bonded at only 180°C, and have thicknesses between 1.4 to 6.0 μm. Physical vapour deposition, inkjet printing and electroplating have been evaluated as deposition methods for bond layers. For actuation, c...

  12. Preparation of 147Pm metal and the determination of the melting point and phase transformation temperatures

    International Nuclear Information System (INIS)

    Angelini, P.; Adair, H.L.

    1976-07-01

    The promethium metal used in the determination of the melting point and phase transformation temperatures was prepared by reduction of promethium oxide with thorium metal at 1600 0 C and distilling the promethium metal into a quartz dome. The melting point and phase transformation temperatures of promethium metal were found to be 1042 +- 5 0 C and 890 +- 5 0 C, respectively. The ratio for the heat of the high-temperature transformation to the heat of fusion was determined to be 0.415

  13. Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators

    Science.gov (United States)

    Saini, Camille; Morf, Jörg; Stratmann, Markus; Gos, Pascal; Schibler, Ueli

    2012-01-01

    The circadian pacemaker in the suprachiasmatic nuclei (SCN) of the hypothalamus maintains phase coherence in peripheral cells through metabolic, neuronal, and humoral signaling pathways. Here, we investigated the role of daily body temperature fluctuations as possible systemic cues in the resetting of peripheral oscillators. Using precise temperature devices in conjunction with real-time monitoring of the bioluminescence produced by circadian luciferase reporter genes, we showed that simulated body temperature cycles of mice and even humans, with daily temperature differences of only 3°C and 1°C, respectively, could gradually synchronize circadian gene expression in cultured fibroblasts. The time required for establishing the new steady-state phase depended on the reporter gene, but after a few days, the expression of each gene oscillated with a precise phase relative to that of the temperature cycles. Smooth temperature oscillations with a very small amplitude could synchronize fibroblast clocks over a wide temperature range, and such temperature rhythms were also capable of entraining gene expression cycles to periods significantly longer or shorter than 24 h. As revealed by genetic loss-of-function experiments, heat-shock factor 1 (HSF1), but not HSF2, was required for the efficient synchronization of fibroblast oscillators to simulated body temperature cycles. PMID:22379191

  14. Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators.

    Science.gov (United States)

    Saini, Camille; Morf, Jörg; Stratmann, Markus; Gos, Pascal; Schibler, Ueli

    2012-03-15

    The circadian pacemaker in the suprachiasmatic nuclei (SCN) of the hypothalamus maintains phase coherence in peripheral cells through metabolic, neuronal, and humoral signaling pathways. Here, we investigated the role of daily body temperature fluctuations as possible systemic cues in the resetting of peripheral oscillators. Using precise temperature devices in conjunction with real-time monitoring of the bioluminescence produced by circadian luciferase reporter genes, we showed that simulated body temperature cycles of mice and even humans, with daily temperature differences of only 3°C and 1°C, respectively, could gradually synchronize circadian gene expression in cultured fibroblasts. The time required for establishing the new steady-state phase depended on the reporter gene, but after a few days, the expression of each gene oscillated with a precise phase relative to that of the temperature cycles. Smooth temperature oscillations with a very small amplitude could synchronize fibroblast clocks over a wide temperature range, and such temperature rhythms were also capable of entraining gene expression cycles to periods significantly longer or shorter than 24 h. As revealed by genetic loss-of-function experiments, heat-shock factor 1 (HSF1), but not HSF2, was required for the efficient synchronization of fibroblast oscillators to simulated body temperature cycles.

  15. Increases in plasma sheet temperature with solar wind driving during substorm growth phases

    Science.gov (United States)

    Forsyth, C; Watt, C E J; Rae, I J; Fazakerley, A N; Kalmoni, N M E; Freeman, M P; Boakes, P D; Nakamura, R; Dandouras, I; Kistler, L M; Jackman, C M; Coxon, J C; Carr, C M

    2014-01-01

    During substorm growth phases, magnetic reconnection at the magnetopause extracts ∼1015 J from the solar wind which is then stored in the magnetotail lobes. Plasma sheet pressure increases to balance magnetic flux density increases in the lobes. Here we examine plasma sheet pressure, density, and temperature during substorm growth phases using 9 years of Cluster data (>316,000 data points). We show that plasma sheet pressure and temperature are higher during growth phases with higher solar wind driving, whereas the density is approximately constant. We also show a weak correlation between plasma sheet temperature before onset and the minimum SuperMAG AL (SML) auroral index in the subsequent substorm. We discuss how energization of the plasma sheet before onset may result from thermodynamically adiabatic processes; how hotter plasma sheets may result in magnetotail instabilities, and how this relates to the onset and size of the subsequent substorm expansion phase. PMID:26074645

  16. High-temperature phases of NaNbO3 and NaTaO3.

    Science.gov (United States)

    Darlington; Knight

    1999-02-01

    The high-temperature phases of the perovskites sodium niobate, NaNbO(3), and sodium tantalate, NaTaO(3), have been re-examined using the high-resolution powder diffractometer HRPD at the ISIS neutron spallation source; the two materials show the same sequence of phases with tilted octahedra. Diffraction patterns were measured every 5 K allowing structural changes with temperature within a single phase to be determined for the first time. Previous structure determinations within one phase had been performed at a single temperature only. The octahedra are tilted about pseudocubic directions and are also deformed; the magnitude of the deformation is shown to be proportional to the square of the angle of tilt as expected from a phenomenological theory applied to such transitions. The structures of NaNbO(3) between 753 and 793 K and of NaTaO(3) below 758 K are not as reported in the literature.

  17. Variation of thermal conductivity of DPPC lipid bilayer membranes around the phase transition temperature.

    Science.gov (United States)

    Youssefian, Sina; Rahbar, Nima; Lambert, Christopher R; Van Dessel, Steven

    2017-05-01

    Given their amphiphilic nature and chemical structure, phospholipids exhibit a strong thermotropic and lyotropic phase behaviour in an aqueous environment. Around the phase transition temperature, phospholipids transform from a gel-like state to a fluid crystalline structure. In this transition, many key characteristics of the lipid bilayers such as structure and thermal properties alter. In this study, we employed atomistic simulation techniques to study the structure and underlying mechanisms of heat transfer in dipalmitoylphosphatidylcholine (DPPC) lipid bilayers around the fluid-gel phase transformation. To investigate this phenomenon, we performed non-equilibrium molecular dynamics simulations for a range of different temperature gradients. The results show that the thermal properties of the DPPC bilayer are highly dependent on the temperature gradient. Higher temperature gradients cause an increase in the thermal conductivity of the DPPC lipid bilayer. We also found that the thermal conductivity of DPPC is lowest at the transition temperature whereby one lipid leaflet is in the gel phase and the other is in the liquid crystalline phase. This is essentially related to a growth in thermal resistance between the two leaflets of lipid at the transition temperature. These results provide significant new insights into developing new thermal insulation for engineering applications. © 2017 The Authors.

  18. Reduced temperature phase diagrams of the silver-rare earths binary systems

    International Nuclear Information System (INIS)

    Ferro, R.; Delfino, S.; Capelli, R.; Borsese, A.

    1975-01-01

    Phase equilibria of the silver-rare earth binary systems have been reported in ''reduced temperature'' diagrams (the ''reduced temperature'' being defined as the ratio between a characteristic temperature of the Agsub(x)R.E. phase and the melting temperature of the corresponding R.E. metal, both in 0 K). The smooth trends of the various characteristic reduced temperatures, when plotted against the R.E. atomic number, have been demonstrated. On passing from the light- to the heavy-rare-earths, a correlation has been found between the crossing of these curves and other phenomena, such as the disappearing of the Ag 5 R.E. phases from incongruently, to congruently melting compounds. The trends of the reduced-temperature curves have been briefly discussed in terms of the treatment suggested by Gschneidner together with the volumetric data known for the different Agsub(x)R.E. phases. In addition, the characteristic data of the 1:1 AgR.E. compounds have been compared with those of the analogous AuR.E. phases. (Auth.)

  19. Low-temperature structure anomalies in CuNCN. Manifestations of RVB phase transitions?

    Science.gov (United States)

    Tchougréeff, A L; Dronskowski, R

    2013-10-30

    We propose a new frustrated Heisenberg antiferromagnetic model with spatially anisotropic exchange parameters Jc, Ja, and Jac, extending along the c, a, and a ± c (c-a-ca model) lattice directions, and apply it to describe the fascinating physics of copper carbodiimide, CuNCN, assuming the resonating valence bond (RVB) type of its phases. This explains within a unified picture the intriguing absence of magnetic order in CuNCN. We further present a parameters-temperature phase diagram of the c-a-ca-RVB model in the high-temperature approximation. Eight different phases including Curie and Pauli paramagnets (respectively, in disordered and 1D- or Q1D-RVB phases) and (pseudo)gapped (quasi-Arrhenius) paramagnets (2D-RVB phases) are possible. By adding magnetostriction and elastic terms to the model, we derive possible structural manifestations of RVB phase transitions. Assuming a sequence of RVB phase transitions to occur in CuNCN with decreasing temperature, several anomalies observed in the temperature course of the lattice constants are explained.

  20. Phase transitions in Cd3P2 at high pressures and high temperatures

    DEFF Research Database (Denmark)

    Yel'kin, F.S.; Sidorov, V.A.; Waskowska, A.

    2008-01-01

    The high-pressure, high-temperature structural behaviour of Cd3P2 has been studied using electrical resistance measurements, differential thermal analysis, thermo baric analysis and X-ray diffraction. At room temperature, a phase transformation is observed at 4.0 GPa in compression. The experimen......The high-pressure, high-temperature structural behaviour of Cd3P2 has been studied using electrical resistance measurements, differential thermal analysis, thermo baric analysis and X-ray diffraction. At room temperature, a phase transformation is observed at 4.0 GPa in compression....... The experimental zero-pressure bulk modulus of the low-pressure phase is 64.7(7) GPa, which agrees quite well with the calculated value of 66.3 GPa using the tight-binding linear muffin-tin orbital method within the local density approximation. Tentatively, the high-pressure phase has an orthorhombic crystal...... structure with space group Pmmn (#59). The relative volume change at the phase transition is Delta V/V= -5.5%. Amorphization of the sample occurs above 25 GPa. A P-T phase diagram of Cd3P2 has been constructed. A metastable phase is observed at ambient conditions after heating the sample to above 600 K...

  1. Structural and phase transformations in the low-temperature annealed amorphous “finemet”-type microwires

    Energy Technology Data Exchange (ETDEWEB)

    Tcherdyntsev, V.V., E-mail: vvch08@yandex.ru [National University of Science and Technology “MISIS”, Moscow 119049 (Russian Federation); Aleev, A.A. [SSC RF Institute for Theoretical and Experimental Physics, Moscow 117218 (Russian Federation); Churyukanova, M.N.; Kaloshkin, S.D. [National University of Science and Technology “MISIS”, Moscow 119049 (Russian Federation); Medvedeva, E.V. [Institute of Electrophysics, Ural Branch, Russian Academy of Sciences, Yekaterinburg 620016 (Russian Federation); Korchuganova, O.A. [SSC RF Institute for Theoretical and Experimental Physics, Moscow 117218 (Russian Federation); Zhukova, V. [Dpto. de Fns. Mater., UPV/EHU, San Sebastian 20018 (Spain); Zhukov, A.P. [Dpto. de Fns. Mater., UPV/EHU, San Sebastian 20018 (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain)

    2014-02-15

    Highlights: • Structure and magnetic properties evolution at heating of amorphous microwires was studied. • Relaxation processes in the amorphous phase correlate with an increase in Curie temperature. • Curie temperature change can not be stabilized by a prolonged exposure at pre-crystallization temperatures. • Tomographic atom probe microscopy supports the formation of α-Fe phase precipitations enriched in Si. -- Abstract: Finemet-type glass-coated microwires with amorphous and nanocrystalline structure have been investigated. The relaxation and crystallization processes at heating of amorphous alloy have been studied by DSC method. We observed that the relaxation processes in the amorphous phase correlate with an increasing of the Curie temperature. Additionally a prolonged exposure of the samples below the crystallization temperatures does not stabilize the Curie temperature change. An investigation by the tomographic atom probe microscopy supports the formation of precipitations, probably α-Fe phase, as a result of low-temperature annealing (400 °C, 5 min). We found that the observed nano-sized areas were enriched in silicon.

  2. Structural and phase transformations in the low-temperature annealed amorphous “finemet”-type microwires

    International Nuclear Information System (INIS)

    Tcherdyntsev, V.V.; Aleev, A.A.; Churyukanova, M.N.; Kaloshkin, S.D.; Medvedeva, E.V.; Korchuganova, O.A.; Zhukova, V.; Zhukov, A.P.

    2014-01-01

    Highlights: • Structure and magnetic properties evolution at heating of amorphous microwires was studied. • Relaxation processes in the amorphous phase correlate with an increase in Curie temperature. • Curie temperature change can not be stabilized by a prolonged exposure at pre-crystallization temperatures. • Tomographic atom probe microscopy supports the formation of α-Fe phase precipitations enriched in Si. -- Abstract: Finemet-type glass-coated microwires with amorphous and nanocrystalline structure have been investigated. The relaxation and crystallization processes at heating of amorphous alloy have been studied by DSC method. We observed that the relaxation processes in the amorphous phase correlate with an increasing of the Curie temperature. Additionally a prolonged exposure of the samples below the crystallization temperatures does not stabilize the Curie temperature change. An investigation by the tomographic atom probe microscopy supports the formation of precipitations, probably α-Fe phase, as a result of low-temperature annealing (400 °C, 5 min). We found that the observed nano-sized areas were enriched in silicon

  3. Phase relationships of the system Fe-Ni-S and structure of the high-pressure phase of (Fe1-xNix)3S2

    Science.gov (United States)

    Urakawa, Satoru; Kamuro, Ryota; Suzuki, Akio; Kikegawa, Takumi

    2018-04-01

    The phase relationships of the Fe-Ni-S system at 15 GPa were studied by high pressure quench experiments. The stability fields of (Fe,Ni)3S and (Fe,Ni)3S2 and the melting relationships of the Fe-Ni-S system were determined as a function of Ni content. The (Fe,Ni)3S solid solution is stable in the composition of Ni/(Fe + Ni) > 0.7 and melts incongruently into an Fe-Ni alloy + liquid. The (Fe,Ni)3S2 makes a complete solid solution and melts incongruently into (Fe,Ni)S + liquid, whose structure was determined to show Cmcm-orthorhombic symmetry by in situ synchrotron X-ray diffraction experiments. The eutectic contains about 30 at.% of S, and its temperature decreases with increasing Ni content with a rate of ∼5 K/at.% from 1175 K. The density of the Fe-FeS eutectic composition (Fe70S30) liquid is evaluated to be 6.93 ± 0.08 g/cm3 at 15 GPa and 1200 K based on the Clausius-Clapeyron relations and densities of subsolidus phases. The Fe-Ni-S liquids are a primary sulfur-bearing phase in the deep mantle with a reducing condition (250-660 km depth), and they would play a significant role in the carbon cycle as a carbon host as well as in the generation of diamond.

  4. Study of phase development in alumina-spodumene ceramics by high temperature neutron diffraction

    International Nuclear Information System (INIS)

    Gan, B.K.; O'Connor, B.H.

    1999-01-01

    Full text: Melting and crystallisation of minor phases are important in many material systems which contain impurities and/or grain boundary liquid phases. Grain boundary glassy phases are generally not thermodynamically stable, and can devitrify during the sintering process or from other high temperature exposure. Characterising the minor phase assemblage in these types of materials has implications in processing, microstructural design and in-service use, particularly fluctuating thermal environments. An in situ high temperature neutron diffraction (ND) technique was used to follow the phase dynamics on sintering an alumina-spodumene ceramic as well as the crystallisation kinetics of the evolving crystalline phase in real time. The main benefit of using ND analysis in the present work is that it provides bulk specimen character of the material which is important in quantitatively extracting phase composition information. Likewise, most diffraction measurements are conducted with ambient or static temperature data, collected after specimens have been heat-treated and then cooled. Such data may yield misleading information particularly in relation to non-equilibrium phases. Hence dynamic measurements are clearly preferable as a direct means of confirming sintering processes. ND measurements were performed using the High Flux Australian Reactor (HIFAR) neutron source operated by the Australian Nuclear Science and Technology Organisation (ANSTO) at Lucas Heights, NSW, Australia. The ND patterns collected on heating the compacts provided relevant information for optimising materials processing and sintering protocols. Similarly, the ND patterns collected for three specific cooling schemes yielded significant details of evolution and crystallisation of the minor phase. The principal aim was to demonstrate the fundamental influence of the minor crystalline phase (and hence glassy phase) on properties and to manipulate and tailor the phase structure by controlled

  5. Evaluation of empirical relationships between extreme rainfall and daily maximum temperature in Australia

    Science.gov (United States)

    Herath, Sujeewa Malwila; Sarukkalige, Ranjan; Nguyen, Van Thanh Van

    2018-01-01

    Understanding the relationships between extreme daily and sub-daily rainfall events and their governing factors is important in order to analyse the properties of extreme rainfall events in a changing climate. Atmospheric temperature is one of the dominant climate variables which has a strong relationship with extreme rainfall events. In this study, a temperature-rainfall binning technique is used to evaluate the dependency of extreme rainfall on daily maximum temperature. The Clausius-Clapeyron (C-C) relation was found to describe the relationship between daily maximum temperature and a range of rainfall durations from 6 min up to 24 h for seven Australian weather stations, the stations being located in Adelaide, Brisbane, Canberra, Darwin, Melbourne, Perth and Sydney. The analysis shows that the rainfall - temperature scaling varies with location, temperature and rainfall duration. The Darwin Airport station shows a negative scaling relationship, while the other six stations show a positive relationship. To identify the trend in scaling relationship over time the same analysis is conducted using data covering 10 year periods. Results indicate that the dependency of extreme rainfall on temperature also varies with the analysis period. Further, this dependency shows an increasing trend for more extreme short duration rainfall and a decreasing trend for average long duration rainfall events at most stations. Seasonal variations of the scale changing trends were analysed by categorizing the summer and autumn seasons in one group and the winter and spring seasons in another group. Most of 99th percentile of 6 min, 1 h and 24 h rain durations at Perth, Melbourne and Sydney stations show increasing trend for both groups while Adelaide and Darwin show decreasing trend. Furthermore, majority of scaling trend of 50th percentile are decreasing for both groups.

  6. Low temperature thermal diffusivity of LiKSO4 obtained using the photoacoustic phase lag method

    Directory of Open Access Journals (Sweden)

    Jorge M.P.P.M.

    1999-01-01

    Full Text Available This paper describes the determination of the thermal diffusivity of LiKSO4 crystals using the photoacoustic phase lag method, in the 77 K to 300 K temperature interval. This method is quite simple and fast and when it is coupled to a specially designed apparatus, that includes a resonant photoacoustic cell, allows for the determination of the thermal diffusivity at low temperatures. The thermal diffusivity is an important parameter that depends on the temperature, and no values of this parameter for LiKSO4, at low temperature, have yet been reported. The LiKSO4 is a crystal with many phase transitions which can be detected via the anomalies in the variation of the thermal diffusivity as a function of the temperature.

  7. Seasonality in mortality and its relationship to temperature among the older population in Hanoi, Vietnam

    Directory of Open Access Journals (Sweden)

    Le Thi Thanh Xuan

    2014-12-01

    Full Text Available Background: Several studies have established a relationship between temperature and mortality. In particular, older populations have been shown to be vulnerable to temperature effects. However, little information exists on the temperature–mortality relationship in Vietnam. Objectives: This article aims to examine the monthly temperature–mortality relationship among older people in Hanoi, Vietnam, over the period between 2005 and 2010, and estimate seasonal patterns in mortality. Methods: We employed Generalized Additive Models, including smooth functions, to model the temperature–mortality relationships. A quasi-Poisson distribution was used to model overdispersion of death counts. Temporal trends, seasonality, and population size were adjusted for while estimating changes in monthly mortality over the study period. A cold month was defined as a month with a mean temperature below 19°C. Results: This study found that the high peak of mortality coincided with low temperatures in the month of February 2008, during which the mean temperature was the lowest in the whole study period. There was a significant relationship between mean monthly temperature and mortality among the older people (p<0.01. Overall, there was a significant decrease in the number of deaths in the year 2009 during the study period. There was a 21% increase in the number of deaths during the cold season compared to the warm season. The increase in mortality during the cold period was higher among females compared to males (female: IRR [incidence relative risk] =1.23; male: IRR=1.18. Conclusions: Cold temperatures substantially increased mortality among the older population in Hanoi, Vietnam, and there were gender differences. Necessary preventive measures are required to mitigate temperature effects with greater attention to vulnerable groups.

  8. Non-local temperature-dependent phase-field models for non-isothermal phase transitions

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Pavel; Rocca, E.; Sprekels, J.

    2007-01-01

    Roč. 76, č. 1 (2007), s. 197-210 ISSN 0024-6107 Institutional research plan: CEZ:AV0Z10190503 Keywords : non-isothermal phase transitions * free energy * thermodynamic consistency Subject RIV: BA - General Mathematics Impact factor: 0.733, year: 2007 http://jlms.oxfordjournals.org/content/76/1/197.short

  9. The pion quasiparticle in the low-temperature phase of QCD

    Directory of Open Access Journals (Sweden)

    Brandt Bastian B.

    2018-01-01

    Full Text Available We extend our previous studies [PhysRevD.90.054509, PhysRevD.92.094510] of the pion quasiparticle in the low-temperature phase of two-flavor QCD with support from chiral effective theory. This includes the analysis performed on a finite temperature ensemble of size 20 × 643 at T ≈ 151MeV and a lighter zero-temperature pion mass mπ ≈ 185 MeV. Furthermore, we investigate the Gell-Mann–Oakes-Renner relation at finite temperature and the Dey-Eletsky-Ioffe mixing theorem at finite quark mass.

  10. Substrate Integrated Waveguide Based Phase Shifter and Phased Array in a Ferrite Low Temperature Co-fired Ceramic Package

    KAUST Repository

    Nafe, Ahmed A.

    2014-03-01

    Phased array antennas, capable of controlling the direction of their radiated beam, are demanded by many conventional as well as modern systems. Applications such as automotive collision avoidance radar, inter-satellite communication links and future man-portable satellite communication on move services require reconfigurable beam systems with stress on mobility and cost effectiveness. Microwave phase shifters are key components of phased antenna arrays. A phase shifter is a device that controls the phase of the signal passing through it. Among the technologies used to realize this device, traditional ferrite waveguide phase shifters offer the best performance. However, they are bulky and difficult to integrate with other system components. Recently, ferrite material has been introduced in Low Temperature Co-fired Ceramic (LTCC) multilayer packaging technology. This enables the integration of ferrite based components with other microwave circuitry in a compact, light-weight and mass producible package. Additionally, the recent concept of Substrate Integrated Waveguide (SIW) allowed realization of synthesized rectangular waveguide-like structures in planar and multilayer substrates. These SIW structures have been shown to maintain the merits of conventional rectangular waveguides such as low loss and high power handling capabilities while being planar and easily integrable with other components. Implementing SIW structures inside a multilayer ferrite LTCC package enables monolithic integration of phase shifters and phased arrays representing a true System on Package (SoP) solution. It is the objective of this thesis to pursue realizing efficient integrated phase shifters and phased arrays combining the above mentioned technologies, namely Ferrite LTCC and SIW. In this work, a novel SIW phase shifter in ferrite LTCC package is designed, fabricated and tested. The device is able to operate reciprocally as well as non-reciprocally. Demonstrating a measured maximum

  11. Structure-property relationships in flavour-barrier membranes with reduced high-temperature diffusivity

    International Nuclear Information System (INIS)

    Heitfeld, Kevin A.; Schaefer, Dale W.

    2009-01-01

    Encapsulation is used to decrease the premature release of volatile flavour ingredients while offering protection against environmental damage such as oxidation, light-induced reactions, etc. Hydroxypropyl cellulose (HPC) is investigated here as a 'smart,' temperature responsive membrane for flavour encapsulation and delivery. Gel films were synthesized and characterized by diffusion and small-angle neutron and X-ray scattering techniques. Increasing temperature typically increases the diffusion rate across a membrane; HPC, however, can be tailored to give substantially improved elevated temperature properties. Scattering results indicate processing conditions have a significant impact on membrane morphology (micro phase separation). Under certain synthetic conditions, micro phase separation is mitigated and the membranes show temperature-independent diffusivity between 25 C and 60 C.

  12. Does zero temperature decide on the nature of the electroweak phase transition?

    International Nuclear Information System (INIS)

    Harman, Christopher P.D.; Huber, Stephan J.

    2016-01-01

    Taking on a new perspective of the electroweak phase transition, we investigate in detail the role played by the depth of the electroweak minimum (“vacuum energy difference”). We find a strong correlation between the vacuum energy difference and the strength of the phase transition. This correlation only breaks down if a negative eigenvalue develops upon thermal corrections in the squared scalar mass matrix in the broken vacuum before the critical temperature. As a result the scalar fields slide across field space toward the symmetric vacuum, often causing a significantly weakened phase transition. Phenomenological constraints are found to strongly disfavour such sliding scalar scenarios. For several popular models, we suggest numerical bounds that guarantee a strong first order electroweak phase transition. The zero temperature phenomenology can then be studied in these parameter regions without the need for any finite temperature calculations. For almost all non-supersymmetric models with phenomenologically viable parameter points, we find a strong phase transition is guaranteed if the vacuum energy difference is greater than −8.8×10 7 GeV 4 . For the GNMSSM, we guarantee a strong phase transition for phenomenologically viable parameter points if the vacuum energy difference is greater than −6.9×10 7 GeV 4 . Alternatively, we capture more of the parameter space exhibiting a strong phase transition if we impose a simultaneous bound on the vacuum energy difference and the singlet mass.

  13. High-temperature structural phase transitions in neighborite: a high-resolution neutron powder diffraction investigation

    Science.gov (United States)

    Knight, Kevin S.; Price, G. David; Stuart, John A.; Wood, Ian G.

    2015-01-01

    The nature of the apparently continuous structural phase transition at 1,049 K in the perovskite-structured, MgSiO3 isomorph, neighborite (NaMgF3), from the orthorhombic ( Pbnm) hettotype phase to the cubic () aristotype structure, has been re-investigated using high-resolution, time-of-flight neutron powder diffraction. Using data collected at 1 K intervals close to the nominal phase transition temperature, the temperature dependence of the intensities of superlattice reflections at the M point and the R point of the pseudocubic Brillouin zone indicate the existence of a new intermediate tetragonal phase in space group P4/ mbm, with a narrow phase field extending from ~1,046.5 to ~1,048.5 K, at ambient pressure. Group theoretical analysis shows that the structural transitions identified in this study, Pbnm- P4/ mbm, and P4/ mbm-, are permitted to be second order. The observation of the tetragonal phase resolves the longstanding issue of why the high-temperature phase transition, previously identified as Pbnm-, and which would be expected to be first order under Landau theory, is in fact found to be continuous. Analysis of the pseudocubic shear strain shows it to vary with a critical exponent of 0.5 implying that the phase transition from Pbnm to P4/ mbm is tricritical in character. The large librational modes that exist in the MgF6 octahedron at high temperature, and the use of Gaussian probability density functions to describe atomic displacements, result in apparent bond shortening in the Mg-F distances, making mode amplitude determination an unreliable method for determination of the critical exponent from internal coordinates. Crystal structures are reported for the three phases of NaMgF3 at 1,033 K ( Pbnm), 1,047 K ( P4/ mbm) and 1,049 K ().

  14. Structure-to-glass transition temperature relationships in high temperature stable condensation polyimides

    Science.gov (United States)

    Alston, W. B.; Gratz, R. F.

    1985-01-01

    The presence of a hexafluoroisopropylidene (6F) connecting group in aryl dianhydrides used to prepare aromatic condensation polyimides provides high glass transition temperature (T sub g) polyimides with excellent thermo-oxidative stability. The purpose of this study was to determine if a trifluorophenyl-ethylidene (3F) connecting group would have a similar effect on the T sub g of aromatic condensation polyimides. A new dianhydride containing the 3F connecting group was synthesized. This dianhydride and an aromatic diamine also containing the 3F connecting group were used together and in various combinations with known diamines or known dianhydrides, respectively, to prepare new 3F containing condensation polyimides. Known polyimides, including some with the 6F connecting linkage, were also prepared for comparison purposes. The new 3F containing polymers and the comparison polymers were prepared by condensation polymerization via the traditional amic-acid polymerization method in N,N-dimethylacetamide solvent. The solutions were characterized by determining their inherent viscosities and then were thermally converted into polyimide films under nitrogen atmosphere at 300 to 500 C, usually 350 C. The T sub g's of the films and resin discs were then determined by thermomechanical analysis and were correlated as a function of the final processing temperatures of the films and resin discs. The results showed that similarities existed in the T sub g's depending on the nature of the connecting linkage in the monomers used to prepare the condensation polyimides.

  15. Study of cements silicate phases hydrated under high pressure and high temperature; Etude des phases silicatees du ciment hydrate sous haute pression et haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Meducin, F.

    2001-10-01

    This study concerns the durability of oil-well cementing. Indeed, in oil well cementing a cement slurry is pumped down the steel casing of the well up the annular space between it and the surrounding rock to support and protect the casing. The setting conditions of pressure and temperature may be very high (up to 1000 bar and 250 deg C at the bottom of the oil-well). In this research, the hydration of the main constituent of cement, synthetic tri-calcium silicate Ca{sub 3}SiO{sub 2}, often called C{sub 3}S (C = CaO; S = SiO{sub 2} and H H{sub 2}O), is studied. Calcium Silicate hydrates are prepared in high-pressure cells to complete their phase diagram (P,T) and obtain the stability conditions for each species. Indeed, the phases formed in these conditions are unknown and the study consists in the hydration of C{sub 3}S at different temperatures, pressures, and during different times to simulate the oil-well conditions. In a first step (until 120 deg C at ambient pressure) the C-S-H, a not well crystallized and non-stoichiometric phase, is synthesized: it brings adhesion and mechanical properties., Then, when pressure and temperature increase, crystallized phases appear such as jaffeite (Ca{sub 6}(Si{sub 2}O{sub 7})(OH){sub 6}) and hillebrandite (Ca{sub 2}(SiO{sub 3})(OH){sub 2}). Silicon {sup 29}Si Nuclear Magnetic Resonance (using standard sequences MAS, CPMAS) allow us to identify all the silicates hydrates formed. Indeed, {sup 29}Si NMR is a valuable tool to determine the structure of crystallized or not-well crystallized phases of cement. The characterization of the hydrated samples is completed by other techniques: X- Ray Diffraction and Scanning Electron Microscopy. The following results are found: jaffeite is the most stable phase at C/S=3. To simulate the hydration of real cement, hydration of C{sub 3}S with ground quartz and with or without super-plasticizers is done. In those cases, new phases appear: kilchoanite mainly, and xonotlite. A large amount of

  16. Thermotolerance in preirradiated intestine and its influence on time-temperature relationships

    International Nuclear Information System (INIS)

    Hume, S.P.; Marigold, J.C.; Manjil, L.G.

    1988-01-01

    The crypt compartment of mouse jejunum showed a transient increase in thermal susceptibility approximately 10 days after moderate X-ray doses to the abdomen (9-10 Gy). The increase in response was manifest as an increase in slope of the crypt dose-response curve but was limited to temperatures below 43 0 C. As a result, the 43 0 C inflexion in the Arrhenius plot (the relationship between treatment time and temperature) for thermal sensitivity of crypts was eliminated in preirradiated tissue, and the curve became monophasic over the range 42.0-44.5 0 C. At temperatures below 42 0 C, the curve again deviated. At supranormal temperatures of 42 0 C and below, the durations of hyperthermia needed for measurable effect were sufficient to allow thermotolerance to be expressed within the heating period. Neither the threshold heating times nor this thermotolerance were affected by prior irradiation. In the temperature range 42-43 0 C, an earlier development of thermotolerance could be demonstrated in control tissue by challenging with an acute high-temperature heat treatment. This thermotolerance was eliminated in preirradiated tissue, resulting in the apparent increase in sensitivity. The findings support the view that the complex nature of the time-temperature relationship seen in normal tissue in vivo is a manifestation of the ability of the tissue to progressively acquire a thermotolerant state during treatment at temperatures below approximately 43 0 C, so that the intrinsic sensitivity is modulated while being assessed

  17. Structural studies of the high temperature phases of AgTaO3

    Science.gov (United States)

    Farid, Umair; Khan, Hidayat Ullah; Avdeev, Maxim; Injac, Sean; Kennedy, Brendan J.

    2018-02-01

    The temperature dependence of the structure of a polycrystalline sample of AgTaO3 has been determined using in-situ Synchrotron X-ray powder diffraction methods. This work finds no evidence for the presence of a monoclinic phase, rather three phase transitions have been identified, namely R 3 c ↔ 390 ° C Cmcm ↔ 465 ° C P 4 / mbm ↔ 580 ° C Pm 3 ̅ m . The rhombohedral phase was further studied at room temperature by neutron powder diffraction. The co-existence of the rhombohedral and orthorhombic phases around 380-400 ° C indicates that the transition between these is first order, and gives rise to unusual peak shapes in the diffraction patterns.

  18. Temperature and baryon-chemical-potential-dependent bag pressure for a deconfining phase transition

    International Nuclear Information System (INIS)

    Patra, B.K.; Singh, C.P.

    1996-01-01

    We explore the consequences of a bag model developed by Leonidov et al. for the deconfining phase transition in which the bag pressure is made to depend on the temperature and baryon chemical potential in order to ensure the entropy and baryon number conservation at the phase boundary together with the Gibbs construction for an equilibrium phase transition. We show that the bag pressure thus obtained yields an anomalous increasing behavior with the increasing baryon chemical potential at a fixed temperature which defies a physical interpretation. We demonstrate that the inclusion of the perturbative interactions in the QGP phase removes this difficulty. Further consequences of the modified bag pressure are discussed. copyright 1996 The American Physical Society

  19. The relationship of long term global temperature change and human fertility.

    Science.gov (United States)

    Fisch, Harry; Andrews, Howard F; Fisch, Karen S; Golden, Robert; Liberson, Gary; Olsson, Carl A

    2003-07-01

    According to the United Nations, global fertility has declined in the last century as reflected by a decline in birth rates. The earth's surface air temperature has increased considerably and is referred to as global warming. Since changes in temperature are well known to influence fertility we sought to determine if a statistical relationship exists between long-term changes in global air temperatures and birth rates. The most complete and reliable birth rate data in the 20th century was available in 19 industrialized countries. Using bivariate and multiple regression analysis, we compared yearly birth rates from these countries to global air temperatures from 1900 to 1994.A common pattern of change in birth rates was noted for the 19 industrialized countries studied. In general, birth rates declined markedly throughout the century except during the baby boom period of approximately 1940 to 1964. An inverse relationship was found between changes in global temperatures and birth rates in all 19 countries. Controlling for the linear yearly decline in birth rates over time, this relationship remained statistically significant for all the 19 countries in aggregate and in seven countries individually (phuman fertility may have been influenced by change in environmental temperatures.

  20. Fate of dynamical phase transitions at finite temperatures and in open systems

    Science.gov (United States)

    Sedlmayr, N.; Fleischhauer, M.; Sirker, J.

    2018-01-01

    When a quantum system is quenched from its ground state, the time evolution can lead to nonanalytic behavior in the return rate at critical times tc. Such dynamical phase transitions (DPTs) can occur, in particular, for quenches between phases with different topological properties in Gaussian models. In this paper we discuss Loschmidt echos generalized to density matrices and obtain results for quenches in closed Gaussian models at finite temperatures as well as for open-system dynamics described by a Lindblad master equation. While cusps in the return rate are always smoothed out by finite temperatures we show that dissipative dynamics can be fine-tuned such that DPTs persist.

  1. Phase diagrams of (hexane + methanol + 2,2,2-trifluoroethanol) at three temperatures: Measurement and correlation

    Energy Technology Data Exchange (ETDEWEB)

    Kerboub, Wahiba [Crystallography-Thermodynamics Laboratory, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene, P.O. Box 32 El-Alia, 16112 Bab-Ezzouar, Algiers (Algeria); Atik, Zadjia [Crystallography-Thermodynamics Laboratory, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene, P.O. Box 32 El-Alia, 16112 Bab-Ezzouar, Algiers (Algeria)], E-mail: atik_zadjia@yahoo.fr

    2009-04-15

    Results from gas-liquid chromatography are presented for (liquid + liquid) equilibrium of the system of mixed solvents of (hexane + methanol + 2,2,2-trifluoroethanol) at the temperatures T = (288.15, 298.15, 303.15) K, and under atmospheric pressure. The system presents type (II) liquid-liquid phase diagram. The NRTL and UNIQUAC equations reliably represent the measured data with an average root-mean-square deviation in phase-compositions equal to 1.2%. The binary interaction parameters for the associated (nonpolar + polar) system are estimated by means of the same equations. The temperature effect on the system miscibility is reasonably important.

  2. Improved Reversed Phase Chromatography of Hydrophilic Peptides from Spatial and Temporal Changes in Column Temperature

    DEFF Research Database (Denmark)

    Young, Clifford; Podtelejnikov, Alexandre V; Nielsen, Michael Lund

    2017-01-01

    Reversed phase chromatography is an established method for peptide separation and frequently coupled to electrospray ionization-mass spectrometry for proteomic analysis. Column temperature is one parameter that influences peptide retention and elution, but it is often overlooked as its implementa...... version when the analytical column temperature was decreased to 5 °C. Aside from demonstrating the utility of lower temperatures for improved chromatography, its application at specific locations and time points is critical for peptide detection and separation.......Reversed phase chromatography is an established method for peptide separation and frequently coupled to electrospray ionization-mass spectrometry for proteomic analysis. Column temperature is one parameter that influences peptide retention and elution, but it is often overlooked as its...

  3. Comparison of thermistor linearization techniques for accurate temperature measurement in phase change materials

    OpenAIRE

    Stankovic, S. B.; Kyriacou, P. A.

    2011-01-01

    Alternate energy technologies are developing rapidly in the recent years. A significant part of this trend is the development of different phase change materials (PCMs). Proper utilization of PCMs requires accurate thermal characterization. There are several methodologies used in this field. This paper stresses the importance of accurate temperature measurements during the implementation of T-history method. Since the temperature sensor size is also important thermistors have been selected as...

  4. The high temperature orthorhombic ⇄ hexagonal phase transformation of FeMnP

    Science.gov (United States)

    Chenevier, B.; Soubeyroux, J. L.; Bacmann, M.; Fruchart, D.; Fruchart, R.

    1987-10-01

    The compound FeMnP has the hexagonal Fe 2P structure above 1473K. The metal atoms are disordered. The disorder rate decreases with temperature and at 1413K a transition Hex → Orth. takes place. The low temperature phase is of Co 2P type. A simple transition model is proposed based on the displacement of phosphorus chains along the shortest axis of the structure. The thermal evolution of the orthorhombic cell parameters evidences the strong anisotropy of the bondings.

  5. Diffuse Neutron Scattering of the High Temperature Phase of Fe3O4

    OpenAIRE

    Siratori , K.; Ishii , Y.; Morii , Y.; Funahashi , S.; Yanase , A.

    1997-01-01

    Diffuse neutron scattering is observed for the high temperature phase of magnetite, Fe3O4, in an extended range in the (001) and (011) plane of the Brillouin zone. Contours of scattered intensity shows a characteristic pattern, discs in the (100) plane around the Γ points, spheres around the X points, etc. The intensity of this diffuse scattering increases with decreasing temperature down to the Verwey point and is attributed to the lattice distortion induced by charge fluctuation in the B si...

  6. Liquid-phase diffusion bonding: Temperature effects and solute redistribution in high temperature lead-free composite solders

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iver [Ames Lab. and Iowa State Univ., Ames, IA (United States); Iowa State Univ., Ames, IA (United States); Choquette, Stephanie [Ames Lab. and Iowa State Univ., Ames, IA (United States); Iowa State Univ., Ames, IA (United States)

    2015-05-17

    Liquid-phase diffusion bonding (LPDB) is being studied as the primary phenomena occurring in the development of a high temperature lead-free composite solder paste composed of gas-atomized Cu-10Ni, wt.% (Cu-11Ni, at.%) powder blended with Sn-0.7Cu-0.05Ni-0.01Ge (Sn-1.3Cu-0.1Ni-0.02Ge, at.%) Nihon-Superior SN100C solder powder. Powder compacts were used as a model system. LPDB promotes enhanced interdiffusion of the low-melting alloy matrix with the solid Cu-10Ni reinforcement powder above the matrix liquidus temperature. The initial study involved the effective intermetallic compound (IMC) compositions and microstructures that occur at varying reflow temperatures and times between 250-300°C and 30-60s, respectively. Certain reflow temperatures encourage adequate interdiffusion to form a continuous highly-conductive network throughout the composite solder joints. The diffusion of nickel, in particular, has a disperse pattern that foreshadows the possibility of a highly-conductive low-melting solder that can be successfully utilized at high temperatures.

  7. Statistical relationship between ambient temperature and diarrheal diseases in Coatzacoalcos, Veracruz (Mexico

    Directory of Open Access Journals (Sweden)

    Irving Rafael Méndez Pérez

    2011-02-01

    Full Text Available To research the relationship between room temperature and diarrhea diseases, we statistically analyzed the showed diarrhea's cases in Sanitary Jurisdiction from Coatzacoalcos, Ver., during the period 2000-2003. By means of time series and a model of linear regression, we have find out that the variability in the frequency of diarrheas can be explained in terms of 40% by the temperature. Therefore, the frequency of the diarrhea's cases increases during June, July and August. On the other hand in rainy seasons (September, October and November both diarrhea's cases and temperatures fall linearly.

  8. Relationship of activity in ascending paths with phase encoding in the lumbar spinal cord

    Directory of Open Access Journals (Sweden)

    O. O. Shugurov

    2012-02-01

    Full Text Available We studied the relationship of discharges phase characteristics in ascending column of spinal cord (SC and specificity of activation of neurones, which generate negative components of evoked potentials of SC. The discharges was recorded from SC at a level of a presence of dorsal column (DC, spinocervical and dorsal spinocerebellar tract in upper lumbar and thoracic segments at a stimulation of a nerve or DC. It is shown, that the phase of the discharges depends on the quantity of synaptic delays in generating chain of such signals. Thus, the phase of a signal can carry the additional information on specificity of activation of the sensory elements in CNS.

  9. The effect of temperature and bacterial growth phase on protein extraction by means of electroporation.

    Science.gov (United States)

    Haberl-Meglič, Saša; Levičnik, Eva; Luengo, Elisa; Raso, Javier; Miklavčič, Damijan

    2016-12-01

    Different chemical and physical methods are used for extraction of proteins from bacteria, which are used in variety of fields. But on a large scale, many methods have severe drawbacks. Recently, extraction by means of electroporation showed a great potential to quickly obtain proteins from bacteria. Since many parameters are affecting the yield of extracted proteins, our aim was to investigate the effect of temperature and bacterial growth phase on the yield of extracted proteins. At the same time bacterial viability was tested. Our results showed that the temperature has a great effect on protein extraction, the best temperature post treatment being 4°C. No effect on bacterial viability was observed for all temperatures tested. Also bacterial growth phase did not affect the yield of extracted proteins or bacterial viability. Nevertheless, further experiments may need to be performed to confirm this observation, since only one incubation temperature (4°C) and one incubation time before and after electroporation (0.5 and 1h) were tested for bacterial growth phase. Based on our results we conclude that temperature is a key element for bacterial membrane to stay in a permeabilized state, so more proteins flow out of bacteria into surrounding media. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Synthesis of new Diamond-like B-C Phases under High Pressure and Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ming, L. C. [University of Hawaii; Zinin, P. V. [University of Hawaii; Sharma, S. K. [University of Hawaii

    2014-04-22

    A cubic BC3 (c-BC3) phase was synthesized by direct transformation from graphitic phases at a pressure of 39 GPa and temperature of 2200 K in a laser-heated diamond anvil cell (DAC). A combination of x-ray diffraction (XRD), electron diffraction (ED), transmission electron microscopy (TEM) imaging, and electron energy loss spectroscopy (EELS) measurements lead us to conclude that the obtained phase is hetero-nano-diamond, c-BC3. The EELS measurements show that the atoms inside the cubic structure are bonded by sp3 bonds.

  11. Body size and mortality rates in coral reef fishes: a three-phase relationship.

    Science.gov (United States)

    Goatley, Christopher Harry Robert; Bellwood, David Roy

    2016-10-26

    Body size is closely linked to mortality rates in many animals, although the overarching patterns in this relationship have rarely been considered for multiple species. A meta-analysis of published size-specific mortality rates for coral reef fishes revealed an exponential decline in mortality rate with increasing body size, however, within this broad relationship there are three distinct phases. Phase one is characterized by naive fishes recruiting to reefs, which suffer extremely high mortality rates. In this well-studied phase, fishes must learn quickly to survive the many predation risks. After just a few days, the surviving fishes enter phase two, in which small increases in body size result in pronounced increases in lifespan (estimated 11 d mm -1 ). Remarkably, approximately 50% of reef fish individuals remain in phase two throughout their lives. Once fishes reach a size threshold of about 43 mm total length (TL) they enter phase three, where mortality rates are relatively low and the pressure to grow is presumably, significantly reduced. These phases provide a clearer understanding of the impact of body size on mortality rates in coral reef fishes and begin to reveal critical insights into the energetic and trophic dynamics of coral reefs. © 2016 The Author(s).

  12. Phase relationships in the Al-Ti-Ho system at 773 K

    Energy Technology Data Exchange (ETDEWEB)

    Jinli, H.; Jianlie, L.; Huaiying, Z.; Yinghong, Z.; Jialin, Y. [Guangxi Univ. (China). Inst. of Mater. Sci.

