WorldWideScience

Sample records for temperature inversions

  1. Surface layer temperature inversion in the Arabian Sea during winter

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Ghosh, A

    Surface layer temperature inversion in the south eastern Arabian Sea, during winter has been studied using Bathythermograph data collected from 1132 stations. It is found that the inversion in this area is a stable seasonal feature...

  2. Modeling temperature inversion in southeastern Yellow Sea during winter 2016

    Science.gov (United States)

    Pang, Ig-Chan; Moon, Jae-Hong; Lee, Joon-Ho; Hong, Ji-Seok; Pang, Sung-Jun

    2017-05-01

    A significant temperature inversion with temperature differences larger than 3°C was observed in the southeastern Yellow Sea (YS) during February 2016. By analyzing in situ hydrographic profiles and results from a regional ocean model for the YS, this study examines the spatiotemporal evolution of the temperature inversion and its connection with wind-induced currents in winter. Observations reveal that in winter, when the northwesterly wind prevails over the YS, the temperature inversion occurs largely at the frontal zone southwest of Korea where warm/saline water of a Kuroshio origin meets cold/fresh coastal water. Our model successfully captures the temperature inversion observed in the winter of 2016 and suggests a close relation between northwesterly wind bursts and the occurrence of the large inversion. In this respect, the strong northwesterly wind drove cold coastal water southward in the upper layer via Ekman transport, which pushed the water mass southward and increased the sea level slope in the frontal zone in southeastern YS. The intensified sea level slope propagated northward away from the frontal zone as a shelf wave, causing a northward upwind flow response along the YS trough in the lower layer, thereby resulting in the large temperature inversion. Diagnostic analysis of the momentum balance shows that the westward pressure gradient, which developed with shelf wave propagation along the YS trough, was balanced with the Coriolis force in accordance with the northward upwind current in and around the inversion area.

  3. Surface layer temperature inversion in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Gopalakrishna, V.V.; Muraleedharan, P.M.; Reddy, G.V.; Araligidad, N.; Shenoy, Shrikant

    of Bengal, such as occurrence time, characteristics, stability, inter-annual variability and generating mechanisms. Spatially organized temperature inversion occurs in the coastal waters of the western and northeastern Bay during winter (November...

  4. DETECTION AND MODELING OF TEMPERATURE INVERSION IN THE ATMOSPHERE USING MODIS IMAGES (CASE STUDY: KERMANSHAH

    Directory of Open Access Journals (Sweden)

    H. Kachar

    2015-12-01

    Full Text Available Increase of temperature with height in the troposphere is called temperature inversion. Parameters such as strength and depth are characteristics of temperature inversion. Inversion strength is defined as the temperature difference between the surface and the top of the inversion and the depth of inversion is defined as the height of the inversion from the surface. The common approach in determination of these parameters is the use of Radiosonde where these measurements are too sparse. The main objective of this study is detection and modeling the temperature inversion using MODIS thermal infrared data. There are more than 180 days per year in which the temperature inversion conditions are present in Kermanshah city. Kermanshah weather station was selected as the study area. 90 inversion days was selected from 2007 to 2008 where the sky was clear and the Radiosonde data were available. Brightness temperature for all thermal infrared bands of MODIS was calculated for these days. Brightness temperature difference between any of the thermal infrared bands of MODIS and band 31 was found to be sensitive to strength and depth of temperature inversion. Then correlation coefficients between these pairs and the inversion depth and strength both calculated from Radiosonde were evaluated. The results showed poor linear correlation. This was found to be due to the change of the atmospheric water vapor content and the relatively weak temperature inversion strength and depth occurring in Kermanshah. The polynomial mathematical models and Artificial intelligence algorithms were deployed for detection and modeling the temperature inversion. A model with the lowest terms and highest possible accuracy was obtained. The Model was tested using 20 independent test data. Results indicate that the inversion strength can be estimated with RMSE of 0.84° C and R2 of 0.90. Also inversion depth can be estimated with RMSE of 54.56 m and R2 of 0.86.

  5. Inversions

    Science.gov (United States)

    Brown, Malcolm

    2009-01-01

    Inversions are fascinating phenomena. They are reversals of the normal or expected order. They occur across a wide variety of contexts. What do inversions have to do with learning spaces? The author suggests that they are a useful metaphor for the process that is unfolding in higher education with respect to education. On the basis of…

  6. Surface layer temperature inversion in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Gopalakrishna, V.V.; Muraleedharan, P.M.; Reddy, G.V.; Araligidad, N.

    super (-1). The role of net surface heat flux in generating the observed inversions are examined from the climatological monthly estimates of the same derived from ISCCP (International Satellite Cloud Climatology Program), SRB (Surface Radiation Budget...

  7. Theoretical study on the inverse modeling of deep body temperature measurement.

    Science.gov (United States)

    Huang, Ming; Chen, Wenxi

    2012-03-01

    We evaluated the theoretical aspects of monitoring the deep body temperature distribution with the inverse modeling method. A two-dimensional model was built based on anatomical structure to simulate the human abdomen. By integrating biophysical and physiological information, the deep body temperature distribution was estimated from cutaneous surface temperature measurements using an inverse quasilinear method. Simulations were conducted with and without the heat effect of blood perfusion in the muscle and skin layers. The results of the simulations showed consistently that the noise characteristics and arrangement of the temperature sensors were the major factors affecting the accuracy of the inverse solution. With temperature sensors of 0.05 °C systematic error and an optimized 16-sensor arrangement, the inverse method could estimate the deep body temperature distribution with an average absolute error of less than 0.20 °C. The results of this theoretical study suggest that it is possible to reconstruct the deep body temperature distribution with the inverse method and that this approach merits further investigation.

  8. An inverse radiation model for optical determination of temperature and species concentration: Development and validation

    DEFF Research Database (Denmark)

    Ren, Tao; Modest, Michael F.; Fateev, Alexander

    2015-01-01

    In this study, we present an inverse calculation model based on the Levenberg-Marquardt optimization method to reconstruct temperature and species concentration from measured line-of-sight spectral transmissivity data for homogeneous gaseous media. The high temperature gas property database HITEMP...... 2010 (Rothman et al. (2010) [1]), which contains line-by-line (LBL) information for several combustion gas species, such as CO2 and H2O, was used to predict gas spectral transmissivities. The model was validated by retrieving temperatures and species concentrations from experimental CO2 and H2O...... transmissivity measurements. Optimal wavenumber ranges for CO2 and H2O transmissivity measured across a wide range of temperatures and concentrations were determined according to the performance of inverse calculations. Results indicate that the inverse radiation model shows good feasibility for measurements...

  9. Research on surface temperature compensation of rotary kiln based on inverse exponential model

    Science.gov (United States)

    Dai, Shaosheng; Yu, Liangbing; Zhang, Xiaoxiao; Cheng, Yajun; Chen, Yamei

    2018-01-01

    Aiming at large measurement error of the kiln head in the process of measuring the temperature of the rotary kiln surface, this paper presents a high-precision temperature compensation algorithm for rotary kiln surface based on the inverse exponential model. The algorithm is implemented as follows: First of all, this paper chooses a series of points on the surface of the rotary kiln as monitoring points and calculates the difference between the actual temperature of the monitoring points and the temperature measured by infrared scanning thermometer (IST); Then a relation curve is plotted between the temperature differences and measuring distances; Finally the nonlinear model of inverse exponential function is established according to the curve trend. The experimental results show that the algorithm can obviously reduce the error of temperature measurement, and compared to the traditional method, the proposed method reduces the error of temperature measurement from 1.26% to 0.14%.

  10. Characteristics of Temperature and Humidity Inversions and Low-Level Jets over Svalbard Fjords in Spring

    Directory of Open Access Journals (Sweden)

    Timo Vihma

    2011-01-01

    Full Text Available Air temperature and specific humidity inversions and low-level jets were studied over two Svalbard fjords, Isfjorden and Kongsfjorden, applying three tethersonde systems. Tethersonde operation practices notably affected observations on inversion and jet properties. The inversion strength and depth were strongly affected by weather conditions at the 850 hPa level. Strong inversions were deep with a highly elevated base, and the strongest ones occurred in warm air mass. Unexpectedly, downward longwave radiation measured at the sounding site did not correlate with the inversion properties. Temperature inversions had lower base and top heights than humidity inversions, the former due to surface cooling and the latter due to adiabatic cooling with height. Most low-level jets were related to katabatic winds. Over the ice-covered Kongsfjorden, jets were lifted above a cold-air pool on the fjord; the jet core was located highest when the snow surface was coldest. At the ice-free Isfjorden, jets were located lower.

  11. A Robust Inversion Algorithm for Surface Leaf and Soil Temperatures Using the Vegetation Clumping Index

    Directory of Open Access Journals (Sweden)

    Zunjian Bian

    2017-07-01

    Full Text Available The inversion of land surface component temperatures is an essential source of information for mapping heat fluxes and the angular normalization of thermal infrared (TIR observations. Leaf and soil temperatures can be retrieved using multiple-view-angle TIR observations. In a satellite-scale pixel, the clumping effect of vegetation is usually present, but it is not completely considered during the inversion process. Therefore, we introduced a simple inversion procedure that uses gap frequency with a clumping index (GCI for leaf and soil temperatures over both crop and forest canopies. Simulated datasets corresponding to turbid vegetation, regularly planted crops and randomly distributed forest were generated using a radiosity model and were used to test the proposed inversion algorithm. The results indicated that the GCI algorithm performed well for both crop and forest canopies, with root mean squared errors of less than 1.0 °C against simulated values. The proposed inversion algorithm was also validated using measured datasets over orchard, maize and wheat canopies. Similar results were achieved, demonstrating that using the clumping index can improve inversion results. In all evaluations, we recommend using the GCI algorithm as a foundation for future satellite-based applications due to its straightforward form and robust performance for both crop and forest canopies using the vegetation clumping index.

  12. Inverse analysis of non-uniform temperature distributions using multispectral pyrometry

    Science.gov (United States)

    Fu, Tairan; Duan, Minghao; Tian, Jibin; Shi, Congling

    2016-05-01

    Optical diagnostics can be used to obtain sub-pixel temperature information in remote sensing. A multispectral pyrometry method was developed using multiple spectral radiation intensities to deduce the temperature area distribution in the measurement region. The method transforms a spot multispectral pyrometer with a fixed field of view into a pyrometer with enhanced spatial resolution that can give sub-pixel temperature information from a ;one pixel; measurement region. A temperature area fraction function was defined to represent the spatial temperature distribution in the measurement region. The method is illustrated by simulations of a multispectral pyrometer with a spectral range of 8.0-13.0 μm measuring a non-isothermal region with a temperature range of 500-800 K in the spot pyrometer field of view. The inverse algorithm for the sub-pixel temperature distribution (temperature area fractions) in the ;one pixel; verifies this multispectral pyrometry method. The results show that an improved Levenberg-Marquardt algorithm is effective for this ill-posed inverse problem with relative errors in the temperature area fractions of (-3%, 3%) for most of the temperatures. The analysis provides a valuable reference for the use of spot multispectral pyrometers for sub-pixel temperature distributions in remote sensing measurements.

  13. Inverse temperature dependence of reverse gate leakage current in AlGaN/GaN HEMT

    Science.gov (United States)

    Kaushik, J. K.; Balakrishnan, V. R.; Panwar, B. S.; Muralidharan, R.

    2013-01-01

    The experimentally observed inverse temperature dependence of the reverse gate leakage current in AlGaN/GaN HEMT is explained using a virtual gate trap-assisted tunneling model. The virtual gate is formed due to the capture of electrons by surface states in the vicinity of actual gate. The increase and decrease in the length of the virtual gate with temperature due to trap kinetics are used to explain this unusual effect. The simulation results have been validated experimentally.

  14. Intensity, frequency and spatial configuration of winter temperature inversions in the closed La Brevine valley, Switzerland

    Science.gov (United States)

    Vitasse, Yann; Klein, Geoffrey; Kirchner, James W.; Rebetez, Martine

    2017-11-01

    Some of the world's valleys are famous for having particularly cold microclimates. The La Brevine valley, in the Swiss Jura Mountains, holds the record for the lowest temperature ever measured in an inhabited location in Switzerland. We studied cold air pools (CAPs) in this valley during the winter of 2014-2015 using 44 temperature data loggers distributed between 1033 and 1293 m asl. Our goals were to (i) describe the climatic conditions under which CAPs form in the valley, (ii) examine the spatial configuration and the temperature structure of the CAPs and (iii) quantify how often temperature inversions occur in winter using long-term series of temperature from the valley floor. Our results show that CAPs occurred every second night, on average, during the winter of 2014-2015 and were typically formed under cloudless, windless and high-pressure conditions. Strong temperature inversions up to 28 °C were detected between the valley floor and the surrounding hills. The spatial temperature structure of the CAPs varies among the different inversion days, with the upper boundary of the cold pool generally situated at about 1150 m asl. Although mean temperatures have increased in this area over the period 1960-2015 in connection with climate change, the occurrences of extreme cold temperatures did not decrease in winter and are highly correlated with the North Atlantic Oscillation and the East Atlantic indices. This suggests that CAPs in sheltered valleys are largely decoupled from the free atmosphere temperature and will likely continue to occur in the next decades under warmer conditions.

  15. Analyses of Effects of Cutting Parameters on Cutting Edge Temperature Using Inverse Heat Conduction Technique

    Directory of Open Access Journals (Sweden)

    Marcelo Ribeiro dos Santos

    2014-01-01

    Full Text Available During machining energy is transformed into heat due to plastic deformation of the workpiece surface and friction between tool and workpiece. High temperatures are generated in the region of the cutting edge, which have a very important influence on wear rate of the cutting tool and on tool life. This work proposes the estimation of heat flux at the chip-tool interface using inverse techniques. Factors which influence the temperature distribution at the AISI M32C high speed steel tool rake face during machining of a ABNT 12L14 steel workpiece were also investigated. The temperature distribution was predicted using finite volume elements. A transient 3D numerical code using irregular and nonstaggered mesh was developed to solve the nonlinear heat diffusion equation. To validate the software, experimental tests were made. The inverse problem was solved using the function specification method. Heat fluxes at the tool-workpiece interface were estimated using inverse problems techniques and experimental temperatures. Tests were performed to study the effect of cutting parameters on cutting edge temperature. The results were compared with those of the tool-work thermocouple technique and a fair agreement was obtained.

  16. An inverse problem of thickness design for bilayer textile materials under low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Xu Dinghua; Cheng Jianxin; Chen Yuanbo [Department of Mathematics, College of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang (China); Ge Meibao, E-mail: dhxu6708@zstu.edu.cn [College of Sciences and Arts, Zhejiang Sci-Tech University, Hangzhou 311121, Zhejiang (China)

    2011-04-01

    The human heat-moisture-comfort level is mainly determined by heat and moisture transfer characteristics in clothing. With respect to the model of steady-state heat and moisture transfer through parallel pore textiles, we propose an inverse problem of thickness design for bilayer textile material under low temperature in this paper. Adopting the idea of regularization method, we formulate the inverse problem solving into a function minimization problem. Combining the finite difference method for ordinary differential equations with direct search method of one-dimensional minimization problems, we derive three kinds of iteration algorithms of regularized solution for the inverse problem of thickness design. Numerical simulation is achieved to verify the efficiency of proposed methods.

  17. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization

    KAUST Repository

    Saidaminov, Makhsud I.

    2015-07-06

    Single crystals of methylammonium lead trihalide perovskites (MAPbX3; MA=CH3NH3+, X=Br− or I−) have shown remarkably low trap density and charge transport properties; however, growth of such high-quality semiconductors is a time-consuming process. Here we present a rapid crystal growth process to obtain MAPbX3 single crystals, an order of magnitude faster than previous reports. The process is based on our observation of the substantial decrease of MAPbX3 solubility, in certain solvents, at elevated temperatures. The crystals can be both size- and shape-controlled by manipulating the different crystallization parameters. Despite the rapidity of the method, the grown crystals exhibit transport properties and trap densities comparable to the highest quality MAPbX3 reported to date. The phenomenon of inverse or retrograde solubility and its correlated inverse temperature crystallization strategy present a major step forward for advancing the field on perovskite crystallization.

  18. Inversely-designed printed microwave ablation antenna for controlled temperature profile synthesis

    Science.gov (United States)

    Sharma, Shashwat; Sarris, Costas D.

    2017-02-01

    Microwave ablation (MWA) is based on localized heating of biological tissues, enabled by an electric field. Antennas for ablation are commonly designed in a forward approach to generate a temperature profile specific to the design. The concept of an inversely-designed MWA antenna, consisting of printed dipoles, is presented herein. This design can be configured to synthesize a desired target temperature profile by controlling and optimizing its current distribution, as demonstrated by simulations. This concept provides the functionality of a phased array on the tip of an interstitial device.

  19. The influence of air temperature inversions on snowmelt and glacier mass-balance simulations, Ammassalik island, SE Greenland

    Energy Technology Data Exchange (ETDEWEB)

    Mernild, Sebastian Haugard [Los Alamos National Laboratory; Liston, Glen [COLORADO STATE UNIV.

    2009-01-01

    In many applications, a realistic description of air temperature inversions is essential for accurate snow and glacier ice melt, and glacier mass-balance simulations. A physically based snow-evolution modeling system (SnowModel) was used to simulate eight years (1998/99 to 2005/06) of snow accumulation and snow and glacier ice ablation from numerous small coastal marginal glaciers on the SW-part of Ammassalik Island in SE Greenland. These glaciers are regularly influenced by inversions and sea breezes associated with the adjacent relatively low temperature and frequently ice-choked fjords and ocean. To account for the influence of these inversions on the spatiotemporal variation of air temperature and snow and glacier melt rates, temperature inversion routines were added to MircoMet, the meteorological distribution sub-model used in SnowModel. The inversions were observed and modeled to occur during 84% of the simulation period. Modeled inversions were defined not to occur during days with strong winds and high precipitation rates due to the potential of inversion break-up. Field observations showed inversions to extend from sea level to approximately 300 m a.s.l., and this inversion level was prescribed in the model simulations. Simulations with and without the inversion routines were compared. The inversion model produced air temperature distributions with warmer lower elevation areas and cooler higher elevation areas than without inversion routines due to the use of cold sea-breeze base temperature data from underneath the inversion. This yielded an up to 2 weeks earlier snowmelt in the lower areas and up to 1 to 3 weeks later snowmelt in the higher elevation areas of the simulation domain. Averaged mean annual modeled surface mass-balance for all glaciers (mainly located above the inversion layer) was -720 {+-} 620 mm w.eq. y{sup -1} for inversion simulations, and -880 {+-} 620 mm w.eq. y{sup -1} without the inversion routines, a difference of 160 mm w.eq. y

  20. Inverse heat conduction estimation of inner wall temperature fluctuations under turbulent penetration

    Science.gov (United States)

    Guo, Zhouchao; Lu, Tao; Liu, Bo

    2017-04-01

    Turbulent penetration can occur when hot and cold fluids mix in a horizontal T-junction pipe at nuclear plants. Caused by the unstable turbulent penetration, temperature fluctuations with large amplitude and high frequency can lead to time-varying wall thermal stress and even thermal fatigue on the inner wall. Numerous cases, however, exist where inner wall temperatures cannot be measured and only outer wall temperature measurements are feasible. Therefore, it is one of the popular research areas in nuclear science and engineering to estimate temperature fluctuations on the inner wall from measurements of outer wall temperatures without damaging the structure of the pipe. In this study, both the one-dimensional (1D) and the two-dimensional (2D) inverse heat conduction problem (IHCP) were solved to estimate the temperature fluctuations on the inner wall. First, numerical models of both the 1D and the 2D direct heat conduction problem (DHCP) were structured in MATLAB, based on the finite difference method with an implicit scheme. Second, both the 1D IHCP and the 2D IHCP were solved by the steepest descent method (SDM), and the DHCP results of temperatures on the outer wall were used to estimate the temperature fluctuations on the inner wall. Third, we compared the temperature fluctuations on the inner wall estimated by the 1D IHCP with those estimated by the 2D IHCP in four cases: (1) when the maximum disturbance of temperature of fluid inside the pipe was 3°C, (2) when the maximum disturbance of temperature of fluid inside the pipe was 30°C, (3) when the maximum disturbance of temperature of fluid inside the pipe was 160°C, and (4) when the fluid temperatures inside the pipe were random from 50°C to 210°C.

  1. Experimental Observation of the Inverse Spin Hall Effect at Room Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Baoli; Shi, Junren; Wang, Wenxin; Zhao, Hongming; Li, Dafang; /Beijing, Inst. Phys.; Zhang, Shoucheng; /Stanford U., Phys. Dept.; Xue, Qikun; Chen, Dongmin; /Beijing, Inst. Phys.

    2010-03-16

    We observe the inverse spin Hall effect in a two-dimensional electron gas confined in Al-GaAs/InGaAs quantum wells. Specifically, they find that an inhomogeneous spin density induced by the optical injection gives rise to an electric current transverse to both the spin polarization and its gradient. The spin Hall conductivity can be inferred from such a measurement through the Einstein relation and the onsager relation, and is found to have the order of magnitude of 0.5(e{sup 2}/h). The observation is made at the room temperature and in samples with macroscopic sizes, suggesting that the inverse spin Hall effects is a robust macroscopic transport phenomenon.

  2. Extending and Merging the Purple Crow Lidar Temperature Climatologies Using the Inversion Method

    Science.gov (United States)

    Jalali, Ali; Sica, R. J.; Argall, P. S.

    2016-06-01

    Rayleigh and Raman scatter measurements from The University of Western Ontario Purple Crow Lidar (PCL) have been used to develop temperature climatologies for the stratosphere, mesosphere, and thermosphere using data from 1994 to 2013 (Rayleigh system) and from 1999 to 2013 (vibrational Raman system). Temperature retrievals from Rayleigh-scattering lidar measurements have been performed using the methods by Hauchecorne and Chanin (1980; henceforth HC) and Khanna et al. (2012). Argall and Sica (2007) used the HC method to compute a climatology of the PCL measurements from 1994 to 2004 for 35 to 110 km, while Iserhienrhien et al. (2013) applied the same technique from 1999 to 2007 for 10 to 35 km. Khanna et al. (2012) used the inversion technique to retrieve atmospheric temperature profiles and found that it had advantages over the HC method. This paper presents an extension of the PCL climatologies created by Argall and Sica (2007) and Iserhienrhien et al. (2013). Both the inversion and HC methods were used to form the Rayleigh climatology, while only the latter was adopted for the Raman climatology. Then, two different approaches were used to merge the climatologies from 10 to 110 km. Among four different functional identities, a trigonometric hyperbolic relation results in the best choice for merging temperature profiles between the Raman and Low level Rayleigh channels, with an estimated uncertainty of 0.9 K for merging temperatures. Also, error function produces best result with uncertainty of 0.7 K between the Low Level Rayleigh and High Level Rayleigh channels. The results show that the temperature climatologies produced by the HC method when using a seed pressure are comparable to the climatologies produced by the inversion method. The Rayleigh extended climatology is slightly warmer below 80 km and slightly colder above 80 km. There are no significant differences in temperature between the extended and the previous Raman channel climatologies. Through out

  3. Prediction inverse d'un front de solidification dans un four de transformation a haute temperature

    Science.gov (United States)

    Marois, Marc-Andre

    Ce projet de recherche porte sur une methode numerique permettant de predire l'evolution du profil 2D de la couche solide qui recouvre l'interieur des parois de plusieurs fours de transformation a haute temperature. Un modele mathematique base sur la formulation faible de l'energie est d'abord developpe et valide. Une methode de transfert thermique inverse reposant sur ce modele est ensuite developpee afin d'obtenir une mesure rapide et continue de l'evolution du profil de cette couche solide. Vu la grande inertie thermique du systeme a l'etude, differentes strategies sont proposees afin de faciliter la mise en uvre de cette methode numerique. Finalement, cette approche inverse est confrontee aux resultats experimentaux obtenus a l'aide d'un reacteur metallurgique. Une etude preliminaire montre que les fours de transformation presentent une tres grande inertie thermique qui limite grandement l'utilisation des methodes inverses. En effet, la sensibilite de cette methode numerique repose essentiellement sur le delai temporel observe entre la variation du profil du banc et la fluctuation de la temperature a la surface externe de la paroi du four. Les resultats obtenus demontrent qu'une partie de ce delai est proportionnel a la chaleur latente de fusion lorsque le materiau a changement de phase est constitue d'un melange non eutectique. Afin de limiter l'impact de ce delai temporel, deux astuces numeriques sont proposees : reutiliser plus d'une fois les mesures de temperature et modifier le probleme thermique dans les regions pateuse et liquide. D'une part, le concept de chevauchement propose permet de reduire le temps d'acquisition des donnees entre chacune des predictions. D'autre part, l'approche virtuelle developpee permet de reduire l'inertie thermique du systeme et, par le fait meme, le delai temporel associe a la diffusion de la chaleur. Ces deux strategies ont permis de predire efficacement l'evolution 1D de l'epaisseur de la couche de gelee qui se solidifie a

  4. Parameter Estimation by Inverse Solution Methodology Using Genetic Algorithms for Real Time Temperature Prediction Model of Ladle Furnace

    National Research Council Canada - National Science Library

    Srinivas, Peri Subrahmanya; Kothari, Anil Kumar; Agrawal, Ashish

    2016-01-01

    .... In the present work, inverse methodology combined with Genetic Algorithms has been successfully employed for estimating parameter of a dynamic model aimed to predict liquid steel temperature in Ladle Furnace...

  5. Cluster solver for dynamical mean-field theory with linear scaling in inverse temperature

    Science.gov (United States)

    Khatami, E.; Lee, C. R.; Bai, Z. J.; Scalettar, R. T.; Jarrell, M.

    2010-05-01

    Dynamical mean-field theory and its cluster extensions provide a very useful approach for examining phase transitions in model Hamiltonians and, in combination with electronic structure theory, constitute powerful methods to treat strongly correlated materials. The key advantage to the technique is that, unlike competing real-space methods, the sign problem is well controlled in the Hirsch-Fye (HF) quantum Monte Carlo used as an exact cluster solver. However, an important computational bottleneck remains; the HF method scales as the cube of the inverse temperature, β . This often makes simulations at low temperatures extremely challenging. We present here a method based on determinant quantum Monte Carlo which scales linearly in β , with a quadratic term that comes in to play for the number of time slices larger than hundred, and demonstrate that the sign problem is identical to HF.

  6. Inverse method for quantitative characterisation of breast tumours from surface temperature data.

    Science.gov (United States)

    Hatwar, R; Herman, C

    2017-11-01

    We introduce a computational method to simultaneously estimate size, location and blood perfusion of the cancerous breast lesion from the surface temperature data. A 2D computational phantom of axisymmetric tumorous breast with six tissue layers, epidermis, papillary dermis, reticular dermis, fat, gland, muscle layer and spherical tumour was used to generate surface temperature distribution and thereby estimate tumour characteristics iteratively using an inverse algorithm based on Levenberg-Marquardt method. In addition to the steady state temperature data, we modified and expanded the inverse algorithm to include transient data that can be captured by dynamic infra-red imaging. Several test cases were considered for the transient analysis, where the depth, radii and blood perfusion of tumour were varied from 11 to 30 mm, 7 to 11 mm and 0.003 to 0.01 1/s, respectively. Similar steady state temperature profile for different tumours makes it impossible to simultaneously estimate blood perfusion, size and location of tumour using steady state data alone. This becomes possible when transient data are used along with steady state data. For the cases discussed here, the estimates have errors below 1% for tumours with depths less than 20 mm, but for deeper tumours (25 mm) errors can be more than 10%. Combination of transient data and steady state data makes it possible to simultaneously estimate tumour size, location and blood perfusion. Blood perfusion is an indicator of the growth rate of the tumour and therefore its evaluation can possibly lead to the assessment of tumour malignancy.

  7. Ceria based inverse opals for thermochemical fuel production: Quantification and prediction of high temperature behavior

    Science.gov (United States)

    Casillas, Danielle Courtney

    -micron pores did not sustain ordered structures after heating, and those larger than 1microm had reinforced structural stability. Furthermore, this analysis was applied to materials which underwent isothermal hydrogen/water redox cycles. ZDC20 inverse opals having 300, 650 and 1000nm pore sizes maintained ordered porosity at 800°C, indicating a novel opportunity for use at higher temperatures. The mechanism of inverse opal degradation was investigated. Both in situ and ex situ electron microscopy studies were performed on inverse opals subjected to high temperatures. Coarsening by surface diffusion was found to be the dominant grain growth mechanism. The inverse opal grain growth mechanism was found to deviate from that of porous materials due to the high porosity and an upper limit to grain size caused by structural confinement. Furthermore, in situ experiments enabled correlation of nano-scale grain growth to micro-scale feature changes, resulting in an empirical relationship. Lastly, this dissertation presents an investigation of the effect of ordered porosity on hydrogen production rate and quantity. These results differ from those presented in literature, and an opportunity for further investigation is proposed.

  8. Effects of wind shear and temperature inversion on sound propagation from wind turbines.

    Energy Technology Data Exchange (ETDEWEB)

    Haan, Henk de [Golder Associates (Canada)], email: Henk_deHaan@golder.com

    2011-07-01

    Noise impact assessment of wind turbines usually takes into account sound speed and propagation at ground level, and those are influenced by wind shear and atmospheric temperature changes. This paper focuses on a week-long monitoring study and presents the observed and anticipated effects of wind shear and temperature on the level of ground sound emitted from a 65m high wind turbine. Working with anemometers at ground level and turbine height, it is shown that wind shear can influence sound propagation, and that atmospheric stability must be taken into account for accurate wind speed calculations to be made. Temperature must also be addressed and the heating of the earth by solar radiation and the re-radiation of that heat in a day-night cycle, resulting in temperature inversion in the atmosphere, must be taken into account. Observations of temperature changes over a week can then yield sound speed and sound power levels with respect to altitude, and show that sound power levels are higher at ground levels during the night.

  9. Reconstruction method for inversion problems in an acoustic tomography based temperature distribution measurement

    Science.gov (United States)

    Liu, Sha; Liu, Shi; Tong, Guowei

    2017-11-01

    In industrial areas, temperature distribution information provides a powerful data support for improving system efficiency, reducing pollutant emission, ensuring safety operation, etc. As a noninvasive measurement technology, acoustic tomography (AT) has been widely used to measure temperature distribution where the efficiency of the reconstruction algorithm is crucial for the reliability of the measurement results. Different from traditional reconstruction techniques, in this paper a two-phase reconstruction method is proposed to ameliorate the reconstruction accuracy (RA). In the first phase, the measurement domain is discretized by a coarse square grid to reduce the number of unknown variables to mitigate the ill-posed nature of the AT inverse problem. By taking into consideration the inaccuracy of the measured time-of-flight data, a new cost function is constructed to improve the robustness of the estimation, and a grey wolf optimizer is used to solve the proposed cost function to obtain the temperature distribution on the coarse grid. In the second phase, the Adaboost.RT based BP neural network algorithm is developed for predicting the temperature distribution on the refined grid in accordance with the temperature distribution data estimated in the first phase. Numerical simulations and experiment measurement results validate the superiority of the proposed reconstruction algorithm in improving the robustness and RA.

  10. SPECTROSCOPIC EVIDENCE FOR A TEMPERATURE INVERSION IN THE DAYSIDE ATMOSPHERE OF HOT JUPITER WASP-33b

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, Korey; Mandell, Avi M. [Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Madhusudhan, Nikku [Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA (United Kingdom); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Knutson, Heather, E-mail: khaynes0112@gmail.com [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-06-20

    We present observations of two occultations of the extrasolar planet WASP-33b using the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope, which allow us to constrain the temperature structure and composition of its dayside atmosphere. WASP-33b is the most highly irradiated hot Jupiter discovered to date, and the only exoplanet known to orbit a δ-Scuti star. We observed in spatial scan mode to decrease instrument systematic effects in the data, and removed fluctuations in the data due to stellar pulsations. The rms for our final, binned spectrum is 1.05 times the photon noise. We compare our final spectrum, along with previously published photometric data, to atmospheric models of WASP-33b spanning a wide range in temperature profiles and chemical compositions. We find that the data require models with an oxygen-rich chemical composition and a temperature profile that increases at high altitude. We find that our measured spectrum displays an excess in the measured flux toward short wavelengths that is best explained as emission from TiO. If confirmed by additional measurements at shorter wavelengths, this planet would become the first hot Jupiter with a thermal inversion that can be definitively attributed to the presence of TiO in its dayside atmosphere.

  11. Temperature inversions and cold-air pools study in Picos de Europa surroundings

    Science.gov (United States)

    Iglesias González, Miguel; Yagüe, Carlos; Maqueda, Gregorio

    2017-04-01

    Using surface temperature data from dataloggers located at the bottom of four different high-altitude (2000 m MSL) glaciokarstic depressions in Picos de Europa (Cantabrian Cordillera, Spain) from January 2012 to September 2016, we have analyzed the evolution of more than 200 different cold-air pools events according to different geomorphologic parameters. The ski-view determinates the cold-air pool occurrence and the temperature range, and the depression's depth is a very important factor in the permanent cold-air pools (PCAP) formation. Depending on the structure of the thermal curve, we classified all cold-air pools in each depression by using a conceptual model with eight different modes. With wind and relative humidity data, supplied by a weather station situated near the depressions, and NCAR-NCEP reanalysis data, we have characterized them at mesoscale and synoptic scale. If the ski-view is small enough, we can have undisturbed cold-air pools even though disturbed wind conditions. Snow-covered and non-snow-covered events were measured during the campaign, which allow us to recognize its influence on the temperature inversions. We also identified and analyze several permanent cold-air pools events where December minimum temperature record of -30,6°C in the Iberian Peninsula was measured. We also make a deep analyze of the Iberian Peninsula historical minimal temperature record of -32,7°C, which was measured on February 2016. Finally we use and test a simplified three-layer radiative model to describe and verify the influence of different geomorphologic factors in the cooling process of all the cold-air pools.

  12. Inverse determination of heat flux into a gun barrel using temperature sensors

    Science.gov (United States)

    Jablonski, Jonathan A.; Jablonski, Melissa N.

    2017-05-01

    A mathematical model is developed to describe the thermal response of a temperature sensor located within a gun barrel, which accounts for the time-constant of the sensor and a measurement bias. The model is inversely solved to estimate the total heat flux applied to the bore surface as well as the transient history of the applied heat flux for a given thermal response of a temperature sensor. A parametric study is conducted to determine the influence of sensor time-constant, sensor location within the gun barrel, and measurement bias on the accuracy of the estimated heat flux as applied to a 155mm gun barrel. It is found that the accuracy of the estimated heat flux improves as the time-constant of the sensor decreases, the sensor is located closer to the bore surface, and the measurement bias decreases. A regression model is provided to estimate that accuracy and it is shown how a typical thermocouple would perform at various locations through the thickness of the gun barrel.

  13. Estimation of Surface Temperature and Heat Flux by Inverse Heat Transfer Methods Using Internal Temperatures Measured While Radiantly Heating a Carbon/Carbon Specimen up to 1920 F

    Science.gov (United States)

    Pizzo, Michelle; Daryabeigi, Kamran; Glass, David

    2015-01-01

    The ability to solve the heat conduction equation is needed when designing materials to be used on vehicles exposed to extremely high temperatures; e.g. vehicles used for atmospheric entry or hypersonic flight. When using test and flight data, computational methods such as finite difference schemes may be used to solve for both the direct heat conduction problem, i.e., solving between internal temperature measurements, and the inverse heat conduction problem, i.e., using the direct solution to march forward in space to the surface of the material to estimate both surface temperature and heat flux. The completed research first discusses the methods used in developing a computational code to solve both the direct and inverse heat transfer problems using one dimensional, centered, implicit finite volume schemes and one dimensional, centered, explicit space marching techniques. The developed code assumed the boundary conditions to be specified time varying temperatures and also considered temperature dependent thermal properties. The completed research then discusses the results of analyzing temperature data measured while radiantly heating a carbon/carbon specimen up to 1920 F. The temperature was measured using thermocouple (TC) plugs (small carbon/carbon material specimens) with four embedded TC plugs inserted into the larger carbon/carbon specimen. The purpose of analyzing the test data was to estimate the surface heat flux and temperature values from the internal temperature measurements using direct and inverse heat transfer methods, thus aiding in the thermal and structural design and analysis of high temperature vehicles.

  14. All-Sky Observational Evidence for An Inverse Correlation Between Dust Temperature and Emissivity Spectral Index

    Science.gov (United States)

    Liang, Z.; Fixsen, D. J.; Gold, B.

    2012-01-01

    We show that a one-component variable-emissivity-spectral-index model (the free- model) provides more physically motivated estimates of dust temperature at the Galactic polar caps than one- or two-component fixed-emissivity-spectral-index models (fixed- models) for interstellar dust thermal emission at far-infrared and millimeter wavelengths. For the comparison we have fit all-sky one-component dust models with fixed or variable emissivity spectral index to a new and improved version of the 210-channel dust spectra from the COBE-FIRAS, the 100-240 micrometer maps from the COBE-DIRBE and the 94 GHz dust map from the WMAP. The best model, the free-alpha model, is well constrained by data at 60-3000 GHz over 86 per cent of the total sky area. It predicts dust temperature (T(sub dust)) to be 13.7-22.7 (plus or minus 1.3) K, the emissivity spectral index (alpha) to be 1.2-3.1 (plus or minus 0.3) and the optical depth (tau) to range 0.6-46 x 10(exp -5) with a 23 per cent uncertainty. Using these estimates, we present all-sky evidence for an inverse correlation between the emissivity spectral index and dust temperature, which fits the relation alpha = 1/(delta + omega (raised dot) T(sub dust) with delta = -.0.510 plus or minus 0.011 and omega = 0.059 plus or minus 0.001. This best model will be useful to cosmic microwave background experiments for removing foreground dust contamination and it can serve as an all-sky extended-frequency reference for future higher resolution dust models.

  15. Inversion of Land Surface Temperature (LST Using Terra ASTER Data: A Comparison of Three Algorithms

    Directory of Open Access Journals (Sweden)

    Milton Isaya Ndossi

    2016-12-01

    Full Text Available Land Surface Temperature (LST is an important measurement in studies related to the Earth surface’s processes. The Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER instrument onboard the Terra spacecraft is the currently available Thermal Infrared (TIR imaging sensor with the highest spatial resolution. This study involves the comparison of LSTs inverted from the sensor using the Split Window Algorithm (SWA, the Single Channel Algorithm (SCA and the Planck function. This study has used the National Oceanic and Atmospheric Administration’s (NOAA data to model and compare the results from the three algorithms. The data from the sensor have been processed by the Python programming language in a free and open source software package (QGIS to enable users to make use of the algorithms. The study revealed that the three algorithms are suitable for LST inversion, whereby the Planck function showed the highest level of accuracy, the SWA had moderate level of accuracy and the SCA had the least accuracy. The algorithms produced results with Root Mean Square Errors (RMSE of 2.29 K, 3.77 K and 2.88 K for the Planck function, the SCA and SWA respectively.

  16. Seasonal and decadal forecasts of Atlantic Sea surface temperatures using a linear inverse model

    Science.gov (United States)

    Huddart, Benjamin; Subramanian, Aneesh; Zanna, Laure; Palmer, Tim

    2017-09-01

    Predictability of Atlantic Ocean sea surface temperatures (SST) on seasonal and decadal timescales is investigated using a suite of statistical linear inverse models (LIM). Observed monthly SST anomalies in the Atlantic sector (between 22°S and 66°N) are used to construct the LIMs for seasonal and decadal prediction. The forecast skills of the LIMs are then compared to that from two current operational forecast systems. Results indicate that the LIM has good forecast skill for time periods of 3-4 months on the seasonal timescale with enhanced predictability in the spring season. On decadal timescales, the impact of inter-annual and intra-annual variability on the predictability is also investigated. The results show that the suite of LIMs have forecast skill for about 3-4 years over most of the domain when we use only the decadal variability for the construction of the LIM. Including higher frequency variability helps improve the forecast skill and maintains the correlation of LIM predictions with the observed SST anomalies for longer periods. These results indicate the importance of temporal scale interactions in improving predictability on decadal timescales. Hence, LIMs can not only be used as benchmarks for estimates of statistical skill but also to isolate contributions to the forecast skills from different timescales, spatial scales or even model components.

  17. Investigation of the effect of different parameters on the phase inversion temperature O/W nanoemulsions

    Directory of Open Access Journals (Sweden)

    D. Kaviani

    2016-01-01

    Full Text Available Objective(s: Nanoemulsions are a kind of emulsions that can be transparent, translucent (size range 50-200 nm or “milky” (up to 500 nm. Nanoemulsions are adequatly effective for transfer of active component through skin which facilitate the entrance of the active component . The transparent nature of the system and lack of the thickener and fluidity are among advantages of nanoemulsion. Materials and Methods: In this study, a nanoemulsion of lemon oil in water was prepared by the phase inversion temperature (PIT emulsification method in which the tween 40 was used as surfactant. The effect of concentration of NaCl in aqueous phase, pH and weight percent of surfactant and aqueous on the PIT and droplet size were investigated. Results: The results showed that with increasing of concentration of NaCl from 0.05 M to 1 M, PIT decrease from 72 to 50. The average droplet sizes, for 0.1, 0.5 and 1 M of NaCl in 25 ºC are 497.3, 308.1 and 189.9 nm, respectively and the polydispersity indexes are 0.348, 0.334 and 0.307, respectively. Conclusion: Considering the characteristics of nanoemulsions such as being transparent, endurance of solution and droplet size can provide suitable reaction environment for polymerization process used in making hygienic and medical materials.

  18. Observational evidence for westward propagation of temperature inversions in the southeastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Shankar, D.; Gopalakrishna, V.V.; Shenoi, S.S.C.; Durand, F.; Shetye, S.R.; Rajan, C.K.; Johnson, Z.; Araligidad, N.; Michael, G.S.

    in April, when the Tropical Convergence Zone moves over the SEAS and the warm pool engulfs the region. Ocean dynamics and air- sea fluxes are together responsible for the formation and westward propagation of the inversions. 1. Introduction Prior... and samples of surface water were collected with each deployment for subsequent salinity analysis. The XBT data anal- ysed by Thadathil and Gosh [1992] were sufficient only for proving the existence of inversions. In this paper, we use XBT data from the ARMEX...

  19. Retrieval of canopy component temperatures through Bayesian inversion of directional thermal measurements

    NARCIS (Netherlands)

    Timmermans, J.; Verhoef, W.; Tol, van der C.; Su, Z.

    2009-01-01

    Evapotranspiration is usually estimated in remote sensing from single temperature value representing both soil and vegetation. This surface temperature is an aggregate over multiple canopy components. The temperature of the individual components can differ significantly, introducing errors in the

  20. Background Temperature Images of Mesoscale Ocean Features from Laplace and Laplace-Fourier Domain Seismic Waveform Inversion

    Science.gov (United States)

    Blacic, T. M.; Jun, H.; Shin, C.; Rosado, H.

    2016-02-01

    2-D temperature images of the ocean with resolution within a few tens of meters in distance and depth can be recovered from conventional marine multichannel seismic (MCS; low frequency acoustic) data via full waveform inversion (FWI), as demonstrated by several research groups in recent years. A primary limitation with FWI is that the more computationally efficient local inversion methods require an accurate estimate of the background sound speed in the material as a starting point to avoid converging to a local, rather than global, solution. In the ocean, expendable instruments are often used to obtain 1-D temperature and sound speed profiles; in typical MCS data collection, however, expendables are deployed just once per day, resulting in only one hydrographic profile every few hundred kilometers. In addition, the band-limited nature of seismic data, which typically lacks reliable frequencies below 5 Hz, makes it inherently challenging to extract the long wavelength sound speed directly from seismic data. Laplace domain inversion (LDI) developed by Changsoo Shin and colleagues requires only a simple starting model to produce smooth background sound speed models without requiring prior information about the medium. It works by transforming input data to the Laplace domain and then examining the zero frequency component of the damped wavefield to extract a smooth sound speed model. Laplace-Fourier domain inversion extends the technique to include additional frequencies below 5 Hz. This ability to use frequencies below those effectively propagated by the seismic source is what enables LDI to produce the smooth background trend from the data. We applied LDI to five synthetic data sets based on simplified models of oceanographic features and recovered smoothed versions of our synthetic models, demonstrating the viability of this method for creating sound speed profiles suitable for use as starting models for other FWI methods that produce more detailed models.

  1. Simultaneous reconstruction of temperature field and radiative properties by inverse radiation analysis using stochastic particle swarm optimization

    Directory of Open Access Journals (Sweden)

    Liu Dong

    2016-01-01

    Full Text Available Simultaneous reconstruction of temperature field and radiative properties including scattering albedo and extinction coefficient is presented in a two-dimensional (2-D rectangular, absorbing, emitting and isotropically scattering gray medium from the knowledge of the exit radiative intensities received by charge-coupled device (CCD cameras at boundary surfaces. The inverse problem is formulated as a non-linear optimization problem and solved by stochastic particle swarm optimization. The effects of particle swarm size, generation number, measurement errors, and optical thickness on the accuracy of the estimation, and computing time were investigated and the results show that the temperature field and radiative properties can be reconstructed well for the exact and noisy data, but radiative properties are harder to obtain than temperature field. Moreover, the extinction coefficient is more difficult to reconstruct than scattering albedo.

  2. A study on the characteristics of temperature inversions in active and break phases of Indian summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; Mohankumar, K.; Sivakumar, K.U.

    stream_size 36355 stream_content_type text/plain stream_name J_Atmos_Solar-Terr_Phys_93_11a.pdf.txt stream_source_info J_Atmos_Solar-Terr_Phys_93_11a.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8... 1        Author version: J. Atmos. Solar-Terr. Phys., vol.93; 2013; 11-20 A study on the characteristics of temperature inversions in active and break phases of Indian summer monsoon P. M. MURALEEDHARAN†, K. MOHANKUMAR**, K. U. SIVAKUMAR...

  3. Interval Type-2 Fuzzy Model Based on Inverse Controller Design for the Outlet Temperature Control System of Ethylene Cracking Furnace

    Directory of Open Access Journals (Sweden)

    Taoyan Zhao

    2017-09-01

    Full Text Available Multivariable coupling, nonlinear and large time delays exist in the coil outlet temperature (COT control system of the ethylene cracking furnace, which make it hard to achieve accurate control over the COT of the furnace in actual production. To solve these problems, an inverse controller based on an interval type-2 fuzzy model control strategy is introduced. In this paper, the proposed control scheme is divided into two parts: one is the approach structure part of the interval type-2 fuzzy model (IT2-FM, which is utilized to approach the process output. The other is the interval type-2 fuzzy model inverse controller (IT2-FMIC part, which is utilized to control the output process to achieve the target value. In addition, on the cyber-physical system platform, the actual industrial data are used to test and obtain the mathematical model of the COT control system of the ethylene cracking furnace. Finally, the proposed inverse controller based on the IT2-FM control scheme has been implemented on the COT control system of the ethylene cracking furnace, and the simulation results show that the proposed method is feasible.

  4. Estimation of surface heat flux and surface temperature during inverse heat conduction under varying spray parameters and sample initial temperature.

    Science.gov (United States)

    Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong; Zubair, Muhammad

    2014-01-01

    An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m(2) was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa.

  5. Estimation of Surface Heat Flux and Surface Temperature during Inverse Heat Conduction under Varying Spray Parameters and Sample Initial Temperature

    Directory of Open Access Journals (Sweden)

    Muhammad Aamir

    2014-01-01

    Full Text Available An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck’s sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m2 was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa.

  6. Estimation of Surface Heat Flux and Surface Temperature during Inverse Heat Conduction under Varying Spray Parameters and Sample Initial Temperature

    Science.gov (United States)

    Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong

    2014-01-01

    An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m2 was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa. PMID:24977219

  7. High temperature, short time pasteurization temperatures inversely affect bacterial numbers during refrigerated storage of pasteurized fluid milk.

    Science.gov (United States)

    Ranieri, M L; Huck, J R; Sonnen, M; Barbano, D M; Boor, K J

    2009-10-01

    The grade A Pasteurized Milk Ordinance specifies minimum processing conditions of 72 degrees C for at least 15 s for high temperature, short time (HTST) pasteurized milk products. Currently, many US milk-processing plants exceed these minimum requirements for fluid milk products. To test the effect of pasteurization temperatures on bacterial numbers in HTST pasteurized milk, 2% fat raw milk was heated to 60 degrees C, homogenized, and treated for 25 s at 1 of 4 different temperatures (72.9, 77.2, 79.9, or 85.2 degrees C) and then held at 6 degrees C for 21 d. Aerobic plate counts were monitored in pasteurized milk samples at d 1, 7, 14, and 21 postprocessing. Bacterial numbers in milk processed at 72.9 degrees C were lower than in milk processed at 85.2 degrees C on each sampling day, indicating that HTST fluid milk-processing temperatures significantly affected bacterial numbers in fluid milk. To assess the microbial ecology of the different milk samples during refrigerated storage, a total of 490 psychrotolerant endospore-forming bacteria were identified using DNA sequence-based subtyping methods. Regardless of processing temperature, >85% of the isolates characterized at d 0, 1, and 7 postprocessing were of the genus Bacillus, whereas more than 92% of isolates characterized at d 14 and 21 postprocessing were of the genus Paenibacillus, indicating that the predominant genera present in HTST-processed milk shifted from Bacillus spp. to Paenibacillus spp. during refrigerated storage. In summary, 1) HTST processing temperatures affected bacterial numbers in refrigerated milk, with higher bacterial numbers in milk processed at higher temperatures; 2) no significant association was observed between genus isolated and pasteurization temperature, suggesting that the genera were not differentially affected by the different processing temperatures; and 3) although typically present at low numbers in raw milk, Paenibacillus spp. are capable of growing to numbers that can

  8. Calculation of high-temperature insulation parameters and heat transfer behaviors of multilayer insulation by inverse problems method

    Directory of Open Access Journals (Sweden)

    Huang Can

    2014-08-01

    Full Text Available In the present paper, a numerical model combining radiation and conduction for porous materials is developed based on the finite volume method. The model can be used to investigate high-temperature thermal insulations which are widely used in metallic thermal protection systems on reusable launch vehicles and high-temperature fuel cells. The effective thermal conductivities (ECTs which are measured experimentally can hardly be used separately to analyze the heat transfer behaviors of conduction and radiation for high-temperature insulation. By fitting the effective thermal conductivities with experimental data, the equivalent radiation transmittance, absorptivity and reflectivity, as well as a linear function to describe the relationship between temperature and conductivity can be estimated by an inverse problems method. The deviation between the calculated and measured effective thermal conductivities is less than 4%. Using the material parameters so obtained for conduction and radiation, the heat transfer process in multilayer thermal insulation (MTI is calculated and the deviation between the calculated and the measured transient temperatures at a certain depth in the multilayer thermal insulation is less than 6.5%.

  9. Surface layer temperature inversion in the Bay of Bengal: Main characteristics and related mechanisms

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Suresh, I.; Gautham, S.; PrasannaKumar, S.; Lengaigne, M.; Rao, R.R.; Neetu, S.; Hegde, A.

    as that of the atmospheric forcing, SLTI is a major contributor to the SST variability and strongly contributes to damp the effect of winter cooling in this region. Thus SLTI acts to “warm” the upper ocean layer during “winter cooling” in the northern BoB. 6. Summary... temperature by entrainment and vertical mixing of warm subsurface water into the mixed layer [de Boyer Montégut et al., 2007], and have, therefore, been suggested to have a significant impact on surface temperature during winter, by damping the effect...

  10. Impact of temperature inversions on SST evolution in the South-Eastern Arabian Sea during the pre-summer monsoon season

    Digital Repository Service at National Institute of Oceanography (India)

    Durand, F.; Shetye, S.R.; Vialard, J.; Shankar, D.; Shenoi, S.S.C.; Ethe, C.; Madec, G.

    to influence the sea surface temperature (SST). From the analysis of new observed datasets as well as of state-of-the-art numerical model outputs, this paper shows that heat trapped within a temperature inversion makes significant contribution to warming...

  11. Using the inverse of expected error variance to determine weights of individual ensemble members: Application to temperature prediction

    Science.gov (United States)

    Sun, Xiaogong; Yin, Jinfang; Zhao, Yan

    2017-06-01

    The inverse of expected error variance is utilized to determine weights of individual ensemble members based on the THORPEX (The Observing System Research and Predictability Experiment) Interactive Grand Global Ensemble (TIGGE) forecast datasets. The weights of all ensemble members are thus calculated for summer 2012, with the NCEP final operational global analysis (FNL) data as the truth. Based on the weights of all ensemble members, the variable weighted ensemble mean (VWEM) of temperature of summer 2013 is derived and compared with that from the simple equally weighted ensemble mean. The results show that VWEM has lower root-mean-square error (RMSE) as well as absolute error, and has improved the temperature prediction accuracy. The improvements are quite notable over the Tibetan Plateau and its surrounding areas; specifically, a relative improvement rate of RMSE of more than 24% in 2-m temperature is demonstrated. Moreover, the improvement rates vary slightly with the prediction lead-time (24-96 h). It is suggested that the VWEM approach be employed in operational ensemble prediction to provide guidance for weather forecasting and climate prediction.

  12. PREDICTION OF PM2.5 CONCENTRATIONS USING TEMPERATURE INVERSION EFFECTS BASED ON AN ARTIFICIAL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    R. A. Bahari

    2014-10-01

    Full Text Available Today, air pollutant is a big challenge for busy and big cities due to its direct effect on both human health and the environment. Tehran, as the capital city of Iran, concludes 12 million people and is one of the most polluted cities in Iran. According to the reports, the main cause of Tehran's pollution is particle matters. The main factors affecting the density and distribution of pollution in Tehran are topography, traffic, and meteorological parameters including wind speed and direction, environment temperature, cloud cover, relative humidity, the sunshine overs a day, the rainfall, pressure, and temperature inversion. To help the urban management of Tehran, in this paper, a novel method is proposed to predicted PM2.5 concentration for upcoming 72 hours. The results show that the proposed model has high capability in predicting PM2.5 concentration and the achieved statistic coefficient of determination (R2 was equal to 0.61–0.79, which indicates the goodness of fit of our proposed model supports the prediction of PM2.5 concentration.

  13. Topographic Evolution of the Sierra Nevada Resolved by Inversion of Low-Temperature Thermochronology

    Science.gov (United States)

    McPhillips, D. F.; Brandon, M. T.

    2011-12-01

    At present, there are two competing ideas for the topographic evolution of the Sierra Nevada Range. One idea is that the Sierra Nevada was formed as a monocline in the Cretaceous, marking the transition from the Great Valley forearc basin to the west, and a high Nevadaplano plateau to the east, similar to the west flank of the modern Altiplano of the Andes. Both the thermochronologic signature of local relief and the stable isotopic evidence of a topographic rain shadow support this hypothesis. However, a suite of geomorphic observations suggests that the Sierra gained a large fraction of its present elevation as recently as the Pliocene. This recent surface uplift could have been driven by convective removal of in the lower part of the lithosphere and/or by changes in dynamic topography associated with deep subduction of the Farallon plate. Here we present the first comprehensive analysis of low-temperature thermochronology in the Sierra Nevada, which provides a definitive solution, which indicates that both ideas are likely correct. Our analysis is distinguished by three new factors: The first is that we allow for separate evolutions for the local relief and the long-wavelength topography. Second, we use Al-in-Hb paleobarometry to constrain the initial depth of emplacement for the Sierra Nevada plutons. Third, our analysis is tied to a sea-level reference by using the paleo-bathymetric record of the Great Valley basin, where it on-laps the Sierra Nevada batholith. According to our analysis, westward tilting of the Sierra accounts for 2 km of uplift since 20 Ma. Topographic relief increased by a factor of 2. These findings suggest that the Sierra Nevada lost elevation through most of the Tertiary but regained much of its initial elevation following the onset of surface uplift in the Miocene.

  14. Spectres infrarouges de verres à haute temperature par inversion de l'émission thermique de couches anisothermes

    Science.gov (United States)

    Sakami, M.; Lallemand, M.

    1994-05-01

    The infrared absorption spectra of silicate glasses and boric anhydrid at high temperature are worked out by means of an inverse technique of optimization from the emission spectra. The sample's emission spectral intensities are measured by a Fourier Transform lnfra-Red spectrometer. Specimens are plane parallel slabs which are deposited on a crusible. Their lower face is in contact of the crusible and isothermal but the upper one exchanges heat with the atmosphere by natural convection. In such conditions the glass slabs are submitted to high thermal gradients and the optimization method used is a non-linear constainted iterative method. The resulting spectra are compared to absorption spectra obtained by transmission spectrometry. Les spectres d'absorption infrarouge de verres de silicate et d'anhydride borique portés à haute température sont obtenus par inversion des spectres d'émission au moyen d'une méthode d'optimisation. Les luminances spectrales émises par les échantillons sont mesurées à l'aide d'un spectromètre à transformée de Fourier. Les échantillons sont des lames planes parallèles déposées dans un creuset ; leur surface inférieure est maintenue vers 1 000 K, alors que leur surface supérieure échange sa chaleur à l'air libre par convection naturelle. Dans ces conditions les lames sont soumises à de forts gradients thermiques. En présence de ces gradients une méthode itérative d'optimisation non linéaire contrainte est mise en œuvre. On compare les résultats obtenus aux spectres d'absorption mesurés directement par spectrométrie de transmission.

