WorldWideScience

Sample records for temperature molten salt

  1. Encapsulation of high temperature molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Oxley, James D.; Mathur, Anoop Kumar

    2017-05-16

    The present disclosure relates to a method of encapsulating microcapsules containing relatively high temperature phase change materials and the microcapsules so produced. The microcapsules are coated with an inorganic binder, film former and an inorganic filler. The microcapsules may include a sacrificial layer that is disposed between the particle and the coating. The microcapsules may also include an inner coating layer, sacrificial layer and outer coating layer. The microcapsules are particularly useful for thermal energy storage in connection with, e.g., heat collected from concentrating solar collectors.

  2. Experimental research on molten salt thermofluid technology using a high-temperature molten salt loop applied for a fusion reactor Flibe blanket

    Energy Technology Data Exchange (ETDEWEB)

    Toda, Saburo; Chiba, Shinya E-mail: schiba@karma.qse.tohoku.ac.jp; Yuki, Kazuhisa; Omae, Masahiro; Sagara, Akio

    2002-12-01

    Experimental research on molten salt thermofluid technology using a high-temperature molten salt loop (MSL) is described in this paper. The MSL was designed to be able to use Flibe as a coolant, however, a simulant, heat transfer salt (HTS) has to be used alternatively since Flibe is difficult to operate under avoiding a biohazard of Be. Experiment on heat-transfer enhancement, that is required for applying to cool the high heat flux components of fusion reactors, is ongoing. Preliminary experimental results showed that an internal structure of a mixing chamber in the MSL was important to obtain accurate bulk temperatures under severe thermal conditions. For operating the loop, careful handling are needed to proceed how to melt the salt and to circulate it in starting the operation of the MSL. It is concluded that several improvements proposed from the present experiences should be applied for the future Flibe operation.

  3. Gases in molten salts

    CERN Document Server

    Tomkins, RPT

    1991-01-01

    This volume contains tabulated collections and critical evaluations of original data for the solubility of gases in molten salts, gathered from chemical literature through to the end of 1989. Within the volume, material is arranged according to the individual gas. The gases include hydrogen halides, inert gases, oxygen, nitrogen, hydrogen, carbon dioxide, water vapor and halogens. The molten salts consist of single salts, binary mixtures and multicomponent systems. Included also, is a special section on the solubility of gases in molten silicate systems, focussing on slags and fluxes.

  4. An evaluation of possible next-generation high temperature molten-salt power towers.

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, Gregory J.

    2011-12-01

    Since completion of the Solar Two molten-salt power tower demonstration in 1999, the solar industry has been developing initial commercial-scale projects that are 3 to 14 times larger. Like Solar Two, these initial plants will power subcritical steam-Rankine cycles using molten salt with a temperature of 565 C. The main question explored in this study is whether there is significant economic benefit to develop future molten-salt plants that operate at a higher receiver outlet temperature. Higher temperatures would allow the use of supercritical steam cycles that achieve an improved efficiency relative to today's subcritical cycle ({approx}50% versus {approx}42%). The levelized cost of electricity (LCOE) of a 565 C subcritical baseline plant was compared with possible future-generation plants that operate at 600 or 650 C. The analysis suggests that {approx}8% reduction in LCOE can be expected by raising salt temperature to 650 C. However, most of that benefit can be achieved by raising the temperature to only 600 C. Several other important insights regarding possible next-generation power towers were also drawn: (1) the evaluation of receiver-tube materials that are capable of higher fluxes and temperatures, (2) suggested plant reliability improvements based on a detailed evaluation of the Solar Two experience, and (3) a thorough evaluation of analysis uncertainties.

  5. Pore Scale Thermal Hydraulics Investigations of Molten Salt Cooled Pebble Bed High Temperature Reactor with BCC and FCC Configurations

    Directory of Open Access Journals (Sweden)

    Shixiong Song

    2014-01-01

    CFD results and empirical correlations’ predictions of pressure drop and local Nusselt numbers. Local pebble surface temperature distributions in several default conditions are investigated. Thermal removal capacities of molten salt are confirmed in the case of nominal condition; the pebble surface temperature under the condition of local power distortion shows the tolerance of pebble in extreme neutron dose exposure. The numerical experiments of local pebble insufficient cooling indicate that in the molten salt cooled pebble bed reactor, the pebble surface temperature is not very sensitive to loss of partial coolant. The methods and results of this paper would be useful for optimum designs and safety analysis of molten salt cooled pebble bed reactors.

  6. Novel ternary molten salt electrolytes for intermediate-temperature sodium/nickel chloride batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guosheng; Lu, Xiaochuan; Coyle, Christopher A.; Kim, Jin Y.; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo

    2012-12-15

    The sodium–nickel chloride (ZEBRA) battery is operated at relatively high temperature (250–350 °C) to achieve adequate electrochemical performance. Reducing the operating temperature in the range of 150200 °C can not only lead to enhanced cycle life by suppressing temperature-related degradations, but also allow the use of lower cost materials for construction. To achieve adequate electrochemical performance at lower operating temperatures, reduction in ohmic losses is required, including the reduced ohmic resistance of β"-alumina solid electrolyte (BASE) and the incorporation of low melting point secondary electrolytes. In present work, planar-type Na/NiCl2 cells with a thin BASE (600 μm) and low melting point secondary electrolyte were evaluated at reduced temperatures. Molten salts used as secondary electrolytes were fabricated by the partial replacement of NaCl in the standard secondary electrolyte (NaAlCl4) with other lower melting point alkali metal salts such as NaBr, LiCl, and LiBr. Electrochemical characterization of these ternary molten salts demonstrated improved ionic conductivity and sufficient electrochemical window at reduced temperatures. Furthermore, Na/NiCl2 cells with 50 mol% NaBr-containing secondary electrolyte exhibited reduced polarizations at 175 °C compared to the cell with the standard NaAlCl4 catholyte. Finally, the cells also exhibited stable cycling performance even at 150 °C.

  7. Corrosion of Ferritic Steels in High Temperature Molten Salt Coolants for Nuclear Applications

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; El-Dasher, B; de Caro, M S; Ferreira, J

    2008-11-25

    Corrosion of ferritic steels in high temperature molten fluoride salts may limit the life of advanced reactors, including some hybrid systems that are now under consideration. In some cases, the steel may be protected through galvanic coupling with other less noble materials with special neutronic properties such a beryllium. This paper reports the development of a model for predicting corrosion rates for various ferritic steels, with and without oxide dispersion strengthening, in FLiBe (Li{sub 2}BeF{sub 4}) and FLiNaK (Li-Na-K-F) coolants at temperatures up to 800 C. Mixed potential theory is used to account for the protection of steel by beryllium, Tafel kinetics are used to predict rates of dissolution as a function of temperature and potential, and the thinning of the mass-transfer boundary layer with increasing Reynolds number is accounted for with dimensionless correlations. The model also accounts for the deceleration of corrosion as the coolants become saturated with dissolved chromium and iron. This paper also reports electrochemical impedance spectroscopy of steels at their corrosion potentials in high-temperature molten salt environments, with the complex impedance spectra interpreted in terms of the interfacial charge transfer resistance and capacitance, as well as the electrolyte conductivity. Such in situ measurement techniques provide valuable insight into the degradation of materials under realistic conditions.

  8. Microemulsion of Molten Salts

    Science.gov (United States)

    1991-02-01

    then to an oil-rich, upper phase as salinity increases in a system of brine/octane/ TRS surfactant/tertiary amyl alcohol . Borkovec et al. (1988) have...11 4. Partial Pseudotemary Phase Diagram .................................. 12 5. Micrograph of Molten Salts/SDS/Pentanol/Decane System...negligible interfacial tension between microdomains. Theoretical work in ternary and pseudotemary systems has shown that the middle phase is a

  9. Extracting information from the molten salt database

    Science.gov (United States)

    Gadzuric, Slobodan; Suh, Changwon; Gaune-Escard, Marcelle; Rajan, Krishna

    2006-12-01

    Molten salt technology is a catchall phrase that includes some very diverse technologies; electrochemistry, heat transfer, chemical oxidation/reduction baths, and nuclear reactors. All of these technologies are linked by the general characteristics of molten salts that can function as solvents, have good heat-transfer characteristics, function like a fluid, can attain very high temperatures, can conduct electricity, and also may have chemical catalytic properties. The Janz molten salt database is the most comprehensive compilation of property data about molten salts available today and is widely used for both fundamental and applied purposes. Databases are traditionally viewed as “static” documents that are used in a “search and retrieval” mode. These static data can be transformed by informatics and data mining tools into a dynamic dataset for analysis of the properties of the, materials and for making predictions. While this approch has been successful in the chemical and biochemical sciences in searching for and establishing structure-property relationships, it is not widely used in the materials science community. Because the design of the original molten salt database was not oriented toward this informatics goal, it was essential to evaluate this dataset in terms of data mining standards. Two techniques were used—a projection (principal components analysis (PCA)) and a predictive method (partial least squares (PLS))—in conjunction with fundamental knowledge acquired from the long-term practice of molten salt chemistry.

  10. Assessment of Candidate Molten Salt Coolants for the Advanced High Temperature Reactor (AHTR)

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.F.

    2006-03-24

    The Advanced High-Temperature Reactor (AHTR) is a novel reactor design that utilizes the graphite-matrix high-temperature fuel of helium-cooled reactors, but provides cooling with a high-temperature fluoride salt. For applications at temperatures greater than 900 C the AHTR is also referred to as a Liquid-Salt-Cooled Very High-Temperature Reactor (LS-VHTR). This report provides an assessment of candidate salts proposed as the primary coolant for the AHTR based upon a review of physical properties, nuclear properties, and chemical factors. The physical properties most relevant for coolant service were reviewed. Key chemical factors that influence material compatibility were also analyzed for the purpose of screening salt candidates. Some simple screening factors related to the nuclear properties of salts were also developed. The moderating ratio and neutron-absorption cross-section were compiled for each salt. The short-lived activation products, long-lived transmutation activity, and reactivity coefficients associated with various salt candidates were estimated using a computational model. Table A presents a summary of the properties of the candidate coolant salts. Certain factors in this table, such as melting point, vapor pressure, and nuclear properties, can be viewed as stand-alone parameters for screening candidates. Heat-transfer properties are considered as a group in Sect. 3 in order to evaluate the combined effects of various factors. In the course of this review, it became apparent that the state of the properties database was strong in some areas and weak in others. A qualitative map of the state of the database and predictive capabilities is given in Table B. It is apparent that the property of thermal conductivity has the greatest uncertainty and is the most difficult to measure. The database, with respect to heat capacity, can be improved with modern instruments and modest effort. In general, ''lighter'' (low-Z) salts tend to

  11. Detection and removal of molten salts from molten aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    K. Butcher; D. Smith; C. L. Lin; L. Aubrey

    1999-08-02

    Molten salts are one source of inclusions and defects in aluminum ingots and cast shapes. A selective adsorption media was used to remove these inclusions and a device for detection of molten salts was tested. This set of experiments is described and the results are presented and analyzed.

  12. Thermal Characterization of Molten Salt Systems

    Energy Technology Data Exchange (ETDEWEB)

    Toni Y. Gutknecht; Guy L. Fredrickson

    2011-09-01

    The phase stability of molten salts in an electrorefiner (ER) may be adversely affected by the buildup of sodium, fission products, and transuranics in the electrolyte. Potential situations that need to be avoided are the following: (1) salt freezing due to an unexpected change in the liquidus temperature, (2) phase separation or non-homogeneity of the molten salt due to the precipitation of solids or formation of immiscible liquids, and (3) any mechanism that can result in the separation and concentration of fissile elements from the molten salt. Any of these situations would result in an off-normal condition outside the established safety basis for electrorefiner (ER) operations. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This report describes the experimental results of typical salts compositions, which consist of chlorides of potassium, lithium, strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium chlorides as a surrogate for both uranium and plutonium, used for the processing of used nuclear fuels.

  13. Experimental studies of actinides in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs.

  14. Molten salt oxidation of organic hazardous waste with high salt content.

    Science.gov (United States)

    Lin, Chengqian; Chi, Yong; Jin, Yuqi; Jiang, Xuguang; Buekens, Alfons; Zhang, Qi; Chen, Jian

    2018-02-01

    Organic hazardous waste often contains some salt, owing to the widespread use of alkali salts during industrial manufacturing processes. These salts cause complications during the treatment of this type of waste. Molten salt oxidation is a flameless, robust thermal process, with inherent capability of destroying the organic constituents of wastes, while retaining the inorganic ingredients in the molten salt. In the present study, molten salt oxidation is employed for treating a typical organic hazardous waste with a high content of alkali salts. The hazardous waste derives from the production of thiotriazinone. Molten salt oxidation experiments have been conducted using a lab-scale molten salt oxidation reactor, and the emissions of CO, NO, SO2, HCl and dioxins are studied. Impacts are investigated from the composition of the molten salts, the types of feeding tube, the temperature of molten carbonates and the air factor. Results show that the waste can be oxidised effectively in a molten salt bath. Temperature of molten carbonates plays the most important role. With the temperature rising from 600 °C to 750 °C, the oxidation efficiency increases from 91.1% to 98.3%. Compared with the temperature, air factor has but a minor effect, as well as the composition of the molten salts and the type of feeding tube. The molten carbonates retain chlorine with an efficiency higher than 99.9% and the emissions of dioxins are below 8 pg TEQ g-1 sample. The present study shows that molten salt oxidation is a promising alternative for the disposal of organic hazardous wastes containing a high salt content.

  15. Molten nitrate salt technology development status report

    Energy Technology Data Exchange (ETDEWEB)

    Carling, R.W.; Kramer, C.M.; Bradshaw, R.W.; Nissen, D.A.; Goods, S.H.; Mar, R.W.; Munford, J.W.; Karnowsky, M.M.; Biefeld, R.N.; Norem, N.J.

    1981-03-01

    Recognizing thermal energy storage as potentially critical to the successful commercialization of solar thermal power systems, the Department of Energy (DOE) has established a comprehensive and aggressive thermal energy storage technology development program. Of the fluids proposed for heat transfer and energy storage molten nitrate salts offer significant economic advantages. The nitrate salt of most interest is a binary mixture of NaNO/sub 3/ and KNO/sub 3/. Although nitrate/nitrite mixtures have been used for decades as heat transfer and heat treatment fluids the use has been at temperatures of about 450/sup 0/C and lower. In solar thermal power systems the salts will experience a temperature range of 350 to 600/sup 0/C. Because central receiver applications place more rigorous demands and higher temperatures on nitrate salts a comprehensive experimental program has been developed to examine what effects, if any, the new demands and temperatures have on the salts. The experiments include corrosion testing, environmental cracking of containment materials, and determinations of physical properties and decomposition mechanisms. This report details the work done at Sandia National Laboratories in each area listed. In addition, summaries of the experimental programs at Oak Ridge National Laboratory, the University of New York, EIC Laboratories, Inc., and the Norwegian Institute of Technology on molten nitrate salts are given. Also discussed is how the experimental programs will influence the near-term central receiver programs such as utility repowering/industrial retrofit and cogeneration. The report is designed to provide easy access to the latest information and data on molten NaNO/sub 3//KNO/sub 3/ for the designers and engineers of future central receiver projects.

  16. High temperature corrosion performance of FeAl intermetallic alloys in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, M.; Espinosa-Medina, M.A.; Porcayo-Calderon, J.; Martinez, L.; Gonzalez-Rodriguez, J.G

    2003-05-25

    The corrosion performance of FeAl base intermetallic alloys fabricated by spray-atomization and deposition during their immersion in molten sodium metavanadate (NaVO{sub 3}), 80% (wt.%) sodium pentoxide (V{sub 2}O{sub 5}) +20% sodium sulfate (Na{sub 2}SO{sub 4}) and pure Na{sub 2}SO{sub 4} in the temperature range of 600-1000 deg. C during 200 h was investigated. The experiments were realized by the weight loss method in the intermetallic alloys of composition FeAl40(at.%), FeAl40+0.1B and FeAl40+0.1B+10Al{sub 2}O{sub 3}. In all cases, the FeAl40+0.1B+10Al{sub 2}O{sub 3} alloy showed the best corrosion resistance in the temperatures interval studied here. This behavior was discussed in terms of the formation of a protective Al{sub 2}O{sub 3} layer and its dissolution by vanadate phases and internal sulfidation in the case of experiments carried out in pure Na{sub 2}SO{sub 4}. The morphology of the external layers and the corrosion products formed during the tests revealed that the corrosion rate of this type alloy depends on the corrosion compounds that are formed and the development of protective alumina scales.

  17. Intermediate temperature embrittlement of one new Ni-26W-6Cr based superalloy for molten salt reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Li [Thorium Molten Salts Reactor Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Science, Beijing 100049 (China); Ye, Xiangxi [University of Chinese Academy of Science, Beijing 100049 (China); Cui, Chuanyong [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Huang, Hefei; Leng, Bin [Thorium Molten Salts Reactor Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Li, Zhijun, E-mail: lizhijun@sinap.ac.cn [Thorium Molten Salts Reactor Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhou, Xingtai [Thorium Molten Salts Reactor Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-06-21

    Ni-26W-6Cr based superalloy is considered a potential structure material for the molten salt reactors due to its high strength and good compatibility with the fluoride salt. In the present work, the temperature dependence of the tensile behavior of the alloy was studied by tensile tests in the temperature range of 25–850 °C. This alloy exhibited a good ductility at RT and 450 °C, a ductility minimum from 650 to 750 °C and an intermediate ductility at 850 °C. TEM and EBSD characterization was performed on specimens tested at three typical temperature points (RT, 650 °C and 850 °C) to determine the deformation and fracture mechanisms accounting for the intermediate temperature embrittlement. At RT, the grain boundaries can accommodate enough dislocations to provide compatibility of the sliding between adjacent grains, then M{sub 6}C carbides act as crack origins and cause the fracture. In case of 650 °C, the grain boundaries cannot withstand the local stress even if only a small number of dislocation pile-ups exist. The premature cracks at grain boundaries impede the development of plastic deformation from single slips to multiple ones and cause the low ductility. If tested at 850 °C, the fracture process is retarded by the dynamic recovery and local dynamic recrystallization at crack tips.

  18. Low temperature molten salt synthesis of Y(sub2)Sn(sub2)O(sub7) anode material for lithium ion batteries

    CSIR Research Space (South Africa)

    Nithyadharseni, P

    2015-10-01

    Full Text Available For the first time, yttrium tin oxide (Y(sub2)Sn(sub2)O(sub7)) compound is prepared at low temperature (400 _C) with cubic pyrochlore structure via molten salt method using KOH as a flux for their electrochemical applications. The final product...

  19. Metal Production by Molten Salt Electrolysis

    DEFF Research Database (Denmark)

    Grjotheim, K.; Kvande, H.; Qingfeng, Li

    Chemistry and electrochemistry of molten salts are reviewed. Technological aspects of electrolytic production of aluminium, magnesium, and other metals are comprehensively surveyed.......Chemistry and electrochemistry of molten salts are reviewed. Technological aspects of electrolytic production of aluminium, magnesium, and other metals are comprehensively surveyed....

  20. Effect of preparation temperature and cycling voltage range on molten salt method prepared SnO2

    CSIR Research Space (South Africa)

    Reddy, MV

    2013-09-01

    Full Text Available We prepared nano-sized tin (IV) oxide (SnO(sub2)) via molten-salt technique: heating a mixture of tin tetrachloride, lithium nitrate and lithium chloride at 280 °C in air. The powders are characterized by X-ray diffraction and transmission scanning...

  1. High Temperature Corrosion of Inconel 600 in NaCl-KCl Molten Salts

    Directory of Open Access Journals (Sweden)

    G. Salinas-Solano

    2014-01-01

    Full Text Available In this work the corrosion resistance of a high content nickel alloy, Inconel 600, was investigated in mixed NaCl-KCl salts at 700, 800, and 900°C for 100 hours in static air. Investigation was carried out using electrochemical techniques such as polarization curves, rest potential measurements, linear polarization resistance, and electrochemical impedance spectroscopy. Corroded specimens were analyzed by scanning electron microscopy (SEM and energy-dispersive X-ray spectroscopy (EDS. Electrochemical measurements showed an increased degradation rate of Inconel 600 with increasing test temperature. SEM and EDS analysis show that the damage experienced by Inconel 600 is greater than that determined by electrochemical measurements. This damage was identified as internal corrosion due to the reaction of Cl2 with the alloying elements (Cr and Fe; however, at 900°C the internal damage was minor and it was associated with the nickel content in the alloy.

  2. Advanced Instrumentation for Molten Salt Flow Measurements at NEXT

    Science.gov (United States)

    Tuyishimire, Olive

    2017-09-01

    The Nuclear Energy eXperiment Testing (NEXT) Lab at Abilene Christian University is building a Molten Salt Loop to help advance the technology of molten salt reactors (MSR). NEXT Lab's aim is to be part of the solution for the world's top challenges by providing safe, clean, and inexpensive energy, clean water and medical Isotopes. Measuring the flow rate of the molten salt in the loop is essential to the operation of a MSR. Unfortunately, there is no flow meter that can operate in the high temperature and corrosive environment of a molten salt. The ultrasonic transit time method is proposed as one way to measure the flow rate of high temperature fluids. Ultrasonic flow meter uses transducers that send and receive acoustic waves and convert them into electrical signals. Initial work presented here focuses on the setup of ultrasonic transducers. This presentation is the characterization of the pipe-fluid system with water as a baseline for future work.

  3. Dynamics and control of molten-salt breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sing, Vikram; Lish, Matthew R.; Chvala, Ondrej; Upadhyaya, Belle R. [Dept. of Nuclear Engineering, University of Tennessee, Knoxville (United States)

    2017-08-15

    Preliminary results of the dynamic analysis of a two-fluid molten-salt breeder reactor (MSBR) system are presented. Based on an earlier work on the preliminary dynamic model of the concept, the model presented here is nonlinear and has been revised to accurately reflect the design exemplified in ORNL-4528. A brief overview of the model followed by results from simulations performed to validate the model is presented. Simulations illustrate stable behavior of the reactor dynamics and temperature feedback effects to reactivity excursions. Stable and smooth changes at various nodal temperatures are also observed. Control strategies for molten-salt reactor operation are discussed, followed by an illustration of the open-loop load-following capability of the molten-salt breeder reactor system. It is observed that the molten-salt breeder reactor system exhibits “self-regulating” behavior, minimizing the need for external controller action for load-following maneuvers.

  4. Electricity generation using molten salt technology

    OpenAIRE

    Osarinmwian, Charles

    2013-01-01

    The anodic release of carbon dioxide gas in the molten salt Hall-Heroult process can be used to power a turbine for electricity generation. The application of this new concept in molten salt reprocessing in the nuclear industry is considered because it could facilitate the suitability of carbon dioxide cycles to certain types of nuclear reactor. The theoretical power of 27.8 MW generated by a molten salt Hall-Heroult reactor is comparable with a next-generation biomass plant that sources low-...

  5. Fluoroacidity evaluation in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Bieber, A.L. [Laboratoire de Genie Chimique UMR 5503, Departement Procedes Electrochimiques, Universite de Toulouse, 31062 Toulouse Cedex (France); Massot, L., E-mail: massot@chimie.ups-tlse.fr [Laboratoire de Genie Chimique UMR 5503, Departement Procedes Electrochimiques, Universite de Toulouse, 31062 Toulouse Cedex (France); Gibilaro, M.; Cassayre, L.; Chamelot, P.; Taxil, P. [Laboratoire de Genie Chimique UMR 5503, Departement Procedes Electrochimiques, Universite de Toulouse, 31062 Toulouse Cedex (France)

    2011-05-30

    Highlights: > Si(IV) ions are reduced into Si in a one-step process exchanging 4 electrons in molten fluorides. > Si(IV) ions stability in molten fluorides depends on the free F{sup -} ions. > Study of SiF{sub 4(g)} release kinetics allows qualitative fluoroacidity evaluation. > Several compositions of molten fluoride mixtures have been investigated. - Abstract: The fluoroacidity of several alkaline fluoride media was studied by monitoring the concentration of electroactive species which is decreasing vs. time due to a gas species release, such as silicon fluorides, as indicated by the reaction: SiF{sub 4+x}{sup x-} = SiF{sub 4(g)} + xF{sup -}. This article relates the Si(IV) reaction study to define a relative fluoroacidity scale by studying the silicon ions stability in different melts. Electrochemical techniques allow the measurement of SiF{sub 4+x}{sup x-} concentration evolution and thus the reaction rate constant to be calculated at different temperatures and for several fluoride media. The article shows that the free F{sup -} content depends on the fluoride mixture and that the rate values are correlated with the fluoroacidity allowing a qualitative estimation. Then a fluoride solvents fluoroacidity scale was proposed, scaling the different eutectic melts from basic melt to acidic one: NaF-KF < LiF-KF < NaF-MgF{sub 2} < NaF-CaF{sub 2} < LiF-NaF < LiF < LiF-CaF{sub 2}.

  6. Electrochemical ion separation in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Spoerke, Erik David; Ihlefeld, Jon; Waldrip, Karen; Wheeler, Jill S.; Brown-Shaklee, Harlan James; Small, Leo J.; Wheeler, David R.

    2017-12-19

    A purification method that uses ion-selective ceramics to electrochemically filter waste products from a molten salt. The electrochemical method uses ion-conducting ceramics that are selective for the molten salt cations desired in the final purified melt, and selective against any contaminant ions. The method can be integrated into a slightly modified version of the electrochemical framework currently used in pyroprocessing of nuclear wastes.

  7. Transfer characteristics of a lithium chloride–potassium chloride molten salt

    Directory of Open Access Journals (Sweden)

    Eve Mullen

    2017-12-01

    Full Text Available Pyroprocessing is an alternative method of reprocessing spent fuel, usually involving the dissolving spent fuel in a molten salt media. The National Nuclear Laboratory designed, built, and commissioned a molten salt dynamics rig to investigate the transfer characteristics of molten lithium chloride–potassium chloride eutectic salt. The efficacy and flow characteristics of a high-temperature centrifugal pump and argon gas lift were obtained for pumping the molten salt at temperatures up to 500°C. The rig design proved suitable on an industrial scale and transfer methods appropriate for use in future molten salt systems. Corrosion within the rig was managed, and melting techniques were optimized to reduce stresses on the rig. The results obtained improve the understanding of molten salt transport dynamics, materials, and engineering design issues and support the industrialization of molten salts pyroprocessing.

  8. Low temperature synthesis of CaZrO3 nanoceramics from CaCl2–NaCl molten eutectic salt

    Directory of Open Access Journals (Sweden)

    Rahman Fazli

    2015-06-01

    Full Text Available CaZrO3 nanoceramics were successfully synthesized at 700 C using the molten salt method, and the effects of processing parameters, such as temperature, holding time, and amount of salt on the crystallization of CaZrO3 were investigated. CaCl2, Na2CO3, and nano-ZrO2 were used as starting materials. On heating, CaCl2–NaCl molten eutectic salt provided a liquid medium for the reaction of CaCO3 and ZrO2 to form CaZrO3. The results demonstrated that CaZrO3 started to form at about 600C and that, after the temperature was increased to 1,000C, the amounts of CaZrO3 in the resultant powders increased with a concomitant decrease in CaCO3and ZrO2 contents. After washing with hot distilled water, the samples heated for 3 h at 700C were single-phase CaZrO3 with 90–95 nm particle size. Furthermore, the synthesized CaZrO3 particles retained the size and morphology of the ZrO2 powders which indicated that a template mechanism dominated the formation of CaZrO3 by molten-salt method.

  9. Hydrogen permeation through Flinabe fluoride molten salts for blanket candidates

    Energy Technology Data Exchange (ETDEWEB)

    Nishiumi, Ryosuke, E-mail: r.nishiumi@aees.kyushu-u.ac.jp; Fukada, Satoshi; Nakamura, Akira; Katayama, Kazunari

    2016-11-01

    Highlights: • H{sub 2} diffusivity, solubility and permeability in Flinabe as T breeder are determined. • Effects in composition differences among Flibe, Fnabe and Flinabe are compared. • Changes of pressure dependence of Flinabe permeation rate are clarified. - Abstract: Fluoride molten salt Flibe (2LiF + BeF{sub 2}) is a promising candidate for the liquid blanket of a nuclear fusion reactor, because of its large advantages of tritium breeding ratio and heat-transfer fluid. Since its melting point is higher than other liquid candidates, another new fluoride molten salt Flinabe (LiF + NaF + BeF{sub 2}) is recently focused on because of its lower melting point while holding proper breeding properties. In this experiment, hydrogen permeation behavior through the three molten salts of Flibe (2LiF + BeF{sub 2}), Fnabe (NaF + BeF{sub 2}) and Flinabe are investigated in order to clarify the effects of their compositions on hydrogen transfer properties. After making up any of the three molten salts and purifying it using HF, hydrogen permeability, diffusivity and solubility of the molten salts are determined experimentally by using a system composed of tertiary cylindrical tubes. Close agreement is obtained between experimental data and analytical solutions. H{sub 2} permeability, diffusivity and solubility are correlated as a function of temperature and are compared among the three molten salts.

  10. Temperature effect on fluorescence and UV-vis absorption spectroscopic properties of Dy(III) in molten LiCl-KCl eutectic salt

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Young [Department of Nuclear and Quantum Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Yun, Jong-Il, E-mail: jiyun@kaist.ac.kr [Department of Nuclear and Quantum Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2012-11-15

    The spectroscopic properties of Dy(III) in molten LiCl-KCl eutectic salt at high temperature were investigated by time-resolved laser fluorescence spectroscopy (TRLFS) and UV-vis absorption spectroscopy. For the first time, a visible fluorescence of Dy(III) in high-temperature LiCl-KCl eutectic salt was measured due to the electronic transitions from {sup 4}I{sub 13/2} and {sup 4}F{sub 9/2} to {sup 6}H{sub J/2} (J=7, Horizontal-Ellipsis ,15). The effect of temperature on hypersensitivity for the electronic transitions from the {sup 4}I{sub 13/2} excited state ({approx}25700 cm{sup -1}) of Dy(III) was confirmed by altering temperature in chloride eutectic salt in accord with optical absorption measurements. The molar absorptivity of {sup 4}I{sub 13/2} Leftwards-Arrow {sup 6}H{sub 15/2} was enhanced with increasing temperature. The fluorescence intensity of Dy(III) followed a simple mono-exponential decay curve, suggesting the formation of a single chemical species in high-temperature LiCl-KCl molten salt. - Highlights: Black-Right-Pointing-Pointer Spectroscopic characteristics of Dy(III) in the high-temperature LiCl-KCl salt. Black-Right-Pointing-Pointer In-situ chemical analysis of Dy(III) by fluorescence and absorbance measurement. Black-Right-Pointing-Pointer Temperature effect on hypersensitivity for electronic transitions from {sup 4}I{sub 13/2} excited state. Black-Right-Pointing-Pointer Single chemical species of Dy(III) exists in high-temperature LiCl-KCl salt.

  11. Parametric study of natural circulation flow in molten salt fuel in molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pauzi, Anas Muhamad, E-mail: Anas@uniten.edu.my [Centre of Nuclear Energy, Universiti Tenaga Nasional (UNITEN), Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia); Cioncolini, Andrea; Iacovides, Hector [School of Mechanical, Aerospace, and Civil Engineering (MACE), University of Manchester, Oxford Road, M13 9PL Manchester (United Kingdom)

    2015-04-29

    The Molten Salt Reactor (MSR) is one of the most promising system proposed by Generation IV Forum (GIF) for future nuclear reactor systems. Advantages of the MSR are significantly larger compared to other reactor system, and is mainly achieved from its liquid nature of fuel and coolant. Further improvement to this system, which is a natural circulating molten fuel salt inside its tube in the reactor core is proposed, to achieve advantages of reducing and simplifying the MSR design proposed by GIF. Thermal hydraulic analysis on the proposed system was completed using a commercial computation fluid dynamics (CFD) software called FLUENT by ANSYS Inc. An understanding on theory behind this unique natural circulation flow inside the tube caused by fission heat generated in molten fuel salt and tube cooling was briefly introduced. Currently, no commercial CFD software could perfectly simulate natural circulation flow, hence, modeling this flow problem in FLUENT is introduced and analyzed to obtain best simulation results. Results obtained demonstrate the existence of periodical transient nature of flow problem, hence improvements in tube design is proposed based on the analysis on temperature and velocity profile. Results show that the proposed system could operate at up to 750MW core power, given that turbulence are enhanced throughout flow region, and precise molten fuel salt physical properties could be defined. At the request of the authors and the Proceedings Editor the name of the co-author Andrea Cioncolini was corrected from Andrea Coincolini. The same name correction was made in the Acknowledgement section on page 030004-10 and in reference number 4. The updated article was published on 11 May 2015.

  12. Investigation of molten salt fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Kenichi; Enuma, Yasuhiro; Tanaka, Yoshihiko; Konomura, Mamoru; Ichimiya, Masakazu [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    2000-06-01

    Phase I of Feasibility Studies on Commercialized Fast Reactor System is being performed for two years from Japanese Fiscal Year 1999. In this report, results of the study on fluid fuel reactors (especially a molten salt fast breeder reactor concept) are described from the viewpoint of technical and economical concerns of the plant system design. In JFY1999, we have started to investigate the fluid fuel reactors as alternative concepts of sodium cooled FBR systems with MOX fuel, and selected the unique concept of a molten chloride fast breeder reactor, whose U-Pu fuel cycle can be related to both light water reactors and fast breeder reactors on the basis of present technical data and design experiences. We selected a preliminary composition of molten fuel and conceptual plant design through evaluation of technical and economical issues essential for the molten salt reactors and then compared them with reference design concepts of sodium cooled FBR systems under limited information on the molten chloride fast breeder reactors. The following results were obtained. (1) The molten chloride fast breeder reactors have inherent safety features in the core and plant performances, ad the fluid fuel is quite promising for cost reduction of the fuel fabrication and reprocessing. (2) On the other hand, the inventory of the molten chloride fuel becomes high and thermal conductivity of the coolant is inferior compared to those of sodium cooled FBR systems, then, the size of main components such as IHX's becomes larger and the amount of construction materials is seems to be increased. (3) Furthermore economical vessel and piping materials which contact with the molten chloride salts are required to be developed. From the results, it is concluded that further steps to investigate the molten chloride fast breeder reactor concepts are too early to be conducted. (author)

  13. Numerical study of cold filling and tube deformation in the molten salt receiver

    Science.gov (United States)

    Xu, Tingting; Zhang, Gongchen; Peniguel, Christophe; Liao, Zhirong; Li, Xin; Lu, Jiahui; Wang, Zhifeng

    2017-06-01

    Molten salt tube cold filling is one way to accelerate the startup of molten salt Concentrated Solar Power (CSP) plant. This practical operation may induce salt solidification and large thermal stress due to tube's large temperature difference. This paper presents the cold filling study and the induced thermal stress quantitatively through simulation approaches. Physical mechanisms and safe working criteria are identified under certain conditions.

  14. Nonmetal-metal transition in metal–molten-salt solutions

    NARCIS (Netherlands)

    Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.

    1996-01-01

    The method of ab initio molecular dynamics, based on finite-temperature density-functional theory, is used to study the nonmetal-metal transition in two different metal–molten-salt solutions, Kx(KCl)1-x and Nax(NaBr)1-x. As the excess metal concentration is increased the electronic density becomes

  15. Hybrid Molten Salt Reactor (HMSR) System Study

    Energy Technology Data Exchange (ETDEWEB)

    Woolley, Robert D [PPPL; Miller, Laurence F [PPPL

    2014-04-01

    Can the hybrid system combination of (1) a critical fission Molten Salt Reactor (MSR) having a thermal spectrum and a high Conversion Ratio (CR) with (2) an external source of high energy neutrons provide an attractive solution to the world's expanding demand for energy? The present study indicates the answer is an emphatic yes.

  16. A study on the corrosion-control test of material for molten salt handling (I)

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Joon; Zhang, J. S.; Oh, S. C.; Cho, S. H.; Park, H. S.; Do, J. B. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-01-01

    On this technical report, corrosion behaviors of Incoloy 800H, Inconel 600 and Hastelloy C-276 in molten salts were investigated in the temperature range of 650 - 850 deg C. Due to Li{sub 2}O-induced basic fluxing mechanism, the corrosion rates of the alloys in mixed molten salt of LiCl-Li{sub 2}O were significantly higher than those in molten salt of LiCl. In the mixed molten salt, Fe-base alloys showed higher corrosion resistance than the Ni-base alloys, and C-276 with high Mo and W contents exhibited the highest corrosion rate among the examined alloys. the single layer of LiCrO{sub 2} was formed in molten salt of LiCl and two phase structure of a scale consisted of oxides and Ni was formed in the mixed molten salt. 48 refs., 14 figs., 2 tabs. (Author)

  17. Computational Thermodynamic Modeling of Hot Corrosion of Alloys Haynes 242 and HastelloyTM N for Molten Salt Service in Advanced High Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    V. Glazoff, Michael; Charit, Indrajt; Sabharwall, Piyush

    2014-09-17

    An evaluation of thermodynamic aspects of hot corrosion of the superalloys Haynes 242 and HastelloyTM N in the eutectic mixtures of KF and ZrF4 is carried out for development of Advanced High Temperature Reactor (AHTR). This work models the behavior of several superalloys, potential candidates for the AHTR, using computational thermodynamics tool (ThermoCalc), leading to the development of thermodynamic description of the molten salt eutectic mixtures, and on that basis, mechanistic prediction of hot corrosion. The results from these studies indicated that the principal mechanism of hot corrosion was associated with chromium leaching for all of the superalloys described above. However, HastelloyTM N displayed the best hot corrosion performance. This was not surprising given it was developed originally to withstand the harsh conditions of molten salt environment. However, the results obtained in this study provided confidence in the employed methods of computational thermodynamics and could be further used for future alloy design efforts. Finally, several potential solutions to mitigate hot corrosion were proposed for further exploration, including coating development and controlled scaling of intermediate compounds in the KF-ZrF4 system.

  18. Molten Salt Breeder Reactor Analysis Methods

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jinsu; Jeong, Yongjin; Lee, Deokjung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    Utilizing the uranium-thorium fuel cycle shows considerable potential for the possibility of MSR. The concept of MSBR should be revised because of molten salt reactor's advantage such as outstanding neutron economy, possibility of continuous online reprocessing and refueling, a high level of inherent safety, and economic benefit by keeping off the fuel fabrication process. For the development of MSR research, this paper provides the MSBR single-cell, two-cell and whole core model for computer code input, and several calculation results including depletion calculation of each models. The calculations are carried out by using MCNP6, a Monte Carlo computer code, which has CINDER90 for depletion calculation using ENDF-VII nuclear data. From the calculation results of various reactor design parameters, the temperature coefficients are all negative at the initial state and MTC becomes positive at the equilibrium state. From the results of core rod worth, the graphite control rod alone cannot makes the core subcritical at initial state. But the equilibrium state, the core can be made subcritical state only by graphite control rods. Through the comparison of the results of each models, the two-cell method can represent the MSBR core model more accurately with a little more computational resources than the single-cell method. Many of the thermal spectrum MSR have adopted a multi-region single-fluid strategy.

  19. Thermodynamic characterization of salt components for Molten Salt Reactor fuel

    NARCIS (Netherlands)

    Capelli, E.

    2016-01-01

    The Molten Salt Reactor (MSR) is a promising future nuclear fission reactor technology with excellent performance in terms of safety and reliability, sustainability, proliferation resistance and economics. For the design and safety assessment of this concept, it is extremely important to have a

  20. Fast Spectrum Molten Salt Reactor Options

    Energy Technology Data Exchange (ETDEWEB)

    Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Patton, Bruce W [ORNL; Howard, Rob L [ORNL; Harrison, Thomas J [ORNL

    2011-07-01

    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

  1. Molten salt bath circulation design for an electrolytic cell

    Science.gov (United States)

    Dawless, R.K.; LaCamera, A.F.; Troup, R.L.; Ray, S.P.; Hosler, R.B.

    1999-08-17

    An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride. 4 figs.

  2. Molten salts activated by high-energy milling: A useful, low-temperature route for the synthesis of multiferroic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hernández-Ramírez, Anayantzin; Martínez-Luévanos, Antonia [Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, V. Carranza s/n, Saltillo, Coahuila 25280 (Mexico); Fuentes, Antonio F. [CINVESTAV Unidad Saltillo, Apdo. Postal 663, Saltillo, Coahuila 25000 (Mexico); Earth and Environmental Science, University of Michigan, 3514 C.C. Little Building, 1100 N. University Avenue, Ann Arbor, MI 48109-1005 (United States); Nelson, Anna-Gay D.; Ewing, Rodney C. [Earth and Environmental Science, University of Michigan, 3514 C.C. Little Building, 1100 N. University Avenue, Ann Arbor, MI 48109-1005 (United States); Montemayor, Sagrario M., E-mail: smmontemayor@gmail.com [Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, V. Carranza s/n, Saltillo, Coahuila 25280 (Mexico); Earth and Environmental Science, University of Michigan, 3514 C.C. Little Building, 1100 N. University Avenue, Ann Arbor, MI 48109-1005 (United States)

    2014-01-25

    Highlights: • The synthesis route purposed demonstrates the formation of BiFeO{sub 3} at only 500 °C. • The magnetic and ferroelectric properties are comparable to those of bulk BiFeO{sub 3}. • By this route, several phases in Bi{sub 1−x}La{sub x}FeO{sub 3} system are obtained at only 500 °C. • The route developed here could be useful to synthesize other perovskite-type oxides. -- Abstract: There are only a few multiferroic compounds, among which BiFeO{sub 3} is the most important. Research the synthesis of bismuth ferrite, with novel and improved magnetic and electrical properties, has been mainly based on the use of hydrothermal or sol gel methods. However, these methods require either rather extreme conditions or several steps for synthesis. We demonstrate that the use of molten salts, activated by high energy milling, results in pure nanometric BiFeO{sub 3}, LaFeO{sub 3} and intermediate phases in the Bi{sub 1−x}La{sub x}FeO{sub 3} system. The chemical reagents used are Bi(NO{sub 3}){sub 3}⋅5H{sub 2}O, La(NO{sub 3}){sub 3}⋅6H{sub 2}O, Fe(NO{sub 3}){sub 3}⋅9H{sub 2}O and NaOH. A brief milling process of the reagents creates an amorphous precursor and crystalline NaNO{sub 3}. The thermal treatment of the precursors, at 500 °C for two hours, produces a crystalline mixture of Bi{sub 1−x}La{sub x}FeO{sub 3} and NaNO{sub 3}. Simple washing eliminates the NaNO{sub 3}. The characterization of intermediates and final products, through thermal analysis, X-ray diffraction and scanning electronic microscopy, allows the inference of possible mechanism. In addition, vibrating sample magnetometry (VSM) and ferroelectric tests show the typical magnetic and electric polarization loops characteristic of these materials even when formed at the nano-scale.

  3. Transient simulation of molten salt central receiver

    Science.gov (United States)

    Doupis, Dimitri; Wang, Chuan; Carcorze-Soto, Jorge; Chen, Yen-Ming; Maggi, Andrea; Losito, Matteo; Clark, Michael

    2016-05-01

    Alstom is developing concentrated solar power (CSP) utilizing 60/40wt% NaNO3-KNO3 molten salt as the working fluid in a tower receiver for the global renewable energy market. In the CSP power generation cycle, receivers undergo a daily cyclic operation due to the transient nature of solar energy. Development of robust and efficient start-up and shut-down procedures is critical to avoiding component failures due to mechanical fatigue resulting from thermal transients, thus maintaining the performance and availability of the CSP plant. The Molten Salt Central Receiver (MSCR) is subject to thermal transients during normal daily operation, a cycle that includes warmup, filling, operation, draining, and shutdown. This paper describes a study to leverage dynamic simulation and finite element analysis (FEA) in development of start-up, shutdown, and transient operation concepts for the MSCR. The results of the FEA also verify the robustness of the MSCR design to the thermal transients anticipated during the operation of the plant.

  4. Stable colloids in molten inorganic salts

    Science.gov (United States)

    Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B.; Han, Gang; Lee, Byeongdu; Vaikuntanathan, Suri; Talapin, Dmitri V.

    2017-02-01

    A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other. Electrostatic stabilization of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solvents with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute-solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute-solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.

  5. Stable colloids in molten inorganic salts.

    Science.gov (United States)

    Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B; Han, Gang; Lee, Byeongdu; Vaikuntanathan, Suri; Talapin, Dmitri V

    2017-02-15

    A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other. Electrostatic stabilization of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solvents with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute-solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute-solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.

  6. Diffusion Welding of Alloys for Molten Salt Service - Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Denis Clark; Ronald Mizia

    2012-05-01

    The present work is concerned with heat exchanger development for molten salt service, including the proposed molten salt reactor (MSR), a homogeneous reactor in which the fuel is dissolved in a circulating fluid of molten salt. It is an outgrowth of recent work done under the Next Generation Nuclear Plant (NGNP) program; what the two reactor systems have in common is an inherently safe nuclear plant with a high outlet temperature that is useful for process heat as well as more conventional generation The NGNP program was tasked with investigating the application of a new generation of nuclear power plants to a variety of energy needs. One baseline reactor design for this program is a high temperature, gas-cooled reactor (HTGR), which provides many options for energy use. These might include the conventional Rankine cycle (steam turbine) generation of electricity, but also other methods: for example, Brayton cycle (gas turbine) electrical generation, and the direct use of the high temperatures characteristic of HTGR output for process heat in the chemical industry. Such process heat is currently generated by burning fossil fuels, and is a major contributor to the carbon footprint of the chemical and petrochemical industries. The HTGR, based on graphite fuel elements, can produce very high output temperatures; ideally, temperatures of 900 C or even greater, which has significant energy advantages. Such temperatures are, of course, at the frontiers of materials limitations, at the upper end of the performance envelope of the metallic materials for which robust construction codes exist, and within the realm of ceramic materials, the fabrication and joining of which, on the scale of large energy systems, are at an earlier stage of development. A considerable amount of work was done in the diffusion welding of materials of interest for HTGR service with alloys such as 617 and 800H. The MSR output temperature is also materials limited, and is projected at about 700 C

  7. Diffusion Welding of Alloys for Molten Salt Service - Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Denis Clark; Ronald Mizia; Piyush Sabharwall

    2012-09-01

    The present work is concerned with heat exchanger development for molten salt service, including the proposed molten salt reactor (MSR), a homogeneous reactor in which the fuel is dissolved in a circulating fluid of molten salt. It is an outgrowth of recent work done under the Next Generation Nuclear Plant (NGNP) program; what the two reactor systems have in common is an inherently safe nuclear plant with a high outlet temperature that is useful for process heat as well as more conventional generation The NGNP program was tasked with investigating the application of a new generation of nuclear power plants to a variety of energy needs. One baseline reactor design for this program is a high temperature, gas-cooled reactor (HTGR), which provides many options for energy use. These might include the conventional Rankine cycle (steam turbine) generation of electricity, but also other methods: for example, Brayton cycle (gas turbine) electrical generation, and the direct use of the high temperatures characteristic of HTGR output for process heat in the chemical industry. Such process heat is currently generated by burning fossil fuels, and is a major contributor to the carbon footprint of the chemical and petrochemical industries. The HTGR, based on graphite fuel elements, can produce very high output temperatures; ideally, temperatures of 900 °C or even greater, which has significant energy advantages. Such temperatures are, of course, at the frontiers of materials limitations, at the upper end of the performance envelope of the metallic materials for which robust construction codes exist, and within the realm of ceramic materials, the fabrication and joining of which, on the scale of large energy systems, are at an earlier stage of development. A considerable amount of work was done in the diffusion welding of materials of interest for HTGR service with alloys such as 617 and 800H. The MSR output temperature is also materials limited, and is projected at about 700

  8. Advancing Molten Salts and Fuels at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Salvador B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-26

    SNL has a combination of experimental facilities, nuclear engineering, nuclear security, severe nuclear accidents, and nuclear safeguards expertise that can enable significant progress towards molten salts and fuels for Molten Salt Reactors (MSRs). The following areas and opportunities are discussed in more detail in this white paper.

  9. Conceptual design of Indian molten salt breeder reactor

    Indian Academy of Sciences (India)

    2015-08-28

    Aug 28, 2015 ... Home; Journals; Pramana – Journal of Physics; Volume 85; Issue 3. Conceptual design of Indian molten salt breeder ... India has recently started carrying out fundamental studies so as to arrive at a conceptual design of Indian molten salt breeder reactor (IMSBR). Presently, various design options and ...

  10. SURFACE TENSION TECHNIQUES FOR MOLTEN SALTS

    Science.gov (United States)

    Some 200 surface tension determinations were made on 107 single-salt melts using eight experimental techniques. From a consideration of the... surface tension range of applicability and temperature limitation for these techniques are briefly considered.

  11. Molten Salt Promoting Effect in Double Salt CO2 Absorbents

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Keling; Li, Xiaohong S.; Chen, Haobo; Singh, Prabhakar; King, David L.

    2016-01-01

    The purpose of this paper is to elaborate on the concept of molten salts as catalysts for CO2 absorption by MgO, and extend these observations to the MgO-containing double salt oxides. We will show that the phenomena involved with CO2 absorption by MgO and MgO-based double salts are similar and general, but with some important differences. This paper focuses on the following key concepts: i) identification of conditions that favor or disfavor participation of isolated MgO during double salt absorption, and investigation of methods to increase the absorption capacity of double salt systems by including MgO participation; ii) examination of the relationship between CO2 uptake and melting point of the promoter salt, leading to the recognition of the role of pre-melting (surface melting) in these systems; and iii) extension of the reaction pathway model developed for the MgO-NaNO3 system to the double salt systems. This information advances our understanding of MgO-based CO2 absorption systems for application with pre-combustion gas streams.

  12. Renewable energy and the role of molten salts and carbon

    Directory of Open Access Journals (Sweden)

    Fray D.

    2013-01-01

    Full Text Available Molten carbonate fuel cells have been under development for a number of years and reliable units are successfully working at 250kW scale and demonstration units have produced up to 2 MW. Although these cells cannot be considered as renewable as the fuel, hydrogen or carbon monoxide is consumed and not regenerated, the excellent reliability of such a cell can act as a stimulus to innovative development of similar cells with different outcomes. Molten salt electrolytes based upon LiCl - Li2O can be used to convert carbon dioxide, either drawn from the output of a conventional thermal power station or from the atmosphere, to carbon monoxide or carbon. Recently, dimensionally stable anodes have been developed for molten salt electrolytes, based upon alkali or alkaline ruthenates which are highly electronically conducting and these may allow the concept of high temperature batteries to be developed in which an alkali or alkaline earth element reacts with air to form oxides when the battery is discharging and the oxide decomposes when the battery is being recharged. Batteries using these concepts may be based upon the Hall-Heroult cell, which is used worldwide for the production of aluminium on an industrial scale, and could be used for load levelling. Lithium ion batteries are, at present, the preferred energy source for cars in 2050 as there are sufficient lithium reserves to satisfy the world’s energy needs for this particular application. Graphite is used in lithium ion batteries as the anode but the capacity is relatively low. Silicon and tin have much higher capacities and the use of these materials, encapsulated in carbon nanotubes and nanoparticles will be described. This paper will review these interesting developments and demonstrate that a combination of carbon and molten salts can offer novel ways of storing energy and converting carbon dioxide into useful products.

  13. Coolant Compatibility Studies for Fusion and Fusion-Fission Hybrid Reactor Concepts: Corrosion of Oxide Dispersion Strengthened Iron-Chromium Steels and Tantalum in High Temperature Molten Fluoride Salts

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); El-dasher, Bassem [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ferreira, James [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Caro, Magdalena Serrano de [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kimura, Akihiko [Kyoto Univ. (Japan). Inst. of Advanced Energy

    2010-05-04

    Alloys such as 12YWT & 14YWT have exceptional high-temperature strength at temperatures greater than 550 C. This class of materials has also demonstrated relatively little radiation induced swelling at damage levels of at least 75 dpa in sodium-cooled fast reactors. However, corrosion of oxide dispersion strengthened (ODS) steels in high temperature molten fluoride salts may limit the life of advanced reactor systems, including some fusion and fusionfission hybrid systems that are now under consideration. This paper reports corrosion studies of ODS steel in molten fluoride salts at temperatures ranging from 600 to 900 C. Electrochemical impedance spectroscopy (EIS) was used to measure the temperature dependence of charge transfer kinetics in situ, while an environmental electron microscope (ESEM) equipped with energy dispersive spectroscopy (EDS) was used for postexposure examination of test samples. ODS steel experienced corrosion in the molten fluoride salts at 550 to 900 C, even in carefully controlled glove-box environments with very low levels of oxygen and moisture. The observed rate of attack was found to accelerate dramatically at temperatures above 800 C. Tantalum and tantalum-based alloys such as Ta-1W and Ta-10W have exceptional high temperature strength, far better than ODS steels. Unlike ODS steels, tantalum has been found to exhibit some immunity to corrosive attack by molten fluoride salts at temperatures as high as 900 C, though there is some indication that grain boundary attack may have occurred. Unfortunately, tantalum alloys are known to become brittle during irradiation and exposure to hydrogen, both of which are important in fusion applications.

  14. Dynamic modeling of molten salt power towers

    Science.gov (United States)

    Flesch, Robert; Högemann, Daniel; Hackmann, Jonas; Uhlig, Ralf; Schwarzbözl, Peter; Augsburger, Germain; Clark, Michael

    2017-06-01

    A detailed understanding of the transient behavior of a receiver using molten salt as heat transfer fluid is of great importance for an efficient and safe operation. To analyze the transient operation a dynamic model for the flow in the receiver is currently under development, which will be capable to analyze the one-phase flow during normal operation and the two-phase flow during filling and draining. The model can be coupled to raytracing simulation in order to use a realistic flux density distribution as input for the model. In the paper the modelling approach for the receiver model is described shortly and validation results are discussed. This includes a detailed discussion of the heat transfer during the filling procedure, where an interesting phenomenon was discovered. Finally, the results for a parameter variation of the filling procedure and the simulation results for the impact of certain cloud events on the operation of the receiver are presented.

  15. Stable colloids in molten inorganic salts

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B.; Han, Gang; Lee, Byeongdu; Vaikuntanathan, Suri; Talapin, Dmitri V.

    2017-02-15

    A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes1, 2, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other2. Electrostatic stabilization3, 4 of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solvents with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains2, 5. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute–solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute–solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.

  16. Progress in modeling solidification in molten salt coolants

    Science.gov (United States)

    Tano, Mauricio; Rubiolo, Pablo; Doche, Olivier

    2017-10-01

    Molten salts have been proposed as heat carrier media in the nuclear and concentrating solar power plants. Due to their high melting temperature, solidification of the salts is expected to occur during routine and accidental scenarios. Furthermore, passive safety systems based on the solidification of these salts are being studied. The following article presents new developments in the modeling of eutectic molten salts by means of a multiphase, multicomponent, phase-field model. Besides, an application of this methodology for the eutectic solidification process of the ternary system LiF-KF-NaF is presented. The model predictions are compared with a newly developed semi-analytical solution for directional eutectic solidification at stable growth rate. A good qualitative agreement is obtained between the two approaches. The results obtained with the phase-field model are then used for calculating the homogenized properties of the solid phase distribution. These properties can then be included in a mixture macroscale model, more suitable for industrial applications.

  17. Accelerator-driven molten-salt blankets: Physics issues

    Energy Technology Data Exchange (ETDEWEB)

    Houts, M.G.; Beard, C.A.; Buksa, J.J.; Wiley Davidson, J.; Durkee, J.W.; Perry, R.T.; Poston, D.I. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1995-01-20

    A number of nuclear physics issues concerning the Los Alamos molten-salt, accelerator-driven plutonium converter are discussed. General descriptions of several concepts using internal and external moderation are presented. Burnup and salt processing requirement calculations are presented for four concepts, indicating that both the high power density externally moderated concept and an internally moderated concept achieve total plutonium burnups approaching 90% at salt processing rates of less than 2 m{sup 3} per year. Beginning-of-life reactivity temperature coefficients and system kinetic response are also discussed. Future research should investigate the effect of changing blanket composition on operational and safety characteristics. {copyright}American Institute of Physcis 1995

  18. Molten Chloride Salts for Heat Transfer in Nuclear Systems

    Science.gov (United States)

    Ambrosek, James Wallace

    2011-12-01

    A forced convection loop was designed and constructed to examine the thermal-hydraulic performance of molten KCl-MgCl2 (68-32 at %) salt for use in nuclear co-generation facilities. As part of this research, methods for prediction of the thermo-physical properties of salt mixtures for selection of the coolant salt were studied. In addition, corrosion studies of 10 different alloys were exposed to the KCl-MgCl2 to determine a suitable construction material for the loop. Using experimental data found in literature for unary and binary salt systems, models were found, or developed to extrapolate the available experimental data to unstudied salt systems. These property models were then used to investigate the thermo-physical properties of the LINO3-NaNO3-KNO 3-Ca(NO3), system used in solar energy applications. Using these models, the density, viscosity, adiabatic compressibility, thermal conductivity, heat capacity, and melting temperatures of higher order systems can be approximated. These models may be applied to other molten salt systems. Coupons of 10 different alloys were exposed to the chloride salt for 100 hours at 850°C was undertaken to help determine with which alloy to construct the loop. Of the alloys exposed, Haynes 230 had the least amount of weight loss per area. Nickel and Hastelloy N performed best based on maximum depth of attack. Inconel 625 and 718 had a nearly uniform depletion of Cr from the surface of the sample. All other alloys tested had depletion of Cr along the grain boundaries. The Nb in Inconel 625 and 718 changed the way the Cr is depleted in these alloys. Grain-boundary engineering (GBE) of Incoloy 800H improved the corrosion resistance (weight loss and maximum depth of attack) by nearly 50% as compared to the as-received Incoloy 800H sample. A high temperature pump, thermal flow meter, and pressure differential device was designed, constructed and tested for use in the loop, The heat transfer of the molten chloride salt was found to

  19. Apparatus and method for stripping tritium from molten salt

    Science.gov (United States)

    Holcomb, David E.; Wilson, Dane F.

    2017-02-07

    A method of stripping tritium from flowing stream of molten salt includes providing a tritium-separating membrane structure having a porous support, a nanoporous structural metal-ion diffusion barrier layer, and a gas-tight, nonporous palladium-bearing separative layer, directing the flowing stream of molten salt into contact with the palladium-bearing layer so that tritium contained within the molten salt is transported through the tritium-separating membrane structure, and contacting a sweep gas with the porous support for collecting the tritium.

  20. Molten Salt Test Loop (MSTL) system customer interface document.

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.; Briggs, Ronald D.

    2013-09-01

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL is a test capability that allows customers and researchers to test components in flowing, molten nitrate salt. The components tested can range from materials samples, to individual components such as flex hoses, ball joints, and valves, up to full solar collecting systems such as central receiver panels, parabolic troughs, or linear Fresnel systems. MSTL provides realistic conditions similar to a portion of a concentrating solar power facility. The facility currently uses 60/40 nitrate %E2%80%9Csolar salt%E2%80%9D and can circulate the salt at pressure up to 40 bar (600psi), temperature to 585%C2%B0C, and flow rate of 44-50kg/s(400-600GPM) depending on temperature. The purpose of this document is to provide a basis for customers to evaluate the applicability to their testing needs, and to provide an outline of expectations for conducting testing on MSTL. The document can serve as the basis for testing agreements including Work for Others (WFO) and Cooperative Research and Development Agreements (CRADA). While this document provides the basis for these agreements and describes some of the requirements for testing using MSTL and on the site at Sandia, the document is not sufficient by itself as a test agreement. The document, however, does provide customers with a uniform set of information to begin the test planning process.

  1. Helium-cooled molten-salt fusion breeder

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R.W.; Lee, J.D.; Fulton, F.J.; Huegel, F.; Neef, W.S. Jr.; Sherwood, A.E.; Berwald, D.H.; Whitley, R.H.; Wong, C.P.C.; Devan, J.H.

    1984-12-01

    We present a new conceptual design for a fusion reactor blanket that is intended to produce fissile material for fission power plants. Fast fission is suppressed by using beryllium instead of uranium to multiply neutrons. Thermal fission is suppressed by minimizing the fissile inventory. The molten-salt breeding medium (LiF + BeF/sub 2/ + ThF/sub 4/) is circulated through the blanket and to the on-line processing system where /sup 233/U and tritium are continuously removed. Helium cools the blanket and the austenitic steel tubes that contain the molten salt. Austenitic steel was chosen because of its ease of fabrication, adequate radiation-damage lifetime, and low corrosion by molten salt. We estimate that a breeder having 3000 MW of fusion power will produce 6500 kg of /sup 233/U per year. This amount is enough to provide makeup for 20 GWe of light-water reactors per year or twice that many high-temperature gas-cooled reactors or Canadian heavy-water reactors. Safety is enhanced because the afterheat is low and blanket materials do not react with air or water. The fusion breeder based on a pre-MARS tandem mirror is estimated to cost $4.9B or 2.35 times a light-water reactor of the same power. The estimated cost of the /sup 233/U produced is $40/g for fusion plants costing 2.35 times that of a light-water reactor if utility owned or $16/g if government owned.

  2. Molten-salt fuel cells-Technical and economic challenges

    Science.gov (United States)

    Selman, J. Robert

    This paper presents a personal view of the status and research needs of the MCFC and other molten-salt fuel cells. After an overview of current MCFC performance, compared with performance and cost of other fuel cells, improvements in power density and lifetime as well as cost reduction are identified as key priorities to accelerate the commercialization of the MCFC. In spite of its unfavorable public image (compared to, in particular, PEMFC and planar SOFC) MCFC technology has progressed steadily and cost reduction has been significant. Large-scale commercialization, especially in the distributed generation and cogeneration market, remains a possibility but its chances are highly dependent on a forceful and consistent energy policy, for example taking into account the externalities associated with various modes of electric power production from fossil fuels. In spite of steady improvements in performance, important defects in fundamental knowledge remain about wetting properties, oxygen reduction kinetics, corrosion paths and control mechanisms. These must be addressed to stimulate further simplification of design and find solutions to lifetime issues. Recently, alternative concepts of molten-salt fuel cells have been capturing attention. The direct carbon fuel cell (DCFC), reviving an old concept, has caught the attention of energy system analysts and some important advances have been made in this technology. Direct CO and CH 4 oxidation have also been a focus of study. Finally, the potential of nanotechnology for high-temperature fuel cells should not be a priori excluded.

  3. Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Ramana G. [Univ. of Alabama, Tuscaloosa, AL (United States)

    2013-10-23

    The explicit UA program objective is to develop low melting point (LMP) molten salt thermal energy storage media with high thermal energy storage density for sensible heat storage systems. The novel Low Melting Point (LMP) molten salts are targeted to have the following characteristics: 1. Lower melting point (MP) compared to current salts (<222ºC) 2. Higher energy density compared to current salts (>300 MJ/m3) 3. Lower power generation cost compared to current salt In terms of lower power costs, the program target the DOE's Solar Energy Technologies Program year 2020 goal to create systems that have the potential to reduce the cost of Thermal Energy Storage (TES) to less than $15/kWh-th and achieve round trip efficiencies greater than 93%. The project has completed the experimental investigations to determine the thermo-physical, long term thermal stability properties of the LMP molten salts and also corrosion studies of stainless steel in the candidate LMP molten salts. Heat transfer and fluid dynamics modeling have been conducted to identify heat transfer geometry and relative costs for TES systems that would utilize the primary LMP molten salt candidates. The project also proposes heat transfer geometry with relevant modifications to suit the usage of our molten salts as thermal energy storage and heat transfer fluids. The essential properties of the down-selected novel LMP molten salts to be considered for thermal storage in solar energy applications were experimentally determined, including melting point, heat capacity, thermal stability, density, viscosity, thermal conductivity, vapor pressure, and corrosion resistance of SS 316. The thermodynamic modeling was conducted to determine potential high temperature stable molten salt mixtures that have thermal stability up to 1000 °C. The thermo-physical properties of select potential high temperature stable (HMP) molten salt mixtures were also experimentally determined. All the salt mixtures align with the

  4. Molten salt based nanofluids based on solar salt and alumina nanoparticles: An industrial approach

    Science.gov (United States)

    Muñoz-Sánchez, Belén; Nieto-Maestre, Javier; Guerreiro, Luis; Julia, José Enrique; Collares-Pereira, Manuel; García-Romero, Ana

    2017-06-01

    Thermal Energy Storage (TES) and its associated dispatchability is extremely important in Concentrated Solar Power (CSP) plants since it represents the main advantage of CSP technology in relation to other renewable energy sources like photovoltaic (PV). Molten salts are used in CSP plants as a TES material because of their high operational temperature and stability of up to 600°C. Their main problems are their relative poor thermal properties and energy storage density. A simple cost-effective way to improve the thermal properties of molten salts is to dope them with nanoparticles, thus obtaining the so-called salt-based nanofluids. Additionally, the use of molten salt based nanofluids as TES materials and Heat Transfer Fluid (HTF) has been attracting great interest in recent years. The addition of tiny amounts of nanoparticles to the base salt can improve its specific heat as shown by different authors1-3. The application of these nano-enhanced materials can lead to important savings on the investment costs in new TES systems for CSP plants. However, there is still a long way to go in order to achieve a commercial product. In this sense, the improvement of the stability of the nanofluids is a key factor. The stability of nanofluids will depend on the nature and size of the nanoparticles, the base salt and the interactions between them. In this work, Solar Salt (SS) commonly used in CSP plants (60% NaNO3 + 40% KNO3 wt.) was doped with alumina nanoparticles (ANPs) at a solid mass concentration of 1% wt. at laboratory scale. The tendency of nanoparticles to agglomeration and sedimentation is tested in the molten state by analyzing their size and concentration through the time. The specific heat of the nanofluid at 396 °C (molten state) is measured at different times (30 min, 1 h, 5 h). Further research is needed to understand the mechanisms of agglomeration. A good understanding of the interactions between the nanoparticle surface and the ionic media would provide

  5. Corrosion of metals in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Vossen, J.P.T.

    1991-05-15

    Part 1 of this report describes the results of a literature study on the corrosion behavior of metals in molten carbonates. The results form the basis for a doctorate study related to improving the durability of metal separator plates for molten carbonate fuel cells. To gain a better understanding also the literature on corrosion in molten sulfates has been reviewed, the results of which are summarized in Part 2 of this report. For each part a separate abstract has been prepared. 83 figs., 23 tabs., 1 app., 78 refs.

  6. LIFE Materails: Molten-Salt Fuels Volume 8

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R; Brown, N; Caro, A; Farmer, J; Halsey, W; Kaufman, L; Kramer, K; Latkowski, J; Powers, J; Shaw, H; Turchi, P

    2008-12-11

    The goals of the Laser Inertial Fusion Fission Energy (LIFE) is to use fusion neutrons to fission materials with no enrichment and minimum processing and have greatly reduced wastes that are not of interest to making weapons. Fusion yields expected to be achieved in NIF a few times per day are called for with a high reliable shot rate of about 15 per second. We have found that the version of LIFE using TRISO fuel discussed in other volumes of this series can be modified by replacing the molten-flibe-cooled TRISO fuel zone with a molten salt in which the same actinides present in the TRISO particles are dissolved in the molten salt. Molten salts have the advantage that they are not subject to radiation damage, and hence overcome the radiation damage effects that may limit the lifetime of solid fuels such as TRISO-containing pebbles. This molten salt is pumped through the LIFE blanket, out to a heat exchanger and back into the blanket. To mitigate corrosion, steel structures in contact with the molten salt would be plated with tungsten or nickel. The salt will be processed during operation to remove certain fission products (volatile and noble and semi-noble fission products), impurities and corrosion products. In this way neutron absorbers (fission products) are removed and neutronics performance of the molten salt is somewhat better than that of the TRISO fuel case owing to the reduced parasitic absorption. In addition, the production of Pu and rare-earth elements (REE) causes these elements to build up in the salt, and leads to a requirement for a process to remove the REE during operation to insure that the solubility of a mixed (Pu,REE)F3 solid solution is not exceeded anywhere in the molten salt system. Removal of the REE will further enhance the neutronics performance. With molten salt fuels, the plant would need to be safeguarded because materials of interest for weapons are produced and could potentially be removed.