    2000-07-14

    The phase relationships in the Al-Ti-Ho ternary system at 773 K have been determined mainly by XRD techniques, with the aid of differential thermal analysis, EPMA, metallography. The existence of 10 binary compounds and two ternary phases, namely TiAl{sub 3}, TiAl{sub 2}, TiAl, Ti{sub 3}Al, Al{sub 17}Ho{sub 2}, Al{sub 3}Ho, Al{sub 2}Ho, AlHo, Al{sub 2}Ho{sub 3}, AlHo{sub 3}, Al{sub 43}Ti{sub 4}Ho{sub 6} and Al{sub 20}Ti{sub 2}Ho, respectively, have been confirmed. The section consists of 15 single-phase regions, 29 two-phase regions and 15 three-phase regions. (orig.)

  13. Phase transition of tetragonal copper sulfide Cu2S at low temperatures

    Science.gov (United States)

    Zimmer, D.; Ruiz-Fuertes, J.; Bayarjargal, L.; Haussühl, E.; Winkler, B.; Zhang, J.; Jin, C. Q.; Milman, V.; Alig, E.; Fink, L.

    2017-08-01

    The low-temperature behavior of tetragonal copper sulfide, Cu2S , was investigated by powder and single-crystal x-ray diffraction, calorimetry, electrical resistance measurements, and ambient temperature optical absorption spectroscopy. The experiments were complemented by density-functional-theory-based calculations. High-quality, polycrystalline samples and single crystals of tetragonal copper sulfide were synthesized at 5 GPa and 700 K in a large volume multianvil press. Tetragonal Cu2S undergoes a temperature-induced phase transition to an orthorhombic structure at around 202 K with a hysteresis of ±21 K, an enthalpy of reaction of 1.3(2) kJ mol-1 , and an entropy of reaction of 6.5(2) J mol-1K-1 . The temperature dependence of the heat capacity at the transition temperature indicates that the transition from the tetragonal to the low-temperature polymorph is not a single process. The structure of the low-temperature polymorph at 100 K was solved in space group P n a 21 . The structure is based on a slightly distorted cubic close packing of sulfur with copper in threefold coordination similar to the structure of tetragonal copper sulfide. The electrical resistance changes several orders of magnitude at the transition following the temperature hysteresis. The activation energy of the conductivity for the tetragonal phase and the low-temperature polymorph are 0.15(2) and 0.22(1) eV, respectively. The direct band gap of the tetragonal polymorph is found to be 1.04(2) eV with the absorption spectrum following Urbach's law. The activation energies and the band gaps of both phases are discussed with respect to the results of the calculated electronic band structures.

  14. Growth, temperature and density relationships of North Sea cod ( Gadus morhua )

    DEFF Research Database (Denmark)

    Rindorf, Anna; Jensen, Henrik; Schrum, Corinna

    2008-01-01

    This study presents an analysis of the relationship between ambient temperature, cod density, fishing mortality, prey fish biomass, and growth of North Sea cod (Gadus morhua) as estimated from survey catches during the period from 1983 to 2006. Growth of young cod was positively related to temper...

  15. Phenophases alter the soil respiration-temperature relationship in an oak-dominated forest

    Science.gov (United States)

    Jared L. DeForest; Askoo Noormets; Steve G. McNulty; Ge Sun; Gwen Teeney; Jiquan Chen

    2006-01-01

    Soil respiration (SR) represents a major component of forest ecosystem respiration and is influenced seasonally by environmental factors such as temperature, soil moisture, root respiration, and litter fall. Changes in these environmental factors correspond with shifts in plant phenology. In this study, we examined the relationship between canopy phenophases @re-growth...

  16. Classification of Arctic, midlatitude and tropical clouds in the mixed-phase temperature regime

    Directory of Open Access Journals (Sweden)

    A. Costa

    2017-10-01

    Full Text Available The degree of glaciation of mixed-phase clouds constitutes one of the largest uncertainties in climate prediction. In order to better understand cloud glaciation, cloud spectrometer observations are presented in this paper, which were made in the mixed-phase temperature regime between 0 and −38 °C (273 to 235 K, where cloud particles can either be frozen or liquid. The extensive data set covers four airborne field campaigns providing a total of 139 000 1 Hz data points (38.6 h within clouds over Arctic, midlatitude and tropical regions. We develop algorithms, combining the information on number concentration, size and asphericity of the observed cloud particles to classify four cloud types: liquid clouds, clouds in which liquid droplets and ice crystals coexist, fully glaciated clouds after the Wegener–Bergeron–Findeisen process and clouds where secondary ice formation occurred. We quantify the occurrence of these cloud groups depending on the geographical region and temperature and find that liquid clouds dominate our measurements during the Arctic spring, while clouds dominated by the Wegener–Bergeron–Findeisen process are most common in midlatitude spring. The coexistence of liquid water and ice crystals is found over the whole mixed-phase temperature range in tropical convective towers in the dry season. Secondary ice is found at midlatitudes at −5 to −10 °C (268 to 263 K and at higher altitudes, i.e. lower temperatures in the tropics. The distribution of the cloud types with decreasing temperature is shown to be consistent with the theory of evolution of mixed-phase clouds. With this study, we aim to contribute to a large statistical database on cloud types in the mixed-phase temperature regime.

  17. Classification of Arctic, midlatitude and tropical clouds in the mixed-phase temperature regime

    Science.gov (United States)

    Costa, Anja; Meyer, Jessica; Afchine, Armin; Luebke, Anna; Günther, Gebhard; Dorsey, James R.; Gallagher, Martin W.; Ehrlich, Andre; Wendisch, Manfred; Baumgardner, Darrel; Wex, Heike; Krämer, Martina

    2017-10-01

    The degree of glaciation of mixed-phase clouds constitutes one of the largest uncertainties in climate prediction. In order to better understand cloud glaciation, cloud spectrometer observations are presented in this paper, which were made in the mixed-phase temperature regime between 0 and -38 °C (273 to 235 K), where cloud particles can either be frozen or liquid. The extensive data set covers four airborne field campaigns providing a total of 139 000 1 Hz data points (38.6 h within clouds) over Arctic, midlatitude and tropical regions. We develop algorithms, combining the information on number concentration, size and asphericity of the observed cloud particles to classify four cloud types: liquid clouds, clouds in which liquid droplets and ice crystals coexist, fully glaciated clouds after the Wegener-Bergeron-Findeisen process and clouds where secondary ice formation occurred. We quantify the occurrence of these cloud groups depending on the geographical region and temperature and find that liquid clouds dominate our measurements during the Arctic spring, while clouds dominated by the Wegener-Bergeron-Findeisen process are most common in midlatitude spring. The coexistence of liquid water and ice crystals is found over the whole mixed-phase temperature range in tropical convective towers in the dry season. Secondary ice is found at midlatitudes at -5 to -10 °C (268 to 263 K) and at higher altitudes, i.e. lower temperatures in the tropics. The distribution of the cloud types with decreasing temperature is shown to be consistent with the theory of evolution of mixed-phase clouds. With this study, we aim to contribute to a large statistical database on cloud types in the mixed-phase temperature regime.

  18. Review of Suction Water Content Relationship of Bentonite-Sand Mixtures Considering Temperature Effects

    Science.gov (United States)

    Rawat, Abhishek; Zhi Lang, Lin; Baille, Wiebke

    2015-04-01

    Bentonite-sand mixture is one of the candidate sealing/ buffer material for landfills, hazardous and high level radioactive waste repository. The long term satisfactory performance of bentonite sand mixture in terms of load bearing function, sealing function and buffer function is governed by hydro-mechanical response of material under elevated temperature conditions. The suction-water content relationship is one of the key parameter, which govern the thermo-hydro-mechanical behavior of compacted bentonite-sand mixture. This paper presents brief review of suction water content relationships of bentonite-sand mixture considering temperature effects. Numerous parametric models or equations have been developed for representing the soil water characteristics curve i.e. SWCC for isothermal conditions. The most frequently used equations for representing the SWCC are the van Genuchten (1980) and Fredlund and Xing (1994) SWCC equations. Various researchers (Romero et al. 2000; Villar and Lloret, 2004; Tang and Cui, 2005; Agus, 2005; Arifin, 2008) have reported the temperature effect on the water retention behavior of compacted bentonite-sand mixtures. The testing program, results and major conclusions made by above mentioned researchers were discussed in this paper. The changes in hydro-mechanical behavior due to elevated temperature are also discussed based on the suction components of soil which are influenced by temperature. As a general conclusion, total suction of the bentonite-sand mixtures is a function of mixture water content and mixture bentonite content or collectively a function of bentonite water content both at room temperature and at elevated temperature. At a constant temperature, different techniques for measuring suction results in different values of suction depending on accuracy of the sensor and calibration technique used as founded earlier by Agus (2005). The change in total suction due to change in temperature lower than 100 degree C is reversible

  19. Relationship of Temperature and Light Ring Formation at Subarctic Treeline and Implications for Climate Reconstruction

    Science.gov (United States)

    Yamaguchi, David K.; Filion, Louise; Savage, Melissa

    1993-03-01

    During the past 8 centuries, light rings (LRs) have occasionally formed in black spruce ( Picea mariana) at treeline near Bush Lake, northern Quebec (L. Filion, S. Payette, L. Gauthier, and Y. Boutin, 1986, Quaternary Research 26, 272-279; A. Delwaide, L. Filion, and S. Fayette, 1991, Canadian Journal of Forest Research 21, 1828-1832). New analyses of climate data compiled during the period of overlapping tree-ring and instrumental records show that years of LR formation at Bush Lake have unusually cool May, June, August, and September temperatures. The analyses also show that August-September temperatures strongly correlate with May-July temperatures. Thus, late spring and entire growing-season temperatures influence LR formation at subarctic treeline. LRs formed in at least 5% of the trees at Bush Lake when May-September mean temperatures at Inukjuak fell below 4.2°C and August-September mean temperatures fell below 6.7°C. These threshold temperature/LR relationships can be used to infer limiting summer temperatures during the period preceding instrumental records. For example, the LR record suggests that May-September temperatures at northern Quebec treeline dropped below 4.2°C in A.D. 1601 after a major volcanic eruption of unknown source. Visual assessments of LR occurrence provide a new approach for extracting quantitative paleoclimatic information from tree rings.

  20. Study on Relationship between Seasonal Temperatures and Municipal Wastewater Pollutant Concentration and Removal Rate

    Directory of Open Access Journals (Sweden)

    Yuan Shaoxiong

    2016-01-01

    Full Text Available In this study, the temperatures, pollutant concentrations and other indicators of municipal wastewater influent and effluent were tested for 7 months in 6 constructed wetland microcosms; the hydraulic retention time is 2 days. The results indicated that for both influent and effluent, there was a highly significant negative correlation (P<0.01 between the temperature and the pollutant concentrations, there was a significant difference (P<0.05 between seasonal temperatures, and the pollutant concentrations in summer and autumn were significantly different from those in winter (P<0.05. Furthermore, a regression analysis of pollutant concentration (y based on changes in water temperature (x in different seasons was performed. The analysis revealed that the relationship has the form ‘y = a -bx + cx2’, that under certain circumstances, pollutant concentrations can be calculated based on the temperature, and that the concentrations of NH4-N, Total Phosphorus (TP and Soluble Reactive Phosphorus (SRP had a significantly negative correlation with their removal rate (P < 0.01. However, seasonal temperature clearly did not have a direct impact on the pollutant concentration, and some studies have indicated that the different manners in which urban residents use water as the temperature changes may be the real reason that the pollutant concentrations of municipal wastewater vary with seasonal temperature. Furthermore, when designing and operating constructed wetlands, the impact of the changes in pollutant concentrations generated by seasonal temperature should be fully considered, dilution and other means should be taken to ensure purification.

  1. Phase transformation of GaAs at high pressures and temperatures

    Science.gov (United States)

    Ono, Shigeaki; Kikegawa, Takumi

    2018-02-01

    The high-pressure behavior of gallium arsenide, GaAs, has been investigated using an in-situ X-ray powder diffraction technique in a diamond anvil cell combined with a resistance heating method, at pressures and temperatures up to 25 GPa and 1000 K respectively. The pressure-induced phase transition from a zincblende to an orthorhombic (Cmcm) structure was observed. This transition occurred at 17.3 GPa and at room temperature, where a negative temperature dependence for this transition was confirmed. The transition boundary was determined to be P (GPa) = 18.0 - 0.0025 × T (K).

  2. Air - water temperature relationships in the trout streams of southeastern Minnesota’s carbonate - sandstone landscape

    Science.gov (United States)

    Krider, Lori A.; Magner, Joseph A.; Perry, Jim; Vondracek, Bruce C.; Ferrington, Leonard C.

    2013-01-01

    Carbonate-sandstone geology in southeastern Minnesota creates a heterogeneous landscape of springs, seeps, and sinkholes that supply groundwater into streams. Air temperatures are effective predictors of water temperature in surface-water dominated streams. However, no published work investigates the relationship between air and water temperatures in groundwater-fed streams (GWFS) across watersheds. We used simple linear regressions to examine weekly air-water temperature relationships for 40 GWFS in southeastern Minnesota. A 40-stream, composite linear regression model has a slope of 0.38, an intercept of 6.63, and R2 of 0.83. The regression models for GWFS have lower slopes and higher intercepts in comparison to surface-water dominated streams. Regression models for streams with high R2 values offer promise for use as predictive tools for future climate conditions. Climate change is expected to alter the thermal regime of groundwater-fed systems, but will do so at a slower rate than surface-water dominated systems. A regression model of intercept vs. slope can be used to identify streams for which water temperatures are more meteorologically than groundwater controlled, and thus more vulnerable to climate change. Such relationships can be used to guide restoration vs. management strategies to protect trout streams.

  3. Shock-induced phase transition of Tin: Experimental study with velocity and temperature measurements

    Science.gov (United States)

    Chauvin, Camille; Bouchkour, Zakaria; Sinatti, Frédéric; Petit, Jacques

    2017-01-01

    To investigate polymorphic transition and melting on release of Tin, experiments under shock wave compression have been carried out from 10 GPa to 44 GPa with both velocity and temperature measurements. Interface Sn/LiF velocity has been recorded using Photon Doppler Velocimeter (PDV) measurement technique and interface Sn/LiF temperature has been performed thanks to an optical pyrometer appropriate to detect low and high temperatures (respectively 1000 K). While PDV measurements are common and accurate, temperature remains often imprecise due to the lack of knowledge on the emissivity of the sample. The use of an emissive layer at the interface Sn/LiF helps to estimate an accurate temperature measurement which can be compared to our numerical simulations. The profiles of both velocity and radiance records are in good agreement and display the polymorphic transition and the melting on release of Tin. Besides, temperature profiles can show complementary singularities particularly during phase transition, not visible on velocity profiles. This paper will discuss the evidence of phase transitions on temperature measurements, the complementarity with velocity measurements and the advantages of an emissive layer.

  4. Magnetic and Structural Phase Transitions in Thulium under High Pressures and Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Vohra, Yogesh K.; Tsoi, Georgiy M.; Samudrala, Gopi K. [UAB

    2017-10-01

    The nature of 4f electrons in many rare earth metals and compounds may be broadly characterized as being either "localized" or "itinerant", and is held responsible for a wide range of physical and chemical properties. The pressure variable has a very dramatic effect on the electronic structure of rare earth metals which in turn drives a sequence of structural and magnetic transitions. We have carried out four-probe electrical resistance measurements on rare earth metal Thulium (Tm) under high pressures to 33 GPa and low temperatures to 10 K to monitor the magnetic ordering transition. These studies are complemented by angle dispersive x-ray diffraction studies to monitor crystallographic phase transitions at high pressures and low temperatures. We observe an abrupt increase in magnetic ordering temperature in Tm at a pressure of 17 GPa on phase transition from ambient pressure hcp-phase to α-Sm phase transition. In addition, measured equation of state (EOS) at low temperatures show anomalously low thermal expansion coefficients likely linked to magnetic transitions.

  5. The Heterogeneous Oxidation of Organic Droplets -Temperature and Physical Phase Effects

    Science.gov (United States)

    Hung, H.; Tang, C.; Lin, L.

    2008-12-01

    The heterogeneous reactions of oleic acid droplets with ozone are studied at different temperatures to imitating the atmospheric condition. The reactions are monitored concomitantly by using attenuated total reflectance Fourier Transform infrared spectroscopy (ATR-FT-IR) for the organic species and UV-VIS spectrometry for the ozone concentration, in order to investigate reaction rate discrepancies reported in literature as well as the oxidation mechanism, temperature and physical phase effects. The less and semi- volatile products are identified and resolved by a liquid chromatography and a gas chromatography mass spectrometer, respectively. The identified products are predominantly composed by nananoic acid and azelaic acid and might be due to propagation reactions possibly initiated by a secondary reaction such as the stabilized Criegee intermediates reacting with oleic acid. For temperature effect, the oxidation rate decreases with temperature when the oleic acid droplets are in the same physical phases. As oleic acid turns into the solid phase, the oxidation mechanism is observed to be different from the liquid phase. Furthermore, the concentration of ozone was monitored to examine the kinetics of the oxidation reaction. The integrated ozone profile recorded by UV-VIS spectrometry shows that the consumed ozone represents only approximately 12% of total oleic acid for the solid cases at 4°C in contrast to 30% for the liquid cases at 25°C, and hence confirmed the existence of secondary reactions.

  6. Time evolution of chiral phase transition at finite temperature and density in the linear sigma model

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Koide, Tomoi; Maruyama, Masahiro [Tohoku Univ., Faculty of Science, Sendai, Miyagi (Japan)

    1999-08-01

    There are various approaches to nonequilibrium system. We use the projection operator method investigated by F. Shibata and N. Hashitsume on the linear sigma model at finite temperature and density. We derive a differential equation of the time evolution for the order parameter and pion number density in chiral phase transition. (author)

  7. Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources

    Energy Technology Data Exchange (ETDEWEB)

    Hays, Lance G

    2014-07-07

    A variable phase turbine assembly will be designed and manufactured having a turbine, operable with transcritical, two-phase or vapor flow, and a generator – on the same shaft supported by process lubricated bearings. The assembly will be hermetically sealed and the generator cooled by the refrigerant. A compact plate-fin heat exchanger or tube and shell heat exchanger will be used to transfer heat from the geothermal fluid to the refrigerant. The demonstration turbine will be operated separately with two-phase flow and with vapor flow to demonstrate performance and applicability to the entire range of low temperature geothermal resources. The vapor leaving the turbine is condensed in a plate-fin refrigerant condenser. The heat exchanger, variable phase turbine assembly and condenser are all mounted on single skids to enable factory assembly and checkout and minimize installation costs. The system will be demonstrated using low temperature (237F) well flow from an existing large geothermal field. The net power generated, 1 megawatt, will be fed into the existing power system at the demonstration site. The system will demonstrate reliable generation of inexpensive power from low temperature resources. The system will be designed for mass manufacturing and factory assembly and should cost less than $1,200/kWe installed, when manufactured in large quantities. The estimated cost of power for 300F resources is predicted to be less than 5 cents/kWh. This should enable a substantial increase in power generated from low temperature geothermal resources.

  8. Temperature-controlled phase-transfer catalysis for ethylene glycol production from cellulose.

    Science.gov (United States)

    Tai, Zhijun; Zhang, Junying; Wang, Aiqin; Zheng, Mingyuan; Zhang, Tao

    2012-07-18

    A temperature-controlled phase-transfer catalyst-tungsten acid, which in combination with a robust heterogeneous catalyst Ru/C shows a high activity and exceptional reusability for the one-pot conversion of cellulose to ethylene glycol. This binary system can be reused more than 20 times with ethylene glycol yield over 50%.

  9. Fatigue damage evaluation of short fiber CFRP based on phase information of thermoelastic temperature change

    Science.gov (United States)

    Sakagami, Takahide; Shiozawa, Daiki; Nakamura, Yu; Nonaka, Shinichi; Hamada, Kenichi

    2017-05-01

    Carbon fiber-reinforced plastic (CFRP) is widely used for structural members of transportation vehicles such as automobile, aircraft or spacecraft, utilizing its excellent specific strength and specific rigidity in contrast with the metal. Short carbon fiber composite materials are receiving a lot of attentions because of their excellent moldability and productivity, however they show complicated behaviors in fatigue fracture due to the random fibers orientation. In this study, thermoelastic stress analysis (TSA) using an infrared thermography was applied to the evaluation of fatigue damage in short carbon fiber composites. The distributions of the thermoelastic temperature change was measured during the fatigue test, as well as the phase difference between the thermoelastic temperature change and applied loading signal. Evolution of fatigue damages was detected from distributions of thermoelastic temperature change according to the thermoelastic damage analysis (TDA) procedure. It was also found that fatigue damage evolution was clearly detected than ever by the newly developed thermoelastic phase damage analysis (TPDA) in which damaged area was emphasized in the differential phase delay images utilizing the nature that carbon fiber show opposite phase thermoelastic temperature change.

  10. Low temperature thermodynamic investigation of the phase diagram of Sr3Ru2O7

    Science.gov (United States)

    Sun, D.; Rost, A. W.; Perry, R. S.; Mackenzie, A. P.; Brando, M.

    2018-03-01

    We studied the phase diagram of Sr3Ru2O7 by means of heat capacity and magnetocaloric effect measurements at temperatures as low as 0.06 K and fields up to 12 T. We confirm the presence of a new quantum critical point at 7.5 T which is characterized by a strong non-Fermi-liquid behavior of the electronic specific heat coefficient Δ C /T ˜-logT over more than a decade in temperature, placing strong constraints on theories of its criticality. In particular logarithmic corrections are found when the dimension d is equal to the dynamic critical exponent z , in contrast to the conclusion of a two-dimensional metamagnetic quantum critical end point, recently proposed. Moreover, we achieved a clear determination of the new second thermodynamic phase adjoining the first one at lower temperatures. Its thermodynamic features differ significantly from those of the dominant phase and characteristics expected of classical equilibrium phase transitions are not observed, indicating fundamental differences in the phase formation.

  11. Relationship between the liquid-liquid phase transition and dynamic behaviour in the Jagla model

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Limei [Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215 (United States); Ehrenberg, Isaac [Department of Physics, Yeshiva University, 500 West 185th Street, New York, NY 10033 (United States); Buldyrev, Sergey V [Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215 (United States); Stanley, H Eugene [Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215 (United States)

    2006-09-13

    Using molecular dynamics simulations, we study a spherically symmetric 'two-scale' Jagla potential with both repulsive and attractive ramps. This potential displays a liquid-liquid phase transition with a positively sloped coexistence line ending at a critical point well above the equilibrium melting line. We study the dynamic behaviour in the vicinity of this liquid-liquid critical point. Below the critical point, we find that the dynamics in the more ordered high density liquid (HDL) are much slower then the dynamics in the less ordered low density liquid (LDL). Moreover, the behaviour of the diffusion constant and relaxation time in the HDL phase follows approximately an Arrhenius law, while in the LDL phase the slope of the Arrhenius fit increases upon cooling. Above the critical pressure, as we cool the system at constant pressure, the behaviour of the dynamics smoothly changes with temperature. It resembles the behaviour of the LDL at high temperatures and resembles the behaviour of the HDL at low temperatures. This dynamic crossover happens in the vicinity of the Widom line (the extension of the coexistence line into the one-phase region) which also has a positive slope. Our work suggests a possible general relation between a liquid-liquid phase transition and the change in dynamics.

  12. Crystal structures, phase relationships, and magnetic phase transitions of R5M4 compounds (R = rare earths, M = Si, Ge)

    Science.gov (United States)

    Ouyang, Zhong-Wen; Rao, Guang-Hui

    2013-09-01

    Our recent studies of the crystal structures, phase transitions, and magnetic properties of intermetallic compounds R5M4 (R = rare earths; M = Si, Ge) are reviewed briefly. First, crystal structures, phase relationships, and magnetic properties of several 5:4 compounds, including Nd5Si4-xGex, Pr5Si4-xGex, Gd5-xLaxGe4, La5Si4, and Gd5Sn4, are presented. In particular, the canted spin structures as well as the magnetic phase transitions in Pr5Si2Ge2 and Pr5Ge4 investigated by neutron powder diffractions and small-angle neutron scattering are reviewed. Second, the crystal structures and magnetic properties of the most studied compounds Gd5(Si,Ge)4 are summarized. The focus is on the parent compound Gd5Ge4, which is an amazing material exhibiting magnetic anisotropy, angular dependent spin-flop transition, metastable magnetic response, Griffiths-like phase, thermal effect under pulsed fields, antiferromagnetic and ferromagnetic resonances, pronounced effects of impurities, and high-field induced magnetic transitions.

  13. Size Class Dependent Relationships between Temperature and Phytoplankton Photosynthesis-Irradiance Parameters in the Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    Alex Robinson

    2018-01-01

    Full Text Available Over the past decade, a number of methods have been developed to estimate size-class primary production from either in situ phytoplankton pigment data or remotely-sensed data. In this context, the first objective of this study was to compare two methods of estimating size class specific (micro-, nano-, and pico-phytoplankton photosynthesis-irradiance (PE parameters from pigment data. The second objective was to analyse the relationship between environmental variables (temperature, nitrate and PAR and PE parameters in the different size-classes. A large dataset was used of simultaneous measurements of the PE parameters (n = 1,260 and phytoplankton pigment markers (n = 2,326, from 3 different institutes. There were no significant differences in mean PE parameters of the different size classes between the chemotaxonomic method of Uitz et al. (2008 and the pigment markers and carbon-to-Chl a ratios method of Sathyendranath et al. (2009. For both methods, mean maximum photosynthetic rates (PmB for micro-phytoplankton were significantly lower than those for pico-phytoplankton and nano-phytoplankton. The mean light limited slope (αB for nano-phytoplankton were significantly higher than for the other size taxa. For micro-phytoplankton dominated samples identified using the Sathyendranath et al. (2009 method, both PmB and αB exhibited a significant, positive linear relationship with temperature, whereas for pico-phytoplankton the correlation with temperature was negative. Nano-phytoplankton dominated samples showed a positive correlation between PmB and temperature, whereas for αB and the light saturation parameter (Ek the correlations were not significant. For the Uitz et al. (2008 method, only micro-phytoplankton PmB, pico-phytoplankton αB, nano- and pico-phytoplankton Ek exhibited significant relationships with temperature. The temperature ranges occupied by the size classes derived using these methods differed. The Uitz et al. (2008 method

  14. Thermal buffering performance of composite phase change materials applied in low-temperature protective garments

    Science.gov (United States)

    Yang, Kai; Jiao, Mingli; Yu, Yuanyuan; Zhu, Xueying; Liu, Rangtong; Cao, Jian

    2017-07-01

    Phase change material (PCM) is increasingly being applied in the manufacturing of functional thermo-regulated textiles and garments. This paper investigated the thermal buffering performance of different composite PCMs which are suitable for the application in functional low-temperature protective garments. First, according to the criteria selecting PCM for functional textiles/garments, three kinds of pure PCM were selected as samples, which were n-hexadecane, n-octadecane and n-eicosane. To get the adjustable phase change temperature range and higher phase change enthalpy, three kinds of composite PCM were prepared using the above pure PCM. To evaluate the thermal buffering performance of different composite PCM samples, the simulated low-temperature experiments were performed in the climate chamber, and the skin temperature variation curves in three different low temperature conditions were obtained. Finally composite PCM samples’ thermal buffering time, thermal buffering capacity and thermal buffering efficiency were calculated. Results show that the comprehensive thermal buffering performance of n-octadecane and n-eicosane composite PCM is the best.

  15. Experimental research on a kind of novel high temperature phase change storage heater

    International Nuclear Information System (INIS)

    Wang Xin; Liu Jing; Zhang Yinping; Di Hongfa; Jiang Yi

    2006-01-01

    In this paper, a kind of novel high temperature phase change storage heater was developed that can shift electricity from peak periods to off peak periods to provide significant economic benefit. A series of experiments were conducted to test the heat charge and discharge performance of this kind of heater. The results show that: (1) with high heat of fusion and thermal conductivity, AlSi 12 is a suitable heat storage medium; (2) the heat storage ratio of the heater is high and increases with increasing heating power; (3) during the phase change process, the heater can provide a stable heat discharge rate and meet the demand for thermal comfort indoors to some extent; and (4) the heater is economical for domestic space heating because of low operating cost. Besides, the experimental results provide the data for further modeling and optimization of such high temperature phase change storage heaters

  16. Relationship between alpine tourism demand and hot summer air temperatures associated with climate change

    Science.gov (United States)

    Rebetez, M.; Serquet, G.

    2010-09-01

    We quantified the impacts of hot summer air temperatures on tourism in the Swiss Alps by analyzing the relationship between temperature and overnight stays in 40 Alpine resorts. Several temperature and insolation thresholds were tested to detect their relationship to summer tourism. Our results reveal significant correlations between the number of nights spent in mountain resorts and hot temperatures at lower elevations. Alpine resorts nearest to cities are most sensitive to hot temperatures. This is probably because reactions to hot episodes take place on a short-term basis as heat waves remain relatively rare. The correlation in June is stronger compared to the other months, probably because school holidays and the peak domestic tourist demand in summer usually takes place in July and August. Our results suggest that alpine tourist resorts could benefit from hotter temperatures at lower elevations under future climates. Tourists already react on a short-term basis to hot days and spend more nights in hotels in mountain resorts. If heat waves become more regular, it seems likely that tourists choose to stay at alpine resorts more frequently and for longer periods.

  17. The Effects of Temperature and Growth Phase on the Lipidomes of Sulfolobus islandicus and Sulfolobus tokodaii

    DEFF Research Database (Denmark)

    Jensen, Sara Munk; Neesgaard, Vinnie Lund; Skjoldbjerg, Sandra Landbo Nedergaard

    2015-01-01

    The functionality of the plasma membrane is essential for all organisms. Adaption to high growth temperatures imposes challenges and Bacteria, Eukarya, and Archaea have developed several mechanisms to cope with these. Hyperthermophilic archaea have earlier been shown to synthesize tetraether...... at three different temperatures, with samples withdrawn during lag, exponential, and stationary phases. Three abundant tetraether lipid classes and one diether lipid class were monitored. Beside the expected increase in the number of cyclopentane moieties with higher temperature in both archaea, we...... observed previously unreported changes in the average cyclization of the membrane lipids throughout growth. The average number of cyclopentane moieties showed a significant dip in exponential phase, an observation that might help to resolve the currently debated biosynthesis pathway of tetraether lipids....

  18. Finite temperature spin-dynamics and phase transitions in spin-orbital models

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.-C.

    2010-04-29

    We study finite temperature properties of a generic spin-orbital model relevant to transition metal compounds, having coupled quantum Heisenberg-spin and Ising-orbital degrees of freedom. The model system undergoes a phase transition, consistent with that of a 2D Ising model, to an orbitally ordered state at a temperature set by short-range magnetic order. At low temperatures the orbital degrees of freedom freeze-out and the model maps onto a quantum Heisenberg model. The onset of orbital excitations causes a rapid scrambling of the spin spectral weight away from coherent spin-waves, which leads to a sharp increase in uniform magnetic susceptibility just below the phase transition, reminiscent of the observed behavior in the Fe-pnictide materials.

  19. Testing of the functional garments with microencapsulated phase-change material in simulated high temperature conditions

    Directory of Open Access Journals (Sweden)

    Jovanović Dalibor B.

    2016-01-01

    Full Text Available An organic Phase Change Material (PCM possesses the ability to absorb and release large quantity of latent heat during a phase change process over a certain temperature range. This paper presents results related to thermo-physiological efficiency of special underwear with organic PCM integrated in textile through microencapsulation process. The efficiency of PCM underwear was tested through physiological examinations in simulated high-temperature conditions, where test-subjects were voluntarily exposed to heat stress tests wearing NBC protective suit with PCM underwear (option "THERM" and without it (option "NoTHERM". It can be concluded that wearing a PCM textile clothes under NBC protective suit, during physical activity in high-tempearture conditions, reduces sweating and alleviates heat stress manifested by increased core and skin temperature and heart rate values. [Projekat Ministarstva nauke Republike Srbije, br. TR34034

  20. Influence of Ti in the β-Zr(Fe) phase stability at ambient temperature

    International Nuclear Information System (INIS)

    Coelho, J.S.

    1980-12-01

    Investigations of the Fe-Ti-Zr alloy system with concentrations ranging from 1 at.% Ti to 20 at.% Ti and with a fixed concentration of 4 at.% Fe were performed using X-Ray diffraction, Mossbauer Spectroscopy and Optical and Electronic Metallographies. The alloys were melted in arc furnace in argon atmosphere and after being homogenized, they were quenched from the beta field into cold water in order to retain the high temperature β-Zr(Fe)-Ti phase. The obtained results show that the beta phase was partially retained until the concentration of 7 at.% Ti and was completely retained at the concentration equal to or higher than 8 at.% Ti. It is assumed in Moessbauer Spectroscopy a doublet for the beta phase and a singlet for the supersatured α'-Zr(Fe)-Ti phase resulting from the martensitic transformation. The relative amount of each phase detected by Moessbauer Spectroscopy was measured by the relative area of the each spectral line. The stability of the beta phase at room temperature was discussed in terms of short-range ordering caused by the Fe-Ti bonds. Some related properties were discussed through the changing of the lattice parameter, isomer shift and quadrupole splitting. (Author) [pt

  1. temperature

    Directory of Open Access Journals (Sweden)

    G. Polt

    2015-10-01

    Full Text Available In-situ X-ray diffraction was applied to isotactic polypropylene with a high volume fraction of α-phase (α-iPP while it has been compressed at temperatures below and above its glass transition temperature Tg. The diffraction patterns were evaluated by the Multi-reflection X-ray Profile Analysis (MXPA method, revealing microstructural parameters such as the density of dislocations and the size of coherently scattering domains (CSD-size. A significant difference in the development of the dislocation density was found compared to compression at temperatures above Tg, pointing at a different plastic deformation mechanism at these temperatures. Based on the individual evolutions of the dislocation density and CSD-size observed as a function of compressive strain, suggestions for the deformation mechanisms occurring below and above Tg are made.

  2. Analysis of relationships between NDVI and land surface temperature in coastal area

    Science.gov (United States)

    Ning, Jicai; Gao, Zhiqiang; Chen, Maosi

    2017-09-01

    Using Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager and Thermal Infrared Sensor imagery of the Yellow River Delta, this study analyzed the relationships between NDVI and LST (land surface temperature). Six Landsat images comprising two time series were used to calculate the land surface temperature and correlated vegetation indices. The Yellow River Delta area has expanded substantially because of the deposited sediment carried from upstream reaches of the river. Between 1986 and 2015, approximately 35% of the land use area of the Yellow River Delta has been transformed into salterns and aquaculture ponds. Overall, land use conversion has occurred primarily from poorly utilized land into highly utilized land. To analyze the variation of land surface temperature, a mono-window algorithm was applied to retrieve the regional land surface temperature. The results showed bilinear correlation between land surface temperature and the vegetation indices (i.e., Normalized Difference Vegetation Index, Adjusted-Normalized Vegetation Index, Soil-Adjusted Vegetation Index, and Modified Soil-Adjusted Vegetation Index). Generally, values of the vegetation indices greater than the inflection point mean the land surface temperature and the vegetation indices are correlated negatively, and vice versa. Land surface temperature in coastal areas is affected considerably by local seawater temperature and weather conditions.

  3. Temperature controlled c axis elongated low symmetry phase BiFeO3 thin film on STO substrate

    Directory of Open Access Journals (Sweden)

    Peng Ren

    2013-01-01

    Full Text Available BiFeO3 thin films with a mixture of tunable R-like and c axis elongated low symmetry phase (T-like phase are fabricated on STO (001 substrate through controlling of the substrate temperature. Almost pure T-like phase can be grown on STO substrate at 600°C. Comparing with the situations on LAO (001, it is found that, strains from the LAO substrate may be the only reason that induces the T-like phase at higher temperatures. At lower temperatures, the island growth induced strains alone can also generate T-like phase on STO substrate.

  4. A Note on the Relationship of Temperature and Water Vapor over Oceans, as well as the Sea Surface Temperature Impact

    Science.gov (United States)

    Shie, C.-L.; Tao, W.-K.; Simpson, J.

    2005-01-01

    This note follows up on a recent study by Shie et al. (2005) and extends the investigation of the domain-averaged moisture-temperature (Q-T) relationship from the Tropics (i.e., the previous study) to the tropical Pacific, Atlantic and Indian Oceans. The Q and T data examined in this study are obtained from the GEOS-3 [Goddard Earth Observing System Version-3] global re-analysis monthly products. Similar to what was found earlier in the Tropics, Q is also found to increase with T over the entire oceanic region; however, Q increases faster with T over oceans than over the Tropics. The Q-T distribution for the Tropics is in a quasi-linear relationship, which is embedded in a global Q-T distribution that is, however, in a more complex curvilinear relationship. The Q-T distribution over the oceanic regions seems to fall within the lower bound (ie., the relatively colder and driver regime) of the tropical Q-T distribution. T over oceans is also found increasing with SST (sea surface temperature), which seemingly implies that an air mass might have gained heat more readily from a warmer ocean as compared to a colder ocean. Q is also found to increase with SST in a manner that quantitatively resembles an earlier finding by Stevens (1990). We also found that relative humidity exhibits similar behaviors for oceanic and tropical regions, respectively, i.e., it increases with both SST and T over oceans and increases with T in the Tropics (Shie et al. 2005). All these similar features found between oceanic and tropical regions seem to inform us that oceans occupy most of the Tropics and so play a key role in determining what have happened in the Tropics.

  5. Temperature stabilisation in Fischer–Tropsch reactors using phase change material (PCM)

    International Nuclear Information System (INIS)

    Odunsi, Ademola O.; O'Donovan, Tadhg S.; Reay, David A.

    2016-01-01

    The Fischer–Tropsch (FT) reaction is highly exothermic. The exothermicity combined with a high sensitivity of product selectivity to temperature constitute the main challenges in the design of FT reactors. Temperature control is particularly critical to the process in order to ensure longevity of the catalyst, optimise the product distribution, and to ensure thermo-mechanical reliability of the entire process. The use of encapsulated, Phase Change Material (PCM), in conjunction with a supervisory temperature control mechanism, could help mitigate these challenges and intensify the heat transport from the reactor. A 2D-axisymmetric, pseudo-homogeneous, steady-state model, with the dissipation of the enthalpy of reaction into an isothermal PCM sink, in a wall-cooled, single-tube fixed bed reactor is presented. Effective temperature control shows a shift in thermodynamic equilibrium, favouring the selectivity of longer chain hydrocarbons (C 5+ ) to the disadvantage of CH 4 selectivity-a much desired outcome in the hydrocarbon Gas-to-Liquid (GTL) industry. - Highlights: • Phase change material is used to control temperature in a Fischer–Tropsch reactor. • Effective temperature control favours the production of C 5+ over CH 4 . • A 2D-axisymmetric, steady-state model is presented. • The model is verified against similar experimental work done in literature.

  6. Protein synthesis during the initial phase of the temperature-induced bleaching response in Euglena gracilis

    International Nuclear Information System (INIS)

    Ortiz, W.

    1990-01-01

    Growing cultures of photoheterotrophic Euglena gracilis experience an increase in chlorophyll accumulation during the initial phase of the temperature-induced bleaching response suggesting an increase in the synthesis of plastid components at the bleaching temperature of 33 degree C. A primary goal of this work was to establish whether an increase in the synthesis of plastid proteins accompanies the observed increase in chlorophyll accumulation. In vivo pulse-labeling experiments with [ 35 S]sodium sulfate were carried out with cells grown at room temperature or at 33 degree C. The synthesis of a number of plastid polypeptides of nucleocytoplasmic origin, including some presumably novel polypeptides, increased in cultures treated for 15 hours at 33 degree C. In contrast, while synthesis of thylakoid proteins by the plastid protein synthesis machinery decreased modestly, synthesis of the large subunit of the enzyme ribulosebisphosphate carboxylase was strongly affected at the elevated temperature. Synthesis of novel plastid-encoded polypeptides was not induced at the bleaching temperature. It is concluded that protein synthesis in plastids declines during the initial phase of the temperature response in Euglena despite an overall increase in cellular protein synthesis and an increase in chlorophyll accumulation per cell

  7. Raman studies of pressure and temperature induced phase transformations in calcite

    International Nuclear Information System (INIS)

    Exarhos, G.J.; Hess, N.J.

    1992-01-01

    This patent describes phase stability in the calcium carbonate system investigated as a simultaneous function of pressure and temperature up to 40 kbar and several hundred degrees Kelvin. Micro-Raman techniques were used to interrogate samples constrained within a resistively heated diamond anvil cell. Measured spectra allow unequivocal identification of crystalline phases and are used to refine the P,T phase diagram. Calcium carbonate was found to exhibit both reversible and irreversible transformation phenomena among the four known phases which exist under these conditions. Time-dependent Raman intensity variations as the material is perturbed from its equilibrium state allow real-time kinetics measurements to be performed. Evidence suggests that the order of certain observed transformations may be pressure dependent. The utility of Raman spectroscopy to follow transformation phenomena and to estimate fundamental thermophysical properties from the stress dependence of vibrational mode frequencies is demonstrated

  8. Finite-temperature phase transitions of third and higher order in gauge theories at large N

    Science.gov (United States)

    Nishimura, Hiromichi; Pisarski, Robert D.; Skokov, Vladimir V.

    2018-02-01

    We study phase transitions in S U (∞ ) gauge theories at nonzero temperature using matrix models. Our basic assumption is that the effective potential is dominated by double trace terms for the Polyakov loops. As a function of the various parameters, related to terms linear, quadratic, and quartic in the Polyakov loop, the phase diagram exhibits a universal structure. In a large region of this parameter space, there is a continuous phase transition whose order is larger than second. This is a generalization of the phase transition of Gross, Witten, and Wadia. Depending upon the detailed form of the matrix model, the eigenvalue density and the behavior of the specific heat near the transition differ drastically. We speculate that in the pure gauge theory, although the deconfining transition is thermodynamically of first order, it can be nevertheless conformally symmetric at infinite N .

  9. The pressure-temperature phase diagram of MgH₂ and isotopic substitution.

    Science.gov (United States)

    Moser, D; Baldissin, G; Bull, D J; Riley, D J; Morrison, I; Ross, D K; Oates, W A; Noréus, D

    2011-08-03

    Computational thermodynamics using density functional theory ab initio codes is a powerful tool for calculating phase diagrams. The method is usually applied at the standard pressure of p = 1 bar and where the Gibbs energy is assumed to be equal to the Helmholtz energy. In this work, we have calculated the Gibbs energy in order to study the release temperature and phase modifications of MgH(2) at high pressures up to 10 GPa (100 kbar). The isotopic substitution of hydrogen with deuterium (or tritium) does not bring about any strong effects on the phase diagram. These considerations are of extreme importance for (i) the synthesis of novel substitutional magnesium based materials at high pressure and (ii) the determination of the correct reference states for the calculation of phase diagrams at high pressure. The calculated results are compared with experimental data obtained with an in situ neutron diffraction measurement.

  10. The relationship of sleep with temperature and metabolic rate in a hibernating primate.

    Directory of Open Access Journals (Sweden)

    Andrew D Krystal

    Full Text Available STUDY OBJECTIVES: It has long been suspected that sleep is important for regulating body temperature and metabolic-rate. Hibernation, a state of acute hypothermia and reduced metabolic-rate, offers a promising system for investigating those relationships. Prior studies in hibernating ground squirrels report that, although sleep occurs during hibernation, it manifests only as non-REM sleep, and only at relatively high temperatures. In our study, we report data on sleep during hibernation in a lemuriform primate, Cheirogaleus medius. As the only primate known to experience prolonged periods of hibernation and as an inhabitant of more temperate climates than ground squirrels, this animal serves as an alternative model for exploring sleep temperature/metabolism relationships that may be uniquely relevant to understanding human physiology. MEASUREMENTS AND RESULTS: We find that during hibernation, non-REM sleep is absent in Cheirogaleus. Rather, periods of REM sleep occur during periods of relatively high ambient temperature, a pattern opposite of that observed in ground squirrels. Like ground squirrels, however, EEG is marked by ultra-low voltage activity at relatively low metabolic-rates. CONCLUSIONS: These findings confirm a sleep-temperature/metabolism link, though they also suggest that the relationship of sleep stage with temperature/metabolism is flexible and may differ across species or mammalian orders. The absence of non-REM sleep suggests that during hibernation in Cheirogaleus, like in the ground squirrel, the otherwise universal non-REM sleep homeostatic response is greatly curtailed or absent. Lastly, ultra-low voltage EEG appears to be a cross-species marker for extremely low metabolic-rate, and, as such, may be an attractive target for research on hibernation induction.

  11. Phase transitions and steady-state microstructures in a two-temperature lattice-gas model with mobile active impurities

    DEFF Research Database (Denmark)

    Henriksen, Jonas Rosager; Sabra, Mads Christian; Mouritsen, Ole G.

    2000-01-01

    The nonequilibrium, steady-state phase transitions and the structure of the different phases of a two-dimensional system with two thermodynamic temperatures are studied via a simple lattice-gas model with mobile active impurities ("hot/cold spots'') whose activity is controlled by an external drive....... The properties of the model are calculated by Monte Carlo computer-simulation techniques. The two temperatures and the external drive on the system lead to a rich phase diagram including regions of microstructured phases in addition to macroscopically ordered (phase-separated) and disordered phases. Depending...

  12. Influence of temperature and chemical composition on phase transformations of selected oxide melts

    Directory of Open Access Journals (Sweden)

    J. Dobrovská

    2013-07-01

    Full Text Available The paper deals with structural changes of solid phase of selected oxide systems during their transition into liquid state. Analyses concerned poly-component systems forming basis of casting powders for CCM mould. Industrially used oxide system with prevailing contents of CaO–Al2O3–SiO2 components and with numerous accompanying admixtures was tested. Investigation was focused on temperatures, during which individual phases disappear and precipitate, as well as on influence of CaO content on phase composition at selected temperatures. The experiments were realised with use of original methodology consisting of shock cooling of the tested melt in liquid nitrogen. Thus obtained samples were further investigated by X-ray diffraction phase analyses at ambient temperatures. The obtained results provide additional data on physical-chemical properties of oxide systems, such as surface tension, viscosity, sintering intervals, etc., which can be used in technological practice for appropriate lubrication effect of casting powders in the mould.