  15. Implications of Thermal Diffusity being Inversely Proportional to Temperature Times Thermal Expansivity on Lower Mantle Heat Transport

    Science.gov (United States)

    Hofmeister, A.

    2010-12-01

    Many measurements and models of heat transport in lower mantle candidate phases contain systematic errors: (1) conventional methods of insulators involve thermal losses that are pressure (P) and temperature (T) dependent due to physical contact with metal thermocouples, (2) measurements frequently contain unwanted ballistic radiative transfer which hugely increases with T, (3) spectroscopic measurements of dense samples in diamond anvil cells involve strong refraction by which has not been accounted for in analyzing transmission data, (4) the role of grain boundary scattering in impeding heat and light transfer has largely been overlooked, and (5) essentially harmonic physical properties have been used to predict anharmonic behavior. Improving our understanding of the physics of heat transport requires accurate data, especially as a function of temperature, where anharmonicity is the key factor. My laboratory provides thermal diffusivity (D) at T from laser flash analysis, which lacks the above experimental errors. Measuring a plethora of chemical compositions in diverse dense structures (most recently, perovskites, B1, B2, and glasses) as a function of temperature provides a firm basis for understanding microscopic behavior. Given accurate measurements for all quantities: (1) D is inversely proportional to [T x alpha(T)] from ~0 K to melting, where alpha is thermal expansivity, and (2) the damped harmonic oscillator model matches measured D(T), using only two parameters (average infrared dielectric peak width and compressional velocity), both acquired at temperature. These discoveries pertain to the anharmonic aspects of heat transport. I have previously discussed the easily understood quasi-harmonic pressure dependence of D. Universal behavior makes application to the Earth straightforward: due to the stiffness and slow motions of the plates and interior, and present-day, slow planetary cooling rates, Earth can be approximated as being in quasi

  16. 2-D ocean temperature and salinity images from pre-stack seismic waveform inversion methods: an example from the South China Sea

    Science.gov (United States)

    Padhi, Amit; Mallick, Subhashis; Fortin, Will; Holbrook, W. Steven; Blacic, Tanya M.

    2015-08-01

    Seismic reflections from the oceanic water column contain information about ocean temperature and salinity. Even though seismic waveform inversion is effective for studying oceanic structure, its application is limited in the absence of sufficient direct temperature/velocity measurements. Here, two methods are developed to invert pre-stack seismic waveform data for temperature and salinity when independent temperature/velocity data are sparse or unavailable, allowing estimation of water-column temperature/salinity from any marine seismic reflection data set. The first method combines a genetic algorithm (GA) with non-linear least squares inversion, and the second method is a parallel implementation of a GA. Both methods produce results to an accuracy between 0 and 0.1 °C in estimating temperature when applied to a field data set from the South China Sea. Although the second approach is superior, it is computationally demanding and requires large parallel computers. The first approach runs extremely fast on parallel computers and can even be run on much smaller machines to provide results in a reasonable runtime. While both methods are viable choices for estimating temperature and salinity, the choice of one over the other will largely depend upon the available computational resources and the time frame within which the inversion needs to be completed.

  17. The research of the hot spot temperature of the dry-type reactor winding based on the inversed-heat conduction model

    Science.gov (United States)

    Lai, Wenqing; Luo, Hanwu; Li, Wenpeng; Cao, Yongdong; Ye, Ligang; Guo, Kai; Ding, Renjie; Wang, Yongqiang

    2017-10-01

    There is an important significance for the design and the life time evaluation of the dry-type reactor based on the hot-spot temperature. At present the methods of obtaining the reactor's hot-spot temperature are as follows: direct measurement and numerical calculation. Direct measurement can obtain winding hot spot temperature through the optical fiber temperature sensor or thermocouple; the numerical calculation mostly uses the finite element or finite difference method. This paper establishes the inversed-heat transfer calculation model of high and low voltage winding using the high-precision infrared sensor to acquire the temperature of the high voltage winding. Through calculation the temperature distribution of the low voltage winding has been obtained and the hottest spot temperature of the winding is much closed to the result obtained by the IEEE model in a certain range. It provides a new method for the acquisition of the hottest spot temperature of the dry-type reactor.

  18. Inverse Interpolation: The Rate of Enzymatic Reaction based Finite differences, Formulas for obtaining intermediate values of Temperature, Substrate Concentration, Enzyme Concentration and their Estimation of Errors

    OpenAIRE

    Nizam Uddin

    2013-01-01

    Inverse interpolation is the process of finding the values of the argument corresponding to a given value of the function when the latter is intermediate between two tabulated values. The finite differences are differences between the values of the function or the difference between the past differences. Finite differences are forward difference, backward difference and divide difference. Temperature, concentration of substrate, concentration of enzyme and other factors are affected the rate ...

  19. Cooling-induced shape memory effect and inverse temperature dependence of superelastic stress in Co2Cr(Ga,Si) ferromagnetic Heusler alloys

    Science.gov (United States)

    Xu, Xiao; Omori, Toshihiro; Nagasako, Makoto; Okubo, Akinari; Umetsu, Rie Y.; Kanomata, Takeshi; Ishida, Kiyohito; Kainuma, Ryosuke

    2013-10-01

    Normally, shape memory effect (SME) is obtained by the reverse martensitic transformation, therefore only induced by heating a sample from the deformed martensite phase. In this study, we report a phenomenon of cooling-induced SME, observed in a Co2Cr(Ga,Si) Heusler alloy, where the normal heating-induced SME can be obtained at the same time. The cooling-induced SME is attributed to an abnormal martensitic transformation in Co2Cr(Ga,Si) Heusler alloy. Moreover, an inverse temperature dependence of superelastic stress was also observed. The discoveries of these phenomena provide application possibilities for shape memory alloys, especially at low temperatures.

  20. Nano-emulsions and nanocapsules by the PIT method: an investigation on the role of the temperature cycling on the emulsion phase inversion.

    Science.gov (United States)

    Anton, Nicolas; Gayet, Pascal; Benoit, Jean-Pierre; Saulnier, Patrick

    2007-11-01

    This paper focuses on the phenomenological understanding of temperature cycling process, applied to the phase inversion temperature (PIT) method. The role of this particular thermal treatment on emulsions phase inversion, as well as its ability to generate nano-emulsions have been investigated. In order to propose a general study, we have based our investigations on a given formulation of nano-emulsions classically proposed in the literature [Heurtault, B., Saulnier, P., Pech, B., Proust, J. E., Benoit, J.P., 2002. A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm. Res. 19, 875; Lamprecht, A., Bouligand, Y, Benoit, J.P., 2002. New lipid nanocapsules exhibit sustained release properties for amiodarone. J. Control. Release 84, 59-68], using a polyethoxylated model nonionic surfactant, a polyoxyehtylene-660-12-hydroxy stearate, stabilizing the emulsion composed of caprilic triglycerides (triglycerides medium chains), salt water (and also phospholipidic amphiphiles neutral for the formulation). Characterization of nano-emulsions was performed by dynamic light scattering (DLS) which provides the hydrodynamic diameter, but also the polydispersity index (PDI), as a fundamental criteria to judge the quality of the dispersion. Another aspect of the characterization was done following the emulsion inversion and structure by electrical conductivity through the temperature scan. Overall, the role such a temperature cycling process on the formulation of nano-emulsions appears to be relatively important, and globally enhanced as the surfactant concentration is lowered. Actually, both the hydrodynamic diameter and the PDI decrease as a function of the number and temperature cycles up to stabilize a steady state. Eventually, such a cycling process allows the generation of nano-emulsions in ranges of compositions largely expanded when compared with the classical PIT method. These general and interesting trends emerge from the results, are

  1. Observation of a strong inverse temperature dependence for the opacity of atmospheric water vapor in the mm continuum near 280 GHz

    Science.gov (United States)

    Emmons, Louisa K.; De Zafra, Robert L.

    1990-01-01

    Results are presented of the field measurements of atmospheric opacity at 278 GHz (9.3/cm) conducted at the McMurdo Station (Antarctica) during the austral springs of 1986 and 1987, in conjunction with balloon measurements of water vapor profile and total column density, showing a strong inverse temperature dependence when normalized to precipitable water vapor. The value of measured opacity per mm of precipitable water vapor (PWV) is roughly two times greater at -35 C than at -10 C and three times greater than measurements at +25 C reported by Zammit and Ade (1981). Various theories proposed to explain excess absorption in continuum regions are reviewed.

  2. Soil hydraulic parameters and surface soil moisture of a tilled bare soil plot inversely derived from l-band brightness temperatures

    KAUST Repository

    Dimitrov, Marin

    2014-01-01

    We coupled a radiative transfer model and a soil hydrologic model (HYDRUS 1D) with an optimization routine to derive soil hydraulic parameters, surface roughness, and soil moisture of a tilled bare soil plot using measured brightness temperatures at 1.4 GHz (L-band), rainfall, and potential soil evaporation. The robustness of the approach was evaluated using five 28-d data sets representing different meteorological conditions. We considered two soil hydraulic property models: the unimodal Mualem-van Genuchten and the bimodal model of Durner. Microwave radiative transfer was modeled by three different approaches: the Fresnel equation with depth-averaged dielectric permittivity of either 2-or 5-cm-thick surface layers and a coherent radiative transfer model (CRTM) that accounts for vertical gradients in dielectric permittivity. Brightness temperatures simulated by the CRTM and the 2-cm-layer Fresnel model fitted well to the measured ones. L-band brightness temperatures are therefore related to the dielectric permittivity and soil moisture in a 2-cm-thick surface layer. The surface roughness parameter that was derived from brightness temperatures using inverse modeling was similar to direct estimates from laser profiler measurements. The laboratory-derived water retention curve was bimodal and could be retrieved consistently for the different periods from brightness temperatures using inverse modeling. A unimodal soil hydraulic property function underestimated the hydraulic conductivity near saturation. Surface soil moisture contents simulated using retrieved soil hydraulic parameters were compared with in situ measurements. Depth-specific calibration relations were essential to derive soil moisture from near-surface installed sensors. © Soil Science Society of America 5585 Guilford Rd., Madison, WI 53711 USA.

  3. Automatization of an inverse surface temperature modelling procedure for Greenland ice cores, developed and evaluated using nitrogen and argon isotope data measured on the Gisp2 ice core

    Science.gov (United States)

    Döring, Michael; Kobashi, Takuro; Leuenberger, Markus

    2017-04-01

    In order to study Northern Hemisphere climate interactions and variability during the Holocene, access to high resolution surface temperature records of the Greenland ice sheet is an integral condition. Surface temperature reconstruction relies on firn densification combined with gas and heat diffusion [Severinghaus et al. (1998)]. In this study we use the model developed by Schwander et al. (1997). A theoretical δ15N record is generated for different temperature scenarios and compared with measurements by minimizing the mean squared error (MSE). The goal of the presented study is an automatization of this inverse modelling procedure. To solve the inverse problem, the Holocene temperature reconstruction is implemented in three steps. First a rough first guess temperature input (prior) is constructed which serves as the starting point for the optimization. Second, a smooth solution which transects the δ15N measurement data is generated following a Monte Carlo approach. It is assumed that the smooth solution contains all long term temperature trends and (together with the accumulation rate input) drives changes in firn column height, which generate the gravitational background signal in δ15N. Finally, the smooth solution is superimposed with high frequency information directly extracted from the δ15N measurement data. Following the approach, a high resolution Holocene temperature history for the Gisp2 site was extracted (posteriori), which leads to modelled δ15N data that fits the measurements in the low permeg level (MSE) and shows excellent agreement in timing and strength of the measurement variability. To evaluate the reconstruction procedure different synthetic data experiments were conducted underlining the quality of the method. Additionally, a second firn model [Goujon et al. (2003)] was used, which leads to very similar results, that shows the robustness of the presented approach. References: Goujon, C., Barnola, J.-M., Ritz, C. (2003). Modeling the

  4. Calculation of high-temperature insulation parameters and heat transfer behaviors of multilayer insulation by inverse problems method

    OpenAIRE

    Huang, Can; Zhang, Yue

    2014-01-01

    In the present paper, a numerical model combining radiation and conduction for porous materials is developed based on the finite volume method. The model can be used to investigate high-temperature thermal insulations which are widely used in metallic thermal protection systems on reusable launch vehicles and high-temperature fuel cells. The effective thermal conductivities (ECTs) which are measured experimentally can hardly be used separately to analyze the heat transfer behaviors of conduct...

  5. Atmospheric temperature profiles derived through the inversion of a system of first order differential equations. [radiance data from satellite sounder

    Science.gov (United States)

    Gatlin, J. A.; Englar, T. S.

    1976-01-01

    Generation of vertical temperatures profiles from remotely sensed atmospheric radiance data is described as an analogous communications system. The radiative transport characteristics of the atmosphere encodes the continuous temperature profile into an 'n' element vector where 'n' is the number of channels in the satellite instrument. The temperature profile is a message transmitted from station A to station B and the link is the satellite instrument. At station B the decoder reproduces a continuous function which is the best estimate of the message encoded at station A. It is shown that the decoder must operate in a tuned mode where the parameters used in the encoder precisely determine the decoder parameters, and that the characteristics of the total message block must be given by a set of decoder constraints

  6. An Inverse Relationship Links Temperature and Substrate Apparent Affinity in the Ion-Coupled Cotransporters rGAT1 and KAAT1

    Directory of Open Access Journals (Sweden)

    Antonio Peres

    2012-11-01

    Full Text Available The effects of temperature on the operation of two ion-coupled cotransporters of the SLC6A family, namely rat GAT1 (SLC6A1 and KAAT1 (SLC6A19 from Manduca sexta, have been studied by electrophysiological means in Xenopus laevis oocytes expressing these proteins. The maximal transport-associated current (Imax and the apparent substrate affinity (K05 were measured. In addition to the expected increase in transport rate (Q10 = 3–6, both transporters showed greater K05 values (i.e., a decrease in apparent affinity at higher temperatures. The transport efficiency, estimated as Imax/K05, increased at negative potentials in both transporters, but did not show statistically significant differences with temperature. The observation that the apparent substrate affinity is inversely related to the transport rate suggests a kinetic regulation of this parameter. Furthermore, the present results indicate that the affinities estimated at room temperature for mammalian cotransporters may not be simply extrapolated to their physiological operating conditions.

  7. Inverse Limits

    CERN Document Server

    Ingram, WT

    2012-01-01

    Inverse limits provide a powerful tool for constructing complicated spaces from simple ones. They also turn the study of a dynamical system consisting of a space and a self-map into a study of a (likely more complicated) space and a self-homeomorphism. In four chapters along with an appendix containing background material the authors develop the theory of inverse limits. The book begins with an introduction through inverse limits on [0,1] before moving to a general treatment of the subject. Special topics in continuum theory complete the book. Although it is not a book on dynamics, the influen

  8. Electrical conductivity structure of the mantle derived from inversion of geomagnetic observatory data: implications for lateral variations in temperature, composition and water content.

    Science.gov (United States)

    Munch, Federico; Grayver, Alexander; Khan, Amir; Kuvshinov, Alexey

    2017-04-01

    As most of Earth's interior remains geochemically unsampled, geophysical techniques based on seismology, geodesy, gravimetry, and electromagnetic studies play prominent roles because of their ability to sense structure at depth. Although seismic tomography maps show a variety of structures, separating thermal and compositional contributions from seismic velocities alone still remains a challenging task. Alternatively, as electrical conductivity is sensitive to temperature, chemical composition, oxygen fugacity, water content, and the presence of melt, it can serve for determining chemistry, mineralogy, and physical structure of the deep mantle. In this work we estimate and invert local C-responses (period range 3-100 days) for a number of worldwide geomagnetic observatories to map lateral variations of electrical conductivity in Earth's mantle (400-1600 km depth). The obtained conductivity profiles are interpreted in terms of basalt fraction in a basalt-harzburgite mixture, temperature structure, and water content variations. Interpretation is based on a self-consistent thermodynamic calculation of mineral phase equilibria, electrical conductivity databases, and probabilistic inverse methods.

  9. Inverse of Wallin's relation for the effect of strain rate on the ASTM E-1921 reference temperature and its application to reference temperature estimation from Charpy tests

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivasan, P.R., E-mail: sreeprs@yahoo.co.i [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2011-01-15

    Research highlights: An inverse relation for the Wallin strain rate equation (WSRE), that is, IWSRE, has been derived for predicting the static reference temperature from dynamic results. Using the IWSRE and some other correlations, a procedure, called IGCAR-procedure, has been developed for conservative estimation of the ASTM E-1921 reference temperature, T{sub 0-est}, from Charpy V-notch ductile-brittle transition tests alone. The T{sub 0-est} by the IGCAR-procedure is termed T{sub q-IGC} to distinguish it from other estimates. {yields}T{sub q-IGC} is neither too conservative nor unacceptably non-conservative. The T{sub q-IGC} along with the conservative Master Curve procedure helps provide assuredly conservative lower-bound fracture toughness curve. - Abstract: An inverse relation to that of Wallin's strain rate equation has been obtained for predicting the static reference temperature from dynamic results. Wallin strain rate equation (WSRE) predicts the reference temperature at faster loading rates (expressed as stress intensity factor - SIF-rates) from room temperature yield strength (RT-YS) and quasi-static reference temperature, T{sub 0}. The inverse WSRE (IWSRE) predicts T{sub 0} from T{sub 0}{sup dy}, that is, T{sub 0} at dynamic loading rates as obtained in impact and other dynamic tests. For this purpose, the same dataset that was used by Wallin for deriving the original WSRE has been used. It has also been found that the dynamic reference temperature obtained by applying the modified Schindler procedure (MSP) to Charpy V-notch (CVN) impact tests, that is, T{sub QSch}{sup dy}, provides a conservative or close estimate of reference temperature corresponding to a loading rate of {approx}10{sup 6} MPa {radical}m s{sup -1}. Then using the T{sub QSch}{sup dy} in the IWSRE along with RT-YS and SIF rate of 10{sup 6} MPa {radical}m s{sup -1}, results in an estimate of quasi-static T{sub 0}, namely, T{sub QMSP-IW}, the subscript indicating use of both the

  10. Joint inversion of shear wave travel time residuals and geoid and depth anomalies for long-wavelength variations in upper mantle temperature and composition along the Mid-Atlantic Ridge

    Science.gov (United States)

    Sheehan, Anne F.; Solomon, Sean C.

    1991-01-01

    Measurements were carried out for SS-S differential travel time residuals for nearly 500 paths crossing the northern Mid-Atlantic Ridge, assuming that the residuals are dominated by contributions from the upper mantle near the surface bounce point of the reflected phase SS. Results indicate that the SS-S travel time residuals decrease linearly with square root of age, to an age of 80-100 Ma, in general agreement with the plate cooling model. A joint inversion was formulated of travel time residuals and geoid and bathymetric anomalies for lateral variation in the upper mantle temperature and composition. The preferred inversion solutions were found to have variations in upper mantle temperature along the Mid-Atlantic Ridge of about 100 K. It was calculated that, for a constant bulk composition, such a temperature variation would produce about a 7-km variation in crustal thickness, larger than is generally observed.

  11. Matlab based automatization of an inverse surface temperature modelling procedure for Greenland ice cores using an existing firn densification and heat diffusion model

    Science.gov (United States)

    Döring, Michael; Kobashi, Takuro; Kindler, Philippe; Guillevic, Myriam; Leuenberger, Markus

    2016-04-01

    In order to study Northern Hemisphere (NH) climate interactions and variability, getting access to high resolution surface temperature records of the Greenland ice sheet is an integral condition. For example, understanding the causes for changes in the strength of the Atlantic meridional overturning circulation (AMOC) and related effects for the NH [Broecker et al. (1985); Rahmstorf (2002)] or the origin and processes leading the so called Dansgaard-Oeschger events in glacial conditions [Johnsen et al. (1992); Dansgaard et al., 1982] demand accurate and reproducible temperature data. To reveal the surface temperature history, it is suitable to use the isotopic composition of nitrogen (δ15N) from ancient air extracted from ice cores drilled at the Greenland ice sheet. The measured δ15N record of an ice core can be used as a paleothermometer due to the nearly constant isotopic composition of nitrogen in the atmosphere at orbital timescales changes only through firn processes [Severinghaus et. al. (1998); Mariotti (1983)]. To reconstruct the surface temperature for a special drilling site the use of firn models describing gas and temperature diffusion throughout the ice sheet is necessary. For this an existing firn densification and heat diffusion model [Schwander et. al. (1997)] is used. Thereby, a theoretical δ15N record is generated for different temperature and accumulation rate scenarios and compared with measurement data in terms of mean square error (MSE), which leads finally to an optimization problem, namely the finding of a minimal MSE. The goal of the presented study is a Matlab based automatization of this inverse modelling procedure. The crucial point hereby is to find the temperature and accumulation rate input time series which minimizes the MSE. For that, we follow two approaches. The first one is a Monte Carlo type input generator which varies each point in the input time series and calculates the MSE. Then the solutions that fulfil a given limit

  12. A quality-control procedure for surface temperature and surface layer inversion in the XBT data archive from the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Ghosh, A.K.; Pattanaik, J.; Ratnakaran, L.

    A quality control procedure has been developed and validated for Expendable Bathythermograph (XBT) data from Indian Ocean archieved at Indian Oceanographic Data Centre (IODC). Two possible sources of errors are considered surface temperature...

  13. Bayesian approach to inverse statistical mechanics

    Science.gov (United States)

    Habeck, Michael

    2014-05-01

    Inverse statistical mechanics aims to determine particle interactions from ensemble properties. This article looks at this inverse problem from a Bayesian perspective and discusses several statistical estimators to solve it. In addition, a sequential Monte Carlo algorithm is proposed that draws the interaction parameters from their posterior probability distribution. The posterior probability involves an intractable partition function that is estimated along with the interactions. The method is illustrated for inverse problems of varying complexity, including the estimation of a temperature, the inverse Ising problem, maximum entropy fitting, and the reconstruction of molecular interaction potentials.

  14. Polymer Inverse Temperature-Dependent Solubility: A Visual Demonstration of the Importance of "T[Delta]S" in the Gibbs Equation

    Science.gov (United States)

    Bergbreiter, David E.; Mijalis, Alexander J.; Fu, Hui

    2012-01-01

    Reversible polymer dehydration and precipitation from water due to the unfavorable entropy of hydration is examined using a melting-point apparatus. The thermoresponsive lower critical solution temperature (LCST) behavior of poly(N-isopropylacrylamide) (PNIPAM) is responsible for these effects. An experiment is described that allows students to…

  15. One-dimensional linear calculation of the heat flux from infrared and thermocouple measurements at Jet tokamak; Calcul 1D lineaire du flux de chaleur par inversion des mesures de temperatures infrarouges et des thermocouples du Tokamak Jet

    Energy Technology Data Exchange (ETDEWEB)

    Poyet, M

    2005-07-01

    Our work is dedicated to the assessment of the heat released in the Jet tokamak divertor tiles. We have performed the computation of the heat flux from temperature data collected by thermo-couples through a 1 dimensional linear model. This method has implied solving an inverse problem whose matrix is singular, we have succeeded in using Tikhonov's regularization technique. Then we have compared these values of the heat flux with those deduced from infra-red measurements. Infra-red measurements are impaired by the deposition of particles on the surface. Both methods give unrealistic negative values at the end of the plasma discharge. The use of a non-linear 1-dimensional model that would allow the diffusion coefficient to vary is expected to improve the calculation. (A.C.)

  16. Large-scale temperature and salinity changes in the upper Canadian Basin of the Arctic Ocean at a time of a drastic Arctic Oscillation inversion

    Directory of Open Access Journals (Sweden)

    P. Bourgain

    2013-04-01

    Full Text Available Between 2008 and 2010, the Arctic Oscillation index over Arctic regions shifted from positive values corresponding to more cyclonic conditions prevailing during the 4th International Polar Year (IPY period (2007–2008 to extremely negative values corresponding to strong anticyclonic conditions in 2010. In this context, we investigated the recent large-scale evolution of the upper western Arctic Ocean, based on temperature and salinity summertime observations collected during icebreaker campaigns and from ice-tethered profilers (ITPs drifting across the region in 2008 and 2010. Particularly, we focused on (1 the freshwater content which was extensively studied during previous years, (2 the near-surface temperature maximum due to incoming solar radiation, and (3 the water masses advected from the Pacific Ocean into the Arctic Ocean. The observations revealed a freshwater content change in the Canadian Basin during this time period. South of 80° N, the freshwater content increased, while north of 80° N, less freshening occurred in 2010 compared to 2008. This was more likely due to the strong anticyclonicity characteristic of a low AO index mode that enhanced both a wind-generated Ekman pumping in the Beaufort Gyre and a possible diversion of the Siberian River runoff toward the Eurasian Basin at the same time. The near-surface temperature maximum due to incoming solar radiation was almost 1 °C colder in the southern Canada Basin (south of 75° N in 2010 compared to 2008, which contrasted with the positive trend observed during previous years. This was more likely due to higher summer sea ice concentration in 2010 compared to 2008 in that region, and surface albedo feedback reflecting more sun radiation back in space. The Pacific water (PaW was also subjected to strong spatial and temporal variability between 2008 and 2010. In the Canada Basin, both summer and winter PaW signatures were stronger between 75° N and 80° N. This was more likely

  17. Effect of sonochemical synthesized TiO2 nanoparticles and coagulation bath temperature on morphology, thermal stability and pure water flux of asymmetric cellulose acetate membranes prepared via phase inversion method

    Directory of Open Access Journals (Sweden)

    Abedini Reza

    2012-01-01

    Full Text Available In this study, asymmetric pure CA and CA/ TiO2 composite membranes were prepared via phase inversion by dispersing TiO2 nanopaticles in the CA casting solutions induced by immersion precipitation in water coagulation bath. TiO2 nanoparticles, which were synthesized by the sonochemical method, were added into the casting solution with different concentrations. Effects of TiO2 nanoparticles concentration (0 wt. %, 5wt.%, 10wt.%, 15wt.%, 20wt.% and 25wt.% and coagulation bath temperature (CBT= 25°C, 50°C and 75°C on morphology, thermal stability and pure water flux (PWF of the prepared membranes were studied and discussed. Increasing TiO2 concentration in the casting solution film along with higher CBT resulted in increasing the membrane thickness, water content (WC, membrane porosity and pure water flux (PWF, also these changes facilitate macrovoids formation. Thermal gravimetric analysis (TGA shows that thermal stability of the composite membranes were improved by the addition of TiO2 nanopaticles. Also TGA results indicated that increasing CBT in each TiO2 concentration leads to the decreasing of decomposition temperature (Td of hybrid membranes.

  18. INVERSE STABLE SUBORDINATORS.

    Science.gov (United States)

    Meerschaert, Mark M; Straka, Peter

    2013-01-01

    The inverse stable subordinator provides a probability model for time-fractional differential equations, and leads to explicit solution formulae. This paper reviews properties of the inverse stable subordinator, and applications to a variety of problems in mathematics and physics. Several different governing equations for the inverse stable subordinator have been proposed in the literature. This paper also shows how these equations can be reconciled.

  19. INVERSE STABLE SUBORDINATORS

    Science.gov (United States)

    MEERSCHAERT, MARK M.; STRAKA, PETER

    2013-01-01

    The inverse stable subordinator provides a probability model for time-fractional differential equations, and leads to explicit solution formulae. This paper reviews properties of the inverse stable subordinator, and applications to a variety of problems in mathematics and physics. Several different governing equations for the inverse stable subordinator have been proposed in the literature. This paper also shows how these equations can be reconciled. PMID:25045216

  20. Inverse boundary spectral problems

    CERN Document Server

    Kachalov, Alexander; Lassas, Matti

    2001-01-01

    Inverse boundary problems are a rapidly developing area of applied mathematics with applications throughout physics and the engineering sciences. However, the mathematical theory of inverse problems remains incomplete and needs further development to aid in the solution of many important practical problems.Inverse Boundary Spectral Problems develop a rigorous theory for solving several types of inverse problems exactly. In it, the authors consider the following: ""Can the unknown coefficients of an elliptic partial differential equation be determined from the eigenvalues and the boundary value

  1. Inversion of GPS meteorology data

    Directory of Open Access Journals (Sweden)

    K. Hocke

    Full Text Available The GPS meteorology (GPS/MET experiment, led by the Universities Corporation for Atmospheric Research (UCAR, consists of a GPS receiver aboard a low earth orbit (LEO satellite which was launched on 3 April 1995. During a radio occultation the LEO satellite rises or sets relative to one of the 24 GPS satellites at the Earth's horizon. Thereby the atmospheric layers are successively sounded by radio waves which propagate from the GPS satellite to the LEO satellite. From the observed phase path increases, which are due to refraction of the radio waves by the ionosphere and the neutral atmosphere, the atmospheric parameter refractivity, density, pressure and temperature are calculated with high accuracy and resolution (0.5–1.5 km. In the present study, practical aspects of the GPS/MET data analysis are discussed. The retrieval is based on the Abelian integral inversion of the atmospheric bending angle profile into the refractivity index profile. The problem of the upper boundary condition of the Abelian integral is described by examples. The statistical optimization approach which is applied to the data above 40 km and the use of topside bending angle profiles from model atmospheres stabilize the inversion. The retrieved temperature profiles are compared with corresponding profiles which have already been calculated by scientists of UCAR and Jet Propulsion Laboratory (JPL, using Abelian integral inversion too. The comparison shows that in some cases large differences occur (5 K and more. This is probably due to different treatment of the upper boundary condition, data runaways and noise. Several temperature profiles with wavelike structures at tropospheric and stratospheric heights are shown. While the periodic structures at upper stratospheric heights could be caused by residual errors of the ionospheric correction method, the periodic temperature fluctuations at heights below 30 km are most likely caused by atmospheric waves (vertically

  2. Inverse Kinematics using Quaternions

    DEFF Research Database (Denmark)

    Henriksen, Knud; Erleben, Kenny; Engell-Nørregård, Morten

    In this project I describe the status of inverse kinematics research, with the focus firmly on the methods that solve the core problem. An overview of the different methods are presented Three common methods used in inverse kinematics computation have been chosen as subject for closer inspection....

  3. Inverse logarithmic potential problem

    CERN Document Server

    Cherednichenko, V G

    1996-01-01

    The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.

  4. Sharp spatially constrained inversion

    DEFF Research Database (Denmark)

    Vignoli, Giulio G.; Fiandaca, Gianluca G.; Christiansen, Anders Vest C A.V.C.

    2013-01-01

    We present sharp reconstruction of multi-layer models using a spatially constrained inversion with minimum gradient support regularization. In particular, its application to airborne electromagnetic data is discussed. Airborne surveys produce extremely large datasets, traditionally inverted...... by using smoothly varying 1D models. Smoothness is a result of the regularization constraints applied to address the inversion ill-posedness. The standard Occam-type regularized multi-layer inversion produces results where boundaries between layers are smeared. The sharp regularization overcomes...... inversions are compared against classical smooth results and available boreholes. With the focusing approach, the obtained blocky results agree with the underlying geology and allow for easier interpretation by the end-user....

  5. Inverse problem in hydrogeology

    Science.gov (United States)

    Carrera, Jesús; Alcolea, Andrés; Medina, Agustín; Hidalgo, Juan; Slooten, Luit J.

    2005-03-01

    The state of the groundwater inverse problem is synthesized. Emphasis is placed on aquifer characterization, where modelers have to deal with conceptual model uncertainty (notably spatial and temporal variability), scale dependence, many types of unknown parameters (transmissivity, recharge, boundary conditions, etc.), nonlinearity, and often low sensitivity of state variables (typically heads and concentrations) to aquifer properties. Because of these difficulties, calibration cannot be separated from the modeling process, as it is sometimes done in other fields. Instead, it should be viewed as one step in the process of understanding aquifer behavior. In fact, it is shown that actual parameter estimation methods do not differ from each other in the essence, though they may differ in the computational details. It is argued that there is ample room for improvement in groundwater inversion: development of user-friendly codes, accommodation of variability through geostatistics, incorporation of geological information and different types of data (temperature, occurrence and concentration of isotopes, age, etc.), proper accounting of uncertainty, etc. Despite this, even with existing codes, automatic calibration facilitates enormously the task of modeling. Therefore, it is contended that its use should become standard practice. L'état du problème inverse des eaux souterraines est synthétisé. L'accent est placé sur la caractérisation de l'aquifère, où les modélisateurs doivent jouer avec l'incertitude des modèles conceptuels (notamment la variabilité spatiale et temporelle), les facteurs d'échelle, plusieurs inconnues sur différents paramètres (transmissivité, recharge, conditions aux limites, etc.), la non linéarité, et souvent la sensibilité de plusieurs variables d'état (charges hydrauliques, concentrations) des propriétés de l'aquifère. A cause de ces difficultés, le calibrage ne peut êtreséparé du processus de modélisation, comme c'est le

  6. Inversion concept of the origin of life.

    Science.gov (United States)

    Kompanichenko, V N

    2012-06-01

    The essence of the inversion concept of the origin of life can be narrowed down to the following theses: 1) thermodynamic inversion is the key transformation of prebiotic microsystems leading to their transition into primary forms of life; 2) this transformation might occur only in the microsystems oscillating around the bifurcation point under far-from-equilibrium conditions. The transformation consists in the inversion of the balance "free energy contribution / entropy contribution", from negative to positive values. At the inversion moment the microsystem radically reorganizes in accordance with the new negentropy (i.e. biological) way of organization. According to this approach, the origin-of-life process on the early Earth took place in the fluctuating hydrothermal medium. The process occurred in two successive stages: a) spontaneous self-assembly of initial three-dimensional prebiotic microsystems composed mainly of hydrocarbons, lipids and simple amino acids, or their precursors, within the temperature interval of 100-300°C (prebiotic stage); b) non-spontaneous synthesis of sugars, ATP and nucleic acids started at the inversion moment under the temperature 70-100°C (biotic stage). Macro- and microfluctuations of thermodynamic and physico-chemical parameters able to sustain this way of chemical conversion have been detected in several contemporary hydrothermal systems. A minimal self-sufficient unit of life on the early Earth was a community of simplest microorganisms (not a separate microorganism).

  7. Inversion assuming weak scattering

    DEFF Research Database (Denmark)

    Xenaki, Angeliki; Gerstoft, Peter; Mosegaard, Klaus

    2013-01-01

    due to the complex nature of the field. A method based on linear inversion is employed to infer information about the statistical properties of the scattering field from the obtained cross-spectral matrix. A synthetic example based on an active high-frequency sonar demonstrates that the proposed...

  8. Limits to Nonlinear Inversion

    DEFF Research Database (Denmark)

    Mosegaard, Klaus

    2012-01-01

    For non-linear inverse problems, the mathematical structure of the mapping from model parameters to data is usually unknown or partly unknown. Absence of information about the mathematical structure of this function prevents us from presenting an analytical solution, so our solution depends on ou...

  9. Calculation of the inverse data space via sparse inversion

    KAUST Repository

    Saragiotis, Christos

    2011-01-01

    The inverse data space provides a natural separation of primaries and surface-related multiples, as the surface multiples map onto the area around the origin while the primaries map elsewhere. However, the calculation of the inverse data is far from trivial as theory requires infinite time and offset recording. Furthermore regularization issues arise during inversion. We perform the inversion by minimizing the least-squares norm of the misfit function by constraining the $ell_1$ norm of the solution, being the inverse data space. In this way a sparse inversion approach is obtained. We show results on field data with an application to surface multiple removal.

  10. Channelling versus inversion

    DEFF Research Database (Denmark)

    Gale, A.S.; Surlyk, Finn; Anderskouv, Kresten

    2013-01-01

    Evidence from regional stratigraphical patterns in Santonian−Campanian chalk is used to infer the presence of a very broad channel system (5 km across) with a depth of at least 50 m, running NNW−SSE across the eastern Isle of Wight; only the western part of the channel wall and fill is exposed. W......−Campanian chalks in the eastern Isle of Wight, involving penecontemporaneous tectonic inversion of the underlying basement structure, are rejected....

  11. Inverse magnetic/shear catalysis

    Directory of Open Access Journals (Sweden)

    Brett McInnes

    2016-05-01

    Full Text Available It is well known that very large magnetic fields are generated when the Quark–Gluon Plasma is formed during peripheral heavy-ion collisions. Lattice, holographic, and other studies strongly suggest that these fields may, for observationally relevant field values, induce “inverse magnetic catalysis”, signalled by a lowering of the critical temperature for the chiral/deconfinement transition. The theoretical basis of this effect has recently attracted much attention; yet so far these investigations have not included another, equally dramatic consequence of the peripheral collision geometry: the QGP acquires a large angular momentum vector, parallel to the magnetic field. Here we use holographic techniques to argue that the angular momentum can also, independently, have an effect on transition temperatures, and we obtain a rough estimate of the relative effects of the presence of both a magnetic field and an angular momentum density. We find that the shearing angular momentum reinforces the effect of the magnetic field at low values of the baryonic chemical potential, but that it can actually decrease that effect at high chemical potentials.

  12. Optimization based inversion method for the inverse heat conduction problems

    Science.gov (United States)

    Mu, Huaiping; Li, Jingtao; Wang, Xueyao; Liu, Shi

    2017-05-01

    Precise estimation of the thermal physical properties of materials, boundary conditions, heat flux distributions, heat sources and initial conditions is highly desired for real-world applications. The inverse heat conduction problem (IHCP) analysis method provides an alternative approach for acquiring such parameters. The effectiveness of the inversion algorithm plays an important role in practical applications of the IHCP method. Different from traditional inversion models, in this paper a new inversion model that simultaneously highlights the measurement errors and the inaccurate properties of the forward problem is proposed to improve the inversion accuracy and robustness. A generalized cost function is constructed to convert the original IHCP into an optimization problem. An iterative scheme that splits a complicated optimization problem into several simpler sub-problems and integrates the superiorities of the alternative optimization method and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is developed for solving the proposed cost function. Numerical experiment results validate the effectiveness of the proposed inversion method.

  13. Inverse fusion PCR cloning.

    Directory of Open Access Journals (Sweden)

    Markus Spiliotis

    Full Text Available Inverse fusion PCR cloning (IFPC is an easy, PCR based three-step cloning method that allows the seamless and directional insertion of PCR products into virtually all plasmids, this with a free choice of the insertion site. The PCR-derived inserts contain a vector-complementary 5'-end that allows a fusion with the vector by an overlap extension PCR, and the resulting amplified insert-vector fusions are then circularized by ligation prior transformation. A minimal amount of starting material is needed and experimental steps are reduced. Untreated circular plasmid, or alternatively bacteria containing the plasmid, can be used as templates for the insertion, and clean-up of the insert fragment is not urgently required. The whole cloning procedure can be performed within a minimal hands-on time and results in the generation of hundreds to ten-thousands of positive colonies, with a minimal background.

  14. Multiples waveform inversion

    KAUST Repository

    Zhang, Dongliang

    2013-01-01

    To increase the illumination of the subsurface and to eliminate the dependency of FWI on the source wavelet, we propose multiples waveform inversion (MWI) that transforms each hydrophone into a virtual point source with a time history equal to that of the recorded data. These virtual sources are used to numerically generate downgoing wavefields that are correlated with the backprojected surface-related multiples to give the migration image. Since the recorded data are treated as the virtual sources, knowledge of the source wavelet is not required, and the subsurface illumination is greatly enhanced because the entire free surface acts as an extended source compared to the radiation pattern of a traditional point source. Numerical tests on the Marmousi2 model show that the convergence rate and the spatial resolution of MWI is, respectively, faster and more accurate then FWI. The potential pitfall with this method is that the multiples undergo more than one roundtrip to the surface, which increases attenuation and reduces spatial resolution. This can lead to less resolved tomograms compared to conventional FWI. The possible solution is to combine both FWI and MWI in inverting for the subsurface velocity distribution.

  15. Modular theory of inverse systems

    Science.gov (United States)

    1979-01-01

    The relationship between multivariable zeros and inverse systems was explored. A definition of zero module is given in such a way that it is basis independent. The existence of essential right and left inverses were established. The way in which the abstract zero module captured previous definitions of multivariable zeros is explained and examples are presented.

  16. Inverse problems for Maxwell's equations

    CERN Document Server

    Romanov, V G

    1994-01-01

    The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.

  17. Inverse comorbidity in multiple sclerosis

    DEFF Research Database (Denmark)

    Thormann, Anja; Koch-Henriksen, Nils; Laursen, Bjarne

    2016-01-01

    Background Inverse comorbidity is disease occurring at lower rates than expected among persons with a given index disease. The objective was to identify inverse comorbidity in MS. Methods We performed a combined case-control and cohort study in a total nationwide cohort of cases with clinical ons...

  18. Algebraic properties of generalized inverses

    CERN Document Server

    Cvetković‐Ilić, Dragana S

    2017-01-01

    This book addresses selected topics in the theory of generalized inverses. Following a discussion of the “reverse order law” problem and certain problems involving completions of operator matrices, it subsequently presents a specific approach to solving the problem of the reverse order law for {1} -generalized inverses. Particular emphasis is placed on the existence of Drazin invertible completions of an upper triangular operator matrix; on the invertibility and different types of generalized invertibility of a linear combination of operators on Hilbert spaces and Banach algebra elements; on the problem of finding representations of the Drazin inverse of a 2x2 block matrix; and on selected additive results and algebraic properties for the Drazin inverse. In addition to the clarity of its content, the book discusses the relevant open problems for each topic discussed. Comments on the latest references on generalized inverses are also included. Accordingly, the book will be useful for graduate students, Ph...

  19. A rainbow inverse problem

    Directory of Open Access Journals (Sweden)

    Calvez V.

    2010-12-01

    Full Text Available We consider the radiative transfer equation (RTE with reflection in a three-dimensional domain, infinite in two dimensions, and prove an existence result. Then, we study the inverse problem of retrieving the optical parameters from boundary measurements, with help of existing results by Choulli and Stefanov. This theoretical analysis is the framework of an attempt to model the color of the skin. For this purpose, a code has been developed to solve the RTE and to study the sensitivity of the measurements made by biophysicists with respect to the physiological parameters responsible for the optical properties of this complex, multi-layered material. On étudie l’équation du transfert radiatif (ETR dans un domaine tridimensionnel infini dans deux directions, et on prouve un résultat d’existence. On s’intéresse ensuite à la reconstruction des paramètres optiques à partir de mesures faites au bord, en s’appuyant sur des résultats de Choulli et Stefanov. Cette analyse sert de cadre théorique à un travail de modélisation de la couleur de la peau. Dans cette perspective, un code à été développé pour résoudre l’ETR et étudier la sensibilité des mesures effectuées par les biophysiciens par rapport aux paramètres physiologiques tenus pour responsables des propriétés optiques de ce complexe matériau multicouche.

  20. A Generalization of the Spherical Inversion

    Science.gov (United States)

    Ramírez, José L.; Rubiano, Gustavo N.

    2017-01-01

    In the present article, we introduce a generalization of the spherical inversion. In particular, we define an inversion with respect to an ellipsoid, and prove several properties of this new transformation. The inversion in an ellipsoid is the generalization of the elliptic inversion to the three-dimensional space. We also study the inverse images…

  1. Inverse Doppler Effects in Flute

    CERN Document Server

    Zhao, Xiao P; Liu, Song; Shen, Fang L; Li, Lin L; Luo, Chun R

    2015-01-01

    Here we report the observation of the inverse Doppler effects in a flute. It is experimentally verified that, when there is a relative movement between the source and the observer, the inverse Doppler effect could be detected for all seven pitches of a musical scale produced by a flute. Higher tone is associated with a greater shift in frequency. The effect of the inverse frequency shift may provide new insights into why the flute, with its euphonious tone, has been popular for thousands of years in Asia and Europe.

  2. Reactor fuel element heat conduction via numerical Laplace transform inversion

    Energy Technology Data Exchange (ETDEWEB)

    Ganapol, Barry D.; Furfaro, Roberto [University of Arizona, Tucson, AZ (United States). Dept. of Aerospace and Mechanical Engineering], e-mail: ganapol@cowboy.ame.arizona.edu

    2001-07-01

    A newly developed numerical Laplace transform inversion (NLTI) will be presented to determine the transient temperature distribution within a nuclear reactor fuel element. The NLTI considered in this presentation has evolved to its present state over the past 10 years of application. The methodology adopted is one that relies on acceleration of the convergence of an infinite series towards its limit. The inversion will be applied to the prediction of the transient temperature distribution within an MTR type nuclear fuel element through a novel formulation of the solution to the transformed heat conduction equation. (author)

  3. Testing earthquake source inversion methodologies

    KAUST Repository

    Page, Morgan T.

    2011-01-01

    Source Inversion Validation Workshop; Palm Springs, California, 11-12 September 2010; Nowadays earthquake source inversions are routinely performed after large earthquakes and represent a key connection between recorded seismic and geodetic data and the complex rupture process at depth. The resulting earthquake source models quantify the spatiotemporal evolution of ruptures. They are also used to provide a rapid assessment of the severity of an earthquake and to estimate losses. However, because of uncertainties in the data, assumed fault geometry and velocity structure, and chosen rupture parameterization, it is not clear which features of these source models are robust. Improved understanding of the uncertainty and reliability of earthquake source inversions will allow the scientific community to use the robust features of kinematic inversions to more thoroughly investigate the complexity of the rupture process and to better constrain other earthquakerelated computations, such as ground motion simulations and static stress change calculations.

  4. Statistical perspectives on inverse problems

    DEFF Research Database (Denmark)

    Andersen, Kim Emil

    of the interior of an object from electrical boundary measurements. One part of this thesis concerns statistical approaches for solving, possibly non-linear, inverse problems. Thus inverse problems are recasted in a form suitable for statistical inference. In particular, a Bayesian approach for regularisation...... is obtained by assuming that the a priori beliefs about the solution before having observed any data can be described by a prior distribution. The solution to the statistical inverse problem is then given by the posterior distribution obtained by Bayes' formula. Hence the solution of an ill-posed inverse...... problem is given in terms of probability distributions. Posterior inference is obtained by Markov chain Monte Carlo methods and new, powerful simulation techniques based on e.g. coupled Markov chains and simulated tempering is developed to improve the computational efficiency of the overall simulation...

  5. Parameter estimation and inverse problems

    CERN Document Server

    Aster, Richard C; Thurber, Clifford H

    2005-01-01

    Parameter Estimation and Inverse Problems primarily serves as a textbook for advanced undergraduate and introductory graduate courses. Class notes have been developed and reside on the World Wide Web for faciliting use and feedback by teaching colleagues. The authors'' treatment promotes an understanding of fundamental and practical issus associated with parameter fitting and inverse problems including basic theory of inverse problems, statistical issues, computational issues, and an understanding of how to analyze the success and limitations of solutions to these probles. The text is also a practical resource for general students and professional researchers, where techniques and concepts can be readily picked up on a chapter-by-chapter basis.Parameter Estimation and Inverse Problems is structured around a course at New Mexico Tech and is designed to be accessible to typical graduate students in the physical sciences who may not have an extensive mathematical background. It is accompanied by a Web site that...

  6. Coin tossing and Laplace inversion

    Indian Academy of Sciences (India)

    of a probability measure " on Е0Y 1К via the obvious change of variables e└t И xX An inversion formula for " in terms of its moments yields an inversion formula for # in terms of the values of its Laplace transform at n И 0Y 1Y 2Y ... and vice versa. In our discussion we allow " (respectively #) to have positive mass at 0 ...

  7. Thermal measurements and inverse techniques

    CERN Document Server

    Orlande, Helcio RB; Maillet, Denis; Cotta, Renato M

    2011-01-01

    With its uncommon presentation of instructional material regarding mathematical modeling, measurements, and solution of inverse problems, Thermal Measurements and Inverse Techniques is a one-stop reference for those dealing with various aspects of heat transfer. Progress in mathematical modeling of complex industrial and environmental systems has enabled numerical simulations of most physical phenomena. In addition, recent advances in thermal instrumentation and heat transfer modeling have improved experimental procedures and indirect measurements for heat transfer research of both natural phe

  8. Chromatid Painting for Chromosomal Inversion Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a novel approach to the detection of chromosomal inversions. Transmissible chromosome aberrations (translocations and inversions) have profound genetic...

  9. Infrasound data inversion for atmospheric sounding

    Science.gov (United States)

    Lalande, J.-M.; Sèbe, O.; Landès, M.; Blanc-Benon, Ph.; Matoza, R. S.; Le Pichon, A.; Blanc, E.

    2012-07-01

    The International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) continuously records acoustic waves in the 0.01-10 Hz frequency band, known as infrasound. These waves propagate through the layered structure of the atmosphere. Coherent infrasonic waves are produced by a variety of anthropogenic and natural sources and their propagation is controlled by spatiotemporal variations of temperature and wind velocity. Natural stratification of atmospheric properties (e.g. temperature, density and winds) forms waveguides, allowing long-range propagation of infrasound waves. However, atmospheric specifications used in infrasound propagation modelling suffer from lack and sparsity of available data above an altitude of 50 km. As infrasound can propagate in the upper atmosphere up to 120 km, we assume that infrasonic data could be used for sounding the atmosphere, analogous to the use of seismic data to infer solid Earth structure and the use of hydroacoustic data to infer oceanic structure. We therefore develop an inversion scheme for vertical atmospheric wind profiles in the framework of an iterative linear inversion. The forward problem is treated in the high-frequency approximation using a Hamiltonian formulation and complete first-order ray perturbation theory is developed to construct the Fréchet derivatives matrix. We introduce a specific parametrization for the unknown model parameters based on Principal Component Analysis. Finally, our algorithm is tested on synthetic data cases spanning different seasonal periods and network configurations. The results show that our approach is suitable for infrasound atmospheric sounding on a regional scale.

  10. Methods and Applications of Inversion

    Science.gov (United States)

    Johnson, Lane

    In considering Methods and Applications of Inversions, it is important to realize that the study of inverse problems is not a well-posed endeavor. To begin with, the variety of such problems is extremely broad; any systematic attempt to use observational data to make inferences about a model of the underlying physical processes qualifies as an inverse method. And then, the methods of analysis can branch off in innumerable directions. Many choices must be made in formulating the problem, determining the type and amount of regularization, selecting a solution algorithm, and in representing the results. Finally there is the peculiar process of appraisal, which is often treated as optional, in which one attempts to determine whether a solution was actually obtained and whether it contains any new information. What this means is that when a group gets together to discuss inverse problems, one should not be surprised to encounter a broad variety of problems and approaches. Such is the case with Methods and Applications of Inversions.

  11. Optimization and geophysical inverse problems

    Energy Technology Data Exchange (ETDEWEB)

    Barhen, J.; Berryman, J.G.; Borcea, L.; Dennis, J.; de Groot-Hedlin, C.; Gilbert, F.; Gill, P.; Heinkenschloss, M.; Johnson, L.; McEvilly, T.; More, J.; Newman, G.; Oldenburg, D.; Parker, P.; Porto, B.; Sen, M.; Torczon, V.; Vasco, D.; Woodward, N.B.

    2000-10-01

    A fundamental part of geophysics is to make inferences about the interior of the earth on the basis of data collected at or near the surface of the earth. In almost all cases these measured data are only indirectly related to the properties of the earth that are of interest, so an inverse problem must be solved in order to obtain estimates of the physical properties within the earth. In February of 1999 the U.S. Department of Energy sponsored a workshop that was intended to examine the methods currently being used to solve geophysical inverse problems and to consider what new approaches should be explored in the future. The interdisciplinary area between inverse problems in geophysics and optimization methods in mathematics was specifically targeted as one where an interchange of ideas was likely to be fruitful. Thus about half of the participants were actively involved in solving geophysical inverse problems and about half were actively involved in research on general optimization methods. This report presents some of the topics that were explored at the workshop and the conclusions that were reached. In general, the objective of a geophysical inverse problem is to find an earth model, described by a set of physical parameters, that is consistent with the observational data. It is usually assumed that the forward problem, that of calculating simulated data for an earth model, is well enough understood so that reasonably accurate synthetic data can be generated for an arbitrary model. The inverse problem is then posed as an optimization problem, where the function to be optimized is variously called the objective function, misfit function, or fitness function. The objective function is typically some measure of the difference between observational data and synthetic data calculated for a trial model. However, because of incomplete and inaccurate data, the objective function often incorporates some additional form of regularization, such as a measure of smoothness

  12. Subadditive functions and their (pseudo-)inverses

    DEFF Research Database (Denmark)

    Østerdal, Lars Peter

    2006-01-01

    The paper considers non-negative increasing functions on intervals with left endpoint closed at zero and investigates the duality between subadditivity and superadditivity via the inverse function and pseudo-inverses......The paper considers non-negative increasing functions on intervals with left endpoint closed at zero and investigates the duality between subadditivity and superadditivity via the inverse function and pseudo-inverses...

  13. Some Phenomena on Negative Inversion Constructions

    Science.gov (United States)

    Sung, Tae-Soo

    2013-01-01

    We examine the characteristics of NDI (negative degree inversion) and its relation with other inversion phenomena such as SVI (subject-verb inversion) and SAI (subject-auxiliary inversion). The negative element in the NDI construction may be" not," a negative adverbial, or a negative verb. In this respect, NDI has similar licensing…

  14. Inverse feasibility problems of the inverse maximum flow problems

    Indian Academy of Sciences (India)

    A strongly polynomial time algorithm to solve the inverse maximum flow problem under l1 norm (denoted ... IMF can not be solved using weakly polynomial algorithms (although sometimes they can be preferred) because ..... in the network ˜G. We shall sort descending the arcs of ˜G by their capacities˜c1. After sorting, the.

  15. Size Estimates in Inverse Problems

    KAUST Repository

    Di Cristo, Michele

    2014-01-06

    Detection of inclusions or obstacles inside a body by boundary measurements is an inverse problems very useful in practical applications. When only finite numbers of measurements are available, we try to detect some information on the embedded object such as its size. In this talk we review some recent results on several inverse problems. The idea is to provide constructive upper and lower estimates of the area/volume of the unknown defect in terms of a quantity related to the work that can be expressed with the available boundary data.

  16. -Dimensional Fractional Lagrange's Inversion Theorem

    Directory of Open Access Journals (Sweden)

    F. A. Abd El-Salam

    2013-01-01

    Full Text Available Using Riemann-Liouville fractional differential operator, a fractional extension of the Lagrange inversion theorem and related formulas are developed. The required basic definitions, lemmas, and theorems in the fractional calculus are presented. A fractional form of Lagrange's expansion for one implicitly defined independent variable is obtained. Then, a fractional version of Lagrange's expansion in more than one unknown function is generalized. For extending the treatment in higher dimensions, some relevant vectors and tensors definitions and notations are presented. A fractional Taylor expansion of a function of -dimensional polyadics is derived. A fractional -dimensional Lagrange inversion theorem is proved.

  17. Solution of inverse heat conduction equation with the use of Chebyshev polynomials

    Directory of Open Access Journals (Sweden)

    Joachimiak Magda

    2016-12-01

    Full Text Available A direct problem and an inverse problem for the Laplace’s equation was solved in this paper. Solution to the direct problem in a rectangle was sought in a form of finite linear combinations of Chebyshev polynomials. Calculations were made for a grid consisting of Chebyshev nodes, what allows us to use orthogonal properties of Chebyshev polynomials. Temperature distributions on the boundary for the inverse problem were determined using minimization of the functional being the measure of the difference between the measured and calculated values of temperature (boundary inverse problem. For the quasi-Cauchy problem, the distance between set values of temperature and heat flux on the boundary was minimized using the least square method. Influence of the value of random disturbance to the temperature measurement, of measurement points (distance from the boundary, where the temperature is not known arrangement as well as of the thermocouple installation error on the stability of the inverse problem was analyzed.

  18. Inner Structure of Atmospheric Inversion Layers over Haifa Bay in the Eastern Mediterranean

    Science.gov (United States)

    Haikin, N.; Galanti, E.; Reisin, T. G.; Mahrer, Y.; Alpert, P.

    2015-09-01

    Capping inversions act as barriers to the vertical diffusion of pollutants, occasionally leading to significant low-level air pollution episodes in the lower troposphere. Here, we conducted two summer campaigns where global positioning system radiosondes were operated in Haifa Bay on the eastern Mediterranean coast, a region of steep terrain with significant pollution. The campaigns provided unique high resolution measurements related to capping inversions. It was found that the classical definition of a capping inversion was insufficient for an explicit identification of a layer; hence additional criteria are required for a complete spatial analysis of inversion evolution. Based on the vertical temperature derivative, an inner fine structure of inversion layers was explored, and was then used to track inversion layers spatially and to investigate their evolution. The exploration of the inner structure of inversion layers revealed five major patterns: symmetric peak, asymmetric peak, double peak, flat peak, and the zig-zag pattern. We found that the symmetric peak is related to the strongest inversions, double peak inversions tended to break apart into two layers, and the zig-zag pattern was related to the weakest inversions. Employing this classification is suggested for assistance in following the evolution of inversion layers.

  19. Global inverse modeling of CH

    NARCIS (Netherlands)

    Houweling, Sander; Bergamaschi, Peter; Chevallier, Frederic; Heimann, Martin; Kaminski, Thomas; Krol, Maarten; Michalak, Anna M.; Patra, Prabir

    2017-01-01

    The aim of this paper is to present an overview of inverse modeling methods that have been developed over the years for estimating the global sources and sinks of CH4. It provides insight into how techniques and estimates have evolved over time and what the remaining shortcomings are.