  7. The Twentieth International Symposium on Molten Salts and Ionic Liquids

    Science.gov (United States)

    2016-11-29

    Heterocyclic Carbene Involved?" by Hyung Kim "Carbon Dioxide Absorption Behavior and Cabronate Ion Transport of Lithium Orthosilicate/Molten Carbonate...Electrodeposition of Metals" by Remana Reddy "In Situ TEM Observations of Lithium Electrodeposition/Stripping Process in Ionic Liquid" by Tetsuya Tsuda "Green... America . iii Preface The 20th International Symposium on Molten Salts and Ionic Liquids Symposium was held on October 2 - 7, 2016, in Honolulu, Hawaii as

  8. An evaluation of pressure and flow measurement in the Molten Salt Test Loop (MSTL) system.

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.; Briggs, Ronald J.

    2013-07-01

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL allows customers and researchers to test components in flowing, molten nitrate salt at plant-like conditions for pressure, flow, and temperature. An important need in thermal storage systems that utilize molten salts is for accurate flow and pressure measurement at temperatures above 535ÀC. Currently available flow and pressure instrumentation for molten salt is limited to 535ÀC and even at this temperature the pressure measurement appears to have significant variability. It is the design practice in current Concentrating Solar Power plants to measure flow and pressure on the cold side of the process or in dead-legs where the salt can cool, but this practice wont be possible for high temperature salt systems. For this effort, a set of tests was conducted to evaluate the use of the pressure sensors for flow measurement across a device of known flow coefficient Cv. To perform this task, the pressure sensors performance was evaluated and was found to be lacking. The pressure indicators are severely affected by ambient conditions and were indicating pressure changes of nearly 200psi when there was no flow or pressure in the system. Several iterations of performance improvement were undertaken and the pressure changes were reduced to less than 15psi. The results of these pressure improvements were then tested for use as flow measurement. It was found that even with improved pressure sensors, this is not a reliable method of flow measurement. The need for improved flow and pressure measurement at high temperatures remains and will need to be solved before it will be possible to move to high temperature thermal storage systems with molten salts.

  9. Deuterium retention in molten salt electrodeposition tungsten coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hai-Shan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Xu, Yu-Ping [Science Island Branch of Graduate School, University of Science and Technology of China, Hefei (China); Sun, Ning-Bo; Zhang, Ying-Chun [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing (China); Oya, Yasuhisa [Radioscience Research Laboratory, Faculty of Science, Shizuoka University, Shizuoka (Japan); Zhao, Ming-Zhong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Mao, Hong-Min [Science Island Branch of Graduate School, University of Science and Technology of China, Hefei (China); Ding, Fang; Liu, Feng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Luo, Guang-Nan, E-mail: gnluo@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Science Island Branch of Graduate School, University of Science and Technology of China, Hefei (China); Hefei Center for Physical Science and Technology, Hefei (China); Hefei Science Center of Chinese Academy of Science, Hefei (China)

    2016-12-15

    Highlights: • We investigate D retention in electrodeposition W coatings. • W coatings are exposed to D plasmas in the EAST tokamak. • A cathodic current density dependence on D retention is found. • Electrodeposition W exhibits lower D retention than VPS-W. - Abstract: Molten salt electrodeposition is a promising technology to manufacture the first wall of a fusion reactor. Deuterium (D) retention behavior in molten salt electrodeposition tungsten (W) coatings has been investigated by D-plasma exposure in the EAST tokamak and D-ion implantation in an ion beam facility. Tokamak exposure experiments demonstrate that coatings prepared with lower current density exhibit less D retention and milder surface damage. Deuterium-ion implantation experiments indicate the D retention in the molten salt electrodeposition W is less than that in vacuum plasma spraying W and polycrystalline W.

  10. Molten-salt synthesis of oxyapatite La{sub 9.33}Si{sub 6}O{sub 26} powders as electrolytes for intermediate temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhaoxiang [Department of Electronic Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Wenhua College, Huazhong University of Science and Technology, Wuhan 430074 (China); Li, Buyin; Liu, Jia [Department of Electronic Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2010-10-15

    Lanthanum silicate oxy-apatites are thought of as ytrria-stabilized zirconia substitutes in intermediate temperature solid oxide fuel cells. Lanthanum silicate oxy-apatite powders La{sub 9.33}Si{sub 6}O{sub 26} are successfully synthesized at lower temperature by a molten-salt method. X-ray diffraction, scanning electron microscopy, and precision impedance analysis used to characterize the structure, appearance, and conductivity of La{sub 9.33}Si{sub 6}O{sub 26}. The results indicate that the apatite phase has been synthesized. The synthesis method decreases the synthesis temperature by about 300 C in comparison to the conventional solid-state reaction route and obtains homogeneous and nanosize powders. Dense ceramics have been prepared at sintering temperatures around 1450 C. The used of molten-salt powders allows a decrease of the dense ceramic pellet sintering temperature of about 200 C. The ceramic pellets sintering at 1550 C for 4 h have a relative density of 92% and an electrical conductivity of 1.1 x 10{sup -3} S cm{sup -1} at 700 C, higher than the some reported for the solid-state synthesis method and the sol-gel method. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  11. Renewing Liquid Fueled Molten Salt Reactor Research and Development

    Science.gov (United States)

    Towell, Rusty; NEXT Lab Team

    2016-09-01

    Globally there is a desperate need for affordable, safe, and clean energy on demand. More than anything else, this would raise the living conditions of those in poverty around the world. An advanced reactor that utilizes liquid fuel and molten salts is capable of meeting these needs. Although, this technology was demonstrated in the Molten Salt Reactor Experiment (MSRE) at ORNL in the 60's, little progress has been made since the program was cancelled over 40 years ago. A new research effort has been initiated to advance the technical readiness level of key reactor components. This presentation will explain the motivation and initial steps for this new research initiative.

  12. The elemental move characteristic of nickel-based alloy in molten salt corrosion by using nuclear microprobe

    Science.gov (United States)

    Lei, Qiantao; Liu, Ke; Gao, Jie; Li, Xiaolin; Shen, Hao; Li, Yan

    2017-08-01

    Nickel-based alloys as candidate materials for Thorium Molten Salt Reactor (TMSR), need to be used under high temperature in molten salt environment. In order to ensure the safety of the reactor running, it is necessary to study the elemental move characteristic of nickel-based alloys in the high temperature molten salts. In this work, the scanning nuclear microprobe at Fudan University was applied to study the elemental move. The Nickel-based alloy samples were corroded by molten salt at different temperatures. The element concentrations in the Nickel-based alloys samples were determined by the scanning nuclear microprobe. Micro-PIXE results showed that the element concentrations changed from the interior to the exterior of the alloy samples after the corrosion.

  13. Thermochemical investigation of molten fluoride salts for Generation IV nuclear applications - an equilibrium exercise

    NARCIS (Netherlands)

    Meer, J.P.M. van der

    2006-01-01

    The concept of the Molten Salt Reactor, one of the so-called Generation IV future reactors, is that the fuel, a fissile material, which is dissolved in a molten fluoride salt, circulates through a closed circuit. The heat of fission is transferred to a second molten salt coolant loop, the heat of

  14. Electrical conductivity of molten ZnCl{sub 2} at temperature as high as 1421 K

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, Alexander B.; Potapov, Alexei M. [RAS Ural Branch, Ekaterinburg. (Russian Federation) Institute of High-Temperature Electrochemistry

    2015-07-01

    The electrical conductivity of molten ZnCl{sub 2} was measured in a wide temperature range (ΔT=863 K) to a temperature as high as 1421 K that is 417 degrees above the boiling point of the salt. At the temperature maximum of the own vapor pressure of the salt reached several megapascals.

  15. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Pattrick Calderoni

    2010-09-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the

  16. Molten Salt: Concept Definition and Capital Cost Estimate

    Energy Technology Data Exchange (ETDEWEB)

    Stoddard, Larry [Black & Veatch, Kansas City, MO (United States); Andrew, Daniel [Black & Veatch, Kansas City, MO (United States); Adams, Shannon [Black & Veatch, Kansas City, MO (United States); Galluzzo, Geoff [Black & Veatch, Kansas City, MO (United States)

    2016-06-30

    The Department of Energy’s (DOE’s) Office of Renewable Power (ORP) has been tasked to provide effective program management and strategic direction for all of the DOE’s Energy Efficiency & Renewable Energy’s (EERE’s) renewable power programs. The ORP’s efforts to accomplish this mission are aligned with national energy policies, DOE strategic planning, EERE’s strategic planning, Congressional appropriation, and stakeholder advice. ORP is supported by three renewable energy offices, of which one is the Solar Energy Technology Office (SETO) whose SunShot Initiative has a mission to accelerate research, development and large scale deployment of solar technologies in the United States. SETO has a goal of reducing the cost of Concentrating Solar Power (CSP) by 75 percent of 2010 costs by 2020 to reach parity with base-load energy rates, and to reduce costs 30 percent further by 2030. The SunShot Initiative is promoting the implementation of high temperature CSP with thermal energy storage allowing generation during high demand hours. The SunShot Initiative has funded significant research and development work on component testing, with attention to high temperature molten salts, heliostats, receiver designs, and high efficiency high temperature supercritical CO2 (sCO2) cycles. DOE retained Black & Veatch to support SETO’s SunShot Initiative for CSP solar power tower technology in the following areas: 1. Concept definition, including costs and schedule, of a flexible test facility to be used to test and prove components in part to support financing. 2. Concept definition, including costs and schedule, of an integrated high temperature molten salt (MS) facility with thermal energy storage and with a supercritical CO2 cycle generating approximately 10MWe. 3. Concept definition, including costs and schedule, of an integrated high temperature falling particle facility with thermal energy storage and with a supercritical CO2

  17. Molten-salt reactor program. Semiannual progress report for period ending February 29, 1976

    Energy Technology Data Exchange (ETDEWEB)

    McNeese, L.E.

    1976-08-01

    Separate abstracts and indexing were prepared for sections dealing with MSBR design and development; chemistry of fuel-salt and coolant-salt systems and analytical methods; materials development; fuel processing for molten-salt reactors; and salt production. (DG)

  18. Comparison of molten chloride and fluoride salts potentialities for An/Ln separation by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Laplace, A.; Peron, F.; Marrot, F.; Lacquement, J. [DRCP/SCPS/LPP - CEA/CEN Valrho - BP 17171 - 30207 Bagnols/Ceze (France)

    2008-07-01

    The objective of this paper is the comparison of molten fluoride and chloride salts potentialities for Am/Nd separation by electrodeposition on inert cathode, on a purely thermodynamic point of view. The molten LiF-CaF{sub 2} eutectic (77-23 mol.%, at 780 deg. C) was considered for this study. Cyclic voltammetry showed a one step Am(III)/Am reduction at a potential of {approx_equal}+0.5 V vs. Li{sup +}/Li. A potential difference of 290 mV between Am and Nd metallic deposition was estimated by square-wave voltammetry. This Am/Nd potential difference is more important than in molten chlorides (220 mV in the LiCl-KCl eutectic at 500 deg. C). Moreover in molten fluoride salt, the americium and neodymium (+II) oxidation state is not stable contrary to the molten chloride one where corrosion of deposited Am would be potential. However this larger potential difference in molten fluorides is quite balanced by the higher working temperature. (authors)

  19. Thermal Analysis of Surrogate Simulated Molten Salts with Metal Chloride Impurities for Electrorefining Used Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Toni Y. Gutknecht; Guy L. Fredrickson; Vivek Utgikar

    2012-04-01

    This project is a fundamental study to measure thermal properties (liquidus, solidus, phase transformation, and enthalpy) of molten salt systems of interest to electrorefining operations, which are used in both the fuel cycle research & development mission and the spent fuel treatment mission of the Department of Energy. During electrorefining operations the electrolyte accumulates elements more active than uranium (transuranics, fission products and bond sodium). The accumulation needs to be closely monitored because the thermal properties of the electrolyte will change as the concentration of the impurities increases. During electrorefining (processing techniques used at the Idaho National Laboratory to separate uranium from spent nuclear fuel) it is important for the electrolyte to remain in a homogeneous liquid phase for operational safeguard and criticality reasons. The phase stability of molten salts in an electrorefiner may be adversely affected by the buildup of fission products in the electrolyte. Potential situations that need to be avoided are: (i) build up of fissile elements in the salt approaching the criticality limits specified for the vessel (ii) freezing of the salts due to change in the liquidus temperature and (iii) phase separation (non-homogenous solution) of elements. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This work describes the experimental results of typical salts compositions, consisting of chlorides of strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium (as a surrogate for both uranium and plutonium), used in the processing of used nuclear fuels. Differential scanning calorimetry was used to analyze numerous salt samples providing results on the thermal properties. The property of most interest to pyroprocessing is the liquidus temperature. It was

  20. Effect of Ni-Co Ternary Molten Salt Catalysts on Coal Catalytic Pyrolysis Process

    Science.gov (United States)

    Cui, Xin; Qi, Cong; Li, Liang; Li, Yimin; Li, Song

    2017-08-01

    In order to facilitate efficient and clean utilization of coal, a series of Ni-Co ternary molten salt crystals are explored and the catalytic pyrolysis mechanism of Datong coal is investigated. The reaction mechanisms of coal are achieved by thermal gravimetric analyzer (TGA), and a reactive kinetic model is constructed. The microcosmic structure and macerals are observed by scanning electron microscope (SEM). The catalytic effects of ternary molten salt crystals at different stages of pyrolysis are analyzed. The experimental results show that Ni-Co ternary molten salt catalysts have the capability to bring down activation energy required by pyrolytic reactions at its initial phase. Also, the catalysts exert a preferable catalytic action on macromolecular structure decomposition and free radical polycondensation reactions. Furthermore, the high-temperature condensation polymerization is driven to decompose further with a faster reaction rate by the additions of Ni-Co ternary molten salt crystal catalysts. According to pyrolysis kinetic research, the addition of catalysts can effectively decrease the activation energy needed in each phase of pyrolysis reaction.

  1. Transient analysis of a molten salt central receiver (MSCR) in a solar power plant

    Science.gov (United States)

    Joshi, A.; Wang, C.; Akinjiola, O.; Lou, X.; Neuschaefer, C.; Quinn, J.

    2016-05-01

    Alstom is developing solar power tower plants utilizing molten salt as the working fluid. In solar power tower, the molten salt central receiver (MSCR) atop of the tower is constructed of banks of tubes arranged in panels creating a heat transfer surface exposed to the solar irradiation from the heliostat field. The molten salt heat transfer fluid (HTF), in this case 60/40%wt NaNO3-KNO3, flows in serpentine flow through the surface collecting sensible heat thus raising the HTF temperature from 290°C to 565°C. The hot molten salt is stored and dispatched to produce superheated steam in a steam generator, which in turn produces electricity in the steam turbine generator. The MSCR based power plant with a thermal energy storage system (TESS) is a fully dispatchable renewable power plant with a number of opportunities for operational and economic optimization. This paper presents operation and controls challenges to the MSCR and the overall power plant, and the use of dynamic model computer simulation based transient analyses applied to molten salt based solar thermal power plant. This study presents the evaluation of the current MSCR design, using a dynamic model, with emphasis on severe events affecting critical process response, such as MS temperature deviations, and recommend MSCR control design improvements based on the results. Cloud events are the scope of the transient analysis presented in this paper. The paper presents results from a comparative study to examine impacts or effects on key process variables related to controls and operation of the MSCR plant.

  2. Molten Salt Fuel Version of Laser Inertial Fusion Fission Energy (LIFE)

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R W; Shaw, H F; Caro, A; Kaufman, L; Latkowski, J F; Powers, J; Turchi, P A

    2008-10-24

    Molten salt with dissolved uranium is being considered for the Laser Inertial Confinement Fusion Fission Energy (LIFE) fission blanket as a backup in case a solid-fuel version cannot meet the performance objectives, for example because of radiation damage of the solid materials. Molten salt is not damaged by radiation and therefore could likely achieve the desired high burnup (>99%) of heavy atoms of {sup 238}U. A perceived disadvantage is the possibility that the circulating molten salt could lend itself to misuse (proliferation) by making separation of fissile material easier than for the solid-fuel case. The molten salt composition being considered is the eutectic mixture of 73 mol% LiF and 27 mol% UF{sub 4}, whose melting point is 490 C. The use of {sup 232}Th as a fuel is also being studied. ({sup 232}Th does not produce Pu under neutron irradiation.) The temperature of the molten salt would be {approx}550 C at the inlet (60 C above the solidus temperature) and {approx}650 C at the outlet. Mixtures of U and Th are being considered. To minimize corrosion of structural materials, the molten salt would also contain a small amount ({approx}1 mol%) of UF{sub 3}. The same beryllium neutron multiplier could be used as in the solid fuel case; alternatively, a liquid lithium or liquid lead multiplier could be used. Insuring that the solubility of Pu{sup 3+} in the melt is not exceeded is a design criterion. To mitigate corrosion of the steel, a refractory coating such as tungsten similar to the first wall facing the fusion source is suggested in the high-neutron-flux regions; and in low-neutron-flux regions, including the piping and heat exchangers, a nickel alloy, Hastelloy, would be used. These material choices parallel those made for the Molten Salt Reactor Experiment (MSRE) at ORNL. The nuclear performance is better than the solid fuel case. At the beginning of life, the tritium breeding ratio is unity and the plutonium plus {sup 233}U production rate is {approx}0

  3. Electrochemical Synthesis of Magnesium Hexaboride by Molten Salt Technique

    Science.gov (United States)

    Angappan, S.; Kalaiselvi, N.; Sudha, R.; Visuvasam, A.

    2014-01-01

    The present work reports electrochemical synthesis of MgB6 from molten salts using the precursor consists of LiF–B2O3–MgCl2. An attempt has been made to synthesize metastable phase MgB6 crystal by electrolysis method. DTA/TGA studies were made to determine the eutectic point of the melt and it was found to be around 900°C. The electrolysis was performed at 900°C under argon atmosphere, at current density of 1.5 A/cm2. The electrodeposited crystals were examined using XRD, SEM, and XPS. From the above studies, the electrochemical synthesis method for hypothetical MgB6 from chloro-oxy-fluoride molten salt system is provided. Mechanism for the formation of magnesium hexaboride is discussed. PMID:27350961

  4. Stress corrosion cracking of Ti-8Al-1 Mo-1V in molten salts

    Science.gov (United States)

    Smyrl, W. H.; Blackburn, M. J.

    1975-01-01

    The stress corrosion cracking (SCC) behavior of Ti-8Al-1 Mo-1V has been studied in several molten salt environments. Extensive data are reported for the alloy in highly pure LiCl-KCl. The influence of the metallurgical heat treatment and texture, and the mechanical microstructure show similarities with aqueous solutions at lower temperature. The fracture path and cracking modes are also similar to that found in other environments. The influence of H2O and H(-) in molten LiCl-KCl lead to the conclusion that hydrogen does not play a major role in crack extension in this environment.

  5. Design of a helium-cooled molten salt fusion breeder

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R.W.; Lee, J.D.; Fulton, F.J.; Huegel, F.; Neef, W.S. Jr.; Sherwood, A.E.; Berwald, D.H.; Whitley, R.H.; Wong, C.P.C.; DeVan, J.H.

    1985-02-01

    A new conceptual blanket design for a fusion reactor produces fissile material for fission power plants. Fission is suppressed by using beryllium, rather than uranium, to multiply neutrons and also by minimizing the fissile inventory. The molten-salt breeding media (LiF + BeF/sub 2/ + TghF/sub 4/) is circulated through the blanket and on to the online processing system where /sup 233/U and tritium are continuously removed. Helium cools the blanket including the steel pipes containing the molten salt. Austenitic steel was chosen because of its ease of fabrication, adequate radiation-damage lifetime, and low corrosion rate by molten salt. We estimate the breeder, having 3000 MW of fusion power, produces 6400 kg of /sup 233/U per year, which is enough to provide make up for 20 GWe of LWR per year (or 14 LWR plants of 4440 MWt) or twice that many HTGRs or CANDUs. Safety is enhanced because the afterheat is low and the blanket materials do not react with air or water. The fusion breeder based on a pre-MARS tandem mirror is estimated to cost $4.9B or 2.35 times an LWR of the same power. The estimated present value cost of the /sup 2/anumber/sup 3/U produced is $40/g if utility financed or $16/g if government financed.

  6. Incorporating supercritical steam turbines into molten-salt power tower plants :

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, James Edward; Wolf, Thorsten; Muley, Nishant

    2013-03-01

    Sandia National Laboratories and Siemens Energy, Inc., examined 14 different subcritical and supercritical steam cycles to determine if it is feasible to configure a molten-salt supercritical steam plant that has a capacity in the range of 150 to 200 MWe. The effects of main steam pressure and temperature, final feedwater temperature, and hot salt and cold salt return temperatures were determined on gross and half-net efficiencies. The main steam pressures ranged from 120 bar-a (subcritical) to 260 bar-a (supercritical). Hot salt temperatures of 566 and 600ÀC were evaluated, which resulted in main steam temperatures of 553 and 580ÀC, respectively. Also, the effects of final feedwater temperature (between 260 and 320ÀC) were evaluated, which impacted the cold salt return temperature. The annual energy production and levelized cost of energy (LCOE) were calculated using the System Advisory Model on 165 MWe subcritical plants (baseline and advanced) and the most promising supercritical plants. It was concluded that the supercritical steam plants produced more annual energy than the baseline subcritical steam plant for the same-size heliostat field, receiver, and thermal storage system. Two supercritical steam plants had the highest annual performance and had nearly the same LCOE. Both operated at 230 bar-a main steam pressure. One was designed for a hot salt temperature of 600ÀC and the other 565ÀC. The LCOEs for these plants were about 10% lower than the baseline subcritical plant operating at 120 bar-a main steam pressure and a hot salt temperature of 565ÀC. Based on the results of this study, it appears economically and technically feasible to incorporate supercritical steam turbines in molten-salt power tower plants.

  7. Silica and alumina nano-enhanced molten salts for thermal energy storage: A comparison

    Science.gov (United States)

    Muñoz-Sánchez, Belén; Nieto-Maestre, Javier; Iparraguirre-Torres, Iñigo; Julià, José Enrique; García-Romero, Ana

    2017-06-01

    The study of more efficient materials for thermal energy storage at high temperatures is a broad field of research. The use of the nanotechnology is a strategy recently considered to enhance the thermal properties of these materials. The nano-enhanced Molten Salts (neMS) are constituted by an inorganic salt where tiny quantities of nanoparticles (NPs) are dispersed. These nanomaterials possess a specific heat higher than that of the salt or the isolated NPs. This phenomenon is not still well understood and great research efforts are needed to describe the interactions on the material at a molecular level. The existence of a nanolayer at the interface between the NPs surface and the molten salt with superior thermal properties is the main mechanism proposed up to now. A high available surface of the NPs promotes the formation of higher quantities of these nanostructures. The available surface depends on the NPs size and shape and is strongly reduced if NPs are agglomerated. We have studied and compared the effect on the specific heat of embedding two different ceramic NPs on molten Solar Salt.

  8. Electrodeposition of alloys or compounds in molten salts and applications

    Directory of Open Access Journals (Sweden)

    Taxil P.

    2003-01-01

    Full Text Available This article deals with the different modes of preparation of alloys or intermetallic compounds using the electrodeposition in molten salts, more particularly molten alkali fluorides. The interest in this process is to obtain new materials for high technology, particularly the compounds of reactive components such as actinides, rare earth and refractory metals. Two ways of preparation are considered: (i electrocoating of the more reactive metal on a cathode made of the noble one and reaction between the two metals in contact, and (ii electrocoating on an inert cathode of the intermetallic compound by coreduction of the ions of each elements. The kinetic is controlled by the reaction at the electrolyte interface. A wide bibliographic survey on the preparation of various compounds (intermetallic compounds, borides, carbides… is given and a special attention is paid to the own experience of the authors in the preparation of these compounds and interpretation of their results.

  9. Electrical conductivity of molten SnCl{sub 2} at temperature as high as 1314 K

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, Alexander B.; Potapov, Alexei M. [Ural Branch of RAS, Ekaterinburg (Russian Federation). Inst. of High-Temperature Electrochemistry

    2015-07-01

    The electrical conductivity of molten SnCl{sub 2} was measured in a wide temperature range (ΔT=763 K), from 551 K to temperature as high as 1314 K, that is, 391 above the boiling point of the salt. The specific electrical conductance was found to reach its maximum at 1143 K, after that it decreases with the temperature rising.

  10. Main Experimental Results of ISTC-1606 for Recycling and Transmutation in Molten Salt Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ignatiev, Victor; Feynberg, Olga; Merzlyakov, Aleksandr; Surenkov, Aleksandr [Russian Research Center - Kurchatov Institute, Kurchatov sq. 1, Moscow, RF, 123182 (Russian Federation); Subbotin, Vladimir; Zakirov, Raul; Toropov, Andrey; Panov, Aleksandr [Russian Federal Nuclear Center - Institute of Technical Physics, Snezhinsk (Russian Federation); Afonichkin, Valery [Institute of High-Temperature Electrochemistry, Ekaterinburg (Russian Federation)

    2008-07-01

    To examine and demonstrate the feasibility of molten salt reactors (MSR) to reduce long lived waste toxicity and to produce efficiently electricity in closed fuel cycle, some national and international studies were initiated last years. In this paper main focus is placed on experimental evaluation of single stream Molten Salt Actinide Recycler and Transmuter (MOSART) system fuelled with different compositions of plutonium plus minor actinide trifluoride (AnF{sub 3}) from LWR spent nuclear fuel without U-Th support. This paper summarizes main experimental results of ISTC-1606 related to physical and chemical properties of fuel salt, container materials for fuel circuit, and fuel salt clean up of MOSART system. As result of ISTC-1606 studies claim is made, that the {sup 7}Li,Na,Be/F and {sup 7}Li,Be/F solvents selected for primary system appear to resolve main reactor physics, thermal hydraulics, materials compatibility, fuel salt clean up and safety problems as applied to the MOSART concept development. The created experimental facilities and the database on properties of fuel salt mixtures and container materials are used for a choice and improvement fuel salts and coolants for new applications of this high temperature technology for sustainable nuclear power development. (authors)

  11. Use of Nitrogen Trifluoride To Purify Molten Salt Reactor Coolant and Heat Transfer Fluoride Salts

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, Randall D.; Casella, Andrew M.; McNamara, Bruce K.

    2017-05-02

    Abstract: The molten salt cooled nuclear reactor is included as one of the Generation IV reactor types. One of the challenges with the implementation of this reactor is purifying and maintaining the purity of the various molten fluoride salts that will be used as coolants. The method used for Oak Ridge National Laboratory’s molten salt experimental test reactor was to treat the coolant with a mixture of H2 and HF at 600°C. In this article we evaluate thermal NF3 treatment for purifying molten fluoride salt coolant candidates based on NF3’s 1) past use to purify fluoride salts, 2) other industrial uses, 3) commercial availability, 4) operational, chemical, and health hazards, 5) environmental effects and environmental risk management methods, 6) corrosive properties, and 7) thermodynamic potential to eliminate impurities that could arise due to exposure to water and oxygen. Our evaluation indicates that nitrogen trifluoride is a viable and safer alternative to the previous method.

  12. Development of a safety analysis code for molten salt reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Dalin [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, 28 West Road Xian Ning Street, Xi' an 710049 (China); School of Nuclear Science and Technology, Xi' an Jiaotong University, 28 West Road Xian Ning Street, Xi' an 710049 (China); Qiu Suizheng, E-mail: szqiu@mail.xjtu.edu.c [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, 28 West Road Xian Ning Street, Xi' an 710049 (China); School of Nuclear Science and Technology, Xi' an Jiaotong University, 28 West Road Xian Ning Street, Xi' an 710049 (China); Su Guanghui [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, 28 West Road Xian Ning Street, Xi' an 710049 (China); School of Nuclear Science and Technology, Xi' an Jiaotong University, 28 West Road Xian Ning Street, Xi' an 710049 (China)

    2009-12-15

    The molten salt reactor (MSR) well suited to fulfill the criteria defined by the Generation IV International Forum (GIF) is presently revisited all around the world because of different attractive features of current renewed relevance. The MSRs are characterized by using the fluid-fuel, so that their technologies are fundamentally different from those used in the conventional solid-fuel reactors. In this work, in particular, the attention is focused on the safety characteristic analysis of the MSRs, in which a point kinetic model considering the flow effects of the fuel salt is established for the MSRs and calculated by developing a microcomputer code coupling with a simplified heat transfer model in the core. The founded models and developed code are applied to analyze the safety characteristics of the molten salt actinide recycler and transmuter system (MOSART) by simulating three types of basic transient conditions including the unprotected loss of flow, unprotected overcooling accident and unprotected transient overpower. Some reasonable results are obtained for the MOSART, which show that the MOSART conceptual design is an inherently stable reactor design. The present study provides some valuable information for the research and design of the new generation MSRs.

  13. Effect of chloride content of molten nitrate salt on corrosion of A516 carbon steel.

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, Robert W.; Clift, W. Miles

    2010-11-01

    The corrosion behavior of A516 carbon steel was evaluated to determine the effect of the dissolved chloride content in molten binary Solar Salt. Corrosion tests were conducted in a molten salt consisting of a 60-40 weight ratio of NaNO{sub 3} and KNO{sub 3} at 400{sup o}C and 450{sup o}C for up to 800 hours. Chloride concentrations of 0, 0.5 and 1.0 wt.% were investigated to determine the effect on corrosion of this impurity, which can be present in comparable amounts in commercial grades of the constituent salts. Corrosion rates were determined by descaled weight losses, corrosion morphology was examined by metallographic sectioning, and the types of corrosion products were determined by x-ray diffraction. Corrosion proceeded by uniform surface scaling and no pitting or intergranular corrosion was observed. Corrosion rates increased significantly as the concentration of dissolved chloride in the molten salt increased. The adherence of surface scales, and thus their protective properties, was degraded by dissolved chloride, fostering more rapid corrosion. Magnetite was the only corrosion product formed on the carbon steel specimens, regardless of chloride content or temperature.

  14. Direct electroreduction of indium and tin oxides in molten salts

    OpenAIRE

    Qin, Bo; Cui, Peng; Martinez, Ana Maria; Aune, Elizabeth Ragnhild; Haarberg, Geir Martin

    2014-01-01

    Indium is a rare metal. The largest end use for indium is in thinfilm coatings as indium oxide combined with 10 percent tin oxide (ITO). However, indium has recycling rates less than 1%. Indium and tin are especially well suited for fused salt electrolysis because of their low melting points. The electrochemical behaviour of indium and tin oxides was studied by cyclic voltammetry (CV) in molten LiCl-KCl. The direct deoxidation of indium and tin oxides were investigated. A new design of direct...

  15. Dynamic modeling of Badaling molten salt tower CSP pilot plant

    Science.gov (United States)

    Yang, Zijiang; Lu, Jiahui; Zhang, Qiangqiang; Li, Zhi; Li, Xin; Wang, Zhifeng

    2017-06-01

    Under the collaboration framework between EDF China R&D Centre and CAS-IEE, a preliminary numerical model of 1MWth molten salt tower solar power demonstration plant in Badaling, Beijing is presented in this paper. All key components in the plant are presented throughout detailed modules in the model according to its design specifications. Control strategies are also implemented to maintain the design system performance at transient scenario. By this model some key design figures of plant has been validated and it will be used to guide experiment set-up and plant commissioning.

  16. Development of a steady state analysis code for a molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, D.L. [State Key Laboratory of Multi Phase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Department of Nuclear and Thermal Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Qiu, S.Z. [State Key Laboratory of Multi Phase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Department of Nuclear and Thermal Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)], E-mail: szqiu@mail.xjtu.edu.cn; Su, G.H. [State Key Laboratory of Multi Phase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Department of Nuclear and Thermal Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Liu, C.L. [Department of Nuclear and Thermal Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2009-05-15

    The molten salt reactor (MSR), which is one of the 'Generation IV' concepts, can be used for transmutation, and production of electricity, hydrogen and fissile fuels. In this study, a single-liquid-fueled MSR is designed for conceptual research, in which no solid material is present in the core as moderator, except for the external reflector. The fuel salt flow makes the MSR neutronics different from that of conventional reactors using solid fuels, and couples the flow and heat transfer strongly. Therefore, it is necessary to study the core characteristics with due attention to the coupling among flow, heat transfer and neutronics. The standard turbulent model is adopted to establish the flow and heat transfer model, while the diffusion theory is used for the neutronics model, which consists of two-group neutron diffusion equations for fast and thermal neutron fluxes, and balance equations for six groups of delayed neutron precursors. These two models which are coupled through the temperature and heat source are coded in a microcomputer program. The distributions of the velocity, temperature, neutron fluxes, and delayed neutron precursors under the rated condition are obtained. In addition, the effects of the inflow temperature, inflow velocity, and the fuel salt residence time out of the core are discussed in detail. The results provide some valuable information for the research and design of the new generation molten salt reactors.

  17. Diagnosis of sources of current inefficiency in industrial molten salt electrolysis cells by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sadoway, D.R.

    1988-07-29

    The purpose of this project was to employ Raman spectroscopy in the study of industrial molten salt electrolysis cells. The objective was to improve the understanding of the chemistry and electrochemistry of the relevant melt systems and, in turn, of energy loss mechanisms in the industrial processes. On this basis new ways to improve the energy efficiency of these industrial reactors might be identified. The research plan has several principal elements. First, there was the design and construction of laboratory scale representations of industrial molten salt electrolysis cells that would at the same time serve a spectrocells. Secondly, there was the mastery of the preparation of the molten salt electrolytes, what in industry is called the ''front end.'' Thirdly, there was the adaptation of commercially available Raman instrumentation in order to facilitate the proposed studies. It is the nature of the specimens that so dramatically distinguished this work from conventional Raman studies for which commercial instrumentation is designed: first, the laboratory scale electrolysis cells are large compared to typical spectrocells; and secondly, the cells operate at, what for Raman studies are, extremely high temperatures. 4 refs., 2 figs.

  18. Molten salt concentrating solar plants. Their potential contribute to a better grid integration of solar power

    Energy Technology Data Exchange (ETDEWEB)

    Falchetta, Massimo [ENEA - Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome (Italy)

    2011-07-01

    Solar energy is becoming of increasing importance in Power Systems. Among solar technologies, use of molten salt heat storage in Concentrating Solar Power plants (CSP) is a cost effective way to improve the value for the grid operator of a non controllable energy source as solar power is. In such type of plants, a high temperature fluid is stored on tanks using solar input; the heat is then released when needed to feed a steam turbine and produce electricity on demand. Depending on tank size, technical solutions are commercially available with storage sizes ranging from 6 hours to 15 hours of nominal output, or even more. Options actually commercially available are the central receiver (Tower) with molten salt direct storage and linear parabolic through field with oil as Heat Transfer Fluid and molten salt as indirect storage; parabolic trough field with molten salt as HTF and as direct storage. The paper concentrates more on the last solution, developed by ENEA since 2001 and firstly introduced in the demonstrative 5 MW unit at Archimede ENEL's Power station. The papers present a simplified dynamic simulation approach, able to show the advantages from the point of view of dispatchability of power output and load following ability of this type of plant from a typical year worth of data of DNI and electricity prices on the Italian market. The model includes the main features affecting plant power output, namely optical efficiency as related to ANI (Aperture Normal Irradiation), solar field main dynamics, storage dynamics and typical operating procedures. (orig.)

  19. Establishment of cooperation basis of joint research on the mixed waste molten salt oxidation technology

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hee Chul; Cho, Y. J.; Kim, J. H.; Yoo, J. H.; Yun, H. C.; Lee, D. G

    2005-08-01

    Molten salt oxidation, MSO for short, is a robust technology that can effectively treat mixed waste (radioactive waste including hazardous metals or organics). It can safely and economically treat the difficult wastes such as not-easily destroyable toxic organic waste, medical waste, chemical warfare and energetic materials such as propellant and explosives, all of which are not easily treated by an incinerator or other currently existing thermal treatment system. Therefore, molten salt oxidation technology should be developed and utilized to treat a lot of niche waste stored in the nuclear and environmental industries. So, if we put the MSO technology to practical use by Korea-Vietnam joint research, we can reduce R and D fund for MSO technology by ourselves and we can expect an export of the outcome of nuclear R and D in Korea. For Establishment of cooperation basis of joint research concerning molten salt oxidation technology between KOREA and VIETNAM, in this research, We invited two Vietnamese researchers and we introduced our experimental scale molten salt oxidation system in order to let them understand molten salt oxidation technology. We also visited Viet man and we consulted about molten salt oxidation process. We held seminar on the mixed waste molten salt oxidation technology, discussed on the joint research on the mixed waste molten salt oxidation technology and finally we wrote MOU for joint research.

  20. A basic study on fluoride-based molten salt electrolysis technology

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Il Soon [Seoul National University, Seoul (Korea); Kim, Kwang Bum [Yonsei University, Seoul (Korea); Park, Byung Gi [Seoul National University, Seoul (Korea)

    2001-04-01

    The objective of this project is to study on the physicochemical properties of fluoride molten salt, to develop numerical model for simulation of molten salt electrolysis, and to establish experimental technique of fluoride molten salt. Physicochemical data of fluoride molten salt are investigated and summarized. The numerical model, designated as REFIN is developed with diffusion-layer theory and electrochemical reaction kinetics. REFIN is benchmarked with published experimental data. REFIN has a capability to simulate multicomponent electrochemical system at transient conditions. Experimental device is developed to measure electrochemical properties of structural material for fluoride molten salt. Ni electrode is measured with cyclic voltammogram in the conditions of 600 .deg. C LiF-BeF{sub 2} and 700 .deg. C LiF-BeF{sub 2}. 74 refs., 23 figs., 57 tabs. (Author)

  1. On purpose simulation model for molten salt CSP parabolic trough

    Science.gov (United States)

    Caranese, Carlo; Matino, Francesca; Maccari, Augusto

    2017-06-01

    The utilization of computer codes and simulation software is one of the fundamental aspects for the development of any kind of technology and, in particular, in CSP sector for researchers, energy institutions, EPC and others stakeholders. In that extent, several models for the simulation of CSP plant have been developed with different main objectives (dynamic simulation, productivity analysis, techno economic optimization, etc.), each of which has shown its own validity and suitability. Some of those models have been designed to study several plant configurations taking into account different CSP plant technologies (Parabolic trough, Linear Fresnel, Solar Tower or Dish) and different settings for the heat transfer fluid, the thermal storage systems and for the overall plant operating logic. Due to a lack of direct experience of Molten Salt Parabolic Trough (MSPT) commercial plant operation, most of the simulation tools do not foresee a suitable management of the thermal energy storage logic and of the solar field freeze protection system, but follow standard schemes. ASSALT, Ase Software for SALT csp plants, has been developed to improve MSPT plant's simulations, by exploiting the most correct operational strategies in order to provide more accurate technical and economical results. In particular, ASSALT applies MSPT specific control logics for the electric energy production and delivery strategy as well as the operation modes of the Solar Field in off-normal sunshine condition. With this approach, the estimated plant efficiency is increased and the electricity consumptions required for the plant operation and management is drastically reduced. Here we present a first comparative study on a real case 55 MWe Molten Salt Parabolic Trough CSP plant placed in the Tibetan highlands, using ASSALT and SAM (System Advisor Model), which is a commercially available simulation tool.

  2. Customer interface document for the Molten Salt Test Loop (MSTL) system.

    Energy Technology Data Exchange (ETDEWEB)

    Pettit, Kathleen; Kolb, William J.; Gill, David Dennis; Briggs, Ronald D.

    2012-03-01

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL is a test capability that allows customers and researchers to test components in flowing, molten nitrate salt. The components tested can range from materials samples, to individual components such as flex hoses, ball joints, and valves, up to full solar collecting systems such as central receiver panels, parabolic troughs, or linear Fresnel systems. MSTL provides realistic conditions similar to a portion of a concentrating solar power facility. The facility currently uses 60/40 nitrate 'solar salt' and can circulate the salt at pressure up to 600psi, temperature to 585 C, and flow rate of 400-600GPM depending on temperature. The purpose of this document is to provide a basis for customers to evaluate the applicability to their testing needs, and to provide an outline of expectations for conducting testing on MSTL. The document can serve as the basis for testing agreements including Work for Others (WFO) and Cooperative Research and Development Agreements (CRADA). While this document provides the basis for these agreements and describes some of the requirements for testing using MSTL and on the site at Sandia, the document is not sufficient by itself as a test agreement. The document, however, does provide customers with a uniform set of information to begin the test planning process.

  3. Preparation of niobium carbide powder by electrochemical reduction in molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Song, Qiushi [School of Materials Science and Metallurgy, Northeastern University, Shenyang 110819 (China); Xu, Qian, E-mail: qianxu201@mail.neu.edu.cn [School of Materials Science and Metallurgy, Northeastern University, Shenyang 110819 (China); School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Meng, Jingchun; Lou, Taiping; Ning, Zhiqiang [School of Materials Science and Metallurgy, Northeastern University, Shenyang 110819 (China); Qi, Yang [College of Science, Northeastern University, Shenyang 110819 (China); Yu, Kai [School of Materials Science and Metallurgy, Northeastern University, Shenyang 110819 (China)

    2015-10-25

    The niobium carbide powder was prepared via electrochemical reduction of the mixture of Nb{sub 2}O{sub 5} and carbon in molten CaCl{sub 2}–NaCl. The reaction pathway from the sintered precursor to the final product has been investigated. The effect of the working temperature on the reduction of the Nb{sub 2}O{sub 5}/C composite precursor was considered. The role of carbon during the electrochemical reduction of the composite pellet was discussed. The samples were analysed by XRD and SEM. The results indicated that the NbC powder was approximately 200 nm after the reduction. Nb{sub 2}O{sub 5} was gradually reduced to Nb, and NbC was subsequently obtained by the reaction of carbon with Nb metal. In addition, Nb{sub 2}O{sub 5} could spontaneously react with CaO in the melt to form a serious of calcium niobates. The participation of carbon was available for the efficiency of electro-reduction of Nb{sub 2}O{sub 5}. - Graphical abstract: Niobium carbide powder was electrochemically prepared in molten salt, and the reduction pathway was illustrated schematically. - Highlights: • NbC powder was prepared electrochemically in molten salt. • The working temperature was lower than that of carbothermic reduction. • The reduction pathway was discussed compared to direct electro-deoxidation of Nb{sub 2}O{sub 5}.

  4. Migrational polarization in high-current density molten salt electrochemical devices

    Energy Technology Data Exchange (ETDEWEB)

    Braunstein, J.; Vallet, C.E.

    1977-01-01

    Electrochemical flux equations based on the thermodynamics of irreversible processes have been derived in terms of experimental transport coefficients for binary molten salt mixtures analogous to those proposed for high temperature batteries and fuel cells. The equations and some numerical solutions indicate steady state composition gradients of significant magnitude. The effects of migrational separation must be considered along with other melt properties in the characterization of electrode behavior, melt composition, operating temperatures and differences of phase stability, wettability and other physicochemical properties at positive and negative electrodes of high current density devices with mixed electrolytes.

  5. Recent advances in the molten salt destruction of energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Pruneda, C. O., LLNL

    1996-09-01

    We have demonstrated the use of the Molten Salt Destruction (MSD) Process for destroying explosives, liquid gun propellant, and explosives-contaminated materials on a 1.5 kg of explosive/hr bench- scale unit (1, 2, 3, 4, 5). In our recently constructed 5 kg/hr pilot- scale unit we have also demonstrated the destruction of a liquid gun propellant and simulated wastes containing HMX (octogen). MSD converts the organic constituents of the waste into non-hazardous substances such as carbon dioxide, nitrogen, and water. Any inorganic constituents of the waste, such as metallic particles, are retained in the molten salt. The destruction of energetic materials waste is accomplished by introducing it, together with air, into a vessel containing molten salt (a eutectic mixture of sodium, potassium, and lithium carbonates). The following pure explosives have been destroyed in our bench-scale experimental unit located at Lawrence Livermore National Laboratory`s (LLNL) High Explosives Applications Facility (HEAF): ammonium picrate, HMX, K- 6 (keto-RDX), NQ, NTO, PETN, RDX, TATB, and TNT. In addition, the following compositions were also destroyed: Comp B, LX- IO, LX- 1 6, LX- 17, PBX-9404, and XM46 (liquid gun propellant). In this 1.5 kg/hr bench-scale unit, the fractions of carbon converted to CO and of chemically bound nitrogen converted to NO{sub x} were found to be well below 1%. In addition to destroying explosive powders and compositions we have also destroyed materials that are typical of residues which result from explosives operations. These include shavings from machined pressed parts of plastic-bonded explosives and sump waste containing both explosives and non-explosive debris. Based on the process data obtained on the bench-scale unit we designed and constructed a next-generation 5 kg/hr pilot-scale unit, incorporating LLNL`s advanced chimney design. The pilot unit has completed process implementation operations and explosives safety reviews. To date, in this

  6. REAKTOR INNOVATIVE MOLTEN SALT (IMSR DENGAN SISTEM KESELAMATAN PASIF MENYELURUH

    Directory of Open Access Journals (Sweden)

    Andang Widiharto

    2015-04-01

    Full Text Available Pengembangan Teknologi Reaktor Nuklir pada masa mendatang mengarah pada peningkatan aspek keselamatan, peningkatan pendayagunaan bahan bakar, reduksi limbah radioaktif, ketahanan terhadap proliferasi bahan-bakar nuklir dan peningkatan aspek ekonomi. reaktor Innovative Molten Salt (IMSR adalah reaktor nuklir yang menggunakan bahan bakar cair berupa garam lebur fluoride (7LiF-ThF4-UF4-MaFx. Reaktor IMSR didesain sebagai reaktor pembiak termal, yaitu membiakkan U-233 dari Th-232. Hal ini untuk menjawab permasalahan sustainabilitas ketersedian sumber daya bahan bakar nuklir dan reduksi limbah radioaktif. Dalam aspek keselamatan, desain reaktor IMSR memiliki sifat inherent safe, yaitu koefisien umpan balik daya yang negatif serta memiliki fitur-fitur keselamatan pasif. Fitur-fitur keselamatan pasif terdiri dari sistem shutdown pasif, sistem pendinginan pasif pasca shutdown serta sistem pendinginan pasif untuk produk fisi. Kecelakaan yang berpotensi terjadi pada IMSR, yaitu kecelakaan kehilangan aliran bahan bakar, kecelakaan kehilangan aliran pendingin, kecelakaan kehilangan kemampuan pengambilan kalor serta kecelakaan kerusakan integritas sistem reaktor, dapat ditangani sepenuhnya secara pasif hingga mencapai kondisi shutdown selamat. Kata kunci: keselamatan pasif, inherent safe, IMSR   The next Nuclear Reactor Technology developments are directed to the increasing of the aspects of safety, fuel utility, radioactive waste reduction, proliferation retention and economy. Innovative Molten Salt Reactor (IMSR is a nuclear reactor design that uses fluoride molten salt (7LiF-ThF4-UF4-MaFx. IMSR is designed as a thermal breeder reactor, i.e. to produce U-233 from Th-232. This is the answer of natural nuclear fuel sustainability and radioactive waste problems. In term of safety aspect, IMSR design has inherent safe characteristics, i.e. negative power feedback coefficient, and passive safety features. The passive safety features are passive shutdown

  7. Metals recovering from waste printed circuit boards (WPCBs) using molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Flandinet, L. [LEPMI, UMR 5279, CNRS - Grenoble INP-Universite de Savoie, Universite Joseph Fourier, BP75, 38402 Saint Martin d' Heres (France); Tedjar, F. [LEPMI, UMR 5279, CNRS - Grenoble INP-Universite de Savoie, Universite Joseph Fourier, BP75, 38402 Saint Martin d' Heres (France); RECUPYL SA, Rue de la metallurgie 38420 Domene (France); Ghetta, V. [LPSC, UJF Grenoble 1 - CNRS/IN2P3 - INPG, 53 rue des Martyrs 38026 Grenoble Cedex (France); Fouletier, J., E-mail: Jacques.Fouletier@lepmi.grenoble-inp.fr [LEPMI, UMR 5279, CNRS - Grenoble INP-Universite de Savoie, Universite Joseph Fourier, BP75, 38402 Saint Martin d' Heres (France)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer Recovering of valuable metals from WPCBs. Black-Right-Pointing-Pointer Low temperature treatment, i.e., 300 Degree-Sign C. Black-Right-Pointing-Pointer Copper, and precious metals are recovered, without dissolution or melting. Black-Right-Pointing-Pointer Many hazardous gases are dissolved and trapped in the molten salt. Black-Right-Pointing-Pointer Under operation without oxygen the flue gas contains large quantities of hydrogen. - Abstract: Recycling of waste electrical and electronic equipments (WEEE) has been taken into consideration in the literature due to the large quantity of concerned wastes and their hazardous contents. The situation is so critical that EU published European Directives imposing collection and recycling with a minimum of material recovery . Moreover, WEEEs contain precious metals, making the recycling of these wastes economically interesting, but also some critical metals and their recycling leads to resource conservation. This paper reports on a new approach for recycling waste printed circuit boards (WPCBs). Molten salts and specifically molten KOH-NaOH eutectic is used to dissolve glasses, oxides and to destruct plastics present in wastes without oxidizing the most valuable metals. This method is efficient for recovering a copper-rich metallic fraction, which is, moreover, cleared of plastics and glasses. In addition, analyses of gaseous emission show that this method is environmentally friendly since most of the process gases, such as carbon monoxide and dioxide and halogens, are trapped in the highly basic molten salt. In other respects, under operation without oxygen, a large quantity of hydrogen is produced and might be used as fuel gas or as synthesis gas, leading to a favourable energy balance for this new process.

  8. Nuclear Hybrid Energy System: Molten Salt Energy Storage (Summer Report 2013)

    Energy Technology Data Exchange (ETDEWEB)

    Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States); mckellar, Michael George [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yoon, Su-Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-11-01

    Effective energy use is a main focus and concern in the world today because of the growing demand for energy. The nuclear hybrid energy system (NHES) is a valuable technical concept that can potentially diversify and leverage existing energy technologies. This report considers a particular NHES design that combines multiple energy systems including a nuclear reactor, energy storage system (ESS), variable renewable generator (VRG), and additional process heat applications. Energy storage is an essential component of this particular NHES because its design allows the system to produce peak power while the nuclear reactor operates at constant power output. Many energy storage options are available, but this study mainly focuses on a molten salt ESS. The primary purpose of the molten salt ESS is to enable the nuclear reactor to be a purely constant heat source by acting as a heat storage component for the reactor during times of low demand, and providing additional capacity for thermo-electric power generation during times of peak electricity demand. This report will describe the rationale behind using a molten salt ESS and identify an efficient molten salt ESS configuration that may be used in load following power applications. Several criteria are considered for effective energy storage and are used to identify the most effective ESS within the NHES. Different types of energy storage are briefly described with their advantages and disadvantages. The general analysis to determine the most efficient molten salt ESS involves two parts: thermodynamic, in which energetic and exergetic efficiencies are considered; and economic. Within the molten salt ESS, the two-part analysis covers three major system elements: molten salt ESS designs (two tank direct and thermocline), the molten salt choice, and the different power cycles coupled with the molten salt ESS. Analysis models are formulated and analyzed to determine the most effective ESS. The results show that the most

  9. Concentrating Solar Power - Molten Salt Pump Development, Final Technical Report (Phase 1)

    Energy Technology Data Exchange (ETDEWEB)

    Michael McDowell; Alan Schwartz

    2010-03-31

    The purpose of this project is to develop a long shafted pump to operate at high temperatures for the purpose of producing energy with renewable resources. In Phase I of this three phase project we developed molten salt pump requirements, evaluated existing hardware designs for necessary modifications, developed a preliminary design of the pump concept, and developed refined cost estimates for Phase II and Phase III of the project. The decision has been made not to continue the project into Phases II and III. There is an ever increasing world-wide demand for sources of energy. With only a limited supply of fossil fuels, and with the costs to obtain and produce those fuels increasing, sources of renewable energy must be found. Currently, capturing the sun's energy is expensive compared to heritage fossil fuel energy production. However, there are government requirements on Industry to increase the amount of energy generated from renewable resources. The objective of this project is to design, build and test a long-shafted, molten salt pump. This is the type of pump necessary for a molten salt thermal storage system in a commercial-scale solar trough plant. This project is under the Department of Energy (DOE) Solar Energy Technologies Program, managed by the Office of Energy Efficiency and Renewable Energy. To reduce the levelized cost of energy (LCOE), and to meet the requirements of 'tomorrows' demand, technical innovations are needed. The DOE is committed to reducing the LCOE to 7-10 cents/kWh by 2015, and to 5-7 cents/kWh by 2020. To accomplish these goals, the performance envelope for commercial use of long-shafted molten salt pumps must be expanded. The intent of this project is to verify acceptable operation of pump components in the type of molten salt (thermal storage medium) used in commercial power plants today. Field testing will be necessary to verify the integrity of the pump design, and thus reduce the risk to industry. While the primary

  10. Production and release of ISOL beams from molten fluoride salt targets

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, T.M., E-mail: taniamel@mail.cern.ch [IFIMUP and IN – Institut of Nanosciences and Nanotechnologies, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); European Organization for Nuclear Research – CERN, 1211 Geneva 23 (Switzerland); Hodak, R. [Department of Nuclear Physics and Biophysics, Comenius University, Mlynska dolina F1, SK-842 15 Bratislava (Slovakia); Ghetta, V.; Allibert, M.; Heuer, D. [Laboratoire de Physique Subatomique et de Cosmologie – LPSC, 53 Rue des Martyrs, 38026 Grenoble Cedex (France); Noah, E. [Section de Physique, Université de Genève, 1211 Genève 4 (Switzerland); Cimmino, S. [European Organization for Nuclear Research – CERN, 1211 Geneva 23 (Switzerland); Delonca, M. [European Organization for Nuclear Research – CERN, 1211 Geneva 23 (Switzerland); IRTES-M3M, Université de Technologie de Belfort-Montbeliard, 90010 Belfort Cedex (France); IRTES-LERMPS, Université de Technologie de Belfort-Montbeliard, 90010 Belfort Cedex (France); Gottberg, A. [European Organization for Nuclear Research – CERN, 1211 Geneva 23 (Switzerland); Instituto de Estructura de la Materia CSIC, E28006 Madrid (Spain); Kronberger, M. [European Organization for Nuclear Research – CERN, 1211 Geneva 23 (Switzerland); Department of Physics, University of Jyväskylä, Survontie 9, Jyväskylä FI-40014 (Finland); Ramos, J.P. [European Organization for Nuclear Research – CERN, 1211 Geneva 23 (Switzerland); Department of Materials and Ceramics Engineering, University of Aveiro, CICECO, 3810-193 Aveiro (Portugal); and others

    2014-06-01

    In the framework of the Beta Beams project, a molten fluoride target has been proposed for the production of the required 10{sup 1318}Ne/s. The production and extraction of such rates are predicted to be possible on a circulating molten salt with 160 MeV proton beams at close to 1 MW power. As a most important step to validate the concept, a prototype has been designed and investigated at CERN-ISOLDE using a static target unit. The target material consisted of a binary fluoride system, NaF:LiF (39:61 mol.%), with melting point at 649 °C. The production of Ne beams has been monitored as a function of the target temperature and proton beam intensity. The prototype development and the results of the first online tests with 1.4 GeV proton beam are presented in this paper.

  11. Production and Release of ISOL Beams from Molten Fluoride Salt Targets

    CERN Document Server

    Mendonca, T M; Ghetta, V; Alibert, M; Heuer, D; Noah, E; Cimmino, S; Delonca, M; Gottberg, A; Kronberger, M; Ramos, J; Seiffert, C; Stora, T; CERN. Geneva. ATS Department

    2014-01-01

    In the framework of the Beta Beams study, a molten fluoride target has been proposed for the production of the required 1013 18Ne/s. The production and extraction of such rates are obtained on a circulating molten salt with proton beam energy beams at close to 1 MW power. As a most important step to validate the concept, a prototype has been designed and investigated at CERN-ISOLDE using a static target unit. The target material consisted of a binary fluoride system, NaF:LiF (39:61 % mol.), with melting point at 649ºC. The production of Ne beams has been monitored as a function of the target temperature and proton beam intensity. The prototype development and the results of the first online tests with 1.4 GeV proton beam are presented in this paper.

  12. Advanced Thermal Storage System with Novel Molten Salt: December 8, 2011 - April 30, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Jonemann, M.

    2013-05-01

    Final technical progress report of Halotechnics Subcontract No. NEU-2-11979-01. Halotechnics has demonstrated an advanced thermal energy storage system with a novel molten salt operating at 700 degrees C. The molten salt and storage system will enable the use of advanced power cycles such as supercritical steam and supercritical carbon dioxide in next generation CSP plants. The salt consists of low cost, earth abundant materials.

  13. System design description of forced-convection molten-salt corrosion loops MSR-FCL-3 and MSR-FCL-4

    Energy Technology Data Exchange (ETDEWEB)

    Huntley, W.R.; Silverman, M.D.

    1976-11-01

    Molten-salt corrosion loops MSR-FCL-3 and MSR-FCL-4 are high-temperature test facilities designed to evaluate corrosion and mass transfer of modified Hastelloy N alloys for future use in Molten-Salt Breeder Reactors. Salt is circulated by a centrifugal sump pump to evaluate material compatibility with LiF-BeF/sub 2/-ThF/sub 4/-UF/sub 4/ fuel salt at velocities up to 6 m/s (20 fps) and at salt temperatures from 566 to 705/sup 0/C (1050 to 1300/sup 0/F). The report presents the design description of the various components and systems that make up each corrosion facility, such as the salt pump, corrosion specimens, salt piping, main heaters, salt coolers, salt sampling equipment, and helium cover-gas system, etc. The electrical systems and instrumentation and controls are described, and operational procedures, system limitations, and maintenance philosophy are discussed.

  14. Integrated in situ characterization of molten salt catalyst surface: Evidence of sodium peroxide and OH radical formation

    KAUST Repository

    Takanabe, Kazuhiro

    2017-06-26

    Na-based catalysts (i.e., Na2WO4) were proposed to selectively catalyze OH radical formation from H2O and O2 at high temperatures. This reaction may proceed on molten salt state surfaces due to the lower melting point of the used Na salts compared to the reaction temperature. This study provides direct evidence of the molten salt state of Na2WO4, which can form OH radicals, using in situ techniques including X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), laser induced fluorescence (LIF) spectrometer, and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS). As a result, Na2O2 species, which were hypothesized to be responsible for the formation of OH radicals, has been identified on the outer surfaces at temperatures ≥800°C, and these species are useful for various gas-phase hydrocarbon reactions including the selective transformation of methane to ethane.

  15. Complete Sensitivity/Uncertainty Analysis of LR-0 Reactor Experiments with MSRE FLiBe Salt and Perform Comparison with Molten Salt Cooled and Molten Salt Fueled Reactor Models

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mueller, Don [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patton, Bruce W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    In September 2016, reactor physics measurements were conducted at Research Centre Rez (RC Rez) using the FLiBe (2 7LiF + BeF2) salt from the Molten Salt Reactor Experiment (MSRE) in the LR-0 low power nuclear reactor. These experiments were intended to inform on neutron spectral effects and nuclear data uncertainties for advanced reactor systems using FLiBe salt in a thermal neutron energy spectrum. Oak Ridge National Laboratory (ORNL), in collaboration with RC Rez, performed sensitivity/uncertainty (S/U) analyses of these experiments as part of the ongoing collaboration between the United States and the Czech Republic on civilian nuclear energy research and development. The objectives of these analyses were (1) to identify potential sources of bias in fluoride salt-cooled and salt-fueled reactor simulations resulting from cross section uncertainties, and (2) to produce the sensitivity of neutron multiplication to cross section data on an energy-dependent basis for specific nuclides. This report provides a final report on the S/U analyses of critical experiments at the LR-0 Reactor relevant to fluoride salt-cooled high temperature reactor (FHR) and liquid-fueled molten salt reactor (MSR) concepts. In the future, these S/U analyses could be used to inform the design of additional FLiBe-based experiments using the salt from MSRE. The key finding of this work is that, for both solid and liquid fueled fluoride salt reactors, radiative capture in 7Li is the most significant contributor to potential bias in neutronics calculations within the FLiBe salt.

  16. Luminescent Properties of Y2O3:Eu3+ Nanocrystals Prepared by Molten Salt Synthesis

    Directory of Open Access Journals (Sweden)

    Lijun Luo

    2013-01-01

    Full Text Available A series of red phosphors Y2O3:Eu3+ were prepared by the molten salt method with different surfactants. Their structures, morphologies, and the photoluminescent properties were investigated at room temperature. The particles size of Y2O3:Eu3+ can be controlled by adjusting the kinds of surfactants. The phosphor Y2O3:Eu3+ prepared with NP-10 [polyoxyethylene (10 nonyl phenyl ether] shows regular morphology and higher crystallinity, and its average particle size is about 200 nm. Bright red light can be observed by naked eyes from the red phosphor under 254 nm excitation.

  17. Domestic Material Content in Molten-Salt Concentrating Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States); Akar, Sertac [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-08-26

    This study lists material composition data for two concentrating solar power (CSP) plant designs: a molten-salt power tower and a hypothetical parabolic trough plant, both of which employ a molten salt for the heat transfer fluid (HTF) and thermal storage media. The two designs have equivalent generating and thermal energy storage capacities. The material content of the saltHTF trough plant was approximately 25% lower than a comparably sized conventional oil-HTF parabolic trough plant. The significant reduction in oil, salt, metal, and insulation mass by switching to a salt-HTF design is expected to reduce the capital cost and LCOE for the parabolic trough system.

  18. Determination of Stoichiometry of Solutes in Molten Salt Solvents by Correlations of Relative Raman Band Intensities

    DEFF Research Database (Denmark)

    Boghosian, Soghomon; Berg, Rolf W.

    1999-01-01

    Raman spectroscopy has been used to determine the stoichiometry of solute complexes in molten salts at high temperatures under static equilibrium conditions, A simple formalism is derived for correlating relative Raman band intensities with stoichiometric coefficients. The experimental procedures...... and sets of experiments required for establishing the stoichiometry are described, The proposed method was applied for studying the dissolution reactions of V2O5 in molten Cs2S2O7 and of Nb2O5 or MoO3 in molten K2S2O7 at temperatures in the range 430-700 degrees C: (1) V2O5 + nS(2)O(7)(2-) (1) --> X-2n- (1......); (2) Nb2O5 + nS(2)O(7)(2-) (1) --> Y2n- (1); (3) MoO3 + nS(2)O(7)(2-) (1) --> Z(2n)- (1). It is shown that the solute complex species formed in the studied reactions have, respectively, the following stoichiometries: (1) n = 2, (VO)(2)O(SO4)(4)(4-); (2) n = 3, NbO(SO4)(3)(3-); (3) n = 1, MoO(SO4)(2)(2-)....

  19. Characterization and Thermal Properties of Nitrate Based Molten Salt for Heat Recovery System

    Science.gov (United States)

    Faizal Tukimon, Mohd; Muhammad, Wan Nur Azrina Wan; Nor Annuar Mohamad, Md; Yusof, Farazila

    2017-10-01

    Molten salt can acts like a storage medium or heat transfer fluid in heat recovery system. Heat transfer fluid is a fluid that has the capability to deliver heat this one side to another while heat recovery system is a system that transfers heat to produce energy. This studies shows about determining the new formulation of different molten nitrate/nitrite salts consisting of LiNO3, KNO2, KNO3 and NaNO2 that give a low temperature of melting point and high average specific heat capacity. Mixed alkaline molten nitrate/nitrite salt can act as a heat transfer fluid due to their advantageous in terms of its properties that feasible in heat recovery system such as high specific heat capacity, low vapour pressure, low cost and wide range of temperature in its application. The mixing of these primary substances will form a new line of quaternary nitrate salt (LiNO3 - KNO2 - KNO3 - NaNO2). The quaternary mixture was heated inside the box furnace at 150°C for four hours and rose up the temperature to 400°C for eight hours to homogenize the mixture. Through heating process, the elements of nitrate/nitrite base were mixed completely. The temperature was then reduced to 115°C for several hours before removing the mixture from the furnace. The melting point of each sample were testified by using thermal gravimetric analysis, TGA/DTA and experiment of determining the specific heat capacity were conducted by using Differential Scanning Calorimeter, DSC. From the result, it is found that the melting point Sample 1 with percentage of weightage (25.4wt% of LiNO3, 33.8wt% of KNO2, 20.7wt% of KNO3 and 20.1wt% of NaNO2) is 94.4°C whereas the average specific heat capacity was 1.0484/g°C while for Sample 3 with percentages of weightage (30.0wt% of LiNO3, 50.2wt% of KNO2, 3.1wt% of KNO3 and 16.7wt% of NaNO2), the melting point is 86.1°C with average specific heat capacity of 0.7274 J/g°C. In the nut shell, the quaternary mixture salts had been a good mixture with good thermal

  20. Proceedings of the workshop on molten salts technology and computer simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Hirokazu; Minato, Kazuo (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    Applications of molten salts technology to separation and synthesis of materials have been studied eagerly, which would develop new fields of materials science. Research Group for Actinides Science, Department of Materials Science, Japan Atomic Energy Research Institute (JAERI), together with Reprocessing and Recycle Technology Division, Atomic Energy Society of Japan, organized the Workshop on Molten Salts Technology and Computer Simulation at Tokai Research Establishment, JAERI on July 18, 2001. In the workshop eleven lectures were made and lively discussions were there on the fundamentals and applications of the molten salts technology that covered the structure and basic properties of molten salts, the pyrochemical reprocessing technology and the relevant computer simulation. The 10 of the presented papers are indexed individually. (J.P.N.)

  1. Chemical form of released tritium from molten Li{sub 2}BeF{sub 4} salt under neutron irradiation at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Akihiro; Terai, Takayuki; Yoneoka, Toshiaki; Tanaka, Satoru [Tokyo Univ. (Japan). Faculty of Engineering

    1996-10-01

    Chemical forms of released tritium from FLIBE (the 2:1 mixture of LiF and BeF{sub 2}) by in-pile tritium release experiment were HT and TF and their proportion depended on the chemical composition of purge gas and the dehumidification time of specimen at high temperatures. The chemical form of tritium was determined by the thermodynamic equilibrium of the isotopic exchange reaction (T{sup +} + H{sub 2} {yields} H{sup +} + HT). (author)

  2. Study on the mechanism of deoxidization and purification for Li2BeF4 molten salt via graphite nanoparticles

    Science.gov (United States)

    Xie, Meng-ya; Li, Li; Ding, Ya-ping; Zhang, Guo-xin

    2017-04-01

    Graphite nanoparticles originated from high purity graphite crucible were used for deoxidization and purification of Li2BeF4 molten salt containing a bit of (NH4)2BeF4 under high temperature vacuum condition. And the mechanism of deoxidization and purification via graphite nanoparticles was put forward based on analysis of sample characterization and chemical reaction Gibbs free energy calculation. The morphology, particle size, chemical composition and crystal structure of graphite nanoparticles in Li2BeF4 molten salt were characterized by High Resolution Transmission Electron Microscopy (HRTEM, SAED and EDS). Phase analysis, total oxygen content, full elemental and anion concentration for as-prepared Li2BeF4 products were studied by X-Ray Diffraction (XRD), LECO nitrogen-oxygen analyzer, Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) and Ion Chromatography (IC), respectively. The results of sample characterization showed that graphite nanoparticles in Li2BeF4 molten salt were the poly-crystal round sheet shape with an average diameter of <100 nm. The concentration of total oxygen, sulfur and nickel in as-prepared Li2BeF4 molten salt after treatment were 548 ppm, <0.6 ppm and <0.4 ppm, respectively. Experiment and calculation all showed that SO42- and NO3- could react with carbon at 700 °C. And vacuum degassing play an excellent role in deoxidization and purification for Li2BeF4 molten salt via graphite nanoparticles.

  3. Electrical conductivity of molten CdCl{sub 2} at temperatures as high as 1474 K

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, Alexander B.; Potapov, Alexei M. [Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of High-Temperature Electrochemistry

    2016-11-01

    The electrical conductivity of molten CdCl{sub 2} was measured across a wide temperature range (ΔT=628 K), from 846 K to as high as 1474 K, i.e. 241 above the normal boiling point of the salt. In previous studies, a maximum temperature of 1201 K was reached, this being 273 lower than in the present work. The activation energy of electrical conductivity was calculated.