  13. Low temperature spin-glass-like phases in magnetic nano-granular composites

    KAUST Repository

    Zhang, Bei

    2012-09-01

    It is a common understanding that the dipole-dipole interaction among the magnetic nanoparticles may result in a low-temperature spin-glass phase, which has been evidenced by observation of aging effect and memory effect. However, several studies on the nano-particles systems showed that some of the observed spin-glass-like phenomena could be due to the existence of spin-glasslike shells surrounding the ferrimagnetic cores. Therefore, it is very important to understand that how the dipole-dipole interaction induce the spin-glass phase. In order to address this issue, we have fabricated Co-SiO 2 and Fe-SiO 2 nano-granular thin films and measured the memory effect for them. Spin-glass-like phase has been observed at low temperatures. We found that, after annealing, the size of the clusters increased significantly. Based on a simple model, the dipole-dipole interaction between the clusters must be increased accordingly for the annealed samples. Interestingly, the memory effect is greatly weakened in the annealed films, which strongly suggested that the dipole-dipole interaction may not be the major factor for the formation of the low-temperature spin-glass-like phase. Copyright © 2012 American Scientific Publishers All rights reserved.

  14. High-temperature phases of NaNbO3 and NaTaO3

    International Nuclear Information System (INIS)

    Darlington, C.N.W.

    1999-01-01

    The high-temperature phases of the perovskites sodium niobate, NaNbO 3 , and sodium tantalate, NaTaO 3 , have been re-examined using the high-resolution powder diffractometer HRPD at the ISIS neutron spallation source; the two materials show the same sequence of phases with tilted octahedra. Diffraction patterns were measured every 5 K allowing structural changes with temperature within a single phase to be determined for the first time. Previous structure determinations within one phase had been performed at a single temperature only. The octahedra are tilted about pseudocubic left angle 100 right angle directions and are also deformed; the magnitude of the deformation is shown to be proportional to the square of the angle of tilt as expected from a phenomenological theory applied to such transitions. The structures of NaNbO 3 between 753 and 793 K and of NaTaO 3 below 758 K are not as reported in the literature. (orig.)

  15. Relationship Between the Surface Area to Volume Ratio and Temperature across Geologic Time in Ostracods

    Science.gov (United States)

    Jackson, C.; Zaroff, S.; Heim, N. A.; Payne, J.

    2014-12-01

    In 1877 Joseph Allen proposed that endothermic terrestrial organisms would have lower surface area to volume ratios (SAVR) in colder climates and higher SAVRs in warmer climates. With a smaller surface area compared to volume, organisms can retain more heat in cold climates. We tested to see if this principle applied to ostracods, a type of ectothermic marine invertebrate. We hypothesised that Allen's rule applies to ostracods, as Allen's rule has been demonstrated in frogs (Alho 2011), which are also ectotherms . We used the linear dimensions of the three major carapace axes of ostracod holotypes to estimate the SAVR. We compared ostracod SAVRs with paleotemperatures from Royer et al. (2004). We found that there was a correlation between surface area and temperature; it is a small, but statistically significant correlation (adj. R2=0.0167). This means that as temperature increased, the SAVR also increased. We also found a negative correlation between ostracod SAVR to geologic time(adj. R2=0.0114), which shows us that as time has gone on, ostracod SAVR has decreased. We then plotted the correlation coefficient of SAVR to temperature over geologic time to explore trends in the strength of Allen's rule. For most of time there was no relationship but during the Devonian, Allen's Rule did explain the trend. In short, temperature does explain some of the correlation between the SAVR and temperature, but it is likely there were other environmental factors affecting this relationship.

  16. Time-temperature relationships for hyperthermal radiosensitisation in mouse intestine: influence of thermotolerance

    International Nuclear Information System (INIS)

    Hume, S.P.; Marigold, J.C.L.

    1985-01-01

    Thermal enhancement of radiation injury to the crypt compartment of mouse small intestinal mucosa has been measured as a function of heating time for temperatures in the range 41.0-44.0 0 C. All the hyperthermal treatments used were themselves subthreshold for gross tissue injury. With this limitation, thermoradiosensitisation increased linearly with duration of hyperthermia for temperatures in the range 42.3-44.0 0 C. Using temperatures below 42.0 0 C, there was a saturation in effect for treatments longer than approximately 40-90 min. For temperatures above the transition, a 1 0 C change was equivalent to a factor of 2.6 in heating time; below the transition, a 1 0 C change was equivalent to a factor of 5.4. Time-temperature relationships for thermoradiosensitisation in other rodent tissues are reviewed and compared with the general relationships for direct thermal injury, previously derived from experimental studies. The results are discussed with relevance to the interpretation of in vivo thermal enhancement of radiation injury. (Auth.)

  17. Evaluation of the relationship between motion sickness symptomatology and blood pressure, heart rate, and body temperature

    Science.gov (United States)

    Graybiel, A.; Lackner, J. R.

    1980-01-01

    This study investigated the relationship between the development of symptoms of motion sickness and changes in blood pressure, heart rate, and body temperature. Twelve subjects were each evaluated four times using the vestibular-visual interaction test (Graybiel and Lackner, 1980). The results were analyzed both within and across individual subjects. Neither a systematic group nor consistent individual relationship was found between the physiological parameters and the appearance of symptoms of motion sickness. These findings suggest that biofeedback control of the physiological variables studied is not likely to prevent the expression of motion sickness symptomatology.

  18. Pressure-temperature stability, Ca2+ binding, and pressure-temperature phase diagram of cod parvalbumin: Gad m 1.

    Science.gov (United States)

    Somkuti, Judit; Bublin, Merima; Breiteneder, Heimo; Smeller, László

    2012-07-31

    Fish allergy is associated with IgE-mediated hypersensitivity reactions to parvalbumins, which are small calcium-binding muscle proteins and represent the major and sole allergens for 95% of fish-allergic patients. We performed Fourier transform infrared and tryptophan fluorescence spectroscopy to explore the pressure-temperature (p-T) phase diagram of cod parvalbumin (Gad m 1) and to elucidate possible new ways of pressure-temperature inactivation of this food allergen. Besides the secondary structure of the protein, the Ca(2+) binding to aspartic and glutamic acid residues was detected. The phase diagram was found to be quite complex, containing partially unfolded and molten globule states. The Ca(2+) ions were essential for the formation of the native structure. A molten globule conformation appears at 50 °C and atmospheric pressure, which converts into an unordered aggregated state at 75 °C. At >200 MPa, only heat unfolding, but no aggregation, was observed. A pressure of 500 MPa leads to a partially unfolded state at 27 °C. The complete pressure unfolding could only be reached at an elevated temperature (40 °C) and pressure (1.14 GPa). A strong correlation was found between Ca(2+) binding and the protein conformation. The partially unfolded state was reversibly refolded. The completely unfolded molecule, however, from which Ca(2+) was released, could not refold. The heat-unfolded protein was trapped either in the aggregated state or in the molten globule state without aggregation at elevated pressures. The heat-treated and the combined heat- and pressure-treated protein samples were tested with sera of allergic patients, but no change in allergenicity was found.

  19. Modified T-history method for measuring thermophysical properties of phase change materials at high temperature

    Science.gov (United States)

    Omaraa, Ehsan; Saman, Wasim; Bruno, Frank; Liu, Ming

    2017-06-01

    Latent heat storage using phase change materials (PCMs) can be used to store large amounts of energy in a narrow temperature difference during phase transition. The thermophysical properties of PCMs such as latent heat, specific heat and melting and solidification temperature need to be defined at high precision for the design and estimating the cost of latent heat storage systems. The existing laboratory standard methods, such as differential thermal analysis (DTA) and differential scanning calorimetry (DSC), use a small sample size (1-10 mg) to measure thermophysical properties, which makes these methods suitable for homogeneous elements. In addition, this small amount of sample has different thermophysical properties when compared with the bulk sample and may have limitations for evaluating the properties of mixtures. To avoid the drawbacks in existing methods, the temperature - history (T-history) method can be used with bulk quantities of PCM salt mixtures to characterize PCMs. This paper presents a modified T-history setup, which was designed and built at the University of South Australia to measure the melting point, heat of fusion, specific heat, degree of supercooling and phase separation of salt mixtures for a temperature range between 200 °C and 400 °C. Sodium Nitrate (NaNO3) was used to verify the accuracy of the new setup.

  20. Temperature measurement of an axisymmetric flame using phase shift holographic interferometry with fast Fourier transform

    Science.gov (United States)

    Tieng, S. M.; Lai, W. Z.

    Because of the importance of the temperature scalar measurements in combination diagonostics, application of phase shift holographic interferometry to temperature measurement of an axisymmetrically premixed flame was experimentally investigated. The test apparatus is an axisymmetric Bunsen burner. Propane of 99 percent purity is used as the gaseous fuel. A fast Fourier transform, a more efficient and accurate approach for Abel inversion, is used for reconstructed the axisymmetric temperature field from the interferometric data. The temperature distribution is compared with the thermocouple-measured values. The comparison shows that the proposed technique is satisfactory. The result errors are analyzed in detail. It is shown that this technique overcomes most of the earlier problems and limitations detrimental to the conventional holographic interferometry.

  1. Low temperature electroweak phase transition in the Standard Model with hidden scale invariance

    Directory of Open Access Journals (Sweden)

    Suntharan Arunasalam

    2018-01-01

    Full Text Available We discuss a cosmological phase transition within the Standard Model which incorporates spontaneously broken scale invariance as a low-energy theory. In addition to the Standard Model fields, the minimal model involves a light dilaton, which acquires a large vacuum expectation value (VEV through the mechanism of dimensional transmutation. Under the assumption of the cancellation of the vacuum energy, the dilaton develops a very small mass at 2-loop order. As a result, a flat direction is present in the classical dilaton-Higgs potential at zero temperature while the quantum potential admits two (almost degenerate local minima with unbroken and broken electroweak symmetry. We found that the cosmological electroweak phase transition in this model can only be triggered by a QCD chiral symmetry breaking phase transition at low temperatures, T≲132 MeV. Furthermore, unlike the standard case, the universe settles into the chiral symmetry breaking vacuum via a first-order phase transition which gives rise to a stochastic gravitational background with a peak frequency ∼10−8 Hz as well as triggers the production of approximately solar mass primordial black holes. The observation of these signatures of cosmological phase transitions together with the detection of a light dilaton would provide a strong hint of the fundamental role of scale invariance in particle physics.

  2. Low temperature electroweak phase transition in the Standard Model with hidden scale invariance

    Science.gov (United States)

    Arunasalam, Suntharan; Kobakhidze, Archil; Lagger, Cyril; Liang, Shelley; Zhou, Albert

    2018-01-01

    We discuss a cosmological phase transition within the Standard Model which incorporates spontaneously broken scale invariance as a low-energy theory. In addition to the Standard Model fields, the minimal model involves a light dilaton, which acquires a large vacuum expectation value (VEV) through the mechanism of dimensional transmutation. Under the assumption of the cancellation of the vacuum energy, the dilaton develops a very small mass at 2-loop order. As a result, a flat direction is present in the classical dilaton-Higgs potential at zero temperature while the quantum potential admits two (almost) degenerate local minima with unbroken and broken electroweak symmetry. We found that the cosmological electroweak phase transition in this model can only be triggered by a QCD chiral symmetry breaking phase transition at low temperatures, T ≲ 132 MeV. Furthermore, unlike the standard case, the universe settles into the chiral symmetry breaking vacuum via a first-order phase transition which gives rise to a stochastic gravitational background with a peak frequency ∼10-8 Hz as well as triggers the production of approximately solar mass primordial black holes. The observation of these signatures of cosmological phase transitions together with the detection of a light dilaton would provide a strong hint of the fundamental role of scale invariance in particle physics.

  3. CosmoTransitions: Computing cosmological phase transition temperatures and bubble profiles with multiple fields

    Science.gov (United States)

    Wainwright, Carroll L.

    2012-09-01

    I present a numerical package (CosmoTransitions) for analyzing finite-temperature cosmological phase transitions driven by single or multiple scalar fields. The package analyzes the different vacua of a theory to determine their critical temperatures (where the vacuum energy levels are degenerate), their supercooling temperatures, and the bubble wall profiles which separate the phases and describe their tunneling dynamics. I introduce a new method of path deformation to find the profiles of both thin- and thick-walled bubbles. CosmoTransitions is freely available for public use.Program summaryProgram Title: CosmoTransitionsCatalogue identifier: AEML_v1_0Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEML_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 8775No. of bytes in distributed program, including test data, etc.: 621096Distribution format: tar.gzProgramming language: Python.Computer: Developed on a 2009 MacBook Pro. No computer-specific optimization was performed.Operating system: Designed and tested on Mac OS X 10.6.8. Compatible with any OS with Python installed.RAM: Approximately 50 MB, mostly for loading plotting packages.Classification: 1.9, 11.1.External routines: SciPy, NumPy, matplotLibNature of problem: I describe a program to analyze early-Universe finite-temperature phase transitions with multiple scalar fields. The goal is to analyze the phase structure of an input theory, determine the amount of supercooling at each phase transition, and find the bubble-wall profiles of the nucleated bubbles that drive the transitions.Solution method: To find the bubble-wall profile, the program assumes that tunneling happens along a fixed path in field space. This reduces the equations of motion to one dimension, which can then be solved using the overshoot

  4. Phase structure of 3DZ(N) lattice gauge theories at finite temperature

    International Nuclear Information System (INIS)

    Borisenko, O.; Chelnokov, V.; Cortese, G.; Gravina, M.; Papa, A.; Surzhikov, I.

    2013-01-01

    We perform a numerical study of the phase transitions in three-dimensional Z(N) lattice gauge theories at finite temperature for N>4. Using the dual formulation of the models and a cluster algorithm we locate the position of the critical points and study the critical behavior across both phase transitions in details. In particular, we determine various critical indices, compute the average action and the specific heat. Our results are consistent with the two transitions being of infinite order. Furthermore, they belong to the universality class of two-dimensional Z(N) vector spin models

  5. Room temperature synthesis of wurtzite phase nanostructured ZnS and accompanied enhancement in dielectric constant

    Science.gov (United States)

    Virpal, Kumar, J.; Singh, G.; Singh, M.; Sharma, S.; Singh, R. C.

    2017-04-01

    We report the room temperature synthesis of ZnS in the wurtzite phase by using ethylenediamine, which acts as a template as well as a capping agent. With the addition of ethylenediamine, structural transformation in ZnS from cubic to wurtzite phase is observed. This is accompanied by an increase in the real permittivity by an order of 2, and reduction in dielectric loss by a factor of 6 as compared to a sample without ethylenediamine. Thus, suggesting that ethylenediamine capped wurtzite ZnS is more suitable for miniaturied capactive devices.

  6. Machining and Phase Transformation Response of Room-Temperature Austenitic NiTi Shape Memory Alloy

    Science.gov (United States)

    Kaynak, Yusuf

    2014-09-01

    This experimental work reports the results of a study addressing tool wear, surface topography, and x-ray diffraction analysis for the finish cutting process of room-temperature austenitic NiTi alloy. Turning operation of NiTi alloy was conducted under dry, minimum quantity lubrication (MQL) and cryogenic cooling conditions at various cutting speeds. Findings revealed that cryogenic machining substantially reduced tool wear and improved surface topography and quality of the finished parts in comparison with the other two approaches. Phase transformation on the surface of work material was not observed after dry and MQL machining, but B19' martensite phase was found on the surface of cryogenically machined samples.

  7. Topological Phase Transitions in Zinc-Blende Semimetals Driven Exclusively by Electronic Temperature

    Science.gov (United States)

    Trushin, Egor; Görling, Andreas

    2018-04-01

    We show that electronic phase transitions in zinc-blende semimetals with quadratic band touching (QBT) at the center of the Brillouin zone, like GaBi, InBi, or HgTe, can occur exclusively due to a change of the electronic temperature without the need to involve structural transformations or electron-phonon coupling. The commonly used Kohn-Sham density-functional methods based on local and semilocal density functionals employing the local density approximation (LDA) or generalized gradient approximations (GGAs), however, are not capable of describing such phenomena because they lack an intrinsic temperature dependence and account for temperature only via the occupation of bands, which essentially leads only to a shift of the Fermi level without changing the shape or topology of bands. Kohn-Sham methods using the exact temperature-dependent exchange potential, not to be confused with the Hartree-Fock exchange potential, on the other hand, describe such phase transitions. A simple modeling of correlation effects can be achieved by screening of the exchange. In the considered zinc-blende compounds the QBT is unstable at low temperatures and a transition to electronic states without QBT takes place. In the case of HgTe and GaBi Weyl points of type I and type II, respectively, emerge during the transitions. This demonstrates that Kohn-Sham methods can describe such topological phase transitions provided they are based on functionals more accurate than those within the LDA or GGA. Moreover, the electronic temperature is identified as a handle to tune topological materials.

  8. The influence of temperature on the polymerization of ethyl cyanoacrylate from the vapor phase

    Energy Technology Data Exchange (ETDEWEB)

    Dadmun, Mark D [ORNL; Algaier, Dana [University of Tennessee, Knoxville (UTK); Baskaran, Durairaj [University of Tennessee, Knoxville (UTK)

    2011-01-01

    The polymerization of ethyl cyanoacrylate fumes from surface bound initiators is an important step in many novel and mature technologies. Understanding the effect of temperature on the rate of poly(ethyl cyanoacrylate) (PECA) growth and its molecular weight during its polymerization from the vapor phase from surface bound initiators provides insight into the important mechanistic aspects that impact the polymerizations success. In these studies, it is shown that the amount of PECA formed during the polymerization of ECA from a latent fingerprint increases with decreasing temperature, while the polymer molecular weight varies little. This is interpreted to be the result of the loosening of the ion pair that initiates the polymer chain growth and resides on the end of the growing polymer chain with decreasing temperature. Comparison of temperature effects and counter-ion studies show that in both cases loosening the ion pair results in the formation of more polymer with similar molecular weight, verifying this interpretation. These results further suggest that lowering the temperature may be an effective method to optimize anionic vapor phase polymerizations, including the improvement of the quality of aged latent prints and preliminary results are presented that substantiate this prediction.

  9. Thermally enhanced optical nonlinearity in nematic liquid crystal close to phase transition temperature

    Science.gov (United States)

    Shih, Chia-Chi; Chen, Yu-Jen; Hung, Wen-Chi; Jiang, I.-Min; Tsai, Ming-Shan

    2010-09-01

    This study investigates the beam profile and the liquid crystal (LC) arrangement affected by an optical field on LC thin films at a temperature close to nematic-isotropic phase transition temperature ( TNI). A combined microscopic and conoscopic technique was used in experiments as a convenient way to analyze the optical nonlinearity that is associated with the molecular configuration of nematic liquid crystal (NLC). An optical field combined with thermal enhancement enhances molecular reorientation and causes additional molecular excitation along the axis of propagation of the beam. The reorientational nonlinearity yields an undulating structure with multi-foci; the length between each pair of foci increases with time, as described.

  10. Spatially resolved quantitative mapping of thermomechanical properties and phase transition temperatures using scanning probe microscopy

    Science.gov (United States)

    Jesse, Stephen; Kalinin, Sergei V; Nikiforov, Maxim P

    2013-07-09

    An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.

  11. Transmitted wavefront error of a volume phase holographic grating at cryogenic temperature.

    Science.gov (United States)

    Lee, David; Taylor, Gordon D; Baillie, Thomas E C; Montgomery, David

    2012-06-01

    This paper describes the results of transmitted wavefront error (WFE) measurements on a volume phase holographic (VPH) grating operating at a temperature of 120 K. The VPH grating was mounted in a cryogenically compatible optical mount and tested in situ in a cryostat. The nominal root mean square (RMS) wavefront error at room temperature was 19 nm measured over a 50 mm diameter test aperture. The WFE remained at 18 nm RMS when the grating was cooled. This important result demonstrates that excellent WFE performance can be obtained with cooled VPH gratings, as required for use in future cryogenic infrared astronomical spectrometers planned for the European Extremely Large Telescope.

  12. High temperature diffusion induced liquid phase joining of a heat resistant alloy

    International Nuclear Information System (INIS)

    Wikstrom, N.P.; Egbewande, A.T.; Ojo, O.A.

    2008-01-01

    Transient liquid phase bonding (TLP) of a nickel base superalloy, Waspaloy, was performed to study the influence of holding time and temperature on the joint microstructure. Insufficient holding time for complete isothermal solidification of liquated insert caused formation of eutectic-type microconstituent along the joint centerline region in the alloy. In agreement with prediction by conventional TLP diffusion models, an increase in bonding temperature for a constant gap size, resulted in decrease in the time, t f, required to form a eutectic-free joint by complete isothermal solidification. However, a significant deviation from these models was observed in specimens bonded at and above 1175 deg. C. A reduction in isothermal solidification rate with increased temperature was observed in these specimens, such that a eutectic-free joint could not be achieved by holding for a time period that produced complete isothermal solidification at lower temperatures. Boron-rich particles were observed within the eutectic that formed in the joints prepared at the higher temperatures. An overriding effect of decrease in boron solubility relative to increase in its diffusivity with increase in temperature, is a plausible important factor responsible for the reduction in isothermal solidification rate at the higher bonding temperatures

  13. On the relationship between the QBO/ENSO and atmospheric temperature using COSMIC radio occultation data

    Science.gov (United States)

    Gao, Pan; Xu, Xiaohua; Zhang, Xiaohong

    2017-04-01

    In this paper, the spatial patterns and vertical structure of atmospheric temperature anomalies, in both the tropics and the extratropical latitudes, associated with the El Niño-Southern Oscillation (ENSO) and quasi-biennial oscillation (QBO) in the upper troposphere and stratosphere are investigated using global positioning system (GPS) radio occultation (RO) measurements from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) Formosa Satellite Mission 3 mission from July 2006 to February 2014. We find that negative correlations between the atmospheric temperature in the tropics and ENSO are observed at 17-30 km in the lower stratosphere at a lag of 1-4 months and at a lead of 1 month. Out-of-phase temperature variation is observed in the troposphere over the mid-latitude band and in-phase behaviour is observed in the lower stratosphere. Interestingly, we also find that there is a significant negative correlation at a lag of 1-3 months from 32 km to 40 km in the mid-latitude region of the Northern Hemisphere. The atmospheric temperature variations over mid-latitude regions in both hemispheres are closely related to the QBO. There are also two narrow zones over the subtropical jet zone where the QBO signals are strong in both hemispheres, approximately parallel to the equator. Finally, we develop a new robust index to describe the strength of the ENSO and QBO signal.

  14. Temperature dependences of the retention indices of mono- and polyethylene glycol acetals and ethers on stationary phase DB-1 and enthalpies of their sorption from the gas phase

    Science.gov (United States)

    Zhabina, A. A.; Krasnykh, E. L.

    2017-12-01

    Gas chromatography is used to study the sorption characteristics and retention of a series of mono-, di-, and triethylene glycol ethers on nonpolar phase DB-1 in the temperature range of 70-180°C. Temperature dependences of the retention indices of the compounds are obtained and their linear character in the investigated range of temperatures is demonstrated. The enthalpies of sorption of the investigated compounds are calculated and analyzed, based on the temperature dependences of the retention factors.

  15. Numerical Model and Analysis of Peak Temperature Reduction in LiFePO4 Battery Packs Using Phase Change Materials

    DEFF Research Database (Denmark)

    Coman, Paul Tiberiu; Veje, Christian

    2013-01-01

    Numerical model and analysis of peak temperature reduction in LiFePO4 battery packs using phase change materials......Numerical model and analysis of peak temperature reduction in LiFePO4 battery packs using phase change materials...

  16. Relaxation theory of spin-3/2 Ising system near phase transition temperatures

    International Nuclear Information System (INIS)

    Canko, Osman; Keskin, Mustafa

    2010-01-01

    Dynamics of a spin-3/2 Ising system Hamiltonian with bilinear and biquadratic nearest-neighbour exchange interactions is studied by a simple method in which the statistical equilibrium theory is combined with the Onsager's theory of irreversible thermodynamics. First, the equilibrium behaviour of the model in the molecular-field approximation is given briefly in order to obtain the phase transition temperatures, i.e. the first- and second-order and the tricritical points. Then, the Onsager theory is applied to the model and the kinetic or rate equations are obtained. By solving these equations three relaxation times are calculated and their behaviours are examined for temperatures near the phase transition points. Moreover, the z dynamic critical exponent is calculated and compared with the z values obtained for different systems experimentally and theoretically, and they are found to be in good agrement. (general)

  17. Pressure-Temperature Phase Diagram of (TMTSF){sub 2}BF{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yeon Jung [Dept. of Physics, Kyungpook National University, Daegu (Korea, Republic of)

    2012-08-15

    (TMTSF){sub 2}BF{sub 4} containing non-centrosymmetric anions is well known to exhibit a metal insulator transition around 37 K by ordering of the anions with a q{sub 2}=(1/2, 1/2, 1/2) wave vector. We established pressure-temperature phase diagram of the (TMTSF){sub 2}BF{sub 4} compound and showed that it can belong to the general phase diagram of the (TMTSF){sub 2}X family. Application of hydrostatic pressure decreases the anion ordering transition temperature and the superconducting state is finally stabilized below 3.77 K under 7.7 kbar. Magnetoresistance measurement on the (TMTSF){sub 2}BF{sub 4} under 7.8 kbar is performed but neither the field-induced spin-density-wave state nor the rapid oscillation is observed up to 9 T.

  18. Improving the efficiency of Monte Carlo simulations of systems that undergo temperature-driven phase transitions

    Science.gov (United States)

    Velazquez, L.; Castro-Palacio, J. C.

    2013-07-01

    Recently, Velazquez and Curilef proposed a methodology to extend Monte Carlo algorithms based on a canonical ensemble which aims to overcome slow sampling problems associated with temperature-driven discontinuous phase transitions. We show in this work that Monte Carlo algorithms extended with this methodology also exhibit a remarkable efficiency near a critical point. Our study is performed for the particular case of a two-dimensional four-state Potts model on a square lattice with periodic boundary conditions. This analysis reveals that the extended version of Metropolis importance sampling is more efficient than the usual Swendsen-Wang and Wolff cluster algorithms. These results demonstrate the effectiveness of this methodology to improve the efficiency of MC simulations of systems that undergo any type of temperature-driven phase transition.

  19. Neutron diffraction study of high temperature phase of K2SeO4

    International Nuclear Information System (INIS)

    Iwata, Yutaka; Koyano, Nobumitsu; Shibuya, Iwao; Hidaka, Masanori; Okazaki, Atsushi.

    1984-01-01

    The crystal structure of high-temperature phase of K 2 SeO 4 has been determined by means of single crystal neutron diffraction. The space group is P6 3 /mmc of hexagonal system with two formula units per unit cell. The structure is characterized by an averaged dispositions of SeO 4 tetrahedra with one of its Se-O bonds pointing parallel and antiparallel to the hexagonal c-axis in addition to the split distribution of potassium atoms. Heavily distorted distribution of oxygen atoms in SeO 4 is observed in Fourier maps corrersponding to split positions and reorientational motion of tetrahedra. This disordered arrangement is found to have close relation with the room temperature orthorhombic structure. The hexagonal-orthorhombic phase transition of K 2 SeO 4 at 472 0 C is grouped to an order-disorder type. (author)

  20. Spatio-Temporal Relationship Between Surface Temperature and NDVI Using Remotely Sensed data

    Science.gov (United States)

    Ghobadi, Yasser; Pradhan, Biswajeet; Kabiri, Keivan

    2016-07-01

    Land surface temperature (LST) is a significant factor to analyze the global climate changes, and LULC (Land use/Land cover) changes, as well as urban thermal behavior. Land surface temperature exhibit the surface atmosphere in relation with energy flux between earth and atmosphere. This paper intended to examine the evaluation of LST and assessment of relationship between LST and normalized difference vegetation index (NDVI) with associated different LULC. Al- Hawizeh wetland located in the Iraq-Iran border was selected as a study area. Two Landsat satellite thermal infrared (TIR) images of October 26, 1998, thematic mapper (TM), and October 26, 2002 enhanced thematic mapper (ETM+) were used. Both images were corrected geometrically and atmospherically before carried out any analysis. NDVI was estimated from reflectance values of the visible band (band 3, Red) and the near infrared band (band 4, VNIR). Maximum likelihood classifier (MLC) was applied to determine the different LULC. Plank equation was utilized to extract land surface temperature over the study region. The results provide information about the spatial distribution of LST over different LULC during mentioned date. The highest mean temperature was observed over the rangeland and the lowest mean temperature was found in water bodies. The results of regression analysis exhibited that the LST and NDVI has an inverse correlation except for water bodies. The negative correlation coefficient was observed over vegetation (-0.733, R2=0.66). Keywords-component; Land Surface Temperature, Remote Sensing, Al-Havizeh wetland, Regression Analysis, NDVI, GIS

  1. Phase relationships in the Er-Mn-Ti ternary system at 773 K

    International Nuclear Information System (INIS)

    Liu Jingqi; Wang Xina; Tang Mengqi; Su Kunpeng; Yang Xiaomao; Li Chunhui; Li Xueqiang

    2009-01-01

    The Phase relationship in the Er-Mn-Ti ternary system at 773 K has been investigated by X-ray powder diffraction analysis with the aid of differential thermal analysis and optical microanalysis techniques in this work. The existence of eight binary compounds Mn 15 Ti 85, αMnTi, βMnTi, Mn 2 Ti, Mn 5 Ti, ErMn 12, Er 6 Mn 23 and ErMn 2 has been confirmed at 773 K in this system. The maximum solid solubility of Ti in Mn is about 8 at%Ti. The homogeneity range of Mn 2 Ti extends from about 31 at% to 39 at% Ti. The maximum solid solubility of Er in Mn 2 Ti phase is about less than 1 at% Er. No ternary compounds were found in this ternary system at 773K. At 773 K, the isothermal section of phase diagram of Er-Mn-Ti ternary system consists of 11 single-phase regions, 19 two-phase regions and 9 three-phase regions.

  2. Maintaining warm, trusting relationships with brands: increased temperature perceptions after thinking of communal brands.

    Directory of Open Access Journals (Sweden)

    Hans IJzerman

    Full Text Available Classical theories on interpersonal relations have long suggested that social interactions are influenced by sensation, such as the experience of warmth. Past empirical work now confirms that perceived differences in temperature impact how people form thoughts about relationships. The present work first integrates our knowledge database on brand research with this idea of "grounded social cognition". It then leverages a large sample (total N = 2,552 toward elucidating links between estimates of temperature and positive versus negative evaluations of communal brands. In five studies, the authors have found that thinking about positively (vs. negatively perceived communal brands leads to heightened temperature estimates. A meta-analysis of the five studies shows a small but consistent effect in this noisy environment, r = .11, 95% CI, .05, .18. Exploratory analyses in Studies 1a and b further suggest that temperature perceptions mediate the (significant relationship between perceived communality and willingness to purchase from the brand. The authors discuss implications for theory and practice and consider the effects from a Social Baseline Perspective.

  3. Maintaining warm, trusting relationships with brands: increased temperature perceptions after thinking of communal brands.

    Science.gov (United States)

    IJzerman, Hans; Janssen, Janneke A; Coan, James A

    2015-01-01

    Classical theories on interpersonal relations have long suggested that social interactions are influenced by sensation, such as the experience of warmth. Past empirical work now confirms that perceived differences in temperature impact how people form thoughts about relationships. The present work first integrates our knowledge database on brand research with this idea of "grounded social cognition". It then leverages a large sample (total N = 2,552) toward elucidating links between estimates of temperature and positive versus negative evaluations of communal brands. In five studies, the authors have found that thinking about positively (vs. negatively) perceived communal brands leads to heightened temperature estimates. A meta-analysis of the five studies shows a small but consistent effect in this noisy environment, r = .11, 95% CI, .05, .18. Exploratory analyses in Studies 1a and b further suggest that temperature perceptions mediate the (significant) relationship between perceived communality and willingness to purchase from the brand. The authors discuss implications for theory and practice and consider the effects from a Social Baseline Perspective.

  4. The role of temperature on dielectric relaxation and conductivity mechanism of dark conglomerate liquid crystal phase

    International Nuclear Information System (INIS)

    Yildiz, Alptekin; Canli, Nimet Yilmaz; Özdemir, Zeynep Güven; Ocak, Hale; Eran, Belkız Bilgin; Okutan, Mustafa

    2016-01-01

    In this study, dielectric properties and ac conductivity mechanism of the bent-core liquid crystal 3′-{4-[4-(3,7-Dimethyloctyloxy)benzoyloxy]benzoyloxy}-4-{4- [4-[6-(1,1,3,3,5,5,5-heptamethyltrisiloxan-1yl)hex-1-yloxy]benzoyloxy] benzoyloxy}biphenyl (DBB) have been analyzed by impedance spectroscopy measurements at different temperatures. According to the polarizing microscopy results, DBB liquid crystal compound exhibits a dark conglomerate mesophase (DC [*] phase) which can be identified by the occurrence of a conglomerate of domains with opposite chirality. The chiral domains of this low-birefringent mesophase become more visible by rotating the polarizer. The variation of the real (ε′) and imaginary (ε″) parts of dielectric constant with angular frequency and Cole–Cole curves of DBB have been analyzed. The fitting results for dispersion curves at different temperatures revealed that DBB system exhibits nearly Debye-type relaxation except for 125 °C. Moreover, it has been determined that while the relaxation frequencies shift to higher frequencies as the temperature increases from 25 °C to 125 °C, the peak intensities remarkably decrease with increasing temperature. According to Cole–Cole plot and phase angle versus frequency curve, it has been determined that DBB LC may have a possibility of utilizing as a super-capacitor at room temperature. Furthermore, it has been found that the conductivity mechanism of the DBB alters from Correlated Barrier Hoping (CBH) model to Quantum Tunneling Model (QMT) with in increasing temperature at high frequency region. In terms of CBH model, optical band gaps at 25 °C and 75 °C temperatures have also been calculated. Finally, activation energies for some selected angular frequencies have also been calculated.

  5. The role of temperature on dielectric relaxation and conductivity mechanism of dark conglomerate liquid crystal phase

    Science.gov (United States)

    Yildiz, Alptekin; Canli, Nimet Yilmaz; Özdemir, Zeynep Güven; Ocak, Hale; Eran, Belkız Bilgin; Okutan, Mustafa

    2016-03-01

    In this study, dielectric properties and ac conductivity mechanism of the bent-core liquid crystal 3‧-{4-[4-(3,7-Dimethyloctyloxy)benzoyloxy]benzoyloxy}-4-{4-[4-[6-(1,1,3,3,5,5,5-heptamethyltrisiloxan-1yl)hex-1-yloxy]benzoyloxy]benzoyloxy}biphenyl (DBB) have been analyzed by impedance spectroscopy measurements at different temperatures. According to the polarizing microscopy results, DBB liquid crystal compound exhibits a dark conglomerate mesophase (DC[*] phase) which can be identified by the occurrence of a conglomerate of domains with opposite chirality. The chiral domains of this low-birefringent mesophase become more visible by rotating the polarizer. The variation of the real (ε‧) and imaginary (ε″) parts of dielectric constant with angular frequency and Cole-Cole curves of DBB have been analyzed. The fitting results for dispersion curves at different temperatures revealed that DBB system exhibits nearly Debye-type relaxation except for 125 °C. Moreover, it has been determined that while the relaxation frequencies shift to higher frequencies as the temperature increases from 25 °C to 125 °C, the peak intensities remarkably decrease with increasing temperature. According to Cole-Cole plot and phase angle versus frequency curve, it has been determined that DBB LC may have a possibility of utilizing as a super-capacitor at room temperature. Furthermore, it has been found that the conductivity mechanism of the DBB alters from Correlated Barrier Hoping (CBH) model to Quantum Tunneling Model (QMT) with in increasing temperature at high frequency region. In terms of CBH model, optical band gaps at 25 °C and 75 °C temperatures have also been calculated. Finally, activation energies for some selected angular frequencies have also been calculated.

  6. Relationship between Spokesperson’s Gender and Advertising Color Temperature in a Framework of Advertising Effectiveness

    Directory of Open Access Journals (Sweden)

    Pilelienė Lina

    2017-12-01

    Full Text Available Advertising spokesperson is one of the undeniably important factors affecting advertising effectiveness. However, advertising spokesperson has to have some particular features to be effective. Various previous researches resulted in determination of different features of advertising spokesperson and their effectiveness; i.e. type of a spokesperson (celebrity vs. a regular person; gender and race of a spokesperson; etc. were found to have an impact on the spokesperson’s effectiveness. However, the research on the impact of shooting color temperature on its effectiveness is still scarce. Moreover, an assumption can be made that color temperature might cause a different effect depending on advertising spokesperson’s gender. The aim of this paper is to fill this gap by analyzing the relationship between spokesperson’s gender and advertising color temperature in a framework of advertising effectiveness. Neuromarketing research methods were applied to meet the aim and to determine the guidelines for its usage in advertising.

  7. Phonon renormalization at small q values in the high-temperature phase of CsCuCl sub 3

    CERN Document Server

    Foerster, U; Schotte, U; Stuhr, U

    1997-01-01

    The hexagonal perovskite CsCuCl sub 3 exhibits a structural phase transition from a dynamically disordered high-temperature phase to an ordered low-temperature phase due to the cooperative Jahn-Teller effect. The lattice dynamics of the high-temperature phase has been studied by inelastic neutron scattering experiments. The investigations concentrated on small wave vectors q, where for the first time renormalized phonons at q=0.02-0.05 A sup - sup 1 could be observed. The measurements confirm the predictions of a theoretical approach based on the coupling between dynamic reorientation processes and acoustic lattice waves (pseudo-spin phonon coupling). (author)

  8. PHASE CHANGES ON 4H AND 6H SIC AT HIGH TEMPERATURE OXIDATION

    Directory of Open Access Journals (Sweden)

    Jan Setiawan

    2016-10-01

    Full Text Available ABSTRACT PHASE CHANGES ON 4H AND 6H SIC AT HIGH TEMPERATURE OXIDATION. The oxidation on two silicon carbide contain 6H phase and contains 6H and 4H phases has been done.  Silicon carbide is ceramic non-oxide with excellent properties that potentially used in industry.  Silicon carbide is used in nuclear industry as structure material that developed as light water reactor (LWR fuel cladding and as a coating layer in the high temperature gas-cooled reactor (HTGR fuel.  In this study silicon carbide oxidation simulation take place in case the accident in primary cooling pipe is ruptured.  Sample silicon carbide made of powder that pressed into pellet with diameter 12.7 mm and thickness 1.0 mm, then oxidized at temperature 1000 oC, 1200 oC dan 1400 oC for 1 hour.  The samples were weighted before and after oxidized.  X-ray diffraction con-ducted to the samples using Panalytical Empyrean diffractometer with Cu as X-ray source.  Diffraction pattern analysis has been done using General Structure Analysis System (GSAS software. This software was resulting the lattice parameter changes and content of SiC phases.  The result showed all of the oxidation samples undergoes weight gain.  The 6S samples showed the highest weight change at oxidation temperature 1200 oC, for the 46S samples showed increasing tendency with the oxidation temperature.  X-ray diffraction pattern analysis showed the 6S samples contain dominan phase 6H-SiC that matched to ICSD 98-001-5325 card.  Diffraction pattern on 6S showed lattice parameter, composition and crystallite size changes.  Lattice parameters changes had smaller tendency from the model and before oxidation.  However, the lowest silicon carbide composition or the highest converted into other phases up to 66.85 %, occurred at oxidation temperature 1200 oC.  The 46S samples contains two polytypes silicon car-bide.  The 6H-SiC phases matched by ICSD 98-016-4972 card and 4H-SiC phase matched by ICSD 98

  9. Finite temperature formalism for non-Abelian gauge theories in the physical phase space

    Science.gov (United States)

    Nachbagauer, Herbert

    1995-09-01

    We establish a new framework of finite temperature field theory for Yang-Mills theories in the physical phase space eliminating all unphysical degrees of freedom. Relating our method to the imaginary time formalism of James and Landshoff in the temporal axial gauge, we calculate the two-loop pressure and provide a systematic and unique method to construct the additional vertices encountered in their approach.

  10. Finite temperature formalism for nonabelian gauge theories in the physical phase space

    OpenAIRE

    Nachbagauer, Herbert

    1995-01-01

    We establish a new framework of finite temperature field theory for Yang-Mills theories in the physical phase space eliminating all unphysical degrees of freedoms. Relating our method to the imaginary time formalism of James and Landshoff in temporal axial gauge, we calculate the two-loop pressure and provide a systematic and unique method to construct the additional vertices encountered in their approach.

  11. Finite temperature formalism for non-Abelian gauge theories in the physical phase space

    Energy Technology Data Exchange (ETDEWEB)

    Nachbagauer, H. [Laboratoire de Physique Theorique ENSLAPP, Chemin de Bellevue, BP 110, F-74941 Annecy-le-Vieux Cedex (France)

    1995-09-15

    We establish a new framework of finite temperature field theory for Yang-Mills theories in the physical phase space eliminating all unphysical degrees of freedom. Relating our method to the imaginary time formalism of James and Landshoff in the temporal axial gauge, we calculate the two-loop pressure and provide a systematic and unique method to construct the additional vertices encountered in their approach.

  12. On γ and γ' phases composition in IN-100 superalloy after high-temperature exposure

    International Nuclear Information System (INIS)

    Matteazzi, P.; Principi, G.; Ramous, E.

    1981-01-01

    The chemistry and volume fraction of UPSILON' phase in IN-100 superalloy after high-temperature exposure in furnace and in service have been examined. Increasing the time of exposure aluminium plus titanium content remains nearly constant and very close to 25 at.%; the little decrease of nickel together with the increase of iron and molybdenum suggest that the last two elements are preferentially occupying Ni-type sites, according to the pair potential model of UPSILON'. (orig.)

  13. PVA assisted low temperature anatase to rutile phase transformation (ART) and properties of titania nanoparticles

    International Nuclear Information System (INIS)

    Mondal, Shrabani; Madhuri, Rashmi; Sharma, Prashant K.

    2015-01-01

    Anatase to rutile phase transformation (ART) of titania nanoparticles is observed at very low temperature (180 °C) just by introducing polyvinyl alcohol (PVA) during co-precipitation followed by hydrothermal synthesis. The detailed investigations pertaining to the structural, optical and electrochemical properties of the nanosized titania and titania/PVA nanohybrid has been carried out. The crystallite size and crystal structure is confirmed using X-ray diffraction (XRD). Transmission electron microscopic (TEM) image reveals formation of spherical NPs in both the cases. Identification of functional groups is done using Fourier transform infrared spectroscopy (FTIR). The photoluminescence studies showed that emission slightly shifts towards higher wavelength side with remarkable decrease in intensity for TiO 2 /PVA nanocomposite (rutile samples). The remarkable decrease in PL intensity in TiO 2 /PVA nanocomposite (rutile samples) is explained considering the surface passivation during growth process. Ion transportation is monitored via Cyclic voltammetric (CV) and Electrochemical Impedance Spectroscopy (EIS) measurements. A significant enhancement of peak cathodic current in case of nanocomposite modified electrode is observed. It is assumed that TiO 2 /PVA (rutile) nanoparticles provided the conducting path for the electrons and hence enhanced the electrochemical reaction. - Graphical abstract: Present work reports anatase to rutile phase transformation (ART) of titania nanoparticles at very low temperature (180 °C) just by introducing polyvinyl alcohol (PVA) during co-precipitation followed by hydrothermal synthesis. - Highlights: • Low temperature phase transformation of TiO 2 nanoparticles from anatase to rutile. • Role of PVA in phase transformation. • Synthesis of spherical shaped uniformly distributed PVA capped TiO 2 NPs. • Explained the charge transfer process among anatase to rutile phase transformation via luminescence studies. • Enhanced

  14. Relationship between mean body surface temperature measured by use of infrared thermography and ambient temperature in clinically normal pigs and pigs inoculated with Actinobacillus pleuropneumoniae.

    Science.gov (United States)

    Loughmiller, J A; Spire, M F; Dritz, S S; Fenwick, B W; Hosni, M H; Hogge, S B

    2001-05-01

    To determine the relationship between ambient temperature and mean body surface temperature (MBST) measured by use of infrared thermography (IRT) and to evaluate the ability of IRT to detect febrile responses in pigs following inoculation with Actinobacillus pleuropneumoniae. 28 crossbred barrows. Pigs (n = 4) were subjected to ambient temperatures ranging from 10 to 32 C in an environmental chamber. Infrared thermographs were obtained, and regression analysis was used to determine the relationship between ambient temperature and MBST. The remaining pigs were assigned to groups in an unbalanced randomized complete block design (6 A pleuropneumoniae-inoculated febrile pigs [increase in rectal temperature > or = 1.67 C], 6 A pleuropneumoniae-inoculated nonfebrile pigs [increase in rectal temperature temperatures were obtained for the period from 2 hours before to 18 hours after inoculation, and results were analyzed by use of repeated-measures ANOVA. A significant linear relationship was observed between ambient temperature and MBST (slope, 0.40 C). For inoculated febrile pigs, a treatment X method interaction was evident for rectal temperature and MBST, whereas inoculated nonfebrile pigs only had increased rectal temperatures, compared with noninoculated pigs. A method X time interaction resulted from the longer interval after inoculation until detection of an increase in MBST by use of IRT. Infrared thermography can be adjusted to account for ambient temperature and used to detect changes in MBST and radiant heat production attributable to a febrile response in pigs.

