WorldWideScience

Sample records for temperature increases terpenoid

  1. Oligo-carrageenan kappa-induced reducing redox status and increase in TRR/TRX activities promote activation and reprogramming of terpenoid metabolism in Eucalyptus trees.

    Science.gov (United States)

    González, Alberto; Gutiérrez-Cutiño, Marlen; Moenne, Alejandra

    2014-06-05

    In order to analyze whether the reducing redox status and activation of thioredoxin reductase (TRR)/thioredoxin(TRX) system induced by oligo-carrageenan (OC) kappa in Eucalyptus globulus activate secondary metabolism increasing terpenoid synthesis, trees were sprayed on the leaves with water, with OC kappa, or with inhibitors of NAD(P)H, ascorbate (ASC) and (GSH) synthesis and TRR activity, CHS-828, lycorine, buthionine sulfoximine (BSO) and auranofine, respectively, and with OC kappa and cultivated for four months. The main terpenoids in control Eucalyptus trees were eucalyptol (76%), α-pinene (7.4%), aromadendrene (3.6%), silvestrene (2.8%), sabinene (2%) and α-terpineol (0.9%). Treated trees showed a 22% increase in total essential oils as well as a decrease in eucalyptol (65%) and sabinene (0.8%) and an increase in aromadendrene (5%), silvestrene (7.8%) and other ten terpenoids. In addition, treated Eucalyptus showed seven de novo synthesized terpenoids corresponding to carene, α-terpinene, α-fenchene, γ-maaliene, spathulenol and α-camphenolic aldehyde. Most increased and de novo synthesized terpenoids have potential insecticidal and antimicrobial activities. Trees treated with CHS-828, lycorine, BSO and auranofine and with OC kappa showed an inhibition of increased and de novo synthesized terpenoids. Thus, OC kappa-induced reducing redox status and activation of TRR/TRX system enhance secondary metabolism increasing the synthesis of terpenoids and reprogramming of terpenoid metabolism in Eucalyptus trees.

  2. Oligo-Carrageenan Kappa-Induced Reducing Redox Status and Increase in TRR/TRX Activities Promote Activation and Reprogramming of Terpenoid Metabolism in Eucalyptus Trees

    Directory of Open Access Journals (Sweden)

    Alberto González

    2014-06-01

    Full Text Available In order to analyze whether the reducing redox status and activation of thioredoxin reductase (TRR/thioredoxin(TRX system induced by oligo-carrageenan (OC kappa in Eucalyptus globulus activate secondary metabolism increasing terpenoid synthesis, trees were sprayed on the leaves with water, with OC kappa, or with inhibitors of NAD(PH, ascorbate (ASC and (GSH synthesis and TRR activity, CHS-828, lycorine, buthionine sulfoximine (BSO and auranofine, respectively, and with OC kappa and cultivated for four months. The main terpenoids in control Eucalyptus trees were eucalyptol (76%, α-pinene (7.4%, aromadendrene (3.6%, silvestrene (2.8%, sabinene (2% and α-terpineol (0.9%. Treated trees showed a 22% increase in total essential oils as well as a decrease in eucalyptol (65% and sabinene (0.8% and an increase in aromadendrene (5%, silvestrene (7.8% and other ten terpenoids. In addition, treated Eucalyptus showed seven de novo synthesized terpenoids corresponding to carene, α-terpinene, α-fenchene, γ-maaliene, spathulenol and α-camphenolic aldehyde. Most increased and de novo synthesized terpenoids have potential insecticidal and antimicrobial activities. Trees treated with CHS-828, lycorine, BSO and auranofine and with OC kappa showed an inhibition of increased and de novo synthesized terpenoids. Thus, OC kappa-induced reducing redox status and activation of TRR/TRX system enhance secondary metabolism increasing the synthesis of terpenoids and reprogramming of terpenoid metabolism in Eucalyptus trees.

  3. Spatiotemporal variability of biogenic terpenoid emissions in Pearl River Delta, China, with high-resolution land-cover and meteorological data

    Science.gov (United States)

    Wang, Xuemei; Situ, Shuping; Guenther, Alex; Chen, Fei; Wu, Zhiyong; Xia, Beicheng; Wang, Tijian

    2011-04-01

    This study intended to provide 4-km gridded, hourly, year-long, regional estimates of terpenoid emissions in the Pearl River Delta (PRD), China. It combined Thematic Mapper images and local-survey data to characterize plant functional types, and used observed emission potential of biogenic volatile organic compounds (BVOC) from local plant species and high-resolution meteorological outputs from the MM5 model to constrain the MEGAN BVOC-emission model. The estimated annual emissions for isoprene, monoterpene and sesquiterpene are 95.55 × 106 kg C, 117.35 × 106 kg C and 9.77 × 106 kg C, respectively. The results show strong variabilities of terpenoid emissions spanning diurnal and seasonal time scales, which are mainly distributed in the remote areas (with more vegetation and less economic development) in PRD. Using MODIS PFTs data reduced terpenoid emissions by 27% in remote areas. Using MEGAN-model default emission factors led to a 24% increase in BVOC emission. The model errors of temperature and radiation in MM5 output were used to assess impacts of uncertainties in meteorological forcing on emissions: increasing (decreasing) temperature and downward shortwave radiation produces more (less) terpenoid emissions for July and January. Strong temporal variability of terpenoid emissions leads to enhanced ozone formation during midday in rural areas where the anthropogenic VOC emissions are limited.

  4. Terpenoids and Their Biosynthesis in Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Bagmi Pattanaik

    2015-01-01

    Full Text Available Terpenoids, or isoprenoids, are a family of compounds with great structural diversity which are essential for all living organisms. In cyanobacteria, they are synthesized from the methylerythritol-phosphate (MEP pathway, using glyceraldehyde 3-phosphate and pyruvate produced by photosynthesis as substrates. The products of the MEP pathway are the isomeric five-carbon compounds isopentenyl diphosphate and dimethylallyl diphosphate, which in turn form the basic building blocks for formation of all terpenoids. Many terpenoid compounds have useful properties and are of interest in the fields of pharmaceuticals and nutrition, and even potentially as future biofuels. The MEP pathway, its function and regulation, and the subsequent formation of terpenoids have not been fully elucidated in cyanobacteria, despite its relevance for biotechnological applications. In this review, we summarize the present knowledge about cyanobacterial terpenoid biosynthesis, both regarding the native metabolism and regarding metabolic engineering of cyanobacteria for heterologous production of non-native terpenoids.

  5. Terpenoids and Their Biosynthesis in Cyanobacteria

    Science.gov (United States)

    Pattanaik, Bagmi; Lindberg, Pia

    2015-01-01

    Terpenoids, or isoprenoids, are a family of compounds with great structural diversity which are essential for all living organisms. In cyanobacteria, they are synthesized from the methylerythritol-phosphate (MEP) pathway, using glyceraldehyde 3-phosphate and pyruvate produced by photosynthesis as substrates. The products of the MEP pathway are the isomeric five-carbon compounds isopentenyl diphosphate and dimethylallyl diphosphate, which in turn form the basic building blocks for formation of all terpenoids. Many terpenoid compounds have useful properties and are of interest in the fields of pharmaceuticals and nutrition, and even potentially as future biofuels. The MEP pathway, its function and regulation, and the subsequent formation of terpenoids have not been fully elucidated in cyanobacteria, despite its relevance for biotechnological applications. In this review, we summarize the present knowledge about cyanobacterial terpenoid biosynthesis, both regarding the native metabolism and regarding metabolic engineering of cyanobacteria for heterologous production of non-native terpenoids. PMID:25615610

  6. Microbial production strategies and applications of lycopene and other terpenoids.

    Science.gov (United States)

    Ma, Tian; Deng, Zixin; Liu, Tiangang

    2016-01-01

    Terpenoids are a large class of compounds that have far-reaching applications and economic value, particularly those most commonly found in plants; however, the extraction and synthesis of these compounds is often expensive and technically challenging. Recent advances in microbial metabolic engineering comprise a breakthrough that may enable the efficient, cost-effective production of these limited natural resources. Via the engineering of safe, industrial microorganisms that encode product-specific enzymes, and even entire metabolic pathways of interest, microbial-derived semisynthetic terpenoids may soon replace plant-derived terpenoids as the primary source of these valuable compounds. Indeed, the recent metabolic engineering of an Escherichia coli strain that produces the precursor to lycopene, a commercially and medically important compound, with higher yields than those in tomato plants serves as a successful example. Here, we review the recent developments in the metabolic engineering of microbes for the production of certain terpenoid compounds, particularly lycopene, which has been increasingly used in pharmaceuticals, nutritional supplements, and cosmetics. Furthermore, we summarize the metabolic engineering strategies used to achieve successful microbial production of some similar compounds. Based on this overview, there is a reason to believe that metabolic engineering comprises an optimal approach for increasing the production of lycopene and other terpenoids.

  7. Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: control by light, temperature and stomatal conductance.

    Science.gov (United States)

    Harley, Peter; Eller, Allyson; Guenther, Alex; Monson, Russell K

    2014-09-01

    Terpenoid emissions from ponderosa pine (Pinus ponderosa subsp. scopulorum) were measured in Colorado, USA over two growing seasons to evaluate the role of incident light, needle temperature, and stomatal conductance in controlling emissions of 2-methyl-3-buten-2-ol (MBO) and several monoterpenes. MBO was the dominant daylight terpenoid emission, comprising on average 87% of the total flux, and diurnal variations were largely determined by light and temperature. During daytime, oxygenated monoterpenes (especially linalool) comprised up to 75% of the total monoterpenoid flux from needles. A significant fraction of monoterpenoid emissions was dependent on light and 13CO2 labeling studies confirmed de novo production. Thus, modeling of monoterpenoid emissions required a hybrid model in which a significant fraction of emissions was dependent on both light and temperature, while the remainder was dependent on temperature alone. Experiments in which stomata were forced to close using abscisic acid demonstrated that MBO and a large fraction of the monoterpene flux, presumably linalool, could be limited at the scale of seconds to minutes by stomatal conductance. Using a previously published model of terpenoid emissions, which explicitly accounts for the physicochemical properties of emitted compounds, we were able to simulate these observed stomatal effects, whether induced experimentally or arising under naturally fluctuation conditions of temperature and light. This study shows unequivocally that, under naturally occurring field conditions, de novo light-dependent monoterpenes comprise a significant fraction of emissions in ponderosa pine. Differences between the monoterpene composition of ambient air and needle emissions imply a significant non-needle emission source enriched in Δ-3-carene.

  8. Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: control by light, temperature and stomatal conductance

    Energy Technology Data Exchange (ETDEWEB)

    Harley, Peter; Eller, Allyson; Guenther, Alex; Monson, Russell K.

    2014-07-12

    Terpenoid emissions from ponderosa pine (Pinus ponderosa subsp. scopulorum) were measured in Colorado, USA over two growing seasons to evaluate the role of incident light, needle temperature and stomatal conductance in controlling emissions of 2-methyl-3-buten-2-ol (MBO) and several monoterpenes. MBO was the dominant daylight terpenoid emission, comprising on average 87% of the total flux, and diurnal variations were largely determined by light and temperature. During daytime, oxygenated monoterpenes (especially linalool) comprised up to 75% of the total monoterpenoid flux from needles. A significant fraction of monoterpenoid emissions was light dependent and 13CO2 labeling studies confirmed de novo production. Thus, modeling of monoterpenoid emissions required a hybrid model in which a significant fraction of emissions was dependent on both light and temperature, while the remainder was dependent on temperature alone. Experiments in which stomata were forced to close using abscisic acid demonstrated that MBO and a large fraction of the monoterpene flux, presumably linalool, could be limited at the scale of seconds to minutes by stomatal conductance. Using a previously published model of terpenoid emissions which explicitly accounts for the physico-chemical properties of emitted compounds, we are able to simulate these observed stomatal effects, whether induced through experimentation or arising under naturally fluctuation conditions of temperature and light. This study shows unequivocally that, under naturally occurring field conditions, de novo light dependent monoterpenes can comprise a large fraction of emissions. Differences between the monoterpene composition of ambient air and needle emissions imply a significant non-needle emission source enriched in Δ-3-carene.

  9. Drought effects on root and needle terpenoid content of a coastal and an interior Douglas fir provenance.

    Science.gov (United States)

    Kleiber, Anita; Duan, Qiuxiao; Jansen, Kirstin; Verena Junker, Laura; Kammerer, Bernd; Rennenberg, Heinz; Ensminger, Ingo; Gessler, Arthur; Kreuzwieser, Jürgen

    2017-12-01

    Douglas fir (Pseudotsuga menziesii) is a conifer species that stores large amounts of terpenoids, mainly monoterpenoids in resin ducts of various tissues. The effects of drought on stored leaf terpenoid concentrations in trees are scarcely studied and published data are partially controversial, since reduced, unaffected or elevated terpenoid contents due to drought have been reported. Even less is known on the effect of drought on root terpenoids. In the present work, we investigated the effect of reduced water availability on the terpenoid content in roots and needles of Douglas fir seedlings. Two contrasting Douglas fir provenances were studied: an interior provenance (var. glauca) with assumed higher drought resistance, and a coastal provenance (var. menziesii) with assumed lower drought resistance. We tested the hypothesis that both provenances show specific patterns of stored terpenoids and that the patterns will change in response to drought in both, needles and roots. We further expected stronger changes in the less drought tolerant coastal provenance. For this purpose, we performed an experiment under controlled conditions, in which the trees were exposed to moderate and severe drought stress. According to our expectations, the study revealed clear provenance-specific terpenoid patterns in needles. However, such patterns were not detected in the roots. Drought slightly increased the needle terpenoid contents of the coastal but not of the interior provenance. We also observed increased terpenoid abundance mainly in roots of the moderately stressed coastal provenance. Overall, from the observed provenance-specific reactions with increased terpenoid levels in trees of the coastal origin in response to drought, we conclude on functions of terpenoids for abiotic stress tolerance that might be fulfilled by other, constitutively expressed mechanisms in drought-adapted interior provenances. © The Author 2017. Published by Oxford University Press. All rights

  10. Terpenoids for medicine

    NARCIS (Netherlands)

    Fischedick, Justin

    2013-01-01

    This thesis is concerns research on monoterpenoids, sesquiterpenoids, and diterpenoids with medicinal properties. Terpenoids from commond herbs as well as Cannabis sativa, Inula britannica, Tanacetum parthenium, and Salvia officinalis were investigated

  11. Natural product terpenoids in Eocene and Miocene conifer fossils.

    Science.gov (United States)

    Otto, Angelika; White, James D; Simoneit, Bernd R T

    2002-08-30

    Numerous saturated and aromatic hydrocarbons, but not polar compounds, originating from plants and microorganisms (biomarkers) have been reported in sediments, coals, and petroleum. Here we describe natural product terpenoids found in two fossil conifers, Taxodium balticum (Eocene) and Glyptostrobus oregonensis (Miocene). A similar terpenoid pattern is also observed in extant Taxodium distichum. The preservation of characteristic terpenoids (unaltered natural products) in the fossil conifers supports their systematic assignment to the Cypress family (Cupressaceae sensu lato). The results also show that fossil conifers can contain polar terpenoids, which are valuable markers for (paleo)chemosystematics and phylogeny.

  12. Metabolic engineering for improved heterologous terpenoid biosynthesis

    NARCIS (Netherlands)

    Ryden, A.; Melillo, E.; Czepnik, M.; Kayser, O.

    Terpenoids belong to the largest class of natural compounds and are produced in all living organisms. The isoprenoid skeleton is based on assembling of C5 building blocks, but the biosynthesis of a great variety of terpenoids ranging from monoterpenoids to polyterpenoids is not fully understood

  13. Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects

    Science.gov (United States)

    Russo, Ethan B

    2011-01-01

    Tetrahydrocannabinol (THC) has been the primary focus of cannabis research since 1964, when Raphael Mechoulam isolated and synthesized it. More recently, the synergistic contributions of cannabidiol to cannabis pharmacology and analgesia have been scientifically demonstrated. Other phytocannabinoids, including tetrahydrocannabivarin, cannabigerol and cannabichromene, exert additional effects of therapeutic interest. Innovative conventional plant breeding has yielded cannabis chemotypes expressing high titres of each component for future study. This review will explore another echelon of phytotherapeutic agents, the cannabis terpenoids: limonene, myrcene, α-pinene, linalool, β-caryophyllene, caryophyllene oxide, nerolidol and phytol. Terpenoids share a precursor with phytocannabinoids, and are all flavour and fragrance components common to human diets that have been designated Generally Recognized as Safe by the US Food and Drug Administration and other regulatory agencies. Terpenoids are quite potent, and affect animal and even human behaviour when inhaled from ambient air at serum levels in the single digits ng·mL−1. They display unique therapeutic effects that may contribute meaningfully to the entourage effects of cannabis-based medicinal extracts. Particular focus will be placed on phytocannabinoid-terpenoid interactions that could produce synergy with respect to treatment of pain, inflammation, depression, anxiety, addiction, epilepsy, cancer, fungal and bacterial infections (including methicillin-resistant Staphylococcus aureus). Scientific evidence is presented for non-cannabinoid plant components as putative antidotes to intoxicating effects of THC that could increase its therapeutic index. Methods for investigating entourage effects in future experiments will be proposed. Phytocannabinoid-terpenoid synergy, if proven, increases the likelihood that an extensive pipeline of new therapeutic products is possible from this venerable plant. LINKED ARTICLES

  14. In silico discovery of terpenoid metabolism in Cannabis sativa.

    Science.gov (United States)

    Massimino, Luca

    2017-01-01

    Due to their efficacy, cannabis based therapies are currently being prescribed for the treatment of many different medical conditions. Interestingly, treatments based on the use of cannabis flowers or their derivatives have been shown to be very effective, while therapies based on drugs containing THC alone lack therapeutic value and lead to increased side effects, likely resulting from the absence of other pivotal entourage compounds found in the Phyto-complex. Among these compounds are terpenoids, which are not produced exclusively by cannabis plants, so other plant species must share many of the enzymes involved in their metabolism. In the present work, 23,630 transcripts from the canSat3 reference transcriptome were scanned for evolutionarily conserved protein domains and annotated in accordance with their predicted molecular functions. A total of 215 evolutionarily conserved genes encoding enzymes presumably involved in terpenoid metabolism are described, together with their expression profiles in different cannabis plant tissues at different developmental stages. The resource presented here will aid future investigations on terpenoid metabolism in Cannabis sativa .

  15. Volatile science? Metabolic engineering of terpenoids in plants

    NARCIS (Netherlands)

    Aharoni, A.; Jongsma, M.A.; Bouwmeester, H.J.

    2005-01-01

    Terpenoids are important for plant survival and also possess biological properties that are beneficial to humans. Here, we describe the state of the art in terpenoid metabolic engineering, showing that significant progress has been made over the past few years. Subcellular targeting of enzymes has

  16. Expression of MEP Pathway Genes and Non-volatile Sequestration Are Associated with Circadian Rhythm of Dominant Terpenoids Emission in Osmanthus fragrans Lour. Flowers

    Directory of Open Access Journals (Sweden)

    Riru Zheng

    2017-10-01

    Full Text Available Osmanthus fragrans Lour. is one of the top 10 traditional ornamental flowers in China famous for its unique fragrance. Preliminary study proved that the terpenoids including ionone, linalool, and ocimene and their derivatives are the dominant aroma-active compounds that contribute greatly to the scent bouquet. Pollination observation implies the emission of aromatic terpenoids may follow a circadian rhythm. In this study, we investigated the variation of volatile terpenoids and its potential regulators. The results showed that both volatile and non-volatile terpenoids presented circadian oscillation with high emission or accumulation during the day and low emission or accumulation during the night. The volatile terpenoids always increased to reach their maximum values at 12:00 h, while free and glycosylated compounds continued increasing throughout the day. The depletion of non-volatile pool might provide the substrates for volatile emission at 0:00–6:00, suggesting the sequestration of non-volatile compounds acted like a buffer regulating emission of terpenoids. Further detection of MEP pathway genes demonstrated that their expressions increased significantly in parallel with the evident increase of both volatile and non-volatile terpenoids during the day, indicating that the gene expressions were also closely associated with terpenoid formation. Thus, the expression of MEP pathway genes and internal sequestration both played crucial roles in modulating circadian rhythm of terpenoid emission in O. fragrans.

  17. Microbial Cell Factories for the Production of Terpenoid Flavor and Fragrance Compounds.

    Science.gov (United States)

    Schempp, Florence M; Drummond, Laura; Buchhaupt, Markus; Schrader, Jens

    2018-03-14

    Terpenoid flavor and fragrance compounds are of high interest to the aroma industry. Microbial production offers an alternative sustainable access to the desired terpenoids independent of natural sources. Genetically engineered microorganisms can be used to synthesize terpenoids from cheap and renewable resources. Due to its modular architecture, terpenoid biosynthesis is especially well suited for the microbial cell factory concept: a platform host engineered for a high flux toward the central C 5 prenyl diphosphate precursors enables the production of a broad range of target terpenoids just by varying the pathway modules converting the C 5 intermediates to the product of interest. In this review typical terpenoid flavor and fragrance compounds marketed or under development by biotech and aroma companies are given, and the specificities of the aroma market are discussed. The main part of this work focuses on key strategies and recent advances to engineer microbes to become efficient terpenoid producers.

  18. Yeast metabolic engineering--targeting sterol metabolism and terpenoid formation.

    Science.gov (United States)

    Wriessnegger, Tamara; Pichler, Harald

    2013-07-01

    Terpenoids comprise various structures conferring versatile functions to eukaryotes, for example in the form of prenyl-anchors they attach proteins to membranes. The physiology of eukaryotic membranes is fine-tuned by another terpenoid class, namely sterols. Evidence is accumulating that numerous membrane proteins require specific sterol structural features for function. Moreover, sterols are intermediates in the synthesis of steroids serving as hormones in higher eukaryotes. Like steroids many compounds of the terpenoid family do not contribute to membrane architecture, but serve as signalling, protective or attractant/repellent molecules. Particularly plants have developed a plenitude of terpenoid biosynthetic routes branching off early in the sterol biosynthesis pathway and, thereby, forming one of the largest groups of naturally occurring organic compounds. Many of these aromatic and volatile molecules are interesting for industrial application ranging from foods to pharmaceuticals. Combining the fortunate situation that sterol biosynthesis is highly conserved in eukaryotes with the amenability of yeasts to genetic and metabolic engineering, basically all naturally occurring terpenoids might be produced involving yeasts. Such engineered yeasts are useful for the study of biological functions and molecular interactions of terpenoids as well as for the large-scale production of high-value compounds, which are unavailable in sufficient amounts from natural sources due to their low abundance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids

    Directory of Open Access Journals (Sweden)

    Johnson Christopher B

    2011-01-01

    Full Text Available Abstract Background Terpenoids constitute a large family of natural products, attracting commercial interest for a variety of uses as flavours, fragrances, drugs and alternative fuels. Saccharomyces cerevisiae offers a versatile cell factory, as the precursors of terpenoid biosynthesis are naturally synthesized by the sterol biosynthetic pathway. Results S. cerevisiae wild type yeast cells, selected for their capacity to produce high sterol levels were targeted for improvement aiming to increase production. Recyclable integration cassettes were developed which enable the unlimited sequential integration of desirable genetic elements (promoters, genes, termination sequence at any desired locus in the yeast genome. The approach was applied on the yeast sterol biosynthetic pathway genes HMG2, ERG20 and IDI1 resulting in several-fold increase in plant monoterpene and sesquiterpene production. The improved strains were robust and could sustain high terpenoid production levels for an extended period. Simultaneous plasmid-driven co-expression of IDI1 and the HMG2 (K6R variant, in the improved strain background, maximized monoterpene production levels. Expression of two terpene synthase enzymes from the sage species Salvia fruticosa and S. pomifera (SfCinS1, SpP330 in the modified yeast cells identified a range of terpenoids which are also present in the plant essential oils. Co-expression of the putative interacting protein HSP90 with cineole synthase 1 (SfCinS1 also improved production levels, pointing to an additional means to improve production. Conclusions Using the developed molecular tools, new yeast strains were generated with increased capacity to produce plant terpenoids. The approach taken and the durability of the strains allow successive rounds of improvement to maximize yields.

  20. Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering.

    Science.gov (United States)

    Abbas, Farhat; Ke, Yanguo; Yu, Rangcai; Yue, Yuechong; Amanullah, Sikandar; Jahangir, Muhammad Muzammil; Fan, Yanping

    2017-11-01

    Terpenoids play several physiological and ecological functions in plant life through direct and indirect plant defenses and also in human society because of their enormous applications in the pharmaceutical, food and cosmetics industries. Through the aid of genetic engineering its role can by magnified to broad spectrum by improving genetic ability of crop plants, enhancing the aroma quality of fruits and flowers and the production of pharmaceutical terpenoids contents in medicinal plants. Terpenoids are structurally diverse and the most abundant plant secondary metabolites, playing an important role in plant life through direct and indirect plant defenses, by attracting pollinators and through different interactions between the plants and their environment. Terpenoids are also significant because of their enormous applications in the pharmaceutical, food and cosmetics industries. Due to their broad distribution and functional versatility, efforts are being made to decode the biosynthetic pathways and comprehend the regulatory mechanisms of terpenoids. This review summarizes the recent advances in biosynthetic pathways, including the spatiotemporal, transcriptional and post-transcriptional regulatory mechanisms. Moreover, we discuss the multiple functions of the terpene synthase genes (TPS), their interaction with the surrounding environment and the use of genetic engineering for terpenoid production in model plants. Here, we also provide an overview of the significance of terpenoid metabolic engineering in crop protection, plant reproduction and plant metabolic engineering approaches for pharmaceutical terpenoids production and future scenarios in agriculture, which call for sustainable production platforms by improving different plant traits.

  1. Overexpression and RNA interference of TwDXR regulate the accumulation of terpenoid active ingredients in Tripterygium wilfordii.

    Science.gov (United States)

    Zhang, Yifeng; Zhao, Yujun; Wang, Jiadian; Hu, Tianyuan; Tong, Yuru; Zhou, Jiawei; Song, Yadi; Gao, Wei; Huang, Luqi

    2018-02-01

    To examine the putative regulatory role of TwDXR in terpenoid biosynthesis and terpenoid biosynthetic pathway-related gene expression, through overexpression and RNA interference with TwDXR. We obtained 1410 and 454 bp TwDXR-specific fragments to construct overexpression and RNAi vectors. qRT-PCR was used to detect the expression of TwDXR and terpenoid biosynthesis pathway-related genes. The overexpression of TwDXR led to a 285% upregulation and the TwDXR RNAi led to a reduction to 26% of the control (empty vector-transformed cells) levels. However, pathway-related genes displayed different trends. When TwDXR was overexpressed, TwDXS expression decreased by 31% but increased to 198% when TwDXR expression was inhibited. The accumulation of terpenoids was also assayed. In the overexpression group, differences were not significant whereas the contents of triptolide and celastrol in the TwDXR RNAi samples were diminished by 27.3 and 24.0%, respectively. The feedback regulation of gene transcription and the accumulation of terpenoids in terpenoid biosynthesis in Tripterygium wilfordii were verified by TwDXR overexpression and RNAi experiments.

  2. Characterization of terpenoid volatiles from cultivars of eastern hemlock (Tsuga canadensis).

    Science.gov (United States)

    Lagalante, Anthony F; Montgomery, Michael E; Calvosa, Frank C; Mirzabeigi, Michael N

    2007-12-26

    The volatile terpenoid fraction from needles in 13 cultivars of Tsuga canadensis L. (Carriere) was analyzed by gas chromatography with mass spectrometry (GC-MS). The results of this study are considered along with previously reported results for foliar terpenoid levels of the Asian (T. sieboldii, T. chinensis, T. diversifolia), western North American (T. mertensiana, T. heterophylla), and eastern North American species (T. canadensis, T. caroliniana) of hemlock to draw conclusions about the potential of cultivar host resistance to the hemlock woolly adelgid (Adelges tsugae Annand). It is suggested that hemlocks in eastern North America have adapted their terpenoid chemistry for protection against endemic defoliators and that this has made them vulnerable to non-native, sucking pests such as adelgids and scales. Some cultivars of T. canadensis have a terpenoid profile that resembles that of the resistant noneastern North American species and are candidates for biological screening for resistance. Among the cultivars, the variation in terpenoid chemistry did not absolutely correspond with the considerable differences in morphological characters observed, indicating that the terpenoid chemistry is not definitively coupled with hemlock morphology.

  3. Terpenoids from Curcuma wenyujin increased glucose consumption on HepG2 cells.

    Science.gov (United States)

    Zhou, Chang-Xin; Zhang, Li-Sha; Chen, Fei-Fei; Wu, Hao-Shu; Mo, Jian-Xia; Gan, Li-She

    2017-09-01

    Thirty four terpenoids, including two new cadinane-type sesquiterpenoids containing conjugated aromatic-ketone moieties, curcujinone A (1) and curcujinone B (2), were isolated from 95% ethanol extract of the root tubers of Curcuma wenyujin. Their structures were determined by spectroscopic methods, especially 2D NMR and HRMS techniques. The relative and absolute configurations of 1 and 2 were identified by quantum chemical DFT and TDDFT calculations of the 13 C NMR chemical shifts, ECD spectra, and specific optical rotations. All compounds and extracts were evaluated for their anti-diabetic activities with a glucose consumption model on HepG2 Cells. The petroleum fraction CWP (10μg/mL) and compounds curcumenol (4), 7α,11α-epoxy-5β-hydroxy-9-guaiaen-8-one (5), curdione (17), (1S, 4S, 5S 10S)-germacrone (18), zederone (20), a mixture of curcumanolide A (25) and curcumanolide B (26), gajutsulactone B (27), and wenyujinin C (30) showed promising activities with over 45% increasing of glucose consumption at 10μM. Copyright © 2017. Published by Elsevier B.V.

  4. Terpenoids from the Octocoral Sinularia gaweli

    Directory of Open Access Journals (Sweden)

    Wun-Jie Lin

    2015-08-01

    Full Text Available Two eudesmane sesquiterpenoids, verticillatol (1 and 5α-acetoxy-4(14-eudesmene-1β-ol (2 and two cembrane diterpenoids, (–-leptodiol acetate (3 and sinulacembranolide A (4 were isolated from the octocoral Sinularia gaweli and compounds 2–4 are new isolates. The structures of new terpenoids 2–4 were elucidated by spectroscopic methods and by comparison the spectral data with those of known analogues. Terpenoid 4 was found to inhibit the accumulation of the pro-inflammatory inducible nitric oxide synthase (iNOS protein of the lipopolysaccharide (LPS-stimulated RAW264.7 marcophage cells.

  5. Terpenoid antifeedants against insects : a behavioural and sensory study

    NARCIS (Netherlands)

    Messchendorp, L.

    1998-01-01

    This thesis describes a study on the behavioural and sensory effects of terpenoid antifeedants on several insect species. The main aim was to elucidate the mechanisms of action of terpenoid antifeedants. From a fundamental point of view, this will yield insight in the role of these

  6. Determination of Terpenoid Content in Pine by Organic Solvent Extraction and Fast-GC Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Harman-Ware, Anne E., E-mail: anne.ware@nrel.gov; Sykes, Robert [National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO (United States); Peter, Gary F. [School of Forest Resources and Conservation, University of Florida, Gainesville, FL (United States); Davis, Mark [National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO (United States)

    2016-01-25

    Terpenoids, naturally occurring compounds derived from isoprene units present in pine oleoresin, are a valuable source of chemicals used in solvents, fragrances, flavors, and have shown potential use as a biofuel. This paper describes a method to extract and analyze the terpenoids present in loblolly pine saplings and pine lighter wood. Various extraction solvents were tested over different times and temperatures. Samples were analyzed by pyrolysis-molecular beam mass spectrometry before and after extractions to monitor the extraction efficiency. The pyrolysis studies indicated that the optimal extraction method used a 1:1 hexane/acetone solvent system at 22°C for 1 h. Extracts from the hexane/acetone experiments were analyzed using a low thermal mass modular accelerated column heater for fast-GC/FID analysis. The most abundant terpenoids from the pine samples were quantified, using standard curves, and included the monoterpenes, α- and β-pinene, camphene, and δ-carene. Sesquiterpenes analyzed included caryophyllene, humulene, and α-bisabolene. Diterpenoid resin acids were quantified in derivatized extractions, including pimaric, isopimaric, levopimaric, palustric, dehydroabietic, abietic, and neoabietic acids.

  7. Determination of Terpenoid Content in Pine by Organic Solvent Extraction and Fast-GC Analysis

    International Nuclear Information System (INIS)

    Harman-Ware, Anne E.; Sykes, Robert; Peter, Gary F.; Davis, Mark

    2016-01-01

    Terpenoids, naturally occurring compounds derived from isoprene units present in pine oleoresin, are a valuable source of chemicals used in solvents, fragrances, flavors, and have shown potential use as a biofuel. This paper describes a method to extract and analyze the terpenoids present in loblolly pine saplings and pine lighter wood. Various extraction solvents were tested over different times and temperatures. Samples were analyzed by pyrolysis-molecular beam mass spectrometry before and after extractions to monitor the extraction efficiency. The pyrolysis studies indicated that the optimal extraction method used a 1:1 hexane/acetone solvent system at 22°C for 1 h. Extracts from the hexane/acetone experiments were analyzed using a low thermal mass modular accelerated column heater for fast-GC/FID analysis. The most abundant terpenoids from the pine samples were quantified, using standard curves, and included the monoterpenes, α- and β-pinene, camphene, and δ-carene. Sesquiterpenes analyzed included caryophyllene, humulene, and α-bisabolene. Diterpenoid resin acids were quantified in derivatized extractions, including pimaric, isopimaric, levopimaric, palustric, dehydroabietic, abietic, and neoabietic acids.

  8. Terpenoids in Buddleja: relevance to chemosystematics, chemical ecology and biological activity.

    Science.gov (United States)

    Houghton, Peter J; Mensah, Abraham Y; Iessa, Noha; Hong, Liao Yong

    2003-09-01

    The terpenoids reported from Buddleja species are described. The antifungal activity of chloroform extracts of B. cordata and B. davidii stembark against the soil fungi Fusarium culmorum and Sordari fimicola is reported, with buddledin A shown to be the major compound responsible. The terpenoids present support the view that the Buddlejaceae should be classified in a taxon with Scrophulariaceae rather than Loganiaceae. Ecological aspects of the terpenoids are considered in relation to insects and soil fungi and the role of terpenoids in the chemical basis of the use of Buddleja in traditional medicine is also discussed, especially with regard to their anti-inflammatory properties.

  9. Development of a Terpenoid-Production Platform in Streptomyces reveromyceticus SN-593.

    Science.gov (United States)

    Khalid, Ammara; Takagi, Hiroshi; Panthee, Suresh; Muroi, Makoto; Chappell, Joe; Osada, Hiroyuki; Takahashi, Shunji

    2017-12-15

    Terpenoids represent the largest class of natural products, some of which are resources for pharmaceuticals, fragrances, and fuels. Generally, mass production of valuable terpenoid compounds is hampered by their low production levels in organisms and difficulty of chemical synthesis. Therefore, the development of microbial biosynthetic platforms represents an alternative approach. Although microbial terpenoid-production platforms have been established in Escherichia coli and yeast, an optimal platform has not been developed for Streptomyces species, despite the large capacity to produce secondary metabolites, such as polyketide compounds. To explore this potential, we constructed a terpenoid-biosynthetic platform in Streptomyces reveromyceticus SN-593. This strain is unique in that it harbors the mevalonate gene cluster enabling the production of furaquinocin, which can be controlled by the pathway specific regulator Fur22. We simultaneously expressed the mevalonate gene cluster and subsequent terpenoid-biosynthetic genes under the control of Fur22. To achieve improved fur22 gene expression, we screened promoters from S. reveromyceticus SN-593. Our results showed that the promoter associated with rvr2030 gene enabled production of 212 ± 20 mg/L botryococcene to levels comparable to those previously reported for other microbial hosts. Given that the rvr2030 gene encodes for an enzyme involved in the primary metabolism, these results suggest that optimized expression of terpenoid-biosynthetic genes with primary and secondary metabolism might be as important for high yields of terpenoid compounds as is the absolute expression level of a target gene(s).

  10. Proteomic Insights on the Metabolism of Penicillium janczewskii during the Biotransformation of the Plant Terpenoid Labdanolic Acid

    Directory of Open Access Journals (Sweden)

    Isabel Martins

    2017-07-01

    Full Text Available Plant terpenoids compose a natural source of chemodiversity of exceptional value. Many of these compounds own biological/pharmacological activity, others are regarded as unique chemical skeletons for the synthesis of derivatives with improved properties. Functional chemical modification of terpenoids through biotransformation frequently relies on the use of Ascomycota strains, but information on major cellular responses is still largely lacking. Penicillium janczewskii mediates a stereo-selective hydroxylation of labdanolic acid (LA—terpenoid found abundantly in Cistus ladanifer—producing 3β-hydroxy-labdanolic acid with yields >90%. Herein, combined analyses of mycelial and extracellular differential proteomes demonstrated that the plant terpenoid increased stress responses, especially against oxidative stress (e.g., accumulation of superoxide dismutase and apparently altered mitochondria functioning. One putative cytochrome P450 monooxygenase differentially accumulated in the secretome and the terpenoid bioconversion was inhibited in vivo in the presence of a P450 inhibitor. The stereo-selective hydroxylation of the plant terpenoid is likely mediated by P450 enzymes, yet its unequivocal identity remains unclear. To the best of our knowledge, this is the first time that proteomics was used to investigate how a plant terpenoid impacts the metabolism of a filamentous fungus during its efficiently biotransformation. Our findings may encourage the development of new strategies for the valorization of plant natural resources through biotechnology.

  11. Terpenoid composition and class of Tertiary resins from India

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Suryendu; Mallick, Monalisa; Mathews, Runcie Paul [Department of Earth Sciences, Indian Institute of Technology Bombay, Powai, Mumbai-400076 (India); Bertram, Norbert [LTA-Labor fuer Toxikologie und Analytik, Friedrichshoeher Str. 28, D-53639 Koenigswinter (Germany); Greenwood, Paul F. [John De Laeter Mass Spectrometry and WA Biogeochemitry Centres (M090), The University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009 (Australia); WA - Organic and Isotope Geochemistry Centre, Curtin University of Technology, Kent St., Bentley 6102 (Australia)

    2009-10-01

    The terpenoid composition and class of Tertiary resins preserved within lignites of Cambay, Kutch and Cauvery Basins of India have been characterized using Pyrolysis-Gas Chromatography-Mass Spectrometry (Py-GC-MS) and Fourier Transform Infrared (FTIR) Spectroscopy. Major pyrolysis products include cadalene-based C{sub 15}-bicyclic sesquiterpenoids with some C{sub 30} and C{sub 31} bicadinanes and bicadinenes typical of Class II or dammar resin. The occurrence of these terpenoids in Early Eocene sediments may extend the first appearance of Dipterocarpaceae angiosperms, the predominant source of this resin class, back to the Early Eocene epoch in India. The same terpenoid biomarkers have been detected in many SE Asian oils reflecting a close source relationship with these resins. Strong CH{sub 3} (1377 cm{sup -} {sup 1}) and other CH{sub x} (3000-2800 and 1460-1450 cm{sup -} {sup 1}) aliphatic absorptions of much larger intensity than the aromatic C = C (1560-1650 cm{sup -} {sup 1}) absorption were detected in the Indian resins by FTIR Spectroscopy, confirming the quantitative significance of the terpenoid pyrolysates. (author)

  12. Flavonoids and terpenoids from Croton muscicarpa (Euphorbiaceae)

    International Nuclear Information System (INIS)

    Barreto, Milena B.; Gomes, Clêrton L.; Freitas, João Vito B. de; Pinto, Francisco das Chagas L.; Silveira, Edilberto R.; Gramosa, Nilce V.; Torres, Daniela S. Carneiro

    2013-01-01

    A new sesquiterpene and twelve known compounds comprising eight flavonoids and four terpenoids, were isolated from the leaves, stems, roots and exudate of Croton muscicarpa Müll.. Arg.. Their structures were identified as the terpenoids 6α-methoxy-cyperene, dammaradienol, squalene, acetyl aleuritolic acid and spathulenol, and as the flavonoids retusin, 3,7,4’-trimethoxy kaempferol, ombuine, pachipodol, kaempferol, casticin, 5-hydroxy-3,6,7,4’-tetramethoxyflavone and artemetin. All isolated compounds were characterized based on IR, MS, 1 H and 13 C NMR, including 2D analyses (COSY, HSQC, HMBC, NOESY) and comparison with data from the literature. (author)

  13. Flavonoids and terpenoids from Croton muscicarpa (Euphorbiaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Milena B.; Gomes, Clerton L.; Freitas, Joao Vito B. de; Pinto, Francisco das Chagas L.; Silveira, Edilberto R.; Gramosa, Nilce V., E-mail: nilce@dqoi.ufc.br [Departamento de Quimica Organica e Inorganica, Centro de Ciencias, Universidade Federal do Ceara, Fortaleza (Brazil); Torres, Daniela S. Carneiro [Departamento de Ciencias Biologicas Jequie, Universidade Estadual do Sudoeste da Bahia, Jequie, BA (Brazil)

    2013-09-01

    A new sesquiterpene and twelve known compounds comprising eight flavonoids and four terpenoids, were isolated from the leaves, stems, roots and exudate of Croton muscicarpa Muell.. Arg.. Their structures were identified as the terpenoids 6{alpha}-methoxy-cyperene, dammaradienol, squalene, acetyl aleuritolic acid and spathulenol, and as the flavonoids retusin, 3,7,4'-trimethoxy kaempferol, ombuine, pachipodol, kaempferol, casticin, 5-hydroxy-3,6,7,4'-tetramethoxyflavone and artemetin. All isolated compounds were characterized based on IR, MS, {sup 1}H and {sup 13}C NMR, including 2D analyses (COSY, HSQC, HMBC, NOESY) and comparison with data from the literature. (author)

  14. Flavonoides e terpenoides de Croton muscicarpa (Euphorbiaceae

    Directory of Open Access Journals (Sweden)

    Milena B. Barreto

    2013-01-01

    Full Text Available A new sesquiterpene and twelve known compounds comprising eight flavonoids and four terpenoids, were isolated from the leaves, stems, roots and exudate of Croton muscicarpa Müll. Arg.. Their structures were identified as the terpenoids 6α-methoxy-cyperene, dammaradienol, squalene, acetyl aleuritolic acid and spathulenol, and as the flavonoids retusin, 3,7,4'-trimethoxy kaempferol, ombuine, pachipodol, kaempferol, casticin, 5-hydroxy-3,6,7,4'-tetramethoxyflavone and artemetin. All isolated compounds were characterized based on IR, MS, ¹H and 13C NMR, including 2D analyses (COSY, HSQC, HMBC, NOESY and comparison with data from the literature.

  15. Flavonoids and terpenoids from Croton muscicarpa (Euphorbiaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Milena B.; Gomes, Clerton L.; Freitas, Joao Vito B. de; Pinto, Francisco das Chagas L.; Silveira, Edilberto R.; Gramosa, Nilce V., E-mail: nilce@dqoi.ufc.br [Departamento de Quimica Organica e Inorganica, Centro de Ciencias, Universidade Federal do Ceara, Fortaleza (Brazil); Torres, Daniela S. Carneiro [Departamento de Ciencias Biologicas Jequie, Universidade Estadual do Sudoeste da Bahia, Jequie, BA (Brazil)

    2013-09-01

    A new sesquiterpene and twelve known compounds comprising eight flavonoids and four terpenoids, were isolated from the leaves, stems, roots and exudate of Croton muscicarpa Muell.. Arg.. Their structures were identified as the terpenoids 6{alpha}-methoxy-cyperene, dammaradienol, squalene, acetyl aleuritolic acid and spathulenol, and as the flavonoids retusin, 3,7,4'-trimethoxy kaempferol, ombuine, pachipodol, kaempferol, casticin, 5-hydroxy-3,6,7,4'-tetramethoxyflavone and artemetin. All isolated compounds were characterized based on IR, MS, {sup 1}H and {sup 13}C NMR, including 2D analyses (COSY, HSQC, HMBC, NOESY) and comparison with data from the literature. (author)

  16. Engineering yeast metabolism for production of terpenoids for use as perfume ingredients, pharmaceuticals and biofuels.

    Science.gov (United States)

    Zhang, Yueping; Nielsen, Jens; Liu, Zihe

    2017-12-01

    Terpenoids represent a large class of natural products with significant commercial applications. These chemicals are currently mainly obtained through extraction from plants and microbes or through chemical synthesis. However, these sources often face challenges of unsustainability and low productivity. In order to address these issues, Escherichia coli and yeast have been metabolic engineered to produce non-native terpenoids. With recent reports of engineering yeast metabolism to produce several terpenoids at high yields, it has become possible to establish commercial yeast production of terpenoids that find applications as perfume ingredients, pharmaceuticals and advanced biofuels. In this review, we describe the strategies to rewire the yeast pathway for terpenoid biosynthesis. Recent advances will be discussed together with challenges and perspectives of yeast as a cell factory to produce different terpenoids. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Long-term measurement of terpenoid flux above a Larix kaempferi forest using a relaxed eddy accumulation method

    Science.gov (United States)

    Mochizuki, Tomoki; Tani, Akira; Takahashi, Yoshiyuki; Saigusa, Nobuko; Ueyama, Masahito

    2014-02-01

    Terpenoids emitted from forests contribute to the formation of secondary organic aerosols and affect the carbon budgets of forest ecosystems. To investigate seasonal variation in terpenoid flux involved in the aerosol formation and carbon budget, we measured the terpenoid flux of a Larix kaempferi forest between May 2011 and May 2012 by using a relaxed eddy accumulation method. Isoprene was emitted from a fern plant species Dryopteris crassirhizoma on the forest floor and monoterpenes from the L. kaempferi. α-Pinene was the dominant compound, but seasonal variation of the monoterpene composition was observed. High isoprene and monoterpene fluxes were observed in July and August. The total monoterpene flux was dependent on temperature, but several unusual high positive fluxes were observed after rain fall events. We found a good correlation between total monoterpene flux and volumetric soil water content (r = 0.88), and used this correlation to estimate monoterpene flux after rain events and calculate annual terpenoid emissions. Annual carbon emission in the form of total monoterpenes plus isoprene was determined to be 0.93% of the net ecosystem exchange. If we do not consider the effect of rain fall, carbon emissions may be underestimated by about 50%. Our results suggest that moisture conditions in the forest soil is a key factor controlling the monoterpene emissions from the forest ecosystem.

  18. Applications of plant terpenoids in the synthesis of colloidal silver nanoparticles.

    Science.gov (United States)

    Mashwani, Zia-Ur-Rehman; Khan, Mubarak Ali; Khan, Tariq; Nadhman, Akhtar

    2016-08-01

    Green chemistry is the design of chemical products and processes that reduce or eliminate the generation of hazardous substances. Since the last few years, natural products especially plant secondary metabolites have been extensively explored for their potency to synthesize silver nanoparticles (AgNPs). The plant-based AgNPs are safer, energy efficient, eco-friendly, and less toxic than chemically synthesized counterparts. The secondary metabolites, ubiquitously found in plants especially the terpenoid-rich essential oils, have a significant role in AgNPs synthesis. Terpenoids belong to the largest family of natural products and are found in all kinds of organisms. Their involvement in the synthesis of plant-based AgNPs has got much attention in the recent years. The current article is not meant to provide an exhaustive overview of green synthesis of nanoparticles, but to present the pertinent role of plant terpenoids in the biosynthesis of AgNPs, as capping and reducing agents for development of uniform size and shape AgNPs. An emphasis on the important role of FTIR in the identification and elucidation of major functional groups in terpenoids for AgNPs synthesis has also been reviewed in this manuscript. It was found that no such article is available that has discussed the role of plant terpenoids in the green synthesis of AgNPs. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Terpenoids in plant signaling, chemical ecology

    NARCIS (Netherlands)

    Kappers, I.F.; Dicke, M.; Bouwmeester, H.J.

    2008-01-01

    Terpenoids constitute the largest class of secondary metabolites in the plant kingdom. Because of their immense structural diversity and the resulting diversity in physiochemical properties, these molecules are particularly important for plant communication with other organisms. In this article, we

  20. Hairy root biotechnology of Rauwolfia serpentina: a potent approach for the production of pharmaceutically important terpenoid indole alkaloids.

    Science.gov (United States)

    Mehrotra, Shakti; Goel, Manoj K; Srivastava, Vikas; Rahman, Laiq Ur

    2015-02-01

    Hairy root cultures of Rauwolfia serpentina induced by Agrobacterium rhizogenes have been investigated extensively for the production of terpenoid indole alkaloids. Various biotechnological developments, such as scaling up in bioreactors, pathway engineering etc., have been explored to improve their metabolite production potential. These hairy roots are competent for regenerating into complete plants and show survival and unaltered biosynthetic potential during storage at low temperature. This review provides a comprehensive account of the hairy root cultures of R. serpentina, their biosynthetic potential and various biotechnological methods used to explore the production of pharmaceutically important terpenoid indole alkaloids. The review also indicates how biotechnological endeavors might improve the future progress of research for production of alkaloids using Rauwolfia hairy roots.

  1. Phytochemical studies on the terpenoids of medicinally important plant Aerva lanata L. using HPTLC

    Institute of Scientific and Technical Information of China (English)

    Yamunadevi M; Wesely EG; Johnson M

    2011-01-01

    Objective:To elucidate the terpenoids profile of Aerva lanata (A. lanata) using high performance thin layer chromatography (HPTLC). Methods: Preliminary phytochemical screening was done and HPTLC studies were carried out. The n-hexane:ethyl acetate (7.2: 2.8) was employed as mobile phase for terpenoids. Results: The desired aim was achieved using n-hexane-ethyl acetate (7.2: 2.8) as the mobile phase. The methanolic extract of stem, leaves, root, flower and seeds of A. lanata showed the presence of 27 different types of terpenoids with 27 different Rf values in the range of 0.06 to 0.97. The developed HPTLC method for terpenoid profile is simple, precise and accurate and can be used for the identification and commercial application. Conclusions:HPTLC profile of terpenoids has been chosen here to reveal the diversity existing at biochemical level in A. lanata. Such finger printing is useful in differentiating the species from the adulterant and act as a biochemical marker for this medicinally important plant in the pharmaceutical industry and plant systematic studies.

  2. Identification of Terpenoid Chemotypes Among High (-)-trans-Δ9- Tetrahydrocannabinol-Producing Cannabis sativa L. Cultivars.

    Science.gov (United States)

    Fischedick, Justin T

    2017-01-01

    Introduction: With laws changing around the world regarding the legal status of Cannabis sativa (cannabis) it is important to develop objective classification systems that help explain the chemical variation found among various cultivars. Currently cannabis cultivars are named using obscure and inconsistent nomenclature. Terpenoids, responsible for the aroma of cannabis, are a useful group of compounds for distinguishing cannabis cultivars with similar cannabinoid content. Methods: In this study we analyzed terpenoid content of cannabis samples obtained from a single medical cannabis dispensary in California over the course of a year. Terpenoids were quantified by gas chromatography with flame ionization detection and peak identification was confirmed with gas chromatography mass spectrometry. Quantitative data from 16 major terpenoids were analyzed using hierarchical clustering analysis (HCA), principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal partial least squares discriminant analysis (OPLS-DA). Results: A total of 233 samples representing 30 cultivars were used to develop a classification scheme based on quantitative data, HCA, PCA, and OPLS-DA. Initially cultivars were divided into five major groups, which were subdivided into 13 classes based on differences in terpenoid profile. Different classification models were compared with PLS-DA and found to perform best when many representative samples of a particular class were included. Conclusion: A hierarchy of terpenoid chemotypes was observed in the data set. Some cultivars fit into distinct chemotypes, whereas others seemed to represent a continuum of chemotypes. This study has demonstrated an approach to classifying cannabis cultivars based on terpenoid profile.

  3. Methods and materials for production of terpenoids

    DEFF Research Database (Denmark)

    2015-01-01

    The invention provide novel methods for production of terpenoids. The methods take advantage of combinations of enzymes, which are not present in nature. Thus the methods involves use of host organisms expressing a diTPS of class II, diTPS of class I, and one or more CYPs....

  4. Enhanced biotransformation of TCE using plant terpenoids in contaminated groundwater.

    Science.gov (United States)

    Brown, J R-M; Thompson, I P; Paton, G I; Singer, A C

    2009-12-01

    To examine plant terpenoids as inducers of TCE (trichloroethylene) biotransformation by an indigenous microbial community originating from a plume of TCE-contaminated groundwater. One-litre microcosms of groundwater were spiked with 100 micromol 1(-1) of TCE and amended weekly for 16 weeks with 20 microl 1(-1) of the following plant monoterpenes: linalool, pulegone, R-(+) carvone, S-(-) carvone, farnesol, cumene. Yeast extract-amended and unamended control treatments were also prepared. The addition of R-carvone and S-carvone, linalool and cumene resulted in the biotransformation of upwards of 88% of the TCE, significantly more than the unamendment control (61%). The aforementioned group of terpenes also significantly (P TCE to be degraded than the remaining two terpenes (farnesol and pulegone), and the yeast extract treatment which biotransformed 74-75% of the TCE. The microbial community profile was monitored by denaturing gradient gel electrophoresis and demonstrated much greater similarities between the microbial communities in terpene-amended treatments than in the yeast extract or unamended controls. TCE biotransformation can be significantly enhanced through the addition of selected plant terpenoids. Plant terpenoid and nutrient supplementation to groundwater might provide an environmentally benign means of enhancing the rate of in situ TCE bioremediation.

  5. Terpenoid emissions from fully grown east Siberian Larix cajanderi trees

    Directory of Open Access Journals (Sweden)

    M. K. Kajos

    2013-07-01

    Full Text Available While emissions of many biogenic volatile organic compounds (BVOCs, such as terpenoids, have been studied quite intensively in North American and Scandinavian boreal forests, the vast Siberian boreal forests have remained largely unexplored by experimental emission studies. In this study the shoot-scale terpenoid emission rates from two mature Larix cajanderi trees growing in their natural habitat in eastern Siberia were measured at the Spasskaya Pad flux measurement site (62°15´18.4" N, 129°37´07.9" E located on the western bank of the Lena river. The measurements were conducted during three campaigns: 3–24 June, 8–26 July, and 14–30 August, in the summer of 2009. A dynamic flow-through enclosure technique was applied for adsorbent sampling, and the samples were analysed offline with a gas chromatograph. Between 29 and 45 samples were taken from each shoot during all three campaigns. Seven different monoterpenes, six different sesquiterpenes, linalool isoprene, and 2-methyl-3-buten-2-ol (MBO were identified. The monthly median value of the total terpenoid emissions varied between 0.006 and 10.6 μg gdw−1 h−1. The emissions were dominated by monoterpenes, which constituted between 61 and 92% of the total emissions. About half of the monoterpene emissions were comprised of Δ 3-carene; α- and β-pinene had significant emissions as well. Linalool emissions were also substantial, comprising 3–37% of the total emissions, especially in June. Sesquiterpenes accounted for less than 3% and isoprene less than 1% of the total emissions. Based on the measured emission rates, the relative atmospheric concentration of each compound was estimated. Monoterpenes were the species with the highest relative concentration, while linalool and sesquiterpenes had a notably smaller contribution to the estimated atmospheric concentration than to the emission rates. A temperature-dependent pool algorithm with a constant β (0.09 °C−1 for monoterpenes

  6. Engineering yeast metabolism for production of terpenoids for use as perfume ingredients, pharmaceuticals and biofuels

    DEFF Research Database (Denmark)

    Zhang, Yueping; Nielsen, Jens; Liu, Zihe

    2017-01-01

    of terpenoids that find applications as perfume ingredients, pharmaceuticals and advanced biofuels. In this review, we describe the strategies to rewire the yeast pathway for terpenoid biosynthesis. Recent advances will be discussed together with challenges and perspectives of yeast as a cell factory to produce...

  7. Anticancer Activity of Linalool Terpenoid: Apoptosis Induction and ...

    African Journals Online (AJOL)

    Anticancer Activity of Linalool Terpenoid: Apoptosis Induction and Cell Cycle Arrest in ... of linalool on cell morphology and apoptotic body formation in DU145 cells ... It was observed that 4.36, 11.54, 21.88 and 15.54 % of the cells underwent ...

  8. Identification of novel anticancer terpenoids from Prosopis juliflora ...

    African Journals Online (AJOL)

    Purpose: To identify a novel source of terpenoid anticancer compounds from P. juliflora (Sw.) DC. (Leguminosae) pods as a medicinal substitute for cancer medicines. Methods: The pods were collected, dried and pulverized. The ethanol extract was prepared by maceration. Various phyto-constituents were detected in the ...

  9. Volatile terpenoids as potential drug leads in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Wojtunik-Kulesza Karolina A.

    2017-12-01

    Full Text Available Alzheimer’s disease (AD is by far the most prevalent of all known forms of dementia. Despite wide-spread research, the main causes of emergence and development of AD have not been fully recognized. Natural, low-molecular, lipophilic terpenoids constitute an interesting group of secondary plant metabolites, that exert biological activities of possible use in the prevention and treatment of AD. In order to identify secondary metabolites possessing both antioxidant activity and the potential to increase the level of acetylcholine, selected terpenoids have been screened for possible acetylcholinesterase inhibitory activity by use of two methods, namely Marston (chromatographic assay and Ellman (spectrophotometric assay. In order to describe the interaction between terpenes and AChE active gorge, molecular docking simulations were performed. Additionally, all analyzed terpenes were also evaluated for their cytotoxic properties against two normal cell lines using MTT assay. The obtained results show that: carvone (6, pulegone (8 and γ-terpinene (7 possess desirable AChE inhibitory activity. MTT assay revealed low or lack of cytotoxicity of these metabolites. Thus, among the investigated terpenes, carvone (6, pulegone (8 and y-terpinene (7 can be recognized as compounds with most promising activities in the development of multi-target directed ligands.

  10. In silico discovery of terpenoid metabolism in Cannabis sativa [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Luca Massimino

    2017-02-01

    Full Text Available Due to their efficacy, cannabis based therapies are currently being prescribed for the treatment of many different medical conditions. Interestingly, treatments based on the use of cannabis flowers or their derivatives have been shown to be very effective, while therapies based on drugs containing THC alone lack therapeutic value and lead to increased side effects, likely resulting from the absence of other pivotal entourage compounds found in the Phyto-complex. Among these compounds are terpenoids, which are not produced exclusively by cannabis plants, so other plant species must share many of the enzymes involved in their metabolism. In the present work, 23,630 transcripts from the canSat3 reference transcriptome were scanned for evolutionarily conserved protein domains and annotated in accordance with their predicted molecular functions. A total of 215 evolutionarily conserved genes encoding enzymes presumably involved in terpenoid metabolism are described, together with their expression profiles in different cannabis plant tissues at different developmental stages. The resource presented here will aid future investigations on terpenoid metabolism in Cannabis sativa.

  11. Iodine, a Mild Reagent for the Aromatization of Terpenoids.

    Science.gov (United States)

    Domingo, Victoriano; Prieto, Consuelo; Silva, Lucia; Rodilla, Jesús M L; Quílez del Moral, José F; Barrero, Alejandro F

    2016-04-22

    Efficient procedures based on the use of iodine for the aromatization of a series of terpenoids possessing diene and homoallylic or allylic alcohol functionalities are described. Different examples are reported as a proof-of-concept study. Furthermore, iodine also proved to mediate the dehydrogenation of testosterone.

  12. A Novel Terpenoid from Elephantopus Scaber – Antibacterial Activity on Staphylococcus Aureus: A Substantiate Computational Approach

    Science.gov (United States)

    Daisy, P.; Mathew, Salu; Suveena, S.; Rayan, Nirmala A.

    2008-01-01

    Staphylococcus aureus has gained much attention in the last decade as it is a major cause of the Urinary Tract Infection in Diabetic patients. The Extended Spectrum β-Lactamases (ESβL) producers are highly resistant to several conventional antibiotics. This limits the therapeutic options.Hence efforts are now taken to screen few medicinal plants, which are both economic and less toxic. Among the several plants screened, we have chosen the acetone extract of Elephantopus scaber from which we purified a new terpenoid for our study. Its structure was generated using CHEMSKETCH software and the activity prediction was done using PASS PREDICTION software. We have confirmed the mechanism of anti-bacterial effect of terpenoid using Computer – Aided Drug Design (CADD) with computational methods to simulate drug – receptor interactions. The Protein-Ligand interaction plays a significant role in the structural based drug designing. In this present study we have taken the Autolysin, the bacteriolytic enzyme, that digest the cell wall peptidoglycon. The autolysin and terpenoid were docked using HEX docking software and the docking score with minimum energy value of -209.54 was calculated. It infers that the terpenoid can inhibit the activity of autolysin by forming a strong atomic interaction with the active site residues. Hence the terpenoid can act as a drug for bacterial infections. Further investigations can be carried out to predict the activity of terpeniod on other targets. PMID:23675090

  13. Terpenoids and norlignans from Metasequoia glyptostroboides.

    Science.gov (United States)

    Dong, Liao-Bin; He, Juan; Wang, Yuan-Yuan; Wu, Xing-De; Deng, Xu; Pan, Zheng-Hong; Xu, Gang; Peng, Li-Yan; Zhao, Yu; Li, Yan; Gong, Xun; Zhao, Qin-Shi

    2011-02-25

    Four new terpenoids, metaseglyptorin A (1), metasequoic acid C (2), 12α-hydroxy-8,15-isopimaradien-18-oic acid (3), and (-)-acora-2,4(14),8-trien-15-oic acid (4), and three new norlignans, metasequirins D-F (5-7), were isolated from Metasequoia glyptostroboides, together with 15 known compounds. Structures of the new compounds were determined by analysis of their spectroscopic data, and the absolute configuration of 7 was established by the modified Mosher method. All of the compounds were evaluated for cytotoxicity against five human tumor cell lines.

  14. Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens.

    Science.gov (United States)

    Keeling, Christopher I; Bohlmann, Jörg

    2006-01-01

    Insects select their hosts, but trees cannot select which herbivores will feed upon them. Thus, as long-lived stationary organisms, conifers must resist the onslaught of varying and multiple attackers over their lifetime. Arguably, the greatest threats to conifers are herbivorous insects and their associated pathogens. Insects such as bark beetles, stem- and wood-boring insects, shoot-feeding weevils, and foliage-feeding budworms and sawflies are among the most devastating pests of conifer forests. Conifer trees produce a great diversity of compounds, such as an enormous array of terpenoids and phenolics, that may impart resistance to a variety of herbivores and microorganisms. Insects have evolved to specialize in resistance to these chemicals -- choosing, feeding upon, and colonizing hosts they perceive to be best suited to reproduction. This review focuses on the plant-insect interactions mediated by conifer-produced terpenoids. To understand the role of terpenoids in conifer-insect interactions, we must understand how conifers produce the wide diversity of terpenoids, as well as understand how these specific compounds affect insect behaviour and physiology. This review examines what chemicals are produced, the genes and proteins involved in their biosynthesis, how they work, and how they are regulated. It also examines how insects and their associated pathogens interact with, elicit, and are affected by conifer-produced terpenoids.

  15. A new method for microwave assisted ethanolic extraction of Mentha rotundifolia bioactive terpenoids.

    Science.gov (United States)

    García-Sarrió, María Jesús; Sanz, María Luz; Sanz, Jesús; González-Coloma, Azucena; Cristina Soria, Ana

    2018-04-14

    A new microwave-assisted extraction (MAE) method using ethanol as solvent has been optimized by means of a Box-Behnken experimental design for the enhanced extraction of bioactive terpenoids from Mentha rotundifolia leaves; 100°C, 5 min, 1.125 g dry sample: 10 mL solvent and a single extraction cycle were selected as optimal conditions. Improved performance of MAE method in terms of extraction yield and/or reproducibility over conventional solid-liquid extraction and ultrasound assisted extraction was also previously assessed. A comprehensive characterization of MAE extracts was carried out by GC-MS. A total of 46 compounds, mostly terpenoids, were identified; piperitenone oxide and piperitenone were the major compounds determined. Several neophytadiene isomers were also detected for the first time in MAE extracts. Different procedures (solid-phase extraction and activated charcoal (AC) treatment) were also evaluated for clean-up of MAE extracts, with AC providing the highest enrichment in bioactive terpenoids. Finally, the MAE method here developed is shown as a green, fast, efficient and reproducible liquid extraction methodology to obtain M. rotundifolia bioactive extracts for further application, among others, as food preservatives. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ursolic Acid and Oleanolic Acid: Pentacyclic Terpenoids with Promising Anti-Inflammatory Activities.

    Science.gov (United States)

    Kashyap, Dharambir; Sharma, Ajay; Tuli, Hardeep S; Punia, Sandeep; Sharma, Anil K

    2016-01-01

    Plant derived products are not only served as dietary components but also used to treat and prevent the inflammatory associated diseases like cancer. Among the natural products pentacyclic terpenoids including ursolic acid and oleanolic acid are considered as the promising anti-inflammatory therapeutic agents. The current review extensively discusses the anti-inflammatory therapeutic potential of these pentacyclic moieties along with their proposed mechanisms of action. Furthermore, the relevant patents have also been listed to present the health benefits of these promising therapeutic agents to pin down the inflammatory diseases. Expert opinion: Pentacyclic terpenoids are known to negatively down-regulate a variety of extracellular and intracellular molecular targets associated with disease progression. The major anti-inflammatory effects of these molecules have been found to be mediated via inactivation of NFkB, STAT3/6, Akt/mTOR pathways. A number of patents on UA & OA based moieties have been reported between 2010 and 2016. Still there have been only a few compounds which meet the need of sufficient hydro solubility and bioavailability along with higher anti-inflammatory activities. Thus, it is essential to develop novel derivatives of terpenpoids which may not only overcome the solubility issues but also may improve their therapeutic effects. In addition, scientific community may utilize nanotechnology based drug delivery systems so as to increase the bio-availability, selectivity and dosages related problems.

  17. Regulation of Floral Terpenoid Emission and Biosynthesis in Sweet Basil (Ocimum basilicum).

    Science.gov (United States)

    Jiang, Yifan; Ye, Jiayan; Li, Shuai; Niinemets, Ülo

    2016-12-01

    Past studies have focused on the composition of essential oil of Ocimum basilicum leaves, but data on composition and regulation of its aerial emissions, especially floral volatile emissions are scarce. We studied the chemical profile, within-flower spatial distribution (sepals, petals, pistils with stamina and pedicels), diurnal emission kinetics and effects of exogenous methyl jasmonate (MeJA) application on the emission of floral volatiles by dynamic headspace collection and identification using gas chromatography-mass spectrometry (GC-MS) and proton transfer reaction mass spectrometry (PTR-MS). We observed more abundant floral emissions from flowers compared with leaves. Sepals were the main emitters of floral volatiles among the flower parts studied. The emissions of lipoxygenase compounds (LOX) and monoterpenoids, but not sesquiterpene emissions, displayed a diurnal variation driven by light. Response to exogenous MeJA treatment of flowers consisted of a rapid stress response and a longer-term acclimation response. The initial response was associated with enhanced emissions of fatty acid derivatives, monoterpenoids, and sesquiterpenoids without variation of the composition of individual compounds. The longer-term response was associated with enhanced monoterpenoid and sesquiterpenoid emissions with profound changes in the emission spectrum. According to correlated patterns of terpenoid emission changes upon stress, highlighted by a hierarchical cluster analysis, candidate terpenoid synthases responsible for observed diversity and complexity of released terpenoid blends were postulated. We conclude that flower volatile emissions differ quantitatively and qualitatively from leaf emissions, and overall contribute importantly to O. basilicum flavor, especially under stress conditions.

  18. Genomic and transcriptomic analyses reveal differential regulation of diverse terpenoid and polyketides secondary metabolites in Hericium erinaceus.

    Science.gov (United States)

    Chen, Juan; Zeng, Xu; Yang, Yan Long; Xing, Yong Mei; Zhang, Qi; Li, Jia Mei; Ma, Ke; Liu, Hong Wei; Guo, Shun Xing

    2017-08-31

    The lion's mane mushroom Hericium erinaceus is a famous traditional medicinal fungus credited with anti-dementia activity and a producer of cyathane diterpenoid natural products (erinacines) useful against nervous system diseases. To date, few studies have explored the biosynthesis of these compounds, although their chemical synthesis is known. Here, we report the first genome and tanscriptome sequence of the medicinal fungus H. erinaceus. The size of the genome is 39.35 Mb, containing 9895 gene models. The genome of H. erinaceus reveals diverse enzymes and a large family of cytochrome P450 (CYP) proteins involved in the biosynthesis of terpenoid backbones, diterpenoids, sesquiterpenes and polyketides. Three gene clusters related to terpene biosynthesis and one gene cluster for polyketides biosynthesis (PKS) were predicted. Genes involved in terpenoid biosynthesis were generally upregulated in mycelia, while the PKS gene was upregulated in the fruiting body. Comparative genome analysis of 42 fungal species of Basidiomycota revealed that most edible and medicinal mushroom show many more gene clusters involved in terpenoid and polyketide biosynthesis compared to the pathogenic fungi. None of the gene clusters for terpenoid or polyketide biosynthesis were predicted in the poisonous mushroom Amanita muscaria. Our findings may facilitate future discovery and biosynthesis of bioactive secondary metabolites from H. erinaceus and provide fundamental information for exploring the secondary metabolites in other Basidiomycetes.

  19. Regulation of Floral Terpenoid Emission and Biosynthesis in Sweet Basil (Ocimum basilicum)

    Science.gov (United States)

    Jiang, Yifan; Ye, Jiayan; Li, Shuai; Niinemets, Ülo

    2018-01-01

    Past studies have focused on the composition of essential oil of Ocimum basilicum leaves, but data on composition and regulation of its aerial emissions, especially floral volatile emissions are scarce. We studied the chemical profile, within-flower spatial distribution (sepals, petals, pistils with stamina and pedicels), diurnal emission kinetics and effects of exogenous methyl jasmonate (MeJA) application on the emission of floral volatiles by dynamic headspace collection and identification using gas chromatography-mass spectrometry (GC-MS) and proton transfer reaction mass spectrometry (PTR-MS). We observed more abundant floral emissions from flowers compared with leaves. Sepals were the main emitters of floral volatiles among the flower parts studied. The emissions of lipoxygenase compounds (LOX) and monoterpenoids, but not sesquiterpene emissions, displayed a diurnal variation driven by light. Response to exogenous MeJA treatment of flowers consisted of a rapid stress response and a longer-term acclimation response. The initial response was associated with enhanced emissions of fatty acid derivatives, monoterpenoids, and sesquiterpenoids without variation of the composition of individual compounds. The longer-term response was associated with enhanced monoterpenoid and sesquiterpenoid emissions with profound changes in the emission spectrum. According to correlated patterns of terpenoid emission changes upon stress, highlighted by a hierarchical cluster analysis, candidate terpenoid synthases responsible for observed diversity and complexity of released terpenoid blends were postulated. We conclude that flower volatile emissions differ quantitatively and qualitatively from leaf emissions, and overall contribute importantly to O. basilicum flavor, especially under stress conditions. PMID:29367803

  20. Terpenoids from Zingiber officinale (Ginger induce apoptosis in endometrial cancer cells through the activation of p53.

    Directory of Open Access Journals (Sweden)

    Yang Liu

    Full Text Available Novel strategies are necessary to improve chemotherapy response in advanced and recurrent endometrial cancer. Here, we demonstrate that terpenoids present in the Steam Distilled Extract of Ginger (SDGE are potent inhibitors of proliferation of endometrial cancer cells. SDGE, isolated from six different batches of ginger rhizomes, consistently inhibited proliferation of the endometrial cancer cell lines Ishikawa and ECC-1 at IC(50 of 1.25 µg/ml. SDGE also enhanced the anti-proliferative effect of radiation and cisplatin. Decreased proliferation of Ishikawa and ECC-1 cells was a direct result of SDGE-induced apoptosis as demonstrated by FITC-Annexin V staining and expression of cleaved caspase 3. GC/MS analysis identified a total of 22 different terpenoid compounds in SDGE, with the isomers neral and geranial constituting 30-40%. Citral, a mixture of neral and geranial inhibited the proliferation of Ishikawa and ECC-1 cells at an IC(50 10 µM (2.3 µg/ml. Phenolic compounds such as gingerol and shogaol were not detected in SDGE and 6-gingerol was a weaker inhibitor of the proliferation of the endometrial cancer cells. SDGE was more effective in inducing cancer cell death than citral, suggesting that other terpenes present in SDGE were also contributing to endometrial cancer cell death. SDGE treatment resulted in a rapid and strong increase in intracellular calcium and a 20-40% decrease in the mitochondrial membrane potential. Ser-15 of p53 was phosphorylated after 15 min treatment of the cancer cells with SDGE. This increase in p53 was associated with 90% decrease in Bcl2 whereas no effect was observed on Bax. Inhibitor of p53, pifithrin-α, attenuated the anti-cancer effects of SDGE and apoptosis was also not observed in the p53(neg SKOV-3 cells. Our studies demonstrate that terpenoids from SDGE mediate apoptosis by activating p53 and should be therefore be investigated as agents for the treatment of endometrial cancer.

  1. Terpenoids Isolated From the Shoot of Plectranthus hadiensis Induces Apoptosis in Human Colon Cancer Cells Via the Mitochondria-Dependent Pathway.

    Science.gov (United States)

    Menon, Darsan B; Gopalakrishnan, V K

    2015-01-01

    The plant Plectranthus hadiensis is a rich source of many bioactive phytochemicals, especially terpenoids. The terpenoid fraction was isolated and phytochemical characterization was done using GC-MS. The aim of the present study was to find out the antiproliferative activity and the mechanism of cell death induction by the terpenoid fraction on human colon cancer cells (HCT-15). MTT assay was performed with different concentrations of the fraction (10, 20, and 50 µg/mL) to obtain IC50 value for 24 h to induce cell death. The induction of apoptosis were studied by Hoechst staining, acridine orange/ethidium bromide staining, Comet assay, DNA fragmentation, and caspase-3 activity assays. The mechanism of apoptosis induction was studied by expression analysis of antiapoptotic Bcl-2 and proapoptotic Bax using RT-PCR and also by Western blot analysis of proteins involved in the apoptotic pathway. The terpenoid fraction induced significant morphological changes and DNA fragmentation in the cells. Positive Hoechst staining and acridine orange/ethidium bromide staining indicated apoptosis induction by the fraction. DNA fragmentation, which is a characteristic feature of apoptosis, was also observed. Upregulation of caspase-3 activity and proapoptotic Bax, and the downregulation of antiapoptotic Bcl-2 and COX-2 confirmed that the apoptosis induction was via the mitochondria-dependent pathway.

  2. Absolute Configurations and NO Inhibitory Activities of Terpenoids from Curcuma longa.

    Science.gov (United States)

    Xu, Jing; Ji, Feifei; Kang, Jing; Wang, Hao; Li, Shen; Jin, Da-Qing; Zhang, Qiang; Sun, Hongwei; Guo, Yuanqiang

    2015-06-24

    Curcuma longa L., belonging to the Zingiberaceae family, is a perennial herb and has been used as a spice and a pigment in the food industry. In the ongoing search for inhibitory reagents of NO production and survey of the chemical composition of natural vegetable foods, the chemical constituents of C. longa used as spice were investigated. This investigation resulted in the isolation of 2 new terpenoids and 14 known analogues. Their structures were established on the basis of the extensive analyses of 1D and 2D NMR spectroscopic data, and the absolute configurations of 1-4 were elucidated by comparison of the calculated and experimental ECD spectra. Among them, compound 1 is a rare norditerpene with an ent-labdane skeleton, and 2 is a skeletally novel sesquiterpene having an eight-membered ring. All of the compounds were found to possess NO inhibitory activities in murine microglial BV-2 cells. The discovery of two new compounds in this chemical investigation further disclosed the chemical composition of C. longa used a food spice, and the bioassay implied that the natural food spice C. longa, containing terpenoids with NO inhibitory activities, may be potentially promotive to human health.

  3. Heterologous stable expression of terpenoid biosynthetic genes using the moss Physcomitrella patens

    DEFF Research Database (Denmark)

    Bach, Søren Spanner; King, Brian Christopher; Zhan, Xin

    2014-01-01

    Heterologous and stable expression of genes encoding terpenoid biosynthetic enzymes in planta is an important tool for functional characterization and is an attractive alternative to expression in microbial hosts for biotechnological production. Despite improvements to the procedure, such as stre...

  4. Alpha-glucosidase inhibitory and antiplasmodial properties of terpenoids from the leaves of Buddleja saligna Willd

    Czech Academy of Sciences Publication Activity Database

    Chukwujekwu, J. C.; Rengasamy, K.R.R.; de Kock, C. A.; Smith, P. J.; Poštová Slavětínská, Lenka; van Staden, J.

    2016-01-01

    Roč. 31, č. 1 (2016), s. 63-66 ISSN 1475-6366 Institutional support: RVO:61388963 Keywords : alpha-glucosidase * antidiabetic * antiplasmodial * Buddleja saligna * terpenoids Subject RIV: CC - Organic Chemistry Impact factor: 4.293, year: 2016

  5. High-throughput testing of terpenoid biosynthesis candidate genes using transient expression in Nicotiana benthamiana

    DEFF Research Database (Denmark)

    Bach, Søren Spanner; Bassard, Jean-Étienne André; Andersen-Ranberg, Johan

    2014-01-01

    To respond to the rapidly growing number of genes putatively involved in terpenoid metabolism, a robust high-throughput platform for functional testing is needed. An in planta expression system offers several advantages such as the capacity to produce correctly folded and active enzymes localized...

  6. Elucidation of the regio- and chemoselectivity of enzymatic allylic oxidations with Pleurotus sapidus – conversion of selected spirocyclic terpenoids and computational analysis

    Directory of Open Access Journals (Sweden)

    Verena Weidmann

    2013-10-01

    Full Text Available Allylic oxidations of olefins to enones allow the efficient synthesis of value-added products from simple olefinic precursors like terpenes or terpenoids. Biocatalytic variants have a large potential for industrial applications, particularly in the pharmaceutical and food industry. Herein we report efficient biocatalytic allylic oxidations of spirocyclic terpenoids by a lyophilisate of the edible fungus Pleurotus sapidus. This ‘’mushroom catalysis’’ is operationally simple and allows the conversion of various unsaturated spirocyclic terpenoids. A number of new spirocyclic enones have thus been obtained with good regio- and chemoselectivity and chiral separation protocols for enantiomeric mixtures have been developed. The oxidations follow a radical mechanism and the regioselectivity of the reaction is mainly determined by bond-dissociation energies of the available allylic CH-bonds and steric accessibility of the oxidation site.

  7. Liquid chromatographic separation of terpenoid pigments in foods and food products.

    Science.gov (United States)

    Cserháti, T; Forgács, E

    2001-11-30

    The newest achievements in the use of various liquid chromatographic techniques such as adsorption and reversed-phase thin-layer chromatography and HPLC employed for the separation and quantitative determination of terpenoid-based color substances in foods and food products are reviewed. The techniques applied for the analysis of individual pigments and pigments classes are surveyed and critically evaluated. Future trends in the separation and identification of pigments in foods and food products are delineated.

  8. De novo assembly and analysis of the Artemisia argyi transcriptome and identification of genes involved in terpenoid biosynthesis.