  20. Wave-equation dispersion inversion

    KAUST Repository

    Li, Jing

    2016-12-08

    We present the theory for wave-equation inversion of dispersion curves, where the misfit function is the sum of the squared differences between the wavenumbers along the predicted and observed dispersion curves. The dispersion curves are obtained from Rayleigh waves recorded by vertical-component geophones. Similar to wave-equation traveltime tomography, the complicated surface wave arrivals in traces are skeletonized as simpler data, namely the picked dispersion curves in the phase-velocity and frequency domains. Solutions to the elastic wave equation and an iterative optimization method are then used to invert these curves for 2-D or 3-D S-wave velocity models. This procedure, denoted as wave-equation dispersion inversion (WD), does not require the assumption of a layered model and is significantly less prone to the cycle-skipping problems of full waveform inversion. The synthetic and field data examples demonstrate that WD can approximately reconstruct the S-wave velocity distributions in laterally heterogeneous media if the dispersion curves can be identified and picked. The WD method is easily extended to anisotropic data and the inversion of dispersion curves associated with Love waves.

  1. Inverse problem in transformation optics

    DEFF Research Database (Denmark)

    Novitsky, Andrey

    2011-01-01

    . We offer the solution of some sort of inverse problem: starting from the fields in the invisibility cloak we directly derive the permittivity and permeability tensors of the cloaking shell. This approach can be useful for finding material parameters for the specified electromagnetic fields...

  2. Inversion of the perturbation series

    Energy Technology Data Exchange (ETDEWEB)

    Amore, Paolo [Facultad de Ciencias, Universidad de Colima, Bernal DIaz del Castillo 340, Colima, Colima (Mexico); Fernandez, Francisco M [INIFTA (Conicet, UNLP), Division Quimica Teorica, Diag 113 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)

    2008-01-18

    We investigate the inversion of the perturbation series and its resummation, and prove that it is related to a recently developed parametric perturbation theory. Results for some illustrative examples show that in some cases series reversion may improve the accuracy of the results.

  3. Coin tossing and Laplace inversion

    Indian Academy of Sciences (India)

    An analysis of exchangeable sequences of coin tossings leads to inversion formulae for Laplace transforms of probability measures. Author Affiliations. J C Gupta1 2. Indian Statistical Institute, New Delhi 110 016, India; 32, Mirdha Tola, Budaun 243 601, India. Dates. Manuscript received: 5 May 1999; Manuscript revised: 3 ...

  4. Action Understanding as Inverse Planning

    Science.gov (United States)

    Baker, Chris L.; Saxe, Rebecca; Tenenbaum, Joshua B.

    2009-01-01

    Humans are adept at inferring the mental states underlying other agents' actions, such as goals, beliefs, desires, emotions and other thoughts. We propose a computational framework based on Bayesian inverse planning for modeling human action understanding. The framework represents an intuitive theory of intentional agents' behavior based on the…

  5. Applications of inverse pattern projection

    Science.gov (United States)

    Li, Wansong; Bothe, Thorsten; Kalms, Michael K.; von Kopylow, Christoph; Jueptner, Werner P. O.

    2003-05-01

    Fast and robust 3D quality control as well as fast deformation measurement is of particular importance for industrial inspection. Additionally a direct response about measured properties is desired. Therefore, robust optical techniques are needed which use as few images as possible for measurement and visualize results in an efficient way. One promising technique for this aim is the inverse pattern projection which has the following advantages: The technique codes the information of a preceding measurement into the projected inverse pattern. Thus, it is possible to do differential measurements using only one camera frame for each state. Additionally, the results are optimized straight fringes for sampling which are independent of the object curvature. The hardware needs are low as just a programmable projector and a standard camera are necessary. The basic idea of inverse pattern projection, necessary algorithms and found optimizations are demonstrated, roughly. Evaluation techniques were found to preserve a high quality phase measurement under imperfect conditions. The different application fields can be sorted out by the type of pattern used for inverse projection. We select two main topics for presentation. One is the incremental (one image per state) deformation measurement which is a promising technique for high speed deformation measurements. A video series of a wavering flag with projected inverse pattern was evaluated to show the complete deformation series. The other application is the optical feature marking (augmented reality) that allows to map any measured result directly onto the object under investigation. Any properties can be visualized directly on the object"s surface which makes inspections easier than with use of a separated indicating device. The general ability to straighten any kind of information on 3D surfaces is shown while preserving an exact mapping of camera image and object parts. In many cases this supersedes an additional monitor to

  6. Workflows for Full Waveform Inversions

    Science.gov (United States)

    Boehm, Christian; Krischer, Lion; Afanasiev, Michael; van Driel, Martin; May, Dave A.; Rietmann, Max; Fichtner, Andreas

    2017-04-01

    Despite many theoretical advances and the increasing availability of high-performance computing clusters, full seismic waveform inversions still face considerable challenges regarding data and workflow management. While the community has access to solvers which can harness modern heterogeneous computing architectures, the computational bottleneck has fallen to these often manpower-bounded issues that need to be overcome to facilitate further progress. Modern inversions involve huge amounts of data and require a tight integration between numerical PDE solvers, data acquisition and processing systems, nonlinear optimization libraries, and job orchestration frameworks. To this end we created a set of libraries and applications revolving around Salvus (http://salvus.io), a novel software package designed to solve large-scale full waveform inverse problems. This presentation focuses on solving passive source seismic full waveform inversions from local to global scales with Salvus. We discuss (i) design choices for the aforementioned components required for full waveform modeling and inversion, (ii) their implementation in the Salvus framework, and (iii) how it is all tied together by a usable workflow system. We combine state-of-the-art algorithms ranging from high-order finite-element solutions of the wave equation to quasi-Newton optimization algorithms using trust-region methods that can handle inexact derivatives. All is steered by an automated interactive graph-based workflow framework capable of orchestrating all necessary pieces. This naturally facilitates the creation of new Earth models and hopefully sparks new scientific insights. Additionally, and even more importantly, it enhances reproducibility and reliability of the final results.

  7. Multidimensional NMR Inversion without Kronecker Products: Multilinear Inversion

    OpenAIRE

    Medellín, David; Ravi, Vivek R.; Torres-Verdín, Carlos

    2016-01-01

    Multidimensional NMR inversion using Kronecker products poses several challenges. First, kernel compression is only possible when the kernel matrices are separable, and in recent years, there has been an increasing interest in NMR sequences with non-separable kernels. Second, in three or more dimensions, the singular value decomposition is not unique; therefore kernel compression is not well-defined for higher dimensions. Without kernel compression, the Kronecker product yields matrices that ...

  8. Inverse problem of estimating interface conductance between periodically contacting surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Orlande, H.R.B.; Ozisik, M.N. (North Carolina State Univ., Raleigh (United States))

    1993-06-01

    The conjugate gradient method of minimization with adjoint equation is used to solve the inverse problem of estimating the timewise variation of interface conductance between periodically contacting solids, under quasi-steady-state conditions. It is assumed that no prior information is available on the functional form of the interface conductance, except the magnitude of the period. The accuracy of the inverse analysis is examined by using simulated inexact temperature measurements obtained at the interior of the region. Small periods are usually the most difficult on which to perform an inverse analysis. For such cases, the present method is found to be more accurate and stable than the B-Spline approach. 19 refs.

  9. Inverse statistics and information content

    Science.gov (United States)

    Ebadi, H.; Bolgorian, Meysam; Jafari, G. R.

    2010-12-01

    Inverse statistics analysis studies the distribution of investment horizons to achieve a predefined level of return. This distribution provides a maximum investment horizon which determines the most likely horizon for gaining a specific return. There exists a significant difference between inverse statistics of financial market data and a fractional Brownian motion (fBm) as an uncorrelated time-series, which is a suitable criteria to measure information content in financial data. In this paper we perform this analysis for the DJIA and S&P500 as two developed markets and Tehran price index (TEPIX) as an emerging market. We also compare these probability distributions with fBm probability, to detect when the behavior of the stocks are the same as fBm.

  10. Inverse imbalance reconstruction in rotordynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ramlau, R. [Austrian Academy of Sciences, Linz (Austria). Johann Radon Inst. for Computational and Applied Mathematics; Dicken, V. [MeVis GmbH, Bremen (Germany); Maass, P. [Bremen Univ. (Germany). Zentrum fuer Technomathematik; Streller, C. [Rolls-Royce Germany GmbH, Dahlewitz (Germany); Rienaecker, A. [MTU Aero Engines GmbH, Muenchen (Germany)

    2006-05-15

    The goal of this work is to establish and compare algorithms for inverse imbalance reconstruction in aircraft turbines. Such algorithms are based on a validated whole engine model of a turbo engine under consideration. Base on the model, the impact of an imbalance distribution on the vibration behaviour of the turbine can be described as a matrix-vector multiplication Af = g, where f is the imbalance distribution and g the vibration response. It turns out that the matrix A is very ill-conditioned. As the measured data is highly affected with noise, we have to use regularization methods in order to stabilize the inversion. Our main interest was in the use of nonlinear regularization methods, in particular nonlinear filtered singular value decomposition and conjugate gradient regularization. (orig.)

  11. Validation of OSIRIS Ozone Inversions

    Science.gov (United States)

    Gudnason, P.; Evans, W. F.; von Savigny, C.; Sioris, C.; Halley, C.; Degenstein, D.; Llewellyn, E. J.; Petelina, S.; Gattinger, R. L.; Odin Team

    2002-12-01

    The OSIRIS instrument onboard the Odin satellite, that was launched on February 20, 2001, is a combined optical spectrograph and infrared imager that obtains profil sets of atmospheric spectra from 280 to 800 nm when Odin scans the terrestrial limb. It has been possible to make a preliminary analysis of the ozone profiles using the Chappuis absorption feature. Three algorithms have been developed for ozone profile inversions from these limb spectra sets. We have dubbed these the Gattinger, Von Savigny-Flittner and DOAS methods. These are being evaluated against POAM and other satellite data. Based on performance, one of these will be selected for the operational algorithm. The infrared imager data have been used by Degenstein with the tomographic inversion procedure to derive ozone concentrations above 60 km. This paper will present some of these initial observations and indicate the best algorithm potential of OSIRIS to make spectacular advances in the study of terrestrial ozone.

  12. Improved Inversion of Needle Probe Data for the Determination of Rock Thermal Properties

    DEFF Research Database (Denmark)

    Bording, Thue Sylvester; Balling, N.; Nielsen, S.B.

    Heat flow, thermal conductivity and thermal diffusivity are essential properties in subsurface temperature modelling. We present initial results of a novel inversion approach for laboratory measurements of rock thermal conductivity and thermal diffusivity by the needle probe method. Instead...... of analytical expressions, we use a numerical finite element procedure for the forward temperature response. A Markov Chain Monte Carlo Metropolis Hastings inversion procedure produces estimates of rock thermal parameters with uncertainties. .....

  13. Fourier reconstruction with sparse inversions

    OpenAIRE

    Zwartjes, P.M.

    2005-01-01

    In seismic exploration an image of the subsurface is generated from seismic data through various data processing algorithms. When the data is not acquired on an equidistantly spaced grid, artifacts may result in the final image. Fourier reconstruction is an interpolation technique that can reduce these artifacts by generating uniformly sampled data from such non-uniformly sampled data. The method works by estimating via least-squares inversion the Fourier coefficients that describe the non-un...

  14. The Inverse of Banded Matrices

    Science.gov (United States)

    2013-01-01

    for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite ...numbers of summed or subtracted terms in computing the inverse of a term of an upper (lower) triangular matrix are the generalized order-k Fibonacci ... Fibonacci numbers are the usual Fibonacci numbers, that is, f 2m = Fm (mth Fibonacci number). When also k = 3, c1 = c2 = c3 = 1, then the generalized order-3

  15. An inverse hyperbolic heat conduction problem in estimating surface heat flux by the conjugate gradient method

    Energy Technology Data Exchange (ETDEWEB)

    Huang, C.-H.; Wu, H.-H. [Department of Systems and Naval Mechatronic Engineering National Cheng Kung University Tainan, Taiwan 701 (China)

    2006-09-21

    In the present study an inverse hyperbolic heat conduction problem is solved by the conjugate gradient method (CGM) in estimating the unknown boundary heat flux based on the boundary temperature measurements. Results obtained in this inverse problem will be justified based on the numerical experiments where three different heat flux distributions are to be determined. Results show that the inverse solutions can always be obtained with any arbitrary initial guesses of the boundary heat flux. Moreover, the drawbacks of the previous study for this similar inverse problem, such as (1) the inverse solution has phase error and (2) the inverse solution is sensitive to measurement error, can be avoided in the present algorithm. Finally, it is concluded that accurate boundary heat flux can be estimated in this study.

  16. Genetic reproductive risk in inversion carriers.

    Science.gov (United States)

    Anton, Ester; Vidal, Francesca; Egozcue, Josep; Blanco, Joan

    2006-03-01

    To evaluate the risk of four inversion carriers for producing unbalanced gametes. Prospective analysis of sperm nuclei by fluorescence in situ hybridization (FISH). Universitat Autònoma de Barcelona. Four inversion carriers. A semen sample from each patient was collected and prepared for FISH. The segregation outcome of each inversion was analyzed. The presence of interchromosomal effects (ICE) on chromosomes 13, 18, 21, X, and Y was also evaluated. A variable production of unbalanced gametes, which implies a heterogeneous behavior of the inversions, was detected. This variability seems to be directly related to the size of the inversion, indicating that the production of recombinant gametes in inversion carriers would not be relevant when the inverted segment is smaller than 100 Mbp. Inversions have a well-defined reproductive effect on carriers. Carriers of inversions up to 100 Mbp have a low [corrected] reproductive risk and would not usually benefit from preimplantation genetic diagnosis.

  17. Inverse problem of estimating transient heat transfer rate on external wall of forced convection pipe

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wen-Lih; Yang, Yu-Ching; Chang, Win-Jin; Lee, Haw-Long [Clean Energy Center, Department of Mechanical Engineering, Kun Shan University, Yung-Kang City, Tainan 710-03 (China)

    2008-08-15

    In this study, a conjugate gradient method based inverse algorithm is applied to estimate the unknown space and time dependent heat transfer rate on the external wall of a pipe system using temperature measurements. It is assumed that no prior information is available on the functional form of the unknown heat transfer rate; hence, the procedure is classified as function estimation in the inverse calculation. The accuracy of the inverse analysis is examined by using simulated exact and inexact temperature measurements. Results show that an excellent estimation of the space and time dependent heat transfer rate can be obtained for the test case considered in this study. (author)

  18. INVERSE FILTERING TECHNIQUES IN SPEECH ANALYSIS

    African Journals Online (AJOL)

    Dr Obe

    particular system filter being inverted and in the manner of realisation. provide a basis for the classification adopted in the paper which is as follows: (1) inverse vocal tract analogue filtering. (2) inverse vocal tract digital filtering. (3) direct inverse glottal filtering. (4) linear predictive coding. An assessment of the comparative ...

  19. The continuation inverse problem revisited

    Science.gov (United States)

    Huestis, Stephen P.

    1998-06-01

    The non-uniqueness of the continuation of a finite collection of harmonic potential field data to a level surface in the source-free region forces its treatment as an inverse problem. A formalism is proposed for the construction of continuation functions which are extremal by various measures. The problem is cast in such a form that the inverse problem solution is the potential function on the lowest horizontal surface above all sources, serving as the boundary function for the Dirichlet problem in the upper half-plane. The desired continuation, at the higher level of interest, must then be in the range of the upward continuation operator acting on this boundary function, rather than being allowed the full freedom of itself being part of a Dirichlet problem boundary function. Extremal solutions minimize non-linear functionals of the continuation function, which are re-expressed as different functionals of the boundary function. A crux of the method is that there is no essential distinction between the upward and downward continuation inverse problems to levels above or below data locations. Casting the optimization as a Lagrange multiplier problem leads to an integral equation for the boundary function, which is readily solved in the Fourier domain for a certain class of functionals. The desired extremal continuation is then given by upward continuation. It is found that for some functionals, application of the Lagrange multiplier theorem requires a further restriction on the set of allowable boundary functions: bandlimitedness is a natural choice for the continuation problem. With this imposition, the theory is developed in detail for semi-norm functionals penalizing departure from a constant potential, in the 2-norm and Sobelev norm senses, and illustrated by application for a small synthetic Deep Tow magnetic field data set.

  20. Iterative optimization in inverse problems

    CERN Document Server

    Byrne, Charles L

    2014-01-01

    Iterative Optimization in Inverse Problems brings together a number of important iterative algorithms for medical imaging, optimization, and statistical estimation. It incorporates recent work that has not appeared in other books and draws on the author's considerable research in the field, including his recently developed class of SUMMA algorithms. Related to sequential unconstrained minimization methods, the SUMMA class includes a wide range of iterative algorithms well known to researchers in various areas, such as statistics and image processing. Organizing the topics from general to more

  1. Reverse Universal Resolving Algorithm and inverse driving

    DEFF Research Database (Denmark)

    Pécseli, Thomas

    2012-01-01

    Inverse interpretation is a semantics based, non-standard interpretation of programs. Given a program and a value, an inverse interpreter finds all or one of the inputs, that would yield the given value as output with normal forward evaluation. The Reverse Universal Resolving Algorithm is a new...... variant of the Universal Resolving Algorithm for inverse interpretation. The new variant outperforms the original algorithm in several cases, e.g., when unpacking a list using inverse interpretation of a pack program. It uses inverse driving as its main technique, which has not been described in detail...

  2. Dynamically consistent Jacobian inverse for mobile manipulators

    Science.gov (United States)

    Ratajczak, Joanna; Tchoń, Krzysztof

    2016-06-01

    By analogy to the definition of the dynamically consistent Jacobian inverse for robotic manipulators, we have designed a dynamically consistent Jacobian inverse for mobile manipulators built of a non-holonomic mobile platform and a holonomic on-board manipulator. The endogenous configuration space approach has been exploited as a source of conceptual guidelines. The new inverse guarantees a decoupling of the motion in the operational space from the forces exerted in the endogenous configuration space and annihilated by the dual Jacobian inverse. A performance study of the new Jacobian inverse as a tool for motion planning is presented.

  3. LHC Report: 2 inverse femtobarns!

    CERN Multimedia

    Mike Lamont for the LHC Team

    2011-01-01

    The LHC is enjoying a confluence of twos. This morning (Friday 5 August) we passed 2 inverse femtobarns delivered in 2011; the peak luminosity is now just over 2 x1033 cm-2s-1; and recently fill 2000 was in for nearly 22 hours and delivered around 90 inverse picobarns, almost twice 2010's total.   In order to increase the luminosity we can increase of number of bunches, increase the number of particles per bunch, or decrease the transverse beam size at the interaction point. The beam size can be tackled in two ways: either reduce the size of the injected bunches or squeeze harder with the quadrupole magnets situated on either side of the experiments. Having increased the number of bunches to 1380, the maximum possible with a 50 ns bunch spacing, a one day meeting in Crozet decided to explore the other possibilities. The size of the beams coming from the injectors has been reduced to the minimum possible. This has brought an increase in the peak luminosity of about 50% and the 2 x 1033 cm...

  4. Inverse problems and inverse scattering of plane waves

    CERN Document Server

    Ghosh Roy, Dilip N

    2001-01-01

    The purpose of this text is to present the theory and mathematics of inverse scattering, in a simple way, to the many researchers and professionals who use it in their everyday research. While applications range across a broad spectrum of disciplines, examples in this text will focus primarly, but not exclusively, on acoustics. The text will be especially valuable for those applied workers who would like to delve more deeply into the fundamentally mathematical character of the subject matter.Practitioners in this field comprise applied physicists, engineers, and technologists, whereas the theory is almost entirely in the domain of abstract mathematics. This gulf between the two, if bridged, can only lead to improvement in the level of scholarship in this highly important discipline. This is the book''s primary focus.

  5. Inverse geothermal modelling applied to Danish sedimentary basins

    Science.gov (United States)

    Poulsen, Søren E.; Balling, Niels; Bording, Thue S.; Mathiesen, Anders; Nielsen, Søren B.

    2017-10-01

    This paper presents a numerical procedure for predicting subsurface temperatures and heat-flow distribution in 3-D using inverse calibration methodology. The procedure is based on a modified version of the groundwater code MODFLOW by taking advantage of the mathematical similarity between confined groundwater flow (Darcy's law) and heat conduction (Fourier's law). Thermal conductivity, heat production and exponential porosity-depth relations are specified separately for the individual geological units of the model domain. The steady-state temperature model includes a model-based transient correction for the long-term palaeoclimatic thermal disturbance of the subsurface temperature regime. Variable model parameters are estimated by inversion of measured borehole temperatures with uncertainties reflecting their quality. The procedure facilitates uncertainty estimation for temperature predictions. The modelling procedure is applied to Danish onshore areas containing deep sedimentary basins. A 3-D voxel-based model, with 14 lithological units from surface to 5000 m depth, was built from digital geological maps derived from combined analyses of reflection seismic lines and borehole information. Matrix thermal conductivity of model lithologies was estimated by inversion of all available deep borehole temperature data and applied together with prescribed background heat flow to derive the 3-D subsurface temperature distribution. Modelled temperatures are found to agree very well with observations. The numerical model was utilized for predicting and contouring temperatures at 2000 and 3000 m depths and for two main geothermal reservoir units, the Gassum (Lower Jurassic-Upper Triassic) and Bunter/Skagerrak (Triassic) reservoirs, both currently utilized for geothermal energy production. Temperature gradients to depths of 2000-3000 m are generally around 25-30 °C km-1, locally up to about 35 °C km-1. Large regions have geothermal reservoirs with characteristic temperatures

  6. Statistical Inversion of Seismic Noise Inversion statistique du bruit sismique

    Directory of Open Access Journals (Sweden)

    Adler P. M.

    2006-11-01

    Full Text Available A systematic investigation of wave propagation in random media is presented. Spectral analysis, inversion of codas and attenuation of the direct wave front are studied for synthetic data obtained in isotropic or anisotropic, 2D or 3D media. A coda inversion process is developed and checked on two sets of real data. In both cases, it is possible to compare the correlation lengths obtained by inversion to characteristic lengths measured on seismic logs, for the full scale seismic survey, or on a thin section, for the laboratory experiment. These two experiments prove the feasibility and the efficiency of the statistical inversion of codas. Correct characteristic lengths can be obtained which cannot be determined by another method. Le problème de la géophysique est la recherche d'informations concernant le sous-sol, dans des signaux sismiques enregistrés en surface ou dans des puits. Ces informations sont habituellement recherchées sous forme déterministe, c'est-à-dire sous la forme de la donnée en chaque point d'une valeur du paramètre étudié. Notre point de vue est différent puisque notre objectif est de déduire certaines propriétés statistiques du milieu, supposé hétérogène, à partir des sismogrammes enregistrés après propagation. Il apparaît alors deux moyens de remplir l'objectif fixé. Le premier est l'analyse spectrale des codas ; cette analyse permet de déterminer les tailles moyennes des hétérogénéités du sous-sol. La deuxième possibilité est l'étude de l'atténuation du front direct de l'onde, qui conduit aussi à la connaissance des longueurs caractéristiques du sous-sol ; contrairement à la première méthode, elle ne semble pas pouvoir être transposée efficacement à des cas réels. Dans la première partie, on teste numériquement la proportionnalité entre le facteur de rétrodiffraction, relié aux propriétés statistiques du milieu, et le spectre des codas. Les distributions de vitesse, à valeur

  7. Solution for Ill-Posed Inverse Kinematics of Robot Arm by Network Inversion

    Directory of Open Access Journals (Sweden)

    Takehiko Ogawa

    2010-01-01

    Full Text Available In the context of controlling a robot arm with multiple joints, the method of estimating the joint angles from the given end-effector coordinates is called inverse kinematics, which is a type of inverse problems. Network inversion has been proposed as a method for solving inverse problems by using a multilayer neural network. In this paper, network inversion is introduced as a method to solve the inverse kinematics problem of a robot arm with multiple joints, where the joint angles are estimated from the given end-effector coordinates. In general, inverse problems are affected by ill-posedness, which implies that the existence, uniqueness, and stability of their solutions are not guaranteed. In this paper, we show the effectiveness of applying network inversion with regularization, by which ill-posedness can be reduced, to the ill-posed inverse kinematics of an actual robot arm with multiple joints.

  8. Wake Vortex Inverse Model User's Guide

    Science.gov (United States)

    Lai, David; Delisi, Donald

    2008-01-01

    NorthWest Research Associates (NWRA) has developed an inverse model for inverting landing aircraft vortex data. The data used for the inversion are the time evolution of the lateral transport position and vertical position of both the port and starboard vortices. The inverse model performs iterative forward model runs using various estimates of vortex parameters, vertical crosswind profiles, and vortex circulation as a function of wake age. Forward model predictions of lateral transport and altitude are then compared with the observed data. Differences between the data and model predictions guide the choice of vortex parameter values, crosswind profile and circulation evolution in the next iteration. Iterations are performed until a user-defined criterion is satisfied. Currently, the inverse model is set to stop when the improvement in the rms deviation between the data and model predictions is less than 1 percent for two consecutive iterations. The forward model used in this inverse model is a modified version of the Shear-APA model. A detailed description of this forward model, the inverse model, and its validation are presented in a different report (Lai, Mellman, Robins, and Delisi, 2007). This document is a User's Guide for the Wake Vortex Inverse Model. Section 2 presents an overview of the inverse model program. Execution of the inverse model is described in Section 3. When executing the inverse model, a user is requested to provide the name of an input file which contains the inverse model parameters, the various datasets, and directories needed for the inversion. A detailed description of the list of parameters in the inversion input file is presented in Section 4. A user has an option to save the inversion results of each lidar track in a mat-file (a condensed data file in Matlab format). These saved mat-files can be used for post-inversion analysis. A description of the contents of the saved files is given in Section 5. An example of an inversion input

  9. Inversion structure and winter ozone distribution in the Uintah Basin, Utah, U.S.A.

    Science.gov (United States)

    Lyman, Seth; Tran, Trang

    2015-12-01

    The Uintah Basin in Utah, U.S.A. experiences high concentrations of ozone during some winters due to strong, multi-day temperature inversions that facilitate the buildup of pollution from local sources, including the oil and gas industry. Together, elevation of monitoring sites and proximity to oil and gas wells explain as much as 90% of spatial variability in surface ozone concentrations during inversion episodes (i.e., R2 = 0.90). Inversion conditions start earlier and last longer at lower elevations, at least in part because lower elevations are more insulated from winds aloft that degrade inversion conditions and dilute produced ozone. Surface air transport under inversions is dominated by light, diurnal upslope-downslope flow that limits net transport distances. Thus, different areas of the Basin are relatively isolated from each other, allowing spatial factors like elevation and proximity to sources to strongly influence ozone concentrations at individual sites.

  10. Optimization and inverse problems in electromagnetism

    CERN Document Server

    Wiak, Sławomir

    2003-01-01

    From 12 to 14 September 2002, the Academy of Humanities and Economics (AHE) hosted the workshop "Optimization and Inverse Problems in Electromagnetism". After this bi-annual event, a large number of papers were assembled and combined in this book. During the workshop recent developments and applications in optimization and inverse methodologies for electromagnetic fields were discussed. The contributions selected for the present volume cover a wide spectrum of inverse and optimal electromagnetic methodologies, ranging from theoretical to practical applications. A number of new optimal and inverse methodologies were proposed. There are contributions related to dedicated software. Optimization and Inverse Problems in Electromagnetism consists of three thematic chapters, covering: -General papers (survey of specific aspects of optimization and inverse problems in electromagnetism), -Methodologies, -Industrial Applications. The book can be useful to students of electrical and electronics engineering, computer sci...

  11. Representations of Generalized Inverses and Drazin Inverse of Partitioned Matrix with Banachiewicz-Schur Forms

    Directory of Open Access Journals (Sweden)

    Xiaoji Liu

    2016-01-01

    Full Text Available Representations of 1,2,3-inverses, 1,2,4-inverses, and Drazin inverse of a partitioned matrix M=ABCD related to the generalized Schur complement are studied. First, we give the necessary and sufficient conditions under which 1,2,3-inverses, 1,2,4-inverses, and group inverse of a 2×2 block matrix can be represented in the Banachiewicz-Schur forms. Some results from the paper of Cvetković-Ilić, 2009, are generalized. Also, we expressed the quotient property and the first Sylvester identity in terms of the generalized Schur complement.

  12. Systolic MVDR beamforming with inverse updating

    Science.gov (United States)

    Moonen, M.

    1993-06-01

    A stable alternative is described for the 'standard' systolic MVDR (minimum variance distortionless response) beamforming algorithm of McWhirter and Shepherd (1986), which is shown to be numerically unstable. This alternative algorithm is similar to covariance-type recursive least squares algorithms that employ 'inverse updating'. Required a posteriori residuals for updating are computed from the stored inverse matrix together with the Kalman gain vector. The beamforming problem is shown to fit on a systolic array for inverse updating.

  13. Inverse Kinematic Analysis Of A Quadruped Robot

    OpenAIRE

    Muhammed Arif Sen; Veli Bakircioglu; Mete Kalyoncu

    2017-01-01

    This paper presents an inverse kinematics program of a quadruped robot. The kinematics analysis is main problem in the manipulators and robots. Dynamic and kinematic structures of quadruped robots are very complex compared to industrial and wheeled robots. In this study inverse kinematics solutions for a quadruped robot with 3 degrees of freedom on each leg are presented. Denavit-Hartenberg D-H method are used for the forward kinematic. The inverse kinematic equations obtained by the geometri...

  14. Time-reversal and Bayesian inversion

    Science.gov (United States)

    Debski, Wojciech

    2017-04-01

    Probabilistic inversion technique is superior to the classical optimization-based approach in all but one aspects. It requires quite exhaustive computations which prohibit its use in huge size inverse problems like global seismic tomography or waveform inversion to name a few. The advantages of the approach are, however, so appealing that there is an ongoing continuous afford to make the large inverse task as mentioned above manageable with the probabilistic inverse approach. One of the perspective possibility to achieve this goal relays on exploring the internal symmetry of the seismological modeling problems in hand - a time reversal and reciprocity invariance. This two basic properties of the elastic wave equation when incorporating into the probabilistic inversion schemata open a new horizons for Bayesian inversion. In this presentation we discuss the time reversal symmetry property, its mathematical aspects and propose how to combine it with the probabilistic inverse theory into a compact, fast inversion algorithm. We illustrate the proposed idea with the newly developed location algorithm TRMLOC and discuss its efficiency when applied to mining induced seismic data.

  15. Interactive inverse kinematics for human motion estimation

    DEFF Research Database (Denmark)

    Engell-Nørregård, Morten Pol; Hauberg, Søren; Lapuyade, Jerome

    2009-01-01

    We present an application of a fast interactive inverse kinematics method as a dimensionality reduction for monocular human motion estimation. The inverse kinematics solver deals efficiently and robustly with box constraints and does not suffer from shaking artifacts. The presented motion...... estimation system uses a single camera to estimate the motion of a human. The results show that inverse kinematics can significantly speed up the estimation process, while retaining a quality comparable to a full pose motion estimation system. Our novelty lies primarily in use of inverse kinematics...

  16. Inverse Kinematics of a Serial Robot

    Directory of Open Access Journals (Sweden)

    Amici Cinzia

    2016-01-01

    Full Text Available This work describes a technique to treat the inverse kinematics of a serial manipulator. The inverse kinematics is obtained through the numerical inversion of the Jacobian matrix, that represents the equation of motion of the manipulator. The inversion is affected by numerical errors and, in different conditions, due to the numerical nature of the solver, it does not converge to a reasonable solution. Thus a soft computing approach is adopted to mix different traditional methods to obtain an increment of algorithmic convergence.

  17. Chromatid Painting for Chromosomal Inversion Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the continued development of a novel approach to the detection of chromosomal inversions. Transmissible chromosome aberrations (translocations and...

  18. Theory of generalized inverses over commutative rings

    CERN Document Server

    Bhaskara Rao, KPS

    2003-01-01

    The theory of generalized inverses of real or complex matrices has been expertly developed and documented. But the generalized inverses of matrices over rings have received comprehensive treatment only recently. In this book, the author, who contributed to the research and development of the theory, explains his results. He explores regular elements in a ring, regular matrices over principal ideal rings, and regular matrices over commutative rings. Students, mathematicians working in g-inverses of matrices, along with algebraists, and control theorists will find new and indispensable data, presented with clarity and insight. This book is also well suited to graduate courses on g-inverses in algebra.

  19. Inverse Problem;Litho_Inversion; Geology and Geophysics

    Science.gov (United States)

    Antonio, Guillen; Gabriel, Courrioux; Bernard, Bourgine

    2015-04-01

    Subsurface modeling is a key tool to describe, understand and quantify geological processes. As the subsurface is inaccessible and its observation is limited by acquisition methods, 3D models of the subsurface are usually built from the interpretation of sparse data with limited resolution. Therefore, uncertainties occur during the model building process, due to possible cognitive human biais, natural variability of geological objects and intrinsic uncertainties of data. In such context, the predictibility of models is limited by uncertainties, which must be assessed in order to reduce economical and human risks linked to the use of models. This work focuses more specifically on uncertainties about geological structures. In this context, a stochastic method is developed for generating structural models with various fault and horizon geometries as well as fault connections. Realistic geological objects are obtained using implicit modeling that represents a surface by an equipotential of a volumetric scalar field. Faults have also been described by a reduced set of uncertain parameters, which opens the way to the inversion of structural objects using geophysical data by baysian methods.

  20. Inverse natural convection problem of estimating wall heat flux using a moving sensor

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.M.; Chung, O.Y.

    1999-11-01

    Inverse heat transfer problems have many applications in various branch of science and engineering. Here, the inverse problem of determining heat flux at the bottom wall of a two-dimensional cavity from temperature measurement in the domain is considered. The Boussinesq equation is used to model the natural convection induced by the wall heat flux. The inverse natural convection problem is posed as a minimization problem of the performance function, which is the sum of square residuals between calculated and observed temperature, by means of a conjugate gradient method. Instead of employing several fixed sensors, a single sensor is used which is moving at a given frequency over the bottom wall. The present method solves the inverse natural convection problem accurately without a priori information about the unknown function to be estimated.

  1. Waveform inversion schemes for 3D density structure

    Science.gov (United States)

    Blom, N.; Fichtner, A.

    2014-12-01

    We develop waveform inversion schemes for density, based on numerical wave propagation, adjoint techniques and various non-seismological constraints to enhance resolution. Density variations drive convection in the Earth and serve as a discriminator between thermal and compositional heterogeneities. However, classical seismological observables and gravity provide only weak constraints, with strong trade-offs. To put additional constraints on density structure, we develop waveform inversion schemes that exploit the seismic waveform itself for the benefit of improved density resolution. Our inversion scheme is intended to incorporate any information that can help to constrain 3D density structure. This includes non-seismological information, such as gravity and the geoid, the mass and moment of inertia of the Earth, and mineral physical constraints on maximum density heterogeneities (assuming reasonable variations in temperature and composition). In a series of initial synthetic experiments, we aim to construct efficient optimisation schemes that allow us to assimilate all the available types of information. For this, we use 2D numerical wave propagation combined with adjoint techniques for the computation of sensitivity kernels. With these kernels, we drive gradient-based optimisation schemes that incorporate our non-seismological constraints. Specifically, we assess the usefulness of an inversion strategy where additional information is used as hard constraints, as opposed to the optimisation of a single objective functional that incorporates all the information. Hard constraints may consist of the Earth's mass or moment of inertia, and are applied by solving a separate optimisation problem to project the initial (unconstrained) solution onto an allowed range. These synthetic experiments will allow us to assess to what extent velocity and density structure need to be coupled in order to obtain useful and meaningful results to a density inversion.

  2. Chromospheric Inversions of a Micro-flaring Region

    Energy Technology Data Exchange (ETDEWEB)

    Reid, A.; Henriques, V.; Mathioudakis, M. [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, BT7 1NN, Northern Ireland (United Kingdom); Doyle, J. G. [Armagh Observatory and Planetarium, College Hill, Armagh, BT61 9DG (United Kingdom); Ray, T., E-mail: aaron.reid@qub.ac.uk [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland)

    2017-08-20

    We use spectropolarimetric observations of the Ca ii 8542 Å line, taken from the Swedish 1 m Solar Telescope, in an attempt to recover dynamic activity in a micro-flaring region near a sunspot via inversions. These inversions show localized mean temperature enhancements of ∼1000 K in the chromosphere and upper photosphere, along with co-spatial bi-directional Doppler shifting of 5–10 km s{sup −1}. This heating also extends along a nearby chromospheric fibril, which is co-spatial to 10–15 km s{sup −1} downflows. Strong magnetic flux cancellation is also apparent in one of the footpoints, and is concentrated in the chromosphere. This event more closely resembles that of an Ellerman Bomb, though placed slightly higher in the atmosphere than what is typically observed.

  3. A variational Bayesian method to inverse problems with impulsive noise

    KAUST Repository

    Jin, Bangti

    2012-01-01

    We propose a novel numerical method for solving inverse problems subject to impulsive noises which possibly contain a large number of outliers. The approach is of Bayesian type, and it exploits a heavy-tailed t distribution for data noise to achieve robustness with respect to outliers. A hierarchical model with all hyper-parameters automatically determined from the given data is described. An algorithm of variational type by minimizing the Kullback-Leibler divergence between the true posteriori distribution and a separable approximation is developed. The numerical method is illustrated on several one- and two-dimensional linear and nonlinear inverse problems arising from heat conduction, including estimating boundary temperature, heat flux and heat transfer coefficient. The results show its robustness to outliers and the fast and steady convergence of the algorithm. © 2011 Elsevier Inc.

  4. Inverse Problems and Uncertainty Quantification

    KAUST Repository

    Litvinenko, Alexander

    2014-01-06

    In a Bayesian setting, inverse problems and uncertainty quantification (UQ) - the propagation of uncertainty through a computational (forward) modelare strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. This is especially the case as together with a functional or spectral approach for the forward UQ there is no need for time- consuming and slowly convergent Monte Carlo sampling. The developed sampling- free non-linear Bayesian update is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisa- tion to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and quadratic Bayesian update on the small but taxing example of the chaotic Lorenz 84 model, where we experiment with the influence of different observation or measurement operators on the update.

  5. Inverse problem in Parker's dynamo

    CERN Document Server

    Reshetnyak, M Yu

    2015-01-01

    The inverse solution of the 1D Parker dynamo equations is considered. The method is based on minimization of the cost-function, which characterize deviation of the model solution properties from the desired ones. The output is the latitude distribution of the magnetic field generation sources: the $\\alpha$- and $\\omega$-effects. Minimization is made using the Monte-Carlo method. The details of the method, as well as some applications, which can be interesting for the broad dynamo community, are considered: conditions when the invisible for the observer at the surface of the planet toroidal part of the magnetic field is much larger than the poloidal counterpart. It is shown that at some particular distributions of $\\alpha$ and $\\omega$ the well-known thesis that sign of the dynamo-number defines equatorial symmetry of the magnetic field to the equator plane, is violated. It is also demonstrated in what circumstances magnetic field in the both hemispheres have different properties, and simple physical explanati...

  6. Package inspection using inverse diffraction

    Science.gov (United States)

    McAulay, Alastair D.

    2008-08-01

    More efficient cost-effective hand-held methods of inspecting packages without opening them are in demand for security. Recent new work in TeraHertz sources,1 millimeter waves, presents new possibilities. Millimeter waves pass through cardboard and styrofoam, common packing materials, and also pass through most materials except those with high conductivity like metals which block light and are easily spotted. Estimating refractive index along the path of the beam through the package from observations of the beam passing out of the package provides the necessary information to inspect the package and is a nonlinear problem. So we use a generalized linear inverse technique that we first developed for finding oil by reflection in geophysics.2 The computation assumes parallel slices in the packet of homogeneous material for which the refractive index is estimated. A beam is propagated through this model in a forward computation. The output is compared with the actual observations for the package and an update computed for the refractive indices. The loop is repeated until convergence. The approach can be modified for a reflection system or to include estimation of absorption.

  7. Inverse problems and uncertainty quantification

    KAUST Repository

    Litvinenko, Alexander

    2013-12-18

    In a Bayesian setting, inverse problems and uncertainty quantification (UQ)— the propagation of uncertainty through a computational (forward) model—are strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. This is especially the case as together with a functional or spectral approach for the forward UQ there is no need for time- consuming and slowly convergent Monte Carlo sampling. The developed sampling- free non-linear Bayesian update is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisa- tion to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and quadratic Bayesian update on the small but taxing example of the chaotic Lorenz 84 model, where we experiment with the influence of different observation or measurement operators on the update.

  8. Metaheuristic optimization of acoustic inverse problems.

    NARCIS (Netherlands)

    van Leijen, A.V.; Rothkrantz, L.; Groen, F.

    2011-01-01

    Swift solving of geoacoustic inverse problems strongly depends on the application of a global optimization scheme. Given a particular inverse problem, this work aims to answer the questions how to select an appropriate metaheuristic search strategy, and how to configure it for optimal performance.

  9. INVERSE FILTERING TECHNIQUES IN SPEECH ANALYSIS

    African Journals Online (AJOL)

    Dr Obe

    ABSTRACT. This paper reviews certain speech analytical techniques to which the label 'inverse filtering' has been applied. The unifying features of these techniques are presented, namely: 1. a basis in the source-filter theory of speech production,. 2. the use of a network whose transfer function is the inverse of the transfer ...

  10. Third Harmonic Imaging using a Pulse Inversion

    DEFF Research Database (Denmark)

    Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt

    2011-01-01

    The pulse inversion (PI) technique can be utilized to separate and enhance harmonic components of a waveform for tissue harmonic imaging. While most ultrasound systems can perform pulse inversion, only few image the 3rd harmonic component. PI pulse subtraction can isolate and enhance the 3rd...

  11. Inversion and approximation of Laplace transforms

    Science.gov (United States)

    Lear, W. M.

    1980-01-01

    A method of inverting Laplace transforms by using a set of orthonormal functions is reported. As a byproduct of the inversion, approximation of complicated Laplace transforms by a transform with a series of simple poles along the left half plane real axis is shown. The inversion and approximation process is simple enough to be put on a programmable hand calculator.

  12. Inverse Nonlinear Programming Problem and its Application

    OpenAIRE

    Kotkin, G.G.

    1990-01-01

    Inverse nonlinear programming problems for a new class of optimization problems relevant for game theory, system optimization, multicriteria optimization, etc. are considered by the author. This paper deals with problem definitions, numerical methods and applications of the inverse nonlinear programming problem in multicriteria optimization. Some associated properties of related parametric optimization problems and software implementations are also considered.

  13. Inverse m-matrices and ultrametric matrices

    CERN Document Server

    Dellacherie, Claude; San Martin, Jaime

    2014-01-01

    The study of M-matrices, their inverses and discrete potential theory is now a well-established part of linear algebra and the theory of Markov chains. The main focus of this monograph is the so-called inverse M-matrix problem, which asks for a characterization of nonnegative matrices whose inverses are M-matrices. We present an answer in terms of discrete potential theory based on the Choquet-Deny Theorem. A distinguished subclass of inverse M-matrices is ultrametric matrices, which are important in applications such as taxonomy. Ultrametricity is revealed to be a relevant concept in linear algebra and discrete potential theory because of its relation with trees in graph theory and mean expected value matrices in probability theory. Remarkable properties of Hadamard functions and products for the class of inverse M-matrices are developed and probabilistic insights are provided throughout the monograph.

  14. Stochastic Gabor reflectivity and acoustic impedance inversion

    Science.gov (United States)

    Hariri Naghadeh, Diako; Morley, Christopher Keith; Ferguson, Angus John

    2018-02-01

    To delineate subsurface lithology to estimate petrophysical properties of a reservoir, it is possible to use acoustic impedance (AI) which is the result of seismic inversion. To change amplitude to AI, removal of wavelet effects from the seismic signal in order to get a reflection series, and subsequently transforming those reflections to AI, is vital. To carry out seismic inversion correctly it is important to not assume that the seismic signal is stationary. However, all stationary deconvolution methods are designed following that assumption. To increase temporal resolution and interpretation ability, amplitude compensation and phase correction are inevitable. Those are pitfalls of stationary reflectivity inversion. Although stationary reflectivity inversion methods are trying to estimate reflectivity series, because of incorrect assumptions their estimations will not be correct, but may be useful. Trying to convert those reflection series to AI, also merging with the low frequency initial model, can help us. The aim of this study was to apply non-stationary deconvolution to eliminate time variant wavelet effects from the signal and to convert the estimated reflection series to the absolute AI by getting bias from well logs. To carry out this aim, stochastic Gabor inversion in the time domain was used. The Gabor transform derived the signal’s time–frequency analysis and estimated wavelet properties from different windows. Dealing with different time windows gave an ability to create a time-variant kernel matrix, which was used to remove matrix effects from seismic data. The result was a reflection series that does not follow the stationary assumption. The subsequent step was to convert those reflections to AI using well information. Synthetic and real data sets were used to show the ability of the introduced method. The results highlight that the time cost to get seismic inversion is negligible related to general Gabor inversion in the frequency domain. Also

  15. Forward modeling. Route to electromagnetic inversion

    Energy Technology Data Exchange (ETDEWEB)

    Groom, R.; Walker, P. [PetRos EiKon Incorporated, Ontario (Canada)

    1996-05-01

    Inversion of electromagnetic data is a topical subject in the literature, and much time has been devoted to understanding the convergence properties of various inverse methods. The relative lack of success of electromagnetic inversion techniques is partly attributable to the difficulties in the kernel forward modeling software. These difficulties come in two broad classes: (1) Completeness and robustness, and (2) convergence, execution time and model simplicity. If such problems exist in the forward modeling kernel, it was demonstrated that inversion can fail to generate reasonable results. It was suggested that classical inversion techniques, which are based on minimizing a norm of the error between data and the simulated data, will only be successful when these difficulties in forward modeling kernels are properly dealt with. 4 refs., 5 figs.

  16. Fast wavelet based sparse approximate inverse preconditioner

    Energy Technology Data Exchange (ETDEWEB)

    Wan, W.L. [Univ. of California, Los Angeles, CA (United States)

    1996-12-31

    Incomplete LU factorization is a robust preconditioner for both general and PDE problems but unfortunately not easy to parallelize. Recent study of Huckle and Grote and Chow and Saad showed that sparse approximate inverse could be a potential alternative while readily parallelizable. However, for special class of matrix A that comes from elliptic PDE problems, their preconditioners are not optimal in the sense that independent of mesh size. A reason may be that no good sparse approximate inverse exists for the dense inverse matrix. Our observation is that for this kind of matrices, its inverse entries typically have piecewise smooth changes. We can take advantage of this fact and use wavelet compression techniques to construct a better sparse approximate inverse preconditioner. We shall show numerically that our approach is effective for this kind of matrices.

  17. Local Bayesian inversion: theoretical developments

    Science.gov (United States)

    Moraes, Fernando S.; Scales, John A.

    2000-06-01

    We derive a new Bayesian formulation for the discrete geophysical inverse problem that can significantly reduce the cost of the computations. The Bayesian approach focuses on obtaining a probability distribution (the posterior distribution), assimilating three kinds of information: physical theories (data modelling), observations (data measurements) and prior information on models. Once this goal is achieved, all inferences can be obtained from the posterior by computing statistics relative to individual parameters (e.g. marginal distributions), a daunting computational problem in high dimensions. Our formulation is developed from the working hypothesis that the local (subsurface) prior information on model parameters supercedes any additional information from other parts of the model. Based on this hypothesis, we propose an approximation that permits a reduction of the dimensionality involved in the calculations via marginalization of the probability distributions. The marginalization facilitates the tasks of incorporating diverse prior information and conducting inferences on individual parameters, because the final result is a collection of 1-D posterior distributions. Parameters are considered individually, one at a time. The approximation involves throwing away, at each step, cross-moment information of order higher than two, while preserving all marginal information about the parameter being estimated. The main advantage of the method is allowing for systematic integration of prior information while maintaining practical feasibility. This is achieved by combining (1) probability density estimation methods to derive marginal prior distributions from available local information, and (2) the use of multidimensional Gaussian distributions, which can be marginalized in closed form. Using a six-parameter problem, we illustrate how the proposed methodology works. In the example, the marginal prior distributions are derived from the application of the principle of

  18. Identification of polymorphic inversions from genotypes

    Directory of Open Access Journals (Sweden)

    Cáceres Alejandro

    2012-02-01

    Full Text Available Abstract Background Polymorphic inversions are a source of genetic variability with a direct impact on recombination frequencies. Given the difficulty of their experimental study, computational methods have been developed to infer their existence in a large number of individuals using genome-wide data of nucleotide variation. Methods based on haplotype tagging of known inversions attempt to classify individuals as having a normal or inverted allele. Other methods that measure differences between linkage disequilibrium attempt to identify regions with inversions but unable to classify subjects accurately, an essential requirement for association studies. Results We present a novel method to both identify polymorphic inversions from genome-wide genotype data and classify individuals as containing a normal or inverted allele. Our method, a generalization of a published method for haplotype data 1, utilizes linkage between groups of SNPs to partition a set of individuals into normal and inverted subpopulations. We employ a sliding window scan to identify regions likely to have an inversion, and accumulation of evidence from neighboring SNPs is used to accurately determine the inversion status of each subject. Further, our approach detects inversions directly from genotype data, thus increasing its usability to current genome-wide association studies (GWAS. Conclusions We demonstrate the accuracy of our method to detect inversions and classify individuals on principled-simulated genotypes, produced by the evolution of an inversion event within a coalescent model 2. We applied our method to real genotype data from HapMap Phase III to characterize the inversion status of two known inversions within the regions 17q21 and 8p23 across 1184 individuals. Finally, we scan the full genomes of the European Origin (CEU and Yoruba (YRI HapMap samples. We find population-based evidence for 9 out of 15 well-established autosomic inversions, and for 52 regions

  19. Case-Study Inverse Thermal Analyses of Al2139 and Al2198 Electron Beam Welds

    Science.gov (United States)

    Zervaki, A. D.; Stergiou, V.; Lambrakos, S. G.

    2013-11-01

    Case study inverse thermal analyses of A12139 and Al2198 electron beam welds are presented. These analyses represent a continuation of previous studies using laser beam welds, but provide accessibility to different regions of the parameter space for temperature histories than achievable using laser beams. For these analyses, a numerical methodology is employed, which is in terms of analytic functions for inverse thermal analysis of steady-state energy deposition in plate structures. The results of the case studies presented provide parametric representations of weld temperature histories, which can be adopted as input data to various types of computational procedures, such as those for prediction of solid-state phase transformations and their associated software implementations. In addition, these weld temperature histories can be used for construction of numerical basis functions that can be adopted for inverse analysis of welds corresponding to other process parameters or welding processes process conditions of which are within similar regimes.

  20. Sparse CSEM inversion driven by seismic coherence

    Science.gov (United States)

    Guo, Zhenwei; Dong, Hefeng; Kristensen, Åge

    2016-12-01

    Marine controlled source electromagnetic (CSEM) data inversion for hydrocarbon exploration is often challenging due to high computational cost, physical memory requirement and low resolution of the obtained resistivity map. This paper aims to enhance both the speed and resolution of CSEM inversion by introducing structural geological information in the inversion algorithm. A coarse mesh is generated for Occam’s inversion, where the parameters are fewer than in the fine regular mesh. This sparse mesh is defined as a coherence-based irregular (IC) sparse mesh, which is based on vertices extracted from available geological information. Inversion results on synthetic data illustrate that the IC sparse mesh has a smaller inversion computational cost compared to the regular dense (RD) mesh. It also has a higher resolution than with a regular sparse (RS) mesh for the same number of estimated parameters. In order to study how the IC sparse mesh reduces the computational time, four different meshes are generated for Occam’s inversion. As a result, an IC sparse mesh can reduce the computational cost while it keeps the resolution as good as a fine regular mesh. The IC sparse mesh reduces the computational cost of the matrix operation for model updates. When the number of estimated parameters reduces to a limited value, the computational cost is independent of the number of parameters. For a testing model with two resistive layers, the inversion result using an IC sparse mesh has higher resolution in both horizontal and vertical directions. Overall, the model representing significant geological information in the IC mesh can improve the resolution of the resistivity models obtained from inversion of CSEM data.

  1. On the inversion-indel distance.

    Science.gov (United States)

    Willing, Eyla; Zaccaria, Simone; Braga, Marília D V; Stoye, Jens

    2013-01-01

    The inversion distance, that is the distance between two unichromosomal genomes with the same content allowing only inversions of DNA segments, can be computed thanks to a pioneering approach of Hannenhalli and Pevzner in 1995. In 2000, El-Mabrouk extended the inversion model to allow the comparison of unichromosomal genomes with unequal contents, thus insertions and deletions of DNA segments besides inversions. However, an exact algorithm was presented only for the case in which we have insertions alone and no deletion (or vice versa), while a heuristic was provided for the symmetric case, that allows both insertions and deletions and is called the inversion-indel distance. In 2005, Yancopoulos, Attie and Friedberg started a new branch of research by introducing the generic double cut and join (DCJ) operation, that can represent several genome rearrangements (including inversions). Among others, the DCJ model gave rise to two important results. First, it has been shown that the inversion distance can be computed in a simpler way with the help of the DCJ operation. Second, the DCJ operation originated the DCJ-indel distance, that allows the comparison of genomes with unequal contents, considering DCJ, insertions and deletions, and can be computed in linear time. In the present work we put these two results together to solve an open problem, showing that, when the graph that represents the relation between the two compared genomes has no bad components, the inversion-indel distance is equal to the DCJ-indel distance. We also give a lower and an upper bound for the inversion-indel distance in the presence of bad components.

  2. The factorization method for inverse problems

    CERN Document Server

    Kirsch, Andreas

    2008-01-01

    The factorization method is a relatively new method for solving certain types of inverse scattering problems and problems in tomography. Aimed at students and researchers in Applied Mathematics, Physics and Engineering, this text introduces the reader to this promising approach for solving important classes of inverse problems. The wide applicability of this method is discussed by choosing typical examples, such as inverse scattering problems for the scalar Helmholtz equation, ascattering problem for Maxwell's equation, and a problem in impedance and optical tomography. The last section of the

  3. 3rd Annual Workshop on Inverse Problem

    CERN Document Server

    2015-01-01

    This proceeding volume is based on papers presented on the Third Annual Workshop on Inverse Problems which was organized by the Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, and took place in May 2013 in Stockholm. The purpose of this workshop was to present new analytical developments and numerical techniques for solution of inverse problems for a wide range of applications in acoustics, electromagnetics, optical fibers, medical imaging, geophysics, etc. The contributions in this volume reflect these themes and will be beneficial to researchers who are working in the area of applied inverse problems.

  4. Inverse Raman effect: applications and detection techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, L.J. Jr.

    1980-08-01

    The processes underlying the inverse Raman effect are qualitatively described by comparing it to the more familiar phenomena of conventional and stimulated Raman scattering. An experession is derived for the inverse Raman absorption coefficient, and its relationship to the stimulated Raman gain is obtained. The power requirements of the two fields are examined qualitatively and quantitatively. The assumption that the inverse Raman absorption coefficient is constant over the interaction length is examined. Advantages of the technique are discussed and a brief survey of reported studies is presented.

  5. Geoacoustic inversion using combustive sound source signals.

    Science.gov (United States)

    Potty, Gopu R; Miller, James H; Wilson, Preston S; Lynch, James F; Newhall, Arthur

    2008-09-01

    Combustive sound source (CSS) data collected on single hydrophone receiving units, in water depths ranging from 65 to 110 m, during the Shallow Water 2006 experiment clearly show modal dispersion effects and are suitable for modal geoacoustic inversions. CSS shots were set off at 26 m depth in 100 m of water. The inversions performed are based on an iterative scheme using dispersion-based short time Fourier transform in which each time-frequency tiling is adaptively rotated in the time-frequency plane, depending on the local wave dispersion. Results of the inversions are found to compare favorably to local core data.

  6. A regularized GMRES method for inverse blackbody radiation problem

    Directory of Open Access Journals (Sweden)

    Wu Jieer

    2013-01-01

    Full Text Available The inverse blackbody radiation problem is focused on determining temperature distribution of a blackbody from measured total radiated power spectrum. This problem consists of solving a first kind of Fredholm integral equation and many numerical methods have been proposed. In this paper, a regularized GMRES method is presented to solve the linear ill-posed problem caused by the discretization of such an integral equation. This method projects the orignal problem onto a lower dimensional subspaces by the Arnoldi process. Tikhonov regularization combined with GCV criterion is applied to stabilize the numerical iteration process. Three numerical examples indicate the effectiveness of the regularized GMRES method.