  15. Phase behavior of polystyrene-block-poly(n-alkyl methacrylate) copolymers investigated by SANS, SAXS, and temperature-dependent FTIR spectroscopy

    International Nuclear Information System (INIS)

    Ryu, Du Yeol; Lee, Dong Hyun; Kim, Hye Jeong; Kim, Jin Kon; Jung, Y. M.; Kim, S. B.

    2005-01-01

    The phase behavior of polystyrene-block -poly(n-alkyl methacrylate) (PS-PnAMA) copolymer were investigated by Small-Angle Neutron Scattering (SANS), Small-Angle X-ray Scattering (SAXS), and temperature-dependent Fourier Transform Infrared (FTIR) spectroscopy. Also, the effect of hydrostatic pressure on the transition temperatures was studied by using SANS with pressure controller. Phase behavior was changed significantly with the change of alkyl number (n). For n = 2∼4, only Lower Disordered-to-Order Tansition (LDOT) was observed, whereas the Ordered-to-Disorder (ODT) was found for n =1 and n =6. Finally, a closed-loop phase behavior was found for n =5. Using incompressible random phase approximation, the segmental interactions (χ) between PS and PnAMA for all n values were obtained. The standard expression of χ = a + b/T (where T is the absolute temperature) was valid only for n =1 and n =6. But, this relationship was not valid any more for n = 2∼4. For n =5, a more complex behavior of χ upon temperature was observed. We investigated, by using temperature-dependent FTIR, the mechanism why as closed loop phase behavior was observed for n =5. Interestingly, the conformation of C-C-O stretching band of the PnPMA chain (n=5) (and thus the directional enthapic gain) was different in the two disordered states, and, therefore, the driving force to induce the disordered state at lower temperatures was different from that at higher temperatures

  16. Global land carbon sink response to temperature and precipitation varies with ENSO phase

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yuanyuan; Michalak, Anna M.; Schwalm, Christopher R.; Huntzinger, Deborah N.; Berry, Joseph A.; Ciais, Philippe; Piao, Shilong; Poulter, Benjamin; Fisher, Joshua B.; Cook, Robert B.; Hayes, Daniel; Huang, Maoyi; Ito, Akihiko; Jain, Atul; Lei, Huimin; Lu, Chaoqun; Mao, Jiafu; Parazoo, Nicholas C.; Peng, Shushi; Ricciuto, Daniel M.; Shi, Xiaoying; Tao, Bo; Tian, Hanqin; Wang, Weile; Wei, Yaxing; Yang, Jia

    2017-05-01

    Climate variability associated with the El Niño-Southern Oscillation (ENSO) and its consequent impacts on land carbon sink interannual variability have been used as a basis for investigating carbon cycle responses to climate variability more broadly, and to inform the sensitivity of the tropical carbon budget to climate change. Past studies have presented opposing views about whether temperature or precipitation is the primary factor driving the response of the land carbon sink to ENSO. Here, we show that the dominant driver varies with ENSO phase. Whereas tropical temperature explains sink dynamics following El Niño conditions (rTG,P=0.59, p<0.01), the post La Niña sink is driven largely by tropical precipitation (rPG,T=-0.46, p=0.04). This finding points to an ENSO-phase-dependent interplay between water availability and temperature in controlling the carbon uptake response to climate variations in tropical ecosystems. We further find that none of a suite of ten contemporary terrestrial biosphere models captures these ENSO-phase-dependent responses, highlighting a key uncertainty in modeling climate impacts on the future of the global land carbon sink.

  17. High-Temperature Phase Change Materials (PCM) Candidates for Thermal Energy Storage (TES) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, J. C.

    2011-09-01

    It is clearly understood that lower overall costs are a key factor to make renewable energy technologies competitive with traditional energy sources. Energy storage technology is one path to increase the value and reduce the cost of all renewable energy supplies. Concentrating solar power (CSP) technologies have the ability to dispatch electrical output to match peak demand periods by employing thermal energy storage (TES). Energy storage technologies require efficient materials with high energy density. Latent heat TES systems using phase change material (PCM) are useful because of their ability to charge and discharge a large amount of heat from a small mass at constant temperature during a phase transformation like melting-solidification. PCM technology relies on the energy absorption/liberation of the latent heat during a physical transformation. The main objective of this report is to provide an assessment of molten salts and metallic alloys proposed as candidate PCMs for TES applications, particularly in solar parabolic trough electrical power plants at a temperature range from 300..deg..C to 500..deg.. C. The physical properties most relevant for PCMs service were reviewed from the candidate selection list. Some of the PCM candidates were characterized for: chemical stability with some container materials; phase change transformation temperatures; and latent heats.

  18. Crystal growth and electronic structure of low-temperature phase SrMgF4

    International Nuclear Information System (INIS)

    Atuchin, Victor V.; Goloshumova, Alina A.; Isaenko, Ludmila I.; Jiang, Xingxing; Lobanov, Sergey I.; Zhang, Zhaoming; Lin, Zheshuai

    2016-01-01

    Using the vertical Bridgman method, the single crystal of low temperature phase SrMgF 4 is obtained. The crystal is in a very good optical quality with the size of 10×7×5 mm 3 . Detailed photoemission spectra of the element core levels are determined by a monochromatic AlKa (1486.6 eV) X-ray source. Moreover, the first-principles calculations are performed to investigate the electronic structure of SrMgF 4 . A good agreement between experimental and calculated results is achieved. It is demonstrated that almost all the electronic orbitals are strongly localized and the hybridization with the others is very small, but the Mg–F bonds covalency is relatively stronger than that of Sr–F bonds. - Graphical abstract: Large size of low-temperature phase SrMgF 4 crystal was obtained (right) and its electronic structure was investigated by X-ray photoelectron spectroscopy and first-principles calculation (left). - Highlights: • Large size single crystal of low-temperature phase SrMgF 4 is obtained. • Electronic structure of SrMgF 4 is measured by X-ray photoelectron spectroscopy. • Partial densities of states are determined by first-principles calculation. • Good agreement between experimental and calculated results is achieved. • Strong ionic characteristics of chemical bonds are exhibited in SrMgF 4 .

  19. Dynamical relationship between wind speed magnitude and meridional temperature contrast: Application to an interannual oscillation in Venusian middle atmosphere GCM

    Science.gov (United States)

    Yamamoto, Masaru; Takahashi, Masaaki

    2018-03-01

    We derive simple dynamical relationships between wind speed magnitude and meridional temperature contrast. The relationship explains scatter plot distributions of time series of three variables (maximum zonal wind speed UMAX, meridional wind speed VMAX, and equator-pole temperature contrast dTMAX), which are obtained from a Venus general circulation model with equatorial Kelvin-wave forcing. Along with VMAX and dTMAX, UMAX likely increases with the phase velocity and amplitude of a forced wave. In the scatter diagram of UMAX versus dTMAX, points are plotted along a linear equation obtained from a thermal-wind relationship in the cloud layer. In the scatter diagram of VMAX versus UMAX, the apparent slope is somewhat steep in the high UMAX regime, compared with the low UMAX regime. The scatter plot distributions are qualitatively consistent with a quadratic equation obtained from a diagnostic equation of the stream function above the cloud top. The plotted points in the scatter diagrams form a linear cluster for weak wave forcing, whereas they form a small cluster for strong wave forcing. An interannual oscillation of the general circulation forming the linear cluster in the scatter diagram is apparent in the experiment of weak 5.5-day wave forcing. Although a pair of equatorial Kelvin and high-latitude Rossby waves with a same period (Kelvin-Rossby wave) produces equatorward heat and momentum fluxes in the region below 60 km, the equatorial wave does not contribute to the long-period oscillation. The interannual fluctuation of the high-latitude jet core leading to the time variation of UMAX is produced by growth and decay of a polar mixed Rossby-gravity wave with a 14-day period.

  20. TRANSITION AND DECOMPOSITION TEMPERATURES OF CEMENT PHASES - A COLLECTION OF THERMAL ANALYSIS DATA

    Directory of Open Access Journals (Sweden)

    Nick C. Collier

    2016-10-01

    Full Text Available Thermal analysis techniques provide the cement chemist with valuable tools to qualify and quantify the products formed during the hydration of cementitious materials. These techniques are commonly used alongside complimentary techniques such as X-ray diffraction and electron microscopy/energy dispersive spectroscopy to confirm the composition of phases present and identify amorphous material unidentified by other techniques. The most common thermal analysis techniques used by cement chemists are thermogravimetry, differential thermal analysis and differential scanning calorimetry. In order to provide a useful reference tool to the cement chemist, this paper provides a brief summary of the temperatures at which phase changes occur in the most common cement hydrates in the range 0-800°C in order to aid phase identification.

  1. Evaluating the Coda Phase Delay Method for Determining Temperature Ratios in Windy Environments

    Energy Technology Data Exchange (ETDEWEB)

    Albert, Sarah [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bowman, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodgers, Arthur [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Seastrand, Douglas [National Security Technologies, LLC. (NSTec), Las Vegas, NV (United States)

    2017-07-01

    We evaluate the acoustic coda phase delay method for estimating changes in atmospheric phenomena in realistic environments. Previous studies verifying the method took place in an environment with negligible wind. The equation for effective sound speed, which the method is based upon, shows that the influence of wind is equal to the square of temperature. Under normal conditions, wind is significant and therefore cannot be ignored. Results from this study con rm the previous statement. The acoustic coda phase delay method breaks down in non-ideal environments, namely those where wind speed and direction varies across small distances. We suggest that future studies make use of gradiometry to better understand the effect of wind on the acoustic coda and subsequent phase delays.

  2. Temperature feedback control for long-term carrier-envelope phase locking

    Science.gov (United States)

    Chang, Zenghu [Manhattan, KS; Yun, Chenxia [Manhattan, KS; Chen, Shouyuan [Manhattan, KS; Wang, He [Manhattan, KS; Chini, Michael [Manhattan, KS

    2012-07-24

    A feedback control module for stabilizing a carrier-envelope phase of an output of a laser oscillator system comprises a first photodetector, a second photodetector, a phase stabilizer, an optical modulator, and a thermal control element. The first photodetector may generate a first feedback signal corresponding to a first portion of a laser beam from an oscillator. The second photodetector may generate a second feedback signal corresponding to a second portion of the laser beam filtered by a low-pass filter. The phase stabilizer may divide the frequency of the first feedback signal by a factor and generate an error signal corresponding to the difference between the frequency-divided first feedback signal and the second feedback signal. The optical modulator may modulate the laser beam within the oscillator corresponding to the error signal. The thermal control unit may change the temperature of the oscillator corresponding to a signal operable to control the optical modulator.

  3. The relationship between radiant heat, air temperature and thermal comfort at rest and exercise.

    Science.gov (United States)

    Guéritée, Julien; Tipton, Michael J

    2015-02-01

    The aims of the present work were to investigate the relationships between radiant heat load, air velocity and body temperatures with or without coincidental exercise to determine the physiological mechanisms that drive thermal comfort and thermoregulatory behaviour. Seven male volunteers wearing swimming trunks in 18°C, 22°C or 26°C air were exposed to increasing air velocities up to 3 m s(-1) and self-adjusted the intensity of the direct radiant heat received on the front of the body to just maintain overall thermal comfort, at rest or when cycling (60 W, 60 rpm). During the 30 min of the experiments, skin and rectal temperatures were continuously recorded. We hypothesized that mean body temperature should be maintained stable and the intensity of the radiant heat and the mean skin temperatures would be lower when cycling. In all conditions, mean body temperature was lower when facing winds of 3 m s(-1) than during the first 5 min, without wind. When facing winds, in all but the 26°C air, the radiant heat was statistically higher at rest than when exercising. In 26°C air mean skin temperature was lower at rest than when exercising. No other significant difference was observed. In all air temperatures, high correlation coefficients were observed between the air velocity and the radiant heat load. Other factors that we did not measure may have contributed to the constant overall thermal comfort status despite dropping mean skin and body temperatures. It is suggested that the allowance to behaviourally adjust the thermal environment increases the tolerance of cold discomfort. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Phase relationship in AL-Cu-Sc alloys at 450-500 deg C

    International Nuclear Information System (INIS)

    Kharakterova, M.L.

    1991-01-01

    Al-Cu-Sc alloys containing up to 40% Cu and up to 6% Sc at 450 deg C and 500 deg C are studied using light microscopy, X-ray-spectral microanalysis, X-ray diffraction analysis, scanning electron microscopy, measurement of microhardness and electric resistance. It is determined, that in equilibrium with aluminium solid solution under the given temperature ther are Al 3 Sc, CuAl 2 phases of the respective binary systems and W (ScCu 6.6-4 Al 5.4-8 ) ternary phase. Isothermal cross sections of Al-Cu-Sc system at 450 and 500 deg C are plotted. Microhardness of equilibrium phases is measured. Combined solubility of copper and scandium in aluminium is determined

  5. Biaxial creep deformation of Zircaloy-4 PWR fuel cladding in the alpha,(alpha + beta) and beta phase temperature ranges

    International Nuclear Information System (INIS)

    Donaldson, A.T.; Healey, T.; Horwood, R.A.L.

    1985-01-01

    The biaxial creep behaviour of Zircaloy-4 fuel cladding has been determined at temperatures between 973 - 1073 K in the alpha phase range, in the duplex (alpha + beta) region between 1098 - 1223 K and in the beta phase range between 1323 - 1473 K. This paper presents the creep data together with empirical equations which describe the creep deformation response within each phase region. (author)

  6. High Growth Rate Hydride Vapor Phase Epitaxy at Low Temperature through Use of Uncracked Hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, Kevin L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Simon, John D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ptak, Aaron J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Braun, Anna [Rose-Hulman Institute of Technology

    2018-01-22

    We demonstrate hydride vapor phase epitaxy (HVPE) of GaAs with unusually high growth rates (RG) at low temperature and atmospheric pressure by employing a hydride-enhanced growth mechanism. Under traditional HVPE growth conditions that involve growth from Asx species, RG exhibits a strong temperature dependence due to slow kinetics at the surface, and growth temperatures >750 degrees C are required to obtain RG > 60 um/h. We demonstrate that when the group V element reaches the surface in a hydride, the kinetic barrier is dramatically reduced and surface kinetics no longer limit RG. In this regime, RG is dependent on mass transport of uncracked AsH3 to the surface. By controlling the AsH3 velocity and temperature profile of the reactor, which both affect the degree of AsH3 decomposition, we demonstrate tuning of RG. We achieve RG above 60 um/h at temperatures as low as 560 degrees C and up to 110 um/h at 650 degrees C. We incorporate high-RG GaAs into solar cell devices to verify that the electronic quality does not deteriorate as RG is increased. The open circuit voltage (VOC), which is a strong function of non-radiative recombination in the bulk material, exhibits negligible variance in a series of devices grown at 650 degrees C with RG = 55-110 um/h. The implications of low temperature growth for the formation of complex heterostructure devices by HVPE are discussed.

  7. Root zone temperature control with thermal energy storage in phase change materials for soilless greenhouse applications

    International Nuclear Information System (INIS)

    Beyhan, Beyza; Paksoy, Halime; Daşgan, Yıldız

    2013-01-01

    Highlights: • PCM based passive root zone temperature control system was developed. • The system was tested with zucchinis and peppers in a greenhouse in Turkey. • Two different fatty acids and mixtures were determined as suitable PCMs. • The optimum temperature levels necessary for growth of vegetables were maintained. - Abstract: A new root zone temperature control system based on thermal energy storage in phase change materials (PCM) has been developed for soilless agriculture greenhouses. The aim was to obtain optimum growing temperatures around the roots of plants. The candidate PCMs were 40% oleic acid–60% decanoic acid mixture and oleic acid alone. Field experiments with these PCMs were carried out in November 2009 with Cucurbite Pepo and March 2010 with Capsicum annum plants. No additional heating system was used in the greenhouse during these periods. In the November 2009 tests with zucchini, 40% oleic acid + 60% capric acid mixture was the PCM and a temperature increase in the PCM container (versus the control container) was measured as 1.9 °C. In our March 2010 tests with peppers, both PCMs were tried and the PCM mixture was found to be more effective than using oleic acidalone. A maximum temperature difference achieved by the PCM mixture around the roots of peppers was 2.4 °C higher than that near the control plants

  8. Temperature dependence of the hyperfine interaction in the cubic phase of BaHfO3

    International Nuclear Information System (INIS)

    Lopez Garcia, A.R.; de la Presa, P.; Rodriguez, A.M.

    1991-01-01

    The temperature dependence of the hyperfine interaction in the paraelectric phase of BaHfO 3 in the temperature range from liquid-nitrogen temperature to 1350 K has been studied. The experimental results show an Abragam-Pound mechanism for the attenuation of the angular correlation. In this cubic structure the attenuation would be consistent with a relaxation mechanism that involves O-ion hopping between vacant sites in the lattice. Using the point-charge model for the estimation of the electric field gradient produced by an O vacancy in the coordination sphere of the probe ion, the process is characterized by a correlation time τ c =12±1 ps at RT

  9. Low temperature nucleation of Griffiths Phase in Co doped LaMnO3 nanostructures

    Science.gov (United States)

    Adeela, N.; Khan, U.; Naz, S.; Iqbal, M.; Irfan, M.; Cheng, Y.

    2017-11-01

    We have reported magnetic properties of La1-xCoxMnO3 nanostructures synthesized by hydrothermal route. The crystal structure has been characterized by X-ray diffraction (XRD) technique, which shows rhombohedral perovskite structure at room temperature. Scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS) have been used to analyse morphology and chemical composition of prepared nanoparticles. Magnetic hysteresis loops of all the samples exhibit ferromagnetic behaviour at 10 K. Inverse susceptibility graphs as a function of temperature represent deviation from Curie Weiss law. The indication for short range ferromagnetic clusters well above Curie temperature is observed due to the Griffiths Phase (GP). It is proposed that the presence of GP arises from induced size effects of La and Co ions.

  10. Toward a reaction rate model of condensed-phase RDX decomposition under high temperatures

    Science.gov (United States)

    Schweigert, Igor

    2015-06-01

    Shock ignition of energetic molecular solids is driven by microstructural heterogeneities, at which even moderate stresses can result in sufficiently high temperatures to initiate material decomposition and chemical energy release. Mesoscale modeling of these ``hot spots'' requires a reaction rate model that describes the energy release with a sub-microsecond resolution and under a wide range of temperatures. No such model is available even for well-studied energetic materials such as RDX. In this presentation, I will describe an ongoing effort to develop a reaction rate model of condensed-phase RDX decomposition under high temperatures using first-principles molecular dynamics, transition-state theory, and reaction network analysis. This work was supported by the Naval Research Laboratory, by the Office of Naval Research, and by the DoD High Performance Computing Modernization Program Software Application Institute for Multiscale Reactive Modeling of Insensitive Munitions.

  11. Relationship between transepidermal water loss and temperature of the measuring probe.

    Science.gov (United States)

    Thoma, S; Welzel, J; Wilhelm, K P

    1997-02-01

    Transepidermal water loss (TEWL) is an important parameter for the determination of skin barrier function. The open chamber method has been established as the technique of choice in most dermatological laboratories for measurements of TEWL. However, the influence of the probe temperature on TEWL measurements has been the subject of recent controversial debates. In this study the relationship between TEWL measured with the Tewameter and temperature of the measuring probe was therefore investigated by comparing two different measuring techniques. For one measurement, the probe was kept at room temperature (20°C) and for the other one, the probe was preheated to the actual temperature of the measuring object before obtaining the values. Measurements were performed on evaporative standards (EvSs) and healthy individuals. For the EvSs, semipermeable membranes were pulled over a petri dish filled with water, which could be heated. TEWL values were found to depend on the temperature of the probe. TEWL values were higher when measured with the preheated probe. However, long-term measurements revealed that TEWL values measured with the unheated probe reached those higher TEWL values after approximately 8 min measuring time. The final TEWL value was reached after shorter intervals for the preheated probe compared to the unheated probe (2.5 min vs. 4 min) for some measurements. However, preheating of the probe resulted in greater variability of the measurement values. Therefore, measurements with a preheated Tewameter probe is not be recommended.

  12. Temperature-dependent Raman and ultraviolet photoelectron spectroscopy studies on phase transition behavior of VO{sub 2} films with M1 and M2 phases

    Energy Technology Data Exchange (ETDEWEB)

    Okimura, Kunio, E-mail: okifn@keyaki.cc.u-tokai.ac.jp; Hanis Azhan, Nurul [Graduate School of Engineering, Tokai University, Hiratsuka 259-1292 (Japan); Hajiri, Tetsuya [UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Kimura, Shin-ichi [UVSOR Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871 (Japan); Zaghrioui, Mustapha; Sakai, Joe [GREMAN, UMR 7347 CNRS, Université François Rabelais de Tours, Parc de Grandmont, 37200 Tours (France)

    2014-04-21

    Structural and electronic phase transitions behavior of two polycrystalline VO{sub 2} films, one with pure M1 phase and the other with pure M2 phase at room temperature, were investigated by temperature-controlled Raman spectroscopy and ultraviolet photoelectron spectroscopy (UPS). We observed characteristic transient dynamics in which the Raman modes at 195 cm{sup −1} (V-V vibration) and 616 cm{sup −1} (V-O vibration) showed remarkable hardening along the temperature in M1 phase film, indicating the rearrangements of V-V pairs and VO{sub 6} octahedra. It was also shown that the M1 Raman mode frequency approached those of invariant M2 peaks before entering rutile phase. In UPS spectra with high energy resolution of 0.03 eV for the M2 phase film, narrower V{sub 3d} band was observed together with smaller gap compared to those of M1 phase film, supporting the nature of Mott insulator of M2 phase even in the polycrystalline film. Cooperative behavior of lattice rearrangements and electronic phase transition was suggested for M1 phase film.

  13. Relationships between lower-limb kinematics and block phase performance in a cross section of sprinters.

    Science.gov (United States)

    Bezodis, Neil Edward; Salo, Aki Ilkka Tapio; Trewartha, Grant

    2015-01-01

    This study investigated lower-limb kinematics to explain the techniques used to achieve high levels of sprint start performance. A cross-sectional design was used to examine relationships between specific technique variables and horizontal external power production during the block phase. Video data were collected (200 Hz) at the training sessions of 16 sprinters who ranged in 100 m personal best times from 9.98 to 11.6 s. Each sprinter performed three 30 m sprints and reliable (all intraclass correlation coefficients, ICC(2,3) ≥ 0.89) lower-limb kinematic data were obtained through manual digitising. The front leg joints extended in a proximal-to-distal pattern for 15 sprinters, and a moderate positive relationship existed between peak front hip angular velocity and block power (r = 0.49, 90% confidence limits = 0.08-0.76). In the rear leg, there was a high positive relationship between relative push duration and block power (r = 0.53, 90% confidence limits = 0.13-0.78). The rear hip appeared to be important; rear hip angle at block exit was highly related to block power (r = 0.60, 90% confidence limits = 0.23-0.82), and there were moderate positive relationships with block power for its range of motion and peak angular velocity (both r = 0.49, 90% confidence limits = 0.08-0.76). As increased block power production was not associated with any negative aspects of technique in the subsequent stance phase, sprinters should be encouraged to maximise extension at both hips during the block phase.

  14. Functional relationship of room temperature and setting time of alginate impression material

    Directory of Open Access Journals (Sweden)

    Dyah Irnawati

    2009-09-01

    Full Text Available Background: Indonesia is a tropical country with temperature variation. A lot of dental clinics do not use air conditioner. The room temperature influences water temperature for mixing alginate impression materials. Purpose: The aim of this study was to investigate the functional relationship of room temperature and initial setting time of alginate impression materials. Methods: The New Kromopan® alginate (normal and fast sets were used. The initial setting time were tested at 23 (control, 24, 25, 26, 27, 28, 29, 30 and 31 degrees Celcius room temperatures (n = 5. The initial setting time was tested based on ANSI/ADA Specification no. 18 (ISO 1563. The alginate powder was mixed with distilled water (23/50 ratio, put in the metal ring mould, and the initial setting time was measured by test rod. Data were statistically analyzed by linear regression (α = 0.05. result: The initial setting times were 149.60 ± 0.55 (control and 96.40 ± 0.89 (31° C seconds for normal set, and 122.00 ± 1.00 (control and 69.60 ± 0.55 (31° C seconds for fast set. The coefficient of determination of room temperature to initial setting time of alginate were R2 = 0.74 (normal set and R2 = 0.88 (fast set. The regression equation for normal set was Y = 257.6 – 5.5 X (p < 0.01 and fast set was Y = 237.7 – 5.6 X (p < 0.01. Conclusions: The room temperature gave high contribution and became a strength predictor for initial setting time of alginates. The share contribution to the setting time was 0.74% for normal set and 0.88% for fast set alginates.

  15. Temperature distributions in trapezoidal built in storage solar water heaters with/without phase change materials

    International Nuclear Information System (INIS)

    Tarhan, Sefa; Sari, Ahmet; Yardim, M. Hakan

    2006-01-01

    Built in storage solar water heaters (BSSWHs) have been recognized for their more compact constructions and faster solar gain than conventional solar water heaters, however, their water temperatures quickly go down during the cooling period. A trapezoidal BSSWH without PCM storage unit was used as the control heater (reference) to investigate the effect of two differently configured PCM storage units on the temperature distributions in water tanks. In the first design, myristic acid was filled into the PCM storage tank, which also served as an absorbing plate. In the second design, lauric acid was filled into the PCM storage tank, which also served as a baffle plate. The water temperature changes were followed by five thermocouples placed evenly and longitudinally into each of the three BSSWHs. The effects of the PCMs on the water temperature distributions depended on the configuration of the PCM storage unit and the longitudinal position in the water tanks. The use of lauric acid lowered the values of the peak temperatures by 15% compared to the control heater at the upper portion of the water tanks because of the low melting temperature of lauric acid, but it did not have any consistent effect on the retention of the water temperatures during the cooling period. The ability of the myristic acid storage unit to retain the water temperatures got more remarkable, especially at the middle portion of the water tank. The myristic acid storage increased the dip temperatures by approximately 8.8% compared to the control heater. In conclusion, lauric acid storage can be used to stabilize the water temperature during the day time, while the myristic acid storage unit can be used as a thermal barrier against heat loss during the night time because of its relatively high melting temperature and low heat conduction coefficient in its solid phase. The experimental results have also indicated that the thermal characteristics of the PCM and the configuration of the PCM storage

  16. Temperature distributions in trapezoidal built in storage solar water heaters with/without phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Tarhan, Sefa; Yardim, M. Hakan [Department of Farm Machinery, Faculty of Agriculture, Gaziosmanpasa University, Tasliciftlik Yerleskesi, 60240 Tokat (Turkey); Sari, Ahmet [Department of Chemistry, Faculty of Arts and Sciences, Gaziosmanpasa University, Tasliciftlik Yerleskesi, 60240 Tokat (Turkey)

    2006-09-15

    Built in storage solar water heaters (BSSWHs) have been recognized for their more compact constructions and faster solar gain than conventional solar water heaters, however, their water temperatures quickly go down during the cooling period. A trapezoidal BSSWH without PCM storage unit was used as the control heater (reference) to investigate the effect of two differently configured PCM storage units on the temperature distributions in water tanks. In the first design, myristic acid was filled into the PCM storage tank, which also served as an absorbing plate. In the second design, lauric acid was filled into the PCM storage tank, which also served as a baffle plate. The water temperature changes were followed by five thermocouples placed evenly and longitudinally into each of the three BSSWHs. The effects of the PCMs on the water temperature distributions depended on the configuration of the PCM storage unit and the longitudinal position in the water tanks. The use of lauric acid lowered the values of the peak temperatures by 15% compared to the control heater at the upper portion of the water tanks because of the low melting temperature of lauric acid, but it did not have any consistent effect on the retention of the water temperatures during the cooling period. The ability of the myristic acid storage unit to retain the water temperatures got more remarkable, especially at the middle portion of the water tank. The myristic acid storage increased the dip temperatures by approximately 8.8% compared to the control heater. In conclusion, lauric acid storage can be used to stabilize the water temperature during the day time, while the myristic acid storage unit can be used as a thermal barrier against heat loss during the night time because of its relatively high melting temperature and low heat conduction coefficient in its solid phase. The experimental results have also indicated that the thermal characteristics of the PCM and the configuration of the PCM storage

  17. Tendencies of extreme values on rainfall and temperature and its relationship with teleconnection patterns

    Science.gov (United States)

    Taboada, J. J.; Cabrejo, A.; Guarin, D.; Ramos, A. M.

    2009-04-01

    It is now very well established that yearly averaged temperatures are increasing due to anthropogenic climate change. In the area of Galicia (NW Spain) this trend has also been determined. Rainfall does not show a clear tendency in its yearly accumulated values. The aim of this work is to study different extreme indices of rainfall and temperatures analysing variability and possible trends associated to climate change. Station data for the study was provided by the CLIMA database of the regional government of Galicia (NW Spain). The definition of the extreme indices was taken from the joint CCl/CLIVAR/JCOMM Expert Team (ET) on Climate Change Detection and Indices (ETCCDI) This group has defined a set of standard extreme values to simplify intercomparison of data from different regions of the world. For the temperatures in the period 1960-2006, results show a significant increase of the number of days with maximum temperatures above the 90th percentile. Furthermore, a significant decrease of the days with maximum temperatures below the 10th percentile has been found. The tendencies of minimum temperatures are reverse: fewer nights with minimum temperatures below 10th percentile, and more with minimum temperatures above 90th percentile. Those tendencies can be observed all over the year, but are more pronounced in summer. This trend is expected to continue in the next decades because of anthropogenic climate change. We have also calculated the relationship between the above mentioned extreme values and different teleconnection patterns appearing in the North Atlantic area. Results show that local tendencies are associated with trends of EA (Eastern Atlantic) and SCA (Scandinavian) patterns. NAO (North Atlantic Oscillation) has also some relationship with these tendencies, but only related with cold days and nights in winter. Rainfall index do not show any clear tendency on the annual scale. Nevertheless, the count of days when precipitation is greater than 20mm (R20

  18. Development and evaluation of a workpiece temperature analyzer (WPTA) for industrial furances (Phase 1)

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This project is directed toward the research, development, and evaluation of a viable commercial product-a workpiece temperature measurement analyzer (WPTA) for fired furnaces based on unique radiation properties of surfaces. This WPTA will provide for more uniform, higher quality products and reduce product rejects as well as permit the optimum use of energy. The WPTA may also be utilized in control system applications including metal heat treating, forging furnaces, and ceramic firing furnaces. A large market also exists in the chemical process and refining industry. WPTA applications include the verification of product temperature/time cycles, and use as a front-end sensor for automatic feedback control systems. This report summarizes the work performed in Phase 1 of this three-phase project. The work Phase 1 included the application evaluation; the evaluation of present technologies and limitations; and the development of a preliminary conceptual WPTA design, including identification of technical and economic benefits. Recommendations based on the findings of this report include near-term enhancement of the capabilities of the Pyrolaser, and long-term development of an instrument based on Raman Spectroscopy. Development of the Pyrofiber, fiberoptics version of the Pyrolaser, will be a key to solving present problems involving specularity, measurement angle, and costs of multipoint measurement. Extending the instrument's measurement range to include temperatures below 600{degrees}C will make the product useful for a wider range of applications. The development of Raman Spectroscopy would result in an instrument that could easily be adapted to incorporate a wealth of additional nondestructive analytical capabilities, including stress/stain indication, crystallography, species concentrations, corrosion studies, and catalysis studies, in addition to temperature measurement. 9 refs., 20 figs., 16 tabs.

  19. Within-Class and Neighborhood Effects on the Relationship between Composite Urban Classes and Surface Temperature

    Directory of Open Access Journals (Sweden)

    Peleg Kremer

    2018-02-01

    Full Text Available Understanding the relationship between urban structure and ecological function—or environmental performance—is important for the planning of sustainable cities, and requires examination of how components in urban systems are organized. In this paper, we develop a Structure of Urban Landscape (STURLA classification, identifying common compositions of urban components using Berlin, Germany as a case study. We compute the surface temperature corresponding to each classification grid cell, and perform within-cell and neighborhood analysis for the most common composite classes in Berlin. We found that with-class composition and neighborhood composition as well as the interaction between them drive surface temperature. Our findings suggest that the spatial organization of urban components is important in determining the surface temperature and that specific combinations, such as low-rise buildings surrounded by neighborhood trees, or mid-rise buildings surrounded by high-rise buildings, compound to create a cooling effect. These findings are important for developing an understanding of how urban planning can harness structure-function relationships and improve urban sustainability.

  20. Dynamic phase transition in the kinetic spin-32 Blume-Capel model: Phase diagrams in the temperature and crystal-field interaction plane

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Canko, Osman; Deviren, Bayram

    2007-01-01

    We analyze, within a mean-field approach, the stationary states of the kinetic spin-32 Blume-Capel (BC) model by the Glauber-type stochastic dynamics and subject to a time-dependent oscillating external magnetic field. The dynamic phase transition (DPT) points are obtained by investigating the behavior of the dynamic magnetization as a function of temperature and as well as calculating the Liapunov exponent. Phase diagrams are constructed in the temperature and crystal-field interaction plane. We find five fundamental types of phase diagrams for the different values of the reduced magnetic field amplitude parameter (h) in which they present a disordered, two ordered phases and the coexistences phase regions. The phase diagrams also exhibit a dynamic double-critical end point for 0 5.06

  1. Dynamic phase transition in the kinetic spin-32 Blume-Capel model: Phase diagrams in the temperature and crystal-field interaction plane

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)]. E-mail: keskin@erciyes.edu.tr; Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Deviren, Bayram [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2007-06-15

    We analyze, within a mean-field approach, the stationary states of the kinetic spin-32 Blume-Capel (BC) model by the Glauber-type stochastic dynamics and subject to a time-dependent oscillating external magnetic field. The dynamic phase transition (DPT) points are obtained by investigating the behavior of the dynamic magnetization as a function of temperature and as well as calculating the Liapunov exponent. Phase diagrams are constructed in the temperature and crystal-field interaction plane. We find five fundamental types of phase diagrams for the different values of the reduced magnetic field amplitude parameter (h) in which they present a disordered, two ordered phases and the coexistences phase regions. The phase diagrams also exhibit a dynamic double-critical end point for 05.06.

  2. Possible mechanism for the room-temperature stabilization of the Ge(111) T > 300 deg.C phase by Ga

    DEFF Research Database (Denmark)

    Böhringer, M.; Molinás-Mata, P.; Zegenhagen, J.

    1995-01-01

    At low coverages, Ga on Ge(111) induces a hexagonal, domain wall modulated (2 x 2) adatom phase, stable at room temperature, that is characterized in low energy electron diffraction (LEED) by split 1/2-order reflections. This pattern closely resembles the one observed for a phase of clean Ge(111......) appearing at temperatures above 300 degrees C (T > 300 degrees C phase). We report scanning tunneling microscopy, LEED, as well. as surface x-ray diffraction measurements on the Ga-induced room-temperature (RT) phase and compare it with a model for the T > 300 OC phase of clean Ge(111). RT deposition of Ga...... yields a metastable c(2 x 8) structure which upon annealing transforms to the hexagonal (2 x 2) one. The transition occurs at considerably lower temperatures compared to clean Ge(111) and is irreversible due to pinning of adatom domains at Ga-induced defects, preventing the reordering of the adatoms...

  3. Migration of liquid phase from the primary/peritectic interface in a temperature gradient

    Science.gov (United States)

    Peng, Peng; Li, XinZhong; Su, YanQing; Guo, JingJie

    2016-07-01

    The migration of the liquid droplets from the primary α/peritectic β interface at the peritectic temperature TP has been observed and analyzed in a Sn-Ni peritectic alloy. During the isothermal annealing stage of the interrupted directional solidification, a concentration gradient is established across the liquid droplets along the direction of the temperature gradient due to the temperature gradient zone melting. Simultaneous remelting/resolidification at the top/bottom of the liquid droplets by this concentration gradient have been confirmed to lead to migration of these droplets towards higher temperatures. The dependence of the migration distance of the liquid droplets on isothermal annealing time has been well predicted. Furthermore, since the lengths of the liquid droplet are not uniform along the direction of the temperature gradient, the remelting/resolidification rates which are dependent on the local morphology of liquid droplet are different at different local positions of the liquid droplets. It has been demonstrated that the morphology of the liquid droplet was also influenced by the morphologies of the liquid phase themselves. Therefore, the morphology of the liquid droplet itself changes from spherical to some kinds of irregular shapes during its migration.

  4. Lauric and myristic acids eutectic mixture as phase change material for low-temperature heating applications

    Energy Technology Data Exchange (ETDEWEB)

    Keles, Sadat; Kaygusuz, Kamil [Karadeniz Technical Univ., Dept. of Chemistry, Trabzon (Turkey); Sari, Ahmet [Gaziosmanpasa Univ., Dept. of Chemistry, Tokat (Turkey)

    2005-07-01

    Lauric acid (m.p.: 42.6 deg C) and myristic acid (m.p.: 52.2 deg C) are phase change materials (PCM) having quite high melting points which can limit their use in low-temperature solar applications such as solar space heating and greenhouse heating. However, their melting temperatures can be tailored to appropriate value by preparing a eutectic mixture of lauric acid (LA) and myristic acid (MA). In the present study, the thermal analysis based on differential scanning calorimetry (DSC) technique shows that the mixture of 66.0 wt% LA forms a eutectic mixture having melting temperature of 34.2 deg C and the latent heat of fusion of 166.8 J g{sup -1} . This study also considers the experimental establishment of thermal characteristics of the eutectic PCM in a vertical concentric pipe-in-pipe heat storage system. Thermal performance of the PCM was evaluated with respect to the effect of inlet temperature and mass flow rate of the heat transfer fluid on those characteristics during the heat charging and discharging processes. The DSC thermal analysis and the experimental results indicate that the LA-MA eutectic PCM can be potential material for low-temperature solar energy storage applications in terms of its thermo-physical and thermal characteristics. (Author)

  5. Charge transport mechanism and low temperature phase transitions in KIO3

    Science.gov (United States)

    Abdel Kader, M. M.; El-Kabbany, F.; Naguib, H. M.; Gamal, W. M.

    2013-04-01

    Our report deals with the measurement of some electrical properties, namely the ac conductivity σ(ω,T) and the complex dielectric permittivity epsilon*(ω, T) in the temperature interval 95K < T < 280K and at some selected frequencies (0.7kHz - 20kHz) for polycrystalline samples of potassium iodate KIO3 using a computerized RLC meter. The improper character of the ferroelectricity over the mentioned temperature range has been achieved by recording the ferroelectric hysteresis loops. The temperature dependence of each electrical parameter reveals that the compound undergoes two phase transitions at T ≈ 258K and at T ≈ 110K. The frequency dependent conductivity seems to be in accordance with the power law σ(ω,T)αωs(T) and the trend of temperature dependence of the frequency exponent s (0 < s < 1) suggests that the quantum mechanical tunneling (QMT) model is the main mechanism of the charge transport. Comparison with the behavior of the NH4IO3 in the same temperature range was outlined.

  6. Extended phase diagram of R NiC2 family: Linear scaling of the Peierls temperature

    Science.gov (United States)

    Roman, Marta; Strychalska-Nowak, Judyta; Klimczuk, Tomasz; Kolincio, Kamil K.

    2018-01-01

    Physical properties for the late-lanthanide-based R NiC2 (R =Dy , Ho, Er, and Tm) ternary compounds are reported. All the compounds show antiferromagnetic ground state with the Néel temperature ranging from 3.4 K for HoNiC2 to 8.5 K for ErNiC2. The results of the transport and galvanomagnetic properties confirm a charge density wave state at and above room temperature with transition temperatures TCDW=284 , 335, 366, and 394 K for DyNiC2, HoNiC2, ErNiC2, and TmNiC2, respectively. The Peierls temperature TCDW scales linearly with the unit cell volume. A similar linear dependence has been observed for the temperature of the lock-in transition T1 as well. Beyond the intersection point of the trend lines, the lock-in transition is no longer observed. In this Rapid Communication we demonstrate an extended phase diagram for the R NiC2 family.

  7. Relationship between Lower Limb Angular Kinematic Variables and the Effectiveness of Sprinting during the Acceleration Phase

    Directory of Open Access Journals (Sweden)

    Artur Struzik

    2016-01-01

    Full Text Available The ability to reach a high running velocity over a short distance is essential to a high playing performance in team games. The aim of this study was to determine the relationship between running time over a 10-meter section of a 30-meter sprint along a straight line and changes in the angle and angular velocity that were observed in the ankle, knee, and hip joints. The possible presence may help to optimize motion efficiency during acceleration sprint phase. Eighteen girls involved in team sports were examined in the study. The Fusion Smart Speed System was employed for running time measurements. The kinematic data were recorded using the Noraxon MyoMotion system. Statistically significant relationships were found between running time over a 10-meter section and the kinematic variables of hip and ankle joints. An excessively large flexion in hip joints might have an unfavorable effect on running time during the acceleration phase. Furthermore, in order to minimize running time during the acceleration phase, stride should be maintained along a line (a straight line rather than from side to side. It is also necessary to ensure an adequate range of motion in the hip and ankle joints with respect to the sagittal axis.

  8. Relationship between Lower Limb Angular Kinematic Variables and the Effectiveness of Sprinting during the Acceleration Phase.

    Science.gov (United States)

    Struzik, Artur; Konieczny, Grzegorz; Stawarz, Mateusz; Grzesik, Kamila; Winiarski, Sławomir; Rokita, Andrzej

    2016-01-01

    The ability to reach a high running velocity over a short distance is essential to a high playing performance in team games. The aim of this study was to determine the relationship between running time over a 10-meter section of a 30-meter sprint along a straight line and changes in the angle and angular velocity that were observed in the ankle, knee, and hip joints. The possible presence may help to optimize motion efficiency during acceleration sprint phase. Eighteen girls involved in team sports were examined in the study. The Fusion Smart Speed System was employed for running time measurements. The kinematic data were recorded using the Noraxon MyoMotion system. Statistically significant relationships were found between running time over a 10-meter section and the kinematic variables of hip and ankle joints. An excessively large flexion in hip joints might have an unfavorable effect on running time during the acceleration phase. Furthermore, in order to minimize running time during the acceleration phase, stride should be maintained along a line (a straight line) rather than from side to side. It is also necessary to ensure an adequate range of motion in the hip and ankle joints with respect to the sagittal axis.

  9. Relationships between individual behaviour and morphometry under different experimental conditions of temperature and feeding in glass eels (Anguilla anguilla

    Directory of Open Access Journals (Sweden)

    A. Bardonnet

    2008-01-01

    Full Text Available After Anguilla anguilla larvae reach the European coast, metamorphosing glass eels exhibit an estuarine migration phase and can potentially colonize the continental area. Associated behaviours to upstream movement in estuary and river basin differ strongly: passive tidal transport in estuary, active swimming beyond the upstream tidal limit. Moreover, the migratory behaviour may shift towards a density-dependent dispersal beyond this limit. A positive relationship has previously been established between glass eels’ body condition and migratory behaviour in estuary and also higher in the river basin. An experiment was settled to test for the density-dependent versus migratory behaviour under controlled conditions. The relationships between some behaviours (swimming, grouping, feeding, and aggressiveness and body condition was investigated at the individual level. Two controlled factors were crossed, leading to four combinations of high and low levels of food and temperature. The high level of food led to a lesser loss in body condition. Swimming activity was positively related to initial body condition and loss in body condition, but these two variables were not related to aggressiveness. We conclude that the density-dependent dispersal hypothesis was not reinforced by these present results.

  10. Relationships between individual behaviour and morphometry under different experimental conditions of temperature and feeding in glass eels (Anguilla anguilla

    Directory of Open Access Journals (Sweden)

    Bardonnet A.

    2009-02-01

    Full Text Available After Anguilla anguilla larvae reach the European coast, metamorphosing glass eels exhibit an estuarine migration phase and can potentially colonize the continental area. Associated behaviours to upstream movement in estuary and river basin differ strongly: passive tidal transport in estuary, active swimming beyond the upstream tidal limit. Moreover, the migratory behaviour may shift towards a density-dependent dispersal beyond this limit. A positive relationship has previously been established between glass eels’ body condition and migratory behaviour in estuary and also higher in the river basin. An experiment was settled to test for the density-dependent versus migratory behaviour under controlled conditions. The relationships between some behaviours (swimming, grouping, feeding, and aggressiveness and body condition was investigated at the individual level. Two controlled factors were crossed, leading to four combinations of high and low levels of food and temperature. The high level of food led to a lesser loss in body condition. Swimming activity was positively related to initial body condition and loss in body condition, but these two variables were not related to aggressiveness. We conclude that the density-dependent dispersal hypothesis was not reinforced by these present results.

  11. Coupling phases and amplitudes of minor constituents with temperature perturbations in the lower thermosphere

    Directory of Open Access Journals (Sweden)

    Y. W. Chen

    Full Text Available Based on the linearized theory of atmospheric gravity waves (AGW and considering the effects of temperature perturbation on the chemical rate coefficients, the formulae of coupling relations between nj/nj and T'/T driven by AGW (nj and T denote the background quantities are described, the coupling phases and amplitudes of minor constituents O3, NO, H, OH, and O are analyzed in detail for the mesopause (86 km and just upside of the O layer (100 km at daytime. A general principle is outlined: the coupling phases are strongly dependent on density scale heights and perturbation scales, while the amplitudes are little affected by these two factors. A criterion to distinguish the coupling behaviour is given: when the minor constituent number density scale height Hj satisfies 1-γHm/Hj>0 (Hm denotes the scale height of the major constituent, the dynamical perturbation process always keeps the nj/nj in phase with T'/T, i.e. keeps the nj/nj in antiphase with that of the major constituent. The results obtained indicate that both the temperature dependence of reaction rate coefficients and the profile slopes of the O distribution may have a major influence on the behaviour of the coupling relations.