  4. Molten Metal Treatment by Salt Fluxing with Low Environmental Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Yogeshwar Sahai

    2007-07-31

    Abstract: Chlorine gas is traditionally used for fluxing of aluminum melt for removal of alkali and alkaline earth elements. However this results in undesirable emissions of particulate matter and gases such as HCl and chlorine, which are often at unacceptable levels. Additionally, chlorine gas is highly toxic and its handling, storage, and use pose risks to employees and the local community. Holding of even minimal amounts of chlorine necessitates extensive training for all plant employees. Fugitive emissions from chlorine usage within the plant cause accelerated corrosion of plant equipment. The Secondary Aluminum Maximum Achievable Control Technology (MACT) under the Clean Air Act, finalized in March 2000 has set very tough new limits on particulate matter (PM) and total hydrogen chloride emissions from aluminum melting and holding furnaces. These limits are 0.4 and 0.1 lbs per ton of aluminum for hydrogen chloride and particulate emissions, respectively. Assuming new technologies for meeting these limits can be found, additional requirements under the Clean Air Act (Prevention of Significant Deterioration and New Source Review) trigger Best Available Control Technology (BACT) for new sources with annual emissions (net emissions not expressed per ton of production) over specified amounts. BACT currently is lime coated bag-houses for control of particulate and HCl emissions. These controls are expensive, difficult to operate and maintain, and result in reduced American competitiveness in the global economy. Solid salt fluxing is emerging as a viable option for the replacement of chlorine gas fluxing, provided emissions can be consistently maintained below the required levels. This project was a cooperative effort between the Ohio State University and Alcoa to investigate and optimize the effects of solid chloride flux addition in molten metal for alkali impurity and non-metallic inclusion removal minimizing dust and toxic emissions and maximizing energy

  5. Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

    2007-08-16

    Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

  6. Transient analyses for a molten salt fast reactor with optimized core geometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, R., E-mail: rui.li@kit.edu [Institute for Nuclear and Energy Technologies (IKET), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Wang, S.; Rineiski, A.; Zhang, D. [Institute for Nuclear and Energy Technologies (IKET), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Merle-Lucotte, E. [Laboratoire de Physique Subatomique et de Cosmologie – IN2P3 – CNRS/Grenoble INP/UJF, 53, rue des Martyrs, 38026 Grenoble (France)

    2015-10-15

    Highlights: • MSFR core is analyzed by fully coupling neutronics and thermal-hydraulics codes. • We investigated four types of transients intensively with the optimized core geometry. • It demonstrates MSFR has a high safety potential. - Abstract: Molten salt reactors (MSRs) have encountered a marked resurgence of interest over the past decades, highlighted by their inclusion as one of the six candidate reactors of the Generation IV advanced nuclear power systems. The present work is carried out in the framework of the European FP-7 project EVOL (Evaluation and Viability Of Liquid fuel fast reactor system). One of the project tasks is to report on safety analyses: calculations of reactor transients using various numerical codes for the molten salt fast reactor (MSFR) under different boundary conditions, assumptions, and for different selected scenarios. Based on the original reference core geometry, an optimized geometry was proposed by Rouch et al. (2014. Ann. Nucl. Energy 64, 449) on thermal-hydraulic design aspects to avoid a recirculation zone near the blanket which accumulates heat and very high temperature exceeding the salt boiling point. Using both fully neutronics thermal-hydraulic coupled codes (SIMMER and COUPLE), we also re-confirm the efforts step by step toward a core geometry without the recirculation zone in particular as concerns the modifications of the core geometrical shape. Different transients namely Unprotected Loss of Heat Sink (ULOHS), Unprotected Loss of Flow (ULOF), Unprotected Transient Over Power (UTOP), Fuel Salt Over Cooling (FSOC) are intensively investigated and discussed with the optimized core geometry. It is demonstrated that due to inherent negative feedbacks, an MSFR plant has a high safety potential.

  7. Preparation of Al-Sc Master Alloy by Aluminothermic Reaction with Special Molten Salt

    Science.gov (United States)

    Xu, Cong; Liu, Xinxin; Ma, Fengmei; Wang, Zhiwei; Wang, Wenhong; Ma, Chaoli

    Al-Sc master alloy is prepared by aluminothermic reaction with a kind of special molten salt under the normal atmospheric condition. To achieve larger Sc recovery rate, the composition and pretreatment of the molten salt are studied. The optimum molten salt is obtained by melting together Sc2O3, NaF, KCl, NaCl, ScF3 and Na3AlF6 mixture under a mass ratio of 3:5:10:10:2:30, followed by solidifying and crushing. The pretreated salt is added to the Aluminum melt with a mass ratio of 60:100 to prepare Al-Sc master alloy. When the residue of molten salt is reused for three times, the Sc recovery rate can reach 91%. The structure and composition of the residue are examined using X-ray diffraction (XRD) analyzer and differential scanning calorimetry (DSC) analyzer. Based on the analysis of the residue, mechanism of the aluminothermic reaction to achieve larger Sc recovery rate with this special molten salt is discussed.

  8. Molten salt thermal energy storage systems. Project 8981, final report

    Energy Technology Data Exchange (ETDEWEB)

    Maru, H.C.; Dullea, J.F.; Kardas, A.; Paul, L.

    1978-03-01

    The feasibility of storing thermal energy at temperatures of 450/sup 0/ to 535/sup 0/C (850/sup 0/ to 1000/sup 0/F) in the form of latent heat of fusion has been examined for over 30 inorganic salts and salt mixtures. Alkali carbonate mixtures are attractive as phase-change storage materials in this temperature range because of their relatively high storage capacity and thermal conductivity, moderate cost, low volumetric expansion upon melting, low corrosivity, and good chemical stability. An equimolar mixture of Li/sub 2/CO/sub 3/ and K/sub 2/CO/sub 3/, which melts at 505/sup 0/C with a latent heat of 148 Btu/lb, was chosen for experimental study. The cyclic charge/discharge behavior of laboratory- and engineering-scale systems was determined and compared with predictions based on a mathematical heat-transfer model that was developed during this program. The thermal performance of one engineering-scale unit remained very stable during 1400 hours of cyclic operation. Several means of improving heat conduction through the solid salt were explored. Areas requiring further investigation have been identified.

  9. Molten Salt Heat Transport Loop: Materials Corrosion and Heat Transfer Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Kumar Sridharan; Dr. Mark Anderson; Dr. Michael Corradini; Dr. Todd Allen; Luke Olson; James Ambrosek; Daniel Ludwig

    2008-07-09

    An experimental system for corrosion testing of candidate materials in molten FLiNaK salt at 850 degree C has been designed and constructed. While molten FLiNaK salt was the focus of this study, the system can be utilized for evaluation of materials in other molten salts that may be of interest in the future. Using this system, the corrosion performance of a number of code-certified alloys of interest to NGNP as well as the efficacy of Ni-electroplating have been investigated. The mechanisums underlying corrosion processes have been elucidated using scanning electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy of the materials after the corrosion tests, as well as by the post-corrosion analysis of the salts using inductively coupled plasma (ICP) and neutron activation analysis (NAA) techniques.

  10. The mechanics of pressed-pellet separators in molten salt batteries

    Energy Technology Data Exchange (ETDEWEB)

    Long, Kevin Nicholas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Christine Cardinal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Scott Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grillet, Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-06-01

    We present a phenomenological constitutive model that describes the macroscopic behavior of pressed-pellet materials used in molten salt batteries. Such materials include separators, cathodes, and anodes. The purpose of this model is to describe the inelastic deformation associated with the melting of a key constituent, the electrolyte. At room temperature, all constituents of these materials are solid and do not transport cations so that the battery is inert. As the battery is heated, the electrolyte, a constituent typically present in the separator and cathode, melts and conducts charge by flowing through the solid skeletons of the anode, cathode, and separator. The electrochemical circuit is closed in this hot state of the battery. The focus of this report is on the thermal-mechanical behavior of the separator, which typically exhibits the most deformation of the three pellets during the process of activating a molten salt battery. Separator materials are composed of a compressed mixture of a powdered electrolyte, an inert binder phase, and void space. When the electrolyte melts, macroscopically one observes both a change in volume and shape of the separator that depends on the applied boundary conditions during the melt transition. Although porous flow plays a critical role in the battery mechanics and electrochemistry, the focus of this report is on separator behavior under flow-free conditions in which the total mass of electrolyte is static within the pellet. Specific poromechanics effects such as capillary pressure, pressure-saturation, and electrolyte transport between layers are not considered. Instead, a phenomenological model is presented to describe all such behaviors including the melting transition of the electrolyte, loss of void space, and isochoric plasticity associated with the binder phase rearrangement. The model is appropriate for use finite element analysis under finite deformation and finite temperature change conditions. The model

  11. Status Report on Scoping Reactor Physics and Sensitivity/Uncertainty Analysis of LR-0 Reactor Molten Salt Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Mueller, Donald E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Patton, Bruce W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division

    2016-08-31

    Experiments are being planned at Research Centre Rež (RC Rež) to use the FLiBe (2 7LiF-BeF2) salt from the Molten Salt Reactor Experiment (MSRE) to perform reactor physics measurements in the LR-0 low power nuclear reactor. These experiments are intended to inform on neutron spectral effects and nuclear data uncertainties for advanced reactor systems utilizing FLiBe salt in a thermal neutron energy spectrum. Oak Ridge National Laboratory (ORNL) is performing sensitivity/uncertainty (S/U) analysis of these planned experiments as part of the ongoing collaboration between the United States and the Czech Republic on civilian nuclear energy research and development. The objective of these analyses is to produce the sensitivity of neutron multiplication to cross section data on an energy-dependent basis for specific nuclides. This report provides a status update on the S/U analyses of critical experiments at the LR-0 Reactor relevant to fluoride salt-cooled high temperature reactor (FHR) and liquid-fueled molten salt reactor (MSR) concepts. The S/U analyses will be used to inform design of FLiBe-based experiments using the salt from MSRE.

  12. Solar thermal power & gas turbine hybrid design with molten salt storage tank

    Science.gov (United States)

    Martín, Fernando; Wiesenberg, Ralf; Santana, Domingo

    2017-06-01

    Taking into consideration the need to decelerate the global climatic change, power generation has to shift from burning fossil fuel to renewable energy source in short medium period of time. In this work, we are presenting a new model of a solar-gas natural hybrid power cycle with the main aim of decoupling the solar generation system from the gas turbine system. The objective is to have high solar power contribution compared to conventional ISCC plants [2], producing firm and dispatchable electricity at the same time. The decoupling is motivated by the low solar contribution reached by the ISCC, which is technically limited to maximum of 15%, [4]. In our case, we have implemented a solar tower with molten salts as working fluid. Central receiver systems get higher performance than others systems, like parabolic trough technology [1], due to the higher temperature achieved in the heat transferred fluid HTF, close to 560°C.

  13. Passive compact molten salt reactor (PCMSR), modular thermal breeder reactor with totally passive safety system

    Science.gov (United States)

    Harto, Andang Widi

    2012-06-01

    Design Study Passive Compact Molten Salt Reactor (PCMSR) with totally passive safety system has been performed. The term of Compact in the PCMSR name means that the reactor system is designed to have relatively small volume per unit power output by using modular and integral concept. In term of modular, the reactor system consists of three modules, i.e. reactor module, turbine module and fuel management module. The reactor module is an integral design that consists of reactor, primary and intermediate heat exchangers and passive post shutdown cooling system. The turbine module is an integral design of a multi heating, multi cooling, regenerative gas turbine. The fuel management module consists of all equipments related to fuel preparation, fuel reprocessing and radioactive handling. The preliminary calculations show that the PCMSR has negative temperature and void reactivity coefficient, passive shutdown characteristic related to fuel pump failure and possibility of using natural circulation for post shutdown cooling system.

  14. Electrochemical studies of calcium chloride-based molten salt systems

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, Jr., Thomas P. [Univ. of Tennessee, Knoxville, TN (United States)

    1992-12-01

    Conductance and EMF studies of CaCl2-based melts were performed in the temperature range 790--990 C. Conductivity data collected using magnesia tubes and capillaries showed deviations from the data recommended by the National Bureau of Standards. These deviations are attributed to the slow dissolution of magnesia by the CaCl2-CaO melt. Conductivity data for molten CaCl2 using a pyrolytic boron nitride capillary were in reasonable agreement with the recommended data; however, undissolved CaO in CaCl2 may have caused blockage of the pyrolytic boron nitride capillary, resulting in fluctuations in the measured resistance. The utility of the AgCl/Ag reference electrode in CaCl2-AgCl and CaCl2-CaO-AgCl melts, using asbestos diaphragms and Vycor glass as reference half-cell membranes, was also investigated. Nernstian behavior was observed using both types of reference half-cell membranes in CaCl2-AgCl melts. The AgCl/Ag reference electrode also exhibited Nernstian behavior in CaCl2-CaO-AgCl melts using a Vycor reference half-cell membrane and a magnesia crucible. The use of CaCl2 as a solvent is of interest since it is used in plutonium metal purification, as well as various other commercial applications. 97 refs., 33 figs., 13 tabs.

  15. A descriptive model of the molten salt reactor experiment after shutdown: Review of FY 1995 progress

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.F.; Del Cul, G.D.; Toth, L.M.

    1996-01-01

    During FY 1995 considerable progress was made toward gaining a better understanding of the chemistry and transport processes that continue to govern the behavior of the Molten Salt Reactor Experiment (MSRE). As measurements in the MSRE proceed, laboratory studies continue, and better analyses are available, our understanding of the state of the MSRE and the best path toward remediation improves. Because of the immediate concern about the deposit in the auxiliary charcoal bed (ACB), laboratory studies in the past year focused on carbon-fluorine chemistry. Secondary efforts were directed toward investigation of gas generation from MSRE salts by both radiolytic and nonradiolytic pathways. In addition to the laboratory studies, field measurements at the MSRE provided the basis for estimating the inventory of uranium and fluorine in the ACB. Analysis of both temperature and radiation measurements provided independent and consistent estimates of about 2.6 kg of uranium deposited in the top of the ACB. Further analysis efforts included a refinement in the estimates of the fuel- salt source term, the deposited decay energy, and the projected rate of radiolytic gas generation. This report also provides the background material necessary to explain new developments and to review areas of particular interest. The detailed history of the MSRE is extensively documented and is cited where appropriate. This work is also intended to update and complement the more recent MSRE assessment reports.

  16. Recent development in electrolytic formation of carbon nanotubes in molten salts

    Directory of Open Access Journals (Sweden)

    Chen G.Z.

    2003-01-01

    Full Text Available This article reviews the recent research development in the electrolytic production of carbon nano-tubes in molten salts. The experimental procedure and product morphologies of the electrolytic method are described in details. Different hypotheses of the carbon nano-tube formation mechanism in molten salts, particularly it relation with the erosion of the cathode, are compared and discussed. It is anticipated that the electrolytic method can potentially become a cheap and continuous process for the production of curved carbon nano-tubes, carbon sheathed metal nanowires and other carbon based nano-structures.

  17. Experimental tests about the cooling/freezing of the molten salts in the receiver tubes of a solar power plant with parabolic trough

    Science.gov (United States)

    Gaggioli, Walter; Fabrizi, Fabrizio; Rinaldi, Luca; Di Ascenzi, Primo

    2017-06-01

    In 2003 ENEA realized the PCS experimental Facility at Casaccia Research Centre (Rome, Italy), in order to test in real operating conditions the components of a parabolic trough solar plant, and to evaluate the technical feasibility of using the solar molten salts mixture (60% NaNO3, 40% KNO3, melting point 220÷240°C) in such a type of plant. ENEA also had the need to assess the behaviour of the solar receiver tubes during abnormal operating situations (wrong operation, pump block, power failure, etc.), when a block of the circulation of the molten salts may occur and cause the cooling or, worse, the freezing of the salts mixture inside the pipes. Some experimental tests have been performed, aimed to examine what happens in such a cases. In fact, without quick maneuvers to restart the circulation of the molten salts or to readily empty the receiver tubes, the molten salts contained in them may cool down to temperatures near/below the solidification. In this report are shown the results of the experimental tests carried out on the receiver tubes of the PCS Facility by cooling the process fluid down to temperatures near or below its freezing point. The tests show that the solidification of the salts does not damage the components of the plant but it is manageable and reversible, provided you apply the correct procedures.

  18. Novel concepts in electrochemical solar cells. Second quarterly progress report, August 15, 1979-October 15, 1979. [Molten salt electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    DuBow, J.; Job, R.; Krishnan, R.; Gale, B.

    1979-01-01

    It is considered that the short term stability of n-GaAs PEC's in a ferrocene-based, ambient temperature molten salt electrolyte is reasonably good. However, longer term evaluation is required to determine the extent and significance of corrosion, stability, etc. Extremely few fundamental studies have been made of the semiconductor/molten salt interphase and experiments in this area would be most useful. Indeed, even the design parameters for PECs of any kind have not been quantitatively delineated and present consideration will be given to models for PEC solar cells and limitations caused by ion transport in the electrolyte. The MoSe/sub 2/ and MoS/sub 2/ electrodes appear to have substrate reproducibility and transport limitations that make them unsuitable candidates for efficient PEC's at this time. Similarly, the lack of availability of high quality CuInSe/sub 2/ and CuInS/sub 2/ substrates limits the quantitative experimental evaluation of their utility for PEC applications. We are presently focusing attention on CdSe/CdTe mixtures and CdS as electrodes as well as Si and GaAs in molten salt and polyelectrolyte solutions. The system for solar cell evaluation and network analysis of substrates and cells was mode operational. Preliminary work on economic and theoretical modelling was begun. Progress is reported. (WHK)

  19. Thermal Properties of LiCl-KCl Molten Salt for Nuclear Waste Separation

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States); Allen, Todd [Univ. of Wisconsin, Madison, WI (United States); Anderson, Mark [Univ. of Wisconsin, Madison, WI (United States); Simpson, Mike [Idaho National Lab., (United States)

    2012-11-30

    This project addresses both practical and fundamental scientific issues of direct relevance to operational challenges of the molten LiCl-KCl salt pyrochemical process, while providing avenues for improvements in the process. In order to understand the effects of the continually changing composition of the molten salt bath during the process, the project team will systematically vary the concentrations of rare earth surrogate elements, lanthanum, cerium, praseodymium, and neodymium, which will be added to the molten LiCl-KCl salt. They will also perform a limited number of focused experiments by the dissolution of depleted uranium. All experiments will be performed at 500 deg C. The project consists of the following tasks. Researchers will measure density of the molten salts using an instrument specifically designed for this purpose, and will determine the melting points with a differential scanning calorimeter. Knowledge of these properties is essential for salt mass accounting and taking the necessary steps to prevent melt freezing. The team will use cyclic voltammetry studies to determine redox potentials of the rare earth cations, as well as their diffusion coefficients and activities in the molten LiCl-KCl salt. In addition, the team will perform anodic stripping voltammetry to determine the concentration of the rare earth elements and their solubilities, and to develop the scientific basis for an on-line diagnostic system for in situ monitoring of the cation species concentration (rare earths in this case). Solubility and activity of the cation species are critically important for the prediction of the salt's useful lifetime and disposal.

  20. Experimental results from a laboratory-scale molten salt thermocline storage

    Science.gov (United States)

    Seubert, Bernhard; Müller, Ralf; Willert, Daniel; Fluri, Thomas

    2017-06-01

    Single-tank storage presents a valid option for cost reduction in thermal energy storage systems. For low-temperature systems with water as storage medium this concept is widely implemented and tested. For high-temperature systems very limited experimental data are publicly available. To improve this situation a molten salt loop for experimental testing of a single-tank storage prototype was designed and built at Fraunhofer ISE. The storage tank has a volume of 0.4 m3 or a maximum capacity of 72 kWhth. The maximum charging and discharging power is 60 kW, however, a bypass flow control system enables to operate the system also at a very low power. The prototype was designed to withstand temperatures up to 550 °C. A cascaded insulation with embedded heating cables can be used to reduce the effect of heat loss on the storage which is susceptible to edge effects due to its small size. During the first tests the operating temperatures were adapted to the conditions in systems with thermal oil as heat transfer fluid and a smaller temperature difference. A good separation between cold and hot fluid was achieved with temperature gradients of 95 K within 16 cm.

  1. Preparation of biomorphic silicon carbide–mullite ceramics using molten salt synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei, E-mail: wwchem@126.com [Department of Chemical Engineering, College of Environment Science and Engineering, Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang’an University, 126# Yanta Road, Xi' an 710054, Shaanxi (China); Hou, Guangya [College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014 (China); Wang, Boya; Deng, Shunxi [Department of Chemical Engineering, College of Environment Science and Engineering, Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang’an University, 126# Yanta Road, Xi' an 710054, Shaanxi (China)

    2014-09-15

    Biomorphic silicon carbide–mullite ceramics were prepared from beech wood using liquid Si infiltration and molten salts synthesis. The resulting mullite whiskers coating, as well as the growth mechanism in molten Al{sub 2}(SO{sub 4}){sub 3}–Na{sub 2}SO{sub 4} environment, have been investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) techniques. The biomorphic SiC ceramics derived from the beech wood template have coarse pore walls consisting of β-SiC grains with diameters ranging from 5 μm to 20 μm. After the molten salts reactions between biomorphic SiC substrate and mixture molten salts (Al{sub 2}(SO{sub 4}){sub 3}–Na{sub 2}SO{sub 4}), porous Silicon carbide–mullite ceramics with cilia-like microstructure were obtained. This unique structure has potential application in hot gases filters. An oxidation–dissolution cycle was proposed to explain the mullite whiskers growth in molten salts environment. - Graphical abstract: Biomorphic silicon carbide–mullite ceramics with cilia-like microstructure prepared from beech wood using liquid Si infiltration (LSI) and molten salts reactions (MSR) processes. Mullite whiskers with nanometer-sized diameters and micrometer-sized lengths grow on the surface of SiC substrate, and the biomorphic silicon carbide–mullite ceramics inherit the porous microstructure originated from biomorphic SiC ceramics and beech wood. The mullite whiskers grow on the pores' surface of biomorphic SiC to form cilia-like surface, and this special structure can be used for hot gases filter. - Highlights: • Biomorphic silicon carbide–mullite ceramics were prepared. • An oxidation–dissolution mechanism was proposed to explain the coating formation. • The unique structure has potential application in hot gases filter.

  2. Reductive smelting of spent lead-acid battery colloid sludge in a molten Na2CO3 salt

    Science.gov (United States)

    Hu, Yu-jie; Tang, Chao-bo; Tang, Mo-tang; Chen, Yong-ming

    2015-08-01

    Lead extraction from spent lead-acid battery paste in a molten Na2CO3 salt containing ZnO as a sulfur-fixing agent was studied. Some influencing factors, including smelting temperature, reaction time, ZnO and salt dosages, were investigated in detail using single-factor experiments. The optimum conditions were determined as follows: T = 880°C; t = 60 min; Na2CO3/paste mass ratio = 2.8:1; and the ZnO dosage is equal to the stoichiometric requirement. Under the optimum conditions, the direct recovery rate of lead reached 98.14%. The results suggested that increases in temperature and salt dosage improved the direct recovery rate of lead. XRD results and thermodynamic calculations indicated that the reaction approaches of lead and sulfur were PbSO4→Pb and PbSO4→ZnS, respectively. Sulfur was fixed in the form of ZnS, whereas the molten salt did not react with other components, serving only as a reaction medium.

  3. A new form of MgTa 2 O 6 obtained by the molten salt method

    Indian Academy of Sciences (India)

    Using molten salt route (with NaCl/KCl as the salt) we have been able to synthesize a new form of magnesium tantalate at 850°C. Powder X-ray diffraction data could be indexed on an orthorhombic unit cell with lattice parameters, `' = 15.36(1) Å, '' = 13.38(1) Å and '' = 12.10(1) Å. High resolution transmission electron ...

  4. A comparison of conventional and prototype nondestructive measurements on molten salt extraction residues

    Energy Technology Data Exchange (ETDEWEB)

    Longmire, V.L.; Hurd, J.R.; Sedlacek, W.E.; Scarborough, A.M.

    1987-01-01

    Fourteen molten salt extraction residues were assayed by conventional and prototype nondestructive assay (NDA) techniques to be compared with destructive chemical analysis in an effort to identify acceptable NDA measurement methods for this matrix. NDA results on seven samples and destructive results on four samples are presented.

  5. Ethanol steam reforming heated up by molten salt CSP: Reactor assessment

    NARCIS (Netherlands)

    De Falco, Marcello; Gallucci, F.

    2010-01-01

    In this paper hydrogen production via reforming of ethanol has been studied in a novel hybrid plant consisting in a ethanol reformer and a concentrating solar power (CSP) plant using molten salt as heat carrier fluid. The heat needed for the reforming of ethanol has been supplied to the system by

  6. Wall heat transfer coefficient in a molten salt bubble column: testing the experimental setup

    CSIR Research Space (South Africa)

    Skosana, PJ

    2014-10-01

    Full Text Available reactors that are highly exothermic or endothermic. This paper presents the design and operation of experimental setup used for measurement of the heat transfer coefficient in molten salt media. The experimental setup was operated with tap water, heat...

  7. Variation of diffusivity with the cation radii in molten salts of ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 124; Issue 1. Variation of diffusivity with the cation radii in molten salts of superionic conductors containing iodine anion: A molecular dynamics study. Srinivasa R Varanasi S Yashonath. Volume 124 Issue 1 January 2012 pp 159-166 ...

  8. A Novel Modeling of Molten-Salt Heat Storage Systems in Thermal Solar Power Plants

    Directory of Open Access Journals (Sweden)

    Rogelio Peón Menéndez

    2014-10-01

    Full Text Available Many thermal solar power plants use thermal oil as heat transfer fluid, and molten salts as thermal energy storage. Oil absorbs energy from sun light, and transfers it to a water-steam cycle across heat exchangers, to be converted into electric energy by means of a turbogenerator, or to be stored in a thermal energy storage system so that it can be later transferred to the water-steam cycle. The complexity of these thermal solar plants is rather high, as they combine traditional engineering used in power stations (water-steam cycle or petrochemical (oil piping, with the new solar (parabolic trough collector and heat storage (molten salts technologies. With the engineering of these plants being relatively new, regulation of the thermal energy storage system is currently achieved in manual or semiautomatic ways, controlling its variables with proportional-integral-derivative (PID regulators. This makes the overall performance of these plants non optimal. This work focuses on energy storage systems based on molten salt, and defines a complete model of the process. By defining such a model, the ground for future research into optimal control methods will be established. The accuracy of the model will be determined by comparing the results it provides and those measured in the molten-salt heat storage system of an actual power plant.

  9. Electrochemical Behavior of La on Liquid Bi electrode in LiCl-KCl molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Beom Kyu; Han, Hwa Jeong; Park, Byung Gi [Soonchunyang University, Asan (Korea, Republic of)

    2016-05-15

    Pyroprocessing technology aims to achieve a grouped and efficiently separation of all actinide for recycling with a sufficient decontamination of fission products generating the minimum. The main steps of the pyroprocess is electrowinning process, where the remaining elements in a molten salt after electrorifinning process. That process is U, MAs are concurrently recovered at the liquid metal. Recently, a study of the liquid metal and molten salt using an electrochemical is carried out in a variety of fields. However, there is deficient information about the electrode reaction of lanthanide and actinide on the liquid bismuth metal electrodes. In this paper, the electrochemical behavior of La(III), with liquid bismuth was investigated by the electrochemical method. The aim of this study is to investigate the electrochemical behavior of lanthanum or neodymium among lanthanides in molten LiCl-KCl salt at liquid metal bismuth electrode cyclic voltammetry and derive the thermochemical properties. The electrochemical behavior of La was studied in LiCl-KCl-LaCl{sub 3} molten salts using electrochemical techniques Cyclic Voltammetry on liquid Bi electrodes at 773K. During the process of cyclic voltammetry electrolysis, intermetallic compound were observed of La, Lax-Biy, Li-Bi. The diffusion coefficient of La was measured by cyclic voltemmetry and was found to be 8.18x10{sup -5}cm{sup 2}/s.

  10. High Temperature Fluoride Salt Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cunningham, Richard Burns [Univ. of Tennessee, Knoxville, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peretz, Fred J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  11. Coupled optical and thermal detailed simulations for the accurate evaluation and performance improvement of molten salts solar towers

    Science.gov (United States)

    García-Barberena, Javier; Mutuberria, Amaia; Palacin, Luis G.; Sanz, Javier L.; Pereira, Daniel; Bernardos, Ana; Sanchez, Marcelino; Rocha, Alberto R.

    2017-06-01

    The National Renewable Energy Centre of Spain, CENER, and the Technology & Innovation area of ACS Cobra, as a result of their long term expertise in the CSP field, have developed a high-quality and high level of detail optical and thermal simulation software for the accurate evaluation of Molten Salts Solar Towers. The main purpose of this software is to make a step forward in the state-of-the-art of the Solar Towers simulation programs. Generally, these programs deal with the most critical systems of such plants, i.e. the solar field and the receiver, on an independent basis. Therefore, these programs typically neglect relevant aspects in the operation of the plant as heliostat aiming strategies, solar flux shapes onto the receiver, material physical and operational limitations, transient processes as preheating and secure cloud passing operating modes, and more. The modelling approach implemented in the developed program consists on effectively coupling detailed optical simulations of the heliostat field with also detailed and full-transient thermal simulations of the molten salts tube-based external receiver. The optical model is based on an accurate Monte Carlo ray-tracing method which solves the complete solar field by simulating each of the heliostats at once according to their specific layout in the field. In the thermal side, the tube-based cylindrical external receiver of a Molten Salts Solar Tower is modelled assuming one representative tube per panel, and implementing the specific connection layout of the panels as well as the internal receiver pipes. Each tube is longitudinally discretized and the transient energy and mass balances in the temperature dependent molten salts and steel tube models are solved. For this, a one dimensional radial heat transfer model based is used. The thermal model is completed with a detailed control and operation strategy module, able to represent the appropriate operation of the plant. An integration framework has been

  12. Effect of lithium nitrate and calcium nitrate composition on the thermal properties of quaternary molten salts mixture for heat transfer application

    Science.gov (United States)

    Ahmad, Nuratikah Nadhirah Binti; Yunos, Nursyafiqah Binti; Muhammad, Wan Nur Azrina Binti Wan; Mohamad, Md Nor Anuar Bin; Yusof, Farazila Binti

    2017-10-01

    Mixed molten salt is considered as a promising medium for both heat transfer and energy storage in thermal power because of its many advantages such as low the melting point, large heat capacity, good thermal stability and low cost. In order to determine the thermal properties of the molten salt, the nitrate quaternary mixture of the molten salt are prepared based on the different composition of the lithium nitrate and calcium nitrate. The other salts in the mixture are potassium nitrate and sodium nitrate. Mixture of molten salts were heated in furnace at 150°C for 4 hours and increased the temperature to 400°C for 8 hours for homogenize the salt mixture. Then, decreased the temperature to 115°C for an hour. The melting point and thermal stability of the mixture was determined by using thermogravimetric analysis [TGA] while the heat capacity was determined by using differential scanning calorimetry [DSC]. The lowest melting point using different composition of lithium nitrate, 10wt%NaNO3, 4Owt%KNO3, 20wt%Ca[NO3]2, 30wt%LiNO3 which is 97.1°C while the heat capacity is 6.33 J/g°C. For the experiment using various composition of calcium nitrate, the lowest melting point is from 14wt% NaNO3 + 48wt% KNO3 + 13wt% LiNO3 + 25wt% Ca[NO3]2 which is 111.7°C and the heat capacity is 2.06 J/g °C. From the result, the addition of lithium nitrate in the quaternary molten salts give more effect to the reduction of melting point value but higher heat capacity.

  13. The Corrosion Behavior of Stainless Steel 316L in Novel Quaternary Eutectic Molten Salt System

    Science.gov (United States)

    Wang, Tao; Mantha, Divakar; Reddy, Ramana G.

    2017-03-01

    In this article, the corrosion behavior of stainless steel 316L in a low melting point novel LiNO3-NaNO3-KNO3-NaNO2 eutectic salt mixture was investigated at 695 K which is considered as thermally stable temperature using electrochemical and isothermal dipping methods. The passive region in the anodic polarization curve indicates the formation of protective oxides layer on the sample surface. After isothermal dipping corrosion experiments, samples were analyzed using SEM and XRD to determine the topography, corrosion products, and scale growth mechanisms. It was found that after long-term immersion in the LiNO3-NaNO3-KNO3-NaNO2 molten salt, LiFeO2, LiFe5O8, Fe3O4, (Fe, Cr)3O4 and (Fe, Ni)3O4 oxides were formed. Among these corrosion products, LiFeO2 formed a dense and protective layer which prevents the SS 316L from severe corrosion.

  14. Renewable and high efficient syngas production from carbon dioxide and water through solar energy assisted electrolysis in eutectic molten salts

    KAUST Repository

    Wu, Hongjun

    2017-07-13

    Over-reliance on non-renewable fossil fuel leads to steadily increasing concentration of atmospheric CO2, which has been implicated as a critical factor contributing to global warming. The efficient conversion of CO2 into useful product is highly sought after both in academic and industry. Herein, a novel conversion strategy is proposed to one-step transform CO2/H2O into syngas (CO/H2) in molten salt with electrolysis method. All the energy consumption in this system are contributed from sustainable energy sources: concentrated solar light heats molten salt and solar cell supplies electricity for electrolysis. The eutectic Li0.85Na0.61K0.54CO3/nLiOH molten electrolyte is rationally designed with low melting point (<450 °C). The synthesized syngas contains very desirable content of H2 and CO, with tuneable molar ratios (H2/CO) from 0.6 to 7.8, and with an efficient faradaic efficiency of ∼94.5%. The synthesis of syngas from CO2 with renewable energy at a such low electrolytic temperature not only alleviates heat loss, mitigates system corrosion, and heightens operational safety, but also decreases the generation of methane, thus increases the yield of syngas, which is a remarkable technological breakthrough and this work thus represents a stride in sustainable conversion of CO2 to value-added product.

  15. Renewable and high efficient syngas production from carbon dioxide and water through solar energy assisted electrolysis in eutectic molten salts

    Science.gov (United States)

    Wu, Hongjun; Liu, Yue; Ji, Deqiang; Li, Zhida; Yi, Guanlin; Yuan, Dandan; Wang, Baohui; Zhang, Zhonghai; Wang, Peng

    2017-09-01

    Over-reliance on non-renewable fossil fuel leads to steadily increasing concentration of atmospheric CO2, which has been implicated as a critical factor contributing to global warming. The efficient conversion of CO2 into useful product is highly sought after both in academic and industry. Herein, a novel conversion strategy is proposed to one-step transform CO2/H2O into syngas (CO/H2) in molten salt with electrolysis method. All the energy consumption in this system are contributed from sustainable energy sources: concentrated solar light heats molten salt and solar cell supplies electricity for electrolysis. The eutectic Li0.85Na0.61K0.54CO3/nLiOH molten electrolyte is rationally designed with low melting point (energy at a such low electrolytic temperature not only alleviates heat loss, mitigates system corrosion, and heightens operational safety, but also decreases the generation of methane, thus increases the yield of syngas, which is a remarkable technological breakthrough and this work thus represents a stride in sustainable conversion of CO2 to value-added product.

  16. Molten salt pyrolysis of milled beech wood using an electrostatic precipitator for oil collection

    Directory of Open Access Journals (Sweden)

    Heidi S. Nygård

    2015-07-01

    Full Text Available A tubular electrostatic precipitator (ESP was designed and tested for collection of pyrolysis oil in molten salt pyrolysis of milled beech wood (0.5-2 mm. The voltage-current (V-I characteristics were studied, showing most stable performance of the ESP when N2 was utilized as inert gas. The pyrolysis experiments were carried out in FLiNaK and (LiNaK2CO3 over the temperature range of 450-600 ℃. The highest yields of pyrolysis oil were achieved in FLiNaK, with a maximum of 34.2 wt% at 500 ℃, followed by a decrease with increasing reactor temperature. The temperature had nearly no effect on the oil yield for pyrolysis in (LiNaK2CO3 (19.0-22.5 wt%. Possible hydration reactions and formation of HF gas during FLiNaK pyrolysis were investigated by simulations (HSC Chemistry software and measurements of the outlet gas (FTIR, but no significant amounts of HF were detected.

  17. Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte

    Science.gov (United States)

    Willit, James L.

    2007-09-11

    An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

  18. DESAIN KONSEP TANGKI PENAMPUNG BAHAN BAKAR PASSIVE COMPACT MOLTEN SALT REACTOR

    Directory of Open Access Journals (Sweden)

    A. Hadiwinata

    2015-04-01

    Full Text Available Passive Compact Molten Salt Reactor (PCMSR merupakan pengembangan dari reaktor MSR. Desain reaktor PCMSR membutuhkan tempat khusus penampung sementara bahan bakar pada saat terjadi insiden, misalnya kecelakaan yang menyebabkan peningkatan suhu bahan bakar. Tangki penampung bahan bakar tersusun dari 3 bagian yang saling terhubung yaitu bagian penampung cairan bahan bakar, cerobong (chimney, dan penukar kalor. Dalam penelitian ini, tangki dimodelkan secara lump dan dilakukan variasi daya awal reaktor dan ketinggian cerobong. Syarat batas model ditetapkan suhu bahan bakar maksimum 1400 °C, yang didasarkan pada titik didih larutan garam LiF-BeF2-ThF4-UF4. Analisis dilakukan dengan cara menghitung rugi tekanan total dan transfer kalor untuk variasi daya awal antara 1800-3000 MWth dan ketinggian cerobong antara 1-10 m. Hasil penelitian menunjukan semakin besar daya reaktor, maka tinggi tangki penampung bahan bakar dan tinggi alat penukar kalor yang dibutuhkan akan semakin besar, tejadi kenaikan suhu fluida pendingin dan suhu udara pendingin, dan menyebabkan kenaikan laju aliran masa fluida pendingin, sedangkan laju aliran masa udara menurun. Peningkatan ketinggian cerobong menyebabkan ketinggian tangki penampung bahan bakar dan ketinggian alat penukar kalor semakin menurun, penurunan suhu fluida pendingin, tetapi suhu udara meningkat, dan menyebabkan peningkatan laju aliran masa fluida pendingin, tetapi laju aliran masa udara akan semakin menurun. Kata kunci: PCMSR, cerobong, alat penukar kalor, variasi daya.   The Passsive Compact Molten Salat Reactor (PCMSR reactor is developed from MSR reactor. The PCMSR reactor design requires special place to temporarily storage for reactor fuel when incident occurs, such as when there is an accident which caused the temperature of the fuel increases. The tank consist of three interconnected parts, the reservoir liquid fuel, chimney, and the heat exchanger. In this research, the tank system is modeled based on

  19. Application of Thermodynamic Databases to the Evaluation of Surface Tensions of Molten Alloys, Salt Mixtures and Oxide Mixtures

    OpenAIRE

    Tanaka, Toshihiro; Iida, Takamichi; Hack, Klaus; Hara, Shigeta

    1996-01-01

    The authors discuss the application of thermodynamic solution databases, which have been constructed so far to calculate thermodynamic properties and phase diagrams, to the evaluation of surface tensions of molten alloys, salt mixtures and oxide mixtures. In particular, the relationship between the excess Gibbs energy in the bulk phase and that in the "surface phase" which are used in Butler's equation for surface tension was derived for molten ionic solutions as well as molten alloys. In thi...

  20. Preparation of Binary and Ternary Oxides by Molten Salt Method and its Electrochemical Properties

    Science.gov (United States)

    Reddy, M. V.; Theng, L. Pei; Soh, Hulbert; Beichen, Z.; Jiahuan, F.; Yu, C.; Ling, A. Yen; Andreea, L. Y.; Ng, C. H. Justin; Liang, T. J. L. Galen; Ian, M. F.; An, H. V. T.; Ramanathan, K.; Kevin, C. W. J.; Daryl, T. Y. W.; Hao, T. Yi; Loh, K. P.; Chowdari, B. V. R.

    2013-07-01

    We report simple binary oxides namely SnO2, TiO2, CuO, MnO2, Fe2O3, Co3O4 and ternary oxides like MnCo2O4 by molten salt method at a temperature range of 280°C to 950°C in air and discuss the effect of morphology, crystal structure and electrochemical properties of binary and ternary oxides. Materials were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface area methods. XRD patterns showed all MSM prepared materials exhibited characteristic lattice parameter values. BET surface area varies depending on the nature of the material, molten salt and preparation temperature and the obtained values are in the range, 1 to 160 m2/g. Electrochemical properties were studied using cyclic voltammetry (CV) and electrochemical performance studies were carried in the voltage range, 0.005-1.0V for SnO2, 1.0-2.8V for TiO2 and Fe2O3, MCo2O4 (M = Co, Mn), MnO2 and CuO were cycled in the range, 0.005-3.0V. At a current rates of 30-100 mA/g and a scan rate of 0.058 mV/sec was used for galvanostatic cycling and cyclic voltammetry. SnO2 showed that an alloying-de-alloying reaction occurs at ˜0.2 and ˜0.5 V vs. Li. TiO2 main intercalation and de-interaction reactions at ˜1.7 and ˜1.8 V vs. Li. Co3O4, MnCo2O4, and MnO2 main discharge potentials at ˜1.2, 0.9V and 0.4V, resp. and charge potentials peak ˜2.0V and 1.5V vs. Li. CuO prepared at 750°C exhibited main anodic peak at ˜2.45V and cathodic peaks at ˜0.85V and ˜1.25V. We discussed the possible reaction mechanisms and Li-storage performance values in detail.

  1. Next-Generation Electrochemical Energy Materials for Intermediate Temperature Molten Oxide Fuel Cells and Ion Transport Molten Oxide Membranes.

    Science.gov (United States)

    Belousov, Valery V

    2017-02-21

    High temperature electrochemical devices such as solid oxide fuel cells (SOFCs) and oxygen separators based on ceramic materials are used for efficient energy conversion. These devices generally operate in the temperature range of 800-1000 °C. The high operating temperatures lead to accelerated degradation of the SOFC and oxygen separator materials. To solve this problem, the operating temperatures of these electrochemical devices must be lowered. However, lowering the temperature is accompanied by decreasing the ionic conductivity of fuel cell electrolyte and oxygen separator membrane. Therefore, there is a need to search for alternative electrolyte and membrane materials that have high ionic conductivity at lower temperatures. A great many opportunities exist for molten oxides as electrochemical energy materials. Because of their unique electrochemical properties, the molten oxide innovations can offer significant benefits for improving energy efficiency. In particular, the newly developed electrochemical molten oxide materials show high ionic conductivities at intermediate temperatures (600-800 °C) and could be used in molten oxide fuel cells (MOFCs) and molten oxide membranes (MOMs). The molten oxide materials containing both solid grains and liquid channels at the grain boundaries have advantages compared to the ceramic materials. For example, the molten oxide materials are ductile, which solves a problem of thermal incompatibility (difference in coefficient of thermal expansion, CTE). Besides, the outstanding oxygen selectivity of MOM materials allows us to separate ultrahigh purity oxygen from air. For their part, the MOFC electrolytes show the highest ionic conductivity at intermediate temperatures. To evaluate the potential of molten oxide materials for technological applications, the relationship between the microstructure of these materials and their transport and mechanical properties must be revealed. This Account summarizes the latest results on

  2. Increasing the Surface Hardness of Cast Iron by Electrodeposition of Borides in Molten Salts

    Directory of Open Access Journals (Sweden)

    Al-Azzawi A.H.

    2017-06-01

    Full Text Available In this paper the electrodeposition of boron on the surface of cast iron as a coating is applied to increase the hardness and protect the substrate against abrasive wear. The boron containing coating was synthesized by electrodeposition process from a NaCl-KCl (1:1 mol-10 w%NaF-10w% KBF4 molten salt. The effect of electrolysis parameters (temperature and time on the hardness is presented; the current density varied in the range −37 – −4.5 mA/cm2, allowing perfect coverage of and respect for dimensions. The electrochemical process was carried out at different temperatures (750°C-900°C and for different periods of time (5-10 hours. Depending on the current density and duration of electrolysis, the deposits consist of FeB or Fe2B. Microhardness measurements across the boride layer indicated very high hardness values (between 1600 and 2100 HV0.05. The structure of the boride layer is linked to its boron content and thermal history: as-deposited coatings present very small grain sizes and can be considered as nearly amorphous.

  3. Effect of Using Thorium Molten Salts on the Neutronic Performance of PACER

    Science.gov (United States)

    Acır, Adem; Übeyli, Mustafa

    2010-04-01

    Utilization of nuclear explosives can produce a significant amount of energy which can be converted into electricity via a nuclear fusion power plant. An important fusion reactor concept using peaceful nuclear explosives is called as PACER which has an underground containment vessel to handle the nuclear explosives safely. In this reactor, Flibe has been considered as a working coolant for both tritium breeding and heat transferring. However, the rich neutron source supplied from the peaceful nuclear explosives can be used also for fissile fuel production. In this study, the effect of using thorium molten salts on the neutronic performance of the PACER was investigated. The computations were performed for various coolants bearing thorium and/or uranium-233 with respect to the molten salt zone thickness in the blanket. Results pointed out that an increase in the fissile content of the salt increased the neutronic performance of the reactor remarkably. In addition, higher energy production was obtained with thorium molten salts compared to the pure mode of the reactor. Moreover, a large quantity of 233U was produced in the blanket in all cases.

  4. Engineering Evaluation of Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiement for the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Carlberg, Jon A.; Roberts, Kenneth T.; Kollie, Thomas G.; Little, Leslie E.; Brady, Sherman D.

    2009-09-30

    This evaluation was performed by Pro2Serve in accordance with the Technical Specification for an Engineering Evaluation of the Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiment at the Oak Ridge National Laboratory (BJC 2009b). The evaluators reviewed the Engineering Evaluation Work Plan for Molten Salt Reactor Experiment Residual Salt Removal, Oak Ridge National Laboratory, Oak Ridge, Tennessee (DOE 2008). The Work Plan (DOE 2008) involves installing a salt transfer probe and new drain line into the Fuel Drain Tanks and Fuel Flush Tank and connecting them to the new salt transfer line at the drain tank cell shield. The probe is to be inserted through the tank ball valve and the molten salt to the bottom of the tank. The tank would then be pressurized through the Reactive Gas Removal System to force the salt into the salt canisters. The Evaluation Team reviewed the work plan, interviewed site personnel, reviewed numerous documents on the Molten Salt Reactor (Sects. 7 and 8), and inspected the probes planned to be used for the transfer. Based on several concerns identified during this review, the team recommends not proceeding with the salt transfer via the proposed alternate salt transfer method. The major concerns identified during this evaluation are: (1) Structural integrity of the tanks - The main concern is with the corrosion that occurred during the fluorination phase of the uranium removal process. This may also apply to the salt transfer line for the Fuel Flush Tank. Corrosion Associated with Fluorination in the Oak Ridge National Laboratory Fluoride Volatility Process (Litman 1961) shows that this problem is significant. (2) Continued generation of Fluorine - Although the generation of Fluorine will be at a lower rate than experienced before the uranium removal, it will continue to be generated. This needs to be taken into consideration regardless of what actions are taken with the salt. (3) More than one phase of material

  5. Molten salt thermal energy storage systems: system design. [LiKCO/sub 3/ mixture

    Energy Technology Data Exchange (ETDEWEB)

    Maru, H.C.; Kardas, A.; Huang, V.M.; Dullea, J.F.; Paul, L.; Marianowski, L.G.

    1977-02-01

    A five-task research program aimed at the development of molten salt thermal energy storage systems commenced in June 1976. The first topical report, covering Task 1, the selection of suitable salt systems for storage at 850 to 1000/sup 0/F, was issued in August 1976. It was concluded that a 35 Wt percent Li/sub 2/CO/sub 3/-65 Wt percent K/sub 2/CO/sub 3/ (LiKCO/sub 3/) mixture was most suitable for the purpose. Interrelationships between various design parameters were examined using the available solutions, and an engineering-scale storage unit was designed. This unit has an annular configuration with a 1-ft OD, 1.5-ft high, 2-in. dia heat transfer well. Preliminary experiments on a pilot size (3-in. OD) unit showed that temperature profiles and progress of the solid-liquid interface agreed with those predicted theoretically. Also, no supercooling was observed during cooldown, and the presence of significant convective mixing was indicated by negligible temperature gradients. Use of a lithium aluminate volume-change suppressor was investigated, but it appears to be nonessential because of the low volume-change in the LiKCO/sub 3/ system. Consideration of the relative heat-transfer resistances under practical conditions suggested that the use of a conductivity promoter will enhance the heat-transfer rates, thereby requiring smaller heat-transfer areas. Different configurations and materials were considered for this application; an aluminum wool appears to be most suitable. The corrosion resistance of various construction materials was investigated. Stainless steels and aluminum appear to be suitable construction materials for carbonates in the 850 to 1000/sup 0/F range. Testing of the engineering-scale system (Task 3) and verification of the conclusions derived under Task 2 are in progress.

  6. Application of molten salt oxidation for the minimization and recovery of plutonium-238 contaminated wastes

    Energy Technology Data Exchange (ETDEWEB)

    Wishau, R.

    1998-05-01

    Molten salt oxidation (MSO) is proposed as a {sup 238}Pu waste treatment technology that should be developed for volume reduction and recovery of {sup 238}Pu and as an alternative to the transport and permanent disposal of {sup 238}Pu waste to the WIPP repository. In MSO technology, molten sodium carbonate salt at 800--900 C in a reaction vessel acts as a reaction media for wastes. The waste material is destroyed when injected into the molten salt, creating harmless carbon dioxide and steam and a small amount of ash in the spent salt. The spent salt can be treated using aqueous separation methods to reuse the salt and to recover 99.9% of the precious {sup 238}Pu that was in the waste. Tests of MSO technology have shown that the volume of combustible TRU waste can be reduced by a factor of at least twenty. Using this factor the present inventory of 574 TRU drums of {sup 238}Pu contaminated wastes is reduced to 30 drums. Further {sup 238}Pu waste costs of $22 million are avoided from not having to repackage 312 of the 574 drums to a drum total of more than 4,600 drums. MSO combined with aqueous processing of salts will recover approximately 1.7 kilograms of precious {sup 238}Pu valued at 4 million dollars (at $2,500/gram). Thus, installation and use of MSO technology at LANL will result in significant cost savings compared to present plans to transport and dispose {sup 238}Pu TRU waste to the WIPP site. Using a total net present value cost for the MSO project as $4.09 million over a five-year lifetime, the project can pay for itself after either recovery of 1.6 kg of Pu or through volume reduction of 818 drums or a combination of the two. These savings show a positive return on investment.

  7. Computational Analysis of Nanoparticles-Molten Salt Thermal Energy Storage for Concentrated Solar Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vinod [Univ. of Texas, El Paso, TX (United States)

    2017-05-05

    High fidelity computational models of thermocline-based thermal energy storage (TES) were developed. The research goal was to advance the understanding of a single tank nanofludized molten salt based thermocline TES system under various concentration and sizes of the particles suspension. Our objectives were to utilize sensible-heat that operates with least irreversibility by using nanoscale physics. This was achieved by performing computational analysis of several storage designs, analyzing storage efficiency and estimating cost effectiveness for the TES systems under a concentrating solar power (CSP) scheme using molten salt as the storage medium. Since TES is one of the most costly but important components of a CSP plant, an efficient TES system has potential to make the electricity generated from solar technologies cost competitive with conventional sources of electricity.

  8. PERFORMANCE SIMULATION OF PARABOLIC TROUGH SOLAR COLLECTOR USING TWO FLUIDS (THERMIC OIL AND MOLTEN SALT

    Directory of Open Access Journals (Sweden)

    T. E. Boukelia

    2016-05-01

    Full Text Available The Parabolic trough solar collector is considered as one of the most proven, mature and commercial concentrating solar systems implemented in arid and semi-arid regions for energy production. It focuses sunlight onto a solar receiver by using mirrors and is finally converted to a useful thermal energy by means of a heat transfer fluid. The aims of this study are (i to develop a new methodology for simulation and performance evaluation of parabolic trough solar collector, in addition (i to compare the efficiencies of this system using two different fluids; thermic oil and molten solar salt. The validation of obtained results using this methodology shows a good agreement with those obtained by the experimental tests. Furthermore, this study favors the using of thermic oil as heat transfer fluid in the receiver instead of molten salt due to the high efficiency of the concentrator based on the first fluid in comparison to the second one.

  9. Design considerations for concentrating solar power tower systems employing molten salt.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles; Siegel, Nathan Phillip; Kolb, Gregory J.; Vernon, Milton E.; Ho, Clifford Kuofei

    2010-09-01

    The Solar Two Project was a United States Department of Energy sponsored project operated from 1996 to 1999 to demonstrate the coupling of a solar power tower with a molten nitrate salt as a heat transfer media and for thermal storage. Over all, the Solar Two Project was very successful; however many operational challenges were encountered. In this work, the major problems encountered in operation of the Solar Two facility were evaluated and alternative technologies identified for use in a future solar power tower operating with a steam Rankine power cycle. Many of the major problems encountered can be addressed with new technologies that were not available a decade ago. These new technologies include better thermal insulation, analytical equipment, pumps and values specifically designed for molten nitrate salts, and gaskets resistant to thermal cycling and advanced equipment designs.

  10. In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications

    Directory of Open Access Journals (Sweden)

    Mathieu Lasfargues

    2017-05-01

    Full Text Available Seeding nanoparticles in molten salts has been shown recently as a promising way to improve their thermo-physical properties. The prospect of such technology is of interest to both academic and industrial sectors in order to enhance the specific heat capacity of molten salt. The latter is used in concentrated solar power plants as both heat transfer fluid and sensible storage. This work explores the feasibility of producing and dispersing nanoparticles with a novel one pot synthesis method. Using such a method, CuO nanoparticles were produced in situ via the decomposition of copper sulphate pentahydrate in a KNO3-NaNO3 binary salt. Analyses of the results suggested preferential disposition of atoms around produced nanoparticles in the molten salt. Thermal characterization of the produced nano-salt suspension indicated the dependence of the specific heat enhancement on particle morphology and distribution within the salts.

  11. In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications.

    Science.gov (United States)

    Lasfargues, Mathieu; Stead, Graham; Amjad, Muhammad; Ding, Yulong; Wen, Dongsheng

    2017-05-19

    Seeding nanoparticles in molten salts has been shown recently as a promising way to improve their thermo-physical properties. The prospect of such technology is of interest to both academic and industrial sectors in order to enhance the specific heat capacity of molten salt. The latter is used in concentrated solar power plants as both heat transfer fluid and sensible storage. This work explores the feasibility of producing and dispersing nanoparticles with a novel one pot synthesis method. Using such a method, CuO nanoparticles were produced in situ via the decomposition of copper sulphate pentahydrate in a KNO₃-NaNO₃ binary salt. Analyses of the results suggested preferential disposition of atoms around produced nanoparticles in the molten salt. Thermal characterization of the produced nano-salt suspension indicated the dependence of the specific heat enhancement on particle morphology and distribution within the salts.

  12. In Situ Solid-Gas Reactivity of Nanoscaled Metal Borides from Molten Salt Synthesis

    OpenAIRE

    Gouget, Guillaume; Debecker, Damien P.; Kim, Ara; Olivieri, Giorgia; Gallet, Jean-Jacques; Bournel, Fabrice; Thomas, Cyril; Ersen, Ovidiu; Moldovan, Simona; Sanchez, Clément; Carenco , Sophie; Portehault, David

    2017-01-01

    Metal borides have mostly been studied as bulk materials. The nanoscale provides new opportunities to investigate the properties of these materials, e.g., nanoscale hardening and surface reactivity. Metal borides are often considered stable solids because of their covalent character, but little is known on their behavior under a reactive atmosphere, especially reductive gases. We use molten salt synthesis at 750 °C to provide cobalt monoboride (CoB) nanocrystals embedded in an amorphous layer...

  13. Thermal analysis to support decommissioning of the molten salt reactor experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sulfredge, C.D.; Morris, D.G.; Park, J.E.; Williams, P.T.

    1996-06-01

    As part of the decommissioning process for the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory, several thermal-sciences issues were addressed. Apparently a mixture of UF{sub 6} and F{sub 2} had diffused into the upper portion of one charcoal column in the MSRE auxiliary charcoal bed (ACB), leading to radiative decay heating and possible chemical reaction sources. A proposed interim corrective action was planned to remove the water from the ACB cell to reduce criticality and reactivity concerns and then fill the ACB cell with an inert material. This report describes design of a thermocouple probe to obtain temperature measurements for mapping the uranium deposit, as well as development of steady-state and transient numerical models for the heat transfer inside the charcoal column. Additional numerical modeling was done to support filling of the ACB cell. Results from this work were used to develop procedures for meeting the goals of the MSRE Remediation Project without exceeding appropriate thermal limits.

  14. Validation of the TRACE code for the system dynamic simulations of the molten salt reactor experiment and the preliminary study on the dual fluid molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    He, Xun

    2016-06-14

    Molten Salt Reactor (MSR), which was confirmed as one of the six Generation IV reactor types by the GIF (Generation IV International Forum in 2008), recently draws a lot of attention all around the world. Due to the application of liquid fuels the MSR can be regarded as the most special one among those six GEN-IV reactor types in a sense. A unique advantage of using liquid nuclear fuel lies in that the core melting accident can be thoroughly eliminated. Besides, a molten salt reactor can have several fuel options, for instance, the fuel can be based on {sup 235}U, {sup 232}Th-{sup 233}U, {sup 238}U-{sup 239}Pu cycle or even the spent nuclear fuel (SNF), so the reactor can be operated as a breeder or as an actinides burner both with fast, thermal or epi-thermal neutron spectrum and hence, it has excellent features of the fuel sustainability and for the non-proliferation. Furthermore, the lower operating pressure not only means a lower risk of the explosion as well as the radioactive leakage but also implies that the reactor vessel and its components can be lightweight, thus lowering the cost of equipments. So far there is no commercial MSR being operated. However, the MSR concept and its technical validation dates back to the 1960s to 1970s, when the scientists and engineers from ORNL (Oak Ridge National Laboratory) in the United States managed to build and run the world's first civilian molten salt reactor called MSRE (Molten Salt Reactor Experiment). The MSRE was an experimental liquid-fueled reactor with 10 MW thermal output using {sup 4}LiF-BeF{sub 2}-ZrF{sub 4}-UF{sub 4} as the fuel also as the coolant itself. The MSRE is usually taken as a very important reference case for many current researches to validate their codes and simulations. Without exception it works also as a benchmark for this thesis. The current thesis actually consists of two main parts. The first part is about the validation of the current code for the old MSRE concept, while the second

  15. Multi-functional sensor system for molten salt technologies

    Science.gov (United States)

    Redey, Laszlo [Downers Grove, IL; Gourishankar, Karthick [Downers Grove, IL; Williamson, Mark A [Naperville, IL

    2009-12-15

    The present invention relates to a multi-functional sensor system that simultaneously measures cathode and anode electrode potentials, dissolved ion (i.e. oxide) concentration, and temperatures in an electrochemical cell. One embodiment of the invented system generally comprises: a reference(saturated) electrode, a reference(sensing) electrode, and a data acquisition system. Thermocouples are built into the two reference electrodes to provide important temperature information.

  16. Preparation and luminescence characteristics of monazite Eu3+:LaPO4 nanocrystals in NH4NO3 molten salt

    Science.gov (United States)

    Huang, Xinyang

    2015-12-01

    Molten-salt method and NH4NO3 flux were developed to fabricate monoclinic monazite Eu3+:LaPO4 nanocrystals for the first time. The products were characterized by X-ray powder diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, excitation spectra, emission spectra and luminescence decay curves. The as-obtained products were quasihexagonal Eu3+:LaPO4 nanocrystals with the mean size of 30 nm. The room temperature charge transfer bands (CTB) exhibited red-shift and spectral broadening in comparison with 10 K CTB. The optimal Eu3+ concentration was determined to be 8 mol% by a comparative study of the relative emission intensities for different Eu3+ doping concentrations. The higher concentration quenching could be caused by the possible nonradiative energy transfer (electric multipole-multipole interaction). The relationship between the FL lifetime of 5D0 energy level and Eu3+ concentration was investigated based on Auzel's model. This work is important not only to understand the unique physical properties of Eu3+:LaPO4 nanocrystals but also to bring an opportunity for the development of the other nanocrystals via the molten salt synthesis in NH4NO3 flux.

  17. Metals recovering from waste printed circuit boards (WPCBs) using molten salts.

    Science.gov (United States)

    Flandinet, L; Tedjar, F; Ghetta, V; Fouletier, J

    2012-04-30

    Recycling of waste electrical and electronic equipments (WEEE) has been taken into consideration in the literature due to the large quantity of concerned wastes and their hazardous contents. The situation is so critical that EU published European Directives imposing collection and recycling with a minimum of material recovery [1]. Moreover, WEEEs contain precious metals, making the recycling of these wastes economically interesting, but also some critical metals and their recycling leads to resource conservation. This paper reports on a new approach for recycling waste printed circuit boards (WPCBs). Molten salts and specifically molten KOH-NaOH eutectic is used to dissolve glasses, oxides and to destruct plastics present in wastes without oxidizing the most valuable metals. This method is efficient for recovering a copper-rich metallic fraction, which is, moreover, cleared of plastics and glasses. In addition, analyses of gaseous emission show that this method is environmentally friendly since most of the process gases, such as carbon monoxide and dioxide and halogens, are trapped in the highly basic molten salt. In other respects, under operation without oxygen, a large quantity of hydrogen is produced and might be used as fuel gas or as synthesis gas, leading to a favourable energy balance for this new process. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Electrolytic synthesis of ammonia in molten salts under atmospheric pressure.

    Science.gov (United States)

    Murakami, Tsuyoshi; Nishikiori, Tokujiro; Nohira, Toshiyuki; Ito, Yasuhiko

    2003-01-15

    Ammonia was successfully synthesized by using a new electrochemical reaction with high current efficiency at atmospheric pressure and at lower temperatures than the Haber-Bosch process. In this method, nitride ion (N3-), which is produced by the reduction from nitrogen gas at the cathode, is anodically oxidized and reacts with hydrogen to produce ammonia at the anode.

  19. Degradation of organochloride pesticides by molten salt oxidation at IPEN: spin-off nuclear activities

    Energy Technology Data Exchange (ETDEWEB)

    Lainetti, Paulo E.O., E-mail: lainetti@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Nuclear spin-off has at least two dimensions. It may provide benefits to the society such as enlarge knowledge base, strengthen infrastructure and benefit technology development. Besides this, to emphasize that some useful technologies elapsed from nuclear activities can affect favorably the public opinion about nuclear energy. In this paper is described a technology developed initially by the Rockwell Int. company in the USA more than thirty years ago to solve some problems of nuclear fuel cycle wastes. For different reasons the technology was not employed. In the last years the interest in the technology was renewed and IPEN has developed his version of the method applicable mainly to the safe degradation of hazardous wastes. This study was motivated by the world interest in the development of advanced processes of waste decomposition, due to the need of safer decomposition processes, particularly for the POPs - persistent organic pollutants and particularly for the organ chlorides. A tendency observed at several countries is the adoption of progressively more demanding legislation for the atmospheric emissions, resultants of the waste decomposition processes. The suitable final disposal of hazardous organic wastes such as PCBs (polychlorinated biphenyls), pesticides, herbicides and hospital residues constitutes a serious problem. In some point of their life cycles, these wastes should be destroyed, in reason of the risk that they represent for the human being, animals and plants. The process involves using a chemical reactor containing molten salts, sodium carbonate or some alkaline carbonates mixtures to decompose the organic waste. The decomposition is performed by submerged oxidation and the residue is injected below the surface of a turbulent salt bath along with the oxidizing agent. Decomposition of halogenated compounds, among which some pesticides, is particularly effective in molten salts. The process presents properties such as intrinsically safe

  20. Electrorefining of High Carbon Ferromanganese in Molten Salts to Produce Pure Ferromanganese

    Directory of Open Access Journals (Sweden)

    Xiao S. J.

    2017-09-01

    Full Text Available High carbon ferromanganese is used as a starting material to prepare pure ferromanganese by electrorefining in molten salts. High carbon ferromanganese was applied as the anode, molybdenum was the cathode and Ag/AgCl was the reference electrode. The anodic dissolution was investigated by linear polarization in molten NaCl-KCl system. Then potentiostatic electrolysis was carried out to produce pure ferromanganese from high carbon ferromanganese. The cathodic product was determined to be a mixture of manganese and iron by x-ray diffraction (XRD. The content of carbon in the product was analyzed by carbon and sulfur analyzer. The post-electrolysis anode was characterized by scanning electron microscope (SEM. The mechanism of the anode dissolution and the distribution of the main impurity of carbon and silicon after electrolysis were discussed.

  1. Conceptual Design of Forced Convection Molten Salt Heat Transfer Testing Loop

    Energy Technology Data Exchange (ETDEWEB)

    Manohar S. Sohal; Piyush Sabharwall; Pattrick Calderoni; Alan K. Wertsching; S. Brandon Grover

    2010-09-01

    This report develops a proposal to design and construct a forced convection test loop. A detailed test plan will then be conducted to obtain data on heat transfer, thermodynamic, and corrosion characteristics of the molten salts and fluid-solid interaction. In particular, this report outlines an experimental research and development test plan. The most important initial requirement for heat transfer test of molten salt systems is the establishment of reference coolant materials to use in the experiments. An earlier report produced within the same project highlighted how thermophysical properties of the materials that directly impact the heat transfer behavior are strongly correlated to the composition and impurities concentration of the melt. It is therefore essential to establish laboratory techniques that can measure the melt composition, and to develop purification methods that would allow the production of large quantities of coolant with the desired purity. A companion report describes the options available to reach such objectives. In particular, that report outlines an experimental research and development test plan that would include following steps: •Molten Salts: The candidate molten salts for investigation will be selected. •Materials of Construction: Materials of construction for the test loop, heat exchangers, and fluid-solid corrosion tests in the test loop will also be selected. •Scaling Analysis: Scaling analysis to design the test loop will be performed. •Test Plan: A comprehensive test plan to include all the tests that are being planned in the short and long term time frame will be developed. •Design the Test Loop: The forced convection test loop will be designed including extensive mechanical design, instrument selection, data acquisition system, safety requirements, and related precautionary measures. •Fabricate the Test Loop. •Perform the Tests. •Uncertainty Analysis: As a part of the data collection, uncertainty analysis will

  2. Thermal Storage Properties of Molten Nitrate Salt-Based Nanofluids with Graphene Nanoplatelets

    National Research Council Canada - National Science Library

    Xie, Qiangzhi; Zhu, Qunzhi; Li, Yan

    2016-01-01

    .... For both solar salt and resultant nanofluids, differential scanning calorimetry was employed to measure the thermal storage properties, including characteristic temperatures of phase change, startup...

  3. Thermal energy storage heat exchanger: Molten salt heat exchanger design for utility power plants

    Science.gov (United States)

    Ferarra, A.; Yenetchi, G.; Haslett, R.; Kosson, R.

    1977-01-01

    The use of thermal energy storage (TES) in the latent heat of molten salts as a means of conserving fossil fuels and lowering the cost of electric power was evaluated. Public utility systems provided electric power on demand. This demand is generally maximum during late weekday afternoons, with considerably lower overnight and weekend loads. Typically, the average demand is only 60% to 80% of peak load. As peak load increases, the present practice is to purchase power from other grid facilities or to bring older less efficient fossil-fuel plants on line which increase the cost of electric power. The widespread use of oil-fired boilers, gas turbine and diesel equipment to meet peaking loads depletes our oil-based energy resources. Heat exchangers utilizing molten salts can be used to level the energy consumption curve. The study begins with a demand analysis and the consideration of several existing modern fossil-fuel and nuclear power plants for use as models. Salts are evaluated for thermodynamic, economic, corrosive, and safety characteristics. Heat exchanger concepts are explored and heat exchanger designs are conceived. Finally, the economics of TES conversions in existing plants and new construction is analyzed. The study concluded that TES is feasible in electric power generation. Substantial data are presented for TES design, and reference material for further investigation of techniques is included.

  4. Assessment of the Neutronic and Fuel Cycle Performance of the Transatomic Power Molten Salt Reactor Design

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Sean [Transatomic Power Corp., Cambridge, MA (United States); Dewan, Leslie [Transatomic Power Corp., Cambridge, MA (United States); Massie, Mark [Transatomic Power Corp., Cambridge, MA (United States); Davidson, Eva E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Betzler, Benjamin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    This report presents results from a collaboration between Transatomic Power Corporation (TAP) and Oak Ridge National Laboratory (ORNL) to provide neutronic and fuel cycle analysis of the TAP core design through the Department of Energy Gateway for Accelerated Innovation in Nuclear (GAIN) Nuclear Energy Voucher program. The TAP concept is a molten salt reactor using configurable zirconium hydride moderator rod assemblies to shift the neutron spectrum in the core from mostly epithermal at beginning of life to thermal at end of life. Additional developments in the ChemTriton modeling and simulation tool provide the critical moderator-to-fuel ratio searches and time-dependent parameters necessary to simulate the continuously changing physics in this complex system. The implementation of continuous-energy Monte Carlo transport and depletion tools in ChemTriton provide for full-core three-dimensional modeling and simulation. Results from simulations with these tools show agreement with TAP-calculated performance metrics for core lifetime, discharge burnup, and salt volume fraction, verifying the viability of reducing actinide waste production with this concept. Additional analyses of mass feed rates and enrichments, isotopic removals, tritium generation, core power distribution, core vessel helium generation, moderator rod heat deposition, and reactivity coeffcients provide additional information to make informed design decisions. This work demonstrates capabilities of ORNL modeling and simulation tools for neutronic and fuel cycle analysis of molten salt reactor concepts.

