WorldWideScience

Sample records for temperature hpht synthesis

  1. High pressure high temperature (HPHT) synthesis and physical characterization of FeSr{sub 2}EuCu{sub 2}O{sub 8-{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Ubaldini, A. [National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)], E-mail: alberto.ubaldini@nims.go.jp; Awana, V.P.S. [National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110 012 (India); Balamurugan, S.; Takayama-Muromachi, E. [National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2007-09-01

    FeSr{sub 2}EuCu{sub 2}O{sub 8} (FeEu-1212) does not exhibit superconductivity when prepared by classical solid state route, because of iron atoms substitute partially copper atoms in the superconductive CuO{sub 2} planes. Recently, it has been found that high temperature annealing in Ar or N{sub 2} can favour the complete substitution of copper in CuO{sub 1-{delta}} chains instead of in the CuO{sub 2} planes. After this annealing, the total oxygen content of the tetragonal FeSr{sub 2}RECu{sub 2}O{sub 8} decreases and the crystal structure changes to orthorhombic. It is possible to get superconductivity with a second annealing in O{sub 2} at low temperature. In this work a different approach was tried for first time. The samples of FeSr{sub 2}EuCu{sub 2}O{sub 8-{delta}} series with {delta} = 0, 0.5, 0.75 and 1 were prepared by high pressure high temperature (HPHT) synthesis starting from a mixture of Fe{sub 2}O{sub 3}, SrO{sub 2}, Eu{sub 2}O{sub 3}, CuO and Cu. The final oxygen content was determined by the ratio between CuO and Cu. The structure of thus prepared samples changed from tetragonal for {delta} = 0 to orthorhombic for {delta} = 0.75 and 1. The iron atoms selectively occupy the CuO{sub 1-{delta}} chains, if the oxygen content is low. Superconductive properties of these materials were studied, by subjecting them to high pressure and low temperature annealing with Ag{sub 2}O{sub 2} or KClO{sub 4} as oxidizing agents.

  2. High pressure high temperature (HPHT) synthesis and magnetism of Cr-12s2 copper oxides with fluorite-structured layers between CuO{sub 2} planes

    Energy Technology Data Exchange (ETDEWEB)

    Awana, V.P.S. [SMC, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110 012 (India)], E-mail: awana@mail.nplindia.ernet.in; Ubaldini, A.; Balamurugan, S. [SMC, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Kishan, H. [National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110 012 (India); Takayama-Muromachi, E. [SMC, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

    2007-09-01

    The three first members of the Cr-12s2 (s = 1, 2, 3) homologous series, i.e. CrSr{sub 2}YCu{sub 2}O{sub 8} (Cr-1212), CrSr{sub 2}(Y{sub 1.5}Ce{sub 0.5})Cu{sub 2}O{sub 10} (Cr-1222) and CrSr{sub 2}(Y{sub 1}Ce{sub 2})Cu{sub 2}O{sub 12}(Cr-1232) are synthesized by high pressure high temperature (HPHT) 6 GPa and 1550 deg. C process. Though the Cr-1212 and Cr-1232 could not be formed in single phase with full Cr, the Cr-1222 is achieved in pure phase with space group I4/mmm. These compounds belong to the multi-layered copper oxides series that differ from each other only in terms of the (Ce,Y)-[O{sub 2}-(Ce,Y)]{sub s-1} layer blocks between two identical CuO{sub 2} planes with s = 1, 2 and 3. At 5 K, the magnetization M(H) experiments showed some ferromagnetic like hysteresis loops though the characteristic M{sub r} and H{sub c} were not seen clearly. None of the studied compounds exhibited superconductivity down to 5 K.

  3. Plasma synthesis and HPHT consolidation of BN nanoparticles, nanospheres, and nanotubes to produce nanocrystalline cubic boron nitride

    Science.gov (United States)

    Stout, Christopher

    Plasma methods offer a variety of advantages to nanomaterials synthesis. The process is robust, allowing varying particle sizes and phases to be generated simply by modifying key parameters. The work here demonstrates a novel approach to nanopowder synthesis using inductively-coupled plasma to decompose precursor, which are then quenched to produce a variety of boron nitride (BN)-phase nanoparticles, including cubic phase, along with short-range-order nanospheres (e.g., nano-onions) and BN nanotubes. Cubic BN (c-BN) powders can be generated through direct deposition onto a chilled substrate. The extremely-high pyrolysis temperatures afforded by the equilibrium plasma offer a unique particle growth environment, accommodating long deposition times while exposing resulting powders to temperatures in excess of 5000K without any additional particle nucleation and growth. Such conditions can yield short-range ordered amorphous BN structures in the form of 20nm diameter nanospheres. Finally, when introducing a rapid-quenching counter-flow gas against the plasma jet, high aspect ratio nanotubes are synthesized, which are collected on substrate situated radially. The benefits of these morphologies are also evident in high-pressure/high-temperature consolidation experiments, where nanoparticle phases can offer a favorable conversion route to super-hard c-BN while maintaining nanocrystallinity. Experiments using these morphologies are shown to begin to yield c-BN conversion at conditions as low as 2.0 GPa and 1500°C when using micron sized c-BN seeding to create localized regions of high pressures due to Hertzian forces acting on the nanoparticles.

  4. Size-dependent concentration of N0 paramagnetic centres in HPHT nanodiamonds

    OpenAIRE

    Yavkin, Boris V; Mamin, Georgy V; Gafurov, Marat R.; Orlinskii, Sergei B.

    2015-01-01

    Size-calibrated commercial nanodiamonds synthesized by high-pressure high-temperature (HPHT) technique were studied by high-frequency W and conventional X band electron paramagnetic resonance (EPR) spectroscopy. The numbers of spins in the studied samples were estimated. The core-shell model of the HPHT nanodiamonds was proposed to explain the observed dependence of the concentration of the N0 paramagnetic centers. Two other observed paramagnetic centers are attributed to the two types of str...

  5. Size-dependent concentration of N0 paramagnetic centres in HPHT nanodiamonds

    Directory of Open Access Journals (Sweden)

    B.V. Yavkin, G.V. Mamin, M.R. Gafurov, S.B. Orlinskii

    2015-12-01

    Full Text Available Size-calibrated commercial nanodiamonds synthesized by high-pressure high-temperature (HPHT technique were studied by high-frequency W- and conventional X-band electron paramagnetic resonance (EPR spectroscopy. The numbers of spins in the studied samples were estimated. The core-shell model of the HPHT nanodiamonds was proposed to explain the observed dependence of the concentration of the N0 paramagnetic centers. Two other observed paramagnetic centers are attributed to the two types of structures in the nanodiamond shell.

  6. How new tools were used to repair HPHT sour gas producer

    Energy Technology Data Exchange (ETDEWEB)

    Sukup, R.A. (Mobil E P Technical Center, Dallas, TX (United States)); Estes, V.C. (Mobil E P U.S., New Orleans, LA (United States))

    1994-07-01

    A proliferation of high-pressure, high-temperature (HPHT) drilling, most recently by North Sea operators, has provided clearer definition of HPHT operating parameters. Pipe to pipe clearances and annulus fluid heat-up contribute to casing and tubular design complexity. Technical aspects of safe drilling and completion are ongoing concerns for HPHT operators and governmental regulatory agencies. HPHT methods and associated completion practices have developed from onshore US and offshore Gulf of Mexico experience. US, Gulf of Mexico, Mobile Bay is one of the most environmentally, technically and operationally challenging E P areas in the world. High investments impact Mobile Bay producers. Average costs per producing well approach $25 million and bring significant production and reserve expectations. This article details remedial work on a high-rate (60 MMcfd), high-pressure (12,500 psi), high-temperature (over 400 F) hostile-gas (about 9% H[sub 2]S and 3 1/2% CO[sub 2]) producer.

  7. Comparative study of using Water-Based mud containing Multiwall Carbon Nanotubes versus Oil-Based mud in HPHT fields

    Directory of Open Access Journals (Sweden)

    M.I. Abduo

    2016-12-01

    Full Text Available Water-Based mud (WBM and Oil-Based mud (OBM are the most common drilling fluids currently used and both have several characteristics that qualify them for High Pressure High Temperature (HPHT purposes. This paper compares the different characteristics of WBM containing Multiwall Carbon Nanotubes (MWCNTs and OBM to help decide the most suitable mud type for HPHT drilling by considering mud properties through several laboratory tests to generate some engineering guidelines. The tests were formulated at temperatures from 120 °F up to 500 °F and pressures from 14.7 psi to 25,000 psi. The comparison will mainly consider the rheological properties of the two mud types and will also take into account the environmental feasibility of using them. The results showing that the Water-Based offers a more environmental friendly choice yet some of additives that are used to enhance its performance at (HPHT conditions, such as (MWCNTs, thus it is necessary to develop new formulas for (HPHT Water-Based muds that could act like Oil-Based mud but cause less harm to the environment.

  8. Thermoelectric properties of Ni0.15Co3.85Sb12 and Fe0.2Ni0.15Co3.65Sb12 skutterudites prepared by HPHT method

    Directory of Open Access Journals (Sweden)

    Kong Lingjiao

    2017-10-01

    Full Text Available N-type polycrystalline skutterudite compounds Ni0.15Co3.85Sb12 and Fe0.2Ni0.15Co3.65Sb12 with the bcc crystal structure were synthesized by high pressure and high temperature (HPHT method. The synthesis time was sharply reduced to approximately half an hour. Typical microstructures connected with lattice deformations and dislocations were incorporated in the samples of Ni0.15Co3.85Sb12 and Fe0.2Ni0.15Co3.65Sb12 after HPHT. Electrical and thermal transport properties were meticulously researched in the temperature range of 300 K to 700 K. The Fe0.2Ni0.15Co3.65Sb12 sample shows a lower thermal conductivity than that of Ni0.15Co3.85Sb12. The dimensionless thermoelectric figure-of-merit (zT reaches the maximal values of 0.52 and 0.35 at 600 K and 700 K respectively, for Ni0.15Co3.85Sb12 and Fe0.2Ni0.15Co3.65Sb12 samples synthesized at 1 GPa.

  9. Ammonia synthesis at low temperatures

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Logadottir, Ashildur; Nørskov, Jens Kehlet

    2000-01-01

    Density functional theory (DFT) calculations of reaction paths and energies for the industrial and the biological catalytic ammonia synthesis processes are compared. The industrial catalyst is modeled by a ruthenium surface, while the active part of the enzyme is modeled by a MoFe6S9 complex...... have been carried out to evaluate its feasibility. The calculations suggest that it might be possible to catalytically produce ammonia from molecular nitrogen at low temperatures and pressures, in particular if energy is fed into the process electrochemically. (C) 2000 American Institute of Physics....

  10. Temperature uniformity mapping in a high pressure high temperature reactor using a temperature sensitive indicator

    NARCIS (Netherlands)

    Grauwet, T.; Plancken, van der I.; Vervoort, L.; Matser, A.M.; Hendrickx, M.; Loey, van A.

    2011-01-01

    Recently, the first prototype ovomucoid-based pressure–temperature–time indicator (pTTI) for high pressure high temperature (HPHT) processing was described. However, for temperature uniformity mapping of high pressure (HP) vessels under HPHT sterilization conditions, this prototype needs to be

  11. Hydrogen Evolution Reaction of γ-Mo0.5W0.5 C Achieved by High Pressure High Temperature Synthesis

    Directory of Open Access Journals (Sweden)

    Yingfei Hu

    2016-12-01

    Full Text Available For the first time, the hydrogen evolution reaction (HER electrocatalytic performances of incompressible γ-Mo0.5W0.5C, prepared by high-pressure, high-temperature (HPHT synthesis, were investigated in the electrolyte. The polarization curve of the γ-Mo0.5W0.5C cathode exhibits the current density of 50 mA∙cm−2 at an overpotential value of 320 mV. The corresponding Tafel slope of the incompressible γ-Mo0.5W0.5C is 74 mV∙dec−1. After a 1000-cycle test, and then exposure to the air for six months, the γ-Mo0.5W0.5C electrode performed a current density of 50 mA∙cm−2 at an overpotential of 354 mV, which was close to the initial one.

  12. Production of hard metal by HPHT using NB as a new binder

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.P.; Barros, R.A.; Pecanha Junior, L.A.F.; Guimaraes, R.S.; Filgueira, M. [Universidade Estadual do Norte Fluminense (UENF), Niteroi, RJ (Brazil)

    2016-07-01

    Full text: Due to the growing metalworking sector, development of new materials for use as cutting tools is necessary, seeking the reduction of energy consumption, as well as the machining time. In this sense, carbide inserts are widely used as tools. Usually, these inserts are manufactured with the use of cobalt as a binder. However, this material is scarce in the market and its cost is very high, and has high toxicity. This paper aims to produce carbide inserts by sintering at high pressure and high temperature (HP-HT), using innovative alloying elements, more easily accessible and at a low cost, such as Nb and Ni. The inserts were produced as follows: powders were sintered under 7,7GPa pressure and temperatures between 1550 deg C and 1850 deg C. Excellent results of densification, hardness and fracture toughness of the inserts was achieved. The phases formed in the sintering were analyzed by XRD. Microstructure was studied by scanning electron microscopy (SEM) and laser microscopy (CONFOCAL). Machining tests were carried out according to the ISO-3685 standard, indicating improved performance for the produced inserts. (author)

  13. Low Temperature Synthesis of Magnesium Aluminate Spinel

    International Nuclear Information System (INIS)

    Lebedovskaya, E.G.; Gabelkov, S.V.; Litvinenko, L.M.; Logvinkov, D.S.; Mironova, A.G.; Odejchuk, M.A.; Poltavtsev, N.S.; Tarasov, R.V.

    2006-01-01

    The low-temperature synthesis of magnesium-aluminum spinel is carried out by a method of thermal decomposition in combined precipitated hydrates. The fine material of magnesium-aluminium spinel with average size of coherent dispersion's area 4...5 nanometers is obtained. Magnesium-aluminum spinel and initial hydrates were investigated by methods of the differential thermal analysis, the x-ray phase analysis and measurements of weight loss during the dehydration and thermal decomposition. It is established that synthesis of magnesium-aluminum spinel occurs at temperature 300 degree C by method of the x-ray phase analysis

  14. Room temperature synthesis of biodiesel using sulfonated ...

    Science.gov (United States)

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature. Prepared for submission to Royal Society of Chemistry (RSC) journal, Green Chemistry as a communication.

  15. High-Pressure-High-Temperature Processing Reduces Maillard Reaction and Viscosity in Whey Protein-Sugar Solutions.

    Science.gov (United States)

    Avila Ruiz, Geraldine; Xi, Bingyan; Minor, Marcel; Sala, Guido; van Boekel, Martinus; Fogliano, Vincenzo; Stieger, Markus

    2016-09-28

    The aim of the study was to determine the influence of pressure in high-pressure-high-temperature (HPHT) processing on Maillard reactions and protein aggregation of whey protein-sugar solutions. Solutions of whey protein isolate containing either glucose or trehalose at pH 6, 7, and 9 were treated by HPHT processing or conventional high-temperature (HT) treatments. Browning was reduced, and early and advanced Maillard reactions were retarded under HPHT processing at all pH values compared to HT treatment. HPHT induced a larger pH drop than HT treatments, especially at pH 9, which was not associated with Maillard reactions. After HPHT processing at pH 7, protein aggregation and viscosity of whey protein isolate-glucose/trehalose solutions remained unchanged. It was concluded that HPHT processing can potentially improve the quality of protein-sugar-containing foods, for which browning and high viscosities are undesired, such as high-protein beverages.

  16. Size and purity control of HPHT nanodiamonds down to 1 nm

    Czech Academy of Sciences Publication Activity Database

    Stehlík, Štěpán; Varga, Marián; Ledinský, Martin; Jirásek, Vít; Artemenko, Anna; Kozak, Halyna; Ondič, Lukáš; Skákalová, V.; Argentero, G.; Pennycook, T.; Meyer, J.C.; Fejfar, Antonín; Kromka, Alexander; Rezek, Bohuslav

    2015-01-01

    Roč. 119, č. 49 (2015), s. 27708-27720 ISSN 1932-7447 R&D Projects: GA ČR GA15-01809S Institutional support: RVO:68378271 Keywords : HPHT nanodiamond * detonation nanodiamond * air-annealing * phonon confinement * Raman spectroscopy * STEM Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.509, year: 2015

  17. Manufacturing Demonstration Facility: Low Temperature Materials Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graham, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moon, Ji-Won [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Armstrong, Beth L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Datskos, Panos G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gresback, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ivanov, Ilia N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jacobs, Christopher B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jellison, Gerald Earle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jang, Gyoung Gug [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Joshi, Pooran C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jung, Hyunsung [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Meyer, III, Harry M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Phelps, Tommy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-30

    The Manufacturing Demonstration Facility (MDF) low temperature materials synthesis project was established to demonstrate a scalable and sustainable process to produce nanoparticles (NPs) for advanced manufacturing. Previous methods to chemically synthesize NPs typically required expensive, high-purity inorganic chemical reagents, organic solvents and high temperatures. These processes were typically applied at small laboratory scales at yields sufficient for NP characterization, but insufficient to support roll-to-roll processing efforts or device fabrication. The new NanoFermentation processes described here operated at a low temperature (~60 C) in low-cost, aqueous media using bacteria that produce extracellular NPs with controlled size and elemental stoichiometry. Up-scaling activities successfully demonstrated high NP yields and quality in a 900-L pilot-scale reactor, establishing this NanoFermentation process as a competitive biomanufacturing strategy to produce NPs for advanced manufacturing of power electronics, solid-state lighting and sensors.

  18. Stability of Basalt plus Anhydrite plus Calcite at HP-HT: Implications for Venus, the Earth and Mars

    Science.gov (United States)

    Martin, A. M.; Righter, K.; Treiman, A. H.

    2010-01-01

    "Canali" observed at Venus surface by Magellan are evidence for very long melt flows, but their composition and origin remain uncertain. The hypothesis of water-rich flow is not reasonable regarding the temperature at Venus surface. The length of these channels could not be explained by a silicate melt composition but more likely, by a carbonate-sulfate melt which has a much lower viscosity (Kargel et al 1994). One hypothesis is that calcite CaCO3 and anhydrite CaSO4 which are alteration products of basalts melted during meteorite impacts. A famous example recorded on the Earth (Chicxulub) produced melt and gas rich in carbon and sulfur. Calcite and sulfate evaporites are also present on Mars surface, associated with basalts. An impact on these materials might release C- and S-rich melt or fluid. Another type of planetary phenomenon (affecting only the Earth) might provoke a high pressure destabilization of basalt+anhydrite+calcite. Very high contents of C and S are measured in some Earth s magmas, either dissolved or in the form of crystals (Luhr 2008). As shown by the high H content and high fO2 of primary igneous anhydrite-bearing lavas, the high S content in their source may be explained by subduction of an anhydrite-bearing oceanic crust, either directly (by melting followed by eruption) or indirectly (by release of S-rich melt or fluid that metasomatize the mantle) . Calcite is a major product of oceanic sedimentation and alteration of the crust. Therefore, sulfate- and calcite-rich material may be subducted to high pressures and high temperatures (HP-HT) and release S- and C-rich melts or fluids which could influence the composition of subduction zone lavas or gases. Both phenomena - meteorite impact and subduction - imply HP-HT conditions - although the P-T-time paths are different. Some HP experimental/theoretical studies have been performed on basalt/eclogite, calcite and anhydrite separately or on a combination of two. In this study we performed piston

  19. Evaluation des fluides de forage HP/HT pour forages profonds Evaluation of Hp/Ht Drilling Fluid Formulations for Deep Drilling

    Directory of Open Access Journals (Sweden)

    Argillier J. F.

    2006-11-01

    Full Text Available Le forage de puits profonds exige la mise au point de fluides de forage dont la formulation est adaptée aux températures élevées de formation : l'une des principales difficultés est la dégradation thermique des additifs chimiques utilisés dans les formulations à base d'eau qui se produit fréquemment lors du forage de puits à température élevée. Cette dégradation peut conduire à des variations importantes des caractéristiques rhéologiques et de filtration et à une perte de propriétés nécessaires à leur performance. De plus, même s'il n'y a pas de dégradation des composants la viscosité des solutions de polymères hydrosolubles couramment utilisés dans les formulations de fluides diminue fortement avec l'augmentation de la température au-dessus de 60°C. Une autre source de difficulté qui apparaît à forte température avec les boues à base d'eau est la gélification des argiles utilisées dans la formulation. Ce phénomène provoque une forte augmentation de la viscosité de la formulation et des pertes de charges, en particulier en cas de reprise de forage. Diverses méthodes ont été mises au point pour étudier le comportement des boues à base d'eau dans des conditions de pression et de température élevées, entre autres : - des expériences de laboratoire, pour étudier par exemple la stabilité en conditions anaérobies des solutions de polymères et le comportement rhéologique des suspensions d'argile dans des conditions de pression et de température élevées afin de simuler les caractéristiques de gélification des argiles à haute température; - des essais sur boucle d'étude HP/HT en utilisant une boucle expérimentale conçue pour étudier les fluides de forage dans des conditions de fond réalistes, c'est-à-dire des températures atteignant 180°C, des pressions atteignant 500 bar et des taux de cisaillement atteignant 10 000 s puissance( -1 Cette méthodologie a permis d'étudier un certain

  20. Growth of diamond layers on diamond and cBN seeds using iron carbide under high pressure and high temperature

    CERN Document Server

    Li Xun; Hao Zhao Yin; LiuPeng; Li Musen; Zou Guang Tian; Cheng Shu Yu; Cheng Kai Jia

    2002-01-01

    Iron carbide without any graphite was studied under high pressure and high temperature (HPHT); diamond layers were obtained both on diamond and on cubic boron nitride seeds at 5.5 GPa and 1700-1750 K. The results showed that transition-metal carbide was the main intermediate in the course of the transformation from graphite to diamond under HPHT.

  1. Factors affecting shut-in pressure rise: kicks in offshore HPHT wells

    Energy Technology Data Exchange (ETDEWEB)

    Schilhab, L.C. [Sedco Forex, (Country unknown/Code not available); Rezmer-Cooper, I.M. [Anadril, (Country unknown/Code not available)

    1997-05-01

    Deep water and HPHT operations are two areas where the use of sophisticated simulators can enable difficult processes and procedures to be broken down into individual identifiable contributions. In the paper we discuss some of the factors that are likely to affect shut-in pressure rise in offshore drilling operations, and how a simulator can be used to answer other, less obvious questions concerning deep water well control operations. We examine the effect of gas solubility by considering a gas-kick in a deep HPHT well drilled with oil-base mud. In this case, most of the influx will be dissolved in the mud, thus removing one of the processes for increasing the wellbore pressure. In terms of s safe state to disconnect from a well in rough weather, provided that the mud yield stress negates migration of the gas-cut mud, leaving the influx in solution at the bottom of the well should not lead to increasing wellbore pressures. Significant wellbore pressure effects may also occur after closing the blowout preventers (BOP`s) on a well without an influx (or with an influx in solution), and allowing the mud to heat up. We show that in typical HPHT geometries the pressure can rise by up to 8 bar/deg C. Similar magnitudes of pressure can also increase whilst circulating trapped gas out of a BOP at the end of a well control operation. We note that these effects may also be attenuated by fluid loss and wellbore compliance for wells with significant open hole sections. Indeed, gas trapped in the BOP should be safety removed by established well control procedures. However, preliminary studies with the simulator (and confirmed by field tests in the literature) have shown that an accidental release of a small amount of gas into a deep water riser may disperse, and not cause the riser to unload. (authors) 5 refs.

  2. Synthesis, structure and low temperature study of electric transport ...

    Indian Academy of Sciences (India)

    Synthesis, structure and low temperature study of electric transport and magnetic properties of GdSr2MnCrO7. Devinder ... Keywords. Chemical synthesis; X-ray diffraction; electrical properties; magnetic properties. Abstract. The layered perovskite oxide, GdSr2MnCrO7, has been prepared by the standard ceramic method.

  3. Room temperature synthesis of biodiesel using sulfonated graphitic carbon nitride

    OpenAIRE

    Baig, R. B. Nasir; Verma, Sanny; Nadagouda, Mallikarjuna N.; Varma, Rajender S.

    2016-01-01

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature.

  4. Room temperature synthesis of biodiesel using sulfonated graphitic carbon nitride

    Science.gov (United States)

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature.

  5. Low-temperature synthesis of silicon carbide powder using shungite

    Energy Technology Data Exchange (ETDEWEB)

    Gubernat, A.; Pichor, W.; Lach, R.; Zientara, D.; Sitarz, M.; Springwald, M.

    2017-07-01

    The paper presents the results of investigation the novel and simple method of synthesis of silicon carbide. As raw material for synthesis was used shungite, natural mineral rich in carbon and silica. The synthesis of SiC is possible in relatively low temperature in range 1500–1600°C. It is worth emphasising that compared to the most popular method of SiC synthesis (Acheson method where the temperature of synthesis is about 2500°C) the proposed method is much more effective. The basic properties of products obtained from different form of shungite and in wide range of synthesis temperature were investigated. The process of silicon carbide formation was proposed and discussed. In the case of synthesis SiC from powder of raw materials the product is also in powder form and not requires any additional process (crushing, milling, etc.). Obtained products are pure and after grain classification may be used as abrasive and polishing powders. (Author)

  6. Self-propagating high temperature synthesis and magnetic ...

    Indian Academy of Sciences (India)

    Unknown

    Ni–Zn ferrite powders were synthesized by self-propagating high temperature synthesis (SHS) method. X-ray diffraction ... Keywords. SHS; Ni–Zn ferrite powders; combustion temperature; particle size; magnetic properties; phase composition. .... of Fe, NiO, ZnO disappeared and spinel peaks of ferrites were observed clearly ...

  7. Room temperature synthesis of colloidal platinum nanoparticles

    Indian Academy of Sciences (India)

    Unknown

    1988) and application also in optical, electronic and mag- netic devices (Schon and Simon 1995). The catalytic reacti- vity depend on size and shape of nanoparticles and therefore synthesis of controlled shapes and size of colloidal platinum particles could be critical for these applications. Nanostructured materials promise ...

  8. Robust Temperature Control of a Thermoelectric Cooler via μ -Synthesis

    Science.gov (United States)

    Kürkçü, Burak; Kasnakoğlu, Coşku

    2018-02-01

    In this work robust temperature control of a thermoelectric cooler (TEC) via μ -synthesis is studied. An uncertain dynamical model for the TEC that is suitable for robust control methods is derived. The model captures variations in operating point due to current, load and temperature changes. A temperature controller is designed utilizing μ -synthesis, a powerful method guaranteeing robust stability and performance. For comparison two well-known control methods, namely proportional-integral-derivative (PID) and internal model control (IMC), are also realized to benchmark the proposed approach. It is observed that the stability and performance on the nominal model are satisfactory for all cases. On the other hand, under perturbations the responses of PID and IMC deteriorate and even become unstable. In contrast, the μ -synthesis controller succeeds in keeping system stability and achieving good performance under all perturbations within the operating range, while at the same time providing good disturbance rejection.

  9. Temperature-enhanced synthesis of DMSO-Melanin

    Science.gov (United States)

    Piacenti-Silva, M.; Bronze-Uhle, E. S.; Paulin, J. V.; Graeff, C. F. O.

    2014-01-01

    Melanins are a class of pigmentary conjugated macromolecules found in many biological systems. Functionalization of synthetic melanin provides interesting new properties like the greater solubility of melanin synthesized in dimethyl sulfoxide, D-Melanin. In this work we have studied the influence of temperature on D-Melanin synthesis and its properties. To this end, UV-Vis, Fourier-transform infrared (FTIR) spectroscopy and Nuclear Magnetic Resonance (NMR) techniques have been employed to analyze D-Melanin synthesized within the range of 25-100 °C. Our results reveal that by increasing the synthesis temperature up to 100 °C, the synthesis time can be decreased by a factor of 7 when compared to room temperature. From FTIR and 13C CP/MAS NMR analyses the increase in temperature causes a decrease in the number of carbonyl groups from carboxylic acid and from ionized carboxylic acid. The decarboxylation of D-Melanin monomers at higher temperatures shows that the use of higher synthesis temperatures influences the elimination of carbonyls present in the precursor molecules, thus facilitating the polymerization of D-Melanin.

  10. Moderate Temperature Synthesis of Mesoporous Carbon

    KAUST Repository

    Dua, Rubal

    2013-01-03

    Methods and composition for preparation of mesoporous carbon material are provided. For example, in certain aspects methods for carbonization and activation at selected temperature ranges are described. Furthermore, the invention provides products prepared therefrom.

  11. Synthesis of 1-alkyl triazolium triflate room temperature ionic liquids ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 127; Issue 9. Synthesis of 1-alkyl triazolium triflate room temperature ionic liquids and their catalytic studies in multi-component Biginelli reaction. Sankaranarayanan Nagarajan Tanveer M Shaikh Elango Kandasamy. Volume 127 Issue 9 September 2015 pp 1539- ...

  12. Microwave-assisted low temperature synthesis of sodium zirconium ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Microwave-assisted procedure for low temperature solid state synthesis of sodium zirconium phosphate (NZP), a material with the potential for immobilization and disposal of high level nuclear waste, was developed. Three selected fission products, namely, Cesium, Strontium and Tellurium were introduced ...

  13. Microwave-assisted low temperature synthesis of sodium zirconium ...

    Indian Academy of Sciences (India)

    Microwave-assisted procedure for low temperature solid state synthesis of sodium zirconium phosphate (NZP), a material with the potential for immobilization and disposal of high level nuclear waste, was developed. Three selected fission products, namely, Cesium, Strontium and Tellurium were introduced (substituted) in ...

  14. Microwave-assisted low temperature synthesis of sodium zirconium

    Indian Academy of Sciences (India)

    Microwave-assisted procedure for low temperature solid state synthesis of sodium zirconium phosphate (NZP), a material with the potential for immobilization and disposal of high level nuclear waste, was developed. Three selected fission products, namely, Cesium, Strontium and Tellurium were introduced (substituted) in ...

  15. Self-propagating high temperature synthesis and magnetic ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Ni–Zn ferrite powders were synthesized by self-propagating high temperature synthesis (SHS) method. X-ray diffraction, TEM and vibrating sample magnetometry (VSM) were used to characterize the phase composition, microstructure and magnetic properties of the combustion products. The effect of the com-.

  16. Self-propagating high temperature synthesis and magnetic

    Indian Academy of Sciences (India)

    Ni–Zn ferrite powders were synthesized by self-propagating high temperature synthesis (SHS) method. X-ray diffraction, TEM and vibrating sample magnetometry (VSM) were used to characterize the phase composition, microstructure and magnetic properties of the combustion products. The effect of the combustion ...

  17. Combustion and Plasma Synthesis of High-Temperature Materials

    Science.gov (United States)

    Munir, Z. A.; Holt, J. B.

    1997-04-01

    KEYNOTE ADDRESS. Self-Propagating High-Temperature Synthesis: Twenty Years of Search and Findings (A. Merzhanov). SOLID-STATE COMBUSTION SYNTHESIS. Recent Progress in Combustion Synthesis of High-Performance Materials in Japan (M. Koizumi & Y. Miyamoto). Modeling and Numerical Computation of a Nonsteady SHS Process (A. Bayliss & B. Matkowsky). New Models of Quasiperiodic Burning in Combustion Synthesis (S. Margolis, et al.). Modeling of SHS Operations (V. Hlavacek, et al.). Combustion Theory for Sandwiches of Alloyable Materials (R. Armstrong & M. Koszykowski). Observations on the Combustion Reaction Between Thin Foils of Ni and Al (U. Anselmi-Tamburini & Z. Munir). Combustion Synthesis of Intermetallic Compounds (Y. Kaieda, et al.). Combustion Synthesis of Nickel Aluminides (B. Rabin, et al.). Self-Propagating High-Temperature Synthesis of NiTi Intermetallics (H. Yi & J. Moore). Shock-Induced Chemical Synthesis of Intermetallic Compounds (S. Work, et al.). Advanced Ceramics Via SHS (T. DeAngelis & D. Weiss). In-Situ Formation of SiC and SiC-C Blocked Solids by Self-Combustion Synthesis (S. Ikeda, et al.). Powder Purity and Morphology Effects in Combustion-Synthesis Reactions (L. Kecskes, et al.). Simultaneous Synthesis and Densification of Ceramic Components Under Gas Pressure by SHS (Y. Miyamoto & M. Koizumi). The Use of Self-Propagating High-Temperature Synthesis of High-Density Titanium Diboride (P. Zavitsanos, et al.). Metal--Ceramic Composite Pipes Produced by a Centrifugal-Thermit Process (O. Odawara). Simultaneous Combustion Synthesis and Densification of AIN (S. Dunmead, et al.). Fabrication of a Functionally Gradient Material by Using a Self-Propagating Reaction Process (N. Sata, et al.). Combustion Synthesis of Oxide-Carbide Composites (L. Wang, et al.). Heterogeneous Reaction Mechanisms in the Si-C System Under Conditions of Solid Combustion (R. Pampuch, et al.). Experimental Modeling of Particle-Particle Interactions During SHS of TiB2 -Al2O3 (K. Logan

  18. Prismatic dislocation loops and concentric dislocation loops in HPHT-grown diamond single crystals

    International Nuclear Information System (INIS)

    Yin, L.-W.; Li, M.-S.; Zou, Z.-D.; Gong, Z.-G.; Hao, Z.-Y.

    2003-01-01

    As-grown diamond single crystals grown from Fe-Ni-C system under high temperature-high pressure were examined by transmission electron microscopy. There exist prismatic dislocation loops and concentric dislocation loops in the diamond, which are related to the nonequilibrium nature of the diamond synthesis process. The prismatic dislocation loops may be formed by vacancy condensation during rapid cooling from high temperature, and the Burgers vector of the dislocation is determined by diffraction contrast as 1/2 . Moire fringes formed by two overlapping (1 1 1) close-packed planes were used to study concentric dislocation loops. The concentric dislocation loops may be derived from thermal stress caused by the inclusions in the diamond, which cause a strain field due to the thermal contraction difference between the inclusions and the diamond during cooling from high temperature

  19. Multi-Temperature Zone, Droplet-based Microreactor for Increased Temperature Control in Nanoparticle Synthesis

    KAUST Repository

    Erdem, E. Yegân

    2013-12-12

    Microreactors are an emerging technology for the controlled synthesis of nanoparticles. The Multi-Temperature zone Microreactor (MTM) described in this work utilizes thermally isolated heated and cooled regions for the purpose of separating nucleation and growth processes as well as to provide a platform for a systematic study on the effect of reaction conditions on nanoparticle synthesis. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Alcohol synthesis in a high-temperature slurry reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, G.W.; Marquez, M.A.; McCutchen, M.S. [North Carolina State Univ., Raleigh, NC (United States)

    1995-12-31

    The overall objective of this contract is to develop improved process and catalyst technology for producing higher alcohols from synthesis gas or its derivatives. Recent research has been focused on developing a slurry reactor that can operate at temperatures up to about 400{degrees}C and on evaluating the so-called {open_quotes}high pressure{close_quotes} methanol synthesis catalyst using this reactor. A laboratory stirred autoclave reactor has been developed that is capable of operating at temperatures up to 400{degrees}C and pressures of at least 170 atm. The overhead system on the reactor is designed so that the temperature of the gas leaving the system can be closely controlled. An external liquid-level detector is installed on the gas/liquid separator and a pump is used to return condensed slurry liquid from the separator to the reactor. In order to ensure that gas/liquid mass transfer does not influence the observed reaction rate, it was necessary to feed the synthesis gas below the level of the agitator. The performance of a commercial {open_quotes}high pressure {close_quotes} methanol synthesis catalyst, the so-called {open_quotes}zinc chromite{close_quotes} catalyst, has been characterized over a range of temperature from 275 to 400{degrees}C, a range of pressure from 70 to 170 atm., a range of H{sub 2}/CO ratios from 0.5 to 2.0 and a range of space velocities from 2500 to 10,000 sL/kg.(catalyst),hr. Towards the lower end of the temperature range, methanol was the only significant product.

  1. High pressure and high temperature in situ X-ray diffraction studies in the Paris-Edinburgh cell using a laboratory X-ray source†

    Science.gov (United States)

    Toulemonde, Pierre; Goujon, Céline; Laversenne, Laetitia; Bordet, Pierre; Bruyère, Rémy; Legendre, Murielle; Leynaud, Olivier; Prat, Alain; Mezouar, Mohamed

    2014-04-01

    We have developed a new laboratory experimental set-up to study in situ the pressure-temperature phase diagram of a given pure element or compound, its associated phase transitions, or the chemical reactions involved at high pressure and high temperature (HP-HT) between different solids and liquids. This new tool allows laboratory studies before conducting further detailed experiments using more brilliant synchrotron X-ray sources or before kinetic studies. This device uses the diffraction of X-rays produced by a quasi-monochromatic micro-beam source operating at the silver radiation (λ(Ag)Kα 1, 2≈0.56 Å). The experimental set-up is based on a VX Paris-Edinburgh cell equipped with tungsten carbide or sintered diamond anvils and uses standard B-epoxy 5 or 7 mm gaskets. The diffracted signal coming from the compressed (and heated) sample is collected on an image plate. The pressure and temperature calibrations were performed by diffraction, using conventional calibrants (BN, NaCl and MgO) for determination of the pressure, and by crossing isochores of BN, NaCl, Cu or Au for the determination of the temperature. The first examples of studies performed with this new laboratory set-up are presented in the article: determination of the melting point of germanium and magnesium under HP-HT, synthesis of MgB2 or C-diamond and partial study of the P, T phase diagram of MgH2.

  2. Synthesis of 1-alkyl triazolium triflate room temperature ionic liquids ...

    Indian Academy of Sciences (India)

    Synthesis of 1-alkyl triazolium triflate room temperature ionic liquids and their catalytic studies in multi-component Biginelli ... ods involved use of a number of metal salts, such as Li,6 Fe,7–10 Cu,11,12 Ce,13 Zr,14 In,16 Bi,17 Yb, ..... in moderate yield, which might be due to poor solubility of starting materials. After extensive ...

  3. Temperature Dependence on The Synthesis of Jatropha Biolubricant

    International Nuclear Information System (INIS)

    Resul, Muhammad Faiz M Gunam; Ghazi, Tinia Idaty Mohd; Idris, Azni

    2011-01-01

    Jatropha oil has good potential as the renewable energy as well as lubricant feedstock. The synthesis of jatropha biolubricant was performed by transesterification of jatropha methyl ester (JME) with trimethyl-ol-propane (TMP) with sodium methoxide (NaOCH3) catalyst. The effects of temperature on the synthesis were studied at a range between 120 deg. C and 200 deg. C with pressure kept at 10mbar. The conversion of JME to jatropha biolubricant was found to be the highest (47%) at 200 deg. C. However, it was suggested that the optimum temperature of the reaction is at 150 deg. C due to insignificant improvement in biolubricant production. To maintain forward reaction, the excess amount of JME was maintained at 3.9:1 ratios to TMP. Kinetic study was done and compared. The synthesis was found to follow a second order reaction with overall rate constant of 1.49 x 10-1 (%wt/wt.min.deg. C)-1. The estimated activation energy was 3.94 kJ/mol. Pour point for jatropha biolubricant was at -3 deg. C and Viscosity Index (VI) ranged from 178 to 183. The basic properties of jatropha biolubricant, pour point and viscosities are found comparable to other plant based biolubricant, namely palm oil and soybean based biolubricant.