    Science.gov (United States)

    Liu, Miaomiao; Zhu, Jinhang; Wu, Shengbing; Wang, Chenkai; Guo, Xingyi; Wu, Jiawen; Zhou, Meiqi

    2018-04-11

    Artemisia argyi Lev. et Vant. (A. argyi) is widely utilized for moxibustion in Chinese medicine, and the mechanism underlying terpenoid biosynthesis in its leaves is suggested to play an important role in its medicinal use. However, the A. argyi transcriptome has not been sequenced. Herein, we performed RNA sequencing for A. argyi leaf, root and stem tissues to identify as many as possible of the transcribed genes. In total, 99,807 unigenes were assembled by analysing the expression profiles generated from the three tissue types, and 67,446 of those unigenes were annotated in public databases. We further performed differential gene expression analysis to compare leaf tissue with the other two tissue types and identified numerous genes that were specifically expressed or up-regulated in leaf tissue. Specifically, we identified multiple genes encoding significant enzymes or transcription factors related to terpenoid synthesis. This study serves as a valuable resource for transcriptome information, as many transcribed genes related to terpenoid biosynthesis were identified in the A. argyi transcriptome, providing a functional genomic basis for additional studies on molecular mechanisms underlying the medicinal use of A. argyi.

  9. Expression of Terpenoid Biosynthetic Genes and Accumulation of Chemical Constituents in Valeriana fauriei

    Directory of Open Access Journals (Sweden)

    Yun Ji Park

    2016-05-01

    Full Text Available Valeriana fauriei (V. fauriei, which emits a characteristic and unpleasant odor, is important in traditional medicine. In this study, the expression of terpenoid biosynthetic genes was investigated in different organs that were also screened for volatile compounds including valerenic acid and its derivatives. Specific expression patterns from different parts of V. fauriei were observed using quantitative real-time PCR (qRT-PCR. The highest transcript levels of biosynthetic genes involved in mevalonic acid (MVA and methylerythritol phosphate (MEP production were found in the stem. Although the amounts of volatile compounds were varied by organ, most of the volatile terpenoids were accumulated in the root. Gas chromatography mass spectrometry (GC-MS analysis identified 128 volatile compounds, which represented 65.33% to 95.66% of total volatiles. Certain compounds were only found in specific organs. For example, isovalerenic acid and valerenic acid and its derivatives were restricted to the root. Organs with high transcript levels did not necessarily have high levels of the corresponding chemical constituents. According to these results, we hypothesize that translocation may occur between different organs in V. fauriei.

  10. Suites of terpene synthases explain differential terpenoid production in ginger and turmeric tissues.

    Directory of Open Access Journals (Sweden)

    Hyun Jo Koo

    Full Text Available The essential oils of ginger (Zingiber officinale and turmeric (Curcuma longa contain a large variety of terpenoids, some of which possess anticancer, antiulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+-germacrene D synthase and (S-β-bisabolene synthase from ginger rhizome, and α-humulene synthase and β-eudesmol synthase from shampoo ginger (Zingiber zerumbet rhizome. We report the identification of 25 mono- and 18 sesquiterpene synthases from ginger and turmeric, with 13 and 11, respectively, being functionally characterized. Novel terpene synthases, (--caryolan-1-ol synthase and α-zingiberene/β-sesquiphellandrene synthase, which is responsible for formation of the major sesquiterpenoids in ginger and turmeric rhizomes, were also discovered. These suites of enzymes are responsible for formation of the majority of the terpenoids present in these two plants. Structures of several were modeled, and a comparison of sets of paralogs suggests how the terpene synthases in ginger and turmeric evolved. The most abundant and most important sesquiterpenoids in turmeric rhizomes, (+-α-turmerone and (+-β-turmerone, are produced from (--α-zingiberene and (--β-sesquiphellandrene, respectively, via α-zingiberene/β-sesquiphellandrene oxidase and a still unidentified dehydrogenase.

  11. Suites of Terpene Synthases Explain Differential Terpenoid Production in Ginger and Turmeric Tissues

    Science.gov (United States)

    Koo, Hyun Jo; Gang, David R.

    2012-01-01

    The essential oils of ginger (Zingiber officinale) and turmeric (Curcuma longa) contain a large variety of terpenoids, some of which possess anticancer, antiulcer, and antioxidant properties. Despite their importance, only four terpene synthases have been identified from the Zingiberaceae family: (+)-germacrene D synthase and (S)-β-bisabolene synthase from ginger rhizome, and α-humulene synthase and β-eudesmol synthase from shampoo ginger (Zingiber zerumbet) rhizome. We report the identification of 25 mono- and 18 sesquiterpene synthases from ginger and turmeric, with 13 and 11, respectively, being functionally characterized. Novel terpene synthases, (−)-caryolan-1-ol synthase and α-zingiberene/β-sesquiphellandrene synthase, which is responsible for formation of the major sesquiterpenoids in ginger and turmeric rhizomes, were also discovered. These suites of enzymes are responsible for formation of the majority of the terpenoids present in these two plants. Structures of several were modeled, and a comparison of sets of paralogs suggests how the terpene synthases in ginger and turmeric evolved. The most abundant and most important sesquiterpenoids in turmeric rhizomes, (+)-α-turmerone and (+)-β-turmerone, are produced from (−)-α-zingiberene and (−)-β-sesquiphellandrene, respectively, via α-zingiberene/β-sesquiphellandrene oxidase and a still unidentified dehydrogenase. PMID:23272109

  12. [Diversity of Plants Belonging to the Genus Ligularia (Asteraceae) Based on Terpenoids and Synthetic Studies on Some Terpenoids].

    Science.gov (United States)

    Tori, Motoo

    2016-01-01

    The terpenoid constituents of Ligularia virgaurea (30 samples), Ligularia pleurocaulis (8 samples), Ligularia dictyoneura (8 samples), Ligularia brassicoides (5 samples), Ligularia lingiana (1 sample), and Ligularia liatroides (1 sample)(all belonging to section Senecillis of Ligularia, Asteraceae and collected in Yunnan, Sichuan, Qinghai, and Gansu provinces, China), from which 220 compounds were isolated, including 113 novel ones, are reviewed. Five chemotypes were identified in L. virgaurea based on their chemical constituents, while three clades were detected from the base sequences. Although intra-specific diversity was found in L. virgaurea, more samples were needed of other species in order to reach a definite conclusion. Inter-specific diversity was also examined in section Senecillis but was restricted due to the scarcity of samples. Synthetic studies on chiral natural products to determine their absolute configurations, especially those of riccardiphenols A and B as well as crispatanolide, which were all isolated from the liverwort, are briefly reviewed.

  13. Differential microRNA Analysis of Glandular Trichomes and Young Leaves in Xanthium strumarium L. Reveals Their Putative Roles in Regulating Terpenoid Biosynthesis.

    Science.gov (United States)

    Fan, Rongyan; Li, Yuanjun; Li, Changfu; Zhang, Yansheng

    2015-01-01

    The medicinal plant Xanthium strumarium L. (X. strumarium) is covered with glandular trichomes, which are the sites for synthesizing pharmacologically active terpenoids such as xanthatin. MicroRNAs (miRNAs) are a class of 21-24 nucleotide (nt) non-coding RNAs, most of which are identified as regulators of plant growth development. Identification of miRNAs involved in the biosynthesis of plant secondary metabolites remains limited. In this study, high-throughput Illumina sequencing, combined with target gene prediction, was performed to discover novel and conserved miRNAs with potential roles in regulating terpenoid biosynthesis in X. strumarium glandular trichomes. Two small RNA libraries from leaves and glandular trichomes of X. strumarium were established. In total, 1,185 conserved miRNAs and 37 novel miRNAs were identified, with 494 conserved miRNAs and 18 novel miRNAs being differentially expressed between the two tissue sources. Based on the X. strumarium transcriptome data that we recently constructed, 3,307 annotated mRNA transcripts were identified as putative targets of the differentially expressed miRNAs. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis suggested that some of the differentially expressed miRNAs, including miR6435, miR5021 and miR1134, might be involved in terpenoid biosynthesis in the X. strumarium glandular trichomes. This study provides the first comprehensive analysis of miRNAs in X. strumarium, which forms the basis for further understanding of miRNA-based regulation on terpenoid biosynthesis.

  14. Differential microRNA Analysis of Glandular Trichomes and Young Leaves in Xanthium strumarium L. Reveals Their Putative Roles in Regulating Terpenoid Biosynthesis.

    Directory of Open Access Journals (Sweden)

    Rongyan Fan

    Full Text Available The medicinal plant Xanthium strumarium L. (X. strumarium is covered with glandular trichomes, which are the sites for synthesizing pharmacologically active terpenoids such as xanthatin. MicroRNAs (miRNAs are a class of 21-24 nucleotide (nt non-coding RNAs, most of which are identified as regulators of plant growth development. Identification of miRNAs involved in the biosynthesis of plant secondary metabolites remains limited. In this study, high-throughput Illumina sequencing, combined with target gene prediction, was performed to discover novel and conserved miRNAs with potential roles in regulating terpenoid biosynthesis in X. strumarium glandular trichomes. Two small RNA libraries from leaves and glandular trichomes of X. strumarium were established. In total, 1,185 conserved miRNAs and 37 novel miRNAs were identified, with 494 conserved miRNAs and 18 novel miRNAs being differentially expressed between the two tissue sources. Based on the X. strumarium transcriptome data that we recently constructed, 3,307 annotated mRNA transcripts were identified as putative targets of the differentially expressed miRNAs. KEGG (Kyoto Encyclopedia of Genes and Genomes pathway analysis suggested that some of the differentially expressed miRNAs, including miR6435, miR5021 and miR1134, might be involved in terpenoid biosynthesis in the X. strumarium glandular trichomes. This study provides the first comprehensive analysis of miRNAs in X. strumarium, which forms the basis for further understanding of miRNA-based regulation on terpenoid biosynthesis.

  15. De novo assembly of Eugenia uniflora L. transcriptome and identification of genes from the terpenoid biosynthesis pathway.

    Science.gov (United States)

    Guzman, Frank; Kulcheski, Franceli Rodrigues; Turchetto-Zolet, Andreia Carina; Margis, Rogerio

    2014-12-01

    Pitanga (Eugenia uniflora L.) is a member of the Myrtaceae family and is of particular interest due to its medicinal properties that are attributed to specialized metabolites with known biological activities. Among these molecules, terpenoids are the most abundant in essential oils that are found in the leaves and represent compounds with potential pharmacological benefits. The terpene diversity observed in Myrtaceae is determined by the activity of different members of the terpene synthase and oxidosqualene cyclase families. Therefore, the aim of this study was to perform a de novo assembly of transcripts from E. uniflora leaves and to annotation to identify the genes potentially involved in the terpenoid biosynthesis pathway and terpene diversity. In total, 72,742 unigenes with a mean length of 1048bp were identified. Of these, 43,631 and 36,289 were annotated with the NCBI non-redundant protein and Swiss-Prot databases, respectively. The gene ontology categorized the sequences into 53 functional groups. A metabolic pathway analysis with KEGG revealed 8,625 unigenes assigned to 141 metabolic pathways and 40 unigenes predicted to be associated with the biosynthesis of terpenoids. Furthermore, we identified four putative full-length terpene synthase genes involved in sesquiterpenes and monoterpenes biosynthesis, and three putative full-length oxidosqualene cyclase genes involved in the triterpenes biosynthesis. The expression of these genes was validated in different E. uniflora tissues. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Use of chemometric and quantum-mechanical methods in the analysis of bioactive terpenoids and phenylpropanoids against the Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Reginaldo Bezerra dos Santos

    2010-01-01

    Full Text Available Dengue fever is one of the main public health problems in the world. Many mosquitoes have developed resistance to the conventional insecticides used. Thus, the search for vegetable extracts and natural substances as alternative insecticides has increased. In this study, chemometric methods were employed to classify a group of terpenoid and phenylpropanoid compounds with biological activity against the larval of the A. aegypti mosquitoes. The AM1 (Austin Model 1 method was used to calculate a set of molecular descriptors (properties for the studied compounds. Then, the descriptors were analyzed using the following methods of pattern recognition: Principal Component Analysis (PCA and Hierarchical Clustering Analysis (HCA. The PCA and HCA methods have shown to be very effective for the classification of the study compounds in two groups (active and inactive. The electronic variables EHOMO-1, EHOMO-2, ELUMO, ELUMO+2, and the structural LogP were used to classify as active and inactive compounds. In most studied compounds, the variables responsible for separating active from inactive compounds were electronic descriptors. Thus, it can be concluded that electronic effects play a fundamental role in the interaction between biological receptor and terpenoid and phenylpropanoid compounds with activity against larval A. aegypti mosquitoes.

  17. De Novo Transcriptome Assembly (NGS) of Curcuma longa L. Rhizome Reveals Novel Transcripts Related to Anticancer and Antimalarial Terpenoids

    Science.gov (United States)

    Jayakumar, Vasanthan; Damodaran, Anand C.; Rao, Sudha Narayana; Katta, Mohan A. V. S. K.; Gopinathan, Sreeja; Sarma, Santosh Prasad; Senthilkumar, Vanitha; Niranjan, Vidya; Gopinath, Ashok; Mugasimangalam, Raja C.

    2013-01-01

    Herbal remedies are increasingly being recognised in recent years as alternative medicine for a number of diseases including cancer. Curcuma longa L., commonly known as turmeric is used as a culinary spice in India and in many Asian countries has been attributed to lower incidences of gastrointestinal cancers. Curcumin, a secondary metabolite isolated from the rhizomes of this plant has been shown to have significant anticancer properties, in addition to antimalarial and antioxidant effects. We sequenced the transcriptome of the rhizome of the 3 varieties of Curcuma longa L. using Illumina reversible dye terminator sequencing followed by de novo transcriptome assembly. Multiple databases were used to obtain a comprehensive annotation and the transcripts were functionally classified using GO, KOG and PlantCyc. Special emphasis was given for annotating the secondary metabolite pathways and terpenoid biosynthesis pathways. We report for the first time, the presence of transcripts related to biosynthetic pathways of several anti-cancer compounds like taxol, curcumin, and vinblastine in addition to anti-malarial compounds like artemisinin and acridone alkaloids, emphasizing turmeric's importance as a highly potent phytochemical. Our data not only provides molecular signatures for several terpenoids but also a comprehensive molecular resource for facilitating deeper insights into the transcriptome of C. longa. PMID:23468859

  18. De Novo transcriptome assembly (NGS of Curcuma longa L. rhizome reveals novel transcripts related to anticancer and antimalarial terpenoids.

    Directory of Open Access Journals (Sweden)

    Ramasamy S Annadurai

    Full Text Available Herbal remedies are increasingly being recognised in recent years as alternative medicine for a number of diseases including cancer. Curcuma longa L., commonly known as turmeric is used as a culinary spice in India and in many Asian countries has been attributed to lower incidences of gastrointestinal cancers. Curcumin, a secondary metabolite isolated from the rhizomes of this plant has been shown to have significant anticancer properties, in addition to antimalarial and antioxidant effects. We sequenced the transcriptome of the rhizome of the 3 varieties of Curcuma longa L. using Illumina reversible dye terminator sequencing followed by de novo transcriptome assembly. Multiple databases were used to obtain a comprehensive annotation and the transcripts were functionally classified using GO, KOG and PlantCyc. Special emphasis was given for annotating the secondary metabolite pathways and terpenoid biosynthesis pathways. We report for the first time, the presence of transcripts related to biosynthetic pathways of several anti-cancer compounds like taxol, curcumin, and vinblastine in addition to anti-malarial compounds like artemisinin and acridone alkaloids, emphasizing turmeric's importance as a highly potent phytochemical. Our data not only provides molecular signatures for several terpenoids but also a comprehensive molecular resource for facilitating deeper insights into the transcriptome of C. longa.

  19. De Novo transcriptome assembly (NGS) of Curcuma longa L. rhizome reveals novel transcripts related to anticancer and antimalarial terpenoids.

    Science.gov (United States)

    Annadurai, Ramasamy S; Neethiraj, Ramprasad; Jayakumar, Vasanthan; Damodaran, Anand C; Rao, Sudha Narayana; Katta, Mohan A V S K; Gopinathan, Sreeja; Sarma, Santosh Prasad; Senthilkumar, Vanitha; Niranjan, Vidya; Gopinath, Ashok; Mugasimangalam, Raja C

    2013-01-01

    Herbal remedies are increasingly being recognised in recent years as alternative medicine for a number of diseases including cancer. Curcuma longa L., commonly known as turmeric is used as a culinary spice in India and in many Asian countries has been attributed to lower incidences of gastrointestinal cancers. Curcumin, a secondary metabolite isolated from the rhizomes of this plant has been shown to have significant anticancer properties, in addition to antimalarial and antioxidant effects. We sequenced the transcriptome of the rhizome of the 3 varieties of Curcuma longa L. using Illumina reversible dye terminator sequencing followed by de novo transcriptome assembly. Multiple databases were used to obtain a comprehensive annotation and the transcripts were functionally classified using GO, KOG and PlantCyc. Special emphasis was given for annotating the secondary metabolite pathways and terpenoid biosynthesis pathways. We report for the first time, the presence of transcripts related to biosynthetic pathways of several anti-cancer compounds like taxol, curcumin, and vinblastine in addition to anti-malarial compounds like artemisinin and acridone alkaloids, emphasizing turmeric's importance as a highly potent phytochemical. Our data not only provides molecular signatures for several terpenoids but also a comprehensive molecular resource for facilitating deeper insights into the transcriptome of C. longa.

  20. Characterization of Terpenoids from the Root of Ceriops tagal with Antifouling Activity

    Science.gov (United States)

    Chen, Jun-De; Yi, Rui-Zao; Lin, Yi-Ming; Feng, Dan-Qing; Zhou, Hai-Chao; Wang, Zhan-Chang

    2011-01-01

    One new dimeric diterpenoid, 8(14)-enyl-pimar-2′(3′)-en-4′(18′)-en-15′(16′)-endolabr- 16,15,2′,3′-oxoan-16-one (1) and five known terpenoids: Tagalsin C (2), Tagalsin I (3), lup-20(29)-ene-3β,28-diol (4), 3-oxolup-20(29)-en-28-oic acid (5) and 28-hydroxylup- 20(29)-en-3-one (6) were isolated from the roots of the mangrove plant Ceriops tagal. Their structures and relative stereochemistry were elucidated by means of extensive NMR, IR and MS analysis. The antifouling activity against larval settlement of the barnacle Balanus albicostatus were evaluated using capsaicin as a positive control. All these terpenoids exhibited antifouling activity against cyprid larvae of the barnacle without significant toxicity. The structure-activity relationship results demonstrated that the order of antifouling activity was diterpenoid (Compound 2) > triterpenoid (Compounds 4, 5 and 6) > dimeric diterpenoid (Compounds 1 and 3). The functional groups on the C-28 position of lupane triterpenoid significantly affect the antifouling activity. The diterpenoid dimmer with two identical diterpenoid subunits might display more potent antifouling activity than one with two different diterpenoid subunits. The stability test showed that Compounds 2, 4, 5 and 6 remained stable over 2-month exposure under filtered seawater. PMID:22072902

  1. Fruit-Derived Polysaccharides and Terpenoids: Recent Update on the Gastroprotective Effects and Mechanisms

    Directory of Open Access Journals (Sweden)

    Mohammed Safwan Ali Khan

    2018-06-01

    Full Text Available Ulceration in the stomach develops in peptic ulcer disease when there is a loss of protective mucosal layers, particularly in Helicobacter pylori infection. Antibiotic therapy has failed to eradicate and impede the colonization of H. pylori. Despite given treatment, recurrent bleeding can occur and lead to death in the affected individual. The disease progression is also related to the non-steroidal inflammatory drug and stress. There are extensive research efforts to identify the gastroprotective property from various alkaloids, flavonoids, and tannins compounds from plants and marine. These natural products are believed to be safe for consumption. However, not much attention was given to summarize the carbohydrate and terpenoidal anti-ulcer compounds. Hence, this review will cover the possible mechanisms and information about acidic hydroxylans, arabinogalactan and rhamnogalacturon; and limonene, pinene, lupeol, citral, ursolic acid and nomilin to exemplify on the gastroprotective properties of polysaccharides and terpenoid, respectively, obtained from fruits. These compounds could act as a prebiotic to prevent the inhabitation of H. pylori, modulate the inflammation, suppress gastric cancer growth, and capable of stimulating the reparative mechanisms on the affected regions. Finally, this review provides the future research prospects of these natural compounds in an effort to develop new therapy for gastrointestinal tissue healing.

  2. Volatile Composition and Enantioselective Analysis of Chiral Terpenoids of Nine Fruit and Vegetable Fibres Resulting from Juice Industry By-Products

    Directory of Open Access Journals (Sweden)

    Alexis Marsol-Vall

    2017-01-01

    Full Text Available Fruit and vegetable fibres resulting as by-products of the fruit juice industry have won popularity because they can be valorised as food ingredients. In this regard, bioactive compounds have already been studied but little attention has been paid to their remaining volatiles. Considering all the samples, 57 volatiles were identified. Composition greatly differed between citrus and noncitrus fibres. The former presented over 90% of terpenoids, with limonene being the most abundant and ranging from 52.7% in lemon to 94.0% in tangerine flesh. Noncitrus fibres showed more variable compositions, with the predominant classes being aldehydes in apple (57.5% and peach (69.7%, esters (54.0% in pear, and terpenoids (35.3% in carrot fibres. In addition, enantioselective analysis of some of the chiral terpenoids present in the fibre revealed that the enantiomeric ratio for selected compounds was similar to the corresponding volatile composition of raw fruits and vegetables and some derivatives, with the exception of terpinen-4-ol and α-terpineol, which showed variation, probably due to the drying process. The processing to which fruit residues were submitted produced fibres with low volatile content for noncitrus products. Otherwise, citrus fibres analysed still presented a high volatile composition when compared with noncitrus ones.

  3. Analysis of several irdoid and indole precursors of terpenoid indole alkaloids with a single HPLC run

    DEFF Research Database (Denmark)

    Dagnino, Denise; Schripsema, Jan; Verpoorte, Robert

    1996-01-01

    An isocratic HPLC system is described which allows the separation of the iridoid and indole precursors of terpenoid indole alkaloids, which are present in a single crude extract. The system consists of a column of LiChrospher 60 RP select B 5 my, 250x4 mm (Merck) with an eluent of 1 % formic acid...

  4. Highly efficient conversion of terpenoid biomass to jet-fuel range cycloalkanes in a biphasic tandem catalytic process

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaokun [Univ. of Nevada, Reno, NV (United States); Li, Teng [Washington State Univ., Pullman, WA (United States); Tang, Kan [Washington State Univ., Pullman, WA (United States); Zhou, Xinpei [Univ. of Nevada, Reno, NV (United States); Lu, Mi [Univ. of Nevada, Reno, NV (United States); Ounkham, Whalmany L. [Univ. of Nevada, Reno, NV (United States); Spain, Stephen M. [Univ. of Nevada, Reno, NV (United States); Frost, Brian J. [Univ. of Nevada, Reno, NV (United States); Lin, Hongfei [Washington State Univ., Pullman, WA (United States)

    2017-06-12

    The demand for bio-jet fuels to reduce carbon emissions is increasing substantially in the aviation sector, while the scarcity of high-density jet fuel components limits the use of bio-jet fuels in high-performance aircrafts compared with conventional jet fuels. In this paper, we report a novel biphasic tandem catalytic process (biTCP) for synthesizing cycloalkanes from renewable terpenoid biomass, such as 1,8-cineole. Multistep tandem reactions, including C–O ring opening by hydrolysis, dehydration, and hydrogenation, were carried out in the “one-pot” biTCP. 1,8-Cineole was efficiently converted to p-menthane at high yields (>99%) in the biTCP under mild reaction conditions. Finally, the catalytic reaction mechanism is discussed.

  5. Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony, Germany

    Science.gov (United States)

    Otto, Angelika; Simoneit, Bernd R. T.

    2001-10-01

    The biomarker contents of three fossil conifer species (Athrotaxis couttsiae, Taxodium balticum, Pinus palaeostrobus) and the clay sediment from the Eocene Zeitz formation, Germany, have been analyzed by gas chromatography-mass spectrometry. Triterpenoids of the oleanane, ursane and lupane series and aliphatic wax lipids are the major compounds in the total extracts of the sediment indicating a major angiosperm input. In contrast, diterpenoids (abietanes, phenolic abietanes, pimaranes, isopimaranes, kauranes, phyllocladanes, totaranes) and lignin degradation products are predominant in the conifer fossil extracts. Polar diterpenoids (ferruginol and derivatives, dehydroabietic acid) are preserved as major compounds in the conifers, accompained by saturated and aromatic diterpenoid products. The extracts of the fossil conifer species show characteristic biomarker patterns and contain terpenoids of chemosystematic value. The terpenoid composition of the fossil conifers is similar to that of related modern species. Phenolic abietanes (ferruginol, 6,7-dehydroferruginol, hydroxyferruginols, sugiol) which are known from modern species of the Cupressaceae and Podocarpaceae are the major terpenoids in shoots of Athrotaxis couttsiae and a cone of Taxodium balticum (both Cupressaceae). Sesquiterpenoids characteristic for Cupressaceae (cuparene, α-cedrene) are also present in Athrotaxis. Abietane-type acids (dehydroabietic acid, abietic acid) and saturated abietanes [fichtelite, 13α(H)-fichtelite] predominate in the extracts of a Pinus palaeostrobus cone and phenolic abietanes are not detectable. A diagenetic pathway for the degradation of abietic acid is proposed based on the presence of abietane-type acids and a series of their presumed degradation products in the Pinus cone. The formation of diagenetic products from the phenolic abietanes is also discussed.

  6. Coregulation of terpenoid pathway genes and prediction of isoprene production in Bacillus subtilis using transcriptomics

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Becky M.; Xue, Junfeng; Markillie, Lye Meng; Taylor, Ronald C.; Wiley, H. S.; Ahring, Birgitte K.; Linggi, Bryan E.

    2013-06-19

    The isoprenoid pathway converts pyruvate to isoprene and related isoprenoid compounds in plants and some bacteria. Currently, this pathway is of great interest because of the critical role that isoprenoids play in basic cellular processes as well as the industrial value of metabolites such as isoprene. Although the regulation of several pathway genes has been described, there is a paucity of information regarding the system level regulation and control of the pathway. To address this limitation, we examined Bacillus subtilis grown under multiple conditions and then determined the relationship between altered isoprene production and the pattern of gene expression. We found that terpenoid genes appeared to fall into two distinct subsets with opposing correlations with respect to the amount of isoprene produced. The group whose expression levels positively correlated with isoprene production included dxs, the gene responsible for the commitment step in the pathway, as well as ispD, and two genes that participate in the mevalonate pathway, yhfS and pksG. The subset of terpenoid genes that inversely correlated with isoprene production included ispH, ispF, hepS, uppS, ispE, and dxr. A genome wide partial least squares regression model was created to identify other genes or pathways that contribute to isoprene production. This analysis showed that a subset of 213 regulated genes was sufficient to create a predictive model of isoprene production under different conditions and showed correlations at the transcriptional level. We conclude that gene expression levels alone are sufficiently informative about the metabolic state of a cell that produces increased isoprene and can be used to build a model which accurately predicts production of this secondary metabolite across many simulated environmental conditions.

  7. Formulation, evaluation and bioactive potential of Xylaria primorskensis terpenoid nanoparticles from its major compound xylaranic acid.

    Science.gov (United States)

    Adnan, Mohd; Patel, Mitesh; Reddy, Mandadi Narsimha; Alshammari, Eyad

    2018-01-29

    In recent years, fungi have been shown to produce a plethora of new bioactive secondary metabolites of interest, as new lead structures for medicinal and other pharmacological applications. The present investigation was carried out to study the pharmacological properties of a potent and major bioactive compound: xylaranic acid, which was obtained from Xylaria primorskensis (X. primorskensis) terpenoids in terms of antibacterial activity, antioxidant potential against DPPH & H 2 O 2 radicals and anticancer activity against human lung cancer cells. Due to terpenoid nature, low water solubility and wretched bioavailability, its pharmacological use is limited. To overcome these drawbacks, a novel xylaranic acid silver nanoparticle system (AgNPs) is developed. In addition to improving its solubility and bioavailability, other advantageous pharmacological properties has been evaluated. Furthermore, enhanced anticancer activity of xylaranic acid and its AgNPs due to induced apoptosis were also confirmed by determining the expression levels of apoptosis regulatory genes p53, bcl-2 and caspase-3 via qRT PCR method. This is the first study developing the novel xylaranic acid silver nanoparticle system and enlightening its therapeutic significance with its improved physico-chemical properties and augmented bioactive potential.

  8. Tanker milk variability according to farm feeding practices: vitamins A and E, carotenoids, color, and terpenoids.

    Science.gov (United States)

    Agabriel, C; Cornu, A; Journal, C; Sibra, C; Grolier, P; Martin, B

    2007-10-01

    The aim of this work was to study the variability in the composition of bulk milk mixtures of fat-soluble compounds (vitamins A and E, carotenoids, and terpenoids) and assess the links with milk production conditions. Milk from 10 collection trips in the French department of the Haute-Loire (10 to 36 herds per trip) was sampled in the tanker twice during the winter period and 3 times during the grazing season. The collection trips differed in their altitude (440 to 1,150 m) and the forage system (grass or based on corn silage). Vitamins A and E, carotenoids, and terpenoids of the 50 tanker loads of milk were analyzed. Data of milk production conditions in the 204 farms made it possible to constitute indicators for the collection trip and to define 50 mean herds. The relationships between mean herd characteristics (breed, stage of lactation, and feed) and milk characteristics were investigated. The constituents of tanker loads of milk were comparable to those observed in milk produced by groups of animals receiving contrasting diets (rich in concentrate or corn silage vs. pasture). The characteristics of the milk differed according to the period; those produced at grazing were more yellow (1.02 +/- 0.4; mean of difference) and richer in beta-carotene, lutein, vitamin E (2.0 +/- 1.2, 0.23 +/- 0.12, and 6.1 +/- 5.0 mug/g of fat, respectively), and sesquiterpenes (2.7 +/- 2.5) than winter. The variations observed for beta-carotene, lutein, and vitamin E were linked to the proportion of grazed grass or grass silage in the forage (r = 0.66, 0.69, and 0.51, respectively), unlike the vitamin A content. During grazing, 20 of the 32 terpenoids identified were associated with the proportion of permanent grassland available for grazing or cut. These results show that feeding is an effective way to modify the quality of dairy products, even in the case of bulk tank milk mixtures. Dairy plants could market different milks, which would contain specific compositions.

  9. Needle terpenoid composition of Pinus halepensis (Mill.) Trees infested by the scale insect Marchalina hellenica (Genn.) in Greece

    Science.gov (United States)

    Athanassios Gallis; Carlos Arrabal; Aristotle C. Papageorgiou; Maria C. Garcia-Vallejo

    2012-01-01

    Needle terpenoid composition was determined by using GLC-MS in Pinus halepensis (Mill.) trees that were infested and not infested by the scale insect Marchalina hellenica. The study area was within the Forest National Park of the Cape Sounion, southern Attica region, Greece. A total of 43 compounds, 32 of which were identified...

  10. Seasonal differences in human responses to increasing temperatures

    DEFF Research Database (Denmark)

    Kitazawa, Sachie; Andersen, Rune Korsholm; Wargocki, Pawel

    2014-01-01

    to be sleepier. Heart rate slightly increased during exposure, and SpO2 and ETCO2 began to decrease while core temperature started to increase. Performance of Tsai-partington test and addition test improved during exposures due to learning though lesser in winter. Results show negative effects of the temperature......Experiments were conducted in late summer and winter with 80 young and elderly Danish subjects exposed for 3.5 hours in a climate chamber to the temperature increasing from 24°C to 35.2°C at a rate of 3.7K/h. Psychological and physiological measurements were performed during exposure and subjects...... assessed comfort and acute health symptoms. Thermal sensation increased with increasing chamber temperature and did not differ during late summer and winter exposures. Skin temperature increased with increasing temperature and was slightly but significantly higher in the late summer in the first half...

  11. Antibiotic resistance increases with local temperature

    Science.gov (United States)

    MacFadden, Derek R.; McGough, Sarah F.; Fisman, David; Santillana, Mauricio; Brownstein, John S.

    2018-06-01

    Bacteria that cause infections in humans can develop or acquire resistance to antibiotics commonly used against them1,2. Antimicrobial resistance (in bacteria and other microbes) causes significant morbidity worldwide, and some estimates indicate the attributable mortality could reach up to 10 million by 20502-4. Antibiotic resistance in bacteria is believed to develop largely under the selective pressure of antibiotic use; however, other factors may contribute to population level increases in antibiotic resistance1,2. We explored the role of climate (temperature) and additional factors on the distribution of antibiotic resistance across the United States, and here we show that increasing local temperature as well as population density are associated with increasing antibiotic resistance (percent resistant) in common pathogens. We found that an increase in temperature of 10 °C across regions was associated with an increases in antibiotic resistance of 4.2%, 2.2%, and 2.7% for the common pathogens Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus. The associations between temperature and antibiotic resistance in this ecological study are consistent across most classes of antibiotics and pathogens and may be strengthening over time. These findings suggest that current forecasts of the burden of antibiotic resistance could be significant underestimates in the face of a growing population and climate change4.

  12. Genomics-Based Discovery of Plant Genes for Synthetic Biology of Terpenoid Fragrances: A Case Study in Sandalwood oil Biosynthesis.

    Science.gov (United States)

    Celedon, J M; Bohlmann, J

    2016-01-01

    Terpenoid fragrances are powerful mediators of ecological interactions in nature and have a long history of traditional and modern industrial applications. Plants produce a great diversity of fragrant terpenoid metabolites, which make them a superb source of biosynthetic genes and enzymes. Advances in fragrance gene discovery have enabled new approaches in synthetic biology of high-value speciality molecules toward applications in the fragrance and flavor, food and beverage, cosmetics, and other industries. Rapid developments in transcriptome and genome sequencing of nonmodel plant species have accelerated the discovery of fragrance biosynthetic pathways. In parallel, advances in metabolic engineering of microbial and plant systems have established platforms for synthetic biology applications of some of the thousands of plant genes that underlie fragrance diversity. While many fragrance molecules (eg, simple monoterpenes) are abundant in readily renewable plant materials, some highly valuable fragrant terpenoids (eg, santalols, ambroxides) are rare in nature and interesting targets for synthetic biology. As a representative example for genomics/transcriptomics enabled gene and enzyme discovery, we describe a strategy used successfully for elucidation of a complete fragrance biosynthetic pathway in sandalwood (Santalum album) and its reconstruction in yeast (Saccharomyces cerevisiae). We address questions related to the discovery of specific genes within large gene families and recovery of rare gene transcripts that are selectively expressed in recalcitrant tissues. To substantiate the validity of the approaches, we describe the combination of methods used in the gene and enzyme discovery of a cytochrome P450 in the fragrant heartwood of tropical sandalwood, responsible for the fragrance defining, final step in the biosynthesis of (Z)-santalols. © 2016 Elsevier Inc. All rights reserved.

  13. Development of a Matrix Solid-Phase Dispersion Extraction Combined with UPLC/Q-TOF-MS for Determination of Phenolics and Terpenoids from the Euphorbia fischeriana.

    Science.gov (United States)

    Li, Wenjing; Lin, Yu; Wang, Yuchun; Hong, Bo

    2017-09-11

    A method based on a simplified extraction by matrix solid phase dispersion (MSPD) followed by ultra-performance liquid chromatography coupled with the quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS) determination is validated for analysis of two phenolics and three terpenoids in Euphorbia fischeriana . The optimized experimental parameters of MSPD including dispersing sorbent (silica gel), ratio of sample to dispersing sorbent (1:2), elution solvent (water-ethanol: 30-70) and volume of the elution solvent (10 mL) were examined and set down. The highest extraction yields of chromatogram information and the five compounds were obtained under the optimized conditions. A total of 25 constituents have been identified and five components have been quantified from Euphorbia fischeriana . A linear relationship (r² ≥ 0.9964) between the concentrations and the peak areas of the mixed standard substances were revealed. The average recovery was between 92.4% and 103.2% with RSD values less than 3.45% ( n = 5). The extraction yields of two phenolics and three terpenoids obtained by the MSPD were higher than those of traditional reflux and sonication extraction with reduced requirement on sample, solvent and time. In addition, the optimized method will be applied for analyzing terpenoids in other Chinese herbal medicine samples.

  14. Terpenoid composition and botanical affinity of Cretaceous resins from India and Myanmar

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Suryendu; Mallick, Monalisa [Department of Earth Sciences, Indian Institute of Technology-Bombay (India); Kumar, Kishor [Wadia Institute of Himalayan Geology, Uttarakhand (India); Mann, Ulrich [Forschungzentrum Juelich (Germany). Institut fuer Chemie und Dynamik der Geosphaere; Greenwood, Paul F. [John De Laeter Mass Spectrometry and WA Biogeochemistry Centres (M090), University of Western Australia, Crawley (Australia)

    2011-01-01

    Fossil resins from the Cretaceous sediments of Meghalaya, India and Kachin, Myanmar (Burma) were analysed using Curie point pyrolysis-gas chromatography-mass spectrometry and thermochemolysis gas chromatography-mass spectrometry to help elucidate their botanical source. The major pyrolysis products and methyl-esterified thermochemolysis products of both the resins were abietane and labdane type diterpenoids with minor amount of sesquiterpenoids. The thermochemolysis products also included methyl-16,17-dinor callitrisate, methyl-16,17-dinor dehydroabietate and methyl-8-pimaren-18-oate - the latter two from just the Myanmarese resin. The exclusive presence of both labdane and abietane diterpenoids and the lack of phenolic terpenoids may suggest that the studied Cretaceous resins were derived from Pinaceae (pine family) conifers. (author)

  15. North American Lauraceae: terpenoid emissions, relative attraction and boring preferences of redbay ambrosia beetle, Xyleborus glabratus (coleoptera: curculionidae: scolytinae.

    Directory of Open Access Journals (Sweden)

    Paul E Kendra

    Full Text Available The invasive redbay ambrosia beetle, Xyleborus glabratus, is the primary vector of Raffaelea lauricola, a symbiotic fungus and the etiologic agent of laurel wilt. This lethal disease has caused severe mortality of redbay (Persea borbonia and swampbay (P. palustris trees in the southeastern USA, threatens avocado (P. americana production in Florida, and has potential to impact additional New World species. To date, all North American hosts of X. glabratus and suscepts of laurel wilt are members of the family Lauraceae. This comparative study combined field tests and laboratory bioassays to evaluate attraction and boring preferences of female X. glabratus using freshly-cut bolts from nine species of Lauraceae: avocado (one cultivar of each botanical race, redbay, swampbay, silkbay (Persea humilis, California bay laurel (Umbellularia californica, sassafras (Sassafras albidum, northern spicebush (Lindera benzoin, camphor tree (Cinnamomum camphora, and lancewood (Nectandra coriacea. In addition, volatile collections and gas chromatography-mass spectroscopy (GC-MS were conducted to quantify terpenoid emissions from test bolts, and electroantennography (EAG was performed to measure olfactory responses of X. glabratus to terpenoids identified by GC-MS. Significant differences were observed among treatments in both field and laboratory tests. Silkbay and camphor tree attracted the highest numbers of the beetle in the field, and lancewood and spicebush the lowest, whereas boring activity was greatest on silkbay, bay laurel, swampbay, and redbay, and lowest on lancewood, spicebush, and camphor tree. The Guatemalan cultivar of avocado was more attractive than those of the other races, but boring response among the three was equivalent. The results suggest that camphor tree may contain a chemical deterrent to boring, and that different cues are associated with host location and host acceptance. Emissions of α-cubebene, α-copaene, α-humulene, and

  16. North American Lauraceae: terpenoid emissions, relative attraction and boring preferences of redbay ambrosia beetle, Xyleborus glabratus (coleoptera: curculionidae: scolytinae).

    Science.gov (United States)

    Kendra, Paul E; Montgomery, Wayne S; Niogret, Jerome; Pruett, Grechen E; Mayfield, Albert E; MacKenzie, Martin; Deyrup, Mark A; Bauchan, Gary R; Ploetz, Randy C; Epsky, Nancy D

    2014-01-01

    The invasive redbay ambrosia beetle, Xyleborus glabratus, is the primary vector of Raffaelea lauricola, a symbiotic fungus and the etiologic agent of laurel wilt. This lethal disease has caused severe mortality of redbay (Persea borbonia) and swampbay (P. palustris) trees in the southeastern USA, threatens avocado (P. americana) production in Florida, and has potential to impact additional New World species. To date, all North American hosts of X. glabratus and suscepts of laurel wilt are members of the family Lauraceae. This comparative study combined field tests and laboratory bioassays to evaluate attraction and boring preferences of female X. glabratus using freshly-cut bolts from nine species of Lauraceae: avocado (one cultivar of each botanical race), redbay, swampbay, silkbay (Persea humilis), California bay laurel (Umbellularia californica), sassafras (Sassafras albidum), northern spicebush (Lindera benzoin), camphor tree (Cinnamomum camphora), and lancewood (Nectandra coriacea). In addition, volatile collections and gas chromatography-mass spectroscopy (GC-MS) were conducted to quantify terpenoid emissions from test bolts, and electroantennography (EAG) was performed to measure olfactory responses of X. glabratus to terpenoids identified by GC-MS. Significant differences were observed among treatments in both field and laboratory tests. Silkbay and camphor tree attracted the highest numbers of the beetle in the field, and lancewood and spicebush the lowest, whereas boring activity was greatest on silkbay, bay laurel, swampbay, and redbay, and lowest on lancewood, spicebush, and camphor tree. The Guatemalan cultivar of avocado was more attractive than those of the other races, but boring response among the three was equivalent. The results suggest that camphor tree may contain a chemical deterrent to boring, and that different cues are associated with host location and host acceptance. Emissions of α-cubebene, α-copaene, α-humulene, and calamenene were

  17. Cleaning Products and Air Fresheners: Emissions and ResultingConcentrations of Glycol Ethers and Terpenoids

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C.; Destaillat, Hugo; Hodgson, Alfred T.; Nazaroff,William W.

    2005-08-01

    Experiments were conducted to quantify emissions and concentrations of glycol ethers and terpenoids from cleaning product and air freshener use in a 50-m{sup 3} room ventilated at {approx}0.5 h{sup -1}. Five cleaning products were applied full-strength (FS); three were additionally used in dilute solution. FS application of pine-oil cleaner (POC) yielded 1-h concentrations of 10-1300 {micro}g m{sup -3} for individual terpenoids, including {alpha}-terpinene (90-120), d-limonene (1000-1100), terpinolene (900-1300), and {alpha}-terpineol (260-700). One-hour concentrations of 2-butoxyethanol and/or dlimonene were 300-6000 {micro}g m{sup -3} after FS use of other products. During FS application including rinsing with sponge and wiping with towels, fractional emissions (mass volatilized/dispensed) of 2-butoxyethanol and d-limonene were 50-100% with towels retained, {approx}25-50% when towels were removed after cleaning. Lower fractions (2-11%) resulted from dilute use. Fractional emissions of terpenes from FS use of POC were {approx}35-70% with towels retained, 20-50% with towels removed. During floor cleaning with dilute solution of POC, 7-12% of dispensed terpenes were emitted. Terpene alcohols were emitted at lower fractions: 7-30% (FS, towels retained), 2-9% (FS, towels removed), and 2-5% (dilute). During air-freshener use, d-limonene, dihydromyrcenol, linalool, linalyl acetate, and {beta}-citronellol were emitted at 35-180 mg d{sup -1} over three days while air concentrations averaged 30-160 {micro}g m{sup -3}.

  18. Cross-sectional area of the murine aorta linearly increases with increasing core body temperature.

    Science.gov (United States)

    Crouch, A Colleen; Manders, Adam B; Cao, Amos A; Scheven, Ulrich M; Greve, Joan M

    2017-11-06

    The cardiovascular (CV) system plays a vital role in thermoregulation. To date, the response of core vasculature to increasing core temperature has not been adequately studied in vivo. Our objective was to non-invasively quantify the arterial response in murine models due to increases in body temperature, with a focus on core vessels of the torso and investigate whether responses were dependent on sex or age. Male and female, adult and aged mice were anaesthetised and underwent magnetic resonance imaging (MRI). Data were acquired from the circle of Willis (CoW), heart, infrarenal aorta and peripheral arteries at core temperatures of 35, 36, 37 and 38 °C (±0.2 °C). Vessels in the CoW did not change. Ejection fraction decreased and cardiac output (CO) increased with increasing temperature in adult female mice. Cross-sectional area of the aorta increased significantly and linearly with temperature for all groups, but at a diminished rate for aged animals (p temperature are biologically important because they may affect conductive and convective heat transfer. Leveraging non-invasive methodology to quantify sex and age dependent vascular responses due to increasing core temperature could be combined with bioheat modelling in order to improve understanding of thermoregulation.

  19. Cloning and expression analysis of JcAACT, jcMDC and JcFPS, involved in terpenoid biosynthesis in jatropha curcas l

    International Nuclear Information System (INIS)

    Huang, Y.; Wen, J.

    2018-01-01

    To better understand the functions of key genes involved in terpenoid biosynthesis in Jatropha curcas, we cloned and characterized three genes, namely acetyl CoA acyltransferase (JcAACT), diphosphate mevalonate decarboxylase (JcMDC) and farnesyl pyrophosphate synthase (JcFPS). The opening reading frames (ORFs) of JcAACT, JcMDC and JcFPS were 1239 bp,1248 bp and 1029 bp, respectively, encoding a 412-amino acid, 415-amino acid and 342-amino acid polypeptide, respectively. Results of homology analysis showed that JcAACT, JcMDC and JcFPS encoded proteins that all had the highest identity and closest relationship with the corresponding genes in Hevea brasiliensis, with identities of 89%, 92% and 93%, respectively. JcAACT, JcMDC and JcFPS were expressed in all organs tested of J. curcas; the highest expression level for each gene occurred in seeds. In the early growth stage of seeds, the expression level of each of these three genes increased with time, with JcAACT and JcMDC expression level reaching a peak at the late stage of seed development (50 d), while JcFPS expression level reached a peak at the mid-late stage (40 d). Following the peak, the expression of each gene then declined. The expression level of JcAACT was the highest of the three genes, regardless of the organ or the stage of seed growth, indicating its important role in J. curcas. This study lays the foundation for a better understanding of the important role of the JcAACT, JcMDC and JcFPS genes in the terpenoid biosynthesis pathway of J. curcas. (author)

  20. The evolution of plant secretory structures and emergence of terpenoid chemical diversity.

    Science.gov (United States)

    Lange, Bernd Markus

    2015-01-01

    Secretory structures in terrestrial plants appear to have first emerged as intracellular oil bodies in liverworts. In vascular plants, internal secretory structures, such as resin ducts and laticifers, are usually found in conjunction with vascular bundles, whereas subepidermal secretory cavities and epidermal glandular trichomes generally have more complex tissue distribution patterns. The primary function of plant secretory structures is related to defense responses, both constitutive and induced, against herbivores and pathogens. The ability to sequester secondary (or specialized) metabolites and defense proteins in secretory structures was a critical adaptation that shaped plant-herbivore and plant-pathogen interactions. Although this review places particular emphasis on describing the evolution of pathways leading to terpenoids, it also assesses the emergence of other metabolite classes to outline the metabolic capabilities of different plant lineages.

  1. Analysis of iridoids content and expression studies of genes encoding early enzymes in the indol terpenoid biosynthesis pathway in Catharanthus roseus Análisis de iridoides y expresión de genes que codifican enzimas tempranas en la síntesis de alcaloides indol terpenoicos en Catharanthus roseus

    OpenAIRE

    Leech Mark; Palacios-Rojas Natalia

    2004-01-01

    Terpenoid indole alkaloids (TIA) are of pharmaceutical importance, however the industrial use of these compouds is very limited because its accumulation is very low in plant tissues. TIA are derived f rom the shikimate and terpenoid pathways, which supply secologanin and tryptamine, the indole and iridoid moieties, respectively. Secololganin is a terpenoid which is belived to be synthesised the MEP pathway rather than by the acetate/mevalonic acid pathway. Secologanin is thought to be a limit...

  2. Plant nutraceuticals as antimicrobial agents in food preservation: terpenoids, polyphenols and thiols.

    Science.gov (United States)

    Gutiérrez-Del-Río, Ignacio; Fernández, Javier; Lombó, Felipe

    2018-05-16

    Synthetic food additives generate a negative perception in consumers. Therefore, food manufacturers search for safer natural alternatives as those involving phytochemicals and plant essential oils. These bioactives have antimicrobial activities widely proved in in vitro tests. Foodborne diseases cause thousands of deaths and millions of infections every year, mainly due to pathogenic bacteria as Salmonella spp., Campylobacter spp., Escherichia coli, Bacillus cereus, Listeria monocytogenes or Staphylococcus aureus. This review summarizes industrially interesting antimicrobial bioactivities, as well as their mechanisms of action, for three main types of plant nutraceuticals, terpenoids (as carnosic acid), polyphenols (as quercetin) and thiols (as allicin), which are important constituents of plant essential oils with a broad range of antimicrobial effects. These phytochemicals are widely distributed in fruits and vegetables and are really useful in food preservation as they inhibit microbial growth. Copyright © 2018. Published by Elsevier B.V.

  3. Temperature increase beneath etched dentin discs during composite polymerization.

    Science.gov (United States)

    Karaarslan, Emine Sirin; Secilmis, Asli; Bulbul, Mehmet; Yildirim, Cihan; Usumez, Aslihan

    2011-01-01

    The purpose of this in vitro study was to measure the temperature increase during the polymerization of a composite resin beneath acid-etched or laser-etched dentin discs. The irradiation of dentin with an Er:YAG laser may have a positive effect on the thermal conductivity of dentin. This technique has not been studied extensively. Forty dentin discs (5 mm in diameter and 0.5 or 1 mm in height) were prepared from extracted permanent third molars. These dentin discs were etched with 20% orthophosphoric acid or an Er:YAG laser, and were then placed on an apparatus developed to measure temperature increases. The composite resin was polymerized with a high-intensity quartz tungsten halogen (HQTH) or light-emitting diode unit (LED). The temperature increase was measured under the dentin disc with a J-type thermocouple wire that was connected to a data logger. Five measurements were made for each dentin disc, curing unit, and etching system combination. Differences between the initial and the highest temperature readings were taken, and the five calculated temperature changes were averaged to determine the value of the temperature increase. Statistical analysis was performed with a three-way ANOVA and Tukey HSD tests at a 0.05 level of significance. Further SEM examinations were performed. The temperature increase values varied significantly, depending on etching systems (p < 0.05), dentin thicknesses (p < 0.05), and curing units (p < 0.05). Temperature increases measured beneath laser-etched discs were significantly higher than those for acid-etched dentin discs (p < 0.05). The HQTH unit induced significantly higher temperature increases than the LED unit (p < 0.05). The LED unit induced the lowest temperature change (5.2°C) in the 1-mm, acid-etched dentin group. The HQTH unit induced the highest temperature change (10.4°C) for the 0.5-mm, laser-etched dentin group. The risk of heat-induced pulpal damage should be taken into consideration

  4. Attractiveness of Host Plant Volatile Extracts to the Asian Citrus Psyllid, Diaphorina citri, is Reduced by Terpenoids from the Non-Host Cashew.

    Science.gov (United States)

    Fancelli, Marilene; Borges, Miguel; Laumann, Raul A; Pickett, John A; Birkett, Michael A; Blassioli-Moraes, Maria C

    2018-04-01

    Diaphorina citri is a vector of the bacterial causative agent of Huanglongbing (HLB = Citrus greening), a severe disease affecting citrus crops. As there is no known control for HLB, manipulating insect behaviour through deployment of semiochemicals offers a promising opportunity for protecting citrus crops. The behavioural responses of D. citri to plant volatiles, and the identity of these plant volatiles were investigated. Volatiles were collected from host plants Murraya paniculata, Citrus sinensis, C. reshni, C. limettioides, Poncirus trifoliata, and from non-host plants Psidium guajava, Mangifera indica, Anacardium occidentale. In behavioural assays, female D. citri spent more time in the arms containing volatiles from either M. paniculata or C. sinensis compared to the control arms. When D. citri was exposed to volatiles collected from A. occidentale, they preferred the control arm. Volatiles emitted from the other studied plants did not influence the foraging behaviour of D. citri. Chemical analyses of volatile extracts from C. sinensis, M. paniculata, and A. occidentale revealed the presence of the terpenoids (E)-4,8-dimethylnona-1,3,7-triene (DMNT) and (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT) in higher amounts in A. occidentale. In further behavioural bioassays, female D. citri spent less time in arms containing a synthetic blend of DMNT and TMTT compared to the control arms. Female D. citri also spent less time in arms containing the synthetic blend in combination with volatile extracts from either M. paniculata or C. sinensis compared to the control arms. Results suggest that higher release of the two terpenoids by A. occidentale make this species unattractive to D. citri, and that the terpenoids could be used in reducing colonisation of citrus plants and therefore HLB infection.

  5. Anti-proliferation activity of terpenoids isolated from Euphorbia kansui in human cancer cells and their structure-activity relationship.

    Science.gov (United States)

    Hou, Jin-Jun; Shen, Yao; Yang, Zhou; Fang, Lin; Cai, Lu-Ying; Yao, Shuai; Long, Hua-Li; Wu, Wan-Ying; Guo, De-An

    2017-10-01

    Euphorbia kansui is a commonly used traditional Chinese medicine for the treatment of edema, pleural effusion, and asthma, etc. According to the previous researches, terpenoids in E. kansui possess various biological activities, e.g., anti-virus, anti-allergy, antitumor effects. In this work, twenty five terpenoids were isolated from E. kansui, including thirteen ingenane- and eight jatrophane-type diterpenoids (with two new compounds, kansuinin P and Q) and four triterpenoids. Eighteen of them were analyzed by MTS assay for in vitro anticancer activity in five human cancer cell lines. Structure-activity relationship for 12 ingenane-type diterpenoids in colorectal cancer Colo205 cells were preliminary studied. Significant anti-proliferation activities were observed in human melanoma cells breast cancer MDA-MB-435 cells and Colo205 cells. More than half of the isolated ingenane-type diterpenoids showed inhibitory activities in MDA-MB-435 cells. Eight ingenane- and one jatrophane-type diterpenoids possessed much lower IC 50 values in MDA-MB-435 cells than positive control staurosporine. Preliminary structure-activity relationship analysis showed that substituent on position 20 was important for the activity of ingenane-type diterpenoids in Colo205 cells and substituent on position 3 contributed more significant biological activity of the compounds than that on position 5 in both MDA-MB-435 and Colo205 cells. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  6. Emissions of terpenoids, benzenoids, and other biogenic gas-phase organic compounds from agricultural crops and their potential implications for air quality

    Science.gov (United States)

    Gentner, D. R.; Ormeño, E.; Fares, S.; Ford, T. B.; Weber, R.; Park, J.-H.; Brioude, J.; Angevine, W. M.; Karlik, J. F.; Goldstein, A. H.

    2014-06-01

    Agriculture comprises a substantial, and increasing, fraction of land use in many regions of the world. Emissions from agricultural vegetation and other biogenic and anthropogenic sources react in the atmosphere to produce ozone and secondary organic aerosol, which comprises a substantial fraction of particulate matter (PM2.5). Using data from three measurement campaigns, we examine the magnitude and composition of reactive gas-phase organic carbon emissions from agricultural crops and their potential to impact regional air quality relative to anthropogenic emissions from motor vehicles in California's San Joaquin Valley, which is out of compliance with state and federal standards for tropospheric ozone PM2.5. Emission rates for a suite of terpenoid compounds were measured in a greenhouse for 25 representative crops from California in 2008. Ambient measurements of terpenoids and other biogenic compounds in the volatile and intermediate-volatility organic compound ranges were made in the urban area of Bakersfield and over an orange orchard in a rural area of the San Joaquin Valley during two 2010 seasons: summer and spring flowering. We combined measurements from the orchard site with ozone modeling methods to assess the net effect of the orange trees on regional ozone. When accounting for both emissions of reactive precursors and the deposition of ozone to the orchard, the orange trees are a net source of ozone in the springtime during flowering, and relatively neutral for most of the summer until the fall, when it becomes a sink. Flowering was a major emission event and caused a large increase in emissions including a suite of compounds that had not been measured in the atmosphere before. Such biogenic emission events need to be better parameterized in models as they have significant potential to impact regional air quality since emissions increase by several factors to over an order of magnitude. In regions like the San Joaquin Valley, the mass of biogenic

  7. Diversity of ABBA Prenyltransferases in Marine Streptomyces sp. CNQ-509: Promiscuous Enzymes for the Biosynthesis of Mixed Terpenoid Compounds.

    Directory of Open Access Journals (Sweden)

    Franziska Leipoldt

    Full Text Available Terpenoids are arguably the largest and most diverse family of natural products, featuring prominently in e.g. signalling, self-defence, UV-protection and electron transfer. Prenyltransferases are essential players in terpenoid and hybrid isoprenoid biosynthesis that install isoprene units on target molecules and thereby often modulate their bioactivity. In our search for new prenyltransferase biocatalysts we focused on the marine-derived Streptomyces sp. CNQ-509, a particularly rich source of meroterpenoid chemistry. Sequencing and analysis of the genome of Streptomyces sp. CNQ-509 revealed seven putative phenol/phenazine-specific ABBA prenyltransferases, and one putative indole-specific ABBA prenyltransferase. To elucidate the substrate specificity of the ABBA prenyltransferases and to learn about their role in secondary metabolism, CnqP1 -CnqP8 were produced in Escherichia coli and incubated with various aromatic and isoprenoid substrates. Five of the eight prenyltransferases displayed enzymatic activity. The efficient conversion of dihydroxynaphthalene derivatives by CnqP3 (encoded by AA958_24325 and the co-location of AA958_24325 with genes characteristic for the biosynthesis of THN (tetrahydroxynaphthalene-derived natural products indicates that the enzyme is involved in the formation of debromomarinone or other naphthoquinone-derived meroterpenoids. Moreover, CnqP3 showed high flexibility towards a range of aromatic and isoprenoid substrates and thus represents an interesting new tool for biocatalytic applications.

  8. Volatile composition and enantioselective analysis of chiral terpenoids of nine fruit and vegetable fibres resulting from juice industry by-products

    OpenAIRE

    Marsol i Vall, Alexis; Sgorbini, Barbara; Cagliero, Cecilia; Bicchi, Carlo; Eras i Joli, Jordi; Balcells Fluvià, Mercè

    2017-01-01

    Fruit and vegetable fibres resulting as by-products of the fruit juice industry have won popularity because they can be valorised as food ingredients. In this regard, bioactive compounds have already been studied but little attention has been paid to their remaining volatiles. Considering all the samples, 57 volatiles were identified. Composition greatly differed between citrus and noncitrus fibres. The former presented over 90% of terpenoids, with limonene being the most abundant and ranging...

  9. Cleaning products and air fresheners: emissions and resulting concentrations of glycol ethers and terpenoids.

    Science.gov (United States)

    Singer, B C; Destaillats, H; Hodgson, A T; Nazaroff, W W

    2006-06-01

    Experiments were conducted to quantify emissions and concentrations of glycol ethers and terpenoids from cleaning product and air freshener use in a 50-m3 room ventilated at approximately 0.5/h. Five cleaning products were applied full-strength (FS); three were additionally used in dilute solution. FS application of pine-oil cleaner (POC) yielded 1-h concentrations of 10-1300 microg/m3 for individual terpenoids, including alpha-terpinene (90-120), d-limonene (1000-1100), terpinolene (900-1300), and alpha-terpineol (260-700). One-hour concentrations of 2-butoxyethanol and/or d-limonene were 300-6000 microg/m3 after FS use of other products. During FS application including rinsing with sponge and wiping with towels, fractional emissions (mass volatilized/dispensed) of 2-butoxyethanol and d-limonene were 50-100% with towels retained, and approximately 25-50% when towels were removed after cleaning. Lower fractions (2-11%) resulted from dilute use. Fractional emissions of terpenes from FS use of POC were approximately 35-70% with towels retained, and 20-50% with towels removed. During floor cleaning with dilute solution of POC, 7-12% of dispensed terpenes were emitted. Terpene alcohols were emitted at lower fractions: 7-30% (FS, towels retained), 2-9% (FS, towels removed), and 2-5% (dilute). During air-freshener use, d-limonene, dihydromyrcenol, linalool, linalyl acetate, and beta-citronellol) were emitted at 35-180 mg/day over 3 days while air concentrations averaged 30-160 microg/m3. While effective cleaning can improve the healthfulness of indoor environments, this work shows that use of some consumer cleaning agents can yield high levels of volatile organic compounds, including glycol ethers--which are regulated toxic air contaminants--and terpenes that can react with ozone to form a variety of secondary pollutants including formaldehyde and ultrafine particles. Persons involved in cleaning, especially those who clean occupationally or often, might encounter

  10. Investigating the low-temperature impedance increase of lithium-ion cells

    International Nuclear Information System (INIS)

    Abraham, D. P.; Heaton, J. R.; Kang, S.-H.; Dees, D. W.; Jansen, A. N.; Chemical Engineering

    2008-01-01

    Low-temperature performance loss is a significant barrier to commercialization of lithium-ion cells in hybrid electric vehicles. Increased impedance, especially at temperatures below 0 C, reduces the cell pulse power performance required for cold engine starts, quick acceleration, or regenerative braking. Here we detail electrochemical impedance spectroscopy data on binder- and carbon-free layered-oxide and spinel-oxide electrodes, obtained over the +30 to ?30 C temperature range, in coin cells containing a lithium-preloaded Li 4/3 Ti 5/3 O 4 composite (LTOc) counter electrode and a LiPF 6 -bearing ethylene carbonate/ethyl methyl carbonate electrolyte. For all electrodes studied, the impedance increased with decreasing cell temperature; the increases observed in the midfrequency arc dwarfed the increases in ohmic resistance and diffusional impedance. Our data suggest that the movement of lithium ions across the electrochemical interface on the active material may have been increasingly hindered at lower temperatures, especially below 0 C. Low-temperature performance may be improved by modifying the electrolyte-active material interface (for example, through electrolyte composition changes). Increasing surface area of active particles (for example, through nanoparticle use) can lower the initial electrode impedance and lead to lower cell impedances at -30 C

  11. Reirradiation of mixed-oxide fuel pins at increased temperatures

    International Nuclear Information System (INIS)

    Lawrence, L.A.; Weber, E.T.

    1976-05-01

    Mixed-oxide fuel pins from EBR-II irradiations were reirradiated in the General Electric Test Reactor (GETR) at higher temperatures than experienced in EBR-II to study effects of the increased operating temperatures on thermal/mechanical and chemical behavior. The response of a mixed-oxide fuel pin to a power increase after having operated at a lower power for a significant portion of its life-time is an area of performance evaluation where little information currently exists. Results show that the cladding diameter changes resulting from the reirradiation are strongly dependent upon both prior burnup level and the magnitude of the temperature increase. Results provide the initial rough outlines of boundaries within which mixed-oxide fuel pins can or cannot tolerate power increases after substantial prior burnup at lower powers

  12. Impact of increasing temperature on snowfall in Switzerland

    Science.gov (United States)

    Serquet, G.; Marty, C.; Rebetez, M.

    2012-04-01

    The exact impact of changing temperatures on snow amounts is extremely important for mountainous regions, not only for hydrological aspects but also for winter tourism and the leisure industry in winter ski resorts. However, the impact of increasing temperatures on snowfall amounts is difficult to measure because of the large natural variability of precipitation. In addition, the impact of increasing temperatures varies, depending on region and altitude. Moreover, the impact of the observed increasing trend in temperature on snowfall and snow cover has usually been investigated on a seasonal basis only. On a monthly basis, the relationship between this increase in temperature and snowfall is still largely unknown. Of particular concern are the autumn and spring months and variations with altitude. In order to isolate the impact of changing temperatures on snowfall from the impact of changes in the frequency and intensity of total precipitation, we analyzed the proportion of snowfall days compared to precipitation days for each month from November to April in Switzerland. Our analyses concern 52 meteorological stations located between 200 and 2700 m asl over a 48 year time span. Our results show clear decreasing trends in snowfall days relative to precipitation days for all months (November to April) during the study period 1961-2008. Moreover, the present conditions in December, January and February correspond to those measured in the 1960's in November and March. During the whole snow season, the snowfall ratios have been transferred in elevation by at least 300 m from 1961 to 2008. This means that with an expected temperature increase during the coming decades at least similar to the temperature rise of recent decades, we can assume an additional similar altitudinal transfer of the snowfall days relative to precipitation days ratios. The current situation in November and March could thus become the future situation in December, January and February. During the

  13. Increasing Water Temperature Triggers Dominance of Small Freshwater Plankton.

    Science.gov (United States)

    Rasconi, Serena; Gall, Andrea; Winter, Katharina; Kainz, Martin J

    2015-01-01

    Climate change scenarios predict that lake water temperatures will increase up to 4°C and rainfall events will become more intense and frequent by the end of this century. Concurrently, supply of humic substances from terrestrial runoff is expected to increase, resulting in darker watercolor ("brownification") of aquatic ecosystems. Using a multi-seasonal, low trophic state mesocosm experiment, we investigated how higher water temperature and brownification affect plankton community composition, phenology, and functioning. We tested the hypothesis that higher water temperature (+3°C) and brownification will, a) cause plankton community composition to shift toward small sized phytoplankton and cyanobacteria, and, b) extend the length of the growing season entailing higher phytoplankton production later in the season. We demonstrate that the 3°C increase of water temperature favored the growth of heterotrophic bacteria and small sized autotrophic picophytoplankton cells with significantly higher primary production during warmer fall periods. However, 3X darker water (effect of brownification) caused no significant changes in the plankton community composition or functioning relative to control conditions. Our findings reveal that increased temperature change plankton community structure by favoring smaller sized species proliferation (autotrophic phytoplankton and small size cladocerans), and increase primary productivity and community turnover. Finally, results of this multi-seasonal experiment suggest that warming by 3°C in aquatic ecosystems of low trophic state may cause planktonic food web functioning to become more dominated by fast growing, r-trait species (i.e., small sizes and rapid development).

  14. Increase of COP for heat transformer in water purification systems. Part I - Increasing heat source temperature

    International Nuclear Information System (INIS)

    Siqueiros, J.; Romero, R.J.

    2007-01-01

    The integration of a water purification system in a heat transformer allows a fraction of heat obtained by the heat transformer to be recycled, increasing the heat source temperature. Consequently, the evaporator and generator temperatures are also increased. For any operating conditions, keeping the condenser and absorber temperatures and also the heat load to the evaporator and generator, a higher value of COP is obtained when only the evaporator and generator temperatures are increased. Simulation with proven software compares the performance of the modeling of an absorption heat transformer for water purification (AHTWP) operating with water/lithium bromide, as the working fluid-absorbent pair. Plots of enthalpy-based coefficients of performance (COP ET ) and the increase in the coefficient of performance (COP) are shown against absorber temperature for several thermodynamic operating conditions. The results showed that proposed (AHTWP) system is capable of increasing the original value of COP ET more than 120%, by recycling part of the energy from a water purification system. The proposed system allows to increase COP values from any experimental data for water purification or any other distillation system integrated to a heat transformer, regardless of the actual COP value and any working fluid-absorbent pair

  15. Evaluation of tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) hairy roots for the production of geraniol, the first committed step in terpenoid indole alkaloid pathway

    NARCIS (Netherlands)

    Ritala, A.; Dong, L.; Imseng, N.; Seppanen-Laakso, T.; Vasilev, N.; Krol, van der A.R.; Rischer, H.; Maaheimo, H.; Virkki, A.; Brandli, J.; Schillberg, S.; Eibl, R.; Bouwmeester, H.J.; Oksman-Caldentey, K.M.

    2014-01-01

    The terpenoid indole alkaloids are one of the major classes of plant-derived natural products and are well known for their many applications in the pharmaceutical, fragrance and cosmetics industries. Hairy root cultures are useful for the production of plant secondary metabolites because of their

  16. Increasing Water Temperature Triggers Dominance of Small Freshwater Plankton.

    Directory of Open Access Journals (Sweden)

    Serena Rasconi

    Full Text Available Climate change scenarios predict that lake water temperatures will increase up to 4°C and rainfall events will become more intense and frequent by the end of this century. Concurrently, supply of humic substances from terrestrial runoff is expected to increase, resulting in darker watercolor ("brownification" of aquatic ecosystems. Using a multi-seasonal, low trophic state mesocosm experiment, we investigated how higher water temperature and brownification affect plankton community composition, phenology, and functioning. We tested the hypothesis that higher water temperature (+3°C and brownification will, a cause plankton community composition to shift toward small sized phytoplankton and cyanobacteria, and, b extend the length of the growing season entailing higher phytoplankton production later in the season. We demonstrate that the 3°C increase of water temperature favored the growth of heterotrophic bacteria and small sized autotrophic picophytoplankton cells with significantly higher primary production during warmer fall periods. However, 3X darker water (effect of brownification caused no significant changes in the plankton community composition or functioning relative to control conditions. Our findings reveal that increased temperature change plankton community structure by favoring smaller sized species proliferation (autotrophic phytoplankton and small size cladocerans, and increase primary productivity and community turnover. Finally, results of this multi-seasonal experiment suggest that warming by 3°C in aquatic ecosystems of low trophic state may cause planktonic food web functioning to become more dominated by fast growing, r-trait species (i.e., small sizes and rapid development.

  17. Effect of increasing growth temperature on yeast fermentation ...

    African Journals Online (AJOL)

    The effect of increasing growth temperature on yeast fermentation was studied at approximately 5 oC intervals over a range of 18 – 37 oC, using one strain each of ale, lager and wine yeast. The ale and wine yeasts grew at all the temperatures tested, but lager yeast failed to grow at 37 oC. All these strains gave lower ...

  18. Green synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using camomile terpenoids as a combined reducing and capping agent.

    Science.gov (United States)

    Parlinska-Wojtan, Magdalena; Kus-Liskiewicz, Małgorzata; Depciuch, Joanna; Sadik, Omowunmi

    2016-08-01

    Green synthesis method using camomile extract was applied to synthesize silver nanoparticles to tune their antibacterial properties merging the synergistic effect of camomile and Ag. Scanning transmission electron microscopy revealed that camomile extract (CE) consisted of porous globular nanometer sized structures, which were a perfect support for Ag nanoparticles. The Ag nanoparticles synthesized with the camomile extract (AgNPs/CE) of 7 nm average sizes, were uniformly distributed on the CE support, contrary to the pure Ag nanoparticles synthesized with glucose (AgNPs/G), which were over 50 nm in diameter and strongly agglomerated. The energy dispersive X-ray spectroscopy chemical analysis showed that camomile terpenoids act as a capping and reducing agent being adsorbed on the surface of AgNPs/CE enabling their reduction from Ag(+) and preventing them from agglomeration. Fourier transform infrared and ultraviolet-visible spectroscopy measurements confirmed these findings, as the spectra of AgNPs/CE, compared to pure CE, did not contain the 1109 cm(-1) band, corresponding to -C-O groups of terpenoids and the peaks at 280 and 320 nm, respectively. Antibacterial tests using four bacteria strains showed that the AgNPs/CE performed five times better compared to CE AgNPs/G samples, reducing totally all the bacteria in 2 h.

  19. Physiological responses of rice to increased day and night temperatures

    NARCIS (Netherlands)

    Shi, Wanju

    2017-01-01

    A more rapid increase in night-time temperature compared with day-time temperature and the increased frequency of heat waves associated with climate change present a serious threat to rice (Oryza sativa L.) production and food security. This thesis aims to understand the impact of high

  20. Differential microRNA Analysis of Glandular Trichomes and Young Leaves in Xanthium strumarium L. Reveals Their Putative Roles in Regulating Terpenoid Biosynthesis

    OpenAIRE

    Fan, Rongyan; Li, Yuanjun; Li, Changfu; Zhang, Yansheng

    2015-01-01

    The medicinal plant Xanthium strumarium L. (X. strumarium) is covered with glandular trichomes, which are the sites for synthesizing pharmacologically active terpenoids such as xanthatin. MicroRNAs (miRNAs) are a class of 21-24 nucleotide (nt) non-coding RNAs, most of which are identified as regulators of plant growth development. Identification of miRNAs involved in the biosynthesis of plant secondary metabolites remains limited. In this study, high-throughput Illumina sequencing, combined w...

  1. Functional responses of North Atlantic fish eggs to increasing temperature

    DEFF Research Database (Denmark)

    Tsoukali, Stavroula; Visser, Andre; MacKenzie, Brian

    2016-01-01

    -days and survival of fish eggs from 32 populations of 17 species in the North Atlantic to different temperatures in order to determine potential consequences of global warming for these species. The response of development time exhibited a similar decreasing trend with respect to temperature across species....... There was an overall decrease, across species, in an index of thermal requirement (cumulative degree-days) for egg development with increasing temperature. Within an empirically derived optimal thermal range for egg survival, the thermal requirement was more variable in species adapted to cold waters compared...... to species adapted to warmer waters. Moreover, the sensitivity of survival of eggs from different species to increases in temperature differed, reflecting a pattern of sensitivity along a stenotherm-eurytherm gradient of vulnerability to temperature among species. The results quantify physiological effects...

  2. Modeling Air Temperature/Water Temperature Relations Along a Small Mountain Stream Under Increasing Urban Influence

    Science.gov (United States)

    Fedders, E. R.; Anderson, W. P., Jr.; Hengst, A. M.; Gu, C.

    2017-12-01

    Boone Creek is a headwater stream of low to moderate gradient located in Boone, North Carolina, USA. Total impervious surface coverage in the 5.2 km2 catchment drained by the 1.9 km study reach increases from 13.4% in the upstream half of the reach to 24.3% in the downstream half. Other markers of urbanization, including culverting, lack of riparian shade vegetation, and bank armoring also increase downstream. Previous studies have shown the stream to be prone to temperature surges on short timescales (minutes to hours) caused by summer runoff from the urban hardscaping. This study investigates the effects of urbanization on the stream's thermal regime at daily to yearly timescales. To do this, we developed an analytical model of daily average stream temperatures based on daily average air temperatures. We utilized a two-part model comprising annual and biannual components and a daily component consisting of a 3rd-order Markov process in order to fit the thermal dynamics of our small, gaining stream. Optimizing this model at each of our study sites in each studied year (78 total site-years of data) yielded annual thermal exchange coefficients (K) for each site. These K values quantify the strength of the relationship between stream and air temperature, or inverse thermal stability. In a uniform, pristine catchment environment, K values are expected to decrease downstream as the stream gains discharge volume and, therefore, thermal inertia. Interannual average K values for our study reach, however, show an overall increase from 0.112 furthest upstream to 0.149 furthest downstream, despite a near doubling of stream discharge between these monitoring points. K values increase only slightly in the upstream, less urban, half of the reach. A line of best fit through these points on a plot of reach distance versus K value has a slope of 2E-6. But the K values of downstream, more urbanized sites increase at a rate of 2E-5 per meter of reach distance, an order of magnitude

  3. Use of [2-14C]mevalonate and saponin-bound [14C]-3-hydroxy-3-methylglutaric acid for the biosynthesis of terpenoids in leaves of Dioscorea deltoidea

    International Nuclear Information System (INIS)

    Gurielidze, K.G.; Paseshnichenko, V.A.; Vasil'eva, I.S.

    1986-01-01

    After the introduction of [2- 14 C]acetate into leaves of Dioscorea deltoidea, a radioactive furonanalog of deltafolin - protodeltofolin, containing two-thirds of the label in the 3-hydroxy-3-methylglutaryl portion - was isolated from them. Radioactive β-careotene and sterols were isolated from cut young leaves of Dioscorea 24 h after the introduction of [ 14 C] protodeltofolin into them, using chromatography on a column of silica gel and precipitation of sterols in the form of digitonins for this purpose. The incorporation of radioactivity from [ 14 C]-3-hydroxy-3-methyl-glutaric acid, bound in the form of a saponin, and β-carotene came to 0.18-0.80%, while incorporation into sterols came to 0.07-2.86% of the radioactivity of the alcohol extract. Thereby it was shown that 3-hydroxyl-3-methylglutaric acid, bound in the form of the saponin, can be used to form terpenoids in Dioscorea leaves. It was suggested that the binding of hydroxymethylglutaric acid to saponin represents one of the mechanisms of regulation of the rate of terpenoid biosynthesis in Dioscorea leaves

  4. Theoretical modeling of critical temperature increase in metamaterial superconductors

    Science.gov (United States)

    Smolyaninov, Igor; Smolyaninova, Vera

    Recent experiments have demonstrated that the metamaterial approach is capable of drastic increase of the critical temperature Tc of epsilon near zero (ENZ) metamaterial superconductors. For example, tripling of the critical temperature has been observed in Al-Al2O3 ENZ core-shell metamaterials. Here, we perform theoretical modelling of Tc increase in metamaterial superconductors based on the Maxwell-Garnett approximation of their dielectric response function. Good agreement is demonstrated between theoretical modelling and experimental results in both aluminum and tin-based metamaterials. Taking advantage of the demonstrated success of this model, the critical temperature of hypothetic niobium, MgB2 and H2S-based metamaterial superconductors is evaluated. The MgB2-based metamaterial superconductors are projected to reach the liquid nitrogen temperature range. In the case of an H2S-based metamaterial Tc appears to reach 250 K. This work was supported in part by NSF Grant DMR-1104676 and the School of Emerging Technologies at Towson University.

  5. Increased Risk of Drug-Induced Hyponatremia during High Temperatures

    Directory of Open Access Journals (Sweden)

    Anna K Jönsson

    2017-07-01

    Full Text Available Purpose: To investigate the relationship between outdoor temperature in Sweden and the reporting of drug-induced hyponatremia to the Medical Products Agency (MPA. Methods: All individual adverse drug reactions (ADR reported to MPA from 1 January 2010 to 31 October 2013 of suspected drug-induced hyponatremia and random controls were identified. Reports where the ADR had been assessed as having at least a possible relation to the suspected drug were included. Information on administered drugs, onset date, causality assessment, sodium levels, and the geographical origin of the reports was extracted. A case-crossover design was used to ascertain the association between heat exposure and drug-induced hyponatremia at the individual level, while linear regression was used to study its relationship to sodium concentration in blood. Temperature exposure data were obtained from the nearest observation station to the reported cases. Results: During the study period, 280 reports of hyponatremia were identified. More cases of drug-induced hyponatremia were reported in the warmer season, with a peak in June, while other ADRs showed an opposite annual pattern. The distributed lag non-linear model indicated an increasing odds ratio (OR with increasing temperature in the warm season with a highest odds ratio, with delays of 1–5 days after heat exposure. A cumulative OR for a lag time of 1 to 3 days was estimated at 2.21 at an average daily temperature of 20 °C. The change in sodium per 1 °C increase in temperature was estimated to be −0.37 mmol/L (95% CI: −0.02, −0.72. Conclusions: Warm weather appears to increase the risk of drug-induced hyponatremia

  6. Increased and Altered Fragrance of Tobacco Plants after Metabolic Engineering Using Three Monoterpene Synthases from Lemon

    Science.gov (United States)

    Lücker, Joost; Schwab, Wilfried; van Hautum, Bianca; Blaas, Jan; van der Plas, Linus H. W.; Bouwmeester, Harro J.; Verhoeven, Harrie A.