  5. Two-Dimensional Neutronic and Fuel Cycle Analysis of the Transatomic Power Molten Salt Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Betzler, Benjamin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Robertson, Sean [Transatomic Power Corporation, Cambridge, MA (United States); Dewan, Leslie [Transatomic Power Corporation, Cambridge, MA (United States); Massie, Mark [Transatomic Power Corporation, Cambridge, MA (United States)

    2017-01-15

    This status report presents the results from the first phase of the collaboration between Transatomic Power Corporation (TAP) and Oak Ridge National Laboratory (ORNL) to provide neutronic and fuel cycle analysis of the TAP core design through the Department of Energy Gateway for Accelerated Innovation in Nuclear, Nuclear Energy Voucher program. The TAP design is a molten salt reactor using movable moderator rods to shift the neutron spectrum in the core from mostly epithermal at beginning of life to thermal at end of life. Additional developments in the ChemTriton modeling and simulation tool provide the critical moderator-to-fuel ratio searches and time-dependent parameters necessary to simulate the continuously changing physics in this complex system. Results from simulations with these tools show agreement with TAP-calculated performance metrics for core lifetime, discharge burnup, and salt volume fraction, verifying the viability of reducing actinide waste production with this design. Additional analyses of time step sizes, mass feed rates and enrichments, and isotopic removals provide additional information to make informed design decisions. This work further demonstrates capabilities of ORNL modeling and simulation tools for analysis of molten salt reactor designs and strongly positions this effort for the upcoming three-dimensional core analysis.

  6. Conceptual Design of a 100 MWe Modular Molten Salt Power Tower Plant

    Energy Technology Data Exchange (ETDEWEB)

    James E. Pacheco; Carter Moursund, Dale Rogers, David Wasyluk

    2011-09-20

    A conceptual design of a 100 MWe modular molten salt solar power tower plant has been developed which can provide capacity factors in the range of 35 to 75%. Compared to single tower plants, the modular design provides a higher degree of flexibility in achieving the desired customer's capacity factor and is obtained simply by adjusting the number of standard modules. Each module consists of a standard size heliostat field and receiver system, hence reengineering and associated unacceptable performance uncertainties due to scaling are eliminated. The modular approach with multiple towers also improves plant availability. Heliostat field components, receivers and towers are shop assembled allowing for high quality and minimal field assembly. A centralized thermal-storage system stores hot salt from the receivers, allowing nearly continuous power production, independent of solar energy collection, and improved parity with the grid. A molten salt steam generator converts the stored thermal energy into steam, which powers a steam turbine generator to produce electricity. This paper describes the conceptual design of the plant, the advantages of modularity, expected performance, pathways to cost reductions, and environmental impact.

  7. Molten Salt Power Tower Cost Model for the System Advisor Model (SAM)

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C. S.; Heath, G. A.

    2013-02-01

    This report describes a component-based cost model developed for molten-salt power tower solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), using data from several prior studies, including a contracted analysis from WorleyParsons Group, which is included herein as an Appendix. The WorleyParsons' analysis also estimated material composition and mass for the plant to facilitate a life cycle analysis of the molten salt power tower technology. Details of the life cycle assessment have been published elsewhere. The cost model provides a reference plant that interfaces with NREL's System Advisor Model or SAM. The reference plant assumes a nominal 100-MWe (net) power tower running with a nitrate salt heat transfer fluid (HTF). Thermal energy storage is provided by direct storage of the HTF in a two-tank system. The design assumes dry-cooling. The model includes a spreadsheet that interfaces with SAM via the Excel Exchange option in SAM. The spreadsheet allows users to estimate the costs of different-size plants and to take into account changes in commodity prices. This report and the accompanying Excel spreadsheet can be downloaded at https://sam.nrel.gov/cost.

  8. Modeling Solute Thermokinetics in LiCI-KCI Molten Salt for Nuclear Waste Separation

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Dane; Eapen, Jacob

    2013-10-01

    Recovery of actinides is an integral part of a closed nuclear fuel cycle. Pyrometallurgical nuclear fuel recycling processes have been developed in the past for recovering actinides from spent metallic and nitride fuels. The process is essentially to dissolve the spent fuel in a molten salt and then extract just the actinides for reuse in a reactor. Extraction is typically done through electrorefining, which involves electrochemical reduction of the dissolved actinides and plating onto a cathode. Knowledge of a number of basic thermokinetic properties of salts and salt-fuel mixtures is necessary for optimizing present and developing new approaches for pyrometallurgical waste processing. The properties of salt-fuel mixtures are presently being studied, but there are so many solutes and varying concentrations that direct experimental investigation is prohibitively time consuming and expensive (particularly for radioactive elements like Pu). Therefore, there is a need to reduce the number of required experiments through modeling of salt and salt-fuel mixture properties. This project will develop first-principles-based molecular modeling and simulation approaches to predict fundamental thermokinetic properties of dissolved actinides and fission products in molten salts. The focus of the proposed work is on property changes with higher concentrations (up to 5 mol%) of dissolved fuel components, where there is still very limited experimental data. The properties predicted with the modeling will be density, which is used to assess the amount of dissolved material in the salt; diffusion coefficients, which can control rates of material transport during separation; and solute activity, which determines total solubility and reduction potentials used during electrorefining. The work will focus on La, Sr, and U, which are chosen to include the important distinct categories of lanthanides, alkali earths, and actinides, respectively. Studies will be performed using LiCl-KCl salt

  9. The origin of the conductivity maximum in molten salts. II. SnCl2 and HgBr2

    Science.gov (United States)

    Aravindakshan, Nikhil P.; Kuntz, Colin M.; Gemmell, Kyle E.; Johnson, Keith E.; East, Allan L. L.

    2016-09-01

    The phenomenon of electrical conductivity maxima of molten salts versus temperature during orthobaric (closed-vessel) conditions is further examined via ab initio simulations. Previously, in a study of molten BiCl3, a new theory was offered in which the conductivity falloff at high temperatures is due not to traditional ion association, but to a rise in the activation energy for atomic ions hopping from counterion to counterion. Here this theory is further tested on two more inorganic melts which exhibit conductivity maxima: another high-conducting melt (SnCl2, σmax = 2.81 Ω-1 cm-1) and a low-conducting one (HgBr2, σmax = 4.06 × 10-4 Ω-1 cm-1). First, ab initio molecular dynamics simulations were performed and again appear successful in reproducing the maxima for both these liquids. Second, analysis of the simulated liquid structure (radial distributions, species concentrations) was performed. In the HgBr2 case, a very molecular liquid like water, a clear Grotthuss chain of bromide transfers was observed in simulation when seeding the system with a HgBr+ cation and HgBr3- anion. The first conclusion is that the hopping mechanism offered for molten BiCl3 is simply the Grotthuss mechanism for conduction, applicable not just to H+ ions, but also to halide ions in post-transition-metal halide melts. Second, it is conjectured that the conductivity maximum is due to rising activation energy in network-covalent (halide-bridging) melts (BiCl3, SnCl2, PbCl2), but possibly a falling Arrhenius prefactor (collision frequency) for molecular melts (HgBr2).

  10. Multi physics modeling of a molten-salt electrolytic process for nuclear waste treatment

    Science.gov (United States)

    Kim, K. R.; Choi, S. Y.; Kim, J. G.; Paek, S.; Ahn, D. H.; Kwon, S. W.; Shim, J. B.; Kim, S. H.; Lee, H. S.; Park, B. G.; Yi, K. W.; Hwang, I. S.

    2010-03-01

    Multi physics electrochemical modeling in a framework of Computational Fluid Dynamics (CFD) code was proposed and dealt with in detail to simulate the electro-transport behaviour that appears in a molten-salt electrolytic system. The modeling approach in this study is focused on the mass transport and current arising due to the concentration and the surface overpotential based on a cell configuration and electrolyte turbulence. This comprehensive modelling approach was applied and compared to electroplating model in a prepared rotating cylinder Hull (RCH) cell system.

  11. On-line reprocessing of a molten salt reactor: a simulation tool

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Nicole; Gastaldi, Olivier; Penit, Thomas; Cohin, Olivier; Campion, Pierre-Yves [DEN/CADDTN/STPA/LPC-CEA Cadarache, 13108 Saint Paul lez Durance (France)

    2008-07-01

    The molten salt reactor (MSR) is one of the concepts studied in the frame of GEN IV road-map. Due to the specific features of its liquid fuel, the reprocessing unit may be directly connected to the reactor. A modelling of this unit is presented. The final objective is to create a flexible computer reprocessing code which can use data from neutron calculations and can be coupled to a neutron code. Such a code allows the description of the whole behaviour of MSR, including, in a coupled manner, both the design of the core and the optimised reprocessing scheme effects. (authors)

  12. In situ NMR spectroscopy: inulin biomass conversion in ZnCl₂ molten salt hydrate medium-SnCl₄ addition controls product distribution.

    Science.gov (United States)

    Wang, Yingxiong; Pedersen, Christian Marcus; Qiao, Yan; Deng, Tiansheng; Shi, Jing; Hou, Xianglin

    2015-01-22

    The dehydration of inulin biomass to the platform chemicals, 5-hydroxymethylfurfural (5-HMF) and levulinic acid (LA), in ZnCl2 molten salt hydrate medium was investigated. The influence of the Lewis acid catalyst, SnCl4, on the product distribution was examined. An in situ(1)H NMR technique was employed to follow the reaction at the molecular level. The experimental results revealed that only 5-HMF was obtained from degradation of inulin biomass in ZnCl2 molten salt hydrate medium, while the LA was gradually becoming the main product when the reaction temperature was increased in the presence of the Lewis acid catalyst SnCl4. In situ NMR spectroscopy could monitor the reaction and give valuable insight. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Steady RANS methodology for calculating pressure drop in an in-line molten salt compact crossflow heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Carasik, Lane B.; Shaver, Dillon R.; Hassan, Yassin A.; Haefner, Jonah B.

    2017-11-01

    The development of molten salt cooled reactors (MSR) and fluoride-salt cooled high temperature reactors (FHR) requires the use of advanced design tools for the primary heat exchanger design. Due to geometric and flow characteristics, compact (pitch to diameter ratios equal to or less than 1.25) heat exchangers with a crossflow flow arrangement can become desirable for these reactors. Unfortunately, the available experimental data is limited for compact tube bundles or banks in crossflow. Computational Fluid Dynamics can be used to alleviate the lack of experimental data in these tube banks. Previous computational efforts have been primarily focused on large S/D ratios (larger than 1.4) using unsteady Reynolds averaged Navier-Stokes and Large Eddy Simulation frameworks. These approaches are useful, but have large computational requirements that make comprehensive design studies impractical. A CFD study was conducted with steady RANS in an effort to provide a starting point for future design work. The study was performed for an in-line tube bank geometry with FLiBe (LiF-BeF2), a frequently selected molten salt, as the working fluid. Based on the estimated pressure drops, the pressure and velocity distributions in the domain, an appropriate meshing strategy was determined and presented. Periodic boundaries in the spanwise direction transverse flow were determined to be an appropriate boundary condition for reduced computational domains. The domain size was investigated and a minimum of 2-flow channels for a domain is recommended to ensure the behavior is accounted for. Lastly, the standard low Re κ-ε (Lien) turbulence model was determined to be the most appropriate for steady RANS of this case at the time of writing.

  14. Solubility of uranium oxide in molten salt electrolysis bath of LiF–BaF{sub 2} with LaF{sub 3} additive

    Energy Technology Data Exchange (ETDEWEB)

    Alangi, Nagaraj, E-mail: nagaraj@barc.gov.in [Laser & Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai (India); Homi Bhabha National Institute, Mumbai (India); Mukherjee, Jaya [Laser & Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai (India); Gantayet, L.M. [Homi Bhabha National Institute, Mumbai (India)

    2016-03-15

    The solubility of UO{sub 2} in the molten mixtures of equimolar LiF–BaF{sub 2}(1:1) with LaF{sub 3} as additive was studied in the range of 1423 K–1523 K. The molten fluoride salt mixture LiF–BaF{sub 2} LaF{sub 3} was equilibrated with a sintered uranium oxide pellet at 1423 K, 1473 K, 1523 K and the salt samples were collected after equilibration. Studies were conducted in the range of 10%–50% by weight additions of LaF{sub 3} in the equimolar LiF–BaF{sub 2}(1:1) base fluoride salt bath. Solubility of UO{sub 2} increased with rise in LaF{sub 3} concentration in the molten fluoride in the temperature range of 1423 K–1523 K. At a given concentration of LaF{sub 3}, the UO{sub 2} solubility increased monotonously with temperature. With mixed solvent, when UF{sub 4} was added as a replacement of part of LaF{sub 3} in LiF–BaF{sub 2}(1:1)-10 wt% LaF{sub 3} and LiF–BaF{sub 2}(1:1)-30 wt% LaF{sub 3}, there was an enhancement of solubility of UO{sub 2}.

  15. Neutronic Analysis of the Laser Inertial Confinement Fusion-Fission Energy (LIFE) Engine Using Various Thorium Molten Salts

    Science.gov (United States)

    Acır, Adem

    2013-08-01

    In this study, a neutronic performance of the Laser Inertial Confinement Fusion Fission Energy (LIFE) molten salt blanket is investigated. Neutronic calculations are performed by using XSDRNPM/SCALE5 codes in S8-P3 approximation. The thorium molten salt composition considered in this calculation is 75 % LiF—25 % ThF4, 75 % LiF—24 % ThF4—1 % 233UF4, 75 % LiF—23 % ThF4—2 % 233UF4. Also, effects of the 6Li enrichment in molten salt are performed for all heavy metal salt. The radiation damage behaviors of SS-304 structural material with respect to higher fissionable fuel content and 6Li enrichment are computed. By higher fissionable fuel content in molten salt and with 6Li enrichment (20 and 50 %) in the coolant in form of 75 % LiF—23 % ThF4—2 % 233UF4, an initial TBR >1.05 can be realized. On the other hand, the 75 % LiF—25 % ThF4 or 75 % LiF—24 % ThF4—1 % 233UF4 molten salt fuel as regards maintained tritium self-sufficiency is not suitable as regards improving neutronic performance of LIFE engine. A high quality fissile fuel with a rate of ~2,850 kg/year of 233U can be produced with 75 % LiF—23 % ThF4—2 % 233UF4. The energy multiplication factor is increased with high rate fission reactions of 233U occurring in the molten salt zone. Major damage mechanisms in SS-304 first wall stell have been computed as DPA = 48 and He = 132 appm per year with 75 % LiF—23 % ThF4—2 % 233UF4. This implies a replacement of the SS-304 first wall stell of every between 3 and 4 years.

  16. A novel rechargeable zinc-air battery with molten salt electrolyte

    Science.gov (United States)

    Liu, Shuzhi; Han, Wei; Cui, Baochen; Liu, Xianjun; Zhao, Fulin; Stuart, Jessica; Licht, Stuart

    2017-02-01

    Zinc-air batteries have been proposed for EV applications and large-scale electricity storage such as wind and solar power. Although zinc-air batteries are very promising, there are numerous technological barriers to overcome. We demonstrate for the first time, a new rechargeable zinc-air battery that utilizes a molten Li0.87Na0.63K0.50CO3 eutectic electrolyte with added NaOH. Cyclic voltammetry reveals that a reversible deposition/dissolution of zinc occurs in the molten Li0.87Na0.63K0.50CO3 eutectic. At 550 °C, this zinc-air battery performs with a coulombic efficiency of 96.9% over 110 cycles, having an average charging potential of ∼1.43 V and discharge potential of ∼1.04 V. The zinc-air battery uses cost effective steel and nickel electrodes without the need for any precious metal catalysts. Moreover, the molten salt electrolyte offers advantages over aqueous electrolytes, avoiding the common aqueous alkaline electrolyte issues of hydrogen evolution, Zn dendrite formation, "drying out", and carbonate precipitation.

  17. Corrosion resistance of ceramic materials in pyrochemical reprocessing condition by using molten salt for spent nuclear oxide fuel

    Science.gov (United States)

    Takeuchi, M.; Kato, T.; Hanada, K.; Koizumi, T.; Aose, S.

    2005-02-01

    The corrosion resistance of ceramic materials in pyrochemical reprocessing using molten salts was discussed through the thermodynamic calculation and corrosion test. The corrosion test was basically carried out in alkali molten salt under chlorine gas. In addition, the effects of oxygen, carbon and main fission product's chlorides on ceramics corrosion were evaluated in that condition. Most of ceramic oxides showed good chemical stability on chlorine, oxygen and uranyl chloride from thermodynamic calculation results. On the other hand, from corrosion test result, silicon nitride, mullite (Al6Si2O13) and cordierite (Mg2Al3(AlSi5O18)) have a good corrosion resistance which is corresponding to 0.1 mm/y or less. No cracks on the materials were observed and flexural strength did not drop remarkably after 480 h corrosion testing in molten salt under Cl2 O2 atmosphere.

  18. Transient coupled calculations of the Molten Salt Fast Reactor using the Transient Fission Matrix approach

    Energy Technology Data Exchange (ETDEWEB)

    Laureau, A., E-mail: laureau.axel@gmail.com; Heuer, D.; Merle-Lucotte, E.; Rubiolo, P.R.; Allibert, M.; Aufiero, M.

    2017-05-15

    Highlights: • Neutronic ‘Transient Fission Matrix’ approach coupled to the CFD OpenFOAM code. • Fission Matrix interpolation model for fast spectrum homogeneous reactors. • Application for coupled calculations of the Molten Salt Fast Reactor. • Load following, over-cooling and reactivity insertion transient studies. • Validation of the reactor intrinsic stability for normal and accidental transients. - Abstract: In this paper we present transient studies of the Molten Salt Fast Reactor (MSFR). This generation IV reactor is characterized by a liquid fuel circulating in the core cavity, requiring specific simulation tools. An innovative neutronic approach called “Transient Fission Matrix” is used to perform spatial kinetic calculations with a reduced computational cost through a pre-calculation of the Monte Carlo spatial and temporal response of the system. Coupled to this neutronic approach, the Computational Fluid Dynamics code OpenFOAM is used to model the complex flow pattern in the core. An accurate interpolation model developed to take into account the thermal hydraulics feedback on the neutronics including reactivity and neutron flux variation is presented. Finally different transient studies of the reactor in normal and accidental operating conditions are detailed such as reactivity insertion and load following capacities. The results of these studies illustrate the excellent behavior of the MSFR during such transients.

  19. Development status and potential program for development of proliferation-resistant molten-salt reactors

    Energy Technology Data Exchange (ETDEWEB)

    Engel, J.R.; Bauman, H.F.; Dearing, J.F.; Grimes, W.R.; McCoy, H.E. Jr.

    1979-03-01

    Preliminary studies of existing and conceptual molten-salt reactor (MSR) designs have led to the identification of conceptual systems that are technologically attractive when operated with denatured uranium as the principal fissile fuel. These denatured MSRs would also have favorable resource-utilization characteristics and substantial resistance to proliferation of weapons-usable nuclear materials. The report presents a summary of the current status of technology and a discussion of the major technical areas of a possible base program to develop commercial denatured MSRs. The general areas treated are (1) reactor design and development, (2) safety and safety related technology, (3) fuel-coolant behavior and fuel processing, and (4) reactor materials. A substantial development effort could lead to authorization for construction of a molten-salt test reactor about 5 years after the start of the program and operation of the unit about 10 years later. A prototype commercial denatured MSR could be expected to begin operating 25 years from the start of the program. The postulated base program would extend over 32 years and would cost about $700 million (1978 dollars, unescalated). Additional costs to construct the MSTR, $600 million, and the prototype commercial plant, $1470 million, would bring the total program cost to about $2.8 billion. Additional allowances probably should be made to cover contingencies and incidental technology areas not explicitly treated in this preliminary review.

  20. A final report on the Phase 1 testing of a molten-salt cavity receiver

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, J M [ed.; Smith, D C [Babcock and Wilcox Co., Barberton, OH (United States). Nuclear Equipment Div.

    1992-05-01

    This report describes the design, construction, and testing of a solar central receiver using molten nitrate salt as a heat exchange fluid. Design studies for large commercial plants (30--100 MWe) have shown molten salt to be an excellent fluid for solar thermal plants as it allows for efficient thermal storage. Plant design studies concluded that an advanced receiver test was required to address uncertainties not covered in prior receiver tests. This recommendation led to the current test program managed by Sandia National Laboratories for the US Department of Energy. The 4.5 MWt receiver is installed at Sandia National Laboratories' Central Receiver Test Facility in Albuquerque, New Mexico. The receiver incorporates features of large commercial receiver designs. This report describes the receiver's configuration, heat absorption surface (design and sizing), the structure and supporting systems, and the methods for control. The receiver was solar tested during a six-month period at the Central Receiver Test Facility in Albuquerque, NM. The purpose of the testing was to characterize the operational capabilities of the receiver under a number of solar operating and stand-by conditions. This testing consisted of initial check-out of the systems, followed by steady-state performance, transient receiver operation, receiver operation in clouds, receiver thermal loss testing, receiver start-up operation, and overnight thermal conditioning tests. This report describes the design, fabrication, and results of testing of the receiver.

  1. Electrochemical Dissolution of Tungsten Carbide in NaCl-KCl-Na2WO4 Molten Salt

    Science.gov (United States)

    Zhang, Liwen; Nie, Zuoren; Xi, Xiaoli; Ma, Liwen; Xiao, Xiangjun; Li, Ming

    2017-11-01

    Tungsten carbide was utilized as anode to extract tungsten in a NaCl-KCl-Na2WO4 molten salt, and the electrochemical dissolution was investigated. Although the molten salt electrochemical method is a short process method of tungsten extraction from tungsten carbide in one step, the dissolution efficiency and current efficiency are quite low. In order to improve the dissolution rate and current efficiency, the sodium tungstate was added as the active substance. The dissolution rate, the anode current efficiency, and the cathode current efficiency were calculated with different contents of sodium tungstate addition. The anodes prior to and following the reaction, as well as the product, were analyzed through X-ray diffraction, scanning electron microscopy, and energy dispersive spectrometry. The results demonstrated that the sodium tungstate could improve the dissolution rate and the current efficiency, due to the addition of sodium tungstate decreasing the charge transfer resistance in the electrolysis system. Due to the fact that the addition of sodium tungstate could remove the carbon during electrolysis, pure tungsten powders with 100 nm diameter were obtained when the content of sodium tungstate was 1.0 pct.

  2. Molten salt-directed synthesis method for LiMn2O4 nanorods as a cathode material for a lithium-ion battery with superior cyclability

    CSIR Research Space (South Africa)

    Kebede, Mesfin A

    2017-02-01

    Full Text Available A molten salt synthesis technique has been used to prepare nanorods of Mn2O3 and single-crystal LiMn2O4 nanorods cathode material with superior capacity retention. The molten salt-directed synthesis involved the use of NaCl as the eutectic melt...

  3. RETRACTED ARTICLE: The Evaluation of Reactor Performance by using Flibe and Flinabe Molten Salts in the APEX Hybrid Reactor

    Science.gov (United States)

    Korkut, Turgay; Hançerlioğulları, Aybaba

    2012-04-01

    The modeling of APEX hybrid reactor, produced by using ARIES-RS hybrid reactor technology, has been performed by using the MCNP-4B computer code and ENDF/B-V-VI nuclear data. Around the fusion chamber, molten salts Flibe (Li2BeF4) and Flinabe (LiNaBeF4) were used as cooling materials. APEX reactor was modeled in the torus form by adding nuclear materials of low significance in the specified percentages between percent 0-12 to the molten salts. The result of the study indicated that fissile material production, UF4 and ThF4 heavy metal salt increased nearly at the same percentage and it was observed that the percentage of it was practically the same in both materials. In order for the hybrid reactor to work itself in terms of tritium, TBR (tritium breeding ratio) should be lower than 1.05. When flibe molten salt was utilized in the APEX hybrid reactor, TBR was calculated as >1, 22 and when flinabe molten salt was used, TBR was calculated as >1.06.

  4. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Michael Schuller; Frank Little; Darren Malik; Matt Betts; Qian Shao; Jun Luo; Wan Zhong; Sandhya Shankar; Ashwin Padmanaban

    2012-03-30

    We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar power system. Specifically, we demonstrated that we could increase the specific heat of nitrate and carbonate salts containing 1% or less of alumina nanoparticles. We fabricated the composite materials using both evaporative and air drying methods. We tested several thermophysical properties of the composite materials, including the specific heat, thermal conductivity, latent heat, and melting point. We also assessed the stability of the composite material with repeated thermal cycling and the effects of adding the nanoparticles on the corrosion of stainless steel by the composite salt. Our results indicate that stable, repeatable 25-50% improvements in specific heat are possible for these materials. We found that using these composite salts as the thermal energy storage material for a concentrating solar thermal power system can reduce the levelized cost of electricity by 10-20%. We conclude that these materials are worth further development and inclusion in future concentrating solar power systems.

  5. Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, Anoop [Terrafore Inc.

    2013-08-14

    A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during

  6. Material investigations on the thermal stability of solar salt and potential filler materials for molten salt storage

    Science.gov (United States)

    Bonk, Alexander; Martin, Claudia; Braun, Markus; Bauer, Thomas

    2017-06-01

    The thermal and chemical stability of solar salt during isothermal tests is assessed under manifold conditions. Solar salt stored at 560°C under synthetic air stabilizes readily after a few days with both nitrate and nitrite content remaining relatively stable over time. A nitrogen atmosphere enhances degradation due to a continuous reduction of nitrate to nitrite. In an open atmosphere CO2 formation is pronounced owing to the reaction of the molten nitrates with atmospheric CO2. The stability of some filler materials, as potential candidates to be used in thermocline storage concepts, was investigated in long term experiments up to 5.000h. Additional anionic traces in the melt as corrosion products from the filler due to the reaction of instable mineral species with nitrates/nitrites were identified. However, No impact on the the thermal properties of the salt could be determined. These properties remain to be unchanged over a time frame up to 5.000h which is confirmed by relatively stable nitrate/nitrite ratios.

  7. Utilization of Heavy Metal Molten Salts in the ARIES-RS Fusion Reactor

    Science.gov (United States)

    Übeyli, Mustafa; Yapıcı, Hüseyin

    2008-09-01

    ARIES-RS is one of the major magnetic fusion energy reactor designs that uses a blanket having vanadium alloy structure cooled by lithium [1, 2]. It is a deuterium-tritium (DT) fusion driven reactor, having a fusion power of 2170 MW [1, 2]. This study presents the neutronic analysis of the ARIES-RS fusion reactor using heavy metal molten salts in which Li2BeF4 as the main constituent was mixed with increased mole fractions of heavy metal salt (ThF4 or UF4) starting by 2 mol.% up to 12 mol.%. Neutron transport calculations were carried out with the help of the SCALE 4.3 system by solving the Boltzmann transport equation with the XSDRNPM code in 238 neutron groups and a S 8- P 3 approximation. According to the numerical results, tritium self-sufficiency was attained for the coolants, Flibe with 2% UF4 or ThF4 and 4% UF4. In addition, higher energy multiplication values were found for the salt with UF4 compared to that with ThF4. Furthermore, significant amount of high quality nuclear fuel was produced to be used in external reactors.

  8. A comparison of conventional and prototype nondestructive measurements on molten salt extraction residues

    Energy Technology Data Exchange (ETDEWEB)

    Longmire, V.L.; Scarborough, A.M. (Los Alamos National Lab., NM (USA))

    1987-01-01

    Impure plutonium metal is routinely processed by molten salt extraction (MSE) to reduce the amount of americium in the metal product. Individuals form four technical groups at the Los Alamos National Laboratory (LANL) participated in a study designed to evaluate the accuracy of various nondestructive assay (NDA) techniques for measuring the plutonium content in MSE residues. This study was performed to improve in-house accountability of these items and to identify assay methods that would be acceptable for determining receiver's values for MSE salts from off-site sources. Recent upgrades have been made in a segmented gamma scan system, in a thermal neutron coincidence counter, and in the software of a gamma isotopic system that supports the calorimeters at LAPF. The authors evaluated the newer systems against the older systems versus destructive qualitative analyses. Fourteen containers of MSE residues were selected to be studied. Seven of these salts originated at LAPF and seven originated at Rockwell International Rocky Flats plant. Measurements have been performed on these items in their original containers, and the items have been repackaged into a different geometry and assayed again.

  9. Numerical Modelling of Induction Heating for a Molten Salts Pyrochemical Process

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Xuan-Tuyen; Feraud, Jean-Pierre; Ode, Denis [CEA Marcoule: DTEC/SGCS/LGCI Bat. 57 B17171, 30207 Bagnols/Ceze (France); Du Terrail Couvat, Yves [SIMaP, Grenoble INP, CNRS: ENSEEG, BP 75, 38402 Saint Martin d' Heres Cedex (France)

    2008-07-01

    Technological developments in the pyro-chemistry program are required to allow choices for a reprocessing experiment on 100 g of spent nuclear fuel. In this context, a special device must be designed for the solid/gas reaction phases followed by actinide extraction and stripping in molten salt. This paper discusses a modelling approach for designing an induction furnace. Using this numerical approach is a good way to improve thermal performance of the device in terms of magnetic/thermal coupling phenomena. The influence of current frequency is also studied to give another view of the possibilities of an induction furnace. Electromagnetic forces are taken into account in a computational fluid dynamics code derived from a specifically developed exchange library. Induction heating systems are an example of a typical multi-physics problem involving numerically coupled equations. (authors)

  10. Molten salt rolling bubble column, reactors utilizing same and related methods

    Science.gov (United States)

    Turner, Terry D.; Benefiel, Bradley C.; Bingham, Dennis N.; Klinger, Kerry M.; Wilding, Bruce M.

    2015-11-17

    Reactors for carrying out a chemical reaction, as well as related components, systems and methods are provided. In accordance with one embodiment, a reactor is provided that includes a furnace and a crucible positioned for heating by the furnace. The crucible may contain a molten salt bath. A downtube is disposed at least partially within the interior crucible along an axis. The downtube includes a conduit having a first end in communication with a carbon source and an outlet at a second end of the conduit for introducing the carbon material into the crucible. At least one opening is formed in the conduit between the first end and the second end to enable circulation of reaction components contained within the crucible through the conduit. An oxidizing material may be introduced through a bottom portion of the crucible in the form of gas bubbles to react with the other materials.

  11. Effect of milling on morphology of molten salt synthesized Sr3Ti2O7 crystals

    Directory of Open Access Journals (Sweden)

    Kijamnajsuk, S.

    2007-07-01

    Full Text Available Effect of milling liquid (acetone and ethanol, and milling times on morphology of Sr3Ti2O7 (ST7 crystals grow in molten potassium chloride salt at 1250oC for 4 h was investigated. Two kinds of crystals with different morphologies were found: ST7 crystals having a tabular shape of less than 20 μm diameter and small secondary-phase crystals having high symmetry. Milling starting materials in ethanol yielded ST7 crystals that were up to 3 times thinner than those milled with acetone, increasing the (00l Lotgering factor almost twice that when prepared with acetone. Large crystals become a bit smaller and the number of small crystals increased when the milling time increased.

  12. Electrochemical behavior of simulated debris from a severe accident using a molten salt system

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Yuya; Nakamura, Hitoshi; Yamada, Akira; Mizuguchi, Koji; Fujita, Reiko [Toshiba Corporation, 4-1 Ukishima-cho, Kawasaki-ku, Kawasaki 210-0862 (Japan)

    2013-07-01

    In a severe nuclear accident, the fuel in the reactor may melt, forming debris, which contains a UO{sub 2}-ZrO{sub 2} stable oxide mixture and parts of the reactor, such as Zircaloy and iron components. Proper handling of the debris is a critically important issue. The debris does not have the same composition as spent fuel, and so it is impossible to apply conventional reprocessing technology directly. In this study, we successfully separated Zr and Fe from simulated debris using NaCl-KCl molten salt electrolysis, and we selectively recovered the Zr and Fe. The simulated debris was made from Zr, Fe, and CeO{sub 2}. The CeO{sub 2} was used for simulating stable UO{sub 2}-ZrO{sub 2}. With this approach, it should be possible to reduce the volume of the debris by recovering metals, which can then be treated as low level radioactive wastes.

  13. In Situ Solid-Gas Reactivity of Nanoscaled Metal Borides from Molten Salt Synthesis.

    Science.gov (United States)

    Gouget, Guillaume; Debecker, Damien P; Kim, Ara; Olivieri, Giorgia; Gallet, Jean-Jacques; Bournel, Fabrice; Thomas, Cyril; Ersen, Ovidiu; Moldovan, Simona; Sanchez, Clément; Carenco, Sophie; Portehault, David

    2017-08-07

    Metal borides have mostly been studied as bulk materials. The nanoscale provides new opportunities to investigate the properties of these materials, e.g., nanoscale hardening and surface reactivity. Metal borides are often considered stable solids because of their covalent character, but little is known on their behavior under a reactive atmosphere, especially reductive gases. We use molten salt synthesis at 750 °C to provide cobalt monoboride (CoB) nanocrystals embedded in an amorphous layer of cobalt(II) and partially oxidized boron as a model platform to study morphological, chemical, and structural evolutions of the boride and the superficial layer exposed to argon, dihydrogen (H2), and a mixture of H2 and carbon dioxide (CO2) through a multiscale in situ approach: environmental transmission electron microscopy, synchrotron-based near-ambient-pressure X-ray photoelectron spectroscopy, and near-edge X-ray absorption spectroscopy. Although the material is stable under argon, H2 triggers at 400 °C decomposition of CoB, leading to cobalt(0) nanoparticles. We then show that H2 activates CoB for the catalysis of CO2 methanation. A similar decomposition process is also observed on NiB nanocrystals under oxidizing conditions at 300 °C. Our work highlights the instability under reactive atmospheres of nanocrystalline cobalt and nickel borides obtained from molten salt synthesis. Therefore, we question the general stability of metal borides with distinct compositions under such conditions. These results shed light on the actual species in metal boride catalysis and provide the framework for future applications of metal borides in their stability domains.

  14. LiCl-LiI molten salt electrolyte with bismuth-lead positive electrode for liquid metal battery

    Science.gov (United States)

    Kim, Junsoo; Shin, Donghyeok; Jung, Youngjae; Hwang, Soo Min; Song, Taeseup; Kim, Youngsik; Paik, Ungyu

    2018-02-01

    Liquid metal batteries (LMBs) are attractive energy storage device for large-scale energy storage system (ESS) due to the simple cell configuration and their high rate capability. The high operation temperature caused by high melting temperature of both the molten salt electrolyte and metal electrodes can induce the critical issues related to the maintenance cost and degradation of electrochemical properties resulting from the thermal corrosion of materials. Here, we report a new chemistry of LiCl-LiI electrolyte and Bi-Pb positive electrode to lower the operation temperature of Li-based LMBs and achieve the long-term stability. The cell (Li|LiCl-LiI|Bi-Pb) is operated at 410 °C by employing the LiCl-LiI (LiCl:LiI = 36:64 mol %) electrolyte and Bi-Pb alloy (Bi:Pb = 55.5:44.5 mol %) positive electrode. The cell shows excellent capacity retention (86.5%) and high Coulombic efficiencies over 99.3% at a high current density of 52 mA cm-2 during 1000th cycles.

  15. Molten salt coal gasification process development unit. Phase 1. Volume 1. PDU operations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kohl, A.L.

    1980-05-01

    This report summarizes the results of a test program conducted on the Molten Salt Coal Gasification Process, which included the design, construction, and operation of a Process Development Unit. In this process, coal is gasified by contacting it with air in a turbulent pool of molten sodium carbonate. Sulfur and ash are retained in the melt, and a small stream is continuously removed from the gasifier for regeneration of sodium carbonate, removal of sulfur, and disposal of the ash. The process can handle a wide variety of feed materials, including highly caking coals, and produces a gas relatively free from tars and other impurities. The gasification step is carried out at approximately 1800/sup 0/F. The PDU was designed to process 1 ton per hour of coal at pressures up to 20 atm. It is a completely integrated facility including systems for feeding solids to the gasifier, regenerating sodium carbonate for reuse, and removing sulfur and ash in forms suitable for disposal. Five extended test runs were made. The observed product gas composition was quite close to that predicted on the basis of earlier small-scale tests and thermodynamic considerations. All plant systems were operated in an integrated manner during one of the runs. The principal problem encountered during the five test runs was maintaining a continuous flow of melt from the gasifier to the quench tank. Test data and discussions regarding plant equipment and process performance are presented. The program also included a commercial plant study which showed the process to be attractive for use in a combined-cycle, electric power plant. The report is presented in two volumes, Volume 1, PDU Operations, and Volume 2, Commercial Plant Study.

  16. An Investigation of Oxide Coating Synthesized on an Aluminum Alloy by Plasma Electrolytic Oxidation in Molten Salt

    Directory of Open Access Journals (Sweden)

    Alexander Sobolev

    2017-08-01

    Full Text Available Plasma electrolytic oxidation (PEO is a surface treatment process for obtaining oxide coatings with a high performance on valve metals. PEO is mostly performed in an aqueous solution electrolyte that limits the size of treated parts due to the fact that the system is heated. Therefore, the coating of large surfaces cannot be synthesized in an aqueous electrolyte. In the current work, an alternative approach of PEO treatment, whereby an aluminum 1050 alloy in nitrate molten salt at a temperature of 280 °C is applied, was investigated. The microstructure, phase and chemical compositions, and micro-hardness were examined using X-ray diffraction (XRD, scanning electron microscopy (SEM, energy-dispersive X-ray spectroscopy (EDS, and micro-hardness tests. The obtained results show that formed coating contains from two sub-layers: one is the outer sub-layer of the α-Al2O3 phase and the second is its inner sub-layer. It was found that the formed coating was free of any contaminants originating from the electrolyte and had no cracks or pores, which are usually present in coatings formed by PEO treatment in an aqueous solution electrolyte.

  17. Interplay between structure and transport properties of molten salt mixtures of ZnCl2-NaCl-KCl: A molecular dynamics study

    Science.gov (United States)

    Manga, Venkateswara Rao; Swinteck, Nichlas; Bringuier, Stefan; Lucas, Pierre; Deymier, Pierre; Muralidharan, Krishna

    2016-03-01

    Molten mixtures of network-forming covalently bonded ZnCl2 and network-modifying ionically bonded NaCl and KCl salts are investigated as high-temperature heat transfer fluids for concentrating solar power plants. Specifically, using molecular dynamics simulations, the interplay between the extent of the network structure, composition, and the transport properties (viscosity, thermal conductivity, and diffusion) of ZnCl2-NaCl-KCl molten salts is characterized. The Stokes-Einstein/Eyring relationship is found to break down in these network-forming liquids at high concentrations of ZnCl2 (>63 mol. %), while the Eyring relationship is seen with increasing KCl concentration. Further, the network modification due to the addition of K ions leads to formation of non-bridging terminal Cl ions, which in turn lead to a positive temperature dependence of thermal conductivity in these melts. This new understanding of transport in these ternary liquids enables the identification of appropriate concentrations of the network formers and network modifiers to design heat transfer fluids with desired transport properties for concentrating solar power plants.

  18. Direct Conversion of Greenhouse Gas CO2 into Graphene via Molten Salts Electrolysis.

    Science.gov (United States)

    Hu, Liwen; Song, Yang; Jiao, Shuqiang; Liu, Yingjun; Ge, Jianbang; Jiao, Handong; Zhu, Jun; Wang, Junxiang; Zhu, Hongmin; Fray, Derek J

    2016-03-21

    Producing graphene through the electrochemical reduction of CO2 remains a great challenge, which requires precise control of the reaction kinetics, such as diffusivities of multiple ions, solubility of various gases, and the nucleation/growth of carbon on a surface. Here, graphene was successfully created from the greenhouse gas CO2 using molten salts. The results showed that CO2 could be effectively fixed by oxygen ions in CaCl2-NaCl-CaO melts to form carbonate ions, and subsequently electrochemically split into graphene on a stainless steel cathode; O2 gas was produced at the RuO2-TiO2 inert anode. The formation of graphene in this manner can be ascribed to the catalysis of active Fe, Ni, and Cu atoms at the surface of the cathode and the microexplosion effect through evolution of CO in between graphite layers. This finding may lead to a new generation of proceedures for the synthesis of high value-added products from CO2, which may also contribute to the establishment of a low-carbon and sustainable world. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Experimental and numerical thermal-hydraulics investigation of a molten salt reactor concept core

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, Bogdan; Aszodi, Attila [Budapest Univ. of Technology and Economics (Hungary). Inst. of Nuclear Techniques

    2017-09-15

    In the paper measurement results of experimental modelling of a molten salt fast reactor concept will be presented and compared with three-dimensional computational fluid dynamics (CFD) simulation results. Purpose of this article is twofold, on one hand to introduce a geometry modification in order to avoid the disadvantages of the original geometry and discuss new measurement results. On the other hand to present an analysis in order to suggest a method of proper numerical modelling of the problem based on the comparison of calculation results and measurement data for the new, modified geometry. The investigated concept has a homogeneous cylindrical core without any internal structures. Previous measurements on the scaled and segmented plexiglas model of the concept core and simulation results have shown that this core geometry could be optimized for better thermal-hydraulics characteristics. In case of the original geometry strong undesired flow separation could develop, that could negatively affect the characteristics of the core from neutronics point of view as well. An internal flow distributor plate was designed and installed with the purpose of optimizing the flow field in the core by enhancing its uniformity. Particle image velocimetry (PIV) measurement results of the modified experimental model will be presented and compared to numerical simulation results with the purpose of CFD model validation.

  20. Recent Research of Thorium Molten-Salt Reactor from a Sustainability Viewpoint

    Directory of Open Access Journals (Sweden)

    Takashi Kamei

    2012-09-01

    Full Text Available The most important target of the concept “sustainability” is to achieve fairness between generations. Its expanding interpolation leads to achieve fairness within a generation. Thus, it is necessary to discuss the role of nuclear power from the viewpoint of this definition. The history of nuclear power has been the control of the nuclear fission reaction. Once this is obtained, then the economy of the system is required. On the other hand, it is also necessary to consider the internalization of the external diseconomy to avoid damage to human society caused by the economic activity itself, due to its limited capacity. An extreme example is waste. Thus, reducing radioactive waste resulting from nuclear power is essential. Nuclear non-proliferation must be guaranteed. Moreover, the FUKUSHIMA accident revealed that it is still not enough that human beings control nuclear reaction. Further, the most essential issue for sustaining use of one technology is human resources in manufacturing, operation, policy-making and education. Nuclear power will be able to satisfy the requirements of sustainability only when these subjects are addressed. The author will review recent activities of a thorium molten-salt reactor (MSR as a cornerstone for a sustainable society and describe its objectives and forecasts.

  1. Results of molten salt panel and component experiments for solar central receivers: Cold fill, freeze/thaw, thermal cycling and shock, and instrumentation tests

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, J.E.; Ralph, M.E.; Chavez, J.M.; Dunkin, S.R.; Rush, E.E.; Ghanbari, C.M.; Matthews, M.W.

    1995-01-01

    Experiments have been conducted with a molten salt loop at Sandia National Laboratories in Albuquerque, NM to resolve issues associated with the operation of the 10MW{sub e} Solar Two Central Receiver Power Plant located near Barstow, CA. The salt loop contained two receiver panels, components such as flanges and a check valve, vortex shedding and ultrasonic flow meters, and an impedance pressure transducer. Tests were conducted on procedures for filling and thawing a panel, and assessing components and instrumentation in a molten salt environment. Four categories of experiments were conducted: (1) cold filling procedures, (2) freeze/thaw procedures, (3) component tests, and (4) instrumentation tests. Cold-panel and -piping fill experiments are described, in which the panels and piping were preheated to temperatures below the salt freezing point prior to initiating flow, to determine the feasibility of cold filling the receiver and piping. The transient thermal response was measured, and heat transfer coefficients and transient stresses were calculated from the data. Freeze/thaw experiments were conducted with the panels, in which the salt was intentionally allowed to freeze in the receiver tubes, then thawed with heliostat beams. Slow thermal cycling tests were conducted to measure both how well various designs of flanges (e.g., tapered flanges or clamp type flanges) hold a seal under thermal conditions typical of nightly shut down, and the practicality of using these flanges on high maintenance components. In addition, the flanges were thermally shocked to simulate cold starting the system. Instrumentation such as vortex shedding and ultrasonic flow meters were tested alongside each other, and compared with flow measurements from calibration tanks in the flow loop.

  2. Thermal dissociation of molten KHSO4: Temperature dependence of Raman spectra and thermodynamics

    DEFF Research Database (Denmark)

    Knudsen, Christian B.; Kalampounias, Angelos G.; Fehrmann, Rasmus

    2008-01-01

    intensities with the stoichiometric coefficients, the equilibrium constant, and the thermodynamics of the reaction equilibrium is derived. The method is used-along with the temperature-dependent features of the Raman spectra-to show that the studied equilibrium 2HSO(4)(-) (1) S2O72-(1) + H2O(g) is the only......Raman spectroscopy is used to study the thermal dissociation of molten KHSO4 at temperatures of 240-450 degrees C under static equilibrium conditions. Raman spectra obtained at 10 different temperatures for the molten phase and for the vapors thereof exhibit vibrational wavenumbers and relative...... band intensities inferring the occurrence of the temperature-dependent dissociation equilibrium 2HSO(4)(-) (1) S2O72-(1) + H2O(g). The Raman data are adequate for determining the partial pressures of H2O in the gas phase above the molten mixtures. A formalism for correlating relative Raman band...

  3. Thorium cycle and molten salt reactors: field parameters and field constraints investigations toward 'thorium molten salt reactor' definition; Cycle thorium et reacteurs a sel fondu: exploration du champ des parametres et des contraintes definissant le 'Thorium Molten Salt Reactor'

    Energy Technology Data Exchange (ETDEWEB)

    Mathieu, L

    2005-09-15

    Producing nuclear energy in order to reduce the anthropic CO{sub 2} emission requires major technological advances. Nuclear plants of 4. generation have to respond to several constraints, as safety improvements, fuel breeding and radioactive waste minimization. For this purpose, it seems promising to use Thorium Cycle in Molten Salt Reactors. Studies on this domain have already been carried out. However, the final concept suffered from serious issues and was discontinued. A new reflection on this topic is being led in order to find acceptable solutions, and to design the Thorium Molten Salt Reactor concept. A nuclear reactor is simulated by the coupling of a neutron transport code with a materials evolution code. This allows us to reproduce the reactor behavior and its evolution all along its operation. Thanks to this method, we have studied a large number of reactor configurations. We have evaluated their efficiency through a group of constraints they have to satisfy. This work leads us to a better understanding of many physical phenomena controlling the reactor behavior. As a consequence, several efficient configurations have been discovered, allowing the emergence of new points of view in the research of Molten Salt Reactors. (author)

  4. Identification and evaluation of alternatives for the disposition of fluoride fuel and flush salts from the molten salt reactor experiment at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-15

    This document presents an initial identification and evaluation of the alternatives for disposition of the fluoride fuel and flush salts stored in the drain tanks at the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory (ORNL). It will serve as a resource for the U.S. Department of Energy contractor preparing the feasibility study for this activity under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). This document will also facilitate further discussion on the range of credible alternatives, and the relative merits of alternatives, throughout the time that a final alternative is selected under the CERCLA process.

  5. Removal of H2S using molten carbonate at high temperature.

    Science.gov (United States)

    Kawase, Makoto; Otaka, Maromu

    2013-12-01

    Gasification is considered to be an effective process for energy conversion from various sources such as coal, biomass, and waste. Cleanup of the hot syngas produced by such a process may improve the thermal efficiency of the overall gasification system. Therefore, the cleanup of hot syngas from biomass gasification using molten carbonate is investigated in bench-scale tests. Molten carbonate acts as an absorbent during desulfurization and dechlorination and as a thermal catalyst for tar cracking. In this study, the performance of molten carbonate for removing H2S was evaluated. The temperature of the molten carbonate was set within the range from 800 to 1000 °C. It is found that the removal of H2S is significantly affected by the concentration of CO2 in the syngas. When only a small percentage of CO2 is present, desulfurization using molten carbonate is inadequate. However, when carbon elements, such as char and tar, are continuously supplied, H2S removal can be maintained at a high level. To confirm the performance of the molten carbonate gas-cleaning system, purified biogas was used as a fuel in power generation tests with a molten carbonate fuel cell (MCFC). The fuel cell is a high-performance sensor for detecting gaseous impurities. When purified gas from a gas-cleaning reactor was continuously supplied to the fuel cell, the cell voltage remained stable. Thus, the molten carbonate gas-cleaning reactor was found to afford good gas-cleaning performance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Evaluation of the Molten Salt Reactor Experiment drain tanks for reuse in salt disposal, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    This report was prepared to identify the source documentation used to evaluate the drain tanks in the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory (ORNL). The evaluation considered the original quality of the tanks, their service history, and their intended use during the removal of fluoride salts. It also includes recommendations for a quality verification plan. The estimates of corrosion damage to the salt containing system at the MSRE are low enough to lend optimism that the system will be fit for its intended use, which is disposal of the salt by transferring it to transport containers. The expected corrosion to date is estimated between 10 and 50 mil, or 2 to 10% of the shell wall. The expected corrosion rate when the tanks are used to remove the salt at 110 F is estimated to be .025 to 0.1 mil per hour of exposure to HF and molten salt. To provide additional assurance that the estimates of corrosion damage are accurate, cost effective nondestructive examination (NDE) has been recommended. The NDE procedures are compared with industry standards and give a perspective for the extent of additional measures taken in the recommendation. A methodology for establishing the remaining life has been recommended, and work is progressing towards providing an engineering evaluation based upon thickness and design conditions for the future use of the tanks. These extra measures and the code based analysis will serve to define the risk of salt or radioactive gases leaking during processing and transfer of the salt as acceptable.

  7. Corrosion behavior of Ni-based structural materials for electrolytic reduction in lithium molten salt

    Science.gov (United States)

    Cho, Soo Haeng; Park, Sung Bin; Lee, Jong Hyeon; Hur, Jin Mok; Lee, Han Soo

    2011-05-01

    In this study, the corrosion behavior of new Ni-based structural materials was studied for electrolytic reduction after exposure to LiCl-Li 2O molten salt at 650 °C for 24-216 h under an oxidizing atmosphere. The new alloys with Ni, Cr, Al, Si, and Nb as the major components were melted at 1700 °C under an inert atmosphere. The melt was poured into a preheated metallic mold to prepare an as-cast alloy. The corrosion products and fine structures of the corroded specimens were characterized by scanning electron microscope (SEM), Energy Dispersive X-ray Spectroscope (EDS), and X-ray diffraction (XRD). The corrosion products of as cast and heat treated low Si/high Ti alloys were Cr 2O 3, NiCr 2O 4, Ni, NiO, and (Al,Nb,Ti)O 2; those of as cast and heat treated high Si/low Ti alloys were Cr 2O 3, NiCr 2O 4, Ni, and NiO. The corrosion layers of as cast and heat treated low Si/high Ti alloys were continuous and dense. However, those of as cast and heat treated high Si/low Ti alloys were discontinuous and cracked. Heat treated low Si/high Ti alloy showed the highest corrosion resistance among the examined alloys. The superior corrosion resistance of the heat treated low Si/high Ti alloy was attributed to the addition of an appropriate amount of Si, and the metallurgical evaluations were performed systematically.

  8. Study of the pyrochemical treatment-recycling process of the Molten Salt Reactor fuel; Estudio de sistema de un proceso de tratamiento-reciclaje piroquimico del combustible de un reactor de sales fundidas

    Energy Technology Data Exchange (ETDEWEB)

    Boussier, H.; Heuer, D.

    2010-07-01

    The Separation Processes Studies Laboratory (Commissariat a l'energie Atomique) has made a preliminary assessment of the reprocessing system associated with Molten Salt Fast Reactor (MSFR). The scheme studied in this paper is based on the principle of reductive extraction and metal transfer that constituted the core process designed for the Molten Salt Breeder Reactor (MSBR), although the flow diagram has been adapted to the current needs of the Molten Salt Fast Reactor (MSFR).

  9. Program management plan for the Molten Salt Reactor Experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The primary mission of the Molten Salt Reactor Experiment (MSRE) Remediation Project is to effectively implement the risk-reduction strategies and technical plans to stabilize and prevent further migration of uranium within the MSRE facility, remove the uranium and fuel salts from the system, and dispose of the fuel and flush salts by storage in appropriate depositories to bring the facility to a surveillance and maintenance condition before decontamination and decommissioning. This Project Management Plan (PMP) for the MSRE Remediation Project details project purpose; technical objectives, milestones, and cost objectives; work plan; work breakdown structure (WBS); schedule; management organization and responsibilities; project management performance measurement planning, and control; conduct of operations; configuration management; environmental, safety, and health compliance; quality assurance; operational readiness reviews; and training.

  10. Pebble Bed Reactors Design Optimization Methods and their Application to the Pebble Bed Fluoride Salt Cooled High Temperature Reactor (PB-FHR)

    OpenAIRE

    Cisneros, Anselmo Tomas

    2013-01-01

    The Fluoride salt cooled High temperature Reactor (FHR) is a class of advanced nuclear reactors that combine the robust coated particle fuel form from high temperature gas cooled reactors, direct reactor auxillary cooling system (DRACS) passive decay removal of liquid metal fast reactors, and the transparent, high volumetric heat capacitance liquid fluoride salt working fluids - flibe (33%7Li2F-67%BeF) - from molten salt reactors. This combination of fuel and coolant enables FHRs to operate i...

  11. The role of correlations in the determination of the transport properties of LaCl{sub 3} in high temperature molten eutectic LiCl-KCl

    Energy Technology Data Exchange (ETDEWEB)

    Samin, Adib; Wu, Evan; Zhang, Jinsuo [The Ohio State Univ., Columbus, OH (United States). Dept. of Mechanical and Aerospace Engineering

    2017-10-01

    It is important to develop an accurate assessment of fundamental data of lanthanides in high temperature molten salts to enable an efficient application of pyroprocessing. This requires a careful consideration of uncertainties in the reported results. In this study, cyclic voltammetry (CV) tests of LaCl{sub 3} in KCl-LiCl molten salt were conducted at low concentration levels in the molten salt at 723 K and at several scan rates. The CV signals were subsequently analyzed through the conventional CV analysis and using a BET-based model through a nonlinear least-squares fitting procedure. It was determined that the parameters of the model were strongly correlated and the support plane procedure was implemented to assign joint confidence intervals for the diffusivity of lanthanum. Accounting for the correlations led to a significant increase in the uncertainty of the reported diffusivity which led to better agreement with the literature. Accounting for the correlations may be important for higher concentration levels.

  12. Molten salt as a heat transfer fluid for heating a subsurface formation

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

    2010-11-16

    A heating system for a subsurface formation includes a conduit located in an opening in the subsurface formation. An insulated conductor is located in the conduit. A material is in the conduit between a portion of the insulated conductor and a portion of the conduit. The material may be a salt. The material is a fluid at operating temperature of the heating system. Heat transfers from the insulated conductor to the fluid, from the fluid to the conduit, and from the conduit to the subsurface formation.

  13. Thermodynamic Assessment of Hot Corrosion Mechanisms of Superalloys Hastelloy N and Haynes 242 in Eutectic Mixture of Molten Salts KF and ZrF4

    Energy Technology Data Exchange (ETDEWEB)

    Michael V. Glazoff

    2012-02-01

    The KF - ZrF4 system was considered for the application as a heat exchange agent in molten salt nuclear reactors (MSRs) beginning with the work carried out at ORNL in early fifties. Based on a combination of excellent properties such as thermal conductivity, viscosity in the molten state, and other thermo-physical and rheological properties, it was selected as one of possible candidates for the nuclear reactor secondary heat exchanger loop.

  14. Corrosion-induced microstructural developments in 316 stainless steel during exposure to molten Li2BeF4(FLiBe) salt

    Science.gov (United States)

    Zheng, Guiqiu; He, Lingfeng; Carpenter, David; Sridharan, Kumar

    2016-12-01

    The microstructural developments in the near-surface regions of AISI 316 stainless steel during exposure to molten Li2BeF4 (FLiBe) salt have been investigated with the goal of using this material for the construction of the fluoride salt-cooled high-temperature reactor (FHR), a leading nuclear reactor concept for the next generation nuclear plants (NGNP). Tests were conducted in molten FLiBe salt (melting point: 459 °C) at 700 °C in graphite crucibles and 316 stainless steel crucibles for exposure duration of up to 3000 h. Corrosion-induced microstructural changes in the near-surface regions of the samples were characterized using scanning electron microscopy (SEM) in conjunction with energy dispersive x-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD), and scanning transmission electron microscopy (STEM) with EDS capabilities. Intergranular corrosion attack in the near-surface regions was observed with associated Cr depletion along the grain boundaries. High-angle grain boundaries (15-180°) were particularly prone to intergranular attack and Cr depletion. The depth of attack extended to the depths of 22 μm after 3000-h exposure for the samples tested in graphite crucible, while similar exposure in 316 stainless steel crucible led to the attack depths of only about 11 μm. Testing in graphite crucibles led to the formation of nanometer-scale Mo2C, Cr7C3 and Al4C3 particle phases in the near-surface regions of the material. The copious depletion of Cr in the near-surface regions induced a γ-martensite to α-ferrite phase (FeNix) transformation. Based on the microstructural analysis, a thermal diffusion controlled corrosion model was developed and experimentally validated for predicting long-term corrosion attack depth.

  15. Electrodeposition of Al-Ta alloys in NaCl-KCl-AlCl3 molten salt containing TaCl5

    Science.gov (United States)

    Sato, Kazuki; Matsushima, Hisayoshi; Ueda, Mikito

    2016-12-01

    To form Al-Ta alloys for high temperature oxidation resistance components, molten salt electrolysis was carried out in an AlCl3-NaCl-KCl melt containing TaCl5 at 423 K. The voltammogram showed two cathodic waves at 0.45 V and 0.7 V vs. Al/Al(III), which may correspond to reduction from Ta(V) to Ta(III) and from Ta(III) to tantalum metal, respectively. Electrodeposits of Al and Ta were obtained in the range from -0.05 to 0.3 V and the highest concentration of Ta in the electrodeposit was 72 at% at 0.3 V. With increasing Ta content in the alloy, the morphology of the electrodeposits became powdery and the particle size smaller.

  16. Overview of the recovery and processing of {sup 233}U from the Oak Ridge molten salt reactor experiment (MSRE) remediation activities

    Energy Technology Data Exchange (ETDEWEB)

    Del Cul, G.D.; Icenhour, A.S.; Simmons, D.W.; Trowbridge, L.D.; Williams, D.F.; Toth, L.M.; Dai, S. [Oak Ridge National Lab., TN (United States)

    2001-07-01

    The Molten Salt Reactor Experiment (MSRE) was operated at Oak Ridge National Laboratory (ORNL) from 1965 to 1969 to test the concept of a high-temperature, homogeneous, fluid-fueled reactor. The discovery that UF{sub 6} and F{sub 2} migrated from the storage tanks into distant pipes and a charcoal bed resulted in significant activities to remove and recover the {sup 233}U and to decommission the reactor. The recovered fissile uranium will be converted into uranium oxide (U{sub 3}O{sub 8} ), which is a suitable form for long-term storage. This publication reports the research and several new developments that were needed to carry out these unique activities. (author)

  17. Study on Utilization of Super Grade Plutonium in Molten Salt Reactor FUJI-U3 using CITATION Code

    Science.gov (United States)

    Wulandari, Cici; Waris, Abdul; Pramuditya, Syeilendra; Asril, Pramutadi AM; Novitrian

    2017-07-01

    FUJI-U3 type of Molten Salt Reactor (MSR) has a unique design since it consists of three core regions in order to avoid the replacement of graphite as moderator. MSR uses floride as a nuclear fuel salt with the most popular chemical composition is LiF-BeF2-ThF4-233UF4. ThF4 and 233UF4 are the fertile and fissile materials, respectively. On the other hand, LiF and BeF2 working as both fuel and heat transfer medium. In this study, the super grade plutonium will be utilized as substitution of 233U since plutonium is easier to be obtained compared to 233U as main fuel. Neutronics calculation was performed by using PIJ and CITATION modules of SRAC 2002 code with JENDL 3.2 as nuclear data library.

  18. Novel band gap-tunable K–Na co-doped graphitic carbon nitride prepared by molten salt method

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jiannan [Institute of Eco-environmental Sciences, Liaoning Shihua University, Fushun 113001 (China); School of Environmental and Biological Engineering, Liaoning Shihua University, Fushun 113001 (China); Ma, Lin [School of Petrochemical Engineering, Liaoning Shihua University, Fushun 113001 (China); Wang, Haoying; Zhao, Yanfeng [School of Environmental and Biological Engineering, Liaoning Shihua University, Fushun 113001 (China); Zhang, Jian [School of Petrochemical Engineering, Liaoning Shihua University, Fushun 113001 (China); Hu, Shaozheng, E-mail: hushaozhenglnpu@163.com [Institute of Eco-environmental Sciences, Liaoning Shihua University, Fushun 113001 (China)

    2015-03-30

    Graphical abstract: K and Na ions co-doped into g-C{sub 3}N{sub 4} crystal lattice can tune the position of CB and VB potentials, influence the structural and optical properties, and thus improve the photocatalytic degradation and mineralization ability. - Highlights: • K, Na co-doped g-C{sub 3}N{sub 4} was prepared in KCl/NaCl molten salt system. • The structural and optical properties of g-C{sub 3}N{sub 4} were greatly influenced by co-doping. • The position of VB and CB can be tuned by controlling the weight ratio of eutectic salts to melamine. • Co-doped g-C{sub 3}N{sub 4} showed outstanding photodegradation ability, mineralization ability, and catalytic stability. - Abstract: Novel band gap-tunable K–Na co-doped graphitic carbon nitride was prepared by molten salt method using melamine, KCl, and NaCl as precursor. X-ray diffraction (XRD), N{sub 2} adsorption, Scanning electron microscope (SEM), UV–vis spectroscopy, Photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS) were used to characterize the prepared catalysts. The CB and VB potentials of graphitic carbon nitride could be tuned from −1.09 and +1.55 eV to −0.29 and +2.25 eV by controlling the weight ratio of eutectic salts to melamine. Besides, ions doping inhibited the crystal growth of graphitic carbon nitride, enhanced the surface area, and increased the separation rate of photogenerated electrons and holes. The visible-light-driven Rhodamine B (RhB) photodegradation and mineralization performances were significantly improved after K–Na co-doping.

  19. Uncertainty analysis and flow measurements in an experimental mock-up of a molten salt reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Yamaji, Bogdan; Aszodi, Attila [Budapest University of Technology and Economics (Hungary). Inst. of Nuclear Techniques

    2016-09-15

    In the paper measurement results from the experimental modelling of a molten salt reactor concept will be presented along with detailed uncertainty analysis of the experimental system. Non-intrusive flow measurements are carried out on the scaled and segmented mock-up of a homogeneous, single region molten salt fast reactor concept. Uncertainty assessment of the particle image velocimetry (PIV) measurement system applied with the scaled and segmented model is presented in detail. The analysis covers the error sources of the measurement system (laser, recording camera, etc.) and the specific conditions (de-warping of measurement planes) originating in the geometry of the investigated domain. Effect of sample size in the ensemble averaged PIV measurements is discussed as well. An additional two-loop-operation mode is also presented and the analysis of the measurement results confirm that without enhancement nominal and other operation conditions will lead to strong unfavourable separation in the core flow. It implies that use of internal flow distribution structures will be necessary for the optimisation of the core coolant flow. Preliminary CFD calculations are presented to help the design of a perforated plate located above the inlet region. The purpose of the perforated plate is to reduce recirculation near the cylindrical wall and enhance the uniformity of the core flow distribution.

  20. Interaction of molten salts with a semi-anthracite char at 743 K. Influence on the gasification in air

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Serrano, V.; Alfaro-Dominguez, M.; Higes-Rolando, F.J. [Universidad de Extremadura, Badajoz (Spain). Dept. de Quimica Inorganica; Martin-Aranda, M.; Rojas-Cervantes, M.L.; Lopez-Peinado, A.J. [Universidad Nacional de Educacion a Distancia (UNED), Madrid (Spain). Dept. de Quimica Inorganica

    1997-12-31

    The treatments of a semi-anthracite char (AC) with molten salts followed by washing of the intermediate products with distilled water as a rule produce an increase in the surface area of micropores (S{sub mi}) and in the mean equivalent pore diameter (MEPD), which is greater for AC-MgO. The variation of MEPD is only slight for AC-CaO and AC-CoO. The reactivity of the carbon in air at 823 K enhances for a number of samples but especially for AC-CaO and AC-MgO. Washing with HCl generally results in a small increase in S{sub mi} and in a more uniform MEPD. The reactivity of the carbon decreases for most samples including AN and AC. This suggests that mineral components of the starting materials and chemical species present in distilled waterwashed samples (i.e. metal oxides in excess and reaction products of molten salts with the mineral fraction of AC) are catalytically active and that their removal from such samples occurs by washing with HCl. The presence of catalytic species seems to be greater for AC-MgO and AC-CaO than for the other samples. (orig.)

  1. Preliminary analysis of the PreFlexMS molten salt once-through steam generator dynamics and control strategy

    Science.gov (United States)

    Trabucchi, Stefano; Casella, Francesco; Maioli, Tommaso; Elsido, Cristina; Franzini, Davide; Ramond, Mathieu

    2017-06-01

    Concentrated Solar Power plants (CSP) coupled with thermal storage have the potential to guarantee both flexible and continuous energy production, thus being competitive with conventional fossil fuel and hydro power plants, in terms of dispatchability and provision of ancillary services. Hence, the plant equipment and control design have to be focused on flexible operation on one hand, and on plant safety concerning the molten salt freezing on the other hand. The PreFlexMS European project aims to introduce a molten salt Once-Through Steam Generator (OTSG) within a Rankine cycle based power unit, a technology that has greater flexibility potential if compared to steam drum boilers, currently used in CSP plants. The dynamic modelling and simulation from the early design stages is, thus, of paramount importance, to assess the plant dynamic behavior and controllability, and to predict the achievable closed-loop dynamic performance, potentially saving money and time during the detailed design, construction and commissioning phases. The present paper reports the main results of the analysis carried out during the first part of the project, regarding the system analysis and control design. In particular, two different control systems have been studied and tested with the plant dynamic model: a decentralized control strategy based on PI controllers and a Linear Model Predictive Control (LMPC).

  2. Dynamic modelling and simulation of linear Fresnel solar field model based on molten salt heat transfer fluid

    Science.gov (United States)

    Hakkarainen, Elina; Tähtinen, Matti

    2016-05-01

    Demonstrations of direct steam generation (DSG) in linear Fresnel collectors (LFC) have given promising results related to higher steam parameters compared to the current state-of-the-art parabolic trough collector (PTC) technology using oil as heat transfer fluid (HTF). However, DSG technology lacks feasible solution for long-term thermal energy storage (TES) system. This option is important for CSP technology in order to offer dispatchable power. Recently, molten salts have been proposed to be used as HTF and directly as storage medium in both line-focusing solar fields, offering storage capacity of several hours. This direct molten salt (DMS) storage concept has already gained operational experience in solar tower power plant, and it is under demonstration phase both in the case of LFC and PTC systems. Dynamic simulation programs offer a valuable effort for design and optimization of solar power plants. In this work, APROS dynamic simulation program is used to model a DMS linear Fresnel solar field with two-tank TES system, and example simulation results are presented in order to verify the functionality of the model and capability of APROS for CSP modelling and simulation.