  4. Effect of Temperature and Catalyst Concentration on Polyglycerol during Synthesis

    Directory of Open Access Journals (Sweden)

    Carolina Ardila-Suárez

    2015-01-01

    Full Text Available Morphology, molecular weight, polydispersity, functionality, and thermal properties are important characteristics when using polyglycerol as a building block in the development of materials for industrial applications such as hydrogels, surfactants, asphalts additives, cosmetics, pharmaceutical, biomedical, and drug delivery systems. In this study several experimental techniques are used to understand the effect of process variables during synthesis in the catalyzed etherification of glycerol, a coproduct of biodiesel industry. Biobased polyglycerol is a high-valued product, which is useful as building block material because of its remarkable features, for instance, multiple hydrophilic groups, excellent biocompatibility, and highly flexible aliphatic polyether backbone. A connection between polyglycerol characteristics and process variables during synthesis allows the control of glycerol polymerization through reaction conditions. We show that temperature and catalyst concentration can be tuned with the aim of tailoring fundamental polyglycerol parameters including molecular weight, polydispersity, morphology, and functionality.

  5. Product engineering by high-temperature flame synthesis

    DEFF Research Database (Denmark)

    Johannessen, Tue; Johansen, Johnny; Mosleh, Majid

    also - coalescence of aggregated metal oxide nano-particles. As an example, it is possible produce well-defined spinel structures, e.g. zinc-aluminate (ZnAl2O4), with high specific surface area because the desired phase is formed directly without any need for post calcination. The production of other...... product gas can be applied directly in additional product engineering concepts. A brief overview of on-going product developments and product engineering projects is outlined below. These projects, which are all founded on flame synthesis of nano-structured materials, include: • Preparation of catalyzed......High-temperature flame processes can be applied as a tool for chemical product engineering. The general principle behind flame synthesis is the decomposition/oxidation of evaporated metal-precursors in a flame, thereby forming metal oxide monomers which nucleate, aggregate, and - to some extent...

  6. Low-Temperature Synthesis Routes to Intermetallic Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schaak, Raymond E

    2008-01-08

    Over the past few years, our group has gained expertise at developing low-temperature solution-based synthetic pathways to complex nanoscale solids, with particular emphasis on nanocrystalline intermetallic compounds. Our synthetic capabilities are providing tools to reproducibly generate intermetallic nanostructures with simultaneous control over crystal structure, composition, and morphology. This DOE-funded project aims to expand these capabilities to intermetallic superconductors. This could represent an important addition to the tools that are available for the synthesis and processing of intermetallic superconductors, which traditionally utilize high-temperature, high-pressure, thin film, or gas-phase vacuum deposition methods. Our current knowledge of intermetallic superconductors suggests that significant enhancements could result from the inherent benefits of low-temperature solution synthesis, e.g. metastable phase formation, control over nanoscale morphology to facilitate size-dependent property studies, robust and inexpensive processability, low-temperature annealing and consolidation, and impurity incorporation (for doping, stoichiometry control, flux pinning, and improving the critical fields). Our focus is on understanding the superconducting properties as a function of synthetic route, crystal structure, crystallite size, and morphology, and developing the synthetic tools necessary to accomplish this. This research program can currently be divided into two classes of superconducting materials: intermetallics (transition metal/post transition metal) and metal carbides/borides. Both involve the development and exploitation of low-temperature synthesis routes followed by detailed characterization of structures and properties, with the goal of understanding how the synthetic pathways influence key superconducting properties of selected target materials. Because of the low-temperature methods used to synthesize them and the nanocrystalline morphologies

  7. Synthesis of lanthanum hydroxide nanorods by low-temperature aging

    Energy Technology Data Exchange (ETDEWEB)

    Dodd, Aaron, E-mail: a.dodd@unsw.edu.au [Electron Microscope Unit, University of New South Wales, Chemical Sciences Building (F10), Kensington UNSW, Sydney NSW 2052 (Australia)

    2012-10-15

    This paper presents the results of an investigation into the synthesis of La(OH){sub 3} nanorods by low-temperature aging. It was found that formation of La(OH){sub 3} nanorods was suppressed at room temperature and also by the presence of precipitation by-products, such as NaCH{sub 3}COO and residual NaOH, during the aging process. Well formed nanorods were only achieved by washing the precipitated suspension prior to aging at an elevated temperature of 60 Degree-Sign C. Unlike previous studies that utilized hydrothermal processing at high temperature and pressure, the nanorods synthesised in this study were not single crystals but were instead composed of crystals viewed down the [12{sup Macron }10] and [11{sup Macron }00] zone axes with a common [0001] growth direction. -- Highlights: Black-Right-Pointing-Pointer Investigated low temperature aging as a simple method for preparing La(OH){sub 3} nanorods. Black-Right-Pointing-Pointer Nanorod formation favored by aging in pure water at slightly elevated temperature. Black-Right-Pointing-Pointer Nanorod structure was different to that produced by hydrothermal processing.

  8. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V

    2002-01-01

    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  9. Low thermal conductivity CoSb3 materials prepared by rapid synthesis process

    Science.gov (United States)

    Deng, L.; Ni, J.; Qin, J. M.; Ma, H. A.; Jia, X. P.

    2018-02-01

    Nano-particles and defects have effective influence on reducing the lattice thermal conductivity. In this work, a serious of high concentration Te doping bulk polycrystalline materials Co4Sb11.2Te0.8 has been synthesized successfully at different pressures by the high pressure and high temperature (HPHT) method. All samples were characterized by X-ray diffraction. The Seebeck coefficient α, electrical resistivity ρ and thermal conductivity κ were all measured from 373 K to 673 K. It could be observed obviously that, as the synthesis pressure rised, the thermal conductivity of Co4Sb11.2Te0.8 decreased remarkably. The minimum thermal conductivity of 1.36 W m-1 K-1 was obtained by Co4Sb11.2Te0.8 sample synthesized at 3.7 GPa. The corresponding microstructures were also studied by SEM and HRTEM images.

  10. Self-propagating High Temperature Synthesis of Pink Corundum

    Directory of Open Access Journals (Sweden)

    Nazarova Anastasiya

    2017-01-01

    Full Text Available Pigments based on pink corundum have been obtained by self-propagating high temperature synthesis in Cr2O3-Al2O3-Al system using a small amount of chromium oxide (up to 0.5 wt % in the composition of the green mixture. Absorption bands of pink corundum in visible reflectance spectrum at λ=560 nm (17850 cm−1 and 400 nm (25000 cm−1 correspond to electron transitions 4А2g→4T2g(4F and 4А2g→4T1g(4F. Increasing chrome oxide content to 5 wt.% in initial charge mixture leads to pigment darkening due to inclusions of Cr2O3. Synthesized pigments can be used as a component of glaze ceramic colors for porcelain.

  11. Room temperature synthesis and high temperature frictional study of silver vanadate nanorods.

    Science.gov (United States)

    Singh, D P; Polychronopoulou, K; Rebholz, C; Aouadi, S M

    2010-08-13

    We report the room temperature (RT) synthesis of silver vanadate nanorods (consisting of mainly beta-AgV O(3)) by a simple wet chemical route and their frictional study at high temperatures (HT). The sudden mixing of ammonium vanadate with silver nitrate solution under constant magnetic stirring resulted in a pale yellow coloured precipitate. Structural/microstructural characterization of the precipitate through x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the high yield and homogeneous formation of silver vanadate nanorods. The length of the nanorods was 20-40 microm and the thickness 100-600 nm. The pH variation with respect to time was thoroughly studied to understand the formation mechanism of the silver vanadate nanorods. This synthesis process neither demands HT, surfactants nor long reaction time. The silver vanadate nanomaterial showed good lubrication behaviour at HT (700 degrees C) and the friction coefficient was between 0.2 and 0.3. HT-XRD revealed that AgV O(3) completely transformed into silver vanadium oxide (Ag(2)V(4)O(11)) and silver with an increase in temperature from RT to 700 degrees C.

  12. Protein synthesis during the initial phase of the temperature-induced bleaching response in Euglena gracilis

    International Nuclear Information System (INIS)

    Ortiz, W.

    1990-01-01

    Growing cultures of photoheterotrophic Euglena gracilis experience an increase in chlorophyll accumulation during the initial phase of the temperature-induced bleaching response suggesting an increase in the synthesis of plastid components at the bleaching temperature of 33 degree C. A primary goal of this work was to establish whether an increase in the synthesis of plastid proteins accompanies the observed increase in chlorophyll accumulation. In vivo pulse-labeling experiments with [ 35 S]sodium sulfate were carried out with cells grown at room temperature or at 33 degree C. The synthesis of a number of plastid polypeptides of nucleocytoplasmic origin, including some presumably novel polypeptides, increased in cultures treated for 15 hours at 33 degree C. In contrast, while synthesis of thylakoid proteins by the plastid protein synthesis machinery decreased modestly, synthesis of the large subunit of the enzyme ribulosebisphosphate carboxylase was strongly affected at the elevated temperature. Synthesis of novel plastid-encoded polypeptides was not induced at the bleaching temperature. It is concluded that protein synthesis in plastids declines during the initial phase of the temperature response in Euglena despite an overall increase in cellular protein synthesis and an increase in chlorophyll accumulation per cell

  13. Differential chromosomal and mitochondrial DNA synthesis in temperature-sensitive mutants of Ustilago maydis

    Energy Technology Data Exchange (ETDEWEB)

    Unrau, P.

    1977-01-01

    The amount and type of residual DNA synthesis was determined in eight temperature-sensitive mutants of the smut fungus Ustilago maydis after incubation at the restrictive temperature (32/sup 0/C) for eight hours. Mutants ts-220, ts-207, ts-432 and ts-346 were found to have an overall reduction in the synthesis of both nuclear and mitochondrial DNA in comparison to the wild-type. In mutants ts-20, tsd 1-1, ts-84 and pol 1-1 nuclear DNA synthesis was depressed relative to mitochondrial synthesis. The DNA-polymerase mutant pol 1-1 had persistent nuclear synthesis at about 50% of the rate of synthesis of mitochondrial DNA and similar behavior was observed in a diploid homozygous strain. Mutant ts-84 had an initial burst of DNA synthesis which was reduced for nuclear but not mitochondrial synthesis after three hours preincubation at 32/sup 0/C. tsd 1-1 and ts-20 had nuclear residual synthesis amounting to about 25% of the relative rate of mitochondrial synthesis which correlates to increasing UV sensitivity of these strains on incubation at 32/sup 0/C. A pol 1-1 ts-84 double mutant had an additive loss of nuclear DNA synthesis which indicates that the steps of replication involved may be sequential.

  14. Synthesis of nano-sized amorphous boron powders through active dilution self-propagating high-temperature synthesis method

    International Nuclear Information System (INIS)

    Wang, Jilin; Gu, Yunle; Li, Zili; Wang, Weimin; Fu, Zhengyi

    2013-01-01

    Graphical abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed. Highlights: ► Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis method. ► The morphology, particle size and purity of the samples could be effectively controlled via changing the endothermic rate. ► The diluter KBH 4 played an important role in active dilution synthesis of amorphous nano-sized boron powders. ► The active dilution method could be further popularized and become a common approach to prepare various inorganic materials. - Abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method at temperatures ranging from 700 °C to 850 °C in a SHS furnace using Mg, B 2 O 3 and KBH 4 as raw materials. Samples were characterized by X-ray powder diffraction (XRD), Laser particle size analyzer, Fourier transform infrared spectra (FTIR), X-ray energy dispersive spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission TEM (HRTEM). The boron powders demonstrated an average particle size of 50 nm with a purity of 95.64 wt.%. The diluter KBH 4 played an important role in the active dilution synthesis of amorphous nano-sized boron powders. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed

  15. ROOM TEMPERATURE BULK AND TEMPLATE-FREE SYNTHESIS OF LEUCOEMARLDINE POLYANILINE NANOFIBERS

    Science.gov (United States)

    Herein, we describe a simple strategy for the bulk and template-free synthesis of reduced leucoemarldine polyaniline nanofibers size ranging from as low as 10 nm to 50 nm without the use of any reducing agents at room temperature.

  16. Kinetics of the ammonia synthesis at low temperatures. II. Sources of discrepancies

    International Nuclear Information System (INIS)

    Kuchaev, V.L.; Shapatina, E.N.; Temkin, M.I.

    1988-01-01

    A method is developed for calculating the degree of conversion during the synthesis of ammonia in a continuous flow, tubular reactor, taking longitudinal diffusion into account. Such a calculation shows that the available data in the literature on the rate of ammonia synthesis at low temperatures in a tubular reactor agree with the rate equation based on the idea that the predominant intermediate substance is adsorbed ammonia (and not imide). The seeming conflict between this idea and the ratio of the rates of synthesis of ammonia and deuteroammonia at low temperatures is explained

  17. Observation of phase transformations in LiMn2O4 under high pressure and at high temperature by in situ X-ray diffraction measurements

    International Nuclear Information System (INIS)

    Darul, J.; Nowicki, W.; Lathe, C.; Piszora, P.

    2011-01-01

    This work presents the diffraction features of lithium-manganese oxide in extreme pressure and temperature conditions used as positive electrode materials in lithium-ion batteries. Energy-dispersive X-ray diffraction yield reliable description of material lattice, its distortion and chemical stability under high pressure and at high temperature (HP/HT). The phase evolution as a function of pressure and temperature is reported and analyzed in the LiMn 2 O 4 sample. A comparison with another tetragonal spinel shows the influence of the Jahn-Teller effect on the HP/HT structure of this class of materials.

  18. Influence of air annealing on the luminescence dynamics of HPHT nanodiamonds

    Czech Academy of Sciences Publication Activity Database

    Salava, J.; Trojánek, F.; Stehlík, Štěpán; Varga, Marián; Rezek, Bohuslav; Malý, P.

    2016-01-01

    Roč. 68, Sep (2016), s. 62-65 ISSN 0925-9635 R&D Projects: GA ČR GA15-01809S Institutional support: RVO:68378271 Keywords : nanodiamond * time-resolved spectroscopy * annealing * carrier dynamics * high-pressure high-temperature nanodiamonds Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.561, year: 2016

  19. Local Synthesis of Carbon Nanotubes in Silicon Microsystems: The Effect of Temperature Distribution on Growth Structure

    Directory of Open Access Journals (Sweden)

    Knut E. Aasmundtveit

    2013-07-01

    Full Text Available Local synthesis and direct integration of carbon nanotubes (CNTs into microsystems is a promising method for producing CNT-based devices in a single step, low-cost, and wafer-level, CMOS/MEMS-compatible process. In this report, the structure of the locally grown CNTs are studied by transmission imaging in scanning electron microscopy—S(TEM. The characterization is performed directly on the microsystem, without any post-synthesis processing required. The results show an effect of temperature on the structure of CNTs: high temperature favors thin and regular structures, whereas low temperature favors “bamboo-like” structures.

  20. Precise estimation of HPHT nanodiamond size distribution based on transmission electron microscopy image analysis

    Czech Academy of Sciences Publication Activity Database

    Řehoř, Ivan; Cígler, Petr

    2014-01-01

    Roč. 46, Jun (2014), s. 21-24 ISSN 0925-9635 R&D Projects: GA ČR GAP108/12/0640; GA MŠk(CZ) LH11027 Grant - others:OPPK(CZ) CZ.2.16/3.1.00/24016 Institutional support: RVO:61388963 Keywords : TEM * nanoparticles * nanodiamonds * size distribution * high-pressure high-temperature * image analysis Subject RIV: CC - Organic Chemistry Impact factor: 1.919, year: 2014

  1. ROOM TEMPERATURE BULK SYNTHESIS OF SILVER NANOCABLES WRAPPED WITH POLYPYRROLE

    Science.gov (United States)

    Wet chemical synthesis of silver cables wrapped with polypyrrole is reported in aqueous media without use of any surfactant/capping agent and/or template. The method employs direct polymerization of pyrrole of an aqueous solution with AgNO3 as an oxidizing agent. The four probe c...

  2. Low temperature synthesis of nanocrystalline scandia-stabilized ...

    Indian Academy of Sciences (India)

    Zirconia stabilized with 11 mol% scandia (11ScSZ) has been successfully synthesized by novel alanine-assisted soft chemical aqueous combustion method. The reaction kinetics during combustion synthesis has been studied in detail by analysing thermal behaviour of different metal–alanine complexes. A single phase ...

  3. Synthesis and room temperature single crystal EPR studies of a ...

    Indian Academy of Sciences (India)

    Unknown

    Zn(mbpN).H2O, Ni(mbpN) and Cu(mbpN) are all five-coordinate with the central donor atom coordinated to the metal atom.8,9 The zinc complexes have trigonal bipyramidal geometry, while the copper and nickel complexes have distorted square pyramidal geometry. Hence, in this communication, we describe the synthesis ...

  4. HP-HT Drilling Mud Based on Environmently-Friendly Fluorinated Chemicals

    OpenAIRE

    Henaut, Isabelle; Pasquier, David; Rovinetti, S; Espagne, B

    2015-01-01

    International audience; Second and Third Generation Biofuels: Towards Sustainability and Competitiveness Seconde et troisième génération de biocarburants : développement durable et compétitivité Abstract — The worldwide growing demand for energy drives oil and gas companies to drill deeper and hotter wells. The exploration and the development of Deeply Buried Reservoirs (DBR) generate major technical challenges due to the extremely high pressures and temperatures met (1 400 bar, 300°C). Curre...

  5. Microwave-assisted low temperature synthesis of wurtzite ZnS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Shahid, Robina, E-mail: rkhan@kth.se [Division of Functional Materials, Royal Institute of Technology (KTH), 16440, Kista, Stockholm (Sweden); Toprak, Muhammet S., E-mail: toprak@kth.se [Division of Functional Materials, Royal Institute of Technology (KTH), 16440, Kista, Stockholm (Sweden); Muhammed, Mamoun [Division of Functional Materials, Royal Institute of Technology (KTH), 16440, Kista, Stockholm (Sweden)

    2012-03-15

    In this work we report, for the first time, on microwave assisted synthesis of wurtzite ZnS quantum dots (QDs) in controlled reaction at temperature as low as 150 Degree-Sign C. The synthesis can be done in different microwave absorbing solvents with multisource or single source precursors. The QDs are less than 3 nm in size as characterized by transmission electron microscopy (TEM) using selected area electron diffraction (SAED) patterns to confirm the wurtzite phase of ZnS QDs. The optical properties were investigated by UV-Vis absorption which shows blue shift in absorption compared to bulk wurtzite ZnS due to quantum confinement effects. The photoluminescence (PL) spectra of QDs reveal point defects related emission of ZnS QDs. - Graphical abstract: Microwave assisted synthesis of wurtzite ZnS quantum dots (QDs) have been achieved in controlled reaction at temperature as low as 150 Degree-Sign C. The synthesis was performed in different microwave absorbing solvents with multisource or single source precursors for very short reaction periods due to effective heating with microwaves. Highlights: Black-Right-Pointing-Pointer Wurtzite a high temperature phase of ZnS was synthesized at low temperature. Black-Right-Pointing-Pointer Low temperature synthesis was possible because of the use of microwave absorbing solvents. Black-Right-Pointing-Pointer Capping agent was used to control the size of Quantum Dots. Black-Right-Pointing-Pointer Two different systems were developed using single molecular precursor and multisource precursors.

  6. Estudo do comportamento de pastas compósitas cimento/sílica/poliuretana para poços de petróleo HPHT

    OpenAIRE

    Silva, Petrucia Duarte da

    2010-01-01

    Os poços HPHT atravessam zonas anormalmente pressurizadas e com altos gradientes de temperatura. Esses poços apresentam elevadas concentrações de tensões produzidas pelas operações de perfuração e fraturamento hidráulico, flutuações da pressão e temperatura, forças dinâmicas geradas durante a perfuração, formações inconsolidadas, entre outros aspectos, podendo resultar em falhas mecânicas na bainha de cimento. Tais falhas comprometem a estabilidade mecânica do poço e o isolamen...

  7. The flavoprotein Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Akira; Kawahara, Nobuhiro [Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Takagi, Hiroshi, E-mail: hiro@bs.naist.jp [Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer NO is produced from L-arginine in response to elevated temperature in yeast. Black-Right-Pointing-Pointer Tah18 was first identified as the yeast protein involved in NO synthesis. Black-Right-Pointing-Pointer Tah18-dependent NO synthesis confers tolerance to high-temperature on yeast cells. -- Abstract: Nitric oxide (NO) is a ubiquitous signaling molecule involved in the regulation of a large number of cellular functions. In the unicellular eukaryote yeast, NO may be involved in stress response pathways, but its role is poorly understood due to the lack of mammalian NO synthase (NOS) orthologues. Previously, we have proposed the oxidative stress-induced L-arginine synthesis and its physiological role under stress conditions in yeast Saccharomyces cerevisiae. Here, our experimental results indicated that increased conversion of L-proline into L-arginine led to NO production in response to elevated temperature. We also showed that the flavoprotein Tah18, which was previously reported to transfer electrons to the Fe-S cluster protein Dre2, was involved in NO synthesis in yeast. Gene knockdown analysis demonstrated that Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells. As it appears that such a unique cell protection mechanism is specific to yeasts and fungi, it represents a promising target for antifungal activity.

  8. synthesis and characterisation of temperature responsive poly (2 ...

    African Journals Online (AJOL)

    DR. AMINU

    2010-06-01

    Jun 1, 2010 ... exhibited a lower critical solution temperature (LCST) near 49oC due to formation of hydrophobic domains by the polymer ... major disadvantage of PNIPAM is it undergoes strong hysteresis due to the formation of ... was studied by turbidimetry and calorimetry in a temperature range of 10 to 80°C. 250 ...

  9. Low Temperature Synthesis and Properties of Gadolinium-Doped Cerium Oxide Nanoparticles

    DEFF Research Database (Denmark)

    Machado, M. F. S.; Moraes, L. P. R.; Monteiro, N. K.

    2017-01-01

    resistance to carbon deposition when hydrocarbons are used as fuels. However, an inconvenience of ceria-based oxides is the high sintering temperature needed to obtain a fully dense ceramic body. In this study, a green chemistry route for the synthesis of 10 mol% GDC nanoparticles is proposed. The aqueous......Gadolinium-doped cerium oxide (GDC) is an attractive ceramic material for solid oxide fuel cells (SOFCs) both as the electrolyte and in composite electrodes operating at low and intermediate temperatures. GDC exhibits high oxygen ion conductivity at a wide range of temperatures and displays a high...... precipitation method starts from the nitrates of both cerium and gadolinium and uses excess hexamethylenetetramine (HMT) to produce crystalline GDC at 80ºC. Such a low temperature synthesis provides control over particle size and sinterability of the material at low temperatures....

  10. Room-temperature Electrochemical Synthesis of Carbide-derived Carbons and Related Materials

    Energy Technology Data Exchange (ETDEWEB)

    Gogotsi, Yury [Drexel Univ., Philadelphia, PA (United States). Nanomaterials Group. Materials Science and Engineering Dept.

    2015-02-28

    This project addresses room-temperature electrochemical etching as an energy-efficient route to synthesis of 3D nanoporous carbon networks and layered 2D carbons and related structures, as well as provides fundamental understanding of structure and properties of materials produced by this method. Carbide-derived-carbons (CDCs) are a growing class of nanostructured carbon materials with properties that are desirable for many applications, such as electrical energy and gas storage. The structure of these functional materials is tunable by the choice of the starting carbide precursor, synthesis method, and process parameters. Moving from high-temperature synthesis of CDCs through vacuum decomposition above 1400°C and chlorination above 400°C, our studies under the previous DOE BES support led to identification of precursor materials and processing conditions for CDC synthesis at temperatures as low as 200°C, resulting in amorphous and highly reactive porous carbons. We also investigated synthesis of monolithic CDC films from carbide films at 250-1200°C. The results of our early studies provided new insights into CDC formation, led to development of materials for capacitive energy storage, and enabled fundamental understanding of the electrolyte ions confinement in nanoporous carbons.

  11. Synthesis of ammonia directly from air and water at ambient temperature and pressure

    Science.gov (United States)

    Lan, Rong; Irvine, John T. S.; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol−1) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N2 separation and H2 production stages. A maximum ammonia production rate of 1.14 × 10−5 mol m−2 s−1 has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future. PMID:23362454

  12. Self propagating high temperature synthesis of metal oxides. Reactions in external magnetic fields

    CERN Document Server

    Aguas, M D

    2001-01-01

    The preparation of metal oxides by Self-Propagating High-Temperature Synthesis is reported. The reactions are started with a point source of ignition; typically a hot wire. A synthesis wave is observed moving out from the point source and reactions terminate in seconds. Products obtained can be classified into ferrites (magnetic applications) and stannates (gas sensing applications). Ferrites were synthesised under variable external magnetic fields. The synthesis wave is hotter in the presence of an external magnetic field for hard ferrite synthesis. For spinel ferrites the opposite was observed. Materials synthesised in the field show differences in their bulk magnetic properties (coercivity and saturation magnetisation), structures and microstructures. Combustion reactions in large fields revealed changes in unit cell volume (shrinkage was observed for hard ferrites while expansion was observed for spinel ferrites). SHS synthesised hard ferrites show two distinct components; one has large grain structure co...

  13. Synthesis of ammonia directly from air and water at ambient temperature and pressure.

    Science.gov (United States)

    Lan, Rong; Irvine, John T S; Tao, Shanwen

    2013-01-01

    The N≡N bond (225 kcal mol⁻¹) in dinitrogen is one of the strongest bonds in chemistry therefore artificial synthesis of ammonia under mild conditions is a significant challenge. Based on current knowledge, only bacteria and some plants can synthesise ammonia from air and water at ambient temperature and pressure. Here, for the first time, we report artificial ammonia synthesis bypassing N₂ separation and H₂ production stages. A maximum ammonia production rate of 1.14 × 10⁻⁵ mol m⁻² s⁻¹ has been achieved when a voltage of 1.6 V was applied. Potentially this can provide an alternative route for the mass production of the basic chemical ammonia under mild conditions. Considering climate change and the depletion of fossil fuels used for synthesis of ammonia by conventional methods, this is a renewable and sustainable chemical synthesis process for future.

  14. Process assessment of small scale low temperature methanol synthesis

    International Nuclear Information System (INIS)

    Hendriyana; Susanto, Herri; Subagjo

    2015-01-01

    Biomass is a renewable energy resource and has the potential to make a significant impact on domestic fuel supplies. Biomass can be converted to fuel like methanol via several step process. The process can be split into following main steps: biomass preparation, gasification, gas cooling and cleaning, gas shift and methanol synthesis. Untill now these configuration still has a problem like high production cost, catalyst deactivation, economy of scale and a huge energy requirements. These problems become the leading inhibition for biomass conversion to methanol, which should be resolved to move towards the economical. To address these issues, we developed various process and new configurations for methanol synthesis via methyl formate. This configuration combining two reactors: the one reactor for the carbonylation of methanol and CO to form methyl formate, and the second for the hydrogenolysis of methyl formate and H 2 to form two molecule of methanol. Four plant process configurations were compared with the biomass basis is 300 ton/day. The first configuration (A) is equipped with a steam reforming process for converting methane to CO and H 2 for increasing H 2 /CO ratio. CO 2 removal is necessary to avoid poisoning the catalyst. COSORB process used for the purpose of increasing the partial pressure of CO in the feed gas. The steam reforming process in B configuration is not used with the aim of reducing the number of process equipment, so expect lower investment costs. For C configuration, the steam reforming process and COSORB are not used with the aim of reducing the number of process equipment, so expect lower investment costs. D configuration is almost similar to the configuration A. This configuration difference is in the synthesis of methanol which was held in a single reactor. Carbonylation and hydrogenolysis reactions carried out in the same reactor one. These processes were analyzed in term of technical process, material and energy balance and economic

  15. A facile synthesis of MInSe2 (M= Cu, Ag) via low temperature ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 30; Issue 2. A facile synthesis of MInSe2 (M = Cu, Ag) via low temperature pyrolysis of single source molecular precursors, [(R3P)2MIn(SeCOAr)4]. Shamik Ghoshal Liladhar B Kumbhare Vimal K Jain Gautam K Dey. Nanomaterials Volume 30 Issue 2 April 2007 pp 173- ...

  16. Modelling of flame temperature of solution combustion synthesis of ...

    Indian Academy of Sciences (India)

    Hydroxyapatite (HAp), an important bio-ceramic was successfully synthesized by combustion in the aqueous system containing calcium nitrate-di-ammonium hydrogen orthophosphate-urea. The combustion flame temperature of solution combustion reaction depends on various process parameters, and it plays a significant ...

  17. Synthesis, structure and low temperature study of electric transport ...

    Indian Academy of Sciences (India)

    1. Introduction. Layered perovskite oxides are a promising group of mixed- conducting materials with potential applications for oxygen- separation membranes, gas sensor devices and electrodes of intermediate-temperature solid oxide fuel cells (Moseley and. Williams 1989; Meixner and Lampe 1996; Skinner and Kil-.

  18. Modelling of flame temperature of solution combustion synthesis of ...

    Indian Academy of Sciences (India)

    Administrator

    other, the health risks associated with the use of allograft. (Hing et al 1999). .... very important reaction parameter. The lower value of furnace temperature was selected as 400°C and the upper value as 700°C. (iii) The precursor batch size was also identified as an ... of the value leads to unstable combustion flame. The con-.

  19. Synthesis graphene layer at different waste cooking palm oil temperatures

    Science.gov (United States)

    Robaiah, M.; Rusop, M.; Abdullah, S.; khusaimi, Z.; Azhan, H.; Asli, N. A.

    2017-09-01

    Graphene is one of the most recent carbon nanomaterials that has attracted attention because of its superior properties. The formation of the graphene on the Ni surface appears due to segregation and precipitation of a high amount of carbon from the source material during the cooling process. The growth of graphene at different waste cooking palm oil (WCPO) temperatures using double thermal chemical vapour deposition method (DTCVD) was investigated. The samples were prepared at various vaporization temperatures of WCPO is range from 250 °C to 450 °C by increment 50 °C and the temperature of Ni substrate constant at 900 °C. The structural of the graphene were characterized by using field emission scanning electron microscopy (FESEM), Energy Dispersive X-Ray (EDX) Spectroscopy, UV-Visible and Raman's spectroscopy. FESEM images at optimum temperature (350 °C) display hexagonal shapes since the graphene layers were formed after precipitation of the carbon. It the meantime, UV-Visible spectra shows the sharp peak at 250 nm whereupon the highest of reflectivity value. This peak is an indication the presence of the graphene layers on Ni substrate. The position and half width 2D peak of the Raman spectra were subjected to detail analyses in order to determine the quantity and quality of the graphene layer. At the temperature 350°C, the Raman's spectroscopy result shown the multilayer of the graphene based on I2D/IG ratio is approximately constant (equal to˜0.43).

  20. Synthesis of cadmium chalcogenide nanotubes at room temperature

    KAUST Repository

    Pan, Jun

    2012-10-01

    Cadmium chalcogenide (CdE, E=S, Se, Te) polycrystalline nanotubes have been synthesized from precursor of CdS/cadmium thiolate complex at room temperature. The precursor was hydrothermally synthesized at 180 °C using thioglycolic acid (TGA) and cadmium acetate as starting materials. The transformation from the rod-like precursor of CdS/cadmium thiolate complex to CdS, CdSe and CdTe nanotubes were performed under constant stirring at room temperature in aqueous solution containing S 2-, Se 2- and Te 2-, respectively. The nanotube diameter can be controlled from 150 to 400 nm related to the dimension of templates. The XRD patterns show the cadmium chalcogenide nanotubes all corresponding to face-centered cubic structure. © 2012 Elsevier B.V. All rights reserved.

  1. Low temperature synthesis of Zn nanowires by physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Philipp; Kast, Michael; Brueckl, Hubert [Austrian Research Centers GmbH ARC, Nano- Systemtechnologies, Donau-City-Strasse 1, A-1220 Wien (Austria)

    2007-07-01

    We demonstrate catalytic growth of zinc nanowires by physical vapor deposition at modest temperatures of 125-175 C on various substrates. In contrast to conventional approaches using tube furnaces our home-built growth system allows to control the vapor sources and the substrate temperature separately. The silicon substrates were sputter coated with a thin gold layer as metal catalyst. The samples were heated to the growth temperature and subsequently exposed to the zinc vapor at high vacuum conditions. The work pressure was adjusted by the partial pressure of oxygen or argon flow gas. Scanning electron microscopy and atomic force microscopy characterizations revealed that the nanowires exhibit straight, uniform morphology and have diameters in the range of 50-350 nm and lengths up to 70 {mu}m. The Zn nanowires grow independently of the substrates crystal orientation via a catalytic vapor-solid growth mechanism. Since no nanowire formation was observed without gold coating, we expect that the onedimensional growth is initiated by a surface reactive Au seed. ZnO nanowires can be produced in the same preparation chamber by oxidation at 500 C in 1atm (80% Ar, 20% O{sub 2}) for 1 hour. ZnO is highly attractive for sensor applications.

  2. High-Pressure-High-Temperature Processing Reduces Maillard Reaction and Viscosity in Whey Protein-Sugar Solutions

    NARCIS (Netherlands)

    Avila Ruiz, Geraldine; Xi, Bingyan; Minor, Marcel; Sala, Guido; Boekel, van Tiny; Fogliano, Vincenzo; Stieger, Markus

    2016-01-01

    The aim of the study was to determine the influence of pressure in high-pressure-high-temperature (HPHT) processing on Maillard reactions and protein aggregation of whey protein-sugar solutions. Solutions of whey protein isolate containing either glucose or trehalose at pH 6, 7, and 9 were

  3. Temperature oscillations near natural nuclear reactor cores and the potential for prebiotic oligomer synthesis.

    Science.gov (United States)

    Adam, Zachary R

    2016-06-01

    Geologic settings capable of driving prebiotic oligomer synthesis reactions remain a relatively unexplored aspect of origins of life research. Natural nuclear reactors are an example of Precambrian energy sources that produced unique temperature fluctuations. Heat transfer models indicate that water-moderated, convectively-cooled natural fission reactors in porous host rocks create temperature oscillations that resemble those employed in polymerase chain reaction (PCR) devices to artificially amplify oligonucleotides. This temperature profile is characterized by short-duration pulses up to 70-100 °C, followed by a sustained period of temperatures in the range of 30-70 °C, and finally a period of relaxation to ambient temperatures until the cycle is restarted by a fresh influx of pore water. For a given reactor configuration, temperature maxima and the time required to relax to ambient temperatures depend most strongly on the aggregate effect of host rock permeability in decreasing the thermal expansion and increasing the viscosity and evaporation temperature of the pore fluids. Once formed, fission-fueled reactors can sustain multi-kilowatt-level power production for 10(5)-10(6) years, ensuring microenvironmental longevity and chemical output. The model outputs indicate that organic synthesis on young planetary bodies with a sizeable reservoir of fissile material can involve more sophisticated energy dissipation pathways than modern terrestrial analog settings alone would suggest.

  4. Influence of chemistry synthesis temperature of the Panic deposited on PET and powder

    International Nuclear Information System (INIS)

    Paschoalin, Rafaella T.; Steffens, Clarice; Manzoli, Alexandra; Paris, Elaine C.; Herrmann Junior, Paulo S.P.

    2011-01-01

    This work was evaluated the influence of synthesis temperature to obtain poly aniline (PANI) by in-situ polymerization on a substrate of poly (terephthalate) (PET). The residual mass of these syntheses was dried under vacuum obtaining a powder of PANI different for each temperature investigated. Thin films of PANI / PET and PANI powder were characterized by the techniques of atomic force microscopy (AFM), X-Ray Diffraction (XRD) UV-Vis- NIR spectroscopy and four-point probe technique. The results of UV-Vis-NIR show the deposition of PANI in the emeraldine oxidation state and show an increase of polymer layer deposited with decreasing synthesis temperature. By means of XRD technique it shows that the polymer was deposited in crystalline form. The results of conductivity of PANI / PET and PANI powder as a function of synthesis temperature showed opposite results, thus the conductivity of PANI deposited on the substrate decreased with increasing temperature and the polymer in powder form increased. (author)

  5. Synthesis of MIL-100(Fe at Low Temperature and Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Jing Shi

    2013-01-01

    Full Text Available MIL-100(Fe, a mesoporous metal-organic framework (MOF, has a large BET specific surface area and pore volume with the presence of a significant amount of accessible Lewis acid metal sites upon dehydration. The structural characteristics of MIL-100(Fe make it a good candidate for potential applications in gas storage, separation, and heterogeneous catalysis. Mainly, this MOF is obtained by the hydrothermal synthesis in a Teflon-lined autoclave at high temperature (>150°C under static conditions. However, this method has several disadvantages such as high temperature, high (autogenous pressure, long time, and comparable low MOF yield. Therefore, development of a facile method for synthesis of MIL-100(Fe is vitally important for fundamental understanding and practical application. Herein, MIL-100(Fe is synthesized by a facile low-temperature (90% still could be achieved, suggesting that this simple and energy saving method has the potential to be used practically.

  6. Numerical investigation of high temperature synthesis gas premixed combustion via ANSYS Fluent

    Directory of Open Access Journals (Sweden)

    Pashchenko Dmitry

    2018-01-01

    Full Text Available A numerical model of the synthesis gas pre-mixed combustion is developed. The research was carried out via ANSYS Fluent software. Verification of the numerical results was carried out using experimental data. A visual comparison of the flame contours that obtained by the synthesis gas combustion for Re = 600; 800; 1000 was performed. A comparison of the wall temperature of the combustion chamber, obtained with the help of the developed model, with the results of a physical experiment was also presented. For all cases, good convergence of the results is observed. It is established that a change in the temperature of the syngas/air mixture at the inlet to the combustion chamber does not significantly affect the temperature of the combustion products due to the dissipation of the H2O and CO2 molecules. The obtained results are of practical importance for the design of heat engineering plants with thermochemical heat recovery.

  7. Low-temperature graphene synthesis using microwave plasma CVD

    Science.gov (United States)

    Yamada, Takatoshi; Kim, Jaeho; Ishihara, Masatou; Hasegawa, Masataka

    2013-02-01

    The graphene chemical vapour deposition (CVD) technique at substrate temperatures around 300 °C by a microwave plasma sustained by surface waves (surface wave plasma chemical vapour deposition, SWP-CVD) is discussed. A low-temperature, large-area and high-deposition-rate CVD process for graphene films was developed. It was found from Raman spectra that the deposited films on copper (Cu) substrates consisted of high-quality graphene flakes. The fabricated graphene transparent conductive electrode showed uniform optical transmittance and sheet resistance, which suggests the possibility of graphene for practical electrical and optoelectronic applications. It is intriguing that graphene was successfully deposited on aluminium (Al) substrates, for which we did not expect the catalytic effect to decompose hydrocarbon and hydrogen molecules. We developed a roll-to-roll SWP-CVD system for continuous graphene film deposition towards industrial mass production. A pair of winder and unwinder systems of Cu film was installed in the plasma CVD apparatus. Uniform Raman spectra were confirmed over the whole width of 297 mm of Cu films. We successfully transferred the deposited graphene onto PET films, and confirmed a transmittance of about 95% and a sheet resistance of less than 7 × 105 Ω/sq.