  7. BOOK REVIEW: Inverse Problems. Activities for Undergraduates

    Science.gov (United States)

    Yamamoto, Masahiro

    2003-06-01

    This book is a valuable introduction to inverse problems. In particular, from the educational point of view, the author addresses the questions of what constitutes an inverse problem and how and why we should study them. Such an approach has been eagerly awaited for a long time. Professor Groetsch, of the University of Cincinnati, is a world-renowned specialist in inverse problems, in particular the theory of regularization. Moreover, he has made a remarkable contribution to educational activities in the field of inverse problems, which was the subject of his previous book (Groetsch C W 1993 Inverse Problems in the Mathematical Sciences (Braunschweig: Vieweg)). For this reason, he is one of the most qualified to write an introductory book on inverse problems. Without question, inverse problems are important, necessary and appear in various aspects. So it is crucial to introduce students to exercises in inverse problems. However, there are not many introductory books which are directly accessible by students in the first two undergraduate years. As a consequence, students often encounter diverse concrete inverse problems before becoming aware of their general principles. The main purpose of this book is to present activities to allow first-year undergraduates to learn inverse theory. To my knowledge, this book is a rare attempt to do this and, in my opinion, a great success. The author emphasizes that it is very important to teach inverse theory in the early years. He writes; `If students consider only the direct problem, they are not looking at the problem from all sides .... The habit of always looking at problems from the direct point of view is intellectually limiting ...' (page 21). The book is very carefully organized so that teachers will be able to use it as a textbook. After an introduction in chapter 1, sucessive chapters deal with inverse problems in precalculus, calculus, differential equations and linear algebra. In order to let one gain some insight

  8. The role of simulated small-scale ocean variability in inverse computations for ocean acoustic tomography.

    Science.gov (United States)

    Dushaw, Brian D; Sagen, Hanne

    2017-12-01

    Ocean acoustic tomography depends on a suitable reference ocean environment with which to set the basic parameters of the inverse problem. Some inverse problems may require a reference ocean that includes the small-scale variations from internal waves, small mesoscale, or spice. Tomographic inversions that employ data of stable shadow zone arrivals, such as those that have been observed in the North Pacific and Canary Basin, are an example. Estimating temperature from the unique acoustic data that have been obtained in Fram Strait is another example. The addition of small-scale variability to augment a smooth reference ocean is essential to understanding the acoustic forward problem in these cases. Rather than a hindrance, the stochastic influences of the small scale can be exploited to obtain accurate inverse estimates. Inverse solutions are readily obtained, and they give computed arrival patterns that matched the observations. The approach is not ad hoc, but universal, and it has allowed inverse estimates for ocean temperature variations in Fram Strait to be readily computed on several acoustic paths for which tomographic data were obtained.

  9. Sequential Geoacoustic Filtering and Geoacoustic Inversion

    Science.gov (United States)

    2015-09-30

    directions of the angular spectrum . Grid refinement alleviates basis mismatch at the expense of increased computational complexity, especially in large...two-dimensional or three-dimensional geoacoustic inversion problems such as seismic imaging. Importantly, grid refinement causes increased coherence

  10. Self-Inverse Interleavers for Turbo Codes

    CERN Document Server

    Sakzad, Amin; Panario, Daniel; Eshghi, Nasim

    2010-01-01

    In this work we introduce and study a set of new interleavers based on permutation polynomials and functions with known inverses over a finite field $\\mathbb{F}_q$ for using in turbo code structures. We use Monomial, Dickson, M\\"{o}bius and R\\'edei functions in order to get new interleavers. In addition we employ Skolem sequences in order to find new interleavers with known cycle structure. As a byproduct we give an exact formula for the inverse of every R\\'edei function. The cycle structure of R\\'edei functions are also investigated. Finally, self-inverse versions of permutation functions are used to construct interleavers. These interleavers are their own de-interleavers and are useful for turbo coding and turbo decoding. Experiments carried out for self-inverse interleavers constructed using these kind of permutation polynomials and functions show excellent agreement with our theoretical results.

  11. Homogeneity of common cosmopolitan inversion frequencies in ...

    Indian Academy of Sciences (India)

    Keywords. Drosophila melanogaster; inversion polymorphism; Southeast Asia; genetic homogeneity; balancing selection. Abstract. East Asian Drosophila melanogaster are known for great variation in morphological and physiological characters among populations, variation that is believed to be maintained by genetic drift.

  12. Full traveltime inversion in source domain

    KAUST Repository

    Liu, Lu

    2017-06-01

    This paper presents a new method of source-domain full traveltime inversion (FTI). The objective of this study is automatically building near-surface velocity using the early arrivals of seismic data. This method can generate the inverted velocity that can kinetically best match the reconstructed plane-wave source of early arrivals with true source in source domain. It does not require picking first arrivals for tomography, which is one of the most challenging aspects of ray-based tomographic inversion. Besides, this method does not need estimate the source wavelet, which is a necessity for receiver-domain wave-equation velocity inversion. Furthermore, we applied our method on one synthetic dataset; the results show our method could generate a reasonable background velocity even when shingling first arrivals exist and could provide a good initial velocity for the conventional full waveform inversion (FWI).

  13. Deep controls on intraplate basin inversion

    DEFF Research Database (Denmark)

    Nielsen, S.B.; Stephenson, Randell Alexander; Schiffer, Christian

    2014-01-01

    Basin inversion is an intermediate-scale manifestation of continental intraplate deformation, which produces earthquake activity in the interior of continents. The sedimentary basins of central Europe, inverted in the Late Cretaceous– Paleocene, represent a classic example of this phenomenon....... It is known that inversion of these basins occurred in two phases: an initial one of transpressional shortening involving reverse activation of former normal faults and a subsequent one of uplift of the earlier developed inversion axis and a shift of sedimentary depocentres, and that this is a response...... to changes in the regional intraplate stress field. This European intraplate deformation is considered in thecontext of a new model of the present-day stress field of Europe (and the North Atlantic) caused by lithospheric potential energy variations. Stresses causingbasin inversion of Europe must have been...

  14. Voxel inversion of airborne EM data

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca G.; Auken, Esben; Christiansen, Anders Vest C A.V.C.

    2013-01-01

    We present a geophysical inversion algorithm working directly in a voxel grid disconnected from the actual measuring points, which allows for straightforward integration of different data types in joint inversion, for informing geological/hydrogeological models directly and for easier incorporation...... of prior information. Inversion of geophysical data usually refers to a model space being linked to the actual observation points. For airborne surveys the spatial discretization of the model space reflects the flight lines. Often airborne surveys are carried out in areas where other ground......-based geophysical data are available. The model space of geophysical inversions is usually referred to the positions of the measurements, and ground-based model positions do not generally coincide with the airborne model positions. Consequently, a model space based on the measuring points is not well suited...

  15. Parametric optimization of inverse trapezoid oleophobic surfaces

    DEFF Research Database (Denmark)

    Cavalli, Andrea; Bøggild, Peter; Okkels, Fridolin

    2012-01-01

    In this paper, we introduce a comprehensive and versatile approach to the parametric shape optimization of oleophobic surfaces. We evaluate the performance of inverse trapezoid microstructures in terms of three objective parameters: apparent contact angle, maximum sustainable hydrostatic pressure...

  16. Case of paracentric inversion 19p

    Energy Technology Data Exchange (ETDEWEB)

    Bettio, D.; Rizzi, N.; Giardino, D. [Centro Auxologico Italiano, Milan (Italy)

    1995-09-25

    Paracentric inversions have been described less frequently than pericentric ones. It is not known whether this is due to their rarity or rather to difficulty in detecting intra-arm rearrangements. Paracentric inversions have been noted in all chromosomes except chromosome 19; the short arm was involved in 21 cases and the long arm in 87. We describe the first case of paracentric inversion in chromosome 19. The patient, a 29-year-old man, was referred for cytogenetic investigation because his wife had had 3 spontaneous abortions. No history of subfertility was recorded. Chromosome studies on peripheral blood lymphocytes demonstrated an abnormal QFQ banding pattern in the short arm of one chromosome 19. The comparison between QFQ, GTG and RBA banding led us to suspect a paracentric inversion involving the chromosome 19 short arm. CBG banding resulted in an apparently normal position of the centromere. Parental chromosome studies showed the same anomaly in the patient`s mother. 4 refs.

  17. Inverse agonism and its therapeutic significance.

    Science.gov (United States)

    Khilnani, Gurudas; Khilnani, Ajeet Kumar

    2011-09-01

    A large number of G-protein-coupled receptors (GPCRs) show varying degrees of basal or constitutive activity. This constitutive activity is usually minimal in natural receptors but is markedly observed in wild type and mutated (naturally or induced) receptors. According to conventional two-state drug receptor interaction model, binding of a ligand may initiate activity (agonist with varying degrees of positive intrinsic activity) or prevent the effect of an agonist (antagonist with zero intrinsic activity). Inverse agonists bind with the constitutively active receptors, stabilize them, and thus reduce the activity (negative intrinsic activity). Receptors of many classes (α-and β-adrenergic, histaminergic, GABAergic, serotoninergic, opiate, and angiotensin receptors) have shown basal activity in suitable in vitro models. Several drugs that have been conventionally classified as antagonists (β-blockers, antihistaminics) have shown inverse agonist effects on corresponding constitutively active receptors. Nearly all H(1) and H(2) antihistaminics (antagonists) have been shown to be inverse agonists. Among the β-blockers, carvedilol and bucindolol demonstrate low level of inverse agonism as compared to propranolol and nadolol. Several antipsychotic drugs (D(2) receptors antagonist), antihypertensive (AT(1) receptor antagonists), antiserotoninergic drugs and opioid antagonists have significant inverse agonistic activity that contributes partly or wholly to their therapeutic value. Inverse agonism may also help explain the underlying mechanism of beneficial effects of carvedilol in congestive failure, naloxone-induced withdrawal syndrome in opioid dependence, clozapine in psychosis, and candesartan in cardiac hypertrophy. Understanding inverse agonisms has paved a way for newer drug development. It is now possible to develop agents, which have only desired therapeutic value and are devoid of unwanted adverse effect. Pimavanserin (ACP-103), a highly selective 5-HT(2A

  18. An Inversion Recovery NMR Kinetics Experiment

    OpenAIRE

    Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping

    2011-01-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this article will enable instructors to use inversion recovery as a laboratory activity in applied NMR classes and provide research students with a conveni...

  19. Inverse semigroups the theory of partial symmetries

    CERN Document Server

    Lawson, Mark V

    1998-01-01

    Symmetry is one of the most important organising principles in the natural sciences. The mathematical theory of symmetry has long been associated with group theory, but it is a basic premise of this book that there are aspects of symmetry which are more faithfully represented by a generalization of groups called inverse semigroups. The theory of inverse semigroups is described from its origins in the foundations of differential geometry through to its most recent applications in combinatorial group theory, and the theory tilings.

  20. The inverse scattering problem for transmission lines

    Science.gov (United States)

    Kay, I.

    1972-01-01

    A number of exact and approximate methods for solving the inverse scattering problem for transmission lines are reviewed. In particular, the application to transmission lines of Marcenko's version of the Gelfand-Levitan exact method for the quantum mechanical problem is compared with a more direct approach based on a different version of the Gelfand-Levitan method. In addition, some aspects of the lack of uniqueness of solutions are discussed, and some open questions related to the inverse scattering problem are suggested.

  1. Bayesian inversion of refraction seismic traveltime data

    Science.gov (United States)

    Ryberg, T.; Haberland, Ch

    2018-03-01

    We apply a Bayesian Markov chain Monte Carlo (McMC) formalism to the inversion of refraction seismic, traveltime data sets to derive 2-D velocity models below linear arrays (i.e. profiles) of sources and seismic receivers. Typical refraction data sets, especially when using the far-offset observations, are known as having experimental geometries which are very poor, highly ill-posed and far from being ideal. As a consequence, the structural resolution quickly degrades with depth. Conventional inversion techniques, based on regularization, potentially suffer from the choice of appropriate inversion parameters (i.e. number and distribution of cells, starting velocity models, damping and smoothing constraints, data noise level, etc.) and only local model space exploration. McMC techniques are used for exhaustive sampling of the model space without the need of prior knowledge (or assumptions) of inversion parameters, resulting in a large number of models fitting the observations. Statistical analysis of these models allows to derive an average (reference) solution and its standard deviation, thus providing uncertainty estimates of the inversion result. The highly non-linear character of the inversion problem, mainly caused by the experiment geometry, does not allow to derive a reference solution and error map by a simply averaging procedure. We present a modified averaging technique, which excludes parts of the prior distribution in the posterior values due to poor ray coverage, thus providing reliable estimates of inversion model properties even in those parts of the models. The model is discretized by a set of Voronoi polygons (with constant slowness cells) or a triangulated mesh (with interpolation within the triangles). Forward traveltime calculations are performed by a fast, finite-difference-based eikonal solver. The method is applied to a data set from a refraction seismic survey from Northern Namibia and compared to conventional tomography. An inversion test

  2. The atmospheric boundary layer during wintertime persistent inversions in the Grenoble valleys

    Directory of Open Access Journals (Sweden)

    Yann Largeron

    2016-07-01

    Full Text Available This study addresses the atmospheric boundary layer dynamics in the Grenoble valleys during persistent inversions, for 5 months during the 2006-2007 winter. During a persistent inversion, the boundary layer contains a layer with a positive vertical temperature gradient over a few days. Temperature data recorded on the valley sidewalls are first used. A bulk measure of the boundary layer stability, based upon the temperature difference between the valley top and the valley bottom, is introduced and a criterion is proposed to detect persistent inversions. We show that this criterion is equivalently expressed in terms of the heat deficit inside the boundary layer. Nine episodes are detected and coincide with the PM10-polluted periods of the 2006-2007 winter.Secondly, the five strongest and longest persistent inversions are simulated using the MesoNH model. Focus is made on the stagnation stage of the episode, during which the inversion exhibits a diurnal cycle that does not significantly evolve from day to day. Whatever the episode, the inversion develops from the ground over a height of about 1200 m, with a nighttime temperature strength of about 20 K.The boundary-layer dynamics within the inversion layer are fully decoupled from the (anticyclonic, weak synoptic flow, independent from the synoptic-wind direction and similar whatever the episode. This implies that these dynamics are controlled by thermal winds and solely depends upon the geometry of the topography and upon the radiative cooling of the ground.Finally, a two-day high-resolution simulation is made for the strongest case, representative of any persistent inversion. The flow pattern displays a well-defined spatial structure, with a vertical layering resulting from the superposition of the down-valley winds flowing from the different valleys surrounding Grenoble. This pattern persists all day long over a shallow convective layer of about 50 m forming above the ground during the reduced

  3. Image Fusion for Travel Time Tomography Inversion

    Directory of Open Access Journals (Sweden)

    Liu Linan

    2015-09-01

    Full Text Available The travel time tomography technology had achieved wide application, the hinge of tomography was inversion algorithm, the ray path tracing technology had a great impact on the inversion results. In order to improve the SNR of inversion image, comprehensive utilization of inversion results with different ray tracing can be used. We presented an imaging fusion method based on improved Wilkinson iteration method. Firstly, the shortest path method and the linear travel time interpolation were used for forward calculation; then combined the improved Wilkinson iteration method with super relaxation precondition method to reduce the condition number of matrix and accelerate iterative speed, the precise integration method was used to solve the inverse matrix more precisely in tomography inversion process; finally, use wavelet transform for image fusion, obtain the final image. Therefore, the ill-conditioned linear equations were changed into iterative normal system through two times of treatment and using images with different forward algorithms for image fusion, it reduced the influence effect of measurement error on imaging. Simulation results showed that, this method can eliminate the artifacts in images effectively, it had extensive practical significance.

  4. Atmospheric inverse modeling via sparse reconstruction

    Science.gov (United States)

    Hase, Nils; Miller, Scot M.; Maaß, Peter; Notholt, Justus; Palm, Mathias; Warneke, Thorsten

    2017-10-01

    Many applications in atmospheric science involve ill-posed inverse problems. A crucial component of many inverse problems is the proper formulation of a priori knowledge about the unknown parameters. In most cases, this knowledge is expressed as a Gaussian prior. This formulation often performs well at capturing smoothed, large-scale processes but is often ill equipped to capture localized structures like large point sources or localized hot spots. Over the last decade, scientists from a diverse array of applied mathematics and engineering fields have developed sparse reconstruction techniques to identify localized structures. In this study, we present a new regularization approach for ill-posed inverse problems in atmospheric science. It is based on Tikhonov regularization with sparsity constraint and allows bounds on the parameters. We enforce sparsity using a dictionary representation system. We analyze its performance in an atmospheric inverse modeling scenario by estimating anthropogenic US methane (CH4) emissions from simulated atmospheric measurements. Different measures indicate that our sparse reconstruction approach is better able to capture large point sources or localized hot spots than other methods commonly used in atmospheric inversions. It captures the overall signal equally well but adds details on the grid scale. This feature can be of value for any inverse problem with point or spatially discrete sources. We show an example for source estimation of synthetic methane emissions from the Barnett shale formation.

  5. Atmospheric inverse modeling via sparse reconstruction

    Directory of Open Access Journals (Sweden)

    N. Hase

    2017-10-01

    Full Text Available Many applications in atmospheric science involve ill-posed inverse problems. A crucial component of many inverse problems is the proper formulation of a priori knowledge about the unknown parameters. In most cases, this knowledge is expressed as a Gaussian prior. This formulation often performs well at capturing smoothed, large-scale processes but is often ill equipped to capture localized structures like large point sources or localized hot spots. Over the last decade, scientists from a diverse array of applied mathematics and engineering fields have developed sparse reconstruction techniques to identify localized structures. In this study, we present a new regularization approach for ill-posed inverse problems in atmospheric science. It is based on Tikhonov regularization with sparsity constraint and allows bounds on the parameters. We enforce sparsity using a dictionary representation system. We analyze its performance in an atmospheric inverse modeling scenario by estimating anthropogenic US methane (CH4 emissions from simulated atmospheric measurements. Different measures indicate that our sparse reconstruction approach is better able to capture large point sources or localized hot spots than other methods commonly used in atmospheric inversions. It captures the overall signal equally well but adds details on the grid scale. This feature can be of value for any inverse problem with point or spatially discrete sources. We show an example for source estimation of synthetic methane emissions from the Barnett shale formation.

  6. An application of sparse inversion on the calculation of the inverse data space of geophysical data

    KAUST Repository

    Saragiotis, Christos

    2011-07-01

    Multiple reflections as observed in seismic reflection measurements often hide arrivals from the deeper target reflectors and need to be removed. The inverse data space provides a natural separation of primaries and surface-related multiples, as the surface multiples map onto the area around the origin while the primaries map elsewhere. However, the calculation of the inverse data is far from trivial as theory requires infinite time and offset recording. Furthermore regularization issues arise during inversion. We perform the inversion by minimizing the least-squares norm of the misfit function and by constraining the 1 norm of the solution, being the inverse data space. In this way a sparse inversion approach is obtained. We show results on field data with an application to surface multiple removal. © 2011 IEEE.

  7. Towards adjoint-based inversion of time-dependent mantle convection with nonlinear viscosity

    Science.gov (United States)

    Li, Dunzhu; Gurnis, Michael; Stadler, Georg

    2017-04-01

    We develop and study an adjoint-based inversion method for the simultaneous recovery of initial temperature conditions and viscosity parameters in time-dependent mantle convection from the current mantle temperature and historic plate motion. Based on a realistic rheological model with temperature-dependent and strain-rate-dependent viscosity, we formulate the inversion as a PDE-constrained optimization problem. The objective functional includes the misfit of surface velocity (plate motion) history, the misfit of the current mantle temperature, and a regularization for the uncertain initial condition. The gradient of this functional with respect to the initial temperature and the uncertain viscosity parameters is computed by solving the adjoint of the mantle convection equations. This gradient is used in a pre-conditioned quasi-Newton minimization algorithm. We study the prospects and limitations of the inversion, as well as the computational performance of the method using two synthetic problems, a sinking cylinder and a realistic subduction model. The subduction model is characterized by the migration of a ridge toward a trench whereby both plate motions and subduction evolve. The results demonstrate: (1) for known viscosity parameters, the initial temperature can be well recovered, as in previous initial condition-only inversions where the effective viscosity was given; (2) for known initial temperature, viscosity parameters can be recovered accurately, despite the existence of trade-offs due to ill-conditioning; (3) for the joint inversion of initial condition and viscosity parameters, initial condition and effective viscosity can be reasonably recovered, but the high dimension of the parameter space and the resulting ill-posedness may limit recovery of viscosity parameters.

  8. Nernst effect in Dirac and inversion-asymmetric Weyl semimetals

    Science.gov (United States)

    Sharma, Girish; Moore, Christopher; Saha, Subhodip; Tewari, Sumanta

    2017-11-01

    Dirac semimetals are three-dimensional analogs of graphene with massless Dirac fermions as low-energy electronic excitations. In contrast to Weyl semimetals, the point nodes in the bulk spectrum of topological Dirac semimetals have a vanishing Chern number, but can yet be stable due to the existence of crystalline symmetries such as uniaxial (discrete) rotation symmetry. We consider a model low-energy Hamiltonian appropriate for the recently discovered topological Dirac semimetal Cd3As2 , and calculate the Nernst response within semiclassical Boltzmann dynamics in the relaxation-time approximation. We show that, for small chemical potentials near the Dirac points, the low-temperature low-magnetic-field Nernst response is dominated by anomalous Nernst effect, arising from a nontrivial profile of Berry curvature on the Fermi surface. Although the Nernst coefficient (both anomalous as well as conventional) vanishes in the limit of zero magnetic field, the low-temperature low-magnetic-field Nernst response, which has an almost steplike profile near B =0 , serves as an effective experimental probe of anomalous Nernst effect in topological Dirac semimetals protected by crystalline symmetries. Additionally, we also calculate the Nernst response for a lattice model of an inversion-asymmetric Weyl semimetal for which, in contrast to the case of the Dirac semimetal, we find that the conventional Nernst response dominates over the anomalous. Our calculations in this paper on Nernst response of Dirac semimetals and inversion broken Weyl semimetals are directly relevant to recent experiments on Cd3As2 (Dirac semimetal) and NbP (inversion broken Weyl semimetal), respectively.

  9. Alternating minimisation for glottal inverse filtering

    Science.gov (United States)

    Rodrigo Bleyer, Ismael; Lybeck, Lasse; Auvinen, Harri; Airaksinen, Manu; Alku, Paavo; Siltanen, Samuli

    2017-06-01

    A new method is proposed for solving the glottal inverse filtering (GIF) problem. The goal of GIF is to separate an acoustical speech signal into two parts: the glottal airflow excitation and the vocal tract filter. To recover such information one has to deal with a blind deconvolution problem. This ill-posed inverse problem is solved under a deterministic setting, considering unknowns on both sides of the underlying operator equation. A stable reconstruction is obtained using a double regularization strategy, alternating between fixing either the glottal source signal or the vocal tract filter. This enables not only splitting the nonlinear and nonconvex problem into two linear and convex problems, but also allows the use of the best parameters and constraints to recover each variable at a time. This new technique, called alternating minimization glottal inverse filtering (AM-GIF), is compared with two other approaches: Markov chain Monte Carlo glottal inverse filtering (MCMC-GIF), and iterative adaptive inverse filtering (IAIF), using synthetic speech signals. The recent MCMC-GIF has good reconstruction quality but high computational cost. The state-of-the-art IAIF method is computationally fast but its accuracy deteriorates, particularly for speech signals of high fundamental frequency (F0). The results show the competitive performance of the new method: With high F0, the reconstruction quality is better than that of IAIF and close to MCMC-GIF while reducing the computational complexity by two orders of magnitude.

  10. Inverse kinematic-based robot control

    Science.gov (United States)

    Wolovich, W. A.; Flueckiger, K. F.

    1987-01-01

    A fundamental problem which must be resolved in virtually all non-trivial robotic operations is the well-known inverse kinematic question. More specifically, most of the tasks which robots are called upon to perform are specified in Cartesian (x,y,z) space, such as simple tracking along one or more straight line paths or following a specified surfacer with compliant force sensors and/or visual feedback. In all cases, control is actually implemented through coordinated motion of the various links which comprise the manipulator; i.e., in link space. As a consequence, the control computer of every sophisticated anthropomorphic robot must contain provisions for solving the inverse kinematic problem which, in the case of simple, non-redundant position control, involves the determination of the first three link angles, theta sub 1, theta sub 2, and theta sub 3, which produce a desired wrist origin position P sub xw, P sub yw, and P sub zw at the end of link 3 relative to some fixed base frame. Researchers outline a new inverse kinematic solution and demonstrate its potential via some recent computer simulations. They also compare it to current inverse kinematic methods and outline some of the remaining problems which will be addressed in order to render it fully operational. Also discussed are a number of practical consequences of this technique beyond its obvious use in solving the inverse kinematic question.

  11. Unwrapped phase inversion with an exponential damping

    KAUST Repository

    Choi, Yun Seok

    2015-07-28

    Full-waveform inversion (FWI) suffers from the phase wrapping (cycle skipping) problem when the frequency of data is not low enough. Unless we obtain a good initial velocity model, the phase wrapping problem in FWI causes a result corresponding to a local minimum, usually far away from the true solution, especially at depth. Thus, we have developed an inversion algorithm based on a space-domain unwrapped phase, and we also used exponential damping to mitigate the nonlinearity associated with the reflections. We construct the 2D phase residual map, which usually contains the wrapping discontinuities, especially if the model is complex and the frequency is high. We then unwrap the phase map and remove these cycle-based jumps. However, if the phase map has several residues, the unwrapping process becomes very complicated. We apply a strong exponential damping to the wavefield to eliminate much of the residues in the phase map, thus making the unwrapping process simple. We finally invert the unwrapped phases using the back-propagation algorithm to calculate the gradient. We progressively reduce the damping factor to obtain a high-resolution image. Numerical examples determined that the unwrapped phase inversion with a strong exponential damping generated convergent long-wavelength updates without low-frequency information. This model can be used as a good starting model for a subsequent inversion with a reduced damping, eventually leading to conventional waveform inversion.

  12. Multiscattering inversion for low-model wavenumbers

    KAUST Repository

    Alkhalifah, Tariq Ali

    2016-09-21

    A successful full-waveform inversion implementation updates the low-wavenumber model components first for a proper description of the wavefield propagation and slowly adds the high wavenumber potentially scattering parts of the model. The low-wavenumber components can be extracted from the transmission parts of the recorded wavefield emanating directly from the source or the transmission parts from the single- or double-scattered wavefield computed from a predicted scatter field acting as secondary sources.We use a combined inversion of data modeled from the source and those corresponding to single and double scattering to update the velocity model and the component of the velocity (perturbation) responsible for the single and double scattering. The combined inversion helps us access most of the potential model wavenumber information that may be embedded in the data. A scattering-angle filter is used to divide the gradient of the combined inversion, so initially the high-wavenumber (low-scattering-angle) components of the gradient are directed to the perturbation model and the low-wavenumber (highscattering- angle) components are directed to the velocity model. As our background velocity matures, the scatteringangle divide is slowly lowered to allow for more of the higher wavenumbers to contribute the velocity model. Synthetic examples including the Marmousi model are used to demonstrate the additional illumination and improved velocity inversion obtained when including multiscattered energy. © 2016 Society of Exploration Geophysicists.

  13. QCD-instantons and conformal inversion symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Klammer, D.

    2006-07-15

    Instantons are an essential and non-perturbative part of Quantum Chromodynamics, the theory of strong interactions. One of the most relevant quantities in the instanton calculus is the instanton-size distribution, which can be described on the one hand within the framework of instanton perturbation theory and on the other hand investigated numerically by means of lattice computations. A rapid onset of a drastic discrepancy between these respective results indicates that the underlying physics is not yet well understood. In this work we investigate the appealing possibility of a symmetry under conformal inversion of space-time leading to this deviation. The motivation being that the lattice data seem to be invariant under an inversion of the instanton size. Since the instanton solution of a given size turns into an anti-instanton solution having an inverted size under conformal inversion of space-time, we ask in a first investigation, whether this property is transferred to the quantum level. In order to introduce a new scale, which is indicated by the lattice data and corresponds to the average instanton size as inversion radius, we project the instanton calculus onto the four-dimensional surface of a five-dimensional sphere via stereographic projection. The radius of this sphere is associated with the average instanton size. The result for the instanton size-distribution projected onto the sphere agrees surprisingly well with the lattice data at qualitative level. The resulting symmetry under an inversion of the instanton size is almost perfect. (orig.)

  14. Speaker independent acoustic-to-articulatory inversion

    Science.gov (United States)

    Ji, An

    Acoustic-to-articulatory inversion, the determination of articulatory parameters from acoustic signals, is a difficult but important problem for many speech processing applications, such as automatic speech recognition (ASR) and computer aided pronunciation training (CAPT). In recent years, several approaches have been successfully implemented for speaker dependent models with parallel acoustic and kinematic training data. However, in many practical applications inversion is needed for new speakers for whom no articulatory data is available. In order to address this problem, this dissertation introduces a novel speaker adaptation approach called Parallel Reference Speaker Weighting (PRSW), based on parallel acoustic and articulatory Hidden Markov Models (HMM). This approach uses a robust normalized articulatory space and palate referenced articulatory features combined with speaker-weighted adaptation to form an inversion mapping for new speakers that can accurately estimate articulatory trajectories. The proposed PRSW method is evaluated on the newly collected Marquette electromagnetic articulography -- Mandarin Accented English (EMA-MAE) corpus using 20 native English speakers. Cross-speaker inversion results show that given a good selection of reference speakers with consistent acoustic and articulatory patterns, the PRSW approach gives good speaker independent inversion performance even without kinematic training data.

  15. Reversible hysteresis inversion in MoS2 field effect transistors

    DEFF Research Database (Denmark)

    Kaushik, Naveen; Mackenzie, David M. A.; Thakar, Kartikey

    2017-01-01

    The origin of threshold voltage instability with gate voltage in MoS2 transistors is poorly understood but critical for device reliability and performance. Reversibility of the temperature dependence of hysteresis and its inversion with temperature in MoS2 transistors has not been demonstrated....... In this work, we delineate two independent mechanisms responsible for thermally assisted hysteresis inversion in gate transfer characteristics of contact resistance-independent multilayer MoS2 transistors. Variable temperature hysteresis measurements were performed on gated four-terminal van der Pauw and two......-terminal devices of MoS2 on SiO2. Additional hysteresis measurements on suspended (~100 nm air gap between MoS2 and SiO2) transistors and under different ambient conditions (vacuum/nitrogen) were used to further isolate the mechanisms. Clockwise hysteresis at room temperature (300 K) that decreases with increasing...

  16. Phase Equilibrium and Diffusion of Solvents in Polybutadiene: A Capillary-Column Inverse Gas Chromatography Study

    NARCIS (Netherlands)

    Cai, W.D.; Ramesh, N.; Tihminlioglu, F.; Danner, R.P.; Duda, J.L.; de Haan, A.B.

    2002-01-01

    The capillary-column inverse gas chromatography method was used to measure the diffusion and partition coefficients of ethylbenzene, styrene, and acrylonitrile in polybutadiene (PBD) at infinite dilution of the solvents. Experiments were performed over a temperature range of 50-125 °C. At

  17. Inverse scattering theory: Inverse scattering series method for one dimensional non-compact support potential

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jie, E-mail: yjie2@uh.edu [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204 (United States); Lesage, Anne-Cécile; Hussain, Fazle [Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409 (United States); Bodmann, Bernhard G. [Department of Mathematics, University of Houston, Houston, Texas 77204 (United States); Kouri, Donald J. [Department of Physics, University of Houston, Houston, Texas 77204 (United States)

    2014-12-15

    The reversion of the Born-Neumann series of the Lippmann-Schwinger equation is one of the standard ways to solve the inverse acoustic scattering problem. One limitation of the current inversion methods based on the reversion of the Born-Neumann series is that the velocity potential should have compact support. However, this assumption cannot be satisfied in certain cases, especially in seismic inversion. Based on the idea of distorted wave scattering, we explore an inverse scattering method for velocity potentials without compact support. The strategy is to decompose the actual medium as a known single interface reference medium, which has the same asymptotic form as the actual medium and a perturbative scattering potential with compact support. After introducing the method to calculate the Green’s function for the known reference potential, the inverse scattering series and Volterra inverse scattering series are derived for the perturbative potential. Analytical and numerical examples demonstrate the feasibility and effectiveness of this method. Besides, to ensure stability of the numerical computation, the Lanczos averaging method is employed as a filter to reduce the Gibbs oscillations for the truncated discrete inverse Fourier transform of each order. Our method provides a rigorous mathematical framework for inverse acoustic scattering with a non-compact support velocity potential.

  18. Inverse Scattering Approach to Improving Pattern Recognition

    Energy Technology Data Exchange (ETDEWEB)

    Chapline, G; Fu, C

    2005-02-15

    The Helmholtz machine provides what may be the best existing model for how the mammalian brain recognizes patterns. Based on the observation that the ''wake-sleep'' algorithm for training a Helmholtz machine is similar to the problem of finding the potential for a multi-channel Schrodinger equation, we propose that the construction of a Schrodinger potential using inverse scattering methods can serve as a model for how the mammalian brain learns to extract essential information from sensory data. In particular, inverse scattering theory provides a conceptual framework for imagining how one might use EEG and MEG observations of brain-waves together with sensory feedback to improve human learning and pattern recognition. Longer term, implementation of inverse scattering algorithms on a digital or optical computer could be a step towards mimicking the seamless information fusion of the mammalian brain.

  19. Inverse Kinematic Analysis Of A Quadruped Robot

    Directory of Open Access Journals (Sweden)

    Muhammed Arif Sen

    2017-09-01

    Full Text Available This paper presents an inverse kinematics program of a quadruped robot. The kinematics analysis is main problem in the manipulators and robots. Dynamic and kinematic structures of quadruped robots are very complex compared to industrial and wheeled robots. In this study inverse kinematics solutions for a quadruped robot with 3 degrees of freedom on each leg are presented. Denavit-Hartenberg D-H method are used for the forward kinematic. The inverse kinematic equations obtained by the geometrical and mathematical methods are coded in MATLAB. And thus a program is obtained that calculate the legs joint angles corresponding to desired various orientations of robot and endpoints of legs. Also the program provides the body orientations of robot in graphical form. The angular positions of joints obtained corresponding to desired different orientations of robot and endpoints of legs are given in this study.

  20. Oil core microcapsules by inverse gelation technique.

    Science.gov (United States)

    Martins, Evandro; Renard, Denis; Davy, Joëlle; Marquis, Mélanie; Poncelet, Denis

    2015-01-01

    A promising technique for oil encapsulation in Ca-alginate capsules by inverse gelation was proposed by Abang et al. This method consists of emulsifying calcium chloride solution in oil and then adding it dropwise in an alginate solution to produce Ca-alginate capsules. Spherical capsules with diameters around 3 mm were produced by this technique, however the production of smaller capsules was not demonstrated. The objective of this study is to propose a new method of oil encapsulation in a Ca-alginate membrane by inverse gelation. The optimisation of the method leads to microcapsules with diameters around 500 μm. In a search of microcapsules with improved diffusion characteristics, the size reduction is an essential factor to broaden the applications in food, cosmetics and pharmaceuticals areas. This work contributes to a better understanding of the inverse gelation technique and allows the production of microcapsules with a well-defined shell-core structure.

  1. Probabilistic inversion for chicken processing lines

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Roger M. [Department of Mathematics, Delft University of Technology, Delft (Netherlands)]. E-mail: r.m.cooke@ewi.tudelft.nl; Nauta, Maarten [Microbiological Laboratory for Health Protection RIVM, Bilthoven (Netherlands); Havelaar, Arie H. [Microbiological Laboratory for Health Protection RIVM, Bilthoven (Netherlands); Fels, Ine van der [Microbiological Laboratory for Health Protection RIVM, Bilthoven (Netherlands)

    2006-10-15

    We discuss an application of probabilistic inversion techniques to a model of campylobacter transmission in chicken processing lines. Such techniques are indicated when we wish to quantify a model which is new and perhaps unfamiliar to the expert community. In this case there are no measurements for estimating model parameters, and experts are typically unable to give a considered judgment. In such cases, experts are asked to quantify their uncertainty regarding variables which can be predicted by the model. The experts' distributions (after combination) are then pulled back onto the parameter space of the model, a process termed 'probabilistic inversion'. This study illustrates two such techniques, iterative proportional fitting (IPF) and PARmeter fitting for uncertain models (PARFUM). In addition, we illustrate how expert judgement on predicted observable quantities in combination with probabilistic inversion may be used for model validation and/or model criticism.

  2. Generalized inverse beamforming with optimized regularization strategy

    Science.gov (United States)

    Zavala, P. A. G.; De Roeck, W.; Janssens, K.; Arruda, J. R. F.; Sas, P.; Desmet, W.

    2011-04-01

    A promising recent development on acoustic source localization and source strength estimation is the generalized inverse beamforming, which is based on the microphone array cross-spectral matrix eigenstructure. This method presents several advantages over the conventional beamforming, including a higher accuracy on the source center localization and strength estimation even with distributed coherent sources. This paper aims to improve the strength estimation of the generalized inverse beamforming method with an automated regularization factor definition. Also in this work, a virtual target grid is introduced, and source mapping and strength estimation are obtained disregarding, as much as possible, the reflections influence. Two simple problems are used to compare the generalized inverse performance with fixed regularization factor to performance obtained using the optimized regularization strategy. Numerical and experimental data are used, and two other strength estimation methods are also evaluated for reference.

  3. Surface Vibration Reconstruction using Inverse Numerical Acoustics

    Directory of Open Access Journals (Sweden)

    F. Martinus

    2003-05-01

    Full Text Available This paper explores the use of inverse numerical acoustics to reconstruct the surface vibration of a noise source. Inverse numerical acoustics is mainly used for source identification. This approach uses the measured sound pressure at a set of field points and the Helmholtz integral equation to reconstruct the normal surface velocity. The number of sound pressure measurements is considerably less than the number of surface vibration nodes. An overview of inverse numerical acoustics is presented and compared with other holography techniques such as nearfield acoustical holography and the Helmholtz equation least squares method. In order to obtain an acceptable reproduction of the surface vibration, several critical factors such as the field point selection and the effect of experimental errors have to be handled properly. Other practical considerations such as the use of few measured velocities and regularization techniques will also be presented. Examples will include a diesel engine, a transmission housing and an engine cover.

  4. Error handling strategies in multiphase inverse modeling

    Energy Technology Data Exchange (ETDEWEB)

    Finsterle, S.; Zhang, Y.

    2010-12-01

    Parameter estimation by inverse modeling involves the repeated evaluation of a function of residuals. These residuals represent both errors in the model and errors in the data. In practical applications of inverse modeling of multiphase flow and transport, the error structure of the final residuals often significantly deviates from the statistical assumptions that underlie standard maximum likelihood estimation using the least-squares method. Large random or systematic errors are likely to lead to convergence problems, biased parameter estimates, misleading uncertainty measures, or poor predictive capabilities of the calibrated model. The multiphase inverse modeling code iTOUGH2 supports strategies that identify and mitigate the impact of systematic or non-normal error structures. We discuss these approaches and provide an overview of the error handling features implemented in iTOUGH2.

  5. An AVAF inversion method for detecting hydrocarbons

    Science.gov (United States)

    Luo, Chunmei; Sen, Mrinal K.; Wang, Shangxu; Yuan, Sanyi

    2017-10-01

    Rock physics studies have shown that velocity dispersion is often associated with hydrocarbon deposit, which results in P-wave reflection coefficients varying with frequency. This effect is often neglected in the conventional amplitude versus angle or offset inversion, and thus error is introduced. Here we propose a method for inverting for dispersive velocity from the frequency-dependent P-wave reflection coefficients; the method is called amplitude variation with angle and frequency AVAF inversion. We employ forward modeling based on propagator matrices that include frequency-dependent elastic coefficients and a variant of the simulated annealing method called the heat-bath algorithm for inversion of layer parameters. In our application, the thickness of the dispersive layer is inverted for simultaneously. Synthetic and field data examples demonstrate the ability and usefulness of this method for detecting hydrocarbon bearing formations.

  6. Inverse scattering approach to improving pattern recognition

    Science.gov (United States)

    Chapline, George; Fu, Chi-Yung

    2005-05-01

    The Helmholtz machine provides what may be the best existing model for how the mammalian brain recognizes patterns. Based on the observation that the "wake-sleep" algorithm for training a Helmholtz machine is similar to the problem of finding the potential for a multi-channel Schrodinger equation, we propose that the construction of a Schrodinger potential using inverse scattering methods can serve as a model for how the mammalian brain learns to extract essential information from sensory data. In particular, inverse scattering theory provides a conceptual framework for imagining how one might use EEG and MEG observations of brain-waves together with sensory feedback to improve human learning and pattern recognition. Longer term, implementation of inverse scattering algorithms on a digital or optical computer could be a step towards mimicking the seamless information fusion of the mammalian brain.

  7. 1-D DC Resistivity Inversion Using Singular Value Decomposition and Levenberg-Marquardt’s Inversion Schemes

    Science.gov (United States)

    Heriyanto, M.; Srigutomo, W.

    2017-07-01

    Exploration of natural or energy resources requires geophysical survey to determine the subsurface structure, such as DC resistivity method. In this research, field and synthetic data were used using Schlumberger configuration. One-dimensional (1-D) DC resistivity inversion was carried out using Singular Value Decomposition (SVD) and Levenberg-Marquardt (LM) techniques to obtain layered resistivity structure. We have developed software to perform both inversion methods accompanied by a user-friendly interface. Both of the methods were compared one another to determine the number of iteration, robust to noise, elapsed time of computation, and inversion results. SVD inversion generated faster process and better results than LM did. The inversion showed both of these methods were appropriate to interpret subsurface resistivity structure.

  8. Trimming and procrastination as inversion techniques

    Science.gov (United States)

    Backus, George E.

    1996-12-01

    By examining the processes of truncating and approximating the model space (trimming it), and by committing to neither the objectivist nor the subjectivist interpretation of probability (procrastinating), we construct a formal scheme for solving linear and non-linear geophysical inverse problems. The necessary prior information about the correct model xE can be either a collection of inequalities or a probability measure describing where xE was likely to be in the model space X before the data vector y0 was measured. The results of the inversion are (1) a vector z0 that estimates some numerical properties zE of xE; (2) an estimate of the error δz = z0 - zE. As y0 is finite dimensional, so is z0, and hence in principle inversion cannot describe all of xE. The error δz is studied under successively more specialized assumptions about the inverse problem, culminating in a complete analysis of the linear inverse problem with a prior quadratic bound on xE. Our formalism appears to encompass and provide error estimates for many of the inversion schemes current in geomagnetism, and would be equally applicable in geodesy and seismology if adequate prior information were available there. As an idealized example we study the magnetic field at the core-mantle boundary, using satellite measurements of field elements at sites assumed to be almost uniformly distributed on a single spherical surface. Magnetospheric currents are neglected and the crustal field is idealized as a random process with rotationally invariant statistics. We find that an appropriate data compression diagonalizes the variance matrix of the crustal signal and permits an analytic trimming of the idealized problem.

  9. Linear inverse problem of the reactor dynamics

    Science.gov (United States)

    Volkov, N. P.

    2017-01-01

    The aim of this work is the study transient processes in nuclear reactors. The mathematical model of the reactor dynamics excluding reverse thermal coupling is investigated. This model is described by a system of integral-differential equations, consisting of a non-stationary anisotropic multispeed kinetic transport equation and a delayed neutron balance equation. An inverse problem was formulated to determine the stationary part of the function source along with the solution of the direct problem. The author obtained sufficient conditions for the existence and uniqueness of a generalized solution of this inverse problem.

  10. Molecular seismology: an inverse problem in nanobiology.

    Science.gov (United States)

    Hinow, Peter; Boczko, Erik M

    2007-05-07

    The density profile of an elastic fiber like DNA will change in space and time as ligands associate with it. This observation affords a new direction in single molecule studies provided that density profiles can be measured in space and time. In fact, this is precisely the objective of seismology, where the mathematics of inverse problems have been employed with success. We argue that inverse problems in elastic media can be directly applied to biophysical problems of fiber-ligand association, and demonstrate that robust algorithms exist to perform density reconstruction in the condensed phase.

  11. Direct and Inverse problems in Electrocardiography

    Science.gov (United States)

    Boulakia, M.; Fernández, M. A.; Gerbeau, J. F.; Zemzemi, N.

    2008-09-01

    We present numerical results related to the direct and the inverse problems in electrocardiography. The electrical activity of the heart is described by the bidomain equations. The electrocardiograms (ECGs) recorded in different points on the body surface are obtained by coupling the bidomain equation to a Laplace equation in the torso. The simulated ECGs are quite satisfactory. As regards the inverse problem, our goal is to estimate the parameters of the bidomain-torso model. Here we present some preliminary results of a parameter estimation for the torso model.

  12. Immature uterine teratoma associated with uterine inversion

    Directory of Open Access Journals (Sweden)

    Karla Teixeira Souza

    2014-08-01

    Full Text Available Teratomas are the most commonly diagnosed germ cell tumors and occur primarily in testes and ovaries. Platinum-based therapy followed by surgical resection of the residual lesion is generally the recommended treatment. In contrast, immature uterine teratomas are rare, with few cases reported in the literature. Moreover, there is no standard treatment for these tumors. Non-puerperal uterine inversion is also rare in women younger than 45 years of age, and neoplastic lesions are responsible for this condition. Here, we report a case of an immature uterine teratoma associated with uterine inversion. The patient underwent surgery followed by adjuvant chemotherapy and continues to be monitored.

  13. Probabilistic Geoacoustic Inversion in Complex Environments

    Science.gov (United States)

    2015-09-30

    Tel: (250) 472-4341 email: sdosso@uvic.ca Grant Number: N000141512019 LONG-TERM GOALS Propagation and reverberation of acoustic fields in shallow...reduced and less uncertain in the ENOS case (Fig. 5). This reduction lead to ∼30% less computer time required for the inversion. 4 Figure 2: The...Dettmer, S. E. Dosso, T. Bodin, J. Stip ̌ c, and P. R. Cummins. Direct-seismogram inversion cevi´ for receiver-side structure with uncertain source- time

  14. Inversion, error analysis, and validation of GPS/MET occultation data

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, A.K.; Kirchengast, G. [Graz Univ. (Austria). Inst. fuer Meteorologie und Geophysik; Ladreiter, H.P.

    1999-01-01

    The global positioning system meteorology (GPS/MET) experiment was the first practical demonstration of global navigation satellite system (GNSS)-based active limb sounding employing the radio occultation technique. This method measures, as principal observable and with millimetric accuracy, the excess phase path (relative to propagation in vacuum) of GNSS-transmitted radio waves caused by refraction during passage through the Earth`s neutral atmosphere and ionosphere in limb geometry. It shows great potential utility for weather and climate system studies in providing an unique combination of global coverage, high vertical resolution and accuracy, long-term stability, and all-weather capability. We first describe our GPS/MET data processing scheme from excess phases via bending angles to the neutral atmospheric parameters refractivity, density, pressure and temperature. Special emphasis is given to ionospheric correction methodology and the inversion of bending angles to refractivities, where we introduce a matrix inversion technique (instead of the usual integral inversion). The matrix technique is shown to lead to identical results as integral inversion but is more directly extendable to inversion by optimal estimation. The quality of GPS/MET-derived profiles is analyzed with an error estimation analysis employing a Monte Carlo technique. We consider statistical errors together with systematic errors due to upper-boundary initialization of the retrieval by a priori bending angles. Perfect initialization and properly smoothed statistical errors allow for better than 1 K temperature retrieval accuracy up to the stratopause. 28 refs.

  15. Observation of a Self-Limiting, Shear-Induced Turbulent Inversion Layer Above Marine Stratocumulus

    Science.gov (United States)

    Katzwinkel, J.; Siebert, H.; Shaw, R. A.

    2012-10-01

    High-resolution measurements of thermodynamic, microphysical, and turbulence properties inside a turbulent inversion layer above a marine stratocumulus cloud layer are presented. The measurements are performed with the helicopter-towed measurement payload Airborne Cloud Turbulence Observation System (ACTOS), which allows for sampling with low true air speeds and steep profiles through cloud top. Vertical profiles show that the turbulent inversion layer consists of clear air above the cloud top, with nearly linear profiles of potential temperature, horizontal wind speed, absolute humidity, and concentration of interstitial aerosol. The layer is turbulent, with an energy dissipation rate nearly the same as that in the lower cloud, suggesting that the two are actively coupled, but with significant anisotropic turbulence at the large scales within the turbulent inversion layer. The turbulent inversion layer is traversed six times and the layer thickness is observed to vary between 37 and 85 m, whereas the potential temperature and horizontal wind speed differences at the top and bottom of the layer remain essentially constant. The Richardson number therefore increases with increasing layer thickness, from approximately 0.2 to 0.7, suggesting that the layer develops to the point where shear production of turbulence is sufficiently weak to be balanced by buoyancy suppression. This picture is consistent with prior numerical simulations of the evolution of turbulence in localized stratified shear layers. It is observed that the large eddy scale is suppressed by buoyancy and is on the order of the Ozmidov scale, much less than the thickness of the turbulent inversion layer, such that direct mixing between the cloud top and the free troposphere is inhibited, and the entrainment velocity tends to decrease with increasing turbulent inversion-layer thickness. Qualitatively, the turbulent inversion layer likely grows through nibbling rather than engulfment.

  16. Ionospheric radio occultation inversion constrained with the data assimillation

    Science.gov (United States)

    Wu, X.; Hu, X.; Zhang, Y.

    2015-12-01

    Ionospheric radio occultation inversion constrained with the data assimillation Wu Xiaocheng, Hu Xiong, Zhang Yanan National Space Science Center, Chinese Academy of Sciences The assumption that electron density distribution is spherically symmetric, is usually used in the traditional ionospheric radio occultation (IRO) inversion, and it is the main error source of IRO inversion. In order to improve the IRO inversion, many methods were studied. One of them uses known ionosphere background to constrain the inversion of IRO, but it has not been used in the routine processing of observation data, due to that it is difficult to get the proper ionosphere background. Data assimilation can provide accurate electron density on the three dimensional grid, which may be used to constrain the IRO inversion and improve the inversion result. This article assimilates the TEC of ground GPS and IRO observation, and the constrains the IRO inversion. The inversion result is greatly improved. Key Words: Ionospheric radio occultation, Data assimilation, Inversion, GPS

  17. Inverse Kinematics With Closed Form Solution For Denso Robot Manipulator

    OpenAIRE

    Ikhsan Eka Prasetia; Trihastuti Agustinah

    2015-01-01

    In this paper, the forward kinematics and inverse kinematics used on the Denso robot manipulator which has a 6-DOF. The forward kinematics will result in the desired position by end-effector, while inverse kinematics produce angel on each joint. Inverse kinematics problem are very difficult, therefor to obtain the solution of inverse kinematics using closed form solution with geometry approach. The simulation result obtained from forward kinematics and inverse kinematics is determining desire...

  18. Inverse Kinematics with Closed Form Solution for Denso Robot Manipulator

    OpenAIRE

    Prasetia, Ikhsan Eka; Agustinah, Trihastuti

    2015-01-01

    In this paper, the forward kinematics and inverse kinematics used on the Denso robot manipulator which has a 6-DOF. The forward kinematics will result in the desired position by end-effector, while inverse kinematics produce angel on each joint. Inverse kinematics problem are very difficult, therefor to obtain the solution of inverse kinematics using closed form solution with geometry approach. The simulation result obtained from forward kinematics and inverse kinematics is determining desire...

  19. Inverse and Ill-posed Problems Theory and Applications

    CERN Document Server

    Kabanikhin, S I

    2011-01-01

    The text demonstrates the methods for proving the existence (if et all) and finding of inverse and ill-posed problems solutions in linear algebra, integral and operator equations, integral geometry, spectral inverse problems, and inverse scattering problems. It is given comprehensive background material for linear ill-posed problems and for coefficient inverse problems for hyperbolic, parabolic, and elliptic equations. A lot of examples for inverse problems from physics, geophysics, biology, medicine, and other areas of application of mathematics are included.

  20. Anisotropic wave-equation traveltime and waveform inversion

    KAUST Repository

    Feng, Shihang

    2016-09-06

    The wave-equation traveltime and waveform inversion (WTW) methodology is developed to invert for anisotropic parameters in a vertical transverse isotropic (VTI) meidum. The simultaneous inversion of anisotropic parameters v0, ε and δ is initially performed using the wave-equation traveltime inversion (WT) method. The WT tomograms are then used as starting background models for VTI full waveform inversion. Preliminary numerical tests on synthetic data demonstrate the feasibility of this method for multi-parameter inversion.

  1. Solution to Two-Dimensional Steady Inverse Heat Transfer Problems with Interior Heat Source Based on the Conjugate Gradient Method

    Directory of Open Access Journals (Sweden)

    Shoubin Wang

    2017-01-01

    Full Text Available The compound variable inverse problem which comprises boundary temperature distribution and surface convective heat conduction coefficient of two-dimensional steady heat transfer system with inner heat source is studied in this paper applying the conjugate gradient method. The introduction of complex variable to solve the gradient matrix of the objective function obtains more precise inversion results. This paper applies boundary element method to solve the temperature calculation of discrete points in forward problems. The factors of measuring error and the number of measuring points zero error which impact the measurement result are discussed and compared with L-MM method in inverse problems. Instance calculation and analysis prove that the method applied in this paper still has good effectiveness and accuracy even if measurement error exists and the boundary measurement points’ number is reduced. The comparison indicates that the influence of error on the inversion solution can be minimized effectively using this method.

  2. Nonlinear approximation with dictionaries,.. II: Inverse estimates

    DEFF Research Database (Denmark)

    Gribonval, Rémi; Nielsen, Morten

    In this paper we study inverse estimates of the Bernstein type for nonlinear approximation with structured redundant dictionaries in a Banach space. The main results are for separated decomposable dictionaries in Hilbert spaces, which generalize the notion of joint block-diagonal mutually...

  3. Frame approximation of pseudo-inverse operators

    DEFF Research Database (Denmark)

    Christensen, Ole

    2001-01-01

    Let T denote an operator on a Hilbert space (H, [.,.]), and let {f(i)}(i=1)(infinity) be a frame for the orthogonal complement of the kernel NT. We construct a sequence of operators {Phi (n)} of the form Phi (n) (.) = Sigma (n)(i=1) [., g(t)(n)]f(i) which converges to the psuedo-inverse T+ of T...

  4. Nonlinear approximation with dictionaries. II. Inverse Estimates

    DEFF Research Database (Denmark)

    Gribonval, Rémi; Nielsen, Morten

    2006-01-01

    In this paper, which is the sequel to [16], we study inverse estimates of the Bernstein type for nonlinear approximation with structured redundant dictionaries in a Banach space. The main results are for blockwise incoherent dictionaries in Hilbert spaces, which generalize the notion of joint block...

  5. An Inversion Recovery NMR Kinetics Experiment

    Science.gov (United States)

    Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping

    2011-01-01

    A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this…

  6. Swarm Level 2 Comprehensive Inversion, 2016 Production

    DEFF Research Database (Denmark)

    Tøffner-Clausen, Lars; Sabaka, Terence; Olsen, Nils

    In the framework of the ESA Earth Observation Magnetic Mapping Mission Swarm, the Expert Support Laboratories (ESL) provides high quality Level 2 Products describing a.o. the magnetic fields of the Earth. This poster provides details of the Level 2 Products from the Comprehensive Inversion chain...

  7. Modeling and Inversion of Scattered Surface waves

    NARCIS (Netherlands)

    Riyanti, C.D.

    2005-01-01

    In this thesis, we present a modeling method based on a domain-type integral representation for waves propagating along the surface of the Earth which have been scattered in the vicinity of the source or the receivers. Using this model as starting point, we formulate an inversion scheme to estimate

  8. An "Inverse" Validation of Holland's Theory

    Science.gov (United States)

    Cowger, Ernest, Jr.; Chauvin, Ida; Miller, Mark J.

    2009-01-01

    This article used an "inverse" approach to assess the validity of Holland's theory; that is, it examined the degree of congruency between participant's least-characteristic Holland types and their least desirable occupational choice. Implications for career counselors are briefly outlined.

  9. Enhancing comprehensive inversions using the Swarm constellation

    DEFF Research Database (Denmark)

    Sabaka, T.J.; Olsen, Nils

    2006-01-01

    signals, as well as information about mantle conductivity structure, can be met. The recovery method used in this paper is known as comprehensive inversion (CI) and involves the parameterization of all major fields followed by a co-estimation of these parameters in a least-squares sense in order...

  10. ILIGRA : An Efficient Inverse Line Graph Algorithm

    NARCIS (Netherlands)

    Liu, D.; Trajanovski, S.; Van Mieghem, P.

    2014-01-01

    This paper presents a new and efficient algorithm, ILIGRA, for inverse line graph construction. Given a line graph H, ILIGRA constructs its root graph G with the time complexity being linear in the number of nodes in H. If ILIGRA does not know whether the given graph H is a line graph, it firstly

  11. Uterine inversion complicating traditional termination of pregnancy ...

    African Journals Online (AJOL)

    Abortion services remain cladenstine and unsafe in most parts of Africa. This is a case of a mid-trimester abortion induced by traditional methods which resulted in uterine inversion, a previously unreported complication of induced abortion. Until abortion services are accessible and safe on the continent, morbidity and ...

  12. Tectonic inversion in the Wandel Sea Basin

    DEFF Research Database (Denmark)

    Svennevig, Kristian; Guarnieri, Pierpaolo; Stemmerik, Lars

    2016-01-01

    Sheet and an upper Hondal Elv Thrust Sheet separated by a subhorizontal fault: the Central Detachment. The style of deformation and the structures described are interpreted as the result of Paleocene-Eocene N-S directed compression resulting in basin inversion with strike-slip faults only having minor...

  13. Laplace's 1774 Memoir on Inverse Probability

    OpenAIRE

    Stigler, Stephen M.

    1986-01-01

    Laplace's first major article on mathematical statistics was published in 1774. It is arguably the most influential article in this field to appear before 1800, being the first widely read presentation of inverse probability and its application to both binomial and location parameter estimation. After a brief introduction, and English translation of this epochal memoir is given.