  3. BASIC experiment on the sodium leak combustion. Examination of sodium combustion and liner material damage by sodium continuously dropped into the high-temperature NaOH molten pool

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiichi; Furukawa, Tomohiro; Aoto, Kazumi [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-10-01

    The purpose of this basic experiments to clarify the cause of damage of the liner material, which recognized by the Sodium Leak and Combustion Test II. In this experiment, the liquid sodium continuously dropped into the high-temperature NaOH molten pool, to investigate sodium combustion phenomenon in the NaOH pool and damage of the liner material (carbon steel, JIS, G3106, SM400B). The drop temperature of sodium is 496degC, and the amount of dropped sodium is about 1200g. The temperature of NaOH molten pool is 660-690degC in the initial stage, and the amount of NaOH is about 2500g. The average drop (leak) rate is 1.8g/sec, and the height of above the NaOH molten pool is about 700 mm. The following results were obtained. The fallen sodium continued to burn during floating on the NaOH molten pool. In this case, the NaOH molten pool was not totally covered with the combustion products, and the molten pool always had the atmosphere interface. The combustion products were mixed and melted in the NaOH molten pool. The maximum reduction of thickness was occurred in the level vicinity of NaOH molten pool. Plate test specimens of 3 mm thickness were separated in the level vicinity during periods of combustion. And, in the NaOH container, the metal loss of largest about 2.5 mm was recognized at the level vicinity. It is considered that the remarkable metal loss in the level vicinity indicates the involvement of molten salt-type corrosion mechanism with the atmosphere interface. The above mentioned results were obtained from the basic experiment. These results gave the important information to evaluate the damage mechanism of the floor liner material. (author)

  4. Effect of sand and method of mixing on molten salt properties for an open direct absorption solar receiver/storage system

    Science.gov (United States)

    AlQaydi, Muna; Delclos, Thomas; AlMheiri, Saif; Calvet, Nicolas

    2017-06-01

    The concept of CSPonD Demo project is based on a single and open molten salt tank as a thermal solar receiver and storage unit. Therefore, the effect of external environment such as sand and air on the thermophysical properties of nitrate salt (60 wt. % sodium nitrate, 40 wt. % potassium nitrate) has been investigated in this work. Differential Scanning Calorimeter (DSC) was used to determine the melting, solidification temperatures while the thermal stability and mass loss measurements were carried on Thermal Gravimetric Analysis (TGA). Measurements under nitrogen indicate that the adding 2% (w/w) sand has negative impact by increasing the solidification temperature, mass loss percentage and decreasing the stability limit. While the melting temperature was not affected by the sand and by the preparation method. On the other hand, measurement under air showed an increase of the stability limit and decrease of the mass loss percentage. Furthermore, the measurements for the mass loss under air did not reach a stable value, which required further investigation.

  5. Measurements of thermophysical properties of molten silicon by a high-temperature electrostatic levitator

    Science.gov (United States)

    Rhim, W. K.; Chung, S. K.; Rulison, A. J.; Spjut, R. E.

    1997-03-01

    Several thermophysical properties of molten silicon measured by the high-temperature electrostatic levitator at JPL are presented. They are density, constant-pressure specific heat capacity, hemispherical total emissivity, and surface tension. Over the temperature range investigated (1350< T m<1825 K), the measured liquid density (in g·cm-3) can be expressed by a quadratic function, p(T)= p m-1.69×10-4( T-T m)-1.75×10-7( T-T m)2 with T m and p m being 1687 K and 2.56 g·cm-3, respectively. The hemispherical total emissivity of molten silicon at the melting temperature was determined to be 0.18, and the constant-pressure specific heat was evaluated as a function of temperature. The surface tension (in 10-3 N·m-1) of molten silicon over a similar temperature range can be expressed by σ( T)=875-0.22( T-T m).

  6. Flow effect on {sup 135}I and {sup 135}Xe evolution behavior in a molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jianhui; Guo, Chen [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); CAS Center for Excellence in TMSR Energy System, Chinese Academy of Sciences, Shanghai 201800 (China); Cai, Xiangzhou [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); CAS Center for Excellence in TMSR Energy System, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yu, Chenggang; Zou, Chunyan [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); CAS Center for Excellence in TMSR Energy System, Chinese Academy of Sciences, Shanghai 201800 (China); Han, Jianlong [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); CAS Center for Excellence in TMSR Energy System, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Jingen, E-mail: chenjg@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); CAS Center for Excellence in TMSR Energy System, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2017-04-01

    Highlights: • {sup 135}Xe and {sup 135}I evolution law in a molten salt reactor is analytically deduced. • The circulation of fuel salt through the primary loop decreases the concentration of {sup 135}I and {sup 135}Xe. • {sup 135}I and {sup 135}Xe concentration reduction is independent with the mass flow rate at normal core operating condition. • Increasing the external core volume would raise {sup 135}I and {sup 135}Xe concentration reduction caused by the flow effect. - Abstract: Molten Salt Reactor (MSR) employs fissile material dissolved in the fluoride salt as fuel which continuously circulates through the primary loop with the flow cycle time being a few tens of seconds. The nuclei evolution law is quite different from that in a solid fuel reactor. In this paper, we analytically deduce the nuclei evolution law of {sup 135}Xe and {sup 135}I which are entrained in the flowing salt, evaluate its concentration changing with the burnup time, and validate the result with the SCALE6. The circulation of fuel salt could decrease the concentration of {sup 135}Xe and {sup 135}I, and the reduction can achieve to around 40% and 50% for {sup 135}Xe and {sup 135}I respectively at a small power level (e.g., 2 MW) when the core has the same fuel salt volume as that of the outer-loop. Furthermore, it can be found that the reduction is inversely proportional to the core to outer-loop volume ratio, but uncorrelated with the mass flow rate under normal operating condition of a MSR. At low core power scale, the flow effect on {sup 135}Xe concentration reduction is apparent, but it is mitigated as the core power scale increases because of the rise of {sup 135}I concentration, which raises its decay to {sup 135}Xe and compensates the loss of {sup 135}Xe due to decay at the outer-loop. The decreased {sup 135}Xe concentration results in a core reactivity increase varying from around 150 pcm to 1000 pcm depending on the core power and core to outer-loop volume ratio.

  7. Methanol Steam Reforming Promoted by Molten Salt-Modified Platinum on Alumina Catalysts

    Science.gov (United States)

    Kusche, Matthias; Agel, Friederike; Ní Bhriain, Nollaig; Kaftan, Andre; Laurin, Mathias; Libuda, Jörg; Wasserscheid, Peter

    2014-01-01

    We herein describe a straight forward procedure to increase the performance of platinum-on-alumina catalysts in methanol steam reforming by applying an alkali hydroxide coating according to the “solid catalyst with ionic liquid layer” (SCILL) approach. We demonstrate by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed desorption (TPD) studies that potassium doping plays an important role in the catalyst activation. Moreover, the hygroscopic nature and the basicity of the salt modification contribute to the considerable enhancement in catalytic performance. During reaction, a partly liquid film of alkali hydroxides/carbonates forms on the catalyst/alumina surface, thus significantly enhancing the availability of water at the catalytically active sites. Too high catalyst pore fillings with salt introduce a considerable mass transfer barrier into the system as indicated by kinetic studies. Thus, the optimum interplay between beneficial catalyst modification and detrimental mass transfer effects had to be identified and was found on the applied platinum-on-alumina catalyst at KOH loadings around 7.5 mass %. PMID:25124120

  8. Methanol steam reforming promoted by molten salt-modified platinum on alumina catalysts.

    Science.gov (United States)

    Kusche, Matthias; Agel, Friederike; Ní Bhriain, Nollaig; Kaftan, Andre; Laurin, Mathias; Libuda, Jörg; Wasserscheid, Peter

    2014-09-01

    We herein describe a straight forward procedure to increase the performance of platinum-on-alumina catalysts in methanol steam reforming by applying an alkali hydroxide coating according to the "solid catalyst with ionic liquid layer" (SCILL) approach. We demonstrate by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed desorption (TPD) studies that potassium doping plays an important role in the catalyst activation. Moreover, the hygroscopic nature and the basicity of the salt modification contribute to the considerable enhancement in catalytic performance. During reaction, a partly liquid film of alkali hydroxides/carbonates forms on the catalyst/alumina surface, thus significantly enhancing the availability of water at the catalytically active sites. Too high catalyst pore fillings with salt introduce a considerable mass transfer barrier into the system as indicated by kinetic studies. Thus, the optimum interplay between beneficial catalyst modification and detrimental mass transfer effects had to be identified and was found on the applied platinum-on-alumina catalyst at KOH loadings around 7.5 mass%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Thermodynamic study of the molten salt binary system KHSO4-NaHSO4

    DEFF Research Database (Denmark)

    Eriksen, Kim Michael; Fehrmann, Rasmus; Hatem, G

    2002-01-01

    The partial molar enthalpies of mixing of NaHSO4 and KHSO4 have been measured at 528 K by dropping samples of pure compounds into molten mixtures of NaHSO4 and KHSO4 in Calvet calorimeter. From these values the molar enthalpy of mixing has been deduced.The same method has been used for the determ...

  10. Isotopic ratios and effective power determined by gamma-ray spectroscopy vs mass spectroscopy for molten salt extraction residues

    Energy Technology Data Exchange (ETDEWEB)

    Longmire, V.L.; Cremers, T.L.; Sedlacek, W.A.; Long, S.M.; Scarborough, A.M.; Hurd, J.R.

    1990-01-01

    Impure plutonium metal is routinely processed by molten salt extraction (MSE) to reduce the amount of americium in the metal product. Throughput at various facilities where similar processes are performed has made it essential to evaluate uncertainties and possible discrepancies in the analyses of these difficult MSE materials. In an effort to evaluate the plutonium isotopic ratios and americium concentrations obtained from gamma-ray spectral data analyzed by the computer code GRPAUT, measurements were made on ten MSE salts as received and after pulverization and blending. These results were then compared to the specific powers obtained from isotopic ratios determined by mass spectrometry on these same ten samples. Americium values ranged from a few thousand parts-per-million of total plutonium to greater than 50,000 ppM. Our results indicate a small discrepancy between specific powers as determined by GRPAUT on as received'' vs pulverized and blended MSE salts. The specific powers obtained via GRPAUT on the pulverized salts agree somewhat better with specific powers obtained from the mass spectroscopy data. This work may indicate that a small discrepancy exists in the specific powers by using GRPAUT on heterogeneous, high americium samples. 5 refs., 6 tabs.

  11. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage

    Science.gov (United States)

    Chieruzzi, Manila; Cerritelli, Gian F.; Miliozzi, Adio; Kenny, José M.

    2013-10-01

    In this study, different nanofluids with phase change behavior were developed by mixing a molten salt base fluid (selected as phase change material) with nanoparticles using the direct-synthesis method. The thermal properties of the nanofluids obtained were investigated. These nanofluids can be used in concentrating solar plants with a reduction of storage material if an improvement in the specific heat is achieved. The base salt mixture was a NaNO3-KNO3 (60:40 ratio) binary salt. The nanoparticles used were silica (SiO2), alumina (Al2O3), titania (TiO2), and a mix of silica-alumina (SiO2-Al2O3). Three weight fractions were evaluated: 0.5, 1.0, and 1.5 wt.%. Each nanofluid was prepared in water solution, sonicated, and evaporated. Measurements on thermophysical properties were performed by differential scanning calorimetry analysis and the dispersion of the nanoparticles was analyzed by scanning electron microscopy (SEM). The results obtained show that the addition of 1.0 wt.% of nanoparticles to the base salt increases the specific heat of 15% to 57% in the solid phase and of 1% to 22% in the liquid phase. In particular, this research shows that the addition of silica-alumina nanoparticles has a significant potential for enhancing the thermal storage characteristics of the NaNO3-KNO3 binary salt. These results deviated from the predictions of the theoretical model used. SEM suggests a greater interaction between these nanoparticles and the salt.

  12. Dynamic pilot plant facility for applications in CSP: Evaluation of corrosion resistance of A516 in a nitrate molten salt mixture

    Science.gov (United States)

    Pérez, Francisco Javier; Encinas-Sánchez, Víctor; García-Martín, Gustavo; Lasanta, María Isabel; de Miguel, María Teresa

    2017-06-01

    This paper evaluates the corrosion of A516 carbon steel in the binary Solar Salt (60 wt.% NaNO3/40 wt.% KNO3) by immersion tests with continuous salt flow at 500 °C. To this end, a novel patented experimental facility enabling dynamic degradation tests of materials in contact with molten mediums was developed and used. Experimental results showed greater corrosion rates and thicker oxide layers in samples subjected to tests with continuous salt flow than the static ones. The dynamic test facility simulates real conditions (flux, thermocycling, etc.) of a CSP plant. The patented experimental pilot plant is a great step forward in learning about the physicochemical properties and behavior of molten salts and also behavior of substrates in contact with them under realistic working conditions.

  13. A Study on Electrochemical Reduction of Rare Earth Oxides in Molten LiCl-Li{sub 2}O Salt

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Woo; Jeong, Sang Mun; Lee, See Hoon [Chungbook National University, Chungju (Korea, Republic of); Sohn, Jung Min [Chonbuk National University, Jeonju (Korea, Republic of)

    2016-05-15

    In this study, the electrochemical reduction of RE{sub 2}O{sub 3} (RE = Nd or Ce) has been conducted via co-reduction NiO to increase the reduction degree of the rare earth oxides in molten molten LiCl containing 1wt% Li{sub 2}O. The electrochemical reduction behavior of the mixed RE{sub 2}O{sub 3}-NiO oxide has been investigated and the reduction path of RE{sub 2}O{sub 3} has been proposed. An electorchemical spent fuel processing technology, pyroprocessing, has been developed for recycling of spent fuel to be applied to a sodium-cooled fast reactor. The spent fuel is reduced in the oxide reduction process. It is well known that the rare earth oxides are hardly reduced due to their electrochemical and thermodynamic stability. The rare earth oxides unreduced in the reduction process can cause problems via reaction with UCl{sub 3} in the electrorefiner. To tackle those problems, the electrochemical reduction of rare earth oxide has been conducted via co-reduction of NiO in LiCl molten salt containing 1 wt% Li{sub 2}O. The reduction of the oxide mixture starts from the reduction of NiO to Ni, followed by that of RE{sub 2}O{sub 3} on the produced Ni to form intermetallic RENi{sub 5}. The mixed oxide pellets were successfully reduced to the RENi5 alloy by constant electrolysis at 3.0 V at 650 .deg. C. The crucial aspect to these results is that the thermodynamically stable rare-earth oxide, Nd{sub 2}O{sub 3} was successfully converted to the metal in the presence of NiO.

  14. Chemical Stability of Conductive Ceramic Anodes in LiCl–Li2O Molten Salt for Electrolytic Reduction in Pyroprocessing

    Directory of Open Access Journals (Sweden)

    Sung-Wook Kim

    2016-08-01

    Full Text Available Conductive ceramics are being developed to replace current Pt anodes in the electrolytic reduction of spent oxide fuels in pyroprocessing. While several conductive ceramics have shown promising electrochemical properties in small-scale experiments, their long-term stabilities have not yet been investigated. In this study, the chemical stability of conductive La0.33Sr0.67MnO3 in LiCl–Li2O molten salt at 650°C was investigated to examine its feasibility as an anode material. Dissolution of Sr at the anode surface led to structural collapse, thereby indicating that the lifetime of the La0.33Sr0.67MnO3 anode is limited. The dissolution rate of Sr is likely to be influenced by the local environment around Sr in the perovskite framework.

  15. Optimization of a Molten Salt Electrolytic Bath Geometry for Rare Earth Metal Recovery using a Finite Element Method

    Science.gov (United States)

    Numata, Hiroo; Akatsuka, Hiroshi; Matsuura, Haruaki

    2013-02-01

    For a recycling procedure for rare earths from spent hydrogen absorbing alloys by rare earths electrodeposition in a molten salt, the electrolytic bath and the cathode accessories have been optimized by evaluating the appropriate secondary current distribution using finite element method (FEM) computer simulation. The desirable cathode dish as an accessory was designed to prevent drops of less adherent electrodeposits, which improved the current density distribution compared with an a priori determined one. In the bath optimization, a reciprocal proportionality of the difference between the maximum and minimum current densities vs. the ratio of volume to surface area (or electrolyte volume) was found. It was found by FEM that if a resistive floating mass is assumed on the electrolyte surface, the observed necking in the electrodeposit near the electrolyte surface can be analyzed.

  16. Analysis of a helical coil once-through molten salt steam generator: Experimental results and heat transfer evaluation

    Science.gov (United States)

    Seubert, B.; Rojas, E.; Rivas, E.; Gaggioli, W.; Rinaldi, L.; Fluri, T.

    2016-05-01

    A molten salt helical coil steam generator is an alternative to kettle- or drum-type evaporators which are currently used in commercial-scale solar thermal power plants. A 300 kW prototype was tested during the OPTS project at ENEA. The experimental results presented in this paper have been used to validate a detailed heat transfer analysis of the whole system. The heat transfer analysis deals with the study of both the overall heat transfer coefficient and the shell-side heat transfer coefficient. Due to the specific features of this type of system, no correlations were available in the literature. A new numerical model to predict the performance of large-scale systems is also presented.

  17. The molten salt reactors (MSR) pyro chemistry and fuel cycle for innovative nuclear systems; Congres sur les reacteurs a sels fondus (RSF) pyrochimie et cycles des combustibles nucleaires du futur

    Energy Technology Data Exchange (ETDEWEB)

    Brossard, Ph. [GEDEON, Groupement de Recherche CEA CNRS EDF FRAMATOME (France); Garzenne, C.; Mouney, H. [and others

    2002-07-01

    In the frame of the studies on next generation nuclear systems, and especially for the molten salt reactors and for the integrated fuel cycle (as IFR), the fuel cycle constraints must be taken into account in the preliminary studies of the system to improve the cycle and reactor optimisation. Among the purposes for next generation nuclear systems, sustainability and waste (radio-toxicity and mass) management are important goals. These goals imply reprocessing and recycling strategies. The objectives of this workshop are to present and to share the different strategies and scenarios, the needs based on these scenarios, the experimental facilities available today or in the future and their capabilities, the needs for demonstration. It aims at: identifying the needs for fuel cycle based on solid fuel or liquid fuel, and especially, the on-line reprocessing or clean up for the molten salt reactors; assessing the state-of-the-art on the pyro-chemistry applied to solid fuel and to present the research activities; assessing the state-of-the-art on liquid fuels (or others), and to present the research activities; expressing the R and D programs for pyro-chemistry, molten salt, and also to propose innovative processes; and proposing some joint activities in the frame of GEDEON and PRACTIS programs. This document brings together the transparencies of 18 contributions dealing with: scenario studies with AMSTER concept (Scenarios, MSR, breeders (Th) and burners); fuel cycle for innovative systems; current reprocessing of spent nuclear fuel (SNF) in molten salts (review of pyro-chemistry processes (non nuclear and nuclear)); high temperature NMR spectroscopies in molten salts; reductive extraction of An from molten fluorides (salt - liquid metal extraction); electrochemistry characterisation; characterisation with physical methods - extraction coefficient and kinetics; electrolytic extraction; dissolution-precipitation of plutonium in the eutectic LiCl-KCl (dissolution and

  18. Effect of CaO addition on preparation of ferrotitanium from ilmenite by electrochemical reduction in CaCl{sub 2}−NaCl molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Li [Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); State Key Lab of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093 (China); Hua, Yixin, E-mail: yxhua@kmust.edu.cn [Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); State Key Lab of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093 (China); Xu, Cunying; Li, Jian; Li, Yan; Zhang, Qibo; Zhou, Zhongren; Zhang, Yadong [Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); State Key Lab of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093 (China); Ru, Juanjian [Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2016-08-15

    Ferro-titanium (FeTi) alloy was prepared successfully from synthesized ilmenite through electrochemical reduction method in equal-molar CaCl{sub 2}−NaCl molten salt at 973 K and a cell voltage of 3.2 V under inert atmosphere, where molybdenum rod and graphite were used as cathode and anode respectively. It is indicated that the CaO content in the molten salt has an appreciable effect on the phase transformation of reactants occurring in the electrolytic process. The optimized CaO content in the molten salt is 1 mol% and this suitable content of CaO can significantly improve the reduction rate of ilmenite. The micromorphology of the ferrotitanium product is porous with the amount of 1 mol%CaO addition. It is observed that the particles of ferrotitanium had a uniform size in the initial period of time. Along with the electrolysis time extension, however, the particles connected with each other to generate strips and then form a honeycomb structure. These findings provide a basis for scientifically discussion on the optimization of CaO addition amount during the electrochemical reduction of ilmenite and other oxides in molten salts. - Highlights: • Ferro-titanium was prepared from synthesized ilmenite in CaCl{sub 2}−NaCl molten salt. • CaO content has appreciable effect on the phase transformation of ilmenite reactant. • The optimized CaO content is 1 mol% which can significantly improve reaction rate. • The products are connected with each other to form strips as electrolysis time.

  19. Decomposition of diverse solid inorganic matrices with molten ammonium bifluoride salt for constituent elemental analysis

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, Matthew J.; Kellogg, Cyndi M.; Parker, Cyrena M.; Morrison, Samuel S.; Corbey, Jordan F.; Grate, Jay W.

    2017-09-01

    Ammonium bifluoride (ABF, NH4F·HF) is a well-known reagent for converting metal oxides to fluorides and for its applications in breaking down minerals and ores in order to extract useful components. It has been more recently applied to the decomposition of inorganic matrices prior to elemental analysis. Herein, a sample decomposition method that employs molten ABF sample treatment in the initial step is systematically evaluated across a range of inorganic sample types: glass, quartz, zircon, soil, and pitchblende ore. Method performance is evaluated across the two variables: duration of molten ABF treatment and ABF reagent mass to sample mass ratio. The degree of solubilization of these sample classes are compared to the fluoride stoichiometry that is theoretically necessary to enact complete fluorination of the sample types. Finally, the sample decomposition method is performed on several soil and pitchblende ore standard reference materials, after which elemental constituent analysis is performed by ICP-OES and ICP-MS. Elemental recoveries are compared to the certified values; results indicate good to excellent recoveries across a range of alkaline earth, rare earth, transition metal, and actinide elements.

  20. Synthesis and characterization of binder-free Cr{sub 3}C{sub 2} coatings on nickel-based alloys for molten fluoride salt corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Brupbacher, Michael C.; Zhang, Dajie [Department of Materials Science and Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Buchta, William M. [The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Graybeal, Mark L. [U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (United States); Rhim, Yo-Rhin [The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Nagle, Dennis C. [Department of Materials Science and Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Spicer, James B., E-mail: spicer@jhu.edu [Department of Materials Science and Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States)

    2015-06-15

    Under various conditions, chromium carbides appear to be relatively stable in the presence of molten fluoride salts and this suggests that their use in corrosion resistant coatings for fluoride salt environments could be beneficial. One method for producing these coatings is the carburization of sprayed Cr coatings using methane-containing gaseous precursors. This process has been investigated for the synthesis of binder-free chromium carbide coatings on nickel-based alloy substrates for molten fluoride salt corrosion resistance. The effects of the carburization process on coating microstructure have been characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) in conjunction with energy dispersive spectroscopy (EDS). Both plasma-sprayed and cold-sprayed Cr coatings have been successfully converted to Cr{sub 3}C{sub 2}, with the mechanism of conversion being strongly influenced by the initial porosity in the as-deposited coatings.

  1. Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-04-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  2. Assessment of the Use of Nitrogen Trifluoride for Purifying Coolant and Heat Transfer Salts in the Fluoride Salt-Cooled High-Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, Randall D.; Casella, Andrew M.

    2010-09-28

    This report provides an assessment of the use of nitrogen trifluoride for removing oxide and water-caused contaminants in the fluoride salts that will be used as coolants in a molten salt cooled reactor.

  3. Improvement of the Neutronic Performance of the PACER Fusion Concept Using Thorium Molten Salt with Reactor Grade Plutonium

    Science.gov (United States)

    Acır, Adem

    2013-02-01

    In this study, the improvement of neutronic performance of a dual purpose modified PACER concept has been investigated. Flibe as the main constituent are fixed as 92% coolant. ThF4 is mixed with increased mole-fractions of RG-PuF4 starting by 0 mol % up to 1 mol %. TBR variations for all the investigated salts with respect to the RG-PuF4 contents are computed. Tritium self-sufficiency is provided with the ThF4 when the adding RG-PuF4 content is higher than 0.75%. The energy multiplication of the blanket is increased as 70% with adding RG-PuF4 contents to ThF4. High quality fissile isotope 233U are produced with increasing RG-PuF4. DPA and helium production increases with increased RG-PuF4 content in molten salt. Radiation damage with dpa <1.7 and He <3.3 ppm after a plant operation period of 30 years will be well below the damage limit values.

  4. A general overview of generation IV molten salt reactor (MSR) and the use of thorium as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Carlos H.; Stefani, Giovanni L.; Santos, Thiago A., E-mail: carlos.yamaguchi@usp.br, E-mail: giovanni.stefani@ipen.br, E-mail: thiago.santos@ufabc.edu.br [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica; Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Sociais Aplicadas

    2017-07-01

    The molten salt reactors (MSRs) make use of fluoride salt as primary cooler, at low pressure. Although considered a generation IV reactor, your concept isn't new, since in the 1960 years the Oak Ridge National Laboratory created a little prototype of 8MWt. Over the 20{sup th} century, other countries, like UK, Japan, Russia, China and France also did research in the area, especially with the use of thorium as fuel. This goes with the fact that Brazil possess the biggest reserve of thorium in the world. In the center of nuclear engineering at IPEN is being created a study group connected to thorium reactors, which purpose is to investigate reactors using thorium to produce {sup 233}U and tailing burn, thus making the MSR using thorium as fuel, an object of study. This present work searches to do a general summary about the researches of MSR's, having as focus the utilization of thorium with the goal being to show it's efficiency and utilization is doable. (author)

  5. Effect of Metallic Li on the Behavior of Metals in Molten Salts

    Energy Technology Data Exchange (ETDEWEB)

    Chidambaram, Dev [Univ. of Nevada, Reno, NV (United States); Phillips, William [Univ. of Nevada, Reno, NV (United States); Merwin, Augustus [Univ. of Nevada, Reno, NV (United States); Singh, Vickram [Univ. of Nevada, Reno, NV (United States); Unger, Aaron [Univ. of Nevada, Reno, NV (United States); Moon, Jeremy [Univ. of Nevada, Reno, NV (United States)

    2017-12-29

    The deleterious effect of Li0 on the reactor container materials has not been studied. Exposure to liquid Li0 results in material degradation primarily through lithium intercalation, leaching of specific alloying elements, and decarburization. The objective of this research is to understand how the presence of Li0 in molten LiCl-Li2O affects the degradation of two classes of alloys by correlating their accelerated and long term electrochemical behavior to the surface chemistry of the alloys and the chemistry of the electrolyte. This study has completed all the proposed tasks. The project led to the design and development of unique experimental setups and protocols. Several groundbreaking findings resulted from this study. The project had several products in terms of student education, thesis and dissertation, publications and presentations.

  6. Engineering development studies for molten-salt breeder reactor processing No. 22

    Energy Technology Data Exchange (ETDEWEB)

    Hightower, J.R. Jr. (comp.)

    1976-06-01

    Processing methods are being developed for use in a close-coupled facility for removing fission products, corrosion products, and fissile materials from the MSBR fuel. This report discusses the autoresistance heating for the continuous fluorinator, the metal transfer experiment, experiments for the salt-metal contactor, and fuel reconstitution. 10 fig. (DLC)

  7. Diagnosis of sources of current inefficiency in industrial molten salt electrolysis cells by Raman spectroscopy: A topical report on chlorides: Topical report, June 1982-June 1987

    Energy Technology Data Exchange (ETDEWEB)

    Sadoway, D. R.

    1987-06-01

    Molten salt electrolysis, a very energy-intensive process, is used in the extraction of light metals. Aluminum production by the Hall process and magnesium production in the Dow and I.G. Farbenindustrie cells constitute the major commercial applications of metal electrowinning from molten-salt media at present. The energy input into the electrolysis cell is in the form of direct current, and the energy efficiencies in the magnesium or aluminum processes are only in the 30 to 40% range. Major energy reductions are achieved by reducing the cell voltage or by increasing the current efficiency. Goal of the research is to identify the sources of the current losses occurring in molten salt electrolysis. This research worked on the systems of I.G. Farben magnesium chloride and Alcoa smelting aluminum chloride processes. Raman spectra were measured and analyzed for each component or their mixtures of the electrolyte for magnesium and aluminum reduction in chloride melts. Raman measurements were also conducted on the melts of industrial composition for aluminum and magnesium electrolysis. In laboratory-scale cells which imitated industrial practice, Raman spectra were measured in situ during electrolysis in attempts to identify the streamers, coloration of electrolyte, and any subvalent species. They were known to occur only during electrolysis, and they have been reported to be possible current losses. Cyclic voltammetry was conducted to obtain information about the generation of subvalent species which were not detected by Raman measurement. These were thought to be kinetic entities present only during electrolysis. Results of Raman spectroscopy and electrochemistry of magnesium and aluminum reduction from molten chloride bath are presented. The results would be useful to establish the basis for the study of electrolysis of aluminum from molten fluoride media. 119 refs., 66 figs.

  8. On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants

    Directory of Open Access Journals (Sweden)

    Miguel J. Prieto

    2017-07-01

    Full Text Available Thermal oil has been used as heat transfer fluid in many solar thermal power plants, which also use molten salts as thermal energy storage system. Since the engineering of these plants is relatively new, control of the thermal energy storage system is currently achieved in manual or semiautomatic ways, controlling its variables with proportional-integral-derivative (PID regulators. Once the plant is running, it is very difficult to obtain permission to try new control strategies. Hence, most plants keep running on these simple, sometimes inefficient control algorithms. This paper explores the results obtained with different control strategies implemented on a complete model of energy storage systems based on molten salt. The results provided by the model allow the optimum control strategy to be selected. Comparison of the results obtained by simulation of these control strategies and actual results obtained from a real plant, confirm the accuracy of the selection made.

  9. Molten salts in nuclear reactors; Les sels fondus dans les reacteurs nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Dirian, J.; Saint-James [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    Collection of references dealing with the physicochemical studies of fused salts, in particular the alkali and alkali earth halides. Numerous binary, ternary and quaternary systems of these halides with those of uranium and thorium are examined, and the physical properties, density, viscosity, vapour pressure etc... going from the halides to the mixtures are also considered. References relating to the corrosion of materials by these salts are included and the treatment of the salts with a view to recuperation after irradiation in a nuclear reactor is discussed. (author) [French] Bibliographie regroupant l'etude physico-chimique des sels fondus, en particulier des halogenures alcalins et alcalino-terreux. On etudie de nombreux systemes binaires, ternaires et quaternaires de ces halogenures avec des halogenures d'uranium, et de thorium. On etudie egalement les proprietes physiques des halogenures ou des melanges d'halogenures (densite, viscosite, tension de vapeur, etc...). On donne egalement des references quant a la corrosion des materiaux par ces sels, et le traitement de ceux-ci en vue de recuperation, apres irradiation dans un reacteur nucleaire. (auteur)

  10. Study of trans-uranian incineration in molten salt reactor; Etude de l'incineration des transuraniens en reacteur a sel fondu

    Energy Technology Data Exchange (ETDEWEB)

    Valade, M

    2000-10-27

    With the emergence of new options for nuclear power, molten salt reactors are envisaged for waste management. The aim of this thesis is to show how molten salt reactors can help to solve the transuranics issue. Their high versatility regarding to isotopic vector allows to accommodate large fractions of minor actinides as compared to solid fuel system. In this thesis, a neutronics study of molten salt reactors, MSR, has been conducted. For this purpose, two reference systems were considered, TIER1 and AMSTER. In the case of TIER1, an optimisation was made to reach an equilibrium. The analysis of both systems showed the main characteristics of MSR: their link to chemistry and on line reprocessing. In this work, several methods to drive the system to a state of equilibrium have been implemented and compared. During this process the isotopic composition and neutron spectrum, thus the nuclear reaction cross sections, vary tremendously. It is essential to take these evolutions into account in order to accurately estimate the equilibrium state. This has been accomplished inside the multi-recycling procedure we set with ERANOS. A dedicated calculation schema has been realized to simulate superthermal systems with this computation code. These results were checked through a benchmark against other computer codes. Then, with multi-recycling method, several molten salt systems have been compared in order to define the optimal reactor for transuranics incineration. Nevertheless, a final choice can not only be done using only neutronics characteristics since chemistry and thermal-hydraulics constraints are really important for MSR. Moreover, a complete safety study would be required. (author)

  11. Effect of Substrate Temperature and Ambient Pressure on Heat Transfer at Interface Between Molten Droplet and Substrate Surface

    Science.gov (United States)

    Fukumoto, M.; Yang, K.; Tanaka, K.; Usami, T.; Yasui, T.; Yamada, M.

    2011-01-01

    Millimeter-sized molten Cu droplets were deposited on AISI304 substrate surface by free falling experiment. The roles of substrate temperature and ambient pressure on heat transfer at interface between molten droplet and substrate surface were systematically investigated. The splat characteristics were evaluated in detail. Temperature history of molten droplet was measured at splat-substrate interface. Cooling rate of the flattening droplet was calculated as well. Furthermore, the spreading behavior of molten droplet on substrate surface was captured by high speed camera. The heat transfer from splat to substrate was enhanced both by substrate heating and by ambient pressure reduction, which can be attributed to the good contact at splat bottom surface. The splats in free falling experiment showed similar changing tendency as thermal-sprayed particles. Consequently, substrate temperature and ambient pressure have an equivalent effect to contact condition at interface between droplet and substrate surface. Substrate heating and pressure reduction may enhance the wetting during splat flattening, and then affect the flattening and solidification behavior of the molten droplet.

  12. Electrodeposition of Al-Ta alloys in NaCl-KCl-AlCl{sub 3} molten salt containing TaCl{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Kazuki; Matsushima, Hisayoshi; Ueda, Mikito, E-mail: mikito@eng.hokudai.ac.jp

    2016-12-01

    Highlights: • Electrodeposition of Al-Ta alloys in an AlCl{sub 3}-NaCl-KCl-TaCl{sub 5} melt was carried out. • We were obtained 72 at% Ta-Al alloy at 0.3 V. • Amorphous Ta-Al was formed in high Ta concentration. - Abstract: To form Al-Ta alloys for high temperature oxidation resistance components, molten salt electrolysis was carried out in an AlCl{sub 3}-NaCl-KCl melt containing TaCl{sub 5} at 423 K. The voltammogram showed two cathodic waves at 0.45 V and 0.7 V vs. Al/Al(III), which may correspond to reduction from Ta(V) to Ta(III) and from Ta(III) to tantalum metal, respectively. Electrodeposits of Al and Ta were obtained in the range from −0.05 to 0.3 V and the highest concentration of Ta in the electrodeposit was 72 at% at 0.3 V. With increasing Ta content in the alloy, the morphology of the electrodeposits became powdery and the particle size smaller.

  13. Structural and Redox Properties of Vanadium Complexes in Molten Salts of Interest for the Catalytic Oxidation of Sulfur Dioxide

    DEFF Research Database (Denmark)

    Boghosian, S.; Chrissanthopoulos, A.; Fehrmann, Rasmus

    2000-01-01

    Electronic absorption (UV/VIS) spectra have been obtained at 450 degrees C from V2O5-K2S2O7 molten mixtures in SO2 ( P-SO2 = 0 - 1.2 atm) gas atmospheres. The data are in agreement with the V-V reversible arrow V-IV equilibrium: (VO)(2)O(SO4)(4)(4-)(l) + SO2(g) - 2VO(SO4)(2)(2-)(l) + SO3(g). Sulfur...... dioxide does not coordinate to the V-V complex but starts significantly to coordinate to V-IV for P-SO2 > 0 4 atm in accordance with the equilibrium: VO(SO4)(2)(2-)(l) + SO2(g) reversible arrow VO(SO4)(2)SO22-(l). Furthermore, high temperature Raman spectroscopy has been used to establish the structural...

  14. Validation of electro-thermal simulation with experimental data to prepare online operation of a molten salt target at ISOLDE for the Beta Beams

    CERN Document Server

    Cimmino, S; Marzari, S; Stora, T

    2013-01-01

    The main objective of the Beta Beams is to study oscillation property of pure electrons neutrinos. It produces high energy beams of pure electron neutrinos and anti-neutrinos for oscillation experiments by beta decay of He-6 and Ne-18 radioactive ion beams, stored in a decay ring at gamma = 100. The production of He-6 beam has already been accomplished using a thick beryllium oxide target. However, the production of the needed rate of Ne-18 has proven to be more challenging. In order to achieve the requested yield for Ne-18 a new high power target design based on a circulating molten salt loop has been proposed. To verify some elements of the design, a static molten salt target prototype has been developed at ISOLDE and operated successfully. This paper describes the electro-thermal study of the molten salt target taking into account the heat produced by Joule effect, radiative heat exchange, active water cooling due to forced convection and air passive cooling due to natural convection. The numerical results...

  15. On the use of a molten salt fast reactor to apply an idealized transmutation scenario for the nuclear phase out.

    Science.gov (United States)

    Merk, Bruno; Rohde, Ulrich; Glivici-Cotruţă, Varvara; Litskevich, Dzianis; Scholl, Susanne

    2014-01-01

    In the view of transmutation of transuranium (TRU) elements, molten salt fast reactors (MSFRs) offer certain advantages compared to solid fuelled reactor types like sodium cooled fast reactors (SFRs). In the first part these advantages are discussed in comparison with the SFR technology, and the research challenges are analyzed. In the second part cycle studies for the MSFR are given for different configurations--a core with U-238 fertile, a fertile free core, and a core with Th-232 as fertile material. For all cases, the transmutation potential is determined and efficient transmutation performance for the case with thorium as a fertile material as well as for the fertile free case is demonstrated and the individual advantages are discussed. The time evolution of different important isotopes is analyzed. In the third part a strategy for the optimization of the transmutation efficiency is developed. The final aim is dictated by the phase out decision of the German government, which requests to put the focus on the determination of the maximal transmutation efficiency and on an as much as possible reduced leftover of transuranium elements at the end of the reactor life. This minimal leftover is achieved by a two step procedure of a first transmuter operation phase followed by a second deep burning phase. There the U-233, which is bred in the blanket of the core consisting of thorium containing salt, is used as feed. It is demonstrated, that transmutation rates up to more than 90% can be achieved for all transuranium isotopes, while the production of undesired high elements like californium is very limited. Additionally, the adaptations needed for the simulation of a MSFR, and the used tool HELIOS 1.10 is described.

  16. On the use of a molten salt fast reactor to apply an idealized transmutation scenario for the nuclear phase out.

    Directory of Open Access Journals (Sweden)

    Bruno Merk

    Full Text Available In the view of transmutation of transuranium (TRU elements, molten salt fast reactors (MSFRs offer certain advantages compared to solid fuelled reactor types like sodium cooled fast reactors (SFRs. In the first part these advantages are discussed in comparison with the SFR technology, and the research challenges are analyzed. In the second part cycle studies for the MSFR are given for different configurations--a core with U-238 fertile, a fertile free core, and a core with Th-232 as fertile material. For all cases, the transmutation potential is determined and efficient transmutation performance for the case with thorium as a fertile material as well as for the fertile free case is demonstrated and the individual advantages are discussed. The time evolution of different important isotopes is analyzed. In the third part a strategy for the optimization of the transmutation efficiency is developed. The final aim is dictated by the phase out decision of the German government, which requests to put the focus on the determination of the maximal transmutation efficiency and on an as much as possible reduced leftover of transuranium elements at the end of the reactor life. This minimal leftover is achieved by a two step procedure of a first transmuter operation phase followed by a second deep burning phase. There the U-233, which is bred in the blanket of the core consisting of thorium containing salt, is used as feed. It is demonstrated, that transmutation rates up to more than 90% can be achieved for all transuranium isotopes, while the production of undesired high elements like californium is very limited. Additionally, the adaptations needed for the simulation of a MSFR, and the used tool HELIOS 1.10 is described.

  17. On the Use of a Molten Salt Fast Reactor to Apply an Idealized Transmutation Scenario for the Nuclear Phase Out

    Science.gov (United States)

    Merk, Bruno; Rohde, Ulrich; Glivici-Cotruţă, Varvara; Litskevich, Dzianis; Scholl, Susanne

    2014-01-01

    In the view of transmutation of transuranium (TRU) elements, molten salt fast reactors (MSFRs) offer certain advantages compared to solid fuelled reactor types like sodium cooled fast reactors (SFRs). In the first part these advantages are discussed in comparison with the SFR technology, and the research challenges are analyzed. In the second part cycle studies for the MSFR are given for different configurations – a core with U-238 fertile, a fertile free core, and a core with Th-232 as fertile material. For all cases, the transmutation potential is determined and efficient transmutation performance for the case with thorium as a fertile material as well as for the fertile free case is demonstrated and the individual advantages are discussed. The time evolution of different important isotopes is analyzed. In the third part a strategy for the optimization of the transmutation efficiency is developed. The final aim is dictated by the phase out decision of the German government, which requests to put the focus on the determination of the maximal transmutation efficiency and on an as much as possible reduced leftover of transuranium elements at the end of the reactor life. This minimal leftover is achieved by a two step procedure of a first transmuter operation phase followed by a second deep burning phase. There the U-233, which is bred in the blanket of the core consisting of thorium containing salt, is used as feed. It is demonstrated, that transmutation rates up to more than 90% can be achieved for all transuranium isotopes, while the production of undesired high elements like californium is very limited. Additionally, the adaptations needed for the simulation of a MSFR, and the used tool HELIOS 1.10 is described. PMID:24690768

  18. Electrochemical transient techniques for determination of uranium and rare-earth metal separation coefficients in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, S.A. [Institute of Chemistry, Kola Science Centre, RAS, Apatity, Murmansk Region 184200, Russia (Russian Federation)]. E-mail: kuznet@chemy.kolasc.net.ru; Hayashi, H. [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Minato, K. [Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Gaune-Escard, M. [Ecole Polytechnique, IUSTI-CNRS UMR 6595, University of Provence, F-13453 Marseille, Cedex 13 (France)

    2006-02-25

    The main step in the pyrometallurgical recycling process of spent nuclear fuel is a molten salt electrorefining. The knowledge of separation coefficients of actinides (U, Np, Pu and Am) and rare-earth metals (Y, La, Ce, Nd and Gd) is very important for this step. Usually the separation coefficients are evaluated from the formal standard potentials of metals in melts containing their own ions, i.e. values obtained by potentiometric method. Electrochemical experiments were carried out at 723-823 K in order to estimate separation coefficients in LiCl-KCl eutectic melt containing uranium and lanthanum trichlorides. The electrochemical behaviour of UCl{sub 3} in LiCl-KCl melt was studied by different electrochemical methods. The diffusion coefficients of U(III) were determined by linear sweep voltammetry, chronopotentiometry and chronoamperometry. The standard rate constants of charge transfer for electroreduction of uranium, U(III) + 3e{sup -} {sup {yields}} U, were calculated by the impedance spectroscopy method. The values of constants testify that electroreduction of U(III) to U is mainly controlled by the rate of charge transfer. La(III) discharge on uranium electrode was also investigated. It was shown that for the calculation of uranium and lanthanum separation coefficients it is necessary to determine the voltammetric peak potentials of U(III) and La(III), their concentration in the melt and the kinetic parameters relating to U(III) discharge such as transfer and diffusion coefficients, and standard rate constants of charge transfer.

  19. Sensitivity analysis of heliostat aiming strategies and receiver size on annual thermal production of a molten salt external receiver

    Science.gov (United States)

    Servert, Jorge; González, Ana; Gil, Javier; López, Diego; Funes, Jose Felix; Jurado, Alfonso

    2017-06-01

    Even though receiver size and aiming strategy are to be jointly analyzed to optimize the thermal energy that can be extracted from a solar tower receiver, customarily, they have been studied as separated problems. The main reason is the high-level of detail required to define aiming strategies, which are often simplified in annual simulation models. Aiming strategies are usually focused on obtaining a homogeneous heat flux on the central receiver, with the goal to minimize the maximum heat flux value that may lead to damaging it. Some recent studies have addressed the effect of different aiming strategies on different receiver types, but they have only focused on the optical efficiency. The receiver size is also an additional parameter that has to be considered: larger receiver sizes provide a larger aiming surface and a reduction on spillage losses, but require higher investment while penalizing the thermal performance of the receiver due to the greater external convection losses. The present paper presents a sensitivity analysis of both factors for a predefined solar field at a fixed location, using a central receiver and molten salts as HTF. The analysis includes the design point values and annual energy outputs comparing the effect on the optical performance (measured using a spillage factor) and thermal energy production.

  20. Health and safety plan for the Molten Salt Reactor Experiment remediation project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Burman, S.N.; Uziel, M.S.

    1995-12-01

    The Lockheed Martin Energy Systems, Inc., (Energy Systems) policy is to provide a safe and healthful workplace for all employees and subcontractors. The accomplishment of the policy requires that operations at the Molten Salt Reactor Experiment (MSRE) facility at the Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) are guided by an overall plan and consistent proactive approach to safety and health (S and H) issues. The policy and procedures in this plan apply to all MSRE operations. The provisions of this plan are to be carried out whenever activities are initiated at the MSRE that could be a threat to human health or the environment. This plan implements a policy and establishes criteria for the development of procedures for day-to-day operations to prevent or minimize any adverse impact to the environment and personnel safety and health and to meet standards that define acceptable management of hazardous and radioactive materials and wastes. The plan is written to utilize past experience and the best management practices to minimize hazards to human health or the environment from events such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to the air.

  1. Mock-up facilities for the development of an advanced spent fuel management process using molten salt technology

    Energy Technology Data Exchange (ETDEWEB)

    Young-Joon Shin; Ik-Soo Kim; Seung-Chul Oh; Soo-Haeng Cho; Yo-Taik Song; Hyun-Soo Park [Korea Atomic Energy Research Institute, Taejon, South (Korea, Republic of)

    2000-07-01

    The Korea Atomic Energy Research Institute (KAERI) has investigated a new approach to spent fuel storage technology that would reduce the total storage volume and the amount of decay heat. The technology utilizes the reduction of oxide fuel to a metal to reduce the volume and preferentially removing the fission products to reduce the decay heat. The uranium oxide is reduced to uranium metal by Li metal in a molten LiCl salt bath. During the reduction process, fission products are dissolved into the LiCl bath and some of the highly radioactive elements, such as Sr and Cs, are preferentially removed from the bath. The reduced uranium metal is cast into an ingot, put into a storage capsule, and stored using conventional storage methods. The fission products are treated as high level radioactive wastes. Each process of the technology has been studied and analyzed for technical feasibility, and has come to the point for designing and constructing of the mock-up for a demonstration of the technology. This paper presents the detailed design of the mock-up of the system and operational characteristics, along with all the details of the equipment for the system. KAERI plans to use the mock-up for the demonstration using an in-active spent fuel specimen. (authors)

  2. Development of a leaching process of manganese concentrate in molten salts

    OpenAIRE

    Maria José de Sousa Ferreira da Silva; Maria José Marques; Cláudio Patrício Ribeiro Jr

    1997-01-01

    The NaCl- KCl system as fused-salt solvent for leaching has shown to have some advantages over traditional solvents. In this work the solubility of copper, nickel and cobalt oxide in this system, as impurities in manganese concentrate, was studied. The euthetic mixture of NaCl - KCl at 700ºC was used at several fusion times and the dissolved metals were determined by Atomic Absorption Spectrometry. The results have shown that in these conditions only copper was solubilized.

  3. Cation and anion dependence of stable geometries and stabilization energies of alkali metal cation complexes with FSA(-), FTA(-), and TFSA(-) anions: relationship with physicochemical properties of molten salts.

    Science.gov (United States)

    Tsuzuki, Seiji; Kubota, Keigo; Matsumoto, Hajime

    2013-12-19

    Stable geometries and stabilization energies (Eform) of the alkali metal complexes with bis(fluorosulfonyl)amide, (fluorosulfonyl)(trifluoromethylslufonyl)amide and bis(trifluoromethylsulfonyl)amide (FSA(-), FTA(-) and TFSA(-)) were studied by ab initio molecular orbital calculations. The FSA(-) complexes prefer the bidentate structures in which two oxygen atoms of two SO2 groups have contact with the metal cation. The FTA(-) and TFSA(-) complexes with Li(+) and Na(+) prefer the bidentate structures, while the FTA(-) and TFSA(-) complexes with Cs(+) prefer tridentate structures in which the metal cation has contact with two oxygen atoms of an SO2 group and one oxygen atom of another SO2 group. The two structures are nearly isoenergetic in the FTA(-) and TFSA(-) complexes with K(+) and Rb(+). The magnitude of Eform depends on the alkali metal cation significantly. The Eform calculated for the most stable TFSA(-) complexes with Li(+), Na(+), K(+), Rb(+) and Cs(+) cations at the MP2/6-311G** level are -137.2, -110.5, -101.1, -89.6, and -84.1 kcal/mol, respectively. The viscosity and ionic conductivity of the alkali TFSA molten salts have strong correlation with the magnitude of the attraction. The viscosity increases and the ionic conductivity decreases with the increase of the attraction. The melting points of the alkali TFSA and alkali BETA molten salts also have correlation with the magnitude of the Eform, which strongly suggests that the magnitude of the attraction play important roles in determining the melting points of these molten salts. The anion dependence of the Eform calculated for the complexes is small (less than 2.9 kcal/mol). This shows that the magnitude of the attraction is not the cause of the low melting points of alkali FTA molten salts compared with those of corresponding alkali TFSA molten salts. The electrostatic interactions are the major source of the attraction in the complexes. The electrostatic energies for the most stable TFSA

  4. Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C. S.; Ma, Z.

    2011-08-01

    Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

  5. Molten Fluoride Salts as Fluorine Source in the Production of Molecular Sidebands

    CERN Document Server

    Shoaib, Maryam

    2015-01-01

    The medically important isotopes Yttrium and Zirconium were selected for fluorination. After this, 30 $\\mu$g of NaF as fluorine source was put in mass marker in the target unit. It was heated and plasma ion source was used to ionize the vapors. The ion source efficiency was 27\\%. It was observed that the yield for fluorine was not enough for various mass marker temperatures (0 A - 40 A) and ion source temperatures (2000 $^{o}$C - 2150$^{o}$C) to be reacted with other elements. The optimum temperatures of mass marker was observed here as 35 A. The project can be proceeded for further high temperatures and for different fluorine sources.

  6. Experimental investigation on the formation mechanism of the TiFe alloy by the molten-salt electrolytic titanium concentrate

    Directory of Open Access Journals (Sweden)

    Shi R.

    2011-01-01

    Full Text Available The ferrotitanium alloy was prepared in the molten CaCl2 system, in which resolidified ilmenite and the graphite crucible were used as cathode and anode. In this study, the electrolytic voltage was fixed at 3.1V, and three different temperatures were applied: 850oC, 875oC and 900ºC. Finally, the product was examined by SEM and XRD to determine the phase transformation after the electrolysis. The results show that the ilmenite was firstly reduced to Fe, and finally the TiFe alloy was formed. The intermediate products include CaTiO3, TiO2, Ti2O3, TiO, Fe, TiFe2, and Ti. Different product and structure can be obtained by changing temperature. According to thermodynamic calculation, the principal electroreduction products are Ti and TiFe2 and then Ti and TiFe2 are formed by interdiffusion which is governed by temperature.

  7. Rotating disk electrode study of borohydride oxidation in a molten eutectic electrolyte and advancements in the intermediate temperature borohydride battery

    Science.gov (United States)

    Wang, Andrew; Gyenge, Előd L.

    2017-08-01

    The electrode kinetics of the NaBH4 oxidation reaction (BOR) in a molten NaOH-KOH eutectic mixture is investigated by rotating disk electrode (RDE) voltammetry on electrochemically oxidized Ni at temperatures between 458 K and 503 K. The BH4- diffusion coefficient in the molten alkali eutectic together with the BOR activation energy, exchange current density, transfer coefficient and number of electrons exchanged, are determined. Electrochemically oxidized Ni shows excellent BOR electrocatalytic activity with a maximum of seven electrons exchanged and a transfer coefficient up to one. X-ray photoelectron spectroscopy (XPS) reveals the formation of NiO as the catalytically active species. The high faradaic efficiency and BOR rate on oxidized Ni anode in the molten electrolyte compared to aqueous alkaline electrolytes is advantageous for power sources. A novel molten electrolyte battery design is investigated using dissolved NaBH4 at the anode and immobilized KIO4 at the cathode. This battery produces a stable open-circuit cell potential of 1.04 V, and a peak power density of 130 mW cm-2 corresponding to a superficial current density of 160 mA cm-2 at 458 K. With further improvements and scale-up borohydride molten electrolyte batteries and fuel cells could be integrated with thermal energy storage systems.

  8. Molten salt-mediated formation of g-C3N4-MoS2 for visible-light-driven photocatalytic hydrogen evolution

    Science.gov (United States)

    Li, Ni; Zhou, Jing; Sheng, Ziqiong; Xiao, Wei

    2018-02-01

    Construction of two-dimensional/two-dimensional (2D/2D) hybrid with well-defined composition and microstructure is a general protocol to achieve high-performance catalysts. We herein report preparation of g-C3N4-MoS2 hybrid by pyrolysis of affordable melamine and (NH4)2MoS4 in molten LiCl-NaCl-KCl at 550 °C. Molten salts are confirmed as ideal reaction media for formation of homogeneous hybrid. Characterizations suggest a strong interaction between g-C3N4 and MoS2 in the hybrid, which results in an enhanced visible-light-driven photocatalytic hydrogen generation of the hybrid with an optimal g-C3N4/MoS2 ratio. The present study highlights the merits of molten salt methods on preparation of 2D photocatalysts and provides a rational design of 2D/2D hybrid catalysts for advanced environmental and energy applications.

  9. Development of Pyro-separation Technology Based on Molten Salt Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Joon Bo; Kim, E. H.; Yoo, J. H. (and others)

    2007-06-15

    The focus of this study was to develop recovery technologies in the pyroprocessing. The unit processes of the project can be classified into two groups; electro-refining process to recover uranium and long-lived nuclides, and cathode processing to produce a metal ingot both from a salt-contained metal and from Cd-contained metal. This project has been carried out for the third phase period of the long-term nuclear R and D program, and focused on the development of key technologies of the pyroprocessing such as electrorefining, draw down and cathode processing. Mock-up system of 1 kg-U/batch was built for performance tests which were conducted to ensure the adequacy of the research and development of the pyroprocessing technology. The experiments were carried out through bench-scale inactive tests except for uranium. In particular, the sticking problem was inevitable in the US's Mark-V and PEER electrorefiner. As a result of this study, a graphite cathode was developed, which exhibited self-scraping behavior and did not need scraping step. The design of an electrorefiner could be simplified, and the throughput was enhanced due to an increased cathode area. A long-term R and D plan was established to develop pyroprocessing technology. In the near term, the results of the current project will be utilized in the next phase of the R and D plan ('07 - '10), and long-term wise, is expected to contribute to recovering fuel materials for transmutation in a Gen-IV reactor.

  10. Development of electrolytic process in molten salt media for light rare-earth metals production. The metallic cerium electrodeposition; Desenvolvimento de processo de eletrolise em meio de sais fundidos para a producao de metais de terras-raras leves. A obtencao do cerio metalico

    Energy Technology Data Exchange (ETDEWEB)

    Restivo, T.A.G.

    1994-12-31

    The development of molten salt process and the respective equipment aiming rare-earth metals recovery was described. In the present case, the liquid cerium metal electrodeposition in a molten electrolytes of cerium chloride and an equimolar mixture of sodium and potassium chlorides in temperatures near 800{sup C} was studied. Due the high chemical reactivity of the rare-earth metals in the liquid state and their molten halides, an electrolytic cell was constructed with controlled atmosphere, graphite crucibles and anodes and a tungsten cathode. The electrolytic process variables and characteristics were evaluated upon the current efficiency and metallic product purity. Based on this evaluations, were suggested some alterations on the electrolytic reactor design and upon the process parameters. (author). 90 refs, 37 figs, 20 tabs.

  11. Analysis of the temperature field around salt diapirs

    DEFF Research Database (Denmark)

    Jensen, Peter Klint

    1990-01-01

    heat flux should be higher over 3D structures. On the other hand the areal extent of the temperature anomaly around the salt structures is less in the 3D case. Calculation examples indicate that low temperature geothermal energy exploitation of the formations around the top of a salt diapir can...

  12. I-NERI ANNUAL TECHNICAL PROGRESS REPORT: 2006-002-K, Separation of Fission Products from Molten LiCl-KCl Salt Used for Electrorefining of Metal Fuels

    Energy Technology Data Exchange (ETDEWEB)

    S. Frank

    2009-09-01

    An attractive alternative to the once-through disposal of electrorefiner salt is to selectively remove the active fission products from the salt and recycle the salt back to the electrorefiner (ER). This would allow salt reuse for some number of cycles before ultimate disposal of the salt in a ceramic waste form. Reuse of ER salt would, thus, greatly reduce the volume of ceramic waste produced during the pyroprocessing of spent nuclear fuel. This final portion of the joint I-NERI research project is to demonstrate the separation of fission products from molten ER salt by two methods previously selected during phase two (FY-08) of this project. The two methods selected were salt/zeolite contacting and rare-earth fission product precipitation by oxygen bubbling. The ER salt used in these tests came from the Mark-IV electrorefiner used to anodically dissolved driver fuel from the EBR-II reactor on the INL site. The tests were performed using the Hot Fuel Dissolution Apparatus (HFDA) located in the main cell of the Hot Fuels Examination Facility (HFEF) at the Materials and Fuels complex on the INL site. Results from these tests were evaluated during a joint meeting of KAERI and INL investigators to provide recommendations as to the future direction of fission product removal from electrorefiner salt that accumulate during spent fuel treatment. Additionally, work continued on kinetic measurements of surrogate quaternary salt systems to provide fundamental kinetics on the ion exchange system and to expand the equilibrium model system developed during the first two phases of this project. The specific objectives of the FY09 I-NERI research activities at the INL include the following: • Perform demonstration tests of the selected KAERI precipitation and INL salt/zeolite contacting processes for fission product removal using radioactive, fission product loaded ER salt • Continue kinetic studies of the quaternary Cs/Sr-LiCl-KCl system to determine the rate of ion

  13. Density of molten salt Mixtures of eutectic LiCl-KCl containing UCl{sub 3}, CeCl{sub 3}, or LaCl{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.; Simpson, M. F. [Dept. of Metallurgical Engineering, University of Utah, Salt Lake City (United States)

    2017-06-15

    Densities of molten salt mixtures of eutectic LiCl-KCl with UCl{sub 3}, CeCl{sub 3}, or LaCl{sub 3} at various concentrations (up to 13 wt%) were measured using a liquid surface displacement probe. Linear relationships between the mixture density and the concentration of the added salt were observed. For LaCl{sub 3} and CeCl{sub 3}, the measured densities were signifcantly higher than those previously reported from Archimedes’ method. In the case of LiCl-KCl-UCl{sub 3}, the data ft the ideal mixture density model very well. For the other salts, the measured densities exceeded the ideal model prediction by about 2%.

  14. Improving Dielectric Properties of PVDF Composites by Employing Surface Modified Strong Polarized BaTiO₃ Particles Derived by Molten Salt Method.

    Science.gov (United States)

    Fu, Jing; Hou, Yudong; Zheng, Mupeng; Wei, Qiaoyi; Zhu, Mankang; Yan, Hui

    2015-11-11

    BaTiO3/polyvinylidene fluoride (BT/PVDF) is the extensive reported composite material for application in modern electric devices. However, there still exists some obstacles prohibiting the further improvement of dielectric performance, such as poor interfacial compatibility and low dielectric constant. Therefore, in depth study of the size dependent polarization and surface modification of BT particle is of technological importance in developing high performance BT/PVDF composites. Here, a facile molten-salt synthetic method has been applied to prepare different grain sized BT particles through tailoring the calcination temperature. The size dependent spontaneous polarizationof BT particle was thoroughly investigated by theoretical calculation based on powder X-ray diffraction Rietveld refinement data. The results revealed that 600 nm sized BT particles possess the strong polarization, ascribing to the ferroelectric size effect. Furthermore, the surface of optimal BT particles has been modified by water-soluble polyvinylprrolidone (PVP) agent, and the coated particles exhibited fine core-shell structure and homogeneous dispersion in the PVDF matrix. The dielectric constant of the resulted composites increased significantly, especially, the prepared composite with 40 vol % BT loading exhibited the largest dielectric constant (65, 25 °C, 1 kHz) compared with the literature values of BT/PVDF at the same concentration of filler. Moreover, the energy storage density of the composites with tailored structure was largely enhanced at the low electric field, showing promising application as dielectric material in energy storage device. Our work suggested that introduction of strong polarized ferroelectric particles with optimal size and construction of core-shell structured coated fillers by PVP in the PVDF matrix are efficacious in improving dielectric performance of composites. The demonstrated approach can also be applied to the design and preparation of other polymers

  15. Ultralow Loading of Silver Nanoparticles on Mn2O3 Nanowires Derived with Molten Salts: A High-Efficiency Catalyst for the Oxidative Removal of Toluene.

    Science.gov (United States)

    Deng, Jiguang; He, Shengnan; Xie, Shaohua; Yang, Huanggen; Liu, Yuxi; Guo, Guangsheng; Dai, Hongxing

    2015-09-15

    Using a mixture of NaNO3 and NaF as molten salt and MnSO4 and AgNO3 as metal precursors, 0.13 wt % Ag/Mn2O3 nanowires (0.13Ag/Mn2O3-ms) were fabricated after calcination at 420 °C for 2 h. Compared to the counterparts derived via the impregnation and poly(vinyl alcohol)-protected reduction routes as well as the bulk Mn2O3-supported silver catalyst, 0.13Ag/Mn2O3-ms exhibited a much higher catalytic activity for toluene oxidation. At a toluene/oxygen molar ratio of 1/400 and a space velocity of 40,000 mL/(g h), toluene could be completely oxidized into CO2 and H2O at 220 °C over the 0.13Ag/Mn2O3-ms catalyst. Furthermore, the toluene consumption rate per gram of noble metal over 0.13Ag/Mn2O3-ms was dozens of times as high as that over the supported Au or AuPd alloy catalysts reported in our previous works. It is concluded that the excellent catalytic activity of 0.13Ag/Mn2O3-ms was associated with its high dispersion of silver nanoparticles on the surface of Mn2O3 nanowires and good low-temperature reducibility. Due to high efficiency, good stability, low cost, and convenient preparation, 0.13Ag/Mn2O3-ms is a promising catalyst for the practical removal of volatile organic compounds.

  16. Heterogeneity of equilibrium molten globule state of cytochrome c induced by weak salt denaturants under physiological condition.

    Directory of Open Access Journals (Sweden)

    Hamidur Rahaman

    Full Text Available While many proteins are recognized to undergo folding via intermediate(s, the heterogeneity of equilibrium folding intermediate(s along the folding pathway is less understood. In our present study, FTIR spectroscopy, far- and near-UV circular dichroism (CD, ANS and tryptophan fluorescence, near IR absorbance spectroscopy and dynamic light scattering (DLS were used to study the structural and thermodynamic characteristics of the native (N, denatured (D and intermediate state (X of goat cytochorme c (cyt-c induced by weak salt denaturants (LiBr, LiCl and LiClO4 at pH 6.0 and 25°C. The LiBr-induced denaturation of cyt-c measured by Soret absorption (Δε400 and CD ([θ]409, is a three-step process, N ↔ X ↔ D. It is observed that the X state obtained along the denaturation pathway of cyt-c possesses common structural and thermodynamic characteristics of the molten globule (MG state. The MG state of cyt-c induced by LiBr is compared for its structural and thermodynamic parameters with those found in other solvent conditions such as LiCl, LiClO4 and acidic pH. Our observations suggest: (1 that the LiBr-induced MG state of cyt-c retains the native Met80-Fe(III axial bond and Trp59-propionate interactions; (2 that LiBr-induced MG state of cyt-c is more compact retaining the hydrophobic interactions in comparison to the MG states induced by LiCl, LiClO4 and 0.5 M NaCl at pH 2.0; and (3 that there exists heterogeneity of equilibrium intermediates along the unfolding pathway of cyt-c as highly ordered (X1, classical (X2 and disordered (X3, i.e., D ↔ X3 ↔ X2 ↔ X1 ↔ N.

  17. High-temperature molten-carbonate fuel cells. Technical progress report, January-March 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    Progress on the design, development, fabrication, performance testing, and modeling of molten carbonate fuel cells is reported. Component development including electrode structures, electrolyte powder, electrolyte tiles, and cell frame and current collectors is described. (WHK)

  18. Design of a heterogeneous subcritical nuclear reactor with molten salts based on thorium; Diseno de un reactor nuclear subcritico heterogeneo con sales fundidas a base de torio

    Energy Technology Data Exchange (ETDEWEB)

    Medina C, D.; Hernandez A, P.; Letechipia de L, C.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Sajo B, L., E-mail: dmedina_c@hotmail.com [Universidad Simon Bolivar, Laboratorio de Fisica Nuclear, Apdo. Postal 89000, Caracas 1080-A (Venezuela, Bolivarian Republic of)

    2015-09-15

    This paper presents the design of a heterogeneous subcritical nuclear reactor with molten salts based on thorium, with graphite moderator and a {sup 252}Cf source, whose dose levels at the periphery allows its use in teaching and research activities. The design was realized by the Monte Carlo method, where the geometry, dimensions and the fuel was varied in order to obtain the best design. The result was a cubic reactor of 110 cm of side, with graphite moderator and reflector. In the central part having 9 ducts of 3 cm in diameter, eight of them are 110 cm long, which were placed on the Y axis; the separation between each duct is 10 cm. The central duct has 60 cm in length and this contains the {sup 252}Cf source, also there are two irradiation channels and the other six contain a molten salt ({sup 7}LiF - BeF{sub 2} - ThF{sub 4} - UF{sub 4}) as fuel. For the design the k{sub eff} was calculated, neutron spectra and ambient dose equivalent. In the first instance the above was calculated for a virgin fuel, was called case 1; then a percentage of {sup 233}U was used and the percentage of Th was decreased and was called case 2. This with the purpose of comparing two different fuels operating within the reactor. For the two irradiation ducts three positions are used: center, back and front, in each duct in order to have different flows. (Author)

  19. A novel molten-salt electrochemical cell for investigating the reduction of uranium dioxide to uranium metal by lithium using in situ synchrotron radiation

    Science.gov (United States)

    Brown, Leon D.; Abdulaziz, Rema; Jervis, Rhodri; Bharath, Vidal; Mason, Thomas J.; Reinhard, Christina; Connor, Leigh D.; Inman, Douglas; Brett, Daniel J. L.; Shearing, Paul R.

    2017-01-01

    A novel electrochemical cell has been designed and built to allow for in situ energy-dispersive X-ray diffraction measurements to be made during reduction of UO2 to U metal in LiCl–KCl at 500°C. The electrochemical cell contains a recessed well at the bottom of the cell into which the working electrode sits, reducing the beam path for the X-rays through the molten-salt and maximizing the signal-to-noise ratio from the sample. Lithium metal was electrodeposited onto the UO2 working electrode by exposing the working electrode to more negative potentials than the Li deposition potential of the LiCl–KCl eutectic electrolyte. The Li metal acts as a reducing agent for the chemical reduction of UO2 to U, which appears to proceed to completion. All phases were fitted using Le Bail refinement. The cell is expected to be widely applicable to many studies involving molten-salt systems. PMID:28244437

  20. The chemistry of molten salt mixtures: application to the reductive extraction of lanthanides and actinides by a liquid metal; Chimie des melanges de sels fondus. Application a l'extraction reductrice d'actinides et de lanthanides par un metal liquide

    Energy Technology Data Exchange (ETDEWEB)

    Finne, J

    2005-10-15

    The design of a process of An/Ln separation by liquid - liquid extraction can be used for on-line purification of the molten salt in a molten salt nuclear reactor (Generation IV) as well as reprocessing various spent fuels. In order to establish the chemical properties of An and Ln in molten salt mediums, E - pO{sub 2} - diagrams were established for the relevant chemical elements. With the purpose of checking the possibilities of separating the An from Ln, the real activity coefficients in liquid metals were measured. An experimental protocol was developed and validated on the Gd/Ga system. It was then transferred to radioactive environment to measure the activity coefficient of Pu in Ga. The results made it possible to estimate the effectiveness of the Pu extraction and its separation from Gd and Ce. The selectivity was shown to decrease with the temperature and Al and Ga showed a good selectivity between Pu and the Ce in fluoride medium. (author)

  1. Materials corrosion of high temperature alloys immersed in 600C binary nitrate salt.

    Energy Technology Data Exchange (ETDEWEB)

    Kruizenga, Alan Michael; Gill, David Dennis; LaFord, Marianne Elizabeth

    2013-03-01

    Thirteen high temperature alloys were immersion tested in a 60/40 binary nitrate salt. Samples were interval tested up to 3000 hours at 600ÀC with air as the ullage gas. Chemical analysis of the molten salt indicated lower nitrite concentrations present in the salt, as predicted by the equilibrium equation. Corrosion rates were generally low for all alloys. Corrosion products were identified using x-ray diffraction and electron microprobe analysis. Fe-Cr based alloys tended to form mixtures of sodium and iron oxides, while Fe-Ni/Cr alloys had similar corrosion products plus oxides of nickel and chromium. Nickel based alloys primarily formed NiO, with chromium oxides near the oxide/base alloy interface. In625 exhibited similar corrosion performance in relation to previous tests, lending confidence in comparisons between past and present experiments. HA230 exhibited internal oxidation that consisted of a nickel/chromium oxide. Alloys with significant aluminum alloying tended to exhibit superior performance, due formation of a thin alumina layer. Soluble corrosion products of chromium, molybdenum, and tungsten were also formed and are thought to be a significant factor in alloy performance.