  12. Theoretical predictions for latent heats and phase-change temperatures of polycrystalline PCMs

    Science.gov (United States)

    Medved', Igor; Trník, Anton

    2017-07-01

    We had previously developed a microscopic approach from which it is possible to fit enthalpy jumps and heat capacity peaks of polycrystalline phase-change materials that consists of a large number of grains. It is also possible to determine the corresponding latent heat and phase-change temperature. These results are given in a form of sums over grain diameters that can be evaluated numerically. Therefore, their behavior and dependence on physical parameters are not susceptible to straightforward interpretations. Here we use the results to derive simple formulas for the maximum position (Tmax), height (H), and an asymmetry factor (α) of those heat capacity peaks that are very asymmetric. In addition, we express the phase-change temperature as a simple combination of Tmax, H, α, and the peak's area. We apply our formulas to Rhubitherm 27 as an example PCM for which the heat capacity peak is so asymmetric that it has about 80 % of its total area below its maximum position.

  13. Grain alignment in bulk YBa2Cu3Ox superconductor by a low temperature phase transformation method

    International Nuclear Information System (INIS)

    Selvamanickam, V.; Goyal, A.; Kroeger, D.M.

    1994-01-01

    A quench and directional phase transformation process has been developed to achieve grain alignment in bulk YBa 2 Cu 3 O x superconductors at temperatures about 100 degree C below the peritectic temperature. Isothermal phase transformation of quenched precursors at 890 degree C for 3 min is found to result in the formation of more than 75% of YBa 2 Cu 3 O x phase without any formation of Y 2 BaCuO 5 . Phase transformation at higher temperatures leads to rapid formation of Y 2 BaCuO 5 in addition to YBa 2 Cu 3 O x . A well-aligned microstructure is achieved by directional phase transformation of the quenched compacts as a rate of 10 mm/h. The magnetic field dependence of the critical current density at 77 K of the directionally phase transformed material compares well with that of melt-textured YBCO and is superior to that of magnetically aligned and sintered YBCO

  14. Resistive switching characteristics of interfacial phase-change memory at elevated temperature

    Science.gov (United States)

    Mitrofanov, Kirill V.; Saito, Yuta; Miyata, Noriyuki; Fons, Paul; Kolobov, Alexander V.; Tominaga, Junji

    2018-04-01

    Interfacial phase-change memory (iPCM) devices were fabricated using W and TiN for the bottom and top contacts, respectively, and the effect of operation temperature on the resistive switching was examined over the range between room temperature and 200 °C. It was found that the high-resistance (RESET) state in an iPCM device drops sharply at around 150 °C to a low-resistance (SET) state, which differs by ˜400 Ω from the SET state obtained by electric-field-induced switching. The iPCM device SET state resistance recovered during the cooling process and remained at nearly the same value for the RESET state. These resistance characteristics greatly differ from those of the conventional Ge-Sb-Te (GST) alloy phase-change memory device, underscoring the fundamentally different switching nature of iPCM devices. From the thermal stability measurements of iPCM devices, their optimal temperature operation was concluded to be less than 100 °C.

  15. Online analytical investigations on solvent-, temperature- and water vapour-induced phase transformations of citric acid

    Energy Technology Data Exchange (ETDEWEB)

    Helmdach, L.; Ulrich, J. [Martin-Luther-Universitaet Halle-Wittenberg, Zentrum fuer Ingenieurwissenschaft, Verfahrenstechnik/TVT, Halle (Saale) (Germany); Feth, M.P. [Sanofi-Aventis Deutschland GmbH, Chemical and Process Development Frankfurt Chemistry, Frankfurt (Germany)

    2012-09-15

    It was demonstrated exemplarily for the crystallization of citric acid that the usage of an ultrasound device as well as Raman spectroscopy enables the inline measurement and the control of phase transitions. The influence of different solvent compositions (water and ethanol-water) on the crystallization of citric acid was investigated. By increasing the ethanol content the transformation point was shifted towards higher temperatures. In addition, a strong impact on the nucleation point as well as on the crystal habit was detected in ethanol-water mixtures. The results lead to the assumption that a citric acid solvate exists, which is, however, highly unstable upon isolation from mother liquor and converts fast into the known anhydrate or monohydrate forms of citric acid. The presence of such a solvate, however, could not be proven during this study. Furthermore, factors such as temperature and humidity which might influence the phase transition of the solid product were analyzed by Hotstage-Raman Spectroscopy and Water Vapor Sorption Gravimetry-Dispersive Raman Spectroscopy. Both, temperature as well as humidity show a strong influence on the behaviour of CAM. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Dielectric behavior and low temperature phase transition in NH4IO3

    Science.gov (United States)

    Abdel Kader, M. M.; El-Kabbany, F.; Naguib, H. M.; Gamal, W. M.

    2013-10-01

    The electrical properties namely ac conductivity σ(ω, T) and the complex dielectric permittivity (ε*) are measured at selected frequencies (5-100 kHz) as function of temperature (95 K < T < 280 K) for polycrystalline samples of NH4IO3. The ferroelectric hysteresis loops and the X-ray diffraction pattern are also measured. The analysis of the data indicates that the compound undergoes a structural phase transition at ∼103 K and the behavior of σ(ω, T) obeys the power law. The trend of the temperature dependence of the angular frequency exponent s (0 < s < 1) suggests that the quantum mechanical tunneling model is the most likely one that describes the conduction mechanism. The core results of the article are: (1) the low temperature ac electrical parameters are measured for NH4IO3; (2) the data indicate that the compound undergoes a structural phase transition at 103 K; (3) the originality of this transition has been confirmed by X-ray diffraction; (4) no evidence for the existence of a ferroelectric transition at 103 K as mentioned earlier; and (5) the quantum mechanical tunneling is proposed as the main mechanism of the electric conduction.

  17. Optimum efficiencies and phase change temperatures in latent heat storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Aceves-Saborio, S.; Nakamura, H. (Daido Inst. of Tech., Nagoya (Japan). Dept. of Mechanical Engineering); Reistad, G.M. (Oregon State Univ., Corvallis, OR (United States). Dept. of Mechanical Engineering)

    1994-03-01

    This paper presents an analysis of a class of latent heat storage systems (LHSS). The analysis is based on a lumped model (the basic model) that allows a broad class of LHSSs to be completely specified, with only two parameters and a set of operating temperatures, while still retaining the main thermodynamic aspects associated with its operation. Characterization of the performance in this manner permits the broad base application potential of such systems to be viewed. This modeling is in contrast to most studies to date, which employ many parameters to include details of specific systems, and therefore obscure, to a great extent, this broad-based application potential. The basic model is later modified in three ways to analyze operating conditions that either occur in practical units or are desirable for an improved operation of the units. The modifications include, first, the consideration of the LHSS as being formed by many independent phase-change material (PCM) capsules. Second, the possibility of having PCMs with different phase change temperatures filling the capsules. Third, the case when the PCM melts over a temperature range. The results indicate that the efficiency of the basic model represents a higher bound for the efficient operation of LHSSs with negligible sensible storage capacity, and a single PCM. Using multiple PCMs within a LHSS results in higher efficiencies. These efficiencies set higher bounds for efficiency of any sensible or latent heat storage system, and also represent the only possibility for reversible operation of LHSS.

  18. Silicon thin film growth by low temperature liquid phase epitaxy for photovoltaic applications

    International Nuclear Information System (INIS)

    Abdo, F.

    2007-03-01

    In this thesis is presented an economic, clean and innovating way to carry out silicon substrate in thin layer for photovoltaic applications. It is based on layer growth by low temperature liquid phase epitaxy on silicon substrates embrittled by ion implantation. The aim of this work is to find experimental conditions to decrease the epitaxy temperature (≤800 C instead of 1050 C) while conserving a relatively high growth velocity. An innovating method has been implemented; it consists to use two different baths: the first one Al-Sn-Si allows to de-oxidize the silicon substrate surface without using hydrogen and the second one containing Sn-Si allows the growth of a thick layer of silicon. Uniform layers of a thickness of 15μm have been obtained after three hours of growth. Thermodynamic studies exploiting the phase diagrams of ternary or quaternary mixtures have been carried out to reach high growth velocity. Tin and copper based alloys have been chosen, tin for lowering the temperature and copper for increasing the silicon solubility. Layers of 30 μm have been obtained after two hours of growth. It has been shown too that this epitaxy step could be compatible with the technology of ion implantation embrittlement. (O.M.)

  19. Relationship between the influence of time, temperature and tetralin/coal ratio on coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Marco, I. de; Uria, P.; Chomon, M.J.; Cambra, J. [Basque Country Univ., Bilbao (Spain). School of Engineering of Bilbao

    1994-12-31

    In this paper the influences of time, temperature and tetralin/coal ratio, as well as their interdependence, on the liquefaction behavior of a Spanish subbituminous A coal, are presented. The liquefaction experiments were conducted in 35 ml tubing bombs. Coal conversions were determined as weight % (toluene solubles + gases). There is an important influence of time and of temperature on coal conversion. There is also a relationship between the influences of these two parameters. On the contrary, the effect of tetralin/coal ratio is rather low. This may be attributed to the fact that with such a strong H-donor solvent as tetralin, and with the operating conditions used, hydrogen availability is not a critical parameter for the process.

  20. The relationship between radiant heat, air temperature and thermal comfort at rest and exercise

    OpenAIRE

    Gueritee, Julien; Tipton, Michael J.

    2015-01-01

    The aims of the present work were to investigate the relationships between radiant heat load, air velocity and body temperatures with or without coincidental exercise to determine the physiological mechanisms that drive thermal comfort and thermoregulatory behaviour. Seven male volunteers wearing swimming trunks in 18 °C, 22 °C or 26 °C air were exposed to increasing air velocities up to 3 m s− 1 and self-adjusted the intensity of the direct radiant heat received on the front of the body to j...

  1. Relationship between room temperature phosphorescence and deuteration position in a purely aromatic compound

    Science.gov (United States)

    Hirata, S.; Totani, K.; Watanabe, T.; Kaji, H.; Vacha, M.

    2014-01-01

    The development of organometallic and purely organic compounds showing room temperature phosphorescence (RTP) has several promising applications. We report a relationship between the phosphorescence characteristics and deuteration position in a purely organic aromatic compound. Hydrogen-deuterium exchange at the carbons where the lowest unoccupied molecular orbital is located is the most effective method to enhance the RTP lifetime and quantum yield. The increase in RTP lifetime comes from a decrease in the Franck-Condon factor while the enhancement of RTP yield is caused by an increase in intersystem crossing from the lowest singlet excited state to the lowest triplet excited state.

  2. Classification of Arctic, Mid-Latitude and Tropical Clouds in the Mixed-Phase Temperature Regime

    Science.gov (United States)

    Costa, Anja; Afchine, Armin; Luebke, Anna; Meyer, Jessica; Dorsey, James R.; Gallagher, Martin W.; Ehrlich, André; Wendisch, Manfred; Krämer, Martina

    2016-04-01

    The degree of glaciation and the sizes and habits of ice particles formed in mixed-phase clouds remain not fully understood. However, these properties define the mixed clouds' radiative impact on the Earth's climate and thus a correct representation of this cloud type in global climate models is of importance for an improved certainty of climate predictions. This study focuses on the occurrence and characteristics of two types of clouds in the mixed-phase temperature regime (238-275K): coexistence clouds (Coex), in which both liquid drops and ice crystals exist, and fully glaciated clouds that develop in the Wegener-Bergeron-Findeisen regime (WBF clouds). We present an extensive dataset obtained by the Cloud and Aerosol Particle Spectrometer NIXE-CAPS, covering Arctic, mid-latitude and tropical regions. In total, we spent 45.2 hours within clouds in the mixed-phase temperature regime during five field campaigns (Arctic: VERDI, 2012 and RACEPAC, 2014 - Northern Canada; mid-latitude: COALESC, 2011 - UK and ML-Cirrus, 2014 - central Europe; tropics: ACRIDICON, 2014 - Brazil). We show that WBF and Coex clouds can be identified via cloud particle size distributions. The classified datasets are used to analyse temperature dependences of both cloud types as well as range and frequencies of cloud particle concentrations and sizes. One result is that Coex clouds containing supercooled liquid drops are found down to temperatures of -40 deg C only in tropical mixed clouds, while in the Arctic and mid-latitudes no liquid drops are observed below about -20 deg C. In addition, we show that the cloud particles' aspherical fractions - derived from polarization signatures of particles with diameters between 20 and 50 micrometers - differ significantly between WBF and Coex clouds. In Coex clouds, the aspherical fraction of cloud particles is generally very low, but increases with decreasing temperature. In WBF clouds, where all cloud particles are ice, about 20-40% of the cloud

  3. The Relationships between Wind Speed and Temperature Time Series in Bangkok, Thailand.

    Science.gov (United States)

    Thangprasert, N.; Suwanarat, S.

    2017-09-01

    In this research we investigate the relationships between wind speed and temperature time series data in Bangkok, Thailand, from the time interval of January 2009 to December 2011 using wavelet transform (WT), cross wavelet transform (XWT) and wavelet coherence (WTC). The results from all three wavelet analysis show the strong periodicity around period 1 day (hourly data) and period band 256-450 days (daily data) variations that are exhibited in both wind speed and temperature data across the entire power spectrum from 2009 to 2011. These two oscillations are connected with the natural day time effects and the annual natural season cycle. Although the daily periodic for the temperature is appeared nearly uniform all year but it is not the case for wind speed. In 2009 this wind speed oscillations appear only from mid-February to mid-April in summer and from the fourth week of May to the third week of August in rainy season. XWT also detects strong high common power between the wind speed and temperature at a period band of 14-25 days in summer 2009, a period band of 4-8 days in summer 2009, July 2009, summer 2010 and summer 2011. WTC shows the coherence period band around 10-30 days appeared in summer and rainy season and 32-50 days in summer 2009 and rainy season in 2010. From these three wavelet analysis, the wind speed and temperature time series data show the strong correlation especially at 1 day and 256-450 days period band and also at several different scales. This studied will be helpful in predicting the wind speed and temperature for the future used.

  4. Long-memory and the sea level-temperature relationship: a fractional cointegration approach.

    Science.gov (United States)

    Ventosa-Santaulària, Daniel; Heres, David R; Martínez-Hernández, L Catalina

    2014-01-01

    Through thermal expansion of oceans and melting of land-based ice, global warming is very likely contributing to the sea level rise observed during the 20th century. The amount by which further increases in global average temperature could affect sea level is only known with large uncertainties due to the limited capacity of physics-based models to predict sea levels from global surface temperatures. Semi-empirical approaches have been implemented to estimate the statistical relationship between these two variables providing an alternative measure on which to base potentially disrupting impacts on coastal communities and ecosystems. However, only a few of these semi-empirical applications had addressed the spurious inference that is likely to be drawn when one nonstationary process is regressed on another. Furthermore, it has been shown that spurious effects are not eliminated by stationary processes when these possess strong long memory. Our results indicate that both global temperature and sea level indeed present the characteristics of long memory processes. Nevertheless, we find that these variables are fractionally cointegrated when sea-ice extent is incorporated as an instrumental variable for temperature which in our estimations has a statistically significant positive impact on global sea level.

  5. Abundance of fluorescent biological aerosol particles at temperatures conducive to the formation of mixed-phase and cirrus clouds

    Science.gov (United States)

    Twohy, Cynthia H.; McMeeking, Gavin R.; DeMott, Paul J.; McCluskey, Christina S.; Hill, Thomas C. J.; Burrows, Susannah M.; Kulkarni, Gourihar R.; Tanarhte, Meryem; Kafle, Durga N.; Toohey, Darin W.

    2016-07-01

    Some types of biological particles are known to nucleate ice at warmer temperatures than mineral dust, with the potential to influence cloud microphysical properties and climate. However, the prevalence of these particle types above the atmospheric boundary layer is not well known. Many types of biological particles fluoresce when exposed to ultraviolet light, and the Wideband Integrated Bioaerosol Sensor takes advantage of this characteristic to perform real-time measurements of fluorescent biological aerosol particles (FBAPs). This instrument was flown on the National Center for Atmospheric Research Gulfstream V aircraft to measure concentrations of fluorescent biological particles from different potential sources and at various altitudes over the US western plains in early autumn. Clear-air number concentrations of FBAPs between 0.8 and 12 µm diameter usually decreased with height and generally were about 10-100 L-1 in the continental boundary layer but always much lower at temperatures colder than 255 K in the free troposphere. At intermediate temperatures where biological ice-nucleating particles may influence mixed-phase cloud formation (255 K ≤ T ≤ 270 K), concentrations of fluorescent particles were the most variable and were occasionally near boundary-layer concentrations. Predicted vertical distributions of ice-nucleating particle concentrations based on FBAP measurements in this temperature regime sometimes reached typical concentrations of primary ice in clouds but were often much lower. If convection was assumed to lift boundary-layer FBAPs without losses to the free troposphere, better agreement between predicted ice-nucleating particle concentrations and typical ice crystal concentrations was achieved. Ice-nucleating particle concentrations were also measured during one flight and showed a decrease with height, and concentrations were consistent with a relationship to FBAPs established previously at the forested surface site below. The vertical

  6. Relationship between Acute Phase Proteins and Serum Fatty Acid Composition in Morbidly Obese Patients

    Directory of Open Access Journals (Sweden)

    Ricardo Fernandes

    2013-01-01

    Full Text Available Background. Obesity is considered a low-grade inflammatory state and has been associated with increased acute phase proteins as well as changes in serum fatty acids. Few studies have assessed associations between acute phase proteins and serum fatty acids in morbidly obese patients. Objective. To investigate the relationship between acute phase proteins (C-Reactive Protein, Orosomucoid, and Albumin and serum fatty acids in morbidly obese patients. Methods. Twenty-two morbidly obese patients were enrolled in this study. Biochemical and clinical data were obtained before bariatric surgery, and fatty acids measured in preoperative serum. Results. Orosomucoid was negatively correlated with lauric acid (P=0.027 and eicosapentaenoic acid (EPA (P=0.037 and positively with arachidonic acid (AA (P=0.035, AA/EPA ratio (P=0.005, and n-6/n-3 polyunsaturated fatty acids ratio (P=0.035. C-Reactive Protein (CRP was negatively correlated with lauric acid (P=0.048, and both CRP and CRP/Albumin ratio were negatively correlated with margaric acid (P=0.010, P=0.008, resp.. Albumin was positively correlated with EPA (P=0.027 and margaric acid (P=0.008. Other correlations were not statistically significant. Conclusion. Our findings suggest that serum fatty acids are linked to acute phase proteins in morbidly obese patients.

  7. Development of linear free energy relationships for aqueous phase radical-involved chemical reactions.

    Science.gov (United States)

    Minakata, Daisuke; Mezyk, Stephen P; Jones, Jace W; Daws, Brittany R; Crittenden, John C

    2014-12-02

    Aqueous phase advanced oxidation processes (AOPs) produce hydroxyl radicals (HO•) which can completely oxidize electron rich organic compounds. The proper design and operation of AOPs require that we predict the formation and fate of the byproducts and their associated toxicity. Accordingly, there is a need to develop a first-principles kinetic model that can predict the dominant reaction pathways that potentially produce toxic byproducts. We have published some of our efforts on predicting the elementary reaction pathways and the HO• rate constants. Here we develop linear free energy relationships (LFERs) that predict the rate constants for aqueous phase radical reactions. The LFERs relate experimentally obtained kinetic rate constants to quantum mechanically calculated aqueous phase free energies of activation. The LFERs have been applied to 101 reactions, including (1) HO• addition to 15 aromatic compounds; (2) addition of molecular oxygen to 65 carbon-centered aliphatic and cyclohexadienyl radicals; (3) disproportionation of 10 peroxyl radicals, and (4) unimolecular decay of nine peroxyl radicals. The LFERs correlations predict the rate constants within a factor of 2 from the experimental values for HO• reactions and molecular oxygen addition, and a factor of 5 for peroxyl radical reactions. The LFERs and the elementary reaction pathways will enable us to predict the formation and initial fate of the byproducts in AOPs. Furthermore, our methodology can be applied to other environmental processes in which aqueous phase radical-involved reactions occur.

  8. Phase relations study on the melting and crystallization regions of the Bi-2223 high temperature superconductor

    Directory of Open Access Journals (Sweden)

    Polasek Alexander

    2004-01-01

    Full Text Available The melting and solidification behavior of Bi2Sr2Ca2Cu3 O10 (Bi-2223 precursors has been studied. Nominal compositions corresponding to excess of liquid, Ca2CuO3 and CuO have been investigated. Each sample was made by packing a precursor powder into a silver crucible, in order to approximately simulate the situation found in 2223 silver-sheathed tapes. The samples were partially melted and then slow-cooled, being quenched from different temperatures and analyzed through X-ray diffraction (XRD and scanning electron microscopy (SEM/EDS. The precursors decomposed peritectically during melting, forming liquid and solid phases. Very long plates with compositions falling in the vicinity of the 2223 primary phase field formed upon slow-cooling. The 2223 phase may have been formed and the results suggest that long grains of this phase might be obtained by melting and crystallization if the exact peritectic region and the optimum processing conditions are found.

  9. High-temperature superconducting phase of HBr under pressure predicted by first-principles calculations

    Science.gov (United States)

    Gu, Qinyan; Lu, Pengchao; Xia, Kang; Sun, Jian; Xing, Dingyu

    2017-08-01

    The high pressure phases of HBr are explored with an ab initio crystal structure search. By taking into account the contribution of zero-point energy (ZPE), we find that the P 4 /n m m phase of HBr is thermodynamically stable in the pressure range from 150 to 200 GPa. The superconducting critical temperature (Tc) of P 4 /n m m HBr is evaluated to be around 73 K at 170 GPa, which is the highest record so far among binary halogen hydrides. Its Tc can be further raised to around 95K under 170 GPa if half of the bromine atoms in the P 4 /n m m HBr are substituted by the lighter chlorine atoms. Our study shows that, in addition to lower mass, higher coordination number, shorter bonds, and more highly symmetric environment for the hydrogen atoms are important factors to enhance the superconductivity in hydrides.

  10. Oxidation kinetics of zircaloy-4 in the temperature range correspondent to alpha phase

    International Nuclear Information System (INIS)

    Medeiros, L.F.

    1975-12-01

    Oxidation kinetics of Zry-4 in the alpha phase is isothermally studied in the temperature range from 600 0 C to 800 0 C, by continuous and discontinuous gravimetric methods. The total mass gain during the oxidation takes place by two distinct ways: oxide formation and solid solution formation. The first one has been studied by microscopy: the latter by microhardness. The oxygen diffusion coefficients in the zirconium are experimentally determined by microhardness measurements and are compared with those obtained by the oxide layer thickness and by oxygen mass in the oxide. The oxygen diffusion coefficients in the oxide are obtained too by oxide layer thickness and by oxygen diffusivities in the alpha phase and compared with literature. (author)

  11. Low-temperature FCC to L10 phase transformation in CoPt(Bi nanoparticles

    Directory of Open Access Journals (Sweden)

    Frank M. Abel

    2016-05-01

    Full Text Available This work is focused on the effects of Bi substitution on the synthesis of CoPt nanoparticles with the L10 structure using a modified organometallic approach. The structural and magnetic properties of the nanoparticles have been studied and compared directly with those of CoPt nanoparticles synthesized by the same technique but in the absence of Bi substitution. The as-synthesized particles at 330 °C have an average size of 11.7 nm and a partially ordered L10 phase with a coercivity of 1 kOe. The coercivity is increased to 9.3 kOe and 12.4 kOe after annealing for 1 hour at 600 and 700 °C. The structural and magnetic properties suggest that Bi promotes the formation of ordered L10 phase at low temperatures leading to the development of high coercivities.

  12. Nonlinear relationship between extreme temperature and mortality in different temperature zones: A systematic study of 122 communities across the mainland of China.

    Science.gov (United States)

    Wang, Chenzhi; Zhang, Zhao; Zhou, Maigeng; Zhang, Lingyan; Yin, Peng; Ye, Wan; Chen, Yi

    2017-05-15

    Numerous previous studies have reported that human health risk is extremely sensitive to temperature. Very few studies, however, have characterized the relationship between temperature and mortality in different temperature zones due to the previous conclusions deduced from a regional or administrative division. A research covers different temperature zones was indispensable to have a comprehensive understanding of regional ambient temperature effect on public health. Based on the mortality dataset and meteorological variables of 122 communities in China from 2007 to 2012, a distributed lag nonlinear model (DLNM) was utilized to estimate the temperature effect on non-accidental mortality at the community level. Then, a meta-regression analysis was applied to pool the estimates of community-specific effects in various latitude-effected temperature zones. At the community level, the mean value of relative extreme cold risk (1.63) of all 122 communities was higher than that of extreme high temperature (1.15). At regional level, we found temperature-mortality relationship (e.g., U- or J-shaped) varied in different temperature zones. Meanwhile, the minimum-mortality temperature of each zone was near the 75th percentile of local mean temperature except the north subtropics (50th percentiles). Lag effect was also obvious, especially for cold effect. An interesting M-shaped curve for the relationship between cold risk and temperature was detected, while an inverted "U" shaped with a right tail for the heat effect. Such different responses might be attributed to the difference in social-economic status of temperature zones. The temperature-mortality relationship showed a distinct spatial heterogeneity along temperature zones across the Chinese mainland. Different characteristics of mortality responding to cold and heat stress highlighted the fact that, apart from the circumstance of temperature, the social-economic condition was also linked with health risk. Our findings

  13. Effect of temperature on two-phase anaerobic reactors treating slaughterhouse wastewater

    Directory of Open Access Journals (Sweden)

    Simone Beux

    2007-11-01

    Full Text Available The effectiveness of the anaerobic treatment of effluent from a swine and bovine slaughterhouse was assessed in two sets of two-phase anaerobic digesters, operated with or without temperature control. Set A, consisting of an acidogenic reactor with recirculation and an upflow biological filter as the methanogenic phase, was operated at room temperature, while set B, consisting of an acidogenic reactor without recirculation and an upflow biological filter as the methanogenic phase, was maintained at 32°C. The methanogenic reactors showed COD (Chemical Demand of Oxygen removal above 60% for HRT (Hydraulic Retention Time values of 20, 15, 10, 8, 6, 4, and 2 days. When the HRT value in those reactors was changed to 1 day, the COD percentage removal decreased to 50%. The temperature variations did not have harmful effects on the performance of reactors in set A.Avaliou-se a eficiência do tratamento anaeróbio de efluente de matadouro de suínos e bovinos em dois conjuntos de biodigestores anaeróbios de duas fases, operados com e sem controle de temperatura. O conjunto A, formado por um reator acidogênico com recirculação e um filtro biológico de fluxo ascendente, foi operado a temperatura ambiente e o conjunto B, formado por um reator de fluxo ascendente e um filtro biológico de fluxo ascendente, foi mantido a 32°C. Os reatores metanogênicos apresentaram remoção de DQO acima de 60 % para os TRHs de 20, 15, 10, oito, seis, quatro e dois dias. Quando o TRH destes reatores foi mudado para um dia observou-se uma queda da porcentagem de remoção de DQO para 50 %. As variações de temperatura parecem não ter prejudicado o desempenho dos reatores do conjunto A.

  14. The ternary system Na{sub 2}O-ZnO-WO{sub 3}: Compounds and phase relationships

    Energy Technology Data Exchange (ETDEWEB)

    Yan Fengbo; Chen Dagui; Li Wei; Lin Zhang; Zhao Zhenguo; Xue Liping [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Huang Feng [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)], E-mail: fhuang@fjirsm.ac.cn; Liang Jingkui [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Beijing National Laboratory for Condensed Matter Physics, Institute of Physics and Center for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100080 (China); International Centre for Materials Physics, Chinese Academia Sinica, Shenyang 110016 (China)], E-mail: jkliang@aphy.iphy.ac.cn

    2008-06-30

    The subsolidus phase relationships of ternary system Na{sub 2}O-ZnO-WO{sub 3} have been investigated by X-ray diffraction (XRD) and differential thermal analyzer (DTA). All the samples were synthesized in the temperature range from 530 to 850 deg. C in air. There are one ternary compound and five binary compounds in the Na{sub 2}O-ZnO-WO{sub 3} system, which can be divided into eight three-phase regions. The crystal structure of the ternary compound Na{sub 3.6}Zn{sub 1.2}(WO{sub 4}){sub 3} is determined by single-crystal structure analysis method. It belongs to triclinic system with space group P1-bar and lattice constants a = 7.237 (5) A, b = 9.172 (6) A, c = 9.339 (6) A and {alpha} = 94.920 (4){sup o}, {beta} = 105.772 (9){sup o}, {gamma} = 103.531 (8){sup o}, Z = 2. DTA analyses indicate that the compound Na{sub 2}WO{sub 4} is not suitable to be the flux for ZnO crystal growth below 1250 deg. C, since no liquidus was observed in the system before 1250 deg. C.

  15. Metal-Hydrogen Phase Diagrams in the Vicinity of Melting Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Shapovalov, V.I.

    1999-01-06

    Hydrogen-metal interaction phenomena belong to the most exciting challenges of today's physical metallurgy and physics of solids due to the uncommon behavior of hydrogen in condensed media and to the need for understanding hydrogen's strong negative impact on properties of some high-strength steels and.alloys. The paper cites and summarizes research data on fundamental thermodynamic characteristics of hydrogen in some metals that absorb it endothermally at elevated temperatures. For a number of metal-hydrogen systems, information on some phase diagrams previously not available to the English-speaking scientific community is presented.

  16. Low-temperature specific heat of YMn sub 2 in the paramagnetic and antiferromagnetic phases

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, R.A.; Emerson, J.P.; Phillips, N.E. (Lawrence Berkeley Lab., CA (United States)); Ballou, R.; Lelievre-Berna, E. (Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France). Lab. Louis Neel)

    1992-07-01

    The low-temperature specific heat of YMn{sub 2} has been measured at applied pressures of 0 to 7.7 kbar. A paramagnetic state is stabilized for moderate values of the applied pressure (of the order of 1.6 kbar). A large linear term in the specific heat, which decreases regularly with increasing pressure, is observed in this phase. It is ascribed to giant spin fluctuations associated with a magnetic-non magnetic instability and a strong geometrical spin frustration.

  17. Biaxial creep deformation of Zircaloy-4 in the high alpha phase temperature range

    International Nuclear Information System (INIS)

    Donaldson, A.T.; Horwood, R.A.; Healey, T.

    1983-01-01

    The ballooning response of Zircaloy-4 fuel tubes during a postulated loss-of-coolant accident may be calculated from a knowledge of the thermal environment of the rods and the creep deformation characteristics of the cladding. In support of such calculations biaxial creep studies have been performed on fuel tubes supplied by Westinghouse, Wolverine and Sandvik of temperatures in the alpha phase range. This paper presents the results of an investigation of their respective creep behaviour which has resulted in the formulation of equations for use in LOCA fuel ballooning codes. (author)

  18. Optimization of finite-size errors in finite-temperature calculations of unordered phases.

    Science.gov (United States)

    Iyer, Deepak; Srednicki, Mark; Rigol, Marcos

    2015-06-01

    It is common knowledge that the microcanonical, canonical, and grand-canonical ensembles are equivalent in thermodynamically large systems. Here, we study finite-size effects in the latter two ensembles. We show that contrary to naive expectations, finite-size errors are exponentially small in grand canonical ensemble calculations of translationally invariant systems in unordered phases at finite temperature. Open boundary conditions and canonical ensemble calculations suffer from finite-size errors that are only polynomially small in the system size. We further show that finite-size effects are generally smallest in numerical linked cluster expansions. Our conclusions are supported by analytical and numerical analyses of classical and quantum systems.

  19. SRNL PHASE II SHELF LIFE STUDIES - SERIES 1 ROOM TEMPERATURE AND HIGH RELATIVE HUMIDITY

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.; Duffey, J.

    2012-09-12

    The Savannah River National Laboratory (SRNL) Phase II, Series 1 shelf-life corrosion testing for the Department of Energy Standard 3013 container is presented and discussed in terms of the localized corrosion behavior of Type 304 stainless steel in contact with moist plutonium oxide and chloride salt mixtures and the potential impact to the 3013 inner container. This testing was designed to address the influence of temperature, salt composition, initial salt moisture, residual stress and type of oxide/salt contact on the relative humidity inside a 3013 container and the initiation and propagation of localized corrosion, especially stress corrosion cracking. The integrated plan is being conducted by Los Alamos National Laboratory and SRNL. SRNL is responsible for conducting a corrosion study in small scale vessels containing plutonium oxide and chloride salts under conditions of humidity, temperature and oxide/salt compositions both within the limits of 3013 storage conditions as well as beyond the 3013 storage requirements to identify margins for minimizing the initiation of stress corrosion cracking. These worst case conditions provide data that bound the material packaged in 3013 containers. Phase I of this testing was completed in 2010. The Phase II, Series 1 testing was performed to verify previous results from Phase I testing and extend our understanding about the initiation of stress corrosion cracking and pitting that occur in 304L under conditions of room temperature, high humidity, and a specific plutonium oxide/salt chemistry. These results will aid in bounding the safe storage conditions of plutonium oxides in 3013 containers. A substantial change in the testing was the addition of the capability to monitor relative humidity during test exposure. The results show that under conditions of high initial moisture ({approx}0.5 wt%) and room temperature stress corrosion cracking occurred in 304L teardrop coupons in contact with the oxide/salt mixture at times

  20. Phase Change Material for Temperature Control of Imager or Sounder on GOES Type Satellites in GEO

    Science.gov (United States)

    Choi, Michael K.

    2014-01-01

    This paper uses phase change material (PCM) in the scan cavity of an imager or sounder on satellites in geostationary orbit (GEO) to maintain the telescope temperature stable. When sunlight enters the scan aperture, solar heating causes the PCM to melt. When sunlight stops entering the scan aperture, the PCM releases the thermal energy stored to keep the components in the telescope warm. It has no moving parts or bimetallic springs. It reduces heater power required to make up the heat lost by radiation to space through the aperture. It is an attractive thermal control option to a radiator with a louver and a sunshade.

  1. Ethylene epoxidation promoted by methane gas-phase thermic oxidation. The influence of temperature

    International Nuclear Information System (INIS)

    Grigoryan, R.R.; Arsentiev, S.D.; Mantashyan, A.A.

    2009-01-01

    Ethylene epoxidation promoted by methane gas-phase thermic oxidation has been studied. The studies were carried out in a two-sectional reactor under flow conditions. The experiments were performed in different temperatures in the sections of the reactor. It was shown that when methane is oxidized in the first section of the reactor and ethylene is put into the second section, epoxidation of olefin occurs through the alkyl peroxy radical interaction with double bond of olefin. It was established that the dependences of epoxidation rate on temperatures in both first and second sections pass trough maximum. The substitution of methane with inert gas (argon) in the first section leads to significant decrease of rate of ethylene oxide accumulation in the second section

  2. Anharmonic Rovibrational Partition Functions for Fluxional Species at High Temperatures via Monte Carlo Phase Space Integrals

    Energy Technology Data Exchange (ETDEWEB)

    Jasper, Ahren W. [Chemical Sciences and Engineering; Gruey, Zackery B. [Chemical Sciences and Engineering; Harding, Lawrence B. [Chemical Sciences and Engineering; Georgievskii, Yuri [Chemical Sciences and Engineering; Klippenstein, Stephen J. [Chemical Sciences and Engineering; Wagner, Albert F. [Chemical Sciences and Engineering

    2018-02-03

    Monte Carlo phase space integration (MCPSI) is used to compute full dimensional and fully anharmonic, but classical, rovibrational partition functions for 22 small- and medium-sized molecules and radicals. Several of the species considered here feature multiple minima and low-frequency nonlocal motions, and efficiently sampling these systems is facilitated using curvilinear (stretch, bend, and torsion) coordinates. The curvilinear coordinate MCPSI method is demonstrated to be applicable to the treatment of fluxional species with complex rovibrational structures and as many as 21 fully coupled rovibrational degrees of freedom. Trends in the computed anharmonicity corrections are discussed. For many systems, rovibrational anharmonicities at elevated temperatures are shown to vary consistently with the number of degrees of freedom and with temperature once rovibrational coupling and torsional anharmonicity are accounted for. Larger corrections are found for systems with complex vibrational structures, such as systems with multiple large-amplitude modes and/or multiple minima.

  3. An improved stochastic algorithm for temperature-dependent homogeneous gas phase reactions

    CERN Document Server

    Kraft, M

    2003-01-01

    We propose an improved stochastic algorithm for temperature-dependent homogeneous gas phase reactions. By combining forward and reverse reaction rates, a significant gain in computational efficiency is achieved. Two modifications of modelling the temperature dependence (with and without conservation of enthalpy) are introduced and studied quantitatively. The algorithm is tested for the combustion of n-heptane, which is a reference fuel component for internal combustion engines. The convergence of the algorithm is studied by a series of numerical experiments and the computational cost of the stochastic algorithm is compared with the DAE code DASSL. If less accuracy is needed the stochastic algorithm is faster on short simulation time intervals. The new stochastic algorithm is significantly faster than the original direct simulation algorithm in all cases considered.

  4. High temperature phase transition of Tm2Ti2O7

    International Nuclear Information System (INIS)

    Shlyakhtina, A.V.; Shcherbakova, L.G.; Knot'ko, A.V.; Larina, L.L.; Borichev, S.A.

    2004-01-01

    A high temperature phase transition type order-disorder is investigated in Tm 2 Ti 2 O 7 at t>1600 Deg C. It is shown that this transformation is irreversible. Ion conductivity of synthesized at 1670 Deg C nanocrystalline Tm 2 Ti 2 O 7 constitutes 2x10 -3 S/cm at 740 Deg C and remains constant after heat treatment at 860 Deg C for 240 h in the air. It is revealed that the conductivity of specimens (grain size of 20-30 nm) on the basis of Tm 2 Ti 2 O 7 high temperature modification with a structure of disordered pyrochlore is independent of grain size [ru

  5. Development of a low temperature phase change material package. [for spacecraft thermal control

    Science.gov (United States)

    Brennan, P. J.; Suelau, H. J.; Mcintosh, R.

    1977-01-01

    Test data obtained for a low temperature phase change material (PCM) canisters are presented. The canister was designed to provide up to 30 w-hrs of storage capacity at approximately -90 C with an overall thermal conductance which is greater than 8 w/deg C. N-heptane which is an n-paraffin and has a -90.6 C freezing point was used as the working fluid. The canister was fabricated from aluminum and has an aluminum honeycomb core. Its void volume permits service temperatures up to 70 C. Results obtained from component and system's tests indicate well defined melting and freezing points which are repeatable and within 1 C of each other. Subcooling effects are less than 0.5 C and are essentially negligible. Measured storage capacities are within 94 to 88% the theoretical.

  6. Phase Transformation and Lattice Parameter Changes of Non-trivalent Rare Earth-Doped YSZ as a Function of Temperature

    Science.gov (United States)

    Jiang, Shengli; Huang, Xiao; He, Zhang; Buyers, Andrew

    2018-01-01

    To examine the effect of doping/co-doping on high-temperature phase compositions of YSZ, stand-alone YSZ and CeO2 and Nb2O5 co-doped YSZ samples were prepared using mechanical alloy and high-temperature sintering. XRD analysis was performed on these samples from room temperature to 1100 °C. The results show that the structure for the co-doped samples tends to be thermally stable when the test temperature is higher than a critical value. Monoclinic phase was dominant in Nb2O5 co-doped YSZ at temperatures lower than 600 °C, while for the YSZ and CeO2 co-doped YSZ, cubic/tetragonal phase was dominant in the whole test temperature range. The lattice parameters for all the samples increase with increasing test temperature generally. The lattice parameters for the two non-trivalent rare earth oxides co-doped YSZ show that the lattice parameter a for the cubic phase of the Ce4+ co-doped YSZ is consistently greater than that of 7YSZ which is related to the presence of larger radius of Ce4+ in the matrix. The lattice parameters a, b, c for the monoclinic phase of Ce4+ co-doped YSZ are much closer to each other than that of the Nb5+ co-doped YSZ, indicating the former has better tendency to form cubic/tetragonal phase, which is desired for vast engineering applications.

  7. Alkenone-based reconstructions reveal four-phase Holocene temperature evolution for High Arctic Svalbard

    Science.gov (United States)

    van der Bilt, Willem G. M.; D'Andrea, William J.; Bakke, Jostein; Balascio, Nicholas L.; Werner, Johannes P.; Gjerde, Marthe; Bradley, Raymond S.

    2018-03-01

    Situated at the crossroads of major oceanic and atmospheric circulation patterns, the Arctic is a key component of Earth's climate system. Compounded by sea-ice feedbacks, even modest shifts in the region's heat budget drive large climate responses. This is highlighted by the observed amplified response of the Arctic to global warming. Assessing the imprint and signature of underlying forcing mechanisms require paleoclimate records, allowing us to expand our knowledge beyond the short instrumental period and contextualize ongoing warming. However, such datasets are scarce and sparse in the Arctic, limiting our ability to address these issues. Here, we present two quantitative Holocene-length paleotemperature records from the High Arctic Svalbard archipelago, situated in the climatically sensitive Arctic North Atlantic. Temperature estimates are based on U37K unsaturation ratios from sediment cores of two lakes. Our data reveal a dynamic Holocene temperature evolution, with reconstructed summer lake water temperatures spanning a range of ∼6-8 °C, and characterized by four phases. The Early Holocene was marked by an early onset (∼10.5 ka cal. BP) of insolation-driven Hypsithermal conditions, likely compounded by strengthening oceanic heat transport. This warm interval was interrupted by cooling between ∼10.5-8.3 ka cal. BP that we attribute to cooling effects from the melting Northern Hemisphere ice sheets. Temperatures declined throughout the Middle Holocene, following a gradual trend that was accentuated by two cooling steps between ∼7.8-7 ka cal. BP and around ∼4.4-4.3 ka cal. BP. These transitions coincide with a strengthening influence of Arctic water and sea-ice in the adjacent Fram Strait. During the Late Holocene (past 4 ka), temperature change decoupled from the still-declining insolation, and fluctuated around comparatively cold mean conditions. By showing that Holocene Svalbard temperatures were governed by an alternation of forcings, this study

  8. High growth rate hydride vapor phase epitaxy at low temperature through use of uncracked hydrides

    Science.gov (United States)

    Schulte, Kevin L.; Braun, Anna; Simon, John; Ptak, Aaron J.

    2018-01-01

    We demonstrate hydride vapor phase epitaxy (HVPE) of GaAs with unusually high growth rates (RG) at low temperature and atmospheric pressure by employing a hydride-enhanced growth mechanism. Under traditional HVPE growth conditions that involve growth from Asx species, RG exhibits a strong temperature dependence due to slow kinetics at the surface, and growth temperatures >750 °C are required to obtain RG > 60 μm/h. We demonstrate that when the group V element reaches the surface in a hydride, the kinetic barrier is dramatically reduced and surface kinetics no longer limit RG. In this regime, RG is dependent on mass transport of uncracked AsH3 to the surface. By controlling the AsH3 velocity and temperature profile of the reactor, which both affect the degree of AsH3 decomposition, we demonstrate tuning of RG. We achieve RG above 60 μm/h at temperatures as low as 560 °C and up to 110 μm/h at 650 °C. We incorporate high-RG GaAs into solar cell devices to verify that the electronic quality does not deteriorate as RG is increased. The open circuit voltage (VOC), which is a strong function of non-radiative recombination in the bulk material, exhibits negligible variance in a series of devices grown at 650 °C with RG = 55-110 μm/h. The implications of low temperature growth for the formation of complex heterostructure devices by HVPE are discussed.

  9. Remote Sensing the Vertical Profile of Cloud Droplet Effective Radius, Thermodynamic Phase, and Temperature

    Science.gov (United States)

    Martins, J. V.; Marshak, A.; Remer, L. A.; Rosenfeld, D.; Kaufman, Y. J.; Fernandez-Borda, R.; Koren, I.; Correia, A. L.; Zubko, V.; Artaxo, P.

    2011-01-01

    Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil.

  10. Diffracted wavefront measurement of a volume phase holographic grating at cryogenic temperature

    International Nuclear Information System (INIS)

    Blanche, Pierre-Alexandre; Habraken, Serge; Lemaire, Philippe; Jamar, Claude

    2006-01-01

    Flatness of the wavefront diffracted by grating can be mandatory for some applications. At ambient temperature, the wavefront diffracted by a volume phase holographic grating (VPHG) is well mastered by the manufacturing process and can be corrected or shaped by post polishing. However, to be used in cooled infrared spectrometers, VPHGs have to stand and work properly at low temperatures.We present the measurement of the wavefront diffracted by atypical VPHG at various temperatures down to 150 K and at several thermal inhomogeneity amplitudes. The particular grating observed was produced using a dichromated gelatine technique and encapsulated between two glass blanks. Diffracted wavefront measurements show that the wavefront is extremely stable according to the temperature as long as the latter is homogeneous over the grating stack volume. Increasing the thermal inhomogeneity increases the wavefront error that pinpoints the importance of the final instrument thermal design. This concludes the dichromated gelatine VPHG technology, used more and more in visible spectrometers, can be applied as it is to cooled IR spectrometers

  11. Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide.

    Science.gov (United States)

    Nielsen, Martin; Alberico, Elisabetta; Baumann, Wolfgang; Drexler, Hans-Joachim; Junge, Henrik; Gladiali, Serafino; Beller, Matthias

    2013-03-07

    Hydrogen produced from renewable resources is a promising potential source of clean energy. With the help of low-temperature proton-exchange membrane fuel cells, molecular hydrogen can be converted efficiently to produce electricity. The implementation of sustainable hydrogen production and subsequent hydrogen conversion to energy is called "hydrogen economy". Unfortunately, its physical properties make the transport and handling of hydrogen gas difficult. To overcome this, methanol can be used as a material for the storage of hydrogen, because it is a liquid at room temperature and contains 12.6 per cent hydrogen. However, the state-of-the-art method for the production of hydrogen from methanol (methanol reforming) is conducted at high temperatures (over 200 degrees Celsius) and high pressures (25-50 bar), which limits its potential applications. Here we describe an efficient low-temperature aqueous-phase methanol dehydrogenation process, which is facilitated by ruthenium complexes. Hydrogen generation by this method proceeds at 65-95 degrees Celsius and ambient pressure with excellent catalyst turnover frequencies (4,700 per hour) and turnover numbers (exceeding 350,000). This would make the delivery of hydrogen on mobile devices--and hence the use of methanol as a practical hydrogen carrier--feasible.