    2004-01-01

    Wild-type tobacco (Nicotiana tabacum) plants emit low levels of terpenoids, particularly from the flowers. By genetic modification of tobacco cv Petit Havana SR1 using three different monoterpene synthases from lemon (Citrus limon L. Burm. f.) and the subsequent combination of these three into one plant by crossings, we show that it is possible to increase the amount and alter the composition of the blend of monoterpenoids produced in tobacco plants. The transgenic tobacco plant line with the three introduced monoterpene synthases is emitting β-pinene, limonene, and γ-terpinene and a number of side products of the introduced monoterpene synthases, from its leaves and flowers, in addition to the terpenoids emitted by wild-type plants. The results show that there is a sufficiently high level of substrate accessible for the introduced enzymes. PMID:14718674

  7. Increasing influence of air temperature on upper Colorado River streamflow

    Science.gov (United States)

    Woodhouse, Connie A.; Pederson, Gregory T.; Morino, Kiyomi; McAfee, Stephanie A.; McCabe, Gregory J.

    2016-01-01

    This empirical study examines the influence of precipitation, temperature, and antecedent soil moisture on upper Colorado River basin (UCRB) water year streamflow over the past century. While cool season precipitation explains most of the variability in annual flows, temperature appears to be highly influential under certain conditions, with the role of antecedent fall soil moisture less clear. In both wet and dry years, when flow is substantially different than expected given precipitation, these factors can modulate the dominant precipitation influence on streamflow. Different combinations of temperature, precipitation, and soil moisture can result in flow deficits of similar magnitude, but recent droughts have been amplified by warmer temperatures that exacerbate the effects of relatively modest precipitation deficits. Since 1988, a marked increase in the frequency of warm years with lower flows than expected, given precipitation, suggests continued warming temperatures will be an increasingly important influence in reducing future UCRB water supplies.

  8. Effect of Cytokinin and Auxin Treatments on Morphogenesis, Terpenoid Biosynthesis, Photosystem Structural Organization, and Endogenous Isoprenoid Cytokinin Profile in Artemisia alba Turra In Vitro

    Czech Academy of Sciences Publication Activity Database

    Danova, K.; Motyka, Václav; Todorova, M.; Trendafilova, A.; Krumova, S.; Dobrev, Petre; Andreeva, T.; Oreshkova, T.; Taneva, S.; Evstatieva, L.

    2018-01-01

    Roč. 37, č. 2 (2018), s. 403-418 ISSN 0721-7595 R&D Projects: GA ČR(CZ) GA16-14649S Institutional support: RVO:61389030 Keywords : Artemisia alba Turra in vitro * Cis- and trans-zeatin * Endogenous cytokinins * Photosystem II and thylakoid morphology * Plant growth regulators * Terpenoid profile of the essential oil Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 2.073, year: 2016

  9. The effect of air velocity on heat stress at increased air temperature

    DEFF Research Database (Denmark)

    Bjerg, B.; Wang, Xiaoshuai; Zhang, Guoqiang

    Increased air velocity is a frequently used method to reduce heat stress of farm animals housed in warm conditions. The main reason why the method works is that higher air velocity increases the convective heat release from the animals. Convective heat release from the animals is strongly related...... to the temperature difference between the surfaces of animals and the surrounding air, and this temperature difference declines when the air temperature approaches the animal body temperature. Consequently it can it by expected that the effect of air velocity decreases at increased air temperature. The literature...... on farm animals in warm conditions includes several thermal indices which incorporate the effect of air velocities. But, surprisingly none of them predicts a decreased influence of air velocity when the air temperature approaches the animal body temperature. This study reviewed published investigations...

  10. Increase of the blocking temperature of Fe–Ag granular multilayers with increasing number of the layers

    Energy Technology Data Exchange (ETDEWEB)

    Balogh, Judit [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Kaptás, Dénes, E-mail: kaptas.denes@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Kiss, László F. [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Dézsi, István [Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Nakanishi, Akio [Department of Physics, Shiga University of Medical Science, Shiga 520-2192 (Japan); Devlin, Eamonn; Vasilakaki, Marianna; Margaris, George; Trohidou, Kalliopi N. [Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, Aghia Paraskevi, 15310 Athens (Greece)

    2016-03-01

    Multilayers of 0.4 nm Fe and 5 nm Ag with repetition number, n=1, 2, 5, 10 and 20 were prepared by vacuum evaporation onto Si wafer. The blocking temperature was determined by measuring the field cooled and zero field cooled magnetization curves with a SQUID magnetometer and it was found to increase by almost an order of magnitude from around 20 K for the single Fe layer sample up to around 160 K for n=20. Significant increase of the average size of the superparamagnetic Fe grains by increasing the number of the Fe layers was excluded by conversion electron Mössbauer spectroscopy measurements of the paramagnetic state. The role of the dipole–dipole interactions and their interplay with the out-of-plain magnetic anisotropy in the variation of the blocking temperature has been investigated by Monte-Carlo simulations. - Highlights: • Multilayers of [0.4 nm Fe/5 nm Ag]{sub n} (n=1,2,5,10, and 20) were grown over Si. • Large increase of the superparamagnetic blocking temperature up to n=10 is observed. • The average Fe grain size does not change in the subsequent layers. • Perpendicular anisotropy enhances the dipolar coupling and the blocking temperature.

  11. Predicting long-term temperature increase for time-dependent SAR levels with a single short-term temperature response.

    Science.gov (United States)

    Carluccio, Giuseppe; Bruno, Mary; Collins, Christopher M

    2016-05-01

    Present a novel method for rapid prediction of temperature in vivo for a series of pulse sequences with differing levels and distributions of specific energy absorption rate (SAR). After the temperature response to a brief period of heating is characterized, a rapid estimate of temperature during a series of periods at different heating levels is made using a linear heat equation and impulse-response (IR) concepts. Here the initial characterization and long-term prediction for a complete spine exam are made with the Pennes' bioheat equation where, at first, core body temperature is allowed to increase and local perfusion is not. Then corrections through time allowing variation in local perfusion are introduced. The fast IR-based method predicted maximum temperature increase within 1% of that with a full finite difference simulation, but required less than 3.5% of the computation time. Even higher accelerations are possible depending on the time step size chosen, with loss in temporal resolution. Correction for temperature-dependent perfusion requires negligible additional time and can be adjusted to be more or less conservative than the corresponding finite difference simulation. With appropriate methods, it is possible to rapidly predict temperature increase throughout the body for actual MR examinations. © 2015 Wiley Periodicals, Inc.

  12. Body temperature increases during pediatric full mouth rehabilitation surgery under general anesthesia

    Directory of Open Access Journals (Sweden)

    Yi-Shan Chuang

    2015-12-01

    Conclusion: Body temperature transiently increased during pediatric full mouth rehabilitation surgery. The increase in body temperature was associated with operation duration. The etiology is uncertain. Continuous body temperature monitoring and the application of both heating and cooling devices during pediatric full mouth rehabilitation surgery should be mandatory.

  13. Terpenoid Compositions and Botanical Origins of Late Cretaceous and Miocene Amber from China

    Science.gov (United States)

    Shi, Gongle; Dutta, Suryendu; Paul, Swagata; Wang, Bo; Jacques, Frédéric M. B.

    2014-01-01

    The terpenoid compositions of the Late Cretaceous Xixia amber from Central China and the middle Miocene Zhangpu amber from Southeast China were analyzed by gas chromatography-mass spectrometry (GC-MS) to elucidate their botanical origins. The Xixia amber is characterized by sesquiterpenoids, abietane and phyllocladane type diterpenoids, but lacks phenolic abietanes and labdane derivatives. The molecular compositions indicate that the Xixia amber is most likely contributed by the conifer family Araucariaceae, which is today distributed primarily in the Southern Hemisphere, but widely occurred in the Northern Hemisphere during the Mesozoic according to paleobotanical evidence. The middle Miocene Zhangpu amber is characterized by amyrin and amyrone-based triterpenoids and cadalene-based sesquiterpenoids. It is considered derived from the tropical angiosperm family Dipterocarpaceae based on these compounds and the co-occurring fossil winged fruits of the family in Zhangpu. This provides new evidence for the occurrence of a dipterocarp forest in the middle Miocene of Southeast China. It is the first detailed biomarker study for amber from East Asia. PMID:25354364

  14. Green Leaf Volatile Emissions during High Temperature and Drought Stress in a Central Amazon Rainforest.

    Science.gov (United States)

    Jardine, Kolby J; Chambers, Jeffrey Q; Holm, Jennifer; Jardine, Angela B; Fontes, Clarissa G; Zorzanelli, Raquel F; Meyers, Kimberly T; de Souza, Vinicius Fernadez; Garcia, Sabrina; Gimenez, Bruno O; Piva, Luani R de O; Higuchi, Niro; Artaxo, Paulo; Martin, Scot; Manzi, Antônio O

    2015-09-15

    Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV) emissions during membrane peroxidation processes associated with the combined effects of high leaf temperatures and drought-induced leaf senescence from individual detached leaves and a rainforest ecosystem in the central Amazon. Temperature-dependent leaf emissions of volatile terpenoids were observed during the morning, and together with transpiration and net photosynthesis, showed a post-midday depression. This post-midday depression was associated with a stimulation of C₅ and C₆ GLV emissions, which continued to increase throughout the late afternoon in a temperature-independent fashion. During the 2010 drought in the Amazon Basin, which resulted in widespread tree mortality, green leaf volatile emissions (C₆ GLVs) were observed to build up within the forest canopy atmosphere, likely associated with high leaf temperatures and enhanced drought-induced leaf senescence processes. The results suggest that observations of GLVs in the tropical boundary layer could be used as a chemical sensor of reduced ecosystem productivity associated with drought stress.

  15. A comparison of accelerated solvent extraction, Soxhlet extraction, and ultrasonic-assisted extraction for analysis of terpenoids and sterols in tobacco.

    Science.gov (United States)

    Shen, Jinchao; Shao, Xueguang

    2005-11-01

    The performance of accelerated solvent extraction in the analysis of terpenoids and sterols in tobacco samples was investigated and compared with those of Soxhlet extraction and ultrasonically assisted extraction with respect to yield, extraction time, reproducibility and solvent consumption. The results indicate that although the highest yield was achieved by Soxhlet extraction, ASE appears to be a promising alternative to classical methods since it is faster and uses less solvent, especially when applied to the investigation of large batch tobacco samples. However, Soxhlet extraction is still the preferred method for analyzing sterols since it gives a higher extraction efficiency than other methods.

  16. Increase of volume swelling by a temperature gradient

    International Nuclear Information System (INIS)

    Herschbach, K.; Schneider, W.; Stober, T.

    1996-11-01

    The temperature gradient in the cladding of a Fast Reactor fuel pin leads to increased dilatation compared to material irradiations. Investigations of a specially designed fuel pin reached the conclusion that the cause is enhanced volume swelling. It is induced by He-bubbles, which migrate upwards the temperature gradient and coalesce. The critical size of nuclei for void swelling is thus reached much faster. Consequently, the p in deformation is larger than expected from materials irradiations, in the present case (DIN 1.4981 sa) by about 50%. (orig.) [de

  17. Responding to bioterror concerns by increasing milk pasteurization temperature would increase estimated annual deaths from listeriosis.

    Science.gov (United States)

    Stasiewicz, Matthew J; Martin, Nicole; Laue, Shelley; Gröhn, Yrjo T; Boor, Kathryn J; Wiedmann, Martin

    2014-05-01

    In a 2005 analysis of a potential bioterror attack on the food supply involving a botulinum toxin release into the milk supply, the authors recommended adopting a toxin inactivation step during milk processing. In response, some dairy processors increased the times and temperatures of pasteurization well above the legal minimum for high temperature, short time pasteurization (72 °C for 15 s), with unknown implications for public health. The present study was conducted to determine whether an increase in high temperature, short time pasteurization temperature would affect the growth of Listeria monocytogenes, a potentially lethal foodborne pathogen normally eliminated with proper pasteurization but of concern when milk is contaminated postpasteurization. L. monocytogenes growth during refrigerated storage was higher in milk pasteurized at 82 °C than in milk pasteurized at 72 °C. Specifically, the time lag before exponential growth was decreased and the maximum population density was increased. The public health impact of this change in pasteurization was evaluated using a quantitative microbial risk assessment of deaths from listeriosis attributable to consumption of pasteurized fluid milk that was contaminated postprocessing. Conservative estimates of the effect of pasteurizing all fluid milk at 82 °C rather than 72 °C are that annual listeriosis deaths from consumption of this milk would increase from 18 to 670, a 38-fold increase (8.7- to 96-fold increase, 5th and 95th percentiles). These results exemplify a situation in which response to a rare bioterror threat may have the unintended consequence of putting the public at increased risk of a known, yet severe harm and illustrate the need for a paradigm shift toward multioutcome risk benefit analyses when proposing changes to established food safety practices.

  18. Experimental demonstration of superconducting critical temperature increase in electromagnetic metamaterials.

    Science.gov (United States)

    Smolyaninova, Vera N; Yost, Bradley; Zander, Kathryn; Osofsky, M S; Kim, Heungsoo; Saha, Shanta; Greene, R L; Smolyaninov, Igor I

    2014-12-04

    A recent proposal that the metamaterial approach to dielectric response engineering may increase the critical temperature of a composite superconductor-dielectric metamaterial has been tested in experiments with compressed mixtures of tin and barium titanate nanoparticles of varying composition. An increase of the critical temperature of the order of ΔT ~ 0.15 K compared to bulk tin has been observed for 40% volume fraction of barium titanate nanoparticles. Similar results were also obtained with compressed mixtures of tin and strontium titanate nanoparticles.

  19. Experimental demonstration of superconducting critical temperature increase in electromagnetic metamaterials

    Science.gov (United States)

    Smolyaninova, Vera N.; Yost, Bradley; Zander, Kathryn; Osofsky, M. S.; Kim, Heungsoo; Saha, Shanta; Greene, R. L.; Smolyaninov, Igor I.

    2014-12-01

    A recent proposal that the metamaterial approach to dielectric response engineering may increase the critical temperature of a composite superconductor-dielectric metamaterial has been tested in experiments with compressed mixtures of tin and barium titanate nanoparticles of varying composition. An increase of the critical temperature of the order of ΔT ~ 0.15 K compared to bulk tin has been observed for 40% volume fraction of barium titanate nanoparticles. Similar results were also obtained with compressed mixtures of tin and strontium titanate nanoparticles.

  20. Unrealized Global Temperature Increase: Implications of Current Uncertainties

    Science.gov (United States)

    Schwartz, Stephen E.

    2018-04-01

    Unrealized increase in global mean surface air temperature (GMST) may result from the climate system not being in steady state with forcings and/or from cessation of negative aerosol forcing that would result from decreases in emissions. An observation-constrained method is applied to infer the dependence of Earth's climate sensitivity on forcing by anthropogenic aerosols within the uncertainty on that forcing given by the Fifth (2013) Assessment Report of the Intergovernmental Panel on Climate Change. Within these uncertainty ranges the increase in GMST due to temperature lag for future forcings held constant is slight (0.09-0.19 K over 20 years; 0.12-0.26 K over 100 years). However, the incremental increase in GMST that would result from a hypothetical abrupt cessation of sources of aerosols could be quite large but is highly uncertain, 0.1-1.3 K over 20 years. Decrease in CO2 abundance and forcing following abrupt cessation of emissions would offset these increases in GMST over 100 years by as little as 0.09 K to as much as 0.8 K. The uncertainties quantified here greatly limit confidence in projections of change in GMST that would result from any strategy for future reduction of emissions.

  1. Historical Responsibility for Climate Change - from countries emissions to contribution to temperature increase

    Science.gov (United States)

    Krapp, Mario; Gütschow, Johannes; Rocha, Marcia; Schaeffer, Michiel

    2016-04-01

    The notion of historical responsibility is central to the equity debate and the measure of responsibility as a countries' share of historical global emissions remains one of the essential parameters in so-called equity proposals, which attempt to distribute effort among countries in an equitable manner. The focus of this contribution is on the historical contribution of countries, but it takes it one step further: its general objective lies on estimating countries' contribution directly to the change in climate. The historical responsibility is not based on cumulative emissions but instead measured in terms of the countries' estimated contribution to the increase in global-mean surface-air temperature. This is achieved by (1) compiling a historical emissions dataset for the period from 1850 until 2012 for each individual Kyoto-greenhouse gas and each UNFCCC Party using a consistent methodology and (2) applying those historical emissions to a revised version of the so-called Policy-maker Model put forward by the Ministry of Science and Technology of the Federative Republic of Brazil, which is a simple, yet powerful tool that allows historical GHG emissions of individual countries to be directly related to their effect on global temperature changes. We estimate that the cumulative GHG emissions until 2012 from the USA, the European Union and China contribute to a total temperature increase of about 0.50°C in 2100, which is equivalent to about 50% of the temperature increase from total global GHG emissions by that year (of about 1.0°C). Respectively, the USA, the European Union, and China are responsible for 20.2%, 17.3%, and 12.1% of global temperature increase in 2100. Russian historical emissions are responsible for 0.06°C temperature increase by 2100, ranking as the fourth largest contributor to temperature increase with 6.2% of the total contribution. India ranks fifth: Indian emissions to date would contribute to roughly 0.05°C of global mean temperature

  2. Alpha-glucosidase inhibitory and antiplasmodial properties of terpenoids from the leaves of Buddleja saligna Willd.

    Science.gov (United States)

    Chukwujekwu, Jude C; Rengasamy, Kannan R R; de Kock, Carmen A; Smith, Peter J; Slavětínská, Lenka Poštová; van Staden, Johannes

    2016-01-01

    In our continuing search for biologically active natural product(s) of plant origin, Buddleja saligna, a South African medicinal plant, was screened in line with its traditional use for antidiabetic (yeast alpha glucosidase inhibitory) and antiplasmodial (against a chloroquine sensitive strain of Plasmodium falciparum (NF54)) activities. The hexane fraction showed the most promising activity with regards to its antidiabetic (IC(50) = 260 ± 0.112 µg/ml) and antiplasmodial (IC(50) = 8.5 ± 1.6 µg/ml) activities. Using activity guided fractionation three known terpenoids (betulonic acid, betulone and spinasterol) were isolated from this species for the first time. The compounds displayed varying levels of biological activities (antidiabetic: 27.31 µg/ml ≥ IC(50) ≥ 5.6 µg/ml; antiplasmodial: 14 µg/ml ≥ IC(50) ≥ 2 µg/ml) with very minimal toxicity.

  3. Transcriptional regulation of genes involved in terpenoid índole alkaloid production in Catharanthus roseus seedlings

    Directory of Open Access Journals (Sweden)

    Pedro J. Rocha

    2002-07-01

    Full Text Available Catharanthus roseus (L. G Don is a medicinal plant that produces a variety of terpenoid indole alkaloids (TIAs, some of which display pharmacological activity. C. roseus plants and cell cultures have been used to elucidate the TIAs biosynthetic pathway. A considerable number or enzymes have also been characterised, and their respective genes cloned. TIAs production in C. roseus plant and cell cultures is highly regulated at transcriptional-, develop-mental-, and environmental-level. Studies into TIAs biosynthetic gene regulation have been carried out using cell cultures. However, regulation in plants is almost unknown. Here, biosynthetic genes idc, strl, d4h and dat expres-sion levels are qualitatively examined in a developmental series of C. roseus seedlings. The effect of water- and light-stress and methyl jasmonate (MeJa and acetyl salicylic acid (ASA elicitation is also examined. Comparison between seedlings and cell cultures strongly suggests that TIAs biosynthetic gene transcriptional regulation is different in C.roseus plants and cell cultures.

  4. Interactive effect of temperature and CO2 increase in Arctic phytoplankton

    Directory of Open Access Journals (Sweden)

    Alexandra eCoello-Camba

    2014-10-01

    Full Text Available An experiment was performed in order to analyze the effects of the increase in water temperature and CO2 partial pressure expected for the end of this century in a present phytoplankton community inhabiting the Arctic Ocean. We analyzed both factors acting independently and together, to test possible interactions between them. The arctic planktonic community was incubated under 6 different treatments combining three experimental temperatures (1 ºC, 6 ºC and 10 ºC with two different CO2 levels of 380 ppm or 1000 ppm, at the UNIS installations in Longyearbyen (Svalbard, in summer 2010. Under warmer temperatures, a decrease in chlorophyll a concentration, biovolume and primary production was found, together with a shift in community structure towards a dominance of smaller cells (nano-sized. Effects of increased pCO2 were more modest, and although interactions were weak, our results suggest antagonistic interactive effects amongst increased temperature and CO2 levels, as elevated CO2 compensated partially the decrease in phytoplankton biomass induced by temperature in some groups. Interactions between the two stressors were generally weak, but elevated CO2 was observed to lead to a stepper decline in primary production with warming. Our results also suggest that future increases in water temperature and pCO2 would lead to a decrease in the community chl a concentration and biomass in the Arctic phytoplankton communities examined, leading to communities dominated by smaller nano-phytoplankton groups, with important consequences for the flow of carbon and food web dynamics.

  5. Increased nitrogen availability counteracts climatic change feedback from increased temperature on boreal forest soil organic matter degradation

    Science.gov (United States)

    Erhagen, Bjorn; Nilsson, Mats; Oquist, Mats; Ilstedt, Ulrik; Sparrman, Tobias; Schleucher, Jurgen

    2014-05-01

    Over the last century, the greenhouse gas concentrations in the atmosphere have increased dramatically, greatly exceeding pre-industrial levels that had prevailed for the preceding 420 000 years. At the same time the annual anthropogenic contribution to the global terrestrial nitrogen cycle has increased and currently exceeds natural inputs. Both temperature and nitrogen levels have profound effects on the global carbon cycle including the rate of organic matter decomposition, which is the most important biogeochemical process that returns CO2 to the atmosphere. Here we show for the first time that increasing the availability of nitrogen not only directly affects the rate of organic matter decomposition but also significantly affects its temperature dependence. We incubated litter and soil organic matter from a long-term (40 years) nitrogen fertilization experiment in a boreal Scots pine (Pinus silvestris L.) forest at different temperatures and determined the temperature dependence of the decomposition of the sample's organic matter in each case. Nitrogen fertilization did not affect the temperature sensitivity (Q10) of the decomposition of fresh plant litter but strongly reduced that for humus soil organic matter. The Q10 response of the 0-3 cm soil layer decreased from 2.5±0.35 to an average of 1.9±0.21 over all nitrogen treatments, and from 2.2±0.19 to 1.6±0.16 in response to the most intense nitrogen fertilization treatment in the 4-7 cm soil layer. Long-term nitrogen additions also significantly affected the organic chemical composition (as determined by 13C CP-MAS NMR spectroscopy) of the soil organic matter. These changes in chemical composition contributed significantly (p<0.05) to the reduced Q10 response. These new insights into the relationship between nitrogen availability and the temperature sensitivity of organic matter decomposition will be important for understanding and predicting how increases in global temperature and rising anthropogenic

  6. Evidence of Climate Change (Global Warming) and Temperature Increases in Arctic Areas

    OpenAIRE

    Eric Kojo Wu Aikins

    2012-01-01

    This paper contributes to the debate on the proximate causes of climate change. Also, it discusses the impact of the global temperature increases since the beginning of the twentieth century and the effectiveness of climate change models in isolating the primary cause (anthropogenic influences or natural variability in temperature) of the observed temperature increases that occurred within this period. The paper argues that if climate scientist and policymakers ignore the...

  7. Synthesis and characterisation of zinc oxide nanoparticles using terpenoid fractions of Andrographis paniculata leaves

    Science.gov (United States)

    Kavitha, S.; Dhamodaran, M.; Prasad, Rajendra; Ganesan, M.

    2017-04-01

    Zinc oxide (ZnO) nanoparticles have been widely employed for various pharmacological applications. Several approaches were tried to synthesize ZnO nanoparticles. In this study, ZnO nanoparticles were biosynthesized using terpenoid (TAP) fractions isolated from Andrographis paniculata leaves. Subsequently, the ZnNO3 (0.1 N) is treated with the isolated TAP fractions to biosynthesize zinc oxide nanoparticles (Zn-TAP NPs). This nanoparticle preparation has been confirmed by the colour change from green to cloudy-white and the peak at 300 nm by UV-Visible spectra. FTIR analysis of Zn-TAP NPs showed the presence of functional group (i.e.) C=O which has further been confirmed by H1-NMR studies. From SEM and XRD analysis, it has been found that the hexagonal nanorod particle is 20.23 nm in size and +17.6 mV of zeta potential. Hence, it can be easily absorbed by negatively charged cellular membrane to contribute for efficient intracellular distribution. Therefore, it is suggested that the synthesised Zn-TAP NPs are more suitable in drug delivery processes.

  8. Human preference and acceptance of increased air velocity to offset warm sensation at increased room temperatures

    DEFF Research Database (Denmark)

    Cattarin, Giulio; Simone, Angela; Olesen, Bjarne W.

    . The present climatic chamber study examined energy performance and achievable thermal comfort of traditional and bladeless desk fans. Different effects of mechanical and simulated-natural airflow patterns were also investigated. 32 Scandinavians, performing office activities and wearing light clothes , were......Previous studies have demonstrated that in summertime increased air velocities can compensate for higher room temperatures to achieve comfortable conditions. In order to increase air movement, windows opening, ceiling or desk fans can be used at the expense of relatively low energy consumption...... exposed to a increased air movement generated by a personal desk fan. The subjects could continuously regulate the fans under three fixed environmental conditions (operative temperatures equal to 26 °C, 28 °C, or 30 °C, and same absolute humidity 12.2 g/m3). The experimental study showed that increased...

  9. Enhanced sludge reduction in septic tanks by increasing temperature.

    Science.gov (United States)

    Pussayanavin, Tatchai; Koottatep, Thammarat; Eamrat, Rawintra; Polprasert, Chongrak

    2015-01-01

    Septic tanks in most developing countries are constructed without drainage trenches or leaching fields to treat toilet wastewater and /or grey water. Due to the short hydraulic retention time, effluents of these septic tanks are still highly polluted, and there is usually high accumulation of septic tank sludge or septage containing high levels of organics and pathogens that requires frequent desludging and subsequent treatment. This study aimed to reduce sludge accumulation in septic tanks by increasing temperatures of the septic tank content. An experimental study employing two laboratory-scale septic tanks fed with diluted septage and operating at temperatures of 40 and 30°C was conducted. At steady-state conditions, there were more methanogenic activities occurring in the sludge layer of the septic tank operating at the temperature of 40°C, resulting in less total volatile solids (TVS) or sludge accumulation and more methane (CH4) production than in the unit operating at 30°C. Molecular analysis found more abundance and diversity of methanogenic microorganisms in the septic tank sludge operating at 40°C than at 30°C. The reduced TVS accumulation in the 40°C septic tank would lengthen the period of septage removal, resulting in a cost-saving in desluging and septage treatment. Cost-benefit analysis of increasing temperatures in septic tanks was discussed.

  10. Silencing the Transcriptional Repressor, ZCT1, Illustrates the Tight Regulation of Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus Hairy Roots.

    Directory of Open Access Journals (Sweden)

    Noreen F Rizvi

    Full Text Available The Catharanthus roseus plant is the source of many valuable terpenoid indole alkaloids (TIAs, including the anticancer compounds vinblastine and vincristine. Transcription factors (TFs are promising metabolic engineering targets due to their ability to regulate multiple biosynthetic pathway genes. To increase TIA biosynthesis, we elicited the TIA transcriptional activators (ORCAs and other unidentified TFs with the plant hormone, methyl jasmonate (MJ, while simultaneously silencing the expression of the transcriptional repressor ZCT1. To silence ZCT1, we developed transgenic hairy root cultures of C. roseus that expressed an estrogen-inducible Zct1 hairpin for activating RNA interference. The presence of 17β-estradiol (5μM effectively depleted Zct1 in hairy root cultures elicited with MJ dosages that either optimize or inhibit TIA production (250 or 1000μM. However, silencing Zct1 was not sufficient to increase TIA production or the expression of the TIA biosynthetic genes (G10h, Tdc, and Str, illustrating the tight regulation of TIA biosynthesis. The repression of the TIA biosynthetic genes at the inhibitory MJ dosage does not appear to be solely regulated by ZCT1. For instance, while Zct1 and Zct2 levels decreased through activating the Zct1 hairpin, Zct3 levels remained elevated. Since ZCT repressors have redundant yet distinct functions, silencing all three ZCTs may be necessary to relieve their repression of alkaloid biosynthesis.

  11. Method to increase the toughness of aluminum-lithium alloys at cryogenic temperatures

    Science.gov (United States)

    Sankaran, Krishnan K. (Inventor); Sova, Brian J. (Inventor); Babel, Henry W. (Inventor)

    2006-01-01

    A method to increase the toughness of the aluminum-lithium alloy C458 and similar alloys at cryogenic temperatures above their room temperature toughness is provided. Increasing the cryogenic toughness of the aluminum-lithium alloy C458 allows the use of alloy C458 for cryogenic tanks, for example for launch vehicles in the aerospace industry. A two-step aging treatment for alloy C458 is provided. A specific set of times and temperatures to age the aluminum-lithium alloy C458 to T8 temper is disclosed that results in a higher toughness at cryogenic temperatures compared to room temperature. The disclosed two-step aging treatment for alloy 458 can be easily practiced in the manufacturing process, does not involve impractical heating rates or durations, and does not degrade other material properties.

  12. Heightened fire risk in Indonesia in response to increasing temperature

    Science.gov (United States)

    Fernandes, K.; Baethgen, W.; Verchot, L. V.; Gutierrez-Velez, V.; Pinedo-Vasquez, M.

    2016-12-01

    In Indonesia, drought driven fires occur typically during the warm phase of the El Niño Southern Oscillation (ENSO), such as those of 1997 and 2015 that resulted in months-long hazardous atmospheric pollution levels in Equatorial Asia and record greenhouse gas emissions. Nonetheless, anomalously active fire seasons have also been observed in non-drought years. In this work, we investigated whether fires are impacted by temperature anomalies and if so, if the responses differ under contrasting precipitation regimes. Our findings show that when the July-October dry-season is anomalously dry, the sensitivity of fires to temperature anomalies is similar regardless of the sign of the anomalies. In contrast, in wet condition, fire risk increases sharply when the dry season is anomalously warm. We also present a characterization of near-term regional climate projections over the next few decades and the implications of continuing global temperature increase in future fire probability in Indonesia.

  13. Temperature is the evil twin: effects of increased temperature and ocean acidification on reproduction in a reef fish.

    Science.gov (United States)

    Miller, G M; Kroon, F J; Metcalfe, S; Mundayi, P L

    2015-04-01

    Reproduction in many organisms can be disrupted by changes to the physical environment, such as those predicted to occur during climate change. Marine organisms face the dual climate change threats of increasing temperature and ocean acidification, yet no studies have examined the potential interactive effects of these stressors on reproduction in marine fishes. We used a long-term experiment to test the interactive effects of increased temperature and CO2 on the reproductive performance of the anemonefish, Amphiprion melanopus. Adult breeding pairs were kept for 10 months at three temperatures (28.5°C [+0.0°C], 30.0°C [-1.5°C] and 31.5°C [+3.0°C]) cross-factored with three CO2 levels (a current-day control [417 µatm] and moderate [644 µatm] and high [1134 µatm]) treatments consistent with the range of CO2 projections for the year 2100. We recorded each egg clutch produced during the breeding season, the number of eggs laid per clutch, average egg size, fertilization success, survival to hatching, hatchling length, and yolk provisioning. Adult body condition, hepatosomatic index, gonadosomatic index, and plasma 17β-estradiol concentrations were measured at the end of the breeding season to determine the effect of prolonged exposure to increased temperature and elevated. CO2 on adults, and to examine potential physiological mechanisms for changes in reproduction. Temperature had by far the stronger influence on reproduction, with clear declines in reproduction occurring in the +1.5°C treatment and ceasing altogether in the +3.0°C treatment. In contrast, CO2 had a minimal effect on the majority of reproductive traits measured, but caused a decline in offspring quality in combination with elevated temperature. We detected no significant effect of temperature or Co2 on adult body condition or hepatosomatic index. Elevated temperature had a significant negative effect on plasma 17β-estradiol concentrations, suggesting that declines in reproduction with

  14. Investigation of heat flux processes governing the increase of groundwater temperatures beneath cities

    Science.gov (United States)

    Bayer, P.; Menberg, K.; Zhu, K.; Blum, P.

    2012-12-01

    In the subsurface of many cities there are widespread and persistent thermal anomalies. These so-called subsurface urban heat islands (UHIs), which also stimulate warming of urban aquifers, are triggered by various processes. Possible heat sources are basements of buildings, leakage of sewage systems, buried district heating networks, re-injection of cooling water and solar irradiation on paved surfaces. In the current study, the reported groundwater temperatures in several Central European cities, such as Berlin, Cologne (Germany) and Zurich (Switzerland) are compared. Available data sets are supplemented by temperature measurements and depth profiles in observation wells. Trend analyses are conducted with time series of groundwater temperatures, and three-dimensional groundwater temperature maps are provided. In all investigated cities, pronounced positive temperature anomalies are present. The distribution of groundwater temperatures appears to be spatially and temporally highly variable. Apparently, the increased heat input into the urban subsurface is controlled by very local and site-specific parameters. In the long-run, the combination of various heat sources results in an extensive temperature increase. In many cases, the maximum temperature elevation is found close to the city center. Regional groundwater temperature differences between the city center and the rural background are up to 5 °C, with local hot spots of even more pronounced anomalies. Particular heat sources, like cooling water injections or case-specific underground constructions, can cause local temperatures > 20 °C in the subsurface. Examination of the long-term variations in isotherm maps shows that temperatures have increased by about 1 °C in the city, as well as in the rural background areas over the last decades. This increase could be reproduced with trend analysis of temperature data gathered from several groundwater wells. Comparison between groundwater and air temperatures in the

  15. Neurocognitive and somatic components of temperature increases during g-tummo meditation: legend and reality.

    Directory of Open Access Journals (Sweden)

    Maria Kozhevnikov

    Full Text Available Stories of g-tummo meditators mysteriously able to dry wet sheets wrapped around their naked bodies during a frigid Himalayan ceremony have intrigued scholars and laypersons alike for a century. Study 1 was conducted in remote monasteries of eastern Tibet with expert meditators performing g-tummo practices while their axillary temperature and electroencephalographic (EEG activity were measured. Study 2 was conducted with Western participants (a non-meditator control group instructed to use the somatic component of the g-tummo practice (vase breathing without utilization of meditative visualization. Reliable increases in axillary temperature from normal to slight or moderate fever zone (up to 38.3°C were observed among meditators only during the Forceful Breath type of g-tummo meditation accompanied by increases in alpha, beta, and gamma power. The magnitude of the temperature increases significantly correlated with the increases in alpha power during Forceful Breath meditation. The findings indicate that there are two factors affecting temperature increase. The first is the somatic component which causes thermogenesis, while the second is the neurocognitive component (meditative visualization that aids in sustaining temperature increases for longer periods. Without meditative visualization, both meditators and non-meditators were capable of using the Forceful Breath vase breathing only for a limited time, resulting in limited temperature increases in the range of normal body temperature. Overall, the results suggest that specific aspects of the g-tummo technique might help non-meditators learn how to regulate their body temperature, which has implications for improving health and regulating cognitive performance.

  16. Metabolome Integrated Analysis of High-Temperature Response in Pinus radiata

    Directory of Open Access Journals (Sweden)

    Mónica Escandón

    2018-04-01

    Full Text Available The integrative omics approach is crucial to identify the molecular mechanisms underlying high-temperature response in non-model species. Based on future scenarios of heat increase, Pinus radiata plants were exposed to a temperature of 40°C for a period of 5 days, including recovered plants (30 days after last exposure to 40°C in the analysis. The analysis of the metabolome using complementary mass spectrometry techniques (GC-MS and LC-Orbitrap-MS allowed the reliable quantification of 2,287 metabolites. The analysis of identified metabolites and highlighter metabolic pathways across heat time exposure reveal the dynamism of the metabolome in relation to high-temperature response in P. radiata, identifying the existence of a turning point (on day 3 at which P. radiata plants changed from an initial stress response program (shorter-term response to an acclimation one (longer-term response. Furthermore, the integration of metabolome and physiological measurements, which cover from the photosynthetic state to hormonal profile, suggests a complex metabolic pathway interaction network related to heat-stress response. Cytokinins (CKs, fatty acid metabolism and flavonoid and terpenoid biosynthesis were revealed as the most important pathways involved in heat-stress response in P. radiata, with zeatin riboside (ZR and isopentenyl adenosine (iPA as the key hormones coordinating these multiple and complex interactions. On the other hand, the integrative approach allowed elucidation of crucial metabolic mechanisms involved in heat response in P. radiata, as well as the identification of thermotolerance metabolic biomarkers (L-phenylalanine, hexadecanoic acid, and dihydromyricetin, crucial metabolites which can reschedule the metabolic strategy to adapt to high temperature.

  17. Cold temperatures increase cold hardiness in the next generation Ophraella communa beetles.

    Directory of Open Access Journals (Sweden)

    Zhong-Shi Zhou

    Full Text Available The leaf beetle, Ophraella communa, has been introduced to control the spread of the common ragweed, Ambrosia artemisiifolia, in China. We hypothesized that the beetle, to be able to track host-range expansion into colder climates, can phenotypically adapt to cold temperatures across generations. Therefore, we questioned whether parental experience of colder temperatures increases cold tolerance of the progeny. Specifically, we studied the demography, including development, fecundity, and survival, as well as physiological traits, including supercooling point (SCP, water content, and glycerol content of O. communa progeny whose parents were maintained at different temperature regimes. Overall, the entire immature stage decreased survival of about 0.2%-4.2% when parents experienced cold temperatures compared to control individuals obtained from parents raised at room temperature. However, intrinsic capacity for increase (r, net reproductive rate (R 0 and finite rate of increase (λ of progeny O. communa were maximum when parents experienced cold temperatures. Glycerol contents of both female and male in progeny was significantly higher when maternal and paternal adults were cold acclimated as compared to other treatments. This resulted in the supercooling point of the progeny adults being significantly lower compared to beetles emerging from parents that experienced room temperatures. These results suggest that cold hardiness of O. communa can be promoted by cold acclimation in previous generation, and it might counter-balance reduced survival in the next generation, especially when insects are tracking their host-plants into colder climates.

  18. Detrimental effect of temperature increase on the fitness of an amphibian ( Lissotriton helveticus)

    Science.gov (United States)

    Galloy, Valérie; Denoël, Mathieu

    2010-03-01

    Increases of global temperatures have resulted in measurable shifts in the distribution, phenology and survival of some plant and animal species. However, the mechanisms showing links between global warming and biodiversity declines remain unclear. The aim of this study was to examine whether a key parameter of fitness, i.e. offspring number, could be affected by a temperature increase. To this end, we compared egg-laying traits at naturally occurring temperatures (14 °C, 18 °C and 22 °C) in palmate newts, Lissotriton helveticus. Our study suggests that water temperature increase has a negative effect on the fecundity of female newts. Females lay half as many eggs at high temperatures as they do at low temperatures, which results in a lower number of hatchlings. This study shows that global warming would affect amphibian populations. It complements other studies in pointing out that changes in phenology may not be driven only by warmer earlier temperatures but also by counter-selection during late-breeding, particularly in long-term breeders such as newts. More experimental studies should be carried out to understand the complex consequences of global warming and the proximate mechanisms of amphibian decline.

  19. Increased temperature tolerance of the air-breathing Asian swamp eel Monopterus albus after high-temperature acclimation is not explained by improved cardiorespiratory performance.

    Science.gov (United States)

    Lefevre, S; Findorf, I; Bayley, M; Huong, D T T; Wang, T

    2016-01-01

    This study investigated the hypothesis that in the Asian swamp eel Monopterus albus, an air-breathing fish from south-east Asia that uses the buccopharyngeal cavity for oxygen uptake, the upper critical temperature (TU) is increased by acclimation to higher temperature, and that the increased TU is associated with improved cardiovascular and respiratory function. Monopterus albus were therefore acclimated to 27° C (current average) and 32° C (current maximum temperature as well as projected average within 100-200 years), and both the effect of acclimation and acute temperature increments on cardiovascular and respiratory functions were investigated. Two weeks of heat acclimation increased upper tolerated temperature (TU ) by 2° C from 36·9 ± 0·1° C to 38·9 ± 0·1° C (mean ± s.e.). Oxygen uptake (M˙O2) increased with acclimation temperature, accommodated by increases in both aerial and aquatic respiration. Overall, M˙O2 from air (M˙O2a ) was predominant, representing 85% in 27° C acclimated fish and 80% in 32° C acclimated fish. M˙O2 increased with acute increments in temperature and this increase was entirely accommodated by an increase in air-breathing frequency and M˙O2a . Monopterus albus failed to upregulate stroke volume; rather, cardiac output was maintained through increased heart rate with rising temperature. Overall, acclimation of M. albus to 32° C did not improve its cardiovascular and respiratory performance at higher temperatures, and cardiovascular adaptations, therefore, do not appear to contribute to the observed increase in TU. © 2015 The Fisheries Society of the British Isles.

  20. Engineered Photorespiratory Bypass Pathways Improve Photosynthetic Efficiency and Growth as Temperature Increases

    Science.gov (United States)

    Cavanagh, A. P.; South, P. F.; Ort, D. R.; Bernacchi, C.

    2017-12-01

    In C3 plants grown under ambient [CO2] at 25°C, 23% of the fixed carbon dioxide is lost to photorespiration, the energy expensive metabolic pathway that recycles toxic compounds produced by Rubisco oxygenation reactions. Furthermore, rates of photorespiration increase with rising temperature, as higher temperatures favor increased Rubisco oxygenation. Modelling suggests that the absence of photorespiration could improve gross photosynthesis by 12-55% under projected climate conditions; however, this is difficult to measure empirically, as photorespiration interacts with several metabolic pathways and is an essential process for all C3 plants grown at ambient [O2]. Introduced biochemical bypasses to the native photorespiration pathway hold promise as a strategy to mitigate the impact of temperature on photorespiratory losses. We grew tobacco containing engineered pathways to bypass photorespiration under ambient and elevated temperatures (+5°C) in the field to determine if bypassing photorespiration could mitigate high temperature induced losses in growth and physiology. Our preliminary results show that engineered plants have a higher quantum efficiency under heated conditions than do non-engineered plants, resulting in up to 20% lower yield losses under heated conditions compared to non-engineered plants. These results support the theoretical modelling of temperature impacts on photorespiratory losses, and suggest the bypassing photorespiration could be an important strategy to increase crop yields.

  1. The effect of sexual selection on adaptation and extinction under increasing temperatures.

    Science.gov (United States)

    Parrett, Jonathan M; Knell, Robert J

    2018-04-25

    Strong sexual selection has been reported to both enhance and hinder the adaptive capacity and persistence of populations when exposed to novel environments. Consequently, how sexual selection influences population adaption and persistence under stress remains widely debated. Here, we present two empirical investigations of the fitness consequences of sexual selection on populations of the Indian meal moth, Plodia interpunctella, exposed to stable or gradually increasing temperatures. When faced with increasing temperatures, strong sexual selection was associated with both increased fecundity and offspring survival compared with populations experiencing weak sexual selection, suggesting sexual selection acts to drive adaptive evolution by favouring beneficial alleles. Strong sexual selection did not, however, delay extinction when the temperature became excessively high. By manipulating individuals' mating opportunities during fitness assays, we were able to assess the effect of multiple mating independently from the effect of population-level sexual selection, and found that polyandry has a positive effect on both fecundity and offspring survival under increasing temperatures in those populations evolving with weak sexual selection. Within stable temperatures, there were some benefits from strong sexual selection but these were not consistent across the entire experiment, possibly reflecting changing costs and benefits of sexual selection under stabilizing and directional selection. These results indicate that sexual selection can provide a buffer against climate change and increase adaptation rates within a continuously changing environment. These positive effects of sexual selection may, however, be too small to protect populations and delay extinction when environmental changes are relatively rapid. © 2018 The Author(s).

  2. Increasing temperature exacerbated Classic Maya conflict over the long term

    Science.gov (United States)

    Carleton, W. Christopher; Campbell, David; Collard, Mark

    2017-05-01

    The impact of climate change on conflict is an important but controversial topic. One issue that needs to be resolved is whether or not climate change exacerbates conflict over the long term. With this in mind, we investigated the relationship between climate change and conflict among Classic Maya polities over a period of several hundred years (363-888 CE). We compiled a list of conflicts recorded on dated monuments, and then located published temperature and rainfall records for the region. Subsequently, we used a recently developed time-series method to investigate the impact of the climatic variables on the frequency of conflict while controlling for trends in monument number. We found that there was a substantial increase in conflict in the approximately 500 years covered by the dataset. This increase could not be explained by change in the amount of rainfall. In contrast, the increase was strongly associated with an increase in summer temperature. These finding have implications not only for Classic Maya history but also for the debate about the likely effects of contemporary climate change.

  3. Strong increase in convective precipitation in response to higher temperatures

    DEFF Research Database (Denmark)

    Berg, P.; Moseley, C.; Härter, Jan Olaf Mirko

    2013-01-01

    Precipitation changes can affect society more directly than variations in most other meteorological observables, but precipitation is difficult to characterize because of fluctuations on nearly all temporal and spatial scales. In addition, the intensity of extreme precipitation rises markedly...... at higher temperature, faster than the rate of increase in the atmosphere's water-holding capacity, termed the Clausius-Clapeyron rate. Invigoration of convective precipitation (such as thunderstorms) has been favoured over a rise in stratiform precipitation (such as large-scale frontal precipitation......) as a cause for this increase , but the relative contributions of these two types of precipitation have been difficult to disentangle. Here we combine large data sets from radar measurements and rain gauges over Germany with corresponding synoptic observations and temperature records, and separate convective...

  4. Experimental study on coil of direct action solenoid valve with temperature increasing

    International Nuclear Information System (INIS)

    Wang Lu; Liu Qianfeng; Bo Hanliang

    2012-01-01

    Hydraulic control rod drive technology (HCRDT) is a newly invented patent and Institute of Nuclear and New Energy Technology of Tsinghua University owns HCRDT's independent intellectual property rights. The integrated valve which is made up of three direct action solenoid valves is the key part of this technology, so the performance of the solenoid valve directly affects the function of the integrated valve and the HCRDT. Based on the conditions occurring in the operation of the control rod hydraulic drive system, the coil of the direct action solenoid valve with temperature increasing was studied by the experiment and analyzed by ANSYS code. The result shows that the temperature of the coil for the solenoid valve increases with the current increasing firstly. The temperature of the inner wall of the coil is higher than that of the exterior wall. The temperature of the middle coil is higher than that of the edge of the coil. The design of the direct action solenoid valve can be optimized. (authors)

  5. The synthesis and characterization of novel brush-type chiral stationary phase based on terpenoid selector for resolution of chiral drugs

    Directory of Open Access Journals (Sweden)

    Wang Dao-Cai

    2016-01-01

    Full Text Available In the light of the chiral resolution mechanism and structures of brush-type CSP, a new chiral selector 4′-carboxyl-1′-ursolic methyl ester-3β-yl-benzoate has been prepared. Then the terpenoid chiral selector was covalently linked to 3-aminopropyl silica gel. Its structure identification data are provided by 1H NMR, MS and elementary analysis. The enantiodiscriminating capability of the brush-type CSP was evaluated by static adsorption experiment with methyl mandelate, aniline derivative of mandelic acid, benzoin and ibuprofen. Experimental results demonstrated that the chiral selector has selectivity, and the enantiomers of methyl mandelate and ibuprofen could be separated on the CSP, which indicated that the novel brush-type CSP possess a bright prospects for chiral separation potentially.

  6. Increase of body surface temperature and blood flow by theanine

    International Nuclear Information System (INIS)

    Hasegawa, Takeo; Noguchi, Kenichi; Ando, Satoshi

    2002-01-01

    Suntheanine (Taiyo Kagaku Co.: Theanine) is the trade name for L-theanine which is a unique amino acid found almost solely in tea plants, responsible for the exotictaste of green tea. We investigated the effects of relate to relaxation, improves the taste of processed foods, radiation sensitization, and increase of body surface temperature in vivo study. The results of the present study confirmed, (1) Suntheanine is incorporated into the brain and induces the emission of α -waves an induced of relaxation. (2) Body surface temperature and blood flow on skin were increased after administration of Suntheanine. (3) There was effects of radiation sensitization in whole body irradiation of X-rays after Suntheanine IP injection on C3H mice. (4) Acute toxicity, subacute toxicity and mutagen testconfirm the safety Suntheanine in this study

  7. Increasing temperature decreases the predatory effect of the intertidal shanny Lipophrys pholis on an amphipod prey

    KAUST Repository

    South, J.; Welsh, D.; Anton, A.; Sigwart, J. D.; Dick, J. T. A.

    2017-01-01

    Interactions between Lipophrys pholis and its amphipod prey Echinogammarus marinus were used to investigate the effect of changing water temperatures, comparing current and predicted mean summer temperatures. Contrary to expectations, predator attack rates significantly decreased with increasing temperature. Handling times were significantly longer at 19° C than at 17 and 15° C and the maximum feeding estimate was significantly lower at 19° C than at 17° C. Functional-response type changed from a destabilizing type II to the more stabilizing type III with a temperature increase to 19° C. This suggests that a temperature increase can mediate refuge for prey at low densities. Predatory pressure by teleosts may be dampened by a large increase in temperature (here from 15 to 19° C), but a short-term and smaller temperature increase (to 17° C) may increase destabilizing resource consumption due to high maximum feeding rates; this has implications for the stability of important intertidal ecosystems during warming events.

  8. Increasing temperature decreases the predatory effect of the intertidal shanny Lipophrys pholis on an amphipod prey

    KAUST Repository

    South, J.

    2017-11-15

    Interactions between Lipophrys pholis and its amphipod prey Echinogammarus marinus were used to investigate the effect of changing water temperatures, comparing current and predicted mean summer temperatures. Contrary to expectations, predator attack rates significantly decreased with increasing temperature. Handling times were significantly longer at 19° C than at 17 and 15° C and the maximum feeding estimate was significantly lower at 19° C than at 17° C. Functional-response type changed from a destabilizing type II to the more stabilizing type III with a temperature increase to 19° C. This suggests that a temperature increase can mediate refuge for prey at low densities. Predatory pressure by teleosts may be dampened by a large increase in temperature (here from 15 to 19° C), but a short-term and smaller temperature increase (to 17° C) may increase destabilizing resource consumption due to high maximum feeding rates; this has implications for the stability of important intertidal ecosystems during warming events.

  9. Phenolics and Terpenoids; the Promising New Search for Anthelmintics: A Critical Review.

    Science.gov (United States)

    Mukherjee, Niladri; Mukherjee, Suprabhat; Saini, Prasanta; Roy, Priya; Babu, Santi P Sinha

    2016-01-01

    Ailments caused by helminth parasites are global causing different types of clinical complications with permanent and long term morbidity in humans. Although huge advances have been made in medical sciences the effectiveness of available anthelmintics are still quite limited. Starting from the 50's, most importance was given to synthetic compounds for developing remedies from them, however, the traditional knowledge of medicine of different countries continued to provide us clues against this widespread health problem. Natural products or structural analogs with diverse structures are always been the major sources for discovering new therapeutics and in recent past different active compounds have also been identified form these plant sources having anthelmintic properties. Although compounds of diverse chemical nature and classes were identified, most active ones belong to either phenol or terpene in broad chemical nature. The mechanism of action of these phytotherapeutics is usually multi-targeted and can act against the helminth parasites through diverse spectrum of activities. In this review we summarized the effective anthelmintics belong to either phenolics or terpenoids and highlighted the major way of their effectiveness. This also highlights the recent development of new therapeutic strategies against helminth parasites in the light of recent advances of knowledge. In addition, developing efficient strategies to promote apoptosis and disturbing redox status in them by natural products can provide us a clue in antifilarial drug developmental research and crucial unmet medical need.

  10. Increased costs to US pavement infrastructure from future temperature rise

    Science.gov (United States)

    Underwood, B. Shane; Guido, Zack; Gudipudi, Padmini; Feinberg, Yarden

    2017-10-01

    Roadway design aims to maximize functionality, safety, and longevity. The materials used for construction, however, are often selected on the assumption of a stationary climate. Anthropogenic climate change may therefore result in rapid infrastructure failure and, consequently, increased maintenance costs, particularly for paved roads where temperature is a key determinant for material selection. Here, we examine the economic costs of projected temperature changes on asphalt roads across the contiguous United States using an ensemble of 19 global climate models forced with RCP 4.5 and 8.5 scenarios. Over the past 20 years, stationary assumptions have resulted in incorrect material selection for 35% of 799 observed locations. With warming temperatures, maintaining the standard practice for material selection is estimated to add approximately US$13.6, US$19.0 and US$21.8 billion to pavement costs by 2010, 2040 and 2070 under RCP4.5, respectively, increasing to US$14.5, US$26.3 and US$35.8 for RCP8.5. These costs will disproportionately affect local municipalities that have fewer resources to mitigate impacts. Failing to update engineering standards of practice in light of climate change therefore significantly threatens pavement infrastructure in the United States.

  11. Students’ Perceived Heat-Health Symptoms Increased with Warmer Classroom Temperatures

    Directory of Open Access Journals (Sweden)

    Shalin Bidassey-Manilal

    2016-06-01

    Full Text Available Temperatures in Africa are expected to increase by the end of the century. Heat-related health impacts and perceived health symptoms are potentially a problem, especially in public schools with limited resources. Students (n = 252 aged ~14–18 years from eight high schools completed an hourly heat-health symptom log over 5 days. Data loggers measured indoor classroom temperatures. A high proportion of students felt tired (97.2%, had low concentration (96.8% and felt sleepy (94.1% during at least one hour on any day. There were statistically significant correlations, when controlling for school cluster effect and time of day, between indoor temperatures ≥32 °C and students who felt tired and found it hard to breathe. Consistently higher indoor classroom temperatures were observed in classrooms constructed of prefabricated asbestos sheeting with corrugated iron roof and converted shipping container compared to brick classrooms. Longitudinal studies in multiple seasons and different classroom building types are needed.

  12. Arctic emissions of biogenic volatile organic compounds – from plants, litter and soils

    DEFF Research Database (Denmark)

    Svendsen, Sarah Hagel

    -terpenoid BVOCs were dominating the emission profile from the soils and the magnitude of the soil emissions depended greatly on the soil water content and temperature. A warmer arctic climate will likely alter the composition of plant species, cause a thawing of permafrost soil and change soil characteristics...... in adsorbent cartridges and analyzed using gas chromatography–mass spectrometry. Ecosystem BVOC emissions were highly dominated by terpenoids but the composition of terpenoids differed between different plant species. Litter emissions were less dominated by terpenoids than the ecosystem emissions, however...... they still constituted approximately 50 % of the total emissions. I suggested that the litter emissions derived both from microbial soil processes and from stores inside the litter tissue and that the relative importance of these two sources were plant species specific. Furthermore, emissions of non...

  13. Human preference and acceptance of increased air velocity to offset warm sensation at increased room temperatures

    OpenAIRE

    Cattarin, Giulio; Simone, Angela; Olesen, Bjarne W.

    2012-01-01

    Previous studies have demonstrated that in summertime increased air velocities can compensate for higher room temperatures to achieve comfortable conditions. In order to increase air movement, windows opening, ceiling or desk fans can be used at the expense of relatively low energy consumption. The present climatic chamber study examined energy performance and achievable thermal comfort of traditional and bladeless desk fans. Different effects of mechanical and simulated-natural airflow patte...

  14. Powder free PECVD epitaxial silicon by plasma pulsing or increasing the growth temperature

    Science.gov (United States)

    Chen, Wanghua; Maurice, Jean-Luc; Vanel, Jean-Charles; Cabarrocas, Pere Roca i.

    2018-06-01

    Crystalline silicon thin films are promising candidates for low cost and flexible photovoltaics. Among various synthesis techniques, epitaxial growth via low temperature plasma-enhanced chemical vapor deposition is an interesting choice because of two low temperature related benefits: low thermal budget and better doping profile control. However, increasing the growth rate is a tricky issue because the agglomeration of clusters required for epitaxy leads to powder formation in the plasma. In this work, we have measured precisely the time evolution of the self-bias voltage in silane/hydrogen plasmas at millisecond time scale, for different values of the direct-current bias voltage applied to the radio frequency (RF) electrode and growth temperatures. We demonstrate that the decisive factor to increase the epitaxial growth rate, i.e. the inhibition of the agglomeration of plasma-born clusters, can be obtained by decreasing the RF OFF time or increasing the growth temperature. The influence of these two parameters on the growth rate and epitaxial film quality is also presented.

  15. In vitro evaluation of potential bitterness-masking terpenoids from the Canada goldenrod (Solidago canadensis).

    Science.gov (United States)

    Li, Jie; Pan, Li; Fletcher, Joshua N; Lv, Wei; Deng, Ye; Vincent, Michael A; Slack, Jay P; McCluskey, T Scott; Jia, Zhonghua; Cushman, Mark; Kinghorn, A Douglas

    2014-07-25

    In a screening of extracts of selected plants native to Ohio against the human bitterness receptor hTAS2R31, a chloroform-soluble extract of the aerial parts of Solidago canadensis (Canada goldenrod) was determined to have hTAS2R31 antagonistic activity and, thus, was fractionated for isolation of potential bitterness-masking agents. One new labdane diterpenoid, solidagol (1), and six known terpenoids, including two labdane diterpenoids (2 and 3), three clerodane diterpenoids (6β-angeloyloxykolavenic acid, 6β-tigloyloxykolavenic acid, and crotonic acid), and a triterpenoid (longispinogenin), were isolated. Among these compounds, 3β-acetoxycopalic acid (2) was found to be the first member of the labdane diterpene class shown to have inhibitory activity against hTAS2R31 activation (IC50 8 μM). A homology model of hTAS2R31 was constructed, and the molecular docking of 2 to this model indicated that this diterpenoid binds well to the active site of hTAS2R31, whereas this was not the case for the closely structurally related compound 3 (sempervirenic acid). The content of 2 in the chloroform-soluble portion of the methanolic extract of S. canadensis was up to 2.24 g/100 g dry weight, as determined by HPLC.

  16. The genus Scrophularia: a source of iridoids and terpenoids with a diverse biological activity.

    Science.gov (United States)

    Pasdaran, Ardalan; Hamedi, Azadeh

    2017-12-01

    Scrophularia genus (Scrophulariaceae) includes about 350 species commonly known as figwort. Many species of this genus grow wild in nature and have not been cultivated yet. However, some species are in danger of extinction. This paper reviews the chemical compounds, biological activities and the ethnopharmacology of some Scrophularia species. All information was obtained through reported data on bibliographic database such as Scopus, United States National Agricultural Library, Biological Abstracts, EMBASE, PubMed, MedlinePlus, PubChem and Springer Link (1934-2017). The information in different Pharmacopoeias on this genus was also gathered from 1957 to 2007. The structures of 204 compounds and their biological activity were presented in the manuscript: glycoside esters, iridoid glycosides and triterpenoids are the most common compounds in this genus. Among them, scropolioside like iridoids have shown potential for anti-inflammatory, hepatoprotective and wound healing activity. Among the less frequently isolated compounds, resin glycosides such as crypthophilic acids have shown potent antiprotozoal and antimicrobial activities. The Scrophularia genus seems to be a rich source of iridoids and terpenoids, but isolation and identification of its alkaloids have been a neglected area of scientific study. The diverse chemical compounds and biological activities of this genus will motivate further investigation on Scrophularia genus as a source of new therapeutic medications.

  17. Analysis of the transcriptome of Isodon rubescens and key enzymes involved in terpenoid biosynthesis

    Directory of Open Access Journals (Sweden)

    Xiuhong Su

    2016-05-01

    Full Text Available Isodon rubescens is an important medicinal plant in China that has been shown to reduce tumour growth due to the presence of the compound oridonin. In an effort to facilitate molecular research on oridonin biosynthesis, we reported the use of next generation massively parallel sequencing technologies and de novo transcriptome assembly to gain a comprehensive overview of I. rubescens transcriptome. In our study, a total of 50,934,276 clean reads, 101,640 transcripts and 44,626 unigenes were generated through de novo transcriptome assembly. A number of unigenes – 23,987, 10,263, 7359, 18,245, 17,683, 19,485, 9361 – were annotated in the National Center for Biotechnology Information (NCBI non-redundant protein (Nr, NCBI nucleotide sequences (Nt, Kyoto Encyclopedia of Genes and Genomes (KEGG Orthology (KO, Swiss-Prot, protein family (Pfam, gene ontology (GO, eukaryotic ortholog groups (KOG databases, respectively. Furthermore, the annotated unigenes were functionally classified according to the GO, KOG and KEGG. Based on these results, candidate genes encoding enzymes involved in terpenoids backbone biosynthesis were detected. Our data provided the most comprehensive sequence resource available for the study on I. rubescens, as well as demonstrated the effective use of Illumina sequencing and de novo transcriptome assembly on a species lacking genomic information.

  18. Changes in myosin S1 orientation and force induced by a temperature increase.

    Science.gov (United States)

    Griffiths, Peter J; Bagni, Maria A; Colombini, Barbara; Amenitsch, Heinz; Bernstorff, Sigrid; Ashley, Christopher C; Cecchi, Giovanni; Ameritsch, Heinz

    2002-04-16

    Force generation in myosin-based motile systems is thought to result from an angular displacement of the myosin subfragment 1 (S1) tail domain with respect to the actin filament axis. In muscle, raised temperature increases the force generated by S1, implying a greater change in tail domain angular displacement. We used time-resolved x-ray diffraction to investigate the structural corollary of this force increase by measuring M3 meridional reflection intensity during sinusoidal length oscillations. This technique allows definition of S1 orientation with respect to the myofilament axis. M3 intensity changes were approximately sinusoid at low temperatures but became increasingly distorted as temperature was elevated, with the formation of a double intensity peak at maximum shortening. This increased distortion could be accounted for by assuming a shift in orientation of the tail domain of actin-bound S1 toward the orientation at which M3 intensity is maximal, which is consistent with a tail domain rotation model of force generation in which the tail approaches a more perpendicular projection from the thin filament axis at higher temperatures. In power stroke simulations, the angle between S1 tail mean position during oscillations and the position at maximum intensity decreased by 4.7 degrees, corresponding to a mean tail displacement toward the perpendicular of 0.73 nm for a temperature-induced force increase of 0.28 P(0) from 4 to 22 degrees C. Our findings suggest that at least 62% of crossbridge compliance is associated with the tail domain.

  19. Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes

    International Nuclear Information System (INIS)

    Lenderink, Geert; Van Meijgaard, Erik

    2010-01-01

    Relations between hourly precipitation extremes and atmospheric temperature and moisture derived for the present-day climate are studied with the aim of understanding the behavior (and the uncertainty in predictions) of hourly precipitation extremes in a changing climate. A dependency of hourly precipitation extremes on the daily mean 2 m temperature of approximately two times the Clausius-Clapeyron (CC) relation is found for temperatures above 10 deg. C. This is a robust relation obtained in four observational records across western Europe. A dependency following the CC relation can be explained by the observed increase in atmospheric (absolute) humidity with temperature, whereas the enhanced dependency (compared to the CC relation) appears to be caused by dynamical feedbacks owing to excess latent heat release in extreme showers. Integrations with the KNMI regional climate model RACMO2 at 25 km grid spacing show that changes in hourly precipitation extremes may indeed considerably exceed the prediction from the CC relation. The results suggests that increases of + 70% or even more are possible by the end of this century. However, a different regional model (CLM operated at ETHZ) predicts much smaller increases; this is probably caused by a too strong sensitivity of this model to a decrease in relative humidity.

  20. Ion temperature increase during MHD events on the TST-2 spherical tokamak

    International Nuclear Information System (INIS)

    Ejiri, A.; Shiraiwa, S.; Takase, Y.; Yamada, T.; Nagashima, Y.; Kasahara, H.; Iijima, D.; Kobori, Y.; Nishi, T.; Taniguchi, T.; Aramasu, M.; Ohara, S.; Ushigome, M.; Yamagishi, K.

    2003-01-01

    Various types of MHD events including internal reconnection events are studied on the TST-2 spherical tokamak. In weak MHD events no positive current spike was observed, but in strong MHD events with positive current spikes, a rapid and significant impurity ion temperature increase was observed. The decrease in the poloidal magnetic energy is the most probable energy source for ion heating. The plasma current shows a stepwise change. The magnitude of this step correlates with the temperature increase and is found to be a good indicator of the strength of each event. (author)

  1. Rapid Induction of Multiple Terpenoid Groups by Ponderosa Pine in Response to Bark Beetle-Associated Fungi.

    Science.gov (United States)

    Keefover-Ring, Ken; Trowbridge, Amy; Mason, Charles J; Raffa, Kenneth F

    2016-01-01

    Ponderosa pine (Pinus ponderosa) is a major and widely distributed component of conifer biomes in western North America and provides substantial ecological and economic benefits. This tree is exposed to several tree-killing bark beetle-microbial complexes, including the mountain pine beetle (Dendroctonus ponderosae) and the phytopathogenic fungus Grosmannia clavigera that it vectors, which are among the most important. Induced responses play a crucial role in conifer defenses, yet these have not been reported in ponderosa pine. We compared concentrations of terpenes and a phenylpropanoid, two phytochemical classes with strong effects against bark beetles and their symbionts, in constitutive phloem tissue and in tissue following mechanical wounding or simulated D. ponderosae attack (mechanical wounding plus inoculation with G. clavigera). We also tested whether potential induced responses were localized or systemic. Ponderosa pines showed pronounced induced defenses to inoculation, increasing their total phloem concentrations of monoterpenes 22.3-fold, sesquiterpenes 56.7-fold, and diterpenes 34.8-fold within 17 days. In contrast, responses to mechanical wounding alone were only 5.2, 11.3, and 7.7-fold, respectively. Likewise, the phenylpropanoid estragole (4-allyanisole) rose to 19.1-fold constitutive levels after simulated attack but only 4.4-fold after mechanical wounding. Overall, we found no evidence of systemic induction after 17 days, which spans most of this herbivore's narrow peak attack period, as significant quantitative and compositional changes within and between terpenoid groups were localized to the wound site. Implications to the less frequent exploitation of ponderosa than lodgepole pine by D. ponderosae, and potential advantages of rapid localized over long-term systemic responses in this system, are discussed.

  2. The Effect of Increased Temperature on Flowering Behaviour of Saffron (Crocus sativus L.

    Directory of Open Access Journals (Sweden)

    A. Koocheki

    2011-01-01

    Full Text Available Abstract Flowering in saffron requires a period of incubation at high temperatures for flower differentiation followed by a period of low temperatures for flower emergence. Global warming could adversely affect the flowering of saffron because of its high sensitivity to temperature. Flowering behaviour of saffron in response to rising temperature was studied in an experiment conducted in controlled environment. Corms with identical sizes were collected form green or fully withered field grown plants and sown in plastic pots. Pots were incubated in 25, 27 and 30 °C for 70, 90 and 120 days. By the end of each incubation period, pots incubated in 25, 27 and 30 °C were transferred to 17, 19 and 21 °C, respectively. Days to flowering, development rate and growth characteristics of saffron were measured in alternative temperature regimes of 25/17, 27/19 and 30/21 °C in combination with 3 incubation periods and in 3 replications. The results indicated that increasing incubation temperature up to 27 °C had no significant effects on saffron flowering behaviour however, no flower was appeared from corms incubated in 30°C. Increased duration of incubation period had adverse effects on flower emergence and corms incubated for 120 days were only flowered in 27/19 °C temperature regime. The optimal flowering response and the highest number of vegetative buds was obtained when 90 days incubation period at 27 °C was followed by a period for flower emergence at 17°C. Corms lifted from green or withered plants showed similar response to temperature regimes and incubation periods. However, in average duration of sowing to flowering was 5 days longer in corms lifted from green plants. Comparing the results of this research with daily temperature in the main saffron production areas of Khorasan provinces showed that increasing mean daily temperature by 2 °C during summer and autumn results in a considerable delay in flowering of saffron.

  3. Decline in temperature and humidity increases the occurrence of influenza in cold climate

    Science.gov (United States)

    2014-01-01

    Background Both temperature and humidity may independently or jointly contribute to the risk of influenza infections. We examined the relations between the level and decrease of temperature, humidity and the risk of influenza A and B virus infections in a subarctic climate. Methods We conducted a case-crossover study among military conscripts (n = 892) seeking medical attention due to respiratory symptoms during their military training period and identified 66 influenza A and B cases by PCR or serology. Meteorological data such as measures of average and decline in ambient temperature and absolute humidity (AH) during the three preceding days of the onset (hazard period) and two reference periods, prior and after the onset were obtained. Results The average temperature preceding the influenza onset was −6.8 ± 5.6°C and AH 3.1 ± 1.3 g/m3. A decrease in both temperature and AH during the hazard period increased the occurrence of influenza so that a 1°C decrease in temperature and 0.5 g decrease per m3 in AH increased the estimated risk by 11% [OR 1.11 (1.03 to 1.20)] and 58% [OR 1.58 (1.28 to 1.96)], respectively. The occurrence of influenza infections was positively associated with both the average temperature [OR 1.10 per 1°C (95% confidence interval 1.02 to 1.19)] and AH [OR 1.25 per g/m3 (1.05 to 1.49)] during the hazard period prior to onset. Conclusion Our results demonstrate that a decrease rather than low temperature and humidity per se during the preceding three days increase the risk of influenza episodes in a cold climate. PMID:24678699

  4. Genetic aftereffects of increased temperature in Larix

    Science.gov (United States)

    Michael S. Greenwood; Keith W. Hutchinson

    1996-01-01

    We tested the hypothesis that temperature during gametogenesis and embryogenesis can affect progeny genotype and phenotype. Identical crosses were made among cloned parents of Larix spp. inside and outside a greenhouse, where the temperature inside averaged 4?C above the outside temperature. Significant growth differences as a function of crossing...

  5. A possible mechanism relating increased soil temperature to forest decline

    International Nuclear Information System (INIS)

    Tomlinson, G.H.

    1993-01-01

    Nutrient cations are removed from the soil by uptake in biomass, and by leaching as a result of soil acidification. Such acidification results from acid deposition and/or from HNO 3 formed by mineralization and nitrification of humus, when at a rate in excess of the tree's nutritional requirements. This has been found to occur during and following periods of increased temperature and reduced rainfall. The cumulative loss of either Ca 2+ , Mg 2+ or K + by one or more of these processes, if greater than the amount released from the specific minerals in that soil, leads to nutrient deficiency, fine root mortality, poor growth, and eventually to die-back. Trees growing in soils derived from specific minerals in which there is a strong imbalance in the elements from which the exchangeable nutrients are formed, are vulnerable to nutrient deficiency. This paper discusses the relevance of earlier studies, when considered in relation to more recent findings. In Hawaii there have been frequent periods of increased temperature and drought resulting from the El Nino Southern Oscillation. This fact, when considered in relation to the relatively low K content, and its imbalance with Ca and Mg in the lava and volcanic ash on which the trees have grown, could result in K deficiency in the declining ohia trees. It is possible that the unusual periods of increased temperature and drought which have occurred in certain other localized areas may have led to the decline symptoms recently observed. In view of the threat of global warming, this possibility should be investigated. 39 refs., 3 figs., 2 tabs

  6. Temperature modulates coccolithophorid sensitivity of growth, photosynthesis and calcification to increasing seawater pCO₂.

    Directory of Open Access Journals (Sweden)

    Scarlett Sett

    Full Text Available Increasing atmospheric CO₂ concentrations are expected to impact pelagic ecosystem functioning in the near future by driving ocean warming and acidification. While numerous studies have investigated impacts of rising temperature and seawater acidification on planktonic organisms separately, little is presently known on their combined effects. To test for possible synergistic effects we exposed two coccolithophore species, Emiliania huxleyi and Gephyrocapsa oceanica, to a CO₂ gradient ranging from ∼0.5-250 µmol kg⁻¹ (i.e. ∼20-6000 µatm pCO₂ at three different temperatures (i.e. 10, 15, 20°C for E. huxleyi and 15, 20, 25°C for G. oceanica. Both species showed CO₂-dependent optimum-curve responses for growth, photosynthesis and calcification rates at all temperatures. Increased temperature generally enhanced growth and production rates and modified sensitivities of metabolic processes to increasing CO₂. CO₂ optimum concentrations for growth, calcification, and organic carbon fixation rates were only marginally influenced from low to intermediate temperatures. However, there was a clear optimum shift towards higher CO₂ concentrations from intermediate to high temperatures in both species. Our results demonstrate that the CO₂ concentration where optimum growth, calcification and carbon fixation rates occur is modulated by temperature. Thus, the response of a coccolithophore strain to ocean acidification at a given temperature can be negative, neutral or positive depending on that strain's temperature optimum. This emphasizes that the cellular responses of coccolithophores to ocean acidification can only be judged accurately when interpreted in the proper eco-physiological context of a given strain or species. Addressing the synergistic effects of changing carbonate chemistry and temperature is an essential step when assessing the success of coccolithophores in the future ocean.

  7. Enhanced flux creep in Nb-Ti superconductors after an increase in temperature

    International Nuclear Information System (INIS)

    Cross, R.W.; Goldfarb, R.B.

    1991-01-01

    The magnetic fields of Superconducting Super Collider (SSC) dipole magnets change with time when the magnets are operated at constant current. The decay of the field is thought to be a consequence of flux creep in the Nb-Ti filaments in the superconducting cables. However, measured magnetic relaxation of small samples of SSC cable as a function of time is unlike the large decays that are observed in the fields of the actual magnets. We have made relaxation measurements on sample SSC conductors at 3.5 and 4.0 K after field cycling. The decay at both temperatures was 2.8% in 50 min. However, the relaxation measured after a temperature increase from 3.5 to 4.0 K was 4.8% in 50 min. A likely reason for the greater magnetization decay is that, after an increase in temperature, the Nb-Ti is in a supercritical state, with shielding currents flowing at a density greater than the new critical current density. This causes enhanced flux creep. We suggest that a small temperature rise during the operation of SSC magnets may contribute to the unexpectedly large magnetic field decay

  8. Effects of increased temperature and CO{sub 2} on soil quality

    Energy Technology Data Exchange (ETDEWEB)

    Ogner, G.

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. The Norwegian Forest Research Institute has studied the effects of increased CO{sub 2} and temperature on forest soil, soil leachate and plants in an open top chamber experiment. The purpose was to analyze the changes in soil parameters and the leaching of elements. Nitrate and aluminium received special attention. The growth of Norway spruce and birch was followed, and its impact on the soil parameters. Preliminary results indicate that the temperature increase of the soil and consequently an increased turnover of soil organic matter had the major effect on the quality of soil leachates. CO{sub 2} was less important. Leaching of NO{sub 3}{sup -} was high from control lysimeters with moss cover. Lysimeters with birch hardly leached NO{sub 3}{sup -} at all. Spruce is in an intermediate position. Increased leaching of Al{sup n+} is found for moss lysimeters. Leachates from birch lysimeters have high concentrations of Al{sup n+} only at the end of the growth seasons. Plant growth is to some extent increased by the CO{sub 2} treatment. Birch grew well in all lysimeters and all treatments, spruce developed clear symptoms of stress. This result does not fit with the increased availability of nutrients in soil solution

  9. Fires in Non-drought Conditions in Indonesia: the Role of Increasing Temperatures

    Science.gov (United States)

    Fernandes, K.; Verchot, L. V.; Baethgen, W.; Gutierrez-Velez, V.; Pinedo-Vasquez, M.; Martius, C.

    2017-12-01

    In Indonesia, drought driven fires occur typically during the warm phase of the El Niño Southern Oscillation (ENSO), such as those of 1997 and 2015 that resulted in months-long hazardous atmospheric pollution levels in Equatorial Asia and record greenhouse gas emissions. Nonetheless, anomalously active fire seasons have also been observed in non-drought years. In this work, we investigated whether fires are impacted by temperature anomalies and if so, if the responses differ under contrasting precipitation regimes. Our findings show that when the July-October dry-season is anomalously dry, the sensitivity of fires to temperature anomalies is similar regardless of the sign of the anomalies. In contrast, in wet condition, fire risk increases sharply when the dry season is anomalously warm. We also present a characterization of near-term regional climate projections over the next few decades and the implications of continuing global temperature increase in future fire probability in Indonesia.

  10. Cellulose-Hemicellulose Interactions at Elevated Temperatures Increase Cellulose Recalcitrance to Biological Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Ashutosh [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Himmel, Michael E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kumar, Rajeev [University of California, Riverside; Oak Ridge National Laboratory; ; Smith, Micholas Dean [Oak Ridge National Laboratory; University of Tennessee; Petridis, Loukas [Oak Ridge National Laboratory; University of Tennessee; Ong, Rebecca G. [Michigan Technological University; Cai, Charles M. [University of California, Riverside; Oak Ridge National Laboratory; Balan, Venkatesh [University of Houston; Dale, Bruce E. [Michigan State University; Ragauskas, Arthur J. [Oak Ridge National Laboratory; University of Tennessee; Smith, Jeremy C. [Oak Ridge National Laboratory; University of Tennessee; Wyman, Charles E. [University of California, Riverside; Oak Ridge National Laboratory

    2018-01-23

    It has been previously shown that cellulose-lignin droplets' strong interactions, resulting from lignin coalescence and redisposition on cellulose surface during thermochemical pretreatments, increase cellulose recalcitrance to biological conversion, especially at commercially viable low enzyme loadings. However, information on the impact of cellulose-hemicellulose interactions on cellulose recalcitrance following relevant pretreatment conditions are scarce. Here, to investigate the effects of plausible hemicellulose precipitation and re-association with cellulose on cellulose conversion, different pretreatments were applied to pure Avicel(R) PH101 cellulose alone and Avicel mixed with model hemicellulose compounds followed by enzymatic hydrolysis of resulting solids at both low and high enzyme loadings. Solids produced by pretreatment of Avicel mixed with hemicelluloses (AMH) were found to contain about 2 to 14.6% of exogenous, precipitated hemicelluloses and showed a remarkably much lower digestibility (up to 60%) than their respective controls. However, the exogenous hemicellulosic residues that associated with Avicel following high temperature pretreatments resulted in greater losses in cellulose conversion than those formed at low temperatures, suggesting that temperature plays a strong role in the strength of cellulose-hemicellulose association. Molecular dynamics simulations of hemicellulosic xylan and cellulose were found to further support this temperature effect as the xylan-cellulose interactions were found to substantially increase at elevated temperatures. Furthermore, exogenous, precipitated hemicelluloses in pretreated AMH solids resulted in a larger drop in cellulose conversion than the delignified lignocellulosic biomass containing comparably much higher natural hemicellulose amounts. Increased cellulase loadings or supplementation of cellulase with xylanases enhanced cellulose conversion for most pretreated AMH solids; however, this approach

  11. Cesium relocation in mixed-oxide fuel pins resulting from increased temperature reirradiation

    International Nuclear Information System (INIS)

    Lawrence, L.A.; Woodley, R.E.; Weber, E.T.

    1976-06-01

    Mixed-oxide fuel pins from EBR-II test subassemblies PNL-3 and PNL-4 were reirradiated in the GETR to study effects of increased fuel and cladding temperatures on chemical and thermomechanical behavior. Radial and axial distributions of cesium were obtained using postirradiation nondestructive precision gamma-scanning techniques. Data presented relate to the dependence of cesium distribution and transport processes on temperature gradients which were altered after substantial steady-state operation

  12. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought

    Science.gov (United States)

    Adams, Henry D.; Guardiola-Claramonte, Maite; Barron-Gafford, Greg A.; Villegas, Juan Camilo; Breshears, David D.; Zou, Chris B.; Troch, Peter A.; Huxman, Travis E.