  2. Electrical conductivity optimization of the Na3AlF6-Al2O3-Sm2O3 molten salts system for Al-Sm intermediate binary alloy production

    Science.gov (United States)

    Liao, Chun-fa; Jiao, Yun-fen; Wang, Xu; Cai, Bo-qing; Sun, Qiang-chao; Tang, Hao

    2017-09-01

    Metal Sm has been widely used in making Al-Sm magnet alloy materials. Conventional distillation technology to produce Sm has the disadvantages of low productivity, high costs, and pollution generation. The objective of this study was to develop a molten salt electrolyte system to produce Al-Sm alloy directly, with focus on the electrical conductivity and optimal operating conditions to minimize the energy consumption. The continuously varying cell constant (CVCC) technique was used to measure the conductivity for the Na3AlF6-AlF3-LiF-MgF2-Al2O3-Sm2O3 electrolysis medium in the temperature range from 905 to 1055°C. The temperature ( t) and the addition of Al2O3 ( W(Al2O3)), Sm2O3 ( W(Sm2O3)), and a combination of Al2O3 and Sm2O3 into the basic fluoride system were examined with respect to their effects on the conductivity ( κ) and activation energy. The experimental results showed that the molten electrolyte conductivity increases with increasing temperature ( t) and decreases with the addition of Al2O3 or Sm2O3 or both. We concluded that the optimal operation conditions for Al-Sm intermediate alloy production in the Na3AlF6-AlF3-LiF-MgF2-Al2O3-Sm2O3 system are W(Al2O3) + W(Sm2O3) = 3wt%, W(Al2O3): W(Sm2O3) = 7:3, and a temperature of 965 to 995°C, which results in satisfactory conductivity, low fluoride evaporation losses, and low energy consumption.

  3. Fluoride Salt-Cooled High-Temperature Demonstration Reactor Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Betzler, Benjamin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carbajo, Juan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hale, Richard Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrell, Jerry W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wysocki, Aaron J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-02-01

    The fluoride salt-cooled high-temperature reactor (FHR) demonstration reactor (DR) is a concept for a salt-cooled reactor with 100 megawatts of thermal output (MWt). It would use tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks. FLiBe (2 LiF-BeF2) is the reference primary coolant. The FHR DR is designed to be small, simple, and affordable. Development of the FHR DR is a necessary intermediate step to enable near-term commercial FHRs. Lower risk technologies are purposely included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. These technologies include TRISO particle fuel, replaceable core structural material, the use of that same material for the primary and intermediate loops, and tube-and-shell primary-to-intermediate heat exchangers. Several preconceptual and conceptual design efforts that have been conducted on FHR concepts bear a significant influence on the FHR DR design. Specific designs include the Oak Ridge National Laboratory (ORNL) advanced high-temperature reactor (AHTR) with 3400/1500 MWt/megawatts of electric output (MWe), as well as a 125 MWt small modular AHTR (SmAHTR) from ORNL. Other important examples are the Mk1 pebble bed FHR (PB-FHR) concept from the University of California, Berkeley (UCB), and an FHR test reactor design developed at the Massachusetts Institute of Technology (MIT). The MIT FHR test reactor is based on a prismatic fuel platform and is directly relevant to the present FHR DR design effort. These FHR concepts are based on reasonable assumptions for credible commercial prototypes. The FHR DR concept also directly benefits from the operating experience of the Molten Salt Reactor Experiment (MSRE), as well as the detailed design efforts for a large molten salt reactor concept and its breeder variant, the Molten Salt Breeder Reactor. The FHR DR technology is most representative of the 3400 MWt AHTR

  4. High-temperature vacuum distillation separation of plutonium waste salts

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, E. [Los Alamos National Lab., NM (United States)

    1996-10-01

    In this task, high-temperature vacuum distillation separation is being developed for residue sodium chloride-potassium chloride salts resulting from past pyrochemical processing of plutonium. This process has the potential of providing clean separation of the salt and the actinides with minimal amounts of secondary waste generation. The process could produce chloride salt that could be discarded as low-level waste (LLW) or low actinide content transuranic (TRU) waste, and a concentrated actinide oxide powder that would meet long-term storage standards (DOE-DTD-3013-94) until a final disposition option for all surplus plutonium is chosen.

  5. Electrolytic reduction runs of 0.6 kg scale-simulated oxide fuel in a Li2O-LiCl molten salt using metal anode shrouds

    Science.gov (United States)

    Choi, Eun-Young; Lee, Jeong; Heo, Dong Hyun; Lee, Sang Kwon; Jeon, Min Ku; Hong, Sun Seok; Kim, Sung-Wook; Kang, Hyun Woo; Jeon, Sang-Chae; Hur, Jin-Mok

    2017-06-01

    Ten electrolytic reduction or oxide reduction (OR) runs of a 0.6 kg scale-simulated oxide fuel in a Li2O-LiCl molten salt at 650 °C were conducted using metal anode shrouds. During this procedure, an anode shroud surrounds a platinum anode and discharges hot oxygen gas from the salt to outside of the OR apparatus, thereby preventing corrosion of the apparatus. In this study, a number of anode shrouds made of various metals were tested. Each metallic anode shroud consisted of a lower porous shroud for the salt phase and an upper nonporous shroud for the gas phase. A stainless steel (STS) wire mesh with five-ply layer was a material commonly used for the lower porous shroud for the OR runs. The metals tested for the upper nonporous shroud in the different OR runs are STS, nickel, and platinum- or silver-lined nickel. The lower porous shroud showed no significant damage during two consecutive OR runs, but exhibited signs of damage from three or more runs due to thermal stress. The upper nonporous shrouds made up of either platinum- or silver-lined nickel showed excellent corrosion resistance to hot oxygen gas while STS or nickel without any platinum or silver lining exhibited poor corrosion resistance.

  6. The Influence of Eddy Effect of Coils on Flow and Temperature Fields of Molten Droplet in Electromagnetic Levitation Device

    Science.gov (United States)

    Feng, Lin; Shi, Wan-Yuan

    2015-08-01

    In this work, the influence of eddy effect of coils on magnetic, flow, and temperature fields in an electromagnetically levitated molten droplet was investigated by a serial of axisymmetric numerical simulations. In an electromagnetic levitation device, both metal droplet and coils are conductive materials, therefore the distributions of current density in them should be non-uniform as a result of the eddy effect. However, in previous works, the eddy effect was considered alone in metal droplet but ignored in coils usually. As the distance of coils and metal droplet is several millimetres in general, the non-uniform distribution of current density in coils actually gives important influences on calculations of magnetic, flow, and temperature fields. Here, we consider the eddy effect both in metal droplet as well as that in coils simultaneously. Lifting force, absorbed power, fluid flow, and temperature field inside a 4-mm radius molten copper droplet as a typical example are then calculated and analyzed carefully under such condition. The results show that eddy effect leads to higher magnetic force, velocity, and temperature in both levitating and melting processes than those when the eddy effect is ignored. What is more, such influence increases as the distance of droplet and coils becomes closer, which corresponds to experimental measurement. Therefore, we suggest that eddy effect of coils should be considered in numerical simulation on this topic to obtain more reliable result.

  7. On the Burning of Plutonium Originating from Light Water Reactor Use in a Fast Molten Salt Reactor—A Neutron Physical Study

    Directory of Open Access Journals (Sweden)

    Bruno Merk

    2015-11-01

    Full Text Available An efficient burning of the plutonium produced during light water reactor (LWR operation has the potential to significantly improve the sustainability indices of LWR operations. The work offers a comparison of the efficiency of Pu burning in different reactor configurations—a molten salt fast reactor, a LWR with mixed oxide (MOX fuel, and a sodium cooled fast reactor. The calculations are performed using the HELIOS 2 code. All results are evaluated against the plutonium burning efficiency determined in the Consommation Accrue de Plutonium dans les Réacteurs à Neutrons RApides (CAPRA project. The results are discussed with special view on the increased sustainability of LWR use in the case of successful avoidance of an accumulation of Pu which otherwise would have to be forwarded to a final disposal. A strategic discussion is given about the unavoidable plutonium production, the possibility to burn the plutonium to avoid a burden for the future generations which would have to be controlled.

  8. Molten salt medium synthesis of wormlike platinum silver nanotubes without any organic surfactant or solvent for methanol and formic acid oxidation.

    Science.gov (United States)

    Zhao, Haidong; Liu, Rui; Guo, Yong; Yang, Shengchun

    2015-12-14

    In the current research, the PtxAgy (x/y = 86/14, 79/21, 52/48, 21/79, 11/89) nanoparticles (NPs) are synthesized in the KNO3-LiNO3 molten salts without using any organic surfactant or solvent. The SEM results suggest that when the content of Ag is higher than 48%, the wormlike PtxAgy nanotubes (NTs) can be synthesized. The diameter of the PtxAgyNTs shows a slow decrease with the increase of Ag content. The TEM and HRTEM results indicate that the growth of hollow PtxAgy NTs undergoes an oriented attachment process and a Kirkendall effect approach. The results of cyclic voltammetry (CV) measurement indicate that the Pt52Ag48 catalyst presents a remarkable enhancement for methanol electrooxidation, while the Pt86Ag14 catalyst prefers electrochemically oxidizing formic acid compared with that of the commercially available Pt black.

  9. An Electrochemical Study of Lanthanide Elements in LiCl-KCl Eutectic Molten Salt to Convert All The Spent Nuclear Fuel into Low and Intermediate Level Waste

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Judong; Hwang, Il Soon [Seoul National Univ., Seoul (Korea, Republic of); Park, Byung Gi; Hong, Kwang [Soonchunhyang Univ., Asan (Korea, Republic of)

    2010-07-01

    An additional unit step for the residual actinide recovery, designated as 'Pyro-Reisodex', was proposed to convert all the spent nuclear waste into low and intermediated level water by achieving high decontamination factor for TRH elements. The measurement of basic material properties of lanthanide elements in LiCl-KCl eutectic molten salt is necessary to evaluate the performance of the step. Thus, standard potential, activity coefficient, and diffusion coefficient of lanthanide elements is being tried to determine using conventional electrochemical methods. The cycle voltammetry was measured for LiCl-KCl-SmCl{sub 3} mixture and the standard potential, activity coefficient, and diffusion coefficient of this system was determined from the voltammogram data. The calculated data was well-agreed with reference. Based on this results, another techniques for other lanthanide elements will be applied for better understanding of LiCl-KCl-LnCl{sub n} system.

  10. Solid matrix transformation and tracer addition using molten ammonium bifluoride salt as a sample preparation method for laser ablation inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Grate, Jay W; Gonzalez, Jhanis J; O'Hara, Matthew J; Kellogg, Cynthia M; Morrison, Samuel S; Koppenaal, David W; Chan, George C-Y; Mao, Xianglei; Zorba, Vassilia; Russo, Richard E

    2017-09-08

    Solid sampling and analysis methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), are challenged by matrix effects and calibration difficulties. Matrix-matched standards for external calibration are seldom available and it is difficult to distribute spikes evenly into a solid matrix as internal standards. While isotopic ratios of the same element can be measured to high precision, matrix-dependent effects in the sampling and analysis process frustrate accurate quantification and elemental ratio determinations. Here we introduce a potentially general solid matrix transformation approach entailing chemical reactions in molten ammonium bifluoride (ABF) salt that enables the introduction of spikes as tracers or internal standards. Proof of principle experiments show that the decomposition of uranium ore in sealed PFA fluoropolymer vials at 230 °C yields, after cooling, new solids suitable for direct solid sampling by LA. When spikes are included in the molten salt reaction, subsequent LA-ICP-MS sampling at several spots indicate that the spikes are evenly distributed, and that U-235 tracer dramatically improves reproducibility in U-238 analysis. Precisions improved from 17% relative standard deviation for U-238 signals to 0.1% for the ratio of sample U-238 to spiked U-235, a factor of over two orders of magnitude. These results introduce the concept of solid matrix transformation (SMT) using ABF, and provide proof of principle for a new method of incorporating internal standards into a solid for LA-ICP-MS. This new approach, SMT-LA-ICP-MS, provides opportunities to improve calibration and quantification in solids based analysis. Looking forward, tracer addition to transformed solids opens up LA-based methods to analytical methodologies such as standard addition, isotope dilution, preparation of matrix-matched solid standards, external calibration, and monitoring instrument drift against external calibration standards.

  11. Molten carbonate fuel cells: A high temperature fuel cell on the edge to commercialization

    Science.gov (United States)

    Bischoff, Manfred

    The Molten Carbonate Fuel Cell (MCFC) technology has been developed in USA, Japan, Korea and Europe for many years. What has started about 30 years ago as an interesting laboratory object has now matured to a potential alternative to conventional power generation systems. Especially the combined heat and power (CHP) generation is an area, where MCFC power plants can be applied with great advantage, due to the high efficiencies which can be achieved. It was demonstrated by several manufacturers that in the sub-MW region MCFC power plants can reach electrical efficiencies of 47%. By making use of the heat generated by the system, total efficiencies of more than 80% can be achieved. The present paper will discuss some aspects of the development work going on with a focus on the role of the molten carbonate contained in the cells. An outlook will be given for the future prospects of this young technology in a changing energy market.

  12. Fundamental Properties of Salts

    Energy Technology Data Exchange (ETDEWEB)

    Toni Y Gutknecht; Guy L Fredrickson

    2012-11-01

    Thermal properties of molten salt systems are of interest to electrorefining operations, pertaining to both the Fuel Cycle Research & Development Program (FCR&D) and Spent Fuel Treatment Mission, currently being pursued by the Department of Energy (DOE). The phase stability of molten salts in an electrorefiner may be adversely impacted by the build-up of fission products in the electrolyte. Potential situations that need to be avoided, during electrorefining operations, include (i) fissile elements build up in the salt that might approach the criticality limits specified for the vessel, (ii) electrolyte freezing at the operating temperature of the electrorefiner due to changes in the liquidus temperature, and (iii) phase separation (non-homogenous solution). The stability (and homogeneity) of the phases can be monitored by studying the thermal characteristics of the molten salts as a function of impurity concentration. Simulated salt compositions consisting of the selected rare earth and alkaline earth chlorides, with a eutectic mixture of LiCl-KCl as the carrier electrolyte, were studied to determine the melting points (thermal characteristics) using a Differential Scanning Calorimeter (DSC). The experimental data were used to model the liquidus temperature. On the basis of the this data, it became possible to predict a spent fuel treatment processing scenario under which electrorefining could no longer be performed as a result of increasing liquidus temperatures of the electrolyte.

  13. Hot corrosion behavior of nanostructured Gd2O3 doped YSZ thermal barrier coating in presence of Na2SO4 + V2O5 molten salts

    Directory of Open Access Journals (Sweden)

    Yixiong Wang

    2017-08-01

    Full Text Available Nickel-based superalloy DZ125 was first sprayed with a NiCrAlY bond coat and followed with a nanostructured 2 mol% Gd2O3−4.5 mol% Y2O3-ZrO2 (2GdYSZ topcoat using air plasma spraying (APS. Hot corrosion behavior of the as-sprayed thermal barrier coatings (TBCs were investigated in the presence of 50 wt% Na2SO4 + 50 wt% V2O5 as the corrosive molten salt at 900 °C for 100 h. The analysis results indicate that Gd doped YVO4 and m-ZrO2 crystals were formed as corrosion products due to the reaction of the corrosive salts with stabilizers (Y2O3, Gd2O3 of zirconia. Cross-section morphology shows that a thin layer called TGO was formed at the bond coat/topcoat interface. After hot corrosion test, the proportion of m-ZrO2 phase in nanostructured 2GdYSZ coating is lower than that of nano-YSZ coating. The result reveals that nanostructured 2GdYSZ coating exhibits a better hot corrosion resistance than nano-YSZ coating.

  14. Corrosion of high temperature alloys in solar salt at 400, 500, and 680ÀC.

    Energy Technology Data Exchange (ETDEWEB)

    Kruizenga, Alan Michael; Gill, David Dennis; LaFord, Marianne Elizabeth

    2013-09-01

    Corrosion tests at 400, 500, and 680ÀC were performed using four high temperature alloys; 347SS, 321SS In625, and HA230. Molten salt chemistry was monitored over time through analysis of nitrite, carbonate, and dissolved metals. Metallography was performed on alloys at 500 and 680ÀC, due to the relatively thin oxide scale observed at 400ÀC. At 500ÀC, corrosion of iron based alloys took the form of chromium depletion and iron oxides, while nickel based alloys also had chromium depletion and formation of NiO. Chromium was detected in relatively low concentrations at this temperature. At 680ÀC, significant surface corrosion occurred with metal losses greater than 450microns/year after 1025hours of exposure. Iron based alloys formed complex iron, sodium, and chromium oxides. Some data suggests grain boundary chromium depletion of 321SS. Nickel alloys formed NiO and metallic nickel corrosion morphologies, with HA230 displaying significant internal oxidation in the form of chromia. Nickel alloys both exhibited worse corrosion than iron based alloys likely due to preferential dissolution of chromium, molybdenum, and tungsten.

  15. Hot corrosion behaviour of Fe-Al based intermetallic in molten NaVO{sub 3} salt

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa-Medina, M.A. [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas Norte No. 152, Col. San Bartolo Atepehuacan, C.P. 07730 Mexico, D.F. (Mexico)], E-mail: maespin@imp.mx; Carbajal-De la Torre, G. [Facultad de Ingenieria Mecanica, UMSNH, Santiago Tapia 403 Col. Centro, C.P. 58098 Morelia, Michoacan (Mexico); Liu, H.B. [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas Norte No. 152, Col. San Bartolo Atepehuacan, C.P. 07730 Mexico, D.F. (Mexico); Martinez-Villafane, A. [CIMAV, Complejo Industrial Chihuahua, Chihuahua (Mexico); Gonzalez-Rodriguez, J.G. [CIMAV, Complejo Industrial Chihuahua, Chihuahua (Mexico); UAEM-CIICAP, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos (Mexico)

    2009-06-15

    The hot corrosion of sprayed Fe-40 (at.%)Al intermetallic alloy with additions of boron and alumina whiskers in molten NaVO{sub 3} at 700 deg. C has been evaluated by potentiodynamic polarization curves and electrochemical impedance spectroscopy, EIS, techniques. For short exposure times, the corrosion mechanism under these conditions was observed to be controlled by an activation process, whereas for longer exposure times, the corrosion process was under diffusion control due to the growing of an Al{sub 2}O{sub 3} oxide scale, which made the diffusion of both reducing and oxidizing species through the scale to the alloy or scale surfaces more difficult. Equivalent electric model used to simulate the EIS data showed that a finite length Warburg diffusion could properly characterize the diffusion process, which confirmed the formation of a compact corrosion product scales containing rich aluminium oxide. Thus, the corrosion process was under diffusion control of aggressive ions through the formed scale. The electrochemical study was complemented by scanning electronic microscopy characterization and micro chemical analysis.

  16. Near-Net-Shape Production of Hollow Titanium Alloy Components via Electrochemical Reduction of Metal Oxide Precursors in Molten Salts

    Science.gov (United States)

    Hu, Di; Xiao, Wei; Chen, George Z.

    2013-04-01

    Metal oxide precursors (ca. 90 wt pct Ti, 6 wt pct Al, and 4 wt pct V) were prepared with a hollow structure in various shapes such as a sphere, miniature golf club head, and cup using a one-step solid slip-casting process. The precursors were then electro-deoxidized in molten calcium chloride [3.2 V, 1173 K (900 °C)] against a graphite anode. After 24 hours of electrolysis, the near-net-shape Ti-6Al-4V product maintained its original shape with controlled shrinkage. Oxygen contents in the Ti-6Al-4V components were typically below 2000 ppm. The maximum compressive stress and modulus of electrolytic products obtained in this work were approximately 243 MPa and 14 GPa, respectively, matching with the requirement for medical implants. Further research directions are discussed for mechanical improvement of the products via densification during or after electrolysis. This simple, fast, and energy-efficient near-net-shape manufacturing method could allow titanium alloy components with desired geometries to be prepared directly from a mixture of metal oxides, promising an innovative technology for the low-cost production of titanium alloy components.

  17. An integrated model of tritium transport and corrosion in Fluoride Salt-Cooled High-Temperature Reactors (FHRs) – Part I: Theory and benchmarking

    Energy Technology Data Exchange (ETDEWEB)

    Stempien, John D., E-mail: john.stempien@inl.gov; Ballinger, Ronald G., E-mail: hvymet@mit.edu; Forsberg, Charles W., E-mail: cforsber@mit.edu

    2016-12-15

    Highlights: • A model was developed for use with FHRs and benchmarked with experimental data. • Model results match results of tritium diffusion experiments. • Corrosion simulations show reasonable agreement with molten salt loop experiments. • This is the only existing model of tritium transport and corrosion in FHRs. • Model enables proposing and evaluating tritium control options in FHRs. - Abstract: The Fluoride Salt-Cooled High-Temperature Reactor (FHR) is a pebble bed nuclear reactor concept cooled by a liquid fluoride salt known as “flibe” ({sup 7}LiF-BeF{sub 2}). A model of TRITium Diffusion EvolutioN and Transport (TRIDENT) was developed for use with FHRs and benchmarked with experimental data. TRIDENT is the first model to integrate the effects of tritium production in the salt via neutron transmutation, with the effects of the chemical redox potential, tritium mass transfer, tritium diffusion through pipe walls, tritium uptake by graphite, selective chromium attack by tritium fluoride, and corrosion product mass transfer. While data from a forced-convection polythermal loop of molten salt containing tritium did not exist for comparison, TRIDENT calculations were compared to data from static salt diffusion tests in flibe and flinak (0.465LiF-0.115NaF-0.42KF) salts. In each case, TRIDENT matched the transient and steady-state behavior of these tritium diffusion experiments. The corrosion model in TRIDENT was compared against the natural convection flow-loop experiments at the Oak Ridge National Laboratory (ORNL) from the 1960s and early 1970s which used Molten Salt Reactor Experiment (MSRE) fuel-salt containing UF{sub 4}. Despite the lack of data required by TRIDENT for modeling the loops, some reasonable results were obtained. The TRIDENT corrosion rates follow the experimentally observed dependence on the square root of the product of the chromium solid-state diffusion coefficient with time. Additionally the TRIDENT model predicts mass

  18. Environmental health and safety plan for the Molten Salt Reactor Experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Burman, S.N.; Tiner, P.F.; Gosslee, R.C.

    1998-01-01

    The Lockheed Martin Energy Systems, Inc. (Energy Systems) policy is to provide a safe and healthful workplace for all employees and subcontractors. The accomplishment of this policy requires that operations at the Molten Salt Reactor Experiment (MSRE) facility at the Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) are guided by an overall plan and consistent proactive approach to environmental protection and safety and health (S and H) issues. The policy and procedures in this plan apply to all MSRE operations. The provisions of this plan are to be carried out whenever activities are initiated at the MSRE that could be a threat to human health or the environment. This plan implements a policy and establishes criteria for the development of procedures for day-to-day operations to prevent or minimize any adverse impact to the environment and personnel safety and health and to meet standards that define acceptable management of hazardous and radioactive materials and wastes. The plan is written to utilize past experience and the best management practices to minimize hazards to human health or the environment from events such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to the air.

  19. Synthesis of Bi{sub 25}FeO{sub 39} by molten salts method and its Mössbauer spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Flores Morales, Shirley Saraí; León Flores, Jesús A.; Pérez Mazariego, José Luis, E-mail: mazariego@ciencias.unam.mx; Marquina Fábrega, Vivianne; Gómez González, Raúl W.

    2017-01-01

    A sample of Bi{sub 25}FeO{sub 39} was synthesized by the molten salts method in 2 h at 750 °C with KCl-KBr as reaction media. The sample was characterized with X-ray powder diffraction and Mössbauer spectroscopy. The Rietveld refinement of the X-ray diffraction confirms that a sillenite type structure with a cell parameter a=10.190(4) Å was achieved, with only small traces of Bi{sub 2}O{sub 3}. In order to get a Mössbauer spectrum with a good signal to noise ratio, the synthesis was made using 95% enriched α–{sup 57}Fe{sub 2}O{sub 3}. To our knowledge, this is the first time that a Mössbauer spectrum for the Bi{sub 25}FeO{sub 39} has been recorded. The nonappearance of a magnetic sextet confirms its paramagnetic behavior. The measured Mössbauer parameters (IS=0.20±0.004 mm/s and QS=0.2±0.07 mm/s) correspond to Fe{sup +3} in very symmetric surroundings, and rule out some interpretations given to the doublet observed in some Mössbauer spectra of BiFeO{sub 3}.

  20. Electrochemistry of vanadium(II and the electrodeposition of aluminum-vanadium alloys in the aluminum chloride-1-ethyl-3-methylimidazolium chloride molten salt

    Directory of Open Access Journals (Sweden)

    Tsuda T.

    2003-01-01

    Full Text Available The electrochemical behavior of vanadium(II was examined in the 66.7-33.3 mole percent aluminum chloride-1-ethyl-3-methylimidazolium chloride molten salt containing dissolved VCl2 at 353 K. Voltammetry experiments revealed that V(II could be electrochemically oxidized to V(III and V(IV. However at slow scan rates the V(II/V(III electrode reaction is complicated by the rapid precipitation of V(III as VCl3. The reduction of V(II occurs at potentials considerably negative of the Al(III/Al electrode reaction, and Al-V alloys cannot be electrodeposited from this melt. However electrodeposition experiments conducted in VCl2-saturated melt containing the additive, 1-ethyl-3-methylimidazolium tetrafluoroborate, resulted in Al-V alloys. The vanadium content of these alloys increased with increasing cathodic current density or more negative applied potentials. X-ray analysis of Al-V alloys that were electrodeposited on a rotating copper wire substrate indicated that these alloys did not form or contain an intermetallic compound, but were non-equilibrium or metastable solid solutions. The chloride-pitting corrosion properties of these alloys were examined in aqueous NaCl by using potentiodynamic polarization techniques. Alloys containing ~10 a/o vanadium exhibited a pitting potential that was 0.3 V positive of that for pure aluminum.

  1. Temperature dependence of reaction rate for molten aluminum-silica system; Aruminiumu yoyu to shirika no hanno sokudo no ondo izonsei

    Energy Technology Data Exchange (ETDEWEB)

    Tsujikawa, M.; Kawamoto, M. [Osaka Prefectural Univ., Sakai (Japan). Coll. of Engineering; Hino, M. [Okayama Prefectural Inst. of Industrial Research, Okayama (Japan)

    1997-01-25

    To know the temperature dependence of reaction rate is a premise in case of making the slurries for particle dispersed composites by this method. So far the reports on the reaction rate between molten aluminium and silica were limited to the results in a comparative low temperature (below 1075 K) aimed to suppress the deterioration due to mainly composite particles and silica reaction as a fiber. In this experiment, it was clarified that the effect of the temperature on the thermit reaction rate between molten aluminium and silica particle, and considered the clarified the reaction suppression mechanism in high temperature. Reacted depth was measured for amorphous silica rods immersed in pure molten Al or Al-5 mass% Mg alloy at various temperatures up to 1273 K for a certain period. As a result, it was clarified that the reaction rate peaked around 1173 K, and the rate at 1273 K was 10 times lower than that at the peak temperature, and the reacted substrates formed above the peak temperature had coarser microstructure than those formed below the peak temperature and so forth. 8 refs., 10 figs.

  2. Effect of Melt Temperature on Surface Films Formed on Molten AZ91D Alloy Protected by Graphite Powder

    Science.gov (United States)

    Li, Weihong; Zhou, Jixue; Ma, Baichang; Wang, Jinwei; Wu, Jianhua; Yang, Yuansheng

    2017-08-01

    Graphite powder was adopted to prevent AZ91D alloy from oxidizing during melting and casting. The microstructure of the resultant surface films, formed at 933 K, 973 K, 1013 K, and 1053 K (660 °C, 700 °C, 740 °C, and 780 °C) for 30 minutes, was investigated by scanning electron microscopy, energy dispersive spectrometer, and X-ray diffraction, and the phase composition of the surface films was analyzed by the standard Gibbs free energy change of the reactions between the graphite powder, the alloy melt, and the ambient atmosphere. The effect and mechanism of melt temperature on the resultant surface films were also discussed. The results indicated that the surface films, of which the surface morphology comprised folds and wrinkles, were composed of a protective layer and MgF2 particles. The protective layer was contributive to the prevention of the molten alloy from oxidizing, and consisted of magnesium, oxygen, fluorine, carbon, and a small amount of aluminium existing in the form of MgO, MgF2, C, and MgAl2O4. The layer thickness was 200 to 900 nm. The melt temperature may affect the surface films through the increased interaction between the graphite powder, the melt, and the ambient atmosphere. The oxygen content and thickness of the protective layer decreased and then increased, while the height of the folds increased with melt temperature.

  3. Aerodynamic levitator for in situ x-ray structure measurements on high temperature and molten nuclear fuel materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, J. K. R.; Alderman, O. L. G. [Materials Development, Inc., Arlington Heights, Illinois 60004 (United States); Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Tamalonis, A.; Sendelbach, S. [Materials Development, Inc., Arlington Heights, Illinois 60004 (United States); Benmore, C. J. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Hebden, A.; Williamson, M. A. [Nuclear Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2016-07-15

    An aerodynamic levitator with carbon dioxide laser beam heating was integrated with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. The chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The sample environment was integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. The system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.

  4. Aerodynamic levitator for in situ x-ray structure measurements on high temperature and molten nuclear fuel materials.

    Science.gov (United States)

    Weber, J K R; Tamalonis, A; Benmore, C J; Alderman, O L G; Sendelbach, S; Hebden, A; Williamson, M A

    2016-07-01

    An aerodynamic levitator with carbon dioxide laser beam heating was integrated with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. The chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The sample environment was integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. The system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.

  5. Monitoring the Degradation Process of Inconel 600 and its Aluminide Coatings under Molten Sulfate Film with Thermal Cycles by Electrochemical Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Take, S.; Yoshinaga, S.; Yanagita, M.; Itoi, Y. [Oyama College, Tochigi (Japan)

    2016-12-15

    With a specially designed electrochemical cell, the changes in impedance behavior for Inconel 600 and aluminide diffusion coatings under molten sulfate film with thermal cycles (from 800 ℃ to 350 ℃) were monitored with electrochemical impedance measurements. It was found that corrosion resistance for both materials increased with lower temperatures. At the same time, the state of molten salt was also monitored successfully by measuring the changes in impedance at high frequency, which generally represents the resistance of molten salt itself. After two thermal cycles, both Inconel 600 and aluminide diffusion coatings showed excellent corrosion resistance. The results from SEM observation and EDS analysis correlated well with the results obtained by electrochemical impedance measurements. It is concluded that electrochemical impedance is very useful for monitoring the corrosion resistance of materials under molten salt film conditions even with thermal cycles.

  6. Effect of Bath Temperature on Cooling Performance of Molten Eutectic NaNO3-KNO3 Quench Medium for Martempering of Steels

    Science.gov (United States)

    Pranesh Rao, K. M.; Narayan Prabhu, K.

    2017-10-01

    Martempering is an industrial heat treatment process that requires a quench bath that can operate without undergoing degradation in the temperature range of 423 K to 873 K (150 °C to 600 °C). The quench bath is expected to cool the steel part from the austenizing temperature to quench bath temperature rapidly and uniformly. Molten eutectic NaNO3-KNO3 mixture has been widely used in industry to martemper steel parts. In the present work, the effect of quench bath temperature on the cooling performance of a molten eutectic NaNO3-KNO3 mixture has been studied. An Inconel ASTM D-6200 probe was heated to 1133 K (860 °C) and subsequently quenched in the quench bath maintained at different temperatures. Spatially dependent transient heat flux at the metal-quenchant interface for each bath temperature was calculated using inverse heat conduction technique. Heat transfer occurred only in two stages, namely, nucleate boiling and convective cooling. The mean peak heat flux ( q max) decreased with increase in quench bath temperature, whereas the mean surface temperature corresponding to q max and mean surface temperature at the start of convective cooling stage increased with increase in quench bath temperature. The variation in normalized cooling parameter t 85 along the length of the probe increased with increase in quench bath temperature.

  7. Electromigration in molten salts and application to isotopic separation of alkaline and alkaline-earth elements; Electromigration en sels fondus et application a la separation des isotopes des elements alcalins et alcalino-terreux

    Energy Technology Data Exchange (ETDEWEB)

    Menes, F. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    The separation of the isotopes of the alkaline-earth elements has been studied using counter-current electromigration in molten bromides. The conditions under which the cathode operates as a bromine electrode for the highest possible currents have been examined. For the separation of calcium, it has been necessary to use a stable CaBr{sub 2} - (CaBr{sub 2} + KBr) 'chain'. In the case of barium and strontium, it was possible to employ the pure bromides. Enrichment factors of the order of 10 for {sup 48}Ca and of the order of 1.5 for the rare isotopes of barium and strontium have been obtained. In the case of magnesium the method is slightly more difficult to apply because of material loss due to the relatively high vapour pressure of the salt requiring the use of electrolyte chains, MgBr{sub 2} - CeBr{sub 3}. A study has been made that has led to a larger-scale application of the method. These are essentially the inhibition of reversible operation of the cathode by traces of water, limiting the intensity which can be tolerated; evacuation of the heat produced by the Joule effect, in the absence of which the separation efficiency is reduced by thermal gradients; corrosion of the materials by molten salts at high temperature. Several cells capable of treating a few kilograms of substance have been put into operation; none of these has lasted long enough to produce a satisfactory enrichment. The method is thus limited actually to yields of the order of a few grams. (author) [French] On a etudie la separation des isotopes des elements alcalino-terreux par electromigration a contre-courant en bromures fondus. On a etudie les conditions dans lesquelles la cathode fonctionne en electrode a brome pour des intensites les plus elevees possibles. Pour la separation du calcium, il a ete necessaire d'utiliser une chaine stable CaBr{sub 2} - (CaBr{sub 2} + KBr). Pour le baryum et le strontium, on a pu operer sur les bromures purs. On a obtenu des facteurs d

  8. Catalysis in Molten Ionic Media

    DEFF Research Database (Denmark)

    Boghosian, Soghomon; Fehrmann, Rasmus

    2013-01-01

    This chapter deals with catalysis in molten salts and ionic liquids, which are introduced and reviewed briefly, while an in-depth review of the oxidation catalyst used for the manufacturing of sulfuric acid and cleaning of flue gas from electrical power plants is the main topic of the chapter...

  9. An experimental study on creep of partially molten granulite under high temperature and wet conditions

    Science.gov (United States)

    Zhou, Yongsheng; Zhang, Huiting; Yao, Wenming; Dang, Jiaxiang; He, Changrong

    2017-05-01

    Samples of natural granulite were deformed in a gas medium apparatus to evaluate the flow strength of the lower crust. The sample consists of ∼52 vol% plagioclase, ∼40 vol% pyroxene, ∼3 vol% quartz, ∼5 vol% magnetite and ilmenite. Water content was ∼0.17 ± 0.05 wt% in the deformed samples. 40 creep tests were performed on 13 samples at 300 MPa confining pressure, temperatures of 900-1200 °C, and strain rates between 3.13 × 10-6 and 5 × 10-5/s, resulting in axial stresses of 12-764 MPa and the total strain up to 7.8-20.5%. At low temperatures of 900-1000 °C, the microstructural observations show that the granulite samples were deformed in semi-brittle deformation regime, mainly by dislocation glide and intragranular microcracking. At medium temperatures (MT) of 1050-1100 °C, deformation was observed to be dominated by grain boundary migration recrystallization, corresponding to stress exponent nMT of 5.7 ± 0.1, activation energies QMT of 525 ± 34 kJ/mol, log AMT of 1.3. At high temperatures (HT) of 1125-1150 °C, the samples was deformed mainly by grain boundary migration recrystallization accommodated by partial melting and metamorphic reactions characterized by neo-crystallization of fine-grained olivine, with nHT of 4.8 ± 0.1, QHT of 1392 ± 63 kJ/mol, and log AHT of 37.5. Partial melting at high temperatures of 1125-1200 °C, which induces grain boundaries slip and enhances diffusion, has a significant weakening effect on the rheology of granulite, with an estimated strain rate enhancement by 5 times at melt fraction of ∼2 vol%. Reaction from pyroxene to olivine may affect the flow law parameters and deformation mechanism. Based on our data, a wet and cool continental lower crust may still be in brittle deformation regime, whereas a hot lower crust may likely have a weak layer with plastic deformation.

  10. Specific electrical conductivity in molten potassium dihydrogen phosphate KH2PO4 - An electrolyte for water electrolysis at ∼300°C

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey Valerievich; Berg, Rolf W.; Petrushina, Irina

    2016-01-01

    The conductivity of pure molten KH2PO4 salt and four mixtures with more or less water (KH2PO4-H2O and KH2PO4-KPO3 systems, respectively) were measured at temperatures of 240-320°C and under their own water vapor pressures. Molten KH2PO4 has been proven to be a promising electrolyte for an elevate...

  11. Aluminum Manganese Molten Salt Plating

    Science.gov (United States)

    2006-06-01

    cyanide waste products are generated during all stages of the cadmium plating lifecycle . The cadmium plating process generates spent plating bath and...X Check caustic line and PVC circulation piping for leaks X Verify pH at laboratory X Measure conductivity X Replace rinse...tank, which is then routed to the rinse tank. At the rinse tank, the chemical will be injected via appropriate fittings into to a PVC pipe loop which

  12. thermic oil and molten salt

    African Journals Online (AJOL)

    Boukelia T.E, Mecibah M.S and Laouafi A

    1 mai 2016 ... qui circule dans le champ solaire. Une fois que la géométrie et les propriétés optiques et thermiques sont définies, les performances du CCP peuvent être calculées sous des différentes configurations et conditions météorologiques. Les CCP sont généralement exploités jusqu'à des températures allant à ...

  13. Two-dimensional salt and temperature DNA denaturation analysis using a magnetoresistive sensor

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Dufva, Martin; Hansen, Mikkel Fougt

    2017-01-01

    We present a microfluidic system and its use to measure DNA denaturation curves by varying the temperature or salt (Na+) concentration. The readout is based on real-time measurements of DNA hybridization using magnetoresistive sensors and magnetic nanoparticles (MNPs) as labels. We report the first...... melting curves of DNA hybrids measured as a function of continuously decreasing salt concentration at fixed temperature and compare them to the corresponding curves obtained vs. temperature at fixed salt concentration. The magnetoresistive sensor platform provided reliable results under varying...... temperature as well as salt concentration. The salt concentration melting curves were found to be more reliable than temperature melting curves. We performed a two-dimensional mapping of the melting profiles of a target to probes targeting its wild type (WT) and mutant type (MT) variants in the temperature...

  14. The evaluation of the pyrochemistry for the treatment of Gen IV nuclear fuels - Inert matrix chlorination studies in the gas phase or molten chloride salts

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, S. [Commissariat a l' Energie Atomique, DEN/VRH/DRCP/SCPS/LPP, Bat 399, CEA Marcoule, BP 17171, 30207 Bagnols/Ceze cedex (France)]. E-mail: stephane.bourg@cea.fr; Peron, F. [Commissariat a l' Energie Atomique, DEN/VRH/DRCP/SCPS/LPP, Bat 399, CEA Marcoule, BP 17171, 30207 Bagnols/Ceze cedex (France); Lacquement, J. [Commissariat a l' Energie Atomique, DEN/VRH/DRCP/SCPS/LPP, Bat 399, CEA Marcoule, BP 17171, 30207 Bagnols/Ceze cedex (France)

    2007-01-15

    The structure of the fuels for the future Gen IV nuclear reactors will be totally different from those of PWR, especially for the GFR concept including a closed cycle. In these reactors, fissile materials (carbides or nitrides of actinides) should be surrounded by an inert matrix. In order to build a reprocessing process scheme, the behavior of the potential inert matrices (silicon carbide, titanium nitride, and zirconium carbide and nitride) was studied by hydro- and pyrometallurgy. This paper deals with the chlorination results at high temperature by pyrometallurgy. For the first time, the reactivity of the matrix towards chlorine gas was assessed in the gas phase. TiN, ZrN and ZrC are very reactive from 400 deg. C whereas it is necessary to be over 900 deg. C for SiC to be as fast. In molten chloride melts, the bubbling of chlorine gas is less efficient than in gas phase but it is possible to attack the matrices. Electrochemical methods were also used to dissolve the refractory materials, leading to promising results with TiN, ZrN and ZrC. The massive SiC samples used were not conductive enough to be studied and in this case specific SiC-coated carbon electrodes were used. The key point of these studies was to find a method to separate the matrix compounds from the fissile material in order to link the head to the core of the process (electrochemical separation or liquid-liquid reductive extraction in the case of a pyrochemical reprocessing)

  15. Temperature effects on geotechnical and hydraulic properties of bentonite hydrated with inorganic salt solutions

    DEFF Research Database (Denmark)

    Rashid, H. M. A.; Kawamoto, K.; Saito, T.

    2015-01-01

    © 2015, International Journal of GEOMATE. This study investigated the combined effect of temperature and single-species salt solutions on geotechnical properties (swell index and liquid limit) and hydraulic conductivity of bentonite applying different cation types, concentrations, and temperatures...

  16. Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Blanco-Martin, Laura [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Molins, Sergi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Trebotich, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-09-01

    In this report, we present FY2015 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This is a combined milestone report related to milestone Salt R&D Milestone “Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures” (M3FT-15LB0818012) and the Salt Field Testing Milestone (M3FT-15LB0819022) to support the overall objectives of the salt field test planning.

  17. Liquid salt environment stress-rupture testing

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Weiju; Holcomb, David E.; Muralidharan, Govindarajan; Wilson, Dane F.

    2016-03-22

    Disclosed herein are systems, devices and methods for stress-rupture testing selected materials within a high-temperature liquid salt environment. Exemplary testing systems include a load train for holding a test specimen within a heated inert gas vessel. A thermal break included in the load train can thermally insulate a load cell positioned along the load train within the inert gas vessel. The test specimen can include a cylindrical gage portion having an internal void filled with a molten salt during stress-rupture testing. The gage portion can have an inner surface area to volume ratio of greater than 20 to maximize the corrosive effect of the molten salt on the specimen material during testing. Also disclosed are methods of making a salt ingot for placement within the test specimen.

  18. One-Step Extraction of Antimony in Low Temperature from Stibnite Concentrate Using Iron Oxide as Sulfur-Fixing Agent

    OpenAIRE

    Yun Li; Yongming Chen; Haotian Xue; Chaobo Tang; Shenghai Yang; Motang Tang

    2016-01-01

    A new process for one-step extraction of antimony in low temperature from stibnite concentrate by reductive sulfur-fixation smelting in sodium molten salt, using iron oxide as sulfur-fixing agent, was presented. The influences of molten salt addition and composition, ferric oxide dosage, smelting temperature and duration on extraction efficiency of antimony were investigated in details, respectively. The optimum conditions were determined as follows: 1.0 time stoichiometric requirement (α) of...

  19. Low temperature chemical processing of graphite-clad nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Robert A.

    2017-10-17

    A reduced-temperature method for treatment of a fuel element is described. The method includes molten salt treatment of a fuel element with a nitrate salt. The nitrate salt can oxidize the outer graphite matrix of a fuel element. The method can also include reduced temperature degradation of the carbide layer of a fuel element and low temperature solubilization of the fuel in a kernel of a fuel element.

  20. The effect of coal type and pyrolysis temperature on the electrochemical activity of coal at a solid carbon anode in molten carbonate media

    Science.gov (United States)

    Allen, J. A.; Glenn, M.; Donne, S. W.

    2015-04-01

    A systematic assessment of the electrochemical activity of two different parent coal types, pyrolysed at temperatures between 500 and 900 °C higher heating temperature (HHT), is presented in this work. Analysis shows that certain coal chars are catalytically activated in molten carbonate media at 600 °C, however activity does not appear to follow trends established for ashless carbon sources. It is seen here that it is not possible to predict activity based solely on electrical resistance, surface functionalization, or the BET surface area of pyrolysed coals. Instead, it is suggested that coal ash type, abundance and distribution plays a pivotal role in activating the coal char to allow fast electrochemical oxidation through a catalytically enhanced pathway. Activation from ash influence is discussed to result from wetting of the molten carbonate media with the carbon surface (change in polarity of electrode surface), through ash mediated oxide adsorption and transfer to carbon particles, or possibly through another catalytic pathway not yet able to be predicted from current results.

  1. Molten carbonate fuel cell research at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Braunstein, J.; Bronstein, H. R.; Cantor, S.; Heatherly, D.; Vallet, C. E.

    1977-05-01

    The activities at ORNL during the period July 1976 to February 1977 on the molten carbonate fuel cell program, funded by the ERDA Division of Conservation Research and Technology, are summarized. This period marks the initiation of molten carbonate fuel cell research at ORNL, making use of the extensive background of expertise and facilities in molten salt research. The activities described include a literature survey on molten carbonates, design, acquisition and installation of apparatus for experimental studies of molten carbonates, initial experiments on materials compatibility with molten carbonates, electrolysis experiments for the determination of transference numbers, and theoretical studies of transport behavior and the coupling of mass flows in molten carbonate mixtures. Significant accomplishments were the theoretical prediction of a possibly appreciable change in the alkali ion ratio at molten carbonate fuel cell electrodes, operated at high current densities, as a result of mobility differences of the alkali ions; design, construction and assembly of an electrolysis cell, and initiation of measurements of composition profiles in mixed alkali carbonate electrolytes; initiation of differential scanning calorimetry of pure alkali carbonates for quantitative measurement of transition enthalpies, eventually leading to new, more reliable values of the enthalpies and free energies of formation of the pure and mixed carbonates.

  2. Salting-out effects in aqueous ionic liquid solutions: cloud-point temperature shifts.

    Science.gov (United States)

    Trindade, Joana R; Visak, Zoran P; Blesic, Marijana; Marrucho, Isabel M; Coutinho, João A P; Lopes, José N Canongia; Rebelo, Luis P N

    2007-05-10

    The effects of the addition of three inorganic salts, namely, NaCl, Na(2)SO(4), and Na(3)PO(4), on the liquid-liquid (L-L) phase diagram of aqueous solutions containing the model ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF(4)], were investigated. All three inorganic salts trigger salting-out effects, leading to significant upward shifts of the L-L demixing temperatures of the systems. The magnitude of the shifts depends on both the water-structuring nature of the salt and its concentration; that is, the effects are correlated with the ionic strength of the solution and the Gibbs free energy of hydration of the inorganic salt. The pH effect and the occurrence of salt precipitation in concentrated solutions are also discussed.

  3. Advances in Molten Oxide Electrolysis for the Production of Oxygen and Metals from Lunar Regolith

    Science.gov (United States)

    Sadoway, Donald R.; Sirk, Aislinn; Sibille, Laurent; Melendez, Orlando; Lueck, Dale; Curreri, Peter; Dominquez, Jesus; Whitlow, Jonathan

    2008-01-01

    As part of an In-Situ Resource Utilization infrastructure to sustain long term-human presence on the lunar surface, the production of oxygen and metals by electrolysis of lunar regolith has been the subject of major scrutiny. There is a reasonably large body of literature characterizing the candidate solvent electrolytes, including ionic liquids, molten salts, fluxed oxides, and pure molten regolith itself. In the light of this information and in consideration of available electrolytic technologies, the authors have determined that direct molten oxide electrolysis at temperatures of approx 1600 C is the most promising avenue for further development. Results from ongoing studies as well as those of previous workers will be presented. Topics include materials selection and testing, electrode stability, gas capture and analysis, and cell operation during feeding and tapping.

  4. Precipitation of lamellar gold nanocrystals in molten polymers

    Energy Technology Data Exchange (ETDEWEB)

    Palomba, M.; Carotenuto, G., E-mail: giancaro@unina.it [Institute for Polymer, Composites, and Biomaterials. National Research Council. Piazzale E. Fermi, 1 – 80055 Portici (Italy)

    2016-05-18

    Non-aggregated lamellar gold crystals with regular shape (triangles, squares, pentagons, etc.) have been produced by thermal decomposition of gold chloride (AuCl) molecules in molten amorphous polymers (polystyrene and poly(methyl methacrylate)). Such covalent inorganic gold salt is high soluble into non-polar polymers and it thermally decomposes at temperatures compatible with the polymer thermal stability, producing gold atoms and chlorine radicals. At the end of the gold precipitation process, the polymer matrix resulted chemically modified because of the partial cross-linking process due to the gold atom formation reaction.

  5. The effects of different salt, biostimulant and temperature levels on seed germination of some vegetable species

    Directory of Open Access Journals (Sweden)

    Ertan Yildirim

    2013-12-01

    Full Text Available This research was conducted to determine the effects of two biostimulants (humic acid and biozyme or three different salt (NaCl concentrations at the temperature 10, 15, 20 and 25°C on parsley, leek, celery, tomato, onion, lettuce, basil, radish and garden cress seed germination. Two applications of both biostimulants increased seed germination of parsley, celery and leek at all temperature treatments. Germination rate decreased depending on high salt concentrations. At different salt and temperature levels garden cress was characterised by the highest germination percentage compared to other vegetable species.Interactions between NaCl concentrations and temperatures, as welI as biostimulants and temperatures were significant at p=0.001 in for all vegetable species except onion in NaCl concentrations and temperatures compared to that of the control.

  6. UV-VIS absorption spectra of molten AgCl and AgBr and of their mixtures with group I and II halide salts

    Energy Technology Data Exchange (ETDEWEB)

    Greening, Giorgio G.W. [Technische Universitaet Darmstadt (Germany). Eduard-Zintl-Institut fuer Anorganische und Physikalische Chemie

    2015-07-01

    The UV-VIS absorption spectra of (Ag{sub 1-X}[Li-Cs, Ba]{sub X})Cl and of (Ag{sub 1-X}[Na, K, Cs]{sub X})Br at 823 K at the concentrations X=0.0, 0.1, 0.2 have been measured. The findings show that on adding the respective halides to molten silver chloride and silver bromide, shifts of the fundamental absorption edge to shorter wavelengths result. A correlation between the observed shifts and the expansion of the silver sub-lattice is found, which is valid for both silver halide systems studied in this work.

  7. Maximum on the electrical conductivity polytherm of molten TeCl{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, Alexander B.; Potapov, Alexei M. [Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of High-Temperature Electrochemistry

    2017-09-01

    The electrical conductivity of molten TeCl{sub 4} was measured up to 761 K, i.e. 106 degrees above the normal boiling point of the salt. For the first time it was found that TeCl{sub 4} electrical conductivity polytherm has a maximum. It was recorded at 705 K (Κ{sub max}=0.245 Sm/cm), whereupon the conductivity decreases as the temperature rises. The activation energy of electrical conductivity was calculated.

  8. Electrolysis of a molten semiconductor

    Science.gov (United States)

    Yin, Huayi; Chung, Brice; Sadoway, Donald R.

    2016-01-01

    Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. As opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides. PMID:27553525

  9. Low-temperature effect on enzyme activities involved in sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings.

    Science.gov (United States)

    Rosa, Mariana; Hilal, Mirna; González, Juan A; Prado, Fernando E

    2009-04-01

    The effect of low temperature on growth, sucrose-starch partitioning and related enzymes in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) was studied. The growth of cotyledons and growing axes in seedlings grown at 25/20 degrees C (light/dark) and shifted to 5/5 degrees C was lower than in those only growing at 25/20 degrees C (unstressed). However, there were no significant differences between low-temperature control and salt-treated seedlings. The higher activities of sucrose phosphate synthase (SPS, EC 2.4.1.14) and soluble acid invertase (acid INV, EC 3.2.1.25) were observed in salt-stressed cotyledons; however, the highest acid INV activity was observed in unstressed cotyledons. ADP-glucose pyrophosphorylase (ADP-GPPase, EC 2.7.7.27) was higher in unstressed cotyledons than in stressed ones. However, between 0 and 4days the highest value was observed in salt-stressed cotyledons. The lowest value of ADP-GPPase was observed in salt-acclimated cotyledons. Low temperature also affected sucrose synthase (SuSy, EC 2.4.1.13) activity in salt-treated cotyledons. Sucrose and glucose were higher in salt-stressed cotyledons, but fructose was essentially higher in low-temperature control. Starch was higher in low-temperature control; however, the highest content was observed at 0day in salt-acclimated cotyledons. Results demonstrated that low temperature induces different responses on sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons. Data also suggest that in salt-treated cotyledons source-sink relations (SSR) are changed in order to supply soluble sugars and proline for the osmotic adjustment. Relationships between starch formation and SuSy activity are also discussed.

  10. Pyro-Electrochemical Reduction of a Mixture of Rare Earth Oxides and NiO in LiCl molten Salt

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Woo; Jeong, Sang Mun [Department of Chemical Engineering, Chungbuk National University, Cheongju (Korea, Republic of)

    2017-06-15

    An electrochemical reduction of a mixture of NiO and rare earth oxides has been conducted to increase the reduction degree of rare earth oxides. Cyclic voltammetry (CV) measurement was carried out to determine the electrochemical reduction behavior of the mixed oxide in molten LiCl medium. Constant voltage electrolysis was performed with various supplied charges to understand the mechanism of electrochemical reduction of the mixed oxide as a working electrode. After completion of the electrochemical reduction, crystal structure of the reaction intermediates was characterized by using an X-ray diffraction method. The results clearly demonstrate that the rare earth oxide was converted to RE-Ni intermetallics via co-reduction with NiO.

  11. Ceramics for Molten Materials Transfer

    Science.gov (United States)

    Standish, Evan; Stefanescu, Doru M.; Curreri, Peter A.

    2009-01-01

    The paper reviews the main issues associated with molten materials transfer and handling on the lunar surface during the operation of a hig h temperature electrowinning cell used to produce oxygen, with molten iron and silicon as byproducts. A combination of existing technolog ies and purposely designed technologies show promise for lunar exploi tation. An important limitation that requires extensive investigation is the performance of refractory currently used for the purpose of m olten metal containment and transfer in the lunar environment associa ted with electrolytic cells. The principles of a laboratory scale uni t at a scale equivalent to the production of 1 metric ton of oxygen p er year are introduced. This implies a mass of molten materials to be transferred consistent with the equivalent of 1kg regolithlhr proces sed.

  12. Determination by gamma-ray spectrometry of the plutonium and americium content of the Pu/Am separation scraps. Application to molten salts; Determination par spectrometrie gamma de la teneur en plutonium et en americium de produits issus de separation Pu/Am. Application aux bains de sels

    Energy Technology Data Exchange (ETDEWEB)

    Godot, A. [CEA Valduc, Dept. de Traitement des Materiaux Nucleaires, 21 - Is-sur-Tille (France); Perot, B. [CEA Cadarache, Dept. de Technologie Nucleaire, Service de Modelisation des Transferts et Mesures Nucleaires, 13 - Saint-Paul-lez-Durance (France)

    2005-07-01

    Within the framework of plutonium recycling operations in CEA Valduc (France), americium is extracted from molten plutonium metal into a molten salt during an electrolysis process. The scraps (spent salt, cathode, and crucible) contain extracted americium and a part of plutonium. Nuclear material management requires a very accurate determination of the plutonium content. Gamma-ray spectroscopy is performed on Molten Salt Extraction (MSE) scraps located inside the glove box, in order to assess the plutonium and americium contents. The measurement accuracy is influenced by the device geometry, nuclear instrumentation, screens located between the sample and the detector, counting statistics and matrix attenuation, self-absorption within the spent salt being very important. The purpose of this study is to validate the 'infinite energy extrapolation' method employed to correct for self-attenuation, and to detect any potential bias. We present a numerical study performed with the MCNP computer code to identify the most influential parameters and some suggestions to improve the measurement accuracy. A final uncertainty of approximately 40% is achieved on the plutonium mass. (authors)

  13. Building phenomenological models that relate proteolysis in pork muscles to temperature, water and salt content.

    Science.gov (United States)

    Harkouss, Rami; Safa, Hassan; Gatellier, Philippe; Lebert, André; Mirade, Pierre-Sylvain

    2014-05-15

    Throughout dry-cured ham production, salt and water content, pH and temperature are key factors affecting proteolysis, one of the main biochemical processes influencing sensory properties and final quality of the product. The aim of this study was to quantify the effect of these variables (except pH) on the time course of proteolysis in laboratory-prepared pork meat samples. Based on a Doehlert design, samples of five different types of pork muscle were prepared, salted, dried and placed at different temperatures, and sampled at different times for quantification of proteolysis. Statistical analysis of the experimental results showed that the proteolysis index (PI) was correlated positively with temperature and water content, but negatively with salt content. Applying response surface methodology and multiple linear regressions enabled us to build phenomenological models relating PI to water and salt content, and to temperature. These models could then be integrated into a 3D numerical ham model, coupling salt and water transfers to proteolysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Development and Testing of High Surface Area Iridium Anodes for Molten Oxide Electrolysis

    Science.gov (United States)

    Shchetkovskiy, Anatoliy; McKechnie, Timothy; Sadoway, Donald R.; Paramore, James; Melendez, Orlando; Curreri, Peter A.

    2010-01-01

    Processing of lunar regolith into oxygen for habitat and propulsion is needed to support future space missions. Direct electrochemical reduction of molten regolith is an attractive method of processing, because no additional chemical reagents are needed. The electrochemical processing of molten oxides requires high surface area, inert anodes. Such electrodes need to be structurally robust at elevated temperatures (1400-1600?C), be resistant to thermal shock, have good electrical conductivity, be resistant to attack by molten oxide (silicate), be electrochemically stable and support high current density. Iridium with its high melting point, good oxidation resistance, superior high temperature strength and ductility is the most promising candidate for anodes in high temperature electrochemical processes. Several innovative concepts for manufacturing such anodes by electrodeposition of iridium from molten salt electrolyte (EL-Form? process) were evaluated. Iridium electrodeposition to form of complex shape components and coating was investigated. Iridium coated graphite, porous iridium structure and solid iridium anodes were fabricated. Testing of electroformed iridium anodes shows no visible degradation. The result of development, manufacturing and testing of high surface, inert iridium anodes will be presented.

  15. The use of electro-deoxidation in molten salts to reduce the energy consumption of solar grade silicon and increase the output of PV solar cells

    Directory of Open Access Journals (Sweden)

    Paul R. Coxon

    2015-12-01

    Full Text Available Solar photovoltaics, based upon silicon, are the most popular form of solar cell with efficiencies around 20%. These efficiencies can be further increased by employing light trapping schemes to minimise optical losses through scattering and reflection which enhances the amount of light absorbed and number of photo-carriers generated. Typical approaches employ antireflection coatings (ARCs or texturise the surface of the silicon disks, so that the structure consists of an array of needles which can absorb most of the light. Usually, these structures are created by leaching the silicon with hydrofluoric-based acids or by reactive ion etching (RIE methods. This paper reviews some of the methods for improving the energy efficiency of silicon production, and describes the use of electro-deoxidation of SiO2 layers, on silicon, in molten calcium chloride to form nano-porous black silicon (b-Si structures. By coating b-Si surface with TiO2, a common ARC, extremely black surfaces with negligible reflectance of about 0.1%, are produced, which can have applications for low-cost high efficiency solar cells.

  16. Aluminide slurry coatings for protection of ferritic steel in molten nitrate corrosion for concentrated solar power technology

    Science.gov (United States)

    Audigié, Pauline; Bizien, Nicolas; Baráibar, Ignacio; Rodríguez, Sergio; Pastor, Ana; Hernández, Marta; Agüero, Alina

    2017-06-01

    Molten nitrates can be employed as heat storage fluids in solar concentration power plants. However molten nitrates are corrosive and if operating temperatures are raised to increase efficiencies, the corrosion rates will also increase. High temperature corrosion resistant coatings based on Al have demonstrated excellent results in other sectors such as gas turbines. Aluminide slurry coated and uncoated P92 steel specimens were exposed to the so called Solar Salt (industrial grade), a binary eutectic mixture of 60 % NaNO3 - 40 % KNO3, in air for 2000 hours at 550°C and 580°C in order to analyze their behavior as candidates to be used in future solar concentration power plants employing molten nitrates as heat transfer fluids. Coated ferritic steels constitute a lower cost technology than Ni based alloy. Two different coating morphologies resulting from two heat treatment performed at 700 and 1050°C after slurry application were tested. The coated systems exhibited excellent corrosion resistance at both temperatures, whereas uncoated P92 showed significant mass loss from the beginning of the test. The coatings showed very slow reaction with the molten Solar Salt. In contrast, uncoated P92 developed a stratified, unprotected Fe, Cr oxide with low adherence which shows oscillating Cr content as a function of coating depth. NaFeO2 was also found at the oxide surface as well as within the Fe, Cr oxide.

  17. Nuclear data covariances and sensitivity analysis, validation of a methodology based on the perturbation theory; application to an innovative concept: the molten thorium salt fueled reactor; Analyses de sensibilite et d'incertitude de donnees nucleaires. Contribution a la validation d'une methodologie utilisant la theorie des perturbations; application a un concept innovant: reacteur a sels fondus thorium a spectre epithermique

    Energy Technology Data Exchange (ETDEWEB)

    Bidaud, A

    2005-10-15

    Neutron transport simulation of nuclear reactors is based on the knowledge of the neutron-nucleus interaction (cross-sections, fission neutron yields and spectra...) for the dozens of nuclei present in the core over a very large energy range (fractions of eV to several MeV). To obtain the goal of the sustainable development of nuclear power, future reactors must have new and more strict constraints to their design: optimization of ore materials will necessitate breeding (generation of fissile material from fertile material), and waste management will require transmutation. Innovative reactors that could achieve such objectives - generation IV or ADS (accelerator driven system) - are loaded with new fuels (thorium, heavy actinides) and function with neutron spectra for which nuclear data do not benefit from 50 years of industrial experience, and thus present particular challenges. After validation on an experimental reactor using an international benchmark, we take classical reactor physics tools along with available nuclear data uncertainties to calculate the sensitivities and uncertainties of the criticality and temperature coefficient of a thorium molten salt reactor. In addition, a study based on the important reaction rates for the calculation of cycle's equilibrium allows us to estimate the efficiency of different reprocessing strategies and the contribution of these reaction rates on the uncertainty of the breeding and then on the uncertainty of the size of the reprocessing plant. Finally, we use this work to propose an improvement of the high priority experimental request list. (author)

  18. Liquid Fluoride Salt Experimentation Using a Small Natural Circulation Cell

    Energy Technology Data Exchange (ETDEWEB)

    Yoder Jr, Graydon L [ORNL; Heatherly, Dennis Wayne [ORNL; Williams, David F [ORNL; Elkassabgi, Yousri M. [Texas A& M University, Kingsville; Caja, Joseph [Electrochemical Systems, Inc.; Caja, Mario [ORNL; Jordan, John [Texas A& M University, Kingsville; Salinas, Roberto [Texas A& M University, Kingsville

    2014-04-01

    A small molten fluoride salt experiment has been constructed and tested to develop experimental techniques for application in liquid fluoride salt systems. There were five major objectives in developing this test apparatus: Allow visual observation of the salt during testing (how can lighting be introduced, how can pictures be taken, what can be seen) Determine if IR photography can be used to examine components submerged in the salt Determine if the experimental configuration provides salt velocity sufficient for collection of corrosion data for future experimentation Determine if a laser Doppler velocimeter can be used to quantify salt velocities. Acquire natural circulation heat transfer data in fluoride salt at temperatures up to 700oC All of these objectives were successfully achieved during testing with the exception of the fourth: acquiring velocity data using the laser Doppler velocimeter. This paper describes the experiment and experimental techniques used, and presents data taken during natural circulation testing.

  19. Loop for the observation of film temperature effects on decomposition (LOFTED)

    Energy Technology Data Exchange (ETDEWEB)

    Kruizenga, Alan Michael [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Materials Chemistry; Kolb, William J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Concentrating Solar Technologies Dept.; Briggs, Ronald J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Concentrating Solar Technologies Dept.; Christian, Joshua Mark [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Concentrating Solar Technologies Dept.; Ray, Daniel A [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Concentrating Solar Technologies Dept.; Gill, David. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Concentrating Solar Technologies Dept.; Kelton, John W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Concentrating Solar Technologies Dept.; Chisman, Kye Martin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Concentrating Solar Technologies Dept.

    2014-09-01

    Molten nitrate salt Loop for the Observation of Film Temperature Effects on Decomposition (LOFTED) was designed, fabricated, and tested. This unique experimental arrangement allowed a 60/40 molten nitrate salt to be continuously pumped through a Haynes 230 pipe, allowing simulation of a solar receiver. The wall temperature was held at 670°C during the test and the bulk temperature range from 600-610°C for approximately 1200 hours. Salt decomposition was tested using a calibrated total alkalinity methodology to assess oxide content over time. Several alloys (347SS, HR-224, In625-SQ, Haynes 230) were tested for corrosion performance over the duration of the study and compared to previous static tests. Results yielded nearly a tenfold increase in corrosion rate as compared to 600°C, owing to the need to understand the effects of flow and mass transport on corrosion in molten salt environments.

  20. Considerations of Alloy N for Fluoride Salt-Cooled High-Temperature Reactor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Weiju [ORNL; Muralidharan, Govindarajan [ORNL; Wilson, Dane F [ORNL; Holcomb, David Eugene [ORNL

    2011-01-01

    Fluoride Salt-Cooled High-Temperature Reactors (FHRs) are a promising new class of thermal-spectrum nuclear reactors. The reactor structural materials must possess high-temperature strength and chemical compatibility with the liquid fluoride salt as well as with a power cycle fluid such as supercritical water while remaining resistant to residual air within the containment. Alloy N was developed for use with liquid fluoride salts and it possesses adequate strength and chemical compatibility up to about 700 C. A distinctive property of FHRs is that their maximum allowable coolant temperature is restricted by their structural alloy maximum service temperature. As the reactor thermal efficiency directly increases with the maximum coolant temperature, higher temperature resistant alloys are strongly desired. This paper reviews the current status of Alloy N and its relevance to FHRs including its design principles, development history, high temperature strength, environmental resistance, metallurgical stability, component manufacturability, ASME codification status, and reactor service requirements. The review will identify issues and provide guidance for improving the alloy properties or implementing engineering solutions.

  1. Effect of temperature and salting-out agents on the sorption of nitrophenols from aqueous solutions

    Directory of Open Access Journals (Sweden)

    E. V. Churilina

    2013-01-01

    Full Text Available Sorption of nitrophenols from aqueous media by сrosslinked N-vinylpyrrolidone-based polymer in static conditions are studied depending on the pH of the solution and the nature of the nitrophenols. It has been established that a temperature and the introduction of salting-out agents influence on the sorption of nitrophenols.

  2. Abstract: Stoichiometry, Vibrational Modes and Structures of Molten Nb2O5-K2S2O7 Mixtures

    DEFF Research Database (Denmark)

    Boghosian, S.; Borup, F.; Berg, Rolf W.

    1998-01-01

    High temperature Raman spectroscopy is used tostudy the vibrational modes and structures of the Nb205-K2S207(0 stoichiometry are performed...... in order to characterise the complex(es) formed. The determination of stoichiometry is done following a general procedure which is based on a simple formalism correlating measurements of relative Raman band intensities with the stoichiometry of solutes in molten salt solvents....