  8. Multiplexed Sensor for Synthesis Gas Compsition and Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Steven Buckley; Reza Gharavi; Marco Leon

    2007-10-01

    The overall goal of this project has been to develop a highly sensitive, multiplexed TDL-based sensor for CO{sub 2}, CO, H{sub 2}O (and temperature), CH{sub 4}, H{sub 2}S, and NH{sub 3}. Such a sensor was designed with so-called 'plug-and-play' characteristics to accommodate additional sensors, and provided in situ path-integrated measurements indicative of average concentrations at speeds suitable for direct gasifier control. The project developed the sensor and culminated in a real-world test of the underlying technology behind the sensor. During the project, new underlying measurements of spectroscopic constants for all of the gases of interest performed, in custom cells built for the project. The envisioned instrument was built from scratch from component lasers, fiber optics, amplifier blocks, detectors, etc. The sensor was tested for nearly a week in an operational power plant. The products of this research are expected to have a direct impact on gasifier technology and the production of high-quality syngas, with substantial broader application to coal and other energy systems. This report is the final technical report on project DE-FG26-04NT42172. During the project we completed all of the milestones planned in the project, with a modification of milestone (7) required due to lack of funding and personnel.

  9. Vacancy-impurity centers in diamond: prospects for synthesis and applications

    Science.gov (United States)

    Ekimov, E. A.; Kondrin, M. V.

    2017-06-01

    The bright luminescence of impurity-vacancy complexes, combined with high chemical and radiation resistance, makes diamond an attractive platform for the production of single-photon emitters and luminescent biomarkers for applications in nanoelectronics and medicine. Two representatives of this kind of defects in diamond, silicon-vacancy (SiV) and germanium-vacancy (GeV) centers, are discussed in this review; their similarities and differences are demonstrated in terms of the more thoroughly studied nitrogen-vacancy (NV) complexes. The recent discovery of GeV luminescent centers opens a unique opportunity for the controlled synthesis of single-photon emitters in nanodiamonds. We demonstrate prospects for the high-pressure high-temperature (HPHT) technique to create single-photon emitters, not only as an auxiliary to chemical vapor deposition (CVD) and ion-implantation methods but also as a primary synthesis tool for producing color centers in nanodiamonds. Besides practical applications, comparative studies of these two complexes, which belong to the same structural class of defects, have a fundamental importance for deeper understanding of shelving levels, the electronic structure, and optical properties of these centers. In conclusion, we discuss several open problems regarding the structure, charge state, and practical application of these centers, which still require a solution.

  10. Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system

    International Nuclear Information System (INIS)

    Zhang, C; Man, B Y; Yang, C; Jiang, S Z; Liu, M; Chen, C S; Xu, S C; Sun, Z C; Gao, X G; Chen, X J

    2013-01-01

    Direct deposition of graphene on a dielectric substrate is demonstrated using a chemical vapor deposition system with a two-temperature reactor. The two-temperature reactor is utilized to offer sufficient, well-proportioned floating Cu atoms and to provide a temperature gradient for facile synthesis of graphene on dielectric surfaces. The evaporated Cu atoms catalyze the reaction in the presented method. C atoms and Cu atoms respectively act as the nuclei for forming graphene film in the low-temperature zone and the zones close to the high-temperature zones. A uniform and high-quality graphene film is formed in an atmosphere of sufficient and well-proportioned floating Cu atoms. Raman spectroscopy, scanning electron microscopy and atomic force microscopy confirm the presence of uniform and high-quality graphene. (paper)

  11. Intermediates and transport phenomena in two-temperature synthesis of ZnGeP{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Meng; Yang, Chun-Hui; Lei, Zuo-Tao; Xia, Shi-Xing; Zhu, Chong-Qiang; Sun, Liang; Zhou, Yu-Xiang [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin (China)

    2010-01-15

    High quality semiconducting ternary compound ZnGeP{sub 2} was synthesized by a modified two-temperature technique using high purity elemental zinc, germanium and phosphorus as the starting materials. Transport phenomena of zinc and phosphorus vapors and the major reaction intermediates, taking place in ZnGeP{sub 2} formation, were studied by interrupting the synthesis process using quenching technique as well as by adjusting the temperatures of cold and hot zones. The powder X-ray diffraction analysis showed that the major reaction intermediates were ZnP{sub 2}, Zn{sub 3}P{sub 2}, and GeP, which proportions were changed at the different temperature stages. ZnP{sub 2} was formed in the temperature gradient region and ZnGeP{sub 2} was formed in the hot zone when the temperature of the hot zone was higher than 900 C. The 520-1040 C temperature profile was chosen for the ZnGeP{sub 2} synthesis and charge amount per run reached 200 g. The powder X-ray diffraction pattern of the synthesized ZnGeP{sub 2} compound was in agreement with the standard pattern of ZnGeP{sub 2}. These results demonstrated that the synthesized ZnGeP{sub 2} compound was a single phase. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Combustion synthesis and structural analysis of nanocrystalline nickel ferrite at low temperature regime

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugavel, T., E-mail: gokulrajs@hotmail.com, E-mail: shanmugavelnano@gmail.com [Department of Physics, Anna University of Technology, Coimbatore-641 047 (India); Raj, S. Gokul, E-mail: gokulrajs@hotmail.com, E-mail: shanmugavelnano@gmail.com [Department of Physics, Vel tech University, Avadi, Chennai-600062 India (India); Rajarajan, G. [Department of Physics, Selvam College of Technology, Namakkal-637005 India (India); Kumar, G. Ramesh [Department of Physics, University College of Engineering, Anna University Chennai, Arni 632317 (India); Boopathi, G. [Department of Physics, Presidency College (Autonomous), Chennai - 600005 (India)

    2015-06-24

    Combustion synthesis of single phase Nickel ferrite was successfully achieved at low temperature regime. The obtained powders were calcinated to increase the crystallinity and their characterization change due to calcinations is investigated in detail. Citric acid used as a chelating agent for the synthesis of nickel ferrite. Pure single phase nickel ferrites were found at this low temperature. The average crystalline sizes were measured by using powder XRD measurements. Surface morphology was investigated through Transmission Electron Microscope (TEM). Particle size calculated in XRD is compared with TEM results. Magnetic behaviour of the samples is analyzed by using Vibrating Sample Magnetometer (VSM). Saturation magnetization, coercivity and retentivity are measured and their results are discussed in detail.

  13. The effect of temperature in flux-assisted synthesis of SnNb2O6

    KAUST Repository

    Noureldine, Dalal

    2014-10-03

    A flux-assisted method was used to synthesize SnNb2O6 as a visible-light-responsive metal oxide photocatalyst. The role of synthesis temperature was investigated in detail using different reaction temperatures (300, 500, 600, 800, 1000 °C). The obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller method (BET). The synthesis with SnCl2 as a flux led to tin niobate particles in the platelet morphology with smooth surfaces. The synthesized crystal showed 2D anisotropic growth along the (600) plane as the flux ratio increased. The particles synthesized with a high reactant to flux ratio (1:10 or higher) exhibited improved photocatalytic activity for hydrogen evolution from an aqueous methanol solution under visible radiation (λ > 420 nm). © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  14. The Aluminum Based Composite Produced by Self Propagating High Temperature Synthesis

    Directory of Open Access Journals (Sweden)

    Agus PRAMONO

    2016-05-01

    Full Text Available Self-propagating high-temperature synthesis method can be used for producing aluminum and boron carbide based composites. The experimental composites were fabricated using cobalt and carbon as catalysts. The microstructure of the material was studied using Scanning Electron Microscopy and the mechanical properties were determined using micro-hardness testing. Al/B4C based composites with improved properties were obtained and the role of Co/C catalysts was studied.

  15. Exploration of the role of anions in the synthesis of Cr containing mesoporous materials at room temperature

    NARCIS (Netherlands)

    Mahony, L; Wu, C.M.; Kibombo, H.S.; Thiruppathi, E.; Baltrusaitis, Jonas; Rasalingam, S; Koodali, R.T.

    2013-01-01

    Chromium containing mesoporous silica materials were synthesized via a modified Stöber synthesis at room temperature. The chromium ion loading and the effect of counter ion in the synthesis were studied in detail. The mesoporous materials were extensively characterized by powder X-ray diffraction

  16. Ethylene glycol assisted low-temperature synthesis of boron carbide powder from borate citrate precursors

    Directory of Open Access Journals (Sweden)

    Rafi-ud-din

    2014-09-01

    Full Text Available B4C powders were synthesized by carbothermal reduction of ethylene glycol (EG added borate citrate precursors, and effects of EG additions (0–50 mol% based on citric acid on the morphologies and yields of synthesized B4C powders were investigated. The conditions most suitable for the preparation of precursor were optimized and optimum temperature for precursor formation was 650 °C. EG additions facilitated low-temperature synthesis of B4C at 1350 °C, which was around 100–300 °C lower temperature compared to that without EG additions. The lowering of synthesis temperature was ascribed to the enlargement of interfacial area caused by superior homogeneity and dispersibility of precursors enabling the diffusion of reacting species facile. The 20% EG addition was optimal with free residual carbon lowered to 4%. For smaller EG additions, the polyhedral and rod-like particles of synthesized product co-existed. With higher EG additions, the morphology of synthesized product was transformed into needle and blade-like structure.

  17. Synthesis and characterization of boron-oxygen-hydrogen thin films at low temperatures

    International Nuclear Information System (INIS)

    Music, D.; Koelpin, H.; Atiser, A.; Kreissig, U.; Bobek, T.; Hadam, B.; Schneider, J.M.

    2005-01-01

    We have studied the influence of synthesis temperature on chemical composition and mechanical properties of X-ray amorphous boron-oxygen-hydrogen (B-O-H) films. These B-O-H films have been synthesized by RF sputtering of a B-target in an Ar atmosphere. Upon increasing the synthesis temperature from room temperature to 550 deg. C, the O/B and H/B ratios decrease from 0.73 to 0.15 and 0.28 to 0.07, respectively, as determined by elastic recoil detection analysis. It is reasonable to assume that potential sources of O and H are residual gas and laboratory atmosphere. The elastic modulus, as measured by nanoindentation, increases from 93 to 214 GPa, as the O/B and H/B ratios decreases within the range probed. Hence, we have shown that the effect of impurity incorporation on the elastic properties is extensive and that the magnitude of the incorporation is a strong function of the substrate temperature

  18. SYNTHESIS AND FABRICATION OF MO-W COMPONENTS FOR NEUTRON RESONANCE SPECTROSCOPY TEMPERATURE MEASUREMENT

    International Nuclear Information System (INIS)

    BINGERT, S.; DESCH, P.; TRUJILLO, E.

    1999-01-01

    A Molybdenum-- 182 Tungsten (Mo- 182 W) alloy was specified for an application that would ultimately result in the measurement of temperature and particle velocity during the steady state time following the shock loading of various materials. The 182 W isotope provides a tag for the analysis of neutron resonance line shape from which the temperature may be calculated. The material was specified to have 1.8 atom percent W, with W-rich regions no larger than 1 microm in size. Both the composition and W distribution were critical to the experiment. Another challenge to the processing was the very small quantity of 182 W material available for the synthesis of the alloy. Therefore, limited fabrication routes were available for evaluation. Several synthesis and processing routes were explored to fabricate the required alloy components. First, precipitation of W onto Mo powder using ammonium metatungstate was investigated for powder synthesis followed by uniaxial hot pressing. Second, mechanical alloying (MA) followed by hot isostatic pressing (HIP) and warm forging was attempted. Finally, arc-melting techniques followed by either hot rolling or crushing the alloyed button into powder and consolidation were pursued. The results of the processing routes and characterization of the materials produced will be discussed

  19. Room temperature synthesis of an optically and thermally responsive hybrid PNIPAM-gold nanoparticle

    Science.gov (United States)

    Morones, J. Ruben; Frey, Wolfgang

    2010-05-01

    Composites of metal nanoparticles and environmentally sensitive polymers are useful as nanoactuators that can be triggered externally using light of a particular wavelength. We demonstrate a synthesis route that is easier than grafting techniques and allows for the in situ formation of individual gold nanoparticles encapsulated by an environmentally sensitive polymer, while also providing a strong interaction between the polymer and the metal particle. We present a one-pot, room-temperature synthesis route for gold metal nanoparticles that uses poly- N-isopropyl acrylamide as the capping and stabilizing agent and ascorbic acid as the reducing agent and achieves size control similar to the most common citric acid synthesis. We show that the composite can be precipitated reversibly by temperature or light using the non-radiative decay and conversion to heat of the surface plasmon resonance of the metal nanoparticle. The precipitation is induced by the collapse of the polymer cocoon surrounding each gold nanoparticle, as can be seen by surface plasmon spectroscopy. The experiments agree with theoretical models for the heat generation in a colloidal suspension that support fast switching with low laser power densities. The synthesized composite is a simple nanosized opto-thermal switch.

  20. Foundations of low-temperature plasma enhanced materials synthesis and etching

    Science.gov (United States)

    Oehrlein, Gottlieb S.; Hamaguchi, Satoshi

    2018-02-01

    Low temperature plasma (LTP)-based synthesis of advanced materials has played a transformational role in multiple industries, including the semiconductor industry, liquid crystal displays, coatings and renewable energy. Similarly, the plasma-based transfer of lithographically defined resist patterns into other materials, e.g. silicon, SiO2, Si3N4 and other electronic materials, has led to the production of nanometer scale devices that are the basis of the information technology, microsystems, and many other technologies based on patterned films or substrates. In this article we review the scientific foundations of both LTP-based materials synthesis at low substrate temperature and LTP-based isotropic and directional etching used to transfer lithographically produced resist patterns into underlying materials. We cover the fundamental principles that are the basis of successful application of the LTP techniques to technological uses and provide an understanding of technological factors that may control or limit material synthesis or surface processing with the use of LTP. We precede these sections with a general discussion of plasma surface interactions, the LTP-generated particle fluxes including electrons, ions, radicals, excited neutrals and photons that simultaneously contact and modify surfaces. The surfaces can be in the line of sight of the discharge or hidden from direct interaction for structured substrates. All parts of the article are extensively referenced, which is intended to help the reader study the topics discussed here in more detail.

  1. Energy efficient room temperature synthesis of cardanol-based novolac resin using acoustic cavitation.

    Science.gov (United States)

    Jadhav, Nilesh L; Sastry, Sai Krishna C; Pinjari, Dipak V

    2018-04-01

    The present study deals with synthesis of cardanol-cased novolac (CBN) resin by the condensation reaction between cardanol and formaldehyde using acoustic cavitation. It is a step-growth polymerization which occurs in the presence of an acid catalyst such as adipic acid, citric acid, oxalic acid, sulphuric acid and hydrochloric acid. CBN was also synthesised by a conventional method for the sake of comparison of techniques. The effect of molar ratio, effect of catalyst, effect of different catalyst and effect of power on the conversion to CBN has been studied. The synthesised CBN was characterized using the Fourier Transform Infra Red Spectroscopy (FTIR), Gel Permeation Chromatography (GPC), Nuclear Magnetic Resonance (NMR) Spectroscopy and Thermogravimetric Analysis (TGA). The reaction was monitored by the Acid value, free formaldehyde content and viscosity of the synthesised product. The reaction time required for the conventionally synthesised CBN was 5 h (300 min) with 120 °C as an operating temperature while sonochemically the time reduced to 30 min at room temperature. The amount of time and energy saved can be quantified. Ultrasound facilitated synthesis was found to be an energy efficient and time-saving method for the synthesis of novolac resin. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Low temperature synthesis of lamellar transition metal oxides containing surfactant ions

    Energy Technology Data Exchange (ETDEWEB)

    Janauer, G.G.; Chen, R.; Dobley, A.D.; Zavalij, P.Y.; Whittingham, M.S. [State Univ. of New York, Binghamton, NY (United States)

    1997-09-01

    Recently there has been much interest in reacting vanadium oxides hydrothermally with cationic surfactants to form novel layered compounds. A series of new transition metal oxides, however, has also been formed at or near room temperature in open containers. Synthesis, characterization, and proposed mechanisms of formation are the focus of this work. Low temperature reactions of vanadium pentoxide and ammonium (DTA) transition metal oxides with long chain amine surfactants, such as dodecyltrimethylammonium bromide yielded interesting new products many of which are layered phases. DTA{sub 4}H{sub 2}V{sub 10}O{sub 28}{center_dot}8H{sub 2}O, a layered highly crystalline phase, is the first such phase for which a single crystal X-ray structure has been determined. The unit cell for this material was found to be triclinic with space group P {bar 1} and dimensions a = 9.895(1){angstrom}, b = 11.596(1){angstrom}, c = 21.924(1){angstrom}, {alpha} = 95.153(2){degree}, {beta} = 93.778(1){degree}, and {gamma} = 101.360(1){degree}. Additionally, the authors synthesized a dichromate phase and a manganese chloride layered phase, with interlayer spacings of 26.8{angstrom}, and 28.7{angstrom} respectively. The structure, composition, and synthesis of the vanadium compound are described, as well as the synthesis and preliminary characterization of the new chromium and manganese materials.

  3. Production of advanced materials by methods of self-propagating high-temperature synthesis

    CERN Document Server

    Tavadze, Giorgi F

    2013-01-01

    This translation from the original Russian book outlines the production of a variety of materials by methods of self-propagating high-temperature synthesis (SHS). The types of materials discussed include: hard, refractory, corrosion and wear-resistant materials, as well as other advanced and speciality materials. The authors address the issue of optimal parameters for SHS reactions occurring during processes involving a preliminary metallothermic reduction stage, and they calculate this using thermodynamic approaches. In order to confirm the effectiveness of this approach, the authors describe experiments focussing on the synthesis of elemental crysalline boron, boron carbides and nitrides. Other parts of this brief include theoretical and experimental results on single-stage production of hard alloys on the basis of titanium and zirconium borides, as well as macrokinetics of degassing and compaciton of SHS-products.This brief is suitable for academics, as well as those working in industrial manufacturing com...

  4. Room Temperature, High-yield Synthesis of Block Copolymer-mediated Gold Nanoparticles

    Science.gov (United States)

    Ray, Debes; Aswal, V. K.; Kohlbrecher, J.

    2010-12-01

    We report the high-yield synthesis of gold nanoparticles in block copolymer-mediated synthesis where the nanoparticles have been synthesized from hydrogen tetrachloroaureate (III) hydrate (HAuCl4ṡ3H2O) using P85 (EO26PO39EO26) block copolymers in aqueous solution at room temperature. The formation of gold nanoparticles in these systems has been confirmed by UV-visible spectroscopy. The yield of nanoparticles simply does not increase with the increase in the gold salt concentration, which is limited by the gold ions reduction. Therefore, we have used the presence of additional reductant (tri-sodium citrate) to enhance the yield by manifold. The size distribution of the nanoparticles has been obtained by small-angle neutron scattering (SANS) and the average size is found to increase with the yield.

  5. Rod-Shaped Magnetite Nano/Microparticles Synthesis at Ambient Temperature

    Directory of Open Access Journals (Sweden)

    Balaprasad Ankamwar

    2013-01-01

    Full Text Available Here, we reported room temperature synthesis of Fe3O4 rod-shaped nano/microparticles by chemical reduction method from FeCl3 precursor and NaBH4 as the reducing agent in the presence of the pyrrole as a capping agent. The magnetic Fe3O4 particles were characterized by several methods, such as SEM, XRD, FTIR, and TGA. The average aspect ratio of Fe3O4 rod-shaped particles was ~2.8. These particles were redispersed in deionised water to form a colloidal solution and showed magnetic properties. This economical synthesis route is scalable, and Fe3O4 particles can be exploited for various applications such as MRI contrast enhancement, biodiseperations, Ni-Fe batteries, and as a catalyst.

  6. Synthesis of free standing nanocrystalline Cu by ball milling at cryogenic temperature

    International Nuclear Information System (INIS)

    Barai, K.; Tiwary, C.S.; Chattopadhyay, P.P.; Chattopadhyay, K.

    2012-01-01

    This paper reports for the first time synthesis of free standing nano-crystalline copper crystals of a ∼30–40 nm by ball milling of copper powder at 150 K under Argon atmosphere in a specially designed cryomill. The detailed characterization of these particles using multiple techniques that includes transmission electron microscopy confirms our conclusion. Careful analysis of the chemistry of these particles indicates that these particles are essentially contamination free. Through the analysis of existing models of grain size refinements during ball milling and low temperature deformation, we argue that the suppression of thermal processes and low temperature leads to formation of free nanoparticles as the process of fracture dominates over possible cold welding at low temperatures.

  7. ETBE synthesis over silicotungstic acid and tungstophosphoric acid catalysts calcined at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Degirmenci, Levent; Oktar, Nuray; Dogu, Gulsen [Department of Chemical Engineering, Gazi University, 06570 Maltepe, Ankara (Turkey)

    2010-07-15

    Vapor phase ethyl tertiary butyl ether synthesis was investigated using heat treated heteropoly acid catalysts, namely silicotungtsic acid (STA) and tungstophosphoric acid-Keggin (TPA-K) and these results were compared with the results obtained with untreated catalysts. ETBE synthesis experiments showed that heat treatment of TPA-K at temperatures over 473 K had caused significant decrease of its catalytic activity. Activity of STA was more stable and deactivation of this catalyst was observed by heat treatment at 673 K and above. Heat treatment at high temperatures caused loss of constitutional water of STA and TPA-K, causing loss of protons, consequently the loss of acidity of the catalysts, resulting deactivation. FT-IR, TGA-DTA and DRIFTS analyses on pyridine-adsorbed catalysts supported the conclusions related to structural changes of STA and TPA-K with heat treatment. Highest ETBE yields were obtained at around 368 K, while at temperatures over 423 K formation of DEE and ethylene were observed due to dehydration of ethanol. (author)

  8. Changes in the pattern of protein synthesis of prosopis chilensis induced by high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Medina, C.; Cardemil, L. (Univ. de Chile, Santiago (USA))

    1989-04-01

    Seeds of Prosopis chilensis, a leguminous tree from semi-arid regions of Central Chile, were germinated at temperatures of 25-30-35-40-45 and 50{degree}C. Germination was 100% between 25 and 40{degree}C, being faster at 35{degree}C. The best temperature for root growth was also 35{degree}C. There was not germination at 50{degree}C. However, seedlings coming from seeds germinated at 35{degree}C were capable of growing at higher temperatures of 45 and 50{degree}C. Pattern of protein synthesis was followed in roots incubated with {sup 35}S-methionine at increasing temperatures between 35 and 50{degree}C. SDS-PAGE of the proteins followed by fluorography shows that at temperatures above 35{degree}C, new protein bands appear while others become thicker. Most of the protein bands have decreased at 50{degree}C, with the exception of the new bands. A band of 70 KD, that is present at 35{degree}C, is more prominent at 50{degree}C. These proteins may have an important role in the thermotolerance of Prosopis chilensis to stressing temperatures.

  9. Changes in the pattern of protein synthesis of prosopis chilensis induced by high temperatures

    International Nuclear Information System (INIS)

    Medina, C.; Cardemil, L.

    1989-01-01

    Seeds of Prosopis chilensis, a leguminous tree from semi-arid regions of Central Chile, were germinated at temperatures of 25-30-35-40-45 and 50 degree C. Germination was 100% between 25 and 40 degree C, being faster at 35 degree C. The best temperature for root growth was also 35 degree C. There was not germination at 50 degree C. However, seedlings coming from seeds germinated at 35 degree C were capable of growing at higher temperatures of 45 and 50 degree C. Pattern of protein synthesis was followed in roots incubated with 35 S-methionine at increasing temperatures between 35 and 50 degree C. SDS-PAGE of the proteins followed by fluorography shows that at temperatures above 35 degree C, new protein bands appear while others become thicker. Most of the protein bands have decreased at 50 degree C, with the exception of the new bands. A band of 70 KD, that is present at 35 degree C, is more prominent at 50 degree C. These proteins may have an important role in the thermotolerance of Prosopis chilensis to stressing temperatures

  10. Control of nanoparticle agglomeration through variation of the time-temperature profile in chemical vapor synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Djenadic, Ruzica; Winterer, Markus, E-mail: markus.winterer@uni-due.de [Universität Duisburg-Essen, Nanoparticle Process Technology, Faculty of Engineering and CENIDE (Germany)

    2017-02-15

    The influence of the time-temperature history on the characteristics of nanoparticles such as size, degree of agglomeration, or crystallinity is investigated for chemical vapor synthesis (CVS). A simple reaction-coagulation-sintering model is used to describe the CVS process, and the results of the model are compared to experimental data. Nanocrystalline titania is used as model material. Titania nanoparticles are generated from titanium-tetraisopropoxide (TTIP) in a hot-wall reactor. Pure anatase particles and mixtures of anatase, rutile (up to 11 vol.%), and brookite (up to 29 vol.%) with primary particle sizes from 1.7 nm to 10.5 nm and agglomerate particle sizes from 24.3 nm to 55.6 nm are formed depending on the particle time-temperature history. An inductively heated furnace with variable inductor geometry is used as a novel system to control the time-temperature profile in the reactor externally covering a large wall temperature range from 873 K to 2023 K. An appropriate choice of inductor geometry, i.e. time-temperature profile, can significantly reduce the degree of agglomeration. Other particle characteristics such as crystallinity are also substantially influenced by the time-temperature profile.

  11. Liquid phase low temperature method for production of methanol from synthesis gas and catalyst formulations therefor

    Science.gov (United States)

    Mahajan, Devinder

    2005-07-26

    The invention provides a homogenous catalyst for the production of methanol from purified synthesis gas at low temperature and low pressure which includes a transition metal capable of forming transition metal complexes with coordinating ligands and an alkoxide, the catalyst dissolved in a methanol solvent system, provided the transition metal complex is not transition metal carbonyl. The coordinating ligands can be selected from the group consisting of N-donor ligands, P-donor ligands, O-donor ligands, C-donor ligands, halogens and mixtures thereof.

  12. Room temperature synthesis of wurtzite phase nanostructured ZnS and accompanied enhancement in dielectric constant

    Science.gov (United States)

    Virpal, Kumar, J.; Singh, G.; Singh, M.; Sharma, S.; Singh, R. C.

    2017-04-01

    We report the room temperature synthesis of ZnS in the wurtzite phase by using ethylenediamine, which acts as a template as well as a capping agent. With the addition of ethylenediamine, structural transformation in ZnS from cubic to wurtzite phase is observed. This is accompanied by an increase in the real permittivity by an order of 2, and reduction in dielectric loss by a factor of 6 as compared to a sample without ethylenediamine. Thus, suggesting that ethylenediamine capped wurtzite ZnS is more suitable for miniaturied capactive devices.

  13. Low temperature solution synthesis of zinc antimonide, manganese antimonide, and strontium ruthenate compounds

    Science.gov (United States)

    Noblitt, Jennifer Lenkner

    2011-12-01

    Increasing energy demands are fueling research in the area of renewable energy and energy storage. In particular, Li-ion batteries and superconducting wires are attractive choices for energy storage. Improving safety, simplifying manufacturing processes, and advancing technology to increase energy storage capacity is necessary to compete with current marketed energy storage devices. These advancements are accomplished through the study of new materials and new morphologies. Increasing dependence on and rising demand for portable electronic devices has continued to drive research in the area of Li-ion batteries. In order to compete with existing batteries and be applicable to future energy needs such as powering hybrid vehicles, the drawbacks of Li-ion batteries must be addressed including (i) low power density, (ii) safety, and (iii) high manufacturing costs. These drawbacks can be addressed through new materials and morphologies for the anode, cathode, and electrolyte. New intermetallic anode materials such as ZnSb, MnSb, and Mn2Sb are attractive candidates to replace graphite, the current industry standard anode material, because they are safer while maintaining comparable theoretical capacity. Electrodeposition is an inexpensive method that could be used for the synthesis of these electrode materials. Direct electrodeposition allows for excellent electrical contact to the current collector without the use of a binder. To successfully electrodeposit zinc and manganese antimonides, metal precursors with excellent solubility in water were needed. To promote solubility, particularly for the antimony precursor, coordinating ligands were added to the deposition bath solutions. This work shows that the choice of coordinating ligand and metal-ligand speciation can alter both the electrochemistry and the film composition. This work focuses on the search for appropriate coordinating ligands, solution pH, and bath temperatures so that high quality films of ZnSb, MnSb, and

  14. Instant synthesis of gold nanoparticles at room temperature and SERS applications

    International Nuclear Information System (INIS)

    Britto Hurtado, R.; Cortez-Valadez, M.; Ramírez-Rodríguez, L.P.; Larios-Rodriguez, Eduardo; Alvarez, Ramón A.B.; Rocha-Rocha, O.; Delgado-Beleño, Y.; Martinez-Nuñez, C.E.; Arizpe-Chávez, H.; Hernández-Martínez, A.R.; Flores-Acosta, M.

    2016-01-01

    Nowadays, gold nanoparticles (AuNps) can be used in a variety of applications, thus efficient methods to produce them are necessary. Several methods have been proposed in this area, but NPs production time is one limitation of these approaches. In this study, we propose a high competitive method to synthesize gold colloidal nanoparticles, instantaneously, using no-toxic reducing agents. These substances allow the instantaneous synthesis at room temperature, even without magnetic stirrers, ovens or ultrasonic baths. Optic analysis showed two absorption bands, associated with surface Plasmon as function of HAuCl 4 concentration. The nanoparticles synthesized have a 10–20 nm size, seen by the transmission electron microscopy (TEM). Therefore, it was possible to obtain several geometric patterns of AuNps, and the synthesis was performed reducing significantly processing time. Additionally, Mie and Fuchs theories were used to predict the location of the absorption bands linked to the plasmon surface in gold nanoparticles. The Surface Enhanced Raman Spectroscopy (SERS) effect was analyzed considering natural zeolite (Chabazite) as analyte, in order to determinate its possible application in soil analysis. - Highlights: • Cubic and spherical morphologies in AuNp. • Surface plasmon prediction in cubic and spherical AuNp. • Instant synthesis of AuNp. • SERS applications in soil analysis.

  15. Synthesis and characterization of Cu-MFI catalyst for the direct medium temperature range NO decomposition

    Directory of Open Access Journals (Sweden)

    Valkaj Karolina Maduna

    2016-03-01

    Full Text Available In this study the physico-chemical and catalytic properties of copper bearing MFI zeolites (Cu-MFI with different Si/Al and Si/Cu ratios were investigated. Two different methods for incorporation of metal ions into the zeolite framework were used: the ion exchange from the solution of copper acetate and the direct hydrothermal synthesis. Direct synthesis of a zeolite in the presence of copper-phosphate complexes was expected to generate more active copper species necessary for the desired reaction than the conventional ion exchange method. Direct decomposition of NO was used as a model reaction, because this reaction still offers a very attractive approach to NOX removal. The catalytic properties of zeolite samples were studied using techniques, such as XRD, SEM, EPR and nitrogen adsorption/desorption measurements at 77 K. Results of the kinetic investigation revealed that both methods are applicable for the preparation of the catalysts with active sites capable of catalyzing the NO decomposition. It was found out that Cu-MFI zeolites obtained through direct synthesis are promising catalysts for NO decomposition, especially at lower reaction temperatures. The efficiency of the catalysts prepared by both methods is compared and discussed.

  16. Instant synthesis of gold nanoparticles at room temperature and SERS applications

    Energy Technology Data Exchange (ETDEWEB)

    Britto Hurtado, R. [Departamento de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-88, 83190, Hermosillo, Sonora (Mexico); Cortez-Valadez, M., E-mail: jose.cortez@unison.mx [CONACYT-Departamento de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-88, 83190, Hermosillo, Sonora (Mexico); Ramírez-Rodríguez, L.P. [Departamento de Física, Universidad de Sonora, Apdo. Postal 5-88, 83190, Hermosillo, Sonora (Mexico); Larios-Rodriguez, Eduardo [Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Rosales y Luis Encinas S/N, Hermosillo, Sonora (Mexico); Alvarez, Ramón A.B.; Rocha-Rocha, O.; Delgado-Beleño, Y.; Martinez-Nuñez, C.E.; Arizpe-Chávez, H. [Departamento de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-88, 83190, Hermosillo, Sonora (Mexico); Hernández-Martínez, A.R. [Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro C.P. 76130 (Mexico); Flores-Acosta, M. [Departamento de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-88, 83190, Hermosillo, Sonora (Mexico)

    2016-08-06

    Nowadays, gold nanoparticles (AuNps) can be used in a variety of applications, thus efficient methods to produce them are necessary. Several methods have been proposed in this area, but NPs production time is one limitation of these approaches. In this study, we propose a high competitive method to synthesize gold colloidal nanoparticles, instantaneously, using no-toxic reducing agents. These substances allow the instantaneous synthesis at room temperature, even without magnetic stirrers, ovens or ultrasonic baths. Optic analysis showed two absorption bands, associated with surface Plasmon as function of HAuCl{sub 4} concentration. The nanoparticles synthesized have a 10–20 nm size, seen by the transmission electron microscopy (TEM). Therefore, it was possible to obtain several geometric patterns of AuNps, and the synthesis was performed reducing significantly processing time. Additionally, Mie and Fuchs theories were used to predict the location of the absorption bands linked to the plasmon surface in gold nanoparticles. The Surface Enhanced Raman Spectroscopy (SERS) effect was analyzed considering natural zeolite (Chabazite) as analyte, in order to determinate its possible application in soil analysis. - Highlights: • Cubic and spherical morphologies in AuNp. • Surface plasmon prediction in cubic and spherical AuNp. • Instant synthesis of AuNp. • SERS applications in soil analysis.

  17. Functional conservation analysis and expression modes of grape anthocyanin synthesis genes responsive to low temperature stress.

    Science.gov (United States)

    Zhang, Cheng; Jia, Haifeng; Wu, Weimin; Wang, Xicheng; Fang, Jinggui; Wang, Chen

    2015-12-10

    In grape cultivation, low temperature generally increases the expression of genes involved in synthesis of anthocyanin. In this study, multi-type structural analysis of the proteins encoded by five anthocyanin biosynthesis genes VvF3H, VvPAL, VvCHS3, VvCHS2 and VvLDOX, in addition to nine of their homologous genes revealed that proteins in grapevine shared a high similarity with that in kiwi, red orange and some other species in which the biosynthesis of anthocyanin significantly influenced by low temperature as proved by previous studies. Low temperature regulatory elements were also found in the promoter region of the grapevine genes VvCHS2, VvPAL and VvF3H. These findings indicate that the functions of anthocyanin biosynthesis genes in grapevine are conservative and might be sensitive to low temperature. In order to identify the specific expression patterns of the five anthocyanin biosynthesis genes and the changes of polyphenols, anthocyanins and flavonoids under low temperature stress. The transcription analysis of the five genes and the content of polyphenols, anthocyanins and flavonoids in grape skins were examined, by using Vitis vinifera L. cv. 'Yongyou 1' and 'Juxing' berries as experimental material and treated at 4°C and 25°C for 24h, 48 h, 72 h and 96 h. The results showed that low temperature greatly enhanced the expression of the five anthocyanin biosynthesis genes. Low temperature greatly slowed down the decomposition of polyphenol, anthocyanin, and flavonoid in grape skins. Our study also found that cv. 'Juxing' responded more sensitively to low temperature than cv. 'Yongyou 1'. All the findings would provide a basis for further study on the mechanism of anthocyanin biosynthesis under environmental stress. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Influence of temperature on the synthesis of calcining cement α--tricalcium phosphate

    International Nuclear Information System (INIS)

    Vieira, R.S.; Thurmer, M.B.; Coelho, W.T.; Fernandes, J.M.; Santos, L.A.

    2011-01-01

    The calcium phosphate cement (CFCs) bone substitutes are of great potential use in medical and dental. However, one of the great difficulties of using this type of cement is its low mechanical strength due to the presence of undesirable phases, such as beta-tricalcium phosphate. The step of obtaining this compound is done at high temperature by solid state reaction. With the aim of obtaining calcium phosphate cements more resistant, we studied the conditions for obtaining an alpha-TCP at temperatures of 1300, 1400 and 1500 ° C with time 2h calcination. The samples were analyzed for crystalline phases, density, porosity and mechanical strength. The results show that the synthesis parameters studied strongly influence the obtained phases and the mechanical properties of cement. (author)

  19. Synthesis of high saturation magnetic iron oxide nanomaterials via low temperature hydrothermal method

    Science.gov (United States)

    Bhavani, P.; Rajababu, C. H.; Arif, M. D.; Reddy, I. Venkata Subba; Reddy, N. Ramamanohar

    2017-03-01

    Iron oxide nanoparticles (IONPs) were synthesized through a simple low temperature hydrothermal approach to obtain with high saturation magnetization properties. Two series of iron precursors (sulfates and chlorides) were used in synthesis process by varying the reaction temperature at a constant pH. The X-ray diffraction pattern indicates the inverse spinel structure of the synthesized IONPs. The Field emission scanning electron microscopy and high resolution transmission electron microscopy studies revealed that the particles prepared using iron sulfate were consisting a mixer of spherical (16-40 nm) and rod (diameter 20-25 nm, length magnetization (MS) of 103.017 emu/g and low remanant magnetization (Mr) of 0.22 emu/g with coercivity (Hc) of 70.9 Oe, which may be attributed to the smaller magnetic domains (dm) and dead magnetic layer thickness (t).

  20. Synthesis and characterization of high-temperature ceramic YBCO nanostructures prepared from a novel precursor

    Directory of Open Access Journals (Sweden)

    M. Salavati-Niasari

    2011-01-01

    Full Text Available As a new precursor, [tris(2-hydroxyacetophenato triaqua(III], [Y(HAP3(H2O3]; complex was used in thermal decomposition process for the synthesis of rod-like high-temperature ceramic YBCO with length of about 320-350 nm and diameters 60–90 nm. The as-synthesized products were characterized by XRD, FT-IR, TEM, SEM and EDX analyses. The results showed that by using fine raw materials, the calcination temperature can be reduced to 870 ºC. It was found that this type of precursor have clearly effects on the size and morphology of product because the organic ligands around yttrium center act like a protecting agent to prevent agglomeration.

  1. Synthesis of Li2SiO3 at low temperature

    International Nuclear Information System (INIS)

    Mondragon G, G.