    2009-01-01

    Large-scale biogeographical shifts in vegetation are predicted in response to the altered precipitation and temperature regimes associated with global climate change. Vegetation shifts have profound ecological impacts and are an important climate-ecosystem feedback through their alteration of carbon, water, and energy exchanges of the land surface. Of particular concern is the potential for warmer temperatures to compound the effects of increasingly severe droughts by triggering widespread vegetation shifts via woody plant mortality. The sensitivity of tree mortality to temperature is dependent on which of 2 non-mutually-exclusive mechanisms predominates—temperature-sensitive carbon starvation in response to a period of protracted water stress or temperature-insensitive sudden hydraulic failure under extreme water stress (cavitation). Here we show that experimentally induced warmer temperatures (≈4 °C) shortened the time to drought-induced mortality in Pinus edulis (piñon shortened pine) trees by nearly a third, with temperature-dependent differences in cumulative respiration costs implicating carbon starvation as the primary mechanism of mortality. Extrapolating this temperature effect to the historic frequency of water deficit in the southwestern United States predicts a 5-fold increase in the frequency of regional-scale tree die-off events for this species due to temperature alone. Projected increases in drought frequency due to changes in precipitation and increases in stress from biotic agents (e.g., bark beetles) would further exacerbate mortality. Our results demonstrate the mechanism by which warmer temperatures have exacerbated recent regional die-off events and background mortality rates. Because of pervasive projected increases in temperature, our results portend widespread increases in the extent and frequency of vegetation die-off. PMID:19365070

  13. Improved anti-inflammatory activity of three new terpenoids derived, by systematic chemical modifications, from the abundant triterpenes of the flowery plant Calendula officinalis.

    Science.gov (United States)

    Neukirch, Hannes; D'Ambrosio, Michele; Sosa, Silvio; Altinier, Gianmario; Della Loggia, Roberto; Guerriero, Antonio

    2005-05-01

    Rings A, D and E of faradiol (1), and ring E of both arnidiol (10) and calenduladiol (4) have been subjected to various selective chemical manipulations to modify polarity, water affinity, H-bonding, sterics, and number of aromatic groups of these anti-inflammatory natural compounds. A total of 15 new and four known pentacyclic triterpenoids have been obtained in this way. Some 13 terpenoids were evaluated for their topical anti-inflammatory activities with respect to inhibition of croton oil induced ear oedema in mouse. Three derivatives of 1, the C(16) benzyl ether 15, the C(30) aldehyde 24, and the C(30) primary alcohol 25 showed significantly improved anti-inflammatory potencies, which is relevant for (future) structure-activity-relationship (SAR) studies.

  14. Temperature increases on the external root surface during endodontic treatment using single file systems.

    Science.gov (United States)

    Özkocak, I; Taşkan, M M; Gökt Rk, H; Aytac, F; Karaarslan, E Şirin

    2015-01-01

    The aim of this study is to evaluate increases in temperature on the external root surface during endodontic treatment with different rotary systems. Fifty human mandibular incisors with a single root canal were selected. All root canals were instrumented using a size 20 Hedstrom file, and the canals were irrigated with 5% sodium hypochlorite solution. The samples were randomly divided into the following three groups of 15 teeth: Group 1: The OneShape Endodontic File no.: 25; Group 2: The Reciproc Endodontic File no.: 25; Group 3: The WaveOne Endodontic File no.: 25. During the preparation, the temperature changes were measured in the middle third of the roots using a noncontact infrared thermometer. The temperature data were transferred from the thermometer to the computer and were observed graphically. Statistical analysis was performed using the Kruskal-Wallis analysis of variance at a significance level of 0.05. The increases in temperature caused by the OneShape file system were lower than those of the other files (P file showed the highest temperature increases. However, there were no significant differences between the Reciproc and WaveOne files. The single file rotary systems used in this study may be recommended for clinical use.

  15. Effect of the temperature on the spray drying of Roselle extracts (Hibiscus sabdariffa L.).

    Science.gov (United States)

    Gonzalez-Palomares, Salvador; Estarrón-Espinosa, Mirna; Gómez-Leyva, Juan Florencio; Andrade-González, Isaac

    2009-03-01

    The effect of the drying temperature on the volatile components and sensory acceptance of the Roselle (Hibiscus sabdariffa) extract in powder was investigated. The Roselle extraction was carried out by maceration with 7 L of 30% ethanol (v/v), 560 g of fresh Roselle calyces for 168 h. The Roselle extracts were spray dried at different temperatures 150, 160, 170, 180, 190, 200 and 210 degrees C, giving different outlet values about yield and final moisture. The volatile compounds in Roselle extract and dried samples were performed using needles of solid phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS HP-5890). Twenty volatile compounds were identified in the extracts among them terpenoids, esters, hydrocarbons and aldehydes. Fourteen volatile compounds were identified in the powder sample, but only ten were present in the Roselle extract. This indicates that some compounds were lost and some others were generated due to a degradation process. An acceptability sensory analysis showed that the best powder sample was the Roselle extract dehydrated using temperature between 190 degrees C and 200 degrees C (pRoselle extracts ranging from 3.4 to 3.9. It was concluded that the spray drying temperature of the Roselle extracts has an effect on the volatile compounds losses.

  16. Influences of increasing temperature on Indian wheat: quantifying limits to predictability

    International Nuclear Information System (INIS)

    Koehler, Ann-Kristin; Challinor, Andrew J; Hawkins, Ed; Asseng, Senthold

    2013-01-01

    As climate changes, temperatures will play an increasing role in determining crop yield. Both climate model error and lack of constrained physiological thresholds limit the predictability of yield. We used a perturbed-parameter climate model ensemble with two methods of bias-correction as input to a regional-scale wheat simulation model over India to examine future yields. This model configuration accounted for uncertainty in climate, planting date, optimization, temperature-induced changes in development rate and reproduction. It also accounts for lethal temperatures, which have been somewhat neglected to date. Using uncertainty decomposition, we found that fractional uncertainty due to temperature-driven processes in the crop model was on average larger than climate model uncertainty (0.56 versus 0.44), and that the crop model uncertainty is dominated by crop development. Simulations with the raw compared to the bias-corrected climate data did not agree on the impact on future wheat yield, nor its geographical distribution. However the method of bias-correction was not an important source of uncertainty. We conclude that bias-correction of climate model data and improved constraints on especially crop development are critical for robust impact predictions. (letter)

  17. Apparent increase in the thickness of superconducting particles at low temperatures measured by electron holography

    International Nuclear Information System (INIS)

    Hirsch, J.E.

    2013-01-01

    We predict that superconducting particles will show an apparent increase in thickness at low temperatures when measured by electron holography. This will result not from a real thickness increase, rather from an increase in the mean inner potential sensed by the electron wave traveling through the particle, originating in expansion of the electronic wavefunction of the superconducting electrons and resulting negative charge expulsion from the interior to the surface of the superconductor, giving rise to an increase in the phase shift of the electron wavefront going through the sample relative to the wavefront going through vacuum. The temperature dependence of the observed phase shifts will yield valuable new information on the physics of the superconducting state of metals. - Highlights: • A new property of superconducting particles is predicted. • Electron holography will show an apparent increase in thickness at low temperatures. • This will result from a predicted increase in the mean inner potential. • This will originate in expulsion of electrons from the interior to the surface. • This is not predicted by the conventional BCS theory of superconductivity

  18. Physiological and ecological effects of increasing temperature on fish production in lakes of Arctic Alaska

    Science.gov (United States)

    Carey, Michael P.; Zimmerman, Christian E.

    2014-01-01

    Lake ecosystems in the Arctic are changing rapidly due to climate warming. Lakes are sensitive integrators of climate-induced changes and prominent features across the Arctic landscape, especially in lowland permafrost regions such as the Arctic Coastal Plain of Alaska. Despite many studies on the implications of climate warming, how fish populations will respond to lake changes is uncertain for Arctic ecosystems. Least Cisco (Coregonus sardinella) is a bellwether for Arctic lakes as an important consumer and prey resource. To explore the consequences of climate warming, we used a bioenergetics model to simulate changes in Least Cisco production under future climate scenarios for lakes on the Arctic Coastal Plain. First, we used current temperatures to fit Least Cisco consumption to observed annual growth. We then estimated growth, holding food availability, and then feeding rate constant, for future projections of temperature. Projected warmer water temperatures resulted in reduced Least Cisco production, especially for larger size classes, when food availability was held constant. While holding feeding rate constant, production of Least Cisco increased under all future scenarios with progressively more growth in warmer temperatures. Higher variability occurred with longer projections of time mirroring the expanding uncertainty in climate predictions further into the future. In addition to direct temperature effects on Least Cisco growth, we also considered changes in lake ice phenology and prey resources for Least Cisco. A shorter period of ice cover resulted in increased production, similar to warming temperatures. Altering prey quality had a larger effect on fish production in summer than winter and increased relative growth of younger rather than older age classes of Least Cisco. Overall, we predicted increased production of Least Cisco due to climate warming in lakes of Arctic Alaska. Understanding the implications of increased production of Least Cisco to

  19. Structural and magnetic properties of cobalt ferrite nanoparticles synthesized by co-precipitation at increasing temperatures

    Science.gov (United States)

    Stein, C. R.; Bezerra, M. T. S.; Holanda, G. H. A.; André-Filho, J.; Morais, P. C.

    2018-05-01

    This study reports on the synthesis and characterization of cobalt ferrite (CoFe2O4) nanoparticles (NPs) synthesized by chemical co-precipitation in alkaline medium at increasing temperatures in the range of 27 °C to 100 °C. High-quality samples in the size range of 5 to 10 nm were produced using very low stirring speed (250 rpm) and moderate alkaline aqueous solution concentration (4.8 mol/L). Three samples were synthesized and characterized by x-ray diffraction (XRD) and room-temperature (RT) magnetization measurements. All samples present superparamagnetic (SPM) behavior at RT and Rietveld refinements confirm the inverse cubic spinel structure (space group Fd-3m (227)) with minor detectable impurity phase. As the synthesis temperature increases, structural parameters such as lattice constant and grain size change monotonically from 8.385 to 8.383 Å and from 5.8 to 7.4 nm, respectively. Likewise, as the synthesis temperature increases the NPs' magnetic moment and saturation magnetization increases monotonically from 2.6 ×103 to 16×103 μB and from 37 to 66 emu/g, respectively. The RT magnetization (M) versus applied field (H) curves were analyzed by the first-order Langevin function averaged out by a lognormal distribution function of magnetic moments. The excellent curve-fitting of the M versus H data is credited to a reduced particle-particle interaction due to both the SPM behavior and the existence of a surface amorphous shell layer (dead layer), the latter reducing systematically as the synthesis temperature increases.

  20. Downstream changes in spring-fed stream invertebrate communities: the effect of increased temperature range?

    Directory of Open Access Journals (Sweden)

    Russell G. DEATH

    2011-09-01

    Full Text Available Reduced thermal amplitude has been highlighted as a limiting factor for aquatic invertebrate diversity in springs. Moving downstream water temperature range increases and invertebrate richness is expected to change accordingly. In the present study temperature patterns were investigated in seven spring-fed streams, between April 2001 and November 2002, and compared to five run-off-fed streams to assess the degree of crenic temperature constancy. Temperature and physico-chemical characteristics of the water, and food resource levels were measured, and the invertebrate fauna collected at 4 distances (0, 100, 500 m and 1 km from seven springs in the North and South Islands of New Zealand. Temperature variability was greater for run-off-fed streams than for springs, and increased in the spring-fed streams with distance from the source. Periphyton and physico-chemical characteristics of the water did not change markedly over the 1 km studied, with the exception of water velocity and organic matter biomass, which increased and decreased, respectively. The rate of increase in temperature amplitude differed greatly for the studied springs, probably being affected by flow, altitude, and the number and type of tributaries (i.e., spring- or run-off-fed joining the spring-fed stream channel. Longitudinal changes in the number and evenness of invertebrate taxa were positively correlated to thermal amplitude (rs = 0.8. Moving downstream, invertebrate communities progressively incorporated taxa with higher mobility and taxa more common in nearby run-off-fed streams. Chironomids and non-insect taxa were denser at the sources. Chironomid larvae also numerically dominated communities 100 and 500 m downstream from the sources, together with Pycnocentria spp. and Zelolessica spp., while taxa such as Hydora sp. and Hydraenidae beetles, the mayflies Deleatidium spp. and Coloburiscus humeralis, and the Trichoptera Pycnocentrodes spp., all had greater abundances 1 km

  1. Increasing temperature reduces the coupling between available nitrogen and phosphorus in soils of Chinese grasslands

    Science.gov (United States)

    Geng, Yan; Baumann, Frank; Song, Chao; Zhang, Mi; Shi, Yue; Kühn, Peter; Scholten, Thomas; He, Jin-Sheng

    2017-03-01

    Changes in climatic conditions along geographical gradients greatly affect soil nutrient cycling processes. Yet how climate regimes such as changes in temperature influence soil nitrogen (N) and phosphorus (P) concentrations and their stoichiometry is not well understood. This study investigated the spatial pattern and variability of soil N and P availability as well as their coupling relationships at two soil layers (0-10 and 10-20 cm) along a 4000-km climate transect in two grassland biomes of China, the Inner Mongolian temperate grasslands and the Tibetan alpine grasslands. Our results found that in both grasslands, from cold to warm sites the amounts of soil total N, total P and available P all decreased. By contrast, the amount of available N was positively related to mean annual temperature in the Tibetan grasslands. Meanwhile, with increasing temperature ratio of available N to P significantly increased but the linear relationship between them was considerably reduced. Thus, increasing temperature may not only induce a stoichiometric shift but also loose the coupling between available N and P. This N-P decoupling under warmer conditions was more evident in the Tibetan alpine grasslands where P limitation might become more widespread relative to N as temperatures continue to rise.

  2. Intrapulpal Temperature Increase During Er:YAG Laser-Aided Debonding of Ceramic Brackets.

    Science.gov (United States)

    Yilanci, Hilal; Yildirim, Zeynep Beyza; Ramoglu, Sabri Ilhan

    2017-04-01

    The purpose of this study was to evaluate the temperature changes in the pulp chamber while using a newly introduced application of Er:YAG laser to debond ceramic brackets in a study model with a pulpal circulation with and without thermocycled samples. An esthetic alternative to stainless steel brackets, ceramic brackets have been proposed. However, because of their low fracture resistance and high bond strengths, ceramic brackets can cause a problem when they are being removed using conventional techniques. Experimental Groups A and B were established for samples with or without thermocycling. The same 20 maxillary central incisor and 20 premolar teeth were used in both groups. Pulpal blood microcirculation was simulated using an apparatus described in a previous study. Monocrystalline brackets were bonded by using Transbond XT. In Group A, brackets were debonded using the Er:YAG laser (600 mJ, 2 Hz, long pulse, and no air or water spray) after being stored in distilled water for 24 h. In Group B, brackets were debonded using the same laser system as that used in Group A after being stored in distilled water for 24 h and then thermocycled for a total of 5000 cycles between 5°C and 55°C. The laser irradiation duration and intrapulpal temperature changes were measured. In Group B, the intrapulpal temperature increase of the central incisors was significantly higher than that of the premolar teeth. In the central incisor and premolar teeth groups, there were no statistically significant difference between Groups A and B (p > 0.05). A positive correlation was found between laser irradiation duration and temperature increase (p brackets. This method can be used safely under the consideration of intrapulpal temperature changes.

  3. Effects of temperature increase in insect community

    International Nuclear Information System (INIS)

    Tuda, Midori; Fujii, Koichi

    1993-01-01

    Temperature will rise by 2degC in the near future. Potential effects of the rise on biological community are predicted with little evidence on the subjects. Individualistic responses of component species in community are often ignored. We performed experiments on a lab host-parasitoid community and tested the hypothesis that individualistic changes in developmental schedules by temperature rise can generate drastic community change. (author)

  4. Reproductive gene expression in a coral reef fish exposed to increasing temperature across generations

    KAUST Repository

    Veilleux, Heather D; Donelson, Jennifer M; Munday, Philip L

    2017-01-01

    Reproduction in marine fish is generally tightly linked with water temperature. Consequently, when adults are exposed to projected future ocean temperatures, reproductive output of many species declines precipitously. Recent research has shown that in the common reef fish, Acanthochromis polyacanthus, step-wise exposure to higher temperatures over two generations (parents: +1.5°C, offspring: +3.0°C) can improve reproductive output in the F2 generation compared to F2 fish that have experienced the same high temperatures over two generations (F1 parents: +3.0°C, F2 offspring: +3.0°C). To investigate how a step-wise increase in temperature between generations improved reproductive capacity, we tested the expression of well-known teleost reproductive genes in the brain and gonads of F2 fish using quantitative reverse transcription PCR and compared it among control (+0.0°C for two generations), developmental (+3.0°C in second generation only), step (+1.5°C in first generation and +3.0°C in second generation), and transgenerational (+3.0°C for two generations) treatments. We found that levels of gonadotropin receptor gene expression (Fshr and Lhcgr) in the testes were reduced in developmental and transgenerational temperature treatments, but were similar to control levels in the step treatment. This suggests Fshr and Lhcgr may be involved in regulating male reproductive capacity in A. polyacanthus. In addition, lower Fshb expression in the brain of females in all temperature treatments compared to control, suggests that Fshb expression, which is involved in vitellogenesis, is sensitive to high temperatures. Our results help elucidate key genes that facilitate successful reproduction in reef fishes when they experience a gradual increase in temperature across generations consistent with the trajectory of climate change.

  5. Reproductive gene expression in a coral reef fish exposed to increasing temperature across generations.

    Science.gov (United States)

    Veilleux, Heather D; Donelson, Jennifer M; Munday, Philip L

    2018-01-01

    Reproduction in marine fish is generally tightly linked with water temperature. Consequently, when adults are exposed to projected future ocean temperatures, reproductive output of many species declines precipitously. Recent research has shown that in the common reef fish, Acanthochromis polyacanthus , step-wise exposure to higher temperatures over two generations (parents: +1.5°C, offspring: +3.0°C) can improve reproductive output in the F2 generation compared to F2 fish that have experienced the same high temperatures over two generations (F1 parents: +3.0°C, F2 offspring: +3.0°C). To investigate how a step-wise increase in temperature between generations improved reproductive capacity, we tested the expression of well-known teleost reproductive genes in the brain and gonads of F2 fish using quantitative reverse transcription PCR and compared it among control (+0.0°C for two generations), developmental (+3.0°C in second generation only), step (+1.5°C in first generation and +3.0°C in second generation), and transgenerational (+3.0°C for two generations) treatments. We found that levels of gonadotropin receptor gene expression ( Fshr and Lhcgr ) in the testes were reduced in developmental and transgenerational temperature treatments, but were similar to control levels in the step treatment. This suggests Fshr and Lhcgr may be involved in regulating male reproductive capacity in A. polyacanthus . In addition, lower Fshb expression in the brain of females in all temperature treatments compared to control, suggests that Fshb expression, which is involved in vitellogenesis, is sensitive to high temperatures. Our results help elucidate key genes that facilitate successful reproduction in reef fishes when they experience a gradual increase in temperature across generations consistent with the trajectory of climate change.

  6. Reproductive gene expression in a coral reef fish exposed to increasing temperature across generations

    KAUST Repository

    Veilleux, Heather D

    2017-12-07

    Reproduction in marine fish is generally tightly linked with water temperature. Consequently, when adults are exposed to projected future ocean temperatures, reproductive output of many species declines precipitously. Recent research has shown that in the common reef fish, Acanthochromis polyacanthus, step-wise exposure to higher temperatures over two generations (parents: +1.5°C, offspring: +3.0°C) can improve reproductive output in the F2 generation compared to F2 fish that have experienced the same high temperatures over two generations (F1 parents: +3.0°C, F2 offspring: +3.0°C). To investigate how a step-wise increase in temperature between generations improved reproductive capacity, we tested the expression of well-known teleost reproductive genes in the brain and gonads of F2 fish using quantitative reverse transcription PCR and compared it among control (+0.0°C for two generations), developmental (+3.0°C in second generation only), step (+1.5°C in first generation and +3.0°C in second generation), and transgenerational (+3.0°C for two generations) treatments. We found that levels of gonadotropin receptor gene expression (Fshr and Lhcgr) in the testes were reduced in developmental and transgenerational temperature treatments, but were similar to control levels in the step treatment. This suggests Fshr and Lhcgr may be involved in regulating male reproductive capacity in A. polyacanthus. In addition, lower Fshb expression in the brain of females in all temperature treatments compared to control, suggests that Fshb expression, which is involved in vitellogenesis, is sensitive to high temperatures. Our results help elucidate key genes that facilitate successful reproduction in reef fishes when they experience a gradual increase in temperature across generations consistent with the trajectory of climate change.

  7. Temperature-Induced Increase in Methane Release from Peat Bogs: A Mesocosm Experiment

    NARCIS (Netherlands)

    van Winden, J.F.; Reichart, G.J.; McNamara, N.P.; Benthien, A.; Sinninghe Damsté, J.S.

    2012-01-01

    Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane oxidizing bacteria (methanotrophs). Higher temperatures and

  8. Temperature-induced increase in methane release from peat bogs: A mesocosm experiment

    NARCIS (Netherlands)

    Winden, J.F. van; Reichart, G.-J.; McNamara, N.P.; Benthien, A.; Sinninghe Damsté, J.S.

    2012-01-01

    Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane oxidizing bacteria (methanotrophs). Higher temperatures and

  9. The effect of increased temperature and nitrogen deposition on decomposition in bogs

    NARCIS (Netherlands)

    Breeuwer, A.J.G.; Heijmans, M.M.P.D.; Robroek, B.J.M.; Limpens, J.; Berendse, F.

    2008-01-01

    Despite their low primary production, ombrotrophic peatlands have a considerable potential to store atmospheric carbon as a result of their extremely low litter decomposition rates. Projected changes in temperature and nitrogen (N) deposition may increase decomposition rates by their positive

  10. Increased Kawasaki Disease Incidence Associated With Higher Precipitation and Lower Temperatures, Japan, 1991-2004.

    Science.gov (United States)

    Abrams, Joseph Y; Blase, Jennifer L; Belay, Ermias D; Uehara, Ritei; Maddox, Ryan A; Schonberger, Lawrence B; Nakamura, Yosikazu

    2018-06-01

    Kawasaki disease (KD) is an acute febrile vasculitis, which primarily affects children. The etiology of KD is unknown; while certain characteristics of the disease suggest an infectious origin, genetic or environmental factors may also be important. Seasonal patterns of KD incidence are well documented, but it is unclear whether these patterns are caused by changes in climate or by other unknown seasonal effects. The relationship between KD incidence and deviations from expected temperature and precipitation were analyzed using KD incidence data from Japanese nationwide epidemiologic surveys (1991-2004) and climate data from 136 weather stations of the Japan Meteorological Agency. Seven separate Poisson-distributed generalized linear regression models were run to examine the effects of temperature and precipitation on KD incidence in the same month as KD onset and the previous 1, 2, 3, 4, 5 and 6 months, controlling for geography as well as seasonal and long-term trends in KD incidence. KD incidence was negatively associated with temperature in the previous 2, 3, 4 and 5 months and positively associated with precipitation in the previous 1 and 2 months. The model that best predicted variations in KD incidence used climate data from the previous 2 months. An increase in total monthly precipitation by 100 mm was associated with increased KD incidence (rate ratio [RR] 1.012, 95% confidence interval [CI]: 1.005-1.019), and an increase of monthly mean temperature by 1°C was associated with decreased KD incidence (RR 0.984, 95% CI: 0.978-0.990). KD incidence was significantly affected by temperature and precipitation in previous months independent of other unknown seasonal factors. Climate data from the previous 2 months best predicted the variations in KD incidence. Although fairly minor, the effect of temperature and precipitation independent of season may provide additional clues to the etiology of KD.

  11. A comparison of temperature increases produced by "premium" and "standard" diamond burs: An in-vitro study.

    Science.gov (United States)

    Segal, Pnina; Sap, Danny; Ben-Amar, Ariel; Levartovsky, Shifra; Matalon, Shlomo

    2016-02-01

    Vital tooth preparations may cause irreversible thermal damage to the pulp. The manufacturing techniques of dental burs may decrease heat production and minimize the risk of overheating and trauma to the dental pulp. Strauss (Raanana, Israel) has introduced "premium" diamond burs, claiming superior efficiency and longevity. We sought to determine the safest preparation methods by performing a comparison of intrapulpal temperature increases caused with "standard" and "premium" burs. Three types of diamond burs (F1R, F21R, and K2) were tested on extracted human teeth (n = 8 teeth per bur type). Premium and standard manufacturing techniques were compared for each bur type (n = 24 teeth per group; total 48 teeth). An intrapulpal thermocouple was used to measure the temperature during the procedure. Comparisons were analyzed with the t test and one-way ANOVA. P ≤ .05 was considered significant. All premium burs demonstrated lower temperature increases compared to the standard burs (P ≤ .001 for F21R and K2, P = .086 for F1R). The temperature increases with premium burs were similar for different bur shapes, but the temperature increases with standard burs depended on the bur shape (P pulp tissue damage, and thus reduce postoperative pulp-associated complications.

  12. Study on Increasing High Temperature pH(t) to Reduce Iron Corrosion Products

    International Nuclear Information System (INIS)

    Shin, Dong Man; Hur, Nam Yong; Kim, Waang Bae

    2011-01-01

    The transportation and deposition of iron corrosion products are important elements that affect both the steam generator (SG) integrity and secondary system in pressurized water reactor (PWR) nuclear power plants. Most of iron corrosion products are generated on carbon steel materials due to flow accelerated corrosion (FAC). The several parameters like water chemistry, temperature, hydrodynamic, and steel composition affect FAC. It is well established that the at-temperature pH of the deaerated water system has a first order effect on the FAC rate of carbon steels through nuclear industry researches. In order to reduce transportation and deposition of iron corrosion products, increasing pH(t) tests were applied on secondary system of A, B units. Increasing pH(t) successfully reduced flow accelerated corrosion. The effect of increasing pH(t) to inhibit FAC was identified through the experiment and pH(t) evaluation in this paper

  13. Modelling forest growth and carbon storage in response to increasing CO2 and temperature

    Science.gov (United States)

    Kirschbaum, Miko U. F.

    1999-11-01

    The response of plant growth to increasing climate change remains one of the unresolved issues in understanding the future of the terrestrial biosphere. It was investigated here by using the comprehensive forest growth model CenW 1.0.5 which integrates routines for the fluxes of carbon and water, interception of radiation and the cycling of nutrients. It was run with water and/or nutrient limitations on a background of naturally observed climate at Canberra, Australia. It was parameterised for Pinus radiata, the commercially most important plantation species in Australia. The simulations showed that under water-limited conditions, forest growth was highly sensitive to doubling CO2,with growth increases of over 50% on average and even greater increases in dry years. In contrast, when water supply was adequate, but nutrients were limiting, growth increases were smaller, with an initial increase of about 15% during the first year after CO2 was doubled. This growth increase diminished further over subsequent years so that after 20years, there was virtually no remaining effect. This diminishing response was due to developing nutrient limitations caused by extra carbon input which immobilised nutrients in the soil. When both water and nutrients were adequate, growth was increased by about 15 20% with no decrease over time. Increasing ambient temperature had a positive effect on growth under nutrient limited conditions by stimulating nitrogen mineralisation rates, but had very little effect when nutrients were non-limiting. Responses were qualitatively similar when conditions were changed gradually. In response to increasing CO2 by 2µmol mol1year1 over 50years, growth was increased by only 1% under nutrient-limited condition but by 16% under water-limited conditions. When temperature and CO2 were both changed to emulate conditions between 1950 and 2030, growth was enhanced between 5 and 15% over the 80-year period due to the effect of CO2 on photosynthesis and water

  14. Modeling of the pyrolysis of biomass under parabolic and exponential temperature increases using the Distributed Activation Energy Model

    International Nuclear Information System (INIS)

    Soria-Verdugo, Antonio; Goos, Elke; Arrieta-Sanagustín, Jorge; García-Hernando, Nestor

    2016-01-01

    Highlights: • Pyrolysis of biomass under parabolic and exponential temperature profiles is modeled. • The model is based on a simplified Distributed Activation Energy Model. • 4 biomasses are analyzed in TGA with parabolic and exponential temperature increases. • Deviations between the model prediction and TGA measurements are under 5 °C. - Abstract: A modification of the simplified Distributed Activation Energy Model is proposed to simulate the pyrolysis of biomass under parabolic and exponential temperature increases. The pyrolysis of pine wood, olive kernel, thistle flower and corncob was experimentally studied in a TGA Q500 thermogravimetric analyzer. The results of the measurements of nine different parabolic and exponential temperature increases for each sample were employed to validate the models proposed. The deviation between the experimental TGA measurements and the estimation of the reacted fraction during the pyrolysis of the four samples under parabolic and exponential temperature increases was lower than 5 °C for all the cases studied. The models derived in this work to describe the pyrolysis of biomass with parabolic and exponential temperature increases were found to be in good agreement with the experiments conducted in a thermogravimetric analyzer.

  15. Effects of Ocean Acidification and Temperature Increases on the Photosynthesis of Tropical Reef Calcified Macroalgae.

    Science.gov (United States)

    Scherner, Fernando; Pereira, Cristiano Macedo; Duarte, Gustavo; Horta, Paulo Antunes; E Castro, Clovis Barreira; Barufi, José Bonomi; Pereira, Sonia Maria Barreto

    2016-01-01

    Climate change is a global phenomenon that is considered an important threat to marine ecosystems. Ocean acidification and increased seawater temperatures are among the consequences of this phenomenon. The comprehension of the effects of these alterations on marine organisms, in particular on calcified macroalgae, is still modest despite its great importance. There are evidences that macroalgae inhabiting highly variable environments are relatively resilient to such changes. Thus, the aim of this study was to evaluate experimentally the effects of CO2-driven ocean acidification and temperature rises on the photosynthesis of calcified macroalgae inhabiting the intertidal region, a highly variable environment. The experiments were performed in a reef mesocosm in a tropical region on the Brazilian coast, using three species of frondose calcifying macroalgae (Halimeda cuneata, Padina gymnospora, and Tricleocarpa cylindrica) and crustose coralline algae. The acidification experiment consisted of three treatments with pH levels below those occurring in the region (-0.3, -0.6, -0.9). For the temperature experiment, three temperature levels above those occurring naturally in the region (+1, +2, +4°C) were determined. The results of the acidification experiment indicate an increase on the optimum quantum yield by T. cylindrica and a decline of this parameter by coralline algae, although both only occurred at the extreme acidification treatment (-0.9). The energy dissipation mechanisms of these algae were also altered at this extreme condition. Significant effects of the temperature experiment were limited to an enhancement of the photosynthetic performance by H. cuneata although only at a modest temperature increase (+1°C). In general, the results indicate a possible photosynthetic adaptation and/or acclimation of the studied macroalgae to the expected future ocean acidification and temperature rises, as separate factors. Such relative resilience may be a result of the

  16. Afferent thermosensory function in relapsing-remitting multiple sclerosis following exercise-induced increases in body temperature.

    Science.gov (United States)

    Filingeri, Davide; Chaseling, Georgia; Hoang, Phu; Barnett, Michael; Davis, Scott L; Jay, Ollie

    2017-08-01

    What is the central question of this study? Between 60 and 80% of multiple sclerosis (MS) patients experience transient worsening of symptoms with increased body temperature (heat sensitivity). As sensory abnormalities are common in MS, we asked whether afferent thermosensory function is altered in MS following exercise-induced increases in body temperature. What is the main finding and its importance? Increases in body temperature of as little as ∼0.4°C were sufficient to decrease cold, but not warm, skin thermosensitivity (∼10%) in MS, across a wider temperature range than in age-matched healthy individuals. These findings provide new evidence on the impact of heat sensitivity on afferent function in MS, which could be useful for clinical evaluation of this neurological disease. In multiple sclerosis (MS), increases in body temperature result in transient worsening of clinical symptoms (heat sensitivity or Uhthoff's phenomenon). Although the impact of heat sensitivity on efferent physiological function has been investigated, the effects of heat stress on afferent sensory function in MS are unknown. Hence, we quantified afferent thermosensory function in MS following exercise-induced increases in body temperature with a new quantitative sensory test. Eight relapsing-remitting MS patients (three men and five women; 51.4 ± 9.1 years of age; Expanded Disability Status Scale score 2.8 ± 1.1) and eight age-matched control (CTR) subjects (five men and three women; 47.4 ± 9.1 years of age) rated the perceived magnitude of two cold (26 and 22°C) and two warm stimuli (34 and 38°C) applied to the dorsum of the hand before and after 30 min cycling in the heat (30°C air; 30% relative humidity). Exercise produced similar increases in mean body temperature in MS [+0.39°C (95% CI: +0.21, +0.53) P = 0.001] and CTR subjects [+0.41°C (95% CI: +0.25, +0.58) P = 0.001]. These changes were sufficient to decrease thermosensitivity significantly to all cold [26

  17. Impact of increased mutagenesis on adaptation to high temperature in bacteriophage Qβ.

    Science.gov (United States)

    Arribas, María; Cabanillas, Laura; Kubota, Kirina; Lázaro, Ester

    2016-10-01

    RNA viruses replicate with very high error rates, which makes them more sensitive to additional increases in this parameter. This fact has inspired an antiviral strategy named lethal mutagenesis, which is based on the artificial increase of the error rate above a threshold incompatible with virus infectivity. A relevant issue concerning lethal mutagenesis is whether incomplete treatments might enhance the adaptive possibilities of viruses. We have addressed this question by subjecting an RNA virus, the bacteriophage Qβ, to different transmission regimes in the presence or the absence of sublethal concentrations of the mutagenic nucleoside analogue 5-azacytidine (AZC). Populations obtained were subsequently exposed to a non-optimal temperature and analyzed to determine their consensus sequences. Our results show that previously mutagenized populations rapidly fixed a specific set of mutations upon propagation at the new temperature, suggesting that the expansion of the mutant spectrum caused by AZC has an influence on later evolutionary behavior. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Decreased solar radiation and increased temperature combine to facilitate fouling by marine non-indigenous species.

    Science.gov (United States)

    Kim, Tae Won; Micheli, Fiorenza

    2013-01-01

    Studies of the effects of climate changes on marine biofouling have mainly focused on the effects of temperature increase, but a decrease in the level of solar radiation could also influence the establishment and persistence of fouling species. To test if decreased solar radiation and/or increased temperature influenced marine fouling communities, solar radiation, and temperature were manipulated by deploying shading devices in the intertidal zone of a central California estuary. Non-indigenous species (NIS) recruiting to artificial substrata had greater coverage under the shading treatments than under transparent plates, indicating that low radiation facilitates recruitment and growth of NIS. In contrast, the coverage of NIS underneath warmer black plates was higher than that on white plates. Furthermore, spatial comparisons of recruitment showed that NIS had a tendency to grow better in the warmer region of the estuary whereas native species showed the opposing trend. The results suggest that both lower radiation and higher temperature may facilitate the spread of marine NIS.

  19. Design and synthesis of new esters of terpenoid alcohols as 15-lipoxygenase inhibitors

    Directory of Open Access Journals (Sweden)

    Hamid Sadeghian

    2018-07-01

    Full Text Available Objective(s: 15-Lipoxygenases are one of the iron-containing proteins capable of performing peroxidation of unsaturated fatty acids in animals and plants. The critical role of enzymes in the formation of inflammations, sensitivities, and some cancers has been demonstrated in mammals. The importance of enzymes has led to the development of mechanistic studies, product analysis, and synthesis of inhibitors. Materials and Methods: The inhibitory activity of all synthetic compounds against SLO (soybean 15-lipoxygenase: L1; EC 1,13,11,12 was determined using the peroxide formation method. In this method, the basis of evaluation of lipoxygenase activity is measuring the concentration of fatty acid peroxide. All measurements were compared with  4-​methyl-​2-​(4-​methylpiperazinylpyrimido[4,​5-​b]benzothiazine (4-MMPB as one of the known lipoxygenase inhibitors. The radical scavenging ability of all synthetic compounds using stable free radicals (DPPH: 2,2-diphenyl-1-picrylhydrazyl was measured for further investigation.Results: In this study, a series of esters from phenolic acids with terpenoid alcohols was synthesized and their inhibitory potency against soybean 15-lipoxygenase and their free radical scavenging properties were determined. Among the synthetic compounds, adamantyl protocatetuate 2j and bornyl protocatetuate 2o showed the most potent inhibitory activity with IC50 values of 0.95 and 0.78 μm, respectively.Conclusion: By changing the alcohol and acyl portions of stylosin, it was found that electronic properties play main role in lipoxygenase inhibition potency in contrast with steric features. Insertion of more reductive phenolic moiety such as catechuate and gallate lead to more lipoxygenase inhibition potency of the esters as observed in their radical scavenging activity.

  20. Terpenoid variations within and among half-sibling avocado trees, Persea americana Mill. (Lauraceae.

    Directory of Open Access Journals (Sweden)

    Jerome Niogret

    Full Text Available Chemical analyses were conducted to determine the qualitative and quantitative differences in monoterpenes and sesquiterpenes in plant material from avocado trees, Persea americana Mill. (Lauraceae. The initial study analyzed plant material sampled from the trunk to the leaves through different branch diameters to quantify proximo-distal spatial differences within a tree. All trees were seedlings initiated from a single maternal tree. Two-way analysis of variance was conducted on 34 chemicals that comprised at least 3% of the total chemical content of at least one tree and/or location within a tree. There were significant interactions between genotype and location sampled for most chemicals. Parentage analysis using microsatellite molecular markers (SSR's determined that the four trees had three fathers and that they represented two full-siblings and two half-sibling trees. Descriptive discriminant analysis found that both genotype and location within a tree could be separated based on chemical content, and that the chemical content from full-siblings tended to be more similar than chemical content from half-siblings. To further explore the relationship between genetic background and chemical content, samples were analyzed from leaf material from 20 trees that included two sets of full-sibling seedling trees, the maternal tree and the surviving paternal tree. Descriptive discriminant analysis found good separation between the two full-sibling groups, and that the separation was associated with chemistry of the parental trees. Six groups of chemicals were identified that explained the variation among the trees. We discuss the results in relation to the discrimination process used by wood-boring insects for site-selection on host trees, for tree selection among potential host trees, and the potential use of terpenoid chemical content in chemotaxonomy of avocado trees.

  1. Terpenoid variations within and among half-sibling avocado trees, Persea americana Mill. (Lauraceae).

    Science.gov (United States)

    Niogret, Jerome; Epsky, Nancy D; Schnell, Raymond J; Boza, Edward J; Kendra, Paul E; Heath, Robert R

    2013-01-01

    Chemical analyses were conducted to determine the qualitative and quantitative differences in monoterpenes and sesquiterpenes in plant material from avocado trees, Persea americana Mill. (Lauraceae). The initial study analyzed plant material sampled from the trunk to the leaves through different branch diameters to quantify proximo-distal spatial differences within a tree. All trees were seedlings initiated from a single maternal tree. Two-way analysis of variance was conducted on 34 chemicals that comprised at least 3% of the total chemical content of at least one tree and/or location within a tree. There were significant interactions between genotype and location sampled for most chemicals. Parentage analysis using microsatellite molecular markers (SSR's) determined that the four trees had three fathers and that they represented two full-siblings and two half-sibling trees. Descriptive discriminant analysis found that both genotype and location within a tree could be separated based on chemical content, and that the chemical content from full-siblings tended to be more similar than chemical content from half-siblings. To further explore the relationship between genetic background and chemical content, samples were analyzed from leaf material from 20 trees that included two sets of full-sibling seedling trees, the maternal tree and the surviving paternal tree. Descriptive discriminant analysis found good separation between the two full-sibling groups, and that the separation was associated with chemistry of the parental trees. Six groups of chemicals were identified that explained the variation among the trees. We discuss the results in relation to the discrimination process used by wood-boring insects for site-selection on host trees, for tree selection among potential host trees, and the potential use of terpenoid chemical content in chemotaxonomy of avocado trees.

  2. Increase of ozone concentrations, its temperature sensitivity and the precursor factor in South China

    Directory of Open Access Journals (Sweden)

    Y. C. Lee

    2014-08-01

    Full Text Available Concerns have been raised about the possible connections between the local and regional photochemical problem and global warming. The current study assesses the trend of ozone in Hong Kong and the Pearl River Delta (PRD in South China and investigates the interannual changes of sensitivity of ozone to air temperature, as well as the trends in regional precursors. Results reveal, at the three monitoring sites from the mid-1990s to 2010, an increase in the mean ozone concentrations from 1.0 to 1.6 µg m−3 per year. The increase occurred in all seasons, with the highest rate in autumn. This is consistent with trends and temperature anomalies in the region. The increase in the sensitivity of ozone to temperature is clearly evident from the correlation between ozone (OMI [Ozone Monitoring Instrument] column amount and surface air temperature (from the Atmospheric Infrared Sounder displayed in the correlation maps for the PRD during the prominently high ozone period of July–September. It is observed to have increased from 2005 to 2010, the latter being the hottest year on record globally. To verify this temporal change in sensitivity, the ground-level trends of correlation coefficients/regression slopes are analysed. As expected, results reveal a statistically significant upward trend over a 14-year period (1997–2010. While the correlation revealed in the correlation maps is in agreement with the corresponding OMI ozone maps when juxtaposed, temperature sensitivity of surface ozone also shows an association with ozone concentration, with R=0.5. These characteristics of ozone sensitivity are believed to have adverse implications for the region. As shown by ground measurements and/or satellite analyses, the decrease in nitrogen oxides (NO2 and NOx in Hong Kong is not statistically significant while NO2 of the PRD has only very slightly changed. However, carbon dioxide has remarkably declined in the whole region. While these observations concerning

  3. Apparent increase in the thickness of superconducting particles at low temperatures measured by electron holography.

    Science.gov (United States)

    Hirsch, J E

    2013-10-01

    We predict that superconducting particles will show an apparent increase in thickness at low temperatures when measured by electron holography. This will result not from a real thickness increase, rather from an increase in the mean inner potential sensed by the electron wave traveling through the particle, originating in expansion of the electronic wavefunction of the superconducting electrons and resulting negative charge expulsion from the interior to the surface of the superconductor, giving rise to an increase in the phase shift of the electron wavefront going through the sample relative to the wavefront going through vacuum. The temperature dependence of the observed phase shifts will yield valuable new information on the physics of the superconducting state of metals. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Soil warming increases metabolic quotients of soil microorganisms without changes in temperature sensitivity of soil respiration

    Science.gov (United States)

    Marañón-Jiménez, Sara; Soong, Jenniffer L.; Leblans, Niki I. W.; Sigurdsson, Bjarni D.; Dauwe, Steven; Fransen, Erik; Janssens, Ivan A.

    2017-04-01

    Increasing temperatures can accelerate soil organic matter (SOM) decomposition and release large amounts of CO2 to the atmosphere, potentially inducing climate change feedbacks. Alterations to the temperature sensitivity and metabolic pathways of soil microorganisms in response to soil warming can play a key role in these soil carbon (C) losses. Here, we present results of an incubation experiment using soils from a geothermal gradient in Iceland that have been subjected to different intensities of soil warming (+0, +1, +3, +5, +10 and +20 °C above ambient) over seven years. We hypothesized that 7 years of soil warming would led to a depletion of labile organic substrates, with a subsequent decrease of the "apparent" temperature sensitivity of soil respiration. Associated to this C limitation and more sub-optimal conditions for microbial growth, we also hypothesized increased microbial metabolic quotients (soil respiration per unit of microbial biomass), which is associated with increases in the relative amount of C invested into catabolic pathways along the warming gradient. Soil respiration and basal respiration rates decreased with soil warming intensity, in parallel with a decline in soil C availability. Contrasting to our first hypothesis, we did not detect changes in the temperature sensitivity of soil respiration with soil warming or on the availability of nutrients and of labile C substrates at the time of incubation. However, in agreement to our second hypothesis, microbial metabolic quotients (soil respiration per unit of microbial biomass) increased at warmer temperatures, while the C retained in biomass decreased as substrate became limiting. Long-term (7 years) temperature increases thus triggered a change in the metabolic functioning of the soil microbial communities towards increasing energy costs for maintenance or resource acquisition, thereby lowering the capacity of C retention and stabilization of warmed soils. These results highlight the need

  5. Responses of the Carbon Storage and Sequestration Potential of Forest Vegetation to Temperature Increases in Yunnan Province, SW China

    Directory of Open Access Journals (Sweden)

    Ruiwu Zhou

    2018-04-01

    Full Text Available The distribution of forest vegetation and forest carbon sequestration potential are significantly influenced by climate change. In this study, a map of the current distribution of vegetation in Yunnan Province was compiled based on data from remote sensing imagery from the Advanced Land Observing Satellite (ALOS from 2008 to 2011. A classification and regression tree (CART model was used to predict the potential distribution of the main forest vegetation types in Yunnan Province and estimate the changes in carbon storage and carbon sequestration potential (CSP in response to increasing temperature. The results show that the current total forest area in Yunnan Province is 1.86 × 107 ha and that forest covers 48.63% of the area. As the temperature increases, the area of forest distribution first increases and then decreases, and it decreases by 11% when the temperature increases from 1.5 to 2 °C. The mean carbon density of the seven types of forest vegetation in Yunnan Province is 84.69 Mg/ha. The total carbon storage of the current forest vegetation in Yunnan Province is 871.14 TgC, and the CSP is 1100.61 TgC. The largest CSP (1114.82 TgC occurs when the temperature increases by 0.5 °C. Incremental warming of 2 °C will sharply decrease the forest CSP, especially in those regions with mature coniferous forest vegetation. Semi-humid evergreen broad-leaved forests were highly sensitive to temperature changes, and the CSP of these forests will decrease with increasing temperature. Warm-hot coniferous forests have the greatest CSP in all simulation scenarios except the scenario of a 2 °C temperature increase. These results indicate that temperature increases can influence the CSP in Yunnan Province, and the largest impact emerged in the 2 °C increase scenario.

  6. Modeling of river bed deformation composed of frozen sediments with increasing environmental temperature

    Directory of Open Access Journals (Sweden)

    E. I. Debolskaya

    2013-01-01

    Full Text Available This paper is devoted to investigation of the influence of river flow and of the temperature rise on the deformation of the coastal slopes composed of permafrost with the inclusion of ice layer. The method of investigation is the laboratory and mathematical modeling. The laboratory experiments have shown that an increase in water and air temperature changes in a laboratory analogue of permafrost causes deformation of the channel even without wave action, i.e. at steady-state flow and non-erosive water flow velocity. The previously developed model of the bed deformation was improved to account for long-term changes of soil structure with increasing temperature. The three-dimensional mathematical model of coastal slopes thermoerosion of the rivers flowing in permafrost regions, and its verification was based on the results of laboratory experiments conducted in the hydraulic tray. Analysis of the results of mathematical and laboratory modeling showed that bed deformation of the rivers flowing in the permafrost zone, significantly different from the deformation of channels composed of soils not susceptible to the influence of the phase transition «water-ice», and can occur even under the non-erosive velocity of the water flow.

  7. Associations between accelerated glacier mass wastage and increased summer temperature in coastal regions

    Science.gov (United States)

    Dyurgerov, M.; McCabe, G.J.

    2006-01-01

    Low-elevation glaciers in coastal regions of Alaska, the Canadian Arctic, individual ice caps around the Greenland ice sheet, and the Patagonia Ice Fields have an aggregate glacier area of about 332 ?? 103 km 2 and account for approximately 42% of all the glacier area outside the Greenland and Antarctic ice sheets. They have shown volume loss, especially since the end of the 1980s, increasing from about 45% in the 1960s to nearly 67% in 2003 of the total wastage from all glaciers on Earth outside those two largest ice sheets. Thus, a disproportionally large contribution of coastal glacier ablation to sea level rise is evident. We examine cumulative standardized departures (1961-2000 reference period) of glacier mass balances and air temperature data in these four coastal regions. Analyses indicate a strong association between increases in glacier volume losses and summer air temperature at regional and global scales. Increases in glacier volume losses in the coastal regions also coincide with an accelerated rate of ice discharge from outlet glaciers draining the Greenland and West Antarctic ice sheets. These processes imply further increases in sea level rise. ?? 2006 Regents of the University of Colorado.

  8. First evidence of immunomodulation in bivalves under seawater acidification and increased temperature.

    Directory of Open Access Journals (Sweden)

    Valerio Matozzo

    Full Text Available Water acidification, temperature increases and changes in seawater salinity are predicted to occur in the near future. In such a global climate change (GCC scenario, there is growing concern for the health status of both wild and farmed organisms. Bivalve molluscs, an important component of coastal marine ecosystems, are at risk. At the immunological level, the ability of an organism to maintain its immunosurveillance unaltered under adverse environmental conditions may enhance its survival capability. To our knowledge, only a few studies have investigated the effects of changing environmental parameters (as predicted in a GCC scenario on the immune responses of bivalves. In the present study, the effects of both decreased pH values and increased temperature on the important immune parameters of two bivalve species were evaluated for the first time. The clam Chamelea gallina and the mussel Mytilus galloprovincialis, widespread along the coast of the Northwestern Adriatic Sea, were chosen as model organisms. Bivalves were exposed for 7 days to three pH values (8.1, 7.7 and 7.4 at two temperatures (22 and 28°C. Three independent experiments were carried out at salinities of 28, 34 and 40 PSU. The total haemocyte count, Neutral Red uptake, haemolymph lysozyme activity and total protein levels were measured. The results obtained demonstrated that tested experimental conditions affected significantly most of the immune parameters measured in bivalves, even if the variation pattern of haemocyte responses was not always linear. Between the two species, C. gallina appeared more vulnerable to changing pH and temperature than M. galloprovincialis. Overall, this study demonstrated that climate changes can strongly affect haemocyte functionality in bivalves. However, further studies are needed to clarify better the mechanisms of action of changing environmental parameters, both individually and in combination, on bivalve haemocytes.

  9. Stabilization of apoglobin by low temperature increases yield of soluble recombinant hemoglobin in Escherichia coli.

    Science.gov (United States)

    Weickert, M J; Pagratis, M; Curry, S R; Blackmore, R

    1997-01-01

    Accumulation of soluble recombinant hemoglobin (rHb1.1) in Escherichia coli requires proper protein folding, prosthetic group (heme) addition, and subunit assembly. This served as a new model system for the study of the effects of temperature, protein synthesis rates, and protein accumulation rates on protein solubility in E. coli. Fermentation expression of rHb1.1 at 30 degrees C from cultures containing a medium or high globin gene dosage (pBR-based or pUC-based plasmids with rHb1.1 genes under the control of the tac promoter) was compared. A medium gene dosage resulted in rHb1.1 accumulating to approximately 7% of the soluble cell protein, of which 78% was soluble. A high globin gene dosage resulted in a > or = 3-fold increase in total globin to 23 to 24% of the soluble cell protein, but 70% was insoluble. Accumulation of insoluble rHb1.1 began immediately upon induction. The proportion of rHb1.1 from the high globin gene dosage that accumulated as insoluble globin was affected by reducing (i) the inducer concentration and (ii) the temperature. Reducing the inducer concentration reduced globin synthesis up to eightfold but increased the proportion of soluble rHb1.1 to 93%. In contrast, total globin protein synthesis was barely affected by reducing the temperature from 30 to 26 degrees C, while soluble globin accumulation increased > 2-fold to approximately 15% of the soluble cell protein. The contrast between the effects of reducing rates of protein synthesis and accumulation and those of reducing temperature suggests that lower temperature stabilizes one or more folding intermediates. We propose a simplified physical model which integrates protein synthesis, folding, and heme association. This model shows that temperature-dependent apoglobin stability is the most critical factor in soluble rHb1.1 accumulation. PMID:9361418

  10. Increasing temperature causes flowering onset time changes of alpine ginger Roscoea in the Central Himalayas

    Directory of Open Access Journals (Sweden)

    Dharmalingam Mohandass

    2015-09-01

    Full Text Available Recent herbarium-based phenology assessments of many plant species have found significant responses to global climate change over the previous century. In this study, we investigate how the flowering phenology of three alpine ginger Roscoea species responses to climate change over the century from 1913 to 2011, by comparing between herbarium-based phenology records and direct flowering observations. According to the observations, flowering onset of the three alpine ginger species occurred either 22 days earlier or was delayed by 8–30 days when comparing the mean peak flowering date between herbarium-based phenology records and direct flowering observations. It is likely that this significant change in flowering onset is due to increased annual minimum and maximum temperatures and mean annual temperature by about 0.053°C per year. Our results also show that flowering time changes occurred due to an increasing winter–spring minimum temperature and monsoon minimum temperature, suggesting that these Roscoea species respond greatly to climate warming resulting in changes on flowering times.

  11. [Effect of temperature and salinity on intrinsic increasing rate of Moina mongolica Daddy (Cladocera: Moinidae) population].

    Science.gov (United States)

    Wang, Y; He, Z

    2001-02-01

    The intrinsic increasing rate of Moina mongolica Daddy, a euryhaline cladocera species isolated from inland brackish lakes of northwestern China, was studied at 20 degrees C-33 degrees C and 5-40 ppt, respectively. The results showed that its intrinsic increasing rate (rm) increased with increasing temperature from 20 degrees C-30 degrees C, and sharply dropped with further increasing temperature up to 33 degrees C. The rm of M. mongolica was relatively high at low salinity, the highest at 10 ppt, but no significant difference at 20-40 ppt. Therefore, 25 degrees C-30 degrees C and 10 ppt could be optimal for the development of M. mongolica population, and its increasing potential would not be affected significantly by rearing this cladocera species in seawater for a long period.

  12. Investigation of polycyclic aromatic hydrocarbons (PAHs) and cyclic terpenoid biomarkers in the sediments of fishing harbors in Taiwan

    International Nuclear Information System (INIS)

    Kao, Nien-Hsin; Su, Ming-Chien; Fan, Jheng-Rong; Yen, Chih-Chun

    2015-01-01

    Highlights: • Biomarkers in three fishing harbors were investigated and identified. • 17 terpanes, 10 steranes and 10 bicyclic sesquiterpanes were quantified. • Marine diesel and the three kinds of lubricants were studied. • The study can be applied to other harbors to identify oil products in sediments. - Abstract: Three fishing harbors were investigated to study the polycyclic aromatic hydrocarbons in the sediments and trace possible anthropogenic sources by identification of cyclic terpenoid biomarkers. Seventeen terpanes, 10 steranes and 10 bicyclic sesquiterpanes in the marine diesel and the three kinds of lubricants that are mainly used by fishing boats were identified and quantified. Eighteen biomarker diagnostic ratios are suggested and the correlation coefficients among the lubricants and sediment samples have the R 2 value greater than 0.73. Analyzed 16 PAHs in the sediment shows non-normal distributions and the Kruskal Wallis Test shows the significant differences (p value smaller than 0.05) with the greatest variability in benzo[g,h,i]perylene which more than 84% of the effective size (E.S.) is accounted. X-ray Photoelectron Spectroscopy (XPS) analysis was applied and the Kruskal Wallis Test shows a significant difference (p value smaller than 0.05) among certain atoms with the effective size greater than 60%

  13. Potential changes in bacterial metabolism associated with increased water temperature and nutrient inputs in tropical humic lagoons

    Directory of Open Access Journals (Sweden)

    Vinicius eScofield

    2015-04-01

    Full Text Available Temperature and nutrient concentrations regulate aquatic bacterial metabolism. However, few studies have focused on the effect of the interaction between these factors on bacterial processes, and none have been performed in tropical aquatic ecosystems. We analyzed the main and interactive effects of changes in water temperature and N and P concentrations on bacterioplankton production (BP, respiration (BR and growth efficiency (BGE in tropical coastal lagoons. We used a factorial design with 3 levels of water temperature (25, 30 and 35 °C and 4 levels of N and/or P additions (Control, N, P and NP additions in five tropical humic lagoons. When data for all lagoons were pooled together, a weak interaction was observed between the increase in water temperature and the addition of nutrients. Water temperature alone had the greatest impact on bacterial metabolism by increasing BR, decreasing BP, and decreasing BGE. An increase of 1°C lead to an increase of ~ 4% in BR, a decrease of ~ 0.9% in BP, and a decrease of ~ 4% in BGE. When data were analyzed separately, lagoons responded differently to nutrient additions depending on DOC concentration. Lagoons with lowest DOC concentrations showed the strongest responses to nutrient additions: BP increased in response to N, P and their interaction, BR increased in response to N and the interaction between N and P, and BGE was negatively affected, mainly by the interaction between N and P additions. Lagoons with the highest DOC concentrations showed almost no significant relationship with nutrient additions. Taken together, these results show that different environmental drivers impact bacterial processes at different scales. Changes of bacterial metabolism related to the increase of water temperature are consistent between lagoons, therefore their consequences can be predicted at a regional scale, while the effect of nutrient inputs is specific to different lagoons but seems to be related to the DOC

  14. Potential changes in bacterial metabolism associated with increased water temperature and nutrient inputs in tropical humic lagoons

    Science.gov (United States)

    Scofield, Vinicius; Jacques, Saulo M. S.; Guimarães, Jean R. D.; Farjalla, Vinicius F.

    2015-01-01

    Temperature and nutrient concentrations regulate aquatic bacterial metabolism. However, few studies have focused on the effect of the interaction between these factors on bacterial processes, and none have been performed in tropical aquatic ecosystems. We analyzed the main and interactive effects of changes in water temperature and N and P concentrations on bacterioplankton production (BP), bacterioplankton respiration (BR) and bacterial growth efficiency (BGE) in tropical coastal lagoons. We used a factorial design with three levels of water temperature (25, 30, and 35°C) and four levels of N and/or P additions (Control, N, P, and NP additions) in five tropical humic lagoons. When data for all lagoons were pooled together, a weak interaction was observed between the increase in water temperature and the addition of nutrients. Water temperature alone had the greatest impact on bacterial metabolism by increasing BR, decreasing BP, and decreasing BGE. An increase of 1°C lead to an increase of ~4% in BR, a decrease of ~0.9% in BP, and a decrease of ~4% in BGE. When data were analyzed separately, lagoons responded differently to nutrient additions depending on Dissolved Organic Carbon (DOC) concentration. Lagoons with lowest DOC concentrations showed the strongest responses to nutrient additions: BP increased in response to N, P, and their interaction, BR increased in response to N and the interaction between N and P, and BGE was negatively affected, mainly by the interaction between N and P additions. Lagoons with the highest DOC concentrations showed almost no significant relationship with nutrient additions. Taken together, these results show that different environmental drivers impact bacterial processes at different scales. Changes of bacterial metabolism related to the increase of water temperature are consistent between lagoons, therefore their consequences can be predicted at a regional scale, while the effect of nutrient inputs is specific to different

  15. Nutrients and temperature additively increase stream microbial respiration

    Science.gov (United States)

    David W. P. Manning; Amy D. Rosemond; Vladislav Gulis; Jonathan P. Benstead; John S. Kominoski

    2017-01-01

    Rising temperatures and nutrient enrichment are co‐occurring global‐change drivers that stimulate microbial respiration of detrital carbon, but nutrient effects on the temperature dependence of respiration in aquatic ecosystems remain uncertain. We measured respiration rates associated with leaf litter, wood, and fine benthic organic matter (FBOM) across...

  16. Assessment of Nuclear Power Plant Impact to the Environment: Effect of Sea Water Temperature Increase on Plankton Population

    International Nuclear Information System (INIS)

    Tjahaja, I P; Pujadi; Supriharyono; Aviati, N; Ruswahyun; Busono, H

    1996-01-01

    Research to study the effect of sea water temperature increase on plankton population had been carried out to predict nuclear power plant impact to the environment. Plankton collected from Jepara waters, Muria Peninsula, was grown on growth medium i.e. sea water enriched with silicate fertilizer. Plankton growth was maintained at temperature varied from 34oC to 46oC and the amount of plankton individu was counted twice a day until it was reduced about 95%. The results showed that the reduction of amount of plankton individu occurred on the medium with temperature above the ambient temperature (34oC). The rate of reduction is linear to the temperature increase. There is no plankton survived at temperature above 40oC for more than 24 hours

  17. Change in the terpenoid profile and secondary growth in declining stands of Pinus sylvestris L. under mediterranean influence as a response to local factors

    Directory of Open Access Journals (Sweden)

    Sanz, M. A.

    2014-12-01

    Full Text Available The terpenoid profile could give information about the water status in Scots pine, especially for trees growing in the same geographical area but under contrasting local environmental conditions. Terpenes were analyzed by gas chromatography-mass spectrometry in needles, twigs and wood of ten affected and ten unaffected Scots pines in the southern “Sistema Ibérico” range (Teruel, Spain, where forest decline has been recently reported. Soil depth and secondary growth was also studied in both types of trees. Needles and twigs total resin acids were significantly higher in affected trees. The pimarane type resin acids were also higher in the twigs of affected trees. Secondary growth was lower in affected trees and it showed higher climate sensitivity. The use of the terpenoid profile may be used as an additional tool for the estimation of the water status, especially for situations inducing moderate but relatively prolonged stress conditions.El perfil terpénico podría dar información sobre el estado hídrico en el pino albar, especialmente cuando se comparen especímenes de una zona geográfica concreta afectados por factores ambientales locales. Los terpenos de acículas, brotes del año y madera fueron analizados en diez ejemplares afectados y otros tantos no afectados por el decaimiento mediante cromatografía de masas acoplada a espectrometría de masas. La serie de crecimiento secundario en ambos tipos de ejemplares fue también estudiada. La concentración total de ácidos resínicos aumentó de modo significativo en los árboles afectados tanto en brotes del año como en acículas. La cantidad de ácidos de tipo pimarano también aumentó en los brotes de los árboles afectados. La profundidad del suelo y el crecimiento secundario era menor en este tipo de ejemplares, que muestran una mayor sensibilidad en términos dendrocronológicos. El perfíl terpénico podría utilizarse como una herramienta adicional a la estimación del estado

  18. High environmental temperature increases glucose requirement in the developing chicken embryo.

    Directory of Open Access Journals (Sweden)

    Roos Molenaar

    Full Text Available Environmental conditions during the perinatal period influence metabolic and developmental processes in mammals and avian species, which could impact pre- and postnatal survival and development. The current study investigated the effect of eggshell temperature (EST on glucose metabolism in broiler chicken embryos. Broiler eggs were incubated at a high (38.9°C or normal (37.8°C EST from day 10.5 of incubation onward and were injected with a bolus of [U-(13C]glucose in the chorio-allantoic fluid at day 17.5 of incubation. After [U-(13C]glucose administration, (13C enrichment was determined in intermediate pools and end-products of glucose metabolism. Oxidation of labeled glucose occurred for approximately 3 days after injection. Glucose oxidation was higher in the high than in the normal EST treatment from day 17.6 until 17.8 of incubation. The overall recovery of (13CO2 tended to be 4.7% higher in the high than in the normal EST treatment. An increase in EST (38.9°C vs 37.8°C increased (13C enrichment in plasma lactate at day 17.8 of incubation and (13C in hepatic glycogen at day 18.8 of incubation. Furthermore, high compared to normal EST resulted in a lower yolk-free body mass at day 20.9 (-2.74 g and 21.7 (-3.81 g of incubation, a lower hepatic glycogen concentration at day 18.2 (-4.37 mg/g and 18.8 (-4.59 mg/g of incubation, and a higher plasma uric acid concentration (+2.8 mg/mL/+43% at day 21.6 of incubation. These results indicate that the glucose oxidation pattern is relatively slow, but the intensity increased consistently with an increase in developmental stage of the embryo. High environmental temperatures in the perinatal period of chicken embryos increased glucose oxidation and decreased hepatic glycogen prior to the hatching process. This may limit glucose availability for successful hatching and could impact body development, probably by increased gluconeogenesis from glucogenic amino acids to allow anaerobic glycolysis.

  19. Skin temperature increase mediated by wearable, long duration, low-intensity therapeutic ultrasound

    Science.gov (United States)

    Langer, Matthew D.; Huang, Wenyi; Ghanem, Angi; Guo, Yuan; Lewis, George K.

    2017-03-01

    One of the safety concerns with the delivery of therapeutic ultrasound is overheating of the transducer-skin interface due to poor or improper coupling. The objective of this research was to define a model that could be used to calculate the heating in the skin as a result of a novel, wearable long-duration ultrasound device. This model was used to determine that the maximum heating in the skin remained below the minimum threshold necessary to cause thermal injury over multiple hours of use. In addition to this model data, a human clinical study used wire thermocouples on the skin surface to measure heating characteristics during treatment with the sustained ultrasound system. Parametric analysis of the model determined that the maximum temperature increase is at the surface of the skin ranged from 40-41.8° C when perfusion was taken into account. The clinical data agreed well with the model predictions. The average steady state temperature observed across all 44 subjects was 40°C. The maximum temperature observed was less than 44° C, which is clinically safe for over 5 hours of human skin contact. The resultant clinical temperature data paired well with the model data suggesting the model can be used for future transducer and ultrasound system design simulation. As a result, the device was validated for thermal safety for typical users and use conditions.

  20. Temperature Increase Negatively Affects the Fatty Acid Bioconversion Capacity of Rainbow Trout (Oncorhynchus mykiss) Fed a Linseed Oil-Based Diet.

    Science.gov (United States)

    Mellery, Julie; Geay, Florian; Tocher, Douglas R; Kestemont, Patrick; Debier, Cathy; Rollin, Xavier; Larondelle, Yvan

    2016-01-01

    Aquaculture is meant to provide fish rich in omega-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA). This objective must be reached despite (1) the necessity to replace the finite and limited fish oil in feed production and (2) the increased temperature of the supply water induced by the global warming. The objective of the present paper was to determine to what extent increased water temperature influences the fatty acid bioconversion capacity of rainbow trout (Oncorhynchus mykiss) fed a plant-derived diet. Fish were fed two diets formulated with fish oil (FO) or linseed oil (LO) as only added lipid source at the optimal water temperature of 15°C or at the increased water temperature of 19°C for 60 days. We observed that a temperature increase close to the upper limit of the species temperature tolerance range negatively affected the feed efficiency of rainbow trout fed LO despite a higher feed intake. The negative impact of increased water temperature on fatty acid bioconversion capacity appeared also to be quite clear considering the reduced expression of fatty acid desaturase 2 in liver and intestine and the reduced Δ6 desaturase enzymatic activity in intestinal microsomes. The present results also highlighted a negative impact of increased temperature on the apparent in vivo enzymatic activity of Δ5 and Δ6 desaturases of fish fed LO. Interestingly, this last parameter appeared less affected than those mentioned above. This study highlights that the increased temperature that rainbow trout may face due to global warming could reduce their fatty acid bioconversion capacity. The unavoidable replacement of finite fish oil by more sustainable, readily available and economically viable alternative lipid sources in aquaculture feeds should take this undeniable environmental issue on aquaculture productivity into account.

  1. Increased and altered fragrance of tobacco plants after metabolic engineering using three monoterpene synthases from lemon

    NARCIS (Netherlands)

    Lücker, J.; Schwab, W.; Hautum, van B.; Blaas, J.; Plas, van der L.H.W.; Bouwmeester, H.J.; Verhoeven, H.A.

    2004-01-01

    Wild-type tobacco (Nicotiana tabacum) plants emit low levels of terpenoids, particularly from the flowers. By genetic modification of tobacco cv Petit Havana SR1 using three different monoterpene synthases from lemon (Citrus limon L. Burm. f.) and the subsequent combination of these three into one

  2. Effect of a temperature increase in the non-noxious range on proton-evoked ASIC and TRPV1 activity.

    Science.gov (United States)

    Blanchard, Maxime G; Kellenberger, Stephan

    2011-01-01

    Acid-sensing ion channels (ASICs) are neuronal H(+)-gated cation channels, and the transient receptor potential vanilloid 1 channel (TRPV1) is a multimodal cation channel activated by low pH, noxious heat, capsaicin, and voltage. ASICs and TRPV1 are present in sensory neurons. It has been shown that raising the temperature increases TRPV1 and decreases ASIC H(+)-gated current amplitudes. To understand the underlying mechanisms, we have analyzed ASIC and TRPV1 function in a recombinant expression system and in dorsal root ganglion (DRG) neurons at room and physiological temperature. We show that temperature in the range studied does not affect the pH dependence of ASIC and TRPV1 activation. A temperature increase induces, however, a small alkaline shift of the pH dependence of steady-state inactivation of ASIC1a, ASIC1b, and ASIC2a. The decrease in ASIC peak current amplitudes at higher temperatures is likely in part due to the observed accelerated open channel inactivation kinetics and for some ASIC types to the changed pH dependence of steady-state inactivation. The increase in H(+)-activated TRPV1 current at the higher temperature is at least in part due to a hyperpolarizing shift in its voltage dependence. The contribution of TRPV1 relative to ASICs to H(+)-gated currents in DRG neurons increases with higher temperature and acidity. Still, ASICs remain the principal pH sensors of DRG neurons at 35°C in the pH range ≥6.

  3. Lower growth temperature increases alternative pathway capacity and alternative oxidase protein in tobacco.

    Science.gov (United States)

    Vanlerberghe, G C; McIntosh, L

    1992-09-01

    Suspension cells of NT1 tobacco (Nicotiana tabacum L. cv bright yellow) have been used to study the effect of growth temperature on the CN-resistant, salicylhydroxamic acid-sensitive alternative pathway of respiration. Mitochondria isolated from cells maintained at 30 degrees C had a low capacity to oxidize succinate via the alternative pathway, whereas mitochondria isolated from cells 24 h after transfer to 18 degrees C displayed, on average, a 5-fold increase in this capacity (from 7 to 32 nanoatoms oxygen per milligram protein per minute). This represented an increase in alternative pathway capacity from 18 to 45% of the total capacity of electron transport. This increased capacity was lost upon transfer of cells back to 30 degrees C. A monoclonal antibody to the terminal oxidase of the alternative pathway (the alternative oxidase) from Sauromatum guttatum (T.E. Elthon, R.L. Nickels, L. McIntosh [1989] Plant Physiology 89: 1311-1317) recognized a 35-kilodalton mitochondrial protein in tobacco. There was an excellent correlation between the capacity of the alternative path in isolated tobacco mitochondria and the levels of this 35-kilodalton alternative oxidase protein. Cycloheximide could inhibit both the increased level of the 35-kilodalton alternative oxidase protein and the increased alternative pathway capacity normally seen upon transfer to 18 degrees C. We conclude that transfer of tobacco cells to the lower temperature increases the capacity of the alternative pathway due, at least in part, to de novo synthesis of the 35-kilodalton alternative oxidase protein.

  4. Crop growth and nitrogen turnover under increased temperatures and low autumn and winter light intensity

    DEFF Research Database (Denmark)

    Thomsen, Ingrid Kaag; Lægdsmand, Mette; Olesen, Jørgen E

    2010-01-01

    The rise in mean annual temperatures under the projected climate change will affect both soil organic matter turnover and cropping patterns in agriculture. Nitrogen (N) mineralization may be higher during autumn and winter and may increase the risk of nitrate leaching. Our study tested whether...... before the late sowing of wheat caused generally higher levels of inorganic N to accumulate in soil. Despite the higher mineralization under the raised temperatures, at T+8 the late-sown winter wheat was able to reduce soil inorganic N to a lower level than late-sown wheat at the two lower temperatures...

  5. Reproductive acclimation to increased water temperature in a tropical reef fish.

    Directory of Open Access Journals (Sweden)

    Jennifer M Donelson

    Full Text Available Understanding the capacity of organisms to cope with projected global warming through acclimation and adaptation is critical to predicting their likely future persistence. While recent research has shown that developmental acclimation of metabolic attributes to ocean warming is possible, our understanding of the plasticity of key fitness-associated traits, such as reproductive performance, is lacking. We show that while the reproductive ability of a tropical reef fish is highly sensitive to increases in water temperature, reproductive capacity at +1.5°C above present-day was improved to match fish maintained at present-day temperatures when fish complete their development at the higher temperature. However, reproductive acclimation was not observed in fish reared at +3.0°C warmer than present-day, suggesting limitations to the acclimation possible within one generation. Surprisingly, the improvements seen in reproduction were not predicted by the oxygen- and capacity-limited thermal tolerance hypothesis. Specifically, pairs reared at +1.5°C, which showed the greatest capacity for reproductive acclimation, exhibited no acclimation of metabolic attributes. Conversely, pairs reared at +3.0°C, which exhibited acclimation in resting metabolic rate, demonstrated little capacity for reproductive acclimation. Our study suggests that understanding the acclimation capacity of reproductive performance will be critically important to predicting the impacts of climate change on biological systems.

  6. Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment

    KAUST Repository

    Arandia-Gorostidi, Nestor

    2016-12-06

    Quantifying the contribution of marine microorganisms to carbon and nitrogen cycles and their response to predicted ocean warming is one of the main challenges of microbial oceanography. Here we present a single-cell NanoSIMS isotope analysis to quantify C and N uptake by free-living and attached phytoplankton and heterotrophic bacteria, and their response to short-term experimental warming of 4 °C. Elevated temperature increased total C fixation by over 50%, a small but significant fraction of which was transferred to heterotrophs within 12 h. Cell-to-cell attachment doubled the secondary C uptake by heterotrophic bacteria and increased secondary N incorporation by autotrophs by 68%. Warming also increased the abundance of phytoplankton with attached heterotrophs by 80%, and promoted C transfer from phytoplankton to bacteria by 17% and N transfer from bacteria to phytoplankton by 50%. Our results indicate that phytoplankton-bacteria attachment provides an ecological advantage for nutrient incorporation, suggesting a mutualistic relationship that appears to be enhanced by temperature increases.

  7. Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment

    KAUST Repository

    Arandia-Gorostidi, Nestor; Weber, Peter K; Alonso-Sá ez, Laura; Moran, Xose Anxelu G.; Mayali, Xavier

    2016-01-01

    Quantifying the contribution of marine microorganisms to carbon and nitrogen cycles and their response to predicted ocean warming is one of the main challenges of microbial oceanography. Here we present a single-cell NanoSIMS isotope analysis to quantify C and N uptake by free-living and attached phytoplankton and heterotrophic bacteria, and their response to short-term experimental warming of 4 °C. Elevated temperature increased total C fixation by over 50%, a small but significant fraction of which was transferred to heterotrophs within 12 h. Cell-to-cell attachment doubled the secondary C uptake by heterotrophic bacteria and increased secondary N incorporation by autotrophs by 68%. Warming also increased the abundance of phytoplankton with attached heterotrophs by 80%, and promoted C transfer from phytoplankton to bacteria by 17% and N transfer from bacteria to phytoplankton by 50%. Our results indicate that phytoplankton-bacteria attachment provides an ecological advantage for nutrient incorporation, suggesting a mutualistic relationship that appears to be enhanced by temperature increases.

  8. Rapid temperature increase near the anode and cathode in the afterglow of a pulsed positive streamer discharge

    Science.gov (United States)

    Ono, Ryo

    2018-06-01

    The spatiotemporal evolution of the temperature in the afterglow of point-to-plane, pulsed positive streamer discharge was measured near the anode tip and cathode surface using laser-induced predissociation fluorescence of OH radicals. The temperature exhibited a rapid increase and displayed a steep spatial gradient after a discharge pulse. The rate of temperature rise reached 84 K μs‑1 at mm, where z represents the distance from the anode tip. The temperature rise was much faster than in the middle of the gap; it was only 2.8 K μs‑1 at mm. The temperature reached 1700 K near the anode tip at s and 1500 K near the cathode surface at s, where t represents the postdischarge time. The spatial gradient reached 1280 K mm‑1 near the anode tip at s. The mechanism responsible for the rapid temperature increase was discussed, including rapid heating of the gas in the early postdischarge phase (s), and vibration-to-translation energy transfer in the later postdischarge phase (s). The high temperatures near the anode tip and cathode surface are particularly important for the ignition of combustible mixtures and for surface treatments, including solid-surface treatments, water treatments, and plasma medicine using pulsed streamer discharges.

  9. Effect of increased fuel temperature on emissions of oxides of nitrogen from a gas turbine combustor burning ASTM jet-A fuel

    Science.gov (United States)

    Marchionna, N. R.

    1974-01-01

    An annular gas turbine combustor was tested with heated ASTM Jet-A fuel to determine the effect of increased fuel temperature on the formation of oxides of nitrogen. Fuel temperature ranged from ambient to 700 K. The NOx emission index increased at a rate of 6 percent per 100 K increase in fuel temperature.

  10. Potential impact of increased temperature and CO2 on particulate dimethylsulfoniopropionate in the Southeastern Bering Sea

    Directory of Open Access Journals (Sweden)

    Peter A. Lee

    2011-06-01

    Full Text Available The potential impact of elevated sea surface temperature (SST and pCO2 on algal community structure and particulate dimethylsulfoniopropionate (DMSPp concentrations in the southeastern Bering Sea was examined using a shipboard “Ecostat” continuous culture system. The ecostat system was used to mimic the conditions projected to exist in the world's oceans by the end of this century (i.e. elevated pCO2 (750 ppm and elevated SST (ambient + 4°C. Two experiments were conducted using natural phytoplankton assemblages from the high-nutrient low-chlorophyll (HNLC central basin and from the middle domain of the southeastern continental shelf. At the HNLC site, the relative abundances of haptophytes and pelagophytes were higher and the relative abundance of diatoms lower under “greenhouse” conditions (i.e. combined 750 ppm CO2 and elevated temperature than control conditions (380 ppm CO2 and ambient temperature. This shift in algal community structure was accompanied by increases in DMSPp (2–3 fold, DMSPp:Chl a (2–3 fold and DMSP:PON (2 fold. At the continental shelf site, the changes in the relative abundances of haptophytes, pelagophytes and diatoms under “greenhouse” conditions were similar to those observed at the HNLC site, with 2.5 fold increases in DMSPp, 50–100% increases in DMSPp:Chl a and 1.8 fold increases in DMSP:PON. At both locations, changes in community structure and the DMSPp parameters were largely driven by increasing temperature. The observed changes were also consistent with the phytoplankton-DMS-albedo climate feedback mechanism proposed in the Charlson-Lovelock-Andreae-Warren (CLAW hypothesis.

  11. Temperature and sowing date affect the linear increase of sunflower harvest index

    International Nuclear Information System (INIS)

    Bange, M.P.; Hammer, G.L.; Rickert, K.G.

    1998-01-01

    The linearity of daily linear harvest index (HI) increase can provide a simple means to predict grain growth and yield in field crops. However, the stability of the rate of increase across genotypes and environments is uncertain. Data from three field experiments were collated to investigate the phase of linear HI increase of sunflower (Helianthus annuus L.) across environments by changing genotypes, sowing time, N level, and solar irradiation level. Linear increase in HI was similar among different genotypes, N levels, and radiation treatments (mean 0.0125 d-1), but significant differences occurred between sowings. The linear increase in HI was not stable at very low temperatures (down to 9 degrees C) during grain filling, due to possible limitations to biomass accumulation and translocation (mean 0.0091 d-1). Using the linear increase in HI to predict grain yield requires predictions of the duration from an thesis to the onset of linear HI increase (lag phase) and the cessation of linear HI increase. These studies showed that the lag phase differed, and the linear HI increase ceased when 91% of the anthesis to physiological maturity period had been completed

  12. Perceived air quality, thermal comfort, and SBS symptoms at low air temperature and increased radiant temperature

    DEFF Research Database (Denmark)

    Toftum, Jørn; Reimann, Gregers Peter; Foldbjerg, P.

    2002-01-01

    source present at the low temperature. To maintain overall thermal neutrality, the low air temperature was partly compensated for by individually controlled radiant heating, and partly by allowing subjects to modify clothing insulation. A reduction of the air temperature from 23 deg.C to 18 deg.......C suggested an improvement of the perceived air quality, while no systematic effect on symptom intensity was observed. The overall indoor environment was evaluated equally acceptable at both temperatures due to local thermal discomfort at the low air temperature....