  3. Aluminothermic Reduction-Molten Salt Electrolysis Using Inert Anode for Oxygen and Al-Base Alloy Extraction from Lunar Soil Simulant

    Science.gov (United States)

    Xie, Kaiyu; Shi, Zhongning; Xu, Junli; Hu, Xianwei; Gao, Bingliang; Wang, Zhaowen

    2017-10-01

    Aluminothermic reduction-electrolysis using an inert anode process is proposed to extract oxygen and metals from Minnesota Lunar Simulant-1 (MLS-1). Effective aluminothermic reduction between dissolved MLS-1 and dissolved metal aluminum was achieved in cryolite salt media. The product phases obtained by aluminothermic reduction at 980°C for 4 h were Al, Si, and Al5FeSi, while the chemical components were 79.71 mass% aluminum, 12.03 mass% silicon, 5.91 mass% iron, and 2.35 mass% titanium. The cryolite salt containing Al2O3 was subsequently electrolyzed with Fe0.58-Ni0.42 inert anode at 960°C for 4 h. Oxygen was evolved at the anode with an anodic current efficiency of 78.28%. The results demonstrate that this two-step process is remarkably feasible for the extraterrestrial extraction of oxygen and metals. This process will help expand the existing in situ resource utilization methods.

  4. Oxygen sparging of residue salts

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, E.; Griego, W.J.; Owens, S.D.; Thorn, C.W.; Vigil, R.A.

    1993-03-01

    Oxygen sparge is a process for treating salt residues at Los Alamos National Laboratory by sparging oxygen through molten salts. Oxygen reacts with the plutonium trichloride in these salts to form plutonium dioxide. There is further reaction of the plutonium dioxide with plutonium metal and the molten salt to form plutonium oxychloride. Both of the oxide plutonium species are insoluble in the salt and collect atthe bottom of the crucible. This results in a decrease of a factor of 2--3 in the amount of salt that must be treated, and the amount of waste generated by aqueous treatment methods.

  5. Temperature and salt addition effects on the solubility behaviour of some phenolic compounds in water

    Energy Technology Data Exchange (ETDEWEB)

    Noubigh, Adel [Laboratoire de Physico-chimie des materiaux, IPEST, BP51, 2070 La MARSA (Tunisia)]. E-mail: Adel.anoubigh@ipest.rnu.tn; Abderrabba, Manef [Laboratoire de Physico-chimie des materiaux, IPEST, BP51, 2070 La MARSA (Tunisia); Provost, Elise [Laboratoire Chimie et procedes, ENSTA, 32 Rue de Boulevard Victor, 75739 Paris, Cedex 15 (France)

    2007-02-15

    Solubility-temperature dependence data for six phenolic compounds (PhC), contained in olive mill wastewater (OMWW), in water and in some chloride salts (KCl, NaCl, and LiCl) aqueous solutions have been presented and solution standard molar enthalpies ({delta}{sub sol} H {sup 0}) were determined using Van't Hoff plots. The temperature was varied from 293.15 K to 318.15 K. Solubility data were estimated using a thermostated reactor and HPLC analysis. It has been observed that solubility, in pure water and in aqueous chloride solutions, increases with increasing temperature. The salting-out LiCl > NaCl > KCl order obtained at 298.15 K is confirmed. Results were interpreted in terms of the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The standard molar Gibbs free energies of transfer of PhC ({delta}{sub tr} G {sup 0}) from pure water to aqueous solutions of the chloride salts have been calculated from the solubility data. In order to estimate the contribution of enthalpic and entropic terms, standard molar enthalpies ({delta}{sub tr} H {sup 0}) and entropies ({delta}{sub tr} S {sup 0}) of transfer have also been calculated. The decrease in solubility is correlated to the positive {delta}{sub tr} G {sup 0} value which is mainly of enthalpic origin.

  6. Wettability between molten slag and dolomitic refractory

    OpenAIRE

    Shen, Ping; Zhang, Lifeng; Wang, Yi; Sridhar, Seetharaman; Wang, Qiangqiang

    2016-01-01

    In the current study, the wettability between molten slag and dolomitic refractory materials used in the ladle during steel refining was investigated. The contact angle between molten slag and dolomitic substrate decreased with increasing temperature. The slag with lower basicity spread on the substrate more easily and penetrated deeper into the substrate. The penetration depth of slag into the refractory increased with the extension of holding time. The CaO in the refractory dissolved into s...

  7. Protic Salt Polymer Membranes: High-Temperature Water-Free Proton-Conducting Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Gervasio, Dominic Francis [Univ. of Arizona, Tucson, AZ (United States)

    2010-09-30

    This research on proton-containing (protic) salts directly addresses proton conduction at high and low temperatures. This research is unique, because no water is used for proton ionization nor conduction, so the properties of water do not limit proton fuel cells. A protic salt is all that is needed to give rise to ionized proton and to support proton mobility. A protic salt forms when proton transfers from an acid to a base. Protic salts were found to have proton conductivities that are as high as or higher than the best aqueous electrolytes at ambient pressures and comparable temperatures without or with water present. Proton conductivity of the protic salts occurs providing two conditions exist: i) the energy difference is about 0.8 eV between the protic-salt state versus the state in which the acid and base are separated and 2) the chemical constituents rotate freely. The physical state of these proton-conducting salts can be liquid, plastic crystal as well as solid organic and inorganic polymer membranes and their mixtures. Many acids and bases can be used to make a protic salt which allows tailoring of proton conductivity, as well as other properties that affect their use as electrolytes in fuel cells, such as, stability, adsorption on catalysts, environmental impact, etc. During this project, highly proton conducting (~ 0.1S/cm) protic salts were made that are stable under fuel-cell operating conditions and that gave highly efficient fuel cells. The high efficiency is attributed to an improved oxygen electroreduction process on Pt which was found to be virtually reversible in a number of liquid protic salts with low water activity (< 1% water). Solid flexible non-porous composite membranes, made from inorganic polymer (e.g., 10%indium 90%tin pyrophosphate, ITP) and organic polymer (e.g., polyvinyl pyridinium phosphate, PVPP), were found that give conductivity and fuel cell performances similar to phosphoric acid electrolyte with no need for hydration at

  8. Research on high-temperature compression and creep behavior of porous Cu–Ni–Cr alloy for molten carbonate fuel cell anodes

    Directory of Open Access Journals (Sweden)

    Li W.

    2015-06-01

    Full Text Available The effect of porosity on high temperature compression and creep behavior of porous Cu alloy for the new molten carbonate fuel cell anodes was examined. Optical microscopy and scanning electron microscopy were used to investigate and analyze the details of the microstructure and surface deformation. Compression creep tests were utilized to evaluate the mechanical properties of the alloy at 650 °C. The compression strength, elastic modulus, and yield stress all increased with the decrease in porosity. Under the same creep stress, the materials with higher porosity exhibited inferior creep resistance and higher steadystate creep rate. The creep behavior has been classified in terms of two stages. The first stage relates to grain rearrangement which results from the destruction of large pores by the applied load. In the second stage, small pores are collapsed by a subsequent sintering process under the load. The main deformation mechanism consists in that several deformation bands generate sequentially under the perpendicular loading, and in these deformation bands the pores are deformed by flattering and collapsing sequentially. On the other hand, the shape of a pore has a severe influence on the creep resistance of the material, i.e. every increase of pore size corresponds to a decrease in creep resistance.

  9. High-Temperature Salt Pump Review and Guidelines - Phase I Report

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jain, Prashant K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hazelwood, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-05-01

    Fluoride salt cooled high-temperature reactor (FHR) concepts include pumps for forced circulation of the primary and secondary coolants. As part of a cooperative research and development agreement between the Shanghai Institute of Applied Physics and the Oak Ridge National Laboratory (ORNL), a research project was initiated to aid in the development of pumps for high-temperature salts. The objectives of the task included characterization of the behavior of an existing ORNL LSTL pump; design and test a modified impeller and volute for improved pump characteristics; and finally, provide lessons learned, recommendations, and guidelines for salt pump development and design. The pump included on the liquid salt test loop (LSTL) at ORNL served as a case study. This report summarizes the progress to date. The report is organized as follows. First, there is a review, focused on pumps, of the significant amount of work on salts at ORNL during the 1950s 1970s. The existing pump on the LSTL is then described. Plans for hot and cold testing of the pump are then discussed, including the design for a cold shakedown test stand and the required LSTL modifications for hot testing. Initial hydraulic and vibration modeling of the LSTL pump is documented. Later, test data from the LSTL will be used to validate the modeling approaches, which could then be used for future pump design efforts. Some initial insights and test data from the pump are then provided. Finally, some preliminary design goals and requirements for a future LSTL pump are provided as examples of salt pump design considerations.

  10. Liquid surface skimmer apparatus for molten lithium and method

    Science.gov (United States)

    Robinson, Samuel C.; Pollard, Roy E.; Thompson, William F.; Stark, Marshall W.; Currin, Jr., Robert T.

    1995-01-01

    This invention relates to an apparatus for separating two fluids having different specific gravities. The invention also relates to a method for using the separating apparatus of the present invention. This invention particularly relates to the skimming of molten lithium metal from the surface of a fused salt electrolyte in the electrolytic production of lithium metal from a mixed fused salt.

  11. Modeling Coupled THMC Processes and Brine Migration in Salt at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

    2014-08-14

    In this report, we present FY2014 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. LBNL’s work on the modeling of coupled THMC processes in salt was initiated in FY2012, focusing on exploring and demonstrating the capabilities of an existing LBNL modeling tool (TOUGH-FLAC) for simulating temperature-driven coupled flow and geomechanical processes in salt. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. we provide more details on the FY2014 work, first presenting updated tools and improvements made to the TOUGH-FLAC simulator, and the use of this updated tool in a new model simulation of long-term THM behavior within a generic repository in a salt formation. This is followed by the description of current benchmarking and validations efforts, including the TSDE experiment. We then present the current status in the development of constitutive relationships and the dual-continuum model for brine migration. We conclude with an outlook for FY2015, which will be much focused on model validation against field experiments and on the use of the model for the design studies related to a proposed heater experiment.

  12. Numerical Analyses of a single-phase natural convection system for Molten Flibe using MARS-FLIBE code

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sarah; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    These advantages make the MSR attractive and to be one of the six candidates for the Generation IV Reactor. Therefore, the researches related to the MSR are being conducted. To analyze the molten salt-cooled systems in the laboratory, this study generated the properties of molten salt using MARS-LMR. In this research, the implemented salts were Flibe (LiF-BeF{sub 2}) in a molar mixture that is 66% LiF and 34% BeF{sub 2}, respectively. Table 1 indicates the comparison of thermal properties of various coolants in nuclear power plants. Molten salt was added to the MARS-LMR code to support the analysis of Flibe-cooled systems. The molten salt includes LiF-BeF{sub 2} in a molar mixture that is 66% LiF and 34% BeF{sub 2}, respectively. MARS-LMR code for liquid metals uses the soft sphere model based on Monte Carlo calculations for particles interacting with pair potentials. Although MARS was originally intended for a safety analysis of light water reactor, Flibe properties were newly added to this code as so-called MARS-FLIBE which is applicable for Flibe-cooled systems. By using this thermodynamic property table file, the thermal hydraulic systems of Flibe can be simulated for numerical and parametric studies. In this study, the natural convection phenomena in the rectangular natural convection loop and IVR-ERVC in APR 1400 were simulated. Through the simulations in Flibe-cooled systems, the temperature distribution and mass flowrate of Flibe can be calculated and the heat transfer coefficients of Flibe in natural convection loop will be calculated by adding the related heat transfer correlations in the MARS-FLIBE code. MARS-FLIBE code will be used to predict and design of Flibe-cooled systems.

  13. Demixing and effective volatility of molten alkali carbonate melts in MCFCs

    Energy Technology Data Exchange (ETDEWEB)

    Brenscheidt, T.; Wendt, H. [Institut fuer Chemische Technologie, Darmstadt (Germany)

    1996-12-31

    Since the early investigation of A. Klemm, the demixing of the cations of molten binary salt mixtures with a common anion due to the different mobilities of two different cations had been investigated in numerous experiments and the respective results interpreted in terms of structural features of the melts. 1-1 electrolytes had been preferentially investigated. Okada also reported investigations on lithium carbonate/potassium carbonate mixtures in the temperature range from 980 to 1070 K. From this investigation it is known that the heavier potassium cation is faster than lithium in mixtures which are more concentrated in potassium than x{sub K2CO3} = 0,32 (Chemla effect) whereas below this isotachic concentration lithium is faster. This paper investigates demixing in molten carbonate fuel cells.

  14. Iron salts in solid state and in frozen solutions as dosimeters for low irradiation temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, T. [Facultad de Quimica UNAM, Ciudad Universitaria, D.F. Mexico (Mexico); Lartigue, J. [Facultad de Quimica UNAM, Ciudad Universitaria, D.F. Mexico (Mexico); Ramos-Bernal, S. [Instituto de Ciencias Nucleares, UNAM, A.P. 70-543 C.P.4510, Ciudad Universitaria, D.F. Mexico (Mexico); Ramos, A. [Instituto de Ciencias Nucleares, UNAM, A.P. 70-543 C.P.4510, Ciudad Universitaria, D.F. Mexico (Mexico); Mosqueira, G.F. [Direccion General de Divulgacion de la Ciencia de la UNAM, A.P. 70-487, C:P, D.F. Mexico 04510 (Mexico); Negron-Mendoza, A. [Instituto de Ciencias Nucleares, UNAM, A.P. 70-543 C.P.4510, Ciudad Universitaria, D.F. Mexico (Mexico)]. E-mail: negron@nuclecu.unam.mx

    2005-12-01

    The aim of this work is to study the irradiation of iron salts in solid state (heptahydrated ferrous sulfate) and in frozen acid solutions. The study is focused on finding their possible use as dosimeters for low temperature irradiations and high doses. The analysis of the samples was made by UV-visible and Moessbauer spectroscopies. The output signal was linear from 0 to 10 MGy for the solid samples, and 0-600 Gy for the frozen solutions. The obtained data is reproducible and easy to handle. For these reasons, heptahydrate iron sulfate is a suitable dosimeter for low temperature and high irradiation doses, in solid state, and in frozen solution.

  15. Study of the high-temperature corrosion of heat-resisting alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wada, K.

    1986-01-01

    An experimental study is reported of the corrosion resistance of the heat-resistant materials which play such an important role in the development of high-efficiency coal gasification combined-cycle power generation. Specifically, a study was made of the high-temperature and molten salt corrosion of nickel base alloys in coal combustion gas environments. The authors outline various types of high-temperature corrosion which occur: oxidation, sulfidation, decarburization and carburizing, nitridation, hot corrosion and halogenation. The mechanisms involved in molten salt corrosion are explained with reference to various models and currently available data. Finally, a study of electro-chemical measuring methods is reported. The authors conclude that future work on corrosion in coal gasification combined cycle power generation systems should concentrate on the following items: 1) elucidating the conditions under which molten salts form; 2) developing methods for predicting the quantity of molten salts which will form, and for assessing their contribution to corrosion; 3) evaluating the corrosion resistance of specific alloys to molten salts of given composition; 4) clarifying the effect of alloy surface temperature on corrosion resistance and local corrosion; and 5) developing techniques for predicting the amount of corrosion. 24 references, 28 figures, 7 tables.

  16. Electrochemical deposition of La-Mg alloys in LaCl3-MgCl2-KCl system with molten salt electrolysis process

    Directory of Open Access Journals (Sweden)

    Sahoo Kumar D.

    2014-01-01

    Full Text Available La-Mg alloys of different compositions were prepared by electrolysis of LaCl3-MgCl2-KCl melts. Different phases of La-Mg alloys were characterized by X-ray diffraction (XRD and Scanning Electron Microscopy (SEM. Energy dispersive spectrometry (EDS and Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES analyses showed that chemical compositions of La-Mg alloys were consistent with phase structures of XRD pattern, and magnesium content in the alloy could be controlled by electrolysis parameters. The effects of various process parameters such as concentration of magnesium chloride in the bath, temperature of electrolysis and cathode current density on the current efficiency have been investigated. A maximum current efficiency of 85% and yield of 80% was obtained from the bath at 12.5A/cm2 current density at an operating temp 850°C.

  17. Sensing temperature via downshifting emissions of lanthanide-doped metal oxides and salts. A review

    Science.gov (United States)

    Dramićanin, Miroslav D.

    2016-12-01

    Temperature is important because it has an effect on even the tiniest elements of daily life and is involved in a broad spectrum of human activities. That is why it is the most commonly measured physical quantity. Traditional temperature measurements encounter difficulties when used in some emerging technologies and environments, such as nanotechnology and biomedicine. The problem may be alleviated using optical techniques, one of which is luminescence thermometry. This paper reviews the state of luminescence thermometry and presents different temperature read-out schemes with an emphasis on those utilizing the downshifting emission of lanthanide-doped metal oxides and salts. The read-out schemes for temperature include those based on measurements of spectral characteristics of luminescence (band positions and shapes, emission intensity and ratio of emission intensities), and those based on measurements of the temporal behavior of luminescence (lifetimes and rise times). This review (with 140 references) gives the basics of the fundamental principles and theory that underlie the methods presented, and describes the methodology for the estimation of their performance. The major part of the text is devoted to those lanthanide-doped metal oxides and salts that are used as temperature probes, and to the comparison of their performance and characteristics.

  18. Temperature- and pressure-dependent structural transformation of methane hydrates in salt environments

    Science.gov (United States)

    Shin, Donghoon; Cha, Minjun; Yang, Youjeong; Choi, Seunghyun; Woo, Yesol; Lee, Jong-Won; Ahn, Docheon; Im, Junhyuck; Lee, Yongjae; Han, Oc Hee; Yoon, Ji-Ho

    2017-03-01

    Understanding the stability of volatile species and their compounds under various surface and subsurface conditions is of great importance in gaining insights into the formation and evolution of planetary and satellite bodies. We report the experimental results of the temperature- and pressure-dependent structural transformation of methane hydrates in salt environments using in situ synchrotron X-ray powder diffraction, solid-state nuclear magnetic resonance, and Raman spectroscopy. We find that under pressurized and concentrated brine solutions methane hydrate forms a mixture of type I clathrate hydrate, ice, and hydrated salts. Under a low-pressure condition, however, the methane hydrates are decomposed through a rapid sublimation of water molecules from the surface of hydrate crystals, while NaCl · 2H2O undergoes a phase transition into a crystal growth of NaCl via the migration of salt ions. In ambient pressure conditions, the methane hydrate is fully decomposed in brine solutions at temperatures above 252 K, the eutectic point of NaCl · 2H2O.

  19. A scaled experimental study of control blade insertion dynamics in Pebble-Bed Fluoride-Salt-Cooled High-Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Buster, Grant C., E-mail: grant.buster@gmail.com; Laufer, Michael R.; Peterson, Per F.

    2016-07-15

    Highlights: • A granular dynamics scaling methodology is discussed. • Control blade insertion in a representative pebble-bed core is experimentally studied. • Control blade insertion forces and pebble displacements are experimentally measured. • X-ray tomography techniques are used to observe pebble displacement distributions. - Abstract: Direct control element insertion into a pebble-bed reactor core is proposed as a viable control system in molten-salt-cooled pebble-bed reactors. Unlike helium-cooled pebble-bed reactors, this reactor type uses spherical fuel elements with near-neutral buoyancy in the molten-salt coolant, thus reducing contact forces on the fuel elements. This study uses the X-ray Pebble Bed Recirculation Experiment facility to measure the force required to insert a control element directly into a scaled pebble-bed. The required control element insertion force, and therefore the contact force on fuel elements, is measured to be well below recommended limits. Additionally, X-ray tomography is used to observe how the direct insertion of a control element physically displaces spherical fuel elements. The tomography results further support the viability of direct control element insertion into molten-salt-cooled pebble-bed reactor cores.

  20. Radionuclides in primary coolant of a fluoride salt-cooled high-temperature reactor during normal operation

    National Research Council Canada - National Science Library

    Zhang, Guo-Qing; Wang, Shuai; Zhang, Hai-Qing; Zhu, Xing-Wang; Peng, Chao; Cai, Jun; He, Zhao-Zhong; Chen, Kun

    2017-01-01

    The release of fission products from coated particle fuel to primary coolant, as well as the activation of coolant and impurities, were analysed for a fluoride salt-cooled high-temperature reactor (FHR...

  1. Fluoride Salt-Cooled High-Temperature Reactor Technology Development and Demonstration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Mays, Gary T [ORNL; Pointer, William David [ORNL; Robb, Kevin R [ORNL; Yoder Jr, Graydon L [ORNL

    2013-11-01

    Fluoride salt-cooled High-temperature Reactors (FHRs) are an emerging reactor class with potentially advantageous performance characteristics, and fully passive safety. This roadmap describes the principal remaining FHR technology challenges and the development path needed to address the challenges. This roadmap also provides an integrated overview of the current status of the broad set of technologies necessary to design, evaluate, license, construct, operate, and maintain FHRs. First-generation FHRs will not require any technology breakthroughs, but do require significant concept development, system integration, and technology maturation. FHRs are currently entering early phase engineering development. As such, this roadmap is not as technically detailed or specific as would be the case for a more mature reactor class. The higher cost of fuel and coolant, the lack of an approved licensing framework, the lack of qualified, salt-compatible structural materials, and the potential for tritium release into the environment are the most obvious issues that remain to be resolved.

  2. Effect of Hydration State of Martian Perchlorate Salts on Their Decomposition Temperatures During Thermal Extraction

    Science.gov (United States)

    Royle, Samuel H.; Montgomery, Wren; Kounaves, Samuel P.; Sephton, Mark A.

    2017-12-01

    Three Mars missions have analyzed the composition of surface samples using thermal extraction techniques. The temperatures of decomposition have been used as diagnostic information for the materials present. One compound of great current interest is perchlorate, a relatively recently discovered component of Mars' surface geochemistry that leads to deleterious effects on organic matter during thermal extraction. Knowledge of the thermal decomposition behavior of perchlorate salts is essential for mineral identification and possible avoidance of confounding interactions with organic matter. We have performed a series of experiments which reveal that the hydration state of magnesium perchlorate has a significant effect on decomposition temperature, with differing temperature releases of oxygen corresponding to different perchlorate hydration states (peak of O2 release shifts from 500 to 600°C as the proportion of the tetrahydrate form in the sample increases). Changes in crystallinity/crystal size may also have a secondary effect on the temperature of decomposition, and although these surface effects appear to be minor for our samples, further investigation may be warranted. A less than full appreciation of the hydration state of perchlorate salts during thermal extraction analyses could lead to misidentification of the number and the nature of perchlorate phases present.

  3. Pebble Bed Reactors Design Optimization Methods and their Application to the Pebble Bed Fluoride Salt Cooled High Temperature Reactor (PB-FHR)

    Science.gov (United States)

    Cisneros, Anselmo Tomas, Jr.

    The Fluoride salt cooled High temperature Reactor (FHR) is a class of advanced nuclear reactors that combine the robust coated particle fuel form from high temperature gas cooled reactors, direct reactor auxillary cooling system (DRACS) passive decay removal of liquid metal fast reactors, and the transparent, high volumetric heat capacitance liquid fluoride salt working fluids---flibe (33%7Li2F-67%BeF)---from molten salt reactors. This combination of fuel and coolant enables FHRs to operate in a high-temperature low-pressure design space that has beneficial safety and economic implications. In 2012, UC Berkeley was charged with developing a pre-conceptual design of a commercial prototype FHR---the Pebble Bed- Fluoride Salt Cooled High Temperature Reactor (PB-FHR)---as part of the Nuclear Energy University Programs' (NEUP) integrated research project. The Mark 1 design of the PB-FHR (Mk1 PB-FHR) is 236 MWt flibe cooled pebble bed nuclear heat source that drives an open-air Brayton combine-cycle power conversion system. The PB-FHR's pebble bed consists of a 19.8% enriched uranium fuel core surrounded by an inert graphite pebble reflector that shields the outer solid graphite reflector, core barrel and reactor vessel. The fuel reaches an average burnup of 178000 MWt-d/MT. The Mk1 PB-FHR exhibits strong negative temperature reactivity feedback from the fuel, graphite moderator and the flibe coolant but a small positive temperature reactivity feedback of the inner reflector and from the outer graphite pebble reflector. A novel neutronics and depletion methodology---the multiple burnup state methodology was developed for an accurate and efficient search for the equilibrium composition of an arbitrary continuously refueled pebble bed reactor core. The Burnup Equilibrium Analysis Utility (BEAU) computer program was developed to implement this methodology. BEAU was successfully benchmarked against published results generated with existing equilibrium depletion codes VSOP

  4. The influence of temperature in a capillary imbibition salt weathering simulation test on Mokattam limestone

    Directory of Open Access Journals (Sweden)

    Aly, N.

    2015-03-01

    Full Text Available Limestone is one of the most frequent building stones used in monuments in Egypt from ancient Egyptian times and salt weathering is one of the main threats to these monuments. During this work, cylindrical limestone samples (2 cm diameter and approx. 4 cm length from Mokattam group, one of the most frequent materials in historic Cairo, were subjected, in a purpose-made simulation chamber, to laboratory salt weathering tests with a 10% weight NaCl solution at different temperatures (20, 30, 40 °C. During each test, temperature was kept constant and salt solutions flowed continuously imbibing samples by capillary rise resembling the way they get into building stone in many real cases. Air temperature, relative humidity inside the simulation chamber and also samples weight were digitally monitored and recorded. Results show the influence of temperature and the ratio between imbibitions and evaporation on the dynamics of salt crystallization in the samples.Los monumentos egipcios se construyeron frecuentemente con caliza desde la antigüedad y uno de sus principales agentes de deterioro son las sales. Por ejemplo, en la zona histórica de El Cairo son frecuentes las calizas del grupo Mokattam. Cilindros (2 cm de diámetro y aproximadamente 4 cm de altura de esta caliza se sometieron a ensayos de deterioro por sales en una cámara experimental específicamente diseñada. Se utilizó una solución salina (10% en peso de NaCl a diferentes temperaturas (20 °C, 30 °C, 40 °C que se mantuvieron constantes en cada ensayo. La solución fluía constantemente embebiendo las muestras por capilaridad, simulando lo que ocurre en casos reales. La temperatura del aire, humedad relativa en la cámara y peso de las muestras se monitorizaron con sensores digitales. Los resultados muestran la influencia de la temperatura y del balance entre imbibición y evaporación en la dinámica de la cristalización de sales en las muestras.

  5. Electronic and Magnetic Properties of High Temperature Electrolytes.

    Science.gov (United States)

    Measurements are reported on the electrical conductance in the Cs-CsCl and Rb- RbCl molten systems as a function of composition and temperature. The...in salt are evaluated from freezing point data, and are large and positive for the Cs-CsCl and Rb- RbCl systems. Electron spin resonance has been

  6. Sustainability of thorium-uranium in pebble-bed fluoride salt-cooled high temperature reactor

    Directory of Open Access Journals (Sweden)

    Zhu Guifeng

    2016-01-01

    Full Text Available Sustainability of thorium fuel in a Pebble-Bed Fluoride salt-cooled High temperature Reactor (PB-FHR is investigated to find the feasible region of high discharge burnup and negative Flibe (2LiF-BeF2 salt Temperature Reactivity Coefficient (TRC. Dispersion fuel or pellet fuel with SiC cladding and SiC matrix is used to replace the tristructural-isotropic (TRISO coated particle system for increasing fuel loading and decreasing excessive moderation. To analyze the neutronic characteristics, an equilibrium calculation method of thorium fuel self-sustainability is developed. We have compared two refueling schemes (mixing flow pattern and directional flow pattern and two kinds of reflector materials (SiC and graphite. This method found that the feasible region of breeding and negative Flibe TRC is between 20 vol% and 62 vol% fuel loading in the fuel. A discharge burnup could be achieved up to about 200 MWd/kgHM. The case with directional flow pattern and SiC reflector showed superior burnup characteristics but the worst radial power peak factor, while the case with mixing flow pattern and SiC reflector, which was the best tradeoff between discharge burnup and radial power peak factor, could provide burnup of 140 MWd/kgHM and about 1.4 radial power peak factor with 50 vol% dispersion fuel. In addition, Flibe salt displays good neutron properties as a coolant of quasi-fast reactors due to the strong 9Be(n,2n reaction and low neutron absorption of 6Li (even at 1000 ppm in fast spectrum. Preliminary thermal hydraulic calculation shows good safety margin. The greatest challenge of this reactor may be the decades irradiation time of the pebble fuel.

  7. Vortex Diode Analysis and Testing for Fluoride Salt-Cooled High-Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yoder Jr, Graydon L [ORNL; Elkassabgi, Yousri M. [Texas A& M University, Kingsville; De Leon, Gerardo I. [Texas A& M University, Kingsville; Fetterly, Caitlin N. [Texas A& M University, Kingsville; Ramos, Jorge A. [Texas A& M University, Kingsville; Cunningham, Richard Burns [University of Tennessee, Knoxville (UTK)

    2012-02-01

    Fluidic diodes are presently being considered for use in several fluoride salt-cooled high-temperature reactor designs. A fluidic diode is a passive device that acts as a leaky check valve. These devices are installed in emergency heat removal systems that are designed to passively remove reactor decay heat using natural circulation. The direct reactor auxiliary cooling system (DRACS) uses DRACS salt-to-salt heat exchangers (DHXs) that operate in a path parallel to the core flow. Because of this geometry, under normal operating conditions some flow bypasses the core and flows through the DHX. A flow diode, operating in reverse direction, is-used to minimize this flow when the primary coolant pumps are in operation, while allowing forward flow through the DHX under natural circulation conditions. The DRACSs reject the core decay heat to the environment under loss-of-flow accident conditions and as such are a reactor safety feature. Fluidic diodes have not previously been used in an operating reactor system, and therefore their characteristics must be quantified to ensure successful operation. This report parametrically examines multiple design parameters of a vortex-type fluidic diode to determine the size of diode needed to reject a particular amount of decay heat. Additional calculations were performed to size a scaled diode that could be tested in the Oak Ridge National Laboratory Liquid Salt Flow Loop. These parametric studies have shown that a 152.4 mm diode could be used as a test article in that facility. A design for this diode is developed, and changes to the loop that will be necessary to test the diode are discussed. Initial testing of a scaled flow diode has been carried out in a water loop. The 150 mm diode design discussed above was modified to improve performance, and the final design tested was a 171.45 mm diameter vortex diode. The results of this testing indicate that diodicities of about 20 can be obtained for diodes of this size. Experimental

  8. Substituted Quaternary Ammonium Salts Improve Low-Temperature Performance of Double-Layer Capacitors

    Science.gov (United States)

    Brandon, Erik J.; Smart, Marshall C.; West, William C.

    2011-01-01

    Double-layer capacitors are unique energy storage devices, capable of supporting large current pulses as well as a very high number of charging and discharging cycles. The performance of doublelayer capacitors is highly dependent on the nature of the electrolyte system used. Many applications, including for electric and fuel cell vehicles, back-up diesel generators, wind generator pitch control back-up power systems, environmental and structural distributed sensors, and spacecraft avionics, can potentially benefit from the use of double-layer capacitors with lower equivalent series resistances (ESRs) over wider temperature limits. Higher ESRs result in decreased power output, which is a particular problem at lower temperatures. Commercially available cells are typically rated for operation down to only 40 C. Previous briefs [for example, Low Temperature Supercapacitors (NPO-44386), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), p. 32, and Supercapacitor Electrolyte Solvents With Liquid Range Below 80 C (NPO-44855), NASA Tech Briefs, Vol. 34, No. 1 (January 2010), p. 44] discussed the use of electrolytes that employed low-melting-point co-solvents to depress the freezing point of traditional acetonitrile-based electrolytes. Using these modified electrolyte formulations can extend the low-temperature operational limit of double-layer capacitors beyond that of commercially available cells. This previous work has shown that although the measured capacitance is relatively insensitive to temperature, the ESR can rise rapidly at low temperatures, due to decreased electrolyte conductance within the pores of the high surface- area carbon electrodes. Most of these advanced electrolyte systems featured tetraethylammonium tetrafluoroborate (TEATFB) as the salt. More recent work at JPL indicates the use of the asymmetric quaternary ammonium salt triethylmethylammonium tetrafluoroborate (TEMATFB) or spiro-(l,l')-bipyrrolidium tetrafluoroborate (SBPBF4) in a 1:1 by volume solvent

  9. Status of molten carbonate fuel cell technology

    Science.gov (United States)

    Marianowski, L. G.; Osullivan, J. B.

    A molten carbonate fuel cell integrated with a coal gasification power plant is one of the most promising coal-using technologies because of its high efficiency acceptable cost, and environmental acceptability. The high temperature heat available from the fuel cell may be used in a bottoming cycle and/or industrial cogeneration applications; however, for the molten carbonate system to achieve these goals, continued developmental work is required which must take account of the operating conditions of the application. The progress made in improving cell performance and life and in producing inexpensive cell components is discussed. The status, direction, and priority of future research and engineering efforts is also discussed.

  10. Electron spin resonance study of electron localization and dynamics in metal-molten salt solutions: comparison of M-MX and Ln-LnX sub 3 melts (M alkali metal, Ln = rare earth metal, X = halogen)

    CERN Document Server

    Terakado, O; Freyland, W

    2003-01-01

    We have studied the electron spin resonance (ESR) spectra in liquid K-KCl and M-(NaCl/KCl) sub e sub u sub t mixtures at different concentrations in salt-rich melts approaching the metal-nonmetal transition region. In both systems F-centre-like characteristics are found. Strongly exchange narrowed signals clearly indicate that fast electron exchange occurs on the picosecond timescale. In contrast, the ESR spectra of a (NdCl sub 2)(NdCl sub 3)-(LiCl/KCl) sub e sub u sub t melt are characterized by a large line width of the order of 10 sup 2 mT which decreases with increasing temperature. In this case, the g-factor and correlation time are consistent with the model of intervalence charge transfer, which is supported by recent conductivity and optical measurements. The different transport mechanisms will be discussed.

  11. An Overview of Liquid Fluoride Salt Heat Transport Systems

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Cetiner, Sacit M [ORNL

    2010-09-01

    Heat transport is central to all thermal-based forms of electricity generation. The ever increasing demand for higher thermal efficiency necessitates power generation cycles transitioning to progressively higher temperatures. Similarly, the desire to provide direct thermal coupling between heat sources and higher temperature chemical processes provides the underlying incentive to move toward higher temperature heat transfer loops. As the system temperature rises, the available materials and technology choices become progressively more limited. Superficially, fluoride salts at {approx}700 C resemble water at room temperature being optically transparent and having similar heat capacity, roughly three times the viscosity, and about twice the density. Fluoride salts are a leading candidate heat-transport material at high temperatures. Fluoride salts have been extensively used in specialized industrial processes for decades, yet they have not entered widespread deployment for general heat transport purposes. This report does not provide an exhaustive screening of potential heat transfer media and other high temperature liquids such as alkali metal carbonate eutectics or chloride salts may have economic or technological advantages. A particular advantage of fluoride salts is that the technology for their use is relatively mature as they were extensively studied during the 1940s-1970s as part of the U.S. Atomic Energy Commission's program to develop molten salt reactors (MSRs). However, the instrumentation, components, and practices for use of fluoride salts are not yet developed sufficiently for commercial implementation. This report provides an overview of the current understanding of the technologies involved in liquid salt heat transport (LSHT) along with providing references to the more detailed primary information resources. Much of the information presented here derives from the earlier MSR program. However, technology has evolved over the intervening years

  12. An Analysis of Testing Requirements for Fluoride Salt Cooled High Temperature Reactor Components

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Cetiner, Sacit M [ORNL; Flanagan, George F [ORNL; Peretz, Fred J [ORNL; Yoder Jr, Graydon L [ORNL

    2009-11-01

    This report provides guidance on the component testing necessary during the next phase of fluoride salt-cooled high temperature reactor (FHR) development. In particular, the report identifies and describes the reactor component performance and reliability requirements, provides an overview of what information is necessary to provide assurance that components will adequately achieve the requirements, and then provides guidance on how the required performance information can efficiently be obtained. The report includes a system description of a representative test scale FHR reactor. The reactor parameters presented in this report should only be considered as placeholder values until an FHR test scale reactor design is completed. The report focus is bounded at the interface between and the reactor primary coolant salt and the fuel and the gas supply and return to the Brayton cycle power conversion system. The analysis is limited to component level testing and does not address system level testing issues. Further, the report is oriented as a bottom-up testing requirements analysis as opposed to a having a top-down facility description focus.

  13. Fluoride-Salt-Cooled High-Temperature Reactor (FHR) for Power and Process Heat

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, Charles [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hu, Lin-wen [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Peterson, Per [Univ. of California, Berkeley, CA (United States); Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States)

    2015-01-21

    In 2011 the U.S. Department of Energy through its Nuclear Energy University Program (NEUP) awarded a 3- year integrated research project (IRP) to the Massachusetts Institute of Technology (MIT) and its partners at the University of California at Berkeley (UCB) and the University of Wisconsin at Madison (UW). The IRP included Westinghouse Electric Company and an advisory panel chaired by Regis Matzie that provided advice as the project progressed. The first sentence of the proposal stated the goals: The objective of this Integrated Research Project (IRP) is to develop a path forward to a commercially viable salt-cooled solid-fuel high-temperature reactor with superior economic, safety, waste, nonproliferation, and physical security characteristics compared to light-water reactors. This report summarizes major results of this research.

  14. Uranium (III) precipitation in molten chloride by wet argon sparging

    Energy Technology Data Exchange (ETDEWEB)

    Vigier, Jean-François, E-mail: jean-francois.vigier@ec.europa.eu [CEA, Nuclear Energy Division, Radiochemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, Univ. Lille Nord de France, ENSCL-USTL, B.P. 90108, 59652 Villeneuve d' Ascq Cedex (France); Laplace, Annabelle [CEA, Nuclear Energy Division, Radiochemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Renard, Catherine [Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, Univ. Lille Nord de France, ENSCL-USTL, B.P. 90108, 59652 Villeneuve d' Ascq Cedex (France); Miguirditchian, Manuel [CEA, Nuclear Energy Division, Radiochemistry & Processes Department, F-30207 Bagnols sur Cèze (France); Abraham, Francis [Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, Univ. Lille Nord de France, ENSCL-USTL, B.P. 90108, 59652 Villeneuve d' Ascq Cedex (France)

    2016-06-15

    In the context of pyrochemical processes for nuclear fuel treatment, the precipitation of uranium (III) in molten salt LiCl-CaCl{sub 2} (30–70 mol%) at 705 °C is studied. First, this molten chloride is characterized with the determination of the water dissociation constant. With a value of 10{sup −4.0}, the salt has oxoacid properties. Then, the uranium (III) precipitation using wet argon sparging is studied. The salt is prepared using UCl{sub 3} precursor. At the end of the precipitation, the salt is totally free of solubilized uranium. The main part is converted into UO{sub 2} powder but some uranium is lost during the process due to the volatility of uranium chloride. The main impurity of the resulting powder is calcium. The consequences of oxidative and reductive conditions on precipitation are studied. Finally, coprecipitation of uranium (III) and neodymium (III) is studied, showing a higher sensitivity of uranium (III) than neodymium (III) to precipitation. - Highlights: • Precipitation of Uranium (III) is quantitative in molten salt LiCl-CaCl{sub 2} (30–70 mol%). • The salt is oxoacid with a water dissociation constant of 10{sup −4.0} at 705 °C. • Volatility of uranium chloride is strongly reduced in reductive conditions. • Coprecipitation of U(III) and Nd(III) leads to a consecutive precipitation of the two elements.

  15. Pengaruh Temperatur Sensitisasi Dan Variasi Stress Terhadap Laju Korosi SS 409 Pada Lingkungan Salt Spray

    Directory of Open Access Journals (Sweden)

    Faris Hizrian Maulana

    2015-03-01

    Full Text Available Korosi intergranular merupakan permasalahan yang sering terjadi pada stainless steel. Hal ini dipicu karena adanya proses sensitisasi yang menyebabkan terbentuk presipitasi karbida pada batas butir yang menyebabkan berkurangnya kadar Cr pada butir yang berakibat stainless steel menjadi rentan terhadap korosi. Ferritic stainless steel 409 merupakan material yang biasa digunakan pada heat exchanger maupun exhaust pada kendaraan otomotif dimana sering mendapatkan temperatur yang tinggi. Jika terdapat internal stress yang merupakan hasil welding maupun cold working pada material tersebut dapat menyebabkan laju korosi menjadi lebih tinggi. Penelitian ini bertujuan mempelajari laju korosi pada spesimen ferritic stainless steel tipe 409 yang telah mengalami proses sensitisasi serta mendapatkan tegangan aplikasi sebesar 20% dan 40% yield stress pada lingkungan salt spray. Hasil SEM menunjukkan adanya senyawa TiC yang merupakan presipitat karbida yang muncul pada spesimen dengan temperatur anil 550oC sampai 850oC yang menyebabkan laju korosi yang lebih tinggi dari spesimen lain. Pengujian ini menunjukkan bahwa semakin tinggi temperatur sensitisasi dan semakin besar stress yang diberikan, laju korosi akan semakin meningkat

  16. Low-temperature structural effects in the (TMTSF)2PF6 and AsF6 Bechgaard salts

    Science.gov (United States)

    Foury-Leylekian, P.; Petit, S.; Mirebeau, I.; André, G.; de Souza, M.; Lang, M.; Ressouche, E.; Moradpour, A.; Pouget, J.-P.

    2013-07-01

    We present a detailed low-temperature investigation of the statics and dynamics of the anions and methyl groups in the organic conductors (TMTSF)2PF6 and (TMTSF)2AsF6 (TMTSF: tetramethyl-tetraselenafulvalene). The 4 K neutron-scattering structure refinement of the fully deuterated (TMTSF)2PF6-D12 salt allows locating precisely the methyl groups at 4 K. This structure is compared to the one of the fully hydrogenated (TMTSF)2PF6-H12 salt previously determined at the same temperature. Surprisingly, it is found that deuteration corresponds to the application of a negative pressure of 5×102 MPa to the H12 salt. Accurate measurements of the Bragg intensity show anomalous thermal variations at low temperature both in the deuterated PF6 and AsF6 salts. Two different thermal behaviors have been distinguished. Small Bragg-angle measurements reflect the presence of low-frequency modes at characteristic energies θE = 8.3 K and θE = 6.7 K for the PF6-D12 and AsF6-D12 salts, respectively. These modes correspond to the low-temperature methyl group motion. Large Bragg-angle measurements evidence an unexpected structural change around 55 K, which probably corresponds to the linkage of the anions to the methyl groups via the formation of F…D-CD2 bonds observed in the 4 K structural refinement. Finally we show that the thermal expansion coefficient of (TMTSF)2PF6 is dominated by the librational motion of the PF6 units. We quantitatively analyze the low-temperature variation of the lattice expansion via the contribution of Einstein oscillators, which allows us to determine for the first time the characteristic frequency of the PF6 librations: θE ≈ 50 K and θE = 76 K for the PF6-D12 and PF6-H12 salts, respectively.

  17. Experimental measurements of thermal conductivity of alumina nanofluid synthesized in salt melt

    Science.gov (United States)

    Ma, Binjian; Banerjee, Debjyoti

    2017-11-01

    Nanoparticles were synthesized in-situ using a simple one-step synthesis protocol from a cheap additive, mixed apriori in a high temperature salt melt (solar salt, NaNO3-KNO3). The thermal conductivity of the nanofluid was measured using a standardized concentric cylinder (annulus) test apparatus under steady-state conditions. The thermal conductivity of the salt melt was enhanced by 20˜ 25% due to generation of nanoparticles in-situ from the additive. The level of enhancement was found to be insensitive to temperature but significantly exceeded the predictions from models in the literature. Materials characterization (using electron microscopy) showed the formation of percolation networks by secondary nanostructures in the molten salt nanofluid samples (that were induced by the nanoparticles generated in-situ). The enhancement in the thermos-physical properties of the salt-melt nanofluids can be attributed to the formation of these secondary nanostructures (which form a third phase).

  18. Experimental measurements of thermal conductivity of alumina nanofluid synthesized in salt melt

    Directory of Open Access Journals (Sweden)

    Binjian Ma

    2017-11-01

    Full Text Available Nanoparticles were synthesized in-situ using a simple one-step synthesis protocol from a cheap additive, mixed apriori in a high temperature salt melt (solar salt, NaNO3-KNO3. The thermal conductivity of the nanofluid was measured using a standardized concentric cylinder (annulus test apparatus under steady-state conditions. The thermal conductivity of the salt melt was enhanced by 20∼ 25% due to generation of nanoparticles in-situ from the additive. The level of enhancement was found to be insensitive to temperature but significantly exceeded the predictions from models in the literature. Materials characterization (using electron microscopy showed the formation of percolation networks by secondary nanostructures in the molten salt nanofluid samples (that were induced by the nanoparticles generated in-situ. The enhancement in the thermos-physical properties of the salt-melt nanofluids can be attributed to the formation of these secondary nanostructures (which form a third phase.

  19. Rheological behavior and constitutive equations of heterogeneous titanium-bearing molten slag

    Science.gov (United States)

    Jiang, Tao; Liao, De-ming; Zhou, Mi; Zhang, Qiao-yi; Yue, Hong-rui; Yang, Song-tao; Duan, Pei-ning; Xue, Xiang-xin

    2015-08-01

    Experimental studies on the rheological properties of a CaO-SiO2-Al2O3-MgO-TiO2-(TiC) blast furnace (BF) slag system were conducted using a high-temperature rheometer to reveal the non-Newtonian behavior of heterogeneous titanium-bearing molten slag. By measuring the relationships among the viscosity, the shear stress and the shear rate of molten slags with different TiC contents at different temperatures, the rheological constitutive equations were established along with the rheological parameters; in addition, the non-Newtonian fluid types of the molten slags were determined. The results indicated that, with increasing TiC content, the viscosity of the molten slag tended to increase. If the TiC content was less than 2wt%, the molten slag exhibited the Newtonian fluid behavior when the temperature was higher than the critical viscosity temperature of the molten slag. In contrast, the molten slag exhibited the non-Newtonian pseudoplastic fluid characteristic and the shear thinning behavior when the temperature was less than the critical viscosity temperature. However, if the TiC content exceeded 4wt%, the molten slag produced the yield stress and exhibited the Bingham and plastic pseudoplastic fluid behaviors when the temperature was higher and lower than the critical viscosity temperature, respectively. When the TiC content increased further, the yield stress of the molten slag increased and the shear thinning phenomenon became more obvious.

  20. Method and apparatus for spraying molten materials

    Science.gov (United States)

    Glovan, R.J.; Tierney, J.C.; McLean, L.L.; Johnson, L.L.; Nelson, G.L.; Lee, Y.M.

    1996-06-25

    A metal spray apparatus is provided with a supersonic nozzle. Molten metal is injected into a gas stream flowing through the nozzle under pressure. By varying the pressure of the injected metal, the droplet can be made in various selected sizes with each selected size having a high degree of size uniformity. A unique one piece graphite heater provides easily controlled uniformity of temperature in the nozzle and an attached tundish which holds the pressurized molten metal. A unique U-shaped gas heater provides extremely hot inlet gas temperatures to the nozzle. A particularly useful application of the spray apparatus is coating of threads of a fastener with a shape memory alloy. This permits a fastener to be easily inserted and removed but provides for a secure locking of the fastener in high temperature environments. 12 figs.

  1. Pebble Fuel Handling and Reactivity Control for Salt-Cooled High Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Per [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Greenspan, Ehud [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering

    2015-02-09

    This report documents the work completed on the X-PREX facility under NEUP Project 11- 3172. This project seeks to demonstrate the viability of pebble fuel handling and reactivity control for fluoride salt-cooled high-temperature reactors (FHRs). The research results also improve the understanding of pebble motion in helium-cooled reactors, as well as the general, fundamental understanding of low-velocity granular flows. Successful use of pebble fuels in with salt coolants would bring major benefits for high-temperature reactor technology. Pebble fuels enable on-line refueling and operation with low excess reactivity, and thus simpler reactivity control and improved fuel utilization. If fixed fuel designs are used, the power density of salt- cooled reactors is limited to 10 MW/m3 to obtain adequate duration between refueling, but pebble fuels allow power densities in the range of 20 to 30 MW/m3. This can be compared to the typical modular helium reactor power density of 5 MW/m3. Pebble fuels also permit radial zoning in annular cores and use of thorium or graphite pebble blankets to reduce neutron fluences to outer radial reflectors and increase total power production. Combined with high power conversion efficiency, compact low-pressure primary and containment systems, and unique safety characteristics including very large thermal margins (>500°C) to fuel damage during transients and accidents, salt-cooled pebble fuel cores offer the potential to meet the major goals of the Advanced Reactor Concepts Development program to provide electricity at lower cost than light water reactors with improved safety and system performance.This report presents the facility description, experimental results, and supporting simulation methods of the new X-Ray Pebble Recirculation Experiment (X-PREX), which is now operational and being used to collect data on the behavior of slow dense granular flows relevant to pebble bed reactor core designs. The X

  2. Low Temperature Salt Flux Synthesis of Multiple Phases of Monometallic and Bimetallic Carbide Nanomaterials for Catalysis

    Science.gov (United States)

    Schmuecker, Samantha M.

    Nanostructured metal carbides are of particular interest because of their potential as high surface area, low cost catalysts specifically for hydrogen evolution reaction (HER). By taking advantage of a salt flux synthesis method, multiple carbide compounds have been synthesized at low temperatures providing a pathway to nano-sized materials. To better understand the reaction mechanism, vanadium carbide (V8C7) synthesis was monitored by quenching samples at 100 °C intervals and analyzed by multiple spectroscopic methods (Chapter 2). The synthesis method was further extended to form several single metal carbide compounds including some systems that form multiple phases with different compositions and crystal structures that are not as well studied due to their limited synthetic approaches and instability. As an example, Chromium carbide forms five different crystal structures including three common phases, Cr3C2, Cr7C3, and Cr 23C6, and two less studied phases, Cr2C and CrC (Chapter 3). Bimetallic carbides are even more challenging to synthesize both as bulk and nano-sized materials and thus are rarely studied as alternative catalysts. The major synthetic challenges for bimetallic carbides are phase separation of monometallic species and limited composition control over the bimetallic compounds. The low temperature nature of this reaction method allows access to greater composition control and single phase products. As an example of the synthesis process and combining multiple metals, several bimetallic systems were investigated using this method including Ta-Nb-C, Nb-Cr-C, and Ta-Cr-C. Ta-Nb-C readily forms a solid solution because both TaC and NbC form a rock salt crystal structure while Nb-Cr-C and Ta-Cr-C both have very limited Cr solubility due to the presence of different crystal structures formed by Cr-C (Chapter 4). Cr-Fe-C and Cr-Mn-C form different crystal structure carbides. Cr-C, Mn-C, and Fe-C all make M7C3 and M23C 6 structures. M7C3 is an orthorhombic

  3. Facile reduction of graphene oxide at room temperature by ammonia borane via salting out effect.

    Science.gov (United States)

    Zhuo, Qiqi; Zhang, Yiping; Du, Qingchuan; Yan, Chao

    2015-11-01

    Nascent hydrogen as a strong reducing and environmentally benign agent can be used as the efficient reductant of graphene oxide. The common method is to dissolve metal in acid graphene oxide (GO) solution to generate nascent hydrogen and reduce graphene oxide. However, hydrophobic metal particles cannot contact well with hydrophilic GO. Lots of nascent hydrogen atoms generated surrounding metal particles would quickly form hydrogen instead of reducing GO, which results in low reduction efficiency. In this work, based on the salting effect of GO, we report a facile approach to synthesize graphene by mild reducing of GO using NH3BH3 as the reducing agent and Co3O4 as the catalyst at room temperature. This method exhibited higher nascent hydrogen reduction efficiency and higher C/O atomic ratio of reduced graphene oxide than using Fe, Zn, and Al among others. Also the reaction is conducted under mild conditions (room temperature), resulting in fewer defects. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  4. Liquid Salts as Media for Process Heat Transfer from VHTR's: Forced Convective Channel Flow Thermal Hydraulics, Materials, and Coating

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar; Anderson, Mark; Allen, Todd; Corradini, Michael

    2012-01-30

    The goal of this NERI project was to perform research on high temperature fluoride and chloride molten salts towards the long-term goal of using these salts for transferring process heat from high temperature nuclear reactor to operation of hydrogen production and chemical plants. Specifically, the research focuses on corrosion of materials in molten salts, which continues to be one of the most significant challenges in molten salts systems. Based on the earlier work performed at ORNL on salt properties for heat transfer applications, a eutectic fluoride salt FLiNaK (46.5% LiF-11.5%NaF-42.0%KF, mol.%) and a eutectic chloride salt (32%MgCl2-68%KCl, mole %) were selected for this study. Several high temperature candidate Fe-Ni-Cr and Ni-Cr alloys: Hastelloy-N, Hastelloy-X, Haynes-230, Inconel-617, and Incoloy-800H, were exposed to molten FLiNaK with the goal of understanding corrosion mechanisms and ranking these alloys for their suitability for molten fluoride salt heat exchanger and thermal storage applications. The tests were performed at 850C for 500 h in sealed graphite crucibles under an argon cover gas. Corrosion was noted to occur predominantly from dealloying of Cr from the alloys, an effect that was particularly pronounced at the grain boundaries Alloy weight-loss due to molten fluoride salt exposure correlated with the initial Cr-content of the alloys, and was consistent with the Cr-content measured in the salts after corrosion tests. The alloys weight-loss was also found to correlate to the concentration of carbon present for the nominally 20% Cr containing alloys, due to the formation of chromium carbide phases at the grain boundaries. Experiments involving molten salt exposures of Incoloy-800H in Incoloy-800H crucibles under an argon cover gas showed a significantly lower corrosion for this alloy than when tested in a graphite crucible. Graphite significantly accelerated alloy corrosion due to the reduction of Cr from solution by graphite and formation

  5. Temperature dependence of ion pairing of a potassium salt in nonaqueous liquid and polymer electrolytes: X-ray absorption studies

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.Q.; Lee, H.S.; McBreen, J. (Brookhaven National Laboratory, Upton, New York 11973 (United States)); Xu, Z.S.; Skotheim, T.A. (Moltech Corporation, Stony Brook, New York 11794-2275 (United States)); Okamoto, Y. (Polytechnic University, Brooklyn, New York 11201 (United States)); Lu, F. (CFFLS, University of Kentucky, Lexington, Kentucky 40506 (United States))

    1994-08-15

    Near-edge x-ray absorption fine structure spectroscopy was used to study the effect of temperature on ion pairing of a potassium salt in a modified carbonate (MC3) solution and in a poly(ethylene oxide)-potassium salt complex that used MC3 as a plasticizer. The modified carbonate was made by attaching three ethylene oxide units to the four position of ethylene carbonate. Spectra were obtained, at the [ital K] edge of potassium, over the temperature range of 25--110 [degree]C. Studies of reference systems showed a correlation between ion pairing and white line splitting in the near-edge region of the spectra. The degree of white line splitting was used as a qualitative indicator of the degree of ion pairing as a function of temperature. The results indicate that, in both systems, the number of ion pairs increases with increasing temperature.

  6. Thermal conductivity of molten metals

    Energy Technology Data Exchange (ETDEWEB)

    Peralta-Martinez, Maria Vita

    2000-02-01

    A new instrument for the measurement of the thermal conductivity of molten metals has been designed, built and commissioned. The apparatus is based on the transient hot-wire technique and it is intended for operation over a wide range of temperatures, from ambient up to 1200 K, with an accuracy approaching 2%. In its present form the instrument operates up to 750 K. The construction of the apparatus involved four different stages, first, the design and construction of the sensor and second, the construction of an electronic system for the measurement and storage of data. The third stage was the design and instrumentation of the high temperature furnace for the melting and temperature control of the sample, and finally, an algorithm was developed for the extraction of the thermal conductivity from the raw measurement data. The sensor consists of a cylindrical platinum-wire symmetrically sandwiched between two rectangular plane sheets of alumina. The rectangular sensor is immersed in the molten metal of interest and a voltage step is applied to the ends of the platinum wire to induce heat dissipation and a consequent temperature rise which, is in part, determined by the thermal conductivity of the molten metal. The process is described by a set of partial differential equations and appropriate boundary conditions rather than an approximate analytical solution. An electronic bridge configuration was designed and constructed to perform the measurement of the resistance change of the platinum wire in the time range 20 {mu}s to 1 s. The resistance change is converted to temperature change by a suitable calibration. From these temperature measurements as a function of time the thermal conductivity of the molten metals has been deduced using the Finite Element Method for the solution of the working equations. This work has achieved its objective of improving the accuracy of the measurement of the thermal conductivity of molten metals from {+-}20% to {+-}2%. Measurements

  7. Pre-Conceptual Design of a Fluoride-Salt-Cooled Small Modular Advanced High Temperature Reactor (SmAHTR)

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Sherrell R [ORNL; Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Carbajo, Juan J [ORNL; Ilas, Dan [ORNL; Cisneros, Anselmo T [ORNL; Varma, Venugopal Koikal [ORNL; Corwin, William R [ORNL; Wilson, Dane F [ORNL; Yoder Jr, Graydon L [ORNL; Qualls, A L [ORNL; Peretz, Fred J [ORNL; Flanagan, George F [ORNL; Clayton, Dwight A [ORNL; Bradley, Eric Craig [ORNL; Bell, Gary L [ORNL; Hunn, John D [ORNL; Pappano, Peter J [ORNL; Cetiner, Sacit M [ORNL

    2011-02-01

    This document presents the results of a study conducted at Oak Ridge National Laboratory during 2010 to explore the feasibility of small modular fluoride salt-cooled high temperature reactors (FHRs). A preliminary reactor system concept, SmATHR (for Small modular Advanced High Temperature Reactor) is described, along with an integrated high-temperature thermal energy storage or salt vault system. The SmAHTR is a 125 MWt, integral primary, liquid salt cooled, coated particle-graphite fueled, low-pressure system operating at 700 C. The system employs passive decay heat removal and two-out-of-three , 50% capacity, subsystem redundancy for critical functions. The reactor vessel is sufficiently small to be transportable on standard commercial tractor-trailer transport vehicles. Initial transient analyses indicated the transition from normal reactor operations to passive decay heat removal is accomplished in a manner that preserves robust safety margins at all times during the transient. Numerous trade studies and trade-space considerations are discussed, along with the resultant initial system concept. The current concept is not optimized. Work remains to more completely define the overall system with particular emphasis on refining the final fuel/core configuration, salt vault configuration, and integrated system dynamics and safety behavior.

  8. Preliminary Demonstration Reactor Point Design for the Fluoride Salt-Cooled High-Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Betzler, Benjamin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carbajo, Juan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hale, Richard Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrell, Jerry W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Development of the Fluoride Salt-Cooled High-Temperature Reactor (FHR) Demonstration Reactor (DR) is a necessary intermediate step to enable commercial FHR deployment through disruptive and rapid technology development and demonstration. The FHR DR will utilize known, mature technology to close remaining gaps to commercial viability. Lower risk technologies are included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. These technologies include tristructural-isotropic (TRISO) particle fuel, replaceable core structural material, the use of that same material for the primary and intermediate loops, and tube-and-shell heat exchangers. This report provides an update on the development of the FHR DR. At this writing, the core neutronics and thermal hydraulics have been developed and analyzed. The mechanical design details are still under development and are described to their current level of fidelity. It is anticipated that the FHR DR can be operational within 10 years because of the use of low-risk, near-term technology options.

  9. The viscosity measurement of molten rocks

    Directory of Open Access Journals (Sweden)

    Rybár Pavol

    2001-03-01

    Full Text Available This paper deals with the viscosity measurtement of molten rocks. The reason of such investigation was due to the solving of SC No. 95/135/059 LITHO-JET. Technology of thermic rock melting for trenching of tenous vertical works. One task in the scope of above investigation was to experimentally verify the properties of melts of various types of works. An important moment in the trenching of tenuous vertical works by rock melting is the ability of melt to penetrate into the rock cracks. From this point of view an important physical property of molten rock is its viscosity. There are various methods how to measure viscosity but for the continuous measurements just some of them are suitable. The most suitable is rotary viscosimeter because it is simple in its construction, it allows to measure the viscosity as a function of temperature, concentration of wide class of sub stances with different rheologic properties. Hence, it allows to measure structural viscosity of the chemical reaction systems. The viscosity of molten nefelitic basanite as the function of temperature is studied in this paper. Viscosity of the nefelinitic basanite taken at locality Konrádovce was measured using rotary viscosimeter HAAKE ROTOVISKO. Eperimental conditions shown, that rising of the temperature vs. viscosity is in reverse order. Measurement is realised in scale 1370-1550°C. Under 1370°C was sample very viscous and measurement was impossible. Viscosity is the function of the temperature, pressure and gas components of rock.Though the viscosity measurements was carried out at atmospheric pressure, what does not fully conform real condition during trenching, it is still possible to express the effect of pressure. Other conditions, which take effect of viscosityof molten rocks in nature conditions will be subject of future investigation.

  10. The behavior of the diffusion coefficients in salting of herring in a fixed brine at subzero temperatures

    Directory of Open Access Journals (Sweden)

    M. V. Shumanova

    2016-01-01

    Full Text Available The relevance of herring brine salting at subzero temperatures, taking into account the positive dynamics of its catching, its reserves, a favorable cooling effect on the suppression of microorganizms activity, improvement of product quality and increasing of storage time are indicated in this paper. Changes in such a significant characteristics as the diffusion coefficient in the process of salting at subzero temperatures were studied. Method of photon correlation spectroscopy, based on the Rayleigh scattering of radiation from the substance was used for the study. The experimental diffusion coefficient dependences on the depth of penetration of the salt in brine, skin and meat of herring at temperatures ranging from -16 ° C to -6 ° C were obtained. They are of wave-like nature. The dependence of the diffusion coefficients on subzero temperature ranging from -18 ° C to 0 ° C, and having a harmonic form was also obtained in the work. The resulting temperature gradient is a source of perturbations, giving rise to thermoconvective waves. According to the theoretical research of Academician A.V. Lykov and chemical processes occurring at the border (skin of phase separation using the basic equation of thermochemistry - Gibbs law, mechanism of thermoconvective waves influencing the diffusion coefficient is explained. A relation between the diffusion coefficients with the size of the diffusing particles, having hyperbolic character in the temperature range from -18 ° C to 0 ° C in the in brine, skin and meat of herring was determined . The possibility of acceleration of salting by means of mechanical impact on the object under study (in particular sound or ultrasound was expressed. The destruction of the diffusing particles, representing the union of Na+ and Cl- with water molecules, increases the diffusion coefficient.

  11. Maxwell–Stefan diffusion and dynamical correlation in molten LiF-KF: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Richa Naja, E-mail: ltprichanaja@gmail.com; Chakraborty, Brahmananda; Ramaniah, Lavanya M. [High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-85 (India)

    2016-05-23

    In this work our main objective is to compute Dynamical correlations, Onsager coefficients and Maxwell-Stefan (MS) diffusivities for molten salt LiF-KF mixture at various thermodynamic states through Green–Kubo formalism for the first time. The equilibrium molecular dynamics (MD) simulations were performed using BHM potential for LiF–KF mixture. The velocity autocorrelations functions involving Li ions reflect the endurance of cage dynamics or backscattering with temperature. The magnitude of Onsager coefficients for all pairs increases with increase in temperature. Interestingly most of the Onsager coefficients has almost maximum magnitude at the eutectic composition indicating the most dynamic character of the eutectic mixture. MS diffusivity hence diffusion for all ion pairs increases in the system with increasing temperature. Smooth variation of the diffusivity values denies any network formation in the mixture. Also, the striking feature is the noticeable concentration dependence of MS diffusivity between cation-cation pair, Đ{sub Li-K} which remains negative for most of the concentration range but changes sign to become positive for higher LiF concentration. The negative MS diffusivity is acceptable as it satisfies the non-negative entropy constraint governed by 2{sup nd} law of thermodynamics. This high diffusivity also vouches the candidature of molten salt as a coolant.

  12. A rigidifying salt-bridge favors the activity of thermophilic enzyme at high temperatures at the expense of low-temperature activity.

    Directory of Open Access Journals (Sweden)

    Sonia Y Lam

    2011-03-01

    Full Text Available Thermophilic enzymes are often less active than their mesophilic homologues at low temperatures. One hypothesis to explain this observation is that the extra stabilizing interactions increase the rigidity of thermophilic enzymes and hence reduce their activity. Here we employed a thermophilic acylphosphatase from Pyrococcus horikoshii and its homologous mesophilic acylphosphatase from human as a model to study how local rigidity of an active-site residue affects the enzymatic activity.Acylphosphatases have a unique structural feature that its conserved active-site arginine residue forms a salt-bridge with the C-terminal carboxyl group only in thermophilic acylphosphatases, but not in mesophilic acylphosphatases. We perturbed the local rigidity of this active-site residue by removing the salt-bridge in the thermophilic acylphosphatase and by introducing the salt-bridge in the mesophilic homologue. The mutagenesis design was confirmed by x-ray crystallography. Removing the salt-bridge in the thermophilic enzyme lowered the activation energy that decreased the activation enthalpy and entropy. Conversely, the introduction of the salt-bridge to the mesophilic homologue increased the activation energy and resulted in increases in both activation enthalpy and entropy. Revealed by molecular dynamics simulations, the unrestrained arginine residue can populate more rotamer conformations, and the loss of this conformational freedom upon the formation of transition state justified the observed reduction in activation entropy.Our results support the conclusion that restricting the active-site flexibility entropically favors the enzymatic activity at high temperatures. However, the accompanying enthalpy-entropy compensation leads to a stronger temperature-dependency of the enzymatic activity, which explains the less active nature of the thermophilic enzymes at low temperatures.

  13. Electrochemical study of the Eu(III)/Eu(II) system in molten fluoride media

    Energy Technology Data Exchange (ETDEWEB)

    Massot, L. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, Departement Procedes Electrochimiques, F-31062 Toulouse cedex 09 (France); CNRS, Laboratoire de Genie Chimique, F-31062 Toulouse cedex 09 (France)], E-mail: massot@chimie.ups-tlse.fr; Chamelot, P.; Cassayre, L.; Taxil, P. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, Departement Procedes Electrochimiques, F-31062 Toulouse cedex 09 (France); CNRS, Laboratoire de Genie Chimique, F-31062 Toulouse cedex 09 (France)

    2009-11-01

    The electrochemical behaviour of the Eu(III)/Eu(II) system was examined in the molten eutectic LiF-CaF{sub 2} on a molybdenum electrode, using cyclic voltammetry, square wave voltammetry and chronopotentiometry. It was observed that EuF{sub 3} is partly reduced into EuF{sub 2} at the operating temperatures (1073-1143 K). The electrochemical study allowed to calculate both the equilibrium constant and the formal standard potential of the Eu(III)/Eu(II) system. The reaction is limited by the diffusion of the species in the solution; their diffusion coefficients were calculated at different temperatures and the values obey Arrhenius' law. The second system Eu(II)/Eu takes place out of the electrochemical window on an inert molybdenum electrode, which inhibits the extraction of Eu species from the salt on such a substrate.

  14. Lead cooled heterogeneous accelerator driven molten-fluoride blanket for incineration of long-lived radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Lopatkin, A.V.; Matyushechkin, V.M.; Tretyakov, I.T. [Research and Development Inst. of Power Engineering, Moscow (Russian Federation); Blagovolin, P.P.; Kazaritsky, V.D. [State Scientific Centre, Moscow (Russian Federation). Inst. of Theoretical and Experimental Physics; Kostenkov, V.I.; Chuvilin, D.Yu. [I.V. Kurchatov Inst., Moscow (Russian Federation)

    1997-09-01

    This paper presents a tentative design description and evaluation of the basic parameters of a lead cooled heterogeneous accelerator driven molten fluoride blanket. The proton beam of a 1 GeV accelerator strikes the blanket from below and generates spallation neutrons in the flow of lead, which serves as a target. These neutrons leave the target zone and get into a heterogeneous blanket with separated volumes of molten salts and lead. Fissile materials are dissolved in the salt. On getting into the molten salt volume the neutrons cause fission (transmutation) of the actinides, the produced heat being removed by circulation of molten lead. Two versions of the blanket design are examined. The first version: molten salt circulates in the fuel channels, while lead cools the channels flowing through the interchannel space (the salt channel design). The second version: it is lead that circulates in the channels, while molten salt takes up the interchannel space (the lead channel design). A preliminary blanket design study showed that both blanket designs possess a potential for improving performance. At present time the blanket design, mentioned above as the salt channel design, seems to be more promising. 1 ref., 2 figs., 2 tabs.

  15. Molten carbonate fuel cell

    Science.gov (United States)

    Kaun, T.D.; Smith, J.L.

    1986-07-08

    A molten electrolyte fuel cell is disclosed with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas. The cell enclosures collectively provide an enclosure for the array and effectively avoid the problems of electrolyte migration and the previous need for compression of stack components. The fuel cell further includes an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  16. The immunogenicity of thin-film freeze-dried, aluminum salt-adjuvanted vaccine when exposed to different temperatures.