    2007-01-01

    The main objective of this work is to develop a new synthesis method to obtain one of the more studied ceramics in this field Li 2 SiO 3 ) in a simple and economic way using different solutions (urea and ammonium hydroxide). The particular objectives are first to prepare the Li 2 SiO 3 ceramic, by means of the use of the reaction conventional technique in solid state at temperatures between 800 and 900 C to compare it with the one proposed in this work and this way to observe the advantages that it would gives us the new method. Later on, the same one was synthesized lithium ceramic (Li 2 SiO 3 ) by means of the new method at low temperature (between 80 and 90 C), using silicic acid and lithium hydroxide like precursory reagents and different solutions (urea and ammonium hydroxide) for the optimization in their synthesis. Finally, it was carried out the characterization of these materials by means of X-ray diffraction (XRD), electronic microscopes (SEM and TEM), nitrogen physisorption (method BET) and thermal gravimetric analysis (TGA) to observe the differences that exist among the conventional method and the proposed method and by this way to determine the advantages of the last method. (Author)

  2. The Role of Solvent Polarity on Low-Temperature Methanol Synthesis Catalyzed by Cu Nanoparticles

    International Nuclear Information System (INIS)

    Ahoba-Sam, Christian; Olsbye, Unni; Jens, Klaus-Joachim

    2017-01-01

    Methanol syntheses at low temperature in a liquid medium present an opportunity for full syngas conversion per pass. The aim of this work was to study the role of solvents polarity on low-temperature methanol synthesis reaction using eight different aprotic polar solvents. A “once through” catalytic system, which is composed of Cu nanoparticles and sodium methoxide, was used for methanol synthesis at 100°C and 20 bar syngas pressure. Solvent polarity rather than the 7–10 nm Cu (and 30 nm Cu on SiO 2 ) catalyst used dictated trend of syngas conversion. Diglyme with a dielectric constant (ε) = 7.2 gave the highest syngas conversion among the eight different solvents used. Methanol formation decreased with either increasing or decreasing solvent ε value of diglyme (ε = 7.2). To probe the observed trend, possible side reactions of methyl formate (MF), the main intermediate in the process, were studied. MF was observed to undergo two main reactions; (i) decarbonylation to form CO and MeOH and (ii) a nucleophilic substitution to form dimethyl ether and sodium formate. Decreasing polarity favored the decarbonylation side reaction while increasing polarity favored the nucleophilic substitution reaction. In conclusion, our results show that moderate polarity solvents, e.g., diglyme, favor MF hydrogenolysis and, hence, methanol formation, by retarding the other two possible side reactions.

  3. Dependence of Crystal Quality and β Value on Synthesis Temperature in Growing Gem Diamond Crystals

    International Nuclear Information System (INIS)

    Hong-Yu, Xiao; Xiao-Peng, Jia; Shang-Sheng, Li; Yu, Tian; Ya-Fei, Zhang; Guo-Feng, Huang; Li-Qiu; Hong-An, Ma; Chuan-Yi, Zang

    2008-01-01

    High quality Ib gem diamond single crystals were synthesized in cubic anvil high-pressure apparatus (SPD-6 × 1200) under 5.4 GPa and 1230°C-1280°C. The (100) face of seed crystal was used as growth face, and Ni 70 Mn 25 Co 5 alloy was used as solvent/catalyst. The dependence of crystal quality and β value (the ratio of height to diameter of diamond crystal) on synthesis temperature was studied. When the synthesis temperature is between 1230°C and 1280°C, the β value of the synthetic high-quality gem diamond crystals is between 0.4 and 0.6. The results show that when the β value is between 0.4 and 0.45, the synthetic diamonds are sheet-shape crystals; however, when the β value is between 0.45 and 0.6, the synthetic diamonds are tower-shape crystals. In addition, when the β value is less than 0.4, skeleton crystals will appear. When the β value is more than 0.6, most of the synthetic diamond crystals are inferior crystals

  4. Heat-equilibrium low-temperature plasma decay in synthesis of ammonia via transient components N2H6

    International Nuclear Information System (INIS)

    Cao Guobin; Song Youqun; Chen Qing; Zhou Qiulan; Cao Yun; Wang Chunhe

    2001-01-01

    The author introduced a new method of heat-equilibrium low-temperature plasma in ammonia synthesis and a technique of continuous real-time inlet sampling mass-spectrometry to detect the reaction channel and step of the decay of transient component N 2 H 6 into ammonia. The experimental results indicated that in the process of ammonia synthesis by discharge of N 2 and H 2 mixture, the transient component N 2 H 6 is a necessary step

  5. Influence of the temperature in the electrochemical synthesis of cobalt ferrites nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mazario, E. [Departamento de Quimica Fisica Aplicada, Facultad de Ciencias, Universidad Autonoma de Madrid, UAM, C/Francisco Tomas y Valiente 7, 28049 Cantoblanco, Madrid (Spain); Morales, M.P. [Instituto de Ciencia de Materiales de Madrid, CSIC, C/Sor Juana Ines de la Cruz 3, 28049 Cantoblanco, Madrid (Spain); Galindo, R. [Departamento de Quimica Fisica Aplicada, Facultad de Ciencias, Universidad Autonoma de Madrid, UAM, C/Francisco Tomas y Valiente 7, 28049 Cantoblanco, Madrid (Spain); Herrasti, P., E-mail: pilar.herrasti@uam.es [Departamento de Quimica Fisica Aplicada, Facultad de Ciencias, Universidad Autonoma de Madrid, UAM, C/Francisco Tomas y Valiente 7, 28049 Cantoblanco, Madrid (Spain); Menendez, N. [Departamento de Quimica Fisica Aplicada, Facultad de Ciencias, Universidad Autonoma de Madrid, UAM, C/Francisco Tomas y Valiente 7, 28049 Cantoblanco, Madrid (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Cobalt ferrite nanoparticles were synthesized by new electrochemical method. Black-Right-Pointing-Pointer Temperature affects to percentage of inclusion of Co and diameter of the synthesized nanoparticles. Black-Right-Pointing-Pointer At 80 Degree-Sign C and current densities of 50/25 mA cm{sup -2} applied to Fe and Co, respectively, a stoichiometric CoFe{sub 2}O{sub 4} nanoparticles with 40 nm of diameter were obtained. - Abstract: A new electrochemical method to synthesize cobalt ferrite nanoparticles has been developed. Magnetic measurement, Moessbauer spectroscopy, X-ray diffraction, inductive coupled plasma spectroscopy, and transmission electron microscopy were carried out to characterize the cobalt ferrites synthesized at different temperatures between 25 Degree-Sign C and 80 Degree-Sign C. These techniques confirm the efficiency of the electrochemical method. At room temperature a mixture of different compounds was obtained with a particle diameter around 20 nm, while at 80 Degree-Sign C the synthesis of cobalt ferrite leads to a stoichiometric spinel, with a crystallite size of 40 nm measured by Scherrer equation. The temperature was defined as an important parameter to obtain stoichiometric ferrites and different diameters.

  6. Effect of high pressure-high temperature process on meat product quality

    Science.gov (United States)

    Duranton, Frédérique; Marée, Elvire; Simonin, Hélène; Chéret, Romuald; de Lamballerie, Marie

    2011-03-01

    High pressure/high temperature (HPHT) processing is an innovative way to sterilize food and has been proposed as an alternative to conventional retorting. By using elevated temperatures and adiabatic compression, it allows the inactivation of vegetative microorganisms and pathogen spores. Even though the microbial inactivation has been widely studied, the effect of such process on sensorial attributes of food products, especially meat products, remains rare. The aim of this study was to investigate the potential of using HPHT process (500 MPa/115 °C) instead of conventional retorting to stabilize Toulouse sausages while retaining high organoleptic quality. The measurements of texture, color, water-holding capacity and microbial stability were investigated. It was possible to manufacture stable products at 500 MPa/115 °C/30 min. However, in these conditions, no improvement of the quality was found compared with conventional retorting.

  7. Timing matters: the underappreciated role of temperature ramp rate for shape control and reproducibility of quantum dot synthesis

    KAUST Repository

    Baumgardner, William J.

    2012-01-01

    Understanding the coupled kinetic and thermodynamics factors governing colloidal nanocrystals nucleation and growth are critical factors in the predictable and reproducible synthesis of advanced nanomaterials. We show that the temporal temperature profile is decisive in tuning the particle shape from pseudo-spherical to monodisperse cubes. The shape of the nanocrystals was characterized by transmission electron microscopy and X-ray diffraction. We introduce a mechanism for the shape controlled synthesis in the context of temperature-dependent nucleation and growth and provide experimental evidence to support it. © 2013 The Royal Society of Chemistry.

  8. Structural and Optical Properties of White Light Emitting ZnS:Mn(2+) Nanoparticles at Different Synthesis Temperatures.

    Science.gov (United States)

    Bindu, K R; Anila, E I

    2015-07-01

    We report of the synthesis and characterisation of white emitting ZnS:Mn(2+) nanoparticles. The spectroscopic properties and the crystal structure of Mn doped ZnS nanoparticles are studied here to provide a better understanding on how the luminescence emission and the crystalline composition are influenced by the synthesis temperature. The synthesis of the samples were carried out by the simple wet chemical precipitation method. The influence of synthesis temperature on structure and optical properties were studied at constant Mn concentration. The nanoparticles were structurally characterized by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The XRD studies show the phase singularity of Mn doped ZnS particles having zinc-blende (cubic) structure at all temperatures. The band gap of the doped samples are red shifted with temperature. Electron Paramagnetic Resonance (EPR) spectra exhibited resonance signals, characteristic of Mn(2+). Incorporation of Mn in the ZnS nanoparticles was confirmed by Inductively Coupled Plasma- Atomic Emission Spectroscopic studies (ICP-AES). The samples show an efficient emission of yellow-orange light centred at 590 nm which is characteristic of Mn(2+) along with a blue emission at 435 nm due to sulfur vacancy. The overall emission is white at all temperatures with CIE co-ordinates in close agreement with achromatic white.

  9. An Investigation of Porous Structure of TiNi-Based SHS-Materials Produced at Different Initial Synthesis Temperatures

    Science.gov (United States)

    Khodorenko, V. N.; Anikeev, S. G.; Kokorev, O. V.; Yasenchuk, Yu. F.; Gunther, V. É.

    2018-02-01

    An investigation of structural characteristics and behavior of TiNi-based pore-permeable materials manufactured by the methods of selfpropagating high-temperature synthesis (SHS) at the initial synthesis temperatures T = 400 and 600°C is performed. It is shown that depending on the temperature regime, the resulting structure and properties of the material can differ. It is found out that the SHS-material produced at the initial synthesis temperature T = 400°C possesses the largest number of micropores in the pore wall surface structure due to a high phase inhomogeneity of the alloy. The regime of structure optimization of the resulting materials is described and the main stages of formation of the pore wall microporous surfaces are revealed. It is demonstrated that after optimization of the surface structure of a TiNi-based fine-pore alloy by its chemical etching, the fraction of micropores measuring in size less than 50 nm increased from 59 to 68%, while the number of pores larger than 1 μm increased twofold from 11 to 22%. In addition, peculiar features of interaction between certain cell cultures with the surface of the SHS-material manufactured at different initial synthesis temperatures are revealed. It is found out that the dynamics of the cell material integration depends on the pore wall surface morphology and dimensions of macropores.

  10. Carbon Isotope Systematics in Mineral-Catalyzed Hydrothermal Organic Synthesis Processes at High Temperature and Pressures

    Science.gov (United States)

    Fu, Qi; Socki, R. A.; Niles, Paul B.

    2011-01-01

    Observation of methane in the Martian atmosphere has been reported by different detection techniques. Reduction of CO2 and/or CO during serpentization by mineral surface catalyzed Fischer-Tropsch Type (FTT) synthesis may be one possible process responsible for methane generation on Mars. With the evidence a recent study has discovered for serpentinization in deeply buried carbon rich sediments, and more showing extensive water-rock interaction in Martian history, it seems likely that abiotic methane generation via serpentinization reactions may have been common on Mars. Experiments involving mineral-catalyzed hydrothermal organic synthesis processes were conducted at 750 C and 5.5 Kbars. Alkanes, alcohols and carboxylic acids were identified as organic compounds. No "isotopic reversal" of delta C-13 values was observed for alkanes or carboxylic acids, suggesting a different reaction pathway than polymerization. Alcohols were proposed as intermediaries formed on mineral surfaces at experimental conditions. Carbon isotope data were used in this study to unravel the reaction pathways of abiotic formation of organic compounds in hydrothermal systems at high temperatures and pressures. They are instrumental in constraining the origin and evolution history of organic compounds on Mars and other planets.

  11. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts

    Science.gov (United States)

    Cheng, Fangyi; Shen, Jian; Peng, Bo; Pan, Yuede; Tao, Zhanliang; Chen, Jun

    2011-01-01

    Spinels can serve as alternative low-cost bifunctional electrocatalysts for oxygen reduction/evolution reactions (ORR/OER), which are the key barriers in various electrochemical devices such as metal-air batteries, fuel cells and electrolysers. However, conventional ceramic synthesis of crystalline spinels requires an elevated temperature, complicated procedures and prolonged heating time, and the resulting product exhibits limited electrocatalytic performance. It has been challenging to develop energy-saving, facile and rapid synthetic methodologies for highly active spinels. In this Article, we report the synthesis of nanocrystalline MxMn3-xO4 (M = divalent metals) spinels under ambient conditions and their electrocatalytic application. We show rapid and selective formation of tetragonal or cubic MxMn3-xO4 from the reduction of amorphous MnO2 in aqueous M2+ solution. The prepared CoxMn3-xO4 nanoparticles manifest considerable catalytic activity towards the ORR/OER as a result of their high surface areas and abundant defects. The newly discovered phase-dependent electrocatalytic ORR/OER characteristics of Co-Mn-O spinels are also interpreted by experiment and first-principle theoretical studies.

  12. Low Temperature Solid-State Synthesis and Characterization of LaBO3

    Directory of Open Access Journals (Sweden)

    Azmi Seyhun KIPÇAK

    2016-11-01

    Full Text Available Rare earth (lanthanide series borates, possess high vacuum ultraviolet (VUV transparency, large electronic band gaps, chemical and environmental stability and exceptionally large optical damage thresholds and used in the development of plasma display panels (PDPs. In this study the synthesis of lanthanum borates via solid-state method is studied. For this purpose, lanthanum oxide (La2O3 and boric acid (H3BO3 are used for as lanthanum and boron sources, respectively. Different elemental molar ratios of La to B (between 3:1 to 1:6 as La2O3:H3BO3 were reacted by solid-state method at the reaction temperatures between 500°C - 700°C with the constant reaction time of 4 h. Following the synthesis, characterizations of the synthesized products are conducted by X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR, Raman spectroscopy and scanning electron microscope (SEM. From the results of the experiments, three types of lanthanum borates of; La3BO6, LaBO3 and La(BO23 were observed at different reaction parameters. Among these three types of lanthanum borates LaBO3 phase were obtained as a major phase.

  13. Cuprous Oxide Scale up: Gram Production via Bulk Synthesis using Classic Solvents at Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hall, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Han, T. Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-07

    Cuprous oxide is a p-type semiconducting material that has been highly researched for its interesting properties. Many small-scale syntheses have exhibited excellent control over size and morphology. As the demand for cuprous oxide grows, the synthesis method need to evolve to facilitate large-scale production. This paper supplies a facile bulk synthesis method for Cu₂O on average, 1-liter reaction volume can produce 1 gram of particles. In order to study the shape and size control mechanisms on such a scale, the reaction volume was diminished to 250 mL producing on average 0.3 grams of nanoparticles per batch. Well-shaped nanoparticles have been synthesized using an aqueous solution of CuCl₂, NaOH, SDS surfactant, and NH₂OH-HCl at mild temperatures. The time allotted between the addition of NaOH and NH₂OH-HCl was determined to be critical for Cu(OH)2 production, an important precursor to the final produce The effects of stirring rates on a large scale was also analyzed during reagent addition and post reagent addition. A morphological change from rhombic dodecahedra to spheres occurred as the stirring speed was increased. The effects of NH₂OH-HCl concentration were also studied to control the etching effects of the final product.

  14. Low Temperature Synthesis of Belite Cement Based on Silica Fume and Lime.

    Science.gov (United States)

    Tantawy, M A; Shatat, M R; El-Roudi, A M; Taher, M A; Abd-El-Hamed, M

    2014-01-01

    This paper describes the low temperature synthesis of belite (β-C2S) from silica fume. Mixtures of lime, BaCl2, and silica fume with the ratio of (Ca + Ba)/Si = 2 were hydrothermally treated in stainless steel capsule at 110-150°C for 2-5 hours, calcined at 600-700°C for 3 hours, and analyzed by FTIR, XRD, TGA/DTA, and SEM techniques. Dicalcium silicate hydrate (hillebrandite) was prepared by hydrothermal treatment of lime/silica fume mixtures with (Ca + Ba)/Si = 2 at 110°C for 5 hours. Hillebrandite partially dehydrates in two steps at 422 and 508°C and transforms to γ-C2S at 734°C which in turn transforms to α'-C2S at 955°C which in turn transforms to β-C2S when cooled. In presence of Ba(2+) ions, β-C2S could be stabilized with minor transformation to γ-C2S. Mixture of silica fume, lime, and BaCl2 with the ratio of (Ca + Ba)/Si = 2 was successfully utilized for synthesis of β-C2S by hydrothermal treatment at 110°C for 5 hours followed by calcination of the product at 700°C for 3 hours.

  15. Synthesis of high saturation magnetic iron oxide nanomaterials via low temperature hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Bhavani, P.; Rajababu, C.H. [Department of Materials Science & Nanotechnology, Yogivemana University, Vemanapuram 516003, Kadapa (India); Arif, M.D. [Environmental Magnetism Laboratory, Indian Institute of Geomagnetism (IIG), Navi Mumbai 410218, Mumbai (India); Reddy, I. Venkata Subba [Department of Physics, Gitam University, Hyderabad Campus, Rudraram, Medak 502329 (India); Reddy, N. Ramamanohar, E-mail: manoharphd@gmail.com [Department of Materials Science & Nanotechnology, Yogivemana University, Vemanapuram 516003, Kadapa (India)

    2017-03-15

    Iron oxide nanoparticles (IONPs) were synthesized through a simple low temperature hydrothermal approach to obtain with high saturation magnetization properties. Two series of iron precursors (sulfates and chlorides) were used in synthesis process by varying the reaction temperature at a constant pH. The X-ray diffraction pattern indicates the inverse spinel structure of the synthesized IONPs. The Field emission scanning electron microscopy and high resolution transmission electron microscopy studies revealed that the particles prepared using iron sulfate were consisting a mixer of spherical (16–40 nm) and rod (diameter ~20–25 nm, length <100 nm) morphologies that synthesized at 130 °C, while the IONPs synthesized by iron chlorides are found to be well distributed spherical shapes with size range 5–20 nm. On other hand, the IONPs synthesized at reaction temperature of 190 °C has spherical (16–46 nm) morphology in both series. The band gap values of IONPs were calculated from the obtained optical absorption spectra of the samples. The IONPs synthesized using iron sulfate at temperature of 130 °C exhibited high saturation magnetization (M{sub S}) of 103.017 emu/g and low remanant magnetization (M{sub r}) of 0.22 emu/g with coercivity (H{sub c}) of 70.9 Oe{sub ,} which may be attributed to the smaller magnetic domains (d{sub m}) and dead magnetic layer thickness (t). - Highlights: • Comparison of iron oxide materials prepared with Fe{sup +2}/Fe{sup +3} sulfates and chlorides at different temperatures. • We prepared super-paramagnetic and soft ferromagnetic magnetite nanoparticles. • We report higher saturation magnetization with lower coercivity.

  16. Silver nanoparticles: Influence of the temperature synthesis on the particles’ morphology

    International Nuclear Information System (INIS)

    Piñero, S; Camero, S; Blanco, S

    2017-01-01

    Silver nanoparticles have a wide range of applications in the medical field, textile and food industries. These and other applications can be found due to the relation between its size and morphology. In this study the influence of bath temperature on the morphology and size of silver nanoparticles are evaluated, which are obtained by chemical reduction of AgNO 3 using three reducing agents: sodium borohydride, ascorbic acid and sodium citrate. The evaluation carried out by the traditional UV-vis Spectrophotometric analysis and with High Resolution Transmission Electron Microscopy. The UV-vis spectrum of the silver colloids obtained by chemical reduction using three different reducing agents shows the effect of the temperature change on the growing and aggregative process. The final effect on the morphology, size and aggregation of the particles was confirmed by TEM. The result suggests a change in the growing mechanism, conducted by aggregation of atoms at 5 and 20°C degrees and aggregation of clusters at higher temperatures. Moreover in this work the main synthesis methods of nanomaterials are described. (paper)

  17. Low temperature synthesis & characterization of lead-free BCZT ceramics using molten salt method

    Science.gov (United States)

    Jai Shree, K.; Chandrakala, E.; Das, Dibakar

    2018-04-01

    Piezoelectric properties are greatly influenced by the synthesis route, microstructure, stoichiometry of the chemical composition, purity of the starting materials. In this study, molten salt method was used to prepare lead-free BCZT ceramics. Molten salt method is one of the simplestmethods to prepare chemically-purified, single phase powders in high yield often at lower temperatures and shorten reaction time. Calcination of the molten salt synthesized powders resulted in asingle-phase perovskite structure at 1000 °C which is ˜ 350 °C less than the conventional solid-sate reaction method. With increasing calcination temperature the average template size was increased (˜ 0.5-2 µm). Formation of well dispersive templates improves the sinterability at lower temperatures. Lead-free BCZT ceramics sintered at 1500 °C for 2 h resulted in homogenous and highly dense microstructure with ˜92% of the theoretical density and a grain size of ˜ 35 µm. This highly dense microstructure could enhance the piezoelectric properties of the system.

  18. Low-temperature direct synthesis of mesoporous vanadium nitrides for electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae-Min [Institute of NT-IT Fusion Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499 (Korea, Republic of); Jeong, Gyoung Hwa [Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Banyeon 100, Ulsan 44919 (Korea, Republic of); Kim, Sang-Wook [Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499 (Korea, Republic of); Kim, Chang-Koo, E-mail: changkoo@ajou.ac.kr [Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499 (Korea, Republic of)

    2017-04-01

    Highlights: • Vanadium nitrides were directly synthesized by a one-step chemical precipitation method. • This method was carried out at a low temperature of 70 °C. • Vanadium nitrides had a specific capacitance of 598 F/g. • The equivalent series resistance of the vanadium nitride electrode was 1.42 Ω after 5000 cycles. - Abstract: Mesoporous vanadium nitrides are directly synthesized by a one-step chemical precipitation method at a low temperature (70 °C). Structural and morphological analyses reveal that vanadium nitride consist of long and slender nanowhiskers, and mesopores with diameters of 2–5 nm. Compositional analysis confirms the presence of vanadium in the VN structure, along with oxidized vanadium. The cyclic voltammetry and charge-discharge tests indicate that the obtained material stores charges via a combination of electric double-layer capacitance and pseudocapacitance mechanisms. The vanadium nitride electrode exhibits a specific capacitance of 598 F/g at a current density of 4 A/g. After 5000 charge-discharge cycles, the electrode has an equivalent series resistance of 1.42 Ω and retains 83% of its initial specific capacitance. This direct low-temperature synthesis of mesoporous vanadium nitrides is a simple and promising method to achieve high specific capacitance and low equivalent series resistance for electrochemical capacitor applications.

  19. Low temperature synthesis and sintering behaviour of Gd-doped ceria nanosized powders: comparison between two synthesis procedures

    Directory of Open Access Journals (Sweden)

    Tartaj, J.

    2009-04-01

    Full Text Available Two different routes of synthesis of Ce0.9Gd0.1O1.95 (CGO nanopowders are presented; the ethylene glycol-metal nitrate polymerized complex solution method and the precipitation technique using ammonia as the precipitant agent. The powders characteristics were examined by X-ray diffraction (XRD, transmission electron microscopy (TEM, Brunauer-Emmett-Teller (BET surface area and simultaneous thermogravimetric and differential thermal analysis (TG/DTA. Scanning electron microscopy (SEM observations were used to determine the agglomeration degree of the powders, and the uniformity of the green compacts. The Hg-porosimetry results were used to investigate the pore size. The densification process was studied by constant heating rate dilatometry and isothermal sintering at different temperatures. Microstructural development of each sample at different sintering temperatures and times was followed by SEM.

    Se presentan dos diferentes rutas de síntesis de nanopolvos de Ce0.9Gd0.1O1.95 (CGO: precipitación de hidróxidos, a partir de soluciones de nitratos utilizando amonia como agente precipitante y formación de complejos polimerizados etilene-glicol nitratos metálicos. Las características de los polvos se determinaron por DRX, microscopía de transmisión (TEM, superficie específica por Brunauer-Emmett-Teller (BET, y ensayos de ATD/ATG. El grado de aglomeración de los nanopolvos y la uniformidad de los compactos en verde se ha observado por Microscopía electrónica de barrido, (SEM. El tamaño de poro de los compactos en verde se ha medido mediante porosimetría de Hg. El comportamiento a la sinterización se ha evaluado por dilatometría a velocidad de calentamiento constante y por sinterización isoterma a diferentes temperaturas. La evolución microestructural se ha seguido por SEM.

  20. Analysis of the structural stability of the smectite submitted to high pressures and temperatures

    International Nuclear Information System (INIS)

    Alabarse, Frederico Gil

    2009-10-01

    The thermal stability of bentonite is of particular interest for containment barrier in nuclear waste disposal facilities. However, very little is known about the stability of smectite (principal component of bentonite) under high-pressure and high-temperature conditions (HPHT). The objective of this work was to investigate the stability of the smectite structure under HP-HT conditions. The HP-HT experiments were performed on toroidal chambers (TC) with pressure up 7.7 GPa and temperatures of 1000 deg C. The samples were characterized by X-ray diffraction after the HP-HT processing. Furthermore, one sample from the original material was analyzed using Fourier transformed infra-red (FTIR) in situ measurements on a diamond anvil cell (DAC) in experiments up to 12 GPa. The original sample of bentonite, calcium dioctahedral montmorillonite with small fraction of quartz, was characterized by FTIR, XRD, X-ray fluorescence (XRF), scanning electron microscopy (SEM), surface area, thermogravimetric analysis (TGA) and differential thermal analysis (DTA). In the experiment performed using the DAC up to 12 GPa, the FTIR in situ measurements analysis showed that the smectite structure is stable with a reversible deformation in the Si-O bond and that the smectite did not loose water. Experiments performed in TC at 7.7 GPa of pressure and 250 deg C of temperature, during 3.5 h showed, after analysis by XRD and FTIR, that the smectite structure is stable and did not loose water. Experiments performed in TC at 7.7 GPa of pressure and 1000 deg C of temperature, during 3.5 h showed, after analysis by XRD and SEM, the transformation of bentonite to the mineral assemblage: Coesite, Quartz, Kyanite and Pyrope. (author)

  1. Synthesis and high temperature stability of amorphous Si(B)CN-MWCNT composite nanowires

    Science.gov (United States)

    Bhandavat, Romil; Singh, Gurpreet

    2012-02-01

    We demonstrate synthesis of a hybrid nanowire structure consisting of an amorphous polymer-derived silicon boron-carbonitride (Si-B-C-N) shell with a multiwalled carbon nanotube core. This was achieved through a novel process involving preparation of a boron-modified liquid polymeric precursor through a reaction of trimethyl borate and polyureasilazane under atmospheric conditions; followed by conversion of polymer to glass-ceramic on carbon nanotube surfaces through controlled heating. Chemical structure of the polymer was studied by liquid-NMR while evolution of various ceramic phases was studied by Raman spectroscopy, solid-NMR, Fourier transform infrared and X-ray photoelectron spectroscopy. Electron microscopy and X-ray diffraction confirms presence of amorphous Si(B)CN coating on individual nanotubes for all specimen processed below 1400 degree C. Thermogravimetric analysis, followed by TEM revealed high temperature stability of the carbon nanotube core in flowing air up to 1300 degree C.

  2. Catalytic CVD Synthesis of Carbon Nanotubes: Towards High Yield and Low Temperature Growth.

    Science.gov (United States)

    Magrez, Arnaud; Seo, Jin Won; Smajda, Rita; Mionić, Marijana; Forró, László

    2010-11-01

    The catalytic chemical vapor deposition (CCVD) is currently the most flexible and economically attractive method for the growth of carbon nanotubes. Although its principle is simple, the precisely controlled growth of carbon nanotubes remains very complex because many different parameters influence the growth process. In this article, we review our recent results obtained on the synthesis of carbon nanotubes via CCVD. We discuss the role of the catalyst and the catalyst support. Our recent results obtained from the water assisted growth and the equimolar C₂H₂-CO₂ reaction are also discussed. Both procedures lead to significantly enhanced carbon nanotube growth. In particular, the latter allows growing carbon nanotubes on diverse substrate materials at low temperatures.

  3. Mesoporous Structure Control of Silica in Room-Temperature Synthesis under Basic Conditions

    Directory of Open Access Journals (Sweden)

    Jeong Wook Seo

    2015-01-01

    Full Text Available Various types of mesoporous silica, such as continuous cubic-phase MCM-48, hexagonal-phase MCM-41, and layer-phase spherical silica particles, have been synthesized at room temperature using cetyltrimethylammonium bromide as a surfactant, ethanol as a cosurfactant, tetraethyl orthosilicate as a silica precursor, and ammonia as a condensation agent. Special care must be taken both in the filtering of the resultant solid products and in the drying process. In the drying process, further condensation of the silica after filtering was induced. As the surfactant and cosurfactant concentrations in the reaction mixture increased and the NH3 concentration decreased, under given conditions, continuous cubic MCM-48 and layered silica became the dominant phases. A cooperative synthesis mechanism, in which both the surfactant and silica were involved in the formation of mesoporous structures, provided a good explanation of the experimental results.

  4. Synthesis of Trimethylolpropane Esters of Calophyllum Methyl Esters : Effect of Temperature and Molar Ratio

    Directory of Open Access Journals (Sweden)

    Yeti Widyawati

    2014-12-01

    Full Text Available Trimethylolpropane esters were synthesized by transesterification of calophyllum methyl esters and trimethylolpropane using a calcium oxide as the catalyst. The results showed that the optimal reaction conditions (temperature: 130 0C, reaction time: 5 h, reactant molar ratio: 3.9:1, catalyst amount 3%w/w, and formed  trimethylolpropane ester of 79.0% were obtained. The basic physicochemical properties of the trimethylolpropane esters were the following : kinematic viscosities of 56.40 cSt and 8.8 cSt at 40 0C and 100 0C,  viscosity index 193, flash point 218 0C and pour point -3 0C. So Methyl esters of fatty acids of would callophylum  methyl ester is good raw material for the synthesis of lubricating oils.

  5. Optimization of Deep Drilling Performance--Development and Benchmark Testing of Advanced Diamond Product Drill Bits & HP/HT Fluids to Significantly Improve Rates of Penetration

    Energy Technology Data Exchange (ETDEWEB)

    Alan Black; Arnis Judzis

    2003-10-01

    This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2002 through September 2002. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit--fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. Accomplishments to date include the following: 4Q 2002--Project started; Industry Team was assembled; Kick-off meeting was held at DOE Morgantown; 1Q 2003--Engineering meeting was held at Hughes Christensen, The Woodlands Texas to prepare preliminary plans for development and testing and review equipment needs; Operators started sending information regarding their needs for deep drilling challenges and priorities for large-scale testing experimental matrix; Aramco joined the Industry Team as DEA 148 objectives paralleled the DOE project; 2Q 2003--Engineering and planning for high pressure drilling at TerraTek commenced; 3Q 2003--Continuation of engineering and design work for high pressure drilling at TerraTek; Baker Hughes INTEQ drilling Fluids and Hughes Christensen commence planning for Phase 1 testing--recommendations for bits and fluids.

  6. Fibers innovative burning and reuse by Self-propagating High temperature Synthesis (SHS)

    Science.gov (United States)

    Caratto, Valentina; Belfortini, Claudio; Musi, Luigi; Gaggero, Laura; Ferretti, Maurizio

    2016-04-01

    The treatment of asbestos containing waste deriving from civil building and industrial applications is a social alert and an environmental problem. The project LIFE12 ENV/IT 000295 FIBERS "Fibers innovative burning and reuse by Self-propagating High temperature Synthesis (SHS)" has developed an innovative technique alternative to conventional high T processes. The University of Genoa has developed an apparatus and a technique for triggering the breakdown reaction of chrysotile by means of an alumino-thermic reaction in a process of combustion synthesis well known as Self-propagating High temperature Synthesis or SHS. This approach yielded interesting results and allowed the development of an efficient method for inerting natural asbestos fibers and man-made products carrying fibers at the scale of some grams [1]. The experiments were based on the couples Fe2O3/Mg by implementation of two prototype plants. The varying parameters were: 1) different Asbestos-Containing Waste (ACW) massive (Eternit, linoleum) and friable asbestos; 2) ACW abundance; 3) size of the pellet 4) under two triggering systems (induction by a W coil and oxyacetylene torch). The reactions were carried in two configurations: a) discontinuous, allowed us to obtain data for the development and fine-tuning of the reaction, b) continuous, was indispensable for the development and fine-tuning of the process parameters towards industrial scale up. After the combustive reaction all samples were characterized by SEM-EDS and XRPD analysis. All experiments demonstrated effective in destructing the fibrous habit of chrysotile, turning its composition to stubby olivine grains. We optimized the parameters to achieve complete conversion of the asbestos to mineral grains in all the cases. The efficiency of the SHS reaction in the discontinuous and continuous configurations was highlighted by the characterization of the post-combustion material under SEM-EDS and XRPD that verified the absence of fibers within

  7. Organic titanates: a model for activating rapid room-temperature synthesis of shape-controlled CsPbBr3 nanocrystals and their derivatives.

    Science.gov (United States)

    Fang, Shaofan; Li, Guangshe; Li, Huixia; Lu, Yantong; Li, Liping

    2018-04-12

    The application of lead halide perovskite nanocrystals is challenged by the lack of strategies in rapid room-temperature synthesis with controlled morphologies. Here, we report on an initial study of adopting organic titanates as a model activator that promotes rapid room-temperature synthesis of shape-controlled, highly luminescent CsPbBr3 nanocrystals and their derivatives.

  8. Low-temperature synthesis of allyl dimethylamine by selective heating under microwave irradiation used for water treatment

    International Nuclear Information System (INIS)

    Tian Binghui; Luan Zhaokun; Li Mingming

    2005-01-01

    Low-temperature synthesis of allyl dimethylamine (ADA) by selective heating under microwave irradiation (MI) used for water treatment is investigated. The effect of MI, ultrasound irradiation (UI) and conventional heating on yield of ADA, reaction time and the flocculation efficiency of polydiallyl dimethylammunion chloride (PDADMAC) prepared form ADA were studied. The results show that by selective heating at low temperature, MI not only increases yield of ADA and reduces reaction time, but also greatly enhances the flocculation efficiency of PDADMAC

  9. BF3.SiO2: an efficient catalyst for the synthesis of azo dyes at room temperature

    Directory of Open Access Journals (Sweden)

    Bi Bi Fatemeh Mirjalili

    2012-07-01

    Full Text Available A rapid one-pot method has been developed for the synthesis of azo dyes via ‎sequential diazotization–diazo coupling of aromatic amines with coupling agents at room ‎temperature in the presence of BF3.SiO2 as acidic catalyst. The obtained aryl diazonium salts bearing silica supported boron tri-flouride counter ion‎ was sufficiently stable to be kept at room ‎temperature in the dry state.‎

  10. Ambient temperature aqueous synthesis of ultrasmall copper doped ceria nanocrystals for the water gas shift and carbon monoxide oxidation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Curran, Christopher D. [Department of Chemical and Biomolecular Engineering; Lehigh University; Bethlehem; USA; Lu, Li [Department of Materials Science and Engineering; Lehigh University; Bethlehem; USA; Kiely, Christopher J. [Department of Chemical and Biomolecular Engineering; Lehigh University; Bethlehem; USA; Department of Materials Science and Engineering; McIntosh, Steven [Department of Chemical and Biomolecular Engineering; Lehigh University; Bethlehem; USA

    2018-01-01

    Ultra-small CuxCe1-xO2-δnanocrystals were prepared through a room temperature, aqueous synthesis method, achieving high copper doping and low water gas shift activation energy.

  11. Facile synthesis of improved room temperature gas sensing properties of TiO2 nanostructures: Effect of acid treatment

    CSIR Research Space (South Africa)

    Tshabalala, Zamaswazi P

    2016-03-01

    Full Text Available and Actuators B: Chemical Facile synthesis of improved room temperature gas sensing properties of TiO2 nanostructures: Effect of acid treatment Z.P. Tshabalalaa,b, D.E. Motaunga,∗, G.H. Mhlongoa,∗, O.M. Ntwaeaborwab,∗ a DST/CSIR, National Centre for Nano...

  12. Facile synthesis of improved room temperature gas sensing properties of TiO2 nanostructures: Effect of acid treatment

    CSIR Research Space (South Africa)

    Tshabalala, Zamaswazi P

    2016-03-01

    Full Text Available and Actuators B: Chemical Facile synthesis of improved room temperature gas sensing properties of TiO2 nanostructures: Effect of acid treatment Z.P. Tshabalalaa,b, D.E. Motaunga,∗, G.H. Mhlongoa,∗, O.M. Ntwaeaborwab,∗ a DST/CSIR, National Centre...

  13. Low temperature synthesis of Ba1–xSrxSnO3 (x= 0–1) from molten ...

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 33; Issue 1. Low temperature synthesis of Ba1–SrSnO3 ( = 0–1) from molten alkali hydroxide flux. B Ramdas R Vijayaraghavan. Electrical Properties Volume 33 Issue 1 February 2010 pp 75- ...

  14. Low-temperature solvothermal synthesis of EuS hollow microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yong; Wang, Hong; Li, Peng; Fu, Yao, E-mail: fuyaozn@126.com; Xing, Mingming; Jiang, Tao; Luo, Xixian, E-mail: luoxixiandl@126.com

    2014-09-15

    Graphical abstract: Synthesis of EuS hollow microspheres at low-temperature via solvothermal method for the first time. - Highlights: • We adopt an improved method to synthesise the (Phen)Eu(Et{sub 2}CNS{sub 2}){sub 3} in deionized water. • We have successfully synthesised the EuS hollow microsphere at 230 °C in acetonitrile. • The price of acetonitrile is more inexpensive, so the price of preparation was reduced. - Abstract: EuS crystals are synthesized by low-temperature solvothermal decomposition of the single source precursor complex (Phen)Eu(Et{sub 2}CNS{sub 2}){sub 3} in acetonitrile. X-ray powder diffraction, scanning electron microscopy, granulocyte diameter statistical analysis, surface energy-dispersive X-ray spectroscopy analysis, and UV–vis absorption spectroscopy are used to characterize the structure and properties of the obtained EuS crystals. The results show that the formed EuS crystals are uniform hollow microspheres with a typical cubic phase structure of rock salt and the average particle size of 2.01 μm. The mechanisms for the thermal decomposition of the precursor complex and the formation of the EuS hollow microspheres are postulated based on the experimental observations and previous reports.