  14. Inverse Bremsstrahlung in Astrophysical Plasmas: The Absorption ...

    Indian Academy of Sciences (India)

    The electron–ion inverse Bremsstrahlung is considered here as a factor of the influence on the opacity of the different stellar atmospheres and other astrophysical plasmas. It is shown that this process can be successfully described in the frames of cut-off Coulomb potential model within the regions of the electron densities ...

  15. Introduction to inverse problems for differential equations

    CERN Document Server

    Hasanov Hasanoğlu, Alemdar

    2017-01-01

    This book presents a systematic exposition of the main ideas and methods in treating inverse problems for PDEs arising in basic mathematical models, though it makes no claim to being exhaustive. Mathematical models of most physical phenomena are governed by initial and boundary value problems for PDEs, and inverse problems governed by these equations arise naturally in nearly all branches of science and engineering. The book’s content, especially in the Introduction and Part I, is self-contained and is intended to also be accessible for beginning graduate students, whose mathematical background includes only basic courses in advanced calculus, PDEs and functional analysis. Further, the book can be used as the backbone for a lecture course on inverse and ill-posed problems for partial differential equations. In turn, the second part of the book consists of six nearly-independent chapters. The choice of these chapters was motivated by the fact that the inverse coefficient and source problems considered here a...

  16. Inverse adverse selection: the market for gems

    NARCIS (Netherlands)

    Dari-Mattiacci, G.; Onderstal, S.; Parisi, F.

    2011-01-01

    This paper studies markets plagued with asymmetric information on the quality of the goods traded. In Akerlof’s setting, sellers are better informed than buyers. In contrast, we examine cases where buyers are better informed than sellers. This creates an inverse adverse-selection problem: The market

  17. Inverse adverse selection: the market for gems

    NARCIS (Netherlands)

    Dari-Mattiacci, G.; Onderstal, S.; Parisi, F.

    2011-01-01

    This paper studies markets plagued with asymmetric information on the quality of traded goods. In Akerlof’s setting, sellers are better informed than buyers. In contrast, we examine cases where buyers are better informed than sellers. This creates an inverse adverse selection problem: The market

  18. Neglected puerperal inversion of the uterus

    African Journals Online (AJOL)

    abp

    2012-07-27

    Jul 27, 2012 ... which was also unsuccessful. Finally, abdominal reposition was planned. On opening the abdomen classic flowerpot appearance was visible with cupping of uterus with the tubes and ovaries inside the cupped uterus. After unsuccessful attempt via Huntington's procedure, the posterior ring of inversion was ...

  19. Inverse Problem for a Curved Quantum Guide

    Directory of Open Access Journals (Sweden)

    Laure Cardoulis

    2012-01-01

    Full Text Available We consider the Dirichlet Laplacian operator −Δ on a curved quantum guide in ℝ  n(n=2,3 with an asymptotically straight reference curve. We give uniqueness results for the inverse problem associated to the reconstruction of the curvature by using either observations of spectral data or a boot-strapping method.

  20. Rapid probabilistic source inversion using pattern recognition

    NARCIS (Netherlands)

    Käufl, Paul J.

    2015-01-01

    Numerous problems in the field of seismology require the determination of parameters of a physical model that are compatible with a set of observations and prior assumptions. This type of problem is generally termed inverse problem. While, in many cases, we are able to predict observations, given a

  1. Inversion of radiation data in biophysics

    Science.gov (United States)

    Twersky, V.

    1972-01-01

    Topics in biophysics are summarized in which radiation data inversion problems occur. The topics fall into two main categories. The first relates to information acquired about the distance environment through seeing, hearing, etc. The second relates to the use of electromagnetic, acoustic, or other radiation for diagnostic purposes, either at a bulk or a molecular level.

  2. n-Colour self-inverse compositions

    Indian Academy of Sciences (India)

    Two new binomial identities with combinatorial meaning are also given. Keywords. Compositions; n-colour compositions; self-inverse compositions; seq- uences; recurrence formulas; generating functions; binomial identities. 1. ...... [5] Carlson B C, Special function of applied mathematics (1977) (New York: Academic Press).

  3. Numerical pole assignment by eigenvalue Jacobian inversion

    Science.gov (United States)

    Sevaston, George E.

    1986-01-01

    A numerical procedure for solving the linear pole placement problem is developed which operates by the inversion of an analytically determined eigenvalue Jacobian matrix. Attention is given to convergence characteristics and pathological situations. It is not concluded that the algorithm developed is suitable for computer-aided control system design with particular reference to the scan platform pointing control system for the Galileo spacecraft.

  4. A Face Inversion Effect without a Face

    Science.gov (United States)

    Brandman, Talia; Yovel, Galit

    2012-01-01

    Numerous studies have attributed the face inversion effect (FIE) to configural processing of internal facial features in upright but not inverted faces. Recent findings suggest that face mechanisms can be activated by faceless stimuli presented in the context of a body. Here we asked whether faceless stimuli with or without body context may induce…

  5. Inverse-Square Orbits: A Geometric Approach.

    Science.gov (United States)

    Rainwater, James C.; Weinstock, Robert

    1979-01-01

    Presents a derivation of Kepler's first law of planetary motion from Newtonian principles. Analogus derivations of the hyperbolic and parabolic orbits of nonreturning comets and the hyperbolic orbit for a particle in a repulsive inverse-square field are also presented. (HM)

  6. Inverse folding of RNA pseudoknot structures.

    Science.gov (United States)

    Gao, James Zm; Li, Linda Ym; Reidys, Christian M

    2010-06-23

    RNA exhibits a variety of structural configurations. Here we consider a structure to be tantamount to the noncrossing Watson-Crick and G-U-base pairings (secondary structure) and additional cross-serial base pairs. These interactions are called pseudoknots and are observed across the whole spectrum of RNA functionalities. In the context of studying natural RNA structures, searching for new ribozymes and designing artificial RNA, it is of interest to find RNA sequences folding into a specific structure and to analyze their induced neutral networks. Since the established inverse folding algorithms, RNAinverse, RNA-SSD as well as INFO-RNA are limited to RNA secondary structures, we present in this paper the inverse folding algorithm Inv which can deal with 3-noncrossing, canonical pseudoknot structures. In this paper we present the inverse folding algorithm Inv. We give a detailed analysis of Inv, including pseudocodes. We show that Inv allows to design in particular 3-noncrossing nonplanar RNA pseudoknot 3-noncrossing RNA structures-a class which is difficult to construct via dynamic programming routines. Inv is freely available at http://www.combinatorics.cn/cbpc/inv.html. The algorithm Inv extends inverse folding capabilities to RNA pseudoknot structures. In comparison with RNAinverse it uses new ideas, for instance by considering sets of competing structures. As a result, Inv is not only able to find novel sequences even for RNA secondary structures, it does so in the context of competing structures that potentially exhibit cross-serial interactions.

  7. Multiscale Phase Inversion of Seismic Data

    KAUST Repository

    Fu, Lei

    2017-12-02

    We present a scheme for multiscale phase inversion (MPI) of seismic data that is less sensitive to the unmodeled physics of wave propagation and a poor starting model than standard full waveform inversion (FWI). To avoid cycle-skipping, the multiscale strategy temporally integrates the traces several times, i.e. high-order integration, to produce low-boost seismograms that are used as input data for the initial iterations of MPI. As the iterations proceed, higher frequencies in the data are boosted by using integrated traces of lower order as the input data. The input data are also filtered into different narrow frequency bands for the MPI implementation. At low frequencies, we show that MPI with windowed reflections approximates wave equation inversion of the reflection traveltimes, except no traveltime picking is needed. Numerical results with synthetic acoustic data show that MPI is more robust than conventional multiscale FWI when the initial model is far from the true model. Results from synthetic viscoacoustic and elastic data show that MPI is less sensitive than FWI to some of the unmodeled physics. Inversion of marine data shows that MPI is more robust and produces modestly more accurate results than FWI for this data set.

  8. Inverse acoustic problem of N homogeneous scatterers

    DEFF Research Database (Denmark)

    Berntsen, Svend

    2002-01-01

    The three-dimensional inverse acoustic medium problem of N homogeneous objects with known geometry and location is considered. It is proven that one scattering experiment is sufficient for the unique determination of the complex wavenumbers of the objects. The mapping from the scattered fields...

  9. Seismic processing in the inverse data space

    NARCIS (Netherlands)

    Berkhout, A.J.

    2006-01-01

    Until now, seismic processing has been carried out by applying inverse filters in the forward data space. Because the acquired data of a seismic survey is always discrete, seismic measurements in the forward data space can be arranged conveniently in a data matrix (P). Each column in the data matrix

  10. Comparison of linear inversion methods by examination of the duality between iterative and inverse matrix methods

    Science.gov (United States)

    Fleming, H. E.

    1977-01-01

    Linear numerical inversion methods applied to atmospheric remote sounding generally can be categorized in two ways: (1) iterative, and (2) inverse matrix methods. However, these two categories are not unrelated; a duality exists between them. In other words, given an iterative scheme, a corresponding inverse matrix method exists, and conversely. This duality concept is developed for the more familiar linear methods. The iterative duals are compared with the classical linear iterative approaches and their differences analyzed. The importance of the initial profile in all methods is stressed. Calculations using simulated data are made to compare accuracies and to examine the dependence of the solution on the initial profile.

  11. Design of inverse kinematics algorithms: extended Jacobian approximation of the dynamically consistent Jacobian inverse

    Directory of Open Access Journals (Sweden)

    Ratajczak Joanna

    2015-03-01

    Full Text Available The paper presents the approximation problem of the inverse kinematics algorithms for the redundant manipulators. We introduce the approximation of the dynamically consistent Jacobian by the extended Jacobian. In order to do that, we formulate the approximation problem and suitably defined approximation error. By the minimization of this error over a certain region we can design an extended Jacobian inverse which will be close to the dynamically consistent Jacobian inverse. To solve the approximation problem we use the Cholesky decomposition and the Ritz method. The computational example illustrates the theory.

  12. Estimating uncertainties in complex joint inverse problems

    Science.gov (United States)

    Afonso, Juan Carlos

    2016-04-01

    Sources of uncertainty affecting geophysical inversions can be classified either as reflective (i.e. the practitioner is aware of her/his ignorance) or non-reflective (i.e. the practitioner does not know that she/he does not know!). Although we should be always conscious of the latter, the former are the ones that, in principle, can be estimated either empirically (by making measurements or collecting data) or subjectively (based on the experience of the researchers). For complex parameter estimation problems in geophysics, subjective estimation of uncertainty is the most common type. In this context, probabilistic (aka Bayesian) methods are commonly claimed to offer a natural and realistic platform from which to estimate model uncertainties. This is because in the Bayesian approach, errors (whatever their nature) can be naturally included as part of the global statistical model, the solution of which represents the actual solution to the inverse problem. However, although we agree that probabilistic inversion methods are the most powerful tool for uncertainty estimation, the common claim that they produce "realistic" or "representative" uncertainties is not always justified. Typically, ALL UNCERTAINTY ESTIMATES ARE MODEL DEPENDENT, and therefore, besides a thorough characterization of experimental uncertainties, particular care must be paid to the uncertainty arising from model errors and input uncertainties. We recall here two quotes by G. Box and M. Gunzburger, respectively, of special significance for inversion practitioners and for this session: "…all models are wrong, but some are useful" and "computational results are believed by no one, except the person who wrote the code". In this presentation I will discuss and present examples of some problems associated with the estimation and quantification of uncertainties in complex multi-observable probabilistic inversions, and how to address them. Although the emphasis will be on sources of uncertainty related

  13. Frequency of inversions affects senescence phenology of Acer pseudoplatanus and Fagus sylvatica.

    Science.gov (United States)

    Schuster, Christina; Kirchner, Manfred; Jakobi, Gert; Menzel, Annette

    2014-05-01

    In mountainous regions, inversion situations with cold-air pools in the valleys occur frequently, especially in fall and winter. With the accumulation of inversion days, trees in lower elevations experience lower temperature sums than those in middle elevations. In a two-year observational study, deciduous trees, such as Acer pseudoplatanus and Fagus sylvatica, on altitudinal transects responded in their fall leaf senescence phenology. Phenological phases were advanced and senescence duration was shortened by the cold temperatures in the valley. This effect was more distinct for late phases than for early phases since they experienced more inversion days. The higher the inversion frequency, the stronger the signal was. Acer pseudoplatanus proved to be more sensitive to cold temperatures compared to Fagus sylvatica. We conclude that cold-air pools have a considerable impact on the vegetation period of deciduous trees. Considering this effect, trees in the mid hillside slopes gain advantages compared to lower elevations. Our findings will help to improve knowledge about ecological drivers and responses in mountainous forest ecosystems.

  14. Analysis of Heat Affected Zone in Welded Aluminum Alloys Using Inverse and Direct Modeling

    Science.gov (United States)

    Zervaki, A. D.; Haidemenopoulos, G. N.; Lambrakos, S. G.

    2008-06-01

    The concept of constructing parameter spaces for process control and the prediction of properties within the heat affected zone (HAZ) of welds using inverse modeling is examined. These parameter spaces can be, in principle, either independent or a function of weld process conditions. The construction of these parameter spaces consists of two procedures. One procedure entails calculation of a parameterized set of temperature histories using inverse heat transfer analysis of the heat deposition occurring during welding. The other procedure entails correlating these temperature histories with either a specific process control parameter or physical property of the weld that is measurable. Two quantitative case study analyses based on inverse modeling are presented. One analysis examines the calculation of temperature histories as a function of process control parameters. For this case, the specific process control parameter adopted as prototypical is the electron beam focal point. Another analysis compares some general characteristics of inverse and direct modeling with respect to the prediction of properties of the HAZ for deep penetration welding of aluminum alloys. For this case, the specific property adopted as prototypical is hardness. This study provides a foundation for an examination of the feasibility of constructing a parameter space for the prediction of weld properties using weld cross-section measurements that are independent of weld process conditions.

  15. SISYPHUS: A high performance seismic inversion factory

    Science.gov (United States)

    Gokhberg, Alexey; Simutė, Saulė; Boehm, Christian; Fichtner, Andreas

    2016-04-01

    In the recent years the massively parallel high performance computers became the standard instruments for solving the forward and inverse problems in seismology. The respective software packages dedicated to forward and inverse waveform modelling specially designed for such computers (SPECFEM3D, SES3D) became mature and widely available. These packages achieve significant computational performance and provide researchers with an opportunity to solve problems of bigger size at higher resolution within a shorter time. However, a typical seismic inversion process contains various activities that are beyond the common solver functionality. They include management of information on seismic events and stations, 3D models, observed and synthetic seismograms, pre-processing of the observed signals, computation of misfits and adjoint sources, minimization of misfits, and process workflow management. These activities are time consuming, seldom sufficiently automated, and therefore represent a bottleneck that can substantially offset performance benefits provided by even the most powerful modern supercomputers. Furthermore, a typical system architecture of modern supercomputing platforms is oriented towards the maximum computational performance and provides limited standard facilities for automation of the supporting activities. We present a prototype solution that automates all aspects of the seismic inversion process and is tuned for the modern massively parallel high performance computing systems. We address several major aspects of the solution architecture, which include (1) design of an inversion state database for tracing all relevant aspects of the entire solution process, (2) design of an extensible workflow management framework, (3) integration with wave propagation solvers, (4) integration with optimization packages, (5) computation of misfits and adjoint sources, and (6) process monitoring. The inversion state database represents a hierarchical structure with

  16. Physics for clinicians: Fluid-attenuated inversion recovery (FLAIR) and double inversion recovery (DIR) Imaging.

    Science.gov (United States)

    Saranathan, Manojkumar; Worters, Pauline W; Rettmann, Dan W; Winegar, Blair; Becker, Jennifer

    2017-12-01

    A pedagogical review of fluid-attenuated inversion recovery (FLAIR) and double inversion recovery (DIR) imaging is conducted in this article. The basics of the two pulse sequences are first described, including the details of the inversion preparation and imaging sequences with accompanying mathematical formulae for choosing the inversion time in a variety of scenarios for use on clinical MRI scanners. Magnetization preparation (or T2prep), a strategy for improving image signal-to-noise ratio and contrast and reducing T1 weighting at high field strengths, is also described. Lastly, image artifacts commonly associated with FLAIR and DIR are described with clinical examples, to help avoid misdiagnosis. 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;46:1590-1600. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Solution of the radiative enclosure with a hybrid inverse method

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rogerio Brittes da; Franca, Francis Henrique Ramos [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Dept. de Engenharia Mecanica], E-mail: frfranca@mecanica.ufrgs.br

    2010-07-01

    This work applies the inverse analysis to solve a three-dimensional radiative enclosure - which the surfaces are diffuse-grays - filled with transparent medium. The aim is determine the powers and locations of the heaters to attain both uniform heat flux and temperature on the design surface. A hybrid solution that couples two methods, the generalized extremal optimization (GEO) and the truncated singular value decomposition (TSVD) is proposed. The determination of the heat sources distribution is treated as an optimization problem, by GEO algorithm , whereas the solution of the system of equation, that embodies the Fredholm equation of first kind and therefore is expected to be ill conditioned, is build up through TSVD regularization method. The results show that the hybrid method can lead to a heat flux on the design surface that satisfies the imposed conditions with maximum error of less than 1,10%. The results illustrated the relevance of a hybrid method as a prediction tool. (author)

  18. Stratigraphic inversion of pre-stack multicomponent data; Inversion stratigraphique multicomposante avant sommation

    Energy Technology Data Exchange (ETDEWEB)

    Agullo, Y.

    2005-09-15

    This thesis present the extension of mono-component seismic pre-stack data stratigraphical inversion method to multicomponent data, with the objective of improving the determination of reservoir elastic parameters. In addiction to the PP pressure waves, the PS converted waves proved their interest for imaging under gas clouds; and their potential is highly significant for the characterization of lithologies, fluids, fractures... Nevertheless the simultaneous use ol PP and PS data remains problematic because of their different the time scales. To jointly use the information contained in PP and PS data, we propose a method in three steps first, mono-component stratigraphic inversions of PP then PS data; second, estimation of the PP to PS time conversion law; third, multicomponent stratigraphic inversion. For the second point, the estimation of the PP to PS conversion law is based on minimizing the difference between the S impedances obtained from PP and PS mono-component stratigraphic inversion. The pre-stack mono-component stratigraphic inversions was adapted to the case of multicomponent data by leaving each type of data in its own time scale in order to avoid the distortion of the seismic wavelet. The results obtained on a realistic synthetic PP-PS case show on one hand that determining PP to PS conversion law (from the mono-component inversion results) is feasible, and on the other hand that the joint inversion of PP and PS data with this conversion law improves the results compared to the mono-component inversion ones. Although this is presented within the framework of the PP and PS multi-component data, the developed methodology adapts directly to PP and SS data for example. (author)

  19. Iterative regularization method in generalized inverse beamforming

    Science.gov (United States)

    Zhang, Zhifei; Chen, Si; Xu, Zhongming; He, Yansong; Li, Shu

    2017-05-01

    Beamforming based on microphone array is a method to identify sound sources. It can visualize the sound field of the source plane and reveal interesting acoustic information. Generalized inverse beamforming (GIB) is one important branch of beamforming techniques due to its high identification accuracy and computational efficiency. However, in real testing situation, errors caused by measurement noise and configuration problems may seriously reduce the beamforming accuracy. As an inverse problem, the stability of GIB can be improved with regularization methods. We proposed a new iterative regularization method for GIB by iteratively redefining the form of regularization matrix and calculating the corresponding solution. Moreover, the new method is applied to functional beamforming and double-layer antenna beamforming respectively. Numerical simulations and experiments are implemented. The results show that the proposed regularization method leads to more robust beamforming output and higher accuracy in both the two applications.

  20. Double inverse stochastic resonance with dynamic synapses

    Science.gov (United States)

    Uzuntarla, Muhammet; Torres, Joaquin J.; So, Paul; Ozer, Mahmut; Barreto, Ernest

    2017-01-01

    We investigate the behavior of a model neuron that receives a biophysically realistic noisy postsynaptic current based on uncorrelated spiking activity from a large number of afferents. We show that, with static synapses, such noise can give rise to inverse stochastic resonance (ISR) as a function of the presynaptic firing rate. We compare this to the case with dynamic synapses that feature short-term synaptic plasticity and show that the interval of presynaptic firing rate over which ISR exists can be extended or diminished. We consider both short-term depression and facilitation. Interestingly, we find that a double inverse stochastic resonance (DISR), with two distinct wells centered at different presynaptic firing rates, can appear.

  1. Analog fault diagnosis by inverse problem technique

    KAUST Repository

    Ahmed, Rania F.

    2011-12-01

    A novel algorithm for detecting soft faults in linear analog circuits based on the inverse problem concept is proposed. The proposed approach utilizes optimization techniques with the aid of sensitivity analysis. The main contribution of this work is to apply the inverse problem technique to estimate the actual parameter values of the tested circuit and so, to detect and diagnose single fault in analog circuits. The validation of the algorithm is illustrated through applying it to Sallen-Key second order band pass filter and the results show that the detecting percentage efficiency was 100% and also, the maximum error percentage of estimating the parameter values is 0.7%. This technique can be applied to any other linear circuit and it also can be extended to be applied to non-linear circuits. © 2011 IEEE.

  2. Approximate inverse preconditioners for general sparse matrices

    Energy Technology Data Exchange (ETDEWEB)

    Chow, E.; Saad, Y. [Univ. of Minnesota, Minneapolis, MN (United States)

    1994-12-31

    Preconditioned Krylov subspace methods are often very efficient in solving sparse linear matrices that arise from the discretization of elliptic partial differential equations. However, for general sparse indifinite matrices, the usual ILU preconditioners fail, often because of the fact that the resulting factors L and U give rise to unstable forward and backward sweeps. In such cases, alternative preconditioners based on approximate inverses may be attractive. We are currently developing a number of such preconditioners based on iterating on each column to get the approximate inverse. For this approach to be efficient, the iteration must be done in sparse mode, i.e., we must use sparse-matrix by sparse-vector type operatoins. We will discuss a few options and compare their performance on standard problems from the Harwell-Boeing collection.

  3. Facies Constrained Elastic Full Waveform Inversion

    KAUST Repository

    Zhang, Z.

    2017-05-26

    Current efforts to utilize full waveform inversion (FWI) as a tool beyond acoustic imaging applications, for example for reservoir analysis, face inherent limitations on resolution and also on the potential trade-off between elastic model parameters. Adding rock physics constraints does help to mitigate these issues. However, current approaches to add such constraints are based on averaged type rock physics regularization terms. Since the true earth model consists of different facies, averaging over those facies naturally leads to smoothed models. To overcome this, we propose a novel way to utilize facies based constraints in elastic FWI. A so-called confidence map is calculated and updated at each iteration of the inversion using both the inverted models and the prior information. The numerical example shows that the proposed method can reduce the cross-talks and also can improve the resolution of inverted elastic properties.

  4. Function representation with circle inversion map systems

    Science.gov (United States)

    Boreland, Bryson; Kunze, Herb

    2017-01-01

    The fractals literature develops the now well-known concept of local iterated function systems (using affine maps) with grey-level maps (LIFSM) as an approach to function representation in terms of the associated fixed point of the so-called fractal transform. While originally explored as a method to achieve signal (and 2-D image) compression, more recent work has explored various aspects of signal and image processing using this machinery. In this paper, we develop a similar framework for function representation using circle inversion map systems. Given a circle C with centre õ and radius r, inversion with respect to C transforms the point p˜ to the point p˜', such that p˜ and p˜' lie on the same radial half-line from õ and d(õ, p˜)d(õ, p˜') = r2, where d is Euclidean distance. We demonstrate the results with an example.

  5. Inverse Kinematics of Concentric Tube Steerable Needles.

    Science.gov (United States)

    Sears, Patrick; Dupont, Pierre E

    2007-01-01

    Prior papers have introduced steerable needles composed of precurved concentric tubes. The curvature and extent of these needles can be controlled by the relative rotation and translation of the individual tubes. Under certain assumptions on the geometry and design of these needles, the forward kinematics problem can be solved in closed form by means of algebraic equations. The inverse kinematics problem, however, is not as straightforward owing to the nonlinear map between relative tube displacements and needle tip configuration as well as to the multiplicity of solutions as the number of tubes increases. This paper presents a general approach to solving the inverse kinematics problem using a pseudoinverse solution together with gradients of nullspace potential functions to enforce geometric and mechanical constraints.

  6. Inverse Vernier effect in coupled lasers

    Science.gov (United States)

    Ge, Li; Türeci, Hakan E.

    2015-07-01

    In this report we study the Vernier effect in coupled laser systems consisting of two cavities. We show that depending on the nature of their coupling, not only can the "supermodes" formed at overlapping resonances of these two cavities have the lowest thresholds as previously found, leading to lasing at these overlapping resonances and a manifestation of the typical Vernier effect, but also they can have increased thresholds and are hence suppressed, which can be viewed as an inverse Vernier effect. The inverse Vernier effect can also lead to an increased free spectrum range and possibly single-mode lasing, which may explain the experimental findings in several previous studies. We illustrate this effect using two coupled micro-ring cavities and a micro-ring cavity coupled to a slab cavity, and we discuss its relation to the existence of exceptional points in coupled lasers.

  7. An inverse problem of estimating the heat source in tapered optical fibers for scanning near-field optical microscopy.

    Science.gov (United States)

    Lee, Haw-Long; Chang, Win-Jin; Chen, Wen-Lih; Yang, Yu-Ching

    2007-08-01

    A conjugate gradient method based on inverse algorithm is applied in this study to estimate the unknown space- and time-dependent heat source in aluminum-coated tapered optical fibers for scanning near-field optical microscopy, by reading the transient temperature data at the measurement positions. No prior information is available on the functional form of the unknown heat source in the present study; thus, it is classified as the function estimation in inverse calculation. The accuracy of the inverse analysis is examined by using the simulated exact and inexact temperature measurements. Results show that an excellent estimation on the heat source and temperature distributions in the tapered optical fiber can be obtained for all the test cases considered in this study.

  8. Full-waveform inversion: Filling the gaps

    KAUST Repository

    Beydoun, Wafik B.

    2015-09-01

    After receiving an outstanding response to its inaugural workshop in 2013, SEG once again achieved great success with its 2015 SEG Middle East Workshop, “Full-waveform inversion: Filling the gaps,” which took place 30 March–1 April 2015 in Abu Dhabi, UAE. The workshop was organized by SEG, and its partner sponsors were Saudi Aramco (gold sponsor), ExxonMobil, and CGG. Read More: http://library.seg.org/doi/10.1190/tle34091106.1

  9. Differential equations inverse and direct problems

    CERN Document Server

    Favini, Angelo

    2006-01-01

    DEGENERATE FIRST ORDER IDENTIFICATION PROBLEMS IN BANACH SPACES A NONISOTHERMAL DYNAMICAL GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY. EXISTENCE AND UNIQUENESS THEOREMSSOME GLOBAL IN TIME RESULTS FOR INTEGRODIFFERENTIAL PARABOLIC INVERSE PROBLEMSFOURTH ORDER ORDINARY DIFFERENTIAL OPERATORS WITH GENERAL WENTZELL BOUNDARY CONDITIONSTUDY OF ELLIPTIC DIFFERENTIAL EQUATIONS IN UMD SPACESDEGENERATE INTEGRODIFFERENTIAL EQUATIONS OF PARABOLIC TYPE EXPONENTIAL ATTRACTORS FOR SEMICONDUCTOR EQUATIONSCONVERGENCE TO STATIONARY STATES OF SOLUTIONS TO THE SEMILINEAR EQUATION OF VISCOELASTICITY ASYMPTOTIC BEHA

  10. Classical geometry Euclidean, transformational, inversive, and projective

    CERN Document Server

    Leonard, I E; Liu, A C F; Tokarsky, G W

    2014-01-01

    Features the classical themes of geometry with plentiful applications in mathematics, education, engineering, and science Accessible and reader-friendly, Classical Geometry: Euclidean, Transformational, Inversive, and Projective introduces readers to a valuable discipline that is crucial to understanding bothspatial relationships and logical reasoning. Focusing on the development of geometric intuitionwhile avoiding the axiomatic method, a problem solving approach is encouraged throughout. The book is strategically divided into three sections: Part One focuses on Euclidean geometry, which p

  11. Metric entropy in linear inverse scattering

    Directory of Open Access Journals (Sweden)

    M. A. Maisto

    2016-09-01

    Full Text Available The role of multiple views and/or multiple frequencies on the achievable performance in linear inverse scattering problems is addressed. To this end, the impact of views and frequencies on the Kolmogorov entropy measure is studied. This way the metric information that can be conveyed back from data to the unknown can be estimated. For the sake of simplicity, the study deals with strip scatterers and the cases of discrete angles of incidence and/or frequencies.

  12. Inverse Scattering in a Multipath Environment

    Directory of Open Access Journals (Sweden)

    A. Cuccaro

    2016-09-01

    Full Text Available In this contribution an inverse scattering problem is ad- dressed in a multipath environment. In particular, multipath is created by known ”extra” point-like scatterers (passive elements expressely deployed between the scene under in- vestigation and the source/measurement domains. Through a back-projection imaging scheme, the role of the passive elements on the achievable performance is shown and com- pared to the free-space case.

  13. Homometric point sets and inverse problems

    OpenAIRE

    Grimm, Uwe; Baake, Michael

    2008-01-01

    The inverse problem of diffraction theory in essence amounts to the reconstruction of the atomic positions of a solid from its diffraction image. From a mathematical perspective, this is a notoriously difficult problem, even in the idealised situation of perfect diffraction from an infinite structure.\\ud \\ud Here, the problem is analysed via the autocorrelation measure of the underlying point set, where two point sets are called homometric when they share the same autocorrelation. For the cla...

  14. Heuristics for the inversion median problem

    Science.gov (United States)

    2010-01-01

    Background The study of genome rearrangements has become a mainstay of phylogenetics and comparative genomics. Fundamental in such a study is the median problem: given three genomes find a fourth that minimizes the sum of the evolutionary distances between itself and the given three. Many exact algorithms and heuristics have been developed for the inversion median problem, of which the best known is MGR. Results We present a unifying framework for median heuristics, which enables us to clarify existing strategies and to place them in a partial ordering. Analysis of this framework leads to a new insight: the best strategies continue to refer to the input data rather than reducing the problem to smaller instances. Using this insight, we develop a new heuristic for inversion medians that uses input data to the end of its computation and leverages our previous work with DCJ medians. Finally, we present the results of extensive experimentation showing that our new heuristic outperforms all others in accuracy and, especially, in running time: the heuristic typically returns solutions within 1% of optimal and runs in seconds to minutes even on genomes with 25'000 genes--in contrast, MGR can take days on instances of 200 genes and cannot be used beyond 1'000 genes. Conclusion Finding good rearrangement medians, in particular inversion medians, had long been regarded as the computational bottleneck in whole-genome studies. Our new heuristic for inversion medians, ASM, which dominates all others in our framework, puts that issue to rest by providing near-optimal solutions within seconds to minutes on even the largest genomes. PMID:20122203

  15. Supersymmetric inversion of effective-range expansions

    OpenAIRE

    Midya, Bikashkali; Evrard, Jérémie; Abramowicz, Sylvain; Ramirez Suarez, Oscar Leonardo; Sparenberg, Jean-Marc

    2015-01-01

    A complete and consistent inversion technique is proposed to derive an accurate interaction potential from an effective-range function for a given partial wave in the neutral case. First, the effective-range function is Taylor or Pad\\'e expanded, which allows high precision fitting of the experimental scattering phase shifts with a minimal number of parameters on a large energy range. Second, the corresponding poles of the scattering matrix are extracted in the complex wave-number plane. Thir...

  16. Inverse Bremsstrahlung in Astrophysical Plasmas: The Absorption ...

    Indian Academy of Sciences (India)

    (λ, T ; Ne,Ni) = k q.c. i.b.. (λ, T ; Ne,Ni) · Gi.b.(λ, T ),. (2) where Gi.b.(λ, T ) is the sought Gaunt factor. The determination of such averaged. Gaunt factor as a function of λ and T was the object of investigation in majority of the previous papers devoted to the inverse Bremsstrahlung process. This is illustrated in Figure 1, where ...

  17. Voltammetry: mathematical modelling and Inverse Problem

    CERN Document Server

    Koshev, N A; Kuzina, V V

    2016-01-01

    We propose the fast semi-analytical method of modelling the polarization curves in the voltammetric experiment. The method is based on usage of the special func- tions and shows a big calculation speed and a high accuracy and stability. Low computational needs of the proposed algorithm allow us to state the set of Inverse Problems of voltammetry for the reconstruction of metal ions concentrations or the other parameters of the electrolyte under investigation.

  18. Geoacoustic inversion using the vector field

    Science.gov (United States)

    Crocker, Steven E.

    The main goal of this project was to study the use of the acoustic vector field, separately or in combination with the scalar field, to estimate the depth dependent geoacoustic properties of the seafloor via non-linear inversion. The study was performed in the context of the Sediment Acoustics Experiment 2004 (SAX04) conducted in the Northern Gulf of Mexico (GOM) where a small number of acoustic vector sensors were deployed in close proximity to the seafloor. A variety of acoustic waveforms were transmitted into the seafloor at normal incidence. The acoustic vector sensors were located both above and beneath the seafloor interface where they measured the acoustic pressure and the acoustic particle acceleration. Motion data provided by the buried vector sensors were affected by a suspension response that was sensitive to the mass properties of the sensor, the sediment density and sediment elasticity (e.g., shear wave speed). The suspension response for the buried vector sensors included a resonance within the analysis band of 0.4 to 2.0 kHz. The suspension resonance represented an unknown complex transfer function between the acoustic vector field in the seabed and data representing that field. Therefore, inverse methods developed for this study were required to 1) estimate dynamic properties of the sensor suspension resonance and 2) account for the associated corruption of vector field data. A method to account for the vector sensor suspense response function was integrated directly into the inversion methods such that vector channel data corruption was reduced and an estimate of the shear wave speed in the sediment was returned. Inversions of real and synthetic data sets indicated that information about sediment shear wave speed was carried by the suspension response of the buried sensors, as opposed to being contained inherently within the acoustic vector field.

  19. Visual Servoing Based on Learned Inverse Kinematics

    OpenAIRE

    Larsson, Fredrik

    2007-01-01

    Initially an analytical closed-form inverse kinematics solution for a 5 DOF robotic arm was developed and implemented. This analytical solution proved not to meet the accuracy required for the shape sorting puzzle setup used in the COSPAL (COgnitiveSystems using Perception-Action Learning) project [2]. The correctness of the analytic model could be confirmed through a simulated ideal robot and the source of the problem was deemed to be nonlinearities introduced by weak servos unable to compen...

  20. Inverse Kinematics of Concentric Tube Steerable Needles

    OpenAIRE

    Sears, Patrick; Dupont, Pierre E.

    2007-01-01

    Prior papers have introduced steerable needles composed of precurved concentric tubes. The curvature and extent of these needles can be controlled by the relative rotation and translation of the individual tubes. Under certain assumptions on the geometry and design of these needles, the forward kinematics problem can be solved in closed form by means of algebraic equations. The inverse kinematics problem, however, is not as straightforward owing to the nonlinear map between relative tube disp...

  1. Inversion of tsunami waveforms and tsunami warning

    Science.gov (United States)

    An, Chao

    Ever since the 2004 Indian Ocean tsunami, the technique of inversion of tsunami data and the importance of tsunami warning have drawn the attention of many researchers. However, since tsunamis are rare and extreme events, developed inverse techniques lack validation, and open questions rise when they are applied to a real event. In this study, several of those open questions are investigated, i.e., the wave dispersion, bathymetry grid size and subfault division. First, tsunami records from three large tsunami events -- 2010 Maule, 2011 Tohoku and 2012 Haida Gwaii -- are analyzed to extract the main characteristics of the leading tsunami waves. Using the tool of wavelet transforming, the instant wave period can be obtained and thus the dispersive parameter mu2 can be calculated. mu2 is found to be smaller than 0.02 for all records, indicating that the wave dispersion is minor for the propagation of tsunami leading waves. Second, inversions of tsunami data are carried out for three tsunami events -- 2011 Tohoku, 2012 Haida Gwaii and 2014 Iquique. By varying the subfault size and the bathymetry grid size in the inversions, general rules are established for choosing those two parameters. It is found that the choice of bathymetry grid size depends on various parameters, such as the subfault size and the depth of subfaults. The global bathymetry data GEBCO with spatial resolution of 30 arcsec is generally good if the subfault size is larger than 40 km x 40 km; otherwise, bathymetry data with finer resolution is desirable. Detailed instructions of choosing the bathymetry size can be found in Chapter 2. By contrast, the choice of subfault size has much more freedom; our study shows that the subfault size can be very large without significant influence on the predicted tsunami waves. For earthquakes with magnitude of 8.0 ˜ 9.0, the subfault size can be 60 km ˜ 100 km. In our study, the maximum subfault size results in 9 ˜ 16 subfault patches on the ruptured fault surface

  2. Are Pericentric Inversions Reorganizing Wedge Shell Genomes?

    Directory of Open Access Journals (Sweden)

    Daniel García-Souto

    2017-12-01

    Full Text Available Wedge shells belonging to the Donacidae family are the dominant bivalves in exposed beaches in almost all areas of the world. Typically, two or more sympatric species of wedge shells differentially occupy intertidal, sublittoral, and offshore coastal waters in any given locality. A molecular cytogenetic analysis of two sympatric and closely related wedge shell species, Donax trunculus and Donax vittatus, was performed. Results showed that the karyotypes of these two species were both strikingly different and closely alike; whilst metacentric and submetacentric chromosome pairs were the main components of the karyotype of D. trunculus, 10–11 of the 19 chromosome pairs were telocentric in D. vittatus, most likely as a result of different pericentric inversions. GC-rich heterochromatic bands were present in both species. Furthermore, they showed coincidental 45S ribosomal RNA (rRNA, 5S rRNA and H3 histone gene clusters at conserved chromosomal locations, although D. trunculus had an additional 45S rDNA cluster. Intraspecific pericentric inversions were also detected in both D. trunculus and D. vittatus. The close genetic similarity of these two species together with the high degree of conservation of the 45S rRNA, 5S rRNA and H3 histone gene clusters, and GC-rich heterochromatic bands indicate that pericentric inversions contribute to the karyotype divergence in wedge shells.

  3. Constraining inverse curvature gravity with supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Mena, Olga; Santiago, Jose; /Fermilab; Weller, Jochen; /University Coll., London /Fermilab

    2005-10-01

    We show that the current accelerated expansion of the Universe can be explained without resorting to dark energy. Models of generalized modified gravity, with inverse powers of the curvature can have late time accelerating attractors without conflicting with solar system experiments. We have solved the Friedman equations for the full dynamical range of the evolution of the Universe. This allows us to perform a detailed analysis of Supernovae data in the context of such models that results in an excellent fit. Hence, inverse curvature gravity models represent an example of phenomenologically viable models in which the current acceleration of the Universe is driven by curvature instead of dark energy. If we further include constraints on the current expansion rate of the Universe from the Hubble Space Telescope and on the age of the Universe from globular clusters, we obtain that the matter content of the Universe is 0.07 {le} {omega}{sub m} {le} 0.21 (95% Confidence). Hence the inverse curvature gravity models considered can not explain the dynamics of the Universe just with a baryonic matter component.

  4. Computationally efficient Bayesian inference for inverse problems.

    Energy Technology Data Exchange (ETDEWEB)

    Marzouk, Youssef M.; Najm, Habib N.; Rahn, Larry A.

    2007-10-01

    Bayesian statistics provides a foundation for inference from noisy and incomplete data, a natural mechanism for regularization in the form of prior information, and a quantitative assessment of uncertainty in the inferred results. Inverse problems - representing indirect estimation of model parameters, inputs, or structural components - can be fruitfully cast in this framework. Complex and computationally intensive forward models arising in physical applications, however, can render a Bayesian approach prohibitive. This difficulty is compounded by high-dimensional model spaces, as when the unknown is a spatiotemporal field. We present new algorithmic developments for Bayesian inference in this context, showing strong connections with the forward propagation of uncertainty. In particular, we introduce a stochastic spectral formulation that dramatically accelerates the Bayesian solution of inverse problems via rapid evaluation of a surrogate posterior. We also explore dimensionality reduction for the inference of spatiotemporal fields, using truncated spectral representations of Gaussian process priors. These new approaches are demonstrated on scalar transport problems arising in contaminant source inversion and in the inference of inhomogeneous material or transport properties. We also present a Bayesian framework for parameter estimation in stochastic models, where intrinsic stochasticity may be intermingled with observational noise. Evaluation of a likelihood function may not be analytically tractable in these cases, and thus several alternative Markov chain Monte Carlo (MCMC) schemes, operating on the product space of the observations and the parameters, are introduced.

  5. Integrated Inversion of Magnetotelluric and Gravity Data

    Science.gov (United States)

    Maier, R.; Heinson, G.; Tingay, M.; Greenhalgh, S.

    2008-12-01

    We have developed an integrated methodology for inverting both gravity and magnetotelluric (MT) data to yield a unified density and conductivity model. Individual inversions of gravity or MT data can produce highly varied models that fit the data equally well. Integrated inversion helps to reduce this ambiguity without having to introduce external constraints. The integrated models also allow for more reliable interpretations. The difficulty with integrated inversion is how to link the different data sets. Structural approaches assume the geology acts as a structural control on the parameters for each technique and thus, the boundary locations for each parameter occur at the same location. The structural approach is popular since it can be applied to multiple techniques; however it is very difficult to mathematically define the intuitive nature of structure. We use the alternative petrophysical approach that uses empirical equations to link the physical parameters for the different techniques. Specifically, we link density and conductivity through porosity using Archie's law and the porosity-density relation. Although the petrophysical approach is limited by the empirical equations, when used in the appropriate environment it can be an effective way to integrate data sets. Applications for integrating MT and gravity are limited to those environments that support the porosity link between density and conductivity. Hence, the petrophysical approach tested in this study is most reliably applied to investigate the structure of marine and terrestrial sedimentary basins for both hydrocarbon and geothermal exploration.

  6. Elastic reflection waveform inversion with variable density

    KAUST Repository

    Li, Yuanyuan

    2017-08-17

    Elastic full waveform inversion (FWI) provides a better description of the subsurface than those given by the acoustic assumption. However it suffers from a more serious cycle skipping problem compared with the latter. Reflection waveform inversion (RWI) provides a method to build a good background model, which can serve as an initial model for elastic FWI. Therefore, we introduce the concept of RWI for elastic media, and propose elastic RWI with variable density. We apply Born modeling to generate the synthetic reflection data by using optimized perturbations of P- and S-wave velocities and density. The inversion for the perturbations in P- and S-wave velocities and density is similar to elastic least-squares reverse time migration (LSRTM). An incorrect initial model will lead to some misfits at the far offsets of reflections; thus, can be utilized to update the background velocity. We optimize the perturbation and background models in a nested approach. Numerical tests on the Marmousi model demonstrate that our method is able to build reasonably good background models for elastic FWI with absence of low frequencies, and it can deal with the variable density, which is needed in real cases.

  7. Inverse hydrochemical models of aqueous extracts tests

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, L.; Samper, J.; Montenegro, L.

    2008-10-10

    Aqueous extract test is a laboratory technique commonly used to measure the amount of soluble salts of a soil sample after adding a known mass of distilled water. Measured aqueous extract data have to be re-interpreted in order to infer porewater chemical composition of the sample because porewater chemistry changes significantly due to dilution and chemical reactions which take place during extraction. Here we present an inverse hydrochemical model to estimate porewater chemical composition from measured water content, aqueous extract, and mineralogical data. The model accounts for acid-base, redox, aqueous complexation, mineral dissolution/precipitation, gas dissolution/ex-solution, cation exchange and surface complexation reactions, of which are assumed to take place at local equilibrium. It has been solved with INVERSE-CORE{sup 2D} and been tested with bentonite samples taken from FEBEX (Full-scale Engineered Barrier EXperiment) in situ test. The inverse model reproduces most of the measured aqueous data except bicarbonate and provides an effective, flexible and comprehensive method to estimate porewater chemical composition of clays. Main uncertainties are related to kinetic calcite dissolution and variations in CO2(g) pressure.

  8. Magnetic resonance elastography: Inversions in bounded media.

    Science.gov (United States)

    Kolipaka, Arunark; McGee, Kiaran P; Manduca, Armando; Romano, Anthony J; Glaser, Kevin J; Araoz, Philip A; Ehman, Richard L

    2009-12-01

    Magnetic resonance elastography is a noninvasive imaging technique capable of quantifying and spatially resolving the shear stiffness of soft tissues by visualization of synchronized mechanical wave displacement fields. However, magnetic resonance elastography inversions generally assume that the measured tissue motion consists primarily of shear waves propagating in a uniform, infinite medium. This assumption is not valid in organs such as the heart, eye, bladder, skin, fascia, bone and spinal cord, in which the shear wavelength approaches the geometric dimensions of the object. The aim of this study was to develop and test mathematical inversion algorithms capable of resolving shear stiffness from displacement maps of flexural waves propagating in bounded media such as beams, plates, and spherical shells, using geometry-specific equations of motion. Magnetic resonance elastography and finite element modeling of beam, plate, and spherical shell phantoms of various geometries were performed. Mechanical testing of the phantoms agreed with the stiffness values obtained from finite element modeling and magnetic resonance elastography data, and a linear correlation of r(2) >or= 0.99 was observed between the stiffness values obtained using magnetic resonance elastography and finite element modeling data. In conclusion, we have demonstrated new inversion methods for calculating shear stiffness that may be more appropriate for waves propagating in bounded media. (c) 2009 Wiley-Liss, Inc.

  9. Caught Red-Handed: A Novel Search for the Culprit Behind Thermal Inversions in Exoplanet Atmospheres

    Science.gov (United States)

    Kreidberg, Laura

    2017-08-01

    Thermal inversions have been one of the mostly hotly debated topics in exoplanet atmospheres over the last decade. Recent observations show conclusively that thermal inversions do exist for some of the most highly irradiated planets. The likeliest culprit for the inversions is strong absorption by titanium and vanadium oxide (TiO/VO) gas, which heats the upper atmosphere. However, TiO/VO have never been detected, despite many attempts. It is possible that these efforts failed because they focused on planets that were too cool, or were foiled by clouds and haze.We propose a novel search for TiO in the atmosphere of WASP-33b, a planet with a known thermal inversion (Haynes et al. 2015). We will measure the planet's thermal emission spectrum with the WFC3/G102 grism, where TiO is expected to have strong spectral features. This is the first proposed use of this grism for exoplanet emission spectroscopy. WASP-33b has the single highest signal-to-noise in thermal emission of any exoplanet known, and with one eclipse observation we will be sensitive to temperature differences in the upper atmosphere of 10 sigma) and definitively settle the thermal inversion debate.

  10. A global map of thermal inversions for an ultra-hot planet

    Science.gov (United States)

    Evans, Tom

    2017-08-01

    WASP-121b is one of the standout exoplanets available for atmospheric characterization, both in transmission and emission, due to its large radius (1.8 Rjup), high temperature ( 2400K), and bright host star (H=9.4mag). Recent WFC3/G141 transit and eclipse observations of WASP-121b by our group show clear detections of water at 1.4 micron that are in absorption on the nightside and emission on the dayside, implying that the planet has a dayside thermal inversion. Combined, these factors make WASP-121b the best target available to observationally probe the variation of thermal inversions with longitude. Here we propose spectroscopic phase-curve measurements of WASP-121b over a full orbital period with WFC3/G141. Given the measurement precision demonstrated by our previous transit and eclipse observations with WFC3, we anticipate an unprecedented signal-to-noise for a near-infrared exoplanet phase curve. Combined with state-of-the-art atmospheric retrieval analysis and circulation models, our data will produce a longitudinally-resolved map of the atmospheric thermal structure, and will track the thermal inversion with longitude by measuring the 1.4 micron H2O feature as it transitions from absorption to emission. This information-rich dataset will provide valuable new insight into the long-standing mystery of thermal inversions in hot gas giants, which will provide critical constraints for the global circulation and the molecular sources that produce thermal inversions.

  11. Inverse problems in classical and quantum physics

    Energy Technology Data Exchange (ETDEWEB)

    Almasy, A.A.

    2007-06-29

    The subject of this thesis is in the area of Applied Mathematics known as Inverse Problems. Inverse problems are those where a set of measured data is analysed in order to get as much information as possible on a model which is assumed to represent a system in the real world. We study two inverse problems in the fields of classical and quantum physics: QCD condensates from tau-decay data and the inverse conductivity problem. Despite a concentrated effort by physicists extending over many years, an understanding of QCD from first principles continues to be elusive. Fortunately, data continues to appear which provide a rather direct probe of the inner workings of the strong interactions. We use a functional method which allows us to extract within rather general assumptions phenomenological parameters of QCD (the condensates) from a comparison of the time-like experimental data with asymptotic space-like results from theory. The price to be paid for the generality of assumptions is relatively large errors in the values of the extracted parameters. Although we do not claim that our method is superior to other approaches, we hope that our results lend additional confidence to the numerical results obtained with the help of methods based on QCD sum rules. EIT is a technology developed to image the electrical conductivity distribution of a conductive medium. The technique works by performing simultaneous measurements of direct or alternating electric currents and voltages on the boundary of an object. These are the data used by an image reconstruction algorithm to determine the electrical conductivity distribution within the object. In this thesis, two approaches of EIT image reconstruction are proposed. The first is based on reformulating the inverse problem in terms of integral equations. This method uses only a single set of measurements for the reconstruction. The second approach is an algorithm based on linearisation which uses more then one set of measurements. A

  12. Inverse scattering problem in turbulent magnetic fluctuations

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2016-08-01

    Full Text Available We apply a particular form of the inverse scattering theory to turbulent magnetic fluctuations in a plasma. In the present note we develop the theory, formulate the magnetic fluctuation problem in terms of its electrodynamic turbulent response function, and reduce it to the solution of a special form of the famous Gelfand–Levitan–Marchenko equation of quantum mechanical scattering theory. The last of these applies to transmission and reflection in an active medium. The theory of turbulent magnetic fluctuations does not refer to such quantities. It requires a somewhat different formulation. We reduce the theory to the measurement of the low-frequency electromagnetic fluctuation spectrum, which is not the turbulent spectral energy density. The inverse theory in this form enables obtaining information about the turbulent response function of the medium. The dynamic causes of the electromagnetic fluctuations are implicit to it. Thus, it is of vital interest in low-frequency magnetic turbulence. The theory is developed until presentation of the equations in applicable form to observations of turbulent electromagnetic fluctuations as input from measurements. Solution of the final integral equation should be done by standard numerical methods based on iteration. We point to the possibility of treating power law fluctuation spectra as an example. Formulation of the problem to include observations of spectral power densities in turbulence is not attempted. This leads to severe mathematical problems and requires a reformulation of inverse scattering theory. One particular aspect of the present inverse theory of turbulent fluctuations is that its structure naturally leads to spatial information which is obtained from the temporal information that is inherent to the observation of time series. The Taylor assumption is not needed here. This is a consequence of Maxwell's equations, which couple space and time evolution. The inversion procedure takes

  13. A-optimal encoding weights for nonlinear inverse problems, with application to the Helmholtz inverse problem

    Science.gov (United States)

    Crestel, Benjamin; Alexanderian, Alen; Stadler, Georg; Ghattas, Omar

    2017-07-01

    The computational cost of solving an inverse problem governed by PDEs, using multiple experiments, increases linearly with the number of experiments. A recently proposed method to decrease this cost uses only a small number of random linear combinations of all experiments for solving the inverse problem. This approach applies to inverse problems where the PDE solution depends linearly on the right-hand side function that models the experiment. As this method is stochastic in essence, the quality of the obtained reconstructions can vary, in particular when only a small number of combinations are used. We develop a Bayesian formulation for the definition and computation of encoding weights that lead to a parameter reconstruction with the least uncertainty. We call these weights A-optimal encoding weights. Our framework applies to inverse problems where the governing PDE is nonlinear with respect to the inversion parameter field. We formulate the problem in infinite dimensions and follow the optimize-then-discretize approach, devoting special attention to the discretization and the choice of numerical methods in order to achieve a computational cost that is independent of the parameter discretization. We elaborate our method for a Helmholtz inverse problem, and derive the adjoint-based expressions for the gradient of the objective function of the optimization problem for finding the A-optimal encoding weights. The proposed method is potentially attractive for real-time monitoring applications, where one can invest the effort to compute optimal weights offline, to later solve an inverse problem repeatedly, over time, at a fraction of the initial cost.

  14. Approximate inverse preconditioning of iterative methods for nonsymmetric linear systems

    Energy Technology Data Exchange (ETDEWEB)

    Benzi, M. [Universita di Bologna (Italy); Tuma, M. [Inst. of Computer Sciences, Prague (Czech Republic)

    1996-12-31

    A method for computing an incomplete factorization of the inverse of a nonsymmetric matrix A is presented. The resulting factorized sparse approximate inverse is used as a preconditioner in the iterative solution of Ax = b by Krylov subspace methods.

  15. Coefficient estimates of negative powers and inverse coefficients for ...

    Indian Academy of Sciences (India)

    Home; Journals; Proceedings – Mathematical Sciences; Volume 127; Issue 3. Coefficient estimates of negative powers and inverse coefficients for certain starlike functions. MD FIROZ ALI A ... Keywords. Univalent; starlike; meromorphic functions; subordination; coefficient bounds; inverse coefficient bounds ...

  16. INVERSE ELECTRON TRANSFER IN PEROXYOXALATE CHEMIEXCITATION USING EASILY REDUCIBLE ACTIVATORS

    NARCIS (Netherlands)

    Bartoloni, Fernando Heering; Monteiro Leite Ciscato, Luiz Francisco; Augusto, Felipe Alberto; Baader, Wilhelm Josef

    2010-01-01

    INVERSE ELECTRON TRANSFER IN PEROXYOXALATE CHEMIEXCITATION USING EASILY REDUCIBLE ACTIVATORS. Chemiluminescence properties of the peroxyoxalate reaction in the presence of activators bearing electron withdrawing substituents were studied, to evaluate the possible occurrence of an inverse electron

  17. Freezing Time Estimation for a Cylindrical Food Using an Inverse Method

    Science.gov (United States)

    Hu, Yao Xing; Mihori, Tomoo; Watanabe, Hisahiko

    Most of the published methods for estimating the freezing time require thermal properties of the product and any relevant heat transfer coefficients between the product and the cooling medium. However, the difficulty of obtaining thermal data for use in industrial freezing system of food has been pointed out. We have developed a new procedure for estimating the time to freeze a food of a slab by using the inverse method, which does not require the knowledge of thermal properties of the food being frozen. The method of applying inverse method to estimation of freezing time depends on the shape of the body to be frozen. In this paper, we explored the method of applying inverse method to the food body of cylindrical shape, using selected explicit expressions to describe the temperature profile. The temperature profile was found to be successfully approximated by a logarithmic function, with which an approximate equation to describe the freezing time was derived. An inversion procedure of estimating freezing time associated with the approximate equation, was validated via a numerical experiment.

  18. Inverse Regression for the Wiener Class of Systems

    OpenAIRE

    Lyzell, Christian; Enqvist, Martin

    2011-01-01

    The concept of inverse regression has turned out to be quite useful for dimension reduction in regression analysis problems. Using methods like sliced inverse regression (SIR) and directional regression (DR), some high-dimensional nonlinear regression problems can be turned into more tractable low-dimensional problems. Here, the usefulness of inverse regression for identification of nonlinear dynamical systems will be discussed. In particular, it will be shown that the inverse regression meth...

  19. The Inverse Method Application for Non-Classical Logics

    OpenAIRE

    Pavlov, V.; Paky, V.

    2015-01-01

    Maslov’s inverse method is an automated theorem proving method: it can be used to develop computer programs that prove theorems automatically (such programs are called theorem provers). The inverse method can be applied to a wide range of logical calculi: propositional logic, first-order logic, intuitionistic logic, modal logics etc. We give a brief historical background of the inverse method, then discuss existing modifications and implementations of the inverse method for non-classical logics...

  20. On a conjecture about inverse domination in graphs

    DEFF Research Database (Denmark)

    Frendrup, Allan; Henning, Michael A.; Randerath, Bert

    set D of G. The inverse domination number of G is the minimum cardinality among all inverse dominating sets of G. The independence number of G is the maximum cardinality of an independent set of vertices in G. Domke, Dunbar, and Markus (Ars Combin. 72 (2004), 149-160) conjectured that the inverse...

  1. On a Conjecture about Inverse Domination in Graphs

    DEFF Research Database (Denmark)

    Frendrup, Allan; Henning, Michael A.; Randerath, Bert

    2010-01-01

    dominating set D of G. The inverse domination number of G is the minimum cardinality among all inverse dominating sets of G. The independence number of G is the maximum cardinality of an independent set of vertices in G. Domke, Dunbar, and Markus (Ars Combin. 72 (2004), 149-160) conjectured that the inverse...

  2. n-Colour even self-inverse compositions

    Indian Academy of Sciences (India)

    An -colour even self-inverse composition is defined as an -colour self-inverse composition with even parts. In this paper, we get generating functions, explicit formulas and recurrence formulas for -colour even self-inverse compositions. One new binomial identity is also obtained.