  12. Temperature-induced phase transitions during ion-beam irradiation of the perovskite-structure oxides

    International Nuclear Information System (INIS)

    Meldrum, A.; Boatner, L.A.; Ewing, R.C.

    1997-01-01

    Several perovskite-structure oxide compounds, including CaTiO 3 , SrTiO 3 , BaTiO 3 , KNbO 3 , and KTaO 3 were irradiated by 800 keV Kr + ions in order to investigate and compare their response to heavy-ion irradiation. The critical amorphization temperature T c , above which amorphization temperature T c , above which amorphization could not be induced, was found to increase in the order SrTiO 3 → CaTiO 3 → BaTiO 3 → KNbO 3 → KTaO 3 . No single physical parameter explains the observed sequence, although T c correlates well with the melting temperatures. The well-known temperature-driven phase transformations in these materials did not have a significant effect on the dose required for amorphization. Domain boundaries were observed in the pristine samples; however, after only a low dose, the boundaries became poorly defined and, with increasing dose, eventually disappeared. Dislocation loops were observed to aggregate at the domain boundaries

  13. Global relationships of total alkalinity with salinity and temperature in surface waters of the world's oceans. (NCEI Accession 0157795)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface Total Alkalinity fields were estimated from five regional TA relationships presented in Lee et al. 2006, using monthly mean sea surface temperature and...

  14. Phase transitions and hydrogen bonding in deuterated calcium hydroxide: High-pressure and high-temperature neutron diffraction measurements

    International Nuclear Information System (INIS)

    Iizuka, Riko; Komatsu, Kazuki; Kagi, Hiroyuki; Nagai, Takaya; Sano-Furukawa, Asami; Hattori, Takanori; Gotou, Hirotada; Yagi, Takehiko

    2014-01-01

    In situ neutron diffraction measurements combined with the pulsed neutron source at the Japan Proton Accelerator Research Complex (J-PARC) were conducted on high-pressure polymorphs of deuterated portlandite (Ca(OD) 2 ) using a Paris–Edinburgh cell and a multi-anvil press. The atomic positions including hydrogen for the unquenchable high-pressure phase at room temperature (phase II′) were first clarified. The bent hydrogen bonds under high pressure were consistent with results from Raman spectroscopy. The structure of the high-pressure and high-temperature phase (Phase II) was concordant with that observed previously by another group for a recovered sample. The observations elucidate the phase transition mechanism among the polymorphs, which involves the sliding of CaO polyhedral layers, position modulations of Ca atoms, and recombination of Ca–O bonds accompanied by the reorientation of hydrogen to form more stable hydrogen bonds. - Graphical abstract: Crystal structures of high-pressure polymorphs of Ca(OD) 2 , (a) at room temperature (phase II′) and (b) at high temperature (phase II), were obtained from in situ neutron diffraction measurements. - Highlights: • We measured in situ neutron diffraction of high-pressure polymorphs of Ca(OD) 2 . • Hydrogen positions of the high-pressure phase are first determined. • The obtained hydrogen bonds reasonably explain Raman peaks of OH stretching modes. • A phase transition mechanism among the polymorphs is proposed

  15. Temperature measurements in fluid flows (eventually reactive, multi-phase...) using optical methods; Mesure des temperatures dans les ecoulements (eventuellement reactifs, multiphasiques...) par methodes optiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This conference day was organized by the `radiations` section of the French association of thermal engineers. This book of proceedings contains 8 papers entitled: `simultaneous temperature and NO concentration measurements in a hydrogen-air turbulent flame`; `application of iodine laser induced fluorescence to temperature, pressure and velocity measurements`; `Doppler phase measurement of refractive index and temperature`; `experimental and numerical study of temperature fields of particulates in plasma jets`; `measurement and determination of temperatures and concentrations of hot exhaust gases with FTIR emission spectroscopy`; `combustion control in gas turbines using CO{sub 2} emission spectroscopy`; `analysis of gases temperature fields and particulate jets. Application to hydrogen-air, kerosene stato-reactors and to solid propellant jets`; `restitution of temperature and species profiles in pre-mixing flames by inversion of transmission and IR emission data. (J.S.)

  16. The relationship of normal body temperature, end-expired breath temperature, and BAC/BrAC ratio in 98 physically fit human test subjects.

    Science.gov (United States)

    Cowan, J Mack; Burris, James M; Hughes, James R; Cunningham, Margaret P

    2010-06-01

    The relationship between normal body temperature, end-expired breath temperature, and blood alcohol concentration (BAC)/breath alcohol concentration (BrAC) ratio was studied in 98 subjects (84 men, 14 women). Subjects consumed alcohol sufficient to produce a BrAC of at least 0.06 g/210 L 45-75 min after drinking. Breath samples were analyzed using an Intoxilyzer 8000 specially equipped to measure breath temperature. Venous blood samples and body temperatures were then taken. The mean body temperature of the men (36.6 degrees C) was lower than the women (37.0 degrees C); however, their mean breath temperatures were virtually identical (men: 34.5 degrees C; women: 34.6 degrees C). The BAC exceeded the BrAC for every subject. BAC/BrAC ratios were calculated from the BAC and BrAC analytical results. There was no difference in the BAC/BrAC ratios for men (1:2379) and women (1:2385). The correlation between BAC and BrAC was high (r = 0.938, p body temperature and end-expired breath temperature, body temperature and BAC/BrAC ratio, and breath temperature and BAC/BrAC ratio were much lower. Neither normal body temperature nor end-expired breath temperature was strongly associated with BAC/BrAC ratio.

  17. Determination of thermal diffusivity at low temperature using the two-beam phase-lag photoacoustic method with observation of phase-transitions

    International Nuclear Information System (INIS)

    Jorge, M.P.P.

    1992-01-01

    This study consists of the determination of thermal diffusivity int he temperature range from 77 K to 300 K by the two-beam phase-lag photoacoustic method. Room temperature measurements of NTD (neutron transmutation doping) silicon suggest that the doping process does not affect its thermal properties. For the superconductor Y Ba 2 Cu 3 O 7 - x it has been verified that the sample density affects its thermal diffusivity. The validity of the experimental method on the Li K SO 4 crystal has been examined by using the thermal diffusivity of a Li F crystal and an Y 2 O 3 ceramic, at room temperature. The behavior of the thermal diffusivity as a function of the temperature for the Li K SO 4 crystal shows two anomalies which correspond at phase-transitions of this crystal in the studied temperature range. (author)

  18. Using Graphs of Gibbs Energy versus Temperature in General Chemistry Discussions of Phase Changes and Colligative Properties

    Science.gov (United States)

    Hanson, Robert M.; Riley, Patrick; Schwinefus, Jeff; Fischer, Paul J.

    2008-01-01

    The use of qualitative graphs of Gibbs energy versus temperature is described in the context of chemical demonstrations involving phase changes and colligative properties at the general chemistry level. (Contains 5 figures and 1 note.)

  19. Design and Manufacture of Pin Tools for Friction Stir Welding of Temperature-Resistant Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary goal of this SBIR Phase I project is to advance the development of low-cost, functionally graded laser additive manufactured high temperature refractory...

  20. High Temperature All Silicon-Carbide (SiC) DC Motor Drives for Venus Exploration Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project seeks to prove the feasibility of creating high-temperature silicon-carbide (SiC) based motor drives for...

  1. Origin of thickness dependence of structural phase transition temperatures in highly strained BiFeO3 thin films

    Directory of Open Access Journals (Sweden)

    Yongsoo Yang

    2016-03-01

    Full Text Available Two structural phase transitions are investigated in highly strained BiFeO3 thin films as a function of film thickness and temperature via synchrotron x-ray diffraction. Both transition temperatures (upon heating: monoclinic MC to monoclinic MA to tetragonal decrease as the film becomes thinner. A film-substrate interface layer, evidenced by half-order peaks, contributes to this behavior, but at larger thicknesses (above a few nanometers, the temperature dependence results from electrostatic considerations akin to size effects in ferroelectric phase transitions, but observed here for structural phase transitions within the ferroelectric phase. For ultra-thin films, the tetragonal structure is stable to low temperatures.

  2. The relationship between gut hormone secretion and gastric emptying in different phases of the migrating motor complex

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, L.; Oester-Joergensen, E.; Quist, N. [Odense University Hospital, Odense (Denmark); and others

    1996-05-01

    No studies are available on the relationship between the response of gut hormones and gastric emptying in different phases of the migrating motor complex. This study examined whether basal gut hormone concentrations in plasma before food ingestion are predictors of emptying characteristics and whether different hormone secretion patterns are associated with specific alteration in emptying rate. 12 healthy men were examined on two occasion: one with meal ingestion in phase I and the other with meal ingestion in phase II. The meal consisted of an omelette labelled with {sup 99m}Tc followed by 150 ml water labelled with {sup 111}In. Plasma concentrations of gastrin, cholecystokinin, motilin, and peptide YY were measured in the fasting state, immediately after food ingestion, and at 15 min-min intervals in the postprandial period. New findings from the present study include a higher incremental integrated postprandial motilin response in phase I than in phase II, and a linear relationship between median total integrated motilin response and solid emptying at 120 min in phase I. Furthermore, in phase I a linear relationship between total integrated area of cholecystokinin and solid emptying at 120 min was demonstrated. The findings from the present investigation have to be considered in the future design of studies that focus on postprandial release of gastrointestinal hormones. The transition from phase III to phase I is a reproducible and easily recognized pressure event. Therefore, the authors recommend the use of food ingestion immediately after termination of duodenal phase III. 14 refs.

  3. Crystallographic orientation relationships of boride and carbide particles with α and β phases in a β-Ti alloy

    International Nuclear Information System (INIS)

    Sarkar, Rajdeep; Karamched, Phani S.; Ghosal, P.; Prasad, K.S.; Nandy, T.K.; Ray, K.K.

    2014-01-01

    Highlights: • Crystallographic relationships of TiB and TiC with β and α-phases. • TiB exhibits crystallographic relationships with β- and α under certain conditions. • TiC shows definite orientation relationships with β- and α-phases. • Morphology of α depends on the nature of its OR with β, TiB and TiC. - Abstract: The aim of this investigation is to study the crystallographic orientation relationships of TiB and TiC with α- and β-phases in a boron and another carbon containing beta titanium alloys (Ti-15V-3Al-3Sn-3Cr), using orientation microscopy and transmission electron microscopy. The alloys were heat-treated further to study the effect of these boride and carbide particles on the nucleation of α-phases. Equiaxed and lath typed α-precipitation were observed around the TiB and TiC particles. The carbide particles show definite orientation relationships with β- and α-phases whereas boride particles exhibit crystallographic relationships with β- and α-phases under certain conditions

  4. Studying the relationship between redox and cell growth using quantitative phase imaging (Conference Presentation)

    Science.gov (United States)

    Sridharan, Shamira; Leslie, Matthew T.; Bapst, Natalya; Smith, John; Gaskins, H. Rex; Popescu, Gabriel

    2016-03-01

    Quantitative phase imaging has been used in the past to study the dry mass of cells and study cell growth under various treatment conditions. However, the relationship between cellular redox and growth rates has not yet been studied in this context. This study employed the recombinant Glrx-roGFP2 redox biosensor targeted to the mitochondrial matrix or cytosolic compartments of A549 lung epithelial carcinoma cells. The Glrx-roGFP2s biosensor consists of a modified GFP protein containing internal cysteine residues sensitive to the local redox environment. The formation/dissolution of sulfide bridges contorts the internal chromophore, dictating corresponding changes in florescence emission that provide direct measures of the local redox potential. Combining 2-channel florescent imaging of the redox sensor with quantitative phase imaging allowed observation of redox homeostasis alongside measurements of cellular mass during full cycles of cellular division. The results indicate that mitochondrial redox showed a stronger inverse correlation with cell growth than cytoplasmic redox states; although redox changes are restricted to a 5% range. We are now studying the relationship between mitochondrial redox and cell growth in an isogenic series of breast cell lines built upon the MCF-10A genetic background that vary both in malignancy and metastatic potential.

  5. Relationship between lower limbs kinematic variables and effectiveness of sprint during maximum velocity phase.

    Science.gov (United States)

    Struzik, Artur; Konieczny, Grzegorz; Grzesik, Kamila; Stawarz, Mateusz; Winiarski, Sławomir; Rokita, Andrzej

    2015-01-01

    The aim of the study was to determine the relationships between time of running over a 15-25 m section of a 30-meter run along a straight line and changes in the angle and angular velocity observed in ankle, knee and hip joints. Therefore, the authors attempted to answer the question of whether a technique of lower limbs movement during the phase of sprint maximum velocity significantly correlates with the time of running over this section. A group of 14 young people from the Lower Silesia Voivodeship Team participated in the experiment. A Fusion Smart Speed System was employed for running time measurements. The kinematic data were recorded using Noraxon MyoMotion system. There were observed statistically significant relationships between sprint time over a section from 15 to 25 m and left hip rotation (positive) and between this time and left and right ankle joint dorsi-plantar flexion (negative). During the maximum velocity phase of a 30 m sprint, the effect of dorsi-plantar flexion performed in the whole range of motion was found to be beneficial. This can be attributed to the use of elastic energy released in the stride cycle. Further, hip rotation should be minimized, which makes the stride aligned more along a line of running (a straight line) instead of from side to side.

  6. Dynamics of the Josephson multi-junction system with junctions characterized by non-sinusoidal current - phase relationship

    International Nuclear Information System (INIS)

    Abal'osheva, I.; Lewandowski, S.J.

    2004-01-01

    It is shown that the inclusion of junctions characterized by non-sinusoidal current - phase relationship in the systems composed of multiple Josephson junctions - results in the appearance of additional system phase states. Numerical simulations and stability considerations confirm that those phase states can be realized in practice. Moreover, spontaneous formation of the grain boundary junctions in high-T c superconductors with non-trivial current-phase relations due to the d-wave symmetry of the order parameter is probable. Switching between the phase states of multiple grain boundary junction systems can lead to additional 1/f noise in high-T c superconductors. (author)

  7. Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model

    International Nuclear Information System (INIS)

    Ling, Ziye; Chen, Jiajie; Xu, Tao; Fang, Xiaoming; Gao, Xuenong; Zhang, Zhengguo

    2015-01-01

    Highlights: • Expanded graphite can improve thermal conductivity of RT44HC by 20–60 times. • Thermal conductivity of PCM/EG composites keeps constant before/after melting. • Thermal conductivity of PCMs nearly doubled during phase changing. • Thermal conductivity of composite PCM increases with density and percentage of EG. • The simple model predicts thermal conductivity of EG-based composites accurately. - Abstract: This work studies factors that affect the thermal conductivity of an organic phase change material (PCM), RT44HC/expanded graphite (EG) composite, which include: EG mass fraction, composite PCM density and temperature. The increase of EG mass fraction and bulk density will both enhance thermal conductivity of composite PCMs, by up to 60 times. Thermal conductivity of RT44HC/EG composites remains independent on temperature outside the phase change range (40–45 °C), but nearly doubles during the phase change. The narrow temperature change during the phase change allows the maximum heat flux or minimum temperature for heat source if attaching PCMs to a first (constant temperature) or second (constant heat flux) thermal boundary. At last, a simple thermal conductivity model for EG-based composites is put forward, based on only two parameters: mass fraction of EG and bulk density of the composite. This model is validated with experiment data presented in this paper and in literature, showing this model has general applicability to any composite of EG and poor thermal conductive materials

  8. Evaluation of calcination temperature and phase composition ratio for new hyroxyapatite

    Science.gov (United States)

    Salimi, M. N. Ahmad; Chin, H. S.

    2017-10-01

    The demand of production of hydroxyapatite (HA) has been increasing for the purpose of medical and dental application. HA possesses the excellent properties leads to the priority choice for ceramic bone replacement. Synthesis route by wet chemical precipitation is commonly practised in industrial scale. Calcium hydroxide and Orthophosphoric acid are the precursors for production scale. The synthesis of HA is conducted by varying the synthetic condition: stirring rate, calcium-phosphate and calcination temperature. This paper is focused on the properties of HA produced by regulating the synthetic condition so that the qualities of HA can be well performed. Characterization studies were also carried out by Fourier Transform Infrared Spectroscopy (FT-IR) for functional group identification, Scanning Electron Microscope (SEM) for surface morphology analysis and X-Ray Diffraction (XRD) for phase composition and crystallinity respectively. Narrow particle size distribution contributed to better quality of hydroxyapatite for bone replacement. Both calcium-phosphate ratio and calcination temperature would affect the phase composition of calcium phosphate.

  9. Phase changing nanocomposites for low temperature thermal energy storage and release

    Directory of Open Access Journals (Sweden)

    A. Dorigato

    2017-09-01

    Full Text Available The aim of this paper is to develop new elastomeric phase change materials (PCM for the thermal energy storage/release below room temperature. In particular, poly(cyclooctene (PCO/paraffin blends filled with various concentrations of carbon nanotubes (CNTs, were prepared by a melt compounding process. The microstructural, thermo-mechanical and electrical properties of the resulting materials were investigated. The microstructure of these materials was characterized by the presence of paraffin domains inside the PCO, and CNTs were located only inside the paraffin domains in forms of aggregated clusters. DSC tests evidenced the existence of two distinct crystallization peaks at –10 and at 6 °C, respectively associated to the paraffin and the PCO phases, indicating that both the polymeric constituents are thermally active below room temperature. Moreover, CNT addition did not substantially alter the melting/crystallization properties of the material. Noticeable improvements of the mechanical properties and of the electrical conductivity with respect to the neat PCO/paraffin blend could be obtained upon CNT addition, and also thermal conductivity/diffusivity values were considerably enhanced above the percolation threshold. Finite element modeling demonstrated the efficacy of the prepared nanocomposites for applications in the thermal range from –30 to 6 °C.

  10. Phase relationships and thermodynamic interactions of isotactic poly(1-butene) and organic solvent systems.

    Science.gov (United States)

    Domańska, Urszula; Kozłowska, Marta Karolina

    2005-01-07

    Isotactic crystalline low-molecular-weight poly(1-butene), iPBu-1, was synthesised by using a metallocene catalyst. The molecular weight was determined by GPC. The chemical structure of iPBu-1 was verified by using high-temperature (13)C NMR spectroscopy and the thermal properties by differential scanning calorimetry (DSC). The (solid+liquid) equilibria, SLE, of iPBu-1 with different hydrocarbons (n-hexadecane, 1-heptene, 1-heptyne, cyclopentane, cyclohexane, cycloheptane, cyclooctane, benzene and propylbenzene) were studied by a dynamic method. By performing these experiments over a large concentration range, the temperature-mole fraction phase diagrams of the polymer-solvent systems could be constructed. From these diagrams it was found that iPBu-1 had the highest solubility in small-ring cycloalkanes and the lowest in n-hexadecane, 1-heptyne and benzene in the mole fraction range measured. The excess Gibbs energy models were used to describe the nonideal behaviour of the liquid phase and to estimate the solubility of iPBu-1 in the whole mole fraction range. Activity coefficients at infinite dilution of polymer and solvent were determined from the solubility measurements and were predicted by using the UNIFAC FV model and molecular Monte Carlo simulations.

  11. The relationship of sleep complaints risk factors with sleep phase, quality, and quantity in Japanese workers.

    Science.gov (United States)

    Matsumoto, Yuuki; Uchimura, Naohisa; Ishida, Tetsuya; Morimatsu, Yoshitaka; Mori, Mihoko; Inoue, Miyako; Kushino, Nanae; Hoshiko, Michiko; Ishitake, Tatsuya

    2017-01-01

    Numerous studies have determined that lifestyle factors (smoking, drinking, snacking, etc.) and the bedroom environment can influence sleep. We developed a new sleep scale-the 3-Dimensional Sleep Scale (3DSS)-which measures three elements of sleep: phase, quality, and quantity. The purpose of this study is to determine which risk factors of sleep complaints are associated with these sleep elements. Data were obtained from 366 Japanese day workers (302 men and 64 women). Sleep condition was assessed with the 3DSS, and we also assessed various habits within 2 h of going to bed, including smoking, drinking, snacking, caffeine intake, mobile phone use, and working. We also asked about bedroom environmental conditions (noise, lighting, and temperature and humidity). Multivariate logistic regression analysis using the backward selection method (likelihood ratio) was used, with 3DSS scores as the outcome (i.e., over or under the cutoff). The results showed that smoking was associated with significantly greater odds ratio [2.71 (1.65-4.44)] of disordered sleep phase, while lighting as well as temperature and humidity led to greater odds [3.67 (1.55-8.68), 1.93 (1.20-3.11)] of poor sleep quality. Finally, only noise was significantly related to greater odds [1.98 (1.13-3.46)] of low sleep quantity. These findings indicated the various risk factors of sleep complaints could be associated with different sleep elements. This might help in the effective treatment of sleep complaints.

  12. Karakorum temperature out of phase with hemispheric trends for the past five centuries

    Science.gov (United States)

    Zafar, Muhammad Usama; Ahmed, Moinuddin; Rao, Mukund Palat; Buckley, Brendan M.; Khan, Nasrullah; Wahab, Muhammad; Palmer, Jonathan

    2016-03-01

    A systematic increase in global temperature since the industrial revolution has been attributed to anthropogenic forcing. This increase has been especially evident over the Himalayas and Central Asia and is touted as a major contributing factor for glacier mass balance declines across much of this region. However, glaciers of Pakistan's Karakorum region have shown no such decline during this time period, and in some instances have exhibited slight advance. This discrepancy, known as the `Karakorum Anomaly', has been attributed to unusual amounts of debris covering the region's glaciers; the unique seasonality of the region's precipitation; and localized cooling resulting from increased cloudiness from monsoonal moisture. Here we present a tree-ring based reconstruction of summer (June-August) temperature from the Karakorum of North Pakistan that spans nearly five centuries (1523-2007 C.E.). The ring width indices are derived from seven collections (six— Picea smithiana and one— Pinus gerardiana) from middle-to-upper timberline sites in the northern Karakorum valleys of Gilgit and Hunza at elevations ranging from 2850 to 3300 meters above mean sea level (mean elevation 3059 m asl). The reconstruction passes all traditional calibration-verification schemes and explains 41 % of the variance of the nested Gilgit-Astore instrumental station data (Gilgit—1454 m asl, 1951-2009; Astore—2167 m asl, 1960-2013). Importantly, our results indicate that Karakorum temperature has remained decidedly out of phase with hemispheric temperature trends for at the least the past five centuries, highlighting the long-term stability of the Karakorum Anomaly, and suggesting that the region's temperature and cloudiness are contributing factors to the anomaly.

  13. Formation of Lithospheric Shear Zones: Effect of Temperature on Two-Phase Grain Damage

    Science.gov (United States)

    Mulyukova, E.; Bercovici, D.

    2016-12-01

    Shear localization in the lithosphere is an important element of the planetary scale dynamics. Being a characteristic feature of the tectonic plate boundaries, as is geologically evidenced by the presence of small grain mylonites and ultramylonites, understanding shear localization can shed light on the initiation and evolution of plate tectonics. Shear localization in the ductile portion of the lithosphere can arise when its constituting polycrystalline material deforms by diffusion creep, which has a grain size sensitive viscosity, in combination with the Zener pinning, which reduces grain size and impedes grain growth. We explore the deformation conditions under which these self-weakening effects take place, and, in particular, the effect of temperature on these conditions. In the presented model, the lithosphere-like polycrystalline material is deformed in a two-dimensional simple shear set-up by applying a constant stress or strain rate at the boundaries. The mineral grains evolve to a stable size, which is obtained when the rate of coarsening by normal grain growth and the rate of grain size reduction by damage are in balance. The rates of these microstructural transformations are dictated by the applied rate of mechanical work and temperature. The temperature-dependence enters through its influence on the diffusion and dislocation creep compliances, as well as the coarsening coefficient for grain growth, and the value of the damage partitioning fraction, which is the fraction of deformational work that goes into creating new surface energy. We demonstrate that the increase of temperature with depth can lead to a significant change in the microstructure and influence the degree of localization in the ductile portion of the lithosphere. Within the framework of the two-phase grain damage model, we present the theoretical constraints on the temperature-dependent material properties that can best explain the field observations of mylonites and ultramylonites.

  14. Hydration, phase separation and nonlinear rheology of temperature-sensitive water-soluble polymers

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Fumihiko; Koga, Tsuyoshi [Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510 (Japan); Kaneda, Isamu [Department of Food Science, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501 (Japan); Winnik, Francoise M, E-mail: ftanaka@phys.polym.kyoto-u.ac.jp [Department of Chemistry and Faculty of Pharmacy, University of Montreal, Montreal, H3C 3J7 (Canada)

    2011-07-20

    The collapse of a poly(N-isopropylacrylamide) (PNIPAM) chain upon heating and the phase diagrams of aqueous PNIPAM solutions with a very flat lower critical solution temperature (LCST) phase separation line are theoretically studied on the basis of cooperative dehydration (simultaneous dissociation of bound water molecules in a group of correlated sequence), and compared with the experimental observation of temperature-induced coil-globule transition by light scattering methods. The transition becomes sharper with the cooperativity parameter {sigma} of hydration. The reentrant coil-globule-coil transition and cononsolvency in a mixed solvent of water and methanol are also studied from the viewpoint of competitive hydrogen bonds between polymer-water and polymer-methanol. The downward shift of the cloud-point curves (LCST cononsolvency) with the mol fraction of methanol due to the competition is calculated and compared with the experimental data. Aqueous solutions of hydrophobically modified PNIPAM carrying short alkyl chains at both chain ends (telechelic PNIPAM) are theoretically and experimentally studied. The LCST of these solutions is found to shift downward along the sol-gel transition curve as a result of end-chain association (association-induced phase separation), and separate from the coil-globule transition line. Associated structures in the solution, such as flower micelles, mesoglobules, and higher fractal assembly, are studied by ultra small-angle neutron scattering with theoretical modeling of the scattering function. Dynamic-mechanical modulus, nonlinear stationary viscosity, and stress build-up in start-up shear flows of the associated networks are studied on the basis of the affine and non-affine transient network theory. The molecular conditions for thickening, strain hardening, and stress overshoot are found in terms of the nonlinear amplitude A of the chain tension and the tension-dissociation coupling constant g.

  15. Hydration, phase separation and nonlinear rheology of temperature-sensitive water-soluble polymers.

    Science.gov (United States)

    Tanaka, Fumihiko; Koga, Tsuyoshi; Kaneda, Isamu; Winnik, Françoise M

    2011-07-20

    The collapse of a poly(N-isopropylacrylamide) (PNIPAM) chain upon heating and the phase diagrams of aqueous PNIPAM solutions with a very flat lower critical solution temperature (LCST) phase separation line are theoretically studied on the basis of cooperative dehydration (simultaneous dissociation of bound water molecules in a group of correlated sequence), and compared with the experimental observation of temperature-induced coil-globule transition by light scattering methods. The transition becomes sharper with the cooperativity parameter σ of hydration. The reentrant coil-globule-coil transition and cononsolvency in a mixed solvent of water and methanol are also studied from the viewpoint of competitive hydrogen bonds between polymer-water and polymer-methanol. The downward shift of the cloud-point curves (LCST cononsolvency) with the mol fraction of methanol due to the competition is calculated and compared with the experimental data. Aqueous solutions of hydrophobically modified PNIPAM carrying short alkyl chains at both chain ends (telechelic PNIPAM) are theoretically and experimentally studied. The LCST of these solutions is found to shift downward along the sol-gel transition curve as a result of end-chain association (association-induced phase separation), and separate from the coil-globule transition line. Associated structures in the solution, such as flower micelles, mesoglobules, and higher fractal assembly, are studied by ultra small-angle neutron scattering with theoretical modeling of the scattering function. Dynamic-mechanical modulus, nonlinear stationary viscosity, and stress build-up in start-up shear flows of the associated networks are studied on the basis of the affine and non-affine transient network theory. The molecular conditions for thickening, strain hardening, and stress overshoot are found in terms of the nonlinear amplitude A of the chain tension and the tension-dissociation coupling constant g.

  16. Zero-temperature phase of the XY spin glass in two dimensions: Genetic embedded matching heuristic

    Science.gov (United States)

    Weigel, Martin; Gingras, Michel J. P.

    2008-03-01

    For many real spin-glass materials, the Edwards-Anderson model with continuous-symmetry spins is more realistic than the rather better understood Ising variant. In principle, the nature of an occurring spin-glass phase in such systems might be inferred from an analysis of the zero-temperature properties. Unfortunately, with few exceptions, the problem of finding ground-state configurations is a nonpolynomial problem computationally, such that efficient approximation algorithms are called for. Here, we employ the recently developed genetic embedded matching (GEM) heuristic to investigate the nature of the zero-temperature phase of the bimodal XY spin glass in two dimensions. We analyze bulk properties such as the asymptotic ground-state energy and the phase diagram of disorder strength vs disorder concentration. For the case of a symmetric distribution of ferromagnetic and antiferromagnetic bonds, we find that the ground state of the model is unique up to a global O(2) rotation of the spins. In particular, there are no extensive degeneracies in this model. The main focus of this work is on an investigation of the excitation spectrum as probed by changing the boundary conditions. Using appropriate finite-size scaling techniques, we consistently determine the stiffness of spin and chiral domain walls and the corresponding fractal dimensions. Most noteworthy, we find that the spin and chiral channels are characterized by two distinct stiffness exponents and, consequently, the system displays spin-chirality decoupling at large length scales. Results for the overlap distribution do not support the possibility of a multitude of thermodynamic pure states.

  17. Relationship of Morning Cortisol to Circadian Phase and Rising Time in Young Adults with Delayed Sleep Times

    Directory of Open Access Journals (Sweden)

    Mark S. Rea

    2012-01-01

    Full Text Available The present study was aimed at further elucidating the relationship between circadian phase, rising time, and the morning cortisol awakening response (CAR. The results presented here are a secondary analysis of experimental data obtained from a study of advanced sleep-wake schedules and light exposures on circadian phase advances measured by dim-light melatonin onset (DLMO. The present results demonstrate that morning CAR is strongly related to rising time and more weakly related to DLMO phase.

  18. Design and manufacture of ultra-high temperature ceramics with oriented strengthening and toughening phases

    Science.gov (United States)

    Acosta, Manuel

    The Horizontal Dip-Spin Casting (HDSC) Process, a newly designed method for the fabrication of ceramic composites, affords alignment of a reinforcing high aspect ratio phase while attaining curvature in the specimen. In this process, highly loaded aqueous ceramic suspensions (>50 vol. %) are produced with a minimum amount of polymer (˜1-5 vol. %). During forming, cylindrical foam molds are dipped in the suspension and rotated uniaxially to produce the alignment of the reinforcing phase. Rheological studies using suspensions containing alumina powder and alumina powder/carbon-whiskers, the model material systems for the process design, revealed that suspensions containing Polyvinylpyrrolidone (PVP) as a viscosity modifier follow a yield-pseudoplastic flow behavior. Green bodies have been fabricated with C-whiskers content <30 vol. % and considerable alignment of the strengthening phase has been achieved. Monolithic alumina green bodies fabricated from suspensions containing 2.6 and 5.1 vol. % polymer carrier can be machined and sintered. The same principals of fabrication have been applied to ZrB2 ultrahigh-temperature ceramic composites (UHTCCs). ZrB2 green bodies were produced after careful selection of polymer, dispersant and mold material to demonstrate the applicability of HDSC to UHTCCs.

  19. High-temperature phase relations and thermodynamics in the iron-lead-sulfur system

    Science.gov (United States)

    Eric, R. Hurman; Ozok, Hakan

    1994-01-01

    The PbS activities in FeS-PbS liquid mattes were obtained at 1100 °C and 1200 °C by the dew-point method. Negative deviations were observed, and the liquid-matte solutions were modeled by the Krupkowski formalism. The liquid boundaries of the FeS-PbS phase diagram were derived from the model equations yielding a eutectic temperature of 842 °C at X Pbs = 0.46. A phase diagram of the pseudobinary FeS-PbS was also verified experimentally by quenching samples equilibrated in evacuated and sealed silica capsules. No terminal solid solution ranges could be found. Within the Fe-Pb-S ternary system, the boundaries of the immiscibility region together with the tie-line distributions were established at 1200 °C. Activities of Pb were measured by the dew-point technique along the metal-rich boundary of the miscibility gap. Activities of Fe, Pb, and S, along the miscibility gap were also calculated by utilizing the bounding binary thermodynamics, phase equilibria, and tie-lines.

  20. A stable algorithm for calculating phase equilibria with capillarity at specified moles, volume and temperature using a dynamic model

    KAUST Repository

    Kou, Jisheng

    2017-09-30

    Capillary pressure can significantly affect the phase properties and flow of liquid-gas fluids in porous media, and thus, the phase equilibrium calculation incorporating capillary pressure is crucial to simulate such problems accurately. Recently, the phase equilibrium calculation at specified moles, volume and temperature (NVT-flash) becomes an attractive issue. In this paper, capillarity is incorporated into the phase equilibrium calculation at specified moles, volume and temperature. A dynamical model for such problem is developed for the first time by using the laws of thermodynamics and Onsager\\'s reciprocal principle. This model consists of the evolutionary equations for moles and volume, and it can characterize the evolutionary process from a non-equilibrium state to an equilibrium state in the presence of capillarity effect at specified moles, volume and temperature. The phase equilibrium equations are naturally derived. To simulate the proposed dynamical model efficiently, we adopt the convex-concave splitting of the total Helmholtz energy, and propose a thermodynamically stable numerical algorithm, which is proved to preserve the second law of thermodynamics at the discrete level. Using the thermodynamical relations, we derive a phase stability condition with capillarity effect at specified moles, volume and temperature. Moreover, we propose a stable numerical algorithm for the phase stability testing, which can provide the feasible initial conditions. The performance of the proposed methods in predicting phase properties under capillarity effect is demonstrated on various cases of pure substance and mixture systems.

  1. Tangent space analysis of two phase systems near the critical temperature

    International Nuclear Information System (INIS)

    Kullberg, C.

    1992-01-01

    In certain circumstances, reactor transient computer simulations lead to system conditions which approach or exceed the critical temperature. Such transients include accident scenarios where there is a loss of heat sink coincident with failure to scram. Near or above the critical temperature, many analysts have observed unusual reactor system behavior and in some cases code failures. In some circumstances, the flavor of these transients can be captured with simplified mathematical models that have embedded within them the same kind of nonlinear behavior. One way of analyzing the solution behavior near the critical temperature is to examine the algebraic and geometric characteristics of the equations. For system models with many degrees of freedom this proves to be an extremely difficult task. As a consequence, a simplified set of equations approximated with two degrees of freedom (equivalent two-dimensional phase space) is used to model the global system response. Known algebraic/geometric techniques are used to globally identify how the solutions evolve as a function of time. Two phase system models with only two degrees of freedom can become extremely complex in an algebraic context when reduced to a set of autonomous differential equations. Most of this complexity is embedded in the algebraic expressions for the equation of state. When the state equations are invoked, the symbolic expressions for the resultant transformed conservation equations contain hundreds of terms. However, a new class of symbolic software packages allows one to generate and manipulate such complex ions with relative ease. This technology was used in part to generate the numerical results presented in this paper

  2. Volume temperature relationship for iron at 330 GPa and the Earth's core density deficit

    Science.gov (United States)

    Shanker, J.; Singh, B. P.; Srivastava, S. K.

    2004-12-01

    Estimates of core density deficit (cdd) of the Earth's outer core recently reported by Anderson and Isaak [Another look at the core density deficit of Earth's outer core, Phys. Earth Planet Int. 131 (2002) 19-27] are questionable in view of the serious errors in the pressure-volume and bulk modulus data due to an inadequacy in the calibration process used by Mao et al. [Static compression of iron to 300 GPa and Fe0.8Ni0.2 alloy to 200 GPa: implications for the core, J. Geophys. Res. 94 (1990) 21737-21742]. The data used by Anderson and Isaak deviate significantly from the corresponding values derived from seismology. In the present study we have used the input data on density, isothermal bulk modulus and its pressure derivative from Stacey and Davis [High pressure equations of state with application to lower mantle and core, Phys. Earth Planet Int. 142 (2004) 137-184] which are consistent with the seismological data. Volumes of hexagonal close-packed iron have been calculated at different temperatures under isobaric conditions at P = 330 GPa, the inner core boundary (ICB) pressure using the relationship between thermal pressure and volume expansion based on the lattice potential theory originally due to Born and Huang [Dynamical Theory of Crystal Lattices, Oxford University Press, Oxford, 1954, p. 50]. The formulation for thermal pressure used by Anderson and Isaak has been modified by taking into account the variations of thermal expansivity α and isothermal bulk modulus KT with temperature. Values of cdd are then estimated corresponding to different temperatures ranging from 4000 to 8000 K. The results for cdd at different temperatures obtained in the present study are significantly higher than those estimated by Anderson and Isaak suggesting that the cdd for the Earth's outer core is nearly 10%. The effects of nickel when an Fe-Ni alloy replaces Fe are estimated and found to be insignificant.

  3. Shear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and lower pressure

    OpenAIRE

    Ji, Cheng; Levitas, Valery I.; Zhu, Hongyang; Chaudhuri, Jharna; Marathe, Archis; Ma, Yanzhang

    2012-01-01

    Disordered structures of boron nitride (BN), graphite, boron carbide (BC), and boron carbon nitride (BCN) systems are considered important precursor materials for synthesis of superhard phases in these systems. However, phase transformation of such materials can be achieved only at extreme pressure–temperature conditions, which is irrelevant to industrial applications. Here, the phase transition from disordered nanocrystalline hexagonal (h)BN to superhard wurtzitic (w)BN was found at room tem...

  4. Comparison of thermistor linearization techniques for accurate temperature measurement in phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Stankovic, S B; Kyriacou, P A, E-mail: p.kyriacou@city.ac.uk [School of Engineering and Mathematical Sciences, City University London, Northampton Square, London EC1V 0HB (United Kingdom)

    2011-08-17

    Alternate energy technologies are developing rapidly in the recent years. A significant part of this trend is the development of different phase change materials (PCMs). Proper utilization of PCMs requires accurate thermal characterization. There are several methodologies used in this field. This paper stresses the importance of accurate temperature measurements during the implementation of T-history method. Since the temperature sensor size is also important thermistors have been selected as the sensing modality. Two thermistor linearization techniques, one based on Wheatstone bridge and the other based on simple serial-parallel resistor connection, are compared in terms of achievable temperature accuracy through consideration of both, nonlinearity and self-heating errors. Proper calibration was performed before T-history measurement of RT21 (RUBITHERM (registered) GmbH) PCM. Measurement results suggest that the utilization of serial-parallel resistor connection gives better accuracy (less than {+-}0.1 deg. C) in comparison with the Wheatstone bridge based configuration (up to {+-}1.5 deg. C).

  5. The relationship between external auditory canal temperature and onset of estrus and ovulation in beef heifers.

    Science.gov (United States)

    Randi, Federico; McDonald, Michael; Duffy, Pat; Kelly, Alan K; Lonergan, Patrick

    2018-04-01

    The aim of this study was to evaluate the relationship of body temperature fluctuations, as measured by external auditory canal temperature, to the onset of estrus and ovulation. Beef heifers (n = 44, mean age 23.5 ± 0.4 months, mean weight 603.3 ± 5.7 kg) were fitted with a Boviminder ® ear tag 2 weeks before the start of the estrous synchronization protocol to allow acclimatization. The device recorded the temperature, accurate to 0.01° Fahrenheit, every 10 min and transmitted the data via a base station over the internet where it could be accessed remotely. The estrous cycles of all heifers were synchronized using an 8-day progesterone-based synchronization program; on day 0 a PRID was inserted in conjunction with an injection of GnRH, and PGF2α was administered the day before PRID removal. Heifers were checked for signs of estrus at 4-h intervals (i.e., 6 times per day) commencing 24 h after PRID withdrawal. Beginning 12 h after the onset of estrus, the ovaries were ultrasound scanned at 4-h intervals to determine the time of ovulation. Body temperature was recorded every 10 min and averaged to hourly means for the following 4 periods relative to the detected oestrus onset (=Time 0): Period I: -48 h to -7 h, Period II: -6 h to +6 h, Period III +7 h to ovulation, and Period IV: ovulation to 48 h post ovulation. Data were analysed using a Mixed Model ANOVA in SAS in a completely randomized design to observe effects of induced estrus on external auditory canal temperature. The mean (±SD) interval from removal of the PRID to onset of estrus activity was 46.6 ± 14.7 h. The mean duration of estrus was 16.0 ± 5.67 h and the mean interval from estrus onset to ovulation was 27.9 ± 7.68 h. Highest temperatures (100.95 ± 0.03 °F) were observed in Period II around estrus onset, whereas lowest temperatures were observed in the 48 h preceding estrus onset (100.28 ± 0.03 °F; Period I) and around ovulation (100.30

  6. Suppression of Brillouin scattering in fibre-optical parametric amplifier by applying temperature control and phase modulation

    DEFF Research Database (Denmark)

    Lorenzen, Michael Rodas; Noordegraaf, Danny; Nielsen, Carsten Vandel

    2009-01-01

    An increased gain in a fibre-optical parametric amplifier through suppression of stimulated Brillouin scattering is demonstrated by applying a temperature distribution along the fibre for a fixed phase modulation of the pump. The temperature distribution slightly impacts the gain spectrum....

  7. Potential of energy harvesting in barium titanate based laminates from room temperature to cryogenic/high temperatures: measurements and linking phase field and finite element simulations

    Science.gov (United States)

    Narita, Fumio; Fox, Marina; Mori, Kotaro; Takeuchi, Hiroki; Kobayashi, Takuya; Omote, Kenji

    2017-11-01

    This paper studies the energy harvesting characteristics of piezoelectric laminates consisting of barium titanate (BaTiO3) and copper (Cu) from room temperature to cryogenic/high temperatures both experimentally and numerically. First, the output voltages of the piezoelectric BaTiO3/Cu laminates were measured from room temperature to a cryogenic temperature (77 K). The output power was evaluated for various values of load resistance. The results showed that the maximum output power density is approximately 2240 nW cm‑3. The output voltages of the BaTiO3/Cu laminates were also measured from room temperature to a higher temperature (333 K). To discuss the output voltages of the BaTiO3/Cu laminates due to temperature changes, phase field and finite element simulations were combined. A phase field model for grain growth was used to generate grain structures. The phase field model was then employed for BaTiO3 polycrystals, coupled with the time-dependent Ginzburg–Landau theory and the oxygen vacancies diffusion, to calculate the temperature-dependent piezoelectric coefficient and permittivity. Using these properties, the output voltages of the BaTiO3/Cu laminates from room temperature to both 77 K and 333 K were analyzed by three dimensional finite element methods, and the results are presented for several grain sizes and oxygen vacancy densities. It was found that electricity in the BaTiO3 ceramic layer is generated not only through the piezoelectric effect caused by a thermally induced bending stress but also by the temperature dependence of the BaTiO3 piezoelectric coefficient and permittivity.

  8. Phase relationships and stability of the {mu}- and {zeta}-phases in the Ag-Al-X (X=Zn, Ga, Ge) systems

    Energy Technology Data Exchange (ETDEWEB)

    Paruchuri, M.R.; Massalaski, T.B. [Carnegie-Mellon Univ., Pittsburgh, PA (United States). Dept. of Materials Science and Engineering

    1993-09-01

    Details of phase relationships in three ternary systems, Ag-Al-X (X=Zn, Ga, Ge) near the Ag-rich corner at 400C are presented. Metallography, X-ray diffraction, scanning electron microscopy and X-ray spectroscopy have been used to establish the respective isothermal sections at 400C. In each case, the {mu}-phase and the {zeta}-phase of the Ag-Al binary system extend into the ternary system and terminate at a three-phase region involving the Ag-rich primary solid solution ({alpha}{sub 1}-phase) in the Ag-Al-Zn and Ag-Al-Ga systems, and the Ge-rich primary solid solution ({alpha}{sub 2}-phase) in the Ag-Al-Ge ternary system. The stability ranges of the {mu} and {zeta}-phases follow approximately constant electron concentration lines. The solid solubilities of Zn, Ga and Ge in the {mu}-phase are relatively small, compared with those in the {zeta}-phase (up to 18 at. %). No ternary phase appears to exist in the Ag-rich portions studied in the three ternary systems.

  9. Novel solid – solid phase change material based on polyethylene glycol and cellulose used for temperature stabilisation

    Directory of Open Access Journals (Sweden)

    Wojda Marta

    2014-01-01

    Full Text Available Thermal management is one of crucial issues in the development of modern electronic devices. In the recent years interest in phase change materials (PCMs as alternative cooling possibility has increased significantly. Preliminary results concerning the research into possibility of the use of solid-solid phase change materials (S-S PCMs for stabilisation temperature of electronic devices has been presented in the paper. Novel solid-solid phase change material based on polyethylene glycol and cellulose has been synthesized. Attempt to improve its thermal conductivity has been taken. Material has been synthesized for the purpose of stabilisation of temperature of electronic devices.

  10. Estimation of phase separation temperatures for polyethersulfone/solvent/non-solvent systems in RTIPS and membrane properties

    DEFF Research Database (Denmark)

    Liu, Min; Liu, Sheng-Hui; Skov, Anne Ladegaard

    2018-01-01

    and the mean pore size of membranes prepared with the RTIPS process decreased in line with an increase of PES molecular weight. When the membrane formation mechanism was the RTIPS process, the mechanical properties were better than those of the corresponding membranes prepared with the NIPS process.......Phase separation temperature estimations, based on Hansen solubility parameters for poly(ethersulfone) (PES)/solvent/non-solvent systems, were carried out to study the control of phase separation temperature in a reverse thermally induced phase separation (RTIPS) process. Four membrane...