    Science.gov (United States)

    Thakkar, Sachin G; Ruwona, Tinashe B; Williams, Robert O; Cui, Zhengrong

    2017-04-03

    Insoluble aluminum salts such as aluminum oxyhydroxide have been used for decades as adjuvants in human vaccines, and many vaccines contain aluminum salts as adjuvants. Aluminum salt-adjuvanted vaccines must be managed in cold-chain (2-8° C) during transport and storage, as vaccine antigens in general are too fragile to be stable in ambient temperatures, and unintentional slowing freezing causes irreversible aggregation and permanent damage to the vaccines. Previously, we reported that thin-film freeze-drying can be used to convert vaccines adjuvanted with an aluminum salt from liquid suspension into dry powder without causing particle aggregation or decreasing in immunogenicity following reconstitution. In the present study, using ovalbumin (OVA)-adsorbed Alhydrogel® (i.e. aluminum oxyhydroxide, 2% w/v) as a model vaccine, we showed that the immunogenicity of thin-film freeze-dried OVA-adsorbed Alhydrogel® vaccine powder was not significantly changed after it was exposed for an extended period of time in temperatures as high as 40° C or subjected to repeated slow freezing-and-thawing. It is expected that immunization programs can potentially benefit by integrating thin-film freeze-drying into vaccine preparations.

  17. The mystery of molten metal

    Directory of Open Access Journals (Sweden)

    Natalia Sobczak

    2010-11-01

    Full Text Available Recent advances in scientific understanding of high-temperature materials processing using novel experimental methodologies have shed light on the complex role of surface and interface phenomena. New in-situ studies on molten metal/solid ceramic interactions using a unique experimental complex at the Foundry Research Institute, Krakow, have revealed a number of unusual observations in materials processing at high temperatures. We present some such unusual observations and their explanation with reference to liquid metal processing of Al, Ni, and Ti, and their alloys in contact with oxide ceramics. In particular, we focus on the following aspects: primary oxidation of Al from residual water vapor or oxygen, capillary purification to remove surface oxide, substrate protection by CVD carbon, roughening due to spinel whisker formation, inclusions in castings due to mechanical detachment, floatation due to buoyancy forces, and segregation due to directional solidification, modification of the solid surface morphology by metal vapor ahead of the liquid, and the complication due to multi-component alloys melted in crucibles made from complex oxide-based ceramics. In the case of Ti, rapid reactions with oxides result in undesirable volumetric changes that create difficulty in casting high-quality Ti parts, particularly by investment casting. Nanoscale (e.g., colloidal coatings based on Y2O3 protect crucibles and hold ladles against such attack. Practical insights and recommendations for materials processing emerging from the fundamental studies on high-temperature interfacial phenomena have been described.

  18. Temperature and thermal power measurements for a helical-coil steam generator in a thermal storage tank of molten solar salt

    Science.gov (United States)

    Marakkos, Costas; Stiliaris, Efstathios; Guillen, Elena; Montenon, Alaric; Papanicolas, Costas

    2017-06-01

    The steam power output of a helical-col generator is both experimentally and numerically examined using Nusselt number correlations from literature. Validation studies of the correlation models examined herein are performed for a mass flux G of 84 kg.s-1.m-2, power output Q of 15.5 kW, supply pressure P of 0.81 MPa and internal tube-diameter to coil-diameter ratio Di/Dc of 0.027. Existing two-phase models applied with Newton's Law of cooling, lead to an under-prediction of the coil size, namely, the tube length requirement for a specified power output by about 20%.

  19. Effect of temperature, water-phase salt and phenolic contents on Listeria monocytogenes growth rates on cold-smoked salmon and evaluation of secondary models

    OpenAIRE

    Cornu, M; Beaufort, A.; Rudelle, S.; Laloux, L.; Bergis, H; Miconnet, N; Serot, T.; Delignette-Muller, M. L.

    2006-01-01

    Salting and smoking are ancient processes for fish preservation. The effects of salt and phenolic smoke compounds on the growth rate of L. monocytogenes in cold-smoked salmon were investigated through physico-chemical analyses, challenge tests on surface of cold-smoked salmon at 4 degrees C and 8 degrees C, and a survey of the literature. Estimated growth rates were compared to predictions of existing secondary models, taking into account the effects of temperature, water phase salt content, ...

  20. Aqueous singlet oxygen reaction kinetics of furfuryl alcohol: effect of temperature, pH, and salt content.

    Science.gov (United States)

    Appiani, Elena; Ossola, Rachele; Latch, Douglas E; Erickson, Paul R; McNeill, Kristopher

    2017-04-19

    The rate constant for the reaction between furfuryl alcohol (FFA) and singlet oxygen ( 1 O 2 ) in aqueous solution was measured as a function of temperature, pH and salt content employing both steady-state photolysis (β value determination) and time-resolved singlet oxygen phosphorescence methods. The latter provided more precise and reproducible data. The reaction rate constant, k rxn,FFA , had a relatively small temperature dependence, no pH dependence and showed a small increase in the presence of high salt concentrations (+19% with 1 M NaCl). A critical review of the available literature suggested that the widely used value of 1.2 × 10 8 M -1 s -1 is likely overestimated. Therefore, we recommend the use of 1.00 × 10 8 M -1 s -1 for reactions performed in low ionic strength aqueous solutions (freshwater) at 22 °C. Furthermore, corrections are provided that should be applied when working at higher or lower temperatures, and/or at high salt concentrations (seawater).

  1. Lanthanides extraction processes in molten fluoride media. Application to nuclear spent fuel reprocessing

    OpenAIRE

    Taxil, Pierre; Massot, Laurent; Nourry, Christophe; Gibilaro, Mathieu; Chamelot, Pierre; Cassayre, Laurent

    2009-01-01

    This paper describes four techniques of extraction of lanthanides elements (Ln) from molten salts in the general frame of reprocessing nuclear wastes; One of them is chemical: the precipitation of Ln ions in insoluble compounds (oxides or oxifluorides); the others use electrochemical methodology in molten fluorides for extraction and measurement of the progress of the processes: first electrodeposition of pure Ln metals on an inert cathode material was proved to be incomplete and cause probl...

  2. Comparative study of SnS recrystallization in molten CdI{sub 2}, SnCl{sub 2}and KI

    Energy Technology Data Exchange (ETDEWEB)

    Timmo, Kristi; Kauk-Kuusik, Marit; Pilvet, Maris; Mikli, Valdek; Kaerber, Erki; Raadik, Taavi; Leinemann, Inga; Altosaar, Mare; Raudoja, Jaan [Department of Materials Science, Tallinn University of Technology, Tallinn (Estonia)

    2016-01-15

    In the present study, the recrystallization of polycrystalline SnS in different molten salts CdI{sub 2}, SnCl{sub 2} and KI as flux materials are presented. The recrystallization and growth of polycrystalline material in molten salts produces unique SnS monograin powders usable in monograin layer solar cells. XRD and Raman analysis revealed that single phase SnS powder can be obtained in KI at 740 C and in SnCl{sub 2} at 500 C. Long time heating of SnS in molten CdI{sub 2} was accompanied by chemical interaction between SnS and CdI{sub 2} that resulted in a mixture of CdS and Sn{sub 2}S{sub 3} crystals. SEM images showed that morphology of crystals can be controlled by the nature of the flux materials: needle-like Sn{sub 2}S{sub 3} together with round edged crystals of CdS in CdI{sub 2}, flat crystals of SnS with smooth surfaces in SnCl{sub 2} and well-formed SnS crystals with rounded edges in KI had been formed. The temperatures of phase transitions and/or the interactions of SnS and flux materials were determined by differential thermal analysis. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Structural Analysis of Molten NaNO3 by Molecular Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    Tahara Shuta

    2017-01-01

    Full Text Available MD simulation for molten NaNO3 has been performed by using the Born-Mayer-Huggins-type potentials. The new structural features of molten NaNO3 are investigated by several analytical methods. The coordination-number and bond-angle distributions are similar to those of simple molten salts such as NaCl except for the variation caused by the different size of the anion and cation. Na+ ions are attracted toward O− ions, and get separated from N+ ions by Coulomb interactions. The distribution of the dihedral angle between NO3 − plannar ionic molecules has also been investigated.

  4. Structural Analysis of Molten NaNO3 by Molecular Dynamics Simulation

    Science.gov (United States)

    Tahara, Shuta; Toyama, Hiroshi; Shimakura, Hironori; Fukami, Takanori

    2017-08-01

    MD simulation for molten NaNO3 has been performed by using the Born-Mayer-Huggins-type potentials. The new structural features of molten NaNO3 are investigated by several analytical methods. The coordination-number and bond-angle distributions are similar to those of simple molten salts such as NaCl except for the variation caused by the different size of the anion and cation. Na+ ions are attracted toward O- ions, and get separated from N+ ions by Coulomb interactions. The distribution of the dihedral angle between NO3 - plannar ionic molecules has also been investigated.

  5. Supported Molten Metal Membranes for Hydrogen Separation

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Ravindra [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Ma, Yi Hua [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Yen, Pei-Shan [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Deveau, Nicholas [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Fishtik, Ilie [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering; Mardilovich, Ivan [Worcester Polytechnic Inst., Worcester, MA (United States). Dept. of Chemical Engineering

    2013-09-30

    We describe here our results on the feasibility of a novel dense metal membrane for hydrogen separation: Supported Molten Metal Membrane, or SMMM. The goal in this work was to develop these new membranes based on supporting thin films of low-melting, non- precious group metals, e.g., tin (Sn), indium (In), gallium (Ga), or their alloys, to provide a flux and selectivity of hydrogen that rivals the conventional but substantially more expensive palladium (Pd) or Pd alloy membranes, which are susceptible to poisoning by the many species in the coal-derived syngas, and further possess inadequate stability and limited operating temperature range. The novelty of the technology presented numerous challenges during the course of this project, however, mainly in the selection of appropriate supports, and in the fabrication of a stable membrane. While the wetting instability of the SMMM remains an issue, we did develop an adequate understanding of the interaction between molten metal films with porous supports that we were able to find appropriate supports. Thus, our preliminary results indicate that the Ga/SiC SMMM at 550 °C has a permeance that is an order of magnitude higher than that of Pd, and exceeds the 2015 DOE target. To make practical SMM membranes, however, further improving the stability of the molten metal membrane is the next goal. For this, it is important to better understand the change in molten metal surface tension and contact angle as a function of temperature and gas-phase composition. A thermodynamic theory was, thus, developed, that is not only able to explain this change in the liquid-gas surface tension, but also the change in the solid-liquid surface tension as well as the contact angle. This fundamental understanding has allowed us to determine design characteristics to maintain stability in the face of changing gas composition. These designs are being developed. For further progress, it is also important to understand the nature of solution and

  6. Effect of Chemical Composition and Temperature on Viscosity and Structure of Molten CaO-Al2O3-SiO2 System / Wpływ Składu Chemicznego I Temperatury Na Lepkość I Strukturę Ciekłego Układu Cao-Al2O3-SiO2

    Directory of Open Access Journals (Sweden)

    Řeháčková L.

    2015-12-01

    Full Text Available The effects of the change of chemical composition and temperature on the viscosity of CaO-Al2O3-SiO2 oxide system with basicity from 0.78 to 1.63 were investigated in this paper. Experimental measurements of viscosity were performed with use of the high-temperature viscometer Anton Paar FRS 1600. Viscosity was measured in a rotational mode during heating at the rate of 2.2 K/min in the temperature interval from 1673 to 1873 K. Viscosity is often sensitive to the structural changes in molten oxide systems, which implies that the analysis of viscosity is an effective way to understand the structure of molten oxide systems. Exact clarification of the change of structure of the oxide system caused by increased content of CaO was performed by Fourier transform infrared spectroscopy (FTIR, Raman spectroscopy and X-ray diffraction (XRD.

  7. Salt effect in the solubility of hydrogen in n-alcohols at pressures up to 10 MPa and temperatures up to 498.15 K

    Directory of Open Access Journals (Sweden)

    J. V.H. d’Angelo

    2000-12-01

    Full Text Available Gas-liquid solubility of hydrogen in methanol and ethanol systems with electrolytes was studied in the temperature range from 305.15 K to 498.15 K and pressures from 4 to 10 MPa. The experimental method used was the Total Pressure Method, which eliminates sampling and analysis of the phases, determining their composition at equilibrium using the following experimental data: moles of solute and solvent in the system; pressure, temperature and volume of the system at equilibrium; together with thermodynamic equations for fluid-phase equilibria. The salts used were lithium chloride and potassium acetate. The solubility of hydrogen increases with increasing temperature and pressure and the presence of salts causes a decrease in the solubility of hydrogen, when compared with the results of systems without salts, characterizing a "salting-out" effect, which is greater in conditions of lower temperature and pressure, specially for potassium acetate.

  8. Molten phosphonium iodides as electrolytes in dye-sensitized nanocrystalline solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Rosa E.; Sanchez, Eduardo M. [Laboratorio de Investigacion del Vidrio, Facultad de Ciencias Quimicas, Universidad Autonoma de Nuevo Leon, Pedro de Alba S/N, Cd. Universitaria, San Nicolas de los Garza, N.L. (Mexico)

    2006-09-22

    We have synthesized new room temperature ionic liquids and test them as new potential electrolytes for dye-sensitized nanocrystalline solar cells (DNSCs) of Gratzel type based on asymmetric tetraalkylphosphonium iodides. A systematic study on the conductivity behavior of BH{sub 3}PI, iBH{sub 3}PI, OH{sub 3}PI and iBO{sub 3}PI molten salts and the effect of the addition of low concentrations of iodine with and without 3-methoxypropionitrile is presented. Solar cells using iBH{sub 3}PI-based electrolyte reached an overall light-to-electricity efficiency of 5.7% under moderate light intensity (27000lx) conditions and those results are compared to similar systems using alternative ionic liquids as electrolytes. (author)

  9. Use of Landsat Land Surface Temperature and Vegetation Indices for Monitoring Drought in the Salt Lake Basin Area, Turkey

    Science.gov (United States)

    Orhan, Osman; Ekercin, Semih; Dadaser-Celik, Filiz

    2014-01-01

    The main purpose of this paper is to investigate multitemporal land surface temperature (LST) changes by using satellite remote sensing data. The study included a real-time field work performed during the overpass of Landsat-5 satellite on 21/08/2011 over Salt Lake, Turkey. Normalized vegetation index (NDVI), vegetation condition index (VCI), and temperature vegetation index (TVX) were used for evaluating drought impact over the region between 1984 and 2011. In the image processing step, geometric and radiometric correction procedures were conducted to make satellite remote sensing data comparable with in situ measurements carried out using thermal infrared thermometer supported by hand-held GPS. The results showed that real-time ground and satellite remote sensing data were in good agreement with correlation coefficient (R 2) values of 0.90. The remotely sensed and treated satellite images and resulting thematic indices maps showed that dramatic land surface temperature changes occurred (about 2°C) in the Salt Lake Basin area during the 28-year period (1984–2011). Analysis of air temperature data also showed increases at a rate of 1.5–2°C during the same period. Intensification of irrigated agriculture particularly in the southern basin was also detected. The use of water supplies, especially groundwater, should be controlled considering particularly summer drought impacts on the basin. PMID:24587709

  10. [Temperature effect of rheological parameters and pharmaceutical availability of diclofenak sodium salt from hydrogel products made on carbopol base for topical use].

    Science.gov (United States)

    Pluta, Janusz; Lepka, Magdalena; Michalska, Ewelina

    2008-01-01

    The aim of the carried out investigations was to state temperature effect of conventional carried out results of pharmaceutical availability valuation. Rheological parameters were tested in temperature of 32 and 37 degrees C in market hydrogel products for topical use made on carbopol base with diclofenac sodium salt. The kinetics of diclofenac sodium salt release with Hanson extraction cells through a dialysis membrane SpectraPor was tested in vitro. Viscosity parameters were determined with cone-plate digital rheometer.

  11. Influence of salts and temperature on the transfer of mercury resistance from a marine pseudomonad to Escherichia coli.

    Science.gov (United States)

    Gauthier, M J; Cauvin, F; Breittmayer, J P

    1985-01-01

    Thirty-one strains of marine bacteria were examined for their ability to transfer mercury resistance to Escherichia coli in complex media; eight strains were able to transfer their resistance marker, with frequencies ranging from 10(-3) to 10(-8). Frequencies generally increased with the increase of the mating period. Additional mating experiments were carried out with one strain, belonging to the pseudomonads, to estimate the influence of temperature, salinity, and time on the conjugal transfer frequency of mercury resistance markers. The higher frequencies occurred at 30 degrees C, in a salt medium (37%), after 24 h of mating. PMID:3896143

  12. Effects of salt and storage temperature on chemical microbiological and sensory changes in cold-smoked salmon

    DEFF Research Database (Denmark)

    Hansen, Lisbeth Truelstrup; Gill, T.; Huss, Hans Henrik

    1995-01-01

    Chemical, microbiological and sensory changes during storage of vacuum-packed cold-smoked salmon were studied using a factorial experimental design with two storage temperatures (5 and 10 degrees C) and two salt levels (2.2 and 4.6%). The spoilage characteristics were typical of microbiological...... activity in all treatments, but there was no relation between sensory changes and any of the microbiological numbers (total viable counts, total psychrotrophes, lactic acid bacteria or Enterobacteriaceae). Total viable counts typically reached 10(8) cfu/g weeks before sensory rejection. Acetic acid...

  13. The thermodynamic and transport properties of GdCl3 in molten eutectic LiCl-KCl derived from the analysis of cyclic voltammetry signals

    Science.gov (United States)

    Samin, Adib; Wu, Evan; Zhang, Jinsuo

    2017-02-01

    Pyroprocessing technology is a promising tool for recycling nuclear fuel and producing high purity gadolinium for industrial applications. An efficient implementation of pyroprocessing entails a careful characterization of the electrochemical and transport properties of lanthanides in high temperature molten salts. In this work, the cyclic voltammetry signals of Gd in molten LiCl-KCl salt were recorded for a combination of three temperatures (723 K, 773 K, and 823 K) and three concentration levels (3 wt. %, 6 wt. %, and 9 wt. %) including concentration levels higher than previously reported and relevant for a realistic application of pyroprocessing for molten salt recycle, and the concentration effects were investigated. Four scan rates (200 mV/s to 500 mV/s) were used for each condition, and the signals were examined using conventional Cyclic Voltammetry (CV) analysis equations and by utilizing a two-plate Brunauer, Emmett, and Teller (BET) model accounting for mass diffusion, kinetics, adsorption, and the evolution of electrode morphology via a nonlinear least squares procedure for fitting the model to the experimental signals. It was determined that the redox process is quasi-reversible for the scan rates being used. Furthermore, the applicability of the conventional equations for CV analysis was shown to be problematic for the conditions used, and this is thought to be due to the fact that these equations were derived under the assumption of reversible conditions. The model-derived values for diffusivity are consistent with the literature and are shown to decrease with increasing concentration. This may be due to increased interactions at higher concentration levels. It was also shown that the formal redox potential increased with a concentration and was slightly more positive on the covered electrode.

  14. Benchmark Simulation of Natural Circulation Cooling System with Salt Working Fluid Using SAM

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, K. K.; Scarlat, R. O.; Hu, R.

    2017-09-03

    Liquid salt-cooled reactors, such as the Fluoride Salt-Cooled High-Temperature Reactor (FHR), offer passive decay heat removal through natural circulation using Direct Reactor Auxiliary Cooling System (DRACS) loops. The behavior of such systems should be well-understood through performance analysis. The advanced system thermal-hydraulics tool System Analysis Module (SAM) from Argonne National Laboratory has been selected for this purpose. The work presented here is part of a larger study in which SAM modeling capabilities are being enhanced for the system analyses of FHR or Molten Salt Reactors (MSR). Liquid salt thermophysical properties have been implemented in SAM, as well as properties of Dowtherm A, which is used as a simulant fluid for scaled experiments, for future code validation studies. Additional physics modules to represent phenomena specific to salt-cooled reactors, such as freezing of coolant, are being implemented in SAM. This study presents a useful first benchmark for the applicability of SAM to liquid salt-cooled reactors: it provides steady-state and transient comparisons for a salt reactor system. A RELAP5-3D model of the Mark-1 Pebble-Bed FHR (Mk1 PB-FHR), and in particular its DRACS loop for emergency heat removal, provides steady state and transient results for flow rates and temperatures in the system that are used here for code-to-code comparison with SAM. The transient studied is a loss of forced circulation with SCRAM event. To the knowledge of the authors, this is the first application of SAM to FHR or any other molten salt reactors. While building these models in SAM, any gaps in the code’s capability to simulate such systems are identified and addressed immediately, or listed as future improvements to the code.

  15. Facilitated transport ceramic membranes for high-temperature gas cleanup. Final report, February 1990--April 1994

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, R.; Minford, E.; Damle, A.S.; Gangwal, S.K.; Hart, B.A.

    1994-04-01

    The objective of this program was to demonstrate the feasibility of developing high temperature, high pressure, facilitated transport ceramic membranes to control gaseous contaminants in Integrated Gasification Combined Cycle (IGCC) power generation systems. Meeting this objective requires that the contaminant gas H{sub 2}S be removed from an IGCC gas mixture without a substantial loss of the other gaseous components, specifically H{sub 2} and CH{sub 4}. As described above this requires consideration of other, nonconventional types of membranes. The solution evaluated in this program involved the use of facilitated transport membranes consisting of molten mixtures of alkali and alkaline earth carbonate salts immobilized in a microporous ceramic support. To accomplish this objective, Air Products and Chemicals, Inc., Golden Technologies Company Inc., and Research Triangle Institute worked together to develop and test high temperature facilitated membranes for the removal of H{sub 2}S from IGCC gas mixtures. Three basic experimental activities were pursued: (1) evaluation of the H{sub 2}S chemistry of a variety of alkali and alkaline earth carbonate salt mixtures; (2) development of microporous ceramic materials which were chemically and physically compatible with molten carbonate salt mixtures under IGCC conditions and which could function as a host to support a molten carbonate mixture and; (3) fabrication of molten carbonate/ceramic immobilized liquid membranes and evaluation of these membranes under conditions approximating those found in the intended application. Results of these activities are presented.

  16. Status of Physics and Safety Analyses for the Liquid-Salt-Cooled Very High-Temperature Reactor (LS-VHTR)

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, DT

    2005-12-15

    A study has been completed to develop a new baseline core design for the liquid-salt-cooled very high-temperature reactor (LS-VHTR) that is better optimized for liquid coolant and that satisfies the top-level operational and safety targets, including strong passive safety performance, acceptable fuel cycle parameters, and favorable core reactivity response to coolant voiding. Three organizations participated in the study: Oak Ridge National Laboratory (ORNL), Idaho National Laboratory (INL), and Argonne National Laboratory (ANL). Although the intent was to generate a new reference LS-VHTR core design, the emphasis was on performing parametric studies of the many variables that constitute a design. The results of the parametric studies not only provide the basis for choosing the optimum balance of design options, they also provide a valuable understanding of the fundamental behavior of the core, which will be the basis of future design trade-off studies. A new 2400-MW(t) baseline design was established that consists of a cylindrical, nonannular core cooled by liquid {sup 7}Li{sub 2}BeF{sub 4} (Flibe) salt. The inlet and outlet coolant temperatures were decreased by 50 C, and the coolant channel diameter was increased to help lower the maximum fuel and vessel temperatures. An 18-month fuel cycle length with 156 GWD/t burnup was achieved with a two-batch shuffling scheme, while maintaining a core power density of 10 MW/m{sup 3} using graphite-coated uranium oxicarbide particle fuel enriched to 15% {sup 235}U and assuming a 25 vol-% packing of the coated particles in the fuel compacts. The revised design appears to have excellent steady-state and transient performance. The previous concern regarding the core's response to coolant voiding has been resolved for the case of Flibe coolant by increasing the coolant channel diameter and the fuel loading. Also, the LSVHTR has a strong decay heat removal performance and appears capable of surviving a loss of forced

  17. Electrochemical concentration measurements for multianalyte mixtures in simulated electrorefiner salt

    Science.gov (United States)

    Rappleye, Devin Spencer

    The development of electroanalytical techniques in multianalyte molten salt mixtures, such as those found in used nuclear fuel electrorefiners, would enable in situ, real-time concentration measurements. Such measurements are beneficial for process monitoring, optimization and control, as well as for international safeguards and nuclear material accountancy. Electroanalytical work in molten salts has been limited to single-analyte mixtures with a few exceptions. This work builds upon the knowledge of molten salt electrochemistry by performing electrochemical measurements on molten eutectic LiCl-KCl salt mixture containing two analytes, developing techniques for quantitatively analyzing the measured signals even with an additional signal from another analyte, correlating signals to concentration and identifying improvements in experimental and analytical methodologies. (Abstract shortened by ProQuest.).

  18. Potassium isotope fractionation between K-salts and saturated aqueous solutions at room temperature: Laboratory experiments and theoretical calculations

    Science.gov (United States)

    Li, Weiqiang; Kwon, Kideok D.; Li, Shilei; Beard, Brian L.

    2017-10-01

    Improvements in mass spectrometry have made it possible to identify naturally occurring K isotope (39K/41K) variability in terrestrial samples that can be used in a variety of geological and biological applications that involve cycling of K such as clay or evaporite formation. However, our ability to interpret K isotope variability is limited by a poor understanding of how K isotopes are fractionated at low temperatures. In this study, we conducted recrystallization experiments of eight K-salts in order to measure the K isotope fractionation factor between the salt and the saturated K solution (Δ41Kmin-sol). Measured Δ41Kmin-sol are +0.50‰ for K2CO3·1.5H2O, +0.32‰ for K2SO4, +0.23‰ for KHCO3, +0.06‰ for K2C2O4·H2O, +0.02‰ for KCl, -0.03‰ for K2CrO4, -0.15‰ for KBr, and -0.52‰ for KI. Overall the Δ41Kmin-sol decreases with increasing r for K in crystals, where r is the average distance between a K atom and its neighboring atoms of negative charge. Salts with monovalent anions and salts with divalent anion complexes define different linear trends with distinct slopes on a plot of Δ41Kmin-sol - r. We applied ab initio lattice dynamics and empirical crystal-chemistry models to calculation of K isotope fractionation factors between K salts; both methods showed that the calculated inter-mineral K isotope fractionation factors (Δ41Kmin-KCl) are highly consistent with experimentally derived Δ41Kmin-KCl under the assumption of consistent β factors for different saturated K solutions. Formulations for the crystal-chemistry model further indicate that both anion charge and bond length r are the principle controlling factors for K isotope fractionation, and the K isotope fractionation factors correlate with r following a 1/r3 relationship. Our experiment and theoretical study confirms the existence of significant equilibrium K isotope fractionation at ambient conditions, and the K isotope fractionation factors for halides and sulfate obtained in this

  19. Fabrication of catalytic electrodes for molten carbonate fuel cells

    Science.gov (United States)

    Smith, James L.

    1988-01-01

    A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte.

  20. Heat Transfer Salts for Nuclear Reactor Systems - Chemistry Control, Corrosion Mitigation, and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark [Univ. of Wisconsin, Madison, WI (United States); Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States); Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Peterson, Per [Univ. of Wisconsin, Madison, WI (United States); Calderoni, Pattrick [Univ. of Wisconsin, Madison, WI (United States); Scheele, Randall [Univ. of Wisconsin, Madison, WI (United States); Casekka, Andrew [Univ. of Wisconsin, Madison, WI (United States); McNamara, Bruce [Univ. of Wisconsin, Madison, WI (United States)

    2015-01-22

    The concept of a molten salt reactor has existed for nearly sixty years. Previously all work was done during a large collaborative effort at Oak Ridge National Laboratory, culminating in a research reactor which operated for 15,000 hours without major error. This technical success has garnished interest in modern, high temperature, reactor schemes. Research using molten fluoride salts for nuclear applications requires a steady supply of high grade molten salts. There is no bulk supplier of research grade fluoride salts in the world, so a facility which could provide all the salt needed for testing at the University of Wisconsin had to be produced. Two salt purification devices were made for this purpose, a large scale purifier, and a small scale purifier, each designed to clean the salts from impurities and reduce their corrosion potential. As of now, the small scale has performed with flibe salt, hydrogen, and hydrogen fluoride, yielding clean salt. This salt is currently being used in corrosion testing facilities at the Massachusetts Institute of Technology and the University of Wisconsin. Working with the beryllium based salts requires extensive safety measures and health monitoring to prevent the development of acute or chronic beryllium disease, two pulmonary diseases created by an allergic reaction to beryllium in the lungs. Extensive health monitoring, engineering controls, and environment monitoring had to be set up with the University of Wisconsin department of Environment, Health and Safety. The hydrogen fluoride required for purification was also an extreme health hazard requiring thoughtful planning and execution. These dangers have made research a slow and tedious process. Simple processes, such as chemical handling and clean-up, can take large amounts of ingenuity and time. Other work has complemented the experimental research at Wisconsin to advance high temperature reactor goals. Modeling work has been performed in house to re

  1. Corrosion Behavior Of Potential Structural Materials For Use In Nitrate Salts Based Solar Thermal Power Plants

    Science.gov (United States)

    Summers, Kodi

    The increasing global demand for electricity is straining current resources of fossil fuels and placing increased pressure on the environment. The implementation of alternative sources of energy is paramount to satisfying global electricity demand while reducing reliance on fossil fuels and lessen the impact on the environment. Concentrated solar power (CSP) plants have the ability to harness solar energy at an efficiency not yet achieved by other technologies designed to convert solar energy to electricity. The problem of intermittency in power production seen with other renewable technologies can be virtually eliminated with the use of molten salt as a heat transfer fluid in CSP plants. Commercial and economic success of CSP plants requires operating at maximum efficiency and capacity which requires high temperature and material reliability. This study investigates the corrosion behavior of structural alloys and electrochemical testing in molten nitrate salts at three temperatures common to CSP plants. Corrosion behavior was evaluated using gravimetric and inductively-coupled plasma optical emission spectroscopy (ICP-OES) analysis. Surface morphology was studied using scanning electron microscopy. Surface oxide structure and chemistry was characterized using X-ray diffraction, Raman spectroscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. Electrochemical behavior of candidate structural alloys Alloy 4130, austenitic stainless steel 316, and super-austenitic Incoloy 800H was evaluated using potentiodynamic polarization characteristics. It was observed that electrochemical evaluation of these candidate materials correlates well with the corrosion behavior observed from gravimetric and ICP-OES analysis. This study identifies that all three alloys exhibited acceptable corrosion in 300°C molten salt while elevated salt temperatures require the more corrosion resistant alloys, stainless steel 316 and 800H. Characterization of the sample

  2. Lithium-ferrate-based cathodes for molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lanagan, M.T.; Wolfenstine, J. [Argonne National Lab., IL (United States). Energy Technology Div.; Bloom, I.; Kaun, T.D.; Krumpelt, M. [Argonne National Lab., IL (United States). Chemical Technology Div.

    1996-12-31

    Argonne National Laboratory is developing advanced cathodes for pressurized operation of the molten carbonate fuel cell (MCFC) at approximately 650 degrees Centigrade. These cathodes are based on lithium ferrate (LiFeO[sub 2]) which is attractive because of its very low solubility in the molten (Li,K)[sub 2]CO[sub 3] electrolyte. Because of its high resistivity, LiFeO[sub 2] cannot be used as a direct substitute for NiO. Cation substitution is, therefore, necessary to decrease resistivity. The effect of cation substitution on the resistivity and deformation of LiFeO[sub 2] was determined. The substitutes were chosen because their respective oxides as well as LiFeO[sub 2] crystallize with the rock-salt structure.

  3. Molten salt flux synthesis and crystal structure of a new open-framework uranyl phosphate Cs{sub 3}(UO{sub 2}){sub 2}(PO{sub 4})O{sub 2}: Spectroscopic characterization and cationic mobility studies

    Energy Technology Data Exchange (ETDEWEB)

    Yagoubi, S., E-mail: said.yagoubi@cea.fr [LEEL SIS2M UMR 3299 CEA-CNRS-Université Paris-Sud 11, CEA Saclay, F-91191 Gif-Sur-Yvette (France); Renard, C.; Abraham, F. [Unité de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, ENSCL-USTL, B.P. 90108, 59652 Villeneuve d’Ascq Cedex (France); Obbade, S. [Laboratoire d’Electrochimie et de Physicochimie des Matériaux et des Interfaces, LEPMI, UMR 5279, CNRS-Grenoble INP-UdS-UJF, 1130 Rue de la Piscine, BP75, 38402 Saint-Martin d’Hères (France)

    2013-04-15

    The reaction of triuranyl diphosphate tetrahydrate precursor (UO{sub 2}){sub 3}(PO{sub 4}){sub 2}(H{sub 2}O){sub 4} with a CsI flux at 750 °C yields a yellow single crystals of new compound Cs{sub 3}(UO{sub 2}){sub 2}(PO{sub 4})O{sub 2}. The crystal structure (monoclinic, space group C2/c, a=13.6261 (13) Å, b=8.1081(8) Å, c=12.3983(12) Å, β=114.61(12)°, V=1245.41(20) Å{sup 3} with Z=4) has been solved using direct methods and Fourier difference techniques. A full-matrix least-squares refinement on the basis of F{sup 2} yielded R1=0.028 and wR2=0.071 for 79 parameters and 1352 independent reflections with I≥2σ(I) collected on a BRUKER AXS diffractometer with MoKα radiation and a charge-coupled device detector. The crystal structure is built by two independent uranium atoms in square bipyramidal coordination, connected by two opposite corners to form infinite chains {sup 1}{sub ∞}[UO{sub 5}] and by one phosphorus atom in a tetrahedral environment PO{sub 4}. The two last entities {sup 1}{sub ∞}[UO{sub 5}] and PO{sub 4} are linked by sharing corners to form a three-dimensional structure presenting different types of channels occupied by Cs{sup +} alkaline cations. Their mobility within the tunnels were studied between 280 and 800 °C and compared with other tunneled uranyl minerals. The infrared spectrum shows a good agreement with the values inferred from the single crystal structure analysis of uranyl phosphate compound. - Graphical abstract: Arrhenius plot of the electrical conductivity of tunneled compounds Cs{sub 3}U{sub 2}PO{sub 10} and CsU{sub 2}Nb{sub 2}O{sub 11.5}. Highlights: ► The reaction of (UO{sub 2}){sub 3}(PO{sub 4}){sub 2}(H{sub 2}O){sub 4} in excess of molten CsI leads to single-crystals of new tunneled compound Cs{sub 3}(UO{sub 2}){sub 2}(PO{sub 4})O{sub 2}. ► Ionic conductivity measurements and crystal structure analysis indicate a strong connection of the Cs{sup +} cations to the tunnels. ► A low symmetry in Cs{sub 3}(UO{sub 2

  4. A Feasibility Study of Steelmaking by Molten Oxide Electrolysis (TRP9956)

    Energy Technology Data Exchange (ETDEWEB)

    Donald R. Sadoway; Gerbrand Ceder

    2009-12-31

    Molten oxide electrolysis (MOE) is an extreme form of molten salt electrolysis, a technology that has been used to produce tonnage metals for over 100 years - aluminum, magnesium, lithium, sodium and the rare earth metals specifically. The use of carbon-free anodes is the distinguishing factor in MOE compared to other molten salt electrolysis techniques. MOE is totally carbon-free and produces no CO or CO2 - only O2 gas at the anode. This project is directed at assessing the technical feasibility of MOE at the bench scale while determining optimum values of MOE operating parameters. An inert anode will be identified and its ability to sustain oxygen evalution will be demonstrated.

  5. Fluoride salts as phase change materials for thermal energy storage in the temperature range 1000-1400 K

    Science.gov (United States)

    Misra, Ajay K.

    1988-01-01

    Eutectic compositions and congruently melting intermediate compounds in binary and ternary fluoride salt systems were characterized for potential use as latent heat of fusion phase change materials to store thermal energy in the temperature range 1000-1400 K. The melting points and eutectic compositions for many systems with published phase diagrams were experimentally verified and new eutectic compositions having melting points between 1000 and 1400 K were identified. Heats of fusion of several binary and ternary eutectics and congruently melting compounds were experimentally measured by differential scanning calorimetry. For a few systems in which heats of mixing in the melts have been measured, heats of fusion of the eutectics were calculated from thermodynamic considerations and good agreement was obtained between the measured and calculated values. Several combinations of salts with high heats of fusion per unit mass (greater than 0.7 kJ/g) have been identified for possible use as phase change materials in advanced solar dynamic space power applications.

  6. Structure of molten iron chloride

    Energy Technology Data Exchange (ETDEWEB)

    Price, D.L.; Saboungi, M.L. (Argonne National Lab., IL (United States)); Hashimoto, Shinya; Moss, S.C. (Houston Univ., Houston, TX (United States). Dept. of Physics)

    1992-11-01

    The structure of molten FeCl[sub 3] at 320[sup degrees]C has been measured with neutron diffraction at the Intense Pulsed Neutron Source. Results indicate that melting in FeCl[sub 3]is accompanied by a change in local structure from the octahedral environment of the Fe[sup 3[plus

  7. Stability of Molten Core Materials

    Energy Technology Data Exchange (ETDEWEB)

    Layne Pincock; Wendell Hintze

    2013-01-01

    The purpose of this report is to document a literature and data search for data and information pertaining to the stability of nuclear reactor molten core materials. This includes data and analysis from TMI-2 fuel and INL’s LOFT (Loss of Fluid Test) reactor project and other sources.

  8. MgAl2O4 spinel refractory as containment liner for high-temperature alkali salt containing environments

    Science.gov (United States)

    Peascoe-Meisner, Roberta A [Knoxville, TN; Keiser, James R [Oak Ridge, TN; Hemric, James G [Knoxville, TN; Hubbard, Camden R [Oak Ridge, TN; Gorog, J Peter [Kent, WA; Gupta, Amul [Jamestown, NY

    2008-10-21

    A method includes containing a high-temperature alkali salt containing environment using a refractory containment liner containing MgAl.sub.2O.sub.4 spinel. A method, includes forming a refractory brick containing MgAl.sub.2O.sub.4 spinel having an exterior chill zone defined by substantially columnar crystallization and an interior zone defined by substantially equiaxed crystallization; and removing at least a portion of the exterior chill zone from the refractory brick containing MgAl.sub.2O.sub.4 spinel by scalping the refractory brick containing MgAl.sub.2O.sub.4 spinel to define at least one outer surface having an area of substantially equiaxed crystallization. A product of manufacture includes a refractory brick containing MgAl.sub.2O.sub.4 spinel including an interior zone defined by substantially equiaxed crystallization; and at least one outer surface having an area of substantially equiaxed crystallization.

  9. Electrocrystallisation of tantalum in molten fluoride media

    Energy Technology Data Exchange (ETDEWEB)

    Massot, L. [Laboratoire de Genie Chimique UMR 5503, Departement Procedes Electrochimiques et Materiaux, Universite Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex (France)]. E-mail: massot@chimie.ups-tlse.fr; Chamelot, P. [Laboratoire de Genie Chimique UMR 5503, Departement Procedes Electrochimiques et Materiaux, Universite Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex (France); Palau, P. [Pechiney CRV-UR GP, Parc Economique Centr' Alp, BP27, 38340 Voreppe (France); Taxil, P. [Laboratoire de Genie Chimique UMR 5503, Departement Procedes Electrochimiques et Materiaux, Universite Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex (France)

    2005-09-20

    The electrochemical nucleation of tantalum in molten alkaline fluoride media is investigated using chronoamperometry in the 670-750 deg C temperature range to optimize the operating conditions for preparing tantalum coatings for anode materials. Chronoamperometric results show that the electrodeposition process involves progressive nucleation with diffusion-controlled growth of the nuclei, which was confirmed by scanning electron microscopy. The influence of the temperature and the overpotential on the nucleation site densities is considered. Once the deposit has been obtained, plotting the roughness of the tantalum coatings as a function of the current densities reveals a minimum at about 80 mA/cm{sup 2}. This minimum is considered by the authors as a consequence of the progressive nucleation.

  10. Theoretical Study of a Thermophysical Property of Molten Semiconductors

    Directory of Open Access Journals (Sweden)

    Fathi Aqra

    2011-01-01

    Full Text Available This paper deals with theoretical approach to surface tension of molten silicon and germanium, and contributes to this field, which is very important. A theoretical calculation for determining the surface tension of high-temperature semiconductor melts, such as molten silicon and germanium, in the temperature range 1687–1825 K and 1211–1400 K, respectively, is described. The calculated temperature-dependence surface tension data for both Si and Ge are expressed as =876−0.32(− and =571−0.074(− (mJ m−2, respectively. These values are in consistence with the reported experimental data (720–875 for Si and 560–632 mJ m−2 for Ge. The calculated surface tension for both elements decreases linearly with temperature.

  11. Evaluation of polyacrylamide gels with accelerator ammonium salts for water shutoff in ultralow temperature reservoirs: Gelation performance and application recommendations

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2016-03-01

    Full Text Available Water shutoff in ultralow temperature reservoirs has received great attention in recent years. In previous study, we reported a phenol-formaldehyde-based gel formula with ammonium salt which can provide a gelation time between 2 hrs and 2 days at 25 °C. However, systematic evaluation and field recommendations of this gel formula when encountering complex reservoirs environment are not addressed. In this paper, how and why such practical considerations as water composition, temperature, pH, weight ratio of formaldehyde to resorcinol and contaminant Fe3+ to affect the gelation performance are examined. Brookfield DV-III and scanning electron microscopy (SEM are employed respectively for viscosity measurement and microstructure analysis. SEM results further illustrate the mechanism of the effect of salinity on gelation performance. It reveals that crosslinking done by covalent bond has great advantage for gel stability under high salinity environment. The target gel formula can provide desirable gelation time below 60 °C, perfect for 15–45 °C, while it is unfeasible to use high salinity to delay gelation at 60 °C. We summarized the effect of salinity on gelation performance of different gel formulas from the present study and published literature. The summarized data can provide important guideline for gel formula design before conducting any kinds of experiments. The variation of gelation performance at different salinity may be dominated by the interaction between crosslinker-salt-polymer, not only limited to “charge-screening effect” and “ion association” proposed by several authors. We hope the analysis encouraging further investigations. Some recommendations for field application of this gel are given in the end of this paper.

  12. Testing of a Microfluidic Sampling System for High Temperature Electrochemical MC&A

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Candido [Argonne National Lab. (ANL), Argonne, IL (United States); Nichols, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-11-27

    This report describes the preliminary validation of a high-temperature microfluidic chip system for sampling of electrochemical process salt. Electroanalytical and spectroscopic techniques are attractive candidates for improvement through high-throughput sample analysis via miniaturization. Further, microfluidic chip systems are amenable to micro-scale chemical processing such as rapid, automated sample purification to improve sensor performance. The microfluidic chip was tested to determine the feasibility of the system for high temperature applications and conditions under which microfluidic systems can be used to generate salt droplets at process temperature to support development of material balance and control systems in a used fuel treatment facility. In FY13, the project focused on testing a quartz microchip device with molten salts at near process temperatures. The equipment was installed in glove box and tested up to 400°C using commercial thermal transfer fluids as the carrier phase. Preliminary tests were carried out with a low-melting halide salt to initially characterize the properties of this novel liquid-liquid system and to investigate the operating regimes for inducing droplet flow within candidate carrier fluids. Initial results show that the concept is viable for high temperature sampling but further development is required to optimize the system to operate with process relevant molten salts.

  13. Spectroelectrochemistry of EuCl 3 in Four Molten Salt Eutectics; 3 LiCl−NaCl, 3 LiCl−2 KCl, LiCl−RbCl, and 3 LiCl−2 CsCl; at 873 K

    Energy Technology Data Exchange (ETDEWEB)

    Schroll, Cynthia A. [Department of Chemistry, University of Cincinnati, Cincinnati OH 45221-0172; Chatterjee, Sayandev [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99352; Levitskaia, Tatiana [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99352; Heineman, William R. [Department of Chemistry, University of Cincinnati, Cincinnati OH 45221-0172; Bryan, Samuel A. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99352

    2016-05-17

    Key electrochemical properties affecting pyroprocessing of nuclear fuel were examined in four eutectic melts using using Eu3+/2+ as a representative probe. We report the electrochemical and spectroelectrochemical behavior of EuCl3 in four molten salt eutectics (3 LiCl – NaCl, 3 LiCl – 2 KCl, LiCl – RbCl and 3 LiCl – 2 CsCl) at 873 K. Cyclic voltammetry was used to determine the redox potential for Eu3+/2+ and the applied potentials for spectroelectrochemistry. Single step chronoabsorptometry and thin-layer spectroelectrochemistry were used to obtain the number of electrons transferred, redox potentials and diffusion coefficients for Eu3+ in each eutectic melt. The redox potentials determined by thin-layer spectroelectrochemistry were extremely close to those obtained using cyclic voltammetry. The redox potential for Eu3+/2+ was most positive in the 3 LiCl - NaCl melt, showed a negative shift in the 3 LiCl - 2 KCl melt, and was the most negative in the LiCl - RbCl and 3 LiCl - 2 CsCl eutectics. The diffusion coefficient for Eu3+ followed this same trend; it was the largest in the 3 LiCl - NaCl melt and the smallest in the LiCl - RbCl and 3 LiCl - 2 CsCl melts. The basic one-electron reversible electron transfer for Eu3+/2+ was not changed by melt composition.

  14. Liquid Salt Heat Exchanger Technology for VHTR Based Applications

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark; Sridhara, Kumar; Allen, Todd; Peterson, Per

    2012-10-11

    The objective of this research is to evaluate performance of liquid salt fluids for use as a heat carrier for transferring high-temperature process heat from the very high-temperature reactor (VHTR) to chemical process plants. Currently, helium is being considered as the heat transfer fluid; however, the tube size requirements and the power associated with pumping helium may not be economical. Recent work on liquid salts has shown tremendous potential to transport high-temperature heat efficiently at low pressures over long distances. This project has two broad objectives: To investigate the compatibility of Incoloy 617 and coated and uncoated SiC ceramic composite with MgCl2-KCl molten salt to determine component lifetimes and aid in the design of heat exchangers and piping; and, To conduct the necessary research on the development of metallic and ceramic heat exchangers, which are needed for both the helium-to-salt side and salt-to-process side, with the goal of making these heat exchangers technologically viable. The research will consist of three separate tasks. The first task deals with material compatibility issues with liquid salt and the development of techniques for on-line measurement of corrosion products, which can be used to measure material loss in heat exchangers. Researchers will examine static corrosion of candidate materials in specific high-temperature heat transfer salt systems and develop an in situ electrochemical probe to measure metallic species concentrations dissolved in the liquid salt. The second task deals with the design of both the intermediate and process side heat exchanger systems. Researchers will optimize heat exchanger design and study issues related to corrosion, fabrication, and thermal stresses using commercial and in-house codes. The third task focuses integral testing of flowing liquid salts in a heat transfer/materials loop to determine potential issues of using the salts and to capture realistic behavior of the salts in a

  15. Preparation of fused chloride salts for use in pyrochemical plutonium recovery operations at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Fife, K.W.; Bowersox, D.F.; Christensen, D.C.; Williams, J.D.

    1986-07-01

    The Plutonium Metal Technology Group at Los Alamos routinely uses pyrochemical processes to produce and purify plutonium from impure sources. The basic processes (metal production, metal purification, and residue treatment) involve controlling oxidation and reduction reactions between plutonium and its compounds in molten salts. Current production methods are described, as well as traditional approaches and recent developments in the preparation of solvent salts for electrorefining, molten salt extraction, lean metal (pyroredox) purification, and direct oxide reduction.

  16. The Development of an INL Capability for High Temperature Flow, Heat Transfer, and Thermal Energy Storage with Applications in Advanced Small Modular Reactors, High Temperature Heat Exchangers, Hybrid Energy Systems, and Dynamic Grid Energy Storage C

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaodong [The Ohio State Univ., Columbus, OH (United States); Zhang, Xiaoqin [The Ohio State Univ., Columbus, OH (United States); Kim, Inhun [The Ohio State Univ., Columbus, OH (United States); O' Brien, James [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sabharwall, Piyush [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    The overall goal of this project is to support Idaho National Laboratory in developing a new advanced high temperature multi fluid multi loop test facility that is aimed at investigating fluid flow and heat transfer, material corrosion, heat exchanger characteristics and instrumentation performance, among others, for nuclear applications. Specifically, preliminary research has been performed at The Ohio State University in the following areas: 1. A review of fluoride molten salts’ characteristics in thermal, corrosive, and compatibility performances. A recommendation for a salt selection is provided. Material candidates for both molten salt and helium flow loop have been identified. 2. A conceptual facility design that satisfies the multi loop (two coolant loops [i.e., fluoride molten salts and helium]) multi purpose (two operation modes [i.e., forced and natural circulation]) requirements. Schematic models are presented. The thermal hydraulic performances in a preliminary printed circuit heat exchanger (PCHE) design have been estimated. 3. An introduction of computational methods and models for pipe heat loss analysis and cases studies. Recommendations on insulation material selection have been provided. 4. An analysis of pipe pressure rating and sizing. Preliminary recommendations on pipe size selection have been provided. 5. A review of molten fluoride salt preparation and chemistry control. An introduction to the experience from the Molten Salt Reactor Experiment at Oak Ridge National Laboratory has been provided. 6. A review of some instruments and components to be used in the facility. Flowmeters and Grayloc connectors have been included. This report primarily presents the conclusions drawn from the extensive review of literatures in material selections and the facility design progress at the current stage. It provides some useful guidelines in insulation material and pipe size selection, as well as an introductory review of facility process and components.

  17. Status of Preconceptual Design of the Advanced High-Temperature Reactor (AHTR)

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D.T.

    2004-07-29

    A new reactor plant concept is presented that combines the benefits of ceramic-coated, high-temperature particle fuel with those of clean, high-temperature, low-pressure molten salt coolant. The Advanced High-Temperature Reactor (AHTR) concept is a collaboration of Oak Ridge National Laboratory, Sandia National Laboratories, and the University of California at Berkeley. The purpose of the concept is to provide an advanced design capable of satisfying the top-level functional requirements of the U.S. Department of Energy Next Generation Nuclear Plant (NGNP), while also providing a technology base that is sufficiently robust to allow future development paths to higher temperatures and larger outputs with highly competitive economics. This report summarizes the status of the AHTR preconceptual design. It captures the results from an intense effort over a period of 3 months to (1) screen and examine potential feasibility concerns with the concept; (2) refine the conceptual design of major systems; and (3) identify research, development, and technology requirements to fully mature the AHTR design. Several analyses were performed and are presented to quantify the AHTR performance expectations and to assist in the selection of several design parameters. The AHTR, like other NGNP reactor concepts, uses coated particle fuel in a graphite matrix. But unlike the other NGNP concepts, the AHTR uses molten salt rather than helium as the primary system coolant. The considerable previous experience with molten salts in nuclear environments is discussed, and the status of high-temperature materials is reviewed. The large thermal inertia of the system, the excellent heat transfer and fission product retention characteristics of molten salt, and the low-pressure operation of the primary system provide significant safety attributes for the AHTR. Compared with helium coolant, a molten salt cooled reactor will have significantly lower fuel temperatures (150-200-C lower) for the

  18. Complementary experimental-simulational study of surfactant micellar phase in the extraction process of metallic ions: Effects of temperature and salt concentration

    Science.gov (United States)

    Soto-Ángeles, Alan Gustavo; Rodríguez-Hidalgo, María del Rosario; Soto-Figueroa, César; Vicente, Luis

    2018-02-01

    The thermoresponsive micellar phase behaviour that exhibits the Triton-X-100 micelles by temperature effect and addition of salt in the extraction process of metallic ions was explored from mesoscopic and experimental points. In the theoretical study, we analyse the formation of Triton-X-100 micelles, load and stabilization of dithizone molecules and metallic ions extraction inside the micellar core at room temperature; finally, a thermal analysis is presented. In the experimental study, the spectrophotometric outcomes confirm the solubility of the copper-dithizone complex in the micellar core, as well as the extraction of metallic ions of aqueous environment via a cloud-point at 332.2 K. The micellar solutions with salt present a low absorbance value compared with the micellar solutions without salt. The decrease in the absorbance value is attributed to a change in the size of hydrophobic region of colloidal micelles. All transitory stages of extraction process are discussed and analysed in this document.

  19. Cracking of crude oil in the molten metals

    Directory of Open Access Journals (Sweden)

    Marat A. Glikin

    2014-03-01

    Full Text Available In this paper is investigated the process of crude oil and its individual fractions cracking in the molten metals medium to produce light petroleum products. Thermodynamic calculations demonstrate the possibility of using lead and tin including alloys thereof as the melt. The cracking of West Siberian crude oil is studied at temperatures 400-600 °C. It is detected that as the temperature increases there is increase of aromatic hydrocarbons and olefins content in gasoline while naphthenes, n- and i-paraffins content reduces. Optimal temperature for cracking in molten metals is ~500 °C. The use of a submerged nozzle increases the yield of light petroleum products by ~2%. The research octane number of gasoline produced is 82-87 points. It is determined that the yield of light petroleum products depending on the experimental conditions is increased from 46.9 to 55.1-61.3% wt.   

  20. C-H activation of imidazolium salts by Pt(0) at ambient temperature: synthesis of hydrido platinum bis(carbene) compounds.

    Science.gov (United States)

    Duin, Marcel A; Clement, Nicolas D; Cavell, Kingsley J; Elsevier, Cornelis J

    2003-02-07

    A zerovalent platinum(carbene) complex with two monoalkene ligands, which is able to activate C-H bonds of imidazolium salts at room temperature to yield isolable hydrido platinum(II) bis(carbene) compounds, has been synthesised for the first time.

  1. The pH-unrelated influence of salt, temperature and manganese on aroma formation by Staphylococcus xylosus and Staphylococcus carnosus in a fermented meat model system

    DEFF Research Database (Denmark)

    Tjener, Karsten; Stahnke, Louise Heller; Andersen, L.

    2004-01-01

    The influence of manganese (0.01-0.1-1.0 mug/g), temperature (15-24 degreesC) and salt (3-4% w/w) on volatile formation in model minces inoculated with Pediococcus pentosaceus and either Staphylococcus xylosus or Staphylococcus carnosus was studied in a full factorial experiment. In order to stud...

  2. Molten carbonate fuel cell matrices

    Science.gov (United States)

    Vogel, Wolfgang M.; Smith, Stanley W.

    1985-04-16

    A molten carbonate fuel cell including a cathode electrode of electrically conducting or semiconducting lanthanum containing material and an electrolyte containing matrix of an electrically insulating lanthanum perovskite. In addition, in an embodiment where the cathode electrode is LaMnO.sub.3, the matrix may include LaAlO.sub.3 or a lithium containing material such as LiAlO.sub.2 or Li.sub.2 TiO.sub.3.

  3. Water purification using organic salts

    Science.gov (United States)

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  4. Instantaneous low temperature gelation by a multicomponent organogelator liquid system based on ammonium salts.

    Science.gov (United States)

    García Velázquez, Daniel; Díaz Díaz, David; Gutiérrez Ravelo, Angel; Marrero Tellado, José Juan

    2008-06-25

    A new synergistic multicomponent organogelator liquid system (MOGLS) was discovered during the standard protocol of tartaric acid-mediated racemic resolution of (+/-)- trans-1,2-diaminocyclohexane. The MOGLS is formed by a 0.126 M methanolic solution of (1 R,2 R)-(+)-1,2-diaminocyclohexane L-tartrate and 1 equiv of concentrated hydrochloric acid. Nonreversible gelation of oxygenated and nitrogenated solvents occurs efficiently at low temperature. Several features make this system unique: (1) it is a multicomponent solution where each of the five components is required for the organogelation property; (2) the multicomponent organogelator liquid system (MOGLS) is formed by simple, small, and commercially available chiral building blocks dissolved in a well-defined solvent system (MeOH/HCl/H2O); (3) the chiral building blocks are easily amenable for further modifications in structure-property relationship studies; (4) the gelation phenomenon takes place efficiently at low temperature upon warming up the isotropic solution, conversely to the typical gel preparation protocol (gel formation upon cooling down the isotropic solution); (5) the formed organic gels are not thermoreversible in spite of the noncovalent interactions that hold the 3D-fibrillar network together.

  5. Measurement of radio wave reflection due to temperature rising from rock salt and ice irradiated by an electron beam for an ultra-high-energy neutrino detector

    Energy Technology Data Exchange (ETDEWEB)

    Tanikawa, Takahiro; Chiba, Masami; Kamijo, Toshio; Yabuki, Fumiaki; Yasuda, Osamu; Akiyama, Hidetoshi; Chikashige, Yuichi; Kon, Tadashi; Shimizu, Yutaka; Utsumi, Michiaki; Fujii, Masatoshi [Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji-shi, Tokyo 192-0397 (Japan); Faculty of Science and Technology, Seikei University, Musashino-shi, Tokyo 180-8633 (Japan); Department of Applied Science and Energy Engineering, School of Engineering, Tokai University, Hiratsuka-shi, Kanagawa 259-1292 (Japan); School of Medicine, Shimane University, Izumo-shi, Shimane 693-8501 (Japan)

    2012-11-12

    An ultra-high-energy neutrino (UHE{nu}) gives temperature rise along the hadronic and electromagnetic shower when it enters into rock salt or ice. Permittivities of them arise with respect the temperatures at ionization processes of the UHE{nu} shower. It is expected by Fresnel's formula that radio wave reflects at the irregularity of the permittivity in the medium. We had found the radio wave reflection effect in rock salt. The reflection effect and long attenuation length of radio wave in rock salt and ice would yield a new UHE{nu} detection method. An experiment for ice was performed to study the reflection effect. A coaxial tube was filled with rock salt powder or ice. Open end of the coaxial tube was irradiated by a 2 MeV electron beam. Radio wave of 435 MHz was introduced to the coaxial tube. We measured the reflection wave from the open end. We found the radio wave reflection effect due to electron beam irradiation in ice as well as in rock salt.

  6. Molar conductivity behavior of ionic liquid compare to inorganic salt in electrolyte solution at ambien temperature

    Science.gov (United States)

    Hanibah, H.; Hashim, N. Z. Nor; Shamsudin, I. J.

    2017-09-01

    Molar Conductivity (Λ) behaviour of 1-butyl-3-methylimidazolium (Bmin) acetate and Bmin chloride (Bmin Cl) ionic liquids compared to lithium perchlorate (LiClO4) has been studied in aqueous and acetonitrile (ACN) solution at ambient temperature. The limiting molar conductivity (Λ0) was obtained using the Kohlrausch's and Ostwald's equation for the investigated systems. The results show that the Λ0 value for LiClO4 in both aqueous or acetonitrile (ACN) electrolyte system with a highest value as compare to ionic liquid electrolyte systems. This might as a result of ions association of LiClO4 in aqueous medium as the concentration of the solute increases in the solvent. In addition, the partial dissociation behaviour of LiClO4 in less polar solvent such as ACN also significantly affects the Λ0 value for this electrolyte system. However, for Bmin acetate and Bmin Cl in the aqueous or ACN medium show a much lower Λ0 value as compare to LiClO4 electrolyte system, 45.64, 74.63 and 107.32 S cm2 mol-1 respectively. This as a result of the nature behaviour of ionic liquid itself that present as free moving ions at room temperature before any dissolution into the solvent. In addition, a vice versa trend of Λ0 value is noted for Bmin acetate and Bmin Cl, 21.34 and 14.56 S cm2 mol-1 respectively in ACN electrolyte system. This indicated the solvent and the size of the anion play an important role in the estimation of limiting molar conductivity values which significantly affect the present of total free moving ions in an electrolyte system.

  7. Separation of Electrolytic Reduction Product from Stainless Steel Wire Mesh Cathode Basket via Salt Draining and Reuse of the Cathode Basket

    National Research Council Canada - National Science Library

    Eun-Young Choi; Jeong Lee; Dong Hyun Heo; Jin-Mok Hur

    2017-01-01

    .... Platinum was employed as an anode. After the electrolysis, the residual salt of the cathode basket containing the reduction product was drained by placing it at gas phase above the molten salt using a holder...

  8. Actinides-lanthanides (neodymium) separation by electrolytical extraction in molten fluoride media; Separation actinides-lanthanides (neodyne) par extraction electrolytique en milieux fluorures fondus

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, C

    2005-02-15

    The aim of this thesis is to assess the potentialities of pyrochemical processes for futur nuclear fuels and Generation IV reactors (more particularly molten salt reactors). This study concerns the Actinides-Lanthanides and Lanthanides-Solvent separation by electrolytical extraction in molten fluoride media at high temperature. Three elements are selected for this study: neodymium (NdF{sub 3}), uranium (UF{sub 4}) and plutonium (PuF{sub 3}). Firstly, the electrochemical study of these three compounds in molten fluoride media is performed to evaluate the separations. Electrodeposition processes are studied and the values of formal potentials of U(III)/U(0), Pu(III)/Pu(0) and Nd(III)/Nd(0) are obtained in LiF-CaF{sub 2} eutectic mixture. Thermodynamically, the values of potentials differences are enough to separate U-Nd and Pu-Nd with a yield of extraction of 99.99%; this value is just sufficient for the Pu-Nd separation. Concerning the Nd-solvent separation this potential difference is too small. Next, the electrodeposition of solid metals on inert electrodes is performed. This study showed that the uranium and neodymium deposits are unstable in several fluoride media. In addition, the presence of salts in the dendritic metal is observed for the U solid deposits. Finally, a reactive cathode is used to improve these separation results and the shape of the deposits. The experimental results on nickel electrodes showed an improvement of the Pu-Nd separation and the Nd-solvent separation with the depolarisation phenomenon of the metal deposit on the nickel. Moreover, U and Nd metal are stabilized in the alloy which allows the elimination of reactions with the solvent as observed for the solid deposit. The formation of liquids alloys makes also easier the recovery of these three. (author)

  9. Actinides-lanthanides (neodymium) separation by electrolytic extraction in molten fluoride media; Separation actinides-lanthanides (neodyne) par extraction electrolytique en milieux fluorures fondus

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, C

    2005-02-15

    The aim of this thesis is to assess the potentialities of pyrochemical processes for future nuclear fuels and Generation IV reactors (more particularly molten salt reactors). This study concerns the Actinides-Lanthanides and Lanthanides-Solvent separation by electrolytic extraction in molten fluoride media at high temperature. Three elements are selected for this study: neodymium (NdF{sub 3}), uranium (UF{sub 4}) and plutonium (PuF{sub 3}). Firstly, the electrochemical study of these three compounds in molten fluoride media is performed to evaluate the separations. Electrodeposition processes are studied and the values of formal potentials of U(III)/U(0), Pu(III)/Pu(0) and Nd(III)/Nd(0) are obtained in LiF-CaF{sub 2} eutectic mixture. Thermodynamically, the values of potentials differences are enough to separate U-Nd and Pu-Nd with a yield of extraction of 99.99%; this value is just sufficient for the Pu-Nd separation. Concerning the Nd-solvent separation this potential difference is too small. Next, the electrodeposition of solid metals on inert electrodes is performed. This study showed that the uranium and neodymium deposits are unstable in several fluoride media. In addition, the presence of salts in the dendritic metal is observed for the U solid deposits. Finally, a reactive cathode is used to improve these separation results and the shape of the deposits. The experimental results on nickel electrodes showed an improvement of the Pu-Nd separation and the Nd-solvent separation with the depolarization phenomenon of the metal deposit on the nickel. Moreover, U and Nd metal are stabilized in the alloy which allows the elimination of reactions with the solvent as observed for the solid deposit. The formation of liquids alloys makes also easier the recovery of these three. (author)

  10. Growth of Cyanobacterium aponinum influenced by increasing salt concentrations and temperature.

    Science.gov (United States)

    Winckelmann, Dominik; Bleeke, Franziska; Bergmann, Peter; Klöck, Gerd

    2015-06-01

    The increasing requirement of food neutral biofuels demands the detection of alternative sources. The use of non-arable land and waste water streams is widely discussed in this regard. A Cyanobacterium was isolated on the area of a possible algae production side near a water treatment plant in the arid desert region al-Wusta. It was identified as Cyanobacterium aponinum PB1 and is a possible lipid source. To determine its suitability of a production process using this organism, a set of laboratory experiments were performed. Its growth behavior was examined in regard to high temperatures and increasing NaCl concentrations. A productivity of 0.1 g L-1 per day was measured at an alga density below 0.75 g L-1. C. aponinum PB1 showed no sign of altered growth behavior in media containing 70 g L-1 NaCl or less. Detection of a negative effect of NaCl on the growth using Pulse-Amplitude-Modulation chlorophyll fluorescence analysis was not more sensitive than optical density measurement.

  11. Effects of temperature, salt concentration, and the protonation state on the dynamics and hydrogen-bond interactions of polyelectrolyte multilayers on lipid membranes.

    Science.gov (United States)

    Lee, Hwankyu

    2016-03-07

    Polyelectrolyte multilayers, which consist of poly-l-lysines (PLL) and hyaluronic acids (HA), are simulated on phospholipid membranes with explicit water at different temperatures, salt concentrations, and protonation states of PLL that correspond to pH 7 or higher. PLL and HA polymers, which are initially sequentially deposited as three HA/PLL bilayers above the membrane, partially intermix with each other within 300 ns, and with a significant amount of water at almost half of its bulk density. With reduced protonation of amine groups of PLL, the polymers diffuse faster, especially at higher temperatures, and for 0%-protonation, disperse into the water, due to the many fewer hydrogen bonds between PLL and HA polymers. When PLL is protonated, the addition of salt ions weakens electrostatic interactions between PLL and HA and, at 0.5 M NaCl, eventually reduces the number of hydrogen bonds, which in experiments leads to hole formation inside the PLL/HA film. Multilayers are stabilized by hydrogen bonds, primarily between charged groups and to a lesser extent between uncharged groups. PLL and HA also electrostatically interact with lipid head groups of membranes which reduces the lateral mobility of membrane lipids, to an extent dependent on the salt concentration. These findings help quantitate the effects of temperature, salt, and the protonation state (or pH) on the stability and dynamics of multilayers and membranes, and show trends that compare favorably with the experimental observations of the swelling of multilayers.

  12. High temperature active heat exchanger research for latent heat storage

    Science.gov (United States)

    Alario, J.; Haslett, R.

    1982-02-01

    An active heat exchange method in a latent heat (salt) thermal energy storage system that prevents a low conductivity solid salt layer from forming on heat transfer surfaces was developed. An evaluation of suitable media with melting points in the temperature range of interest (250 to 400 C) limited the candidates to molten salts from the chloride, hydroxide and nitrate families, based on high storage capacity, good corrosion characteristics and availability in large quantities at reasonable cost. The specific salt recommended for laboratory tests was a choride eutectic (20.5KCL o 24.5NaCL o 55.MgCl2% by wt.), with a nominal melting point of 385 C. Various active heat exchange concepts were given a technical and economic comparison to a passive tube shell design for a reference application (300 MW sub t for 6 hours). Test hardware was then built for the most promising concept: a direct contact heat exchanger in which molten salt droplets are injected into a cooler counter flowing stream of liquid metal carrier fluid (lead/Bismuth).

  13. Effects of Temperature and Humidity History on Brittleness of α-Sulfonated Fatty Acid Methyl Ester Salt Crystals.

    Science.gov (United States)

    Watanabe, Hideaki; Morigaki, Atsunori; Kaneko, Yukihiro; Tobori, Norio; Aramaki, Kenji

    2016-01-01

    α-Sulfonated fatty acid methyl ester salts (MES), which were made from vegetable sources, are attractive candidates for eco-friendly washing detergents because they have various special features like excellent detergency, favorable biodegradability, and high stability against enzymes. To overcome some disadvantages of powder-type detergents like caking, sorting, and dusting, we studied how temperature and humidity history, as a model for long-term storage conditions, can affect crystalline structures and reduce the brittleness of MES powder. We characterized the crystalline structure of MES grains using small-angle X-ray scattering, wide-angle X-ray scattering, differential scanning calorimetry, and Fourier transform infrared spectroscopy measurements and determined the yield values, which measure the brittleness of MES grains, in shear stress using dynamic viscoelasticity measurements. This study confirmed that MES crystals form three pseudo-polymorphs via thermal or humidity conditioning: metastable crystals (αsubcell), anhydrous crystals (β subcell), and dihydrate crystals (β' subcell). Further, we found that the yield value increases upon phase transition from the β subcell to the β' subcell and from the β' subcell to the αsubcell. Therefore, controlling the thermal and humidity conditioning of MES grains is an effective way to decrease the brittleness of MES powders and can be used to overcome the above mentioned disadvantages of powder-type detergents in the absence of co-surfactants.

  14. Capital cost expenditure of high temperature latent and sensible thermal