  3. Inversion structures in Northern Sotho | Zerbian | Southern African ...

    African Journals Online (AJOL)

    Inversion structures, in which the logical subject appears in postverbal position, are a wide-spread phenomenon among Bantu languages. The paper presents an overview of inversion structures in Bantu languages and describes in detail the inversion constructions in the Southern Bantu language Northern Sotho. It argues ...

  4. Design and Implementation of Forward and Inverse Gravity ...

    African Journals Online (AJOL)

    To obtain the subsurface density distribution one will first use the forward modeling tool and generate a plausible model of the subsurface to use it later as the initial model in the inversion program. The inversion tool makes use of the compact gravity data inversion algorithm to iteratively model the subsurface.

  5. Pico-inplace-inversions between human and chimpanzee

    Science.gov (United States)

    Hou, Minmei; Yao, Ping; Antonou, Angela; Johns, Mitrick A.

    2011-01-01

    Motivation: There have been several studies on the micro-inversions between human and chimpanzee, but there are large discrepancies among their results. Furthermore, all of them rely on alignment procedures or existing alignment results to identify inversions. However, the core alignment procedures do not take very small inversions into consideration. Therefore, their analyses cannot find inversions that are too small to be detected by a classic aligner. We call such inversions pico-inversions. Results: We re-analyzed human–chimpanzee alignment from the UCSC Genome Browser for micro-inplace-inversions and screened for pico-inplace-inversions using a likelihood ratio test. We report that the quantity of inplace-inversions between human and chimpanzee is substantially greater than what had previously been discovered. We also present the software tool PicoInversionMiner to detect pico-inplace-inversions between closely related species. Availability: Software tools, scripts and result data are available at http://faculty.cs.niu.edu/~hou/PicoInversion.html. Contact: mhou@cs.niu.edu PMID:21994225

  6. Modeling Temperature and Pricing Weather Derivatives Based on Temperature

    Directory of Open Access Journals (Sweden)

    Birhan Taştan

    2017-01-01

    Full Text Available This study first proposes a temperature model to calculate the temperature indices upon which temperature-based derivatives are written. The model is designed as a mean-reverting process driven by a Levy process to represent jumps and other features of temperature. Temperature indices are mainly measured as deviations from a base temperature, and, hence, the proposed model includes jumps because they may constitute an important part of this deviation for some locations. The estimated value of a temperature index and its distribution in this model apply an inversion formula to the temperature model. Second, this study develops a pricing process over calculated index values, which returns a customized price for temperature-based derivatives considering that temperature has unique effects on every economic entity. This personalized price is also used to reveal the trading behavior of a hypothesized entity in a temperature-based derivative trade with profit maximization as the objective. Thus, this study presents a new method that does not need to evaluate the risk-aversion behavior of any economic entity.

  7. An inverse radiation problem of estimating heat-transfer coefficient in participating media

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.M.; Lee, W.J. [Sogang University, Seoul (Republic of Korea). Dept. of Chemical Engineering

    2002-06-01

    In the radiant cooler, where the hot gas from the pulverized coal gasifier or combustor is cooled to generate steam, the wall heat-transfer coefficient varies due to ash deposition. The authors investigated an inverse radiation problem of estimating the heat-transfer coefficient from temperature measurement in the radiant cooler. The inverse radiation problem is solved through the minimization of a performance function, which is expressed by the sum of square residuals between calculated and observed temperature, utilizing the conjugate gradient method. The gradient of the performance function is evaluated by means of the improved adjoint variable method, which resolves the difficulty associated with the singularity of the adjoint equation through its inherent regularization property. The effects of the number of measurement points and measurement noise on the accuracy of estimation are also investigated.

  8. Toward Joint Inversion of Gravity and Dyanamics

    Science.gov (United States)

    Jacoby, W. R.

    To better understand geodynamic processes as seafloor spreading, plumes, subduction, and isostatic adjustment, gravity is inverted with "a prioriinformation from topography/bathymetry, seismic structure and dynamic models. Examples are subduction of the Juan de Fuca plate below Vancouver Island, the passive Black Sea­Turkey margin and Iceland ridge-plume interaction. Gravity and other data are averaged 50 km wide strips. Mass balances are estimated (showing also that the free air anomaly is misleading for narrow structures). The mass balances represent plate forces and plate bending, affecting the gravity signals and the isostatic state of continental margins and ridge-plume effects, which are highly correlated in space and cannot be separated without a priori information from modelling. The examples from widely different tectonic situations demonstrate that the art of regional-scale gravity inversion requires extensive background knowledge and inclusion of dynamic processes. It is difficult to conceive any formal, globally applicable procedure taking care of this; it is even a question, what is data, what a priori information? They are not distinguishable if all are included as foreward routines. The "accuracy" of models cannot be perfectly determined, if the "real" mass distribution is not known ­ if known, gravity inversion would be unnecessary. In reality only guesses are possible on the basis of observations and physical laws governing geodynamics. A priori information and gravity data limit the resolution of gravity inversion. Different model types are indistinguishable because adjustments within their parameter uncertainties permit a good fit. But gravity excludes wrong models (Karl Popper: science evolves by falsification of wrong models), and precise gravity guides and defines aims, targets and strategies for new observations.

  9. Uncertainty estimation in finite fault inversion

    Science.gov (United States)

    Dettmer, Jan; Cummins, Phil R.; Benavente, Roberto

    2016-04-01

    This work considers uncertainty estimation for kinematic rupture models in finite fault inversion by Bayesian sampling. Since the general problem of slip estimation on an unknown fault from incomplete and noisy data is highly non-linear and currently intractable, assumptions are typically made to simplify the problem. These almost always include linearization of the time dependence of rupture by considering multiple discrete time windows, and a tessellation of the fault surface into a set of 'subfaults' whose dimensions are fixed below what is subjectively thought to be resolvable by the data. Even non-linear parameterizations are based on a fixed discretization. This results in over-parametrized models which include more parameters than resolvable by the data and require regularization criteria that stabilize the inversion. While it is increasingly common to consider slip uncertainties arising from observational error, the effects of the assumptions implicit in parameterization choices are rarely if ever considered. Here, we show that linearization and discretization assumptions can strongly affect both slip and uncertainty estimates and that therefore the selection of parametrizations should be included in the inference process. We apply Bayesian model selection to study the effect of parametrization choice on inversion results. The Bayesian sampling method which produces inversion results is based on a trans-dimensional rupture discretization which adapts the spatial and temporal parametrization complexity based on data information and does not require regularization. Slip magnitude, direction and rupture velocity are unknowns across the fault and causal first rupture times are obtained by solving the Eikonal equation for a spatially variable rupture-velocity field. The method provides automated local adaptation of rupture complexity based on data information and does not assume globally constant resolution. This is an important quality since seismic data do not

  10. Thermodynamic inversion origin of living systems

    CERN Document Server

    Kompanichenko, Vladimir N

    2017-01-01

    This book discusses the theory, general principles, and energy source conditions allowing for the emergence of life in planetary systems. The author examines the material conditions found in natural hydrothermal sites, the appropriate analogs of prebiotic environments on early Earth. He provides an overview of current laboratory experiments in prebiotic materials chemistry and substantiation of a new direction for the experiments in the origin of life field. Describes thermodynamic inversion and how it relates to the living cell; Examines the current direction of experiments on prebiotic materials chemistry; Introduces and substantiates necessary conditions for the emergence of life.

  11. The inverse variational problem in classical mechanics

    CERN Document Server

    Lopuszánski, Jan T

    1999-01-01

    This book provides a concise description of the current status of a fascinating scientific problem - the inverse variational problem in classical mechanics. The essence of this problem is as follows: one is given a set of equations of motion describing a certain classical mechanical system, and the question to be answered is: Do these equations of motion correspond to some Lagrange function as its Euler-Lagrange equations? In general, not for every system of equations of motion does a Lagrange function exist; it can, however, happen that one may modify the given equations of motion in such a w

  12. Cesium microwave emission without population inversion.

    Science.gov (United States)

    Levi, F; Godone, A; Vanier, J

    1999-01-01

    The use of coherent population trapping (CPT) for the realization of a Cs coherent microwave emitter without population inversion is described. Preliminary experimental results are reported regarding the radio frequency spectrum of the emitted microwave radiation, the emission profile width, and the transient behavior of the output power. This new approach, based on the coherence properties of the laser radiation, allows the implementation of a microwave frequency standard where the linear light shift is absent and the thermal noise limit for the frequency instability is below 10(-12) for an integration time of 1 s.

  13. Transmuted New Generalized Inverse Weibull Distribution

    Directory of Open Access Journals (Sweden)

    Muhammad Shuaib Khan

    2017-06-01

    Full Text Available This paper introduces the transmuted new generalized inverse Weibull distribution by using the quadratic rank transmutation map (QRTM scheme studied by Shaw et al. (2007. The proposed model contains the twenty three lifetime distributions as special sub-models. Some mathematical properties of the new distribution are formulated, such as quantile function, Rényi entropy, mean deviations, moments, moment generating function and order statistics. The method of maximum likelihood is used for estimating the model parameters. We illustrate the flexibility and potential usefulness of the new distribution by using reliability data.

  14. Multiscale phase inversion of seismic marine data

    KAUST Repository

    Fu, Lei

    2017-08-17

    We test the feasibility of applying multiscale phase inversion (MPI) to seismic marine data. To avoid cycle-skipping, the multiscale strategy temporally integrates the traces several times, i.e. high-order integration, to produce low-boost seismograms that are used as input data for the initial iterations of MPI. As the iterations proceed, higher frequencies in the data are boosted by using integrated traces of lower order as the input data. Results with synthetic data and field data from the Gulf of Mexico produce robust and accurate results if the model does not contain strong velocity contrasts such as salt-sediment interfaces.

  15. Inverse Faraday Effect driven by Radiation Friction

    CERN Document Server

    Liseykina, T V; Macchi, A

    2015-01-01

    In the interaction of extremely intense ($>10^{23}~\\mbox{W cm}^{-2}$), circularly polarized laser pulses with thick targets, theory and simulations show that a major fraction of the laser energy is converted into incoherent radiation because of collective electron motion during the "hole boring" dynamics. The effective dissipation due to radiative losses allows the absorption of electromagnetic angular momentum, which in turn leads to the generation of an axial magnetic field of tens of gigagauss value. This peculiar "inverse Faraday effect" is demonstrated in three-dimensional simulations including radiation friction.

  16. Inverse Problems and High-Dimensional Estimation

    CERN Document Server

    Alquier, Pierre; Stoltz, Gilles

    2011-01-01

    The "Stats in the Chateau" summer school was held at the CRC chateau on the campus of HEC Paris, Jouy-en-Josas, France, from August 31 to September 4, 2009. This event was organized jointly by faculty members of three French academic institutions a" ENSAE ParisTech, the Ecole Polytechnique ParisTech, and HEC Paris a" which cooperate through a scientific foundation devoted to the decision sciences. The scientific content of the summer school was conveyed in two courses, one by Laurent Cavalier (Universite Aix-Marseille I) on "Ill-posed Inverse Problems", and one by

  17. 3D inversion of full tensor magnetic gradiometry (FTMG) data

    DEFF Research Database (Denmark)

    Zhdanov, Michael; Cai, Hongzhu; Wilson, Glenn

    2011-01-01

    Following recent advances in SQUID technology, full tensor magnetic gradiometry (FTMG) is emerging as a practical exploration method. We introduce 3D regularized focusing inversion for FTMG data. Our model studies show that inversion of magnetic tensor data can significantly improve resolution...... compared to inversion of magnetic vector data for the same model. We present a case study for the 3D inversion of GETMAG® FTMG data acquired over a magnetite skarn at Tallawang, Australia. The results obtained from our 3D inversion agree very well with the known geology of the area....

  18. Minimal inversion, command matching and disturbance decoupling in multivariable systems

    Science.gov (United States)

    Seraji, H.

    1989-01-01

    The present treatment of the related problems of minimal inversion and perfect output control in linear multivariable systems uses a simple analytical expression for the inverse of a square multivariate system's transfer-function matrix to construct a minimal-order inverse of the system. Because the poles of the minimal-order inverse are the transmission zeros of the system, necessary and sufficient conditions for the inverse system's stability are simply stated in terms of the zero polynomial of the original system. A necessary and sufficient condition for the existence of the required controllers is that the plant zero polynomial be neither identical to zero nor unstable.

  19. Linearized inversion of two components seismic data; Inversion linearisee de donnees sismiques a deux composantes

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, D.

    1997-05-22

    The aim of the dissertation is the linearized inversion of multicomponent seismic data for 3D elastic horizontally stratified media, using Born approximation. A Jacobian matrix is constructed; it will be used to model seismic data from elastic parameters. The inversion technique, relying on single value decomposition (SVD) of the Jacobian matrix, is described. Next, the resolution of inverted elastic parameters is quantitatively studies. A first use of the technique is shown in the frame of an evaluation of a sea bottom acquisition (synthetic data). Finally, a real data set acquired with conventional marine technique is inverted. (author) 70 refs.

  20. Winter thermal inversion and Trichodesmium dominance in north-western Bay of Bengal

    Science.gov (United States)

    Sahu, Biraja Kumar; Baliarsingh, Sanjiba Kumar; Lotliker, Aneesh A.; Parida, Chandanlal; Srichandan, Suchismita; Sahu, Kali Charan

    2017-06-01

    Clear thermal inversion was observed with cold surface waters ( 26°C) subsurface water in the coastal waters of the northwestern Bay of Bengal during winter (January 2015). Simultaneously, preponderance of the cyanobacteria Trichodesmium erythraeum was observed dominating the phytoplankton community with > 90% of total population, reaching maximum density of 9.8 × 105 filaments/L. Further, the Trichodesmium predominance was associated with low water temperature (< 24°C).

  1. Solving the Axisymmetric Inverse Heat Conduction Problem by a Wavelet Dual Least Squares Method

    Directory of Open Access Journals (Sweden)

    Fu Chu-Li

    2009-01-01

    Full Text Available We consider an axisymmetric inverse heat conduction problem of determining the surface temperature from a fixed location inside a cylinder. This problem is ill-posed; the solution (if it exists does not depend continuously on the data. A special project method—dual least squares method generated by the family of Shannon wavelet is applied to formulate regularized solution. Meanwhile, an order optimal error estimate between the approximate solution and exact solution is proved.

  2. Real-time environmental inversion using a network of light receiving systems

    OpenAIRE

    Soares, C.; Jesus, S.M.

    2007-01-01

    This paper reports preliminary environmental inversion results of acoustic data collected simultaneously at two receiving systems during the RADAR’07 sea trial. These receiving systems have communication capabilities that allow for transfering acoustic and telemetric data to a base station with processing capabilities in order to produce environmental estimates during the acoustic experiment. During a large part of the experiment estimates on the temperature field appear to agree with c...

  3. Flame Structure of Vitiated Fuel-Rich Inverse Diffusion Flames in a Cross-Flow (Postprint)

    Science.gov (United States)

    2011-12-01

    Pulse separation was set to 2 µs to ensure rotational and vibrational relaxation of the OH between pulses. The intensifier gate width on each...propane and acetylene inverse diffusion flames to understand the structure and stability of these flows. Reasonable agreement was noted between the...temperature were avoided. A Spectra Physics Pro 290 and Quanta Ray 250 Nd:YAG laser were used to pump a Sirah Cobra Stretch and Continuum ND6000 Dye

  4. A two-dimensional inverse heat conduction problem for estimating heat source

    OpenAIRE

    Shidfar, A.; Zakeri, A.; Neisi, A.

    2005-01-01

    This note considers the problem of estimating unknown time-varying strength of the temporal-dependent heat source, from measurements of the temperature inside the square domain, when the prior knowledge of the source functions is not available. This problem is an inverse heat conduction problem. In this process, the direct problem will be solved by using the heat fundamental solution. Then a sequential algorithm is developed to solve a Volterra integral equation, which has been produced by...

  5. Towards bioinspired superhydrophobic poly(L-lactic acid) surfaces using phase inversion-based methods

    OpenAIRE

    Shi, Jun; Alves, N. M.; Mano, J. F.

    2008-01-01

    The water repellency and self-cleaning ability of many biological surfaces has inspired many fundamental and practical studies related to the development of synthetic superhydrophobic surfaces. However, the investigation of such substrates made of biodegradable polymers has been scarce. Simple approaches based on a single step, performed at room temperature (and pressure), were implemented to obtain superhydrophobic poly(L-lactic acid) (PLLA) surfaces via phase inversion-based ...

  6. Linking geodynamics and geophysical inversion with multiobservable probabilistic tomography

    Science.gov (United States)

    Afonso, Juan Carlos; Rawlinson, Nicholas; Yang, Yingjie; Zlotnik, Sergio; Ortega, Olga

    2017-04-01

    Our recent work (Afonso et al., 2013a,b; 2016) has demonstrated that multiobservable probabilistic tomography offers a sound method to characterize the thermochemical structure of the lithosphere and upper mantle and opens exiting new opportunities for deep-Earth imaging. In this method, all physical and chemical parameters defining an Earth model are linked together by fundamental thermodynamic relations, rather than by ad hoc empirical assumptions. This allows us to directly invert for the fundamental variables defining the physical state of the Earth's interior, namely, temperature, pressure, and major-element composition using a multitude of data sets with complementary strengths: body wave teleseismic data, surface wave phase dispersion data, gravity anomalies, long-wavelength gravity gradients, geoid height, receiver functions, absolute elevation, and surface heat flow data. In this probabilistic inversion scheme, traditional tomographic images of physical parameters such as 3-D seismic velocity become a "free" by-product. However, our tomographic images are, by design, also thermodynamically compatible with all the other inverted observables instead of satisfying one type of data set only. This is important, as any model deemed representative of the real physical state of the Earth's interior should pass the test of explaining other geophysical data sets as well. Inverting for "geodynamic" parameters such as viscosity or convection-related topography in 3D within this multiobservable probabilistic inverse framework is a major challenge, mainly due to the computational cost of solving the Stokes equations; we are not aware of previous attempts to do so with a probabilistic approach. However, recent advances on Reduced Order Modelling and Proper Generalized Decompositions have allowed us to overcome the traditional difficulties and create a probabilistic inversion framework that not only inverts for the physical state of the mantle but also for dynamic

  7. Inverse Kinematics With Closed Form Solution For Denso Robot Manipulator

    Directory of Open Access Journals (Sweden)

    Ikhsan Eka Prasetia

    2015-03-01

    Full Text Available In this paper, the forward kinematics and inverse kinematics used on the Denso robot manipulator which has a 6-DOF. The forward kinematics will result in the desired position by end-effector, while inverse kinematics produce angel on each joint. Inverse kinematics problem are very difficult, therefor to obtain the solution of inverse kinematics using closed form solution with geometry approach. The simulation result obtained from forward kinematics and inverse kinematics is determining desired position by Denso robot manipulator. Forward kinematics produce the desired position by the end-effector. Inverse kinematics produce joint angle, where the inverse kinematics produce eight conditions obtained from closed form solution with geometry approach to reach the desired position by the end-effector.

  8. Postpartum Prolapsed Leiomyoma with Uterine Inversion Managed by Vaginal Hysterectomy

    Directory of Open Access Journals (Sweden)

    Kelly L. Pieh-Holder

    2014-01-01

    Full Text Available Background. Uterine inversion is a rare, but life threatening, obstetrical emergency which occurs when the uterine fundus collapses into the endometrial cavity. Various conservative and surgical therapies have been outlined in the literature for the management of uterine inversions. Case. We present a case of a chronic, recurrent uterine inversion, which was diagnosed following spontaneous vaginal delivery and recurred seven weeks later. The uterine inversion was likely due to a leiomyoma. This late-presenting, chronic, recurring uterine inversion was treated with a vaginal hysterectomy. Conclusion. Uterine inversions can occur in both acute and chronic phases. Persistent vaginal bleeding with the appearance of a prolapsing fibroid should prompt further investigation for uterine inversion and may require surgical therapy. A vaginal hysterectomy may be an appropriate management option in select populations and may be considered in women who do not desire to maintain reproductive function.

  9. Inversion tectonics in the Maracaibo area, Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Roberta, M. (Maraven S.A., Caracas (Venezuela)); Duval, B.; Cramez, C.

    1993-02-01

    Sequence stratigraphy and structural interpretation of regional composite seismic lines and new 3D seismic data of Lake Maracaibo lead us to question the old [open quotes]strike-slip fault movement[close quotes] geological paradigm as the major cause of deformation in this area. The pre-Miocene compressional structures of the majority of the oil fields of this area such as Ceuta, Lama, Motatan, etc., are easily and better explained as the result of a Tertiary Tectonic Inversion. Such inversion can be interpreted as a consequence of shortening of [open quotes]depocenters[close quotes] (grabens and half grabens) developed during extensional phases of a back-arc basin. During this shortening, the old faults bordering the [open quotes]depocenters[close quotes] were reactivated with reverse movements creating large compressional structural traps in the hanging wall (old downthrown block). Thin-skinned compressional deformation can occur, locally, outside the major [open quotes]depocenters[close quotes] in the footwall areas between faults of opposite vergence.

  10. Wave-equation reflection traveltime inversion

    KAUST Repository

    Zhang, Sanzong

    2011-01-01

    The main difficulty with iterative waveform inversion using a gradient optimization method is that it tends to get stuck in local minima associated within the waveform misfit function. This is because the waveform misfit function is highly nonlinear with respect to changes in the velocity model. To reduce this nonlinearity, we present a reflection traveltime tomography method based on the wave equation which enjoys a more quasi-linear relationship between the model and the data. A local crosscorrelation of the windowed downgoing direct wave and the upgoing reflection wave at the image point yields the lag time that maximizes the correlation. This lag time represents the reflection traveltime residual that is back-projected into the earth model to update the velocity in the same way as wave-equation transmission traveltime inversion. No travel-time picking is needed and no high-frequency approximation is assumed. The mathematical derivation and the numerical examples are presented to partly demonstrate its efficiency and robustness. © 2011 Society of Exploration Geophysicists.

  11. Inverse pupil wavefront optimization for immersion lithography.

    Science.gov (United States)

    Han, Chunying; Li, Yanqiu; Dong, Lisong; Ma, Xu; Guo, Xuejia

    2014-10-10

    As the critical dimension of integrated circuits is continuously shrunk, thick mask induced aberration (TMIA) cannot be ignored in the lithography image process. Recently, a set of pupil wavefront optimization (PWO) approaches has been proposed to compensate for TMIA, based on a wavefront manipulator in modern scanners. However, these prior PWO methods have two intrinsic drawbacks. First, the traditional methods fell short in building up the analytical relationship between the pupil wavefront and the cost function, and used time-consuming algorithms to solve for the PWO problem. Second, in traditional methods, only the spherical aberrations were optimized to compensate for the focus exposure matrix tilt and best focus shift induced by TMIA. Thus, the degrees of freedom were limited during the optimization procedure. To overcome these restrictions, we build the analytical relationship between the pupil wavefront and the cost function based on Abbe vector imaging theory. With this analytical model and the Fletcher-Reeves conjugate-gradient algorithm, an inverse PWO method is innovated to balance the TMIA including 37 Zernike terms. Simulation results illustrate that our approach significantly improves image fidelity within a larger process window. This demonstrates that TMIA is effectively compensated by our inverse PWO approach.

  12. Inverse Variational Problem for Nonstandard Lagrangians

    Science.gov (United States)

    Saha, A.; Talukdar, B.

    2014-06-01

    In the mathematical physics literature the nonstandard Lagrangians (NSLs) were introduced in an ad hoc fashion rather than being derived from the solution of the inverse problem of variational calculus. We begin with the first integral of the equation of motion and solve the associated inverse problem to obtain some of the existing results for NSLs. In addition, we provide a number of alternative Lagrangian representations. The case studies envisaged by us include (i) the usual modified Emden-type equation, (ii) Emden-type equation with dissipative term quadratic in velocity, (iii) Lotka-Volterra model and (vi) a number of the generic equations for dissipative-like dynamical systems. Our method works for nonstandard Lagrangians corresponding to the usual action integral of mechanical systems but requires modification for those associated with the modified actions like S =∫abe L(x ,x˙ , t) dt and S =∫abL 1 - γ(x ,x˙ , t) dt because in the latter case one cannot construct expressions for the Jacobi integrals.

  13. Spectral solution of the inverse Mie problem

    Science.gov (United States)

    Romanov, Andrey V.; Konokhova, Anastasiya I.; Yastrebova, Ekaterina S.; Gilev, Konstantin V.; Strokotov, Dmitry I.; Chernyshev, Andrei V.; Maltsev, Valeri P.; Yurkin, Maxim A.

    2017-10-01

    We developed a fast method to determine size and refractive index of homogeneous spheres from the power Fourier spectrum of their light-scattering patterns (LSPs), measured with the scanning flow cytometer. Specifically, we used two spectral parameters: the location of the non-zero peak and zero-frequency amplitude, and numerically inverted the map from the space of particle characteristics (size and refractive index) to the space of spectral parameters. The latter parameters can be reliably resolved only for particle size parameter greater than 11, and the inversion is unique only in the limited range of refractive index with upper limit between 1.1 and 1.25 (relative to the medium) depending on the size parameter and particular definition of uniqueness. The developed method was tested on two experimental samples, milk fat globules and spherized red blood cells, and resulted in accuracy not worse than the reference method based on the least-square fit of the LSP with the Mie theory. Moreover, for particles with significant deviation from the spherical shape the spectral method was much closer to the Mie-fit result than the estimated uncertainty of the latter. The spectral method also showed adequate results for synthetic LSPs of spheroids with aspect ratios up to 1.4. Overall, we present a general framework, which can be used to construct an inverse algorithm for any other experimental signals.

  14. Evaluating Ethical Responsibility in Inverse Decision Support

    Directory of Open Access Journals (Sweden)

    Ahmad M. Kabil

    2012-01-01

    Full Text Available Decision makers have considerable autonomy on how they make decisions and what type of support they receive. This situation places the DSS analyst in a different relationship with the client than his colleagues who support regular MIS applications. This paper addresses an ethical dilemma in “Inverse Decision Support,” when the analyst supports a decision maker who requires justification for a preconceived selection that does not correspond to the best option that resulted from the professional resolution of the problem. An extended application of the AHP model is proposed for evaluating the ethical responsibility in selecting a suboptimal alternative. The extended application is consistent with the Inverse Decision Theory that is used extensively in medical decision making. A survey of decision analysts is used to assess their perspective of using the proposed extended application. The results show that 80% of the respondents felt that the proposed extended application is useful in business practices. 14% of them expanded the usability of the extended application to academic teaching of the ethics theory. The extended application is considered more usable in a country with a higher Transparency International Corruption Perceptions Index (TICPI than in a country with a lower one.

  15. Inverse Magnetoresistance in Polymer Spin Valves.

    Science.gov (United States)

    Ding, Shuaishuai; Tian, Yuan; Li, Yang; Mi, Wenbo; Dong, Huanli; Zhang, Xiaotao; Hu, Wenping; Zhu, Daoben

    2017-05-10

    In this work, both negative and positive magnetoresistance (MR) in solution-processed regioregular poly(3-hexylthiophene) (RR-P3HT) is observed in organic spin valves (OSVs) with vertical La2/3Sr1/3MnO3 (LSMO)/P3HT/AlOx/Co configuration. The ferromagnetic (FM) LSMO electrode with near-atomic flatness is fabricated by a DC facing-target magnetron sputtering method. This research is focused on the origin of the MR inversion. Two types of devices are investigated in details: One with Co penetration shows a negative MR of 0.2%, while the other well-defined device with a nonlinear behavior has a positive MR of 15.6%. The MR measurements in LSMO/AlOx/Co and LSMO/Co junctions are carried to exclude the interference of insulating layer and two FM electrodes themselves. By examining the Co thicknesses and their corresponding magnetic hysteresis loops, a spin-dependent hybrid-interface-state model by Co penetration is induced to explain the MR sign inversion. These results proven by density functional theory (DFT) calculations may shed light on the controllable interfacial properties in designing novel OSV devices.

  16. Modular inverse reinforcement learning for visuomotor behavior.

    Science.gov (United States)

    Rothkopf, Constantin A; Ballard, Dana H

    2013-08-01

    In a large variety of situations one would like to have an expressive and accurate model of observed animal or human behavior. While general purpose mathematical models may capture successfully properties of observed behavior, it is desirable to root models in biological facts. Because of ample empirical evidence for reward-based learning in visuomotor tasks, we use a computational model based on the assumption that the observed agent is balancing the costs and benefits of its behavior to meet its goals. This leads to using the framework of reinforcement learning, which additionally provides well-established algorithms for learning of visuomotor task solutions. To quantify the agent's goals as rewards implicit in the observed behavior, we propose to use inverse reinforcement learning, which quantifies the agent's goals as rewards implicit in the observed behavior. Based on the assumption of a modular cognitive architecture, we introduce a modular inverse reinforcement learning algorithm that estimates the relative reward contributions of the component tasks in navigation, consisting of following a path while avoiding obstacles and approaching targets. It is shown how to recover the component reward weights for individual tasks and that variability in observed trajectories can be explained succinctly through behavioral goals. It is demonstrated through simulations that good estimates can be obtained already with modest amounts of observation data, which in turn allows the prediction of behavior in novel configurations.

  17. Pool boiling inversion through bubble induced macroconvection

    Science.gov (United States)

    Jaikumar, A.; Kandlikar, S. G.

    2017-02-01

    While numerous surface geometries have been explored to achieve enhancements in pool boiling critical heat flux and heat transfer coefficient (HTC), their mechanistic contributions towards the characteristics of the pool boiling curve are not clear. Recently reported pool boiling curves in literature have shown a trend where an increase in heat flux leads to a decrease in wall superheat. Consequently, a negative slope in the pool boiling curve accompanied by a sharp increase in HTC, termed here as boiling inversion, is observed. We demonstrate that this inversion is due to vapor stream induced reinforcement of an impinging liquid jet over the non-boiling regions. This behavior is characteristic of surfaces developed using separate liquid-vapor pathways and macroconvection enhancement mechanism resulting in a highly efficient self-sustained boiling configuration. The increased jet impingement velocities lead to higher HTCs with lower wall superheats. The analytical models available in literature are employed to quantitatively explain this trend. Furthermore, a self-adjusting boiling mechanism is seen at play wherein a reduction in nucleation activity due to lowering of wall superheat counters the increase in HTC induced by the macroconvective currents.

  18. Inverse halftoning based on the bayesian theorem.

    Science.gov (United States)

    Liu, Yun-Fu; Guo, Jing-Ming; Lee, Jiann-Der

    2011-04-01

    This study proposes a method which can generate high quality inverse halftone images from halftone images. This method can be employed prior to any signal processing over a halftone image or the inverse halftoning used in JBIG2. The proposed method utilizes the least-mean-square (LMS) algorithm to establish a relationship between the current processing position and its corresponding neighboring positions in each type of halftone image, including direct binary search, error diffusion, dot diffusion, and ordered dithering. After which, a referenced region called a support region (SR) is used to extract features. The SR can be obtained by relabeling the LMS-trained filters with the order of importance. Moreover, the probability of black pixel occurrence is considered as a feature in this work. According to this feature, the probabilities of all possible grayscale values at the current processing position can be obtained by the Bayesian theorem. Consequently, the final output at this position is the grayscale value with the highest probability. Experimental results show that the proposed method offers better visual quality than that of Mese-Vaidyanathan's and Chang et al's methods in terms of human-visual peak signal-to-noise ratio (HPSNR). In addition, the memory consumption is also superior to Mese-Vaidyanathan's method.

  19. An Entropic Estimator for Linear Inverse Problems

    Directory of Open Access Journals (Sweden)

    Amos Golan

    2012-05-01

    Full Text Available In this paper we examine an Information-Theoretic method for solving noisy linear inverse estimation problems which encompasses under a single framework a whole class of estimation methods. Under this framework, the prior information about the unknown parameters (when such information exists, and constraints on the parameters can be incorporated in the statement of the problem. The method builds on the basics of the maximum entropy principle and consists of transforming the original problem into an estimation of a probability density on an appropriate space naturally associated with the statement of the problem. This estimation method is generic in the sense that it provides a framework for analyzing non-normal models, it is easy to implement and is suitable for all types of inverse problems such as small and or ill-conditioned, noisy data. First order approximation, large sample properties and convergence in distribution are developed as well. Analytical examples, statistics for model comparisons and evaluations, that are inherent to this method, are discussed and complemented with explicit examples.

  20. Methods for joint inversion of waveform and gravity information for 3D density structure

    Science.gov (United States)

    Blom, Nienke; Böhm, Christian; Fichtner, Andreas

    2015-04-01

    We develop a joint inversion scheme combining seismic waveform and gravity information to better constrain the Earth's 3D density distribution. Our inversion schemes are based on numerical wave propagation, adjoint techniques, gravity and other non-seismological constraints to enhance resolution. Density variations drive convection in the Earth and serve as a discriminator between thermal and compositional heterogeneities. However, classical seismological observables are only very weakly sensitive to density with significant trade-offs, while potential field measurements such as gravity suffer from inherent non-uniqueness. To put additional constraints on density structure, we develop inversion schemes in which the waveform and gravity data are inverted jointly for both density and seismic velocity parameters. Our inversion scheme is intended to incorporate any information that can help to constrain 3D density structure. This includes gravity-derived quantities such as the mass and moment of inertia of the Earth, but also mineral physical constraints on maximum density heterogeneities (assuming reasonable variations in temperature and composition). In a series of initial synthetic experiments, we aim to construct efficient optimisation schemes that allow us to assimilate all the available types of information. For this, we use 2D numerical wave propagation combined with adjoint techniques for the computation of sensitivity kernels. With these kernels, we drive gradient-based optimisation that incorporates our non-seismological constraints. Specifically, we assess the usefulness of an inversion scheme where the Earth's mass and moment of inertia are enforced in the model by means of a projected gradient scheme. These synthetic experiments will allow us to assess to what extent velocity and density structure need to be coupled in order to obtain useful and meaningful results to a density inversion.

  1. Mapping Antarctic Crustal Thickness using Gravity Inversion and Comparison with Seismic Estimates

    Science.gov (United States)

    Kusznir, Nick; Ferraccioli, Fausto; Jordan, Tom

    2017-04-01

    predicted under the Ross Sea and beneath the West Antarctic Ice Sheet and delineates the regional extent of the broad West Antarctic Rift System (WARS). Substantial regional uplift is required under Marie Byrd Land to reconcile gravity and seismic estimates. A mantle dynamic uplift origin of the uplift is preferred to a thermal anomaly from a very young rift. The new maps produced by this study support the hypothesis that one branch of the WARS links through to the De Gerlache sea-mounts and Peter I Island in the Bellingshausen Sea region, while another branch may link to the George V Sound Rift in the Antarctic Peninsula region. Crustal thickness and lithosphere thinning derived from gravity inversion also allows the determination of circum-Antarctic ocean-continent transition structure and the mapping of continent-ocean boundary location. Superposition of illuminated satellite gravity data onto crustal thickness maps from gravity inversion provides improved determination of Southern Ocean rift orientation, pre-breakup rifted margin conjugacy and continental breakup trajectory. The continental lithosphere thinning distribution, used to define the initial thermal model temperature perturbation, is derived from the gravity inversion and uses no a priori isochron information; as a consequence the gravity inversion method provides a prediction of ocean-continent transition location, which is independent of ocean isochron information.

  2. An inverse problem in simultaneous estimating the Biot numbers of heat and moisture transfer for a porous material

    Energy Technology Data Exchange (ETDEWEB)

    Cheng-Hung Huang; Chun-Ying Yeh [National Cheng Kung University, Tainan, Taiwan (China). Department of Naval Architecture and Marine Engineering

    2002-11-01

    A conjugate gradient method based inverse algorithm is applied in the present study in simultaneous determining the unknown time-dependent Biot numbers of heat and moisture transfer for a porous material based on interior measurements of temperature and moisture. It is assumed that no prior information is available on the functional form of the unknown Biot numbers in the present study, thus, it is classified as the function estimation in inverse calculation. The accuracy of this inverse heat and moisture transfer problem is examined by using the simulated exact and inexact temperature and moisture measurements in the numerical experiments. Results show that the estimation on the time-dependent Biot numbers can be obtained with any arbitrary initial guesses on a Pentium IV 1.4 GHz personal computer. (author)

  3. Statistics of lower tropospheric inversions over the continental United States

    Directory of Open Access Journals (Sweden)

    Y. H. Zhang

    2011-02-01

    Full Text Available The basic structure parameters of lower tropospheric inversions (LTIs have been derived from 10 years (1998–2007 of high vertical resolution (~50 m radiosonde observations over 56 United States stations. Seasonal and longitudinal variability of these parameters are presented and the formation mechanisms of LTI are also discussed. It is found that LTI seems to be a common feature over the continental United States. The LTI occurrence rates (defined as the fraction of measurements with LTI, which is calculated from the number of LTI cases divided by the number of measurements of the whole 10 years at these 56 stations vary from 3.7% to 14.5%; the averaged base heights of LTI have a range of 3–5 km above mean sea level (a.m.s.l.; the averaged thicknesses and temperature jump ranges from 420–465 m and 1.9–2.2 K, respectively. These parameters have an obvious seasonal variation. In winter, all the occurrence rates, thicknesses and temperature jumps of LTI have much larger values than those in summer. LTI occurrence rate shows an obvious west-east increasing trend in all 4 seasons. Detailed analyses reveal that dynamical instability induced by strong zonal wind shear is responsible for LTI in winter, spring and autumn; the frontal system tends to generate LTI in summer. Since the higher occurrence rate, larger temperature jump and larger thickness of LTI occur in winter, we believe strong zonal wind shear plays a more important role in the formation of LTI.

  4. ORINC: a one-dimensional implicit approach to the inverse heat conduction problem. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Ott, L.J.; Hedrick, R.A.

    1977-10-18

    The report develops an implicit solution technique to determine both the transient surface temperature and the transient surface heat flux of electrically heated rods given the power input and an ''indicated'' internal temperature during a simulated loss-of-coolant accident. A digital computer program ORINC (ORNL Inverse Code) is developed which solves a one-dimensional, transient, lumped parameter, implicit formulation of the conduction equation at each bundle thermocouple position in the Thermal-Hydraulic Test Facility (THTF).

  5. Multisource Data Inversion Using Decentralized Fusion

    Science.gov (United States)

    Alzraiee, A. H.; Bau, D. A.

    2013-12-01

    Field data pertaining hydrological systems typically come from multiple sources and are related to different hydraulic properties. The spatial and temporal coverage of these datasets is also variable. Data fusion techniques allow for the integration of multiple datasets with different quality in order to produce a more informative dataset than any of the original inputs. That is to say, the accuracy and the spatial coverage of the fused data are expected to be superior to any of the original datasets. In this work, we present a 'decentralized' data fusion method stemming from Millman's theory, which has been introduced in the field of signal processing to fuse multiple correlated estimates. Millman's equations are applied to integrate separate estimates of aquifer hydraulic properties, such as the spatial distributions of the hydraulic conductivity K and the specific elastic storage Ss, estimated through the inversion of drawdown data collected over multiple independent pumping tests. For each pumping test, 'local' estimates of K and Ss are obtained by applying an Ensemble Kalman Filter (EnKF) algorithm to assimilate the first and second moments of aquifer drawdown into the response of a corresponding groundwater flow model. Since the application of Millman's theory may be computationally very intensive, we propose a more efficient Millman's fusion algorithm for merging local estimates into a global estimate of the hydraulic properties. Increased computational efficiency is achieved by distributing local estimation processes among multicore computers. Multiple numerical experiments are conducted to investigate the potential of this inversion method. In these experiments, a synthetic aquifer is explored by conducting multiple hypothetical pumping tests at different locations in the aquifer. Finally, the decentralized fusion method is compared to a centralized fusion method where all drawdown data corresponding to multiple pumping tests are fused simultaneously using

  6. Inversion of the uterus following abortion.

    Science.gov (United States)

    Gupta, A S; Datta, N; Ghosh, D

    1982-10-16

    A case of inversion of the uterus following abortion is reported. The 35-year old patient, admitted October 10, 1978 to the Medical College and Hospitals in Calcutta, India was referred by a private practitioner with a history of amenorrhea for 16 weeks, bleeding for 3 days, expulsion of the fetus 3 days earlier, and something coming down per vaginum for 2 days. The patient was para 4+0 (all full term normal deliveries) and home delivery for the last child 1 1/2 years earlier. She had a history of regular menstrual periods. Her general condition was poor. The examination revealed a gangrenous mass coming out of the vulva with a very offensive smell. There was a raw surface on which placenta like tissue was attached. No active bleeding was seen. Fundus and cervix of the uterus could not be felt. On rectal examination the uterus could not be felt, a cup-like depression was felt at the site of the uterus. The provision diagnosis was inversion of uterus following abortion. Treatment was started with sedatives and antibiotics, and arrangements were made for a blood transfusion. The vaginal mass was covered with glycerine and acriflavine gauze, and a hysterectomy was decided upon after improvement of her general condition and control of the infection. On October 14th, the patient was placed in knee chest position and posterior vaginal wall was retracted with Sims' speculum when the inverted lump was spontaneously reduced within the vagina. The inverted uterus was felt in the region of the vaginal vault. Glycerine acriflavine pack was given which was taken out and repack was given daily until the operation. The hysterectomy was performed on October 23rd. The abdomen was opened up by a transverse incision and the pelvis was explored. In the region of the uterus a cup-shaped depression was noted. Tubes and ovaries of both sides were seen hanging laterally from the cupped area. The left tube was found congested and thickened. Reduction of uterus was done by making a vertical

  7. Experimental characterization of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.

    2014-06-26

    This article presents 10-kHz images of OH-PLIF simultaneously with 2-D PIV measurements in an inverse methane diffusion flame. Under a constant fuel flow rate, the central air jet Re was varied, leading to air to fuel velocity ratio, Vr, to vary from 8.3 to 66.5. Starting from Vr = 20.7, the flame is commonly characterized by three distinct zones. The length of the lower fuel entrainment region is inversely proportional to Vr. The flames investigated resemble a string shear layer confining this zone, and converging into the second distinct region, the flame neck zone. The third region is the rest of the flame, which spreads in a jet-like manner. The inverse diffusion flames exhibit varying degrees of partial premixing, depending upon on the velocity ratio Vr, and this region of partial premixing evolves into a well-mixed reaction zone along the flame centerline. The OH distribution correlated with the changes in the mean characteristics of the flow through reduction in the local Reynolds number due to heat release. The existence of a flame suppresses or laminarizes the turbulence at early axial locations and promotes fluctuations at the flame tip for flames with Vr < 49.8. In addition, the flame jet width can be correlated to the OH distribution. In upstream regions of the flames, the breaks in OH are counterbalanced by flame closures and are governed by edge flame propagation. These local extinctions were found to occur at locations where large flow structures were impinging on the flame and are associated with a locally higher strain rate or correlated to the local high strain rates at the flame hole edges without this flow impinging. Another contributor to re-ignition was found to be growing flame kernels. As the flames approach global blow-off, these kernels become the main mechanism for re-ignition further downstream of the flames. At low Vr, laminarization within the early regions of the flame provides an effective shield, preventing the jet flow from

  8. Bilinear Inverse Problems: Theory, Algorithms, and Applications

    Science.gov (United States)

    Ling, Shuyang

    We will discuss how several important real-world signal processing problems, such as self-calibration and blind deconvolution, can be modeled as bilinear inverse problems and solved by convex and nonconvex optimization approaches. In Chapter 2, we bring together three seemingly unrelated concepts, self-calibration, compressive sensing and biconvex optimization. We show how several self-calibration problems can be treated efficiently within the framework of biconvex compressive sensing via a new method called SparseLift. More specifically, we consider a linear system of equations y = DAx, where the diagonal matrix D (which models the calibration error) is unknown and x is an unknown sparse signal. By "lifting" this biconvex inverse problem and exploiting sparsity in this model, we derive explicit theoretical guarantees under which both x and D can be recovered exactly, robustly, and numerically efficiently. In Chapter 3, we study the question of the joint blind deconvolution and blind demixing, i.e., extracting a sequence of functions [special characters omitted] from observing only the sum of their convolutions [special characters omitted]. In particular, for the special case s = 1, it becomes the well-known blind deconvolution problem. We present a non-convex algorithm which guarantees exact recovery under conditions that are competitive with convex optimization methods, with the additional advantage of being computationally much more efficient. We discuss several applications of the proposed framework in image processing and wireless communications in connection with the Internet-of-Things. In Chapter 4, we consider three different self-calibration models of practical relevance. We show how their corresponding bilinear inverse problems can be solved by both the simple linear least squares approach and the SVD-based approach. As a consequence, the proposed algorithms are numerically extremely efficient, thus allowing for real-time deployment. Explicit theoretical

  9. An inverse method for estimation of the acoustic intensity in the focused ultrasound field

    Science.gov (United States)

    Yu, Ying; Shen, Guofeng; Chen, Yazhu

    2017-03-01

    Recently, a new method which based on infrared (IR) imaging was introduced. Authors (A. Shaw, et al and M. R. Myers, et al) have established the relationship between absorber surface temperature and incident intensity during the absorber was irradiated by the transducer. Theoretically, the shorter irradiating time makes estimation more in line with the actual results. But due to the influence of noise and performance constrains of the IR camera, it is hard to identify the difference in temperature with short heating time. An inverse technique is developed to reconstruct the incident intensity distribution using the surface temperature with shorter irradiating time. The algorithm is validated using surface temperature data generated numerically from three-layer model which was developed to calculate the acoustic field in the absorber, the absorbed acoustic energy during the irradiation, and the consequent temperature elevation. To assess the effect of noisy data on the reconstructed intensity profile, in the simulations, the different noise levels with zero mean were superposed on the exact data. Simulation results demonstrate that the inversion technique can provide fairly reliable intensity estimation with satisfactory accuracy.

  10. The inverse problem for Schwinger pair production

    Directory of Open Access Journals (Sweden)

    F. Hebenstreit

    2016-02-01

    Full Text Available The production of electron–positron pairs in time-dependent electric fields (Schwinger mechanism depends non-linearly on the applied field profile. Accordingly, the resulting momentum spectrum is extremely sensitive to small variations of the field parameters. Owing to this non-linear dependence it is so far unpredictable how to choose a field configuration such that a predetermined momentum distribution is generated. We show that quantum kinetic theory along with optimal control theory can be used to approximately solve this inverse problem for Schwinger pair production. We exemplify this by studying the superposition of a small number of harmonic components resulting in predetermined signatures in the asymptotic momentum spectrum. In the long run, our results could facilitate the observation of this yet unobserved pair production mechanism in quantum electrodynamics by providing suggestions for tailored field configurations.

  11. Inverse modeling of carbon monoxide fluxes

    Science.gov (United States)

    Hooghiemstra, Pim; Krol, Maarten

    2010-05-01

    An inverse modeling framework is used to estimate global emissions of carbon monoxide (CO). In particular, we intend to estimate the magnitude and variability of biomass burning CO emissions because the source strength of these emissions is highly uncertain, and the interannual variability is large. Observations from the National Oceanic and Atmospheric Administration Climate Monitoring and Diagnostics Laboratory (NOAA/CMDL) surface network are assimilated using a four-dimensional variational (4DVAR) data assimilation system with the transport model TM5 and its adjoint for 2 years. The biomass burning emissions in the model are not released in the lowest layer of the model, but a vertical distribution is applied and 40% of the emissions is released above 1000 m. The optimized emissions are validated with a separate set of surface station data and the new version 4 product of the satellite instrument MOPITT. A sensitivity test will be presented in which the biomass burning emissions are released in the surface layer.

  12. Inverse problems for partial differential equations

    CERN Document Server

    Isakov, Victor

    2017-01-01

    This third edition expands upon the earlier edition by adding nearly 40 pages of new material reflecting the analytical and numerical progress in inverse problems in last 10 years. As in the second edition, the emphasis is on new ideas and methods rather than technical improvements. These new ideas include use of the stationary phase method in the two-dimensional elliptic problems and of multi frequencies\\temporal data to improve stability and numerical resolution. There are also numerous corrections and improvements of the exposition throughout. This book is intended for mathematicians working with partial differential equations and their applications, physicists, geophysicists, and financial, electrical, and mechanical engineers involved with nondestructive evaluation, seismic exploration, remote sensing, and various kinds of tomography. Review of the second edition: "The first edition of this excellent book appeared in 1998 and became a standard reference for everyone interested in analysis and numerics of...

  13. Numerical Methods for Bayesian Inverse Problems

    KAUST Repository

    Ernst, Oliver

    2014-01-06

    We present recent results on Bayesian inversion for a groundwater flow problem with an uncertain conductivity field. In particular, we show how direct and indirect measurements can be used to obtain a stochastic model for the unknown. The main tool here is Bayes’ theorem which merges the indirect data with the stochastic prior model for the conductivity field obtained by the direct measurements. Further, we demonstrate how the resulting posterior distribution of the quantity of interest, in this case travel times of radionuclide contaminants, can be obtained by Markov Chain Monte Carlo (MCMC) simulations. Moreover, we investigate new, promising MCMC methods which exploit geometrical features of the posterior and which are suited to infinite dimensions.

  14. Minimal mass solutions to inverse eigenvalue problems

    Science.gov (United States)

    Gladwell, G. M. L.

    2006-04-01

    One of the fundamental inverse problems in vibration theory is to construct an in-line system of masses and springs, fixed at one end, free at the other, so that it has a specified spectrum of natural frequencies. The solution, based on the work pioneered by Gantmacher and Krein, makes use of a second spectrum, that for the system fixed at both ends. We derive a closed form procedure to construct the system with a minimal mass for given overall stiffness from the first specified spectrum. The analogous problem of constructing a discrete model of a cantilever beam in flexural vibration having a specified spectrum uses two additional spectra corresponding to the previously free end being respectively pinned and sliding. We formulate the problem of finding a minimal mass solution for the given length and stiffness, and obtain explicit solutions in simple cases.

  15. An inverse and analytic lens design method

    CERN Document Server

    Lu, Yang

    2016-01-01

    Traditional lens design is a numerical and forward process based on ray tracing and aberration theory. This method has limitations because the initial configuration of the lens has to be specified and the aberrations of the lenses have to considered. This paper is an initial attempt to investigate an analytic and inverse lens design method, called Lagrange, to overcome these barriers. Lagrange method tries to build differential equations in terms of the system parameters and the system input and output (object and image). The generalized Snell's law in three dimensional space and the normal of a surface in fundamental differential geometry are applied. Based on the Lagrange method equations for a single surface system are derived which can perfectly image a point object.

  16. Inverse problem for multispecies ferromagneticlike mean-field models in phase space with many states.

    Science.gov (United States)

    Fedele, Micaela; Vernia, Cecilia

    2017-10-01

    In this paper we solve the inverse problem for the Curie-Weiss model and its multispecies version when multiple thermodynamic states are present as in the low temperature phase where the phase space is clustered. The inverse problem consists of reconstructing the model parameters starting from configuration data generated according to the distribution of the model. We demonstrate that, without taking into account the presence of many states, the application of the inversion procedure produces very poor inference results. To overcome this problem, we use the clustering algorithm. When the system has two symmetric states of positive and negative magnetizations, the parameter reconstruction can also be obtained with smaller computational effort simply by flipping the sign of the magnetizations from positive to negative (or vice versa). The parameter reconstruction fails when the system undergoes a phase transition: In that case we give the correct inversion formulas for the Curie-Weiss model and we show that they can be used to measure how close the system gets to being critical.

  17. Inversion channel diamond metal-oxide-semiconductor field-effect transistor with normally off characteristics

    Science.gov (United States)

    Matsumoto, Tsubasa; Kato, Hiromitsu; Oyama, Kazuhiro; Makino, Toshiharu; Ogura, Masahiko; Takeuchi, Daisuke; Inokuma, Takao; Tokuda, Norio; Yamasaki, Satoshi

    2016-08-01

    We fabricated inversion channel diamond metal-oxide-semiconductor field-effect transistors (MOSFETs) with normally off characteristics. At present, Si MOSFETs and insulated gate bipolar transistors (IGBTs) with inversion channels are widely used because of their high controllability of electric power and high tolerance. Although a diamond semiconductor is considered to be a material with a strong potential for application in next-generation power devices, diamond MOSFETs with an inversion channel have not yet been reported. We precisely controlled the MOS interface for diamond by wet annealing and fabricated p-channel and planar-type MOSFETs with phosphorus-doped n-type body on diamond (111) substrate. The gate oxide of Al2O3 was deposited onto the n-type diamond body by atomic layer deposition at 300 °C. The drain current was controlled by the negative gate voltage, indicating that an inversion channel with a p-type character was formed at a high-quality n-type diamond body/Al2O3 interface. The maximum drain current density and the field-effect mobility of a diamond MOSFET with a gate electrode length of 5 μm were 1.6 mA/mm and 8.0 cm2/Vs, respectively, at room temperature.

  18. Stochastic inverse problems: Models and metrics

    Science.gov (United States)

    Sabbagh, Elias H.; Sabbagh, Harold A.; Murphy, R. Kim; Aldrin, John C.; Annis, Charles; Knopp, Jeremy S.

    2015-03-01

    In past work, we introduced model-based inverse methods, and applied them to problems in which the anomaly could be reasonably modeled by simple canonical shapes, such as rectangular solids. In these cases the parameters to be inverted would be length, width and height, as well as the occasional probe lift-off or rotation. We are now developing a formulation that allows more flexibility in modeling complex flaws. The idea consists of expanding the flaw in a sequence of basis functions, and then solving for the expansion coefficients of this sequence, which are modeled as independent random variables, uniformly distributed over their range of values. There are a number of applications of such modeling: 1. Connected cracks and multiple half-moons, which we have noted in a POD set. Ideally we would like to distinguish connected cracks from one long shallow crack. 2. Cracks of irregular profile and shape which have appeared in cold work holes during bolt-hole eddy-current inspection. One side of such cracks is much deeper than other. 3. L or C shaped crack profiles at the surface, examples of which have been seen in bolt-hole cracks. By formulating problems in a stochastic sense, we are able to leverage the stochastic global optimization algorithms in NLSE, which is resident in VIC-3D®, to answer questions of global minimization and to compute confidence bounds using the sensitivity coefficient that we get from NLSE. We will also address the issue of surrogate functions which are used during the inversion process, and how they contribute to the quality of the estimation of the bounds.

  19. Stochastic inverse problems: Models and metrics

    Energy Technology Data Exchange (ETDEWEB)

    Sabbagh, Elias H.; Sabbagh, Harold A.; Murphy, R. Kim [Victor Technologies, LLC, Bloomington, IN 47407-7706 (United States); Aldrin, John C. [Computational Tools, Gurnee, IL 60031 (United States); Annis, Charles [Statistical Engineering, Palm Beach Gardens, FL 33418 (United States); Knopp, Jeremy S. [Air Force Research Laboratory (AFRL/RXCA), Wright Patterson AFB, OH 45433-7817 (United States)

    2015-03-31

    In past work, we introduced model-based inverse methods, and applied them to problems in which the anomaly could be reasonably modeled by simple canonical shapes, such as rectangular solids. In these cases the parameters to be inverted would be length, width and height, as well as the occasional probe lift-off or rotation. We are now developing a formulation that allows more flexibility in modeling complex flaws. The idea consists of expanding the flaw in a sequence of basis functions, and then solving for the expansion coefficients of this sequence, which are modeled as independent random variables, uniformly distributed over their range of values. There are a number of applications of such modeling: 1. Connected cracks and multiple half-moons, which we have noted in a POD set. Ideally we would like to distinguish connected cracks from one long shallow crack. 2. Cracks of irregular profile and shape which have appeared in cold work holes during bolt-hole eddy-current inspection. One side of such cracks is much deeper than other. 3. L or C shaped crack profiles at the surface, examples of which have been seen in bolt-hole cracks. By formulating problems in a stochastic sense, we are able to leverage the stochastic global optimization algorithms in NLSE, which is resident in VIC-3D®, to answer questions of global minimization and to compute confidence bounds using the sensitivity coefficient that we get from NLSE. We will also address the issue of surrogate functions which are used during the inversion process, and how they contribute to the quality of the estimation of the bounds.

  20. The inverse gravimetric problem in gravity modelling

    Science.gov (United States)

    Sanso, F.; Tscherning, C. C.

    1989-01-01

    One of the main purposes of geodesy is to determine the gravity field of the Earth in the space outside its physical surface. This purpose can be pursued without any particular knowledge of the internal density even if the exact shape of the physical surface of the Earth is not known, though this seems to entangle the two domains, as it was in the old Stoke's theory before the appearance of Molodensky's approach. Nevertheless, even when large, dense and homogeneous data sets are available, it was always recognized that subtracting from the gravity field the effect of the outer layer of the masses (topographic effect) yields a much smoother field. This is obviously more important when a sparse data set is bad so that any smoothing of the gravity field helps in interpolating between the data without raising the modeling error, this approach is generally followed because it has become very cheap in terms of computing time since the appearance of spectral techniques. The mathematical description of the Inverse Gravimetric Problem (IGP) is dominated mainly by two principles, which in loose terms can be formulated as follows: the knowledge of the external gravity field determines mainly the lateral variations of the density; and the deeper the density anomaly giving rise to a gravity anomaly, the more improperly posed is the problem of recovering the former from the latter. The statistical relation between rho and n (and its inverse) is also investigated in its general form, proving that degree cross-covariances have to be introduced to describe the behavior of rho. The problem of the simultaneous estimate of a spherical anomalous potential and of the external, topographic masses is addressed criticizing the choice of the mixed collection approach.