  13. Fourth ventricular thyrotropin induces satiety and increases body temperature in rats.

    Science.gov (United States)

    Smedh, Ulrika; Scott, Karen A; Moran, Timothy H

    2018-05-01

    Besides its well-known action to stimulate thyroid hormone release, thyrotropin mRNA is expressed within the brain, and thyrotropin and its receptor have been shown to be present in brain areas that control feeding and gastrointestinal function. Here, the hypothesis that thyrotropin acts on receptors in the hindbrain to alter food intake and/or gastric function was tested. Fourth ventricular injections of thyrotropin (0.06, 0.60, and 6.00 µg) were given to rats with chronic intracerebroventricular cannulas aimed at the fourth ventricle. Thyrotropin produced an acute reduction of sucrose intake (30 min). The highest dose of thyrotropin caused inhibition of overnight solid food intake (22 h). In contrast, subcutaneous administration of corresponding thyrotropin doses had no effect on nutrient intake. The highest effective dose of fourth ventricular thyrotropin (6 µg) did not produce a conditioned flavor avoidance in a standardized two-bottle test, nor did it affect water intake or gastric emptying of glucose. Thyrotropin injected in the fourth ventricle produced a small but significant increase in rectal temperature and lowered plasma levels of tri-iodothyronin but did not affect plasma levels of thyroxine. In addition, there was a tendency toward a reduction in blood glucose 2 h after fourth ventricular thyrotropin injection ( P = 0.056). In conclusion, fourth ventricular thyrotropin specifically inhibits food intake, increases core temperature, and lowers plasma levels of tri-iodothyronin but does not affect gastromotor function.

  14. Sonication of seeds increase germination performance of sesame under low temperature stress

    Directory of Open Access Journals (Sweden)

    Fariborz SHEKARI

    2015-11-01

    Full Text Available A laboratory experiment was conducted to determine the effect of ultrasound (US exposure time on germination behavior of sesame seeds. All tests were carried out at 20 kHz in a water bath ultrasonic device varying two factors, treatment duration (10, 20 and 30 min and germination temperature (15, 20 and 25 ºC. Parallel tests were run in which seeds were soaked in water without sonication in order to eliminate the effect of water from US test results. US treatments enhanced seeds water uptake. At mild exposure time it improved sesame seed germination performance and seedling growth at suboptimal temperatures as indicated by higher germination percentage and germination rate. US applying for 20 min had relatively high superoxide dismutase activity; however, had not significant differences with control and US duration for 10 min. The catalase activity was strongly increased by applying the US for a 10 and 20 min. Among the treatments, application of US vibration for 10 and 20 min reduced both of malondialdehyde and H2O2 contents, however high US duration (30 min increased both of the traits. In general, ultrasonic priming technique can be useful for early planting the sesame seeds, and lead to higher yields.

  15. Increase of child car seat temperature in cars parked in the outpatient parking lot.

    Science.gov (United States)

    Sugimura, Tetsu; Suzue, Junji; Kamada, Makoto; Ozaki, Yukiko; Tananari, Yoshifumi; Maeno, Yasuki; Ito, Shinichi; Nishino, Hiroshi; Kakimoto, Noriko; Yamakawa, Rumi

    2011-12-01

    A guideline for the safe use of child car seats (CS) was published by the Japan Pediatric Society in 2008. There have been few studies of the increase of temperature of a CS in parked cars. The aim of this study was to determine the change in the temperature of the CS in cars parked in full sun. The temperature of CS was measured during summer (July and August) in 2006, 2007, and 2008. The CS used in this study (n= 50) were for children (≤ 6 years old) who were taken by car to Sugimura Children's Medical Clinic. Temperatures were only measured on sunny days. Measurements were performed from 09.00 to 17.00 hours. Thermochron (Thermochron i-Button: G type, Maxim Integrated Products, CA, USA) was used to measure the temperatures. The maximum temperatures of CS were compared in time at the clinic, taking into consideration seat colors, and car colors. Of the 50 cars, three cars were excluded due to being in the shade while the temperature was measured. A total of 47 cars were used for this study. The temperature of the CS ranged from 38.0 to 65.5°C (47.8 ± 5.8°C). Eighteen CS (38.3%) reached a temperature of 50°C or above. The maximum temperature of the 13.00-15.00-hours group was significantly higher than that of the 09.00-11.00-hours group (P= 0.035). The CS temperatures in the black car group were significantly higher than those of the white car group (P= 0.013). CS may become very hot while a car is parked in sun, especially if the car and the CS are black, so the CS should be cooled before a young child is placed in it. Guardians of small children should be aware of this risk. © 2011 The Authors. Pediatrics International © 2011 Japan Pediatric Society.

  16. Increased temperature mitigates the effects of ocean acidification on the calcification of juvenile Pocillopora damicornis, but at a cost

    Science.gov (United States)

    Jiang, Lei; Zhang, Fang; Guo, Ming-Lan; Guo, Ya-Juan; Zhang, Yu-Yang; Zhou, Guo-Wei; Cai, Lin; Lian, Jian-Sheng; Qian, Pei-Yuan; Huang, Hui

    2018-03-01

    This study tested the interactive effects of increased seawater temperature and CO2 partial pressure ( pCO2) on the photochemistry, bleaching, and early growth of the reef coral Pocillopora damicornis. New recruits were maintained at ambient or high temperature (29 or 30.8 °C) and pCO2 ( 500 and 1100 μatm) in a full-factorial experiment for 3 weeks. Neither a sharp decline in photochemical efficiency (Fv/Fm) nor evident bleaching was observed at high temperature and/or high pCO2. Furthermore, elevated temperature greatly promoted lateral growth and calcification, while polyp budding exhibited temperature-dependent responses to pCO2. High pCO2 depressed calcification by 28% at ambient temperature, but did not impact calcification at 30.8 °C. Interestingly, elevated temperature in concert with high pCO2 significantly retarded the budding process. These results suggest that increased temperature can mitigate the adverse effects of acidification on the calcification of juvenile P. damicornis, but at a substantial cost to asexual budding.

  17. Ocean acidification and temperature increase impact mussel shell shape and thickness: problematic for protection?

    Science.gov (United States)

    Fitzer, Susan C; Vittert, Liberty; Bowman, Adrian; Kamenos, Nicholas A; Phoenix, Vernon R; Cusack, Maggie

    2015-11-01

    Ocean acidification threatens organisms that produce calcium carbonate shells by potentially generating an under-saturated carbonate environment. Resultant reduced calcification and growth, and subsequent dissolution of exoskeletons, would raise concerns over the ability of the shell to provide protection for the marine organism under ocean acidification and increased temperatures. We examined the impact of combined ocean acidification and temperature increase on shell formation of the economically important edible mussel Mytilus edulis. Shell growth and thickness along with a shell thickness index and shape analysis were determined. The ability of M. edulis to produce a functional protective shell after 9 months of experimental culture under ocean acidification and increasing temperatures (380, 550, 750, 1000 μatm pCO 2, and 750, 1000 μatm pCO 2 + 2°C) was assessed. Mussel shells grown under ocean acidification conditions displayed significant reductions in shell aragonite thickness, shell thickness index, and changes to shell shape (750, 1000 μatm pCO 2) compared to those shells grown under ambient conditions (380 μatm pCO 2). Ocean acidification resulted in rounder, flatter mussel shells with thinner aragonite layers likely to be more vulnerable to fracture under changing environments and predation. The changes in shape presented here could present a compensatory mechanism to enhance protection against predators and changing environments under ocean acidification when mussels are unable to grow thicker shells. Here, we present the first assessment of mussel shell shape to determine implications for functional protection under ocean acidification.

  18. Acute dim light at night increases body mass, alters metabolism, and shifts core body temperature circadian rhythms.

    Science.gov (United States)

    Borniger, Jeremy C; Maurya, Santosh K; Periasamy, Muthu; Nelson, Randy J

    2014-10-01

    The circadian system is primarily entrained by the ambient light environment and is fundamentally linked to metabolism. Mounting evidence suggests a causal relationship among aberrant light exposure, shift work, and metabolic disease. Previous research has demonstrated deleterious metabolic phenotypes elicited by chronic (>4 weeks) exposure to dim light at night (DLAN) (∼ 5 lux). However, the metabolic effects of short-term (dim light would gain more body mass, alter whole body metabolism, and display altered body temperature (Tb) and activity rhythms compared to mice maintained in dark nights. Our data largely support these predictions; DLAN mice gained significantly more mass, reduced whole body energy expenditure, increased carbohydrate over fat oxidation, and altered temperature circadian rhythms. Importantly, these alterations occurred despite similar activity locomotor levels (and rhythms) and total food intake between groups. Peripheral clocks are potently entrained by body temperature rhythms, and the deregulation of body temperature we observed may contribute to metabolic problems due to "internal desynchrony" between the central circadian oscillator and temperature sensitive peripheral clocks. We conclude that even relatively short-term exposure to low levels of nighttime light can influence metabolism to increase mass gain.

  19. Climatology of increased temperatures and melt at Swiss Camp, western slope of Greenland ice sheet, 1991-2012

    Science.gov (United States)

    Steffen, K.; McGrath, D.

    2013-12-01

    Climate observations (1991-2012) will be discussed from the Swiss Camp (69deg 33‧53″N, 49deg 19‧51″W, 1176 m), located at the western slope of the Greenland ice sheet, 60 km inland from Ilulissat. The mean annual temperature of -12 C increased 3.6 C between 1991 and 2012 (1.7 C per decade) with large interannual variability in all seasons. The mean spring temperature increased from -16.0 C to -13.8 C, and the fall temperature increased from -12.4 C to -11.3 C in the same time. The winter temperature showed the largest increase of 6.5 C, whereas summer temperatures increased 3.0 C during the 21 years (1991 - 2012). Radiation has been monitored continuously at Swiss Camp since 1993. Net radiation of 50 W/ m2 was recorded in 2012, the warmest summer month on record. The entire annual snow cover melted at Swiss Camp, reducing the monthly albedo value to 0.4 with bare ice exposed. Interannual variability of snow accumulation ranged between 0.07 and 0.70 m water equivalent, whereas annual snow and ice ablation varied between +0.35 (net gain) and -1.8 m (net loss) for the time period 1991-2012. The equilibrium line altitude (ELA) is no longer located at Swiss Camp (1176 m elevation) with a net surface lowering of 9.5 m since 1991. Increasing summer air temperatures have resulted in an upward migration of both the percolation facies and ablation area of the Greenland ice sheet. The 0°C isothermal migrated upward at a rate of 35 m/a over the 1995-2012 period in West Greenland. There is a 50% probability of the mean annual dry snow line migrating above Summit by 2025, at which time Summit will experience routine melt on an annual basis. The surface mass balance observations similarly indicate that the ELA has migrated upwards at a rate of 44 m/a over the 1997-2011 period in West Greenland, resulting in a more than doubling of the ablation zone width during this period. Inter-annual variability of monthly mean albedo at the Swiss Camp (1993 - 2012). Albedo at 0.5 is

  20. Bright upconversion luminescence and increased Tc in CaBi2Ta2O9:Er high temperature piezoelectric ceramics

    International Nuclear Information System (INIS)

    Peng Dengfeng; Wang Xusheng; Yao Xi; Xu Chaonan; Lin Jian; Sun Tiantuo

    2012-01-01

    Er 3+ doped CaBi 2 Ta 2 O 9 (CBT) bismuth layered-structure high temperature piezoelectric ceramics were synthesized by the traditional solid state method. The upconversion (UC) emission properties of Er 3+ doped CBT ceramics were investigated as a function of Er 3+ concentration and incident pump power. A bright green upconverted emission was obtained under excitation 980 nm at room temperature. The observed strong green and weak red emission bands corresponded to the transitions from 4 S 3/2 and 4 F 9/2 to 4 I 15/2 , respectively. The dependence of UC emission intensity on pumping power indicated that a three-photon process was involved in UC emissions. Studies of dielectric with temperature have also been carried out. Introduction of Er increased the Curie temperature of CBT, thus, making this ceramic suitable for sensor applications at higher temperatures. Because of its strong up-converted emission and increased Tc, the multifunctional high temperature piezoelectric ceramic may be useful in high temperature sensor, fluorescence thermometry, and optical-electro integration applications.

  1. Lower Growth Temperature Increases Alternative Pathway Capacity and Alternative Oxidase Protein in Tobacco 1

    Science.gov (United States)

    Vanlerberghe, Greg C.; McIntosh, Lee

    1992-01-01

    Suspension cells of NT1 tobacco (Nicotiana tabacum L. cv bright yellow) have been used to study the effect of growth temperature on the CN-resistant, salicylhydroxamic acid-sensitive alternative pathway of respiration. Mitochondria isolated from cells maintained at 30°C had a low capacity to oxidize succinate via the alternative pathway, whereas mitochondria isolated from cells 24 h after transfer to 18°C displayed, on average, a 5-fold increase in this capacity (from 7 to 32 nanoatoms oxygen per milligram protein per minute). This represented an increase in alternative pathway capacity from 18 to 45% of the total capacity of electron transport. This increased capacity was lost upon transfer of cells back to 30°C. A monoclonal antibody to the terminal oxidase of the alternative pathway (the alternative oxidase) from Sauromatum guttatum (T.E. Elthon, R.L. Nickels, L. McIntosh [1989] Plant Physiology 89: 1311-1317) recognized a 35-kilodalton mitochondrial protein in tobacco. There was an excellent correlation between the capacity of the alternative path in isolated tobacco mitochondria and the levels of this 35-kilodalton alternative oxidase protein. Cycloheximide could inhibit both the increased level of the 35-kilodalton alternative oxidase protein and the increased alternative pathway capacity normally seen upon transfer to 18°C. We conclude that transfer of tobacco cells to the lower temperature increases the capacity of the alternative pathway due, at least in part, to de novo synthesis of the 35-kilodalton alternative oxidase protein. Images Figure 3 Figure 4 PMID:16652932

  2. Climate change and genetically modified insecticidal plants. Plant-herbivore interactions and secondary chemistry of Bt Cry1Ac-toxin producing oilseed rape (Brassica napus L.) under elevated CO{sub 2} or O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Himanen, S.

    2008-07-01

    Transgenic insect-resistant plants producing Bacillus thuringiensis (Bt) crystalline endotoxins are the first commercial applications of genetically modified crops and their use has steadily expanded over the last ten years. Together with the expanding agricultural use of transgenic crops, climate change is predicted to be among the major factors affecting agriculture in the coming years. Plants, herbivores and insects of higher trophic levels are all predicted to be affected by the current atmospheric climate change. However, only very few studies to date have addressed the sustained use and herbivore interactions of Bt-producing plants under the influence of these abiotic factors. The main objective of this study was to comparatively assess the performance of a Bt Cry1Ac toxin-producing oilseed rape line and its non-transgenic parent line in terms of vegetative growth and allocation to secondary defence compounds (glucosinolates and volatile terpenoids), and the performance of Bt-target and nontarget insect herbivores as well as tritrophic interaction functioning on these lines. For this, several growth chamber experiments with vegetative stage non-Bt and Bt plants facing exposures to doubled atmospheric CO{sub 2} level alone or together with increased temperature and different regimes of elevated O{sub 3} were conducted. The main hypothesis of this work was that Bt-transgenic plants have reduced performance or allocation to secondary compounds due to the cost of producing Bt toxin under changed abiotic environments. The Bt-transgenic oilseed rape line exhibited slightly delayed vegetative growth and had increased nitrogen and reduced carbon content compared to the non-transgenic parent line, but the physiological responses (i.e. biomass gain and photosynthesis) of the plant lines to CO{sub 2} and O{sub 3} enhancements were equal. Two aphid species, non-susceptible to Bt Cry1Ac, showed equal performance and reproduction on both plant lines under elevated CO{sub 2

  3. Increasing minority carrier lifetime in as-grown multicrystalline silicon by low temperature internal gettering

    Energy Technology Data Exchange (ETDEWEB)

    Al-Amin, M., E-mail: m.al-amin@warwick.ac.uk; Murphy, J. D., E-mail: john.d.murphy@warwick.ac.uk [School of Engineering, University of Warwick, Coventry, CV4 7AL (United Kingdom)

    2016-06-21

    We report a systematic study into the effects of long low temperature (≤500 °C) annealing on the lifetime and interstitial iron distributions in as-grown multicrystalline silicon (mc-Si) from different ingot height positions. Samples are characterised in terms of dislocation density, and lifetime and interstitial iron concentration measurements are made at every stage using a temporary room temperature iodine-ethanol surface passivation scheme. Our measurement procedure allows these properties to be monitored during processing in a pseudo in situ way. Sufficient annealing at 300 °C and 400 °C increases lifetime in all cases studied, and annealing at 500 °C was only found to improve relatively poor wafers from the top and bottom of the block. We demonstrate that lifetime in poor as-grown wafers can be improved substantially by a low cost process in the absence of any bulk passivation which might result from a dielectric surface film. Substantial improvements are found in bottom wafers, for which annealing at 400 °C for 35 h increases lifetime from 5.5 μs to 38.7 μs. The lifetime of top wafers is improved from 12.1 μs to 23.8 μs under the same conditions. A correlation between interstitial iron concentration reduction and lifetime improvement is found in these cases. Surprisingly, although the interstitial iron concentration exceeds the expected solubility values, low temperature annealing seems to result in an initial increase in interstitial iron concentration, and any subsequent decay is a complex process driven not only by diffusion of interstitial iron.

  4. Experimentally increased temperature and hypoxia affect stability of social hierarchy and metabolism of the Amazonian cichlid Apistogramma agassizii.

    Science.gov (United States)

    Kochhann, Daiani; Campos, Derek Felipe; Val, Adalberto Luis

    2015-12-01

    The primary goal of this study was to understand how changes in temperature and oxygen could influence social behaviour and aerobic metabolism of the Amazonian dwarf cichlid Apistogramma agassizii. Social hierarchies were established over a period of 96h by observing the social interactions, feeding behaviour and shelter use in groups of four males. In the experimental environment, temperature was increased to 29°C in the high-temperature treatment, and oxygen lowered to 1.0mg·L(-1)O2 in the hypoxia treatment. Fish were maintained at this condition for 96h. The control was maintained at 26°C and 6.6mg·L(-1)O2. After the experimental exposure, metabolism was measured as routine metabolic rate (RMR) and electron transport system (ETS) activity. There was a reduction in hierarchy stability at high-temperature. Aggression changed after environmental changes. Dominant and subdominant fish at high temperatures increased their biting, compared with control-dominant. In contrast, hypoxia-dominant fish decreased their aggressive acts compared with all other fish. Shelter use decreased in control and hypoxic dominant fish. Dominant fish from undisturbed environments eat more than their subordinates. There was a decrease of RMR in fish exposed to the hypoxic environment when compared with control or high-temperature fish, independent of social position. Control-dominant fish had higher RMR than their subordinates. ETS activity increased in fish exposed to high temperatures; however, there was no effect on social rank. Our study reinforces the importance of environmental changes for the maintenance of hierarchies and their characteristics and highlights that most of the changes occur in the dominant position. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Optimization of reactor power by taking into consideration temperature increase in a reactor pumped 3He-Xe laser

    International Nuclear Information System (INIS)

    Cetin, Fuesun

    2009-01-01

    In nuclear pumped lasers, gas parameters are optimized in a manner such that output power is increased for constructing a high power laser. Since output power increases with the increase of energy deposited in the gas, high output power requires high pumping power. However, the high energy loading results in elevated gas temperature. Temperature increase of this magnitude can detrimentally influence the laser gain and efficiency, since it negatively impacts several important laser kinetic.processes. This fact may cause laser output to abruptly terminate before the peak of the pump pulse [1-3]. A nuclear pumped laser using a volumetric energy source through the 3 He(n, p) 3 H reaction has here been considered. It is assumed that TRIGA Mark II Reactor at Istanbul Technical University is used for nuclear pumping as the neutron source. In the previous papers, the optimal parameters for improving both output power and optical homogeneity were determined [4-5]. Spatial and temporal variations of gas temperature during pumping pulse for maximum peak power (1200 MW) were determined for various operating pressures in Ref. [6]. It was seen that gas temperature reaches up to 1000 0 K near the peak of the pumping pulse for the initial pressures of 1-4 atm. This means that laser output may terminate before the peak of the pump pulse due to overheating of laser gas. Under these conditions, a question arises about a further optimisation taking into consideration gas temperature. This question has been examined in this study. Experimental results (Batyrbekov et al, 1989) showed that temperature rise up to 650 C had no influence on Xe laser characteristics [ 7]. Therefore, It has here been assumed that the lasing will terminate when gas temperature reaches 1000 0 K for a Xe-laser with 3 He buffer gas. Under these conditions optimum reactor power is investigated by taking into consideration lasing duration also. (orig.)

  6. Satisfaction and convenience of using terpenoid-impregnated eyelid wipes and teaching method in people without blepharitis.

    Science.gov (United States)

    Qiu, Tian Yu; Yeo, Sharon; Tong, Louis

    2018-01-01

    Demodex infestations cause blepharitis and are difficult to treat. Recently, a new type of eyelid wipes with terpenoids has been found effective. We aim to evaluate patient satisfaction after short-term use and compare two teaching modalities on the techniques of use. Eligible participants were taught to use eyelid wipes (Cliradex ® ) by either live or online video demonstration based on random allocation. Participants used the wipes twice daily for a week. All participants had prior evaluation of socioeconomic status, dry eye symptoms, and meibomian gland features. After 1 week, competence of use was assessed by participants showing their technique to the investigator, and a questionnaire on comfort, ease, and convenience of use was administered. Higher scores indicate greater satisfaction, and these levels are compared among the two teaching modalities using chi square. A total of 50 participants were recruited, with a mean age of 42±16 years, and 88% of the participants were females. Overall, median comfort level was 4.0 (range: 1-6), ease level was 5.0 (3-6), and convenience level was 5.0 (2-6). Median stinging was 2.0 (1-4), which corresponded to some but mild stinging. The median competence level was 4.0 (2-4), which corresponded to excellent competence. These satisfactory levels (ease, comfort, and convenience) experienced were not significantly associated with different socioeconomic indicators, that is, housing type, income, highest education level, and were not different between teaching methods ( p >0.05). Short-term use of Cliradex eyelid wipes seems to be acceptable to most people. The teaching instructions before using these wipes were equally effective - whether live or online video demonstration was used.

  7. Warm water temperatures and shifts in seasonality increase trout recruitment but only moderately decrease adult size in western North American tailwaters

    Science.gov (United States)

    Dibble, Kimberly L.; Yackulic, Charles B.; Kennedy, Theodore A.

    2018-01-01

    Dams throughout western North America have altered thermal regimes in rivers, creating cold, clear “tailwaters” in which trout populations thrive. Ongoing drought in the region has led to highly publicized reductions in reservoir storage and raised concerns about potential reductions in downstream flows. Large changes in riverine thermal regimes may also occur as reservoir water levels drop, yet this potential impact has received far less attention. We analyzed historic water temperature and fish population data to anticipate how trout may respond to future changes in the magnitude and seasonality of river temperatures. We found that summer temperatures were inversely related to reservoir water level, with warm temperatures associated with reduced storage and with dams operated as run-of-river units. Variation in rainbow trout (Oncorhynchus mykiss) recruitment was linked to water temperature variation, with a 5-fold increase in recruitment occurring at peak summer temperatures (18 °C vs. 7 °C) and a 2.5-fold increase in recruitment when peak temperatures occurred in summer rather than fall. Conversely, adult trout size was only moderately related to temperature. Rainbow and brown trout (Salmo trutta) size decreased by ~24 mm and 20 mm, respectively, as mean annual and peak summer temperatures increased. Further, rainbow trout size decreased by ~29 mm with an earlier onset of cold winter temperatures. While increased recruitment may be the more likely outcome of a warmer and drier climate, density-dependent growth constraints could exacerbate temperature-dependent growth reductions. As such, managers may consider implementing flows to reduce recruitment or altering infrastructure to maintain coldwater reservoir releases.

  8. Attribution of atmospheric CO2 and temperature increases to regions: importance of preindustrial land use change

    International Nuclear Information System (INIS)

    Pongratz, Julia; Caldeira, Ken

    2012-01-01

    The historical contribution of each country to today’s observed atmospheric CO 2 excess and higher temperatures has become a basis for discussions around burden-sharing of greenhouse gas reduction commitments in political negotiations. However, the accounting methods have considered greenhouse gas emissions only during the industrial era, neglecting the fact that land use changes (LUC) have caused emissions long before the Industrial Revolution. Here, we hypothesize that considering preindustrial LUC affects the attribution because the geographic pattern of preindustrial LUC emissions differs significantly from that of industrial-era emissions and because preindustrial emissions have legacy effects on today’s atmospheric CO 2 concentrations and temperatures. We test this hypothesis by estimating CO 2 and temperature increases based on carbon cycle simulations of the last millennium. We find that accounting for preindustrial LUC emissions results in a shift of attribution of global temperature increase from the industrialized countries to less industrialized countries, in particular South Asia and China, by up to 2–3%, a level that may be relevant for political discussions. While further studies are needed to span the range of plausible quantifications, our study demonstrates the importance of including preindustrial emissions for the most scientifically defensible attribution. (letter)

  9. What to eat in a warming world: do increased temperatures necessitate hazardous duty pay?

    Science.gov (United States)

    Hall, L. Embere; Chalfoun, Anna D.

    2018-01-01

    Contemporary climate change affects nearly all biomes, causing shifts in animal distributions and resource availability. Changes in resource selection may allow individuals to offset climatic stress, thereby providing a mechanism for persistence amidst warming conditions. Whereas the role of predation risk in food choice has been studied broadly, the extent to which individuals respond to thermoregulatory risk by changing resource preferences is unclear. We addressed whether individuals compensated for temperature-related reductions in foraging time by altering forage preferences, using the American pika (Ochotona princeps) as a model species. We tested two hypotheses: (1) food-quality hypothesis—individuals exposed to temperature extremes should select higher-quality vegetation in return for accepting a physiologically riskier feeding situation; and (2) food-availability hypothesis—individuals exposed to temperature extremes should prioritize foraging quickly, thereby decreasing selection for higher-quality food. We quantified the composition and quality (% moisture, % nitrogen, and fiber content) of available and harvested vegetation, and deployed a network of temperature sensors to measure in situ conditions for 30 individuals, during July–Sept., 2015. Individuals exposed to more extreme daytime temperatures showed increased selection for high-nitrogen and for low-fiber vegetation, demonstrating strong support for the food-quality hypothesis. By contrast, pikas that experienced warmer conditions did not reduce selection for any of the three vegetation-quality metrics, as predicted by the food-availability hypothesis. By shifting resource-selection patterns, temperature-limited animals may be able to proximately buffer some of the negative effects associated with rapidly warming environments, provided that sufficient resources remain on the landscape.

  10. Effects of increasing temperature and, CO2 on quality of litter, shredders, and microorganisms in Amazonian aquatic systems.

    Directory of Open Access Journals (Sweden)

    Renato Tavares Martins

    Full Text Available Climate change may affect the chemical composition of riparian leaf litter and, aquatic organisms and, consequently, leaf breakdown. We evaluated the effects of different scenarios combining increased temperature and carbon dioxide (CO2 on leaf detritus of Hevea spruceana (Benth Müll. and decomposers (insect shredders and microorganisms. We hypothesized that simulated climate change (warming and elevated CO2 would: i decrease leaf-litter quality, ii decrease survival and leaf breakdown by shredders, and iii increase microbial leaf breakdown and fungal biomass. We performed the experiment in four microcosm chambers that simulated air temperature and CO2 changes in relation to a real-time control tracking current conditions in Manaus, Amazonas, Brazil. The experiment lasted seven days. During the experiment mean air temperature and CO2 concentration ranged from 26.96 ± 0.98ºC and 537.86 ± 18.36 ppmv in the control to 31.75 ± 0.50ºC and 1636.96 ± 17.99 ppmv in the extreme chamber, respectively. However, phosphorus concentration in the leaf litter decreased with warming and elevated CO2. Leaf quality (percentage of carbon, nitrogen, phosphorus, cellulose and lignin was not influenced by soil flooding. Fungal biomass and microbial leaf breakdown were positively influenced by temperature and CO2 increase and reached their highest values in the intermediate condition. Both total and shredder leaf breakdown, and shredder survival rate were similar among all climatic conditions. Thus, low leaf-litter quality due to climate change and higher leaf breakdown under intermediate conditions may indicate an increase of riparian metabolism due to temperature and CO2 increase, highlighting the risk (e.g., decreased productivity of global warming for tropical streams.

  11. Evidence of increasing drought severity caused by temperature rise in southern Europe

    International Nuclear Information System (INIS)

    Vicente-Serrano, Sergio M; Lopez-Moreno, Juan-I; Lorenzo-Lacruz, Jorge; García-Ruiz, José M; Azorin-Molina, Cesar; Morán-Tejeda, Enrique; Revuelto, Jesús; Beguería, Santiago; Sanchez-Lorenzo, Arturo; Trigo, Ricardo; Coelho, Fatima; Espejo, Francisco

    2014-01-01

    We use high quality climate data from ground meteorological stations in the Iberian Peninsula (IP) and robust drought indices to confirm that drought severity has increased in the past five decades, as a consequence of greater atmospheric evaporative demand resulting from temperature rise. Increased drought severity is independent of the model used to quantify the reference evapotranspiration. We have also focused on drought impacts to drought-sensitive systems, such as river discharge, by analyzing streamflow data for 287 rivers in the IP, and found that hydrological drought frequency and severity have also increased in the past five decades in natural, regulated and highly regulated basins. Recent positive trend in the atmospheric water demand has had a direct influence on the temporal evolution of streamflows, clearly identified during the warm season, in which higher evapotranspiration rates are recorded. This pattern of increase in evaporative demand and greater drought severity is probably applicable to other semiarid regions of the world, including other Mediterranean areas, the Sahel, southern Australia and South Africa, and can be expected to increasingly compromise water supplies and cause political, social and economic tensions among regions in the near future. (paper)

  12. Coldest Temperature Extreme Monotonically Increased and Hottest Extreme Oscillated over Northern Hemisphere Land during Last 114 Years.

    Science.gov (United States)

    Zhou, Chunlüe; Wang, Kaicun

    2016-05-13

    Most studies on global warming rely on global mean surface temperature, whose change is jointly determined by anthropogenic greenhouse gases (GHGs) and natural variability. This introduces a heated debate on whether there is a recent warming hiatus and what caused the hiatus. Here, we presented a novel method and applied it to a 5° × 5° grid of Northern Hemisphere land for the period 1900 to 2013. Our results show that the coldest 5% of minimum temperature anomalies (the coldest deviation) have increased monotonically by 0.22 °C/decade, which reflects well the elevated anthropogenic GHG effect. The warmest 5% of maximum temperature anomalies (the warmest deviation), however, display a significant oscillation following the Atlantic Multidecadal Oscillation (AMO), with a warming rate of 0.07 °C/decade from 1900 to 2013. The warmest (0.34 °C/decade) and coldest deviations (0.25 °C/decade) increased at much higher rates over the most recent decade than last century mean values, indicating the hiatus should not be interpreted as a general slowing of climate change. The significant oscillation of the warmest deviation provides an extension of previous study reporting no pause in the hottest temperature extremes since 1979, and first uncovers its increase from 1900 to 1939 and decrease from 1940 to 1969.

  13. Ecosystem carbon storage does not vary with increasing mean annual temperature in Hawaiian tropical montane wet forests

    Science.gov (United States)

    Paul Selmants; Creighton Litton; Christian P. Giardina; Greg P. Asner

    2014-01-01

    Theory and experiment agree that climate warming will increase carbon fluxes between terrestrial ecosystems and the atmosphere. The effect of this increased exchange on terrestrial carbon storage is less predictable, with important implications for potential feedbacks to the climate system. We quantified how increased mean annual temperature (MAT) affects ecosystem...

  14. Increase of COP for heat transformer in water purification systems. Part II - Without increasing heat source temperature

    International Nuclear Information System (INIS)

    Romero, R.J.; Siqueiros, J.; Huicochea, A.

    2007-01-01

    The integration of a water purification system allows a heat transformer to increase the actual coefficient of performance, by the reduction of the amount of heat supplied by unit of heat. A new defined COP called COP WP is proposed for the present system, which considers the fraction of heat recycled. Simulation with proven software compares the performance of the modeling of an absorption heat transformer for water purification (AHTWP) operating with water/lithium bromide, as working fluid-absorbent pair. Plots of enthalpy-based coefficients of performance (COP ET ) and water purification coefficient of performance (COP WP ) are shown against absorber temperature for several thermodynamic operating conditions. The results showed that the proposed (AHTWP) system is capable of increasing the original value of COP ET up to 1.6 times its original value by recycling energy from a water purification system. The proposed COP WP allows increments for COP values from any experimental data for water purification or for any other distillation system integrated to a heat transformer, regardless of actual COP A value or working fluid-absorbent pair

  15. Low temperature-induced DNA hypermethylation attenuates expression of RhAG, an AGAMOUS homolog, and increases petal number in rose (Rosa hybrida).

    Science.gov (United States)

    Ma, Nan; Chen, Wen; Fan, Tiangang; Tian, Yaran; Zhang, Shuai; Zeng, Daxing; Li, Yonghong

    2015-10-05

    Flower development is central to angiosperm reproduction and is regulated by a broad range of endogenous and exogenous stimuli. It has been well documented that ambient temperature plays a key role in controlling flowering time; however, the mechanisms by which temperature regulates floral organ differentiation remain largely unknown. In this study, we show that low temperature treatment significantly increases petal number in rose (Rosa hybrida) through the promotion of stamen petaloidy. Quantitative RT-PCR analysis revealed that the expression pattern of RhAG, a rose homolog of the Arabidopsis thaliana AGAMOUS C-function gene, is associated with low temperature regulated flower development. Silencing of RhAG mimicked the impact of low temperature treatments on petal development by significantly increasing petal number through an increased production of petaloid stamens. In situ hybridization studies further revealed that low temperature restricts its spatial expression area. Analysis of DNA methylation level showed that low temperature treatment enhances the methylation level of the RhAG promoter, and a specific promoter region that was hypermethylated at CHH loci under low temperature conditions, was identified by bisulfite sequencing. This suggests that epigenetic DNA methylation contributes to the ambient temperature modulation of RhAG expression. Our results provide highlights in the role of RhAG gene in petal number determination and add a new layer of complexity in the regulation of floral organ development. We propose that RhAG plays an essential role in rose flower patterning by regulating petal development, and that low temperatures increase petal number, at least in part, by suppressing RhAG expression via enhancing DNA CHH hypermethylation of the RhAG promoter.

  16. Does the growth response of woody plants to elevated CO2 increase with temperature? A model-oriented meta-analysis.

    Science.gov (United States)

    Baig, Sofia; Medlyn, Belinda E; Mercado, Lina M; Zaehle, Sönke

    2015-12-01

    The temperature dependence of the reaction kinetics of the Rubisco enzyme implies that, at the level of a chloroplast, the response of photosynthesis to rising atmospheric CO2 concentration (Ca ) will increase with increasing air temperature. Vegetation models incorporating this interaction predict that the response of net primary productivity (NPP) to elevated CO2 (eCa ) will increase with rising temperature and will be substantially larger in warm tropical forests than in cold boreal forests. We tested these model predictions against evidence from eCa experiments by carrying out two meta-analyses. Firstly, we tested for an interaction effect on growth responses in factorial eCa  × temperature experiments. This analysis showed a positive, but nonsignificant interaction effect (95% CI for above-ground biomass response = -0.8, 18.0%) between eCa and temperature. Secondly, we tested field-based eCa experiments on woody plants across the globe for a relationship between the eCa effect on plant biomass and mean annual temperature (MAT). This second analysis showed a positive but nonsignificant correlation between the eCa response and MAT. The magnitude of the interactions between CO2 and temperature found in both meta-analyses were consistent with model predictions, even though both analyses gave nonsignificant results. Thus, we conclude that it is not possible to distinguish between the competing hypotheses of no interaction vs. an interaction based on Rubisco kinetics from the available experimental database. Experiments in a wider range of temperature zones are required. Until such experimental data are available, model predictions should aim to incorporate uncertainty about this interaction. © 2015 John Wiley & Sons Ltd.

  17. Elevated CO2 and temperature increase soil C losses from a soybean-maize ecosystem.

    Science.gov (United States)

    Black, Christopher K; Davis, Sarah C; Hudiburg, Tara W; Bernacchi, Carl J; DeLucia, Evan H

    2017-01-01

    Warming temperatures and increasing CO 2 are likely to have large effects on the amount of carbon stored in soil, but predictions of these effects are poorly constrained. We elevated temperature (canopy: +2.8 °C; soil growing season: +1.8 °C; soil fallow: +2.3 °C) for 3 years within the 9th-11th years of an elevated CO 2 (+200 ppm) experiment on a maize-soybean agroecosystem, measured respiration by roots and soil microbes, and then used a process-based ecosystem model (DayCent) to simulate the decadal effects of warming and CO 2 enrichment on soil C. Both heating and elevated CO 2 increased respiration from soil microbes by ~20%, but heating reduced respiration from roots and rhizosphere by ~25%. The effects were additive, with no heat × CO 2 interactions. Particulate organic matter and total soil C declined over time in all treatments and were lower in elevated CO 2 plots than in ambient plots, but did not differ between heat treatments. We speculate that these declines indicate a priming effect, with increased C inputs under elevated CO 2 fueling a loss of old soil carbon. Model simulations of heated plots agreed with our observations and predicted loss of ~15% of soil organic C after 100 years of heating, but simulations of elevated CO 2 failed to predict the observed C losses and instead predicted a ~4% gain in soil organic C under any heating conditions. Despite model uncertainty, our empirical results suggest that combined, elevated CO 2 and temperature will lead to long-term declines in the amount of carbon stored in agricultural soils. © 2016 John Wiley & Sons Ltd.

  18. Generation of sclerosant foams by mechanical methods increases the foam temperature.

    Science.gov (United States)

    Tan, Lulu; Wong, Kaichung; Connor, David; Fakhim, Babak; Behnia, Masud; Parsi, Kurosh

    2017-08-01

    Objective To investigate the effect of agitation on foam temperature. Methods Sodium tetradecyl sulphate and polidocanol were used. Prior to foam generation, the sclerosant and all constituent equipment were cooled to 4-25℃ and compared with cooling the sclerosant only. Foam was generated using a modified Tessari method. During foam agitation, the temperature change was measured using a thermocouple for 120 s. Results Pre-cooling all the constituent equipment resulted in a cooler foam in comparison with only cooling the sclerosant. A starting temperature of 4℃ produced average foam temperatures of 12.5 and 13.2℃ for sodium tetradecyl sulphate and polidocanol, respectively. It was also found that only cooling the liquid sclerosant provided minimal cooling to the final foam temperature, with the temperature 20 and 20.5℃ for sodium tetradecyl sulphate and polidocanol, respectively. Conclusion The foam generation process has a noticeable impact on final foam temperature and needs to be taken into consideration when creating foam.

  19. THE ECONOMIC CONSEQUENCES OF THE INCREASE OF THE WORLD OCEAN’S TEMPERATURE

    Directory of Open Access Journals (Sweden)

    Diana Perticas

    2016-12-01

    Full Text Available Environmental pollution represents one of the problems that humanity is facing right now, problems that create a series of economic, ecologic and social consequences. This paper wishes to identify by presenting concrete data, some of the negative effects that occurred as a result of the increase of pollution on global scale, for example like the rise of global temperature. Starting with the industrial revolution but especially with the increase of the population’s needs, desires, interests that occurred during the last decades, environmental pollution intensified to an extent that we could even consider alarming. A main effect which can be easily observed by each and every person without the need to perform measurements, is the climate warming which has a series of consequences, like for example: drought, natural disasters, decrease in agricultural production, fires (especially wildfires which reduce the population of wild animals, etc. So the effects of global warming are not just ecologic but also economic and social. Another aspect analyzed in this paper is the rise of the seas’ and oceans’ temperature which inevitably results in the decrease of the population of fish and aquatic animals. The melting of glaciers is another negative effect of the climate warming which is discussed in this paper, effect which is responsible for numerous floods that result from the rise of the sea levels causing numerous damages, the most affected people being those living in the vicinity of waters. During floods, phenomenon which occurs more and more often, drainage channels are overused many times not being able to handle the huge quantities of water, thus favoring the multiplication and spreading of rodents. There are evidences showing that the number of cases of diseases transmitted by rodents increases during natural disasters, which occur more and more often during the last decades.

  20. Decadal increase in seagrass biomass and temperature at the CARICOMP site in Bocas del Toro, Panama

    Directory of Open Access Journals (Sweden)

    Jorge M. López-Calderón

    2013-12-01

    Full Text Available The Caribbean Coastal Marine Productivity Program (CARICOMP was launched in 1993 to study regional long-term interactions between land and sea, taking standardized measurements of productivity and biomass of mangroves, coral reefs and seagrasses. Since 1999 continuous measurements of seagrass (Thalassia testudinum parameters as well as environmental data have been recorded in Caribbean Panama. Replicate stations were selected near the Smithsonian Tropical Research Institute in Bocas del Toro. Sediment cores and quadrants were placed there to estimate biomass and productivity, respectively. Mean values for productivity, standing crop, turnover rate, total dry biomass, and Leaf Area Index were 1.74gDW/m²/d, 66.6gDW/m², 2.62%/d, 1 481 gDW/m², and 4.65, respectively. Total dry biomass (shoots, rhizomes and roots and LAI of T. testudinum increased significantly during the study period. Mean values for total rainfall, Secchi disk depth, sea surface temperature, and salinity were 3 498mm, 8.24m, 28.79°C, and 32.26psu, respectively. Sea surface temperature was the only environmental variable with a statistically significant change, increasing from 1999 to 2010. Correlation between sea surface temperature and T. testudinum parameters (total biomass and LAI were both positive and significant. Human population has increased dramatically over the last ten years in Bocas del Toro region, increasing pressure (deforestation, runoff, wastewater over coastal ecosystems (seagrasses, mangroves, coral reefs. Change in the abundance of T. testudinum may be linked to ocean warming, as a consequence to satisfy plant’s metabolic requirements, although other local factors need to be analyzed (reduced grazing and increased eutrophication. A further warming of the ocean could have a negative effect on T. testudinum population, increasing respiratory demands and microbial metabolism.

  1. Increase of temperature of an ideal nondegenerate quantum gas in a suddenly expanding box due to energy quantization

    International Nuclear Information System (INIS)

    Dodonov, V.V.; Vieira Lopes, D.O.

    2008-01-01

    We show that due to energy quantization the temperature of an ideal nondegenerate quantum gas in a rectangular box always increases after a sudden expansion of the box and a subsequent thermalization. The maximal increment of temperature is proportional to the square root of the product of the initial absolute temperature by the energy of the first discrete quantum level, i.e., it is proportional to the first power of the Planck constant

  2. High temperature increases the masculinization rate of the all-female (XX) rainbow trout "Mal" population.

    Science.gov (United States)

    Valdivia, Karina; Jouanno, Elodie; Volff, Jean-Nicolas; Galiana-Arnoux, Delphine; Guyomard, René; Helary, Louise; Mourot, Brigitte; Fostier, Alexis; Quillet, Edwige; Guiguen, Yann

    2014-01-01

    Salmonids are generally considered to have a robust genetic sex determination system with a simple male heterogamety (XX/XY). However, spontaneous masculinization of XX females has been found in a rainbow trout population of gynogenetic doubled haploid individuals. The analysis of this masculinization phenotype transmission supported the hypothesis of the involvement of a recessive mutation (termed mal). As temperature effect on sex differentiation has been reported in some salmonid species, in this study we investigated in detail the potential implication of temperature on masculinization in this XX mal-carrying population. Seven families issued from XX mal-carrying parents were exposed from the time of hatching to different rearing water temperatures ((8, 12 and 18°C), and the resulting sex-ratios were confirmed by histological analysis of both gonads. Our results demonstrate that masculinization rates are strongly increased (up to nearly two fold) at the highest temperature treatment (18°C). Interestingly, we also found clear differences between temperatures on the masculinization of the left versus the right gonads with the right gonad consistently more often masculinized than the left one at lower temperatures (8 and 12°C). However, the masculinization rate is also strongly dependent on the genetic background of the XX mal-carrying families. Thus, masculinization in XX mal-carrying rainbow trout is potentially triggered by an interaction between the temperature treatment and a complex genetic background potentially involving some part of the genetic sex differentiation regulatory cascade along with some minor sex-influencing loci. These results indicate that despite its rather strict genetic sex determinism system, rainbow trout sex differentiation can be modulated by temperature, as described in many other fish species.

  3. Reconstructing patterns of temperature, phenology, and frost damage over 124 years: spring damage risk is increasing.

    Science.gov (United States)

    Augspurger, Carol K

    2013-01-01

    Climate change, with both warmer spring temperatures and greater temperature fluctuations, has altered phenologies, possibly leading to greater risk of spring frost damage to temperate deciduous woody plants. Phenological observations of 20 woody species from 1993 to 2012 in Trelease Woods, Champaign County, Illinois, USA, were used to identify years with frost damage to vegetative and reproductive phases. Local temperature records were used in combination with the phenological observations to determine what combinations of the two were associated with damage. Finally, a long-term temperature record (1889-1992) was evaluated to determine if the frequency of frost damage has risen in recent decades. Frost Frost damage occurred in five years in the interior and in three additional years at only the forest edge. The degree of damage varied with species, life stage, tissue (vegetative or reproductive), and phenological phase. Common features associated with the occurrence of damage to interior plants were (1) a period of unusual warm temperatures in March, followed by (2) a frost event in April with a minimum temperature frost damage increased significantly, from 0.03 during 1889-1979 to 0.21 during 1980-2012. When the criteria were "softened" to frost damage events more common.

  4. Multi-Temperature Zone, Droplet-based Microreactor for Increased Temperature Control in Nanoparticle Synthesis

    KAUST Repository

    Erdem, E. Yegâ n; Cheng, Jim C.; Doyle, Fiona M.; Pisano, Albert P.

    2013-01-01

    Microreactors are an emerging technology for the controlled synthesis of nanoparticles. The Multi-Temperature zone Microreactor (MTM) described in this work utilizes thermally isolated heated and cooled regions for the purpose of separating

  5. Towards better understanding of the response of Sphagnum peatland to increased temperature and reduced precipitation in Central Europe

    Science.gov (United States)

    Juszczak, Radoslaw; Basińska, Anna; Chojnicki, Bogdan; Gąbka, Maciej; Hoffmann, Mathias; Józefczyk, Damian; Lamentowicz, Mariusz; Leśny, Jacek; Łuców, Dominika; Moni, Christophe; Reczuga, Monika; Samson, Mateusz; Silvennoinen, Hanna; Stróżecki, Marcin; Urbaniak, Marek; Zielińska, Małgorzata; Olejnik, Janusz

    2017-04-01

    With respect to climate change peatlands are highly vulnerable ecosystems. Especially a potential drying in future might result in a major carbon source and release to the atmosphere. We carried out a field climate manipulation experiment at Rzecin peatland in western Poland to assess how increased temperature and reduced precipitation may impact carbon balance, vegetation, microbes and water chemistry of the Sphagnum peatland. Here, we present results of measurements conducted in two contrasting years (417 mm and 678 mm of precipitation in very dry 2015 and wet 2016, respectively). The experimental design consists of four treatments, each one replicated three times (control, CO; simulated warming, W; prolonged drought, D and warming & drought, W+D). Increased temperatures (T) during the year were achieved by infrared heaters (400W × 4 per site, approx. 60 Wṡm-2 addition of LW radiation). Precipitation was reduced using an automatic curtain, covering the site during nighttime hours of the growth seasons. The manipulation experiment was successful during both years, increasing the air (30 cm height) and soil temperature (5 cm depth, sites W and D) by up to 0.2 oC and 1.0 oC, respectively. Precipitation was reduced to 37 % during both years. At W+D site the peat temperature was nearly two times higher than on W site indicating the impact of drought on T increase. To study the C exchange we developed an automatic mobile platform for measuring CO2/CH4/H2O fluxes (LGR) as well as 13CO2 and 13CH4 fluxes (PICARRO CRDS G2201-i). Measurements were performed, using dynamic ecosystem chambers (for NEE and Reco) and combined with simultaneous measurements of surface spectral properties. Flux calculation and gap filling was done according to Hoffmann et al. 2015. Methane emissions were significantly higher on manipulated plots than on CO (25 gCṡm-2yr-1) during both years, but only in the very dry 2015, CH4 fluxes were the highest on W+D site (33 gC gCṡm-2yr-1). Besides

  6. Increasing the efficiency of heating systems by reducing the flue gas temperature below the dew point

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, H.

    1981-06-01

    This paper deals with the fundamentals and technical possibilities of increasing the combustion efficiency of gas-fired heating units for domestic heating by cooling the flue gases below their water vapor saturation temperature. The improvement of the efficiency can be more than 15% in comparison even to modern warm water heating boilers. Important however is the availability of cooling fluids of sufficiently low temperatures which could be recirculated heating water, freshwater and air. Different possible applications of this method are discussed in detail.

  7. The influence of increased temperature of waters from Cernavoda NPP on underground water sources

    International Nuclear Information System (INIS)

    Isbasoiu, Eugen Constantin; Marinov, Anca Mariana; Moraru, Carina Nicoleta; Rizescu, Gheorghe

    1997-01-01

    The operation of Cernavoda NPP implies the change of thermal regime of waters in the Danube-Black Sea channel zone. The Danube water is used to cool the NPP systems before being delivered into channel and used in irrigations. The temperature increase of water in Cernavoda NPP installations is between 7 and 12 deg. C. The negative effects of this warming are: 1. limitation of water use for irrigations; 2. occurrence and persistence of fog in channel area; 3. thermal pollution of underground waters and limitation of underground potable water supply. The paper presents a general approach of thermal pollution problems of an aquifer and a mathematical model of forecasting the underground water temperature variation in Danube-Black Sea channel area. (authors)

  8. LED lighting increases the ecological impact of light pollution irrespective of color temperature.

    Science.gov (United States)

    Pawson, S M; Bader, M K-F

    Recognition of the extent and magnitude of night-time light pollution impacts on natural ecosystems is increasing, with pervasive effects observed in both nocturnal and diurnal species. Municipal and industrial lighting is on the cusp of a step change where energy-efficient lighting technology is driving a shift from “yellow” high-pressure sodium vapor lamps (HPS) to new “white” light-emitting diodes (LEDs). We hypothesized that white LEDs would be more attractive and thus have greater ecological impacts than HPS due to the peak UV-green-blue visual sensitivity of nocturnal invertebrates. Our results support this hypothesis; on average LED light traps captured 48% more insects than were captured with light traps fitted with HPS lamps, and this effect was dependent on air temperature (significant light × air temperature interaction). We found no evidence that manipulating the color temperature of white LEDs would minimize the ecological impacts of the adoption of white LED lights. As such, large-scale adoption of energy-efficient white LED lighting for municipal and industrial use may exacerbate ecological impacts and potentially amplify phytosanitary pest infestations. Our findings highlight the urgent need for collaborative research between ecologists and electrical engineers to ensure that future developments in LED technology minimize their potential ecological effects.

  9. Growth of Cyanobacterium aponinum influenced by increasing salt concentrations and temperature.

    Science.gov (United States)

    Winckelmann, Dominik; Bleeke, Franziska; Bergmann, Peter; Klöck, Gerd

    2015-06-01

    The increasing requirement of food neutral biofuels demands the detection of alternative sources. The use of non-arable land and waste water streams is widely discussed in this regard. A Cyanobacterium was isolated on the area of a possible algae production side near a water treatment plant in the arid desert region al-Wusta. It was identified as Cyanobacterium aponinum PB1 and is a possible lipid source. To determine its suitability of a production process using this organism, a set of laboratory experiments were performed. Its growth behavior was examined in regard to high temperatures and increasing NaCl concentrations. A productivity of 0.1 g L -1 per day was measured at an alga density below 0.75 g L -1 . C. aponinum PB1 showed no sign of altered growth behavior in media containing 70 g L -1 NaCl or less. Detection of a negative effect of NaCl on the growth using Pulse-Amplitude-Modulation chlorophyll fluorescence analysis was not more sensitive than optical density measurement.

  10. Adaptation of root growth to increased ambient temperature requires auxin and ethylene coordination in Arabidopsis

    DEFF Research Database (Denmark)

    Fei, Qionghui; Wei, Shaodong; Zhou, Zhaoyang

    2017-01-01

    Key message: A fresh look at the roles of auxin, ethylene, and polar auxin transport during the plant root growth response to warmer ambient temperature (AT). Abstract: The ambient temperature (AT) affects plant growth and development. Plants can sense changes in the AT, but how this change......-naphthaleneacetic acid, but not indole-3-acetic acid (IAA). AUX1, PIN1, and PIN2 are involved in the ckrc1-1 root gravity response under increased AT. Furthermore, CKRC1-dependent auxin biosynthesis was critical for maintaining PIN1, PIN2, and AUX1 expression at elevated temperatures. Ethylene was also involved...... in this regulation through the ETR1 pathway. Higher AT can promote CKRC1-dependent auxin biosynthesis by enhancing ETR1-mediated ethylene signaling. Our research suggested that the interaction between auxin and ethylene and that the interaction-mediated polar auxin transport play important roles during the plant...

  11. Low temperature sensing in tulip (Tulipa gesneriana L.) is mediated through an increased response to auxin.

    Science.gov (United States)

    Rietveld, P L; Wilkinson, C; Franssen, H M; Balk, P A; van der Plas, L H; Weisbeek, P J; Douwe de Boer, A

    2000-03-01

    Tulip (Tulipa gesneriana L.) is a bulbous plant species that requires a period of low temperature for proper growth and flowering. The mechanism of sensing the low temperature period is unknown. The study presented in this paper shows that the essential developmental change in tulip bulbs during cold treatment is an increase in sensitivity to the phytohormone auxin. This is demonstrated using a model system consisting of isolated internodes grown on tissue culture medium containing different combinations of the phytohormones auxin and gibberellin. Using mathematical modelling, equations taken from the field of enzyme kinetics were fitted through the data. By doing so it became apparent that longer periods of low temperature resulted in an increased maximum response at a lower auxin concentration. Besides the cold treatment, gibberellin also enhances the response to auxin in the internodes in this in vitro system. A working model describing the relationship between the cold requirement, gibberellin action and auxin sensitivity is put forward. Possible analogies with other cold-requiring processes such as vernalization and stratification, and the interaction of auxin and gibberellin in the stalk elongation process in other plant species are discussed.

  12. Heightened fire probability in Indonesia in non-drought conditions: the effect of increasing temperatures

    Science.gov (United States)

    Fernandes, Kátia; Verchot, Louis; Baethgen, Walter; Gutierrez-Velez, Victor; Pinedo-Vasquez, Miguel; Martius, Christopher

    2017-05-01

    In Indonesia, drought driven fires occur typically during the warm phase of the El Niño Southern Oscillation. This was the case of the events of 1997 and 2015 that resulted in months-long hazardous atmospheric pollution levels in Equatorial Asia and record greenhouse gas emissions. Nonetheless, anomalously active fire seasons have also been observed in non-drought years. In this work, we investigated the impact of temperature on fires and found that when the July-October (JASO) period is anomalously dry, the sensitivity of fires to temperature is modest. In contrast, under normal-to-wet conditions, fire probability increases sharply when JASO is anomalously warm. This describes a regime in which an active fire season is not limited to drought years. Greater susceptibility to fires in response to a warmer environment finds support in the high evapotranspiration rates observed in normal-to-wet and warm conditions in Indonesia. We also find that fire probability in wet JASOs would be considerably less sensitive to temperature were not for the added effect of recent positive trends. Near-term regional climate projections reveal that, despite negligible changes in precipitation, a continuing warming trend will heighten fire probability over the next few decades especially in non-drought years. Mild fire seasons currently observed in association with wet conditions and cool temperatures will become rare events in Indonesia.

  13. Increased diversity of egg-associated bacteria on brown trout (Salmo trutta) at elevated temperatures.

    Science.gov (United States)

    Wilkins, Laetitia G E; Rogivue, Aude; Schütz, Frédéric; Fumagalli, Luca; Wedekind, Claus

    2015-11-27

    The taxonomic composition of egg-associated microbial communities can play a crucial role in the development of fish embryos. In response, hosts increasingly influence the composition of their associated microbial communities during embryogenesis, as concluded from recent field studies and laboratory experiments. However, little is known about the taxonomic composition and the diversity of egg-associated microbial communities within ecosystems; e.g., river networks. We sampled late embryonic stages of naturally spawned brown trout at nine locations within two different river networks and applied 16S rRNA pyrosequencing to describe their bacterial communities. We found no evidence for a significant isolation-by-distance effect on the composition of bacterial communities, and no association between neutral genetic divergence of fish host (based on 11 microsatellites) and phylogenetic distances of the composition of their associated bacterial communities. We characterized core bacterial communities on brown trout eggs and compared them to corresponding water samples with regard to bacterial composition and its presumptive function. Bacterial diversity was positively correlated with water temperature at the spawning locations. We discuss this finding in the context of the increased water temperatures that have been recorded during the last 25 years in the study area.

  14. Evaluation of the intestinal permeability of rosemary (Rosmarinus officinalis L. extract polyphenols and terpenoids in Caco-2 cell monolayers.

    Directory of Open Access Journals (Sweden)

    Almudena Pérez-Sánchez

    Full Text Available Rosemary (Rosmarinus officinalis is grown throughout the world and is widely used as a medicinal herb and to season and preserve food. Rosemary polyphenols and terpenoids have attracted great interest due to their potential health benefits. However, complete information regarding their absorption and bioavailability in Caco-2 cell model is scarce. The permeation properties of the bioactive compounds (flavonoids, diterpenes, triterpenes and phenylpropanoids of a rosemary extract (RE, obtained by supercritical fluid extraction, was studied in Caco-2 cell monolayer model, both in a free form or liposomed. Compounds were identified and quantitated by liquid chromatography coupled to quadrupole time-of-flight with electrospray ionization mass spectrometry analysis (HPLC-ESI-QTOF-MS, and the apparent permeability values (Papp were determined, for the first time in the extract, for 24 compounds in both directions across cell monolayer. For some compounds, such as triterpenoids and some flavonoids, Papp values found were reported for the first time in Caco-2 cells.Our results indicate that most compounds are scarcely absorbed, and passive diffusion is suggested to be the primary mechanism of absorption. The use of liposomes to vehiculize the extract resulted in reduced permeability for most compounds. Finally, the biopharmaceutical classification (BCS of all the compounds was achieved according to their permeability and solubility data for bioequivalence purposes. BCS study reveal that most of the RE compounds could be classified as classes III and IV (low permeability; therefore, RE itself should also be classified into this category.

  15. Evaluation of the intestinal permeability of rosemary (Rosmarinus officinalis L.) extract polyphenols and terpenoids in Caco-2 cell monolayers

    Science.gov (United States)

    Arráez-Román, David; González-Álvarez, Isabel; Ibáñez, Elena; Segura-Carretero, Antonio; Bermejo, Marival; Micol, Vicente

    2017-01-01

    Rosemary (Rosmarinus officinalis) is grown throughout the world and is widely used as a medicinal herb and to season and preserve food. Rosemary polyphenols and terpenoids have attracted great interest due to their potential health benefits. However, complete information regarding their absorption and bioavailability in Caco-2 cell model is scarce. The permeation properties of the bioactive compounds (flavonoids, diterpenes, triterpenes and phenylpropanoids) of a rosemary extract (RE), obtained by supercritical fluid extraction, was studied in Caco-2 cell monolayer model, both in a free form or liposomed. Compounds were identified and quantitated by liquid chromatography coupled to quadrupole time-of-flight with electrospray ionization mass spectrometry analysis (HPLC-ESI-QTOF-MS), and the apparent permeability values (Papp) were determined, for the first time in the extract, for 24 compounds in both directions across cell monolayer. For some compounds, such as triterpenoids and some flavonoids, Papp values found were reported for the first time in Caco-2 cells.Our results indicate that most compounds are scarcely absorbed, and passive diffusion is suggested to be the primary mechanism of absorption. The use of liposomes to vehiculize the extract resulted in reduced permeability for most compounds. Finally, the biopharmaceutical classification (BCS) of all the compounds was achieved according to their permeability and solubility data for bioequivalence purposes. BCS study reveal that most of the RE compounds could be classified as classes III and IV (low permeability); therefore, RE itself should also be classified into this category. PMID:28234919

  16. Turning up the heat: increasing temperature and coral bleaching at the high latitude coral reefs of the Houtman Abrolhos Islands.

    Science.gov (United States)

    Abdo, David A; Bellchambers, Lynda M; Evans, Scott N

    2012-01-01

    Coral reefs face increasing pressures particularly when on the edge of their distributions. The Houtman Abrolhos Islands (Abrolhos) are the southernmost coral reef system in the Indian Ocean, and one of the highest latitude reefs in the world. These reefs have a unique mix of tropical and temperate marine fauna and flora and support 184 species of coral, dominated by Acropora species. A significant La Niña event during 2011 produced anomalous conditions of increased temperature along the whole Western Australian coastline, producing the first-recorded widespread bleaching of corals at the Abrolhos. We examined long term trends in the marine climate at the Abrolhos using historical sea surface temperature data (HadISST data set) from 1900-2011. In addition in situ water temperature data for the Abrolhos (from data loggers installed in 2008, across four island groups) were used to determine temperature exposure profiles. Coupled with the results of coral cover surveys conducted annually since 2007; we calculated bleaching thresholds for monitoring sites across the four Abrolhos groups. In situ temperature data revealed maximum daily water temperatures reached 29.54°C in March 2011 which is 4.2°C above mean maximum daily temperatures (2008-2010). The level of bleaching varied across sites with an average of ∼12% of corals bleached. Mortality was high, with a mean ∼50% following the 2011 bleaching event. Prior to 2011, summer temperatures reached a mean (across all monitoring sites) of 25.1°C for 2.5 days. However, in 2011 temperatures reached a mean of 28.1°C for 3.3 days. Longer term trends (1900-2011) showed mean annual sea surface temperatures increase by 0.01°C per annum. Long-term temperature data along with short-term peaks in 2011, outline the potential for corals to be exposed to more frequent bleaching risk with consequences for this high latitude coral reef system at the edge of its distribution.

  17. Light availability and temperature, not increased CO2, will structure future meadows of Posidonia oceanica

    KAUST Repository

    Hendriks, Iris E.; Olsen, Ylva S.; Duarte, Carlos M.

    2017-01-01

    We evaluated the photosynthetic performance of Posidonia oceanica during short-term laboratory exposures to ambient and elevated temperatures (24–25°C and 29–30°C) warming and pCO2 (380, 750 and 1000ppm pCO2) under normal and low light conditions (200 and 40μmol photons m−2s−1 respectively). Plant growth was measured at the low light regime and showed a negative response to warming. Light was a critical factor for photosynthetic performance, although we found no evidence of compensation of photosynthetic quantum efficiency in high light. Relative Electron Rate Transport (rETRmax) was higher in plants incubated in high light, but not affected by pCO2 or temperature. The saturation irradiance (Ik) was negatively affected by temperature. We conclude that elevated CO2 does not enhance photosynthetic activity and growth, in the short term for P. oceanica, while temperature has a direct negative effect on growth. Low light availability also negatively affected photosynthetic performance during the short experimental period examined here. Therefore increasing concentrations of CO2 may not compensate for predicted future conditions of warmer water and higher turbidity for seagrass meadows.

  18. Light availability and temperature, not increased CO2, will structure future meadows of Posidonia oceanica

    KAUST Repository

    Hendriks, Iris E.

    2017-02-15

    We evaluated the photosynthetic performance of Posidonia oceanica during short-term laboratory exposures to ambient and elevated temperatures (24–25°C and 29–30°C) warming and pCO2 (380, 750 and 1000ppm pCO2) under normal and low light conditions (200 and 40μmol photons m−2s−1 respectively). Plant growth was measured at the low light regime and showed a negative response to warming. Light was a critical factor for photosynthetic performance, although we found no evidence of compensation of photosynthetic quantum efficiency in high light. Relative Electron Rate Transport (rETRmax) was higher in plants incubated in high light, but not affected by pCO2 or temperature. The saturation irradiance (Ik) was negatively affected by temperature. We conclude that elevated CO2 does not enhance photosynthetic activity and growth, in the short term for P. oceanica, while temperature has a direct negative effect on growth. Low light availability also negatively affected photosynthetic performance during the short experimental period examined here. Therefore increasing concentrations of CO2 may not compensate for predicted future conditions of warmer water and higher turbidity for seagrass meadows.

  19. Development and evaluation of a HEPA filter for increased strength and resistance to elevated temperature

    International Nuclear Information System (INIS)

    Gilbert, H.; Bergman, W.; Fretthold, J.K.

    1992-01-01

    We have developed an improved HEPA filter for increased strength and resistance to elevated temperature to improve the reliability of HEPA filters under accident conditions. The improvements to the HEPA filter consist of a silicone rubber sealant and a new HEPA medium reinforced with a glass cloth. Several prototype filters were built and evaluated for temperature and pressure resistance and resistance to rough handling. The temperature resistance test consisted of exposing the HEPA filter to 1,000 scan at 700 degrees F for five minutes. The pressure resistance test consisted of exposing the HEPA filter to a differential pressure of 10 in. w.g. using a water saturated air flow at 95 degrees F. For the rough handling test, we used a vibrating machine designated the Q110. DOP filter efficiency tests were performed before and after each of the environmental tests. In addition to following the standard practice of using a separate new filter for each environmental test, we also subjected the same filter to the elevated temperature test followed by the pressure resistance test. The efficiency test results show that the improved HEPA filter is significantly better than the standard HEPA filter

  20. Whole-body cryostimulation increases parasympathetic outflow and decreases core body temperature.

    Science.gov (United States)

    Zalewski, Pawel; Bitner, Anna; Słomko, Joanna; Szrajda, Justyna; Klawe, Jacek J; Tafil-Klawe, Malgorzata; Newton, Julia L

    2014-10-01

    The cardiovascular, autonomic and thermal response to whole-body cryostimulation exposure are not completely known. Thus the aim of this study was to evaluate objectively and noninvasively autonomic and thermal reactions observed after short exposure to very low temperatures. We examined 25 healthy men with mean age 30.1 ± 3.7 years and comparable anthropomorphical characteristic. Each subject was exposed to cryotherapeutic temperatures in a cryogenic chamber for 3 min (approx. -120 °C). The cardiovascular and autonomic parameters were measured noninvasively with Task Force Monitor. The changes in core body temperature were determined with the Vital Sense telemetric measurement system. Results show that 3 min to cryotherapeutic temperatures causes significant changes in autonomic balance which are induced by peripheral and central blood volume changes. Cryostimulation also induced changes in core body temperature, maximum drop of core temperature was observed 50-60 min after the stimulation. Autonomic and thermal reactions to cryostimulation were observed up to 6 h after the exposure and were not harmful for examined subjects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Increased Heat Generation in Postcardiac Arrest Patients During Targeted Temperature Management Is Associated With Better Outcomes.

    Science.gov (United States)

    Uber, Amy J; Perman, Sarah M; Cocchi, Michael N; Patel, Parth V; Ganley, Sarah E; Portmann, Jocelyn M; Donnino, Michael W; Grossestreuer, Anne V

    2018-04-03

    relationship between outcomes and time to Ttarget was no longer significant. Controlling for location, witnessed arrest, age, initial rhythm, and neuromuscular blockade use, increased heat generation was associated with better neurologic (adjusted odds ratio, 1.01 [95% CI, 1.00-1.03]; p = 0.039) and survival (adjusted odds ratio, 1.01 [95% CI, 1.00-1.03]; p = 0.045) outcomes. Increased heat generation during targeted temperature management initiation is associated with better outcomes at hospital discharge and may affect the relationship between time to Ttarget and outcomes.

  2. Enhanced Stability of a Protein with Increasing Temperature

    DEFF Research Database (Denmark)

    Vinther, Joachim Møllesøe; Kristensen, Søren M; Led, Jens J

    2010-01-01

    The unusual stability of a structured but locally flexible protein, human growth hormone (hGH) at pH 2.7, was investigated using the temperature dependence of the nanosecond-picosecond dynamics of the backbone amide groups obtained from (15)N NMR relaxation data. It is found that the flexibility ...

  3. Why is magnesium diboride's superconducting temperature increased by the hydrogenation process?

    International Nuclear Information System (INIS)

    Flaumbaum, V.V.; Russell, G.J.; Stewart, G.A.

    2002-01-01

    Full text: This work demonstrates that the superconducting transition temperature for MgB 2 can be increased significantly by the hydrogenation process. A preliminary electronic report has already been placed on the archival web site http://au.arXiv.org/with reference number cond-mat/0112301. Given that there appears not to be a large enough interstitial site to accommodate the hydrogen, it is not yet clear what mechanism is involved. The justification for attempting hydrogenation was that metallic Pd becomes a superconductor when it is hydrogenated. We exposed MgB 2 powder to pure hydrogen gas in a stainless steel chamber and heated it. Before removing the specimen, the chamber was cooled in liquid N 2 and opened to air. This was an attempt to 'poison' the specimen's surface. The T c , determined using ac susceptibility, was found to increased for all hydrogenated specimens. The largest increase achieved so far is AT C ∼1.25 K for a specimen hydrogenated under 10 atm H 2 at 600 deg C for 2 hours (H/MgB 2 ∼ 0.03). However, the optimum conditions are yet to be determined. A further complication is that a similar effect (albeit smaller) is obtained by subjecting the MgB 2 to the same process but with helium or argon gas instead of hydrogen

  4. Endangerment of thermophilous flora even under conditions of increasing environmental temperatures

    Directory of Open Access Journals (Sweden)

    Vladimír Růžička

    2004-01-01

    Full Text Available As mentioned earlier, it is not true that some bulbous species from the family Orchidaceae are able to survive only mycotrophically, i. e. without formation of stalk. Our observations, especially of Ophrys apifera, have demonstrated (in the Czech Republic that the durability of adult plants is very short so that their numbers are fluctuating. The dying can be caused by several factors. Frost damages followed by rotting of underground parts (roots and bulbs are relatively frequent. The leaf rosette, which is the most resistant, dies as the last, usually later in the spring of the following year. This means that the frost damage is often not identified during the cursory visually control in the spring. We observated very extensive damaging and dying of the Orchidaceae after the winter of 2002/03 - on the turn of November and December 2002, there was a rapid onset of very strong black frost after a long, wet and relatively mild autumn. Consequently 80% of population perished. None specimens of Ophrys apifera and/or Himantoglossum adriaticum came into blossom in 2003 and other species were strongly damaged. Our observations document that the general increase in air temperatures need not result in the occurrence of generally expected better growing conditions for some thermophilous species. It is very probable that the extremes climatic conditions could show greater effects than the general increase in average temperatures. Such phenomena are well-known but in practice they are not noticed and/or are explained in a different way. Such risks can exist in the whole Central European region. Negative effects of frosts in winter 2002/03 were further intensified by long and extreme droughts in the growing season of the year 2003. Combination of these extremes was crucial for the species Gentianella bohemica: In average, 95% of specimens in each population perished. If the fluctuations in climatic conditions will be more frequent, some species can become

  5. Increasing sea surface temperature and range shifts of intertidal gastropods along the Iberian Peninsula

    Science.gov (United States)

    Rubal, Marcos; Veiga, Puri; Cacabelos, Eva; Moreira, Juan; Sousa-Pinto, Isabel

    2013-03-01

    There are well-documented changes in abundance and geographical range of intertidal invertebrates related to climate change at north Europe. However, the effect of sea surface warming on intertidal invertebrates has been poorly studied at lower latitudes. Here we analyze potential changes in the abundance patterns and distribution range of rocky intertidal gastropods related to climate change along the Iberian Peninsula. To achieve this aim, the spatial distribution and range of sub-tropical, warm- and cold-water species of intertidal gastropods was explored by a fully hierarchical sampling design considering four different spatial scales, i.e. from region (100 s of km apart) to quadrats (ms apart). Variability on their patterns of abundance was explored by analysis of variance, changes on their distribution ranges were detected by comparing with previous records and their relationship with sea water temperature was explored by rank correlation analyses. Mean values of sea surface temperature along the Iberian coast, between 1949 and 2010, were obtained from in situ data compiled for three different grid squares: south Portugal, north Portugal, and Galicia. Lusitanian species did not show significant correlation with sea water temperature or changes on their distributional range or abundance, along the temperature gradient considered. The sub-tropical species Siphonaria pectinata has, however, increased its distribution range while boreal cold-water species showed the opposite pattern. The latter was more evident for Littorina littorea that was almost absent from the studied rocky shores of the Iberian Peninsula. Sub-tropical and boreal species showed significant but opposite correlation with sea water temperature. We hypothesized that the energetic cost of frequent exposures to sub-lethal temperatures might be responsible for these shifts. Therefore, intertidal gastropods at the Atlantic Iberian Peninsula coast are responding to the effect of global warming as it

  6. The effect of increasing water temperatures on Schistosoma mansoni transmission and Biomphalaria pfeifferi population dynamics: an agent-based modelling study.

    Directory of Open Access Journals (Sweden)

    Nicky McCreesh

    Full Text Available There is increasing interest in the control and elimination of schistosomiasis. Little is known, however, about the likely effects of increasing water-body temperatures on transmission.We have developed an agent-based model of the temperature-sensitive stages of the Schistosoma and intermediate host snail life-cycles, parameterised using data from S. mansoni and Biomphalaria pfeifferi laboratory and field-based observations. Infection risk is calculated as the number of cercariae in the model, adjusted for their probability of causing infection.The number of snails in the model is approximately constant between 15-31°C. Outside this range, snail numbers drop sharply, and the snail population cannot survive outside the range 14-32°C. Mean snail generation time decreases with increasing temperature from 176 days at 14°C to 46 days at 26°C. Human infection risk is highest between 16-18°C and 1pm and 6-10pm in calm water, and 20-25°C and 12-4pm in flowing water. Infection risk increases sharply when temperatures increase above the minimum necessary for sustained transmission.The model suggests that, in areas where S. mansoni is already endemic, warming of the water at transmission sites will have differential effects on both snails and parasites depending on abiotic properties of the water-body. Snail generation times will decrease in most areas, meaning that snail populations will recover faster from natural population reductions and from snail-control efforts. We suggest a link between the ecological properties of transmission sites and infection risk which could significantly affect the outcomes of interventions designed to alter water contact behaviour--proposing that such interventions are more likely to reduce infection levels at river locations than lakes, where infection risk remains high for longer. In cooler areas where snails are currently found, increasing temperatures may significantly increase infection risk, potentially leading

  7. Prediction of temperature increases in a salt repository expected from the storage of spent fuel or high-level waste

    International Nuclear Information System (INIS)

    Llewellyn, G.H.

    1978-04-01

    Comparisons in temperature increases incurred from hypothetical storage of 133 MW of 10-year-old spent fuel (SF) or high-level waste (HLW) in underground salt formations have been made using the HEATING5 computer code. The comparisons are based on far-field homogenized models that cover areas of 65 and 25 sq miles for SF and HLW, respectively, and near-field unit-cell models covering respective areas of 610 ft 2 and 400 ft 2 . Preliminary comparisons based on heat loads of 150 kW/acre and 3.5 kW/canister indicated near-field temperature increases about 20% higher for the storage of the spent fuel than for the high-level waste. In these comparisons, it was also found that the thermal energy deposited in the salt after 500 years is about twice the energy deposited by the high-level waste. The thermal load in a repository containing 10-year-old spent fuel was thus limited to 60 kW/acre to obtain comparable far-field thermal effects as obtained in a repository containing 10-year-old high-level waste loaded at 150 kW/acre. Detailed far-field and unit-cell comparisons of transient temperature increases have been made based on these loadings. Unit-cell comparisons were made between a canister containing high-level waste with an initial heat production rate of 2.1 kW and a canister containing a PWR spent fuel assembly producing 0.55 kW. Using a three-dimensional unit-cell model, a maximum salt temperature increase of 260 0 F was calculated for the high-level waste prior to back-filling (5 years after burial), whereas a maximum temperature increase of 110 0 F was calculated for the spent fuel prior to backfilling (25 years after burial). Comparisons were also made between various configurational models for the high-level waste showing the applicability of each model

  8. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests

    Directory of Open Access Journals (Sweden)

    Lori D. Bothwell

    2014-12-01

    Full Text Available Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivity of leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical montane wet forests where the warming trend may be amplified compared to tropical wet forests at lower elevations. We quantified leaf litter decomposition rates along a highly constrained 5.2 °C mean annual temperature (MAT gradient in tropical montane wet forests on the Island of Hawaii. Dominant vegetation, substrate type and age, soil moisture, and disturbance history are all nearly constant across this gradient, allowing us to isolate the effect of rising MAT on leaf litter decomposition and nutrient release. Leaf litter decomposition rates were a positive linear function of MAT, causing the residence time of leaf litter on the forest floor to decline by ∼31 days for each 1 °C increase in MAT. Our estimate of the Q10 temperature coefficient for leaf litter decomposition was 2.17, within the commonly reported range for heterotrophic organic matter decomposition (1.5–2.5 across a broad range of ecosystems. The percentage of leaf litter nitrogen (N remaining after six months declined linearly with increasing MAT from ∼88% of initial N at the coolest site to ∼74% at the warmest site. The lack of net N immobilization during all three litter collection periods at all MAT plots indicates that N was not limiting to leaf litter decomposition, regardless of temperature. These results suggest that leaf litter decay in tropical montane wet forests may be more sensitive to rising MAT than in tropical lowland wet forests, and that increased rates of N release from decomposing litter could delay or prevent progressive N limitation to net primary productivity with climate warming.

  9. Time series modelling of increased soil temperature anomalies during long period

    Science.gov (United States)

    Shirvani, Amin; Moradi, Farzad; Moosavi, Ali Akbar

    2015-10-01

    Soil temperature just beneath the soil surface is highly dynamic and has a direct impact on plant seed germination and is probably the most distinct and recognisable factor governing emergence. Autoregressive integrated moving average as a stochastic model was developed to predict the weekly soil temperature anomalies at 10 cm depth, one of the most important soil parameters. The weekly soil temperature anomalies for the periods of January1986-December 2011 and January 2012-December 2013 were taken into consideration to construct and test autoregressive integrated moving average models. The proposed model autoregressive integrated moving average (2,1,1) had a minimum value of Akaike information criterion and its estimated coefficients were different from zero at 5% significance level. The prediction of the weekly soil temperature anomalies during the test period using this proposed model indicated a high correlation coefficient between the observed and predicted data - that was 0.99 for lead time 1 week. Linear trend analysis indicated that the soil temperature anomalies warmed up significantly by 1.8°C during the period of 1986-2011.

  10. Increasing minimum daily temperatures are associated with enhanced pesticide use in cultivated soybean along a latitudinal gradient in the mid-western United States.