  11. Constitutive relationships for ocean sediments subjected to stress and temperature gradients

    International Nuclear Information System (INIS)

    Davies, T.G.; Banerjee, P.K.

    1980-08-01

    The disposal of low-level nuclear wastes by burial in deep sea sediments is an option currently being considered. This report lays the groundwork for an investigation of the stability of canisters containing nuclear wastes against movement due to fluidisation of the surrounding sediments, where such fluidisation may result from thermally induced stresses. The requisite constitutive relationships for ocean sediments under stress and temperature gradients are derived from the theory of critical state soil mechanics. A parametric survey has been made of the behaviour of an element of soil in order to assess various models and the importance of the governing parameters, The formulation of a finite element algorithm is given for the solution of the sediment stability problem. (author)

  12. Relationship of ultrasound signal intensity with SonoVue concentration at body temperature in vitro

    Science.gov (United States)

    Yang, Xin; Li, Jing; He, Xiaoling; Wu, Kaizhi; Yuan, Yun; Ding, Mingyue

    2014-04-01

    In this paper, the relationship between image intensity and ultrasound contrast agent (UCA) concentration is investigated. Experiments are conducted in water bath using a silicon tube filled with UCA (SonoVue) at different concentrations (100μl/l to 6000μl/l) at around 37 °C to simulate the temperature in human body. The mean gray-scale intensity within the region of interest (ROI) is calculated to obtain the plot of signal intensity to UCA concentration. The results show that the intensity firstly exhibits a linear increase to the peak at approximately 1500μl/l then appears a downward trend due to the multiple scattering (MS) effects.

  13. Characterization of frequency-dependent glass transition temperature by Vogel-Fulcher relationship

    International Nuclear Information System (INIS)

    Bai Yu; Jin Li

    2008-01-01

    The complex mechanical modulus of polymer and polymer based composite materials showed a frequency-dependent behaviour during glass transition relaxation, which was historically modelled by the Arrhenius equation. However, this might not be true in a broad frequency domain based on the experience from the frequency dependence of the complex dielectric permittivity, which resulted from the same glass transition relaxation as for the complex mechanical modulus. Considering a good correspondence between dielectric and mechanical relaxation during glass transition, the Vogel-Fulcher relationship, previously proposed for the frequency dependence of dielectric permittivity, is introduced for that of the mechanical modulus; and the corresponding static glass transition temperature (T f ) was first determined for polymer and polymer based composite materials. (fast track communication)

  14. The exposure-response relationship between temperature and childhood hand, foot and mouth disease: A multicity study from mainland China.

    Science.gov (United States)

    Xiao, Xiong; Gasparrini, Antonio; Huang, Jiao; Liao, Qiaohong; Liu, Fengfeng; Yin, Fei; Yu, Hongjie; Li, Xiaosong

    2017-03-01

    Hand, foot and mouth disease (HFMD) is a rising public health issue in the Asia-Pacific region. Numerous studies have tried to quantify the relationship between meteorological variables and HFMD but with inconsistent results, in particular for temperature. We aimed to characterize the relationship between temperature and HFMD in various locations and to investigate the potential heterogeneity. We retrieved the daily series of childhood HFMD counts (aged 0-12 years) and meteorological variables for each of 143 cities in mainland China in the period 2009-2014. We fitted a common distributed lag nonlinear model allowing for over dispersion to each of the cities to obtain the city-specific estimates of temperature-HFMD relationship. Then we pooled the city-specific estimates through multivariate meta-regression with city-level characteristics as potential effect modifiers. We found that the overall pooled temperature-HFMD relationship was shown as an approximately inverted V shape curve, peaking at the 91th percentile of temperature with a risk ratio of 1.30 (95% CI: 1.23-1.37) compared to its 50th percentile. We found that 68.5% of the variations of city-specific estimates was attributable to heterogeneity. We identified rainfall and altitude as the two main effect modifiers. We found a nonlinear relationship between temperature and HFMD. The temperature-HFMD relationship varies depending on geographic and climatic conditions. The findings can help us deepen the understanding of weather-HFMD relationship and provide evidences for related public health decisions. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Deformation and Phase Transformation Processes in Polycrystalline NiTi and NiTiHf High Temperature Shape Memory Alloys

    Science.gov (United States)

    Benafan, Othmane

    2012-01-01

    The deformation and transformation mechanisms of polycrystalline Ni49.9Ti50.1 and Ni50.3Ti29.7Hf20 (in at.%) shape memory alloys were investigated by combined experimental and modeling efforts aided by an in situ neutron diffraction technique at stress and temperature. The thermomechanical response of the low temperature martensite, the high temperature austenite phases, and changes between these two states during thermomechanical cycling were probed and reported. In the cubic austenite phase, stress-induced martensite, deformation twinning and slip processes were observed which helped in constructing a deformation map that contained the limits over which each of the identified mechanisms was dominant. Deformation of the monoclinic martensitic phase was also investigated where the microstructural changes (texture, lattice strains, and phase fractions) during room-temperature deformation and subsequent thermal cycling were compared to the bulk macroscopic response. When cycling between these two phases, the evolution of inelastic strains, along with the shape setting procedures were examined and used for the optimization of the transformation properties as a function of deformation levels and temperatures. Finally, this work was extended to the development of multiaxial capabilities at elevated temperatures for the in situ neutron diffraction measurements of shape memory alloys on the VULCAN Diffractometer at Oak Ridge National Laboratory.

  16. Relationships between temperature, bleaching and white syndrome on the Great Barrier Reef

    Science.gov (United States)

    Ban, S. S.; Graham, N. A. J.; Connolly, S. R.

    2013-03-01

    Coral bleaching and disease have often been hypothesized to be mutually reinforcing or co-occurring, but much of the research supporting this has only drawn an implicit connection through common environmental predictors. In this study, we examine whether an explicit relationship between white syndrome and bleaching exists using assemblage-level monitoring data from up to 112 sites on reef slopes spread throughout the Great Barrier Reef over 11 years of monitoring. None of the temperature metrics commonly used to predict mass bleaching performed strongly when applied to these data. Furthermore, the inclusion of bleaching as a predictor did not improve model skill over baseline models for predicting white syndrome. Similarly, the inclusion of white syndrome as a predictor did not improve models of bleaching. Evidence for spatial co-occurrence of bleaching and white syndrome at the assemblage level in this data set was also very weak. These results suggest the hypothesized relationship between bleaching and disease events may be weaker than previously thought, and more likely to be driven by common responses to environmental stressors, rather than directly facilitating one another.

  17. Simultaneous measurement of temperature and strain using a phase-shifted fiber Bragg grating inscribed by femtosecond laser

    Science.gov (United States)

    Jiang, Yajun; Liu, Chi; Li, Dong; Yang, Dexing; Zhao, Jianlin

    2018-04-01

    A novel method for simultaneous measurement of temperature and strain using a single phase-shifted fiber Bragg grating (PS-FBG) is proposed. The PS-FBG is produced by exposing the fusion-spliced fiber with a femtosecond laser and uniform phase mask. Due to the non-uniform structure and strain distribution in the fusion-spliced region, the phase-shift changes with different responses during increases to the temperature and strain; by measuring the central wavelengths and the loss difference of two transmission dips, temperature and strain can be determined simultaneously. The resolutions of this particular sensor in measuring temperature and strain are estimated to be  ±1.5 °C and  ±12.2 µɛ in a range from  -50 °C to 150 °C and from 0 µɛ to 2070 µɛ.

  18. The relationship between environmental temperature and clothing insulation across a year.

    Science.gov (United States)

    Kwon, JuYoun; Choi, Jeongwha

    2012-09-01

    People adapt to thermal environments, such as the changing seasons, predominantly by controlling the amount of clothing insulation, usually in the form of the clothing that they wear. The aim of this study was to determine the actual daily clothing insulation on sedentary human subjects across the seasons. Thirteen females and seven males participated in experiments from January to December in a thermal chamber. Adjacent months were grouped in pairs to give six environmental conditions: (1) January/February = 5°C; (2) March/April = 14°C; (3) May/June = 25°C; (4) July/August = 29°C; (5) September/October = 23°C; (6) November/December = 8°C. Humidity(45 ± 5%) and air velocity(0.14 ± 0.01 m/s) were constant across all six experimental conditions. Participants put on their own clothing that allowed them to achieve thermal comfort for each air temperature, and sat for 60 min (1Met). The clothing insulation (clo) required by these participants had a significant relationship with air temperature: insulation was reduced as air temperature increased. The range of clothing insulation for each condition was 1.87-3.14 clo at 5°C(Jan/Feb), 1.62-2.63 clo at 14°C(Mar/Apr), 0.87-1.59 clo at 25°C(May/Jun), 0.4-1.01 clo at 29°C(Jul/Aug), 0.92-1.81 clo at 23°C (Sept/Oct), and 2.12-3.09 clo at 8°C(Nov/Dec) for females, and 1.84-2.90 clo at 5°C, 1.52-1.98 clo at 14°C, 1.04-1.23 clo at 25°C, 0.51-1.30 clo at 29°C, 0.82-1.45 clo at 23°C and 1.96-3.53 clo at 8°C for males. The hypothesis was that thermal insulation of free living clothing worn by sedentary Korean people would vary across seasons. For Korean people, a comfortable air temperature with clothing insulation of 1 clo was approximately 27°C. This is greater than the typical comfort temperature for 1 clo. It was also found that women clearly increased their clothing insulation level of their clothing as winter approached but did not decrease it by the same amount when spring came.

  19. Relationship among land surface temperature and LUCC, NDVI in typical karst area.

    Science.gov (United States)

    Deng, Yuanhong; Wang, Shijie; Bai, Xiaoyong; Tian, Yichao; Wu, Luhua; Xiao, Jianyong; Chen, Fei; Qian, Qinghuan

    2018-01-12

    Land surface temperature (LST) can reflect the land surface water-heat exchange process comprehensively, which is considerably significant to the study of environmental change. However, research about LST in karst mountain areas with complex topography is scarce. Therefore, we retrieved the LST in a karst mountain area from Landsat 8 data and explored its relationships with LUCC and NDVI. The results showed that LST of the study area was noticeably affected by altitude and underlying surface type. In summer, abnormal high-temperature zones were observed in the study area, perhaps due to karst rocky desertification. LSTs among different land use types significantly differed with the highest in construction land and the lowest in woodland. The spatial distributions of NDVI and LST exhibited opposite patterns. Under the spatial combination of different land use types, the LST-NDVI feature space showed an obtuse-angled triangle shape and showed a negative linear correlation after removing water body data. In summary, the LST can be retrieved well by the atmospheric correction model from Landsat 8 data. Moreover, the LST of the karst mountain area is controlled by altitude, underlying surface type and aspect. This study provides a reference for land use planning, ecological environment restoration in karst areas.

  20. A critical look at solar-climate relationships from long temperature series

    Directory of Open Access Journals (Sweden)

    B. Legras

    2010-11-01

    Full Text Available A key issue of climate change is to identify the forcings and their relative contributions. The solar-climate relationship is currently the matter of a fierce debate. We address here the need for high quality observations and an adequate statistical approach. A recent work by Le Mouël et al. (2010 and its companion paper by Kossobokov et al. (2010 show spectacular correlations between solar activity and temperature series from three European weather stations over the last two centuries. We question both the data and the method used in these works. We stress (1 that correlation with solar forcing alone is meaningless unless other forcings are properly accounted for and that sunspot counting is a poor indicator of solar irradiance, (2 that long temperature series require homogenization to remove historical artefacts that affect long term variability, (3 that incorrect application of statistical tests leads to interpret as significant a signal which arises from pure random fluctuations. As a consequence, we reject the results and the conclusions of Le Mouël et al. (2010 and Kossobokov et al. (2010. We believe that our contribution bears some general interest in removing confusion from the scientific debate.

  1. Rare earth permanent-magnet alloys’ high temperature phase transformation in situ and dynamic observation and its application in material design

    CERN Document Server

    Pan, Shuming

    2013-01-01

    The process of high temperature phase transition of rare earth permanent-magnet alloys is revealed by photographs taken by high voltage TEM. The relationship between the formation of nanocrystal and magnetic properties is discussed in detail, which effects alloys composition and preparation process. The experiment results verified some presumptions, and were valuable for subsequent scientific research and creating new permanent-magnet alloys. The publication is intended for researchers, engineers and managers in the field of material science, metallurgy, and physics. Prof. Shuming Pan is senior engineer of Beijing General Research Institute of Non-ferrous Metal.

  2. Phase analysis of high-temperature alloys for nuclear application by interference layer metallography

    International Nuclear Information System (INIS)

    Hoven, H.; Koizlik, K.; Nickel, H.

    1984-01-01

    Heat-resistant metallic materials for use in high-temperature gas-cooled reactors are nickel- or ironbase, solid-solution-strengthened, or age-hardened alloys. To control the material behavior and to adapt it to realistic load conditions, they have to be tested and characterized. During recent years, interference layer metallography has become an independent characterization procedure as well as an outstanding method for sample preparation for the application of quantitative image analysis to these refractory alloys. The special problems of characterization of nickel- and iron-base alloys that can now be solved by interference layer metallography and its physical background are reported. Chromatic contrasting and the subsequent phase analysis by way of the example of three common alloys are discussed. Finally, the optimization of interference layer metallography for application in quantitative image analysis is described

  3. Organic solvent modifier and temperature effects in non-aqueous size-exclusion chromatography on reversed-phase columns.

    Science.gov (United States)

    Caltabiano, Anna M; Foley, Joe P; Striegel, André M

    2018-01-05

    Common reversed-phase columns (C 18 , C 4 , phenyl, and cyano) offer inert surfaces suitable for the analysis of polymers by size-exclusion chromatography (SEC). The effect of tetrahydrofuran (THF) solvent and the mixtures of THF with a variety of common solvents used in high performance liquid chromatography (acetonitrile, methanol, dimethylformamide, 2-propanol, ethanol, acetone and chloroform) on reversed-phase stationary phase characteristics relevant to size exclusion were studied. The effect of solvent on the elution of polystyrene (PS) and poly(methyl methacrylate) (PMMA) and the effect of column temperature (within a relatively narrow range corresponding to typical chromatographic conditions, i.e., 10°C-60°C) on the SEC partition coefficients K SEC of PS and PMMA polymers, were also investigated. The bonded phases show remarkable differences in size separations when binary mixtures of THF with other solvents are used as the mobile phase. The solvent impact can be two-fold: (i) change of the polymeric coil size, and possible shape, and (ii) change of the stationary phase pore volume. If the effect of this impact is properly moderated, then the greatest benefit of optimized solute resolution can be achieved. Additionally, this work provides an insight on solvent-stationary phase interactions and their effects on column pore volume. The only effect of temperature observed in our studies was a decreased elution volume of the polymers with increasing temperature. SEC partition coefficients were temperature-independent in the range of 10°C-60°C and therefore, over this temperature range elution of PS and PMMA polymers is by near-ideal SEC on reversed-phase columns. Non-ideal SEC appears to occur for high molar mass PMMA polymers on a cyano column when alcohols are used as mobile phase modifiers. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Live cell plasma membranes do not exhibit a miscibility phase transition over a wide range of temperatures.

    Science.gov (United States)

    Lee, Il-Hyung; Saha, Suvrajit; Polley, Anirban; Huang, Hector; Mayor, Satyajit; Rao, Madan; Groves, Jay T

    2015-03-26

    Lipid/cholesterol mixtures derived from cell membranes as well as their synthetic reconstitutions exhibit well-defined miscibility phase transitions and critical phenomena near physiological temperatures. This suggests that lipid/cholesterol-mediated phase separation plays a role in the organization of live cell membranes. However, macroscopic lipid-phase separation is not generally observed in cell membranes, and the degree to which properties of isolated lipid mixtures are preserved in the cell membrane remain unknown. A fundamental property of phase transitions is that the variation of tagged particle diffusion with temperature exhibits an abrupt change as the system passes through the transition, even when the two phases are distributed in a nanometer-scale emulsion. We support this using a variety of Monte Carlo and atomistic simulations on model lipid membrane systems. However, temperature-dependent fluorescence correlation spectroscopy of labeled lipids and membrane-anchored proteins in live cell membranes shows a consistently smooth increase in the diffusion coefficient as a function of temperature. We find no evidence of a discrete miscibility phase transition throughout a wide range of temperatures: 14-37 °C. This contrasts the behavior of giant plasma membrane vesicles (GPMVs) blebbed from the same cells, which do exhibit phase transitions and macroscopic phase separation. Fluorescence lifetime analysis of a DiI probe in both cases reveals a significant environmental difference between the live cell and the GPMV. Taken together, these data suggest the live cell membrane may avoid the miscibility phase transition inherent to its lipid constituents by actively regulating physical parameters, such as tension, in the membrane.

  5. Investigation of an unusual low-temperature phase transformation in RbBH4 by neutron diffraction

    International Nuclear Information System (INIS)

    Kitchen, Brian B.; Verdal, Nina; Udovic, Terrence J.; Rush, John J.; Hartman, Michael R.; DeVries, Daniel J.

    2013-01-01

    To investigate the previously reported low-temperature phase transition in rubidium borohydride (RbBH 4 ) near 48.5 K, we carried out neutron powder diffraction and vibrational spectroscopy measurements both above and below this temperature on an isotopically-enriched sample of Rb 11 BD 4 . Our diffraction data reflected an average cubic Fm3 ¯ m structure with BD 4 − anion orientational disorder at all temperatures, with no hint of extra Bragg peaks due to long-range orientational order below the transition temperature as reported by others. These structural results and careful analysis of torsional vibrations in RbBD 4 corroborate the results of prior neutron vibrational spectroscopy measurements suggesting that the low-temperature RbBH 4 structure indeed possesses some orientational ordering of the BH 4 − anions, but of a shorter-ranged nature insensitive to powder diffraction methods. - The neutron powder diffraction pattern of RbBD 4 below the phase transition temperature (shown here in black) is indistinguishable from that collected above the phase transition temperature. The inset depicts the cubic structure that fits the data at both temperatures. - Highlights: • We investigated the nature of the RbBD 4 phase transition using NVS and NPD. • A change in shape of the RbBD 4 torsion mode was observed across the transition. • The RbBD 4 diffraction pattern across this phase transition was unchanged. • The phase transition in RbBD 4 appears to produce only short-range ordering of BD 4 −

  6. Phase composition of Al-Ti-Nb-Mo γ alloys in the heat-treatment temperature range: Calculation and experiment

    Science.gov (United States)

    Belov, N. A.; Dashkevich, N. I.; Bel'tyukova, S. O.

    2015-07-01

    The phase composition of TNM-type Al-Ti-Nb-Mo γ alloys at heat-treatment temperatures is quantitatively studied using the Thermo-Calc program package and experimental methods. Isothermal cross sections are calculated and the joint influence of two alloying elements on the phase composition of the alloy is determined at the mean concentration of a third component. Based on the calculations of vertical cross sections, the boundaries of the four-phase eutectoid reaction α → α2 + β + γ are found. The temperature is shown to significantly influence the phase compositions of the γ alloys, among them the mass fractions of various phases (α, β, γ,α2) and the element concentration in them.

  7. γ-U phase in U-Pt system retained to low temperatures by means of rapid cooling

    Energy Technology Data Exchange (ETDEWEB)

    Kim-Ngan, N.-T.H., E-mail: tarnawsk@up.krakow.pl [Institute of Physics, Pedagogical University, Podchorazych 2, 30 084 Kraków (Poland); Paukov, M. [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116 Prague (Czech Republic); Tarasenko, R. [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116 Prague (Czech Republic); Institute of Physics, Faculty of Science, P.J. Šafárik University, Park Angelinum 9, 04154 Košice (Slovakia); Tkáč, V.; Minarik, P.; Drozdenko, D.; Havela, L. [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116 Prague (Czech Republic)

    2016-10-15

    Splat-cooling technique with a cooling rate better than 10{sup 6} K/s helps to increase the Pt solubility in the (cubic) γ-U phase and retain such γ-U phase in U-15 at.% Pt splat down to low temperatures. The splat-cooled U-Pt alloys are very stable in exposing to air. The γ-U phase (U-15 at.% Pt splat) is characterized by a negative temperature coefficient of the resistivity (dρ/dT < 0). The splats become superconducting below 1.1 K. - Highlights: • γ-U phase stabilization in U-15 at.% Pt splat-cooled alloys. • Splat-cooling helps to increase the Pt solubility in cubic γ-U phase. • All U-Pt alloys (0–15 at.% Pt) become superconducting below 1.1 K.

  8. The Relationship between Atmospheric Carbon Dioxide Concentration and Global Temperature for the Last 425 Million Years

    Directory of Open Access Journals (Sweden)

    W. Jackson Davis

    2017-09-01

    Full Text Available Assessing human impacts on climate and biodiversity requires an understanding of the relationship between the concentration of carbon dioxide (CO2 in the Earth’s atmosphere and global temperature (T. Here I explore this relationship empirically using comprehensive, recently-compiled databases of stable-isotope proxies from the Phanerozoic Eon (~540 to 0 years before the present and through complementary modeling using the atmospheric absorption/transmittance code MODTRAN. Atmospheric CO2 concentration is correlated weakly but negatively with linearly-detrended T proxies over the last 425 million years. Of 68 correlation coefficients (half non-parametric between CO2 and T proxies encompassing all known major Phanerozoic climate transitions, 77.9% are non-discernible (p > 0.05 and 60.0% of discernible correlations are negative. Marginal radiative forcing (ΔRFCO2, the change in forcing at the top of the troposphere associated with a unit increase in atmospheric CO2 concentration, was computed using MODTRAN. The correlation between ΔRFCO2 and linearly-detrended T across the Phanerozoic Eon is positive and discernible, but only 2.6% of variance in T is attributable to variance in ΔRFCO2. Of 68 correlation coefficients (half non-parametric between ΔRFCO2 and T proxies encompassing all known major Phanerozoic climate transitions, 75.0% are non-discernible and 41.2% of discernible correlations are negative. Spectral analysis, auto- and cross-correlation show that proxies for T, atmospheric CO2 concentration and ΔRFCO2 oscillate across the Phanerozoic, and cycles of CO2 and ΔRFCO2 are antiphasic. A prominent 15 million-year CO2 cycle coincides closely with identified mass extinctions of the past, suggesting a pressing need for research on the relationship between CO2, biodiversity extinction, and related carbon policies. This study demonstrates that changes in atmospheric CO2 concentration did not cause temperature change in the ancient climate.

  9. The relationship between gut hormone secretion and gastric emptying in different phases of the migrating motor complex

    DEFF Research Database (Denmark)

    Rasmussen, L; Oster-Jørgensen, E; Qvist, N

    1996-01-01

    a higher incremental integrated postprandial motilin response in phase I than in phase II (998 pmol/l*30 min (495 to 2010) versus 210 pmol/l*30 min (-270 to 2323), p total integrated motilin response and solid emptying at 120 min in phase I (Rs = 0.58; p......BACKGROUND: No studies are available on the relationship between the response of gut hormones and gastric emptying in different phases of the migrating motor complex. This study examined whether basal gut hormone concentrations in plasma before food ingestion are predictors of emptying...... total integrated area of cholecystokinin and solid emptying at 120 min was demonstrated (Rs = 0.62; p

  10. New graphite/salt materials for high temperature energy storage. Phase change properties study

    International Nuclear Information System (INIS)

    Lopez, J.

    2007-07-01

    This work is a contribution to the study of new graphite/salt composites dedicated to high temperature energy storage (≥200 C). The aim is to analyse and to understand the influence of both graphite and composite microstructure on the phase change properties of salts. This PhD is carried out within the framework of two projects: DISTOR (European) and HTPSTOCK (French). The major contributions of this work are threefold: 1) An important database (solid-liquid phase change properties) is provided from the DSC analysis of six salts and the corresponding composites. 2) Rigorous modeling of salts melting in confined media in several geometries are proposed to understand why, during the first melting of the compression elaborated composites, problems of salt leakage are observed. These models show that the materials morphology is responsible for these phenomena: the graphite matrix restrains the volume expansion due to salt melting: salt melts under pressure, which leads to a melting on a large temperature range and to a loss of energy density. Sensitivity analysis of parameters (geometric and physic) shows that matrix rigidity modulus is the parameter on which it is necessary to act during the composites elaboration to blur this phenomenon. 3) Finally, this work proposes a thermodynamic formulation of both surface/interface phenomena and the presence of dissolved impurities being able to explain a melting point lowering. It seems that the melting point lowering observed (∼ 5 C) are mainly due to the presence of dissolved impurities (brought by graphite) in the liquid, along with an additional Gibbs-Thomson effect (∼ 1 C, related to the size of the clusters crystals). (author)

  11. The endogenous circadian temperature period length (tau) in delayed sleep phase disorder compared to good sleepers.

    Science.gov (United States)

    Micic, Gorica; de Bruyn, Amanda; Lovato, Nicole; Wright, Helen; Gradisar, Michael; Ferguson, Sally; Burgess, Helen J; Lack, Leon

    2013-12-01

    The currently assumed aetiology for delayed sleep phase disorder (DSPD) is a delay of the circadian system. Clinicians have sought to use bright light therapy, exogenous melatonin or chronotherapy to correct the disorder. However, these treatments have achieved unreliable outcomes for DSPD patients and, as such, one suggestion has been that the disorder may be caused by a longer than normal circadian rhythm period length (i.e. tau). The present study investigated this premise using a 78-h ultradian, ultra-short sleep-wake cycle. This constant bedrest routine was used to simulate a series of 1-h long 'days' by alternating 20-min sleep opportunities and 40 min of enforced wakefulness. Thirteen participants were recruited for the study including, six people diagnosed with DSPD according to the International Classification of Sleep Disorders-2 [mean age = 22.0, standard deviation (SD) = 3.3] and seven good sleepers (mean age = 23.1, SD = 3.9) with normal sleep timing. The DSPD participants' core temperature rhythm tau (mean = 24 h 54 min, SD = 23 min) was significantly longer (t = -2.33, P = 0.04, Cohen's d = 1.91) than the good sleepers' (mean 24 h 29 min, SD = 16 min). The temperature rhythm of the DSPD participants delayed more rapidly (i.e. >25 min day(-1) ) than the good sleepers'. These findings provide an explanation for the difficulty that DSPD patients have in phase advancing to a more conventional sleep time and their frequent relapse following treatment. The outcomes of this study support a vigorous and continued application of chronobiological and behavioural therapies to entrain DSPD patients to their desired earlier sleep times. © 2013 European Sleep Research Society.

  12. Temperature effect on phase states of quartz nano-crystals in silicon single crystal

    International Nuclear Information System (INIS)

    Kalanov, M.U.; Ibragimova, E.M.; Khamraeva, R.N.; Rustamova, V.M.; Ummatov, Kh.D.

    2006-01-01

    Full text: Oxygen penetrates into the silicon lattice up to the concentration of 2·10 18 cm -3 in the course of growing [1]. By the author's opinion at a low oxygen content the formation of solid solution is possible in the local defect places of the silicon single crystal lattice due to the difference in effective ion radius of oxygen and silicon (r O 0.176 and r Si = 0.065 nm). Upon reaching some critical content (∼ 10 17 cm -3 ), it becomes favorable energetically for oxygen ions to form precipitates (SiO x ) and finally a dielectric layer (stoichiometric inclusions of SiO 2 ). It was shown later that depending on the growth conditions, indeed the quartz crystal inclusions are formed in the silicon single crystals at an amount of 0.3 /0.5 wt. % [2]. However the authors did not study a phase state of the quartz inclusions. Therefore the aim of this work was to study a phase state of the quartz inclusions in silicon crystal at various temperatures. We examined the silicon single crystals grown by Czochralski technique, which were cut in (111) plane in the form of disk of 20 mm diameter and 1.5 thickness and had hole conductivity with the specific resistance ρ o ≅ 1/10 Ohm cm. The dislocation density was N D ≅ 10 1 /10 3 cm -2 , the concentrations of oxygen and boron were N 0 ≅ 2/ 4·10 17 cm -3 and N B ≅ 3*10 15 cm -3 . Structure was analyzed at the set-up DRON-UM1 with high temperature supply UVD-2000 ( CuK = 0.1542 nm) at the temperatures of 300, 1173 and 1573 K measured with platinum-platinum-rhodium thermocouple. The high temperature diffraction spectrum measured at 1573 K in the angle range (2Θ≅10/70 d egree ) there is only one main structure reflection (111) with a high intensity and d/n ≅ 0.3136 nm (2 Θ≅ 28.5 d egree ) from the matrix lattice of silicon single crystal. The weak line at 2 Θ≅ 25.5 d egree ( d/n≅0.3136 nm) is β component of the main reflection (111), and the weak structure peak at 2Θ≅59 d egree ( d/n≅ 0.1568 nm

  13. Phase relations in the Cu-Te-S system at temperatures between 350 and 900 degree C

    DEFF Research Database (Denmark)

    Karup-Møller, Sven

    1994-01-01

    Phase relations were determined in the Cu-Te-S system at 350, 450, 550, 675, 800 and 900 degree C. At 350 degree C three ternary phases are present, goldfieldite and two phases A and B, which have not been found i nature. Phase A has disappeared by 450 degree C, goldfieldite has disappeared by 550......, the Cu content of the liquid rapidly decreases to trace amonts. With increasing temperature the field extends into the ternary from the tellurium corner towards the Cu-S join. The boundary of the liquid field in the central portion of the phae diagram towards the sulphur corner does not change position...

  14. Phase transition of intermetallic TbPt at high temperature and high pressure

    Science.gov (United States)

    Qin, Fei; Wu, Xiang; Yang, Ke; Qin, Shan

    2018-04-01

    Here we present synchrotron-based x-ray diffraction experiments combined with diamond anvil cell and laser heating techniques on the intermetallic rare earth compound TbPt (Pnma and Z  =  4) up to 32.5 GPa and ~1800 K. The lattice parameters of TbPt exhibit continuous compression behavior up to 18.2 GPa without any evidence of phase transformation. Pressure-volume data were fitted to a third-order Birch-Murnaghan equation of state with V 0  =  175.5(2) Å3, {{K}{{T0}}}   =  110(5) GPa and K{{T0}}\\prime   =  3.8(7). TbPt exhibits anisotropic compression with β a   >  β b   >  β c and the ratio of axial compressibility is 2.50:1.26:1.00. A new monoclinic phase of TbPt assigned to the Pc or P2/c space group was observed at 32.5 GPa after laser heating at ~1800 K. This new phase is stable at high pressure and presented a quenchable property on decompression to ambient conditions. The pressure-volume relationship is well described by the second-order Birch-Murnaghan equation of state, which yields V 0  =  672(4) Å3, {{K}{{T0}}}   =  123(6) GPa, which is about ~14% more compressible than the orthorhombic TbPt. Our results provide more information on the structure and elastic property view, and thus a better understanding of the physical properties related to magnetic structure in some intermetallic rare earth alloys.

  15. Relationship between thunderstorm electrification and storm kinetics revealed by phased array weather radar

    Science.gov (United States)

    Yoshida, S.; Adachi, T.; Kusunoki, K.; Hayashi, S.; Wu, T.; Ushio, T.; Yoshikawa, E.

    2017-04-01

    We examine 3-D lightning location data and radar data obtained through multiple radar observation stations, including two X-band phased array weather radars (PAWRs), in order to understand the relationship between thunderstorm electrification and storm kinetics. In an investigated convective cell, both intracloud (IC) and cloud-to-ground (CG) flash rates drastically change within 25 min. First, the IC flash rate shows a steep increase with a peak at 10 min-1, and then, the CG flash rate peaks 7 min afterward. During the increase phase of the IC flash rate, the radar observation indicates that the echo top height and updraft echo volume in the upper level increase. The upper positive charge regions removed by IC flashes are located in or near the updraft region at high altitudes. On the contrary, the IC flash rate decreases when the updraft at high altitudes weakens. The IC flash rate is well correlated with a proxy for updraft volume in 1 min interval comparison. These results indicate that the IC flash rate has a strong connection with updraft at high altitudes. The CG flash rate peaks when precipitation particles, probably involving graupel, from high altitudes arrive at approximately the -10°C isotherm level. We speculate that graupel from high altitudes might contribute to the initiations of CG flashes. We show an abrupt ascent of the upper positive charge region involved in IC flashes. PAWR observation results indicate that the updraft might have contributed to the ascent of the upper positive lightning charge region.

  16. Stability of low-temperature Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} cubic phase: The role of temperature and atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Quinzeni, Irene; Capsoni, Doretta; Berbenni, Vittorio; Mustarelli, Piercarlo [Chemistry Department, Physical-Chemistry Section, University of Pavia, Viale Taramelli 16, 27100 Pavia (Italy); Sturini, Michela [Chemistry Department, Analytical Section, University of Pavia, Viale Taramelli 12, 27100 Pavia (Italy); Bini, Marcella, E-mail: bini@unipv.it [Chemistry Department, Physical-Chemistry Section, University of Pavia, Viale Taramelli 16, 27100 Pavia (Italy)

    2017-01-01

    Rechargeable all solid-state lithium batteries are a promising technology for the next generation of safer batteries. In this context, strict requirements are placed on the electrolytes, among which is emerging the Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} garnet, chiefly for the relationships among synthesis conditions and phase stability. Here, the structural modifications of the low temperature (LT) Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} cubic form were investigated by using in situ X-Rays diffraction analysis. In particular, we studied the role of both temperature and atmosphere (air or argon) on phase stabilization. In argon flow, the LT phase is stable under 750 °C, and it transforms into the tetragonal one at lower temperature. In air, it partially decomposes to La{sub 2}Zr{sub 2}O{sub 7} due to Li loss above 250 °C. ICP-OES analysis confirmed that garnet stoichiometry was maintained in argon, whereas in air lithium loss occurred. The structural transformations are driven by the CO{sub 2} absorbed in the LT structure that can form Li{sub 2}CO{sub 3} and/or La{sub 2}(CO{sub 3}){sub 3} so causing stoichiometry changes responsible of the structural evolution. - Highlights: • Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} is a promising electrolyte for rechargeable all solid state batteries. • The stability of low temperature cubic phase of garnet in argon and air was determined. • The garnet stoichiometry was maintained in argon while in air lithium loss occurred. • The influence of CO{sub 2} adsorption on the structural modifications of garnet was proved.

  17. Temperature dependent lattice distortion and high temperature phase transition of pseudo-cubic bis(tetramethylammonium) hexafluorotitanate(IV), (TMA)2[TiF6

    NARCIS (Netherlands)

    Göbel, Ole; ten Elshof, Johan E.; Schreurs, A.M.M.

    2011-01-01

    The crystal structure of (TMA)2[TiF6] between –173 °C and 180 °C was refined on the basis of single crystal diffraction data. A phase transition from rhombohedral to cubic at approx. 142 °C was found by measuring the birefringence as a function of temperature, and confirmed by the refined crystal

  18. Investigation of the effect of different parameters on the phase inversion temperature O/W nanoemulsions

    Directory of Open Access Journals (Sweden)

    D. Kaviani

    2016-01-01

    Full Text Available Objective(s: Nanoemulsions are a kind of emulsions that can be transparent, translucent (size range 50-200 nm or “milky” (up to 500 nm. Nanoemulsions are adequatly effective for transfer of active component through skin which facilitate the entrance of the active component . The transparent nature of the system and lack of the thickener and fluidity are among advantages of nanoemulsion. Materials and Methods: In this study, a nanoemulsion of lemon oil in water was prepared by the phase inversion temperature (PIT emulsification method in which the tween 40 was used as surfactant. The effect of concentration of NaCl in aqueous phase, pH and weight percent of surfactant and aqueous on the PIT and droplet size were investigated. Results: The results showed that with increasing of concentration of NaCl from 0.05 M to 1 M, PIT decrease from 72 to 50. The average droplet sizes, for 0.1, 0.5 and 1 M of NaCl in 25 ºC are 497.3, 308.1 and 189.9 nm, respectively and the polydispersity indexes are 0.348, 0.334 and 0.307, respectively. Conclusion: Considering the characteristics of nanoemulsions such as being transparent, endurance of solution and droplet size can provide suitable reaction environment for polymerization process used in making hygienic and medical materials.

  19. Low-temperature synthesis of single-phase Co7Sb2O12

    International Nuclear Information System (INIS)

    Brito, M.S.L.; Escote, M.T.; Santos, C.O.P.; Lisboa-Filho, P.N.; Leite, E.R.; Oliveira, J.B.L.; Gama, L.; Longo, E.

    2004-01-01

    Polycrystalline Co 7 Sb 2 O 12 compounds have been synthesized by a chemical route, which is based on a modified polymeric precursor method. In order to study the physical properties of the samples, X-ray diffraction (XRD), thermal analyses (TG and DSC), infrared spectroscopy (IR), specific surface area (BET), and magnetization measurements were performed on these materials. Characterization through XRD revealed that the samples are single-phase after a heat-treatment at 1100 deg. C for 2 h, while the X-ray patterns of the samples heat-treated at lower temperatures revealed the presence of additional Bragg reflections belonging to the Co 6 Sb 2 O 6 phase. These data were analyzed by means of Rietveld refinement and further analyze showed that Co 7 Sb 2 O 12 displays an inverse spinel crystalline structure. In this structure, the Co 2+ ions occupy the eight tetrahedral positions, and the sixteen octahedral positions are randomly occupied by the Sb 5+ and Co 2+ ions. IR studies disclosed two strong absorption bands, ν 1 and ν 2 , in the expected spectral range for a spinel-type binary oxide with space group Fd3m. Exploratory studies concerning the magnetic properties indicated that this sample presents a spin-glass transition at T f ∼ 64 K

  20. Max Phase Materials And Coatings For High Temperature Heat Transfer Applications

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Rodriguez, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Olson, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fuentes, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Sindelar, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-19

    Molten salts have been used as heat transfer fluids in a variety of applications within proposed Gen IV nuclear designs and in advanced power system such as Concentrating Solar Power (CSP). However, operating at elevated temperatures can cause corrosion in many materials. This work developed coating technologies for MAX phase materials on Haynes-230 and characterized the corrosion of the coatings in the presence of commercial MgCl2-KCl molten salt. Cold spraying of Ti2AlC and physical vapor deposition (PVD) of Ti2AlC or Zr2AlC were tested to determine the most effective form of coating MAX phases on structural substrates. Corrosion testing at 850°C for 100 hrs showed that 3.9 μm Ti2AlC by PVD was slightly protective while 117 μm Ti2AlC by cold spray and 3.6 μm Zr2AlC by PVD were completely protective. None of the tests showed decomposition of the coating (Ti or Zr) into the salt

  1. Geochemical phase and particle size relationships of metals in urban road dust.

    Science.gov (United States)

    Jayarathne, Ayomi; Egodawatta, Prasanna; Ayoko, Godwin A; Goonetilleke, Ashantha

    2017-11-01

    Detailed knowledge of the processes that metals undergo during dry weather periods whilst deposited on urban surfaces and their environmental significance is essential to predict the potential influence of metals on stormwater quality in order to develop appropriate stormwater pollution mitigation measures. However, very limited research has been undertaken in this area. Accordingly, this study investigated the geochemical phase and particle size relationships of seven metals which are commonly associated with urban road dust, using sequential extraction in order to assess their mobility characteristics. Metals in the sequentially extracted fractions of exchangeable, reducible, oxidisable and residual were found to follow a similar trend for different land uses even though they had variable accumulation loads. The high affinity of Cd and Zn for exchangeable reactions in both, bulk and size-fractionated solid samples confirmed their high mobility, while the significant enrichment of Ni and Cr in the stable residual fraction indicated a low risk of mobility. The study results also confirmed the availability of Cu, Pb and Mn in both, stable and mobile fractions. The fine fraction of solids (dust. The outcomes from this study are expected to contribute to the development of effective stormwater pollution mitigation strategies by taking into consideration the metal-particulate relationships. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The Cu-Bi-Se phase system at temperatures between 300° and 750° C

    DEFF Research Database (Denmark)

    Karup-Møller, Sven

    2003-01-01

    Phase relations were determined in the Cu-Bi-Se phase system at 300, 350, 400, 450, 550, 650 and 750degreesC. Four ternary phases, phase A-D, have been synthesized. Phase A (Cu4Bi4Se9) is isotype with Cu4Bi4S9, and phase B (Cu1.7Bi4.7 Se-8) and phase C (Cu3Bi5Se9) have the same structure type as P...

  3. The hydrolytic stage in high solids temperature phased anaerobic digestion improves the downstream methane production rate.

    Science.gov (United States)

    Buffière, P; Dooms, M; Hattou, S; Benbelkacem, H

    2018-07-01

    The role of the hydrolytic stage in high solids temperature phased anaerobic digestion was investigated with a mixture of cattle slurry and maize silage with variable ratios (100, 70 and 30% volatile solids coming from cattle slurry). It was incubated for 48 h at 37, 55, 65 and 72 °C. Soluble chemical oxygen demand and biochemical methane potential were measured at 0, 24 and 48 h. Higher temperatures improved the amount of solubilized COD, which confirmed previously reported results. Nevertheless, solubilization mostly took place during the first 24 h. The rate of methane production in post-hydrolysis BMPs increased after 48 h hydrolysis time, but not after 24 h. The first order kinetic constant rose by 40% on average. No correlation was observed between soluble COD and downstream methane production rate, indicating a possible modification of the physical structure of the particulate solids during the hydrolytic stage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Induced Smectic-A phase at low temperatures through self-assembly

    Science.gov (United States)

    Bhagavath, Poornima; Bhat, Sangeetha G.; Mahabaleshwara, S.; Girish, S. R.; Potukuchi, D. M.; Srinivasulu, M.

    2013-05-01

    Self-assembled Smectic-A liquid crystals (LCs) are synthesized with low molar mass non-mesogenic moieties through intermolecular Hydrogen Bonding (HB) interactions. The HB complexes viz., PyBnA:xClBA (where n = 10, 14 and 16; x = 2, 3 and 4) are exhibiting an orthogonal Smectic-A (SmA) mesophase over a wide range of temperatures and towards ambient temperatures. The proton donors in these complexes, chloro substituted benzoic acids viz., 2-chloro, 3-chloro and 4-chloro benzoic acids (xClBA, x is the position of chlorine on the benzoic acid) are non-mesogenic. The proton acceptors, (4-pyridyl)-benzylidene-4'-n-alkyl anilines (decyl, tetradecyl and hexadecyl) (PyBnA, n is no. of carbons in alkyl chain) are also non-mesogenic. The presence of HB between the proton donor and acceptor is confirmed by Fourier Transform Infrared spectroscopy. The characteristic textures of SmA in all the complexes are observed through Polarizing Optical Microscope (POM) in conjunction with a hot stage. The enthalpy changes across the phase transitions (Isotropic - SmA; SmA - Cryst.) are determined by Differential Scanning Calorimeter (DSC). The influence of chain length of proton acceptor and the position of substituent on proton donor on the thermal stability of smectic mesomorphism are studied. The results are compared with reported linear and non-linear HBLC complexes.

  5. Mineral Phase and Physical Properties of Red Mud Calcined at Different Temperatures

    Directory of Open Access Journals (Sweden)

    Chuan-sheng Wu

    2012-01-01

    Full Text Available Different characterizations were carried out on red mud uncalcined and samples calcined in the range of 100°C–1400°C. In the present paper, the phase composition and structural transition of red mud heated from room temperature are indicated by XRD, TG-DTA, and SEM techniques. The mean particle diameter, density, and bond strength of these samples also have been investigated. The results indicate the decomposition of gibbsite into Al2O3 and H2O between 300°C and 550°C and calcite into CaO and CO2 in the interval of 600–800°C. Tricalcium aluminate and gehlenite are formed in the range of 800–900°C. Combined with the SEM images, the results of physical property testing show that the particle size and the strength each has a continuous rise during the heat treatment from 150°C to 1350°C. But the value of density will undergo a little drop before 450°C and then increases to a higher value at the temperature of 1200°C. These obtained results provide an important base for the further studies of comprehensive utilization of red mud.

  6. Microencapsulation of metal-based phase change material for high-temperature thermal energy storage.

    Science.gov (United States)

    Nomura, Takahiro; Zhu, Chunyu; Sheng, Nan; Saito, Genki; Akiyama, Tomohiro

    2015-03-13

    Latent heat storage using alloys as phase change materials (PCMs) is an attractive option for high-temperature thermal energy storage. Encapsulation of these PCMs is essential for their successful use. However, so far, technology for producing microencapsulated PCMs (MEPCMs) that can be used above 500°C has not been established. Therefore, in this study, we developed Al-Si alloy microsphere MEPCMs covered by α-Al2O3 shells. The MEPCM was prepared in two steps: (1) the formation of an AlOOH shell on the PCM particles using a boehmite treatment, and (2) heat-oxidation treatment in an O2 atmosphere to form a stable α-Al2O3 shell. The MEPCM presented a melting point of 573°C and latent heat of 247 J g(-1). The cycling performance showed good durability. These results indicated the possibility of using MEPCM at high temperatures. The MEPCM developed in this study has great promise in future energy and chemical processes, such as exergy recuperation and process intensification.

  7. [Soil Microbial Respiration Under Different Soil Temperature Conditions and Its Relationship to Soil Dissolved Organic Carbon and Invertase].