  1. Signature of inverse Compton emission from blazars

    Science.gov (United States)

    Gaur, Haritma; Mohan, Prashanth; Wierzcholska, Alicja; Gu, Minfeng

    2018-01-01

    Blazars are classified into high-, intermediate- and low-energy-peaked sources based on the location of their synchrotron peak. This lies in infra-red/optical to ultra-violet bands for low- and intermediate-peaked blazars. The transition from synchrotron to inverse Compton emission falls in the X-ray bands for such sources. We present the spectral and timing analysis of 14 low- and intermediate-energy-peaked blazars observed with XMM-Newton spanning 31 epochs. Parametric fits to X-ray spectra help constrain the possible location of transition from the high-energy end of the synchrotron to the low-energy end of the inverse Compton emission. In seven sources in our sample, we infer such a transition and constrain the break energy in the range 0.6-10 keV. The Lomb-Scargle periodogram is used to estimate the power spectral density (PSD) shape. It is well described by a power law in a majority of light curves, the index being flatter compared to general expectation from active galactic nuclei, ranging here between 0.01 and 1.12, possibly due to short observation durations resulting in an absence of long-term trends. A toy model involving synchrotron self-Compton and external Compton (EC; disc, broad line region, torus) mechanisms are used to estimate magnetic field strength ≤0.03-0.88 G in sources displaying the energy break and infer a prominent EC contribution. The time-scale for variability being shorter than synchrotron cooling implies steeper PSD slopes which are inferred in these sources.

  2. Towards full waveform ambient noise inversion

    Science.gov (United States)

    Sager, Korbinian; Ermert, Laura; Boehm, Christian; Fichtner, Andreas

    2018-01-01

    In this work we investigate fundamentals of a method—referred to as full waveform ambient noise inversion—that improves the resolution of tomographic images by extracting waveform information from interstation correlation functions that cannot be used without knowing the distribution of noise sources. The fundamental idea is to drop the principle of Green function retrieval and to establish correlation functions as self-consistent observables in seismology. This involves the following steps: (1) We introduce an operator-based formulation of the forward problem of computing correlation functions. It is valid for arbitrary distributions of noise sources in both space and frequency, and for any type of medium, including 3-D elastic, heterogeneous and attenuating media. In addition, the formulation allows us to keep the derivations independent of time and frequency domain and it facilitates the application of adjoint techniques, which we use to derive efficient expressions to compute first and also second derivatives. The latter are essential for a resolution analysis that accounts for intra- and interparameter trade-offs. (2) In a forward modelling study we investigate the effect of noise sources and structure on different observables. Traveltimes are hardly affected by heterogeneous noise source distributions. On the other hand, the amplitude asymmetry of correlations is at least to first order insensitive to unmodelled Earth structure. Energy and waveform differences are sensitive to both structure and the distribution of noise sources. (3) We design and implement an appropriate inversion scheme, where the extraction of waveform information is successively increased. We demonstrate that full waveform ambient noise inversion has the potential to go beyond ambient noise tomography based on Green function retrieval and to refine noise source location, which is essential for a better understanding of noise generation. Inherent trade-offs between source and structure

  3. Unwrapped phase inversion for near surface seismic data

    KAUST Repository

    Choi, Yun Seok

    2012-11-04

    The Phase-wrapping is one of the main obstacles of waveform inversion. We use an inversion algorithm based on the instantaneous-traveltime that overcomes the phase-wrapping problem. With a high damping factor, the frequency-dependent instantaneous-traveltime inversion provides the stability of refraction tomography, with higher resolution results, and no arrival picking involved. We apply the instantaneous-traveltime inversion to the synthetic data generated by the elastic time-domain modeling. The synthetic data is a representative of the near surface seismic data. Although the inversion algorithm is based on the acoustic wave equation, the numerical examples show that the instantaneous-traveltime inversion generates a convergent velocity model, very similar to what we see from traveltime tomography.

  4. Acoustic source identification using a Generalized Weighted Inverse Beamforming technique

    Science.gov (United States)

    Presezniak, Flavio; Zavala, Paulo A. G.; Steenackers, Gunther; Janssens, Karl; Arruda, Jose R. F.; Desmet, Wim; Guillaume, Patrick

    2012-10-01

    In the last years, acoustic source identification has gained special attention, mainly due to new environmental norms, urbanization problems and more demanding acoustic comfort expectation of consumers. From the current methods, beamforming techniques are of common use, since normally demands affordable data acquisition effort, while producing clear source identification in most of the applications. In order to improve the source identification quality, this work presents a method, based on the Generalized Inverse Beamforming, that uses a weighted pseudo-inverse approach and an optimization procedure, called Weighted Generalized Inverse Beamforming. To validate this method, a simple case of two compact sources in close vicinity in coherent radiation was investigated by numerical and experimental assessment. Weighted generalized inverse results are compared to the ones obtained by the conventional beamforming, MUltiple Signal Classification, and Generalized Inverse Beamforming. At the end, the advantages of the proposed method are outlined together with the computational effort increase compared to the Generalized Inverse Beamforming.

  5. On the design of pole modules for inverse systems

    Science.gov (United States)

    Wyman, B. F.; Sain, M. K.

    1985-01-01

    When a linear dynamical system admits more than one inverse, it is known that the pole module of any inverse must contain, either as a submodule or as a factor module, a module of fixed poles isomorphic to the zero module of the original system. Design of the pole module for such an inverse system is resolved by introducing a variable pole module for the inverse, by determining necessary and sufficient conditions for a desired module to be a variable pole module, and by studying the manner in which the fixed and variable modules assemble into the pole module of the inverse. If the fixed and variable pole spectra are disjoint, the pole module of the inverse system is a direct sum of the fixed- and variable-pole modules; if not, procedures for addressing the Jordan structure are presented.

  6. Temperature measurement

    Science.gov (United States)

    ... an oral temperature. Other factors to take into account are: In general, rectal temperatures are considered to ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  7. Margenes de ganancia, financiamiento e inversion del sector empresarial peruano

    National Research Council Canada - National Science Library

    Alarco T., German

    2011-01-01

    ... y el autofinanciamiento de la inversion. Los margenes de ganancia y las razones de utilidad del sector empresarial son crecientes y sobrepasan los estandares internacionales. Tambien se determina una tendencia a menores niveles de endeudamiento o apalancamiento. No se rechaza, a nivel agregado y sectorial, la hipotesis de vinculacion entre margenes de ganancia e inversion. La razon producto a capital o la rotacion de ventas guardan una vinculacion directa con los margenes de ganancia. La inversion tiende mayoritariamente a autofi...

  8. A Bayesian Level Set Method for Geometric Inverse Problems

    OpenAIRE

    Iglesias, Marco; Lu, Yulong; Stuart, Andrew

    2015-01-01

    We introduce a level set based approach to Bayesian geometric inverse problems. In these problems the interface between different domains is the key unknown, and is realized as the level set of a function. This function itself becomes the object of the inference. Whilst the level set methodology has been widely used for the solution of geometric inverse problems, the Bayesian formulation that we develop here contains two significant advances: firstly it leads to a well-posed inverse problem i...

  9. Population Genomics of Inversion Polymorphisms in Drosophila melanogaster

    Science.gov (United States)

    Corbett-Detig, Russell B.; Hartl, Daniel L.

    2012-01-01

    Chromosomal inversions have been an enduring interest of population geneticists since their discovery in Drosophila melanogaster. Numerous lines of evidence suggest powerful selective pressures govern the distributions of polymorphic inversions, and these observations have spurred the development of many explanatory models. However, due to a paucity of nucleotide data, little progress has been made towards investigating selective hypotheses or towards inferring the genealogical histories of inversions, which can inform models of inversion evolution and suggest selective mechanisms. Here, we utilize population genomic data to address persisting gaps in our knowledge of D. melanogaster's inversions. We develop a method, termed Reference-Assisted Reassembly, to assemble unbiased, highly accurate sequences near inversion breakpoints, which we use to estimate the age and the geographic origins of polymorphic inversions. We find that inversions are young, and most are African in origin, which is consistent with the demography of the species. The data suggest that inversions interact with polymorphism not only in breakpoint regions but also chromosome-wide. Inversions remain differentiated at low levels from standard haplotypes even in regions that are distant from breakpoints. Although genetic exchange appears fairly extensive, we identify numerous regions that are qualitatively consistent with selective hypotheses. Finally, we show that In(1)Be, which we estimate to be ∼60 years old (95% CI 5.9 to 372.8 years), has likely achieved high frequency via sex-ratio segregation distortion in males. With deeper sampling, it will be possible to build on our inferences of inversion histories to rigorously test selective models—particularly those that postulate that inversions achieve a selective advantage through the maintenance of co-adapted allele complexes. PMID:23284285

  10. Source-independent elastic waveform inversion using a logarithmic wavefield

    KAUST Repository

    Choi, Yun Seok

    2012-01-01

    The logarithmic waveform inversion has been widely developed and applied to some synthetic and real data. In most logarithmic waveform inversion algorithms, the subsurface velocities are updated along with the source estimation. To avoid estimating the source wavelet in the logarithmic waveform inversion, we developed a source-independent logarithmic waveform inversion algorithm. In this inversion algorithm, we first normalize the wavefields with the reference wavefield to remove the source wavelet, and then take the logarithm of the normalized wavefields. Based on the properties of the logarithm, we define three types of misfit functions using the following methods: combination of amplitude and phase, amplitude-only, and phase-only. In the inversion, the gradient is computed using the back-propagation formula without directly calculating the Jacobian matrix. We apply our algorithm to noise-free and noise-added synthetic data generated for the modified version of elastic Marmousi2 model, and compare the results with those of the source-estimation logarithmic waveform inversion. For the noise-free data, the source-independent algorithms yield velocity models close to true velocity models. For random-noise data, the source-estimation logarithmic waveform inversion yields better results than the source-independent method, whereas for coherent-noise data, the results are reversed. Numerical results show that the source-independent and source-estimation logarithmic waveform inversion methods have their own merits for random- and coherent-noise data. © 2011.

  11. NACP Regional: Supplemental Gridded Observations, Biosphere and Inverse Model Outputs

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains standardized gridded observation data, terrestrial biospheric model output, and inverse model simulations that were compiled but not...

  12. Large-Scale Inverse Problems and Quantification of Uncertainty

    CERN Document Server

    Biegler, Lorenz; Ghattas, Omar

    2010-01-01

    Large-scale inverse problems and associated uncertainty quantification has become an important area of research, central to a wide range of science and engineering applications. Written by leading experts in the field, Large-scale Inverse Problems and Quantification of Uncertainty focuses on the computational methods used to analyze and simulate inverse problems. The text provides PhD students, researchers, advanced undergraduate students, and engineering practitioners with the perspectives of researchers in areas of inverse problems and data assimilation, ranging from statistics and large-sca

  13. Level 1.5 Almucantar Inversion Products Phase Functions

    Data.gov (United States)

    National Aeronautics and Space Administration — AERONET inversion code provides aerosoloptical properties in the total atmospheric column derived from the direct and diffuse radiation measured byAERONETCimel...

  14. Level 2.0 Almucantar Inversion Products Phase Functions

    Data.gov (United States)

    National Aeronautics and Space Administration — AERONET inversion code provides aerosoloptical properties in the total atmospheric column derived from the direct and diffuse radiation measured byAERONETCimel...

  15. Paracentric inversions in humans: A review of 446 paracentric inversions with presentation of 120 new cases

    Energy Technology Data Exchange (ETDEWEB)

    Pettenati, M.J.; Rao, P.N. [Bowman Gray School of Medicine of Wake Forest Univ., Winston-Salem, NC (United States); Grss, F. [Carolina Medical Center, Charlotte, NC (United States)

    1995-01-16

    We present a large review of 446 cases of paracentric inversions (PAI), including 120 new cases, to assess their incidence, distribution, inheritance, modes of ascertainment, interchromosomal effects, viable recombinant offspring, and clinical relevance. All 23 autosomes and sex chromosomes had inversions. However, none were identified in chromosome arms 18p, 19q, 20q, and Yp. PAI were most commonly reported in chromosomes 4, 16, 17, 18, 19, 20, 21, 22, and Y. Inversions were most common in chromosome arms 6p, 7q, 11q, and 14q and observed least in chromosome arms 2p, 2q, 3q, 4q, and 6q. Frequently encountered breakpoints included 3(p13p25), 6(p12p23), 6(p12p25), 7(q11q22), and 11(q21q23). Ascertainment was primarily incidental (54.5%), mental retardation and/or congenital anomalies (22.2%), spontaneous abortions (11.4%), associations with syndromes (3.0%), and infertility (2.0%) accounted for the remainder. Ascertainment was neither related to the length of the inverted segment nor to specific inversions except for PAI of Xq which often presented with manifestations of Ullrich-Turner syndrome. Sixty-six percent of PAI were inherited while 8.5% were de novo. Recombination was observed in 17 cases, 15 of which resulted in a monocentric chromosomal deletion or duplication. No common factors were identified that suggested a tendency toward recombination. The incidence of viable recombinants was estimated to be 3.8%. This review documents that PAI are perhaps more commonly identified than suggested in previous reviews. Despite the possible bias of ascertainment in some cases, there may be associated risks with PAI that require further examination. Our data suggest that PAI carriers do not appear to be free of risks of abnormalities or abnormal progeny and caution is recommended when counseling. 162 refs., 4 figs., 7 tabs.

  16. Inverse gas chromatography of chromia. Part I. Zero surface coverage

    Directory of Open Access Journals (Sweden)

    LJ. V. RAJAKOVIC

    2001-04-01

    Full Text Available The surface properties of the solid obtained from colloidal chromiawere investigated by inverse gas chromatography (IGC, at zero surface coverage conditions. The solid samples I dried at 423 K and II heated at 1073 K in the amorphous and crystalline form, respectively, were studied in the temperature range 383–423 K. The dispersive components of the surface free energies, enthalpies, entropies, and the acid/base constants for the solidswere calculated from the IGC measurements and compared with the data for a commercially available chromia (III. Significantly lower enthalpies and entropies were obtained for cyclohexane on solid II and chloroform, highly polar organic, on solid I. The dispersive contributions to the surface energy of solid II and III were similar, but much greater in the case of solid I. All the sorbents had a basic character, with the KD/KAA ratio decreasing in the order I > II > III. The retention and resolution in the separation of a vapour mixture of C5–C8n-alkanes on the three substrates were different.Arapid separationwas observed on solid II and an enhanced retention on solid I. Generally, the heated chromia (II exhibited diminished adsorption capacity, and enhanced homogeneity of the surface.

  17. Inverse Leidenfrost effect: self-propelling drops on a bath

    Science.gov (United States)

    Gauthier, Anais; van der Meer, Devaraj; Lohse, Detlef; Physics of Fluids Team

    2017-11-01

    When deposited on very hot solid, volatile drops can levitate over a cushion of vapor, in the so-called Leidenfrost state. This phenomenon can also be observed on a hot bath and similarly to the solid case, drops are very mobile due to the absence of contact with the substrate that sustains them. We discuss here a situation of ``inverse Leidenfrost effect'' where room-temperature drops levitate on a liquid nitrogen pool - the vapor is generated here by the bath sustaining the relatively hot drop. We show that the drop's movement is not random: the liquid goes across the bath in straight lines, a pattern only disrupted by elastic bouncing on the edges. In addition, the drops are initially self-propelled; first at rest, they accelerate for a few seconds and reach velocities of the order of a few cm/s, before slowing down. We investigate experimentally the parameters that affect their successive acceleration and deceleration, such as the size and nature of the drops and we discuss the origin of this pattern.

  18. Computer-Assisted Inverse Design of Inorganic Electrides

    Directory of Open Access Journals (Sweden)

    Yunwei Zhang

    2017-02-01

    Full Text Available Electrides are intrinsic electron-rich materials enabling applications as excellent electron emitters, superior catalysts, and strong reducing agents. There are a number of organic electrides; however, their instability at room temperature and sensitivity to moisture are bottlenecks for their practical uses. Known inorganic electrides are rare, but they appear to have greater thermal stability at ambient conditions and are thus better characterized for application. Here, we develop a computer-assisted inverse-design method for searching for a large variety of inorganic electrides unbiased by any known electride structures. It uses the intrinsic property of interstitial electron localization of electrides as the global variable function for swarm intelligence structure searches. We construct two rules of thumb on the design of inorganic electrides pointing to electron-rich ionic systems and low electronegativity of the cationic elements involved. By screening 99 such binary compounds through large-scale computer simulations, we identify 24 stable and 65 metastable new inorganic electrides that show distinct three-, two-, and zero-dimensional conductive properties, among which 18 are existing compounds that have not been pointed to as electrides. Our work reveals the rich abundance of inorganic electrides by providing 33 hitherto unexpected structure prototypes of electrides, of which 19 are not in the known structure databases.

  19. Structure-property maps and optimal inversion in configurational thermodynamics

    Science.gov (United States)

    Arnold, Björn; Díaz Ortiz, Alejandro; Hart, Gus L. W.; Dosch, Helmut

    2010-03-01

    Cluster expansions of first-principles density-functional databases in multicomponent systems are now used as a routine tool for the prediction of zero- and finite-temperature physical properties. The ability of producing large databases of various degrees of accuracy, i.e., high-throughput calculations, makes pertinent the analysis of error propagation during the inversion process. This is a very demanding task as both data and numerical noise have to be treated on equal footing. We have addressed this problem by using an analysis that combines the variational and evolutionary approaches to cluster expansions. Simulated databases were constructed ex professo to sample the configurational space in two different and complementary ways. These databases were in turn treated with different levels of both systematic and random numerical noise. The effects of the cross-validation level, size of the database, type of numerical imprecisions on the forecasting power of the expansions were extensively analyzed. We found that the size of the database is the most important parameter. Upon this analysis, we have determined criteria for selecting the optimal expansions, i.e., transferable expansions with constant forecasting power in the configurational space (a structure-property map). As a by-product, our study provides a detailed comparison between the variational cluster expansion and the genetic-algorithm approaches.

  20. Computer-Assisted Inverse Design of Inorganic Electrides

    Science.gov (United States)

    Zhang, Yunwei; Wang, Hui; Wang, Yanchao; Zhang, Lijun; Ma, Yanming

    2017-01-01

    Electrides are intrinsic electron-rich materials enabling applications as excellent electron emitters, superior catalysts, and strong reducing agents. There are a number of organic electrides; however, their instability at room temperature and sensitivity to moisture are bottlenecks for their practical uses. Known inorganic electrides are rare, but they appear to have greater thermal stability at ambient conditions and are thus better characterized for application. Here, we develop a computer-assisted inverse-design method for searching for a large variety of inorganic electrides unbiased by any known electride structures. It uses the intrinsic property of interstitial electron localization of electrides as the global variable function for swarm intelligence structure searches. We construct two rules of thumb on the design of inorganic electrides pointing to electron-rich ionic systems and low electronegativity of the cationic elements involved. By screening 99 such binary compounds through large-scale computer simulations, we identify 24 stable and 65 metastable new inorganic electrides that show distinct three-, two-, and zero-dimensional conductive properties, among which 18 are existing compounds that have not been pointed to as electrides. Our work reveals the rich abundance of inorganic electrides by providing 33 hitherto unexpected structure prototypes of electrides, of which 19 are not in the known structure databases.

  1. Two-dimensional inversion of MT (magnetotelluric) data; MT ho no nijigen inversion kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Ito, S.; Okuno, M.; Ushijima, K.; Mizunaga, H. [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1997-05-27

    A program has been developed to conduct inversion analysis of two-dimensional model using MT data, accurately. For the developed program, finite element method (FEM) was applied to the section of sequential analysis. A method in which Jacobian matrix is calculated only one first time and is inversely analyzed by fixing this during the repetition, and a method in which Jacobian matrix is corrected at each repetition of inversion analysis, were compared mutually. As a result of the numerical simulation, it was revealed that the Jacobian correction method provided more stable convergence for the simple 2D model, and that the calculation time is almost same as that of the Jacobian fixation method. To confirm the applicability of this program to actually measured data, results obtained from this program were compared with those from the Schlumberger method analysis by using MT data obtained in the Hatchobara geothermal area. Consequently, it was demonstrated that the both are well coincided mutually. 17 refs., 7 figs.

  2. Inversion, error analysis, and validation of GPS/MET occultation data

    Directory of Open Access Journals (Sweden)

    A. K. Steiner

    Full Text Available The global positioning system meteorology (GPS/MET experiment was the first practical demonstration of global navigation satellite system (GNSS-based active limb sounding employing the radio occultation technique. This method measures, as principal observable and with millimetric accuracy, the excess phase path (relative to propagation in vacuum of GNSS-transmitted radio waves caused by refraction during passage through the Earth's neutral atmosphere and ionosphere in limb geometry. It shows great potential utility for weather and climate system studies in providing an unique combination of global coverage, high vertical resolution and accuracy, long-term stability, and all-weather capability. We first describe our GPS/MET data processing scheme from excess phases via bending angles to the neutral atmospheric parameters refractivity, density, pressure and temperature. Special emphasis is given to ionospheric correction methodology and the inversion of bending angles to refractivities, where we introduce a matrix inversion technique (instead of the usual integral inversion. The matrix technique is shown to lead to identical results as integral inversion but is more directly extendable to inversion by optimal estimation. The quality of GPS/MET-derived profiles is analyzed with an error estimation analysis employing a Monte Carlo technique. We consider statistical errors together with systematic errors due to upper-boundary initialization of the retrieval by a priori bending angles. Perfect initialization and properly smoothed statistical errors allow for better than 1 K temperature retrieval accuracy up to the stratopause. No initialization and statistical errors yield better than 1 K accuracy up to 30 km but less than 3 K accuracy above 40 km. Given imperfect initialization, biases >2 K propagate down to below 30 km height in unfavorable realistic cases. Furthermore, results of a statistical validation of GPS/MET profiles through comparison

  3. Lithospheric structure in the Baikal–central Mongolia region from integrated geophysical-petrological inversion of surface-wave data and topographic elevation

    OpenAIRE

    Fullea, J.; Lebedev, S.; Agius, M. R.; Jones, A. G.; Afonso, Juan Carlos

    2012-01-01

    Recent advances in computational petrological modeling provide accurate methods for computing seismic velocities and density within the lithospheric and sub-lithospheric mantle, given the bulk composition, temperature, and pressure within them. Here, we test an integrated geophysical-petrological inversion of Rayleigh- and Love-wave phase-velocity curves for fine-scale lithospheric structure. The main parameters of the grid-search inversion are the lithospheric and crustal thicknesses, mantle...

  4. Lithospheric structure in the Baikal-central Mongolia region from integrated geophysical-petrological inversion of surface-wave data and topographic elevation

    OpenAIRE

    Fullea, J.; Lebedev, S.; Agius, M. R.; Jones, A. G.; Afonso, J.C.

    2012-01-01

    Recent advances in computational petrological modeling provide accurate methods for computing seismic velocities and density within the lithospheric and sub-lithospheric mantle, given the bulk composition, temperature, and pressure within them. Here, we test an integrated geophysical-petrological inversion of Rayleigh- and Love-wave phase-velocity curves for fine-scale lithospheric structure. The main parameters of the grid-search inversion are the lithospheric and crustal thicknesses, mantle...

  5. An inverse problem for a three-dimensional heat equation in bounded regions with several convex cavities

    OpenAIRE

    Kawashita, Mishio

    2017-01-01

    In this paper, an inverse initial-boundary value problem for the heat equation in three dimensions is studied. Assume that a three-dimensional heat conductive body contains several cavities of strictly convex. In the outside boundary of this body, a single pair of the temperature and heat flux is given as an observation datum for the inverse problem. It is found the minimum length of broken paths connecting arbitrary fixed point in the outside, a point on the boundary of the cavities and a po...

  6. Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion

    Directory of Open Access Journals (Sweden)

    A. Solomon

    2011-10-01

    Full Text Available Observations suggest that processes maintaining subtropical and Arctic stratocumulus differ, due to the different environments in which they occur. For example, specific humidity inversions (specific humidity increasing with height are frequently observed to occur near cloud top coincident with temperature inversions in the Arctic, while they do not occur in the subtropics. In this study we use nested LES simulations of decoupled Arctic Mixed-Phase Stratocumulus (AMPS clouds observed during the DOE Atmospheric Radiation Measurement Program's Indirect and SemiDirect Aerosol Campaign (ISDAC to analyze budgets of water components, potential temperature, and turbulent kinetic energy. These analyses quantify the processes that maintain decoupled AMPS, including the role of humidity inversions. Key structural features include a shallow upper entrainment zone at cloud top that is located within the temperature and humidity inversions, a mixed layer driven by cloud-top cooling that extends from the base of the upper entrainment zone to below cloud base, and a lower entrainment zone at the base of the mixed layer. The surface layer below the lower entrainment zone is decoupled from the cloud mixed-layer system. Budget results show that cloud liquid water is maintained in the upper entrainment zone near cloud top (within a temperature and humidity inversion due to a down gradient transport of water vapor by turbulent fluxes into the cloud layer from above and direct condensation forced by radiative cooling. Liquid water is generated in the updraft portions of the mixed-layer eddies below cloud top by buoyant destabilization. These processes cause at least 20% of the cloud liquid water to extend into the inversion. The redistribution of water vapor from the top of the humidity inversion to its base maintains the cloud layer, while the mixed layer-entrainment zone system is continually losing total water. In this decoupled system, the humidity inversion is

  7. Electron irradiation induced buckling, morphological transformation, and inverse Ostwald ripening in nanorod filled inside carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Anshika; Kumari, Reetu; Kumar, Vinay; Krishnia, Lucky; Naqvi, Zainab; Panwar, Amrish K. [Department of Applied Physics, Delhi Technological University, Delhi, 110042 (India); Bhatta, Umananda M. [Centre for Emerging Technologies, Jain University, Jakkasandra, Kanakapura Taluk, Ramanagaram Dist, Karnataka, PIN 562 112 (India); Ghosh, Arnab; Satyam, P.V. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Tyagi, Pawan K., E-mail: pawantyagi@dce.edu [Department of Applied Physics, Delhi Technological University, Delhi, 110042 (India)

    2016-01-01

    Graphical abstract: - Highlights: • In-situ response of iron carbide (Fe{sub 3}C) nanorod filled inside carbon nanotube (CNT) under electron irradiation has been studied at room and high temperature. • Inverse Ostwald ripening and morphological changes in both carbon nanotube as well as nanorod are observed. • Compression generated either by electron beam heating or by shrinkage of CNT walls has been observed to be a decisive factor. • Temperature during the irradiation shows high impact on irradiation induced changes. - Abstract: The present study aims to deduce the in-situ response of iron carbide (Fe{sub 3}C) nanorod filled inside carbon nanotube (CNT) under electron irradiation. Electron irradiation on Fe{sub 3}C filled-CNT at both high and room temperature (RT) has been performed inside transmission electron microscope. At high temperature (HT), it has been found that γ-Fe atoms in lattice of Fe{sub 3}C nanorod accumulate first and then form the cluster. These clusters follow the inverse Ostwald ripening whereas if e-irradiation is performed at RT then only the morphological changes in both carbon nanotube as well as nanorod are observed. Compression generated either by electron beam heating or by shrinkage of CNT walls is observed to be a decisive factor.

  8. A forward model and conjugate gradient inversion technique for low-frequency ultrasonic imaging.

    Science.gov (United States)

    van Dongen, Koen W A; Wright, William M D

    2006-10-01

    Emerging methods of hyperthermia cancer treatment require noninvasive temperature monitoring, and ultrasonic techniques show promise in this regard. Various tomographic algorithms are available that reconstruct sound speed or contrast profiles, which can be related to temperature distribution. The requirement of a high enough frequency for adequate spatial resolution and a low enough frequency for adequate tissue penetration is a difficult compromise. In this study, the feasibility of using low frequency ultrasound for imaging and temperature monitoring was investigated. The transient probing wave field had a bandwidth spanning the frequency range 2.5-320.5 kHz. The results from a forward model which computed the propagation and scattering of low-frequency acoustic pressure and velocity wave fields were used to compare three imaging methods formulated within the Born approximation, representing two main types of reconstruction. The first uses Fourier techniques to reconstruct sound-speed profiles from projection or Radon data based on optical ray theory, seen as an asymptotical limit for comparison. The second uses backpropagation and conjugate gradient inversion methods based on acoustical wave theory. The results show that the accuracy in localization was 2.5 mm or better when using low frequencies and the conjugate gradient inversion scheme, which could be used for temperature monitoring.

  9. Numerical and Experimental Studies of Transient Natural Convection with Density Inversion

    Science.gov (United States)

    Mizutani, Satoru; Ishiguro, Tatsuji; Kuwahara, Kunio

    1996-11-01

    In beer manufacturing process, we cool beer in storage tank down from 8 to -1 ^circC. The understanding of cooling process is very important for designing a fermentation tank. In this paper, flow and temperature distribution in a rectangular enclosure was studied. The unsteady incompressible Navier-Stokes equations were integrated by using the multi-directional third-order upwind finite difference method(MUFDM). A parabolic density-temperature relationship was assumed in water which has the maximum density at 3.98 ^circC. Cooling down from 8 to 0 ^circC of water in 10 cm cubical enclosure (Ra=10^7) was numerically done by keeping a vertical side wall at 0 ^circC. Vortex was caused by density inversion of water which was cooled bellow 4 ^circC, and it rose near the cold wall and reached water surface after 33 min from the start of cooling. Finally, cooling proceeded from upper surface. At the aim of verifing the accuracy of the numerical result, temperature distribution under the same condition was experimentally visualized using temperature sensitive liquid crystal. The results will be presented by using video movie. Comparison between the computation and the experiment showed that the present direct simulation based on the MUFDM was powerful tool for the understanding of the natural convection with density inversion and the application of cooling phenomenon to the design of beer storage tanks.

  10. A numerical study of the inverse problem of breast infrared thermography modeling

    Science.gov (United States)

    Jiang, Li; Zhan, Wang; Loew, Murray H.

    2010-03-01

    Infrared thermography has been shown to be a useful adjunctive tool for breast cancer detection. Previous thermography modeling techniques generally dealt with the "forward problem", i.e., to estimate the breast thermogram from known properties of breast tissues. The present study aims to deal with the so-called "inverse problem", namely to estimate the thermal properties of the breast tissues from the observed surface temperature distribution. By comparison, the inverse problem is a more direct way of interpreting a breast thermogram for specific physiological and/or pathological information. In tumor detection, for example, it is particularly important to estimate the tumor-induced thermal contrast, even though the corresponding non-tumor thermal background usually is unknown due to the difficulty of measuring the individual thermal properties. Inverse problem solving is technically challenging due to its ill-posed nature, which is evident primarily by its sensitivity to imaging noise. Taking advantage of our previously developed forward-problemsolving techniques with comprehensive thermal-elastic modeling, we examine here the feasibility of solving the inverse problem of the breast thermography. The approach is based on a presumed spatial constraint applied to three major thermal properties, i.e., thermal conductivity, blood perfusion, and metabolic heat generation, for each breast tissue type. Our results indicate that the proposed inverse-problem-solving scheme can be numerically stable under imaging noise of SNR ranging 32 ~ 40 dB, and that the proposed techniques can be effectively used to improve the estimation to the tumor-induced thermal contrast, especially for smaller and deeper tumors.

  11. HAMR Thermal Reliability via Inverse Electromagnetic Design

    OpenAIRE

    Bhargava, Samarth; Yablonovitch, Eli

    2014-01-01

    Heat-Assisted Magnetic Recording (HAMR) has promise to allow for data writing in hard disks of beyond 1 Tb/in2 areal density, by temporarily heating the area of a single datum to its Curie temperature while simultaneously applying a magnetic field from a conventional electromagnet. However, the metallic optical antenna or near-field transducer (NFT) used to apply the nano-scale heating to the media may self-heat by several hundreds of degrees. With the NFT reaching such extreme temperatures, ...

  12. On some Toeplitz matrices and their inversions

    Directory of Open Access Journals (Sweden)

    S. Dutta

    2014-10-01

    Full Text Available In this article, using the difference operator B(a[m], we introduce a lower triangular Toeplitz matrix T which includes several difference matrices such as Δ(1,Δ(m,B(r,s,B(r,s,t, and B(r̃,s̃,t̃,ũ in different special cases. For any x ∈ w and m∈N0={0,1,2,…}, the difference operator B(a[m] is defined by (B(a[m]xk=ak(0xk+ak-1(1xk-1+ak-2(2xk-2+⋯+ak-m(mxk-m,(k∈N0 where a[m] = {a(0, a(1, …, a(m} and a(i = (ak(i for 0 ⩽ i ⩽ m are convergent sequences of real numbers. We use the convention that any term with negative subscript is equal to zero. The main results of this article relate to the determination and applications of the inverse of the Toeplitz matrix T.

  13. Two and three dimensional magnetotelluric inversion

    Energy Technology Data Exchange (ETDEWEB)

    Booker, J.

    1993-01-01

    Electrical conductivity depends on properties such as the presence of ionic fluids in interconnected pores that are difficult to sense with other remote sensing techniques. Thus improved imaging of underground electrical structure has wide practical importance in exploring for groundwater, mineral and geothermal resources, and in assessing the diffusion of fluids in oil fields and waste sites. Because the electromagnetic inverse problem is fundamentally multi-dimensional, most imaging algorithms saturate available computer power long before they can deal with the complete data set. We have developed an algorithm to directly invert large multi-dimensional data sets that is orders of magnitude faster than competing methods. We have proven that a two-dimensional (2D) version of the algorithm is highly effective for real data and have made substantial progress towards a three-dimensional (3D) version. We are proposing to cure identified shortcomings and substantially expand the utility of the existing 2D program, overcome identified difficulties with extending our method to three-dimensions (3D) and embark on an investigation of related EM imaging techniques which may have the potential for even further increasing resolution.

  14. Status of the microwave inverse FEL experiment

    Science.gov (United States)

    Yoder, R. B.; Marshall, T. C.; Wang, Mei; Hirshfield, J. L.

    1999-07-01

    A status report is presented on an inverse free-electron-laser accelerator experiment operating in the microwave regime (1). This proof-of-principle electron accelerator is powered by up to 15 MW of RF power at 2.86 GHz, which propagates in a smooth-walled circular waveguide surrounded by a pulsed bifilar helical undulator: solenoids provide an axial guiding magnetic field. Undulator pitch, which is initially 11.75 cm, is up-tapered to 13.5 cm over the 1-meter length of the structure to maintain acceleration gradient. Numerical computations predict an energy gain of 0.7 MeV using a 6 MeV injected beam from a 2-1/2 cell RF gun, with small energy spread and strong phase trapping. The maximum attainable acceleration gradient with such a design, using 150 MW of RF power at 34 GHz, is estimated to be at least 30 MV/m. Results from bench tests of the structure and undulator are presented, along with preliminary beam measurements.

  15. Inverse compton scattering gamma ray source

    Science.gov (United States)

    Boucher, S.; Frigola, P.; Murokh, A.; Ruelas, M.; Jovanovic, I.; Rosenzweig, J. B.; Travish, G.

    2009-09-01

    Special Nuclear Materials (SNM) (e.g. U-235, Pu-239) can be detected by active interrogation with gamma rays (>6 MeV) through photofission. For long-range detection (˜1 km), an intense beam of gamma rays (˜10 14 per second) is required in order to produce measurable number of neutrons. The production of such fluxes of gamma rays, and in the pulse formats useful for detection, presents many technical challenges, and requires novel approaches to the accelerator and laser technology. RadiaBeam is currently designing a gamma ray source based on Inverse Compton Scattering (ICS) from a high-energy electron beam. To achieve this, improvements in photoinjector, linac, final focus, and laser system are planned. These enhanced sub-systems build on parallel work being performed at RadiaBeam, UCLA, and elsewhere. A high-repetition rate photoinjector, a high-gradient S-band linac, and a laser pulse recirculator will be used. The proposed system will be a transportable source of high-flux, high-energy quasi-monochromatic gamma rays for active interrogation of special nuclear materials.

  16. Charge Inversion in semi-permeable membranes

    Science.gov (United States)

    Das, Siddhartha; Sinha, Shayandev; Jing, Haoyuan

    Role of semi-permeable membranes like lipid bilayer is ubiquitous in a myriad of physiological and pathological phenomena. Typically, lipid membranes are impermeable to ions and solutes; however, protein channels embedded in the membrane allow the passage of selective, small ions across the membrane enabling the membrane to adopt a semi-permeable nature. This semi-permeability, in turn, leads to electrostatic potential jump across the membrane, leading to effects such as regulation of intracellular calcium, extracellular-vesicle-membrane interactions, etc. In this study, we theoretically demonstrate that this semi-permeable nature may trigger the most remarkable charge inversion (CI) phenomenon in the cytosol-side of the negatively-charged lipid bilayer membrane that are selectively permeable to only positive ions of a given salt. This CI is manifested as the changing of the sign of the electrostatic potential from negative to positive from the membrane-cytosol interface to deep within the cytosol. We study the impact of the parameters such as the concentration of this salt with selectively permeable ions as well as the concentration of an external salt in the development of this CI phenomenon. We anticipate such CI will profoundly influence the interaction of membrane and intra-cellular moieties (e.g., exosome or multi-cellular vesicles) having implications for a host of biophysical processes.

  17. Source Estimation by Full Wave Form Inversion

    Energy Technology Data Exchange (ETDEWEB)

    Sjögreen, Björn [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Center for Applied Scientific Computing; Petersson, N. Anders [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Center for Applied Scientific Computing

    2013-08-07

    Given time-dependent ground motion recordings at a number of receiver stations, we solve the inverse problem for estimating the parameters of the seismic source. The source is modeled as a point moment tensor source, characterized by its location, moment tensor components, the start time, and frequency parameter (rise time) of its source time function. In total, there are 11 unknown parameters. We use a non-linear conjugate gradient algorithm to minimize the full waveform misfit between observed and computed ground motions at the receiver stations. An important underlying assumption of the minimization problem is that the wave propagation is accurately described by the elastic wave equation in a heterogeneous isotropic material. We use a fourth order accurate finite difference method, developed in [12], to evolve the waves forwards in time. The adjoint wave equation corresponding to the discretized elastic wave equation is used to compute the gradient of the misfit, which is needed by the non-linear conjugated minimization algorithm. A new source point moment source discretization is derived that guarantees that the Hessian of the misfit is a continuous function of the source location. An efficient approach for calculating the Hessian is also presented. We show how the Hessian can be used to scale the problem to improve the convergence of the non-linear conjugated gradient algorithm. Numerical experiments are presented for estimating the source parameters from synthetic data in a layer over half-space problem (LOH.1), illustrating rapid convergence of the proposed approach.

  18. Full Waveform Inversion Using Nonlinearly Smoothed Wavefields

    KAUST Repository

    Li, Y.

    2017-05-26

    The lack of low frequency information in the acquired data makes full waveform inversion (FWI) conditionally converge to the accurate solution. An initial velocity model that results in data with events within a half cycle of their location in the observed data was required to converge. The multiplication of wavefields with slightly different frequencies generates artificial low frequency components. This can be effectively utilized by multiplying the wavefield with itself, which is nonlinear operation, followed by a smoothing operator to extract the artificially produced low frequency information. We construct the objective function using the nonlinearly smoothed wavefields with a global-correlation norm to properly handle the energy imbalance in the nonlinearly smoothed wavefield. Similar to the multi-scale strategy, we progressively reduce the smoothing width applied to the multiplied wavefield to welcome higher resolution. We calculate the gradient of the objective function using the adjoint-state technique, which is similar to the conventional FWI except for the adjoint source. Examples on the Marmousi 2 model demonstrate the feasibility of the proposed FWI method to mitigate the cycle-skipping problem in the case of a lack of low frequency information.

  19. Inverse Problems in a Bayesian Setting

    KAUST Repository

    Matthies, Hermann G.

    2016-02-13

    In a Bayesian setting, inverse problems and uncertainty quantification (UQ)—the propagation of uncertainty through a computational (forward) model—are strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. We give a detailed account of this approach via conditional approximation, various approximations, and the construction of filters. Together with a functional or spectral approach for the forward UQ there is no need for time-consuming and slowly convergent Monte Carlo sampling. The developed sampling-free non-linear Bayesian update in form of a filter is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisation to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and nonlinear Bayesian update in form of a filter on some examples.

  20. Inverse Dynamics Modeling of Paralympic Wheelchair Curling.

    Science.gov (United States)

    Laschowski, Brock; Mehrabi, Naser; McPhee, John

    2017-08-01

    Paralympic wheelchair curling is an adapted version of Olympic curling played by individuals with spinal cord injuries, cerebral palsy, multiple sclerosis, and lower extremity amputations. To the best of the authors' knowledge, there has been no experimental or computational research published regarding the biomechanics of wheelchair curling. Accordingly, the objective of the present research was to quantify the angular joint kinematics and dynamics of a Paralympic wheelchair curler throughout the delivery. The angular joint kinematics of the upper extremity were experimentally measured using an inertial measurement unit system; the translational kinematics of the curling stone were additionally evaluated with optical motion capture. The experimental kinematics were mathematically optimized to satisfy the kinematic constraints of a subject-specific multibody biomechanical model. The optimized kinematics were subsequently used to compute the resultant joint moments via inverse dynamics analysis. The main biomechanical demands throughout the delivery (ie, in terms of both kinematic and dynamic variables) were about the hip and shoulder joints, followed sequentially by the elbow and wrist. The implications of these findings are discussed in relation to wheelchair curling delivery technique, musculoskeletal modeling, and forward dynamic simulations.

  1. Highly Efficient Vector-Inversion Pulse Generators

    Science.gov (United States)

    Rose, Franklin

    2004-01-01

    Improved transmission-line pulse generators of the vector-inversion type are being developed as lightweight sources of pulsed high voltage for diverse applications, including spacecraft thrusters, portable x-ray imaging systems, impulse radar systems, and corona-discharge systems for sterilizing gases. In this development, more than the customary attention is paid to principles of operation and details of construction so as to the maximize the efficiency of the pulse-generation process while minimizing the sizes of components. An important element of this approach is segmenting a pulse generator in such a manner that the electric field in each segment is always below the threshold for electrical breakdown. One design of particular interest, a complete description of which was not available at the time of writing this article, involves two parallel-plate transmission lines that are wound on a mandrel, share a common conductor, and are switched in such a manner that the pulse generator is divided into a "fast" and a "slow" section. A major innovation in this design is the addition of ferrite to the "slow" section to reduce the size of the mandrel needed for a given efficiency.

  2. Investigating the Inversion of 9He

    Science.gov (United States)

    Owens-Fryar, Gerard; Votaw, Daniel; Chrisman, Dayah; Gueye, Paul; MoNA Collaboration

    2017-09-01

    The one-neutron unbound 9He nucleus is in a region of the nuclear chart, the light island of inversion, where the ground-state structure is expected to be inverted relative to the typical shell model structure: the inverted ground state is expected to be a 1/2+ state indicating that the valence neutron is in the s1/2 orbital, in comparison to the standard shell model structure which would suggest a 1/2- state due to the valence p1/2 neutron. Past experiments have struggled to provide a consistent and accurate picture of the (energy) level structure of 9He. One of the difficulties of previous experiments is that the reactions have populated mainly one state and therefore were unable to simultaneously constraint both states. Experiment e15091 was conducted in the summer 2017 to measure the invariant mass spectrum of 9He from two different reactions: 11Be(-2p) and 12B(-3p). The 11Be reaction strongly populates the 1/2+ state while the 12B reaction strongly populates the 1/2- state. The experiment used the MoNA-LISA-Sweeper setup of the National Superconducting Cyclotron Laboratory (NSCL) in Lansing, Michigan. Preliminary analysis of the data, including detector calibration and particle identification, will be presented. MSU-SROP, MSU, NSCL.

  3. Metallic magnets without inversion symmetry and antiferromagnetic quantum critical points

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, I.A.

    2006-07-01

    This thesis focusses on two classes of systems that exhibit non-Fermi liquid behaviour in experiments: we investigated aspects of chiral ferromagnets and of antiferromagnetic metals close to a quantum critical point. In chiral ferromagnets, the absence of inversion symmetry makes spin-orbit coupling possible, which leads to a helical modulation of the ferromagnetically ordered state. We studied the motion of electrons in the magnetically ordered state of a metal without inversion symmetry by calculating their generic band-structure. We found that spin-orbit coupling, although weak, has a profound effect on the shape of the Fermi surface: On a large portion of the Fermi surface the electron motion parallel to the helix practically stops. Signatures of this effect can be expected to show up in measurements of the anomalous Hall effect. Recent neutron scattering experiments uncovered the existence of a peculiar kind of partial order in a region of the phase diagram adjacent to the ordered state of the chiral ferromagnet MnSi. Starting from the premise that this partially ordered state is a thermodynamically distinct phase, we investigated an extended Ginzburg-Landau theory for chiral ferromagnets. In a certain parameter regime of the Ginzburg-Landau theory we identified crystalline phases that are reminiscent of the so-called blue phases in liquid crystals. Many antiferromagnetic heavy-fermion systems can be tuned into a regime where they exhibit non-Fermi liquid exponents in the temperature dependence of thermodynamic quantities such as the specific heat capacity; this behaviour could be due to a quantum critical point. If the quantum critical behaviour is field-induced, the external field does not only suppress antiferromagnetism but also induces spin precession and thereby influences the dynamics of the order parameter. We investigated the quantum critical behavior of clean antiferromagnetic metals subject to a static, spatially uniform external magnetic field. We

  4. PREFACE: International Conference on Inverse Problems 2010

    Science.gov (United States)

    Hon, Yiu-Chung; Ling, Leevan

    2011-03-01

    Following the first International Conference on Inverse Problems - Recent Theoretical Development and Numerical Approaches held at the City University of Hong Kong in 2002, the fifth International Conference was held again at the City University during December 13-17, 2010. This fifth conference was jointly organized by Professor Yiu-Chung Hon (Co-Chair, City University of Hong Kong, HKSAR), Dr Leevan Ling (Co-Chair, Hong Kong Baptist University, HKSAR), Professor Jin Cheng (Fudan University, China), Professor June-Yub Lee (Ewha Womans University, South Korea), Professor Gui-Rong Liu (University of Cincinnati, USA), Professor Jenn-Nan Wang (National Taiwan University, Taiwan), and Professor Masahiro Yamamoto (The University of Tokyo, Japan). It was agreed to alternate holding the conference among the above places (China, Japan, Korea, Taiwan, and Hong Kong) once every two years. The next conference has been scheduled to be held at the Southeast University (Nanjing, China) in 2012. The purpose of this series of conferences is to establish a strong collaborative link among the universities of the Asian-Pacific regions and worldwide leading researchers in inverse problems. The conference addressed both theoretical (mathematics), applied (engineering) and developmental aspects of inverse problems. The conference was intended to nurture Asian-American-European collaborations in the evolving interdisciplinary areas and it was envisioned that the conference would lead to long-term commitments and collaborations among the participating countries and researchers. There was a total of more than 100 participants. A call for the submission of papers was sent out after the conference, and a total of 19 papers were finally accepted for publication in this proceedings. The papers included in the proceedings cover a wide scope, which reflects the current flourishing theoretical and numerical research into inverse problems. Finally, as the co-chairs of the Inverse Problems

  5. Application of a Regional Thermohaline Inverse Method to observational reanalyses in an Arctic domain

    Science.gov (United States)

    Mackay, Neill; Wilson, Chris; Zika, Jan

    2017-04-01

    The Overturning in the Subpolar North Atlantic Program (OSNAP) aims to quantify the subpolar AMOC and its variability, including associated fluxes of heat and freshwater, using a combination of observations and models. In contribution OSNAP, we have developed a novel inverse method that diagnoses the interior mixing and advective flux at the boundary of an enclosed volume in the ocean. This Regional Thermohaline Inverse Method (RTHIM) operates in salinity-temperature (S-T) coordinates, a framework which allows us to gain insights into water mass transformation within the control volume and boundary fluxes of heat and freshwater. RTHIM will use multiple long-term observational datasets and reanalyses, including Argo, to provide a set of inverse estimates to be used to understand the sub-annual transport timescales sampled by the OSNAP array. Having validated the method using the NEMO model, we apply RTHIM to an Arctic domain using temperature and salinity and surface flux data from reanalyses. We also use AVISO surface absolute geostrophic velocities which, combined with thermal wind balance, provide an initial estimate for the inflow and outflow through the boundary. We diagnose the interior mixing in S-T coordinates and the boundary flow, calculating the transformation rates of well-known water masses and the individual contributions to these rates from surface flux processes, boundary flow and interior mixing. Outputs from RTHIM are compared with similar metrics from previous literature on the region. The inverse solution reproduces an observed pattern of warm, saline Atlantic waters entering the Arctic volume and cooler, fresher waters leaving. Meanwhile, surface fluxes act to create waters at the extremes of the S-T distribution and interior mixing acts in opposition, creating water masses at intermediate S-T and destroying them at the extremes. RTHIM has the potential to be compared directly with the OSNAP array observations by defining a domain boundary which

  6. 3D Frequency-Domain Seismic Inversion with Controlled Sloppiness.

    NARCIS (Netherlands)

    T. van Leeuwen (Tristan); F.J. Herrmann

    2014-01-01

    htmlabstractSeismic waveform inversion aims at obtaining detailed estimates of subsurface medium parameters, such as the spatial distribution of soundspeed, from multiexperiment seismic data. A formulation of this inverse problem in the frequency domain leads to an optimization problem constrained

  7. 3D Frequency-Domain Seismic Inversion with Controlled Sloppiness

    NARCIS (Netherlands)

    Herrmann, F.; van Leeuwen, T.

    2014-01-01

    Seismic waveform inversion aims at obtaining detailed estimates of subsurface medium parameters, such as the spatial distribution of soundspeed, from multiexperiment seismic data. A formulation of this inverse problem in the frequency domain leads to an optimization problem constrained by a

  8. Entropy Production for a Class of Inverse SRB Measures

    Science.gov (United States)

    Mihailescu, Eugen; Urbański, Mariusz

    2013-03-01

    We study the entropy production for inverse SRB measures for a class of hyperbolic folded repellers presenting both expanding and contracting directions. We prove that for most such maps we obtain strictly negative entropy production of the respective inverse SRB measures. Moreover we provide concrete examples of hyperbolic folded repellers where this happens.

  9. CICAAR - Convolutive ICA with an Auto-Regressive Inverse Model

    DEFF Research Database (Denmark)

    Dyrholm, Mads; Hansen, Lars Kai

    2004-01-01

    We invoke an auto-regressive IIR inverse model for convolutive ICA and derive expressions for the likelihood and its gradient. We argue that optimization will give a stable inverse. When there are more sensors than sources the mixing model parameters are estimated in a second step by least squares...

  10. Artificial Neural Network Modeling of an Inverse Fluidized Bed ...

    African Journals Online (AJOL)

    The application of neural networks to model a laboratory scale inverse fluidized bed reactor has been studied. A Radial Basis Function neural network has been successfully employed for the modeling of the inverse fluidized bed reactor. In the proposed model, the trained neural network represents the kinetics of biological ...

  11. Artificial Neural Network Modeling of an Inverse Fluidized Bed ...

    African Journals Online (AJOL)

    MICHAEL

    modeling of the inverse fluidized bed reactor. In the proposed model, the trained neural network represents the kinetics of biological decomposition of pollutants in the reactor. The neural network has been trained with experimental data obtained from an inverse fluidized bed reactor treating the starch industry wastewater.

  12. Robust coherent superposition of states using quasiadiabatic inverse engineering

    Science.gov (United States)

    Liu, Yen-Huang; Tseng, Shuo-Yen

    2017-10-01

    We use the invariant-based inverse engineering subject to the quasiadiabatic condition to produce robust and high fidelity coherent superposition of quantum states. The inverse engineering provides shortcuts to the desired quantum-state evolution while the quasiadiabaticity provides robustness with respect to errors. We derive simple pulses with low areas which are robust with respect to pulse area and detuning.

  13. Formulas in inverse and ill-posed problems

    CERN Document Server

    Anikonov, Yu E

    1997-01-01

    The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.

  14. Passive, locative inversion in Ndebele1 and the unaccusative ...

    African Journals Online (AJOL)

    The article further demonstrates that Ndebele is unique by allowing active transitive verbs to undergo locative inversion. It is this uniqueness in the violation of the thematic hierarchy that persuades us to agree with Harford's (1990) proposal that locative inversion may be formulated without any contextual restriction at all.

  15. Approximation of the inverse G-frame operator

    Indian Academy of Sciences (India)

    In this paper, we introduce the concept of (strong) projection method for -frames which works for all conditional -Riesz frames. We also derive a method for approximation of the inverse -frame operator which is efficient for all -frames. We show how the inverse of -frame operator can be approximated as close as we ...

  16. Inverse synchronization of coupled fractional-order systems through ...

    Indian Academy of Sciences (India)

    A general explicit coupling via an open-plus-closed-loop control for inverse synchronization of two arbitrary unidirectionally or bidirectionally coupled fractional-order sys- tems is proposed. The inverse synchronization is proved analytically based on the stability theorem of the fractional differential equations. A key feature of ...

  17. Inverse synchronization of coupled fractional-order systems through ...

    Indian Academy of Sciences (India)

    A general explicit coupling via an open-plus-closed-loop control for inverse synchronization of two arbitrary unidirectionally or bidirectionally coupled fractional-order systems is proposed. The inverse synchronization is proved analytically based on the stability theorem of the fractional differential equations. A key feature of ...

  18. Glottal inverse filtering analysis of human voice production—A ...

    Indian Academy of Sciences (India)

    Glottal inverse filtering (GIF) refers to methods of estimating the source of voiced speech, the glottal volume velocity waveform. GIF is based on the idea of inversion, in which the effects of the vocal tract and lip radiation are cancelled from the output of the voice production mechanism, the speech signal. This article provides ...

  19. An inverse problem for space and time fractional evolution equation ...

    African Journals Online (AJOL)

    We consider an inverse problem for a space and time fractional evolution equation, interpolating the heat and wave equations, with an involution. Existence and uniqueness results for the given problem are obtained via the method of separation of variables. Key words: Inverse problem, fractional, fractional evolution ...

  20. The face-inversion effect in developmental prosopagnosia

    DEFF Research Database (Denmark)

    Klargaard, Solja K.; Starrfelt, Randi; Gerlach, Christian

    2017-01-01

    Abstract The face-inversion effect (FIE) refers to the observation that inversion impairs the processing of faces disproportionally more than other mono-oriented objects. The FIE has further been found to be abolished or reduced in acquired prosopagnosia. Whether this is also true of developmental...

  1. Inverse Modelling Problems in Linear Algebra Undergraduate Courses

    Science.gov (United States)

    Martinez-Luaces, Victor E.

    2013-01-01

    This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…

  2. Acoustic Inverse Scattering for Breast Cancer Microcalcification Detection. Addendum

    Science.gov (United States)

    2011-12-01

    07-1-0640 TITLE: Acoustic Inverse Scattering for Breast Cancer Microcalcification Detection PRINCIPAL INVESTIGATOR: Matthew A. Lewis...Acoustic Inverse Scattering for Breast Cancer Microcalcification Detection 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d... Microcalcification detection is the hallmark of mammography as a breast cancer screening modality. For technical reasons, ultrasonic detection of all

  3. Synthesis and photonic bandgap characterization of polymer inverse opals

    Energy Technology Data Exchange (ETDEWEB)

    Miguez, H.; Meseguer, F.; Lopez, C. [Consejo Superior de Investigaciones Cientificas, Madrid (Spain). Inst. de Ciencia de Materiales; Universidad Politecnica de Valencia (Spain). Centro Tecnologico de Ondas; Lopez-Tejeira, F.; Sanchez-Dehesa, J. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica de la Materia Condensada

    2001-03-16

    Polymer inverse opals with long-range order have been fabricated and their photonic crystal behavior examined. Good agreement between band structure calculations and experiment is found. It is envisaged that these inverse opals could be used for the modification of the electronic properties of incorporated luminescent materials and as matrices for the synthesis of spherical colloidal particles. (orig.)

  4. Hybrid inverse design method for nonlifting bodies in incompressible flow

    CSIR Research Space (South Africa)

    Broughton, BA

    2006-11-01

    Full Text Available A methodology for the inverse design of non-lifting axisymmetric bodies in compressible flow is presented. In this method, an inverse design approach based on conformal mapping is used to design a set of airfoils in isolation. These airfoils...

  5. Bayesian ISOLA: new tool for automated centroid moment tensor inversion

    Czech Academy of Sciences Publication Activity Database

    Vackář, J.; Burjánek, Jan; Gallovič, F.; Zahradník, J.; Clinton, J.

    2017-01-01

    Roč. 210, č. 2 (2017), s. 693-705 ISSN 0956-540X Institutional support: RVO:67985530 Keywords : inverse theory * waveform inversion * computational seismology * earthquake source observations * seismic noise Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.414, year: 2016

  6. REGULARIZED D-BAR METHOD FOR THE INVERSE CONDUCTIVITY PROBLEM

    DEFF Research Database (Denmark)

    Knudsen, Kim; Lassas, Matti; Mueller, Jennifer

    2009-01-01

    A strategy for regularizing the inversion procedure for the two-dimensional D-bar reconstruction algorithm based on the global uniqueness proof of Nachman [Ann. Math. 143 (1996)] for the ill-posed inverse conductivity problem is presented. The strategy utilizes truncation of the boundary integral...