  15. Synthesis of Improved Catalytic Materials for High-Temperature Water-gas Shift Reaction

    Directory of Open Access Journals (Sweden)

    Zara P. Cherkezova-Zheleva

    2015-12-01

    Full Text Available In this investigation, we report the preparation and characterization of Co-, Cu- and Mn-substituted iron oxide catalytic materials supported on activated carbon. Co-precipitation method and low temperature treatment were used for their synthesis. The influence of chemical composition, stoichiometry, particle size and dispersity on their catalytic activity was studied. Samples were characterized in all stages of their co-precipitation, heating and spend samples after catalytic tests. The obtained results from room and low temperature Mössbauer spectroscopy were combined with analysis of powder X-ray diffraction patterns (XRD. They revealed the preparation of nano-sized iron oxide materials supported on activated carbon. Relaxation phenomena were registered also for the supported phases. The catalytic performance in the water-gas shift reaction was studied. The activity order was as follows: Cu0.5Fe2.5O4 > Co0.5Fe2.5O4 > Mn0.5Fe2.5O4. Catalytic tests demonstrated very promising results and potential application of studied samples due to their cost-effective composition.

  16. The Effects of Light and Temperature on Biotin Synthesis in Pea Sprouts.

    Science.gov (United States)

    Kamiyama, Shin; Ohnuki, Risa; Moriki, Aoi; Abe, Megumi; Ishiguro, Mariko; Sone, Hideyuki

    2016-01-01

    Biotin is an essential micronutrient, and is a cofactor for several carboxylases that are involved in the metabolism of glucose, fatty acids, and amino acids. Because plant cells can synthesize their own biotin, a wide variety of plant-based foods contains significant amounts of biotin; however, the influence of environmental conditions on the biotin content in plants remains largely unclear. In the present study, we investigated the effects of different cultivation conditions on the biotin content and biotin synthesis in pea sprouts (Pisum sativum). In the experiment, the pea sprouts were removed from their cotyledons and cultivated by hydroponics under five different lighting and temperature conditions (control [25ºC, 12-h light/12-h dark cycle], low light [25ºC, 4-h light/20-h dark cycle], dark [25ºC, 24 h dark], low temperature [12ºC, 12-h light/12-h dark cycle], and cold [6ºC, 12-h light/12-h dark cycle]) for 10 d. Compared to the biotin content of pea sprouts under the control conditions, the biotin contents of pea sprouts under the low-light, dark, and cold conditions had significantly decreased. The dark group showed the lowest biotin content among the groups. Expression of the biotin synthase gene (bio2) was also significantly decreased under the dark and cold conditions compared to the control condition, in a manner similar to that observed for the biotin content. No significant differences in the adenosine triphosphate content were observed among the groups. These results indicate that environmental conditions such as light and temperature modulate the biotin content of pea plant tissues by regulating the expression of biotin synthase.

  17. In situ probing of temperature in radio frequency thermal plasma using Yttrium ion emission lines during synthesis of yttria nanoparticles

    Science.gov (United States)

    Dhamale, G. D.; Tiwari, N.; Mathe, V. L.; Bhoraskar, S. V.; Ghorui, S.

    2017-07-01

    Particle feeding is used in the most important applications of radio frequency (r.f.) thermal plasmas like synthesis of nanoparticles and particle spheroidization. The study reports an in-situ investigation of radial distribution of temperature in such devices using yttrium ion emission lines under different rates of particle loading during synthesis of yttria nanoparticles. A number of interesting facts about the response of r.f. plasma to the rate of particle loading, hitherto unknown, are revealed. Observed phenomena are supported with experimental data from fast photographic experiments and actual synthesis results. The use of the Abel inversion technique together with simultaneous multi-track acquisition of emission spectra from different spatial locations using a CCD based spectrometer allowed us to extract accurate distribution of temperature inside the plasma in the presence of inherent instabilities. The temperature profiles of this type of plasma have been measured possibly for the first time while particles are being fed into the plasma. Observed changes in the temperature profiles as the particle feed rate increases are very significant. Reaction forces resulting from particle evaporation, and increased skin depth owing to the decrease in electrical conductivity in the edge region are proposed as the two different mechanisms to account for the observed changes in the temperature profile as the powder feed rate is increased. Quantitative analyses supporting the proposed mechanisms are presented.

  18. ACBC to Balcite: Bioinspired Synthesis of a Highly Substituted High-Temperature Phase from an Amorphous Precursor

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, Michael L.; Joester, Derk (NWU)

    2017-04-28

    Energy-efficient synthesis of materials locked in compositional and structural states far from equilibrium remains a challenging goal, yet biomineralizing organisms routinely assemble such materials with sophisticated designs and advanced functional properties, often using amorphous precursors. However, incorporation of organics limits the useful temperature range of these materials. Herein, the bioinspired synthesis of a highly supersaturated calcite (Ca0.5Ba0.5CO3) called balcite is reported, at mild conditions and using an amorphous calcium–barium carbonate (ACBC) (Ca1- x Ba x CO3·1.2H2O) precursor. Balcite not only contains 50 times more barium than the solubility limit in calcite but also displays the rotational disorder on carbonate sites that is typical for high-temperature calcite. It is significantly harder (30%) and less stiff than calcite, and retains these properties after heating to elevated temperatures. Analysis of balcite local order suggests that it may require the formation of the ACBC precursor and could therefore be an example of nonclassical nucleation. These findings demonstrate that amorphous precursor pathways are powerfully enabling and provide unprecedented access to materials far from equilibrium, including high-temperature modifications by room-temperature synthesis.

  19. Design of deepwater HP/HT pipe-in-pipe flowlines crossing mega-furrows in the Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Tianxi Andy; Chacko, Jacob; Zhou, Mengjuan Jane; Omonoji, Gabriel O. [TECHNIP USA, Houston, TX (United States); Eigbe, Uwa [INTECSEA, Houston, TX (United States)

    2009-07-01

    Two 12-mile long pipe-in-pipe (PIP) with HT/HP flow lines were recently designed for the Chinook offshore oil field in the Gulf of Mexico. The routes of the flow line of the Chinook crosses continuous mega-furrows at the water depth ranging from 8200 ft to 8800 ft. The design of the temperature and pressure of the flow lines were 250 deg F and 12,684 psi, respectively. The detailed finite element analysis was performed to predict flow line in-place behavior. The strain-based criterion of API RP 1111 was used where stresses were greater than allowable limits of the ASME B31.8 and found to be satisfactory. The fatigue analysis of the spans pipe subjected to Vortex Induced Vibration (VIV) showed the need for VIV mitigation measures. It was decided that the entire length of the flow lines crossing the mega-furrows should be stake. The analysis of the stake fatigue life of the flow lines resulted greater than the required 25 years service life. Further analysis was performed on the PIP system to optimize the centralizer spacing to sufficiently limit the buckling of inner pipe under operation conditions and prevent crushing of the insulation in the annulus. J-lay analysis of the installation determining the amount of the inner pipe pre-tensioning that was required to eliminate locked-in stresses in the inner and outer pipes. (author)

  20. Effect of sintering time and temperature on properties of high pressure assisted WC/Co hard metal composite

    Energy Technology Data Exchange (ETDEWEB)

    Karimi, M.M.; Gomes, U.U.; Oliveira, M.P.; Filgueira, M. [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil)

    2016-07-01

    Full text: WC/Co is widely used as cutting tools, because has a unique combination of high strength, hardness, toughness, and moderate stiffness, especially with fine grained WC and finely distributed cobalt. WC/Co powder mixture sinters by different methods such as vacuum sintering, microwave sintering and SPS. High pressure high temperature (HPHT) sintering is a proposed method that can results in better distribution of cobalt and avoid undesirable phases by using high pressure, high temperature and very low sintering time. In this study, a powder mixture of WC- 10 wt% Co was sintered by HPHT at 1500 to 1900 deg C under a pressure of 7.7 GPa for 2 and 3 minutes. Microstructural/structural analyses were performed by SEM/EDS and XRD. Hardness was also done to obtain the effect of sintering parameters. It was found that increasing sintering time in HPHT sintering method at a constant temperature can improve properties of WC/Co hard metal. It was also realized that both sintering temperature and time have effect on hardness and density. (author)

  1. Application of Self-Propagating High Temperature Synthesis to the Fabrication of Actinide Bearing Nitride and Other Ceramic Nuclear Fuels

    International Nuclear Information System (INIS)

    Moore, John J.; Reigel, Marissa M.; Donohoue, Collin D.

    2009-01-01

    The project uses an exothermic combustion synthesis reaction, termed self-propagating high-temperature synthesis (SHS), to produce high quality, reproducible nitride fuels and other ceramic type nuclear fuels (cercers and cermets, etc.) in conjunction with the fabrication of transmutation fuels. The major research objective of the project is determining the fundamental SHS processing parameters by first using manganese as a surrogate for americium to produce dense Zr-Mn-N ceramic compounds. These fundamental principles will then be transferred to the production of dense Zr-Am-N ceramic materials. A further research objective in the research program is generating fundamental SHS processing data to the synthesis of (i) Pu-Am-Zr-N and (ii) U-Pu-Am-N ceramic fuels. In this case, Ce will be used as the surrogate for Pu, Mn as the surrogate for Am, and depleted uranium as the surrogate for U. Once sufficient fundamental data has been determined for these surrogate systems, the information will be transferred to Idaho National Laboratory (INL) for synthesis of Zr-Am-N, Pu-Am-Zr-N and U-Pu-Am-N ceramic fuels. The high vapor pressures of americium (Am) and americium nitride (AmN) are cause for concern in producing nitride ceramic nuclear fuel that contains Am. Along with the problem of Am retention during the sintering phases of current processing methods, are additional concerns of producing a consistent product of desirable homogeneity, density and porosity. Similar difficulties have been experienced during the laboratory scale process development stage of producing metal alloys containing Am wherein compact powder sintering methods had to be abandoned. Therefore, there is an urgent need to develop a low-temperature or low-heat fuel fabrication process for the synthesis of Am-containing ceramic fuels. Self-propagating high temperature synthesis (SHS), also called combustion synthesis, offers such an alternative process for the synthesis of Am nitride fuels. Although SHS

  2. Kinetically controlled synthesis of large-scale morphology-tailored silver nanostructures at low temperature

    Science.gov (United States)

    Zhang, Ling; Zhao, Yuda; Lin, Ziyuan; Gu, Fangyuan; Lau, Shu Ping; Li, Li; Chai, Yang

    2015-08-01

    Ag nanostructures are widely used in catalysis, energy conversion and chemical sensing. Morphology-tailored synthesis of Ag nanostructures is critical to tune physical and chemical properties. In this study, we develop a method for synthesizing the morphology-tailored Ag nanostructures in aqueous solution at a low temperature (45 °C). With the use of AgCl nanoparticles as the precursor, the growth kinetics of Ag nanostructures can be tuned with the pH value of solution and the concentration of Pd cubes which catalyze the reaction. Ascorbic acid and cetylpyridinium chloride are used as the mild reducing agent and capping agent in aqueous solution, respectively. High-yield Ag nanocubes, nanowires, right triangular bipyramids/cubes with twinned boundaries, and decahedra are successfully produced. Our method opens up a new environmentally-friendly and economical route to synthesize large-scale and morphology-tailored Ag nanostructures, which is significant to the controllable fabrication of Ag nanostructures and fundamental understanding of the growth kinetics.Ag nanostructures are widely used in catalysis, energy conversion and chemical sensing. Morphology-tailored synthesis of Ag nanostructures is critical to tune physical and chemical properties. In this study, we develop a method for synthesizing the morphology-tailored Ag nanostructures in aqueous solution at a low temperature (45 °C). With the use of AgCl nanoparticles as the precursor, the growth kinetics of Ag nanostructures can be tuned with the pH value of solution and the concentration of Pd cubes which catalyze the reaction. Ascorbic acid and cetylpyridinium chloride are used as the mild reducing agent and capping agent in aqueous solution, respectively. High-yield Ag nanocubes, nanowires, right triangular bipyramids/cubes with twinned boundaries, and decahedra are successfully produced. Our method opens up a new environmentally-friendly and economical route to synthesize large-scale and morphology

  3. The Influence of Synthesis Temperature on Manufacturing and Properties of SrSi2O2N2:Eu2+ Powders

    Directory of Open Access Journals (Sweden)

    Pawlik T.

    2017-06-01

    Full Text Available This paper presents the results of the synthesis temperature on the properties of the ceramic powders of SrSi2O2N2:Eu2+ obtained by the solid-phase reaction. Synthesis was carried out in the temperature range of 1250-1650°C for 2 hours in nitrogen flow in the reducing atmosphere of the graphite furnace. The phases present in the resultant powders were identified by X-ray structural analysis (XRD. Scanning electron microscopy (SEM was used to examine the changes in the powder morphology as a result of the synthesis. The excitation and emission spectra measurements let to study phosphor photoluminescence properties. The results show the strong influence of temperature synthesis on the formation and purity of expected phases. The synthesis temperature also affects the luminescent properties of SrSi2O2N2:Eu2+ ceramic powders.

  4. Low Temperature Synthesis of Li2SiO3: Effect on Its Morphological and Textural Properties

    Directory of Open Access Journals (Sweden)

    Georgina Mondragón-Gutiérrez

    2008-01-01

    Full Text Available Synthesis, at low temperature, of Li2SiO3 was investigated using different Li : Si molar ratios and urea, which was used as template. This new synthesis was performed in order to look for different textural and morphological properties than those obtained usually by conventional methods in this kind of ceramics. XRD and SEM analyses showed that Li2SiO3 was obtained pure and with ceramic particle morphology of hollow spheres of 2–6 μm. TEM analysis showed that those spheres were composed by needle-like particles crosslinked among them. This morphology provided a high surface area, probed by N2 adsorption. Therefore, this method of synthesis may be used to obtain other similar ceramics and test them in different applications.

  5. Microstructure evolution of Mo–Si–Al system during self-propagation high-temperature synthesis

    International Nuclear Information System (INIS)

    Jia, Lei; Xie, Hui; Lu, Zhen-lin; Zhang, Chao

    2013-01-01

    Highlights: ► Phase transformation subsequence of the reaction system was given by a sketch. ► Transformation of MoSi 2 to Mo(Si, Al) 2 phase was observed by XRD analysis. ► Variation of diffraction peaks was discussed by lattice parameters calculation. -- Abstract: The microstructure and phase constitution of Mo(Si 1−x , Al x ) 2 alloys (x = 0.03, 0.1 and 0.4) prepared by self-propagation high-temperature synthesis is first investigated using SEM, EDS and XRD analysis. Then the lattice parameters and adiabatic temperature are calculated. Based on the above experimental and calculated results, the variation mechanism of diffraction peaks and phase transformation subsequence of the Mo–MoO 3 –Si–Al powders is discussed. Results show that, when the self-propagation reaction is over, there are a homogeneous Mo–Si–Al alloy melt and a fused Al 2 O 3 with lower density at top. Subsequently, MoSi 2 or Mo(Si, Al) 2 phase nucleates and grows as a primary phase in the Mo–Si–Al alloy melts, and then Al, Si substances are generated from the intergranular residual Al–Si liquid according to Al–Si binary phase diagram. The Al increase in the starting powder mixtures leads to the Al concentration increase in the Mo–Si–Al alloy melt. Consequently, MoSi 2 is transformed to Mo(Si, Al) 2 to phase in which Si is replaced by Al atoms and Al substance in the intergranular zones increased accordingly

  6. Effect of Temperature and Mole Ratio on the Synthesis Yield of Rhenium-Tetrofosmin

    Directory of Open Access Journals (Sweden)

    Widyastuti

    2015-08-01

    Full Text Available Technetium-99m (99mTc tetrofosmin is widely used in nuclear medicine as a diagnostic agent for myocardial perfusion and as a tumor imaging agent. As a parenteral preparation it requires an evaluation of its pharmacokinetics and stability in-vivo. Since 99mTc has a short half-life and is only available in very low concentrations, it is impossible to characterize its chemical properties and presence in the body. Due to this reason, only technetium-99 (T1/2 = 5 × 105 years, which is available in macro quantities, or natural rhenium can be used for this purpose. In this study rhenium-188 (188Re tetrofosmin will be synthesized and applied, because non-radioactive Re can be easily obtained. Synthesis and radiochemical purity analysis of carrier-added 188Re-tetrofosmin were carried out as a model to study the in-vivo stability of technetium-99m tetrofosmin. Rhenium-188 was used as a tracer to identify the formation of rhenium tetrofosmin. Rhenium gluconate was synthesized first prior to the formation of rhenium tetrofosmin. The quality of labeling for both rhenium gluconate and rhenium tetrofosmin was analyzed using paper- and thin-layer chromatography, respectively. Rhenium gluconate can be synthesized with high labeling yield within 1 hour, whereas rhenium tetrofosmin was synthesized both in room temperature and in an elevated temperature with various tetrofosmin-to-rhenium mole ratios.The results showed that heating at 95oC led to a higher yield of more than 90% within 30 minutes. Rhenium tetrofosmin could be produced in high radiochemical purity using an excess of tetrofosmin with mole ratio of 2000. It is concluded that rhenium tetrofosmin could be synthesized through the formation of rhenium gluconate, and a higher yield could be obtained in a shorter time by heating process.

  7. Urea-assisted low temperature green synthesis of graphene nanosheets for transparent conducting film

    Science.gov (United States)

    Chamoli, Pankaj; Das, Malay K.; Kar, Kamal K.

    2018-02-01

    Present work demonstrates the fabrication of graphene nanosheet (GN) based transparent conducting film (TCF) using spray coating. Green synthesis of GN is carried out by reduction of graphene oxide (GO) using urea as green reducing agent. The reductive ability of urea with varied concentration is studied for GO at low temperature (i.e., 90 °C). As synthesized graphene nanosheets (GNs) are characterized by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), UV-visible spectroscopy, field emission scanning electron microscopy (FESEM), atomic force microscope (AFM), and X-ray Photon spectroscopy (XPS). Raman analysis confirms that the maximum reduction of oxygen species is noticed using 30 mg/ml urea concentration at 90 °C from GO, and found Raman D to G band ratio (ID/IG) of ∼1.30. XPS analysis validates the Raman signature of removal of oxygen functional groups from GO, and obtained C/O ratio of ∼5.28. Further, transparent conducting films (TCFs) are fabricated using synthesized GNs. Thermal graphitization is carried out to enhance the optical and electrical properties of TCFs. TCF shows best performance when it is annealed at 900 °C for 1 h in vacuum, and obtained sheet resistance is ∼1.89 kΩ/□ with transmittance of ∼62.53%.

  8. Low-Temperature Synthesis of Hierarchical Amorphous Basic Nickel Carbonate Particles for Water Oxidation Catalysis.

    Science.gov (United States)

    Yang, Yisu; Liang, Fengli; Li, Mengran; Rufford, Thomas E; Zhou, Wei; Zhu, Zhonghua

    2015-07-08

    Amorphous nickel carbonate particles are catalysts for the oxygen evolution reaction (OER), which plays a critical role in the electrochemical splitting of water. The amorphous nickel carbonate particles can be prepared at a temperature as low as 60 °C by an evaporation-induced precipitation (EIP) method. The products feature hierarchical pore structures. The mass-normalized activity of the catalysts, measured at an overpotential of 0.35 V, was 55.1 A g(-1) , with a Tafel slope of only 60 mV dec(-1) . This catalytic activity is superior to the performance of crystalline NiOx particles and β-Ni(OH)2 particles, and compares favorably to state-of-the-art RuO2 catalysts. The activity of the amorphous nickel carbonate is remarkably stable during a 10 000 s chronoamperometry test. Further optimization of synthesis parameters reveals that the amorphous structure can be tuned by adjusting the H2 O/Ni ratio in the precursor mixture. These results suggest the potential application of easily prepared hierarchical basic nickel carbonate particles as cheap and robust OER catalysts with high activity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Characterization of ceramics and intermetallics fabricated by self-propagating high-temperature synthesis

    International Nuclear Information System (INIS)

    Hurst, J.B.

    1989-05-01

    Three efforts aimed at investigating the process of self-propagating high temperature synthesis (SHS) for the fabrication of structural ceramics and intermetallics are summarized. Of special interest was the influence of processing variables such as exothermic dopants, gravity, and green state morphology in materials produced by SHS. In the first effort directed toward the fabrication of SiC, exothermic dopants of yttrium and zirconium were added to SiO2 or SiO2 + NiO plus carbon powder mix and processed by SHS. This approach was unsuccessful since it did not produce the desired product of crystalline SiC. In the second effort, the influence of gravity was investigated by examining Ni-Al microstructures which were produced by SHS combustion waves traveling with and opposite the gravity direction. Although final composition and total porosities of the combusted Ni-Al compounds were found to be gravity independent, larger pores were created in those specimens which were combusted opposite to the gravity force direction. Finally, it was found that green microstructure has a significant effect on the appearance of the combusted piece. Severe pressing laminations were observed to arrest the combustion front for TiC samples

  10. Synthesis of Multifunctional Electrically Tunable Fluorine-Doped Reduced Graphene Oxide at Low Temperatures.

    Science.gov (United States)

    Shahzad, Faisal; Zaidi, Shabi Abbas; Koo, Chong Min

    2017-07-19

    Doping with heteroatoms is a well-established method to tune the electronic properties and surface chemistry of graphene. Herein, we demonstrate the synthesis of a fluorine-doped reduced graphene oxide (FrGO) at low temperatures that offers multiple opportunities in applied fields. The as-synthesized FrGO product shows a better electrical conductivity of 750 S m -1 than that of undoped rGO with an electrical conductivity of 195 S m -1 . To demonstrate the multifunctional applications of the as-synthesized FrGO, it was examined for electromagnetic interference shielding and electrochemical sensing of histamine as an important food biomarker. A laminate of FrGO delivered an EMI shielding effectiveness value of 22 dB in Ku band as compared with 11.2 dB for an rGO laminate with similar thickness. On the other hand, an FrGO modified sensor offered an excellent sensitivity (∼7 nM), wide detection range, and good selectivity in the presence of similar biomarkers. This performance originates from the better catalytic ability of FrGO as compared with rGO, where fluorine atoms play the role of catalytic active sites owing to their high electronegativity. The fluorination reaction also helps to improve the reduction degree of the chemically synthesized graphene, consequently enhancing the electrical conductivity, which is a prime requirement for increasing the electromagnetic and electrochemical properties of graphene.

  11. Synthesis of high quality monolayer graphene at reduced temperature on hydrogen-enriched evaporated copper (111) films.

    Science.gov (United States)

    Tao, Li; Lee, Jongho; Chou, Harry; Holt, Milo; Ruoff, Rodney S; Akinwande, Deji

    2012-03-27

    We report new findings on the chemical vapor deposition (CVD) of monolayer graphene with negligible defects (≥95% negligible defect-peak over 200 μm × 200 μm areas) on evaporated copper films. Compared to copper foils used in the CVD of graphene, several new unexpected results have been observed including high-quality monolayer synthesis at temperatures copper grains. These thermal, chemical, and physical growth characteristics of graphene on copper films can be attributed to the distinct differences in the dominant crystal orientation of copper films (111) versus foils (100), and consequent dissimilar interplay with the precursor gas. This study suggests that reduced temperature, hydrogen-free synthesis of defect-negligible monolayer graphene is feasible, with the potential to shape and scale graphene grains by controlling the size and crystal orientation of the underlying copper grains. © 2012 American Chemical Society

  12. Room temperature synthesis of Ni-based alloy nanoparticles by radiolysis.

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, Tina Maria; Berry, Donald T.; Lu, Ping; Leung, Kevin; Provencio, Paula Polyak; Stumpf, Roland Rudolph; Huang, Jian Yu; Zhang, Zhenyuan

    2009-09-01

    Room temperature radiolysis, density functional theory, and various nanoscale characterization methods were used to synthesize and fully describe Ni-based alloy nanoparticles (NPs) that were synthesized at room temperature. These complementary methods provide a strong basis in understanding and describing metastable phase regimes of alloy NPs whose reaction formation is determined by kinetic rather than thermodynamic reaction processes. Four series of NPs, (Ag-Ni, Pd-Ni, Co-Ni, and W-Ni) were analyzed and characterized by a variety of methods, including UV-vis, TEM/HRTEM, HAADF-STEM and EFTEM mapping. In the first focus of research, AgNi and PdNi were studied. Different ratios of Ag{sub x}- Ni{sub 1-x} alloy NPs and Pd{sub 0.5}- Ni{sub 0.5} alloy NP were prepared using a high dose rate from gamma irradiation. Images from high-angle annular dark-field (HAADF) show that the Ag-Ni NPs are not core-shell structure but are homogeneous alloys in composition. Energy filtered transmission electron microscopy (EFTEM) maps show the homogeneity of the metals in each alloy NP. Of particular interest are the normally immiscible Ag-Ni NPs. All evidence confirmed that homogeneous Ag-Ni and Pd-Ni alloy NPs presented here were successfully synthesized by high dose rate radiolytic methodology. A mechanism is provided to explain the homogeneous formation of the alloy NPs. Furthermore, studies of Pd-Ni NPs by in situ TEM (with heated stage) shows the ability to sinter these NPs at temperatures below 800 C. In the second set of work, CoNi and WNi superalloy NPs were attempted at 50/50 concentration ratios using high dose rates from gamma irradiation. Preliminary results on synthesis and characterization have been completed and are presented. As with the earlier alloy NPs, no evidence of core-shell NP formation occurs. Microscopy results seem to indicate alloying occurred with the CoNi alloys. However, there appears to be incomplete reduction of the Na{sub 2}WO{sub 4} to form the W

  13. Polycrystalline methane hydrate: Synthesis from superheated ice, and low-temperature mechanical properties

    Science.gov (United States)

    Stern, L.A.; Kirby, S.H.; Durham, W.B.

    1998-01-01

    We describe a new and efficient technique to grow aggregates of pure methane hydrate in quantities suitable for physical and material properties testing. Test specimens were grown under static conditions by combining cold, pressurized CH4 gas with granulated H2O ice, and then warming the reactants to promote the reaction CH4(g) + 6H2O(s???1) ??? CH4??6H2O (methane hydrate). Hydrate formation evidently occurs at the nascent ice/liquid water interface on ice grain surfaces, and complete reaction was achieved by warming the system above the ice melting point and up to 290 K, at 25-30 MPa, for approximately 8 h. The resulting material is pure, cohesive, polycrystalline methane hydrate with controlled grain size and random orientation. Synthesis conditions placed the H2O ice well above its melting temperature while reaction progressed, yet samples and run records showed no evidence for bulk melting of the unreacted portions of ice grains. Control experiments using Ne, a non-hydrate-forming gas, showed that under otherwise identical conditions, the pressure reduction and latent heat associated with ice melting are easily detectable in our fabrication apparatus. These results suggest that under hydrate-forming conditions, H2O ice can persist metastably to temperatures well above its ordinary melting point while reacting to form hydrate. Direct observations of the hydrate growth process in a small, high-pressure optical cell verified these conclusions and revealed additional details of the hydrate growth process. Methane hydrate samples were then tested in constant-strain-rate deformation experiments at T = 140-200 K, Pc = 50-100 MPa, and ?? = 10-4 10-6 s-1. Measurements in both the brittle and ductile fields showed that methane hydrate has measurably different strength than H2O ice, and work hardens to an unusually high degree compared to other ices as well as to most metals and ceramics at high homologous temperatures. This work hardening may be related to a changing

  14. Low temperature synthesis of layered NaxCoO2 and KxCoO2 from ...

    Indian Academy of Sciences (India)

    We report a low temperature synthesis of layered Na0.20CoO2 and K0.44CoO2 phases from NaOH and KOH fluxes at 400°C. These layered oxides are employed to prepare hexagonal HCoO2, LiCoO2 and Delafossite AgCoO2 phases by ion exchange method. The resulting oxides were characterised by powder X-ray ...

  15. Low-temperature hydrothermal synthesis of ZnO nanorods: Effects of zinc salt concentration, various solvents and alkaline mineralizers

    Energy Technology Data Exchange (ETDEWEB)

    Edalati, Khatereh, E-mail: kh_ed834@stu.um.ac.ir [Department of Metallurgical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM) Campus, Azadi Sq., Mashhad, Khorasan Razavi (Iran, Islamic Republic of); Shakiba, Atefeh [Department of Material Science and Metallurgy, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Vahdati-Khaki, Jalil; Zebarjad, Seyed Mojtaba [Department of Metallurgical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM) Campus, Azadi Sq., Mashhad, Khorasan Razavi (Iran, Islamic Republic of)

    2016-02-15

    Highlights: • We synthesized ZnO nanorods by a simple hydrothermal process at 60 °C. • Effects of zinc salt concentration, solvent and alkaline mineralizer was studied. • Increasing concentration of zinc salt changed ZnO nucleation system. • NaOH yielded better results in the production of nanorods in both solvents. • Methanol performed better in the formation of nanorods using the two mineralizers. - Abstract: ZnO has been produced using various methods in the solid, gaseous, and liquid states, and the hydrothermal synthesis at low temperatures has been shown to be an environmentally-friendly one. The current work utilizes a low reaction temperature (60 °C) for the simple hydrothermal synthesis of ZnO nanorod morphologies. Furthermore, the effects of zinc salt concentration, solvent type and alkaline mineralizer type on ZnO nanorods synthesis at a low reaction temperature by hydrothermal processing was studied. Obtained samples were analyzed using X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). Increasing the concentration of the starting zinc salt from 0.02 to 0.2 M changed ZnO nucleation system from the homogeneous to the heterogeneous state. The XRD results confirmed the production hexagonal ZnO nanostructures of with a crystallite size of 40.4 nm. Varying the experimental parameters (mineralizer and solvent) yielded ZnO nanorods with diameters ranging from 90–250 nm and lengths of 1–2 μm.

  16. [Induction of E. coli alkaline phosphatase synthesis in cells preincubated at low temperatures].

    Science.gov (United States)

    Evdokimova, O A; Nesmeianova, M A; Kulaev, I S

    1978-09-01

    Cell preincubation at lowered t degrees was found to result in increased alcaline phosphatase synthesis. The ability of cells for increased alcaline phosphatase synthesis correlates with increased content of cis-vaccinic acid and higher liquidity of lipids. It has been ascertained that modifications caused by cell preincubation at lowered t degrees favour the greater stability of mRNA coding the alcaline phosphatase.

  17. Kinetic effects in the photomediated synthesis of silver nanodecahedra and nanoprisms: combined effect of wavelength and temperature.

    Science.gov (United States)

    Wang, Haitao; Cui, Xiaoqiang; Guan, Weiming; Zheng, Xianliang; Zhao, Hetong; Wang, Zhao; Wang, Qiyu; Xue, Tianyu; Liu, Chang; Singh, David J; Zheng, Weitao

    2014-07-07

    Photomediated synthesis is a reliable, high yield method for the production of a variety of morphologies of silver nanoparticles. Here, we report synthesis of silver nanoprisms and nanodecahedra with tunable sizes via control of the reaction temperature and the irradiation wavelength. The results show that shorter excitation wavelengths and lower reaction temperatures result in high yields of nanodecahedra, while longer excitation wavelengths and higher reaction temperatures result in the formation of nanoprisms. The mechanism for the growth condition dependent evolution in the morphology of the silver particles is discussed as a kinetically controlled process. This is based on analysis of the reaction kinetics at various excitation wavelengths and temperatures. The energy barrier for the transformation from seeds to nanodecahedra is relatively high and requires a shorter wavelength. Thus longer wavelength illumination leads to the formation of nanoprisms. Thermodynamically stable five-fold twinning structures are shown to evolve from twin plane structures. The fast reaction rate at higher temperature favors the growth of nanoprisms by preferential Ag deposition on planar structures in a kinetics-controlled mode, while slower rates yield thermodynamically favored nanodecahedra.

  18. Influence of Synthesis Temperature on the Growth and Surface Morphology of Co3O4 Nanocubes for Supercapacitor Applications

    Science.gov (United States)

    Samal, Rashmirekha; Dash, Barsha; Sarangi, Chinmaya Kumar; Subbaiah, Tondepu; Senanayake, Gamini; Minakshi, Manickam

    2017-01-01

    A facile hydrothermal route to control the crystal growth on the synthesis of Co3O4 nanostructures with cube-like morphologies has been reported and tested its suitability for supercapacitor applications. The chemical composition and morphologies of the as-prepared Co3O4 nanoparticles were extensively characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Varying the temperature caused considerable changes in the morphology, the electrochemical performance increased with rising temperature, and the redox reactions become more reversible. The results showed that the Co3O4 synthesized at a higher temperature (180 °C) demonstrated a high specific capacitance of 833 F/g. This is attributed to the optimal temperature and the controlled growth of nanocubes. PMID:29088061

  19. Synthesis of zinc oxide microrods and nano-fibers with dominant exciton emission at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Brito, F., E-mail: fro_brito@yahoo.com.m [Laboratorio de Materiales Optoelectronicos del Centro de Ciencias de Sinaloa, Ave. de las Americas 2771 Col. Villa Universidad 80010, Culiacan, Sinaloa (Mexico); Alejo-Armenta, C. [Laboratorio de Materiales Optoelectronicos del Centro de Ciencias de Sinaloa, Ave. de las Americas 2771 Col. Villa Universidad 80010, Culiacan, Sinaloa (Mexico); Garcia-Hipolito, M. [Departamento de Materiales Metalicos y Ceramicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, AP 70-360, Coyoacan 04510, DF (Mexico); Camarillo, E.; Hernandez A, J. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, AP 20-364, Alvaro Obregon 01000, DF (Mexico); Falcony, C. [Departamento de Fisica, CINVESTAV-IPN, AP 14-740, 07000, DF (Mexico); Murrieta S, H. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, AP 20-364, Alvaro Obregon 01000, DF (Mexico)

    2011-05-15

    Employing a simple chemical synthesis method, hexagonal-shaped zinc oxide microrods and zinc oxide nano-fibers were deposited on pyrex-glass and aluminum substrates, respectively. Both kinds of deposits showed zincite crystalline phase with lattice parameters: a=3.2498 A and c=5.2066 A. Microrods showed very uniform wide and large sizes of around 1 and 10 {mu}m, respectively. Both deposits were homogeneous over all substrate surfaces. Microrods and nano-fibers resulted with good optical quality and with preferential crystalline growth in [1 0 1 0]and [0 0 0 1]directions. The principal optical characteristics for both microrods and nano-fibers were: a) room-temperature photo and cathodo-luminescent spectra with strong exciton emission centered around 390 nm and with FWHMs around 125 and 160 meV, respectively, b) poor photo and cathode-luminescent emissions in the visible region of the electromagnetic spectrum, c) energy band gap of 3.32 eV, d) good emission efficiency supported by the not-required high energy densities to obtain strong exciton emission and e) good ZnO stoichiometry endorsed by photoluminescent results. These characteristics make of these microrods and nano-fibers good for potential photonic applications. - Research highlights: {yields} Microrods and nano-fibers resulted with good optical quality and with preferential crystalline growth in [1 0 1 0]and [0 0 0 1]directions. {yields} Microrods and nano-fibers resulted with good emission efficiency supported by the not-required high energy densities to obtain strong exciton emission. {yields} The wet chemical method is appropriated for deposition of microrods and nano-fibers with the desired optical properties for its possible application in photonics.

  20. Synthesis of zinc oxide microrods and nano-fibers with dominant exciton emission at room temperature

    International Nuclear Information System (INIS)

    Ramos-Brito, F.; Alejo-Armenta, C.; Garcia-Hipolito, M.; Camarillo, E.; Hernandez A, J.; Falcony, C.; Murrieta S, H.

    2011-01-01

    Employing a simple chemical synthesis method, hexagonal-shaped zinc oxide microrods and zinc oxide nano-fibers were deposited on pyrex-glass and aluminum substrates, respectively. Both kinds of deposits showed zincite crystalline phase with lattice parameters: a=3.2498 A and c=5.2066 A. Microrods showed very uniform wide and large sizes of around 1 and 10 μm, respectively. Both deposits were homogeneous over all substrate surfaces. Microrods and nano-fibers resulted with good optical quality and with preferential crystalline growth in [1 0 1 0] and [0 0 0 1] directions. The principal optical characteristics for both microrods and nano-fibers were: a) room-temperature photo and cathodo-luminescent spectra with strong exciton emission centered around 390 nm and with FWHMs around 125 and 160 meV, respectively, b) poor photo and cathode-luminescent emissions in the visible region of the electromagnetic spectrum, c) energy band gap of 3.32 eV, d) good emission efficiency supported by the not-required high energy densities to obtain strong exciton emission and e) good ZnO stoichiometry endorsed by photoluminescent results. These characteristics make of these microrods and nano-fibers good for potential photonic applications. - Research highlights: → Microrods and nano-fibers resulted with good optical quality and with preferential crystalline growth in [1 0 1 0] and [0 0 0 1] directions. → Microrods and nano-fibers resulted with good emission efficiency supported by the not-required high energy densities to obtain strong exciton emission. → The wet chemical method is appropriated for deposition of microrods and nano-fibers with the desired optical properties for its possible application in photonics.

  1. A novel high pressure, high temperature vessel used to conduct long-term stability measurements of silicon MEMS pressure transducers

    Science.gov (United States)

    Wisniewiski, David

    2014-03-01

    The need to quantify and to improve long-term stability of pressure transducers is a persistent requirement from the aerospace sector. Specifically, the incorporation of real-time pressure monitoring in aircraft landing gear, as exemplified in Tire Pressure Monitoring Systems (TPMS), has placed greater demand on the pressure transducer for improved performance and increased reliability which is manifested in low lifecycle cost and minimal maintenance downtime through fuel savings and increased life of the tire. Piezoresistive (PR) silicon MEMS pressure transducers are the primary choice as a transduction method for this measurement owing to their ability to be designed for the harsh environment seen in aircraft landing gear. However, these pressure transducers are only as valuable as the long-term stability they possess to ensure reliable, real-time monitoring over tens of years. The "heart" of the pressure transducer is the silicon MEMS element, and it is at this basic level where the long-term stability is established and needs to be quantified. A novel High Pressure, High Temperature (HPHT) vessel has been designed and constructed to facilitate this critical measurement of the silicon MEMS element directly through a process of mechanically "floating" the silicon MEMS element while being subjected to the extreme environments of pressure and temperature, simultaneously. Furthermore, the HPHT vessel is scalable to permit up to fifty specimens to be tested at one time to provide a statistically significant data population on which to draw reasonable conclusions on long-term stability. With the knowledge gained on the silicon MEMS element, higher level assembly to the pressure transducer envelope package can also be quantified as to the build-effects contribution to long-term stability in the same HPHT vessel due to its accommodating size. Accordingly, a HPHT vessel offering multiple levels of configurability and robustness in data measurement is presented, along

  2. Metastable Cu(I)-niobate semiconductor with a low-temperature, nanoparticle-mediated synthesis.

    Science.gov (United States)

    Choi, Jonglak; King, Nacole; Maggard, Paul A

    2013-02-26

    A nanoparticle synthetic strategy for the preparation of a new metastable Cu(I)-niobate is described, and that involves multipored Li₃NbO₄ nanoparticles as a precursor. A hydrothermal reaction of HNbO₃ and LiOH·H₂O in PEG200 and water at ∼180 °C yields ∼15-40 nm Li₃NbO₄ particles. These particles are subsequently used in a solvothermal copper(I)-exchange reaction with excess CuCl at 150 °C. Heating these products within the used CuCl flux (mp = 430 °C) to 450 °C for 30 min yields ∼4-12 nm Cu₂Nb₈O₂₁ crystalline nanoparticles, and for a heating time of 24 h yields μm-sized, rod-shaped crystals. The new structure was characterized by single-crystal X-ray diffraction to have a condensed network consisting of NbO₇ polyhedra and chains of elongated CuO₄ tetrahedra. The compound thermally decomposes starting at ∼250 °C and higher temperatures, depending on the particle sizes, owing to the loss of the weakly coordinated Cu(I) cations from the structure and a concurrent disproportionation reaction at its surfaces. Thus, conventional solid-state reactions involving higher temperatures and bulk reagents have proven unsatisfactory for its synthesis. The measured bandgap size is ∼1.43-1.65 eV (indirect) and shows a dependence on the particle sizes. Electronic structure calculations based on density functional theory show that the bandgap transition results from the excitation of electrons at the band edges between filled Cu(I) 3d¹⁰-orbitals and empty Nb(V) 4d⁰-orbitals, respectively. The p-type nature of the Cu₂Nb₈O₂₁ particles was confirmed in photoelectrochemical measurements on polycrystalline films that show a strong photocathodic current under visible-light irradiation in aqueous solutions. These results demonstrate the general utility of reactive nanoscale precursors in the synthetic discovery of new Cu(I)-based semiconducting oxides and which also show promise for use in solar energy conversion applications.