    Directory of Open Access Journals (Sweden)

    Lewis H Ziska

    Full Text Available Assessments of climate change and food security often do not consider changes to crop production as a function of altered pest pressures. Evaluation of potential changes may be difficult, in part, because management practices are routinely utilized in situ to minimize pest injury. If so, then such practices, should, in theory, also change with climate, although this has never been quantified. Chemical (pesticide applications remain the primary means of managing pests in industrialized countries. While a wide range of climate variables can influence chemical use, minimum daily temperature (lowest 24 h recorded temperature in a given year can be associated with the distribution and thermal survival of many agricultural pests in temperate regions. The current study quantifies average pesticide applications since 1999 for commercial soybean grown over a 2100 km North-South latitudinal transect for seven states that varied in minimum daily temperature (1999-2013 from -28.6°C (Minnesota to -5.1°C (Louisiana. Although soybean yields (per hectare did not vary by state, total pesticide applications (kg of active ingredient, ai, per hectare increased from 4.3 to 6.5 over this temperature range. Significant correlations were observed between minimum daily temperatures and kg of ai for all pesticide classes. This suggested that minimum daily temperature could serve as a proxy for pesticide application. Longer term temperature data (1977-2013 indicated greater relative increases in minimum daily temperatures for northern relative to southern states. Using these longer-term trends to determine short-term projections of pesticide use (to 2023 showed a greater comparative increase in herbicide use for soybean in northern; but a greater increase in insecticide and fungicide use for southern states in a warmer climate. Overall, these data suggest that increases in pesticide application rates may be a means to maintain soybean production in response to rising

  11. Increased air temperature during simulated autumn conditions does not increase photosynthetic carbon gain but affects the dissipation of excess energy in seedlings of the evergreen conifer Jack pine.

    Science.gov (United States)

    Busch, Florian; Hüner, Norman P A; Ensminger, Ingo

    2007-03-01

    Temperature and daylength act as environmental signals that determine the length of the growing season in boreal evergreen conifers. Climate change might affect the seasonal development of these trees, as they will experience naturally decreasing daylength during autumn, while at the same time warmer air temperature will maintain photosynthesis and respiration. We characterized the down-regulation of photosynthetic gas exchange and the mechanisms involved in the dissipation of energy in Jack pine (Pinus banksiana) in controlled environments during a simulated summer-autumn transition under natural conditions and conditions with altered air temperature and photoperiod. Using a factorial design, we dissected the effects of daylength and temperature. Control plants were grown at either warm summer conditions with 16-h photoperiod and 22 degrees C or conditions representing a cool autumn with 8 h/7 degrees C. To assess the impact of photoperiod and temperature on photosynthesis and energy dissipation, plants were also grown under either cold summer (16-h photoperiod/7 degrees C) or warm autumn conditions (8-h photoperiod/22 degrees C). Photosynthetic gas exchange was affected by both daylength and temperature. Assimilation and respiration rates under warm autumn conditions were only about one-half of the summer values but were similar to values obtained for cold summer and natural autumn treatments. In contrast, photosynthetic efficiency was largely determined by temperature but not by daylength. Plants of different treatments followed different strategies for dissipating excess energy. Whereas in the warm summer treatment safe dissipation of excess energy was facilitated via zeaxanthin, in all other treatments dissipation of excess energy was facilitated predominantly via increased aggregation of the light-harvesting complex of photosystem II. These differences were accompanied by a lower deepoxidation state and larger amounts of beta-carotene in the warm autumn

  12. Cooler temperatures destabilize RNA interference and increase susceptibility of disease vector mosquitoes to viral infection.

    Directory of Open Access Journals (Sweden)

    Zach N Adelman

    Full Text Available The impact of global climate change on the transmission dynamics of infectious diseases is the subject of extensive debate. The transmission of mosquito-borne viral diseases is particularly complex, with climatic variables directly affecting many parameters associated with the prevalence of disease vectors. While evidence shows that warmer temperatures often decrease the extrinsic incubation period of an arthropod-borne virus (arbovirus, exposure to cooler temperatures often predisposes disease vector mosquitoes to higher infection rates. RNA interference (RNAi pathways are essential to antiviral immunity in the mosquito; however, few experiments have explored the effects of temperature on the RNAi machinery.We utilized transgenic "sensor" strains of Aedes aegypti to examine the role of temperature on RNA silencing. These "sensor" strains express EGFP only when RNAi is inhibited; for example, after knockdown of the effector proteins Dicer-2 (DCR-2 or Argonaute-2 (AGO-2. We observed an increase in EGFP expression in transgenic sensor mosquitoes reared at 18°C as compared with 28°C. Changes in expression were dependent on the presence of an inverted repeat with homology to a portion of the EGFP sequence, as transgenic strains lacking this sequence, the double stranded RNA (dsRNA trigger for RNAi, showed no change in EGFP expression when reared at 18°C. Sequencing small RNAs in sensor mosquitoes reared at low temperature revealed normal processing of dsRNA substrates, suggesting the observed deficiency in RNAi occurs downstream of DCR-2. Rearing at cooler temperatures also predisposed mosquitoes to higher levels of infection with both chikungunya and yellow fever viruses.This data suggest that microclimates, such as those present in mosquito breeding sites, as well as more general climactic variables may influence the dynamics of mosquito-borne viral diseases by affecting the antiviral immunity of disease vectors.

  13. Children and adults exposed to electromagnetic fields at the ICNIRP reference levels: theoretical assessment of the induced peak temperature increase.

    Science.gov (United States)

    Bakker, J F; Paulides, M M; Neufeld, E; Christ, A; Kuster, N; van Rhoon, G C

    2011-08-07

    To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels. Restrictions on induced whole-body-averaged specific absorption rate (SAR(wb)) are provided to keep the whole-body temperature increase (T(body, incr)) under 1 °C during 30 min. Additional restrictions on the peak 10 g spatial-averaged SAR (SAR(10g)) are provided to prevent excessive localized tissue heating. The objective of this study is to assess the localized peak temperature increase (T(incr, max)) in children upon exposure at the reference levels. Finite-difference time-domain modeling was used to calculate T(incr, max) in six children and two adults exposed to orthogonal plane-wave configurations. We performed a sensitivity study and Monte Carlo analysis to assess the uncertainty of the results. Considering the uncertainties in the model parameters, we found that a peak temperature increase as high as 1 °C can occur for worst-case scenarios at the ICNIRP reference levels. Since the guidelines are deduced from temperature increase, we used T(incr, max) as being a better metric to prevent excessive localized tissue heating instead of localized peak SAR. However, we note that the exposure time should also be considered in future guidelines. Hence, we advise defining limits on T(incr, max) for specified durations of exposure.

  14. Ciguatera incidence in the US Virgin Islands has not increased over a 30-year time period despite rising seawater temperatures.

    Science.gov (United States)

    Radke, Elizabeth G; Grattan, Lynn M; Cook, Robert L; Smith, Tyler B; Anderson, Donald M; Morris, J Glenn

    2013-05-01

    Ciguatera fish poisoning is the most common marine food poisoning worldwide. It has been hypothesized that increasing seawater temperature will result in increasing ciguatera incidence. In St. Thomas, US Virgin Islands, we performed an island-wide telephone survey (N = 807) and a medical record review of diagnosed ciguatera cases at the emergency department of the sole hospital and compared these data with comparable data sources collected in 1980. Annual incidence from both recent data sources remained high (12 per 1,000 among adults in the telephone survey). However, the combined data sources suggest that incidence has declined by 20% or more or remained stable over 30 years, whereas seawater temperatures were increasing. Illness was associated with lower education levels, higher levels of fish consumption, and having previous episodes of ciguatera; population shifts from 1980 to 2010 in these factors could explain an incidence decline of approximately 3 per 1,000, obscuring effects from rising seawater temperature.

  15. Multi-Temperature Zone, Droplet-based Microreactor for Increased Temperature Control in Nanoparticle Synthesis

    KAUST Repository

    Erdem, E. Yegân

    2013-12-12

    Microreactors are an emerging technology for the controlled synthesis of nanoparticles. The Multi-Temperature zone Microreactor (MTM) described in this work utilizes thermally isolated heated and cooled regions for the purpose of separating nucleation and growth processes as well as to provide a platform for a systematic study on the effect of reaction conditions on nanoparticle synthesis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Children and adults exposed to electromagnetic fields at the ICNIRP reference levels: theoretical assessment of the induced peak temperature increase

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, J F; Paulides, M M; Van Rhoon, G C [Erasmus MC-Daniel den Hoed Cancer Center, Department of Radiation Oncology, Section Hyperthermia, PO Box 5201, NL-3008 AE, Rotterdam (Netherlands); Neufeld, E; Christ, A; Kuster, N, E-mail: j.bakker@erasmusmc.nl [Foundation for Research on Information Technologies in Society (IT' IS) (Switzerland)

    2011-08-07

    To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels. Restrictions on induced whole-body-averaged specific absorption rate (SAR{sub wb}) are provided to keep the whole-body temperature increase (T{sub body,incr}) under 1 deg. C during 30 min. Additional restrictions on the peak 10 g spatial-averaged SAR (SAR{sub 10g}) are provided to prevent excessive localized tissue heating. The objective of this study is to assess the localized peak temperature increase (T{sub incr,max}) in children upon exposure at the reference levels. Finite-difference time-domain modeling was used to calculate T{sub incr,max} in six children and two adults exposed to orthogonal plane-wave configurations. We performed a sensitivity study and Monte Carlo analysis to assess the uncertainty of the results. Considering the uncertainties in the model parameters, we found that a peak temperature increase as high as 1 deg. C can occur for worst-case scenarios at the ICNIRP reference levels. Since the guidelines are deduced from temperature increase, we used T{sub incr,max} as being a better metric to prevent excessive localized tissue heating instead of localized peak SAR. However, we note that the exposure time should also be considered in future guidelines. Hence, we advise defining limits on T{sub incr,max} for specified durations of exposure.

  17. Análisis de iridoides y expresión de genes que codifican enzimas tempranas en la síntesis de alcaloides indol terpenoicos en Catharanthus roseus Analysis of iridoids content and expression studies of genes encoding early enzymes in the indol terpenoid biosynthesis pathway in Catharanthus roseus

    OpenAIRE

    Palacios-Rojas Natalia; Leech Mark

    2004-01-01

    Los alcaloides indol terpenoicos (TIA) son metabolitos secundarios de importancia medicinal por sus propiedades como agentes anticancerígenos, entre otras. Sin embargo, su explotación en la industria farmacéutica se ha visto limitada, ya que la acumulación de estos compuestos en las plantas que los producen es mínima. Dichos alcaloides son biosintetizados por la vía del shikimato y de los terpenoides, los cuales proveen los precursores: secologanina y triptamina, respectivamente. La secologan...

  18. The effect of climate variability on urinary stone attacks: increased incidence associated with temperature over 18 °C: a population-based study.

    Science.gov (United States)

    Park, Hyoung Keun; Bae, Sang Rak; Kim, Satbyul E; Choi, Woo Suk; Paick, Sung Hyun; Ho, Kim; Kim, Hyeong Gon; Lho, Yong Soo

    2015-02-01

    The aim of this study was to evaluate the effect of seasonal variation and climate parameters on urinary tract stone attack and investigate whether stone attack is increased sharply at a specific point. Nationwide data of total urinary tract stone attack numbers per month between January 2006 and December 2010 were obtained from the Korean Health Insurance Review and Assessment Service. The effects of climatic factors on monthly urinary stone attack were assessed using auto-regressive integrated moving average (ARIMA) regression method. A total of 1,702,913 stone attack cases were identified. Mean monthly and monthly average daily urinary stone attack cases were 28,382 ± 2,760 and 933 ± 85, respectively. The stone attack showed seasonal trends of sharp incline in June, a peak plateau from July to September, and a sharp decline after September. The correlation analysis showed that ambient temperature (r = 0.557, p r = 0.513, p stone attack cases. However, after adjustment for trends and seasonality, ambient temperature was the only climate factor associated with the stone attack cases in ARIMA regression test (p = 0.04). Threshold temperature was estimated as 18.4 °C. Risk of urinary stone attack significantly increases 1.71% (1.02-2.41 %, 95% confidence intervals) with a 1 °C increase of ambient temperature above the threshold point. In conclusion, monthly urinary stone attack cases were changed according to seasonal variation. Among the climates variables, only temperature had consistent association with stone attack and when the temperature is over 18.4 °C, urinary stone attack would be increased sharply.

  19. Implications of Climate-enforced Temperature Increases on Freshwater Pico- and Nanoplankton Populations Studied in Artificial Ponds During 16 Months

    DEFF Research Database (Denmark)

    Christoffersen, K.; Andersen, Nethe; Søndergaard, M.

    2006-01-01

    + with an additional 50% temperature increase. Half of the mesocosms were enriched with nitrogen and phosphorus to simulate increased runoff from terrestrial sources due to the increased precipitation predicted by the A2 scenario. The other half were un-enriched and received only natural nutrient input from...

  20. Development and evaluation of a HEPA filter for increased strength and resistance to elevated temperature

    International Nuclear Information System (INIS)

    Gilbert, H.; Bergman, W.; Fretthold, J.K.

    1993-01-01

    We have completed a preliminary study of an improved HEPA filter for increased strength and resistance to elevated temperature to improve the reliability of the standard deep pleated HEPA filter under accident conditions. The improvements to the HEPA filter consist of a silicone rubber sealant and a new HEPA medium reinforced with a glass cloth. Three prototype filters were built and evaluated for temperature and pressure resistance and resistance to rough handling. The temperature resistance test consisted of exposing the HEPA filter to 1,000 scan (1,700 m 3 /hr) at 700 degrees F (371 degrees C) for five minutes.The pressure resistance test consisted of exposing the HEPA filter to a differential pressure of 10 in. w.g. (2.5 kPa) using a water saturated air flow at 95 degrees F (35 degrees C). For the rough handling test, we used a vibrating machine designated the Q110. DOP filter efficiency tests were performed before and after each of the environmental tests. In addition to following the standard practice of using a separate new filter for each environmental test, we also subjected the same filter to the elevated temperature test followed by the pressure resistance test. The efficiency test results show that the improved HEPA filter is significantly better than the standard HEPA filter. Further studies are recommended to evaluate the improved HEPA filter and to assess its performance under more severe accident conditions

  1. Cranking up the heat: relationships between energetically costly song features and the increase in thorax temperature in male crickets and katydids.

    Science.gov (United States)

    Erregger, Bettina; Kovac, Helmut; Stabentheiner, Anton; Hartbauer, Manfred; Römer, Heinrich; Schmidt, Arne K D

    2017-07-15

    Sexual displays of acoustically signalling insects are used in the context of mate attraction and mate choice. While energetic investment in sound production can increase the reproductive success of the sender, this entails metabolic costs. Resource allocation to sexually selected, reproductive traits can trade off against allocation to naturally selected traits (e.g. growth, immunity) when individuals' energy budgets are limited. Estimating the magnitude of the costs invested in acoustic signalling is necessary to understand this trade-off and its influence on fitness and life history. To compare the costs associated with acoustic signalling for two ensiferan species, we simultaneously took respiratory measurements to record the rate of CO 2 production and used infrared thermography to measure the increase in thorax temperature. Furthermore, to identify what combinations of acoustic parameters were energetically costly for the sender, we recorded the calling songs of 22 different cricket and katydid species for a comparative analysis and measured their thorax temperature while they sang. Acoustic signalling was energetically costly for Mecopoda sp. and Anurogryllus muticus , requiring a 12- and 16-fold increase over resting levels in the CO 2 production rate. Moreover, calling increased thorax temperature, on average by 7.6 and 5.8°C, respectively. We found that the song intensity and effective calling rate, not simply the chirp/trill duty cycle or the pulse rate alone, were good predictors for the thorax temperature increase in males. © 2017. Published by The Company of Biologists Ltd.

  2. Increased Water Retention in Polymer Electrolyte Membranes at Elevated Temperatures Assisted by Capillary Condensation

    International Nuclear Information System (INIS)

    Park, M.J.; Downing, K.H.; Jackson, A.; Gomez, E.D.; Minor, A.M.; Cookson, D.; Weber, A.Z.; Balsara, N.P.

    2007-01-01

    We establish a new systematic methodology for controlling the water retention of polymer electrolyte membranes. Block copolymer membranes comprising hydrophilic phases with widths ranging from 2 to 5 nm become wetter as the temperature of the surrounding air is increased at constant relative humidity. The widths of the moist hydrophilic phases were measured by cryogenic electron microscopy experiments performed on humid membranes. Simple calculations suggest that capillary condensation is important at these length scales. The correlation between moisture content and proton conductivity of the membranes is demonstrated.

  3. Increased water retention in polymer electrolyte membranes at elevated temperatures assisted by capillary condensation.

    Science.gov (United States)

    Park, Moon Jeong; Downing, Kenneth H; Jackson, Andrew; Gomez, Enrique D; Minor, Andrew M; Cookson, David; Weber, Adam Z; Balsara, Nitash P

    2007-11-01

    We establish a new systematic methodology for controlling the water retention of polymer electrolyte membranes. Block copolymer membranes comprising hydrophilic phases with widths ranging from 2 to 5 nm become wetter as the temperature of the surrounding air is increased at constant relative humidity. The widths of the moist hydrophilic phases were measured by cryogenic electron microscopy experiments performed on humid membranes. Simple calculations suggest that capillary condensation is important at these length scales. The correlation between moisture content and proton conductivity of the membranes is demonstrated.

  4. Biochar increases plant growth and alters microbial communities via regulating the moisture and temperature of green roof substrates.

    Science.gov (United States)

    Chen, Haoming; Ma, Jinyi; Wei, Jiaxing; Gong, Xin; Yu, Xichen; Guo, Hui; Zhao, Yanwen

    2018-09-01

    Green roofs have increasingly been designed and applied to relieve environmental problems, such as water loss, air pollution as well as heat island effect. Substrate and vegetation are important components of green roofs providing ecosystem services and benefiting the urban development. Biochar made from sewage sludge could be potentially used as the substrate amendment for green roofs, however, the effects of biochar on substrate quality and plant performance in green roofs are still unclear. We evaluated the effects of adding sludge biochar (0, 5, 10, 15 and 20%, v/v) to natural soil planted with three types of plant species (ryegrass, Sedum lineare and cucumber) on soil properties, plant growth and microbial communities in both green roof and ground ecosystems. Our results showed that sludge biochar addition significantly increased substrate moisture, adjusted substrate temperature, altered microbial community structure and increased plant growth. The application rate of 10-15% sludge biochar on the green roof exerted the most significant effects on both microbial and plant biomass by 63.9-89.6% and 54.0-54.2% respectively. Path analysis showed that biochar addition had a strong effect on microbial biomass via changing the soil air-filled porosity, soil moisture and temperature, and promoted plant growth through the positive effects on microbial biomass. These results suggest that the applications of biochar at an appropriate rate can significantly alter plant growth and microbial community structure, and increase the ecological benefits of green roofs via exerting effects on the moisture, temperature and nutrients of roof substrates. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Increased temperature causes different carbon and nitrogen processing patterns in two common intertidal foraminifera (Ammonia tepida and Haynesina germanica)

    Science.gov (United States)

    Wukovits, Julia; Enge, Annekatrin Julie; Wanek, Wolfgang; Watzka, Margarete; Heinz, Petra

    2017-06-01

    Benthic foraminifera are highly abundant heterotrophic protists in marine sediments, but future environmental changes will challenge the tolerance limits of intertidal species. Metabolic rates and physiological processes in foraminifera are strongly dependent on environmental temperatures. Temperature-related stress could therefore impact foraminiferal food source processing efficiency and might result in altered nutrient fluxes through the intertidal food web. In this study, we performed a laboratory feeding experiment on Ammonia tepida and Haynesina germanica, two dominant foraminiferal species of the German Wadden Sea/Friedrichskoog, to test the effect of temperature on phytodetritus retention. The specimens were fed with 13C and 15N labelled freeze-dried Dunaliella tertiolecta (green algae) at the start of the experiment and were incubated at 20, 25 and 30 °C respectively. Dual labelling was applied to observe potential temperature effects on the relation of phytodetrital carbon and nitrogen retention. Samples were taken over a period of 2 weeks. Foraminiferal cytoplasm was isotopically analysed to investigate differences in carbon and nitrogen uptake derived from the food source. Both species showed a positive response to the provided food source, but carbon uptake rates of A. tepida were 10-fold higher compared to those of H. germanica. Increased temperatures had a far stronger impact on the carbon uptake of H. germanica than on A. tepida. A distinct increase in the levels of phytodetrital-derived nitrogen (compared to more steady carbon levels) could be observed over the course of the experiment in both species. The results suggest that higher temperatures have a significant negative effect on the carbon exploitation of H. germanica. For A. tepida, higher carbon uptake rates and the enhanced tolerance range for higher temperatures could outline an advantage in warmer periods if the main food source consists of chlorophyte phytodetritus. These conditions are

  6. Temperature and Snowfall in Western Queen Maud Land Increasing Faster Than Climate Model Projections

    Science.gov (United States)

    Medley, B.; McConnell, J. R.; Neumann, T. A.; Reijmer, C. H.; Chellman, N.; Sigl, M.; Kipfstuhl, S.

    2018-02-01

    East Antarctic Ice Sheet (EAIS) mass balance is largely driven by snowfall. Recently, increased snowfall in Queen Maud Land led to years of EAIS mass gain. It is difficult to determine whether these years of enhanced snowfall are anomalous or part of a longer-term trend, reducing our ability to assess the mitigating impact of snowfall on sea level rise. We determine that the recent snowfall increases in western Queen Maud Land (QML) are part of a long-term trend (+5.2 ± 3.7% decade-1) and are unprecedented over the past two millennia. Warming between 1998 and 2016 is significant and rapid (+1.1 ± 0.7°C decade-1). Using these observations, we determine that the current accumulation and temperature increases in QML from an ensemble of global climate simulations are too low, which suggests that projections of the QML contribution to sea level rise are potentially overestimated with a reduced mitigating impact of enhanced snowfall in a warming world.

  7. Bright upconversion luminescence and increased Tc in CaBi{sub 2}Ta{sub 2}O{sub 9}:Er high temperature piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Peng Dengfeng [Functional Materials Research Laboratory, Tongji University, 1239 Siping Road, Shanghai 200092 (China); National Institute of Advanced Industrial Science and Technology, Kyushu, 807-1 Shuku, Tosu, Saga 841-0052 (Japan); Wang Xusheng; Yao Xi [Functional Materials Research Laboratory, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Xu Chaonan [National Institute of Advanced Industrial Science and Technology, Kyushu, 807-1 Shuku, Tosu, Saga 841-0052 (Japan); Lin Jian; Sun Tiantuo [College of Material Science and Engineering, Tongji University, 4800 Cao' an Highway, Shanghai 201804 (China)

    2012-05-15

    Er{sup 3+} doped CaBi{sub 2}Ta{sub 2}O{sub 9} (CBT) bismuth layered-structure high temperature piezoelectric ceramics were synthesized by the traditional solid state method. The upconversion (UC) emission properties of Er{sup 3+} doped CBT ceramics were investigated as a function of Er{sup 3+} concentration and incident pump power. A bright green upconverted emission was obtained under excitation 980 nm at room temperature. The observed strong green and weak red emission bands corresponded to the transitions from {sup 4}S{sub 3/2} and {sup 4}F{sub 9/2} to {sup 4}I{sub 15/2}, respectively. The dependence of UC emission intensity on pumping power indicated that a three-photon process was involved in UC emissions. Studies of dielectric with temperature have also been carried out. Introduction of Er increased the Curie temperature of CBT, thus, making this ceramic suitable for sensor applications at higher temperatures. Because of its strong up-converted emission and increased Tc, the multifunctional high temperature piezoelectric ceramic may be useful in high temperature sensor, fluorescence thermometry, and optical-electro integration applications.

  8. Effects of increased CO[sub 2] concentration and temperature on growth and yield of winter wheat at two levels of nitrogen application

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R.A.C.; Mitchell, V.J.; Driscoll, S.P.; Franklin, J.; Lawlor, D.W. (Institute of Arable Crops Research, Harpenden (United Kingdom). Dept. of Biochemistry and Physiology)

    1993-06-01

    Winter wheat was grown in chambers under light and temperature conditions similar to the UK field environment for the 1990/1991 growing season at two levels each of atmospheric CO[sub 2] concentration (seasonal means: 361 nd 692 [mu]mol mol[sup -1]), temperature (tracking ambient and ambient +4[degree]C) and nitrogen application (equivalent to 87 and 489 kg ha[sub -1] total N applied). Total dry matter productivity through the season, the maximum number of shoots and final ear number were stimulated by CO[sub 2] enrichment at both levels of the temperature and N treatments. At high N, there was a CO[sub 2]-induced stimulation of grain yield (+15%) similar to that for total crop dry mass (+12%), and there was no significant interaction with temperature. Temperature had a direct, negative effect on yield at both levels of the N and CO[sub 2] treatments. This could be explained by the temperature-dependent shortening of the phenological stages, and therefore, the time available for accumulating resources for grain formation. At high N, there was also a reduction in grain set at ambient +4[degree]C temperature, but the overall negative effect of warmer temperature was greater on the number of grains (-37%) than on yield (-18%), due to a compensating increase in average grain mass. At low N, despite increasing total crop dry mass and the number of ears, elevated CO[sub 2] did not increase grain yield and caused a significant decrease under ambient temperature conditions. This can be explained in terms of a stimulation of early vegetative growth by CO[sub 2] enrichment leading to a reduction in the amount of N available later for the formation and filling of grain.

  9. Neutrophil elastase-mediated increase in airway temperature during inflammation

    DEFF Research Database (Denmark)

    Schmidt, Annika; Belaaouaj, Azzaq; Bissinger, Rosi

    2014-01-01

    in the exhaled air of cystic fibrosis (CF) patients. To further test our hypothesis, a pouch inflammatory model using neutrophil elastase-deficient mice was employed. Next, the impact of temperature changes on the dominant CF pathogen Pseudomonas aeruginosa growth was tested by plating method and RNAseq. Results...

  10. Terpenoid biosynthesis in Arabidopsis attacked by caterpillars and aphids: effects of aphid density on the attraction of a caterpillar parasitoid.

    Science.gov (United States)

    Kroes, Anneke; Weldegergis, Berhane T; Cappai, Francesco; Dicke, Marcel; van Loon, Joop J A

    2017-12-01

    One of the responses of plants to insect attack is the production of volatile organic compounds that mediate indirect defence of plants by attracting natural enemies of the attacking herbivores. Herbivore-induced plant volatiles (HIPVs) include terpenoids that play key roles in the attraction of natural enemies. Crosstalk between phytohormonal signalling pathways is well known to affect the regulation of plant defences, including the emission of HIPVs. Thus, simultaneous feeding on the same plant by caterpillars and aphids, can affect the attraction of parasitoids by the plant compared to single insect attack. The role of aphid density in the regulation of HIPV emission by plants under dual attack has not been studied previously. Here, we investigated the attraction of Diadegma semiclausum, a parasitoid of the Diamondback moth Plutella xylostella, to volatiles emitted by Arabidopsis thaliana plants, simultaneously attacked by host caterpillars, and by the non-host aphid Brevicoryne brassicae. Our study shows that the effect of aphid infestation on parasitoid attraction is influenced by the density of the aphids. Biosynthesis and emission of (E,E)-α-farnesene could be linked to the observed preference of D. semiclausum parasitoids for the HIPV blend emitted by plants dually infested by caterpillars and aphids at a high density compared to dually infested plants with a low aphid density. Parasitoids such as D. semiclausum are important enemies of herbivorous insects and a better understanding of how plants express indirect defence mechanisms in response to multiple insect attack will provide important knowledge on plant-herbivore-parasitoid interactions under multiple stress conditions.

  11. Interactive effects of near-future temperature increase and ocean acidification on physiology and gonad development in adult Pacific sea urchin, Echinometra sp . A

    Science.gov (United States)

    Uthicke, S.; Liddy, M.; Nguyen, H. D.; Byrne, M.

    2014-09-01

    Increased atmospheric CO2 will have a twofold impact on future marine ecosystems, increasing global sea surface temperatures and uptake of CO2 (Ocean Acidification). Many experiments focus on the investigation of one of these stressors, but under realistic future climate predictions, these stressors may have interactive effects on individuals. Here, we investigate the effect of warming and acidification in combination. We test for interactive effects of potential near-future (2100) temperature (+2 to 3 °C) and pCO2 (~860-940 μAtm) levels on the physiology of the tropical echinoid Echinometra sp . A. The greatest reduction in growth was under simultaneous temperature and pH/ pCO2 stress (marginally significant temperature × pH/ pCO2 interaction). This was mirrored by the physiological data, with highest metabolic activity (measured as respiration and ammonium excretion) occurring at the increased temperature and pCO2 treatment, although this was not significant for excretion. The perivisceral coelomic fluid pH was ~7.5-7.6, as typical for echinoids, and showed no significant changes between treatments. Indicative of active calcification, internal magnesium and calcium concentrations were reduced compared to the external medium, but were not different between treatments. Gonad weight was lower at the higher temperature, and this difference was more distinct and statistically significant for males. The condition of the gonads assessed by histology declined in increased temperature and low pH treatments. The Echinometra grew in all treatments indicating active calcification of their magnesium calcite tests even as carbonate mineral saturation decreased. Our results indicate that the interactive temperature and pH effects are more important for adult echinoids than individual stressors. Although adult specimens grow and survive in near-future conditions, higher energy demands may influence gonad development and thus population maintenance.

  12. Citrate increases glass transition temperature of vitrified sucrose preparations

    NARCIS (Netherlands)

    Kets, E.P.W.; Lipelaar, P.J.; Hoekstra, F.A.; Vromans, H.

    2004-01-01

    The aim of this study was to investigate the effect of sodium citrate on the properties of dried amorphous sucrose glasses. Addition of sodium citrate to a sucrose solution followed by freeze-drying or convective drying resulted in a glass transition temperature (T-g) that was higher than the

  13. Charging conditions research to increase the initial projected velocity at different initial charge temperatures

    Science.gov (United States)

    Ishchenko, Aleksandr; Burkin, Viktor; Kasimov, Vladimir; Samorokova, Nina; Zykova, Angelica; Diachkovskii, Alexei

    2017-11-01

    The problems of the defense industry occupy the most important place in the constantly developing modern world. The daily development of defense technology does not stop, nor do studies on internal ballistics. The scientists of the whole world are faced with the task of managing the main characteristics of a ballistic experiment. The main characteristics of the ballistic experiment are the maximum pressure in the combustion chamber Pmax and the projected velocity at the time of barrel leaving UM. During the work the combustion law of the new high-energy fuel was determined in a ballistic experiment for different initial temperatures. This combustion law was used for a parametric study of depending Pmax and UM from a powder charge mass and a traveling charge was carried out. The optimal conditions for loading were obtained for improving the initial velocity at pressures up to 600 MPa for different initial temperatures. In this paper, one of the most promising schemes of throwing is considered, as well as a method for increasing the muzzle velocity of a projected element to 3317 m/s.

  14. INCREASES IN CORE TEMPERATURE COUNTERBALANCE EFFECTS OF HEMOCONCENTRATION ON BLOOD VISCOSITY DURING PROLONGED EXERCISE IN THE HEAT

    Science.gov (United States)

    Buono, Michael J.; Krippes, Taylor; Kolkhorst, Fred W.; Williams, Alexander T.; Cabrales, Pedro

    2015-01-01

    Previous studies have reported that blood viscosity is significantly increased following exercise. However, these studies measured both pre- and post-exercise blood viscosity at 37 °C even though core and blood temperatures would be expected to have increased during the exercise. Consequently, the effect of exercise-induced hyperthermia on mitigating change in blood viscosity may have been missed. The purpose of this study was to isolate the effects of exercise-induced hemoconcentration and hyperthermia, as well as determine their combined effects, on blood viscosity. Nine subjects performed 2 h of moderate-intensity exercise in the heat (37 °C, 40% rH), which resulted in significant increases from pre-exercise values for rectal temperature (37.11 ± 0.35 °C to 38.76 ± 0.13 °C), hemoconcentration (hematocrit = 43.6 ± 3.6% to 45.6 ± 3.5%), and dehydration (Δbody weight = −3.6 ± 0.7%). Exercise-induced hemoconcentration significantly (P viscosity by 9% (3.97 to 4.30 cP at 300 s−1) while exercise-induced hyperthermia significantly decreased blood viscosity by 7% (3.97 to 3.70 cP at 300 s−1). However, when both factors were considered together, there was no overall change in blood viscosity (3.97 to 4.03 cP at 300 s−1). The effects of exercise-induced hemoconcentration, increased plasma viscosity, and increased red blood cell aggregation, all of which increased blood viscosity, were counterbalanced by increased RBC deformability (e.g., RBC membrane shear elastic modulus and elongation index) caused by the hyperthermia. Thus, blood viscosity remained unchanged following prolonged moderate-intensity exercise in the heat. PMID:26682653

  15. Increased Air Temperature during Simulated Autumn Conditions Does Not Increase Photosynthetic Carbon Gain But Affects the Dissipation of Excess Energy in Seedlings of the Evergreen Conifer Jack Pine1[OA

    Science.gov (United States)

    Busch, Florian; Hüner, Norman P.A.; Ensminger, Ingo

    2007-01-01

    Temperature and daylength act as environmental signals that determine the length of the growing season in boreal evergreen conifers. Climate change might affect the seasonal development of these trees, as they will experience naturally decreasing daylength during autumn, while at the same time warmer air temperature will maintain photosynthesis and respiration. We characterized the down-regulation of photosynthetic gas exchange and the mechanisms involved in the dissipation of energy in Jack pine (Pinus banksiana) in controlled environments during a simulated summer-autumn transition under natural conditions and conditions with altered air temperature and photoperiod. Using a factorial design, we dissected the effects of daylength and temperature. Control plants were grown at either warm summer conditions with 16-h photoperiod and 22°C or conditions representing a cool autumn with 8 h/7°C. To assess the impact of photoperiod and temperature on photosynthesis and energy dissipation, plants were also grown under either cold summer (16-h photoperiod/7°C) or warm autumn conditions (8-h photoperiod/22°C). Photosynthetic gas exchange was affected by both daylength and temperature. Assimilation and respiration rates under warm autumn conditions were only about one-half of the summer values but were similar to values obtained for cold summer and natural autumn treatments. In contrast, photosynthetic efficiency was largely determined by temperature but not by daylength. Plants of different treatments followed different strategies for dissipating excess energy. Whereas in the warm summer treatment safe dissipation of excess energy was facilitated via zeaxanthin, in all other treatments dissipation of excess energy was facilitated predominantly via increased aggregation of the light-harvesting complex of photosystem II. These differences were accompanied by a lower deepoxidation state and larger amounts of β-carotene in the warm autumn treatment as well as by changes in

  16. Improved productivity of the MSF (multi-stage flashing) desalination plant by increasing the TBT (top brine temperature)

    International Nuclear Information System (INIS)

    Hanshik, Chung; Jeong, Hyomin; Jeong, Kwang-Woon; Choi, Soon-Ho

    2016-01-01

    The evaporating process is very important in the system concerned with liquid foods, seawater distillation and wastewater treatment, which is to concentrate the aqueous solution by evaporating the pure water usually at a vacuum state. In general, the liquid concentration is performed through the membrane, electro-dialysis, and evaporation; the former are separation process and the latter is the phase change process. In this study, only the thermal process was treated for evaluating the specific energy consumption by changing the operating conditions of an existing MSF (multi-stage flashing) desalination plant, which is still dominant for a large scale distillation plant. This study shows the quantitative energy saving strategy in sweater distillation process and, additionally, indicates that the performance of the multi-stage evaporating system can be increased with the elevation of a TBT (top brine temperature). The calculated results were based on the operating data of the currently installed plants and suggests the alternative to improve the performance of the MSF desalination plant, which means that the energy saving can be achieved only by changing the operating conditions of the existing MSF plants. - Highlights: • Detailed operating principles of an multi-stage flashing (MSF) desalting process. • Improved freshwater productivity by increasing the top brine temperature (TBT). • Increased energy efficiency of an existing MSF plants by the TBT increase.

  17. Generation of volatile compounds in litchi wine during winemaking and short-term bottle storage.

    Science.gov (United States)

    Wu, Yuwen; Zhu, Baoqing; Tu, Cui; Duan, Changqing; Pan, Qiuhong

    2011-05-11

    Evolution of volatile components during litchi (Litchi chinensis Sonn.) winemaking was monitored, and aroma profiles of litchi wines bottle aged for 5 months at ambient temperature (25-28 °C) and low temperature (8-10 °C) were compared via headspace solid phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS). The majority of terpenoids deriving from litchi juice decreased, even disappeared along with alcoholic fermentation, while terpenol oxides, ethers, and acetates came into being and increased. Ethyl octanote, isoamyl acetate, ethyl hexanoate, ethyl butanoate, cis-rose oxide, and trans-rose oxide had the highest odor activity values (OAVs) in young litchi wines. Six aromatic series were obtained by grouping OAVs of odor-active compounds with similar odor descriptions to establish the aroma profile for young litchi wines, and floral and fruity attributes were two major aroma series. Compared to ambient temperature when bottle aging, lower temperature benefited key aroma retention and expectantly extended the shelf life of young litchi wines.

  18. Intra-pulp temperature increase of equine cheek teeth during treatment with motorized grinding systems: influence of grinding head position and rotational speed.

    Science.gov (United States)

    Haeussler, Silvia; Luepke, Matthias; Seifert, Hermann; Staszyk, Carsten

    2014-02-21

    In equine practice, teeth corrections by means of motorized grinding systems are standard procedure. The heat resulting from that treatment may cause irreparable damage to the dental pulp. It has been shown that a 5.5°C temperature rise may cause severe destruction in pulp cells. Hence, the capability to continuously form secondary dentine is lost, and may lead, due to equine-typical occlusal tooth abrasion, to an opening of the pulp cavity.To obtain reliable data on the intra-pulp increase in temperature during corrective treatments, equine cheek teeth (CT) were modified in a way (occlusal surface smoothed, apical parts detached, pulp horns standardized) that had been qualified in own former published studies. All parameters influencing the grinding process were standardized (force applied, initial temperatures, dimensions of pulp horns, positioning of grinding disk, rotational speed). During grinding experiments, imitating real dental treatments, the time span for an intra-pulp temperature increase of 5.5°C was determined. The minimum time recorded for an intra-pulp temperature increase of 5.5°C was 38 s in mandibular CT (buccal grinding, 12,000 rpm) and 70 s in maxillary CT (flat occlusal grinding, 12,000 rpm). The data obtained showed that doubling the rotational speed of the disk results in halving the time span after which the critical intra-pulp temperature increase in maxillary CT is reached. For mandibular CT, the time span even drops by two thirds. The use of standardized hypsodont CT enabled comparative studies of intra-pulp heating during the grinding of occlusal tooth surfaces using different tools and techniques. The anatomical structure of the natural vital hypsodont tooth must be kept in mind, so that the findings of this study do not create a deceptive sense of security with regard to the time-dependent heating of the native pulp.

  19. Increased temperature causes different carbon and nitrogen processing patterns in two common intertidal foraminifera (Ammonia tepida and Haynesina germanica

    Directory of Open Access Journals (Sweden)

    J. Wukovits

    2017-06-01

    Full Text Available Benthic foraminifera are highly abundant heterotrophic protists in marine sediments, but future environmental changes will challenge the tolerance limits of intertidal species. Metabolic rates and physiological processes in foraminifera are strongly dependent on environmental temperatures. Temperature-related stress could therefore impact foraminiferal food source processing efficiency and might result in altered nutrient fluxes through the intertidal food web. In this study, we performed a laboratory feeding experiment on Ammonia tepida and Haynesina germanica, two dominant foraminiferal species of the German Wadden Sea/Friedrichskoog, to test the effect of temperature on phytodetritus retention. The specimens were fed with 13C and 15N labelled freeze-dried Dunaliella tertiolecta (green algae at the start of the experiment and were incubated at 20, 25 and 30 °C respectively. Dual labelling was applied to observe potential temperature effects on the relation of phytodetrital carbon and nitrogen retention. Samples were taken over a period of 2 weeks. Foraminiferal cytoplasm was isotopically analysed to investigate differences in carbon and nitrogen uptake derived from the food source. Both species showed a positive response to the provided food source, but carbon uptake rates of A. tepida were 10-fold higher compared to those of H. germanica. Increased temperatures had a far stronger impact on the carbon uptake of H. germanica than on A. tepida. A distinct increase in the levels of phytodetrital-derived nitrogen (compared to more steady carbon levels could be observed over the course of the experiment in both species. The results suggest that higher temperatures have a significant negative effect on the carbon exploitation of H. germanica. For A. tepida, higher carbon uptake rates and the enhanced tolerance range for higher temperatures could outline an advantage in warmer periods if the main food source consists of chlorophyte phytodetritus

  20. Increasing the operation temperature of polymer electrolyte membranes for fuel cells: From nanocomposites to hybrids

    Science.gov (United States)

    Licoccia, Silvia; Traversa, Enrico

    Among the possible systems investigated for energy production with low environmental impact, polymeric electrolyte membrane fuel cells (PEMFCs) are very promising as electrochemical power sources for application in portable technology and electric vehicles. For practical applications, operating FCs at temperatures above 100 °C is desired, both for hydrogen and methanol fuelled cells. When hydrogen is used as fuel, an increase of the cell temperature produces enhanced CO tolerance, faster reaction kinetics, easier water management and reduced heat exchanger requirement. The use of methanol instead of hydrogen as a fuel for vehicles has several practical benefits such as easy transport and storage, but the slow oxidation kinetics of methanol needs operating direct methanol fuel cells (DMFCs) at intermediate temperatures. For this reason, new membranes are required. Our strategy to achieve the goal of operating at temperatures above 120 °C is to develop organic/inorganic hybrid membranes. The first approach was the use of nanocomposite class I hybrids where nanocrystalline ceramic oxides were added to Nafion. Nanocomposite membranes showed enhanced characteristics, hence allowing their operation up to 130 °C when the cell was fuelled with hydrogen and up to 145 °C in DMFCs, reaching power densities of 350 mW cm -2. The second approach was to prepare Class II hybrids via the formation of covalent bonds between totally aromatic polymers and inorganic clusters. The properties of such covalent hybrids can be modulated by modifying the ratio between organic and inorganic groups and the nature of the chemical components allowing to reach high and stable conductivity values up to 6.4 × 10 -2 S cm -1 at 120 °C.

  1. Utilisation of bleed steam heat to increase the upper heat source temperature in low-temperature ORC

    Science.gov (United States)

    Mikielewicz, Dariusz; Mikielewicz, Jarosław

    2011-12-01

    In the paper presented is a novel concept to utilize the heat from the turbine bleed to improve the quality of working fluid vapour in the bottoming organic Rankine cycle (ORC). That is a completely novel solution in the literature, which contributes to the increase of ORC efficiency and the overall efficiency of the combined system of the power plant and ORC plant. Calculations have been accomplished for the case when available is a flow rate of low enthalpy hot water at a temperature of 90 °C, which is used for preliminary heating of the working fluid. That hot water is obtained as a result of conversion of exhaust gases in the power plant to the energy of hot water. Then the working fluid is further heated by the bleed steam to reach 120 °C. Such vapour is subsequently directed to the turbine. In the paper 5 possible working fluids were examined, namely R134a, MM, MDM, toluene and ethanol. Only under conditions of 120 °C/40 °C the silicone oil MM showed the best performance, in all other cases the ethanol proved to be best performing fluid of all. Results are compared with the "stand alone" ORC module showing its superiority.

  2. Optimization of temperature and time for drying and carbonization to increase calorific value of coconut shell using Taguchi method

    Science.gov (United States)

    Musabbikhah, Saptoadi, H.; Subarmono, Wibisono, M. A.

    2016-03-01

    Fossil fuel still dominates the needs of energy in Indonesia for the past few years. The increasing scarcity of oil and gas from non-renewable materials results in an energy crisis. This condition turns to be a serious problem for society which demands immediate solution. One effort which can be taken to overcome this problem is the utilization and processing of biomass as renewable energy by means of carbonization. Thus, it can be used as qualified raw material for production of briquette. In this research, coconut shell is used as carbonized waste. The research aims at improving the quality of coconut shell as the material for making briquettes as cheap and eco-friendly renewable energy. At the end, it is expected to decrease dependence on oil and gas. The research variables are drying temperature and time, carbonization time and temperature. The dependent variable is calorific value of the coconut shell. The method used in this research is Taguchi Method. The result of the research shows thus variables, have a significant contribution on the increase of coconut shell's calorific value. It is proven that the higher thus variables are higher calorific value. Before carbonization, the average calorific value of coconut shell reaches 4,667 call/g, and a significant increase is notable after the carbonization. The optimization is parameter setting of A2B3C3D3, which means that the drying temperature is 105 °C, the drying time is 24 hours, the carbonization temperature is 650 °C and carbonization time is 120 minutes. The average calorific value is approximately 7,744 cal/g. Therefore, the increase of the coconut shell's calorific value after the carbonization is 3,077 cal/g or approximately 60 %. The charcoal of carbonized coconut shell has met the requirement of SNI, thus it can be used as raw material in making briquette which can eventually be used as cheap and environmental friendly fuel.

  3. In-situ changes in the elastic wave velocity of rock with increasing temperature using high-resolution coda wave interferometry

    Science.gov (United States)

    Griffiths, Luke; Heap, Michael; Lengliné, Olivier; Schmittbuhl, Jean; Baud, Patrick

    2017-04-01

    Rock undergoes fluctuations in temperature in various settings in Earth's crust, including areas of volcanic or geothermal activity, or industrial environments such as hydrocarbon or geothermal reservoirs. Changes in temperature can cause thermal stresses that can result in the formation of microcracks, which affect the mechanical, physical, and transport properties of rocks. Of the affected physical properties, the elastic wave velocity of rock is particularly sensitive to microcracking. Monitoring the evolution of elastic wave velocity during the thermal stressing of rock therefore provides valuable insight into thermal cracking processes. One monitoring technique is Coda Wave Interferometry (CWI), which infers high-resolution changes in the medium from changes in multiple-scattered elastic waves. We have designed a new experimental setup to perform CWI whilst cyclically heating and cooling samples of granite (cylinders of 20 mm diameter and 40 mm length). In our setup, the samples are held between two pistons within a tube furnace and are heated and cooled at a rate of 1 °C/min to temperatures of up to 300 °C. Two high temperature piezo-transducers are each in contact with an opposing face of the rock sample. The servo-controlled uniaxial press compensates for the thermal expansion and contraction of the pistons and the sample, keeping the coupling between the transducers and the sample, and the axial force acting on the sample, constant throughout. Our setup is designed for simultaneous acoustic emission monitoring (AE is commonly used as a proxy for microcracking), and so we can follow thermal microcracking precisely by combining the AE and CWI techniques. We find that during the first heating/cooling cycle, the onset of thermal microcracking occurs at a relatively low temperature of around 65 °C. The CWI shows that elastic wave velocity decreases with increasing temperature and increases during cooling. Upon cooling, back to room temperature, there is an

  4. The Study of the Chemical Composition of Essential Oils Mentha Piperita L. are Grown in Non-Chernozem Zone of Russia

    Directory of Open Access Journals (Sweden)

    L. SUSHKOVA

    2014-07-01

    Full Text Available By gas-liquid chromatography and mass spectrometry has been investigated the composition of essential oils and the change in the ontogenesis and exogenous effects on the plant Mentha piperita L. drugs retardant type. With the introduction of oil crops from the southern regions to the more northern regions of the component composition of the essential oil practically does not change. There are only minor variations in the content of some terpenoids oils. Exogenous preharvest treatment plant growth regulators can in some cases deliberately influence the activity of various terpenoid biosynthesis and increase the content of the most valuable components of the essential oil.Content and composition of EM is largely determined by factors such as age and leaves of plants, as well as different climatic cal, soil and agronomic conditions. Processing plants different phytoregulators also affects the content and composition of oil. Biosynthesis of terpenoids polyenzyme performed in centers, the activity and the nature of which is determined primarily genetic characteristics of plants, in addition, the activity of certain enzymes of these centers is under the control of hormonal balance and changes in ontogeny, as well as under the influence of exogenous factors.It is shown that the formation of the maximum bioefficiency in ontogeny of aromatic plants, it is advisable to use a two-stage technology to grow them. Plants producing terpenoids of essential oils, the initial step is to create the conditions for the formation of the maximum yield of aboveground mass of plants, including the use of synthetic plant growth regulators. In the second stage "biosynthetic" upon the occurrence of the reproductive phase before harvesting plants, we recommend that inhibit the growth of phytoregulators retardant type. In this case, we observe stimulation accumulation in aboveground mass of secondary metabolites. Inhibition of growth in the preharvest period, aromatic plants

  5. Increasing ocean temperatures reduce activity patterns of a large commercially important coral reef fish.

    Science.gov (United States)

    Johansen, J L; Messmer, V; Coker, D J; Hoey, A S; Pratchett, M S

    2014-04-01

    Large-bodied fish are critical for sustaining coral reef fisheries, but little is known about the vulnerability of these fish to global warming. This study examined the effects of elevated temperatures on the movement and activity patterns of the common coral trout Plectropomus leopardus (Serranidae), which is an important fishery species in tropical Australia and throughout the Indo West-Pacific. Adult fish were collected from two locations on Australia's Great Barrier Reef (23°S and 14°S) and maintained at one of four temperatures (24, 27, 30, 33 °C). Following >4 weeks acclimation, the spontaneous swimming speeds and activity patterns of individuals were recorded over a period of 12 days. At 24-27 °C, spontaneous swimming speeds of common coral trout were 0.43-0.45 body lengths per second (bls(-1)), but dropped sharply to 0.29 bls(-1) at 30 °C and 0.25 bls(-1) at 33 °C. Concurrently, individuals spent 9.3-10.6% of their time resting motionless on the bottom at 24-27 °C, but this behaviour increased to 14.0% at 30 °C and 20.0% of the time at 33 °C (mean ± SE). The impact of temperature was greatest for smaller individuals (55 cm TL) were first affected by 30 °C and 33 °C, respectively. Importantly, there was some indication that populations can adapt to elevated temperature if presented with adequate time, as the high-latitude population decreased significantly in swimming speeds at both 30 °C and 33 °C, while the low-latitude population only showed significant reductions at 33 °C. Given that movement and activity patterns of large mobile species are directly related to prey encounter rates, ability to capture prey and avoid predators, any reductions in activity patterns are likely to reduce overall foraging and energy intake, limit the energy available for growth and reproduction, and affect the fitness and survival of individuals and populations. © 2013 John Wiley & Sons Ltd.

  6. A Variationally Formulated Problem of the Stationary Heat Conduction in a Plate with Radiation Reduction Factor Increased under Temperature

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2016-01-01

    Full Text Available The equipment uses heat-shielding and structural materials that, when exposed, absorb radiation both on the surface and in the volume. In a variety of technical devices, absorption processes of penetrating radiation of materials and structural elements are typical for a number of process steps and operating conditions. Absorption of radiation penetrating into material volume may significantly affect the temperature state and runability of construction made of such material.The process of material-absobed penetrating radiation is associated with transition of the electromagnetic wave energy into the excitation energy of this material microparticles that, after all, leads to increasing internal energy and temperature growth. With radiation passing through the layer of material its flow density and hence energy of penetrating radiation decreases exponentially with increasing distance from the exposed layer surface. This law was experimentally established by the French physicist P. Bouguer and bears his name. In general, a certain fraction of this energy is radiated and dissipated in the material volume, and the rest is absorbed. A mathematical model describing these processes is an equation of the radiative energy transfer.In mathematical modeling of thermomechanical processes there is a need to consider the effect of penetrating radiation on the temperature state of materials and construction elements. The P. Bouguer law is used also when the volume radiation and scattering of penetrating radiation in the material can be neglected, but it is necessary to take into account its absorption. In this case, a negative indicator of the exponential function is represented by the product of the distance from the irradiated surface and integral or some average absorption factor that is constant for a given material and spectral distribution of penetrating radiation. However, with increasing power of radiation passing through the material layer there is a

  7. A moderate increase in ambient temperature modulates the Atlantic cod (Gadus morhua spleen transcriptome response to intraperitoneal viral mimic injection

    Directory of Open Access Journals (Sweden)

    Hori Tiago S

    2012-08-01

    Full Text Available Abstract Background Atlantic cod (Gadus morhua reared in sea-cages can experience large variations in temperature, and these have been shown to affect their immune function. We used the new 20K Atlantic cod microarray to investigate how a water temperature change which, simulates that seen in Newfoundland during the spring-summer (i.e. from 10°C to 16°C, 1°C increase every 5 days impacted the cod spleen transcriptome response to the intraperitoneal injection of a viral mimic (polyriboinosinic polyribocytidylic acid, pIC. Results The temperature regime alone did not cause any significant increases in plasma cortisol levels and only minor changes in spleen gene transcription. However, it had a considerable impact on the fish spleen transcriptome response to pIC [290 and 339 significantly differentially expressed genes between 16°C and 10°C at 6 and 24 hours post-injection (HPI, respectively]. Seventeen microarray-identified transcripts were selected for QPCR validation based on immune-relevant functional annotations. Fifteen of these transcripts (i.e. 88%, including DHX58, STAT1, IRF7, ISG15, RSAD2 and IκBα, were shown by QPCR to be significantly induced by pIC. Conclusions The temperature increase appeared to accelerate the spleen immune transcriptome response to pIC. We found 41 and 999 genes differentially expressed between fish injected with PBS vs. pIC at 10°C and sampled at 6HPI and 24HPI, respectively. In contrast, there were 656 and 246 genes differentially expressed between fish injected with PBS vs. pIC at 16°C and sampled at 6HPI and 24HPI, respectively. Our results indicate that the modulation of mRNA expression of genes belonging to the NF-κB and type I interferon signal transduction pathways may play a role in controlling temperature-induced changes in the spleen’s transcript expression response to pIC. Moreover, interferon effector genes such as ISG15 and RSAD2 were differentially expressed between fish injected with

  8. Short-term effects of increased temperature and lowered pH on a temperate grazer-seaweed interaction (Littorina obtusata/Ascophyllum nodosum)

    Science.gov (United States)

    Cardoso, Patricia G.; Grilo, Tiago F.; Dionísio, Gisela; Aurélio, Maria; Lopes, Ana R.; Pereira, Ricardo; Pacheco, Mário; Rosa, Rui

    2017-10-01

    There has been a significant increase in the literature regarding the effects of warming and acidification on the marine ecosystem. To our knowledge, there is very little information on the potential effects of both combined stressors on marine grazer-seaweed interactions. Here, we evaluated, for the first time several phenotypic responses (e.g periwinkle survival, condition index, consumption rates, seaweed photosynthetic activity and oxidative stress) of the temperate periwinkle Littorina obtusata (grazer) and the brown seaweed Ascophyllum nodosum (prey) to such climate change-related variables, for 15 days. Increased temperature (22 °C, pH 8.0) elicited a significant lethal effect on the periwinkle within a short-term period (mortality rate > 90%). Acidification condition (18 °C, pH 7.6) was the one that showed lower mortality rates (≈20%), reflected by lower impact on periwinkle fitness and consumption rates. Under a scenario of increased temperature and lowered pH the antioxidant defences of L. obtusata seemed to be supressed increasing the risk of peroxidative damage. The seaweed evidenced signs of cellular damage under such conditions. These results suggest that: i) lower pH per se seems to benefit the interaction between grazer and seaweed while, ii) a combined scenario of increased temperature and lowered pH may be negative for the interaction, due to the unbalance between periwinkle mortality rates and consumption rates. But most importantly, since grazing often plays an important role on structuring natural communities, such predator-prey disturbances can elicit cascading effects on the remaining community structure and functioning of the temperate rocky-shore ecosystems.

  9. Increased vapor pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest-grassland ecotone.

    Science.gov (United States)

    Will, Rodney E; Wilson, Stuart M; Zou, Chris B; Hennessey, Thomas C

    2013-10-01

    Tree species growing along the forest-grassland ecotone are near the moisture limit of their range. Small increases in temperature can increase vapor pressure deficit (VPD) which may increase tree water use and potentially hasten mortality during severe drought. We tested a 40% increase in VPD due to an increase in growing temperature from 30 to 33°C (constant dewpoint 21°C) on seedlings of 10 tree species common to the forest-grassland ecotone in the southern Great Plains, USA. Measurement at 33 vs 30°C during reciprocal leaf gas exchange measurements, that is, measurement of all seedlings at both growing temperatures, increased transpiration for seedlings grown at 30°C by 40% and 20% for seedlings grown at 33°C. Higher initial transpiration of seedlings in the 33°C growing temperature treatment resulted in more negative xylem water potentials and fewer days until transpiration decreased after watering was withheld. The seedlings grown at 33°C died 13% (average 2 d) sooner than seedlings grown at 30°C during terminal drought. If temperature and severity of droughts increase in the future, the forest-grassland ecotone could shift because low seedling survival rate may not sufficiently support forest regeneration and migration. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  10. Extreme temperatures increase the deleterious consequences of inbreeding under laboratory and semi-natural conditions

    DEFF Research Database (Denmark)

    Kristensen, Torsten Nygård; Barker, J. Stuart F.; Pedersen, Kamilla Sofie

    2008-01-01

    when compared with non-inbred lines of Drosophila melanogaster under different temperature conditions. Egg-to-adult viability, developmental time and sex ratio of emerging adults are studied under low, intermediate and high temperatures under laboratory as well as semi-natural conditions. The results...... show inbreeding depression for egg-to-adult viability. The level of inbreeding depression is highly dependent on test temperature and is observed only at low and high temperatures. Inbreeding did not affect the developmental time or the sex ratio of emerging adults. However, temperature affected...... the sex ratio with more females relative to males emerging at low temperatures, suggesting that selection against males in pre-adult life stages is stronger at low temperatures. The coefficient of variation (CV) of egg-to-adult viability within and among lines is higher for inbred flies and generally...

  11. Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance

    International Nuclear Information System (INIS)

    Alamusi; Li, Yuan; Hu, Ning; Wu, Liangke; Liu, Yaolu; Ning, Huiming; Li, Jinhua; Surina; Yuan, Weifeng; Chang, Christiana; Atobe, Satoshi; Fukunaga, Hisao

    2013-01-01

    A temperature sensor was fabricated from a polymer nanocomposite with multi-walled carbon nanotube (MWCNT) as nanofiller (i.e., MWCNT/epoxy). The electrical resistance and temperature coefficient of resistance (TCR) of the temperature sensor were characterized experimentally. The effects of temperature (within the range 333–373 K) and MWCNT content (within the range 1–5 wt%) were investigated thoroughly. It was found that the resistance increases with increasing temperature and decreasing MWCNT content. However, the resistance change ratio related to the TCR increases with increasing temperature and MWCNT content. The highest value of TCR (0.021 K −1 ), which was observed in the case of 5 wt% MWCNT, is much higher than those of traditional metals and MWCNT-based temperature sensors. Moreover, the corresponding numerical simulation—conducted to explain the above temperature-dependent piezoresistivity of the nanocomposite temperature sensor—indicated the key role of a temperature-dependent tunneling effect. (paper)

  12. Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: the dewatering performance and the characteristics of products.

    Science.gov (United States)

    Wang, Liping; Li, Aimin

    2015-01-01

    Hydrothermal treatment coupled with mechanical expression at increased temperature in two separate cells respectively is effective for the dewatering of excess sludge with low energy consumption. The objectives of this study were to evaluate the dewatering performance and the characteristics of obtained products (hydrothermal sludge, hydrochar and filtrate). The results showed that harsher hydrothermal treatment (temperature from 120 to 210 °C and residence time from 10 to 90 min) led to greater water removal (from 7.44 to 96.64% reduction of total water) and mechanical pressure became less significant as it increased. The whole expression stage was completely described by the modified Terzaghi-Voigt rheological model. The role of tertiary consolidation stage in the water removal was reduced with hydrothermal treatment being stronger. The hydrothermal treatment is mainly a devolatilization process. The observed changes in H/C and O/C for hydrothermal sludge suggested dehydration was the major reaction mechanism and decarboxylation only occurred significantly at higher temperature. The higher heating value correlated well with carbon content of sludge, which was increased by 4.8% for hydrothermal sludge at 210 °C for 60 min and significantly decreased by 15.4% for hydrochar after 6.0 MPa for 20 min. The solubilization and decomposition of proteins, polysaccharides and DNA were determined to be temperature and residence time dependent. The improvement of dewaterability was closely correlated to the variation of these biopolymers. The filtrates collected above 150 °C were found to be acidic. The increase of humic substances and the melanoidins formed by Maillard reaction were largely responsible for the filtrate color.

  13. Students’ perceived heat-health symptoms increased with warmer classroom temperatures

    CSIR Research Space (South Africa)

    Bidassey-Manilal, S

    2016-01-01

    Full Text Available one hour on any day. There were statistically significant correlations, when controlling for school cluster effect and time of day, between indoor temperatures ¥32 C and students who felt tired and found it hard to breathe. Consistently higher indoor...

  14. Increase in the boiler's performance in terms of the acid dew point temperature: Environmental advantages of replacing fuels

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, J.M.; Pena, F. [Dpto. Maquinas y Motores Termicos, Escuela Tecnica Superior de Ingenieria, Universidad del Pais Vasco/E.H.U., Alameda de Urquijo s/n (48013) Bilbao (Spain)

    2008-05-15

    The aim of air pre-heaters is to raise the temperature of the combustion air in boilers, using heat recovered from the power plant combustion gases. On the one hand, this paper compares the effects of the acid dew point temperature (ADT) on pre-heaters in a reference thermal power plant for two types of fuel, ''fuel No. 2'' and ''low sulphur fuel'' respectively and on the other hand, it shows how a changeover to this latter fuel would increase the useful lifetime of this equipment, reducing this way cost of maintenance due to the considerable decrease in the area exposed to ADT with the subsequent increase in the boiler's performance. (author)

  15. Temperature increases from 55 to 75 C in a two-phase biogas reactor result in fundamental alterations within the bacterial and archaeal community structure

    Energy Technology Data Exchange (ETDEWEB)

    Rademacher, Antje [Leibniz-Institut fuer Agrartechnik Potsdam-Bornim e.V. (ATB), Potsdam (Germany). Abt. Bioverfahrenstechnik; Technische Univ. Berlin (Germany). Inst. fuer Technischen Umweltschutz; Nolte, Christine; Schoenberg, Mandy; Klocke, Michael [Leibniz-Institut fuer Agrartechnik Potsdam-Bornim e.V. (ATB), Potsdam (Germany). Abt. Bioverfahrenstechnik

    2012-10-15

    Agricultural biogas plants were operated in most cases below their optimal performance. An increase in the fermentation temperature and a spatial separation of hydrolysis/acetogenesis and methanogenesis are known strategies in improving and stabilizing biogas production. In this study, the dynamic variability of the bacterial and archaeal community was monitored within a two-phase leach bed biogas reactor supplied with rye silage and straw during a stepwise temperature increase from 55 to 75 C within the leach bed reactor (LBR), using TRFLP analyses. To identify the terminal restriction fragments that were obtained, bacterial and archaeal 16S rRNA gene libraries were constructed. Above 65 C, the bacterial community structure changed from being Clostridiales-dominated toward being dominated by members of the Bacteroidales, Clostridiales, and Thermotogales orders. Simultaneously, several changes occurred, including a decrease in the total cell count, degradation rate, and biogas yield along with alterations in the intermediate production. A bioaugmentation with compost at 70 C led to slight improvements in the reactor performance; these did not persist at 75 C. However, the archaeal community within the downstream anaerobic filter reactor (AF), operated constantly at 55 C, altered by the temperature increase in the LBR. At an LBR temperature of 55 C, members of the Methanobacteriales order were prevalent in the AF, whereas at higher LBR temperatures Methanosarcinales prevailed. Altogether, the best performance of this two-phase reactor was achieved at an LBR temperature of below 65 C, which indicates that this temperature range has a favorable effect on the microbial community responsible for the production of biogas. (orig.)

  16. Increases in core temperature counterbalance effects of haemoconcentration on blood viscosity during prolonged exercise in the heat.

    Science.gov (United States)

    Buono, Michael J; Krippes, Taylor; Kolkhorst, Fred W; Williams, Alexander T; Cabrales, Pedro

    2016-02-01

    What is the central question of this study? The purpose of the present study was to determine the effects of exercise-induced haemoconcentration and hyperthermia on blood viscosity. What is the main finding and its importance? Exercise-induced haemoconcentration, increased plasma viscosity and increased blood aggregation, all of which increased blood viscosity, were counterbalanced by increased red blood cell (RBC) deformability (e.g. RBC membrane shear elastic modulus and elongation index) caused by the hyperthermia. Thus, blood viscosity remained unchanged following prolonged moderate-intensity exercise in the heat. Previous studies have reported that blood viscosity is significantly increased following exercise. However, these studies measured both pre- and postexercise blood viscosity at 37 °C even though core and blood temperatures would be expected to have increased during the exercise. Consequently, the effect of exercise-induced hyperthermia on mitigating change in blood viscosity may have been missed. The purpose of this study was to isolate the effects of exercise-induced haemoconcentration and hyperthermia and to determine their combined effects on blood viscosity. Nine subjects performed 2 h of moderate-intensity exercise in the heat (37 °C, 40% relative humidity), which resulted in significant increases from pre-exercise values for rectal temperature (from 37.11 ± 0.35 to 38.76 ± 0.13 °C), haemoconcentration (haematocrit increased from 43.6 ± 3.6 to 45.6 ± 3.5%) and dehydration (change in body weight = -3.6 ± 0.7%). Exercise-induced haemoconcentration significantly (P blood viscosity by 9% (from 3.97 to 4.33 cP at 300 s(-1)), whereas exercise-induced hyperthermia significantly decreased blood viscosity by 7% (from 3.97 to 3.69 cP at 300 s(-1)). When both factors were considered together, there was no overall change in blood viscosity (from 3.97 to 4.03 cP at 300 s(-1)). The effects of exercise-induced haemoconcentration, increased plasma

  17. Ingestion of a cold temperature/menthol beverage increases outdoor exercise performance in a hot, humid environment.

    Science.gov (United States)

    Tran Trong, Than; Riera, Florence; Rinaldi, Kévin; Briki, Walid; Hue, Olivier

    2015-01-01

    A recent laboratory study demonstrated that the ingestion of a cold/menthol beverage improved exercise performance in a hot and humid environment during 20 km of all-out cycling. Therefore, the aim of this study was to determine whether the ingestion of cold water/ice-slurry with menthol would improve performance in hot and humid outdoor conditions. Ten trained males completed three trials of five blocks consisting of 4-km cycling and 1.5-km running. During warm-up, every block and recovery, the athletes drank 190 ml of aromatized (i.e., with 0.05 mL of menthol) beverage at three temperatures: Neutral (ambient temperature) (28.7°C±0. 5°C), Cold (3.1°C±0.6°C) or Ice-slurry (0.17°C±0.07°C). Trial time, core temperature (Tco), heart rate (HR), rate of perceived exertion (RPE), thermal sensation (TS) and thermal comfort (TC) were assessed. Ice-slurry/menthol increased performance by 6.2% and 3.3% compared with neutral water/menthol and cold water/menthol, respectively. No between-trial differences were noted for Tco, HR, RPE, TC and TS was lower with ice-slurry/menthol and cold water/menthol compared with neutral water/menthol. A low drink temperature combined with menthol lessens the performance decline in hot/humid outdoor conditions (i.e., compared with cold water alone). Performances were better with no difference in psycho-physiological stress (Tco, HR and RPE) between trials. The changes in perceptual parameters caused by absorbing a cold/menthol beverage reflect the psychological impact. The mechanism leading to these results seems to involve brain integration of signals from physiological and psychological sources.

  18. Increased temperature and altered summer precipitation have differential effects on biological soil crusts in a dryland ecosystem

    Science.gov (United States)

    Johnson, Shannon L.; Kuske, Cheryl R.; Carney, Travis D.; Housman, David C.; Gallegos-Graves, La Verne; Belnap, Jayne

    2012-01-01

    Biological soil crusts (biocrusts) are common and ecologically important members of dryland ecosystems worldwide, where they stabilize soil surfaces and contribute newly fixed C and N to soils. To test the impacts of predicted climate change scenarios on biocrusts in a dryland ecosystem, the effects of a 2–3 °C increase in soil temperature and an increased frequency of smaller summer precipitation events were examined in a large, replicated field study conducted in the cold desert of the Colorado Plateau, USA. Surface soil biomass (DNA concentration), photosynthetically active cyanobacterial biomass (chlorophyll a concentration), cyanobacterial abundance (quantitative PCR assay), and bacterial community composition (16S rRNA gene sequencing) were monitored seasonally over 2 years. Soil microbial biomass and bacterial community composition were highly stratified between the 0–2 cm depth biocrusts and 5–10 cm depth soil beneath the biocrusts. The increase in temperature did not have a detectable effect on any of the measured parameters over 2 years. However, after the second summer of altered summer precipitation pattern, significant declines occurred in the surface soil biomass (avg. DNA concentration declined 38%), photosynthetic cyanobacterial biomass (avg. chlorophyll a concentration declined 78%), cyanobacterial abundance (avg. gene copies g−1 soil declined 95%), and proportion of Cyanobacteria in the biocrust bacterial community (avg. representation in sequence libraries declined 85%). Biocrusts are important contributors to soil stability, soil C and N stores, and plant performance, and the loss or reduction of biocrusts under an altered precipitation pattern associated with climate change could contribute significantly to lower soil fertility and increased erosion and dust production in dryland ecosystems at a regional scale.

  19. Thermal tolerance of Limnoperna fortunei to gradual temperature increase and its applications for biofouling control in industrial and power plants.

    Science.gov (United States)

    Perepelizin, Pablo V; Boltovskoy, Demetrio

    2011-07-01

    The acute upper lethal temperature (AULT) at different rates of increase was evaluated as a tool for the design of cheaper and environmentally friendlier control strategies for the invasive bivalve Limnoperna fortunei. Survivorship of 6 ± 2 mm and 20 ± 2 mm mussels acclimated to 12, 23 and 28 ° C and subjected to different heating rates (1 ° C per 5, 15 and 30 min) was estimated in the laboratory. The temperatures required to kill 50% (LT(50)) and 100% (SM(100)) of the mussels, and the mean death temperature (MDT) varied between 42.2 and 51 ° C over 54 experiments. Heating rates significantly (p industrial capacities, suggesting that heat treatment is a viable alternative for controlling its fouling in utility systems.

  20. Can Personal Exposures to Higher Nighttime and Early Morning Temperatures Increase Blood Pressure?

    Science.gov (United States)

    Environmental temperatures are inversely related to BP; however, the effects of short-term temperature changes within a 24-hour period and measured with high accuracy at the personal level have not been described. Fifty-one nonsmoking patients living in the Detroit area had up to...

  1. Comparison of 2 protocols to increase circulating progesterone concentration before timed artificial insemination in lactating dairy cows with or without elevated body temperature.

    Science.gov (United States)

    Pereira, M H C; Wiltbank, M C; Guida, T G; Lopes, F R; Vasconcelos, J L M

    2017-10-01

    Two treatments designed to increase circulating progesterone concentration (P4) during preovulatory follicle development were compared. One treatment used 2 intravaginal P4 implants (controlled internal drug-releasing inserts; CIDR) and the other used a GnRH treatment at beginning of the protocol. Lactating Holstein cows that had been diagnosed as nonpregnant were randomly assigned to receive timed artificial insemination (TAI) following 1 of 2 treatments (n = 1,638 breedings): (1) GnRH: CIDR+ 2 mg of estradiol (E2) benzoate + 100 µg of GnRH on d -11, PGF 2α on d -4, CIDR withdrawal + 1.0 mg of E2-cypionate + PGF 2α ) on d -2, and TAI on d 0; or (2) 2CIDR: 2 CIDR + 2 mg of E2-benzoate on d -11, 1 CIDR withdrawn + PGF 2α on d -4, second CIDR withdrawn + 1.0 mg of E2-cypionate + PGF 2α on d -2, and TAI on d 0. Milk yield was measured daily between d 0 and d 7. Rectal temperature was measured using a digital thermometer at d 0 and 7, and elevated body temperature was defined as an average rectal temperature ≥39.1°C. Pregnancy diagnoses were performed on d 32 and 60 after TAI. We detected no effect of treatments on pregnancy per AI or pregnancy loss regardless of elevated body temperature, body condition score, parity, milk yield, or presence or absence of a corpus luteum (CL) on d -11 or d -4. Pregnancy per AI at 60 d was reduced [elevated body temperature = 22.8% (162/709), no elevated body temperature 34.1% (279/817)] and pregnancy loss tended to increase [elevated body temperature = 20.2% (41/203), no elevated body temperature 14.4% (47/326)] in cows with elevated body temperature. Various physiological measurements associated with greater fertility were also reduced in cows with elevated body temperature, such as percentage of cows with a CL at PGF 2α (decreased 7.9%), ovulatory follicle diameter (decreased 0.51 mm), expression of estrus (decreased 5.1%), and ovulation near TAI (decreased 2.8%) compared with cows without elevated body temperature. A

  2. Ingestion of a cold temperature/menthol beverage increases outdoor exercise performance in a hot, humid environment.

    Directory of Open Access Journals (Sweden)

    Than Tran Trong

    Full Text Available A recent laboratory study demonstrated that the ingestion of a cold/menthol beverage improved exercise performance in a hot and humid environment during 20 km of all-out cycling. Therefore, the aim of this study was to determine whether the ingestion of cold water/ice-slurry with menthol would improve performance in hot and humid outdoor conditions.Ten trained males completed three trials of five blocks consisting of 4-km cycling and 1.5-km running. During warm-up, every block and recovery, the athletes drank 190 ml of aromatized (i.e., with 0.05 mL of menthol beverage at three temperatures: Neutral (ambient temperature (28.7°C±0. 5°C, Cold (3.1°C±0.6°C or Ice-slurry (0.17°C±0.07°C. Trial time, core temperature (Tco, heart rate (HR, rate of perceived exertion (RPE, thermal sensation (TS and thermal comfort (TC were assessed.Ice-slurry/menthol increased performance by 6.2% and 3.3% compared with neutral water/menthol and cold water/menthol, respectively. No between-trial differences were noted for Tco, HR, RPE, TC and TS was lower with ice-slurry/menthol and cold water/menthol compared with neutral water/menthol.A low drink temperature combined with menthol lessens the performance decline in hot/humid outdoor conditions (i.e., compared with cold water alone. Performances were better with no difference in psycho-physiological stress (Tco, HR and RPE between trials. The changes in perceptual parameters caused by absorbing a cold/menthol beverage reflect the psychological impact. The mechanism leading to these results seems to involve brain integration of signals from physiological and psychological sources.

  3. The effect of increased centrifugation temperature on the quality of red-blood-cell concentrates of automated whole blood processing.

    Science.gov (United States)

    Weinigel, C; Rummler, S; Barz, D

    2013-10-01

    There are manual and automated methods to separate whole blood (WB) available. The Atreus whole blood processing system is an automated method, which combines centrifugation and expression of components into a single device. A major difference to conventional methods is that centrifugation temperature is not controlled at 22°C. The aim of this study was to examine the influence of increased centrifugation temperatures on the quality of red-blood-cell concentrates (RCC) after active cooling of WB prior to processing. A total of 28 WB were processed: 16 at centrifugation temperatures of up to 28°C (1st protocol) and 12 at 34°C (2nd protocol). RCC quality parameters were tested weekly for 42 days. Red-blood-cell concentrates (RCC) quality complied with the European and German guidelines. Haemolysis was not significantly different throughout storage. Significant statistical differences were detected between both protocols in potassium concentration at the end of storage and in ATP levels at the day of processing. Centrifugation temperatures of up to 34°C are well tolerated by the red blood cells with minimal interference with the RCC quality parameters. © 2013 International Society of Blood Transfusion.

  4. Evolutionary rescue and local adaptation under different rates of temperature increase: a combined analysis of changes in phenotype expression and genotype frequency in Paramecium microcosms.

    Science.gov (United States)

    Killeen, Joshua; Gougat-Barbera, Claire; Krenek, Sascha; Kaltz, Oliver

    2017-04-01

    Evolutionary rescue (ER) occurs when populations, which have declined due to rapid environmental change, recover through genetic adaptation. The success of this process and the evolutionary trajectory of the population strongly depend on the rate of environmental change. Here we investigated how different rates of temperature increase (from 23 to 32 °C) affect population persistence and evolutionary change in experimental microcosms of the protozoan Paramecium caudatum. Consistent with theory on ER, we found that those populations experiencing the slowest rate of temperature increase were the least likely to become extinct and tended to be the best adapted to the new temperature environment. All high-temperature populations were more tolerant to severe heat stress (35, 37 °C), indicating a common mechanism of heat protection. High-temperature populations also had superior growth rates at optimum temperatures, leading to the absence of a pattern of local adaptation to control (23 °C) and high-temperature (32 °C) environments. However, high-temperature populations had reduced growth at low temperatures (5-9 °C), causing a shift in the temperature niche. In part, the observed evolutionary change can be explained by selection from standing variation. Using mitochondrial markers, we found complete divergence between control and high-temperature populations in the frequencies of six initial founder genotypes. Our results confirm basic predictions of ER and illustrate how adaptation to an extreme local environment can produce positive as well as negative correlated responses to selection over the entire range of the ecological niche. © 2017 John Wiley & Sons Ltd.

  5. Stress-induced Curie temperature increase in the Fe{sub 64}Ni{sub 36} invar alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gorria, Pedro; Martinez-Blanco, David; Blanco, Jesus A. [Departamento de Fisica, Universidad de Oviedo (Spain); Boada, Roberto; Chaboy, Jesus [ICMA and Departamento de Fisica de la Materia Condensada, CSIC - Universidad de Zaragoza (Spain); Fernandez-Martinez, Alejandro [LGIT, University of Grenoble and CNRS, Maison des Geosciences, Grenoble (France); Institut Laue-Langevin, Grenoble (France); Garbarino, Gaston; Castro, German R.; Mezouar, Mohamed [European Synchrotron Radiation Facility (ESRF), Grenoble (France); Smith, Ronald I. [ISIS Facility, RAL, Chilton, Didcot, Oxon (United Kingdom); Alonso, J.I.G. [Department of Physical and Analytical Chemistry, University of Oviedo (Spain); Hernando, Antonio [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, Madrid (Spain)

    2009-05-15

    Structural and magnetic changes on invar Fe{sub 64}Ni{sub 36} alloy (T{sub C}=500 K) produced by mechanical milling followed by heating up to 1073 K, were investigated by neutron diffraction, magnetization measurements, X-ray diffraction under high pressures and X-ray absorption at both Fe and Ni K-edges. We argue that the strain induced in the Fe{sub 64}Ni{sub 36} material after this treatment mainly affects the Fe sites due to the magnetovolume coupling, the most notorious feature being the increase of the Curie temperature ({delta}T{sub C}=70 K). (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Temperature increase can cause hyperecdysonism in American lobsters (Homarus americanus) injected with ecdysterone

    Energy Technology Data Exchange (ETDEWEB)

    Aiken, D E; Waddy, S L

    1975-10-01

    In the lobster Homarus americanus the threshold dose for premolt acceleration by ecdysterone can be altered by changes in temperature. Two dose levels of ecdysterone (0.5 and 1.0 ..mu..g/g body weight) were compared at three different temperatures (10, 17, 21/sup 0/C); all three doses remained subthreshold at 10/sup 0/C but at 17/sup 0/C the 1.0-..mu..g dose caused hyperecdysonism--rapid but abnormal completion of premolt terminating in death at ecdysis. In contrast, the 0.5-..mu..g dose remained subthreshold even at 21/sup 0/C. These results demonstrate a dose-temperature relation for response to injected ecdysterone.