  7. A direct inversion scheme for deep resistivity sounding data using ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 113; Issue 1. A direct inversion scheme for deep resistivity ... In the present work, we investigate the performance of neural networks in the direct inversion of DC sounding data, without the need of a priori information. We introduce a two-step network approach ...

  8. Time-independent inverse compton spectrum for photons from a ...

    African Journals Online (AJOL)

    The general theoretical aspects of inverse Compton scattering was investigated and an equation for the timeindependent inverse Compton spectrum for photons from a plasma cloud of finite extent was derived. This was done by convolving the Kompaneets equation used for describing the evolution of the photon spectrum ...

  9. Porosity prediction from seismic inversion, Lavrans Field, Halten Terrace

    Energy Technology Data Exchange (ETDEWEB)

    Dolberg, David M.

    1998-12-31

    This presentation relates to porosity prediction from seismic inversion. The porosity prediction concerns the Lavrans Field of the Halten Terrace on the Norwegian continental shelf. The main themes discussed here cover seismic inversion, rock physics, statistical analysis - verification of well trends, upscaling/sculpting, and implementation. 2 refs., 6 figs.

  10. Electrocaloric effect in BaTiO3 at all three ferroelectric transitions: Anisotropy and inverse caloric effects

    Science.gov (United States)

    Marathe, Madhura; Renggli, Damian; Sanlialp, Mehmet; Karabasov, Maksim O.; Shvartsman, Vladimir V.; Lupascu, Doru C.; Grünebohm, Anna; Ederer, Claude

    2017-07-01

    We study the electrocaloric (EC) effect in bulk BaTiO3 (BTO) using molecular dynamics simulations of a first principles-based effective Hamiltonian, combined with direct measurements of the adiabatic EC temperature change in BTO single crystals. We examine in particular the dependence of the EC effect on the direction of the applied electric field at all three ferroelectric transitions, and we show that the EC response is strongly anisotropic. Most strikingly, an inverse caloric effect, i.e., a temperature increase under field removal, can be observed at both ferroelectric-ferroelectric transitions for certain orientations of the applied field. Using the generalized Clausius-Clapeyron equation, we show that the inverse effect occurs exactly for those cases where the field orientation favors the higher temperature/higher entropy phase. Our simulations show that temperature changes of around 1 K can, in principle, be obtained at the tetragonal-orthorhombic transition close to room temperature, even for small applied fields, provided that the applied field is strong enough to drive the system across the first-order transition line. Our direct EC measurements for BTO single crystals at the cubic-tetragonal and at the tetragonal-orthorhombic transitions are in good qualitative agreement with our theoretical predictions, and in particular confirm the occurrence of an inverse EC effect at the tetragonal-orthorhombic transition for electric fields applied along the [001] pseudocubic direction.

  11. Mathematical model of MMR inversion for geophysical data

    Directory of Open Access Journals (Sweden)

    Suabsagun Yooyuanyong

    2007-09-01

    Full Text Available In this paper, we present an analysis of the solution to a number of geophysical inverse problems which are generally non-unique. The mathematical inverse problem that arises is commonly ill-posed in the sense that small changes in the data lead to large changes in the solution. We conduct the inversion algorithm to explore the conductivity for the ground structure. The algorithm uses the data in the form of magnetic field measurements for magnetometric resistivity (MMR. The inversion example is performed to investigate the conductivity ground profile that best fits the observed data. The result is compared with the true model and discussed to show the efficiency of the method. The model for the inversion example with the apparent conductivity and the true conductivity are plotted to show the convergence of the algorithm.

  12. Sperm chromosome analysis in two cases of paracentric inversion.

    Science.gov (United States)

    Vialard, François; Delanete, Audoin; Clement, Patrice; Simon-Bouy, Brigitte; Aubriot, François Xavier; Selva, Jacqueline

    2007-02-01

    To examine sperm meiotic segregation in men with paracentric inversions. Cases reports, literature review. Departments of reproductive biology, cytogenetics, gynaecology, and obstetrics. Two patients referred for infertility, heterozygous for a paracentric inversion. Fluorescence in situ hybridization (FISH) with specific probes and X/Y/18 centromeric probes on 1,000 spermatozoa for the 2 patients and 10 controls. Sperm aneuploidy frequency. The FISH analysis using the specific probes for the paracentric inversion indicated low disequilibrium (0.4% and 0.5%). The FISH analysis using X/Y/18 centromeric probes indicated aneuploidy frequencies (0.3% and 1.1%), identical to those of control patients with the same sperm parameters. Paracentric inversion seems to be associated with a very low risk of aneuploidy. A larger study is necessary to explore all chromosome inversions.

  13. The method of approximate inverse theory and applications

    CERN Document Server

    Schuster, Thomas

    2007-01-01

    Inverse problems arise whenever one tries to calculate a required quantity from given measurements of a second quantity that is associated to the first one. Besides medical imaging and non-destructive testing, inverse problems also play an increasing role in other disciplines such as industrial and financial mathematics. Hence, there is a need for stable and efficient solvers. The book is concerned with the method of approximate inverse which is a regularization technique for stably solving inverse problems in various settings such as L2-spaces, Hilbert spaces or spaces of distributions. The performance and functionality of the method is demonstrated on several examples from medical imaging and non-destructive testing such as computerized tomography, Doppler tomography, SONAR, X-ray diffractometry and thermoacoustic computerized tomography. The book addresses graduate students and researchers interested in the numerical analysis of inverse problems and regularization techniques or in efficient solvers for the...

  14. Software product for inversion of 3D seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Bown, J.

    1997-03-01

    ISIS3D Seismic Inversion removes the effect of the wavelet from seismic data, and in so doing determines model for the subsurface variation of a real physical parameter, acoustic impedance. The displays based on the results produced by ISIS3D allow improved lithologic interpretation for reservoir delineation. ISIS3D assists the interpreter with respect to: Resolution of thin layers; Variations in lithology; Porosity variations within a reservoir; and Structural interpretation. The ISIS inversion process is divided into four fundamental steps: Calibration of the well logs and derivation of acoustic impedance and reflectivity logs; Determination of the optimal wavelet for the seismic inversion algorithm; Construction of a prior acoustic impedance model for use by the seismic inversion algorithm; and Globally optimised, multi-trace seismic inversion. (EG)

  15. Determination of temperature of moving surface by sensitivity analysis

    CERN Document Server

    Farhanieh, B

    2002-01-01

    In this paper sensitivity analysis in inverse problem solutions is employed to estimate the temperature of a moving surface. Moving finite element method is used for spatial discretization. Time derivatives are approximated using Crank-Nicklson method. The accuracy of the solution is assessed by simulation method. The convergence domain is investigated for the determination of the temperature of a solid fuel.

  16. PRELIMINARY STUDIES 'ON TEMPERATURE DEPENDENCE 'Q,F ...

    African Journals Online (AJOL)

    ferromagnetic has characteristic temperature/magnetisation curves. At varying temperatures the magnetic susceptibility of a diamagnet is constant. (Fig.1), while it decreases for paramagnetic materials (Fig.2). The paramagnetic materials obey Curie law,. (eqn.1) in which the magnetic susceptibility varies inversely with.

  17. Simultaneous inversion of the background velocity and the perturbation in full-waveform inversion

    KAUST Repository

    Wu, Zedong

    2015-09-02

    The gradient of standard full-waveform inversion (FWI) attempts to map the residuals in the data to perturbations in the model. Such perturbations may include smooth background updates from the transmission components and high wavenumber updates from the reflection components. However, if we fix the reflection components using imaging, the gradient of what is referred to as reflected-waveform inversion (RWI) admits mainly transmission background-type updates. The drawback of existing RWI methods is that they lack an optimal image capable of producing reflections within the convex region of the optimization. Because the influence of velocity on the data was given mainly by its background (propagator) and perturbed (reflectivity) components, we have optimized both components simultaneously using a modified objective function. Specifically, we used an objective function that combined the data generated from a source using the background velocity, and that by the perturbed velocity through Born modeling, to fit the observed data. When the initial velocity was smooth, the data modeled from the source using the background velocity will mainly be reflection free, and most of the reflections were obtained from the image (perturbed velocity). As the background velocity becomes more accurate and can produce reflections, the role of the image will slowly diminish, and the update will be dominated by the standard FWI gradient to obtain high resolution. Because the objective function was quadratic with respect to the image, the inversion for the image was fast. To update the background velocity smoothly, we have combined different components of the gradient linearly through solving a small optimization problem. Application to the Marmousi model found that this method converged starting with a linearly increasing velocity, and with data free of frequencies below 4 Hz. Application to the 2014 Chevron Gulf of Mexico imaging challenge data set demonstrated the potential of the

  18. Amphioxus mouth after dorso-ventral inversion.

    Science.gov (United States)

    Kaji, Takao; Reimer, James D; Morov, Arseniy R; Kuratani, Shigeru; Yasui, Kinya

    2016-01-01

    Deuterostomes (animals with 'secondary mouths') are generally accepted to develop the mouth independently of the blastopore. However, it remains largely unknown whether mouths are homologous among all deuterostome groups. Unlike other bilaterians, in amphioxus the mouth initially opens on the left lateral side. This peculiar morphology has not been fully explained in the evolutionary developmental context. We studied the developmental process of the amphioxus mouth to understand whether amphioxus acquired a new mouth, and if so, how it is related to or differs from mouths in other deuterostomes. The left first somite in amphioxus produces a coelomic vesicle between the epidermis and pharynx that plays a crucial role in the mouth opening. The vesicle develops in association with the amphioxus-specific Hatschek nephridium, and first opens into the pharynx and then into the exterior as a mouth. This asymmetrical development of the anterior-most somites depends on the Nodal-Pitx signaling unit, and the perturbation of laterality-determining Nodal signaling led to the disappearance of the vesicle, producing a symmetric pair of anterior-most somites that resulted in larvae lacking orobranchial structures. The vesicle expressed bmp2/4, as seen in ambulacrarian coelomic pore-canals, and the mouth did not open when Bmp2/4 signaling was blocked. We conclude that the amphioxus mouth, which uniquely involves a mesodermal coelomic vesicle, shares its evolutionary origins with the ambulacrarian coelomic pore-canal. Our observations suggest that there are at least three types of mouths in deuterostomes, and that the new acquisition of chordate mouths was likely related to the dorso-ventral inversion that occurred in the last common ancestor of chordates.

  19. Flame structure of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.

    2014-07-01

    This paper presents high speed images of OH-PLIF at 10. kHz simultaneously with 2D PIV (particle image velocimetry) measurements collected along the entire length of an inverse diffusion flame with circumferentially arranged methane fuel jets. For a fixed fuel flow rate, the central air jet Re was varied, leading to four air to fuel velocity ratios, namely Vr = 20.7, 29, 37.4 and 49.8. A double flame structure could be observed composed of a lower fuel entrainment region and an upper mixing and intense combustion region. The entrainment region was enveloped by an early OH layer, and then merged through a very thin OH neck to an annular OH layer located at the shear layer of the air jet. The two branches of this annular OH layer broaden as they moved downstream and eventfully merged together. Three types of events were observed common to all flames: breaks, closures and growing kernels. In upstream regions of the flames, the breaks were counterbalanced by flame closures. These breaks in OH signal were found to occur at locations where locally high velocity flows were impinging on the flame. As the Vr increased to 37.4, the OH layers became discontinuous over the downstream region of the flame, and these regions of low or no OH moved upstream. With further increases in Vr, these OH pockets act as flame kernels, growing as they moved downstream, and became the main mechanism for flame re-ignition. Along the flame length, the direction of the two dimensional principle compressive strain rate axis exhibited a preferred orientation of approximately 45° with respect to the flow direction. Moreover, the OH zones were associated with elongated regions of high vorticity. © 2013 Elsevier Inc.

  20. Inverse relationship between sleep duration and myopia.

    Science.gov (United States)

    Jee, Donghyun; Morgan, Ian G; Kim, Eun Chul

    2016-05-01

    To investigate the association between sleep duration and myopia. This population-based, cross-sectional study using a nationwide, systemic, stratified, multistage, clustered sampling method included a total of 3625 subjects aged 12-19 years who participated in the Korean National Health and Nutrition Examination Survey 2008-2012. All participants underwent ophthalmic examination and a standardized interview including average sleep duration (hr/day), education, physical activity and economic status (annual household income). Refractive error was measured by autorefraction without cycloplegia. Myopia and high myopia were defined as ≤-0.50 dioptres (D) and ≤-6.0 D, respectively. Sleep durations were classified into 5 categories: 9 hr. The overall prevalence of myopia and high myopia were 77.8% and 9.4%, respectively, and the overall sleep duration was 7.1 hr/day. The refractive error increased by 0.10 D per 1 hr increase in sleep after adjusting for potential confounders including sex, age, height, education level, economic status and physical activity. The adjusted odds ratio (OR) for refractive error was 0.90 (95% confidence interval [CI], 0.83-0.97) per 1 hr increase in sleep. The adjusted OR for myopia was decreased in those with >9 hr of sleep (OR, 0.59; 95% CI, 0.38-0.93; p for trend = 0.006) than in those with myopia was not associated with sleep duration. This study provides the population-based, epidemiologic evidence for an inverse relationship between sleep duration and myopia in a representative population of Korean adolescents. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  1. Effect of inversion time on the precision of myocardial late gadolinium enhancement quantification evaluated with synthetic inversion recovery MR imaging

    NARCIS (Netherlands)

    Varga-Szemes, Akos; van der Geest, Rob J; Schoepf, U Joseph; Spottiswoode, Bruce S; De Cecco, Carlo N; Muscogiuri, Giuseppe; Wichmann, Julian L; Mangold, Stefanie; Fuller, Stephen R; Maurovich-Horvat, Pal; Merkely, Bela; Litwin, Sheldon E; Vliegenthart, Rozemarijn; Suranyi, Pal

    OBJECTIVES: To evaluate the influence of inversion time (TI) on the precision of myocardial late gadolinium enhancement (LGE) quantification using synthetic inversion recovery (IR) imaging in patients with myocardial infarction (MI). METHODS: Fifty-three patients with suspected prior MI underwent

  2. Study of microporosity of active carbon spheres using inverse gas chromatographic and static adsorption techniques.

    Science.gov (United States)

    Singh, G S; Lal, Darshan; Tripathi, V S

    2004-05-21

    Active carbon spheres (ACSs) with different porous structures prepared in the laboratory were characterized by static adsorption studies and inverse gas chromatographic (IGC) technique. Surface properties such as BET surface area, micropore volume and pore size in different regions of porosity were determined using different theoretical approaches. Thermodynamic parameters such as isosteric heat of adsorption, free energy of adsorption and dispersive component of the surface energy were determined using IGC technique from corrected retention volume of normal alkanes and corresponding branched alkanes. Thermodynamic parameters were used to assess the molecular sieving property of ACSs. It is observed that thermodynamic properties strongly depend on microporous character of ACSs. The variations observed in pore size determined by both of the techniques that is by static adsorption measurements and IGC may be attributed to the variation in analysis temperature, i.e. liquid N2 temperature for adsorption studies and elevated temperature for IGC technique.

  3. Structure and giant inverse magnetocaloric effect of epitaxial Ni-Co-Mn-Al films

    Science.gov (United States)

    Teichert, N.; Kucza, D.; Yildirim, O.; Yuzuak, E.; Dincer, I.; Behler, A.; Weise, B.; Helmich, L.; Boehnke, A.; Klimova, S.; Waske, A.; Elerman, Y.; Hütten, A.

    2015-05-01

    The structural, magnetic, and magnetocaloric properties of epitaxial Ni-Co-Mn-Al thin films with different compositions have been studied. The films were deposited on MgO(001) substrates by co-sputtering on heated substrates. All films show a martensitic transformation, where the transformation temperatures are strongly dependent on the composition. The structure of the martensite phase is shown to be 14 M . The metamagnetic martensitic transformation occurs from strongly ferromagnetic austenite to weakly magnetic martensite. The structural properties of the films were investigated by atomic force microscopy and temperature dependent x-ray diffraction. Magnetic and magnetocaloric properties were analyzed using temperature dependent and isothermal magnetization measurements. We find that Ni41Co10.4Mn34.8Al13.8 films show giant inverse magnetocaloric effects with magnetic entropy change of 17.5 J kg-1K-1 for μ0Δ H =5 T.

  4. Centered Differential Waveform Inversion with Minimum Support Regularization

    KAUST Repository

    Kazei, Vladimir

    2017-05-26

    Time-lapse full-waveform inversion has two major challenges. The first one is the reconstruction of a reference model (baseline model for most of approaches). The second is inversion for the time-lapse changes in the parameters. Common model approach is utilizing the information contained in all available data sets to build a better reference model for time lapse inversion. Differential (Double-difference) waveform inversion allows to reduce the artifacts introduced into estimates of time-lapse parameter changes by imperfect inversion for the baseline-reference model. We propose centered differential waveform inversion (CDWI) which combines these two approaches in order to benefit from both of their features. We apply minimum support regularization commonly used with electromagnetic methods of geophysical exploration. We test the CDWI method on synthetic dataset with random noise and show that, with Minimum support regularization, it provides better resolution of velocity changes than with total variation and Tikhonov regularizations in time-lapse full-waveform inversion.

  5. Frequency-domain waveform inversion using the unwrapped phase

    KAUST Repository

    Choi, Yun Seok

    2011-01-01

    Phase wrapping in the frequency-domain (or cycle skipping in the time-domain) is the major cause of the local minima problem in the waveform inversion. The unwrapped phase has the potential to provide us with a robust and reliable waveform inversion, with reduced local minima. We propose a waveform inversion algorithm using the unwrapped phase objective function in the frequency-domain. The unwrapped phase, or what we call the instantaneous traveltime, is given by the imaginary part of dividing the derivative of the wavefield with respect to the angular frequency by the wavefield itself. As a result, the objective function is given a traveltime-like function, which allows us to smooth it and reduce its nonlinearity. The gradient of the objective function is computed using the back-propagation algorithm based on the adjoint-state technique. We apply both our waveform inversion algorithm using the unwrapped phase and the conventional waveform inversion and show that our inversion algorithm gives better convergence to the true model than the conventional waveform inversion. © 2011 Society of Exploration Geophysicists.

  6. Displacement Parameter Inversion for a Novel Electromagnetic Underground Displacement Sensor

    Directory of Open Access Journals (Sweden)

    Nanying Shentu

    2014-05-01

    Full Text Available Underground displacement monitoring is an effective method to explore deep into rock and soil masses for execution of subsurface displacement measurements. It is not only an important means of geological hazards prediction and forecasting, but also a forefront, hot and sophisticated subject in current geological disaster monitoring. In previous research, the authors had designed a novel electromagnetic underground horizontal displacement sensor (called the H-type sensor by combining basic electromagnetic induction principles with modern sensing techniques and established a mutual voltage measurement theoretical model called the Equation-based Equivalent Loop Approach (EELA. Based on that work, this paper presents an underground displacement inversion approach named “EELA forward modeling-approximate inversion method”. Combining the EELA forward simulation approach with the approximate optimization inversion theory, it can deduce the underground horizontal displacement through parameter inversion of the H-type sensor. Comprehensive and comparative studies have been conducted between the experimentally measured and theoretically inversed values of horizontal displacement under counterpart conditions. The results show when the measured horizontal displacements are in the 0–100 mm range, the horizontal displacement inversion discrepancy is generally tested to be less than 3 mm under varied tilt angles and initial axial distances conditions, which indicates that our proposed parameter inversion method can predict underground horizontal displacement measurements effectively and robustly for the H-type sensor and the technique is applicable for practical geo-engineering applications.

  7. HLRF-BFGS-Based Algorithm for Inverse Reliability Analysis

    Directory of Open Access Journals (Sweden)

    Rakul Bharatwaj Ramesh

    2017-01-01

    Full Text Available This study proposes an algorithm to solve inverse reliability problems with a single unknown parameter. The proposed algorithm is based on an existing algorithm, the inverse first-order reliability method (inverse-FORM, which uses the Hasofer Lind Rackwitz Fiessler (HLRF algorithm. The initial algorithm analyzed in this study was developed by modifying the HLRF algorithm in inverse-FORM using the Broyden-Fletcher-Goldarb-Shanno (BFGS update formula completely. Based on numerical experiments, this modification was found to be more efficient than inverse-FORM when applied to most of the limit state functions considered in this study, as it requires comparatively a smaller number of iterations to arrive at the solution. However, to achieve this higher computational efficiency, this modified algorithm sometimes compromised the accuracy of the final solution. To overcome this drawback, a hybrid method by using both the algorithms, original HLRF algorithm and the modified algorithm with BFGS update formula, is proposed. This hybrid algorithm achieves better computational efficiency, compared to inverse-FORM, without compromising the accuracy of the final solution. Comparative numerical examples are provided to demonstrate the improved performance of this hybrid algorithm over that of inverse-FORM in terms of accuracy and efficiency.

  8. Inverse uncertainty quantification of reactor simulations under the Bayesian framework using surrogate models constructed by polynomial chaos expansion

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xu, E-mail: xuwu2@illinois.edu; Kozlowski, Tomasz

    2017-03-15

    Modeling and simulations are naturally augmented by extensive Uncertainty Quantification (UQ) and sensitivity analysis requirements in the nuclear reactor system design, in which uncertainties must be quantified in order to prove that the investigated design stays within acceptance criteria. Historically, expert judgment has been used to specify the nominal values, probability density functions and upper and lower bounds of the simulation code random input parameters for the forward UQ process. The purpose of this paper is to replace such ad-hoc expert judgment of the statistical properties of input model parameters with inverse UQ process. Inverse UQ seeks statistical descriptions of the model random input parameters that are consistent with the experimental data. Bayesian analysis is used to establish the inverse UQ problems based on experimental data, with systematic and rigorously derived surrogate models based on Polynomial Chaos Expansion (PCE). The methods developed here are demonstrated with the Point Reactor Kinetics Equation (PRKE) coupled with lumped parameter thermal-hydraulics feedback model. Three input parameters, external reactivity, Doppler reactivity coefficient and coolant temperature coefficient are modeled as uncertain input parameters. Their uncertainties are inversely quantified based on synthetic experimental data. Compared with the direct numerical simulation, surrogate model by PC expansion shows high efficiency and accuracy. In addition, inverse UQ with Bayesian analysis can calibrate the random input parameters such that the simulation results are in a better agreement with the experimental data.

  9. `Inverse Crime' and Model Integrity in Lightcurve Inversion applied to unresolved Space Object Identification

    Science.gov (United States)

    Henderson, Laura S.; Subbarao, Kamesh

    2016-12-01

    This work presents a case wherein the selection of models when producing synthetic light curves affects the estimation of the size of unresolved space objects. Through this case, "inverse crime" (using the same model for the generation of synthetic data and data inversion), is illustrated. This is done by using two models to produce the synthetic light curve and later invert it. It is shown here that the choice of model indeed affects the estimation of the shape/size parameters. When a higher fidelity model (henceforth the one that results in the smallest error residuals after the crime is committed) is used to both create, and invert the light curve model the estimates of the shape/size parameters are significantly better than those obtained when a lower fidelity model (in comparison) is implemented for the estimation. It is therefore of utmost importance to consider the choice of models when producing synthetic data, which later will be inverted, as the results might be misleadingly optimistic.

  10. `Inverse Crime' and Model Integrity in Lightcurve Inversion applied to unresolved Space Object Identification

    Science.gov (United States)

    Henderson, Laura S.; Subbarao, Kamesh

    2017-12-01

    This work presents a case wherein the selection of models when producing synthetic light curves affects the estimation of the size of unresolved space objects. Through this case, "inverse crime" (using the same model for the generation of synthetic data and data inversion), is illustrated. This is done by using two models to produce the synthetic light curve and later invert it. It is shown here that the choice of model indeed affects the estimation of the shape/size parameters. When a higher fidelity model (henceforth the one that results in the smallest error residuals after the crime is committed) is used to both create, and invert the light curve model the estimates of the shape/size parameters are significantly better than those obtained when a lower fidelity model (in comparison) is implemented for the estimation. It is therefore of utmost importance to consider the choice of models when producing synthetic data, which later will be inverted, as the results might be misleadingly optimistic.

  11. Characterization of a Method for Inverse Heat Conduction Using Real and Simulated Thermocouple Data

    Science.gov (United States)

    Pizzo, Michelle E.; Glass, David E.

    2017-01-01

    It is often impractical to instrument the external surface of high-speed vehicles due to the aerothermodynamic heating. Temperatures can instead be measured internal to the structure using embedded thermocouples, and direct and inverse methods can then be used to estimate temperature and heat flux on the external surface. Two thermocouples embedded at different depths are required to solve direct and inverse problems, and filtering schemes are used to reduce noise in the measured data. Accuracy in the estimated surface temperature and heat flux is dependent on several factors. Factors include the thermocouple location through the thickness of a material, the sensitivity of the surface solution to the error in the specified location of the embedded thermocouples, and the sensitivity to the error in thermocouple data. The effect of these factors on solution accuracy is studied using the methodology discussed in the work of Pizzo, et. al.1 A numerical study is performed to determine if there is an optimal depth at which to embed one thermocouple through the thickness of a material assuming that a second thermocouple is installed on the back face. Solution accuracy will be discussed for a range of embedded thermocouple depths. Moreover, the sensitivity of the surface solution to (a) the error in the specified location of the embedded thermocouple and to (b) the error in the thermocouple data are quantified using numerical simulation, and the results are discussed.

  12. Heterogeneity of pericentric inversions of the human y chromosome.

    Science.gov (United States)

    Knebel, S; Pasantes, J J; Thi, D A D; Schaller, F; Schempp, W

    2011-01-01

    Pericentric inversions of the human Y chromosome (inv(Y)) are the result of breakpoints in Yp and Yq. Whether these breakpoints occur recurrently on specific hotspots or appear at different locations along the repeat structure of the human Y chromosome is an open question. Employing FISH for a better definition and refinement of the inversion breakpoints in 9 cases of inv(Y) chromosomes, with seemingly unvarying metacentric appearance after banding analysis, unequivocally resulted in heterogeneity of the pericentric inversions of the human Y chromosome. While in all 9 inv(Y) cases the inversion breakpoints in the short arm fall in a gene-poor region of X-transposed sequences proximal to PAR1 and SRY in Yp11.2, there are clearly 3 different inversion breakpoints in the long arm. Inv(Y)-types I and II are familial cases showing inversion breakpoints that map in Yq11.23 or in Yq11.223, outside the ampliconic fertility gene cluster of DAZ and CDY in AZFc. Inv(Y)-type III shows an inversion breakpoint in Yq11.223 that splits the DAZ and CDY fertility gene-cluster in AZFc. This inversion type is representative of both familial cases and cases with spermatogenetic impairment. In a further familial case of inv(Y), with almost acrocentric morphology, the breakpoints are within the TSPY and RBMY repeat in Yp and within the heterochromatin in Yq. Therefore, the presence of specific inversion breakpoints leading to impaired fertility in certain inv(Y) cases remains an open question. Copyright © 2011 S. Karger AG, Basel.

  13. Approximate Multi-Parameter Inverse Scattering Using Pseudodifferential Scaling

    Science.gov (United States)

    Nammour, Rami

    I propose a computationally efficient method to approximate the inverse of the normal operator arising in the multi-parameter linearized inverse problem for reflection seismology in two and three spatial dimensions. Solving the inverse problem using direct matrix methods like Gaussian elimination is computationally infeasible. In fact, the application of the normal operator requires solving large scale PDE problems. However, under certain conditions, the normal operator is a matrix of pseudodifferential operators. This manuscript shows how to generalize Cramer's rule for matrices to approximate the inverse of a matrix of pseudodifferential operators. Approximating the solution to the normal equations proceeds in two steps: (1) First, a series of applications of the normal operator to specific permutations of the right hand side. This step yields a phase-space scaling of the solution. Phase space scalings are scalings in both physical space and Fourier space. Second, a correction for the phase space scaling. This step requires applying the normal operator once more. The cost of approximating the inverse is a few applications of the normal operator (one for one parameter, two for two parameters, six for three parameters). The approximate inverse is an adequately accurate solution to the linearized inverse problem when it is capable of fitting the data to a prescribed precision. Otherwise, the approximate inverse of the normal operator might be used to precondition Krylov subspace methods in order to refine the data fit. I validate the method on a linearized version of the Marmousi model for constant density acoustics for the one-parameter problem. For the two parameter problem, the inversion of a variable density acoustics layered model corroborates the success of the proposed method. Furthermore, this example details the various steps of the method. I also apply the method to a 1D section of the Marmousi model to test the behavior of the method on complex two

  14. Radiation Source Mapping with Bayesian Inverse Methods

    Science.gov (United States)

    Hykes, Joshua Michael

    We present a method to map the spectral and spatial distributions of radioactive sources using a small number of detectors. Locating and identifying radioactive materials is important for border monitoring, accounting for special nuclear material in processing facilities, and in clean-up operations. Most methods to analyze these problems make restrictive assumptions about the distribution of the source. In contrast, the source-mapping method presented here allows an arbitrary three-dimensional distribution in space and a flexible group and gamma peak distribution in energy. To apply the method, the system's geometry and materials must be known. A probabilistic Bayesian approach is used to solve the resulting inverse problem (IP) since the system of equations is ill-posed. The probabilistic approach also provides estimates of the confidence in the final source map prediction. A set of adjoint flux, discrete ordinates solutions, obtained in this work by the Denovo code, are required to efficiently compute detector responses from a candidate source distribution. These adjoint fluxes are then used to form the linear model to map the state space to the response space. The test for the method is simultaneously locating a set of 137Cs and 60Co gamma sources in an empty room. This test problem is solved using synthetic measurements generated by a Monte Carlo (MCNP) model and using experimental measurements that we collected for this purpose. With the synthetic data, the predicted source distributions identified the locations of the sources to within tens of centimeters, in a room with an approximately four-by-four meter floor plan. Most of the predicted source intensities were within a factor of ten of their true value. The chi-square value of the predicted source was within a factor of five from the expected value based on the number of measurements employed. With a favorable uniform initial guess, the predicted source map was nearly identical to the true distribution

  15. Three-dimensional nonlinear conjugate gradient parallel inversion with full information of marine magnetotellurics

    Science.gov (United States)

    Zhang, Kun; Yan, Jiayong; Lü, Qingtian; Zhao, Jinhua; Hu, Hao

    2017-04-01

    A new inversion method using marine magnetotellurics is proposed based on previous studies using the nonlinear conjugate gradient method. A numerical example is used to verify the inversion algorithm and program. The inversion model and response resemble the synthetic model. Some technologies have been added to the inversion algorithm: parallel structure, terrain inversion and static shift correction.

  16. Plate-wide stress relaxation explains European Palaeocene basin inversions

    DEFF Research Database (Denmark)

    Nielsen, S.B.; Thomsen, Erik; Hansen, D.L.

    2005-01-01

    of the in-plane tectonic stress. The onset of relaxation inversions was plate-wide and simultaneous, and may have been triggered by stress changes caused by elevation of the North Atlantic lithosphere by the Iceland plume or the drop in NS convergence rate between Africa and Europe....... Paleocene phase was characterized by domal uplift of a wider area with only mild fault movements, and formation of more distal and shallow marginal troughs. A simple flexural model explains how domal, secondary inversion follows inevitably from primary, convergence related inversion upon relaxation...

  17. Viscoelastic material inversion using Sierra-SD and ROL

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Aquino, Wilkins [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ridzal, Denis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kouri, Drew Philip [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); van Bloemen Waanders, Bart Gustaaf [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Urbina, Angel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-11-01

    In this report we derive frequency-domain methods for inverse characterization of the constitutive parameters of viscoelastic materials. The inverse problem is cast in a PDE-constrained optimization framework with efficient computation of gradients and Hessian vector products through matrix free operations. The abstract optimization operators for first and second derivatives are derived from first principles. Various methods from the Rapid Optimization Library (ROL) are tested on the viscoelastic inversion problem. The methods described herein are applied to compute the viscoelastic bulk and shear moduli of a foam block model, which was recently used in experimental testing for viscoelastic property characterization.

  18. Paracentric inversion of Yq and review of the literature.

    Science.gov (United States)

    Aiello, V; Astolfi, N; Gruppioni, R; Buldrini, B; Prontera, P; Bonfatti, A; Sensi, A; Calzolari, E

    2007-01-01

    We report on the second prenatal diagnosis of familial paracentric inversion of the long arm of Y chromosome [46, X, inv(Y)(q11.2q12)]. The anomaly was detected through an amniocentesis performed because of advanced maternal age. The inversion has been detected by standard GTG banding methods and better characterized by FISH with painting probe and specific satellite probes DYZ1 and DYZ3. The inversion derived from phenotypically normal father. Pregnancy was uneventful and an healthy child was born. We discuss the issue concerning genetic prenatal counselling of this rare condition and we report the clinical follow up of the child.

  19. Polytene chromosome map and inversion polymorphism in Drosophila mediopunctata

    Directory of Open Access Journals (Sweden)

    Ananina Galina

    2002-01-01

    Full Text Available Drosophila mediopunctata belongs to the tripunctata group, and is one of the commonest Drosophila species collected in some places in Brazil, especially in the winter. A standard map of the polytene chromosomes is presented. The breakpoints of the naturally occurring chromosomal rearrangements are marked on the map. The distribution of breaking points through the chromosomes of D. mediopunctata is apparently non-random. Chromosomes X, II and IV show inversion polymorphisms. Chromosome II is the most polymorphic, with 17 inversions, 8 inversions in the distal region and 9 in the proximal region. Chromosome X has four different gene arrangements, while chromosome IV has only two.

  20. Timing of growth inhibition following shoot inversion in Pharbitis nil

    Science.gov (United States)

    Abdel-Rahman, A. M.; Cline, M. G.

    1989-01-01

    Shoot inversion in Pharbitis nil results in the enhancement of ethylene production and in the inhibition of elongation in the growth zone of the inverted shoot. The initial increase in ethylene production previously was detected within 2 to 2.75 hours after inversion. In the present study, the initial inhibition of shoot elongation was detected within 1.5 to 4 hours with a weighted mean of 2.4 hours. Ethylene treatment of upright shoots inhibited elongation in 1.5 hours. A cause and effect relationship between shoot inversion-enhanced ethylene production and inhibition of elongation cannot be excluded.

  1. 3D Inversion of SQUID Magnetic Tensor Data

    DEFF Research Database (Denmark)

    Zhdanov, Michael; Cai, Hongzhu; Wilson, Glenn

    2012-01-01

    Developments in SQUID-based technology have enabled direct measurement of magnetic tensor data for geophysical exploration. For quantitative interpretation, we introduce 3D regularized inversion for magnetic tensor data. For mineral exploration-scale targets, our model studies show that magnetic...... tensor data have significantly improved resolution compared to magnetic vector data for the same model. We present a case study for the 3D regularized inversion of magnetic tensor data acquired over a magnetite skarn at Tallawang, Australia. The results obtained from our 3D regularized inversion agree...

  2. Full Waveform Inversion Using Oriented Time Migration Method

    KAUST Repository

    Zhang, Zhendong

    2016-04-12

    Full waveform inversion (FWI) for reflection events is limited by its linearized update requirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate the resulting gradient can have an inaccurate update direction leading the inversion to converge into what we refer to as local minima of the objective function. In this thesis, I first look into the subject of full model wavenumber to analysis the root of local minima and suggest the possible ways to avoid this problem. And then I analysis the possibility of recovering the corresponding wavenumber components through the existing inversion and migration algorithms. Migration can be taken as a generalized inversion method which mainly retrieves the high wavenumber part of the model. Conventional impedance inversion method gives a mapping relationship between the migration image (high wavenumber) and model parameters (full wavenumber) and thus provides a possible cascade inversion strategy to retrieve the full wavenumber components from seismic data. In the proposed approach, consider a mild lateral variation in the model, I find an analytical Frechet derivation corresponding to the new objective function. In the proposed approach, the gradient is given by the oriented time-domain imaging method. This is independent of the background velocity. Specifically, I apply the oriented time-domain imaging (which depends on the reflection slope instead of a background velocity) on the data residual to obtain the geometrical features of the velocity perturbation. Assuming that density is constant, the conventional 1D impedance inversion method is also applicable for 2D or 3D velocity inversion within the process of FWI. This method is not only capable of inverting for velocity, but it is also capable of retrieving anisotropic parameters relying on linearized representations of the reflection response. To eliminate the cross-talk artifacts between different parameters, I

  3. Inverse source localization for EEG using system identification approach

    Science.gov (United States)

    Xanthopoulos, Petros; Yatsenko, Vitaliy; Kammerdiner, Alla; Pardalos, Panos M.

    2007-11-01

    The reconstruction of the brain current sources from scalp electric recordings (Electroen-cephalogram) also known as the inverse source localization problem is a highly underdetermined problem in the field of computational neuroscience, and this problem still remains open . In this chapter we propose an alternative formulation for the inverse electroencephalography (EEG) problem based on optimization theory. For simulation purposes, a three shell realistic head model based on an averaged magnetic resonance imaging (MRI) segmentation and Boundary Element method (BEM) is constructed. System identification methodology is employed in order to determine the parameters of the system. In the last stage the inverse problem is solved using the computed forward model.

  4. Definition of the form of coal spontaneous combustion source as the inverse problem of geoelectrics

    Directory of Open Access Journals (Sweden)

    Sirota Dmitry

    2017-01-01

    Full Text Available The paper reviews the method of determining the shape and size of the coal self-heating source on coal pit benches and in coal piles during mining of coal by the open method. The method is based on the regularity found in the 1970s of the previous century and related to the distribution of potential of the natural electrical field arising from the temperature in the vicinity of the center of self-heating. The problem is reduced to the solution of inverse ill-posed problem of mathematical physics. The study presents the developed algorithm of its solution and the results of numerical simulation.

  5. Constraining Mantle Heterogeneities with Joint Inversions of Seismic, Geodynamic, and Mineral Physics Data

    Science.gov (United States)

    Lu, C.; Grand, S. P.; Forte, A. M.; Simmons, N. A.

    2014-12-01

    Two outstanding goals of solid earth geophysics are to determine the chemical structure of the Earth and to understand the dynamics of its interior. The dynamics of the mantle are controlled by density variations and combined knowledge of density structure and seismic velocities provide the strongest constraints on chemical heterogeneity. Unfortunately, most of the traditional geophysical methods such as seismic tomography and geodynamic modeling alone cannot adequately resolve the density structure within the mantle. Thus, seismic, geodynamic and mineral physics joint inversion methods have been applied to better understand the dynamics of the mantle in recent years (e.g. Simmons et al. 2010). In these joint inversions, P wave and S wave travel times, as well as four convection-related geodynamic observations (free air gravity, tectonic plate motion, dynamic topography, and the excess ellipticity of the core-mantle boundary) can be used to produce 3-D models of density and seismic velocities simultaneously. The approach initially attempts to find a model that assuming temperature controls lateral variations in mantle properties and then to consider more complicated lateral variations that account for the presence of chemical heterogeneity to further fit data. Here we present new joint inversion results include 50% more new S wave travel time data than in previous work and geodynamic data that extend to larger spherical harmonic degrees. In addition, temperature derivatives of P and S velocity and density have been determined using an updated mineral physics dataset. For the first time we include non-linear anelastic temperature effects on velocities in the joint inversion. The anelastic effects decrease the required high density component within the lower mantle superplumes. The hypothesis that temperature variations explain most observed heterogeneity within the mantle is consistent with our data. Reference: Simmons, N. A., A. M. Forte, L. Boschi, and S. P. Grand

  6. High-resolution inverse Raman and resonant-wave-mixing spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rahn, L.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    These research activities consist of high-resolution inverse Raman spectroscopy (IRS) and resonant wave-mixing spectroscopy to support the development of nonlinear-optical techniques for temperature and concentration measurements in combustion research. Objectives of this work include development of spectral models of important molecular species needed to perform coherent anti-Stokes Raman spectroscopy (CARS) measurements and the investigation of new nonlinear-optical processes as potential diagnostic techniques. Some of the techniques being investigated include frequency-degenerate and nearly frequency-degenerate resonant four-wave-mixing (DFWM and NDFWM), and resonant multi-wave mixing (RMWM).

  7. The normal and inverse magnetocaloric effect in RCu{sub 2} (R=Tb, Dy, Ho, Er) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, X.Q., E-mail: zhengxq@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Xu, Z.Y. [National Institute of Metrology, Beijing 100029 (China); Zhang, B.; Hu, F.X. [State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Shen, B.G., E-mail: shenbg@aphy.iphy.ac.cn [State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-01-01

    Orthorhombic polycrystalline RCu{sub 2} (R=Tb, Dy, Ho and Er) compounds were synthesized and the magnetic properties and magnetocaloric effect (MCE) were investigated in detail. All of the RCu{sub 2} compounds are antiferromagnetic (AFM) ordered. As temperature increases, RCu{sub 2} compounds undergo an AFM to AFM transition at T{sub t} and an AFM to paramagnetic (PM) transition at T{sub N}. Besides of the normal MCE around T{sub N}, large inverse MCE around T{sub t} was found in TbCu{sub 2} compound. Under a field change of 0–7 T, the maximal value of inverse MCE is even larger than the value of normal MCE around T{sub N} for TbCu{sub 2} compound. Considering of the normal and inverse MCE, TbCu{sub 2} shows the largest refrigerant capacity among the RCu{sub 2} (R=Tb, Dy, Ho and Er) compounds indicating its potential applications in low temperature multistage refrigeration. - Highlights: • Large inverse magnetocaloric effect is observed in TbCu{sub 2} compound. • The AFM to AFM transition is observed in RCu{sub 2} (R=Tb, Dy, Ho, Er) compounds. • The MCE performance of TbCu{sub 2} compound is evaluated in a more comprehensively way.

  8. A three-dimensional inverse problem in estimating the internal heat flux of housing for high speed motors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cheng-Hung; Lo, Hung-Chi [Department of Systems and Naval Mechatronic Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 701, (Taiwan)

    2006-10-15

    The time-dependent heat flux generated in rotor and stator for the high speed electric motor is determined in this three-dimensional inverse heat conduction problem. The inverse algorithm utilizing the Steepest Descent Method (SDM) and a general purpose commercial code CFX4.4 is applied successfully in the present study in accordance with the simulated measured temperature distributions on some proper exterior surfaces. No cooling systems can be designed before the heat fluxes are estimated and identified. Two different functional forms for heat fluxes with different temperature measurement errors are used in the numerical experiments to illustrate the validity of the inverse algorithm. Results of the numerical simulation show that due to the structure of the cooling passages for motor housing, the estimated heat flux lying under the cooling passages is not accurate. However, when the concept of effective heat flux is applied, a reliable time-dependent heat flux can be obtained by using the present inverse algorithm. (author)

  9. On the observability of turbulent transport rates by Argo: supporting evidence from an inversion experiment

    Directory of Open Access Journals (Sweden)

    G. Forget

    2015-10-01

    Full Text Available Although estimation of turbulent transport parameters using inverse methods is not new, there is little evaluation of the method in the literature. Here, it is shown that extended observation of the broad-scale hydrography by Argo provides a path to improved estimates of regional turbulent transport rates. Results from a 20-year ocean state estimate produced with the ECCO v4 (Estimating the Circulation and Climate of the Ocean, version 4 non-linear inverse modeling framework provide supporting evidence. Turbulent transport parameter maps are estimated under the constraints of fitting the extensive collection of Argo profiles collected through 2011. The adjusted parameters dramatically reduce misfits to in situ profiles as compared with earlier ECCO solutions. They also yield a clear reduction in the model drift away from observations over multi-century-long simulations, both for assimilated variables (temperature and salinity and independent variables (biogeochemical tracers. Despite the minimal constraints imposed specifically on the estimated parameters, their geography is physically plausible and exhibits close connections with the upper-ocean stratification as observed by Argo. The estimated parameter adjustments furthermore have first-order impacts on upper-ocean stratification and mixed layer depths over 20 years. These results identify the constraint of fitting Argo profiles as an effective observational basis for regional turbulent transport rate inversions. Uncertainties and further improvements of the method are discussed.

  10. Evaluation of methane emissions from West Siberian wetlands based on inverse modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H-S; Inoue, G [Research Institute for Humanity and Nature, 457-4 Motoyama, Kamigamo, Kita-ku, Kyoto 603-8047 (Japan); Maksyutov, S; Machida, T [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Glagolev, M V [Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow 119991 (Russian Federation); Patra, P K [Research Institute for Global Change/JAMSTEC, 3173-25 Showa-cho, Kanazawa-ku, Yokohama, Kanagawa 236-0001 (Japan); Sudo, K, E-mail: heonsook.kim@gmail.com [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan)

    2011-07-15

    West Siberia contains the largest extent of wetlands in the world, including large peat deposits; the wetland area is equivalent to 27% of the total area of West Siberia. This study used inverse modeling to refine emissions estimates for West Siberia using atmospheric CH{sub 4} observations and two wetland CH{sub 4} emissions inventories: (1) the global wetland emissions dataset of the NASA Goddard Institute for Space Studies (the GISS inventory), which includes emission seasons and emission rates based on climatology of monthly surface air temperature and precipitation, and (2) the West Siberian wetland emissions data (the Bc7 inventory), based on in situ flux measurements and a detailed wetland classification. The two inversions using the GISS and Bc7 inventories estimated annual mean flux from West Siberian wetlands to be 2.9 {+-} 1.7 and 3.0 {+-} 1.4 Tg yr{sup -1}, respectively, which are lower than the 6.3 Tg yr{sup -1} predicted in the GISS inventory, but similar to those of the Bc7 inventory (3.2 Tg yr{sup -1}). The well-constrained monthly fluxes and a comparison between the predicted CH{sub 4} concentrations in the two inversions suggest that the Bc7 inventory predicts the seasonal cycle of West Siberian wetland CH{sub 4} emissions more reasonably, indicating that the GISS inventory predicts more emissions from wetlands in northern and middle taiga.

  11. Evaluating formability of LCP plate for sacral fractures with one step inverse forming finite element analysis.

    Science.gov (United States)

    Li, Xiaoda; Zhang, Xiangkui; Hu, Ping; Liu, Weijie; Shen, Guozhe; Zhan, Xianghui

    2015-01-01

    The locking compression plate fixation treatment for the unstable sacral fractures is simple and effective, with less trauma and complications. Some locking compression plate parts have been made of high-strength Plate manufactured by hot stamping process since the demand for lightweight biomedical materials. Finite Element (FE) method of One-Step inverse forming based on deformation theory is the tool to evaluate the formability of locking compression plate panel quickly in initial design for reducing costs and development cycle of Plate. But current one-step inverse forming methods are all suitable for cold stamping, not hot-stamping. This paper proposed one-step inverse forming method and workflow for hot-stamping of locking compression Plate. And the B pillar of a sacral bone was simulated and its computing result was compared with experimental value. The result shows that the proposed method in this paper can quickly evaluate high temperature formability of high-strength Plate. And the method is proposed to be used in initial design.

  12. Inverse estimation of properties for charring material using a hybrid genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hee Chul; Yoon, Kyung Beom; Kim, Tae Kuk [Chung Ang University, Seoul (Korea, Republic of); Park, Won Hee; Lee, Duck Hee; Jung, Woo Sung [Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2011-06-15

    Fire characteristics can be analyzed more realistically by using more accurate material properties related to the fire dynamics and one way to acquire these fire properties is to use one of the inverse property estimation techniques. In this study an optimization algorithm which is frequently applied for the inverse heat transfer problems is selected to demonstrate the procedure of obtaining fire properties of a solid charring material with relatively simple chemical structure. Thermal decomposition is occurred at the surface of the test plate by receiving the radiative energy from external heat sources and in this process the heat transfer through the test plate can be simplified by an unsteady one dimensional problem. The input parameters for the analyses are the surface temperature and mass loss rate of the char plate which are determined from the actual experiment of from the unsteady one-dimensional analysis with a given set of eight properties. The performance of hybrid genetic algorithm (HGA) is compare with a basic genetic algorithm (GA) in order to examine its performance. This comparison is carried out for the inverse property problem of estimating the fire properties related to the reaction pyrolysis of some relatively simple materials; redwood and red oak. Results show that the hybrid genetic algorithm has better performance in estimating the eight pyrolysis properties than the genetic algorithm.

  13. An inverse design problem of estimating optimal shape of cooling passages in turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Chenghung Huang; Taoyen Hsiung [National Cheng Kung University, Tainan (Taiwan). Dept. of Naval Architecture and Marine Engineering

    1999-12-01

    An inverse design problem is solved to determine the shape of complex coolant flow passages in internal cooled turbine blades by using the conjugate gradient method (CGM). One of the advantages of using CGM lies in that it can easily handle problems having a huge number of unknown parameters and it converges very fast. The boundary element method (BEM) is used to calculate the direct, sensitivity and adjoint problems due to its characteristics of easily-handling the problem considered here. Results obtained by using the CGM to solve the inverse problems are verified based on the numerical experiments in the analysis model. One concludes that the CGM is applied successfully in estimating the arbitrary shape of cavities and the rate of convergence is also very fast even when the number of unknown parameters is large. Moreover, the design model of the inverse problem is also performed to estimate the optimal shape of cooling passages in accordance with the desired blade surface temperature distributions. (author)

  14. An inverse geometry problem in estimating frost growth on an evaporating tube

    Energy Technology Data Exchange (ETDEWEB)

    Huang, C.H. [Department of Naval Architecture and Marine Engineering, National Cheng Kung University Tainan, Taiwan (Taiwan)

    2002-08-01

    When humid air comes into contact with a surface whose temperature is below the dew point of water vapor in air and also below the freezing point, frost deposition takes place over the surface. The phenomena of the frost growth are very complicated and therefore it is very difficult to model mathematically the behavior of frost growth and predict it. In the present study a transient inverse geometry heat conduction problem (shape identification problem) is solved using the conjugate gradient method (CGM) and boundary element method (BEM)-based inverse algorithm to estimate the unknown irregular frost thickness and shape. Results obtained by using the CGM to estimate the frost growth are justified based on the numerical experiments. It is concluded that the accurate frost shape can be estimated by the CGM except for the initial and final time. The reason and improvement of this singularity are addressed. Finally the effects of reducing the number of sensors and increasing the measurement errors on the inverse solutions are discussed. (orig.)

  15. Workflow for near-surface velocity automatic estimation: Source-domain full-traveltime inversion followed by waveform inversion

    KAUST Repository

    Liu, Lu

    2017-08-17

    This paper presents a workflow for near-surface velocity automatic estimation using the early arrivals of seismic data. This workflow comprises two methods, source-domain full traveltime inversion (FTI) and early-arrival waveform inversion. Source-domain FTI is capable of automatically generating a background velocity that can kinematically match the reconstructed plane-wave sources of early arrivals with true plane-wave sources. This method does not require picking first arrivals for inversion, which is one of the most challenging aspects of ray-based first-arrival tomographic inversion. Moreover, compared with conventional Born-based methods, source-domain FTI can distinguish between slower or faster initial model errors via providing the correct sign of the model gradient. In addition, this method does not need estimation of the source wavelet, which is a requirement for receiver-domain wave-equation velocity inversion. The model derived from source-domain FTI is then used as input to early-arrival waveform inversion to obtain the short-wavelength velocity components. We have tested the workflow on synthetic and field seismic data sets. The results show source-domain FTI can generate reasonable background velocities for early-arrival waveform inversion even when subsurface velocity reversals are present and the workflow can produce a high-resolution near-surface velocity model.

  16. Inverse bilayer magnetoelectric thin film sensor

    Energy Technology Data Exchange (ETDEWEB)

    Yarar, E.; Piorra, A.; Quandt, E., E-mail: eq@tf.uni-kiel.de [Chair for Inorganic Functional Materials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143 Kiel (Germany); Salzer, S.; Höft, M.; Knöchel, R. [Microwave Laboratory, Institute of Electrical and Information Engineering, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143 Kiel (Germany); Hrkac, V.; Kienle, L. [Chair for Synthesis and Real Structure, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143 Kiel (Germany)

    2016-07-11

    Prior investigations on magnetoelectric (ME) thin film sensors using amorphous FeCoSiB as a magnetostrictive layer and AlN as a piezoelectric layer revealed a limit of detection (LOD) in the range of a few pT/Hz{sup 1/2} in the mechanical resonance. These sensors are comprised of a Si/SiO{sub 2}/Pt/AlN/FeCoSiB layer stack, as dictated by the temperatures required for the deposition of the layers. A low temperature deposition route of very high quality AlN allows the reversal of the deposition sequence, thus allowing the amorphous FeCoSiB to be deposited on the very smooth Si substrate. As a consequence, the LOD could be enhanced by almost an order of magnitude reaching 400 fT/Hz{sup 1/2} at the mechanical resonance of the sensor. Giant ME coefficients (α{sub ME}) as high as 5 kV/cm Oe were measured. Transmission electron microscopy investigations revealed highly c-axis oriented growth of the AlN starting from the Pt-AlN interface with local epitaxy.

  17. Wave modulation of the extratropical tropopause inversion layer

    Science.gov (United States)

    Pilch Kedzierski, Robin; Matthes, Katja; Bumke, Karl

    2017-03-01

    This study aims to quantify how much of the observed strength and variability in the zonal-mean extratropical tropopause inversion layer (TIL) comes from the modulation of the temperature field and its gradients around the tropopause by planetary- and synoptic-scale waves. By analyzing high-resolution observations, it also puts other TIL enhancing mechanisms into context.Using gridded Global Positioning System radio occultation (GPS-RO) temperature profiles from the COSMIC mission (2007-2013), we are able to extract the extratropical wave signal by a simplified wavenumber-frequency domain filtering method and quantify the resulting TIL enhancement. By subtracting the extratropical wave signal, we show how much of the TIL is associated with other processes, at mid- and high latitudes, for both hemispheres and all seasons.The transient and reversible modulation by planetary- and synoptic-scale waves is almost entirely responsible for the TIL in midlatitudes. This means that wave-mean flow interactions, inertia-gravity waves and the residual circulation are of minor importance for the strength and variability in the midlatitude TIL.At polar regions, the extratropical wave modulation is dominant for the TIL strength as well, but there is also a clear fingerprint from sudden stratospheric warmings (SSWs) and final warmings in both hemispheres. Therefore, polar vortex breakups are partially responsible for the observed polar TIL strength in winter (if SSWs occur) and spring. Also, part of the polar summer TIL strength cannot be explained by extratropical wave modulation.We suggest that our wave modulation mechanism integrates several TIL enhancing mechanisms proposed in previous literature while robustly disclosing the overall outcome of the different processes involved. By analyzing observations only, our study identifies which mechanisms dominate the extratropical TIL strength and their relative contribution. It remains to be determined, however, which roles the

  18. Spectroscopic Inversions of the Ca ii 8542 Å Line in a C-class Solar Flare

    Science.gov (United States)

    Kuridze, D.; Henriques, V.; Mathioudakis, M.; Koza, J.; Zaqarashvili, T. V.; Rybák, J.; Hanslmeier, A.; Keenan, F. P.

    2017-09-01

    We study the C8.4-class solar flare SOL2016-05-14T11:34 UT using high-resolution spectral imaging in the Ca ii 8542 Å line obtained with the CRISP imaging spectropolarimeter on the Swedish 1 m Solar Telescope. Spectroscopic inversions of the Ca ii 8542 Å line using the non-LTE code NICOLE are used to investigate the evolution of the temperature and velocity structure in the flaring chromosphere. A comparison of the temperature stratification in flaring and non-flaring areas reveals strong footpoint heating during the flare peak in the lower atmosphere. The temperature of the flaring footpoints between {log} {τ }500 ≈ -2.5 {and} -3.5, where τ 500 is the continuum optical depth at 500 nm, is ˜ 5{--}6.5 {kK} close to the flare peak, reducing gradually to ˜ 5 {kK}. The temperature in the middle and upper chromosphere, between {log} {τ }500≈ -3.5 and -5.5, is estimated to be ˜6.5-20 kK, decreasing to preflare temperatures, ˜5-10 kK, after approximately 15 minutes. However, the temperature stratification of the non-flaring areas is unchanged. The inverted velocity fields show that the flaring chromosphere is dominated by weak downflowing condensations at the formation height of Ca ii 8542 Å.

  19. Inverse Analysis of Cavitation Impact Phenomena on Structures

    National Research Council Canada - National Science Library

    Lambrakos, S. G; Tran, N. E

    2007-01-01

    A general methodology is presented for in situ detection of cavitation impact phenomena on structures based on inverse analysis of luminescent emissions resulting from the collapsing of bubbles onto surfaces...

  20. Inverse agonism: the classic concept of GPCRs revisited [Review].

    Science.gov (United States)

    Sato, Junichiro; Makita, Noriko; Iiri, Taroh

    2016-06-30

    In the classical two-state model, G protein-coupled receptors (GPCRs) are considered to exist in equilibrium between an active and an inactive conformation. Thus, even at the resting state, some subpopulation of GPCRs is in the active state, which underlies the basal activity of the GPCRs. In this review, we discuss inverse agonists, which are defined as GPCR ligands that shift the equilibrium toward the inactive state and thereby suppress the basal activity. Theoretically, if constitutive activation plays an essential role in the pathogenesis of a disease, only inverse agonists, and not neutral antagonists, can reverse this pathophysiological activation. Although many pharmacological examples of inverse agonism have been identified, its clinical importance is still unclear and debated. Thus, even though inverse agonism of angiotensin receptor blockers (ARBs) has been discussed for more than 10 years, its clinical relevance remains to be completely clarified.