    Science.gov (United States)

    Wu, Jing; Chen, Shu-tao; Hu, Zheng-hua; Zhang, Xu

    2015-04-01

    In order to investigate the soil microbial respiration under different temperature conditions and its relationship to soil dissolved organic carbon ( DOC) and invertase, an indoor incubation experiment was performed. The soil samples used for the experiment were taken from Laoshan, Zijinshan, and Baohuashan. The responses of soil microbial respiration to the increasing temperature were studied. The soil DOC content and invertase activity were also measured at the end of incubation. Results showed that relationships between cumulative microbial respiration of different soils and soil temperature could be explained by exponential functions, which had P values lower than 0.001. The coefficient of temperature sensitivity (Q10 value) varied from 1.762 to 1.895. The Q10 value of cumulative microbial respiration decreased with the increase of soil temperature for all soils. The Q10 value of microbial respiration on 27 days after incubation was close to that of 1 day after incubation, indicating that the temperature sensitivity of recalcitrant organic carbon may be similar to that of labile organic carbon. For all soils, a highly significant ( P = 0.003 ) linear relationship between cumulative soil microbial respiration and soil DOC content could be observed. Soil DOC content could explain 31.6% variances of cumulative soil microbial respiration. For the individual soil and all soils, the relationship between cumulative soil microbial respiration and invertase activity could be explained by a highly significant (P soil microbial respiration.

  8. Piezoelectric Non-Linear Nanomechanical Temperature and Acceleration Insensitive Clocks (PENNTAC) Phase 1 Evaluation and Plans for Phase 2

    Science.gov (United States)

    2013-05-01

    Wheatstone bridge , and a differential amplifier that senses the temperature variations and controls the current flowing into the heater so as to keep...the resonator at a constant temperature. The Wheatstone bridge resistors and bias voltage were selected so as to guarantee operation at a desired...the electronic oscillator. By monitoring the ambient temperature and controlling the value of one resistance in the Wheatstone bridge , we were able

  9. High-temperature phase transitions, spectroscopic properties, and dimensionality reduction in rubidium thorium molybdate family.

    Science.gov (United States)

    Xiao, Bin; Gesing, Thorsten M; Kegler, Philip; Modolo, Giuseppe; Bosbach, Dirk; Schlenz, Hartmut; Suleimanov, Evgeny V; Alekseev, Evgeny V

    2014-03-17

    Four new rubidium thorium molybdates have been synthesized by high-temperature solid-state reactions. The crystal structures of Rb8Th(MoO4)6, Rb2Th(MoO4)3, Rb4Th(MoO4)4, and Rb4Th5(MoO4)12 were determined using single-crystal X-ray diffraction. All these compounds construct from MoO4 tetrahedra and ThO8 square antiprisms. The studied compounds adopt the whole range of possible structure dimensionalities from zero-dimensional (0D) to three-dimensional (3D): finite clusters, chains, sheets, and frameworks. Rb8Th(MoO4)6 crystallizes in 0D containing clusters of [Th(MoO4)6](8-). The crystal structure of Rb2Th(MoO4)3 is based upon one-dimensional chains with configuration units of [Th(MoO4)3](2-). Two-dimensional sheets occur in compound Rb4Th(MoO4)4, and a 3D framework with channels formed by thorium and molybdate polyhedra has been observed in Rb4Th5(MoO4)12. The Raman and IR spectroscopic properties of these compounds are reported. Temperature-depended phase transition effects were observed in Rb2Th(MoO4)3 and Rb4Th(MoO4)4 using thermogravimetry-differential scanning calorimetry analysis and high-temperature powder diffraction methods.

  10. Phase Change Material for Temperature Control of Imager or Sounder on GOES Type Satellites in GEO

    Science.gov (United States)

    Choi, Michael

    2013-01-01

    An imager or sounder on satellites, such as the Geostationary Operational Environmental Satellite (GOES), in geostationary orbit (GEO) has a scan mirror and motor in the scan cavity. The GEO orbit is 24 hours long. During part of the orbit, direct sunlight enters the scan aperture and adds heat to components in the scan cavity. Solar heating also increases the scan motor temperature. Overheating of the scan motor could reduce its reliability. For GOES-N to P, a radiator with a thermal louver rejects the solar heat absorbed to keep the scan cavity cool. A sunshield shields the radiator/louver from the Sun. This innovation uses phase change material (PCM) in the scan cavity to maintain the temperature stability of the scan mirror and motor. When sunlight enters the scan aperture, solar heating causes the PCM to melt. When sunlight stops entering the scan aperture, the PCM releases the thermal energy stored to keep the components in the scan cavity warm. It reduces the heater power required to make up the heat lost by radiation to space through the aperture. This is a major advantage when compared to a radiator/ louver. PCM is compact because it has a high solid-to-liquid enthalpy. Also, it could be spread out in the scan cavity. This is another advantage. Paraffin wax is a good PCM candidate, with high solid-to-liquid enthalpy, which is about 225 kJ/kg. For GOES-N to P, a radiator with a louver rejects the solar heat that enters the aperture to keep the scan cavity cool. For the remainder of the orbit, sunlight does not enter the scan aperture. However, the radiator/louver continues radiating heat to space because the louver effective emittance is about 0.12, even if the louver is fully closed. This requires makeup heater power to maintain the temperature within the stability range.

  11. Application of high temperature phase change materials for improved efficiency in waste-to-energy plants.

    Science.gov (United States)

    Dal Magro, Fabio; Xu, Haoxin; Nardin, Gioacchino; Romagnoli, Alessandro

    2018-03-01

    This study reports the thermal analysis of a novel thermal energy storage based on high temperature phase change material (PCM) used to improve efficiency in waste-to-energy plants. Current waste-to-energy plants efficiency is limited by the steam generation cycle which is carried out with boilers composed by water-walls (i.e. radiant evaporators), evaporators, economizers and superheaters. Although being well established, this technology is subjected to limitations related with high temperature corrosion and fluctuation in steam production due to the non-homogenous composition of solid waste; this leads to increased maintenance costs and limited plants availability and electrical efficiency. The proposed solution in this paper consists of replacing the typical refractory brick installed in the combustion chamber with a PCM-based refractory brick capable of storing a variable heat flux and to release it on demand as a steady heat flux. By means of this technology it is possible to mitigate steam production fluctuation, to increase temperature of superheated steam over current corrosion limits (450°C) without using coated superheaters and to increase the electrical efficiency beyond 34%. In the current paper a detailed thermo-mechanical analysis has been carried out in order to compare the performance of the PCM-based refractory brick against the traditional alumina refractory bricks. The PCM considered in this paper is aluminium (and its alloys) whereas its container consists of high density ceramics (such as Al 2 O 3 , AlN and Si 3 N 4 ); the different coefficient of linear thermal expansion for the different materials requires a detailed thermo-mechanical analysis to be carried out to ascertain the feasibility of the proposed technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Phase Transformation and Shape Memory Effect of Ti-Pd-Pt-Zr High-Temperature Shape Memory Alloys

    Science.gov (United States)

    Yamabe-Mitarai, Yoko; Takebe, Wataru; Shimojo, Masayuki

    2017-12-01

    To understand the potential of high-temperature shape memory alloys, we have investigated the phase transformation and shape memory effect of Ti-(50 - x)Pt- xPd-5Zr alloys ( x = 0, 5, and 15 at.%), which present the B2 structure in the austenite phase and B19 structure in the martensite phase. Their phase transformation temperatures are very high; A f and M f of Ti-50Pt are 1066 and 1012 °C, respectively. By adding Zr and Pd, the phase transition temperatures decrease, ranging between 804 and 994 °C for A f and 590 and 865 °C for M f. Even at the high phase transformation temperature, a maximum recovery ratio of 70% was obtained for one cycle in a thermal cyclic test. A work output of 1.2 J/cm3 was also obtained. The recovery ratio obtained by the thermal cyclic test was less than 70% because the recovery strain was < 1% and a large irrecoverable strain was obtained. The shape recovery was explained by the austenite strength. The training effect was also investigated.

  13. Inter-Relationship Between Subtropical Pacific Sea Surface Temperature, Arctic Sea Ice Concentration, and the North Atlantic Oscillation in Recent Summers and Winters

    Science.gov (United States)

    Lim, Young-Kwon; Cullather, Richard I.; Nowicki, Sophie M.; Kim, Kyu-Myong

    2017-01-01

    The inter-relationship between subtropical western-central Pacific sea surface temperatures (STWCPSST), sea ice concentration in the Beaufort Sea (SICBS), and the North Atlantic Oscillation (NAO) are investigated for the last 37 summers and winters (1980-2016). Lag-correlation of the STWCPSST×(-1) in spring with the NAO phase and SICBS in summer increases over the last two decades, reaching r = 0.4-0.5 with significance at 5 percent, while winter has strong correlations in approximately 1985-2005. Observational analysis and the atmospheric general circulation model experiments both suggest that STWCPSST warming acts to increase the Arctic geopotential height and temperature in the following season. This atmospheric response extends to Greenland, providing favorable conditions for developing the negative phase of the NAO. SIC and surface albedo tend to decrease over the Beaufort Sea in summer, linked to the positive surface net shortwave flux. Energy balance considering radiative and turbulent fluxes reveal that available energy that can heat surface is larger over the Arctic and Greenland and smaller over the south of Greenland, in response to the STWCPSST warming in spring. XXXX Arctic & Atlantic: Positive upper-level height/T anomaly over the Arctic and Greenland, and a negative anomaly over the central-eastern Atlantic, resembling the (-) phase of the NAO. Pacific: The negative height/T anomaly over the mid-latitudes, along with the positive anomaly over the STWCP, where 1degC warming above climatology is prescribed. Discussion: It is likely that the Arctic gets warm and the NAO is in the negative phase in response to the STWCP warming. But, there are other factors (e.g., internal variability) that contribute to determination of the NAO phase: not always the negative phase of the NAO in the event of STWCP warming (e.g.: recent winters and near neutral NAO in 2017 summer).

  14. Abundance of fluorescent biological aerosol particles at temperatures conducive to the formation of mixed-phase and cirrus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Twohy, Cynthia H.; McMeeking, Gavin R.; DeMott, Paul J.; McCluskey, Christina S.; Hill, Thomas C. J.; Burrows, Susannah M.; Kulkarni, Gourihar R.; Tanarhte, Meryem; Kafle, Durga N.; Toohey, Darin W.

    2016-01-01

    Some types of biological particles are known to nucleate ice at warmer temperatures than mineral dust, with the potential to influence cloud microphysical properties and climate. However, the prevalence of these particle types above the atmospheric boundary layer is not well known. Many types of biological particles fluoresce when exposed to ultraviolet light, and the Wideband Integrated Bioaerosol Sensor takes advantage of this characteristic to perform real-time measurements of fluorescent biological aerosol particles (FBAPs). This instrument was flown on the National Center for Atmospheric Research Gulfstream V aircraft to measure concentrations of fluorescent biological particles from different potential sources and at various altitudes over the US western plains in early autumn. Clear-air number concentrations of FBAPs between 0.8 and 12 µm diameter usually decreased with height and generally were about 10–100 L-1 in the continental boundary layer but always much lower at temperatures colder than 255 K in the free troposphere. At intermediate temperatures where biological ice-nucleating particles may influence mixed-phase cloud formation (255 K ≤ T ≤ 270 K), concentrations of fluorescent particles were the most variable and were occasionally near boundary-layer concentrations. Predicted vertical distributions of ice-nucleating particle concentrations based on FBAP measurements in this temperature regime sometimes reached typical concentrations of primary ice in clouds but were often much lower. If convection was assumed to lift boundary-layer FBAPs without losses to the free troposphere, better agreement between predicted ice-nucleating particle concentrations and typical ice crystal concentrations was achieved. Ice-nucleating particle concentrations were also measured during one flight and showed a decrease with height, and concentrations were consistent with a relationship to FBAPs established previously at the forested surface

  15. Abundance of fluorescent biological aerosol particles at temperatures conducive to the formation of mixed-phase and cirrus clouds

    Directory of Open Access Journals (Sweden)

    C. H. Twohy

    2016-07-01

    Full Text Available Some types of biological particles are known to nucleate ice at warmer temperatures than mineral dust, with the potential to influence cloud microphysical properties and climate. However, the prevalence of these particle types above the atmospheric boundary layer is not well known. Many types of biological particles fluoresce when exposed to ultraviolet light, and the Wideband Integrated Bioaerosol Sensor takes advantage of this characteristic to perform real-time measurements of fluorescent biological aerosol particles (FBAPs. This instrument was flown on the National Center for Atmospheric Research Gulfstream V aircraft to measure concentrations of fluorescent biological particles from different potential sources and at various altitudes over the US western plains in early autumn. Clear-air number concentrations of FBAPs between 0.8 and 12 µm diameter usually decreased with height and generally were about 10–100 L−1 in the continental boundary layer but always much lower at temperatures colder than 255 K in the free troposphere. At intermediate temperatures where biological ice-nucleating particles may influence mixed-phase cloud formation (255 K  ≤ T ≤  270 K, concentrations of fluorescent particles were the most variable and were occasionally near boundary-layer concentrations. Predicted vertical distributions of ice-nucleating particle concentrations based on FBAP measurements in this temperature regime sometimes reached typical concentrations of primary ice in clouds but were often much lower. If convection was assumed to lift boundary-layer FBAPs without losses to the free troposphere, better agreement between predicted ice-nucleating particle concentrations and typical ice crystal concentrations was achieved. Ice-nucleating particle concentrations were also measured during one flight and showed a decrease with height, and concentrations were consistent with a relationship to FBAPs established previously at

  16. Pressure and Temperature Dependent Structural Studies on Hollandite Type Ferrotitanate and Crystal Structure of a High Pressure Phase.

    Science.gov (United States)

    Bevara, Samatha; Achary, S Nagabhusan; Garg, Nandini; Chitnis, Abhishek; Sastry, P U; Shinde, A B; Krishna, P Siva Ram; Tyagi, Avesh Kumar

    2018-02-19

    The structural stability and phase transition behavior of tetragonal (I4/m) hollandite type K 2 Fe 2 Ti 6 O 16 have been investigated by in situ high pressure X-ray diffraction using synchrotron radiation and a diamond anvil cell as well as by variable temperature powder neutron and X-ray diffraction. The tetragonal phase is found to be stable in a wider range of temperatures, while it reversibly transforms to a monoclinic (I2/m) structure at a moderate pressure, viz. 3.6 GPa. The pressure induced phase transition occurs with only a marginal change in structural arrangements. The unit cell parameters of ambient (t) and high pressure (m) phases can be related as a m ∼ a t , b m ∼ c t , and c m ∼ b t . The pressure evolution of the unit cell parameters indicates anisotropic compression with β a = β b ≥ β c in the tetragonal phase and becomes more anisotropic with β a ≪ β b pressure-volume equations of state of both phases have been obtained by second order Birch-Murnaghan equations of state, and the bulk moduli are 122 and 127 GPa for tetragonal and monoclinic phases, respectively. The temperature dependent unit cell parameters show nearly isotropic expansion, with marginally higher expansion along the c-axis compared to the a- and b-axes. The tetragonal to monoclinic phase transition occurs with a reduction of unit cell volume of about 1.1% while the reduction of unit cell volume up to 6 K is only about 0.6%. The fitting of temperature dependent unit cell volume by using the Einstein model of phonons indicates the Einstein temperature is about 266(18) K.

  17. Assessing the relationship between global warming and mortality: Lag effects of temperature fluctuations by age and mortality categories

    Energy Technology Data Exchange (ETDEWEB)

    Yu Weiwei, E-mail: weiwei.yu@qut.edu.au [School of Public Health and Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD 4050, Brisbane (Australia); Mengersen, Kerrie [Discipline of Mathematical Sciences, Faculty of Science and Technology, Queensland University of Technology, Brisbane (Australia); Hu Wenbiao [School of Population Health and Institute of Health and Biomedical Innovation, University of Queensland, Brisbane (Australia); Guo Yuming [School of Public Health and Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD 4050, Brisbane (Australia); Pan Xiaochuan [School of Public Health, Peking University, Beijing 100191 (China); Tong Shilu, E-mail: s.tong@qut.edu.au [School of Public Health and Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD 4050, Brisbane (Australia)

    2011-07-15

    Although interests in assessing the relationship between temperature and mortality have arisen due to climate change, relatively few data are available on lag structure of temperature-mortality relationship, particularly in the Southern Hemisphere. This study identified the lag effects of mean temperature on mortality among age groups and death categories using polynomial distributed lag models in Brisbane, Australia, a subtropical city, 1996-2004. For a 1 deg. C increase above the threshold, the highest percent increase in mortality on the current day occurred among people over 85 years (7.2% (95% CI: 4.3%, 10.2%)). The effect estimates among cardiovascular deaths were higher than those among all-cause mortality. For a 1 deg. C decrease below the threshold, the percent increases in mortality at 21 lag days were 3.9% (95% CI: 1.9%, 6.0%) and 3.4% (95% CI: 0.9%, 6.0%) for people aged over 85 years and with cardiovascular diseases, respectively. These findings may have implications for developing intervention strategies to reduce and prevent temperature-related mortality. - Highlights: > A longer lag effects in cold days and shorter lag effects in hot days. > The very old people were most vulnerable to temperature stress. > The cardiovascular mortality was also sensitive to the temperature variation. - In Brisbane, the lag effects lasted longer for cold temperatures, and shorter for hot temperatures. Elderly people and cardiovascular mortality were vulnerable to temperature stress.

  18. Electrical transport and temperature coefficient of resistance in polycrystalline La{sub 0.7−x}Ag{sub x}Ca{sub 0.3}MnO{sub 3} pellets: Analysis in terms of a phase coexistence transport model and phase separation model

    Energy Technology Data Exchange (ETDEWEB)

    Phong, P.T., E-mail: ptphong.nh@khanhhoa.edu.vn [Department of Advanced Materials Chemistry, Dongguk University, 707 Suckjang-dong, Gyeongju-Si, Gyeonbuk 780-714 (Korea, Republic of); Nha Trang Pedagogic College, 01 Nguyen Chanh Street, Nha Trang, Khanh Hoa (Viet Nam); Nguyen, L.H. [Nha Trang Pedagogic College, 01 Nguyen Chanh Street, Nha Trang, Khanh Hoa (Viet Nam); Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Ha Noi (Viet Nam); Manh, D.H.; Phuc, N.X. [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Ha Noi (Viet Nam); Lee, I.-J. [Department of Advanced Materials Chemistry, Dongguk University, 707 Suckjang-dong, Gyeongju-Si, Gyeonbuk 780-714 (Korea, Republic of)

    2013-09-15

    The temperature dependent resistivity and temperature coefficient of resistance of Ag doped La{sub 0.7−x}Ag{sub x}Ca{sub 0.3}MnO{sub 3} polycrystalline pellets (x=0, 0.05, 0.10, 0.15, and 0.20) are investigated. Ag substitution enhances the conductivity of this system. The Curie temperature also increases from 260 to 283 K with increasing Ag content. Using phase-coexistence transport model and phase separation model, we calculated the resistivity as a function of temperature and the temperature coefficient of resistivity (TCR) behavior. Comparing the calculated maximum TCR, we found that it is related to activation energy, transition temperature, and disorder in doped manganites. The relationship between the proposed TCR behavior and the transport parameters can suggest conditions improving TCR{sub max} of doped manganites for the use of the bolometric infrared detectors.

  19. Dynamic phase transition in the kinetic spin-1 Blume-Capel model: Phase diagrams in the temperature and crystal-field interaction plane

    International Nuclear Information System (INIS)

    Keskin, M.; Canko, O.; Temizer, U.

    2007-01-01

    Within a mean-field approach, the stationary states of the kinetic spin-1 Blume-Capel model in the presence of a time-dependent oscillating external magnetic field is studied. The Glauber-type stochastic dynamics is used to describe the time evolution of the system and obtain the mean-field dynamic equation of motion. The dynamic phase-transition points are calculated and phase diagrams are presented in the temperature and crystal-field interaction plane. According to the values of the magnetic field amplitude, three fundamental types of phase diagrams are found: One exhibits a dynamic tricritical point, while the other two exhibit a dynamic zero-temperature critical point

  20. Relationship between carbon microstructure, adsorption energy and hydrogen adsorption capacity at different temperatures

    International Nuclear Information System (INIS)

    Jagiello, J.; Thommes, M.

    2005-01-01

    Various microporous materials such as activated carbons, nano-tubes, synthetic micro-porous carbons as well as metal organic framework materials are being considered for hydrogen storage applications by means of physical adsorption. To develop materials of practical significance for hydrogen storage it is important to understand the relationships between pore sizes, adsorption energies and adsorption capacities. The pore size distribution (PSD) characterization is traditionally obtained from the analysis of nitrogen adsorption isotherms measured at 77 K. However, a portion of the pores accessible to H 2 may not be accessible to N 2 at this temperature. Therefore, it was recently proposed to use the DFT analysis of H 2 adsorption isotherms to characterize pore structure of materials considered for hydrogen storage applications [1]. In present work, adsorption isotherms of H 2 and N 2 at cryogenic temperatures are used for the characterization of carbon materials. Adsorption measurements were performed with Autosorb 1 MP [Quantachrome Instruments, Boynton Beach, Florida, USA]. As an example, Fig 1 compares PSDs calculated for the activated carbon sample (F400, Calgon Carbon) using combined H 2 and N 2 data, and using N 2 isotherm only. The nitrogen derived PSD does not include certain amount of micro-pores which are accessible to H 2 but not to N 2 molecules. Obviously, the difference in the calculated PSDs by the two methods will depend on the actual content of small micro-pores in a given sample. Carbon adsorption properties can also be characterized by the isosteric heat of adsorption, Qst, related to the adsorption energy and dependent on the carbon pore/surface structure. Fig 2 shows Qst data calculated using the Clausius-Clapeyron equation from H 2 isotherms measured at 77 K and 87 K for the carbon molecular sieve CMS 5A (Takeda), oxidized single wall nano-tubes (SWNT) [2], and graphitized carbon black (Supelco). The Qst values decrease with increasing pore

  1. Characterizing the relationship between land use land cover change and land surface temperature

    Science.gov (United States)

    Tran, Duy X.; Pla, Filiberto; Latorre-Carmona, Pedro; Myint, Soe W.; Caetano, Mario; Kieu, Hoan V.

    2017-02-01

    Exploring changes in land use land cover (LULC) to understand the urban heat island (UHI) effect is valuable for both communities and local governments in cities in developing countries, where urbanization and industrialization often take place rapidly but where coherent planning and control policies have not been applied. This work aims at determining and analyzing the relationship between LULC change and land surface temperature (LST) patterns in the context of urbanization. We first explore the relationship between LST and vegetation, man-made features, and cropland using normalized vegetation, and built-up indices within each LULC type. Afterwards, we assess the impacts of LULC change and urbanization in UHI using hot spot analysis (Getis-Ord Gi∗ statistics) and urban landscape analysis. Finally, we propose a model applying non-parametric regression to estimate future urban climate patterns using predicted land cover and land use change. Results from this work provide an effective methodology for UHI characterization, showing that (a) LST depends on a nonlinear way of LULC types; (b) hotspot analysis using Getis Ord Gi∗ statistics allows to analyze the LST pattern change through time; (c) UHI is influenced by both urban landscape and urban development type; (d) LST pattern forecast and UHI effect examination can be done by the proposed model using nonlinear regression and simulated LULC change scenarios. We chose an inner city area of Hanoi as a case-study, a small and flat plain area where LULC change is significant due to urbanization and industrialization. The methodology presented in this paper can be broadly applied in other cities which exhibit a similar dynamic growth. Our findings can represent an useful tool for policy makers and the community awareness by providing a scientific basis for sustainable urban planning and management.

  2. Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films

    Directory of Open Access Journals (Sweden)

    Christian Wehrenfennig

    2014-08-01

    Full Text Available The optoelectronic properties of the mixed hybrid lead halide perovskite CH3NH3PbI3−xClx have been subject to numerous recent studies related to its extraordinary capabilities as an absorber material in thin film solar cells. While the greatest part of the current research concentrates on the behavior of the perovskite at room temperature, the observed influence of phonon-coupling and excitonic effects on charge carrier dynamics suggests that low-temperature phenomena can give valuable additional insights into the underlying physics. Here, we present a temperature-dependent study of optical absorption and photoluminescence (PL emission of vapor-deposited CH3NH3PbI3−xClx exploring the nature of recombination channels in the room- and the low-temperature phase of the material. On cooling, we identify an up-shift of the absorption onset by about 0.1 eV at about 100 K, which is likely to correspond to the known tetragonal-to-orthorhombic transition of the pure halide CH3NH3PbI3. With further decreasing temperature, a second PL emission peak emerges in addition to the peak from the room-temperature phase. The transition on heating is found to occur at about 140 K, i.e., revealing significant hysteresis in the system. While PL decay lifetimes are found to be independent of temperature above the transition, significantly accelerated recombination is observed in the low-temperature phase. Our data suggest that small inclusions of domains adopting the room-temperature phase are responsible for this behavior rather than a spontaneous increase in the intrinsic rate constants. These observations show that even sparse lower-energy sites can have a strong impact on material performance, acting as charge recombination centres that may detrimentally affect photovoltaic performance but that may also prove useful for optoelectronic applications such as lasing by enhancing population inversion.

  3. Relationships Between Temperature, pH, and Crusting on Mg/Ca Ratios in Laboratory-Grown Neogloboquadrina Foraminifera

    Science.gov (United States)

    Davis, Catherine V.; Fehrenbacher, Jennifer S.; Hill, Tessa M.; Russell, Ann D.; Spero, Howard J.

    2017-11-01

    Mg/Ca ratio paleothermometry in foraminifera is an important tool for the reconstruction and interpretation of past environments. However, existing Mg/Ca:temperature relationships for planktic species inhabiting middle- and high-latitude environments are limited by a lack of information about the development and impact of low-Mg/Ca ratio "crusts" and the influence of the carbonate system on Mg/Ca ratios in these groups. To address this, we cultured individual specimens of Neogloboquadrina incompta and Neogloboquadrina pachyderma in seawater across a range of temperature (6°-12°C) and pH (7.4-8.2). We found by laser ablation inductively couple mass spectrometry analyses of shells that culture-grown crust calcite in N. incompta had a lower Mg/Ca ratio than ontogenetic calcite formed at the same temperature, suggesting that temperature is not responsible for the low-Mg/Ca ratio of neogloboquadrinid crusts. The Mg/Ca:temperature relationship for ontogenetic calcite in N. incompta was consistent with the previously published culture-based relationship, and no significant relationship was found between Mg/Ca ratios and pH in this species. However, the Mg/Ca ratio in laboratory-cultured N. pachyderma was much higher than that reported in previous core top and sediment trap samples, due to lack of crust formation in culture. Application of our ontogenetic calcite-specific Mg/Ca:temperature relationships to fossil N. pachyderma and N. incompta from five intervals in cores from the Santa Barbara Basin and the Bering Sea shows that excluding crust calcite in fossil specimens may improve Mg/Ca-based temperature estimates.

  4. EFFECTS OF HEAT TREATMENTS ON MICROSTRUCTURES AND MECHANICAL PROPERTIES OF DUAL PHASE ODS STEELS FOR HIGH TEMPERATURE STRENGTH

    Directory of Open Access Journals (Sweden)

    SANGHOON NOH

    2013-11-01

    Full Text Available In the present study, the effects of various heat treatments on the microstructure and mechanical properties of dual phase ODS steels were investigated to enhance the high strength at elevated temperature. Dual phase ODS steels have been designed by the control of ferrite and austenite formers, i.e., Cr, W and Ni, C in Fe-based alloys. The ODS steels were fabricated by mechanical alloying and a hot isostatic pressing process. Heat treatments, including hot rolling-tempering and normalizing-tempering with air- and furnace-cooling, were carefully carried out. It was revealed that the grain size and oxide distributions of the ODS steels can be changed by heat treatment, which significantly affected the strengths at elevated temperature. Therefore, the high temperature strength of dual phase ODS steel can be enhanced by a proper heat treatment process with a good combination of ferrite grains, nano-oxide particles, and grain boundary sliding.

  5. Two cloud-point phenomena in tetrabutylammonium perfluorooctanoate aqueous solutions: anomalous temperature-induced phase and structure transitions.

    Science.gov (United States)

    Yan, Peng; Huang, Jin; Lu, Run-Chao; Jin, Chen; Xiao, Jin-Xin; Chen, Yong-Ming

    2005-03-24

    This paper reported the phase behavior and aggregate structure of tetrabutylammonium perfluorooctanoate (TBPFO), determined by differential scanning calorimeter, electrical conductivity, static/dynamic light scattering, and rheology methods. We found that above a certain concentration the TBPFO solution showed anomalous temperature-dependent phase behavior and structure transitions. Such an ionic surfactant solution exhibits two cloud points. When the temperature was increased, the solution turned from a homogeneous-phase to a liquid-liquid two-phase system, then to another homogeneous-phase, and finally to another liquid-liquid two-phase system. In the first homogeneous-phase region, the aggregates of TBPFO were rodlike micelles and the solution was Newtonian fluid. While in the second homogeneous-phase region, the aggregates of TBPFO were large wormlike micelles, and the solution behaved as pseudoplastic fluid that also exhibited viscoelastic behavior. We thought that the first cloud point might be caused by the "bridge" effect of the tetrabutylammonium counterion between the micelles and the second one by the formation of the micellar network.

  6. Growth kinetics of thin oxide layers; oxidation of Fe and Fe-N phases at room temperature

    NARCIS (Netherlands)

    Kooi, Bart J.; Somers, Marcel A.J.; Mittemeijer, Eric J.

    1996-01-01

    The evolution of iron-oxide layers at room temperature on pure polycrystalline α-Fe and on the Fe-N phases γ-Fe[N], γ'-Fe4N1-x and ε-Fe2N1-z was followed in situ with Auger-Electron Spectroscopy. The observed oxidation kinetics of the Fe and Fe-N phases were interpreted using a model considering

  7. Shear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and lower pressure.

    Science.gov (United States)

    Ji, Cheng; Levitas, Valery I; Zhu, Hongyang; Chaudhuri, Jharna; Marathe, Archis; Ma, Yanzhang

    2012-11-20

    Disordered structures of boron nitride (BN), graphite, boron carbide (BC), and boron carbon nitride (BCN) systems are considered important precursor materials for synthesis of superhard phases in these systems. However, phase transformation of such materials can be achieved only at extreme pressure-temperature conditions, which is irrelevant to industrial applications. Here, the phase transition from disordered nanocrystalline hexagonal (h)BN to superhard wurtzitic (w)BN was found at room temperature under a pressure of 6.7 GPa after applying large plastic shear in a rotational diamond anvil cell (RDAC) monitored by in situ synchrotron X-ray diffraction (XRD) measurements. However, under hydrostatic compression to 52.8 GPa, the same hBN sample did not transform to wBN but probably underwent a reversible transformation to a high-pressure disordered phase with closed-packed buckled layers. The current phase-transition pressure is the lowest among all reported direct-phase transitions from hBN to wBN at room temperature. Usually, large plastic straining leads to disordering and amorphization; here, in contrast, highly disordered hBN transformed to crystalline wBN. The mechanisms of strain-induced phase transformation and the reasons for such a low transformation pressure are discussed. Our results demonstrate a potential of low pressure-room temperature synthesis of superhard materials under plastic shear from disordered or amorphous precursors. They also open a pathway of phase transformation of nanocrystalline materials and materials with disordered and amorphous structures under extensive shear.

  8. Assessment on spatiotemporal relationship between rainfall and cloud top temperature from new generation weather satellite imagery

    Science.gov (United States)

    Wei, Chiang; Yeh, Hui-Chung; Chen, Yen-Chang

    2017-04-01

    This study addressed the relationship between rainfall and cloud top temperature (CCT) from new generation satellite Himawari-8 imagery at different spatiotemporal scale. This satellite provides higher band, more bits for data format, spatial and temporal resolution compared with previous GMS series. The multi-infrared channels with 10-minute and 1-2 km resolution make it possible for rainfall estimating/forecasting in small/medium watershed. The preliminary result investigated at Chenyulan watershed (443.6 square kilometer) of Central Taiwan in 2016 Typhoon Megi shows the regression coefficient fitted by negative exponential equation of largest rainfall vs. CCT (B8 band) at pixel scale increases as time scales enlarges and reach 0.462 for 120-minute accumulative rainfall; the value (CTT of B15 band) decreases from 0.635 for 10-minute to 0.423 for 120-minute accumulative rainfall at basin-wide scale. More rainfall events for different regime are yet to evaluate to get solid results.

  9. Relationships between Indian Ocean Sea surface temperature and the rainfall of Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Suppiah, Ramasamy

    1988-02-28

    Spatial and temporal variations of the sea surface temperature (SST) over the Indian Ocean are examined by using empirical orthogonal function (EOF) analysis. The first EOF mode explains 20.54% of the total variance indicating positive values over the study area. The second and third EOF modes explain relatively less contribution, 5.6% and 5.1% of the total variance. A weak positive correlation coefficient is observed between the time coefficients of the first EOF mode of SST anomalies and the time coefficients of the first EOF mode of the rainfall anomalies over Sri Lanka when all months are considered. The positive relationships between SST anomalies of the Pacific and the Indian Oceans and rainfall anomalies of Sri Lanka first appear in March and April, and then gradually build up towards the significant level. In the case of the summer monsoon, Arabian Sea SST's strongly influence the rainfall of Sri Lank, particularly striking in the southwestern quadrant of the island. (8 figs, 4 tabs, 27 refs)

  10. Relative turbulent transport efficiency and flux-variance relationships of temperature and water vapor

    Science.gov (United States)

    Hsieh, C. I.

    2016-12-01

    This study investigated the relative transport efficiency and flux-variance relationships of temperature and water vapor, and examined the performance of using this method for predicting sensible heat (H) and water vapor (LE) fluxes with eddy-covariance measured flux data at three different ecosystems: grassland, paddy rice field, and forest.The H and LE estimations were found to be in good agreement with the measurements over the three fields. The prediction accuracy of LE could be improved by around 15% if the predictions were obtained by the flux-variance method in conjunction with measured sensible heat fluxes. Moreover, the paddy rice field was found to be a special case where water vapor follows flux-variance relation better than heat does. The flux budget equations of heat and water vapor were applied to explain this phenomenon. Our results also showed that heat and water vapor were transported with the same efficiency above the grassland and rice paddy. For the forest, heat was transported 20% more efficiently than evapotranspiration.

  11. Monitoring of temperature-mediated phase transitions of adipose tissue by combined optical coherence tomography and Abbe refractometry.

    Science.gov (United States)

    Yanina, Irina Y; Popov, Alexey P; Bykov, Alexander V; Meglinski, Igor V; Tuchin, Valery V

    2018-01-01

    Observation of temperature-mediated phase transitions between lipid components of the adipose tissues has been performed by combined use of the Abbe refractometry and optical coherence tomography. The phase transitions of the lipid components were clearly observed in the range of temperatures from 24°C to 60°C, and assessed by quantitatively monitoring the changes of the refractive index of 1- to 2-mm-thick porcine fat tissue slices. The developed approach has a great potential as an alternative method for obtaining accurate information on the processes occurring during thermal lipolysis. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  12. Investigation of the Polytropic Relationship Between Density and Temperature Within Interplanetary Coronal Mass Ejections Using Numerical Simulations

    Science.gov (United States)

    Riley, Pete; Gosling, J. T.; Pizzo, V. J.

    2001-01-01

    Single-point spacecraft measurements within coronal mass ejections (CMEs) often exhibit a negative correlation between electron density and temperature. At least two opposing interpretations have been suggested for this relationship. If, on one hand, these single spacecraft observations provide direct measures of the polytropic properties of the plasma, then they imply that the polytropic index for the electrons gamma(sub e) is often density and temperature, suggesting that gamma(sub e) > 1. In this study we simulate the evolution of a variety of CME-like disturbances in the solar wind using a one-dimensional, single-fluid model, to address the interpretation of the relationship between electron density and temperature within CMEs at fixed locations in space. Although we strictly impose a polytropic relationship (with gamma = constant) throughout our simulations, we demonstrate that a variety of correlations can exist between density and temperature at fixed points. Furthermore, we demonstrate that the presence of only local uncorrelated random fluctuations in density and temperature can produce a negative correlation. Consequently, we conclude that these single-point observations of negative correlations between electron density and temperature cannot be used to infer the value of gamma(sub e). Instead, we suggest that entropy variations, together with the plasma's tendency to achieve pressure balance with its surroundings, are responsible for the observed profiles.

  13. Experimental investigations of turbulent temperature fluctuations and phase angles in ASDEX Upgrade

    Science.gov (United States)

    Freethy, Simon

    2017-10-01

    A complete experimental understanding of the turbulent fluctuations in tokamak plasmas is essential for providing confidence in the extrapolation of heat transport models to future experimental devices and reactors. Guided by ``predict first'' nonlinear gyrokinetic simulations with the GENE code, two new turbulence diagnostics were designed and have been installed on ASDEX Upgrade (AUG) to probe the fundamentals of ion-scale turbulent electron heat transport. The first, a 30-channel correlation ECE (CECE) radiometer, measures radial profiles (0.5 mode. Typical L-mode levels are in the range 0.3 - 0.8%. The second is formed by the addition of a reflectometer on the same line of sight to enable measurements of the phase angle between turbulent density and temperature fluctuations. Design predictions are followed by a more traditional ``post-diction'' validation study with GENE. Using a cutting edge synthetic diagnostic GENE shows a factor 1.6 - 2 over-prediction of the fluctuation amplitude, while matching both ion and electron heat fluxes within experimental error. Detailed sensitivity scans are underway to understand the robustness of this disagreement and a detailed assessment of the experimental errors has been carried out. The discrepancy opens questions about the role of multi-scale turbulence physics, but also indicates the need for the comparison of more experimental turbulence properties to have a more complete validation hierarchy. In an effort to understand the discrepancy, predictions of the nT-phase and the radial correlation length have been made along with an assessment of their sensitivity to experimental errors. Comparison to experimental measurements will be discussed. This work is supported in part by the US DOE under Grants DE-SC0006419 and DE-SC0017381. This work has also received funding from the European Union's Horizon 2020 research and innovation programme under Grant agreement number 633053.

  14. Structural study of high temperature metal-rich titanium sulfide phases

    Energy Technology Data Exchange (ETDEWEB)

    Owens, J.P.

    1979-01-01

    Ti/sub 2/S and Ti/sub 8/S/sub 3/ have been prepared by high temperature annealing techniques. The crystal structures of these two phases have been determined from single crystal x-ray diffraction data. Both structures were refined using a full-matrix least-squares treatment of positional parameters and isotropic temperature factor coefficients. Ti/sub 2/S crystallizes with orthorhombic symmetry, space group Pnnm, having unit cell dimensions a = 11.367A, b= 14.060A, and c = 3.326A. Ti/sub 2/S is isostructural with Ta/sub 2/P. Ti/sub 8/S/sub 3/ crystallizes with monoclinic symmetry, space group C2/m, a = 32.69A, b = 3.327A, c = 19.35A, ..beta.. = 139.9/sup 0/ (b - unique). Ti/sub 2/S and Ti/sub 8/S/sub 3/ have structural features similar to the features of a large number of metal-rich transition-metal chalcogenides and pnictides. These various structure types have been characterized in terms of nonmetal trigonal prismatic coordination polyhedra, eight different metal partial coordination polyhedra, a short (approximately equal to 3.4A) crystallographic axis, two unique layers of atoms containing both metal and nonmetal atom positions, and mirror planes coincident with the two layers of atom positions. The existence of a variety of structures with these structural features has led to their consideration as a unique structural class. The structural similarities and differences between the structure types of this class have been discussed in detail. Comparison of different structure types emphasized the importance of the metal bonding contribution in understanding the structural features and suggested limitations on qualitative bonding models used to understand the structural-chemical principles underlying structure stability.

  15. Temperature and pressure based NMR studies of detergent micelle phase equilibria.

    Science.gov (United States)

    Alvares, Rohan; Gupta, Shaan; Macdonald, Peter M; Prosser, R Scott

    2014-05-29

    Bulk thermodynamic and volumetric parameters (ΔGmic°, ΔHmic°, ΔSmic°, ΔCp,mic°, ΔVmic°, and Δκmic°) associated with the monomer–micelle equilibrium, were directly determined for a variety of common detergents [sodium n-dodecyl sulfate (SDS), n-dodecyl phosphocholine (DPC), n-dodecyl-β-d-maltoside (DDM), and 7-cyclohexyl-1-heptyl phosphocholine (CyF)] via 1H NMR spectroscopy. For each temperature and pressure point, the critical micelle concentration (cmc) was obtained from a single 1H NMR spectrum at a single intermediate concentration by referencing the observed chemical shift to those of pure monomer and pure micellar phases. This permitted rapid measurements of the cmc over a range of temperatures and pressures. In all cases, micelle formation was strongly entropically favored, while enthalpy changes were all positive, with the exception of SDS, which exhibited a modestly negative enthalpy of micellization. Heat capacity changes were also characteristically negative, while partial molar volume changes were uniformly positive, as expected for an aggregation process dictated by hydrophobic effects. Isothermal compressibility changes were found to be consistent with previous measurements using other techniques. Thermodynamic measurements were also related to spectroscopic studies of topology and micelle structure. For example, paramagnetic effects resulting from the addition of dioxygen provided microscopic topological details concerning the hydrophobicity gradient along the detergent chains within their respective micelles as detected by 1H NMR. In a second example, combined 13C and 1H NMR chemical shift changes arising from application of high pressure, or upon micellization, of CyF provided site-specific details regarding micelle topology. In this fashion, bulk thermodynamics could be related to microscopic topological details within the detergent micelle.

  16. Effect of Machine Smoking Intensity and Filter Ventilation Level on Gas-Phase Temperature Distribution Inside a Burning Cigarette

    Directory of Open Access Journals (Sweden)

    Li Bin

    2015-01-01

    Full Text Available Accurate measurements of cigarette coal temperature are essential to understand the thermophysical and thermo-chemical processes in a burning cigarette. The last system-atic studies of cigarette burning temperature measurements were conducted in the mid-1970s. Contemporary cigarettes have evolved in design features and multiple standard machine-smoking regimes have also become available, hence there is a need to re-examine cigarette combustion. In this work, we performed systematic measurements on gas-phase temperature of burning cigarettes using an improved fine thermocouple technique. The effects of machine-smoking parameters (puff volume and puff duration and filter ventilation levels were studied with high spatial and time resolutions during single puffs. The experimental results were presented in a number of differ-ent ways to highlight the dynamic and complex thermal processes inside a burning coal. A mathematical distribution equation was used to fit the experimental temperature data. Extracting and plotting the distribution parameters against puffing time revealed complex temperature profiles under different coal volume as a function of puffing intensities or filter ventilation levels. By dividing the coal volume prior to puffing into three temperature ranges (low-temperature from 200 to 400 °C, medium-temperature from 400 to 600 °C, and high-temperature volume above 600 °C by following their development at different smoking regimes, useful mechanistic details were obtained. Finally, direct visualisation of the gas-phase temperature through detailed temperature and temperature gradient contour maps provided further insights into the complex thermo-physics of the burning coal. [Beitr. Tabakforsch. Int. 26 (2014 191-203

  17. Phase structure of 3D Z(N) lattice gauge theories at finite temperature: Large-N and continuum limits

    Energy Technology Data Exchange (ETDEWEB)

    Borisenko, O., E-mail: oleg@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, 03680 Kiev (Ukraine); Chelnokov, V., E-mail: chelnokov@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, 03680 Kiev (Ukraine); Gravina, M., E-mail: gravina@fis.unical.it [Dipartimento di Fisica, Università della Calabria, and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Cosenza, I-87036 Arcavacata di Rende, Cosenza (Italy); Papa, A., E-mail: papa@fis.unical.it [Dipartimento di Fisica, Università della Calabria, and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Cosenza, I-87036 Arcavacata di Rende, Cosenza (Italy)

    2014-11-15

    We study numerically three-dimensional Z(N) lattice gauge theories at finite temperature, for N=5,6,8,12,13 and 20 on lattices with temporal extension N{sub t}=2,4,8. For each model, we locate phase transition points and determine critical indices. We propose also the scaling of critical points with N. The data obtained enable us to verify the scaling near the continuum limit for the Z(N) models at finite temperatures.

  18. Phase structure of 3D Z(N) lattice gauge theories at finite temperature: Large-N and continuum limits

    International Nuclear Information System (INIS)

    Borisenko, O.; Chelnokov, V.; Gravina, M.; Papa, A.

    2014-01-01

    We study numerically three-dimensional Z(N) lattice gauge theories at finite temperature, for N=5,6,8,12,13 and 20 on lattices with temporal extension N t =2,4,8. For each model, we locate phase transition points and determine critical indices. We propose also the scaling of critical points with N. The data obtained enable us to verify the scaling near the continuum limit for the Z(N) models at finite temperatures

  19. Recommended reference materials for realization of physicochemical properties pressure-volume-temperature relationships

    CERN Document Server

    Herington, E F G

    1977-01-01

    Recommended Reference Materials for Realization of Physicochemical Properties presents recommendations of reference materials for use in measurements involving physicochemical properties, namely, vapor pressure; liquid-vapor critical temperature and critical pressure; orthobaric volumes of liquid and vapor; pressure-volume-temperature properties of the unsaturated vapor or gas; and pressure-volume-temperature properties of the compressed liquid. This monograph focuses on reference materials for vapor pressures at temperatures up to 770 K, as well as critical temperatures and critical pressures

  20. Pitfalls and feedback when constructing topological pressure-temperature phase diagrams

    Science.gov (United States)

    Ceolin, R.; Toscani, S.; Rietveld, Ivo B.; Barrio, M.; Tamarit, J. Ll.

    2017-04-01

    The stability hierarchy between different phases of a chemical compound can be accurately reproduced in a topological phase diagram. This type of phase diagrams may appear to be the result of simple extrapolations, however, experimental complications quickly increase in the case of crystalline trimorphism (and higher order polymorphism). To ensure the accurate positioning of stable phase domains, a topological phase diagram needs to be consistent. This paper gives an example of how thermodynamic feedback can be used in the topological construction of phase diagrams to ensure overall consistency in a phase diagram based on the case of piracetam crystalline trimorphism.