  7. A Review of Measures against Increasing Temperature and Climate Change for the Safeguard of Workers in India

    Directory of Open Access Journals (Sweden)

    Ranjit Kumar Dehury

    2017-10-01

    Full Text Available Severe heat causes various health related problems among the workers in India. Working under hot and humid environment damages health of workers especially the agriculture labourers, construction workers, rickshaw pullers, venders, brick kiln workers and daily wage labourers. High humidity and high temperature can leads to heat stress even in 38°C temperature. The damage might be temporary, like heat related injuries to permanent like, critical heat stroke. Sometimes, it leads to occupational hazards which is irreversible in nature. Despite these serious issues, there is minimal preparation which exposes the workers to serious conditions. This paper evaluates various consequences of climate change and increasing temperature on the workers. Various databases like PubMed, Scopus and Google Scholar have been enquired to bring evidences across industry and places. The effects of heat and temperature were thematically arranged to understand the seriousness of the issues. Suggestions and way forwards are also discussed for the solution for workers and sustainability of various sectors depending on labourers working under the heat of sun. The paper suggests the requirement of creating a heat combating environment by coordinating among various government departments and agencies for the welfare of the workers. The industrial workers have to be provided with sufficient measures by various industries as per the governing laws. The agriculture and brick kiln workers have to work in mild heat and with sufficient protection to avoid consequences. The government need to monitor the unorganised sectors for protection of workers by law enforcing organs.

  8. Cloacal evaporative cooling: a previously undescribed means of increasing evaporative water loss at higher temperatures in a desert ectotherm, the Gila monster Heloderma suspectum.

    Science.gov (United States)

    DeNardo, Dale F; Zubal, Tricia E; Hoffman, Ty C M

    2004-02-01

    The Gila monster Heloderma suspectum is an active forager in an environment that, at times, can be extremely hot and arid. Thus, Gila monsters face extreme thermostatic and hydrostatic demands. For a desert ectotherm routinely risking dehydration, evaporative water loss (EWL) is typically viewed as detrimental. Yet evaporation simultaneously dehydrates and cools an animal. We explored EWL in Gila monsters by measuring cutaneous, ventilatory and cloacal EWL at five ambient temperatures between 20.5 degrees C and 40 degrees C. Our results show that Gila monsters have high EWL rates relative to body mass. Cutaneous EWL underwent a consistent, temperature-dependent increase over the entire range of test temperatures (Q(10)=1.61, with EWL ranging from 0.378 to 0.954 mg g(-1) h(-1)). Ventilatory EWL did not show a significant temperature-dependent response, but ranged from 0.304 to 0.663 mg g(-1) h(-1). Cloacal EWL was extremely low and relatively constant between 20.5 degrees C and 35 degrees C, but rose dramatically above 35 degrees C (Q(10) >8.3 x 10(7), from 0.0008 at 35 degrees C to 7.30 mg g(-1) h(-1) at 40 degrees C). This steep rise in cloacal EWL coincided with an increasing suppression of body temperature relative to ambient temperature. Dehydration to 80% of initial body mass led to a delay in the onset and an attenuation of the dramatic increase in cloacal EWL. These results emphasize the potential value of EWL for thermoregulation in ectotherms and demonstrate for the first time the role of the cloaca in this process.

  9. Transcriptome sequence analysis of an ornamental plant, Ananas comosus var. bracteatus, revealed the potential unigenes involved in terpenoid and phenylpropanoid biosynthesis.

    Science.gov (United States)

    Ma, Jun; Kanakala, S; He, Yehua; Zhang, Junli; Zhong, Xiaolan

    2015-01-01

    Ananas comosus var. bracteatus (Red Pineapple) is an important ornamental plant for its colorful leaves and decorative red fruits. Because of its complex genome, it is difficult to understand the molecular mechanisms involved in the growth and development. Thus high-throughput transcriptome sequencing of Ananas comosus var. bracteatus is necessary to generate large quantities of transcript sequences for the purpose of gene discovery and functional genomic studies. The Ananas comosus var. bracteatus transcriptome was sequenced by the Illumina paired-end sequencing technology. We obtained a total of 23.5 million high quality sequencing reads, 1,555,808 contigs and 41,052 unigenes. In total 41,052 unigenes of Ananas comosus var. bracteatus, 23,275 unigenes were annotated in the NCBI non-redundant protein database and 23,134 unigenes were annotated in the Swiss-Port database. Out of these, 17,748 and 8,505 unigenes were assigned to gene ontology categories and clusters of orthologous groups, respectively. Functional annotation against Kyoto Encyclopedia of Genes and Genomes Pathway database identified 5,825 unigenes which were mapped to 117 pathways. The assembly predicted many unigenes that were previously unknown. The annotated unigenes were compared against pineapple, rice, maize, Arabidopsis, and sorghum. Unigenes that did not match any of those five sequence datasets are considered to be Ananas comosus var. bracteatus unique. We predicted unigenes encoding enzymes involved in terpenoid and phenylpropanoid biosynthesis. The sequence data provide the most comprehensive transcriptomic resource currently available for Ananas comosus var. bracteatus. To our knowledge; this is the first report on the de novo transcriptome sequencing of the Ananas comosus var. bracteatus. Unigenes obtained in this study, may help improve future gene expression, genetic and genomics studies in Ananas comosus var. bracteatus.

  10. Transcriptome sequence analysis of an ornamental plant, Ananas comosus var. bracteatus, revealed the potential unigenes involved in terpenoid and phenylpropanoid biosynthesis.

    Directory of Open Access Journals (Sweden)

    Jun Ma

    Full Text Available Ananas comosus var. bracteatus (Red Pineapple is an important ornamental plant for its colorful leaves and decorative red fruits. Because of its complex genome, it is difficult to understand the molecular mechanisms involved in the growth and development. Thus high-throughput transcriptome sequencing of Ananas comosus var. bracteatus is necessary to generate large quantities of transcript sequences for the purpose of gene discovery and functional genomic studies.The Ananas comosus var. bracteatus transcriptome was sequenced by the Illumina paired-end sequencing technology. We obtained a total of 23.5 million high quality sequencing reads, 1,555,808 contigs and 41,052 unigenes. In total 41,052 unigenes of Ananas comosus var. bracteatus, 23,275 unigenes were annotated in the NCBI non-redundant protein database and 23,134 unigenes were annotated in the Swiss-Port database. Out of these, 17,748 and 8,505 unigenes were assigned to gene ontology categories and clusters of orthologous groups, respectively. Functional annotation against Kyoto Encyclopedia of Genes and Genomes Pathway database identified 5,825 unigenes which were mapped to 117 pathways. The assembly predicted many unigenes that were previously unknown. The annotated unigenes were compared against pineapple, rice, maize, Arabidopsis, and sorghum. Unigenes that did not match any of those five sequence datasets are considered to be Ananas comosus var. bracteatus unique. We predicted unigenes encoding enzymes involved in terpenoid and phenylpropanoid biosynthesis.The sequence data provide the most comprehensive transcriptomic resource currently available for Ananas comosus var. bracteatus. To our knowledge; this is the first report on the de novo transcriptome sequencing of the Ananas comosus var. bracteatus. Unigenes obtained in this study, may help improve future gene expression, genetic and genomics studies in Ananas comosus var. bracteatus.

  11. Temperature regulation of marine heterotrophic prokaryotes increases latitudinally as a breach between bottom-up and top-down controls

    KAUST Repository

    Moran, Xose Anxelu G.

    2017-04-19

    Planktonic heterotrophic prokaryotes make up the largest living biomass and process most organic matter in the ocean. Determining when and where the biomass and activity of heterotrophic prokaryotes are controlled by resource availability (bottom-up), predation and viral lysis (top-down) or temperature will help in future carbon cycling predictions. We conducted an extensive survey across subtropical and tropical waters of the Atlantic, Indian and Pacific Oceans during the Malaspina 2010 Global Circumnavigation Expedition and assessed indices for these three types of controls at 109 stations (mostly from the surface to 4000 m depth). Temperature control was approached by the apparent activation energy in eV (ranging from 0.46 to 3.41), bottom-up control by the slope of the log-log relationship between biomass and production rate (ranging from -0.12 to 1.09) and top-down control by an index that considers the relative abundances of heterotrophic nanoflagellates and viruses (ranging from 0.82 to 4.83). We conclude that temperature becomes dominant (i.e. activation energy >1.5 eV) within a narrow window of intermediate values of bottom-up (0.3-0.6) and top-down 0.8-1.2) controls. A pervasive latitudinal pattern of decreasing temperature regulation towards the Equator, regardless of the oceanic basin, suggests that the impact of global warming on marine microbes and their biogeochemical function will be more intense at higher latitudes. Our analysis predicts that 1°C ocean warming will result in increased biomass of heterotrophic prokaryoplankton only in waters with <26°C of mean annual surface temperature. This article is protected by copyright. All rights reserved.

  12. TRACE analysis of Phenix core response to an increase of the core inlet sodium temperature

    Energy Technology Data Exchange (ETDEWEB)

    Chenu, A., E-mail: aurelia.chenu@psi.ch [Paul Scherrer Inst., Villigen PSI (Switzerland); Ecole Polytechnique Federale (Switzerland); Mikityuk, K., E-mail: konstantin.mikityuk@psi.ch [Paul Scherrer Inst., Villigen PSI (Switzerland); Adams, R., E-mail: robert.adams@psi.ch [Paul Scherrer Inst., Villigen PSI (Switzerland); Eidgenossische Technische Hochschule, Zurich (Switzerland); Chawla, R., E-mail: rakesh.chawla@epfl.ch [Paul Scherrer Inst., Villigen PSI (Switzerland); Ecole Polytechnique Federale (Switzerland)

    2011-07-01

    This work presents the analysis, using the TRACE code, of the Phenix core response to an inlet sodium temperature increase. The considered experiment was performed in the frame of the Phenix End-Of-Life (EOL) test program of the CEA, prior to the final shutdown of the reactor. It corresponds to a transient following a 40°C increase of the core inlet temperature, which leads to a power decrease of 60%. This work focuses on the first phase of the transient, prior to the reactor scram and pump trip. First, the thermal-hydraulic TRACE model of the core developed for the present analysis is described. The kinetic parameters and feedback coefficients for the point kinetic model were first derived from a 3D static neutronic ERANOS model developed in a former study. The calculated kinetic parameters were then optimized, before use, on the basis of the experimental reactivity in order to minimize the error on the power calculation. The different reactivity feedbacks taken into account include various expansion mechanisms that have been specifically implemented in TRACE for analysis of fast-neutron spectrum systems. The point kinetic model has been used to study the sensitivity of the core response to the different feedback effects. The comparison of the calculated results with the experimental data reveals the need to accurately calculate the reactivity feedback coefficients. This is because the reactor response is very sensitive to small reactivity changes. This study has enabled us to study the sensitivity of the power change to the different reactivity feedbacks and define the most important parameters. As such, it furthers the validation of the FAST code system, which is being used to gain a more in-depth understanding of SFR core behavior during accidental transients. (author)

  13. Role of the Colletotrichum acutatum sesquiterpene synthase CaTPS in the biosynthesis of sesquiterpenoids

    DEFF Research Database (Denmark)

    Amby, Daniel Buchvaldt; Manczak, Tom; Petersen, Mikael Agerlin

    2016-01-01

    biosynthesis is performed by sesquiterpene synthases (TPS). Only a few TPSs have been functionally characterized from filamentous fungi and none from the genus Colletotrichum. Despite being an important fungal pathogen to agriculture, it is poorly understood at the molecular and chemical levels. The terpenoid...... characterization of TPS in Colletotrichum spp. and terpenoid profiles of Coll. acutatum, which could facilitate studies on the role of terpenoids in the ecology of Coll. acutatum....

  14. Increased recovery in dual temperature isotope exchange process

    International Nuclear Information System (INIS)

    Babcock, D.F.; Neill, J.S.

    1978-01-01

    The improvement comprises increasing the flow ratio of liquid with respect to gas within the upper portion of the first tower, wherein the liquid is enriched in the isotope, and within the lower portion of the second tower, wherein the liquid is depleted in the isotope each to a value of at least 5% above the corresponding flow ratio within the remaining lower portion of the first tower and the remaining upper portion of the second tower respectively. The increased flow ratios are provided by increasing the rate of liquid substance being fed to the first tower and withdrawing up to about 50% of the increased liquid substance flow from a location within the upper one-half of the first tower and reintroducing the withdrawn liquid at a location within the lower one-half portion of the second tower. (author)

  15. Increased attentiveness is associated with hemispheric asymmetry measured with lateral tympanic membrane temperature in humans and dogs.

    Science.gov (United States)

    Helton, William S; Maginnity, Michelle

    2012-06-01

    In this study, we examined the relationship between a measure of cerebral lateralization--differences in tympanic temperature (T(Ty))--and questionnaire measures of inattentiveness and hyperactivity in both people and dogs. Theories of cerebral lateralization indicate that cerebral asymmetry may improve attentive behaviour. In people, greater left than right T(Ty) was related to increased self-reports of inattentiveness. There was no relationship between lateralized T(Ty) and hyperactivity. In dogs, there was quadratic relationship between lateralized T(Ty) and handler reports of inattentiveness. Increased T(Ty) asymmetry, regardless of direction, was related to more attentiveness. There was no discernable relationship between hyperactivity and lateralized T(Ty). Differences in T(Ty) may be an useful tool for investigating species comparisons of cerebral lateralization.

  16. Temperature increase at the light guide tip of 15 contemporary LED units and thermal variation at the pulpal floor of cavities: an infrared thermographic analysis.

    Science.gov (United States)

    Gomes, M; DeVito-Moraes, A; Francci, C; Moraes, R; Pereira, T; Froes-Salgado, N; Yamazaki, L; Silva, L; Zezell, D

    2013-01-01

    In this study, a comprehensive investigation on the temperature increase at the light guide tip of several commercial light-emitting diode (LED) light-curing units (LCUs) and the associated thermal variation (ΔT) at the pulpal floor of dental cavities was carried out. In total, 15 LEDs from all generations were investigated, testing a quartz-tungsten-halogen (QTH) unit as a reference. The irradiance level was measured with a power meter, and spectral distribution was analyzed using a spectrometer. Temperature increase at the tip was measured with a type-K thermocouple connected to a thermometer, while ΔT at the pulpal floor was measured by an infrared photodetector in class V cavities, with a 1-mm-thick dentin pulpal floor. The relationship among measured irradiance, ΔT at the tip, and ΔT at the pulpal floor was investigated using regression analyses. Large discrepancies between the expected and measured irradiances were detected for some LCUs. Most of the LCUs showed an emission spectrum narrower than the QTH unit, with emission peaks usually between 450 and 470 nm. The temperature increase at the tip followed a logarithmic growth for LCUs with irradiance ≥1000 mW/cm(2), with ΔT at the tip following the measured irradiance linearly (R(2)=0.67). Linear temperature increase at the pulpal floor over the 40-second exposure time was observed for several LCUs, with linear association between ΔT at the pulpal floor and measured irradiance (R(2)=0.39) or ΔT at the tip (R(2)=0.28). In conclusion, contemporary LED units show varied irradiance levels that affect the temperature increase at the light guide tip and, as a consequence, the thermal variation at the pulpal floor of dental cavities.

  17. Regional amplification of extreme temperatures strongly controlled by soil moisture-temperature feedbacks

    Science.gov (United States)

    Vogel, M.; Orth, R.; Seneviratne, S. I.

    2016-12-01

    Land temperatures, and in particular hot extremes, will likely increase by more than 2° C in many regions, even in the case that the global temperature increase with respect to pre-industrial levels can be limited to 2°C. We investigate here the role of soil moisture-temperature feedbacks for projected changes of extreme temperatures by comparing experiments from the GLACE-CMIP5 (Global Land-Atmosphere Coupling Experiment - Coupled Model Intercomparison Project Phase 5) project. In particular, we consider fully coupled experiments with all 6 involved GCMs and corresponding experiments where soil moisture is fixed to the local present-day seasonal cycle until the end of the 21st century. We consider the yearly hottest days and apply a scaling approach whereby we relate changes of hottest days to global mean temperature increase. We find that soil moisture-temperature coupling significantly contributes to additional future warming of extreme temperatures in many regions: In particular, it can explain more than 70% of the warming amplification of hottest days compared to global mean temperature in Central Europe, Central North America and Northern Australia, and around 50% of this signal in the Amazonian Region and Southern Africa.

  18. Produtos naturais para o controle da transmissão da dengue: atividade larvicida de Myroxylon balsamum (óleo vermelho e de terpenóides e fenilpropanóides Natural products for dengue transmission control: larvicidal activity of Myroxylon balsamum (red oil and of terpenoids and phenylpropanoids

    Directory of Open Access Journals (Sweden)

    Naomi Kato Simas

    2004-02-01

    Full Text Available The bioassay-guided fractionation of the hexane extract obtained from the medicinal plant Myroxylon balsamum (red oil was conducted in preparative thin layer chromatography on silica gel. The obtained fractions and some terpenoids and phenylpropanoids were assayed as larvicidal on third instar Aedes aegypti larvae, NPPN colony. The results indicate that the sesquiterpene nerolidol was the active constituent in the extract and that the sesquiterpenes were more active than the monoterpenes and phenylpropanoids utilized in this study. Lipophilicity seems to be an important property for the activity since the compounds with hydroxyl, carbonyl and methoxyl groups were less active. The results confirm also that essential oils can be a good tool for the control of dengue.

  19. Increased core body temperature in astronauts during long-duration space missions

    Czech Academy of Sciences Publication Activity Database

    Stahn, A. C.; Werner, A.; Opatz, O.; Maggioni, M. A.; Steinach, M.; von Ahlefeld, V. W.; Moore, A.; Crucian, B. E.; Smith, S. M.; Zwart, S. R.; Schlabs, T.; Mendt, S.; Trippel, T.; Koralewski, E.; Koch, J.; Chouker, A.; Reitz, Guenther; Shang, P.; Rocker, L.; Kirsch, K. A.; Gunga, H-C.

    2017-01-01

    Roč. 7, č. 11 (2017), č. článku 16180. ISSN 2045-2322 Institutional support: RVO:61389005 Keywords : core body temperature * astonauts' CBT * spaceflights Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Electrical and electronic engineering Impact factor: 4.259, year: 2016

  20. Measurement of the temperature distribution inside the power cable using distributed temperature system

    Science.gov (United States)

    Jaros, Jakub; Liner, Andrej; Papes, Martin; Vasinek, Vladimir; Mach, Veleslav; Hruby, David; Kajnar, Tomas; Perecar, Frantisek

    2015-01-01

    Nowadays, the power cables are manufactured to fulfill the following condition - the highest allowable temperature of the cable during normal operation and the maximum allowable temperature at short circuit conditions cannot exceed the condition of the maximum allowable internal temperature. The distribution of the electric current through the conductor leads to the increase of the amplitude of electrons in the crystal lattice of the cables material. The consequence of this phenomenon is the increase of friction and the increase of collisions between particles inside the material, which causes the temperature increase of the carrying elements. The temperature increase is unwanted phenomena, because it is causing losses. In extreme cases, the long-term overload leads to the cable damaging or fire. This paper deals with the temperature distribution measurement inside the power cables using distributed temperature system. With cooperation with Kabex company, the tube containing optical fibers was installed into the center of power cables. These fibers, except telecommunications purposes, can be also used as sensors in measurements carrying out with distributed temperature system. These systems use the optical fiber as a sensor and allow the continual measurement of the temperature along the whole cable in real time with spatial resolution 1 m. DTS systems are successfully deployed in temperature measurement applications in industry areas yet. These areas include construction, drainage, hot water etc. Their advantages are low cost, resistance to electromagnetic radiation and the possibility of real time monitoring at the distance of 8 km. The location of the optical fiber in the center of the power cable allows the measurement of internal distribution of the temperature during overloading the cable. This measurement method can be also used for prediction of short-circuit and its exact location.

  1. Temperature Increase during Different Post Space Preparation Systems: An In Vitro Study.

    Science.gov (United States)

    Nazari Moghadam, Kiumars; Shahab, Shahriar; Shirvani, Soghra; Kazemi, Ali

    2011-01-01

      The purpose of this study was to evaluate external root surface temperature rise during post space preparation using LA Axxess bur, Beefill pack System, and Peeso Reamer drill. The distal canals of forty-five extracted human permanent mandibular first molars were instrumented in crown-apical manner and obturated with lateral condensation technique. Teeth were then randomly divided into three groups according to post space preparation technique including: group 1. LA Axxess bur (Sybronendo Co., CA, USA), group 2 Beefill pack System (VD W Co., Munich, Germany) and group 3 Peeso Reamer drill (Mani Co., Tochigi-ken, Japan). Temperature was measured by means of digital thermometer MT-405 (Comercio Co., Sao Paulo, Brazil) which was installed on the root surfaces. Data was collected and submitted to one-way ANOVA and Post hoc analysis. Root surface temperatures were found to be significantly higher (7.3±2.7 vs. 4.3±2.1 and 4±2.4,) in samples of Beefill pack System compared with the two other groups (P<0.02). Using Beefill pack System during post space preparation may be potentially hazardous for periodontal tissues.

  2. Constrained parameterisation of photosynthetic capacity causes significant increase of modelled tropical vegetation surface temperature

    Science.gov (United States)

    Kattge, J.; Knorr, W.; Raddatz, T.; Wirth, C.

    2009-04-01

    Photosynthetic capacity is one of the most sensitive parameters of terrestrial biosphere models whose representation in global scale simulations has been severely hampered by a lack of systematic analyses using a sufficiently broad database. Due to its coupling to stomatal conductance changes in the parameterisation of photosynthetic capacity may potentially influence transpiration rates and vegetation surface temperature. Here, we provide a constrained parameterisation of photosynthetic capacity for different plant functional types in the context of the photosynthesis model proposed by Farquhar et al. (1980), based on a comprehensive compilation of leaf photosynthesis rates and leaf nitrogen content. Mean values of photosynthetic capacity were implemented into the coupled climate-vegetation model ECHAM5/JSBACH and modelled gross primary production (GPP) is compared to a compilation of independent observations on stand scale. Compared to the current standard parameterisation the root-mean-squared difference between modelled and observed GPP is substantially reduced for almost all PFTs by the new parameterisation of photosynthetic capacity. We find a systematic depression of NUE (photosynthetic capacity divided by leaf nitrogen content) on certain tropical soils that are known to be deficient in phosphorus. Photosynthetic capacity of tropical trees derived by this study is substantially lower than standard estimates currently used in terrestrial biosphere models. This causes a decrease of modelled GPP while it significantly increases modelled tropical vegetation surface temperatures, up to 0.8°C. These results emphasise the importance of a constrained parameterisation of photosynthetic capacity not only for the carbon cycle, but also for the climate system.

  3. Microclimatic temperatures increase the potential for vector-borne disease transmission in the Scandinavian climate

    DEFF Research Database (Denmark)

    Haider, Najmul; Kirkeby, Carsten Thure; Kristensen, Birgit

    2017-01-01

    We quantified the difference between the meteorological temperature recorded by the Danish Meteorological Institute (DMI) weather stations and the actual microclimatic temperatures at two or three different heights at six potential insect habitats. We then compared the impact of the hourly temper...

  4. Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan

    Science.gov (United States)

    Khan, Najeebullah; Shahid, Shamsuddin; Ismail, Tarmizi bin; Wang, Xiao-Jun

    2018-06-01

    Pakistan is one of the most vulnerable countries of the world to temperature extremes due to its predominant arid climate and geographic location in the fast temperature rising zone. Spatial distribution of the trends in annual and seasonal temperatures and temperature extremes over Pakistan has been assessed in this study. The gauge-based gridded daily temperature data of Berkeley Earth Surface Temperature (BEST) having a spatial resolution of 1° × 1° was used for the assessment of trends over the period 1960-2013 using modified Mann-Kendall test (MMK), which can discriminate the multi-decadal oscillatory variations from secular trends. The results show an increase in the annual average of daily maximum and minimum temperatures in 92 and 99% area of Pakistan respectively at 95% level of confidence. The annual temperature is increasing faster in southern high-temperature region compared to other parts of the country. The minimum temperature is rising faster (0.17-0.37 °C/decade) compared to maximum temperature (0.17-0.29 °C/decade) and therefore declination of diurnal temperature range (DTR) (- 0.15 to - 0.08 °C/decade) in some regions. The annual numbers of both hot and cold days are increasing in whole Pakistan except in the northern sub-Himalayan region. Heat waves are on the rise, especially in the hot Sindh plains and the Southern coastal region, while the cold waves are becoming lesser in the northern cold region. Obtained results contradict with the findings of previous studies on temperature trends, which indicate the need for reassessment of climatic trends in Pakistan using the MMK test to understand the anthropogenic impacts of climate change.

  5. Increased expression of fructan 1-exohydrolase in rhizophores of Vernonia herbacea during sprouting and exposure to low temperature.

    Science.gov (United States)

    Asega, Amanda Francine; do Nascimento, João Roberto O; Carvalho, Maria Angela M

    2011-04-15

    Rhizophores of Vernonia herbacea, an Asteraceae found in the Brazilian Cerrado, store high amounts of fructans that vary in composition over the phenological cycle. Fructan 1-exohydrolase (1-FEH) activity is detectable during the sprouting phase, mainly in the proximal regions of rhizophores, of plants induced to sprout by defoliation and/or cold storage. We found an increase in 1-FEH gene expression during natural and induced sprouting and further enhancement through low-temperature treatment. Furthermore, a comparative analysis of 1-FEH gene expression in different regions of the rhizophores during the transition from dormancy to sprouting is presented. Transcripts were detected mainly in the proximal region, coinciding with high 1-FEH activity and a high concentration of free fructose. Low temperature promoted the accumulation of fructans of a low degree of polymerization (DP) and enhanced 1-FEH activity and gene expression. It is hypothesized that a set of 1-FEH proteins acts in two different ways during fructan mobilization: (1) by hydrolyzing fructo-oligosaccharides and -polysaccharides in sprouting plants (naturally or induced) for carbon supply and (2) by hydrolyzing preferably fructo-polysaccharides under low temperature to maintain the oligosaccharide pool for plant cold acclimation. Copyright © 2010 Elsevier GmbH. All rights reserved.

  6. Growth responses of male broilers subjected to increasing air velocities at high ambient temperatures and a high dew point.

    Science.gov (United States)

    Dozier, W A; Lott, B D; Branton, S L

    2005-06-01

    This study examined live performance responses of male broilers to increasing air velocity of 120 and 180 m/min reared under high cyclic temperatures (25-35-25 degrees C) with a 23 degrees C dew point from 21 to 49 d. Birds were reared in an environmental facility containing 2 wind tunnels (4 pens/tunnel) and 6 floor pens (control). At 21 d, 53 birds were placed in each pen of the wind tunnels and control group, respectively, and growth performance was determined weekly. Increasing air velocity from 120 to 180 m/min improved BW and BW gain from 29 to 35, 36 to 42, and 43 to 49 d of age leading to a cumulative advantage of 287 g in BW gain and a 10-point difference in feed conversion from 21 to 49 d of age. Subjecting birds to air velocity improved growth rate, feed consumption, and feed conversion at each weekly interval from 28 to 49 d over the control birds. These results indicate that male broilers approximating 2.0 to 3.0 kg respond to an air velocity of 180 m/min when exposed to high cyclic temperatures.

  7. Response of Sphagnum species mixtures to increased temperature and nitrogen availability

    NARCIS (Netherlands)

    Breeuwer, A.J.G.; Heijmans, M.M.P.D.; Berendse, F.; Gleichman, J.M.; Robroek, B.J.M.; Limpens, J.

    2009-01-01

    To predict the role of ombrotrophic bogs as carbon sinks in the future, it is crucial to understand how Sphagnum vegetation in bogs will respond to global change. We performed a greenhouse experiment to study the effects of two temperature treatments (17.5 and 21.7°C) and two N addition treatments

  8. Few apparent short-term effects of elevated soil temperature and increased frequency of summer precipitation on the abundance and taxonomic diversity of desert soil micro- and meso-fauna

    Science.gov (United States)

    Darby, B.J.; Neher, D.A.; Housman, D.C.; Belnap, J.

    2011-01-01

    Frequent hydration and drying of soils in arid systems can accelerate desert carbon and nitrogen mobilization due to respiration, microbial death, and release of intracellular solutes. Because desert microinvertebrates can mediate nutrient cycling, and the autotrophic components of crusts are known to be sensitive to rapid desiccation due to elevated temperatures after wetting events, we studied whether altered soil temperature and frequency of summer precipitation can also affect the composition of food web consumer functional groups. We conducted a two-year field study with experimentally-elevated temperature and frequency of summer precipitation in the Colorado Plateau desert, measuring the change in abundance of nematodes, protozoans, and microarthropods. We hypothesized that microfauna would be more adversely affected by the combination of elevated temperature and frequency of summer precipitation than either effect alone, as found previously for phototrophic crust biota. Microfauna experienced normal seasonal fluctuations in abundance, but the effect of elevated temperature and frequency of summer precipitation was statistically non-significant for most microfaunal groups, except amoebae. The seasonal increase in abundance of amoebae was reduced with combined elevated temperature and increased frequency of summer precipitation compared to either treatment alone, but comparable with control (untreated) plots. Based on our findings, we suggest that desert soil microfauna are relatively more tolerant to increases in ambient temperature and frequency of summer precipitation than the autotrophic components of biological soil crust at the surface.

  9. Effects of Recent Minimum Temperature and Water Deficit Increases on Pinus pinaster Radial Growth and Wood Density in Southern Portugal.

    Science.gov (United States)

    Kurz-Besson, Cathy B; Lousada, José L; Gaspar, Maria J; Correia, Isabel E; David, Teresa S; Soares, Pedro M M; Cardoso, Rita M; Russo, Ana; Varino, Filipa; Mériaux, Catherine; Trigo, Ricardo M; Gouveia, Célia M

    2016-01-01

    Western Iberia has recently shown increasing frequency of drought conditions coupled with heatwave events, leading to exacerbated limiting climatic conditions for plant growth. It is not clear to what extent wood growth and density of agroforestry species have suffered from such changes or recent extreme climate events. To address this question, tree-ring width and density chronologies were built for a Pinus pinaster stand in southern Portugal and correlated with climate variables, including the minimum, mean and maximum temperatures and the number of cold days. Monthly and maximum daily precipitations were also analyzed as well as dry spells. The drought effect was assessed using the standardized precipitation-evapotranspiration (SPEI) multi-scalar drought index, between 1 to 24-months. The climate-growth/density relationships were evaluated for the period 1958-2011. We show that both wood radial growth and density highly benefit from the strong decay of cold days and the increase of minimum temperature. Yet the benefits are hindered by long-term water deficit, which results in different levels of impact on wood radial growth and density. Despite of the intensification of long-term water deficit, tree-ring width appears to benefit from the minimum temperature increase, whereas the effects of long-term droughts significantly prevail on tree-ring density. Our results further highlight the dependency of the species on deep water sources after the juvenile stage. The impact of climate changes on long-term droughts and their repercussion on the shallow groundwater table and P. pinaster's vulnerability are also discussed. This work provides relevant information for forest management in the semi-arid area of the Alentejo region of Portugal. It should ease the elaboration of mitigation strategies to assure P. pinaster's production capacity and quality in response to more arid conditions in the near future in the region.

  10. Effects of Recent Minimum Temperature and Water Deficit Increases on Pinus pinaster Radial Growth and Wood Density in Southern Portugal

    Science.gov (United States)

    Kurz-Besson, Cathy B.; Lousada, José L.; Gaspar, Maria J.; Correia, Isabel E.; David, Teresa S.; Soares, Pedro M. M.; Cardoso, Rita M.; Russo, Ana; Varino, Filipa; Mériaux, Catherine; Trigo, Ricardo M.; Gouveia, Célia M.

    2016-01-01

    Western Iberia has recently shown increasing frequency of drought conditions coupled with heatwave events, leading to exacerbated limiting climatic conditions for plant growth. It is not clear to what extent wood growth and density of agroforestry species have suffered from such changes or recent extreme climate events. To address this question, tree-ring width and density chronologies were built for a Pinus pinaster stand in southern Portugal and correlated with climate variables, including the minimum, mean and maximum temperatures and the number of cold days. Monthly and maximum daily precipitations were also analyzed as well as dry spells. The drought effect was assessed using the standardized precipitation-evapotranspiration (SPEI) multi-scalar drought index, between 1 to 24-months. The climate-growth/density relationships were evaluated for the period 1958-2011. We show that both wood radial growth and density highly benefit from the strong decay of cold days and the increase of minimum temperature. Yet the benefits are hindered by long-term water deficit, which results in different levels of impact on wood radial growth and density. Despite of the intensification of long-term water deficit, tree-ring width appears to benefit from the minimum temperature increase, whereas the effects of long-term droughts significantly prevail on tree-ring density. Our results further highlight the dependency of the species on deep water sources after the juvenile stage. The impact of climate changes on long-term droughts and their repercussion on the shallow groundwater table and P. pinaster’s vulnerability are also discussed. This work provides relevant information for forest management in the semi-arid area of the Alentejo region of Portugal. It should ease the elaboration of mitigation strategies to assure P. pinaster’s production capacity and quality in response to more arid conditions in the near future in the region. PMID:27570527

  11. Extending the temperature range of the HTR

    International Nuclear Information System (INIS)

    Balcomb, J.D.; Wagner, P.

    1975-01-01

    The operating temperature of the high temperature helium-cooled reactor can be increased in a number of ways in order to provide higher temperature nuclear heat for various industrial processes. Modifications are of two types: 1) decrease in the temperature difference between the maximum coated particle fuel temperature and the mean exit gas temperature, and 2) increased maximum coated particle temperature. Gains in the latter category are limited by fission product diffusion into the gas steam and increases greater than 100 0 K are not forseen. Increases in the former category, however, are readily made and a variety of modifications are proposed as follows: incorporation of coated particles in the fuel matrix; use of a more finely-divided fuel coolant hole geometry to increase heat transfer coefficients and reduce conduction temperature differences; large increases in the fuel matrix graphite thermal conductivity (to about 50 W/m 0 K) to reduce conduction temperature differences; and modifications to the core distribution, both radially and axially. By such means the exit gas temperature can be increased to the range of 1200 0 K to 1600 0 K. (author)

  12. Effects of high hydrostatic pressure and temperature increase on Escherichia coli spp. and pectin methyl esterase inactivation in orange juice.

    Science.gov (United States)

    Torres, E F; González-M, G; Klotz, B; Rodrigo, D

    2016-03-01

    The aim of this study was to evaluate the effect of high hydrostatic pressure treatment combined with moderate processing temperatures (25 ℃-50 ℃) on the inactivation of Escherichia coli O157: H7 (ATCC 700728), E. coli K12 (ATCC 23716), and pectin methyl esterase in orange juice, using pressures of 250 to 500 MPa with times ranging between 1 and 30 min. Loss of viability of E. coli O157:H7 increased significantly as pressure and treatment time increased, achieving a 6.5 log cycle reduction at 400 MPa for 3 min at 25 ℃ of treatment. With regard to the inactivation of pectin methyl esterase, the greatest reduction obtained was 90.05 ± 0.01% at 50 ℃ and 500 MPa of pressure for 15 min; therefore, the pectin methyl esterase enzyme was highly resistant to the treatments by high hydrostatic pressure. The results obtained in this study showed a synergistic effect between the high pressure and moderate temperatures in inactivating E. coli cells. © The Author(s) 2016.

  13. [Temperature sensitivity of wheat plant respiration and soil respiration influenced by increased UV-B radiation from elongation to flowering periods].

    Science.gov (United States)

    Chen, Shu-Tao; Hu, Zheng-Hua; Li, Han-Mao; Ji, Yu-Hong; Yang, Yan-Ping

    2009-05-15

    Field experiment was carried out in the spring of 2008 in order to investigate the effects of increased UV-B radiation on the temperature sensitivity of wheat plant respiration and soil respiration from elongation to flowering periods. Static chamber-gas chromatography method was used to measure ecosystem respiration and soil respiration under 20% UV-B radiation increase and control. Environmental factors such as temperature and moisture were also measured. Results indicated that supplemental UV-B radiation inhibited the ecosystem respiration and soil respiration from wheat elongation to flowering periods, and the inhibition effect was more obvious for soil respiration than for ecosystem respiration. Ecosystem respiration rates, on daily average, were 9%, 9%, 3%, 16% and 30% higher for control than for UV-B treatment forthe five measurement days, while soil respiration rates were 99%, 93%, 106%, 38% and 10% higher for control than for UV-B treatment. The Q10s (temperature sensitivity coefficients) for plant respiration under control and UV-B treatments were 1.79 and 1.59, respectively, while the Q10s for soil respiration were 1.38 and 1.76, respectively. The Q10s for ecosystem respiration were 1.65 and 1.63 under CK and UV-B treatments, respectively. Supplemental UV-B radiation caused a lower Q10 for plant respiration and a higher Q10 for soil respiration, although no significant effect of supplemental UV-B radiation on the Q10 for ecosystem respiration was found.

  14. Regional patterns of increasing Swiss needle cast impacts on Douglas-fir growth with warming temperatures.

    Science.gov (United States)

    Lee, E Henry; Beedlow, Peter A; Waschmann, Ronald S; Tingey, David T; Cline, Steven; Bollman, Michael; Wickham, Charlotte; Carlile, Cailie

    2017-12-01

    The fungal pathogen, Phaeocryptopus gaeumannii , causing Swiss needle cast (SNC) occurs wherever Douglas-fir is found but disease damage is believed to be limited in the U.S. Pacific Northwest (PNW) to the Coast Range of Oregon and Washington (Hansen et al., Plant Disease , 2000, 84 , 773; Rosso & Hansen, Phytopathology , 2003, 93 , 790; Shaw, et al., Journal of Forestry , 2011, 109 , 109). However, knowledge remains limited on the history and spatial distribution of SNC impacts in the PNW. We reconstructed the history of SNC impacts on mature Douglas-fir trees based on tree-ring width chronologies from western Oregon. Our findings show that SNC impacts on growth occur wherever Douglas-fir is found and is not limited to the coastal fog zone. The spatiotemporal patterns of growth impact from SNC disease were synchronous across the region, displayed periodicities of 12-40 years, and strongly correlated with winter and summer temperatures and summer precipitation. The primary climatic factor limiting pathogen dynamics varied spatially by location, topography, and elevation. SNC impacts were least severe in the first half of the 20th century when climatic conditions during the warm phase of the Pacific Decadal Oscillation (1924-1945) were less conducive to pathogen development. At low- to mid-elevations, SNC impacts were most severe in 1984-1986 following several decades of warmer winters and cooler, wetter summers including a high summer precipitation anomaly in 1983. At high elevations on the west slope of the Cascade Range, SNC impacts peaked several years later and were the greatest in the 1990s, a period of warmer winter temperatures. Climate change is predicted to result in warmer winters and will likely continue to increase SNC severity at higher elevations, north along the coast from northern Oregon to British Columbia, and inland where low winter temperatures currently limit growth of the pathogen. Our findings indicate that SNC may become a significant

  15. High-temperature hydrogenation of pure and silver-decorated titanate nanotubes to increase their solar absorbance for photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Plodinec, Milivoj [Ruđer Bošković Institute, Bijenička 54, HR-1002 Zagreb (Croatia); Gajović, Andreja, E-mail: gajovic@irb.hr [Ruđer Bošković Institute, Bijenička 54, HR-1002 Zagreb (Croatia); Jakša, Gregor; Žagar, Kristina; Čeh, Miran [Institute Jožef Stefan, Jamova 39, 1000 Ljubljana (Slovenia)

    2014-04-05

    Graphical abstract: The aim of the work is to study how annealing in a reducing atmosphere of titanate nanotubes (TiNT) and Ag decorated titanate nanotubes (TiNT@Ag) influenced on their structure, morphology, phase transitions, UV–ViS-NIR absorbance and photocatalytic activity. An increase of photocatalytic activity after a heat treatment in a reducing atmosphere was observed in the TiNT and TiNT@Ag. We found that the hydrogenated TiNT@Ag samples (TiNT@Ag-HA) had a two-times higher photodegradation impact on the caffeine than the TiNT samples, which is a consequence of the increased absorption of visible light and the synergetic effects between the silver and the TiO{sub 2} nanoparticles that increase the efficiency of the formation of electron–hole pairs and the charge transfer to the surface of the nanoparticles. -- Highlights: • Titanate nanotubes with and without Ag nanoparticles were hydrogenated at 550 °C. • TiO{sub 2} nanostructures obtained by hydrogenation have core–shell structure. • Hydrogenated samples show absorption in the visible spectral region. • Hydrogenated Ag decorated sample show stronger absorption in visible than in UV. • Photocatalytic efficiency is improved by hydrogenation and by Ag nanoparticles. -- Abstract: Titanate nanotubes (TiNTs) and silver-decorated titanate nanotubes (TiNTs@Ag) were synthesized using the hydrothermal method. In the decorated nanotubes the silver particles were obtained by the photoreduction of AgNO{sub 3} under UV light. Pure and Ag-decorated nanotubes were high-temperature heat treated at 550 °C in a hydrogen atmosphere and the “core–shell”-structured TiO{sub 2} nanoparticles were formed. For the structural characterization of all the titanate nanostructures we used conventional and analytical transmission electron microscopy (TEM) techniques, X-ray diffraction (XRD) and Raman spectroscopy. The Ag-decorated titanate nanostructures were additionally studied by X-ray photo

  16. The Potential Impact of CO2 and Air Temperature Increases on Krummholz's Transformation into Arborescent Form in the Southern Siberian Mountains

    Science.gov (United States)

    Kharuk, V. I.; Dvinskaya, M. L.; Im, S. T.; Ranson, K. J.

    2011-01-01

    Trees in the southern Siberian Mountains forest-tundra ecotone have considerably increased their radial and apical growth increments during the last few decades. This leads to the widespread vertical transformation of mat and prostrate krummholz forms of larch (Larix sibirica Ledeb) and Siberian pine (Pinus sibirica Du Tour). An analysis of the radial growth increments showed that these transformations began in the mid-1980s. Larch showed a greater resistance to the harsh alpine environment and attained a vertical growth form in areas where Siberian pine is still krummholz. Upper larch treeline is about 10 m higher than Siberian pine treeline. Observed apical and radial growth increment increases were correlated with CO2 concentration (r = 0.83-0.87), summer temperatures (r = 0.55-0.64), and "cold period" (i.e. September-May) air temperatures (r = 0.36-0.37). Positive correlation between growth increments and winter precipitation was attributed to snow cover protection for trees during wintertime.

  17. Increases in both acute and chronic temperature potentiate tocotrienol concentrations in wild barley at 'Evolution Canyon'.

    Science.gov (United States)

    Shen, Yu; Lansky, Ephraim; Traber, Maret; Nevo, Eviatar

    2013-09-01

    Biosynthesis of tocols (vitamin E isoforms) is linked to response to temperature in plants. 'Evolution Canyon', an ecogeographical microcosm extending over an average of 200 meters (range 100-400) wide area in the Carmel Mountains of northern Israel, has been suggested as a model for studying global warming. Both domestic (Hordeum vulgare) and wild (Hordeum spontaneum) barley compared with wheat, oat, corn, rice, and rye show high tocotrienol/tocopherol ratios. Therefore, we hypothesized that tocol distribution might change in response to global warming. α-, β-, γ-, and δ-tocopherol, and α-, β-, γ-, and δ-tocotrienol concentrations were measured in wild barley (H. spontaneum) seeds harvested from the xeric (African) and mesic (European) slopes of Evolution Canyon over a six-year period from 2005-2011. Additionally, we examined seeds from areas contiguous to and distant from the part of the Canyon severely burned during the Carmel Fire of December 2010. Increased α-tocotrienol (pslope in contrast to the cooler 'European' slope, and 3) to propinquity to the fire. The study illustrates the role of α-tocotrienol in both chronic and acute temperature adaptation in wild barley and suggests future research into thermoregulatory mechanisms in plants. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  18. Maintaining warm, trusting relationships with brands: increased temperature perceptions after thinking of communal brands.

    Directory of Open Access Journals (Sweden)

    Hans IJzerman

    Full Text Available Classical theories on interpersonal relations have long suggested that social interactions are influenced by sensation, such as the experience of warmth. Past empirical work now confirms that perceived differences in temperature impact how people form thoughts about relationships. The present work first integrates our knowledge database on brand research with this idea of "grounded social cognition". It then leverages a large sample (total N = 2,552 toward elucidating links between estimates of temperature and positive versus negative evaluations of communal brands. In five studies, the authors have found that thinking about positively (vs. negatively perceived communal brands leads to heightened temperature estimates. A meta-analysis of the five studies shows a small but consistent effect in this noisy environment, r = .11, 95% CI, .05, .18. Exploratory analyses in Studies 1a and b further suggest that temperature perceptions mediate the (significant relationship between perceived communality and willingness to purchase from the brand. The authors discuss implications for theory and practice and consider the effects from a Social Baseline Perspective.

  19. Maintaining warm, trusting relationships with brands: increased temperature perceptions after thinking of communal brands.

    Science.gov (United States)

    IJzerman, Hans; Janssen, Janneke A; Coan, James A

    2015-01-01

    Classical theories on interpersonal relations have long suggested that social interactions are influenced by sensation, such as the experience of warmth. Past empirical work now confirms that perceived differences in temperature impact how people form thoughts about relationships. The present work first integrates our knowledge database on brand research with this idea of "grounded social cognition". It then leverages a large sample (total N = 2,552) toward elucidating links between estimates of temperature and positive versus negative evaluations of communal brands. In five studies, the authors have found that thinking about positively (vs. negatively) perceived communal brands leads to heightened temperature estimates. A meta-analysis of the five studies shows a small but consistent effect in this noisy environment, r = .11, 95% CI, .05, .18. Exploratory analyses in Studies 1a and b further suggest that temperature perceptions mediate the (significant) relationship between perceived communality and willingness to purchase from the brand. The authors discuss implications for theory and practice and consider the effects from a Social Baseline Perspective.

  20. Expansion of oil palm and other cash crops causes an increase of the land surface temperature in the Jambi province in Indonesia

    Directory of Open Access Journals (Sweden)

    C. R. Sabajo

    2017-10-01

    Full Text Available Indonesia is currently one of the regions with the highest transformation rate of land surface worldwide related to the expansion of oil palm plantations and other cash crops replacing forests on large scales. Land cover changes, which modify land surface properties, have a direct effect on the land surface temperature (LST, a key driver for many ecological functions. Despite the large historic land transformation in Indonesia toward oil palm and other cash crops and governmental plans for future expansion, this is the first study so far to quantify the impacts of land transformation on the LST in Indonesia. We analyze LST from the thermal band of a Landsat image and produce a high-resolution surface temperature map (30 m for the lowlands of the Jambi province in Sumatra (Indonesia, a region which suffered large land transformation towards oil palm and other cash crops over the past decades. The comparison of LST, albedo, normalized differenced vegetation index (NDVI and evapotranspiration (ET between seven different land cover types (forest, urban areas, clear-cut land, young and mature oil palm plantations, acacia and rubber plantations shows that forests have lower surface temperatures than the other land cover types, indicating a local warming effect after forest conversion. LST differences were up to 10.1 ± 2.6 °C (mean ± SD between forest and clear-cut land. The differences in surface temperatures are explained by an evaporative cooling effect, which offsets the albedo warming effect. Our analysis of the LST trend of the past 16 years based on MODIS data shows that the average daytime surface temperature in the Jambi province increased by 1.05 °C, which followed the trend of observed land cover changes and exceeded the effects of climate warming. This study provides evidence that the expansion of oil palm plantations and other cash crops leads to changes in biophysical variables, warming the land surface and thus

  1. Reconstruction of core inlet temperature distribution by cold leg temperature measurements

    International Nuclear Information System (INIS)

    Saarinen, S.; Antila, M.

    2010-01-01

    The reduced core of Loviisa NPP contains 33 thermocouple measurements measuring the core inlet temperature. Currently, these thermocouple measurements are not used in determining the inlet temperature distribution. The average of cold leg temperature measurements is used as inlet temperature for each fuel assembly. In practice, the inlet temperature distribution is not constant. Thus, using a constant inlet temperature distribution induces asymmetries in the measured core power distribution. Using a more realistic inlet temperature distribution would help us to reduce virtual asymmetries of the core power distribution and increase the thermal margins of the core. The thermocouples at the inlet cannot be used directly to measure the inlet temperature accurately because the calibration of the thermocouples that is done at hot zero power conditions is no longer valid at full power, when there is temperature change across the core region. This is due to the effect of neutron irradiation on the Seebeck coefficient of the thermocouple wires. Therefore, we investigate in this paper a method to determine the inlet temperature distribution based on the cold leg temperature measurements. With this method we rely on the assumption that although the core inlet thermocouple measurements do not measure the absolute temperature accurately they do measure temperature changes with sufficient accuracy particularly in big disturbances. During the yearly testing of steam generator safety valves we observe a large temperature increase up to 12 degrees in the cold leg temperature. The change in the temperature of one of the cold legs causes a local disturbance in the core inlet temperature distribution. Using the temperature changes observed in the inlet thermocouple measurements we are able to fit six core inlet temperature response functions, one for each cold leg. The value of a function at an assembly inlet is determined only by the corresponding cold leg temperature disturbance

  2. Mediating Water Temperature Increases Due to Livestock and Global Change in High Elevation Meadow Streams of the Golden Trout Wilderness

    Science.gov (United States)

    Nusslé, Sébastien; Matthews, Kathleen R.; Carlson, Stephanie M.

    2015-01-01

    Rising temperatures due to climate change are pushing the thermal limits of many species, but how climate warming interacts with other anthropogenic disturbances such as land use remains poorly understood. To understand the interactive effects of climate warming and livestock grazing on water temperature in three high elevation meadow streams in the Golden Trout Wilderness, California, we measured riparian vegetation and monitored water temperature in three meadow streams between 2008 and 2013, including two “resting” meadows and one meadow that is partially grazed. All three meadows have been subject to grazing by cattle and sheep since the 1800s and their streams are home to the imperiled California golden trout (Oncorhynchus mykiss aguabonita). In 1991, a livestock exclosure was constructed in one of the meadows (Mulkey), leaving a portion of stream ungrazed to minimize the negative effects of cattle. In 2001, cattle were removed completely from two other meadows (Big Whitney and Ramshaw), which have been in a “resting” state since that time. Inside the livestock exclosure in Mulkey, we found that riverbank vegetation was both larger and denser than outside the exclosure where cattle were present, resulting in more shaded waters and cooler maximal temperatures inside the exclosure. In addition, between meadows comparisons showed that water temperatures were cooler in the ungrazed meadows compared to the grazed area in the partially grazed meadow. Finally, we found that predicted temperatures under different global warming scenarios were likely to be higher in presence of livestock grazing. Our results highlight that land use can interact with climate change to worsen the local thermal conditions for taxa on the edge and that protecting riparian vegetation is likely to increase the resiliency of these ecosystems to climate change. PMID:26565706

  3. Phytochemical screening of different extracts of Kalanchoe laciniata

    Directory of Open Access Journals (Sweden)

    Maria Manan

    2015-06-01

    Full Text Available Alkaloids, tannins, saponins, steroids, terpenoids and flavonoids distribution in n-hexane and aqueous-methanolicextract of kalanchoelaciniata was assessed and compared. The present study was carried out to study the phytochemical constituents of Kalanchoe laciniata. Aqueous-methanol and n-hexane were the solvents used for the extraction of the plant. Phytochemical analysis was carried out on both of these extracts, indicated that n-hexane extract constitutes tannins, terpenoids on the other hand aqueous-methanolic extract contains saponins, tannins, terpenoids, flavonoids, glycosides  and anthraquinones. 

  4. Electrochemical evaluation of zinc effect on the corrosion of nickel alloy in PWR solutions with increasing temperature

    International Nuclear Information System (INIS)

    Alvial M, Gaston; Neves, Celia F.C.; Schvartzman, Monica M.A.M.; Quinan, Marco Antonio D.

    2007-01-01

    The main objective for the addition of zinc acetate to the reactor coolant system of PWRs is to effect radiation dose rate reductions. However, zinc is also added as an approach to mitigate the occurrence or severity of primary water stress corrosion cracking of nickel alloy 600. The mechanism by which zinc affects the corrosion of austenitic nickel-base alloys is by incorporation of zinc into the spinel oxide corrosion films. The purpose of this work is to evaluate the influence of zinc on the corrosion behavior of the nickel alloy 600 in PWR chemical environment (1200 ppm B, 2.2 ppm Li, deoxygenated water) with increasing temperature at room pressure. Electrochemical tests (anodic potentiodynamic polarization and electrochemical impedance spectroscopy) were used to characterize the alloy 600. Two conditions were applied: 0 and 100 ppb zinc and the temperature range was 50 - 90 deg C, at ambient pressure. Potentiodynamic polarization was inefficient to present conclusive results. Impedance measurements showed single semicircle in the Nyquist plane suggesting reduction of the charge transference resistance in zinc-containing solutions. This effect is evident at 90 deg C suggesting prejudicial influence of zinc for the alloy 600 at room pressure. (author)

  5. Live performance of male broilers subjected to constant or increasing air velocities at moderate temperatures with a high dew point.

    Science.gov (United States)

    Dozier, W A; Lott, B D; Branton, S L

    2005-08-01

    This study examined the effects of varying air velocities vs. a constant air velocity with a cyclic temperature curve of 25-30-25 degrees C and a dew point of 23 degrees C on broilers from 28 to 49 d of age. Four replicate trials were conducted. In each trial, 742 male broilers were randomly allocated to 6 floor pens or 2 air velocity tunnels, with each tunnel consisting of 4 pens. Bird density, feeder, and waterer space were similar across all pens (53 birds/ pen; 0.07 m2/bird). The treatments were control (still air), constant air velocity of 120 m/min, and increasing air velocity (90 m/min from 28 to 35 d, 120 m/min from 36 to 42 d, and 180 m/min from 43 to 49 d). Birds grown in a still air environment gained less weight, consumed less feed, and converted feed less efficiently between 28 and 49 d than birds subjected to moving air (constant or increasing). Growth responses between the air velocity treatments were similar from 28 to 35 and 36 to 42 d of age. Increasing air velocity to 180 m/min improved (P < or = 0.02) the growth rate of broilers from 43 to 49 d of age over birds receiving an air velocity of 120 m/min, but the incidence of mortality was not affected. These results provide evidence that increasing air velocity from 120 to 180 m/min is beneficial to broilers weighing 2.5 kg or greater when exposed to moderate temperatures.

  6. Study on Relative COP Changes with Increasing Heat Input Temperatures of Double Effect Steam Absorption Chillers

    Directory of Open Access Journals (Sweden)

    Abd Majid Mohd Amin

    2016-01-01

    Full Text Available Absorption chillers at cogeneration plants generate chilled water using steam supplied by heat recovery steam generators. The chillers are mainly of double effect type. The COP of double effect varies from 0.7 to 1.2 depending on operation and maintenance practices of the chillers. Heat input to the chillers during operations could have impact on the COP of the chillers. This study is on relative COP changes with increasing the heat input temperatures for a steam absorption chiller at a gas fueled cogeneration plant. Reversible COP analysis and zero order model were used for evaluating COP of the chiller for 118 days operation period. Results indicate increasing COP trends for both the reversible COP and zero model COP. Although the zero model COP are within the range of double effect absorption chiller, it is not so for the actual COP. The actual COP is below the range of normal double effect COP. It is recommended that economic replacement analysis to be undertaken to assess the feasibility either to repair or replace the existing absorption chiller.

  7. Tunneling Performance Increases at Lower Temperatures for Solenopsis invicta (Buren) but not for Nylanderia fulva (Mayr).

    Science.gov (United States)

    Bentley, Michael T; Oi, Faith M; Gezan, Salvador A; Hahn, Daniel A

    2015-07-23

    Nylanderia fulva (Mayr), the tawny crazy ant, is an invasive pest established in Florida and several other Gulf Coast states. In their invasive ranges in the Southeastern USA, large N. fulva populations have reduced species abundance, even displacing another invasive ant, Solenopsis invicta (Buren). In North Florida, N. fulva populations survive winter temperatures that reach below freezing for extended periods. However, the shallow littoral debris used by N. fulva for nest construction offers little insulation to brood and reproductives when exposed to freezing temperatures. Field populations of N. fulva in North Florida were observed tunneling below ground, a previously undescribed behavior. Other invasive ants exhibit similar subterranean tunneling behavior as a means of thermoregulation. To test the hypothesis that N. fulva has the capacity to construct subterranean tunnels across a range of ecologically relevant temperatures, tunneling performance for N. fulva and S. invicta, another invasive ant that tunnels extensively, were compared at four temperatures (15.0, 18.0, 20.0, and 22.0 °C). Overall, N. fulva tunneled significantly less than S. invicta. Nylanderia fulva tunneled furthest at warmer temperatures whereas S. invicta tunneled furthest at cooler temperatures. However, N. fulva constructed subterranean tunnels at all temperatures evaluated. These data support the hypothesis that N. fulva is capable of tunneling in temperatures as low as 15.0 °C, confirming that this ant can also perform a behavior that is used by other ants for cold avoidance.

  8. Tunneling Performance Increases at Lower Temperatures for Solenopsis invicta (Buren but not for Nylanderia fulva (Mayr

    Directory of Open Access Journals (Sweden)

    Michael T. Bentley

    2015-07-01

    Full Text Available Nylanderia fulva (Mayr, the tawny crazy ant, is an invasive pest established in Florida and several other Gulf Coast states. In their invasive ranges in the Southeastern USA, large N. fulva populations have reduced species abundance, even displacing another invasive ant, Solenopsis invicta (Buren. In North Florida, N. fulva populations survive winter temperatures that reach below freezing for extended periods. However, the shallow littoral debris used by N. fulva for nest construction offers little insulation to brood and reproductives when exposed to freezing temperatures. Field populations of N. fulva in North Florida were observed tunneling below ground, a previously undescribed behavior. Other invasive ants exhibit similar subterranean tunneling behavior as a means of thermoregulation. To test the hypothesis that N. fulva has the capacity to construct subterranean tunnels across a range of ecologically relevant temperatures, tunneling performance for N. fulva and S. invicta, another invasive ant that tunnels extensively, were compared at four temperatures (15.0, 18.0, 20.0, and 22.0 °C. Overall, N. fulva tunneled significantly less than S. invicta. Nylanderia fulva tunneled furthest at warmer temperatures whereas S. invicta tunneled furthest at cooler temperatures. However, N. fulva constructed subterranean tunnels at all temperatures evaluated. These data support the hypothesis that N. fulva is capable of tunneling in temperatures as low as 15.0 °C, confirming that this ant can also perform a behavior that is used by other ants for cold avoidance.

  9. Photosynthesis and Rubisco kinetics in spring wheat and meadow fescue under conditions of simulated climate change with elevated CO2 and increased temperatures

    Directory of Open Access Journals (Sweden)

    K. HAKALA

    2008-12-01

    Full Text Available Spring wheat (Triticum aestivum L.cv.Polkkaand meadow fescue (Festuca pratensis Hudson cv. Kalevicwere grown in ambient and elevated (700 µl l -1 carbon dioxide concentration both at present ambient temperatures and at temperatures 3°C higher than at present simulating a future climate.The CO2 concentrations were elevated in large (3 m in diameteropen top chambers and the temperatures in a greenhouse built over the experimental field.The photosynthetic rate of both wheat and meadow fescue was 31 –37%higher in elevated carbon dioxide (eCO2 than in ambient CO 2 (aCO2 throughout the growing season.The enhancement in wheat photosynthesis in eCO2 declined 10 –13 days before yellow ripeness,at which point the rate of photosynthesis in both CO 2 treatments declined.The stomatal conductance of wheat and meadow fescue was 23–36% lower in eCO2 than in aCO2 .The amount and activity of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco in wheat were lower under conditions of eCO2 ,except at elevated temperatures in 1993 when there was a clear yield increase.There was no clear change in the amount and activity of Rubisco in meadow fescue under eCO2 at either elevated or ambient temperature.This suggests that adaptation to elevated CO2 at biochemical level occurs only when there is insufficient sink for photosynthetic products.While the sink size of wheat can be increased only by introducing new,more productive genotypes,the sink size of meadow fescue can be regulated by fitting the cutting schedule to growth.;

  10. Peri-OVLT E-series prostaglandins and core temperature do not increase after intravenous IL-1beta in pregnant rats.

    Science.gov (United States)

    Fewell, James E; Eliason, Heather L; Auer, Roland N

    2002-08-01

    Rats have an attenuated febrile response to endogenous pyrogen near the term of pregnancy. Given the fundamental role of E-series prostaglandins (PGEs) in mediating the febrile response to blood-borne endogenous pyrogen, the present experiments were carried out to determine whether PGEs increase in the area surrounding the organum vasculosum laminae terminalis (peri-OVLT) of near-term pregnant (P) rats as in nonpregnant (NP) rats after intravenous (iv) administration of recombinant rat interleukin-1beta (rrIL-1beta). Core temperature was measured by telemetry and peri-OVLT interstitial fluid was sampled in 12 NP and 12 P chronically instrumented, Sprague-Dawley rats by microdialysis for determination of total PGEs by radioimmunoassay. Basal core temperatures were higher in NP compared with P rats (NP 37.9 degrees C +/- 0.5, P 36.9 degrees C +/- 0.4; P endogenous pyrogen near the term of pregnancy, warrants further investigation.

  11. The potential effects of concurrent increases in temperature, CO2 and O3 on net photosynthesis, as mediated by rubisCO

    International Nuclear Information System (INIS)

    Long, S.; Essex Univ., Colchester

    1992-07-01

    At the leaf level, under light saturating and light limiting conditions, it is shown that elevated atmospheric CO 2 concentration not only alters the scale of the response of carbon gain to rising temperature, but can alter the direction of response. These points bring into serious question the value of any predictions of plant production which ignore not only the direct effect Of C0 2 on carbon gain, but also the basic interactions of temperature, C0 2 and 0 3 . Whilst many factors may potentially diminish the enhancement of lightsaturated leaf photosynthetic rates with increase in atmospheric CO 2 concentrations, no mechanism has so far been identified which could remove the parallel stimulation of light-limited photosynthesis

  12. Lunar Noise-Temperature Increase Measurements at S-Band, X-Band, and Ka-Band Using a 34-Meter-Diameter Beam-Waveguide Antenna

    Science.gov (United States)

    Morabito, D. D.

    2006-08-01

    The Moon radiates energy at infrared and microwave wavelengths, in addition to reflecting sunlight at optical wavelengths. As a result, an antenna pointed at or near the Moon will cause an increase in receiver noise temperature that needs to be accounted for in telemetry, radio science, or ranging link budgets. The Deep Space Network may be required to use its antennas in future lunar robotic or human missions, and thus it is important to understand the nature of this temperature increase as a function of observing frequency, lunar phase, and angular offset of the antenna beam from the center of the lunar disk. This article quantifies such a set of measurements acquired at DSS 13, a 34-m-diameter research and development beam-waveguide antenna located at Goldstone, California, at three different telecommunication frequencies, S-band (2.3 GHz), X-band (8.4 GHz), and Ka-band (32 GHz), over a wide range of lunar phase, for both disk-centered and limb-centered positions of the antenna beam.

  13. The impact of morning light intensity and environmental temperature on body temperatures and alertness.

    Science.gov (United States)

    Te Kulve, Marije; Schlangen, Luc J M; Schellen, Lisje; Frijns, Arjan J H; van Marken Lichtenbelt, Wouter D

    2017-06-01

    Indoor temperature and light exposure are known to affect body temperature, productivity and alertness of building occupants. However, not much is known about the interaction between light and temperature exposure and the relationship between morning light induced alertness and its effect on body temperature. Light intensity and room temperature during morning office hours were investigated under strictly controlled conditions. In a randomized crossover study, two white light conditions (4000K, either bright 1200lx or dim 5lx) under three different room temperatures (26, 29 and 32°C) were investigated. A lower room temperature increased the core body temperature (CBT) and lowered skin temperature and the distal-proximal temperature gradient (DPG). Moreover, a lower room temperature reduced the subjective sleepiness and reaction time on an auditory psychomotor vigilance task (PVT), irrespective of the light condition. Interestingly, the morning bright light exposure did affect thermophysiological parameters, i.e. it decreased plasma cortisol, CBT and proximal skin temperature and increased the DPG, irrespective of the room temperature. During the bright light session, subjective sleepiness decreased irrespective of the room temperature. However, the change in sleepiness due to the light exposure was not related to these physiological changes. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Pregnant women models analyzed for RF exposure and temperature increase in 3T RF shimmed birdcages.

    Science.gov (United States)

    Murbach, Manuel; Neufeld, Esra; Samaras, Theodoros; Córcoles, Juan; Robb, Fraser J; Kainz, Wolfgang; Kuster, Niels

    2017-05-01

    MRI is increasingly used to scan pregnant patients. We investigated the effect of 3 Tesla (T) two-port radiofrequency (RF) shimming in anatomical pregnant women models. RF shimming improves B 1 + uniformity, but may at the same time significantly alter the induced current distribution and result in large changes in both the level and location of the absorbed RF energy. In this study, we evaluated the electrothermal exposure of pregnant women in the third, seventh, and ninth month of gestation at various imaging landmarks in RF body coils, including modes with RF shimming. Although RF shimmed configurations may lower the local RF exposure for the mother, they can increase the thermal load on the fetus. In worst-case configurations, whole-body exposure and local peak temperatures-up to 40.8°C-are equal in fetus and mother. Two-port RF shimming can significantly increase the fetal exposure in pregnant women, requiring further research to derive a very robust safety management. For the time being, restriction to the CP mode, which reduces fetal SAR exposure compared with linear-horizontal polarization modes, may be advisable. Results from this study do not support scanning pregnant patients above the normal operating mode. Magn Reson Med 77:2048-2056, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  15. Determination of Cardinal Temperatures and Germination Respond to Different Temperature for Five Lawns Cultivars

    Directory of Open Access Journals (Sweden)

    hadi khavari

    2017-08-01

    Full Text Available Introduction: Germination of every plant species respond to temperature variation in particular way. Germination is critical stage in plant life cycle. Seed germination is a complex biological process that is influenced by various environmental and genetic factors. The effects of temperature on plant development are the basis for models used to predict the timing of germination. Estimation of the cardinal temperatures, including base, optimum, and maximum, is essential because rate of development increases between base and optimum, decreases between optimum and maximum, and ceases above the maximum and below the base temperatures. Usually, a linear increase in germination rate is associated with an increase in temperature from base temperature (Tb to an optimum. An increase of temperature from the optimum will reduce the germination rate to zero. To determine the best planting date for plants, it is necessary to find the base (Tb, optimum (To and maximum temperatures (Tc for seed germination. These are known as cardinal temperatures. Modelling of seed germination is considered an effective approach to determining cardinal temperatures for most plant species, although these methods have some limitations due to unpredictable biological changes. The results of fitting mechanical models are useful for evaluating seed quality, germination rate, germination percentage, germination uniformity and seed performance under different environmental stresses such as salinity, drought, and freezing. Regression models incorporating more parameters can produce more precise estimates. Cardinal temperature was determined using segmented and logistic models in millet varieties and seedling emergence of wheat. In the dent-like model at lower-than-optimum temperature, a linear relationship holds between temperature and germination rate. This relationship remains linear at higher-than-optimum temperatures, but with a reducing trend. With increasing temperature

  16. Solvated electrons at elevated temperatures in different alcohols: Temperature and molecular structure effects

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yu [Department of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Lin, Mingzhang [Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1195 (Japan); Katsumura, Yosuke, E-mail: katsu@n.t.u-tokyo.ac.j [Department of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Nuclear Professional School, Graduate School of Engineering, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan); Fu, Haiying; Muroya, Yusa [Nuclear Professional School, Graduate School of Engineering, University of Tokyo, 2-22 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1188 (Japan)

    2010-12-15

    The absorption spectra of solvated electrons in pentanol, hexanol and octanol are measured from 22 to 200, 22 to 175 and 50 to150 {sup o}C, respectively, at a fixed pressure of 15 MPa, using nanosecond pulse radiolysis technique. The results show that the peak positions of the absorption spectra have a red-shift (shift to longer wavelengths) as temperature increases, similar to water and other alcohols. Including the above mentioned data, a compilation of currently available experimental data on the energy of absorption maximum (E{sub max}) of solvated electrons changed with temperature in monohydric alcohols, diols and triol is presented. E{sub max} of solvated electron is larger in those alcohols that have more OH groups at all the temperatures. The molecular structure effect, including OH numbers, OH position and carbon chain length, is investigated. For the primary alcohols with same OH group number and position, the temperature coefficient increases with increase in chain length. For the alcohols with same chain length and OH numbers, temperature coefficient is larger for the symmetric alcohols than the asymmetric ones.

  17. Spatial and temporal changes in leaf coloring date of Acer palmatum and Ginkgo biloba in response to temperature increases in South Korea.

    Science.gov (United States)

    Park, Chang-Kyun; Ho, Chang-Hoi; Jeong, Su-Jong; Lee, Eun Ju; Kim, Jinwon

    2017-01-01

    Understanding shifts in autumn phenology associated with climate changes is critical for preserving forest ecosystems. This study examines the changes in the leaf coloring date (LCD) of two temperate deciduous tree species, Acer palmatum (Acer) and Ginkgo biloba (Ginkgo), in response to surface air temperature (Ts) changes at 54 stations of South Korea for the period 1989-2007. The variations of Acer and Ginkgo in South Korea are very similar: they show the same mean LCD of 295th day of the year and delays of about 0.45 days year-1 during the observation period. The delaying trend is closely correlated (correlation coefficient > 0.77) with increases in Ts in mid-autumn by 2.8 days °C-1. It is noted that the LCD delaying and temperature sensitivity (days °C-1) for both tree species show negligible dependences on latitudes and elevations. Given the significant LCD-Ts relation, we project LCD changes for 2016-35 and 2046-65 using a process-based model forced by temperature from climate model simulation. The projections indicate that the mean LCD would be further delayed by 3.2 (3.7) days in 2016-35 (2046-65) due to mid-autumn Ts increases. This study suggests that the mid-autumn warming is largely responsible for the observed LCD changes in South Korea and will intensify the delaying trends in the future.

  18. The impact of edge gradients in the pressure, density, ion temperature, and electron temperature on edge-localized modes

    International Nuclear Information System (INIS)

    Kleva, Robert G.; Guzdar, Parvez N.

    2011-01-01

    The magnitude of the energy and particle fluxes in simulations of edge-localized modes (ELMs) is determined by the edge gradients in the pressure, density, ion temperature, and electron temperature. The total edge pressure gradient is the dominant influence on ELMs by far. An increase (decrease) of merely 2% in the pressure gradient results in an increase (decrease) of more than a factor of ten in the size of the ELM bursts. At a fixed pressure gradient, the size of the ELM bursts decreases as the density gradient increases, while the size of the bursts increases as the electron temperature gradient or, especially, the ion temperature gradient increases.

  19. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment.

    Science.gov (United States)

    Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng

    2017-12-26

    The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  20. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2017-12-01

    Full Text Available The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  1. HAp physical investigation - the effect of sintering temperature

    International Nuclear Information System (INIS)

    Mohd Reusmaazran Yusof; Idris Besar; Rusnah Mustaffa; Cik Rohaida Che Hak

    2004-01-01

    The paper presents the effect of sintering temperature on the physical properties of porous hydroxyapatite (HAp). In this study, the HAp was prepared using polymeric sponge techniques with different binder concentration. The sintering process was carried out in air for temperature ranging from 1200 degree C to 1600 degree C. Different physical properties namely density and porosity were observed at different sintering temperatures. The HAp prepared with higher PVP binder showed a slightly decreased in apparent density with increasing sintering temperature, while those HAp prepared with lower PVP showed a slightly increase in apparent density with increasing sintering temperature. The total porosity was found to be approximately constant in the whole sintering temperature range. However, closed porosity decreases with increasing sintering temperature for HAp prepared by lower binder concentration. On the other hand, the HAp prepared by higher binder concentration HAp showed increasing closed porosity with increasing sintering temperature. Other features such as the influence of sintering temperatures on grain and strut also be presented in this paper. (Author)

  2. Quantitative Temperature Dependence of Longitudinal Spin Seebeck Effect at High Temperatures

    Directory of Open Access Journals (Sweden)

    Ken-ichi Uchida

    2014-11-01

    Full Text Available We report temperature-dependent measurements of longitudinal spin Seebeck effects (LSSEs in Pt/Y_{3}Fe_{5}O_{12} (YIG/Pt systems in a high temperature range from room temperature to above the Curie temperature of YIG. The experimental results show that the magnitude of the LSSE voltage in the Pt/YIG/Pt systems rapidly decreases with increasing the temperature and disappears above the Curie temperature. The critical exponent of the LSSE voltage in the Pt/YIG/Pt systems at the Curie temperature is estimated to be 3, which is much greater than that for the magnetization curve of YIG. This difference highlights the fact that the mechanism of the LSSE cannot be explained in terms of simple static magnetic properties in YIG.

  3. Increasing strength, ductility and impact toughness of ultrafine-grained 6063 aluminium alloy by combining ECAP and a high-temperature short-time aging

    International Nuclear Information System (INIS)

    Meyer, L W; Schoenherr, R; Hockauf, M

    2010-01-01

    Since fully-dense ultrafine or nanocrystalline bulk materials can be processed, there has been an increasing scientific interest in several plastic deformation (SPD) procedures, particularly in the last decade. Especially the equal-channel angular pressing (ECAP) has widely been investigated due to its ability of producing billets sufficiently large for industrial applications in functional or structural components. The significant strength increase based on grain refinement is typically accompanied by a significant decrease in ductility and toughness. Within this work, a new methodology was applied for combining ECAP with a subsequent high-temperature short-time aging for the 6063 aluminium alloy. An increase in strength, ductility as well as impact toughness regarding its coarse grained counterparts was reached. More precisely, ultimate tensile strength, elongation to failure and impact toughness were increased by 46%, 21% and 40% respectively. This was observed after only one run of ECAP at room temperature in a solid-solution treated condition and an aging at 170 0 C for 18 minutes. The regular aging time for maximum strength at 170 0 C is around 6 hours. Longer exposure times lead to recrystallisation and, as for regular aging, it leads to overaging, both causing a decrease of properties. The work demonstrates a strategy for an efficient processing of commercial Al-Mg-Si alloys with outstanding mechanical properties.

  4. Assessment of broiler surface temperature variation when exposed to different air temperatures

    Directory of Open Access Journals (Sweden)

    GR Nascimento

    2011-12-01

    Full Text Available This study was conducted to determine the effect of the air temperature variation on the mean surface temperature (MST of 7- to 35-day-old broiler chickens using infrared thermometry to estimate MST, and to study surface temperature variation of the wings, head, legs, back and comb as affected by air temperature and broiler age. One hundred Cobb® broilers were used in the experiment. Starting on day 7, 10 birds were weekly selected at random, housed in an environmental chamber and reared under three distinct temperatures (18, 25 and 32 ºC to record their thermal profile using an infrared thermal camera. The recorded images were processed to estimate MST by selecting the whole area of the bird within the picture and comparing it with the values obtained using selected equations in literature, and to record the surface temperatures of the body parts. The MST estimated by infrared images were not statistically different (p > 0.05 from the values obtained by the equations. MST values significantly increased (p < 0.05 when the air temperature increased, but were not affected by bird age. However, age influenced the difference between MST and air temperature, which was highest on day 14. The technique of infrared thermal image analysis was useful to estimate the mean surface temperature of broiler chickens.

  5. Increased [CO2] does not compensate for negative effects on yield caused by higher temperature and [O3] in Brassica napus L

    DEFF Research Database (Denmark)

    Frenck, Georg; van der Linden, Leon Gareth; Mikkelsen, Teis Nørgaard

    2011-01-01

    in existing genotypes is vital. In this study, the responses in yield and biomass production of four different cultivars of oilseed rape (Brassica napus L.) were tested under five different combinations of increased [CO2] (700 ppm), temperature (+5 °C) and [O3] (+40 ppb). Especially the multifactor treatments...

  6. The Effects of the Heat and Moisture Exchanger on Humidity, Airway Temperature, and Core Body Temperature

    National Research Council Canada - National Science Library

    Delventhal, Mary

    1999-01-01

    Findings from several studies have demonstrated that the use of a heat and moisture exchanger increases airway humidity, which in turn increases mean airway temperature and prevents decreases in core body temperature...

  7. Warming-related increases in soil CO2 efflux are explained by increased below-ground carbon flux

    Science.gov (United States)

    Christian P. Giardina; Creighton M. Litton; Susan E. Crow; Gregory P Asner

    2014-01-01

    The universally observed exponential increase in soil-surface CO2 effux (‘soil respiration’; FS) with increasing temperature has led to speculation that global warming will accelerate soil organic carbon (SOC) decomposition, reduce SOC storage, and drive a positive feedback to future warming. However, interpreting temperature–FS relationships,...

  8. Facility for studying the effects of elevated carbon dioxide concentration and increased temperature on crops

    Energy Technology Data Exchange (ETDEWEB)

    Lawlor, D.W.; Mitchell, R.A.C.; Franklin, J.; Mitchell, V.J.; Driscoll, S.P.; Delgado, E. (Institute of Arable Crops Research, Harpenden (United Kingdom). Dept. of Biochemistry and Physiology)

    1993-06-01

    The requirements for the experimental study of the effects of global climate change conditions on plants are outlined. A semi-controlled plant growth facility is described which allows the study of elevated CO[sub 2] and temperature, and their interaction on the growth of plants under radiation and temperature conditions similar to the field. During an experiment on winter wheat (cv. Mercia), which ran from December 1990 through to August 1991, the facility maintained mean daytime CO[sub 2] concentrations of 363 and 692 cm[sup 3] m[sup -3] for targets of 350 and 700 cm[sup 3] m[sup 3] respectively. Temperatures were set to follow outside ambient or outside ambient +4[degree]C, and hourly means were within 0.5[degree]C of the target for 92% of the time for target temperatures greater than 6[degree]C. Total photosynthetically active radiation incident on the crop (solar radiation supplemented by artificial light with natural photoperiod) was 2% greater than the total measured outside over the same period.

  9. Variable effects of temperature on insect herbivory

    Directory of Open Access Journals (Sweden)

    Nathan P. Lemoine

    2014-05-01

    Full Text Available Rising temperatures can influence the top-down control of plant biomass by increasing herbivore metabolic demands. Unfortunately, we know relatively little about the effects of temperature on herbivory rates for most insect herbivores in a given community. Evolutionary history, adaptation to local environments, and dietary factors may lead to variable thermal response curves across different species. Here we characterized the effect of temperature on herbivory rates for 21 herbivore-plant pairs, encompassing 14 herbivore and 12 plant species. We show that overall consumption rates increase with temperature between 20 and 30 °C but do not increase further with increasing temperature. However, there is substantial variation in thermal responses among individual herbivore-plant pairs at the highest temperatures. Over one third of the herbivore-plant pairs showed declining consumption rates at high temperatures, while an approximately equal number showed increasing consumption rates. Such variation existed even within herbivore species, as some species exhibited idiosyncratic thermal response curves on different host plants. Thus, rising temperatures, particularly with respect to climate change, may have highly variable effects on plant-herbivore interactions and, ultimately, top-down control of plant biomass.