  3. Effect of temperature on the synthesis of silver nanoparticles with polyethylene glycol: new insights into the reduction mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Fleitas-Salazar, Noralvis; Silva-Campa, Erika; Pedroso-Santana, Seidy; Tanori, Judith; Pedroza-Montero, Martín R.; Riera, Raúl, E-mail: rriera@cifus.uson.mx [Universidad de Sonora (Mexico)

    2017-03-15

    Polyethylene glycol (PEG) molecules act as a reducing and stabilizing agent in the formation of silver nanoparticles. PEG undergoes thermal oxidative degradation at temperatures over 70 °C in the presence of oxygen. Here, we studied how the temperature and an oxidizing atmosphere could affect the synthesis of silver nanoparticles with PEG. We tested different AgNO{sub 3} concentrations for nanoparticles syntheses using PEG of low molecular weight, at 60 and 100 °C. At the higher temperature, the reducing action of PEG increased and the effect of PEG/Ag{sup +} ratio on nanoparticles aggregation changed. These results suggest that different synthesis mechanisms operate at 60 and 100 °C. Thus, at 60 °C the reduction of silver ions can occur through the oxidation of the hydroxyl groups of PEG, as has been previously reported. We propose that the thermal oxidative degradation of PEG at 100 °C increases the number of both, functional groups and molecules that can reduce silver ions and stabilize silver nanoparticles. This degradation process could explain the enhancement of PEG reducing action observed by other authors when they increase the reaction temperature or use a PEG of higher molecular weight.

  4. Low-temperature solution synthesis of chemically functional ferromagnetic FePtAu nanoparticles

    NARCIS (Netherlands)

    Kinge, S.S.; Gang, T.; Naber, W.J.M.; Boschker, J.A.; Rijnders, Augustinus J.H.M.; Reinhoudt, David; van der Wiel, Wilfred Gerard

    2009-01-01

    Magnetic nanoparticles are of great scientific and technological interest. The application of ferromagnetic nanoparticles for high-density data storage has great potential, but energy efficient synthesis of uniform, isolated, and patternable nanoparticles that remain ferromagnetic at room

  5. Effect of Synthesis Temperature on the Growth Iron-Filled Carbon Nanotubes as Evidenced by Structural, Micro-Raman, and Thermogravimetric Analyses

    Directory of Open Access Journals (Sweden)

    M. S. Shamsudin

    2012-01-01

    Full Text Available Tubular structure and well dense of aligned carbon nanotubes (CNTs were formulated using two-stage catalytic chemical vapor deposition apparatus. In this experiment, aligned CNT was synthesized in the range of 700–900°C temperatures with increment rate of 50°C per sample. The aligned CNT properties were investigated via field emission scanning electron microscope, micro-Raman spectrometer and thermogravimetric analyzer. The experimental results showed that aligned CNT properties were highly dependent on synthesis temperature changes. The optimum temperature of higher crystallinity was observed at 800°C synthesis temperature. However, the highest yield of nanotubes (~99.99% was obtained at 900°C synthesis temperature. Aligned CNT orientation was in a parallel form and packed together in orderly manner. The behaviors of aligned CNT will be discussed in detail in this paper.

  6. Effects of High-Pressure High-Temperature Sintering on the Band Gap and Thermoelectric Properties of PbSe

    Science.gov (United States)

    Chen, Bo; Li, Yi; Sun, Zhen-Ya

    2017-11-01

    In this study, PbSe bulk samples were prepared by a high-pressure high-temperature (HPHT) sintering technique, and the phase compositions, band gaps and thermoelectric properties of the samples were systematically investigated. The sintering pressure exerts a significant influence on the preferential orientation, band gap and thermoelectric properties of PbSe. With increasing pressure, the preferential orientation decreases, mainly due to the decreased crystallinity, while the band gap first decreases and then increases. The electrical conductivity and power factor decrease gradually with increasing pressure, mainly attributed to the decreased carrier concentration and mobility. Consequently, the sample prepared by 2 GPa shows the highest thermoelectric figure-of-merit, ZT, of 0.55 at ˜ 475 K. The ZT of the HPHT-sintered PbSe could be further improved by properly doping or optimizing the HPHT parameters. This study further demonstrates that the sintering pressure could be another degree of freedom to manipulate the band structure and thermoelectric properties of materials.

  7. Synthesis and high (pressure, temperature) stability of ZnTiO3 polymorphs studied by Raman spectroscopy

    Science.gov (United States)

    Bernert, T.; Ruiz-Fuertes, J.; Bayarjargal, L.; Winkler, B.

    2015-05-01

    The phase-purity of ilmenite-type ZnTiO3 prepared by the ceramic method was investigated in dependence of the conditions during ball milling. The previously proposed addition of 2 ml ethanol to the starting materials led to a significant contamination of the product phase after a subsequent sintering process at 1073 K. However, by omitting ethanol this synthesis route led to a phase-pure sample of ZnTiO3 as confirmed by X-ray powder diffraction and Raman spectroscopy. High-temperature high-pressure experiments gave an ilmenite-type to perovskite-type phase boundary with a slope of dT/dP∼-135 K GPa-1 crossing ambient temperature conditions at ∼ 24 GPa in good agreement with previous calculations. Room-temperature high-pressure Raman spectroscopy experiments have shown the stability of the ilmenite-type phase up to a pressure of at least 38.5 GPa, the highest pressure applied in this study, indicating the presence of a kinetic barrier in this phase transition. The synthesis of ferroelectric LiNbO3-type ZnTiO3 was confirmed by second harmonic generation.

  8. Tuning the shell thickness-dependent plasmonic absorption of Ag coated Au nanocubes: The effect of synthesis temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jian, E-mail: jianzhusummer@163.com; Zhang, Fan; Chen, Bei-Bei; Li, Jian-Jun; Zhao, Jun-Wu, E-mail: nanoptzhao@163.com

    2015-09-15

    Graphical abstract: Ag coating leads to great enhancement of SPR absorbance of Au nanocubes, and the Ag coating-dependent non-monotonous SPR shift is greater at lower temperature. - Highlights: • Au nanocubes with more uniform shape can be obtained at lower growth temperature. • Ag coating leads to great enhancement of SPR absorption intensity. • The Ag coating dependent non-monotonous SPR shift is greater at lower temperature. - Abstract: The temperature dependent synthesis and plasmonic optical properties of Ag coated Au nanocubes have been investigated experimentally. It has been found that the Au nanocubes with more uniform morphology and higher yield could be obtained by decreasing the growth temperature. Because of the non-spherical symmetry of the particles shape and the plasmon coupling between Au–Ag interface and outer Ag surface, four absorption peaks at most have been observed. As the Ag coating thickness is increased, the absorbance intensity of these plasmon peaks gets intense greatly, and the absorption peak at longest wavelength blue shifts firstly and then red shifts. The non-monotonous plasmonic shift has been attributed to the competition between the increase of Ag composition and the enlargement of the particle size. What's more, the wavelength region of both blue shift and red shift could also be enhanced by decreasing the temperature.

  9. Tuning the shell thickness-dependent plasmonic absorption of Ag coated Au nanocubes: The effect of synthesis temperature

    International Nuclear Information System (INIS)

    Zhu, Jian; Zhang, Fan; Chen, Bei-Bei; Li, Jian-Jun; Zhao, Jun-Wu

    2015-01-01

    Graphical abstract: Ag coating leads to great enhancement of SPR absorbance of Au nanocubes, and the Ag coating-dependent non-monotonous SPR shift is greater at lower temperature. - Highlights: • Au nanocubes with more uniform shape can be obtained at lower growth temperature. • Ag coating leads to great enhancement of SPR absorption intensity. • The Ag coating dependent non-monotonous SPR shift is greater at lower temperature. - Abstract: The temperature dependent synthesis and plasmonic optical properties of Ag coated Au nanocubes have been investigated experimentally. It has been found that the Au nanocubes with more uniform morphology and higher yield could be obtained by decreasing the growth temperature. Because of the non-spherical symmetry of the particles shape and the plasmon coupling between Au–Ag interface and outer Ag surface, four absorption peaks at most have been observed. As the Ag coating thickness is increased, the absorbance intensity of these plasmon peaks gets intense greatly, and the absorption peak at longest wavelength blue shifts firstly and then red shifts. The non-monotonous plasmonic shift has been attributed to the competition between the increase of Ag composition and the enlargement of the particle size. What's more, the wavelength region of both blue shift and red shift could also be enhanced by decreasing the temperature

  10. Low-temperature CVD synthesis of patterned core-shell VO2@ZnO nanotetrapods and enhanced temperature-dependent field-emission properties

    Science.gov (United States)

    Yin, Haihong; Yu, Ke; Song, Changqing; Wang, Zhiliang; Zhu, Ziqiang

    2014-09-01

    VO2 nanostructures are attractive materials because of their reversible metal-insulator transition (MIT) and wide applications in devices. When they are used as field emitters, a new type of temperature-controlled field emission device can be fabricated. Vapor transport methods used to synthesize traditional VO2 nanostructures are energy-intensive, low yield, and produce simple morphology (quasi-1D) that exhibits substrate clamping; thus they are not suitable for field emission applications. To overcome these limitations, ZnO nanotetrapods were used as templates, and patterned core-shell VO2@ZnO nanotetrapods were successfully grown on an ITO/glass substrate via a low-temperature CVD synthesis. SEM, TEM, EDX, XPS analyses and X-ray diffraction revealed that the cores and shells of these nanotetrapods were single crystal wurtzite-type ZnO and polycrystalline VO2, respectively. The VO2@ZnO nanotetrapods show strongly MIT-related FE properties, the emission current density at low temperature is significantly enhanced in comparison with pure VO2 nanostructures, and the emission current density increased by about 20 times as the ambient temperature increased from 25 to 105 °C at a fixed field of 5 V μm-1. Although the VO2@ZnO nanotetrapods show a worse FE performance at low temperatures compared with pure ZnO nanotetrapods, the FE performance was substantially improved at high temperatures, which was attributed to the MIT-related band bending near the interface and the abrupt resistance change across the MIT.

  11. An Efficient Protocol for the Synthesis of Quinoxaline Derivatives at Room Temperature Using Recyclable Alumina-Supported Heteropolyoxometalates

    Directory of Open Access Journals (Sweden)

    Diego M. Ruiz

    2012-01-01

    Full Text Available We report a suitable quinoxaline synthesis using molybdophosphovanadates supported on commercial alumina cylinders as catalysts. These catalysts were prepared by incipient wetness impregnation. The catalytic test was performed under different reaction conditions in order to know the performance of the synthesized catalysts. The method shows high yields of quinoxaline derivatives under heterogeneous conditions. Quinoxaline formation was obtained using benzyl, o-phenylenediamine, and toluene as reaction solvent at room temperature. The CuH2PMo11VO40 supported on alumina showed higher activity in the tested reaction. Finally, various quinoxalines were prepared under mild conditions and with excellent yields.

  12. Synthesis and temperature-dependent studies of a perovskite-like manganese formate framework templated with protonated acetamidine.

    Science.gov (United States)

    Mączka, Mirosław; Janczak, Jan; Trzebiatowska, Monika; Sieradzki, Adam; Pawlus, Sebastian; Pikul, Adam

    2017-07-04

    We report the synthesis, crystal structure, thermal, dielectric, phonon and magnetic properties of the [CH 3 C(NH 2 ) 2 ][Mn(HCOO) 3 ] (AceMn) compound. Our results show that this compound crystallizes in the perovskite-like orthorhombic structure, space group Imma. It undergoes a structural phase transition at 304 K into a monoclinic structure, space group P2 1 /n. X-ray diffraction, dielectric, IR and Raman studies show that the ordering of the acetamidinium cations triggers the phase transition. Low-temperature magnetic studies show that this compound exhibits weak ferromagnetic properties below 9.0 K.

  13. Influence of the temperature on the synthesis of CdS quantum dots stabilized with poly (vinil alcohol)

    International Nuclear Information System (INIS)

    Carvalho, Andre L.B. de; Mansur, Alexandra A.P.; Mansur, Herman S.; Gonzalez, Juan C.

    2011-01-01

    Semiconductor nanoparticles (Quantum Dots, QDs) have been the subject of recent research by presenting quantum properties. This property has stimulated the study of these particles in biological applications such as bookmarks, which creates the necessity of using different synthesis routes resulting in biocompatible systems. Thus, this study aimed to evaluate the effect of temperature on the properties of QDs cadmium sulfide, aqueous route using poly (vinyl alcohol), a biocompatible polymer, such as stabilizing agent. The characterization of particles produced was performed by UV-Vis spectroscopy and photoluminescence (PL) spectra for obtaining the absorption and emission, respectively and Transmission microscopy (TEM) for analysis of the diameter of the nanocrystals. (author)

  14. Identification of paramagnetic nitrogen centers (P1) in diamond crystallites synthesized via the sintering of detonation nanodiamonds at high pressure and temperature

    Science.gov (United States)

    Osipov, V. Yu.; Shakhov, F. M.; Efimov, N. N.; Minin, V. V.; Kidalov, S. V.; Vul', A. Ya.

    2017-06-01

    Diamond single crystals synthesized from powder detonation nanodiamonds (DNDs) by means of treatment at high pressures ( P 7 GPa) and temperatures ( T > 1300°C) have been studied by electron paramagnetic resonance (EPR). A key feature of treatment (high-pressure high-temperature (HPHT) sintering) is the use of low molecular weight alcohols in the process. The appearance of a hyperfine EPR signal structure due to "paramagnetic nitrogen" (P1 centers) is explained by the growth of submicron and micron diamond single crystals from DND nanocrystals by the oriented attachment and coalescence mechanism. Such growth and coarsening of crystals appreciably decreases the concentration of paramagnetic centers, the presence of which hinders the detection of a hyperfine structure in the EPR signal from P1 centers, in the near-surface areas of coalesced and grown together DND particles. It has been shown that the concentration of paramagnetic defects of all types decreases to 3.1 × 1018 g-1 ( 60 ppm) during HPHT treatment at T = 1650°C. This causes the successful identification of P1 centers, whose fraction is no less than 40% of the total amount of paramagnetic centers in microcrystals synthesized by HPHT sintering.

  15. OMS-2-Supported Cu Hydroxide-Catalyzed Benzoxazoles Synthesis from Catechols and Amines via Domino Oxidation Process at Room Temperature.

    Science.gov (United States)

    Meng, Xu; Wang, Yanmin; Wang, Yuanguang; Chen, Baohua; Jing, Zhenqiang; Chen, Gexin; Zhao, Peiqing

    2017-07-07

    In the presence of manganese oxide octahedral molecular sieve (OMS-2) supported copper hydroxide Cu(OH) x /OMS-2, aerobic synthesis of benzoxazoles from catechols and amines via domino oxidation/cyclization at room temperature is achieved. This heterogeneous benzoxazoles synthesis initiated by the efficient oxidation of catechols over Cu(OH) x /OMS-2 tolerates a variety of substrates, especially amines containing sensitive groups (hydroxyl, cyano, amino, vinyl, ethynyl, ester, and even acetyl groups) and heterocycles, which affords functionalized benzoxazoles in good to excellent yields by employing low catalyst loading (2 mol % Cu). The characterization and plausible catalytic mechanism of Cu(OH) x /OMS-2 are described. The notable features of our catalytic protocol such as the use of air as the benign oxidant and EtOH as the solvent, mild conditions, ease of product separation, being scalable up to the gram level, and superior reusability of catalyst (up to 10 cycles) make it more practical and environmentally friendly for organic synthesis.

  16. Thermal Conductivity Effects on SHS (Self-Propagating High-Temperature Synthesis Reactions.

    Science.gov (United States)

    1988-03-01

    various hydride and nitride synthesis processes, might benefit from the relatively low outgassing afforded by highly porous green compacts with low...measured the propagation velocity in the aluminium and iron oxide system over a density range of 10% to 70% of theoretical maximum. With increasing powder

  17. The effects of cannabinoids on body temperature and brain catecholamine synthesis.

    Science.gov (United States)

    Bloom, A S; Johnson, K M; Dewey, W L

    1978-04-01

    delta9-Tetrahydrocannabinol, 11-OH-delta9-tetrahydrocannabinol and 9-nor-9beta-OH-hexahydrocannabinol produced hypothermia and increased catecholamine synthesis in mouse brain. The potencies of the effects of these compounds were correlated. Cannabinol and cannabidiol were inactive in both tests.

  18. Low temperature synthesis of nanosized Mn1–xZnxFe2O4 ferrites ...

    Indian Academy of Sciences (India)

    Administrator

    recent years, the design and synthesis of nano-magnetic particles have been the focus of fundamental and applied research owing to their enhanced or unusual properties. (Herzer et al 2005). It is possible to manipulate the pro- perties of a spinel material to meet the demands of a specific application. Manganese zinc ...

  19. A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance

    International Nuclear Information System (INIS)

    Ogawa, Makoto; Morita, Masashi; Igarashi, Shota; Sato, Soh

    2013-01-01

    A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 µm was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 °C, though 600 °C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassium lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: • Potassium lithium titanate was prepared by solid-state reaction. • Lower temperature reaction resulted in smaller sized particles of titanate. • 600 °C was good enough to obtain single phased potassium lithium titanate. • The product exhibited better performance as photocatalyst

  20. A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature

    Science.gov (United States)

    Sadeghi, Babak; Gholamhoseinpoor, F.

    2015-01-01

    Biomolecules present in plant extracts can be used to reduce metal ions to nanoparticles in a single-step green synthesis process. This biogenic reduction of metal ion to base metal is quite rapid, readily conducted at room temperature and pressure, and easily scaled up. Mediated Synthesis by plant extracts is environmentally benign. The involved reducing agents include the various water soluble plant metabolites (e.g. alkaloids, phenolic compounds, terpenoids) and co-enzymes. Silver (Ag) nanoparticles have the particular focus of plant-based syntheses. Extracts of a diverse range of Ziziphora tenuior (Zt) have been successfully used in making nanoparticles. The aim of this study was to investigate the antioxidant properties of this plant and its ability to synthesize silver nanoparticles. Z.tenuior leaves were used to prepare the aqueous extract for this study. Silver nanoparticles were characterized with different techniques such as UV-vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Transmission electron microscopy experiments showed that these nanoparticles are spherical and uniformly distributed and its size is from 8 to 40 nm. FT-IR spectroscopy revealed that silver nanoparticles were functionalized with biomolecules that have primary amine group (sbnd NH2), carbonyl group, sbnd OH groups and other stabilizing functional groups. X-ray diffraction pattern showed high purity and face centered cubic structure of silver nanoparticles with size of 38 nm. In addition to plant extracts, live plants can be used for the synthesis. Here were view the methods of making nanoparticles using plant extracts. The scanning electron microscopy (SEM) implies the right of forming silver nanoparticles. The results of TEM, SEM, FT-IR, UV-VIS and XRD confirm that the leaves extract of Zt can synthesis silver nanoparticles.

  1. High temperature synthesis of ceramic composition by directed reaction of molten titanium or zirconium with boron carbide

    International Nuclear Information System (INIS)

    Johnson, W.B.

    1990-01-01

    Alternative methods of producing ceramics and ceramic composites include sintering, hot pressing and more recently hot isostatic pressing (HIP) and self-propagating high temperature synthesis (SHS). Though each of these techniques has its advantages, each suffers from several restrictions as well. Sintering may require long times at high temperatures and for most materials requires sintering aids to get full density. These additives can, and generally do, change (often degrade) the properties of the ceramic. Hot pressing and hot isostatic pressing are convenient methods to quickly prepare samples of some materials to full density, but generally are expensive and may damage some types of reinforcements during densification. This paper focuses on the preparation and processing of composites prepared by the directed reaction of molten titanium or zirconium with boron carbide. Advantages and disadvantages of this approach when compared to traditional methods are discussed, with reference to specific examples. Examples of microstructure are properties of these materials are reported

  2. Room Temperature Co-Precipitation Synthesis of Magnetite Nanoparticles in a Large pH Window with Different Bases.

    Science.gov (United States)

    Mascolo, Maria Cristina; Pei, Yongbing; Ring, Terry A

    2013-11-28

    Magnetite nanoparticles (Fe₃O₄) represent the most promising materials in medical applications. To favor high-drug or enzyme loading on the nanoparticles, they are incorporated into mesoporous materials to form a hybrid support with the consequent reduction of magnetization saturation. The direct synthesis of mesoporous structures appears to be of interest. To this end, magnetite nanoparticles have been synthesized using a one pot co-precipitation reaction at room temperature in the presence of different bases, such as NaOH, KOH or (C₂H₅)₄NOH. Magnetite shows characteristics of superparamagnetism at room temperature and a saturation magnetization (Ms) value depending on both the crystal size and the degree of agglomeration of individual nanoparticles. Such agglomeration appears to be responsible for the formation of mesoporous structures, which are affected by the pH, the nature of alkali, the slow or fast addition of alkaline solution and the drying modality of synthesized powders.

  3. Room Temperature Co-Precipitation Synthesis of Magnetite Nanoparticles in a Large pH Window with Different Bases

    Directory of Open Access Journals (Sweden)

    Maria Cristina Mascolo

    2013-11-01

    Full Text Available Magnetite nanoparticles (Fe3O4 represent the most promising materials in medical applications. To favor high-drug or enzyme loading on the nanoparticles, they are incorporated into mesoporous materials to form a hybrid support with the consequent reduction of magnetization saturation. The direct synthesis of mesoporous structures appears to be of interest. To this end, magnetite nanoparticles have been synthesized using a one pot co-precipitation reaction at room temperature in the presence of different bases, such as NaOH, KOH or (C2H54NOH. Magnetite shows characteristics of superparamagnetism at room temperature and a saturation magnetization (Ms value depending on both the crystal size and the degree of agglomeration of individual nanoparticles. Such agglomeration appears to be responsible for the formation of mesoporous structures, which are affected by the pH, the nature of alkali, the slow or fast addition of alkaline solution and the drying modality of synthesized powders.

  4. Model-based design of low-temperature carbon nanotube synthesis via catalytic oxidation for supercapacitor application.

    Science.gov (United States)

    Vasenkov, A V; Carnahan, D L

    2010-12-01

    Novel electrochemical double layer capacitors with carbon nanotube (CNT) electrode, often referred to as supercapacitors, have a potential to bridge a power and energy gap between traditional dielectric capacitors and chemical batteries. However, their future is uncertain because current fabrication technologies involve difficult-to-control post-growth manipulations of CNTs. This paper addresses this problem by introducing model-based design of low-temperature CNT synthesis that is suitable for in-situ fabrication of CNT-based supercapacitor electrode. The insight to the surface kinetics during low-temperature CNT synthesis via catalytic oxidation was obtained via coupled Molecular Dynamics and Quantum Semiempirical Hamiltonian simulations. It was determined that the presence of oxygen on the surface of catalyst increases, by several times, the time necessary for the decomposition of hydrocarbons as well as shifts the reaction zone from the surface of catalyst to the catalyst underlayer. Theoretical trends were confirmed by CNT growth experiments. A contact between conducting CNTs and zinc oxide binding layer was analyzed in detail since its properties strongly affect the performance of CNT electrode. It was demonstrated that the formed CNT-zinc oxide interface was free from unbonded oxygen atoms and/or clusters of zinc atoms and was weakly affected by defects in CNTs.

  5. Cooperation between catalytic and DNA binding domains enhances thermostability and supports DNA synthesis at higher temperatures by thermostable DNA polymerases.

    Science.gov (United States)

    Pavlov, Andrey R; Pavlova, Nadejda V; Kozyavkin, Sergei A; Slesarev, Alexei I

    2012-03-13

    We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases [Pavlov, A. R., et al. (2002) Proc. Natl. Acad. Sci. U.S.A.99, 13510-13515]. The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various sequence-nonspecific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting helix-hairpin-helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of Topo V HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105 °C by maintaining processivity of DNA synthesis at high temperatures. We found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding of templates to DNA polymerases.

  6. STUDY OF GRINDING PROCESS OF TITANIUM CARBIDE PRODUCED WITH SELF-PROPAGATING HIGH TEMPERATURE SYNTHESIS (SPHTS)

    International Nuclear Information System (INIS)

    Kovziridze, Z.; Tabatadze, G.; Donadze, G.; Lezhava, A.; Gventsadze, D.

    2006-01-01

    It is stated that the specific character of SPHTS-preparations of TiC x consists in crystal lattice strength reflecting the condition of synthesis in ''burning wave''. The use of roentgenographic and other methods of analysis allows to estimate the effect of the conditions of synthesis, causing carbon sublattice defect on grinding intensity of TiC x phases. Study of the kinetics of vibro-grinding of TiC x -phases in ethanol and benzene medium allows to establish high grinding intensity of the phases close to stoichiometry and the possibility of high depresion powderds (S sp H'' 4.5-6 m 2 /g). (author)

  7. Catalytic CVD Synthesis of Carbon Nanotubes: Towards High Yield and Low Temperature Growth

    OpenAIRE

    Magrez, Arnaud; Seo, Jin Won; Smajda, Rita; Mioni?, Marijana; Forr?, L?szl?

    2010-01-01

    The catalytic chemical vapor deposition (CCVD) is currently the most flexible and economically attractive method for the growth of carbon nanotubes. Although its principle is simple, the precisely controlled growth of carbon nanotubes remains very complex because many different parameters influence the growth process. In this article, we review our recent results obtained on the synthesis of carbon nanotubes via CCVD. We discuss the role of the catalyst and the catalyst support. Our recent re...

  8. Synthesis of Hafnium-Based Ceramic Materials for Ultra-High Temperature Aerospace Applications

    Science.gov (United States)

    Johnson, Sylvia; Feldman, Jay

    2004-01-01

    This project involved the synthesis of hafnium (Hf)-based ceramic powders and Hf-based precursor solutions that were suitable for preparation of Hf-based ceramics. The Hf-based ceramic materials of interest in this project were hafnium carbide (with nominal composition HE) and hafnium dioxide (HfO2). The materials were prepared at Georgia Institute of Technology and then supplied to research collaborators Dr. Sylvia Johnson and Dr. Jay Feldman) at NASA Ames Research Center.

  9. Low-temperature colloidal synthesis of CuBiS2 nanocrystals for optoelectronic devices

    OpenAIRE

    Wang, Jian-Jun; Akgul, Zafer; Bi, Yu; Christodouloua, Sotirios; Konstantatos, Gerasimos

    2017-01-01

    A new facile colloidal synthesis of CuBiS2 (CBS) nanocrystals with monodispersed size and good quality has been developed. The CBS nanocrystal films was deposited by solid-state ligand exchange and their field effect transistor and photoconductive characteristics were characterized. The prototype solar cell has presented a decent performance. The suitable bandgap and highly appealing photoresponsivity demonstrate the as-synthesized CBS nanocrystals as an alternative to existing Cd- and Pb-con...

  10. Radiation synthesis of a water-soluble temperature sensitive polymer, activated copolymer and applications in immobilization of proteins

    International Nuclear Information System (INIS)

    Zhai Maolin; Ha Hongfei; Wu Jilan

    1993-01-01

    In this work the radiation polymerization of N-isopropylacrylamide (NIPAAM) in aqueous solutions has been carried out and a water-soluble, temperature sensitive polymer and copolymer were obtained by using γ-rays from Co-60 source at room temperature. We have gained the optimum dose and dose-rate of radiation synthesis of linear polyNIPAAM through determining conversion yield and viscosity. In order to immobilize protein (BSA) and enzyme (HRP) into this water-soluble polymer, we prepared an activated copolymer, poly(N-isopropylacrylamide-co-N-acryloxysuccinimide). The BSA and HRP has been immobilized onto the activated copolymer. The BSA (HRP)/copolymer conjugates still kept the original thermally sensitive properties of the linear polyNIPAAM. The conjugation yield of BSA to the activated copolymer decreased with increasing dose. Immobilized HRP was stable at 0 o C for a long time and has, at least, 4 days stability at room temperature. Immobilized HRP activity was lowered when the temperature was raised. This phenomenon was reversible and the immobilized HRP regained activity. The optimum pH of the immobilized HRP shifted from ca.5 upward to ca. 7. (author)

  11. Synthesis of Monodisperse CdSe QDs using Controlled Growth Temperatures

    International Nuclear Information System (INIS)

    Noor Razinah Rahmat; Akrajas Ali Umar; Muhammad Yahya; Muhamad Mat Salleh; Mohammad Hafizuddin Jumali

    2011-01-01

    The effect of growth temperatures on size of CdSe quantum dots (QDs) has been investigated. CdSe QDs were synthesized using thermolysis of organometallics precursor route using wet chemical method. The growth temperature was varied from 260-310 degree Celsius with growth period fixed at 60 s. As the growth temperature increased, the monodispersed CdSe QDs with diameter in the range 3-7 nm were obtained. Both absorption and PL spectra of the QDs revealed a strong red-shift supporting the increment size of QDs with the rise of growth temperature. (author)

  12. Headspace components that discriminate between thermal and high pressure high temperature treated green vegetables: identification and linkage to possible process-induced chemical changes.

    Science.gov (United States)

    Kebede, Biniam T; Grauwet, Tara; Tabilo-Munizaga, Gipsy; Palmers, Stijn; Vervoort, Liesbeth; Hendrickx, Marc; Van Loey, Ann

    2013-12-01

    For the first time in literature, this study compares the process-induced chemical reactions in three industrially relevant green vegetables: broccoli, green pepper and spinach treated with thermal and high pressure high temperature (HPHT) processing. Aiming for a fair comparison, the processing conditions were selected based on the principle of equivalence. A comprehensive integration of MS-based metabolic fingerprinting techniques, advanced data preprocessing and statistical data analysis has been implemented as untargeted/unbiased multiresponse screening tool to uncover changes in the volatile fraction. For all vegetables, thermal processing, compared to HPHT, seems to enhance Maillard and Strecker degradation reaction, triggering the formation of furanic compounds and Strecker aldehydes. In most cases, high pressure seems to accelerate (an)aerobic thermal degradation of unsaturated fatty acids leading to the formation of aliphatic aldehydes and ketones. In addition, both thermal and HPHT processing accelerated the formation of sulfur-containing compounds. This work demonstrated that the approach is effective in identifying and comparing different process-induced chemical changes, adding depth to our perspective in terms of studying a highly complex chemical changes occurring during food processing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Synthesis and electrochemical properties of Co3O4 nanoparticles by hydrothermal method at different temperatures

    Science.gov (United States)

    Duan, Qiuyan; Chen, Haiyan

    2017-06-01

    In this work, Co3O4 nanoparticles were synthesized by hydrothermal method at different temperatures. The synthesized Co3O4 nanoparticles were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectrometer (XPS) and nitrogen adsorption-desorption. The Co3O4 nanoparticles prepared at the hydrothermal temperature of 140 °C and at the annealing temperature of 350 °C have a shorter crystal spacing distance associated to the (220) crystal planes, larger BET surface area and more bivalent cobalt on the surface than these of Co3O4 nanoparticles prepared at higher hydrothermal temperature or higher annealing temperature. The supercapacitor performances of synthesized Co3O4 nanoparticles were analysed by cyclic voltammograms (CVs), Galvano static charge/discharge (GCD) and the electrochemical impedance spectroscopy (EIS) in 6 M KOH aqueous electrolyte solution. The Co3O4 nanoparticles produced at lower temperatures exhibit good pseudo capacitance behaviour. Also, owning to the low hydrothermal temperature and the annealing temperature of Co3O4 nanoparticles, they can be relatively low cost in favour of a promising candidate for electrochemical supercapacitors.

  14. Thermodynamic approach to the synthesis of silicon carbide using tetramethylsilane as the precursor at high temperature

    Science.gov (United States)

    Jeong, Seong-Min; Kim, Kyung-Hun; Yoon, Young Joon; Lee, Myung-Hyun; Seo, Won-Seon

    2012-10-01

    Tetramethylsilane (TMS) is commonly used as a precursor in the production of SiC(β) films at relatively low temperatures. However, because TMS contains much more C than Si, it is difficult to produce solid phase SiC at high temperatures. In an attempt to develop a more efficient TMS-based SiC(α) process, computational thermodynamic simulations were performed under various temperatures, working pressures and TMS/H2 ratios. The findings indicate that each solid phase has a different dependency on the H2 concentration. Consequently, a high H2 concentration results in the formation of a single, solid phase SiC region at high temperatures. Finally, TMS appears to be useful as a precursor for the high temperature production of SiC(α).

  15. Synthesis of quinoxaline 1,4-di-n-oxide derivatives on solid support using room temperature and microwave-assisted solvent-free procedures

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Caro, Lilia C.; Sanchez-Sanchez, Mario; Bocanegra-Garcia, Virgilio; Rivera, Gildardo [Universidad Autonoma de Tamaulipas, Reynosa (Mexico). Dept. de Farmacia y Quimica Medicinal; Monge, Antonio [Universidad de Navarra, Pamplona (Spain). Centro de Investigacion en Farmacobiologia Aplicada. Unidad de Investigacion y Desarrollo de Medicamentos

    2011-07-01

    We describe the synthesis of 12 new ethyl and methyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives on solid supports with room temperature and microwave-assisted solvent-free procedures. Results show that solid supports have good catalytic activity in the formation of quinoxaline 1,4-di-N-oxide derivatives. We found that florisil and montmorillonite KSF and K10 could be used as new, easily available, inexpensive alternatives of catalysts. Additionally, room temperature and microwave-irradiation solvent-free synthesis was more efficient than a conventional procedure (Beirut reaction), reducing reaction time and increasing yield. (author)

  16. A Versatile Route for the Synthesis of Nickel Oxide Nanostructures Without Organics at Low Temperature

    Directory of Open Access Journals (Sweden)

    Shah MA

    2008-01-01

    Full Text Available AbstractNickel oxide nanoparticles and nanoflowers have been synthesized by a soft reaction of nickel powder and water without organics at 100 °C. The mechanism for the formation of nanostructures is briefly described in accordance with decomposition of metal with water giving out hydrogen. The structure, morphology, and the crystalline phase of resulting nanostructures have been characterized by various techniques. Compared with other methods, the present method is simple, fast, economical, template-free, and without organics. In addition, the approach is nontoxic without producing hazardous waste and could be expanded to provide a general and convenient strategy for the synthesis of nanostructures to other functional nanomaterials.

  17. Direct synthesis of ultrafine tetragonal BaTiO3 nanoparticles at room temperature

    Directory of Open Access Journals (Sweden)

    Hu Yong

    2011-01-01

    Full Text Available Abstract A large quantity of ultrafine tetragonal barium titanate (BaTiO3 nanoparticles is directly synthesized at room temperature. The crystalline form and grain size are checked by both X-ray diffraction and transmission electron microscopy. The results revealed that the perovskite nanoparticles as fine as 7 nm have been synthesized. The phase transition of the as-prepared nanoparticles is investigated by the temperature-dependent Raman spectrum and shows the similar tendency to that of bulk BaTiO3 materials. It is confirmed that the nanoparticles have tetragonal phase at room temperature.

  18. A global synthesis of seasonal temperature-size responses in copepods

    DEFF Research Database (Denmark)

    Horne, Curtis R.; Hirst, Andrew G.; Atkinson, David

    2016-01-01

    quantitative data from published literature on seasonal size responses of copepods. We analyse competing models to determine the best predictors of these responses, and compare the relative importance of temperature and chlorophyll-a concentration in explaining variation in body size.Results We quantify 140...... in the seasonal temperature-size response.Main conclusions Our findings lead us to suggest that feeding strategies may play a significant role in dictating the magnitude of seasonal temperature-size responses in copepods, with potential implications for other ectotherms with diverse feeding methods. Seasonal...

  19. Growth Mechanism for Low Temperature PVD Graphene Synthesis on Copper Using Amorphous Carbon

    Science.gov (United States)

    Narula, Udit; Tan, Cher Ming; Lai, Chao Sung

    2017-03-01

    Growth mechanism for synthesizing PVD based Graphene using Amorphous Carbon, catalyzed by Copper is investigated in this work. Different experiments with respect to Amorphous Carbon film thickness, annealing time and temperature are performed for the investigation. Copper film stress and its effect on hydrogen diffusion through the film grain boundaries are found to be the key factors for the growth mechanism, and supported by our Finite Element Modeling. Low temperature growth of Graphene is achieved and the proposed growth mechanism is found to remain valid at low temperatures.

  20. Synthesis, structure and temperature dependent luminescence of Eu3+ doped hydroxyapatite

    Science.gov (United States)

    Luo, Xiaobing; Luo, Xiaoxia; Wang, Hongwei; Deng, Yue; Yang, Peixin; Tian, Yili

    2018-01-01

    A series of Eu3+ substituted hydroxyapatite (HA) were prepared by co-precipitation reactions. The phase, fluorescence and temperature dependent luminescence of the phosphors were investigated by X-ray diffraction (XRD) and photoluminescence (PL). It is found that the doped Eu3+ ions have entered the hexagonal lattice with no obvious secondary phase were detected by XRD. The 5D0 → 7F0 transition was clearly split into two even at room temperature. The predominate 573 nm peak illustrates Eu3+ ions occupy more Ca(II) sites. The temperature dependent luminescent results show HA:xEu might be applied as one potential optical thermometry material.

  1. Bio-synthesis of triangular and hexagonal gold nanoparticles using palm oil fronds’ extracts at room temperature

    Science.gov (United States)

    Usman, Adamu Ibrahim; Aziz, Azlan Abdul; Abu Noqta, Osama

    2018-01-01

    Development of bio-reduction techniques for nanoparticles (NPs) synthesis in medical application remains a challenge to numerous researchers. This work reports a novel technique for the synthesis of triangular and hexagonal gold nanoparticles (AuNP) using palm oil fronds’ (POFs) extracts. The functional groups in the POFs’ extracts operate as a persuasive capping and reducing agent to growth AuNPs. The prepared AuNPs were characterized using UV-vis spectrophotometry, Fourier-transform infrared (FTIR) spectroscopy, dynamic light scattering, energy filtered transmission electron microscopy (EFTEM), and x-ray diffraction (XRD). The analysis of FTIR validates the coating of alkynes and phenolic composites on the AuNPs. This shows a feasible function of biomolecules for efficient stabilization of the AuNPs. EFTEM clearly show the triangular and hexagonal shapes of the prepared AuNPs. The XRD patterns display the peaks of fcc crystal structures at (111), (200), (220), (311) and (222), with average particle sizes of 66.7 and 79.02 nm for 1% and 5% POFs extracts concentrations respectively at room temperature. While at 120 °C the average particles size recorded for 1% and 5% of POFs extract concentrations were 32.17 nm and 45.66 nm respectively, and the reaction completed in less than 2 min. The prepared NPs could be potentially applied in biomedical application, due to their excellent stability and refine morphology without agglomeration.

  2. Flash pyrolysis at high temperature of ligno-cellulosic biomass and its components - production of synthesis gas

    International Nuclear Information System (INIS)

    Couhert, C.

    2007-11-01

    Pyrolysis is the first stage of any thermal treatment of biomass and governs the formation of synthesis gas for the production of electricity, hydrogen or liquid fuels. The objective of this work is to establish a link between the composition of a biomass and its pyrolysis gas. We study experimental flash pyrolysis and fix the conditions in which quantities of gas are maximal, while aiming at a regime without heat and mass transfer limitations (particles about 100 μm): temperature of 950 C and residence time of about 2 s. Then we try to predict gas yields of any biomass according to its composition, applicable in this situation where thermodynamic equilibrium is not reached. We show that an additivity law does not allow correlating gas yields of a biomass with fractions of cellulose, hemi-cellulose and lignin contained in this biomass. Several explanations are suggested and examined: difference of pyrolytic behaviour of the same compound according to the biomass from which it is extracted, interactions between compounds and influence of mineral matter. With the aim of industrial application, we study pyrolysis of millimetric and centimetric size particles, and make a numerical simulation of the reactions of pyrolysis gases reforming. This simulation shows that the choice of biomass affects the quantities of synthesis gas obtained. (author)

  3. Selective recovery of silver from waste low-temperature co-fired ceramic and valorization through silver nanoparticle synthesis.

    Science.gov (United States)

    Swain, Basudev; Shin, Dongyoon; Joo, So Yeong; Ahn, Nak Kyoon; Lee, Chan Gi; Yoon, Jin-Ho

    2017-11-01

    Considering the value of silver metal and silver nanoparticles, the waste generated during manufacturing of low temperature co-fired ceramic (LTCC) were recycled through the simple yet cost effective process by chemical-metallurgy. Followed by leaching optimization, silver was selectively recovered through precipitation. The precipitated silver chloride was valorized though silver nanoparticle synthesis by a simple one-pot greener synthesis route. Through leaching-precipitation optimization, quantitative selective recovery of silver chloride was achieved, followed by homogeneous pure silver nanoparticle about 100nm size were synthesized. The reported recycling process is a simple process, versatile, easy to implement, requires minimum facilities and no specialty chemicals, through which semiconductor manufacturing industry can treat the waste generated during manufacturing of LTCC and reutilize the valorized silver nanoparticles in manufacturing in a close loop process. Our reported process can address issues like; (i) waste disposal, as well as value-added silver recovery, (ii) brings back the material to production stream and address the circular economy, and (iii) can be part of lower the futuristic carbon economy and cradle-to-cradle technology management, simultaneously. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Synthesis and characterization of nano crystalline nickel zinc ferrite for chlorine gas sensor at room temperature

    Science.gov (United States)

    Pawar, C. S.; Gujar, M. P.; Mathe, V. L.

    2015-06-01

    Nano crystalline Nickel Zinc ferrite (Ni0.25Zn0.75Fe2O4) thin films were synthesized by Sol Gel method for gas response. The phase and microstructure of the obtained Ni0.25Zn0.75Fe2O4 thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). The nanostructured Ni0.25Zn0.75Fe2O4 thin film shows single spinel phase. Magnetic study was obtained with the help of VSM. The effects of working temperature on the gas response were studied. The results reveal that the Ni0.25Zn0.75Fe2O4 thin film gas sensor shows good selectivity to chlorine gas at room temperature. The sensor shows highest sensitivity (˜50%) at room temperature, indicating its application in detecting chlorine gas at room temperature in the future.

  5. Seed-free synthesis of 1D silver nanowires ink using clove oil (Syzygium Aromaticum) at room temperature.

    Science.gov (United States)

    Jeevika, Alagan; Ravi Shankaran, Dhesingh

    2015-11-15

    Silver nanowires (AgNWs) have been demonstrated to be a promising next generation conducting material and an alternative to the traditional electrode (ITO) because of its high conductivity, transparency and stability. Generally, AgNWs are synthesized by chemical method (mainly polyol reduction method) at high temperature in the presence of exotic seeds. The present work aims at the green approach for preparation and characterization of 1D AgNWs ink using clove oil (Syzygium Aromaticum) at room temperature. AgNWs was prepared by green synthesis using clove oil as reducing as well as capping agent at room temperature. The obtained ink was purified, filtered and redissolved in methanol. The prepared AgNWs showed an absorption peaks at 350 and 387nm in the UV-vis spectrum due to transverse SPR mode of silver. From the HR-TEM analysis, it was observed that the AgNWs possess an average diameter and length of ∼39±0.01nm and ∼3μm, respectively. The obtained AgNWs are crystalline in nature and are arranged in a perfect crystal lattice orientation, which was confirmed from the selected area electron diffraction studies. Moreover, the X-ray diffraction analysis confirms the face centered cubic structure. The AgNWs coated glass substrate shows an electrical conductivity of ∼0.48×10(6)S/m. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Enhancement of structural and magnetic properties of M-type hexaferrite permanent magnet based on synthesis temperature

    Science.gov (United States)

    Anjum, Safia; Sehar, Fatima; Mustafa, Zeeshan; Awan, M. S.

    2018-01-01

    The main purpose of this research work is to develop the single domain magnetic particles of M-type barium hexaferrite (BaFe12O19) using oxide precursors employing conventional powder metallurgy technique. The phase formation and magnetic performance of the powders and magnets will be optimized by adjusting calcination and sintering temperatures. The synthesis of M-type barium hexaferrite was carried out in two sections. A series of four samples have been prepared by initial wet mixed powders calcined at different temperatures, i.e., 750, 850, 950 and 1050 °C. On the basis of structural analysis, the sample calcined at 950 °C has been selected and further divided into four parts to sintered them at 1100, 1150, 1200 and 1250 °C. The structural measurements depict the confirmation of M-type barium hexaferrite structure. SEM micrographs show the hexagonal-shaped grains. The abrupt decrease in coercivity for the sample sintered at 1250 °C has been seen which may be due to high sintering temperature, at which the particles have multi-domain properties.

  7. Low temperature formation of naphthalene and its role in the synthesis of PAHs (Polycyclic Aromatic Hydrocarbons) in the interstellar medium

    Science.gov (United States)

    Zhang, Fangtong; Kim, Y. Seol; Kaiser, Ralf I.; Landera, Alexander; Kislov, Vadim V.; Mebel, Alexander M.; Tielens, A. G. G. M.

    2012-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are regarded as key molecules in the astrochemical evolution of the interstellar medium, but the formation mechanism of even their simplest prototype—naphthalene (C10H8)—has remained an open question. Here, we show in a combined crossed beam and theoretical study that naphthalene can be formed in the gas phase via a barrierless and exoergic reaction between the phenyl radical (C6H5) and vinylacetylene (CH2 = CH-C ≡ CH) involving a van-der-Waals complex and submerged barrier in the entrance channel. Our finding challenges conventional wisdom that PAH-formation only occurs at high temperatures such as in combustion systems and implies that low temperature chemistry can initiate the synthesis of the very first PAH in the interstellar medium. In cold molecular clouds, barrierless phenyl-type radical reactions could propagate the vinylacetylene-mediated formation of PAHs leading to more complex structures like phenanthrene and anthracene at temperatures down to 10 K. PMID:22198769

  8. Facile synthesis of unique NiO nanostructures for efficiently catalytic conversion of CH{sub 4} at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Yucheng; Zhao, Yanting; Ni, Liuliu; Jiang, Kedan; Tong, Guoxiu, E-mail: tonggx@zjnu.cn; Zhao, Yuling; Teng, Botao, E-mail: tbt@zjnu.cn

    2016-01-30

    Graphical abstract: - Highlights: • A simple one-pot thermal decomposition approach for NiO nanostructures. • Revealing the mechanism of morphological evolution. • Investigating the morphology-dependence of catalytic properties. - Abstract: A simple one-pot thermal decomposition approach to the selective synthesis of NiO nanomaterials was developed. The morphologies of the NiO nanomaterials were nanoparticle-based sheets, octahedra, nanosheet-built agglomerates, and nanoparticle-based microspheres. The samples were characterized by field-emission scanning electron microscopy, X-ray diffraction, transmission electron microscopy, and N{sub 2} adsorption analyses. The morphology, crystal size, and texture properties of the products can be easily modulated by selecting various decomposition temperatures and precursors. Samples with high specific surface area and small crystal size were found to easily form at low sintering temperatures and when basic nickel carbonate and nickel oxalate dihydrate were used as precursors. Reduction property and CH{sub 4} conversion, as functions of decomposition temperature and precursor type, were systematically investigated. When NiCO{sub 3}·2Ni(OH){sub 2}·4H{sub 2}O and NiC{sub 2}O{sub 4}·2H{sub 2}O were used as precursors, the as-obtained nanosheet-built agglomerates and nanoparticle-based sheets presented a high CH{sub 4} conversion rate because of the small crystal size and large specific surface area.

  9. Synthesis and characterization of L-tyrosine hydrochloride crystals submitted to high and low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Santos, C.A.A.S.; Facanha Filho, P.F.; Ribeiro, L.H.L.; Victor, F.M.S.; Abreu, D.C.; Santos, A.O. dos; Carvalho, J.O.; Soares, R.A.; Sousa, J.C.F.; Lima, R.C.; Cavaignac, A.O. [Universidade Federal do Maranhao (UFMA), MA (Brazil)

    2016-07-01

    Full text: New materials are emerging and generate advances in nonlinear optics that studies the phenomena related to changes in optical properties when occurs interaction of light with the matter. Semi organic crystals present such properties. The goal is this work is to produce semi organic single crystal of L-tyrosine hydrochloride (LTHCl) and verify their thermal stability when subjected to high and low temperatures. The single crystals of LTHCl were produced for solubilization of amino acid L-tyrosine in hydrochloric acid using slow solvent evaporation technique at a constant temperature of 25 deg C. The X-ray diffraction (XRD) and refining by the Rietveld method were used to confirm the structure of the material. The thermal stability was investigated using DSC, TGA-DTA. The LTHCl crystal belongs to the monoclinic system, with two molecules per unit cell. The refinement by the Rietveld method showed good results with Rwp= 8.49% and Rp= 6.29% with S=1.13. Thermal analysis shown an endothermic event at about 160°C, which can be associated with phase transition occurred in LTHCl crystal. It was also observed that the crystal melting point occurs at a temperature of 230°C. No water of crystallization was found in the crystal structure, which was confirmed by Raman spectroscopy and thermal analysis. From the Raman spectroscopy experiments in function of temperature, no significant changes was observe in the behavior of vibrational normal modes between temperatures of -253 and 170 deg C. Finally, a monoclinic crystal system LTHCl is stable up to 160°C at high temperatures and -253°C at low temperatures. Therefore, our investigation has proved that LTHCl crystals can be used in this range of temperature without the lost of their nonlinear optical properties. (author)

  10. Effect of Synthesis Temperature, Nucleation Time, and Postsynthesis Heat Treatment of ZnO Nanoparticles and Its Sensing Properties

    Directory of Open Access Journals (Sweden)

    Umair Manzoor

    2015-01-01

    Full Text Available Control in size, crystallinity, and optical properties of ZnO nanoparticles (NPs synthesized via coprecipitate method were investigated. A systematic change in particle size, crystallinity, and optical properties was observed by increasing synthesis temperature from 65°C to 75°C. A detailed study also suggested that smaller nucleation time is better to control the size distribution but the crystallinity will be compromised accordingly. Postannealing of ZnO NPs at 400°C also improves the crystal quality. Ultraviolet (UV sensors were successfully synthesized and the results suggested that as-synthesized ZnO NPs can be used as active material for sensor applications.

  11. Nanoparticles of Sr(OH)2: synthesis in homogeneous phase at low temperature and application for cultural heritage artefacts

    Science.gov (United States)

    Ciliberto, E.; Condorelli, G. G.; La Delfa, S.; Viscuso, E.

    2008-07-01

    This paper concerns the synthesis and the characterization of nanometer particles of Sr(OH)2, a moderately high water soluble hydroxide (Ksp= 3.2×10-4 at 25 °C). The reported process yields strontium hydroxide nanoparticles starting from low cost raw materials in aqueous medium (homogeneous phase) at low temperature (below 100 °C) by chemical precipitation from salt solutions, involving very simple operational steps and avoiding the use of organic solvents. Observations by X-ray diffraction (XRD), scanning electron microscopy (SEM), electron dispersive X-Ray (EDX) and Fourier transform infrared spectroscopy (FTIR) indicate that the particles are well-crystallized and have nanometer dimensions (˜ 30 nm in diameter). Moreover, experimental evidence shows the potential use of this material for the protection and the consolidation of wall paintings (frescoes), paper, stone, wood and other artistic artefacts.

  12. Effect of pretreatment temperature on catalytic performance of the catalysts derived from cobalt carbonyl cluster in Fischer-Tropsch Synthesis

    Directory of Open Access Journals (Sweden)

    Byambasuren O

    2017-02-01

    Full Text Available The monometallic cobalt-based catalysts were prepared by pretreating the catalysts derived from carbonyl cluster precursor (CO6Co2CC(COOH2 supported on γ-Al2O3 with hydrogen at 180, 220, and 260°C respectively. The temperature effect of the pretreatments on the structure evolution of cluster precursors and the catalytic performance of the Fischer-Tropsch (F-T synthesis was investigated. The pretreated catalyst at 220°C with unique phase structure exhibited best catalytic activity and selectivity among three pretreated catalysts. Moreover, the catalysts exhibited high dispersion due to the formation of hydrogen bonds between the cluster precursor and γ-Al2O3 support.

  13. Controllable synthesis of spindle-like ZnO nanostructures by a simple low-temperature aqueous solution route

    Energy Technology Data Exchange (ETDEWEB)

    Lu Hongxia, E-mail: luhx@zzu.edu.cn [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Zhao Yunlong; Yu Xiujun; Chen Deliang [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Zhang Liwei [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Xinxiang University, Xinxiang 453003 (China); Xu Hongliang; Yang Daoyuan; Wang Hailong [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Zhang Rui [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou 450005 (China)

    2011-02-15

    Spindle-like ZnO nanostructures were successfully synthesized through direct precipitation of zinc acetate aqueous solution at 60 deg. C. Phase structure, morphology and microstructure of the products were investigated by X-ray diffraction, TG-DTA, FTIR and field emission scanning electron microscopy (FESEM). Result showed that hexagonal wurtzite structure ZnO nanostructures with about 100 nm in diameter and 100-200 nm in length were obtained. HMTA acted as a soft template in the process and played an important role in the formation of spindle-like ZnO nanostructures. Meanwhile, different morphologies were also obtained by altering synthetic temperature, additional agents and the ratios of Zn{sup 2+}/OH{sup -}. Possible mechanism for the variations of morphology with synthesis parameters was also discussed in this paper.

  14. Gold Tailored Photosensitive Elastin-like Polymer: Synthesis of Temperature, pH and UV-vis Sensitive Probes.

    Science.gov (United States)

    Alvarez-Rodríguez, Rubén; Arias, Francisco Javier; Santos, Mercedes; Testera, Ana María; Rodríguez-Cabello, José Carlos

    2010-03-16

    Here, we describe a procedure to manufacture smart hybrid probes that exhibit tunable optical properties as a function of multiple environmental variations. Initially, we achieved a one-pot synthesis of gold-PREP (photo-responsive elastin-like polymer) conjugate Gold-AzoGlu15 via reduction of auric acid in the presence of PREP AzoGlu15. Outstandingly, Gold-AzoGlu15 exhibited pH and temperature sensitiveness. However, Gold-AzoGlu15 was not UV-vis sensitive. We noticed that photo-isomerisation of azobenzene moieties in Gold-AzoGlu15 could not be detected by UV-vis spectroscopy. In a subsequent step, we explored the use of cyclodextrins and the formation of alkanethiol mixed-monolayers over mother Gold-AzoGlu15 by thiol-place exchange reactions in order to decouple photo-isomerisation of azobenzene from the bulk phase absorption. In this sense we achieved the synthesis of β-cyclodextrin capped Gold-CD-AzoGlu15. Notable was that cis-trans photo-conversion of azobenzene groups in Gold-CD-AzoGlu15 could be successfully detected. Finally, we present the optical properties exhibited by multi-sensitive probe Gold-CD-AzoGlu15 as a function of pH, temperature and UV-vis irradiation. We think that gold-PREP hybrids could be of great interest in the design of multi-functional chromophore-metal nanocomposites that operate in aqueous media for the development of multi-stimuli sensitive detectors for biosensing applications. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Depression of leukocyte protein synthesis, immune function and growth performance induced by high environmental temperature in broiler chickens

    Science.gov (United States)

    Kamel, Nancy N.; Ahmed, Ayman M. H.; Mehaisen, Gamal M. K.; Mashaly, Magdi M.; Abass, Ahmed O.

    2017-09-01

    In tropical and semitropical regions, raising broiler chickens out of their thermal comfort zone can cause an added economic loss in the poultry industry. The cause for the deleterious effects on immunity and growth performance of broilers under high environmental temperatures is still poorly understood. Therefore, the aim of the current investigation was to evaluate the effect of heat stress on leukocytes protein synthesis and immune function as a possible direct cause of low performance in broiler chickens under such condition. In this study, 300 one-day-old male broiler chicks (Cobb500™) were randomly assigned into 2 groups with 5 replicates of 30 chicks each. From 21 to 42 days of age, one group was exposed to non-stressed condition at 24 °C and 50% relative humidity (control group), while the other group was exposed to heat stress at 35 °C and 50% relative humidity (HS group). At 42 days of age, blood samples were collected from each group to evaluate stress indicators, immune function, and leukocytes protein synthesis. Production performance was also recorded. Noteworthy, protein synthesis in leukocytes was significantly ( P group by 38% compared to control group. In contrast, the phosphorylation level on threonine 56 site (Thr56) of eukaryotic elongation factor (eEF2), which indicates the suppression of protein translation process through altering the protein elongation phase, was significantly threefold higher in HS group than in control ( P group, respectively). Moreover, results on the broiler performance indicate that HS birds had a significant ( P < 0.05) lower body weight gain by 58%, lower feed consumption by 39%, higher conversion ratio by 27%, and higher mortality by more than three times, compared to control birds. In conclusion, our results demonstrate that the inhibition of leukocyte protein synthesis through increasing the level of eEF2 Thr56 phosphorylation may play a key role in the observed decrease in immune function and growth

  16. Origin of low temperature deactivation of Ni5Ga3 nanoparticles as catalyst for methanol synthesis

    DEFF Research Database (Denmark)

    Gardini, Diego; Sharafutdinov, Irek; Damsgaard, Christian Danvad

    -Ga alloys as active catalysts for methanol production from syngas mixtures and Ni-Ga nanoparticles supported on highly porous silica have been prepared using an incipient wetness impregnation technique from a solution of nickel and gallium nitrates [2]. Tests conducted in a fixed-bed reactor showed...... silica, on this new support Ni5Ga3 nanoparticles becomes directly exposed to the electron beam (Figure 2) allowing us to obtain high resolution TEM images and perform more accurate electron energy loss spectroscopy (EELS) measurements.......In an effort to find alternative energy sources capable to compete with fossil fuels, methanol synthesis could represent a realistic solution to store “green” hydrogen produced from electrolysis or photo-induced water splitting. Recently, density functional theory (DFT) calculations [1] proposed Ni...

  17. Low Temperature Synthesis, Chemical and Electrochemical Characterization of LiNi(x)Co(1-x)O2 (0 less than x less than 1)

    Science.gov (United States)

    Nanjundaswamy, K. S.; Standlee, D.; Kelly, C. O.; Whiteley, R. V., Jr.

    1997-01-01

    A new method of synthesis for the solid solution cathode materials LiNi(x)Co(1-x)O2 (0 less than x less than 1) involving enhanced reactions at temperatures less than or equal to 700 deg. C, between metal oxy-hydroxide precursors MOOH (M = Ni, Co) and Li-salts (Li2CO3, LiOH, and LiNO3) has been investigated. The effects of synthesis conditions and sources of Li, on phase purity, microstructure, and theoretical electrochemical capacity (total M(3+) content) are characterized by powder X-ray diffraction analysis, scanning electron microscopy, chemical analysis and room temperature magnetic susceptibility. An attempt has been made to correlate the electrochemical properties with the synthesis conditions and microstructure.

  18. Large-Scale Synthesis of Silver Nanoparticles by Aqueous Reduction for Low-Temperature Sintering Bonding

    Directory of Open Access Journals (Sweden)

    Qiu Xiliang

    2014-01-01

    Full Text Available Silver nanoparticles with average diameter of 22.4 nm were prepared by aqueous reduction method for low-temperature sintering bonding application. The reaction temperature and PVP concentration, which are the influential factors of nanoparticle characteristics, were investigated during reduction process. In our research, monodispersity of nanoparticles was remarkably improved while unfavorable agglomeration was avoided with the AgNO3/PVP mass ratio of 1 : 4 at the reaction temperature 30°C. Besides, copper pads were successfully bonded using sintering paste employing fresh silver nanoparticles with diameter of 20~35 nm at 200°C. In addition, after morphology of the bonding joint was analysed by scanning electron microscope (SEM, the porous sintering characteristics were confirmed.

  19. Synthesis and Self-Assembly of Block Copolymers Containing Temperature Sensitive and Degradable Chain Segments.

    Science.gov (United States)

    Gong, Hong-Liang; Lei, Lei; Shi, Shu-Xian; Xia, Yu-Zheng; Chen, Xiao-Nong

    2018-05-01

    In this work, polylactide-b-poly(N-isopropylacrylamide) were synthesized by the combination of controlled ring-opening polymerization and reversible addition fragmentation chain transfer polymerization. These block copolymers with molecular weight range from 7,900 to 12,000 g/mol and narrow polydispersity (≤1.19) can self-assemble into micelles (polylactide core, poly(N-isopropylacrylamide) shell) in water at certain temperature range, which have been evidenced by laser particle size analyzer proton nuclear magnetic resonance and transmission electron microscopy. Such micelles exhibit obvious thermo-responsive properties: (1) Poly(N-isopropylacrylamide) blocks collapse on the polylactide core as system temperature increase, leading to reduce of micelle size. (2) Micelles with short poly(N-isopropylacrylamide) blocks tend to aggregate together when temperature increased, which is resulted from the reduction of the system hydrophilicity and the decreased repulsive force between micelles.

  20. Synthesis of high magnetization Fe and FeCo nanoparticles by high temperature chemical reduction

    International Nuclear Information System (INIS)

    Kandapallil, Binil; Colborn, Robert E.; Bonitatibus, Peter J.; Johnson, Francis

    2015-01-01

    Fe and FeCo ferromagnetic nanoparticles in the 5–10 nm size regimes featuring high magnetization were synthesized using a modified chemical reduction method. The structure and morphology of these nanoparticles were confirmed by XRD and TEM analysis. These small, monodisperse and phase pure nanoparticles exhibited magnetic saturation of 210 emu/g (Fe) and 220 emu/g (Fe+Co) for Fe and FeCo nanoparticles respectively. The magnetization was found to be dependent on the temperature at which the reducing agent was introduced. - Highlights: • A high temperature synthetic route for Fe and FeCo nanoparticles is developed. • These 5–10 nm nanoparticles exhibit high quality magnetic properties. • The saturation magnetization values were dependent on the reduction temperature. • This chemical reduction route has been demonstrated to be scalable in the gram scale

  1. Synthesis of high-temperature viscosity stabilizer used in drilling fluid

    Science.gov (United States)

    Zhang, Yanna; Luo, Huaidong; Shi, Libao; Huang, Hongjun

    2018-02-01

    Abstract For a well performance drilling fluid, when it operates in deep wells under high temperature, the most important property required is the thermal stability. The drilling fluid properties under high temperature can be controlled by proper selection of viscosity stabilizer, which can capture oxygen to protect polymer agent in the drilling fluid. In this paper a viscosity stabilizer PB-854 is described, which was synthesized by 4-phenoxybutyl bromide, paraformaldehyde, and phloroglucinol using etherification method and condensation reaction. We studied the effect of catalyst dosage, temperature, time, and stirring rate on the synthetic yield. Under this condition: molar ratio of 2-tert-Butylphenol, paraformaldehyde and phloroglucinol of 2:1:2.5, reacting temperature of 100 °C, stirring rate of 100 r min‑1, and mass content of catalyst of 15 %, char yield of 5-bromine-3-tert-butyl salicylaldehyde reached 86 %. Under this condition: molar ratio of 5-bromine-3-tert-butyl salicylaldehyde and phloroglucinol of 4, reacting temperature of 60 °C, reacting time of 30 min, volume content of sulphuric acid of 80 %, char yield of the target product viscosity stabilizer PB-854 is 86%. Finally, in this paper, infrared spectroscopy is adopted to analyse the structure of the synthetic product PB-854.The improvement in the stability of drilling fluid was further shown after adding the viscosity stabilizer in the common polymer drilling fluid under high temperature conditions of 120 °C ∼ 180 °C. The results show significant change in terms of fluid stability in the presence of this new stabilizer as it provides better stability.

  2. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis.

    Science.gov (United States)

    Shi, Lei; Yang, Guohui; Tao, Kai; Yoneyama, Yoshiharu; Tan, Yisheng; Tsubaki, Noritatsu

    2013-08-20

    converted in situ via one of two main routes. The first is to use Fischer-Tropsch synthesis (FTS), a process that catalytically converts syngas to hydrocarbons of varying molecular weights. The second is methanol synthesis. The latter has better atomic economy, since the oxygen atom in CO is included in the product and CO₂ can be blended into syngas as a reactant. However, production of methanol is very inefficient in this reaction: only 10-15% one-pass conversion typically at 5.0-10.0 MPa and 523-573 K, due to the severe thermodynamic limitations of this exothermal reaction (CO + 2H₂ = CH₃OH). In this Account, we propose and develop a new route of low-temperature methanol synthesis from CO₂-containing syngas only by adding alcohols, including methanol itself. These alcohols act as homogeneous cocatalysts and the solvent, realizing 70-100% one-pass conversion at only 5.0 MPa and 443 K. The key step is the reaction of the adsorbed formate species with alcohols to yield ester species at low temperatures, followed by the hydrogenation of ester by hydrogen atoms on metallic Cu. This changes the normal reaction path of conventional, high-temperature methanol synthesis from formate via methoxy to methanol.

  3. Temperature-controlled synthesis of substituted pyridine derivatives via the [5C + 1N] annulation of 1,1-bisalkylthio-1,4-pentanedienes and ammonium acetate.

    Science.gov (United States)

    Hu, Jianglei; Zhang, Qian; Yuan, Hongjuan; Liu, Qun

    2008-03-21

    A novel temperature-controlled one-pot synthesis of substituted pyridine derivatives via [5C + 1N] annulation of 1,1-bisalkylthio-1,4-pentanedienes and ammonium acetate is developed, and possible mechanisms leading to the divergent formation of the two types of pyridines are discussed.

  4. Self-organized Ruthenium-Barium Core-Shell Nanoparticles on a Mesoporous Calcium Amide Matrix for Efficient Low-Temperature Ammonia Synthesis.

    Science.gov (United States)

    Kitano, Masaaki; Inoue, Yasunori; Sasase, Masato; Kishida, Kazuhisa; Kobayashi, Yasukazu; Nishiyama, Kohei; Tada, Tomofumi; Kawamura, Shigeki; Yokoyama, Toshiharu; Hara, Michikazu; Hosono, Hideo

    2018-03-01

    A low-temperature ammonia synthesis process is required for on-site synthesis. Barium-doped calcium amide (Ba-Ca(NH 2 ) 2 ) enhances the efficacy of ammonia synthesis mediated by Ru and Co by 2 orders of magnitude more than that of a conventional Ru catalyst at temperatures below 300 °C. Furthermore, the presented catalysts are superior to the wüstite-based Fe catalyst, which is known as a highly active industrial catalyst at low temperatures and pressures. Nanosized Ru-Ba core-shell structures are self-organized on the Ba-Ca(NH 2 ) 2 support during H 2 pretreatment, and the support material is simultaneously converted into a mesoporous structure with a high surface area (>100 m 2  g -1 ). These self-organized nanostructures account for the high catalytic performance in low-temperature ammonia synthesis. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Low temperature synthesis of nanosized Mn1–xZnxFe2O4 ferrites ...

    Indian Academy of Sciences (India)

    There is a systematic decrease in the particle size, Curie temperature and magnetization with the increase in the Zn2+ ion doping, measured using magneto thermal gravimetric analysis (MTGA) and vibrating sample magnetometer (VSM), respectively. The lattice constant is found to be constantly decreasing till = 0.6 and ...

  6. GREEN SYNTHESIS OF SILVER AND PALLADIUM NANOPARTICLES AT ROOM TEMPERATURE USING COFFEE AND TEA EXTRACT

    Science.gov (United States)

    An extremely simple green approach that generates bulk quantities of nanocrystals of noble metals such as silver (Ag) and palladium (Pd) using coffee and tea extract at room temperature is described. The single-pot method uses no surfactant, capping agent, and/or template. The ob...

  7. Synthesis and characterization of LaPO4 powder heat treated at various temperatures

    International Nuclear Information System (INIS)

    Zheng Qiuju; Wang Xin; Tian Jintao; Kang Rui; Yin Yansheng

    2010-01-01

    Lanthanum phosphate (LaPO 4 ) powder has been synthesized by direct liquid-liquid reaction of La(NO 3 ) 3 .6H 2 O and H 3 PO 4 . The as-received powder has been heat treated at various temperatures (100, 600, 800, 1000, or 1200 deg. C). The phase composition and microstructure of the powder have been characterized by XRD, SEM, HRTEM, and FFT. The anisotropic growth mechanism, phase transition from hexagonal to monoclinic structure, and shape evolution details of LaPO 4 nanoparticles are discussed. The results show that the phase composition and microstructure of the powder depend on the heat treatment temperature. The hexagonal phase converts to a monoclinic structure around 600 deg. C. Another consequence of the heat treatment is a change in the shape of the LaPO 4 as nanorods are converted into nanograins with increasing heat treatment temperature. Particularly, at 1000 o C, the nanorods begin a gradual transition to nanograins. When the temperature is increased to 1200 deg. C, all the LaPO 4 nanorods have transformed into spherical LaPO 4 nanoparticles with a diameter in the range of 300-500 nm.

  8. Room temperature synthesis of crystalline Sb2S3 for SnO2 ...

    Indian Academy of Sciences (India)

    Abstract. The preparation of crystalline antimony sulphide (Sb2S3) by chemical route at room temperature was reported in this paper. The structural, morphological and optical properties of as-synthesized sample were system- atically investigated. X-ray diffraction (XRD) analysis confirms the orthorhombic crystal phase for ...

  9. A facile synthesis of MInSe2 (M = Cu, Ag) via low temperature ...

    Indian Academy of Sciences (India)

    TECS

    (M = Cu, Ag) via low temperature pyrolysis of single source molecular precursors, [(R3. P)2. MIn(SeCOAr)4. ] SHAMIK GHOSHAL, LILADHAR B KUMBHARE, VIMAL K JAIN* and. GAUTAM K DEY. †. Chemistry Division,. †. Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. MS received 27 ...

  10. Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers.

    Science.gov (United States)

    Follstad Shah, Jennifer J; Kominoski, John S; Ardón, Marcelo; Dodds, Walter K; Gessner, Mark O; Griffiths, Natalie A; Hawkins, Charles P; Johnson, Sherri L; Lecerf, Antoine; LeRoy, Carri J; Manning, David W P; Rosemond, Amy D; Sinsabaugh, Robert L; Swan, Christopher M; Webster, Jackson R; Zeglin, Lydia H

    2017-08-01

    Streams and rivers are important conduits of terrestrially derived carbon (C) to atmospheric and marine reservoirs. Leaf litter breakdown rates are expected to increase as water temperatures rise in response to climate change. The magnitude of increase in breakdown rates is uncertain, given differences in litter quality and microbial and detritivore community responses to temperature, factors that can influence the apparent temperature sensitivity of breakdown and the relative proportion of C lost to the atmosphere vs. stored or transported downstream. Here, we synthesized 1025 records of litter breakdown in streams and rivers to quantify its temperature sensitivity, as measured by the activation energy (E a , in eV). Temperature sensitivity of litter breakdown varied among twelve plant genera for which E a could be calculated. Higher values of E a were correlated with lower-quality litter, but these correlations were influenced by a single, N-fixing genus (Alnus). E a values converged when genera were classified into three breakdown rate categories, potentially due to continual water availability in streams and rivers modulating the influence of leaf chemistry on breakdown. Across all data representing 85 plant genera, the E a was 0.34 ± 0.04 eV, or approximately half the value (0.65 eV) predicted by metabolic theory. Our results indicate that average breakdown rates may increase by 5-21% with a 1-4 °C rise in water temperature, rather than a 10-45% increase expected, according to metabolic theory. Differential warming of tropical and temperate biomes could result in a similar proportional increase in breakdown rates, despite variation in E a values for these regions (0.75 ± 0.13 eV and 0.27 ± 0.05 eV, respectively). The relative proportions of gaseous C loss and organic matter transport downstream should not change with rising temperature given that E a values for breakdown mediated by microbes alone and microbes plus detritivores were similar at the

  11. Material synthesis and fabrication method development for intermediate temperature solid oxide fuel cells

    Science.gov (United States)

    Ding, Hanping

    Solid oxide fuel cells (SOFCs) are operated in high temperature conditions (750-1000 °C). The high operating temperature in turn may lead to very complicated material degradation issues, significantly increasing the cost and reducing the durability of SOFC material systems. In order to widen material selections, reduce cost, and increase durability of SOFCs, there is a growing interest to develop intermediate temperature SOFCs (500-750 °C). However, lowering operating temperature will cause substantial increases of ohmic resistance of electrolyte and polarization resistance of electrodes. This dissertation aimed at developing high-performance intermediate-temperature SOFCs through the employment of a series of layered perovskite oxides as novel cathode materials to minimize the potential electrode polarization on oxygen reduction reaction resulting from the unique crystal structure. The high performance of such perovskites under lower temperatures lies in the fact that a simple cubic perovskite with randomly occupied A-sites transforming into a layered compound with ordered lanthanide and alkali-earth cations may reduce the oxygen bonding strength and provide disorder-free channels for oxygen ion migrations. In order to compromise the cell performance and chemical and mechanical stability, the substitution of Fe in B site was comprehensively investigated to explore the effects of Fe doping on the crystal structure, thermal and electrical properties, as well as electrochemical performance. Furthermore, a platinum nanowire network was successfully developed as an ultrathin electrochemically efficient current collector for SOFCs. The unique platinum network on cathode surface can connect the oxygen reduction reaction (ORR) sites at the nano-scale to the external circuit while being able to substantially avoid blocking the open pores of the cathode. The superior electrochemical performance was exhibited, including the highly reduced electrode polarization resistance

  12. Large scale synthesis and formation mechanism of silver nanoparticles in solid-state reactions at ambient temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Aiqin, E-mail: zhangaiqin@zzuli.edu.cn [State Laboratory of Surface and Interface Science and Technology, Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); Tian, Yakun; Xiao, Yuanhua; Sun, Yuan [State Laboratory of Surface and Interface Science and Technology, Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); Li, Feng [State Laboratory of Surface and Interface Science and Technology, Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); American Advanced Nanotechnology, Houston, TX 77459 (United States)

    2015-07-15

    Highlights: • AgNPs were prepared by solid state reaction at ambient temperature. • Only silver nitrate and ascorbic acid were needed in this reaction. • The size of the AgNPs can be tuned conveniently. • Formation mechanism of the AgNPs was investigated. - Abstract: A one-step strategy for preparing Ag nanoparticles (AgNPs) on large scale is demonstrated successfully, based on solid-state reactions at ambient temperature. The environmentally friendly synthesis can be achieved by simply grinding AgNO{sub 3} and ascorbic acid (AA) for about 30 min without adding any solvent and organic protectors. The size of AgNPs can be readily controlled by adjusting the reaction parameters such as AgNO{sub 3}/AA molar ratio and reaction time. The nanostructures of AgNPs and their formation mechanism have been also investigated with XRD, FTIR, FESEM, HRTEM and HPLC–MS. It was found that AA can reduce Ag{sup +} into Ag{sup 0} to form AgNPs directly in accompanying with its first oxidation into 2,3-diketogulonic acid (2,3-DKG) and then a series of fragmentary species of 2,3-DKG.

  13. Green synthesis of mesoporous molecular sieve incorporated monoliths using room temperature ionic liquid and deep eutectic solvents.