  10. Lutein Esterification in Wheat Flour Increases the Carotenoid Retention and Is Induced by Storage Temperatures

    Directory of Open Access Journals (Sweden)

    Elena Mellado-Ortega

    2017-12-01

    Full Text Available The present study aimed to evaluate the effects of long-term storage on the carotenoid pigments present in whole-grain flours prepared from durum wheat and tritordeum. As expected, higher storage temperatures showed a catabolic effect, which was very marked for free carotenoid pigments. Surprisingly, for both cereal genotypes, the thermal conditions favoured the synthesis of lutein esters, leading to an enhanced stability, slower degradation, and, subsequently, a greater carotenoid retention. The putative involvement of lipase enzymes in lutein esterification in flours is discussed, particularly regarding the preferential esterification of the hydroxyl group with linoleic acid at the 3′ in the ε-ring of the lutein molecule. The negative effects of processing on carotenoid retention were less pronounced in durum wheat flours, which could be due to an increased esterifying activity (the de novo formation of diesterified xanthophylls was observed. Moreover, clear differences were observed for tritordeum depending on whether the lutein was in a free or esterified state. For instance, lutein-3′-O-monolinoleate showed a three-fold lower degradation rate than free lutein at 37 °C. In view of our results, we advise that the biofortification research aimed at increasing the carotenoid contents in cereals should be based on the selection of varieties with an enhanced content of esterified xanthophylls.

  11. Volatile compounds in the perirenal fat from calves finished on semiextensive or intensive systems with special emphasis on terpenoids

    Directory of Open Access Journals (Sweden)

    Soto, S.

    2015-12-01

    Full Text Available Grazing ruminants and their production systems have been associated with lower environmental impact and higher animal welfare, along with distinctive meat quality characteristics when compared to intensively reared animals. Recent studies have been aimed at finding compounds in ruminant meat and fat which could be used as tracers of herbage feeding. This study determined and compared the volatile composition of the perirenal fat from Tudanca-breed calves reared on semi-extensive (SE; n=8 or intensive (I; n=8 systems. The volatile compounds of perirenal fat were analyzed using simultaneous distillation-extraction and gas chromatography coupled with mass spectrometry (GC/MS with the mass spectra detector operating in full scan mode. Terpenes were also determined using solid-phase micro-extraction and GC/MS operating in the selective ion monitoring mode. The SE system resulted in decreased levels of octanal, 2-octenal and 2,4-decadienal, and increased levels of 2,3-octanedione and skatole. The levels of α-pinene, aromadendrene, α-phellandrene, eucalyptol and α-gurjunene were higher for the SE system. Fenchene, eucalyptol and α-gurjunene have not been reported in previous studies on beef volatiles. The study showed the possibility of using several terpenes of perirenal fat as indicators of pasture-feeding in Tudanca calves.La producción de rumiantes en pastoreo puede suponer un menor impacto ambiental y un mayor bienestar animal, y considerarse como una característica de calidad diferenciada de la carne generada, con respecto a los animales producidos de forma intensiva. En estudios recientes se ha investigado sobre la presencia de compuestos en la carne o grasa de rumiantes que puedan ser utilizados como marcadores de alimentación a base de pasto. En el presente estudio se ha determinado y comparado la composición volátil de la grasa perirrenal de terneros de raza Tudanca criados mediante un sistema semi-extensivo (SE; n=8 o intensivo (I

  12. Effect of ambient temperature on human pain and temperature perception.

    Science.gov (United States)

    Strigo, I A; Carli, F; Bushnell, M C

    2000-03-01

    Animal studies show reduced nociceptive responses to noxious heat stimuli and increases in endogenous beta-endorphin levels in cold environments, suggesting that human pain perception may be dependent on ambient temperature. However, studies of changes in local skin temperature on human pain perception have yielded variable results. This study examines the effect of both warm and cool ambient temperature on the perception of noxious and innocuous mechanical and thermal stimuli. Ten subjects (7 men and 3 women, aged 20-23 yr) used visual analog scales to rate the stimulus intensity, pain intensity, and unpleasantness of thermal (0-50 degrees C) and mechanical (1.2-28.9 g) stimuli applied on the volar forearm with a 1-cm2 contact thermode and von Frey filaments, respectively. Mean skin temperatures were measured throughout the experiment by infrared pyrometer. Each subject was tested in ambient temperatures of 15 degrees C (cool), 25 degrees C (neutral), and 35 degrees C (warm) on separate days, after a 30-min acclimation to the environment. Studies began in the morning after an 8-h fast. Mean skin temperature was altered by ambient temperature (cool room: 30.1 degrees C; neutral room: 33.4 degrees C; warm room: 34.5 degrees C; P cool than in the neutral environment (P cool room and that noxious heat stimuli were more unpleasant in a warm environment. Environmental temperature did not alter ratings of warm (37 and 40 degrees C) or mechanical stimuli. These results indicate that, in humans, a decrease in skin temperature following exposure to cool environments reduces thermal pain. Suppression of Adelta primary afferent cold fiber activity has been shown to increase cold pain produced by skin cooling. Our current findings may represent the reverse phenomenon, i.e., a reduction in thermal nociceptive transmission by the activation of Adelta cutaneous cold fibers.

  13. Temperature increase inside LED-based illuminators for in vitro aPDT photodamage studies

    Science.gov (United States)

    Battisti, A.; Morici, P.; Tortora, G.; Menciassi, A.; Checcucci, G.; Ghetti, F.; Sgarbossa, A.

    2018-06-01

    Antimicrobial PhotoDynamic Therapy (aPDT) is an emerging strategy aimed at the eradication of bacterial infections, with a special focus on antibiotic-resistant bacteria. This method is easy to apply, not expensive and particularly interesting in case of bacteria that spontaneously produce the required photosensitizers. In the framework of a project aimed at the development of an ingestible pill for the application of aPDT to gastric infections by Helicobacter pylori, a LED-based illuminating prototype (LED-BIP) was purposely designed in order to evaluate the photodamage induced by light of different wavelengths on porphyrin-producing bacteria. This short paper reports about temperature tests performed to assess the maximum exposure time and light dose that can be administered to bacterial cultures inside LED-BIP without reaching temperatures exceeding the physiological range.

  14. Use of Temperature, Humidity, and Slaughter Condemnation Data to Predict Increases in Transport Losses in Three Classes of Swine and Resulting Foregone Revenue.

    Science.gov (United States)

    Peterson, Erik; Remmenga, Marta; Hagerman, Amy D; Akkina, Judy E

    2017-01-01

    temperature data for slaughter establishments to provide additional information for analysts investigating signals (noteworthy increases above baseline) for "dead" condemnations. This study suggests that current mitigation measures are often not sufficient to prevent swine deaths due to ambient temperature extremes.

  15. Enhanced photoluminescence of multilayer Ge quantum dots on Si(001) substrates by increased overgrowth temperature.

    Science.gov (United States)

    Liu, Zhi; Cheng, Buwen; Hu, Weixuan; Su, Shaojian; Li, Chuanbo; Wang, Qiming

    2012-07-11

    Four-bilayer Ge quantum dots (QDs) with Si spacers were grown on Si(001) substrates by ultrahigh vacuum chemical vapor deposition. In three samples, all Ge QDs were grown at 520 °C, while Si spacers were grown at various temperatures (520 °C, 550 °C, and 580 °C). Enhancement and redshift of room temperature photoluminescence (PL) were observed from the samples in which Si spacers were grown at a higher temperature. The enhancement of PL is explained by higher effective electrons capturing in the larger size Ge QDs. Quantum confinement of the Ge QDs is responsible for the redshift of PL spectra. The Ge QDs' size and content were investigated by atomic force microscopy and Raman scattering measurements.

  16. Temperature rise, sea level rise and increased radiative forcing - an application of cointegration methods

    Science.gov (United States)

    Schmith, Torben; Thejll, Peter; Johansen, Søren

    2016-04-01

    We analyse the statistical relationship between changes in global temperature, global steric sea level and radiative forcing in order to reveal causal relationships. There are in this, however, potential pitfalls due to the trending nature of the time series. We therefore apply a statistical method called cointegration analysis, originating from the field of econometrics, which is able to correctly handle the analysis of series with trends and other long-range dependencies. Further, we find a relationship between steric sea level and temperature and find that temperature causally depends on the steric sea level, which can be understood as a consequence of the large heat capacity of the ocean. This result is obtained both when analyzing observed data and data from a CMIP5 historical model run. Finally, we find that in the data from the historical run, the steric sea level, in turn, is driven by the external forcing. Finally, we demonstrate that combining these two results can lead to a novel estimate of radiative forcing back in time based on observations.

  17. Modeling shoot-tip temperature in the greenhouse environment

    International Nuclear Information System (INIS)

    Faust, J.E.; Heins, R.D.

    1998-01-01

    An energy-balance model is described that predicts vinca (Catharanthus roseus L.) shoot-tip temperature using four environmental measurements: solar radiation and dry bulb, wet bulb, and glazing material temperature. The time and magnitude of the differences between shoot-tip and air temperature were determined in greenhouses maintained at air temperatures of 15, 20, 25, 30, or 35 °C. At night, shoot-tip temperature was always below air temperature. Shoot-tip temperature decreased from 0.5 to 5 °C below air temperature as greenhouse glass temperature decreased from 2 to 15 °C below air temperature. During the photoperiod under low vapor-pressure deficit (VPD) and low air temperature, shoot-tip temperature increased ≈4 °C as solar radiation increased from 0 to 600 W·m -2 . Under high VPD and high air temperature, shoot-tip temperature initially decreased 1 to 2 °C at sunrise, then increased later in the morning as solar radiation increased. The model predicted shoot-tip temperatures within ±1 °C of 81% of the observed 1-hour average shoot-tip temperatures. The model was used to simulate shoot-tip temperatures under different VPD, solar radiation, and air temperatures. Since the rate of leaf and flower development are influenced by the temperature of the meristematic tissues, a model of shoot-tip temperature will be a valuable tool to predict plant development in greenhouses and to control the greenhouse environment based on a plant temperature setpoint. (author)

  18. The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review

    Science.gov (United States)

    Riitta Hyvönen; Göran I. Ågren; Sune Linder; Tryggve Persson; M. Francesca Cotrufo; Alf Ekblad; Michael Freeman; Achim Grelle; Ivan A. Janssens; Paul G. Jarvis; Seppo Kellomäki; Anders Lindroth; Denis Loustau; Tomas Lundmark; Richard J. Norby; Ram Oren; Kim Pilegaard; Michael G. Ryan; Bjarni D. Sigurdsson; Monika Strömgren; Marcel van Oijen; Göran Wallin

    2007-01-01

    Temperate and boreal forest ecosystems contain a large part of the carbon stored on land, in the form of both biomass and soil organic matter. Increasing atmospheric [CO2], increasing temperature, elevated nitrogen deposition and intensified management will change this C store. Well documented single-factor responses of net primary production are: higher photosynthetic...

  19. Overexpression of pyruvate decarboxylase in the yeast Hansenula polymorpha results in increased ethanol yield in high-temperature fermentation of xylose.

    Science.gov (United States)

    Ishchuk, Olena P; Voronovsky, Andriy Y; Stasyk, Oleh V; Gayda, Galina Z; Gonchar, Mykhailo V; Abbas, Charles A; Sibirny, Andriy A

    2008-11-01

    Improvement of xylose fermentation is of great importance to the fuel ethanol industry. The nonconventional thermotolerant yeast Hansenula polymorpha naturally ferments xylose to ethanol at high temperatures (48-50 degrees C). Introduction of a mutation that impairs ethanol reutilization in H. polymorpha led to an increase in ethanol yield from xylose. The native and heterologous (Kluyveromyces lactis) PDC1 genes coding for pyruvate decarboxylase were expressed at high levels in H. polymorpha under the control of the strong constitutive promoter of the glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH). This resulted in increased pyruvate decarboxylase activity and improved ethanol production from xylose. The introduction of multiple copies of the H. polymorpha PDC1 gene driven by the strong constitutive promoter led to a 20-fold increase in pyruvate decarboxylase activity and up to a threefold elevation of ethanol production.

  20. The effects of the recent minimum temperature and water deficit increases on Pinus pinaster wood radial growth and density in southern Portugal.

    Directory of Open Access Journals (Sweden)

    Cathy Béatrice Kurz Besson

    2016-08-01

    Full Text Available Western Iberia has recently shown increasing frequency of drought conditions coupled with heatwave events, leading to exacerbated limiting climatic conditions for plant growth. It is not clear to what extent wood growth and density of agroforestry species have suffered from such changes or recent extreme climate events.To address this question, tree-ring width and density chronologies were built for a P. pinaster stand in southern Portugal and correlated with climate variables, including the minimum, mean and maximum temperatures and the number of cold days. Monthly and maximum daily precipitations were also analyzed as well as dry spells. The drought effect was assessed using the standardized precipitation-evapotranspiration (SPEI multi-scalar drought index, between 1 to 24-months. The climate-growth/density relationships were evaluated for the period 1958-2011.We show that both wood radial growth and density highly benefit from the strong decay of cold days and the increase of minimum temperature. Yet the benefits are hindered by long-term water deficit, which results in different levels of impact on wood radial growth and density. Despite of the intensification of long-term water deficit, tree-ring width appears to benefit from the minimum temperature increase, whereas the effects of long-term droughts significantly prevail on tree-ring density. Our results further highlight the dependency of the species on deep water sources after the juvenile stage. The impact of climate changes on long-term droughts and their repercussion on the shallow groundwater table and P. pinaster’s vulnerability are also discussed. This work provides relevant information for forest management in the semi-arid area of the Alentejo region of Portugal. It should ease the elaboration of mitigation strategies to assure P. pinaster’s production capacity and quality in response to more arid conditions in the near future in the region.

  1. Non-invasive body temperature measurement of wild chimpanzees using fecal temperature decline.

    Science.gov (United States)

    Jensen, Siv Aina; Mundry, Roger; Nunn, Charles L; Boesch, Christophe; Leendertz, Fabian H

    2009-04-01

    New methods are required to increase our understanding of pathologic processes in wild mammals. We developed a noninvasive field method to estimate the body temperature of wild living chimpanzees habituated to humans, based on statistically fitting temperature decline of feces after defecation. The method was established with the use of control measures of human rectal temperature and subsequent changes in fecal temperature over time. The method was then applied to temperature data collected from wild chimpanzee feces. In humans, we found good correspondence between the temperature estimated by the method and the actual rectal temperature that was measured (maximum deviation 0.22 C). The method was successfully applied and the average estimated temperature of the chimpanzees was 37.2 C. This simple-to-use field method reliably estimates the body temperature of wild chimpanzees and probably also other large mammals.

  2. High temperature internal friction in pure aluminium

    International Nuclear Information System (INIS)

    Aboagye, J.K.; Payida, D.S.

    1982-05-01

    The temperature dependence of internal friction of nearly pure aluminium (99.99% aluminium) has been carefully measured as a function of annealing temperature and hence grain size. The results indicate that, provided the frequency and annealing temperature are held constant, the internal friction increases with temperature until some maximum value is attained and then begins to go down as the temperature is further increased. It is also noted that the internal friction decreases with annealing temperature and that annealing time has the same effect as annealing temperature. It is also noted that the internal friction peak is shifted towards higher temperatures as annealing temperature is increased. It is surmised that the grain size or the total grain boundary volume determines the height of the internal friction curve and that the order-disorder transitions at the grain boundaries induced by both entropy and energy gradients give rise to internal friction peaks in polycrystals. (author)

  3. Wood and Chemistry – or How to Combine Bob Heath's Two Passions into Entomology Research

    Science.gov (United States)

    Plants generally produce complex mixtures of terpenoids that may differ greatly among species. Terpenoids, such C10 monoterpenes and C15 sesquiterpenes, are known to play an important role in the biology and ecology of plants, directly or indirectly influencing their interactions with their biotic e...

  4. Perspectives and limits of engineering the isoprenoid metabolism in heterologous hosts

    NARCIS (Netherlands)

    Muntendam, Remco; Melillo, Elena; Ryden, Annamargareta; Kayser, Oliver

    2009-01-01

    Terpenoids belong to the largest class of natural compounds and are produced in all living organisms. The isoprenoid skeleton is based on assembling of C5 building blocks, but the biosynthesis of a great variety of terpenoids ranging from monoterpenoids to polyterpenoids is not fully understood

  5. Low-Temperature Stress during Capped Brood Stage Increases Pupal Mortality, Misorientation and Adult Mortality in Honey Bees

    Science.gov (United States)

    Wang, Qing; Xu, Xinjian; Zhu, Xiangjie; Chen, Lin; Zhou, Shujing; Huang, Zachary Y.; Zhou, Bingfeng

    2016-01-01

    Honey bees (Apis mellifera) are key pollinators, playing a vital role in ecosystem maintenance and stability of crop yields. Recently, reduced honey bee survival has attracted intensive attention. Among all other honey bee stresses, temperature is a fundamental ecological factor that has been shown to affect honey bee survival. Yet, the impact of low temperature stress during capped brood on brood mortality has not been systematically investigated. In addition, little was known about how low temperature exposure during capped brood affects subsequent adult longevity. In this study, capped worker broods at 12 different developmental stages were exposed to 20°C for 12, 24, 36, 48, 60, 72, 84 and 96 hours, followed by incubation at 35°C until emergence. We found that longer durations of low temperature during capped brood led to higher mortality, higher incidences of misorientation inside cells and shorter worker longevity. Capped brood as prepupae and near emergence were more sensitive to low-temperature exposure, while capped larvae and mid-pupal stages showed the highest resistance to low-temperature stress. Our results suggest that prepupae and pupae prior to eclosion are the most sensitive stages to low temperature stress, as they are to other stresses, presumably due to many physiological changes related to metamorphosis happening during these two stages. Understanding how low-temperature stress affects honey bee physiology and longevity can improve honey bee management strategies. PMID:27149383

  6. Snowpack concentrations and estimated fluxes of volatile organic compounds in a boreal forest

    Directory of Open Access Journals (Sweden)

    H. Aaltonen

    2012-06-01

    Full Text Available Soil provides an important source of volatile organic compounds (VOCs to atmosphere, but in boreal forests these fluxes and their seasonal variations have not been characterized in detail. Especially wintertime fluxes are almost completely unstudied. In this study, we measured the VOC concentrations inside the snowpack in a boreal Scots pine (Pinus sylvestris L. forest in southern Finland, using adsorbent tubes and air samplers installed permanently in the snow profile. Based on the VOC concentrations at three heights inside the snowpack, we estimated the fluxes of these gases. We measured 20 VOCs from the snowpack, monoterpenes being the most abundant group with concentrations varying from 0.11 to 16 μg m−3. Sesquiterpenes and oxygen-containing monoterpenes were also detected. Inside the pristine snowpack, the concentrations of terpenoids decreased from soil surface towards the surface of the snow, suggesting soil as the source for terpenoids. Forest damages (i.e. broken treetops and branches, fallen trees resulting from heavy snow loading during the measurement period increased the terpenoid concentrations dramatically, especially in the upper part of the snowpack. The results show that soil processes are active and efficient VOC sources also during winter, and that natural or human disturbance can increase forest floor VOC concentrations substantially. Our results stress the importance of soil as a source of VOCs during the season when other biological sources, such as plants, have lower activity.

  7. Increasing soil temperature in a northern hardwood forest: effects on elemental dynamics and primary productivity

    Science.gov (United States)

    Patrick J. McHale; Myron J. Mitchell; Dudley J. Raynal; Francis P. Bowles

    1996-01-01

    To investigate the effects of elevated soil temperatures on a forest ecosystem, heating cables were buried at a depth of 5 cm within the forest floor of a northern hardwood forest at the Huntington Wildlife Forest (Adirondack Mountains, New York). Temperature was elevated 2.5, 5.0 and 7.5?C above ambient, during May - September in both 1993 and 1994. Various aspects of...

  8. Metabolic engineering of plant monoterpenes, sesquiterpenes and diterpenes--current status and future opportunities.

    Science.gov (United States)

    Lange, B Markus; Ahkami, Amirhossein

    2013-02-01

    Terpenoids (a.k.a. isoprenoids) represent the most diverse class of natural products found in plants, with tens of thousands of reported structures. Plant-derived terpenoids have a multitude of pharmaceutical and industrial applications, but the natural resources for their extraction are often limited and, in many cases, synthetic routes are not commercially viable. Some of the most valuable terpenoids are not accumulated in model plants or crops, and genetic resources for breeding of terpenoid natural product traits are thus poorly developed. At present, metabolic engineering, either in the native producer or a heterologous host, is the only realistic alternative to improve yield and accessibility. In this review article, we will evaluate the state of the art of modulating the biosynthetic pathways for the production of mono-, sesqui- and diterpenes in plants. © 2012 The Authors Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  9. The effects of heated and room-temperature abdominal lavage solutions on core body temperature in dogs undergoing celiotomy.

    Science.gov (United States)

    Nawrocki, Michael A; McLaughlin, Ron; Hendrix, P K

    2005-01-01

    To document the magnitude of temperature elevation obtained with heated lavage solutions during abdominal lavage, 18 dogs were lavaged with sterile isotonic saline intraoperatively (i.e., during a celiotomy). In nine dogs, room-temperature saline was used. In the remaining nine dogs, saline heated to 43+/-2 degrees C (110+/-4 degrees F) was used. Esophageal, rectal, and tympanic temperatures were recorded every 60 seconds for 15 minutes after initiation of the lavage. Temperature levels decreased in dogs lavaged with room-temperature saline. Temperature levels increased significantly in dogs lavaged with heated saline after 2 to 6 minutes of lavage, and temperatures continued to increase throughout the 15-minute lavage period.

  10. The DIRT on Q10: In situ depletion of labile-inputs does not increase temperature sensitivity in a laboratory incubation (Invited)

    Science.gov (United States)

    Reynolds, L. L.; Lajtha, K.; Bowden, R.; Johnson, B. R.; Bridgham, S. D.

    2013-12-01

    The decomposition of soil organic matter is expected to increase with global warming and has been commonly described by kinetic models with at least two pools with differing turnover times. Pools characterized by rapid turnover are thought to consist of labile substrates. Meanwhile, slower turnover is attributed, in part, to greater chemical complexity and a necessarily higher activation energy which should in turn lead to a higher sensitivity (Q10) to temperature and a proportionally larger response to warming. Experimental tests of the relative Q10 of these pools have been inconclusive and contradictory in part due the fact that all pools are decomposing simultaneously and soils kept under differing conditions over long periods of time diverge in more than the Q10 response making them less comparable over time. We present here a test of the temperature response on soils from a 20 yr litter manipulation experiment incubated under an experimental regime that minimizes divergence among the soils. We hypothesize that 1) if exclusion of inputs has depleted labile substrates and 2) the remaining carbon is more chemically complex, then the input exclusion treatments should show a higher Q10 compared to the ambient or increased input treatments. The soils are taken from the Detritus Input and Removal Treatment (DIRT) plots in the Bousson Forest, Pennsylvania, US. The DIRT treatments consist of litter and root exclusion (no inputs = NI), no roots (NR), no litter (NL), double litter (DL), and ambient conditions (C). Soils were incubated at 25oC for 525 days. Periodically, replicate sets were rotated into 15oC, 35oC or remained at 25oC for 24 hr. The headspace CO2 concentration was measured before and after the 24 hr temperature treatments, and then all replicate sets were returned to 25oC. Twenty years of input exclusion decreased respiration rate, with NI DIRT treatments, despite the clear differences in their carbon pools. Similar studies have examined the temperature

  11. Walker occupancy has an impact on changing airborne bacterial communities in an underground pedestrian space, as small-dust particles increased with raising both temperature and humidity.

    Science.gov (United States)

    Okubo, Torahiko; Osaki, Takako; Nozaki, Eriko; Uemura, Akira; Sakai, Kouhei; Matushita, Mizue; Matsuo, Junji; Nakamura, Shinji; Kamiya, Shigeru; Yamaguchi, Hiroyuki

    2017-01-01

    Although human occupancy is a source of airborne bacteria, the role of walkers on bacterial communities in built environments is poorly understood. Therefore, we visualized the impact of walker occupancy combined with other factors (temperature, humidity, atmospheric pressure, dust particles) on airborne bacterial features in the Sapporo underground pedestrian space in Sapporo, Japan. Air samples (n = 18; 4,800L/each sample) were collected at 8:00 h to 20:00 h on 3 days (regular sampling) and at early morning / late night (5:50 h to 7:50 h / 22:15 h to 24:45 h) on a day (baseline sampling), and the number of CFUs (colony forming units) OTUs (operational taxonomic units) and other factors were determined. The results revealed that temperature, humidity, and atmospheric pressure changed with weather. The number of walkers increased greatly in the morning and evening on each regular sampling day, although total walker numbers did not differ significantly among regular sampling days. A slight increase in small dust particles (0.3-0.5μm) was observed on the days with higher temperature regardless of regular or baseline sampling. At the period on regular sampling, CFU levels varied irregularly among days, and the OTUs of 22-phylum types were observed, with the majority being from Firmicutes or Proteobacteria (γ-), including Staphylococcus sp. derived from human individuals. The data obtained from regular samplings reveled that although no direct interaction of walker occupancy and airborne CFU and OTU features was observed upon Pearson's correlation analysis, cluster analysis indicated an obvious lineage consisting of walker occupancy, CFU numbers, OTU types, small dust particles, and seasonal factors (including temperature and humidity). Meanwhile, at the period on baseline sampling both walker and CFU numbers were similarly minimal. Taken together, the results revealed a positive correlation of walker occupancy with airborne bacteria that increased with increases in

  12. High-Temperature Piezoelectric Sensing

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2013-12-01

    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  13. Volume and density changes of biological fluids with temperature

    Science.gov (United States)

    Hinghofer-Szalkay, H.

    1985-01-01

    The thermal expansion of human blood, plasma, ultrafiltrate, and erythrocycte concentration at temperatures in the range of 4-48 C is studied. The mechanical oscillator technique which has an accuracy of 1 x 10 to the -5 th g/ml is utilized to measure fluid density. The relationship between thermal expansion, density, and temperature is analyzed. The study reveals that: (1) thermal expansion increases with increasing temperature; (2) the magnitude of the increase declines with increasing temperature; (3) thermal expansion increases with density at temperatures below 40 C; and (4) the thermal expansion of intracellular fluid is greater than that of extracellular fluid in the temperature range of 4-10 C, but it is equal at temperatures greater than or equal to 40 C.

  14. Establishment of thermophilic anaerobic terephthalic acid degradation system through one-step temperature increase startup strategy - Revealed by Illumina Miseq Sequencing.

    Science.gov (United States)

    Ma, Kai-Li; Li, Xiang-Kun; Wang, Ke; Meng, Ling-Wei; Liu, Gai-Ge; Zhang, Jie

    2017-10-01

    Over recent years, thermophilic digestion was constantly focused owing to its various advantage over mesophilic digestion. Notably, the startup approach of thermophilic digester needs to be seriously considered as unsuitable startup ways may result in system inefficiency. In this study, one-step temperature increase startup strategy from 37 °C to 55 °C was applied to establish a thermophilic anaerobic system treating terephthalic acid (TA) contained wastewater, meanwhile, the archaeal and bacterial community compositions at steady periods of 37 °C and 55 °C during the experimental process was also compared using Illumina Miseq Sequencing. The process operation demonstrated that the thermophilic TA degradation system was successfully established at 55 °C with over 95% COD reduction. For archaea community, the elevation of operational temperature from 37 °C to 55 °C accordingly increase the enrichment of hydrogenotrophic methanogens but decrease the abundance of the acetotrophic ones. While for bacterial community, the taxonomic analysis suggested that Syntrophorhabdus (27.40%) was the dominant genus promoting the efficient TA degradation under mesophilic condition, whereas OPB95 (24.99%) and TA06 (14.01%) related populations were largely observed and probably take some crucial role in TA degradation under thermophilic condition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A single polymerase (L) mutation in avian metapneumovirus increased virulence and partially maintained virus viability at an elevated temperature.

    Science.gov (United States)

    Brown, Paul A; Lupini, Caterina; Catelli, Elena; Clubbe, Jayne; Ricchizzi, Enrico; Naylor, Clive J

    2011-02-01

    Previously, a virulent avian metapneumovirus, farm isolate Italy 309/04, was shown to have been derived from a live vaccine. Virulence due to the five nucleotide mutations associated with the reversion to virulence was investigated by their addition to the genome of the vaccine strain using reverse genetics. Virulence of these recombinant viruses was determined by infection of 1-day-old turkeys. Disease levels resulting from the combined two matrix mutations was indistinguishable from that produced by the recombinant vaccine, whereas the combined three L gene mutations increased disease to a level (P<0.0001) that was indistinguishable from that caused by the revertant Italy 309/04 virus. Testing of the L mutations individually showed that two mutations did not increase virulence, while the third mutation, corresponding to an asparagine to aspartic acid substitution, produced virulence indistinguishable from that caused by Italy 309/04. In contrast to the vaccine, the virulent mutant also showed increased viability at temperatures typical of turkey core tissues. The notion that increased viral virulence resulted from enhanced ability to replicate in tissues away from the cool respiratory tract, cannot be discounted.

  16. Working Fluids for Increasing Capacities of Heat Pipes

    Science.gov (United States)

    Chao, David F.; Zhang, Nengli

    2004-01-01

    A theoretical and experimental investigation has shown that the capacities of heat pipes can be increased through suitable reformulation of their working fluids. The surface tensions of all of the working fluids heretofore used in heat pipes decrease with temperature. As explained in more detail below, the limits on the performance of a heat pipe are associated with the decrease in the surface tension of the working fluid with temperature, and so one can enhance performance by reformulating the working fluid so that its surface tension increases with temperature. This improvement is applicable to almost any kind of heat pipe in almost any environment. The heat-transfer capacity of a heat pipe in its normal operating-temperature range is subject to a capillary limit and a boiling limit. Both of these limits are associated with the temperature dependence of surface tension of the working fluid. In the case of a traditional working fluid, the decrease in surface tension with temperature causes a body of the liquid phase of the working fluid to move toward a region of lower temperature, thus preventing the desired spreading of the liquid in the heated portion of the heat pipe. As a result, the available capillary-pressure pumping head decreases as the temperature of the evaporator end of the heat pipe increases, and operation becomes unstable. Water has widely been used as a working fluid in heat pipes. Because the surface tension of water decreases with increasing temperature, the heat loads and other aspects of performance of heat pipes that contain water are limited. Dilute aqueous solutions of long-chain alcohols have shown promise as substitutes for water that can offer improved performance, because these solutions exhibit unusual surface-tension characteristics: Experiments have shown that in the cases of an aqueous solution of an alcohol, the molecules of which contain chains of more than four carbon atoms, the surface tension increases with temperature when the

  17. Effects of increasing temperature due to aquatic climate change on the self-fertility and the sexual development of the hermaphrodite fish, Kryptolebias marmoratus.

    Science.gov (United States)

    Park, Chang-Beom; Kim, Young Jun; Soyano, Kiyoshi

    2017-01-01

    In order to assess the effects of increasing temperature on the reproductive performance of fish, different thermal conditions (i.e., 25.0, 26.5, 27.5, 28.5, 30.0 °C) were used in this study and the self-fertilizing hermaphrodite fish, Kryptolebias marmoratus, was exposed to these different thermal conditions. During an exposure period of 30 to 150 days, the gonadosomatic index (GSI), gonadal development, the levels of plasma 17β-estradial (E2) and testosterone (T), hepatic vitellogenin (VTG) mRNA abundance, and the number of self-fertilized eggs were analyzed. This study confirmed that a high water temperature above 27.5 °C led to the suppression of self-fertility of hermaphroditic fish from 30 days after exposure. The oocyte quality and maturation would be affected by the disruption of hepatic VTG synthesis at a high water temperature of 30 °C, which resulted in the reduced the self-fertility in K. marmoratus. Consequently, this study suggests that elevated water temperature due to aquatic climate change prior to sexual maturation and the onset of spawning can lead to the reproductive dysfunction of hermaphroditic K. marmoratus.

  18. Temperature dependence of radiation chemistry of polymers

    International Nuclear Information System (INIS)

    Garrett, R.W.; Hill, D.J.T.; Le, T.T.; Milne, K.A.; O'Donnell, J.H.; Perera, S.M.C.; Pomery, P.J.

    1990-01-01

    Chemical reactions which occur during radiolysis of polymers usually show an increase in rate with increasing temperature that can be described by an Arrhenius relationship. The magnitude of the activation energy can vary widely and is affected by physical, as well as chemical, factors. Different reaction rates may be expected in crystalline and amorphous morphologies, and in glassy and rubbery regions. The temperature dependence of radiolysis reactions can be expected to show discontinuities at the glass and melting transitions, T g and T m . The ceiling temperature, T c , for polymerization/depolymerization will also affect the rate of degradation, especially for depropagation to monomer. The temperature for this effect depends on the molecular structure of the polymer. The temperature dependence of free radical reactions can be studied by cryogenic trapping and ESR spectroscopy during thermal profiling. Increased degradation rates at high dose rates can be due to increased temperatures resulting from energy absorption

  19. Spectroscopic and thermodynamic studies on the complexation of trivalent curium with inorganic ligands at increased temperatures; Spektroskopische und thermodynamische Untersuchungen zur Komplexierung von trivalentem Curium mit anorganischen Liganden bei erhoehten Temperaturen

    Energy Technology Data Exchange (ETDEWEB)

    Skerencak, Andrej

    2010-05-11

    The subject of the present investigation is the complexation of trivalent actinides at elevated temperatures. The objective of this work is to broaden the comprehension of the geochemical processes relevant for the migration of radionuclides in the near-field of a nuclear waste repository. Depending on the disposed nuclear waste, the temperature in the direct vicinity of a nuclear waste repository may reach up to 200 C. The result is a distinct change of the geochemistry of the actinides. Many of these processes have already been studied in detail at room temperature. Yet, data at elevated temperature are rare. However, a comprehensive long term safety analysis of a nuclear waste repository requires the precise thermodynamic description of the relevant geochemical processes at room as well as at elevated temperatures. The present work is focused on the investigation of the complexation of trivalent curium (Cm(III)) with different inorganic ligands at elevated temperatures. Due to its outstanding spectroscopic properties, Cm(III) is chosen as a representative for trivalent actinides. The studied ligand systems are nitrate (NO{sub 3}{sup -}), fluoride (F{sup -}), sulphate (SO{sub 4}{sup 2-}) and chloride (Cl{sup -}). The main analytical method employed is the ''time resolved laser fluorescence spectroscopy'' (TRLFS). The experiments with nitrate, sulphate and chloride were carried out in a custom-built high temperature cell, enabling spectroscopic studies at temperatures up to 200 C. The Cm(III)-fluoride-system was studied in a cuvette (quartz glass) in the temperature range from 20 to 90 C. Supplementary structural studies were performed using EXAFS (Extended X-Ray Absorption Fine Structure) spectroscopy and supported by quantum chemical calculations at DFT (Density Functional Theory) level. The results of the TRLFS studies show a general shift of the chemical equilibrium towards the complexed species with increasing temperature. For instance

  20. Impact of drought and increasing temperatures on soil CO2 emissions in a Mediterranean shrubland (gariga)

    DEFF Research Database (Denmark)

    de Dato, Giovanbattista Domenico; De Angelis, Paolo; Sirca, Costantino

    2010-01-01

    the soil and air night-time temperatures and to reduce water input from precipitation. The objective was to analyze the extent to which higher temperatures and a drier climate influence soil CO2 emissions in the short term and on an annual basis. The microclimate was manipulated in field plots (about 25 m2...... temperature probe. The seasonal pattern of soil CO2 efflux was characterized by higher rates during the wet vegetative season and lower rates during the dry non-vegetative season (summer). The Warming treatment did not change SR fluxes at any sampling date. The Drought treatment decreased soil CO2 emissions...... on only three of 10 occasions during 2004. The variation of soil respiration with temperature and soil water content did not differ significantly among the treatments, but was affected by the season. The annual CO2 emissions were not significantly affected by the treatments. In the semi-arid Mediterranean...

  1. Carbon dioxide assimilation in Danish crops (wheat and maize) and its dependency on increasing temperature and elevated atmospheric CO2 concentration

    International Nuclear Information System (INIS)

    Soegaard, H.; Boegh, E.

    2001-01-01

    Eddy correlation measurements of atmospheric CO 2 fluxes have been recorded over a number of crops throughout the growing season. These data have been used for validating a mechanistic photosynthesis model, which is used together with one of the most wide spread soil respiration equations. The combined model, is applied for analysing the temperature- and CO 2 -dependency of field crops. To get an idea of the potential range in the sensitivity of agricultural crops to atmospheric change, two crops with contrasting biochemical and physiological properties were selected for the present analysis: winter wheat (Triticum aestivum cv. Hereward) and maize (Zea mayz cv. Loft). While wheat, which is a C 3 -species, is the most common Danish crop (covering 25% of the Danish agricultural area), maize is interesting because it is a C 4 -plant which uses another CO 2 pathway in the dry matter production. The photosynthetic process of C 4 -plants has a higher temperature optimum compared to C 3 -plants. This could give C 4 plants more favourable conditions in the future. The model applied in this paper is utilized to evaluate whether increasing atmospheric CO 2 concentrations have contributed to the general increase in grain yield observed in Denmark since the late sixties. (LN)

  2. Quantitative PCR Profiling of Escherichia coli in Livestock Feces Reveals Increased Population Resilience Relative to Culturable Counts under Temperature Extremes.

    Science.gov (United States)

    Oliver, David M; Bird, Clare; Burd, Emmy; Wyman, Michael

    2016-09-06

    The relationship between culturable counts (CFU) and quantitative PCR (qPCR) cell equivalent counts of Escherichia coli in dairy feces exposed to different environmental conditions and temperature extremes was investigated. Fecal samples were collected in summer and winter from dairy cowpats held under two treatments: field-exposed versus polytunnel-protected. A significant correlation in quantified E. coli was recorded between the qPCR and culture-based methods (r = 0.82). Evaluation of the persistence profiles of E. coli over time revealed no significant difference in the E. coli numbers determined as either CFU or gene copies during the summer for the field-exposed cowpats, whereas significantly higher counts were observed by qPCR for the polytunnel-protected cowpats, which were exposed to higher ambient temperatures. In winter, the qPCR returned significantly higher counts of E. coli for the field-exposed cowpats, thus representing a reversal of the findings from the summer sampling campaign. Results from this study suggest that with increasing time post-defecation and with the onset of challenging environmental conditions, such as extremes in temperature, culture-based counts begin to underestimate the true resilience of viable E. coli populations in livestock feces. This is important not only in the long term as the Earth changes in response to climate-change drivers but also in the short term during spells of extremely cold or hot weather.

  3. Contrasting Patterns of Diterpene Acid Induction by Red Pine and White Spruce to Simulated Bark Beetle Attack, and Interspecific Differences in Sensitivity Among Fungal Associates

    Science.gov (United States)

    Charles J. Mason; Kier D. Klepzig; Brian J. Kopper; Philip J. Kersten; Barbara L. Illman; Kenneth F. Raffa

    2015-01-01

    Conifers possess a suite of physiochemical defenses that protect their subcortical tissues from bark beetle -fungal complexes. These defenses include rapid induction of terpenoids and phenolics at the site of attack. Studies of the distribution, induction, and bioactivity of conifer terpenoids have focused heavily on monoterpenes. We assessed induction of diterpene...

  4. Dissimilar responses of larch stands in northern Siberia to increasing temperatures-a field and simulation based study.

    Science.gov (United States)

    Wieczorek, Mareike; Kruse, Stefan; Epp, Laura S; Kolmogorov, Alexei; Nikolaev, Anatoly N; Heinrich, Ingo; Jeltsch, Florian; Pestryakova, Lyudmila A; Zibulski, Romy; Herzschuh, Ulrike

    2017-09-01

    Arctic and alpine treelines worldwide differ in their reactions to climate change. A northward advance of or densification within the treeline ecotone will likely influence climate-vegetation feedback mechanisms. In our study, which was conducted in the Taimyr Depression in the North Siberian Lowlands, w present a combined field- and model-based approach helping us to better understand the population processes involved in the responses of the whole treeline ecotone, spanning from closed forest to single-tree tundra, to climate warming. Using information on stand structure, tree age, and seed quality and quantity from seven sites, we investigate effects of intra-specific competition and seed availability on the specific impact of recent climate warming on larch stands. Field data show that tree density is highest in the forest-tundra, and average tree size decreases from closed forest to single-tree tundra. Age-structure analyses indicate that the trees in the closed forest and forest-tundra have been present for at least ~240 yr. At all sites except the most southerly ones, past establishment is positively correlated with regional temperature increase. In the single-tree tundra, however, a change in growth form from krummholz to erect trees, beginning ~130 yr ago, rather than establishment date has been recorded. Seed mass decreases from south to north, while seed quantity increases. Simulations with LAVESI (Larix Vegetation Simulator) further suggest that relative density changes strongly in response to a warming signal in the forest-tundra while intra-specific competition limits densification in the closed forest and seed limitation hinders densification in the single-tree tundra. We find striking differences in strength and timing of responses to recent climate warming. While forest-tundra stands recently densified, recruitment is almost non-existent at the southern and northern end of the ecotone due to autecological processes. Palaeo-treelines may therefore

  5. Evaluation of riser 14 temperature response

    International Nuclear Information System (INIS)

    OGDEN, D.M.

    1999-01-01

    The initial sluicing activities of Project WRSS resulted in a two month increase in temperatures as measured by the Riser 14 thermocouple tree of tank 241-C-106. While this increase was anticipated, the maximum temperature was higher than expected. An evaluation was performed to determine if adequate subcooling exists in the waste to continue sluicing activities. It was determined that a minimum of 10 F subcooling exists in the waste and that the higher Riser 14 temperatures were the result of higher than assumed waste saturation temperature

  6. Nowcasting daily minimum air and grass temperature

    Science.gov (United States)

    Savage, M. J.

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) <1 °C for the 2-h ahead nowcasts. Model 2 (also exponential), for which a constant model coefficient ( b = 2.2) was used, was usually slightly less accurate but still with RMSEs <1 °C. Use of model 3 (square root) yielded increased RMSEs for the 2-h ahead comparisons between nowcasted and measured daily minima air temperature, increasing to 1.4 °C for some sites. For all sites for all models, the comparisons for the 4-h ahead air temperature nowcasts generally yielded increased RMSEs, <2.1 °C. Comparisons for all model nowcasts of the daily grass

  7. Temperature-dependent dynamic control of the TCA cycle increases volumetric productivity of itaconic acid production by Escherichia coli.

    Science.gov (United States)

    Harder, Björn-Johannes; Bettenbrock, Katja; Klamt, Steffen

    2018-01-01

    Based on the recently constructed Escherichia coli itaconic acid production strain ita23, we aimed to improve the productivity by applying a two-stage process strategy with decoupled production of biomass and itaconic acid. We constructed a strain ita32 (MG1655 ΔaceA Δpta ΔpykF ΔpykA pCadCs), which, in contrast to ita23, has an active tricarboxylic acid (TCA) cycle and a fast growth rate of 0.52 hr -1 at 37°C, thus representing an ideal phenotype for the first stage, the growth phase. Subsequently we implemented a synthetic genetic control allowing the downregulation of the TCA cycle and thus the switch from growth to itaconic acid production in the second stage. The promoter of the isocitrate dehydrogenase was replaced by the Lambda promoter (p R ) and its expression was controlled by the temperature-sensitive repressor CI857 which is active at lower temperatures (30°C). With glucose as substrate, the respective strain ita36A grew with a fast growth rate at 37°C and switched to production of itaconic acid at 28°C. To study the impact of the process strategy on productivity, we performed one-stage and two-stage bioreactor cultivations. The two-stage process enabled fast formation of biomass resulting in improved peak productivity of 0.86 g/L/hr (+48%) and volumetric productivity of 0.39 g/L/hr (+22%) in comparison to the one-stage process. With our dynamic production strain, we also resolved the glutamate auxotrophy of ita23 and increased the itaconic acid titer to 47 g/L. The temperature-dependent activation of gene expression by the Lambda promoters (p R /p L ) has been frequently used to improve protein or, in a few cases, metabolite production in two-stage processes. Here we demonstrate that the system can be as well used in the opposite direction to selectively knock-down an essential gene (icd) in E. coli to design a two-stage process for improved volumetric productivity. The control by temperature avoids expensive inducers and has the

  8. Correlation of rectal temperature and peripheral temperature from implantable radio-frequency microchips in Holstein steers challenged with lipopolysaccharide under thermoneutral and high ambient temperatures.

    Science.gov (United States)

    Reid, E D; Fried, K; Velasco, J M; Dahl, G E

    2012-12-01

    Early detection of disease can speed treatment, slow spread of disease in a herd, and improve health status of animals. Immune stimulation increases rectal temperature (RT). Injectable radio-frequency implants (RFI) can provide temperature at the site of implantation. The fidelity of peripheral site temperature, determined by RFI, relative to RT is unknown in cattle. We hypothesized that during lipopolysaccharide (LPS) challenge, temperature at 3 peripheral sites would be similar to RT in steers (n = 4; BW 77 ± 2.1 kg). The 3 sites were 1) subcutaneous (SC) at the base of the ear (ET); 2) SC posterior to the poll (PT); and 3) SC beneath the umbilical fold (UT). Steers were housed in controlled temperature (CT) rooms (between 18 and 21°C; n = 2/room). Rectal temperature, ET, PT, and UT were recorded every 8 h daily. On d 7, 21, 22, 36, and 37, RT and RFI were taken every 5 min for 6 h, every 15 min for 3 h, and every 30 min for 15 h. To test RFI during a simulated immune challenge, LPS (E. coli 055:B5) was injected intravenously (i.v.) at 1000 h on d 22 and 37. Basal temperatures (°C) were RT (38.7 ± 0.20), ET (37.1 ± 0.86), PT (36.7 ± 0.57), and UT (36.3 ± 0.97). Rectal temperature increased to 39.9 ± 0.30°C after LPS, but ET, PT, and UT decreased. Heat stress also increases RT, which makes it difficult to identify sick animals using RT. The second hypothesis tested was that ET positively correlates to RT and negatively correlates to RT during LPS under heat stress. Four steers (127 ± 7.3 kg) were housed in CT chambers (n = 2/chamber), implanted with a RFI, and allowed 2 wk to acclimate. One chamber remained at 20°C, the other was increased to 34°C starting at 0800 h for a period of 48 h. The LPS was administered i.v. to all steers at 1000 h on d 2. After a 2-wk recovery at 20°C, the temperature was increased in the other chamber, resulting in a crossover design with each steer serving as its own control. Pearson's correlation coefficients for ET and

  9. Adaptation of Lactococcus lactis to high growth temperature leads to a dramatic increase in acidification rate

    DEFF Research Database (Denmark)

    Chen, Jun; Shen, Jing; Hellgren, Lars

    2015-01-01

    temperature. At the maximal permissive temperature for the wild-type, 38 °C, TM29 grows 33% faster and has a 12% higher specific lactate production rate than its parent MG1363, which results in fast lactate accumulation. Genome sequencing was used to reveal the mutations accumulated, most of which were shown...

  10. Effects of molten material temperatures and coolant temperatures on vapor explosion

    Institute of Scientific and Technical Information of China (English)

    LI Tianshu; YANG Yanhua; YUAN Minghao; HU Zhihua

    2007-01-01

    An observable experiment facility for low-temperature molten materials to be dropped into water was set up in this study to investigate the mechanism of the vapor explosion. The effect of the fuel and coolant interaction(FCI) on the vapor explosion during the severe accidents of a fission nuclear reactor has been studied. The experiment results showed that the molten material temperature has an important effect on the vapor explosion behavior and pressure. The increase of the coolant temperature would decrease the pressure of the vapor explosion.

  11. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks

    Science.gov (United States)

    Vogel, M. M.; Orth, R.; Cheruy, F.; Hagemann, S.; Lorenz, R.; Hurk, B. J. J. M.; Seneviratne, S. I.

    2017-02-01

    Regional hot extremes are projected to increase more strongly than global mean temperature, with substantially larger changes than 2°C even if global warming is limited to this level. We investigate the role of soil moisture-temperature feedbacks for this response based on multimodel experiments for the 21st century with either interactive or fixed (late 20th century mean seasonal cycle) soil moisture. We analyze changes in the hottest days in each year in both sets of experiments, relate them to the global mean temperature increase, and investigate processes leading to these changes. We find that soil moisture-temperature feedbacks significantly contribute to the amplified warming of the hottest days compared to that of global mean temperature. This contribution reaches more than 70% in Central Europe and Central North America. Soil moisture trends are more important for this response than short-term soil moisture variability. These results are relevant for reducing uncertainties in regional temperature projections.

  12. Increased capacity for sustained locomotion at low temperature in parthenogenetic geckos of hybrid origin.

    Science.gov (United States)

    Kearney, Michael; Wahl, Rebecca; Autumn, Kellar

    2005-01-01

    The evolution of parthenogenesis is typically associated with hybridization and polyploidy. These correlates of parthenogenesis may have important physiological consequences that need be taken into account in understanding the relative merits of sexual and parthenogenetic reproduction. We compared the thermal sensitivity of aerobically sustained locomotion in hybrid/triploid parthenogenetic races of the gecko Heteronotia binoei and their diploid sexual progenitors. Endurance times at low temperature (10 degrees , 12.5 degrees , and 15 degrees C, 0.05 km h(-1)) were significantly greater in parthenogenetic females than in sexual females. Comparison of oxygen consumption rates during sustained locomotion at increasing speeds (0.05, 0.10, 0.15, 0.20, 0.25, and 0.30 km h(-1), 25 degrees C) indicated that parthenogenetic lizards have higher maximum oxygen consumption rates and maximum aerobic speeds than do female sexual geckos. In addition, parthenogenetic geckos showed greater levels of voluntary activity at 15 degrees C than did sexual geckos, although this pattern appears strongest in comparison to male sexual forms. Parthenogenetic lineages of Heteronotia thus have an advantage over sexual lineages in being capable of greater aerobic activity. This result is opposite of that found in prior studies of parthenogenetic teiid lizards (genus Cnemidophorus) and highlights the idiosyncratic nature of phenotypic evolution in parthenogens of hybrid origin.

  13. Increase the threshold voltage of high voltage GaN transistors by low temperature atomic hydrogen treatment

    Energy Technology Data Exchange (ETDEWEB)

    Erofeev, E. V., E-mail: erofeev@micran.ru [Tomsk State University of Control Systems and Radioelectronics, Research Institute of Electrical-Communication Systems (Russian Federation); Fedin, I. V.; Kutkov, I. V. [Research and Production Company “Micran” (Russian Federation); Yuryev, Yu. N. [National Research Tomsk Polytechnic University, Institute of Physics and Technology (Russian Federation)

    2017-02-15

    High-electron-mobility transistors (HEMTs) based on AlGaN/GaN epitaxial heterostructures are a promising element base for the fabrication of high voltage electronic devices of the next generation. This is caused by both the high mobility of charge carriers in the transistor channel and the high electric strength of the material, which makes it possible to attain high breakdown voltages. For use in high-power switches, normally off-mode GaN transistors operating under enhancement conditions are required. To fabricate normally off GaN transistors, one most frequently uses a subgate region based on magnesium-doped p-GaN. However, optimization of the p-GaN epitaxial-layer thickness and the doping level makes it possible to attain a threshold voltage of GaN transistors close to V{sub th} = +2 V. In this study, it is shown that the use of low temperature treatment in an atomic hydrogen flow for the p-GaN-based subgate region before the deposition of gate-metallization layers makes it possible to increase the transistor threshold voltage to V{sub th} = +3.5 V. The effects under observation can be caused by the formation of a dipole layer on the p-GaN surface induced by the effect of atomic hydrogen. The heat treatment of hydrogen-treated GaN transistors in a nitrogen environment at a temperature of T = 250°C for 12 h reveals no degradation of the transistor’s electrical parameters, which can be caused by the formation of a thermally stable dipole layer at the metal/p-GaN interface as a result of hydrogenation.

  14. Increase the threshold voltage of high voltage GaN transistors by low temperature atomic hydrogen treatment

    International Nuclear Information System (INIS)

    Erofeev, E. V.; Fedin, I. V.; Kutkov, I. V.; Yuryev, Yu. N.

    2017-01-01

    High-electron-mobility transistors (HEMTs) based on AlGaN/GaN epitaxial heterostructures are a promising element base for the fabrication of high voltage electronic devices of the next generation. This is caused by both the high mobility of charge carriers in the transistor channel and the high electric strength of the material, which makes it possible to attain high breakdown voltages. For use in high-power switches, normally off-mode GaN transistors operating under enhancement conditions are required. To fabricate normally off GaN transistors, one most frequently uses a subgate region based on magnesium-doped p-GaN. However, optimization of the p-GaN epitaxial-layer thickness and the doping level makes it possible to attain a threshold voltage of GaN transistors close to V_t_h = +2 V. In this study, it is shown that the use of low temperature treatment in an atomic hydrogen flow for the p-GaN-based subgate region before the deposition of gate-metallization layers makes it possible to increase the transistor threshold voltage to V_t_h = +3.5 V. The effects under observation can be caused by the formation of a dipole layer on the p-GaN surface induced by the effect of atomic hydrogen. The heat treatment of hydrogen-treated GaN transistors in a nitrogen environment at a temperature of T = 250°C for 12 h reveals no degradation of the transistor’s electrical parameters, which can be caused by the formation of a thermally stable dipole layer at the metal/p-GaN interface as a result of hydrogenation.

  15. Increasing thermal drying temperature of biosolids reduced nitrogen mineralisation and soil N2O emissions

    DEFF Research Database (Denmark)

    Case, Sean; Gomez Muñoz, Beatriz; Magid, Jakob

    2016-01-01

    Previous studies found that thermally dried biosolids contained more mineralisable organic nitrogen (N) than the raw or anaerobically digested (AD) biosolids they were derived from. However, the effect of thermal drying temperature on biosolid N availability is not well understood. This will be o......Previous studies found that thermally dried biosolids contained more mineralisable organic nitrogen (N) than the raw or anaerobically digested (AD) biosolids they were derived from. However, the effect of thermal drying temperature on biosolid N availability is not well understood...

  16. Effects of elevated atmospheric CO2, prolonged summer drought and temperature increase on N2O and CH4 fluxes in a temperate heathland

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Ambus, Per; Albert, Kristian Rost

    2011-01-01

    In temperate regions, climate change is predicted to increase annual mean temperature and intensify the duration and frequency of summer droughts, which together with elevated atmospheric carbon dioxide (CO2) concentrations, may affect the exchange of nitrous oxide (N2O) and methane (CH4) between...... terrestrial ecosystems and the atmosphere. We report results from the CLIMAITE experiment, where the effects of these three climate change parameters were investigated solely and in all combinations in a temperate heathland. Field measurements of N2O and CH4 fluxes took place 1–2 years after the climate...... change manipulations were initiated. The soil was generally a net sink for atmospheric CH4. Elevated temperature (T) increased the CH4 uptake by on average 10 μg C m−2 h−1, corresponding to a rise in the uptake rate of about 20%. However, during winter elevated CO2 (CO2) reduced the CH4 uptake, which...

  17. The effect of reaction temperature on the room temperature ferromagnetic property of sol-gel derived tin oxide nanocrystal

    Science.gov (United States)

    Sakthiraj, K.; Hema, M.; Balachandra Kumar, K.

    2018-06-01

    In the present study, nanocrystalline tin oxide materials were prepared using sol-gel method with different reaction temperatures (25 °C, 50 °C, 75 °C & 90 °C) and the relation between the room temperature ferromagnetic property of the sample with processing temperature has been analysed. The X-ray diffraction pattern and infrared absorption spectra of the as-prepared samples confirm the purity of the samples. Transmission electron microscopy images visualize the particle size variation with respect to reaction temperature. The photoluminescence spectra of the samples demonstrate that luminescence process in materials is originated due to the electron transition mediated by defect centres. The room temperature ferromagnetic property is observed in all the samples with different amount, which was confirmed using vibrating sample magnetometer measurements. The saturation magnetization value of the as-prepared samples is increased with increasing the reaction temperature. From the photoluminescence & magnetic measurements we accomplished that, more amount of surface defects like oxygen vacancy and tin interstitial are created due to the increase in reaction temperature and it controls the ferromagnetic property of the samples.

  18. Physics of increased edge electron temperature and density turbulence during ELM-free QH-mode operation on DIII-D

    Science.gov (United States)

    Sung, C.; Rhodes, T. L.; Staebler, G. M.; Yan, Z.; McKee, G. R.; Smith, S. P.; Osborne, T. H.; Peebles, W. A.

    2018-05-01

    For the first time, we report increased edge electron temperature and density turbulence levels ( T˜ e and n˜ e) in Edge Localized Mode free Quiescent H-mode (ELM-free QH-mode) plasmas as compared to the ELMing time period. ELMs can severely damage plasma facing components in fusion plasma devices due to their large transient energy transport, making ELM-free operation a highly sought after goal. The QH-mode is a candidate for this goal as it is ELM-free for times limited only by hardware constraints. It is found that the driving gradients decrease during the QH-mode compared to the ELMing phase, however, a significant decrease in the ExB shearing rate is also observed that taken together is consistent with the increased turbulence. These results are significant as the prediction and control of ELM-free H-mode regimes are crucial for the operation of future fusion devices such as ITER. The changes in the linear growth rates calculated by CGYRO [Candy et al., J. Comput. Phys. 324, 73 (2016)] and the measured ExB shearing rate between ELMing and QH-mode phases are qualitatively consistent with these turbulence changes. Comparison with ELMing and 3D fields ELM suppressed H-mode finds a similar increase in T˜ e and n˜ e, however, with distinctly different origins, the increased driving gradients rather than the changes in the ExB shearing rate in 3D fields ELM suppressed the H-mode. However, linear gyrokinetic calculation results are generally consistent with the increased turbulence in both ELM-controlled discharges.

  19. Betavoltaic performance under extreme temperatures

    Directory of Open Access Journals (Sweden)

    Adams Tom

    2016-01-01

    Full Text Available Longevity of sensors and portable devices is severely limited by temperature, chemical instability, and electrolyte leakage issues associated with conventional electrochemical batteries. Betavoltaics, which operate similar to photo voltaics, can operate in a wide temperature range safely without permanent degradation. Though not a new concept, which began in the 1950's and peaked in the mid 1970's, research has been minimal and sporadic until recent advancements in ultra-low power electronics and materialization of low power applications. The technology is rapidly maturing, generating research, and development in increasing the beta emitting source and semiconductor efficiencies. This study presents an update on betavoltaic technology, results from temperature evaluation on commercially available General Licensed betavoltaic cells, development of a hybrid system for latent and burst power, modeling and simulation techniques and results, and current and proposed research and development. Betavoltaic performance was successfully demonstrated for a wide temperature range (-30°C to 70°C. Short circuit current and open circuit voltage were used to compare electrical performance. Results indicate that the open-circuit voltage and maximum power decreased as temperature increased due to increases in the semiconductor's intrinsic carrier concentration.

  20. Effects of open-air temperature on air temperature inside biological safety cabinet.

    Science.gov (United States)

    Umemura, Masayuki; Shigeno, Katsuro; Yamamura, Keiko; Osada, Takashi; Soda, Midori; Yamada, Kiyofumi; Ando, Yuichi; Wakiya, Yoshifumi

    2011-02-14

    In Japan, biological safety cabinets (BSCs) are normally used by medical staff while handling antineoplastic agents. We have also set up a class II B2 BSC at the Division of Chemotherapy for Outpatients. The air temperature inside this BSC, however, decreases in winter. We assumed that this decrease is caused by the intake of open-air. Therefore, we investigated the effects of low open-air temperature on the BSC temperature and the time of admixtures of antineoplastic agents. The studies were conducted from January 1 to March 31, 2008. The outdoor air temperature was measured in the shade near the intake nozzle of the BSC and was compared with the BSC temperature. The correlation between the outdoor air temperature and the BSC temperature, the dissolution time of cyclophosphamide (CPA) and gemcitabine (GEM), and accurate weight measurement of epirubicin (EPI) solution were investigated for low and normal BSC temperatures. The BSC temperature was correlated with the open-air temperature for open-air temperatures of 5-20°C (p air is drawn from outdoors. We showed that the BSC temperature affects the dissolution rate of antineoplastic agents. Further, we suggested that the BSC temperature drop might delay the affair of the admixtures of antineoplastic agents and increase the waiting time of outpatients for chemotherapy.

  1. Optimum Settings for a Compound Parabolic Concentrator with Wings Providing Increased Duration of Effective Temperature for Solar-Driven Systems: A Case Study for Tokyo

    Directory of Open Access Journals (Sweden)

    Muhammad Umair

    2013-12-01

    Full Text Available We designed a compound parabolic concentrator (CPC with wings angled toward the east and west. Normally, solar collectors are straight, facing south, and the effective temperature is only achieved for a short period of time at midday. In the proposed design, the collector is divided into three parts, with the ends angled and tilted at different orientations. The objective was to increase the duration of the effective temperature period by capturing the maximum solar energy in the morning and afternoon without tracking by the collector. A simulation model was developed to evaluate the performance of the proposed CPC. The tilt and bending angles of the CPC wings were optimized for year-round operation in Tokyo, Japan. A 35° tilt for the south-facing central part of the CPC and a 45° tilt for the wings with 50° angles toward the east and west were found to be optimal. Analyses were conducted at these optimum settings with temperatures of 70, 80, and 90 °C as minimum requirements. The effective duration increased by up to 2 h in the winter and up to 2.53 h in the summer using the proposed CPC. The proposed CPC will improve the efficiency of solar-driven systems by providing useful heat for longer periods of time with the same collector length and without the need for tracking.

  2. Incubation Temperature during Fetal Development Influences Morphophysiological Characteristics and Preferred Ambient Temperature of Chicken Hatchlings.

    Directory of Open Access Journals (Sweden)

    Viviane de Souza Morita

    Full Text Available Skin and feather characteristics, which play a critical role in body temperature maintenance, can be affected by incubation circumstances, such as incubation temperature. However, no study to date has assessed the influence of incubation temperature during the fetal stage on morphometric characteristics and vascular development of the skin, feather characteristics, and their relationship to hormone levels and preferred temperature in later life in chickens. Broiler breeder eggs were exposed to low (36°C, control (37.5°C, or high (39°C temperatures (treatments LT, CK, and HT, respectively from day 13 of incubation onward, because it is known that the endocrine axes are already established at this time. During this period, eggshell temperature of HT eggs (38.8±0.33°C was higher than of LT (37.4±0.08°C and CK eggs (37.8 ±0.15°C. The difference between eggshell and incubator air temperature diminished with the increasing incubation temperature, and was approximately zero for HT. HT hatchlings had higher surface temperature on the head, neck, and back, and thinner and more vascularized skin than did CK and LT hatchlings. No differences were found among treatments for body weight, total feather weight, number and length of barbs, barbule length, and plasma T4 concentration. LT hatchlings showed lower plasma T3 and GH, as well as lower T3/T4 ratio and decreased vascularity in the neck, back, and thigh skin compared to CK hatchlings. On the other hand, HT hatchlings had decreased skin thickness and increased vascularity, and preferred a higher ambient temperature compared to CK and HT hatchlings. In addition, for all treatments, surface temperature on the head was higher than of the other body regions. We conclude that changes in skin thickness and vascularity, as well as changes in thyroid and growth hormone levels, are the result of embryonic strategies to cope with higher or lower than normal incubation temperatures. Additionally exposure to

  3. Dinosaur fossils predict body temperatures.

    Directory of Open Access Journals (Sweden)

    James F Gillooly

    2006-07-01

    Full Text Available Perhaps the greatest mystery surrounding dinosaurs concerns whether they were endotherms, ectotherms, or some unique intermediate form. Here we present a model that yields estimates of dinosaur body temperature based on ontogenetic growth trajectories obtained from fossil bones. The model predicts that dinosaur body temperatures increased with body mass from approximately 25 degrees C at 12 kg to approximately 41 degrees C at 13,000 kg. The model also successfully predicts observed increases in body temperature with body mass for extant crocodiles. These results provide direct evidence that dinosaurs were reptiles that exhibited inertial homeothermy.

  4. Combination of synoptical-analogous and dynamical methods to increase skill score of monthly air temperature forecasts over Northern Eurasia

    Science.gov (United States)

    Khan, Valentina; Tscepelev, Valery; Vilfand, Roman; Kulikova, Irina; Kruglova, Ekaterina; Tischenko, Vladimir

    2016-04-01

    Long-range forecasts at monthly-seasonal time scale are in great demand of socio-economic sectors for exploiting climate-related risks and opportunities. At the same time, the quality of long-range forecasts is not fully responding to user application necessities. Different approaches, including combination of different prognostic models, are used in forecast centers to increase the prediction skill for specific regions and globally. In the present study, two forecasting methods are considered which are exploited in operational practice of Hydrometeorological Center of Russia. One of them is synoptical-analogous method of forecasting of surface air temperature at monthly scale. Another one is dynamical system based on the global semi-Lagrangian model SL-AV, developed in collaboration of Institute of Numerical Mathematics and Hydrometeorological Centre of Russia. The seasonal version of this model has been used to issue global and regional forecasts at monthly-seasonal time scales. This study presents results of the evaluation of surface air temperature forecasts generated with using above mentioned synoptical-statistical and dynamical models, and their combination to potentially increase skill score over Northern Eurasia. The test sample of operational forecasts is encompassing period from 2010 through 2015. The seasonal and interannual variability of skill scores of these methods has been discussed. It was noticed that the quality of all forecasts is highly dependent on the inertia of macro-circulation processes. The skill scores of forecasts are decreasing during significant alterations of synoptical fields for both dynamical and empirical schemes. Procedure of combination of forecasts from different methods, in some cases, has demonstrated its effectiveness. For this study the support has been provided by Grant of Russian Science Foundation (№14-37-00053).

  5. Memory effect in the high-temperature superconducting bulks

    International Nuclear Information System (INIS)

    Zhang, Xing-Yi; Zhou, Jun; Zhou, You-He

    2013-01-01

    Highlights: •Effects of temperature cycles on levitation force relaxation are investigated. •Memory effect of the YBCO bulks is observed in experiments. •With an increase of temperature, memory of the superconductor is gradually lost. -- Abstract: We present an experimental investigation of the relaxation of vertical force components in a high-temperature superconducting levitation system with different temperature cycle processes. For a selected ambient temperature (T 1 ) of the system, the experimental results show that the relaxations of the levitation forces are strongly dependent on the initial temperature. When the sample was submitted to temperature jumps around T 1 , the sample temperature was regulated at T 2 , and there were two cases of the experiments, ΔT = T 2 − T 1 0 (positive temperature cycle). It was found that in the case of negative temperature cycle, the superconducting samples have memory effect. And for the positive temperature cycle, with the experimental temperature increase, the memory effect of samples is gradually losing. Additionally, with the increase of temperature, the influences of the negative and positive temperature cycle on the levitation force relaxation are unsymmetrical. All the results are interpreted by using the characteristics of the free energy ‘ground’ plot of the Spin-glasses qualitatively

  6. Performance analysis of PV panel under varying surface temperature

    Directory of Open Access Journals (Sweden)

    Kumar Tripathi Abhishek

    2018-01-01

    Full Text Available The surface temperature of PV panel has an adverse impact on its performance. The several electrical parameters of PV panel, such as open circuit voltage, short circuit current, power output and fill factor depends on the surface temperature of PV panel. In the present study, an experimental work was carried out to investigate the influence of PV panel surface temperature on its electrical parameters. The results obtained from this experimental study show a significant reduction in the performance of PV panel with an increase in panel surface temperature. A 5W PV panel experienced a 0.4% decrease in open circuit voltage for every 1°C increase in panel surface temperature. Similarly, there was 0.6% and 0.32% decrease in maximum power output and in fill factor, respectively, for every 1°C increase in panel surface temperature. On the other hand, the short circuit current increases with the increase in surface temperature at the rate of 0.09%/°C.

  7. HIgh Temperature Photocatalysis over Semiconductors

    Science.gov (United States)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a

  8. Projecting future temperature-related mortality in three largest Australian cities

    International Nuclear Information System (INIS)

    Guo, Yuming; Li, Shanshan; Liu, De Li; Chen, Dong; Williams, Gail; Tong, Shilu

    2016-01-01

    We estimated net annual temperature-related mortality in Brisbane, Sydney and Melbourne in Australia using 62 global climate model projections under three IPPC SRES CO_2 emission scenarios (A2, A1B and B1). In all cities, all scenarios resulted in increases in summer temperature-related deaths for future decades, and decreases in winter temperature-related deaths. However, Brisbane and Sydney will increase the net annual temperature-related deaths in the future, while a slight decrease will happen in Melbourne. Additionally, temperature-related mortality will largely increase beyond the summer (including January, February, March, November and December) in Brisbane and Sydney, while temperature-related mortality will largely decrease beyond the winter in Melbourne. In conclusion, temperature increases for Australia are expected to result in a decreased burden of cold-related mortality and an increased burden of heat-related mortality, but the balance of these differences varied by city. In particular, the seasonal patterns in temperature-related deaths will be shifted. - Temperature increases result in a decreased burden of cold-related mortality and an increased burden of heat-related mortality, but the balance of these differences varied by city in Australia.

  9. Analysis of acoustic reflectors for SAW temperature sensor and wireless measurement of temperature

    International Nuclear Information System (INIS)

    Kim, Ki Bok; Kim, Seong Hoon; Jeong, Jae Kee; Shin, Beom Soo

    2013-01-01

    In this study, a wireless and non power SAW (surface acoustic wave) temperature sensor was developed. The single inter digital transducer (IDT) of SAW temperature sensor of which resonance frequency is 434 MHz was fabricated on 128.deg rot-X LiNbO 3 piezoelectric substrate by semiconductor processing technology. To find optimal acoustic reflector for SAW temperature sensor, various kinds of acoustic reflectors were fabricated and their reflection characteristics were analyzed. The IDT type acoustic reflector showed better reflection characteristic than other reflectors. The wireless temperature sensing system consisting of SAW temperature sensor with dipole antenna and a microprocessor based control circuit with dipole antenna for transmitting signal to activate the SAW temperature sensor and receiving the signal from SAW temperature sensor was developed. The result with wireless SAW temperature sensing system showed that the frequency of SAW temperature sensor was linearly decreased with the increase of temperature in the range of 40 to 80.deg.C and the developed wireless SAW temperature sensing system showed the excellent performance with the coefficient of determination of 0.99

  10. Performance of fuel system at different diesel temperature

    Science.gov (United States)

    Xu, Xiaoyong; Li, Xiaolu; Sun, Zai

    2010-08-01

    This paper presents the findings about performance of the fuel system of a diesel engine at different diesel temperature obtained through simulation and experiment. It can be seen from these findings that at the same rotational speed of fuel pump, the initial pressure in the fuel pipe remain unchanged as the fuel temperature increases, the peak pressure at the side of fuel pipe near the injector delays, and its largest value of pressure decreases. Meanwhile, at the same temperature, as the rotational speed increases, the initial pressure of fuel pipe is also essentially the same, the arrival of its peaks delays, and its largest value of pressure increases. The maximum fuel pressure at the side of fuel pipe near the injector has an increase of 28.9 %, 22.3%, and 13.9% respectively than the previous ones according to its conditions. At the same rotational speed, as the temperature increases, the injection quantity through the nozzle orifice decreases. At the same temperature, as the rotational speed increases, the injection quantity through the nozzle orifice increases. These experimental results are consistent with simulation results.

  11. High temperature materials and mechanisms

    CERN Document Server

    2014-01-01

    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  12. Temperature dependent quasiparticle renormalization in nickel metal

    Energy Technology Data Exchange (ETDEWEB)

    Ovsyannikov, Ruslan; Sanchez-Barriga, Jaime; Fink, Joerg; Duerr, Hermann A. [Helmholtz Zentrum Berlin (Germany). BESSY II

    2009-07-01

    One of the fundamental consequences of electron correlation effects is that the bare particles in solids become 'dressed', i.e. they acquire an increased effective mass and a lifetime. We studied the spin dependent quasiparticle band structure of Ni(111) with high resolution angle resolved photoemission spectroscopy. At low temperatures (50 K) a renormalization of quasiparticle energy and lifetime indicative of electron-phonon coupling is observed in agreement with literature. With increasing temperature we observe a decreasing quasiparticle lifetime at the Fermi level for all probed minority spin bands as expected from electron phonon coupling. Surprisingly the majority spin states behave differently. We actually observe a slightly increased lifetime at room temperature. The corresponding increase in Fermi velocity points to a temperature dependent reduction of the majority spin quasiparticle renormalization.

  13. Introduction of low-temperature swirl technology of burning as a way of increase in ecological of low power boilers

    Science.gov (United States)

    Trinchenko, A. A.; Paramonov, A. P.

    2017-10-01

    Work is devoted to the solution of problems of energy efficiency increase in low power boilers at combustion of solid fuel. The technological method of nitrogen oxides decomposition on a surface of carbon particles with education environmentally friendly carbonic acid and molecular nitrogen is considered during the work of a low-temperature swirl fire chamber. Based on the analysis of physical and chemical processes of a fuel chemically connected energy transition into thermal, using the diffusive and kinetic theory of burning modern approaches the technique, mathematical model and the settlement program for assessment of plant ecological indicators when using a new method are developed. Alternative calculations of furnace process are carried out, quantitative assessment of nitrogen oxides emissions level of the reconstructed boiler is executed. The results of modeling and experimental data have approved that the organization of swirl burning increases overall performance of a fire chamber and considerably reduces emissions of nitrogen oxides.

  14. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks

    Science.gov (United States)

    Vogel, Martha Marie; Orth, René; Cheruy, Frederique; Hagemann, Stefan; Lorenz, Ruth; van den Hurk, Bart; Seneviratne, Sonia Isabelle

    2017-04-01

    Regional hot extremes are projected to increase more strongly than global mean temperature, with substantially larger changes than 2°C even if global warming is limited to this level. We investigate here the role of soil moisture-temperature feedbacks for this response based on multi-model experiments for the 21st century with either interactive or fixed (late 20th century mean seasonal cycle) soil moisture. We analyze changes in the hottest days in each year in both sets of experiments, relate them to the global mean temperature increase, and investigate physical processes leading to these changes. We find that soil moisture-temperature feedbacks significantly contribute to the amplified warming of hottest days compared to that of global mean temperature. This contribution reaches more than 70% in Central Europe and Central North America and between 42%-52% in Amazonia, Northern Australia and Southern Africa. Soil moisture trends (multi-decadal soil moisture variability) are more important for this response than short-term (e.g. seasonal, interannual) soil moisture variability. These results are relevant for reducing uncertainties in regional temperature projections. Vogel, M.M. et al.,2017. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophysical Research Letters, accepted.

  15. Temperature Studies for ATLAS MDT BOS Chambers

    CERN Document Server

    Engl, A.; Biebel, O.; Mameghani, R.; Merkl, D.; Rauscher, F.; Schaile, D.; Ströhmer, R.

    Data sets with high statistics taken at the cosmic ray facility, equipped with 3 ATLAS BOS MDT chambers, in Garching (Munich) have been used to study temperature and pressure effects on gas gain and drifttime. The deformation of a thermally expanded chamber was reconstructed using the internal RasNik alignment monitoring system and the tracks from cosmic data. For these studies a heating system was designed to increase the temperature of the middle chamber by up to 20 Kelvins over room temperature. For comparison the temperature effects on gas properties have been simulated with Garfield. The maximum drifttime decreased under temperature raise by -2.21 +- 0.08 ns/K, in agreement with the results of pressure variations and the Garfield simulation. The increased temperatures led to a linear increase of the gas gain of about 2.1% 1/K. The chamber deformation has been analyzed with the help of reconstructed tracks. By the comparison of the tracks through the reference chambers with these through the test chamber ...

  16. Diode temperature sensor array for measuring and controlling micro scale surface temperature

    International Nuclear Information System (INIS)

    Han, Il Young; Kim, Sung Jin

    2004-01-01

    The needs of micro scale thermal detecting technique are increasing in biology and chemical industry. For example, thermal finger print, Micro PCR(Polymer Chain Reaction), TAS and so on. To satisfy these needs, we developed a DTSA(Diode Temperature Sensor Array) for detecting and controlling the temperature on small surface. The DTSA is fabricated by using VLSI technique. It consists of 32 array of diodes(1,024 diodes) for temperature detection and 8 heaters for temperature control on a 8mm surface area. The working principle of temperature detection is that the forward voltage drop across a silicon diode is approximately proportional to the inverse of the absolute temperature of diode. And eight heaters (1K) made of poly-silicon are added onto a silicon wafer and controlled individually to maintain a uniform temperature distribution across the DTSA. Flip chip packaging used for easy connection of the DTSA. The circuitry for scanning and controlling DTSA are also developed

  17. Determination of total lipids and characterization of marigold flower extracts (Calendula officinalis

    Directory of Open Access Journals (Sweden)

    Novković Vesna M.

    2005-01-01

    Full Text Available Bioactive extracts from marigold flower are important ingredients for parapharmaceutical and cosmetic preparations. Their antiflogistic holeretic.antimicrobic, antidermatic and anticancer effects are due to the presence of flavonoids, carotenoids, etheric oils, and terpenoids. This study presents the results of spectrophotometric investigation for the overall carotene content calculated as (3-caroten (442 nm, visual and physico-chemical characteristics according to Ph.Jug. V in oil extracts of marigold flower obtained by maceration (room temperature and 70°C and percolation (room temperature with olive oil and sunflower oil by original procedures.The largest content of (3-carotene (57.5 mg/kg of oil extracts is in the oil extract obtained by maceration for 72 hours with olive oil (solvomodulus 1:5 m/m at room temperature.

  18. Multivariate statistical analysis of hemlock (Tsuga) volatiles by SPME/GC/MS: insights into the phytochemistry of the hemlock woolly adelgid (Adelges tsugae Annand)

    Science.gov (United States)

    Anthony Lagalante; Frank Calvosa; Michael Mirzabeigi; Vikram Iyengar; Michael Montgomery; Kathleen Shields

    2007-01-01

    A previously developed single-needle, SPME/GC/MS technique was used to measure the terpenoid content of T. canadensis growing in a hemlock forest at Lake Scranton, PA (Lagalante and Montgomery 2003). The volatile terpenoid composition was measured over a 1-year period from June 2003 to May 2004 to follow the annual cycle of foliage development from...

  19. High temperature cement raw meal flowability

    DEFF Research Database (Denmark)

    Maarup, Claus; Hjuler, Klaus; Dam-Johansen, Kim

    2014-01-01

    The flowability of cement raw meal is investigated at temperatures up to 850°C in a specially designed monoaxial shear tester. Consolidation stresses of 0.94, 1.87 and 2.79kPa are applied. The results show that the flowability is reduced as temperature is increased above 550°C, indicated by incre......The flowability of cement raw meal is investigated at temperatures up to 850°C in a specially designed monoaxial shear tester. Consolidation stresses of 0.94, 1.87 and 2.79kPa are applied. The results show that the flowability is reduced as temperature is increased above 550°C, indicated...

  20. Design and realization of temperature measurement system based on optical fiber temperature sensor for wireless power transfer

    Science.gov (United States)

    Chen, Xi; Zeng, Shuang; Liu, Xiulan; Jin, Yuan; Li, Xianglong; Wang, Xiaochen

    2018-02-01

    The electric vehicles (EV) have become accepted by increasing numbers of people for the environmental-friendly advantages. A novel way to charge the electric vehicles is through wireless power transfer (WPT). The wireless power transfer is a high power transfer system. The high currents flowing through the transmitter and receiver coils increasing temperature affects the safety of person and charging equipment. As a result, temperature measurement for wireless power transfer is needed. In this paper, a temperature measurement system based on optical fiber temperature sensors for electric vehicle wireless power transfer is proposed. Initially, the thermal characteristics of the wireless power transfer system are studied and the advantages of optical fiber sensors are analyzed. Then the temperature measurement system based on optical fiber temperature sensor is designed. The system consists of optical subsystem, data acquisition subsystem and data processing subsystem. Finally, the system is tested and the experiment result shows that the system can realize 1°C precision and can acquire real-time temperature distribution of the coils, which can meet the requirement of the temperature measuring for wireless power transfer.