    Science.gov (United States)

    Zhang, Li-Shun; Zhao, Qing-Li; Li, Xin-Xin; Li, Xi-Xi; Huang, Yan-Ping; Liu, Zhao-Sheng

    2016-12-01

    A hybrid monolith incorporated with mesoporous molecular sieve MCM-41 of uniform pore structure and high surface area was prepared with binary green porogens in the first time. With a mixture of room temperature ionic liquids and deep eutectic solvents as porogens, MCM-41 was modified with 3-(trimethoxysilyl) propyl methacrylate (γ-MPS) and the resulting MCM-41-MPS was incorporated into poly (BMA-co-EDMA) monoliths covalently. Because of good dispersibility of MCM-41-MPS in the green solvent-based polymerization system, high permeability and homogeneity for the resultant hybrid monolithic columns was achieved. The MCM-41-MPS grafted monolith was characterized by scanning electron microscopy, energy dispersive spectrometer area scanning, transmission electron microscopy, FT-IR spectra and nitrogen adsorption tests. Chromatographic performance of MCM-41-MPS grafted monolith was characterized by separating small molecules in capillary electrochromatography, including phenol series, naphthyl substitutes, aniline series and alkyl benzenes. The maximum column efficiency of MCM-41-MPS grafted monolith reached 209,000 plates/m, which was twice higher than the corresponding MCM-41-MPS free monolith. Moreover, successful separation of non-steroidal anti-inflammatory drugs and polycyclic aromatic hydrocarbons demonstrated the capacity in broad-spectrum application of the MCM-41-MPS incorporated monolith. The results indicated that green synthesis using room temperature ionic liquid and deep eutectic solvents is an effective method to prepare molecular sieve-incorporated monolithic column. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Single-source-precursor Synthesis and High-temperature Behavior of SiC Ceramics Containing Boron

    Science.gov (United States)

    Gui, Miaomiao; Fang, Yunhui; Yu, Zhaoju

    2014-12-01

    In this paper, a hyperbranched polyborocarbosilane (HPBCS) was prepared by a one-pot synthesis with Cl2Si(CH3)CH2Cl, Cl3SiCH2Cl and BCl3 as the starting materials. The obtained HPBCS was characterized by GPC, FT-IR and NMR, and was confirmed to have hyperbranched structures. The thermal property of the resulting HPBCS was investigated by TGA. The ceramic yield of the HPBCS is about 84% and that of the counterpart hyperbranched hydridopolycarbosilane is only 45%, indicating that the introduction of boron into the preceramic polymer significantly improved the ceramic yield. With the polymer-derived ceramic route, the final ceramics were annealed at 1800 °C in argon atmosphere for 2 h in order to characterize the microstructure and to evaluate the high-temperature behavior. The final ceramic microstructure was studied by XRD and SEM, indicating that the introduction of boron dramatically inhibits SiC crystallization. The boron-containing SiC ceramic shows excellent high-temperature behavior against decomposition and crystallization at 1800 °C.

  15. Synthesis, Characterization, and Low Temperature Sintering of Nanostructured BaWO4 for Optical and LTCC Applications

    Directory of Open Access Journals (Sweden)

    S. Vidya

    2013-01-01

    Full Text Available Synthesis of nano-BaWO4 by a modified combustion technique and its suitability for various applications are reported. The structure and phase purity of the sample analyzed by X-ray diffraction, Fourier transform Raman, and infrared spectroscopy show that the sample is phase pure with tetragonal structure. The particle size from the transmission electron microscopy is 22 nm. The basic optical properties and optical constants of the nano BaWO4 are studied using UV-visible absorption spectroscopy which showed that the material is a wide band gap semiconductor with band gap of 4.1 eV. The sample shows poor transmittance in ultraviolet region while maximum in visible-near infrared regions. The photoluminescence spectra show intense emission in blue region. The sample is sintered at low temperature of 810°C, without any sintering aid. Surface morphology of the sample is analyzed by scanning electron microscopy. The dielectric constant and loss factor measured at 5 MHz are 9 and 1.56×10-3. The temperature coefficient of dielectric constant is −22 ppm/°C. The experimental results obtained in the present work claim the potential use of nano BaWO4 as UV filters, transparent films for window layers on solar cells, antireflection coatings, scintillators, detectors, and for LTCC applications.

  16. Synthesis and Characterization of Si Oxide Coated Nano Ceria by Hydrolysis, and Hydrothermal Treatment at Low Temperature

    Directory of Open Access Journals (Sweden)

    Kong M.

    2017-06-01

    Full Text Available The purpose of this work was to the application of Si oxide coatings. This study deals with the preparation of ceria (CeO2 nanoparticles coating with SiO2 by water glass and hydrolysis reaction. First, the low temperature hydro-reactions were carried out at 30~100°C. Second, Silicon oxide-coated Nano compounds were obtained by the catalyzing synthesis. CeO2 Nano-powders have been successfully synthesized by means of the hydrothermal method, in a low temperature range of 100~200°C. In order to investigate the structure and morphology of the Nano-powders, scanning electron microscopy (SEM and X-ray diffraction (XRD were employed. The XRD results revealed the amorphous nature of silica nanoparticles. To analyze the quantity and properties of the compounds coated with Si oxide, transmission electron microscopy (TEM in conjunction with electron dispersive spectroscopy was used. Finally, it is suggested that the simple growth process is more favorable mechanism than the solution/aggregation process.

  17. Novel method of room temperature ionic liquid assisted Fe3O4 nanocubes and nanoflakes synthesis

    International Nuclear Information System (INIS)

    Ramalakshmi, M.; Shakkthivel, P.; Sundrarajan, M.; Chen, S.M.

    2013-01-01

    Graphical abstract: - Highlights: • First time [Bmim][TfO] IL is used for the Fe 3 O 4 nanoparticle synthesis. • Novel method tunes Fe 3 O 4 nanocubes and nanoflakes forms influenced by the base and IL. • Fe 3 O 4 oxidized topotactically into γ-Fe 2 O 3 nanoparticles by annealing and base. • Uniform morphology with average size of 33 nm negligible superstructure are formed. • Ms values are characterized by thin layer of γ-Fe 2 O 3 on the nanoparticle surface. - Abstract: For the first time, the nanomagnetite superparamagnetic particles are successfully synthesized by precipitation method using 1-n-butyl-3-methylimidazolium trifluoromethane sulfonate [Bmim][TfO] ionic liquid medium/surfactant. The obtained Fe 3 O 4 particles are nanocubes and nanoflakes and this formation is influenced by the base concentration and anisotropic circumstances produced by the ionic liquid and their size varies from 20 nm to 150 × 300 nm (width × length). The synthesized magnetite nanoparticles are characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, Field emission scanning electron microscopy (FE-SEM), Transmission electron microscopy (TEM) and Vibrating sample magnetometer (VSM) studies. The results show that the core of the Fe 3 O 4 nanoparticles is surrounded by a thin layer of γ-Fe 2 O 3 by topotactical partial oxidation, which is remarkably proceed with the subsequent calcination. The magnetite nanocubes have high saturation magnetization value and exhibit superparamagnetic hysteresis loop

  18. Green synthesis of silver nanoparticles using Terminalia chebula extract at room temperature and their antimicrobial studies

    Science.gov (United States)

    Mohan Kumar, Kesarla; Sinha, Madhulika; Mandal, Badal Kumar; Ghosh, Asit Ranjan; Siva Kumar, Koppala; Sreedhara Reddy, Pamanji

    2012-06-01

    A green rapid biogenic synthesis of silver nanoparticles (Ag NPs) using Terminalia chebula (T. chebula) aqueous extract was demonstrated in this present study. The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance (SPR) at 452 nm using UV-visible spectrophotometer. The reduction of silver ions to silver nanoparticles by T. chebula extract was completed within 20 min which was evidenced potentiometrically. Synthesised nanoparticles were characterised using UV-vis spectroscopy, Fourier transformed infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM). The hydrolysable tannins such as di/tri-galloyl-glucose present in the extract were hydrolyzed to gallic acid and glucose that served as reductant while oxidised polyphenols acted as stabilizers. In addition, it showed good antimicrobial activity towards both Gram-positive bacteria (S. aureus ATCC 25923) and Gram-negative bacteria (E. coli ATCC 25922). Industrially it may be a smart option for the preparation of silver nanoparticles.

  19. Low-temperature synthesis of homogeneous nanocrystalline cubic silicon carbide films

    International Nuclear Information System (INIS)

    Cheng Qijin; Xu, S.

    2007-01-01

    Silicon carbide films are fabricated by inductively coupled plasma chemical vapor deposition from feedstock gases silane and methane heavily diluted with hydrogen at a low substrate temperature of 300 deg. C. Fourier transform infrared absorption spectroscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy analyses show that homogeneous nanocrystalline cubic silicon carbide (3C-SiC) films can be synthesized at an appropriate silane fraction X[100%xsilane flow(SCCM)/silane+methane flow(SCCM)] in the gas mixture. The achievement of homogeneous nanocrystalline 3C-SiC films at a low substrate temperature of 300 deg. C is a synergy of a low deposition pressure (22 mTorr), high inductive rf power (2000 W), heavy dilution of feedstock gases silane and methane with hydrogen, and appropriate silane fractions X (X≤33%) in the gas mixture employed in our experiments

  20. CTAB assisted synthesis of tungsten oxide nanoplates as an efficient low temperature NOX sensor

    Science.gov (United States)

    Mehta, Swati S.; Tamboli, Mohaseen S.; Mulla, Imtiaz S.; Suryavanshi, Sharad S.

    2018-02-01

    Tungsten oxide nanoplates with porous morphology were effectively prepared by acidification using CTAB (HexadeCetyltrimethyl ammonium bromide) as a surfactant. For characterization, the synthesized materials were subjected to X-Ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), UV-Visible spectroscopy (UV-Vis) and surface area (BET) measurements. The morphology and size of the particles were controlled by solution acidity. The BET results confirmed that the materials are well crystallized and mesoporous in nature. The nanocrystalline powder was used to prepare thick films by screen printing on alumina substrate for the investigation of gas sensing properties. The gas response measurements revealed that the samples acidified using 10 M H2SO4 exhibits highest response of 91% towards NOX at optimum temperature of 200 °C for 100 ppm, and it also exhibits 35% response at room temperature.

  1. Green synthesis of Ni-Nb oxide catalysts for low-temperature oxidative dehydrogenation of ethane

    KAUST Repository

    Zhu, Haibo

    2015-03-05

    The straightforward solid-state grinding of a mixture of Ni nitrate and Nb oxalate crystals led to, after mild calcination (T<400°C), nanostructured Ni-Nb oxide composites. These new materials efficiently catalyzed the oxidative dehydrogenation (ODH) of ethane to ethylene at a relatively low temperature (T<300°C). These catalysts appear to be much more stable than the corresponding composites prepared by other chemical methods; more than 90% of their original intrinsic activity was retained after 50h with time on-stream. Furthermore, the stability was much less affected by the Nb content than in composites prepared by classical "wet" syntheses. These materials, obtained in a solvent-free way, are thus promising green and sustainable alternatives to the current Ni-Nb candidates for the low-temperature ODH of ethane.

  2. Synthesis and sintering of high-temperature composites based on mechanically activated fly ash

    OpenAIRE

    Terzić, Anja; Pavlović, Ljubica; Obradović, Nina; Pavlović, Vladimir B.; Stojanović, J.; Miličić, Lj.; Radojević, Z.; Ristić, Momčilo

    2012-01-01

    Amount of fly ash which is and yet to be generated in the coming years highlights the necessity of developing new methods of the recycling where this waste can be reused in significant quantity. A new possibility for fly ash utilization is in high-temperature application (thermal insulators or/and refractory material products). As such, fly ash has to adequately answer the mechanical and thermal stability criteria. One of the ways of achieving it is by applying mechanical activation pro...

  3. Aqueous synthesis and characterization of TGA-capped CdSe quantum dots at freezing temperature.

    Science.gov (United States)

    Sun, Qizhuang; Fu, Shasha; Dong, Tingmei; Liu, Shuxian; Huang, Chaobiao

    2012-07-11

    CdSe quantum dots (QDs) have traditionally been synthesized in organic phase and then transferred to aqueous solution by functionalizing their surface with silica, polymers, short-chain thiol ligands, or phospholipid micelles. However, a drastic increase in the hydrodynamic size and biotoxicity of QDs may hinder their biomedical applications. In this paper, the TGA-capped CdSe QDs are directly synthesized in aqueous phase at freezing temperature, and they prove to possess high QY (up to 14%).

  4. Low temperature synthesis of nanosized Mn1–xZnxFe2O4 ferrites ...

    Indian Academy of Sciences (India)

    Nanosized Mn1–ZnFe2O4 ( = 0, 0.1, 0.3, 0.5, 0.6, 0.7, 0.9) mixed ferrite samples of particle size < 12 nm were prepared using the co-precipitation technique by doping the Zn2+ ion impurities. Autoclave was employed to maintain constant temperature of 80°C and a constant pressure. The X-ray analysis and the IR ...

  5. Synthesis and thermal properties of a novel high temperature alkyl-center-trisphenolic-based phthalonitrile polymer

    International Nuclear Information System (INIS)

    Sheng, Haitong; Peng, Xuegang; Guo, Hui; Yu, Xiaoyan; Tang, Chengchun; Qu, Xiongwei; Zhang, Qingxin

    2013-01-01

    A novel alkyl-center-trisphenolic-based high-temperature phthalonitrile monomer, namely, 1,1,1-tris-[4-(3,4-dicyanophenoxy)phenyl]ethane (TDPE), was synthesized from 1,1,1-tris-(4-hydroxyphenyl)ethane (THPE) via a facile nucleophilic displacement of a nitro-substituent from 4-nitrophthalonitrile (NPN). The structure of TDPE monomer was characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy ( 1 H and 13 C NMR), elemental analysis (EA). Curing behaviors of TDPE with 4-(aminophenoxy)phthalonitrile (APPH) were recorded by differential scanning calorimetric (DSC) and it showed a large processing window (122 °C) which is favorable to processing TDPE polymers. The structure of TDPE polymer was discussed and the thermal stabilities of TDPE polymer were evaluated by thermogravimetric analysis (TGA). The TDPE polymer exhibits excellent thermal stability, and mechanism of thermal decompositions was explored. Dynamic mechanical analysis (DMA) revealed that the TDPE polymer has high storage modulus and high glass transition temperature (T g > 380 °C). - Highlights: • A novel high-temperature phthalonitrile polymer was synthesized. • Polymerization mechanism was explored. • The polymer shows excellent thermal stability. • Outstanding mechanical properties was achieved: storage modulus = 3.7 GPa, T g > 380 °C. • Thermal decomposition mechanism was discussed

  6. Ageing-assisted room temperature synthesis of La2Mo2O9 powders

    International Nuclear Information System (INIS)

    Li, Bao-rang; Tan, Hong; Zhang, De-long; Zhang, Nai-qiang

    2016-01-01

    Without any templates, hollow structured La 2 Mo 2 O 9 particles are successfully prepared at room temperature by an ageing-assisted salt solvent process. Powder X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy are used to investigate structure and morphologies of the obtained products. It is found that the ageing process has a significant influence on the particle morphology evolution when the mixed precursors are disposed at room temperature. With the ageing time changed from one week to 12 weeks, the particles morphologies evolve gradually from ellipsoid to sphere. The as-prepared hollow structured La 2 Mo 2 O 9 spheres have an average diameter of about 800 nm and shell thickness of about 100 nm. For elucidating the possible formation mechanism, the influences of the single salt on the particles morphologies evolution are also investigated. The final results indicate KCl is a key factor for formation of La 2 Mo 2 O 9 spheres and the formation of the hollow structure should have close relations with the surface tension in the ageing assisted process. - Highlights: • Ageing-assisted salt solvent process was designed to prepare La 2 Mo 2 O 9 . • Hollow structured La 2 Mo 2 O 9 micro-spheres are synthesized at room temperature for the first time. • The possible formation mechanism was discussed.

  7. Synthesis of Highly Uniform and Compact Lithium Zinc Ferrite Ceramics via an Efficient Low Temperature Approach.

    Science.gov (United States)

    Xu, Fang; Liao, Yulong; Zhang, Dainan; Zhou, Tingchuan; Li, Jie; Gan, Gongwen; Zhang, Huaiwu

    2017-04-17

    LiZn ferrite ceramics with high saturation magnetization (4πM s ) and low ferromagnetic resonance line widths (ΔH) represent a very critical class of material for microwave ferrite devices. Many existing approaches emphasize promotion of the grain growth (average size is 10-50 μm) of ferrite ceramics to improve the gyromagnetic properties at relatively low sintering temperatures. This paper describes a new strategy for obtaining uniform and compact LiZn ferrite ceramics (average grains size is ∼2 μm) with enhanced magnetic performance by suppressing grain growth in great detail. The LiZn ferrites with a formula of Li 0.415 Zn 0.27 Mn 0.06 Ti 0.1 Fe 2.155 O 4 were prepared by solid reaction routes with two new sintering strategies. Interestingly, results show that uniform, compact, and pure spinel ferrite ceramics were synthesized at a low temperature (∼850 °C) without obvious grain growth. We also find that a fast second sintering treatment (FSST) can further improve their gyromagnetic properties, such as higher 4πM s and lower ΔH. The two new strategies are facile and efficient for densification of LiZn ferrite ceramics via suppressing grain growth at low temperatures. The sintering strategy reported in this study also provides a referential experience for other ceramics, such as soft magnetism ferrite ceramics or dielectric ceramics.

  8. Synthesis and characterisation of novel low temperature ceramic and its implementation as substrate in dual segment CDRA

    Science.gov (United States)

    Kumari, Preeti; Tripathi, Pankaj; Sahu, Bhagirath; Singh, S. P.; Parkash, Om; Kumar, Devendra

    2018-02-01

    Li2O-(2-3x)MgO-(x)Al2O3-P2O5 (LMAP) (x = 0.00-0.08) ceramic system was prepared through solid state synthesis route at different sintering temperatures (800-925 °C). A small addition of Al2O3 (x = 0.02) in LMAP ceramics lowers the sintering temperature by more than 100 °C with good relative density of 94.13%. The sintered samples were characterized in terms of density, apparent porosity, water absorption, crystal structure, micro-structure and microwave dielectric properties. Silver compatibility test is also performed for its use as electrode material in low temperature co-fired ceramic (LTCC) application. To check the performance of the prepared LTCC as substrate, a microstrip-fed aperture-coupled dual segment cylindrical dielectric resonator antenna (DS-CDRA) is designed using LMAP (x = 0.02) ceramic as substrate material and Barium Strontium Titanate with 10 wt% of PbO-BaO-B2O3-SiO2 glass (BSTG) and Teflon as the components of resonating material. The simulation study of the DS-CDRA is performed using the Ansys High Frequency Structure Simulator (HFSS) software. A conductive coating of silver is used on the substrate. The simulated and measured -10 dB reflection coefficient bandwidths of 910 MHz (9.07-9.98 GHz at resonant frequency of 9.49 GHz) and 1080 MHz (8.68-9.76 GHz at resonant frequency of 9.36 GHz), respectively are achieved. The measured results of the fabricated antenna are found in good agreement with the simulation results. The prepared material can find potential applications in radar and radio navigation as well as radio astronomy and military satellite communication.

  9. temperature

    Directory of Open Access Journals (Sweden)

    G. Polt

    2015-10-01

    Full Text Available In-situ X-ray diffraction was applied to isotactic polypropylene with a high volume fraction of α-phase (α-iPP while it has been compressed at temperatures below and above its glass transition temperature Tg. The diffraction patterns were evaluated by the Multi-reflection X-ray Profile Analysis (MXPA method, revealing microstructural parameters such as the density of dislocations and the size of coherently scattering domains (CSD-size. A significant difference in the development of the dislocation density was found compared to compression at temperatures above Tg, pointing at a different plastic deformation mechanism at these temperatures. Based on the individual evolutions of the dislocation density and CSD-size observed as a function of compressive strain, suggestions for the deformation mechanisms occurring below and above Tg are made.

  10. Synthesis of Thermoresponsive Amphiphilic Polyurethane Gel as a New Cell Printing Material near Body Temperature.

    Science.gov (United States)

    Tsai, Yi-Chun; Li, Suming; Hu, Shiaw-Guang; Chang, Wen-Chi; Jeng, U-Ser; Hsu, Shan-hui

    2015-12-23

    Waterborne polyurethane (PU) based on poly(ε-caprolactone) (PCL) diol and a second oligodiol containing amphiphilic blocks was synthesized in this study. The microstructure was characterized by dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and rheological measurement of the PU dispersion. The surface hydrophilicity measurement, infrared spectroscopy, wide-angle X-ray diffraction, mechanical and thermal analyses were conducted in solid state. It was observed that the presence of a small amount of amphiphilic blocks in the soft segment resulted in significant changes in microstructure. When 90 mol % PCL diol and 10 mol % amphiphilic blocks of poly(l-lactide)-poly(ethylene oxide) (PLLA-PEO) diol were used as the soft segment, the synthesized PU had a water contact angle of ∼24° and degree of crystallinity of ∼14%. The dispersion had a low viscosity below room temperature. As the temperature was raised to body temperature (37 °C), the dispersion rapidly (∼170 s) underwent sol-gel transition with excellent gel modulus (G' ≈ 6.5 kPa) in 20 min. PU dispersions with a solid content of 25-30% could be easily mixed with cells in sol state, extruded by a 3D printer, and deposited layer by layer as a gel. Cells remained alive and proliferating in the printed hydrogel scaffold. We expect that the development of novel thermoresponsive PU system can be used as smart injectable hydrogel and applied as a new type of bio-3D printing ink.

  11. Synthesis, characterization and performance of zinc ferrite nanorods for room temperature sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Archana; Singh, Ajendra [Macromolecular Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, U.P. (India); Singh, Satyendra, E-mail: satyendra_nano84@rediffmail.com [Department of Physics, University of Allahabad, Allahabad 211002, U.P. (India); Tandon, Poonam [Macromolecular Research Laboratory, Department of Physics, University of Lucknow, Lucknow 226007, U.P. (India); Yadav, B.C. [Department of Applied Physics, School for Physical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, U.P. (India); Yadav, R.R. [Department of Physics, University of Allahabad, Allahabad 211002, U.P. (India)

    2015-01-05

    Highlights: • Fabrication of zinc ferrite thin film LPG and CO{sub 2} gas sensors. • Morphological growth of nanorods. • Significant advancement towards the fabrication of a reliable LPG sensor. • A new pathway to produce nanorods as sensorial material. - Abstract: In the present communication, nanorods of zinc ferrite was synthesized and fabricated by employing sol–gel spin coating process. The synthesized material was characterized using X-ray diffraction, scanning electron microscopy, acoustic particle sizer, atomic force microscopy, UV–visible absorption and infrared spectroscopic techniques. Thermal properties were investigated using differential scanning calorimetry. The XRD reveals cubic spinel structure with minimum crystallite size 10 nm. SEM image of the film shows porous surface morphology with uniform distribution of nanorods. The band gap of the zinc ferrite nanorods was found 3.80 eV using the Tauc plot. ZnFe{sub 2}O{sub 4} shows weak super paramagnetic behavior at room temperature investigated using the vibrating sample magnetometer. Further, the liquefied petroleum gas (LPG) and carbon dioxide gas (CO{sub 2}) sensing properties of the fabricated film were investigated at room temperature (25 °C). More variations in electrical resistance were observed for LPG in comparison to CO{sub 2} gas. The parameters such as lattice constant, X-ray density, porosity and specific surface area were also calculated for the better understanding of the observed gas sensing properties. High sensitivity and percentage sensor response, small response and recovery times, good reproducibility and stability characterized the fabricated sensor for the detection of LPG at room temperature.

  12. Synthesis colloidal Kyllinga brevifolia-mediated silver nanoparticles at different temperature for methylene blue removal

    Science.gov (United States)

    Isa, Norain; Sarijo, Siti Halimah; Aziz, Azizan; Lockman, Zainovia

    2017-09-01

    Metallic nanoparticles are well known of having wide applications in various fields such as, catalysis, electronics, energy, chemistry and medicine due to its unique physico-chemical properties. In this study, nanocatalyst Kyllinga brevifolia-mediated silver nanoparticles (AgNPs) were prepared by reduction of silver nitrate using aqueous extract of Kyllinga brevifolia at different temperature. The formations of AgNPs were monitored using UV-visible spectroscopy. Transmission electron microscope (TEM) results reveal that the AgNPs well dispersed with average particle size are 22.34 and 6.73 nm for synthesized at room temperature and cold temperature respectively. The biomolecules present in the Kyllinga brevifolia aqueous extract responsible for the formation of AgNPs were identified using Fourier transform infrared (FTIR). Our AgNPs performed excellent catalytic activity in degradation of methylene blue (MB) dyes via electron relay effect. MB is toxic to ecological system and also has carcinogenic properties. The AgNPs nanocatalysts synthesized in this study are highly dispersed, quasi-spherical and due to their size in nanoscale, they have shown effectiveness for degradation of MB dyes. More importantly, our AgNPs were prepared using biomolecules as capping and reducing agent, which make our product "greener" than available AgNPs that are commonly prepared using hydrazine and borohydride; which are harmful substances to human and environment. Not only the AgNPs can act as nanocatalyst for degradation of MB, they can also be expected to degrade other types of toxic dyes used in textiles industry.

  13. Synthesis of new Diamond-like B-C Phases under High Pressure and Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ming, L. C. [University of Hawaii; Zinin, P. V. [University of Hawaii; Sharma, S. K. [University of Hawaii

    2014-04-22

    A cubic BC3 (c-BC3) phase was synthesized by direct transformation from graphitic phases at a pressure of 39 GPa and temperature of 2200 K in a laser-heated diamond anvil cell (DAC). A combination of x-ray diffraction (XRD), electron diffraction (ED), transmission electron microscopy (TEM) imaging, and electron energy loss spectroscopy (EELS) measurements lead us to conclude that the obtained phase is hetero-nano-diamond, c-BC3. The EELS measurements show that the atoms inside the cubic structure are bonded by sp3 bonds.

  14. Room-temperature synthesis and photoluminescence of hexagonal CePO4 nanorods

    Science.gov (United States)

    Zhu, J.; Zhang, K.; Zhao, H. Y.

    2018-01-01

    Hexagonal CePO4 nanorods were synthesized via a simple chemical precipitation route at room-temperature without the presence of surfactants and then characterized by powder X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectrometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV–vis) absorption and photoluminescence (PL) spectroscopy. Hexagonal CePO4 nanorods exhibit strong ultraviolet absorption and ultraviolet luminescence, which correspond to the electronic transitions between 4f and 5d state of Ce3+ ions.

  15. High-pressure high-temperature synthesis and structure of α-tetragonal boron

    Directory of Open Access Journals (Sweden)

    Evgeny A Ekimov and Igor P Zibrov

    2011-01-01

    Full Text Available Microcrystals of α-tetragonal (α-t boron with unit cell parameters a=9.05077(6 and c=5.13409(6 Å and measured density 2.16–2.22 g cm−3 were obtained by pyrolysis of decaborane B10H14 at pressures of 8–9 GPa and temperatures of 1100–1600 C. The crystal structure is in good agreement with the model proposed by Hoard et al (1958 J. Am. Chem. Soc. 80 4507. However, compared to the original model, we found small deformations of icosahedra and changes in the interatomic

  16. Low Temperature Synthesis and Properties of Gadolinium-Doped Cerium Oxide Nanoparticles

    DEFF Research Database (Denmark)

    Machado, Marina F. S.; P. R. Moraes, Leticia; Monteiro, Natalia K.

    2017-01-01

    Gadolinium-doped cerium oxide (GDC) is an attractive ceramic material for solid oxide fuel cells (SOFCs) both as the electrolyte or in composite electrodes. The Ni/GDC cermet can be tuned as a catalytic layer, added to the conventional Ni/yttria-stabilized zirconia (YSZ), for the internal steam...... reforming of different fuels. Such an anode allows the SOFC to operate with hydrocarbon fuels by internal reforming. GDC exhibits high oxygen ion conductivity at a wide range of temperatures and displays a high resistance to carbon deposition. However, an inconvenience of ceria-based oxides is the high...

  17. Phosphorous pentoxide mediated synthesis of 5-HMF in ionic liquid at low temperature.

    Science.gov (United States)

    Ray, Devalina; Mittal, Neha; Chung, Wook-Jin

    2011-10-18

    A convenient, mild and environment-friendly dehydration reaction of fructose in ionic liquid using phosphorous pentoxide (P(2)O(5)) has been investigated. The acidic nature of P(2)O(5) along with its hygroscopic properties has been successfully utilized to afford 81.2% yield of 5-hydroxymethylfurfural (5-HMF) at 50°C in 60 mins. Phosphoric acid yielded remarkably less 5-HMF even at higher temperature and longer reaction times. The reaction was optimized by varying different parameters and the results indicated that no rehydration products, such as levulinic acid or formic acid, were formed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Low temperature synthesis, magnetic and electrical properties of iron-magnesium superparamagnetic nanoalloy

    Energy Technology Data Exchange (ETDEWEB)

    Nazir, Rabia [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Mazhar, Muhammad [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan)], E-mail: mazhar42pk@yahoo.com; Akhtar, Muhammad Javed; Nadeem, Muhammad; Siddique, Muhammad [Physics Division, Pinstech, P.O. Nilore, Islamabad (Pakistan); Shah, Raza [HEJ Research Institute of Chemistry, University of Karachi, Karachi 75270 (Pakistan); Hasanain, S. Khurshid [Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2009-06-24

    A low temperature chemical approach which beats the miscibility barrier of Fe and Mg has been designed to synthesize Fe-Mg{sub 2} nanoalloy and tested to result nanoparticles of average 30 nm size. The nanoalloy is amorphous in nature and characterized by XPRD, AFM, magnetometery, Moessbauer and impedance spectroscopies. The result of magnetic measurement suggests the sample to be superparamagnetic as evidenced by the {sup 57}Fe Moessbauer spectroscopy. The two Mg atoms occupy different positions around iron resulting in two phase system as shown by Moessbauer and impedance spectroscopies.

  19. Low temperature synthesis, magnetic and electrical properties of iron-magnesium superparamagnetic nanoalloy

    International Nuclear Information System (INIS)

    Nazir, Rabia; Mazhar, Muhammad; Akhtar, Muhammad Javed; Nadeem, Muhammad; Siddique, Muhammad; Shah, Raza; Hasanain, S. Khurshid

    2009-01-01

    A low temperature chemical approach which beats the miscibility barrier of Fe and Mg has been designed to synthesize Fe-Mg 2 nanoalloy and tested to result nanoparticles of average 30 nm size. The nanoalloy is amorphous in nature and characterized by XPRD, AFM, magnetometery, Moessbauer and impedance spectroscopies. The result of magnetic measurement suggests the sample to be superparamagnetic as evidenced by the 57 Fe Moessbauer spectroscopy. The two Mg atoms occupy different positions around iron resulting in two phase system as shown by Moessbauer and impedance spectroscopies.

  20. Characterization of alumina obtained from the synthesis of gelatinous precipitates of aluminum hydroxide obtained from the reaction of aluminum sulfate and ammonium hydroxide in different temperatures

    International Nuclear Information System (INIS)

    Mercury, Jose Manuel Rivas; Freitas Neves, R. de

    1996-01-01

    Aluminum hydroxide was obtained by synthesis through neutralization of solutions aluminum sulphate solutions with ammonium hydroxide at different level of temperatures of synthesis (30, 60, 90 deg C) on the molar [OH]/[Al +3 ] of 6,5. All products was burned at 950 deg C during two hours of dried aluminum hydroxide powder. Alumina obtained and A-16SG, APC-2011, produced by Alcoa Co. was characterized by Bulk Density, Tap density, Real Density, Particle Size Distribution, X-Ray Diffractions and Chemical Analysis and both compared. (author)

  1. Low-temperature synthesis of SrAl2O4 by a modified sol-gel route: XRD and Raman characterization

    International Nuclear Information System (INIS)

    Escribano, Purificacion; Marchal, Monica; Luisa Sanjuan, Maria; Alonso-Gutierrez, Pablo; Julian, Beatriz; Cordoncillo, Eloisa

    2005-01-01

    Among other alkaline-earth aluminates, the monoclinic (M) polymorph of SrAl 2 O 4 can be used as host material for Eu 2+ luminescence based phosphors. With the aim of reducing the synthesis temperature of this polymorph, we have produced and characterized by XRD and Raman scattering solid solutions of the SrAl 2-x B x O 4 system (x= 2 O 4 occurs for samples synthesized below an onset temperature of about 1000-1100 deg. C, that depends on the sample composition. Above those temperatures, only the monoclinic phase is formed

  2. Electro-hydrodynamic spray synthesis and low temperature spectroscopic characterization of Perovskite thin films

    Science.gov (United States)

    Sarang, Som; Ishihara, Hidetaka; Tung, Vincent; Ghosh, Sayantani

    Utilizing a Marangoni flow inspired electrospraying technique, we synthesize hybrid perovskite (PVSK) thin films with broad absorption spectrum and high crystallinity. The precursor solvents are electrosprayed onto an indium tin oxide (ITO) substrate, resulting in a gradient force developing between the droplet surface and the bulk due to the varying vapor pressure in the bi-solvent system. This gradient force helps the droplets propagate and merge with surrounding ones, forming a uniform thin film with excellent morphological and topological characteristics, as evident from the average power conversion efficiency (PCE) of 16%. In parallel, we use low temperature static and dynamic photoluminescence spectroscopy to probe the grain boundaries and defects in the synthesized PVSK thin films. At 120 K, the emergence of the low temperature orthorhombic phase is accompanied by reduction in lifetimes by an order of magnitude, a result attributed to charge transfer between the orthorhombic and tetragonal domains, as well as due to a crossover from free charge carrier to excitonic recombination. Our fabrication technique and optical studies help in advancement of PVSK based technology by providing unique insights into the fundamental physics of these novel materials. This research was supported by National Aeronautics and Space administration (NASA) Grant No: NNX15AQ01A.

  3. Low temperature synthesis of wurtzite zinc sulfide (ZnS) thin films by chemical spray pyrolysis.

    Science.gov (United States)

    Zeng, Xin; Pramana, Stevin S; Batabyal, Sudip K; Mhaisalkar, Subodh G; Chen, Xiaodong; Jinesh, K B

    2013-05-14

    Zinc sulfide (ZnS) thin films have been synthesized by spray pyrolysis at 310 °C using an aqueous solution of zinc chloride (ZnCl2) and thioacetamide (TAA). Highly crystalline films were obtained by applying TAA instead of thiourea (TU) as the sulfur source. X-ray diffraction (XRD) analyses show that the films prepared by TAA contained a wurtzite structure, which is usually a high temperature phase of ZnS. The crystallinity and morphology of the ZnS films appeared to have a strong dependence on the spray rate as well. The asymmetric polar structure of the TAA molecule is proposed to be the intrinsic reason of the formation of highly crystalline ZnS at comparatively low temperatures. The violet and green emissions from photoluminescence (PL) spectroscopy reflected the sulfur and zinc vacancies in the film. Accordingly, the photodetectors fabricated using these films exhibit excellent response to green and red photons of 525 nm and 650 nm respectively, though the band gaps of the materials, estimated from optical absorption spectroscopy, are in the range of 3.5-3.6 eV.

  4. Room temperature synthesis of a Zn(II) metal-organic coordination polymer for dye removal

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Alireza, E-mail: aabbasi@khayam.ut.ac.ir [School of Chemistry, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Gharib, Maniya; Najafi, Mahnaz [School of Chemistry, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Janczak, Jan [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PO Box 1410, 50-950 Wrocław (Poland)

    2016-03-15

    A new one-dimensional (1D) coordination polymer, [Zn(4,4′-bpy)(H{sub 2}O){sub 4}](ADC)·4H{sub 2}O (1) (4,4′-bpy=4,4′-bipyridine and H{sub 2}ADC=acetylenedicarboxylic acid), was synthesized at room temperature. The crystal structure of the coordination polymer was determined by single-crystal X-ray diffraction analysis. Compound 1 was also characterized by FT-IR, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). The catalytic activity of 1 was evaluated in the color removal of Bismarck brown as a representative of dye pollutant in water under mild conditions. Coordination polymer 1 exhibited good catalytic activity and stability in the decolorization of Bismarck brown and could be easily recovered and reused for at least three cycles. - Graphical abstract: A new 1D coordination polymer as catalyst for the degradation of Bismarck brown aqueous solution. - Highlights: • A 1D coordination polymer has been synthesized at room temperature. • The prepared compound was utilized for color removal of Bismarck brown dye. • Good catalytic activity and stability in the dye decolorization has been found.

  5. Synthesis and Properties of Novel High Temperature Transparent Cyclic Olefin Copolymers

    Directory of Open Access Journals (Sweden)

    YANG Muquan

    2017-08-01

    Full Text Available Novel high temperature and transparent cyclic olefin copolymers (COC derived from bulky cyclic olefin {exo-1,4,4a,9,9a,10-hexahydro-9,10(10,20-benzeno-l,4-methanoanthracene (EHBMA} were successfully synthesized by the copolymerization of EHBMA and propylene(PP. The glass transition temperature (Tg of the resulted COC can be controlled easily by adjusting the feed ratio of the EHBMA and PP. The Tg can be adjusted from 170 to 220℃. The DSC and UV-Vis spectra results show that the Tg and transmittance are up to 220℃ and 92% respectively. The synthesized COC has a Tg about 40℃ higher than that of commercial TOPAS 6017 product. The tensile test showes that the COC material has good mechanical properties. The synthesized COC has high thermal stabilities, good mechanical properties and excellent transparencies, and it will be used in the aerospace, medical and other high-tech fields.

  6. Room temperature synthesis of PbSe quantum dots in aqueous solution: Stabilization by interactions with ligands

    Science.gov (United States)

    Primera-Pedrozo, Oliva M.; Arslan, Zikri; Rasulev, Bakhtiyor; Leszczynski, Jerzy

    2011-01-01

    An aqueous route of synthesis is described for rapid synthesis of lead selenide quantum dots (PbSe QDs) at room temperature in an attempt to produce water-soluble and stable nanocrystals. Several thiol-ligands, including thioglycolic acid (TGA), thioglycerol (TGC), 3-mercaptopropionic acid (MPA), 2-mercaptoethyleamine hydrochloride (MEA), 6-mercaptohexanoic acid (MHA), and L-cysteine (L-cys), were used for capping/stabilization of PbSe QDs. The effects of the ligands on the stability of PbSe QDs were evaluated for a period of two months at room temperature under normal light conditions and at 4 °C in dark. The TGA- and MEA-capped QDs exhibited the highest stability prior to purification, almost two months when kept in dark at 4 °C. However, the stability of TGA-capped QDs was reduced substantially after purification to about 5 days under same conditions, while MEA-capped QDs did not show any significant instability. The stabilization energies of Pb-thiolate complexes determined by theoretical DFT simulations supported the experimental results. The PbSe QDs capped with TGA, MPA and MEA were successfully purified and re-dispersed in water, while those stabilized with TGC, MHA and L-cys aggregated during purification attempts. The purified PbSe QDs possess very susceptible surface resulting in poor stability for about 30 – 45 min after re-dispersion in water. In the presence of an excess of free ligand, the stability increased up to 5 days for TGA-capped QDs at pH 7.19, 9 –12 days for MPA-capped QDs at pH 7.3–7.5 and 45–47 days for MEA-capped QDs at pH 7.35. X-Ray Diffraction (XRD) results showed that the QDs possess a cubic rock salt structure with the most intense peaks located at 2θ = 25.3° (200) and 2θ = 29.2° (100). TEM images showed that the size of the QDs ranges between 5 and 10 nm. ICP-MS results revealed that Pb:Se ratio was 1.26, 1.28, 3.85, 1.18, and 1.31 for the QDs capped with TGA, MPA, MEA, L-Cys, and TGC, respectively. The proposed method

  7. Self propagating high temperature synthesis of mixed carbide and boride powder systems for cutting tools manufacturing

    International Nuclear Information System (INIS)

    Vallauri, D.; Cola, P.L. de; Piscone, F.; Amato, I.

    2001-01-01

    TiC-TiB 2 composites have been produced via SHS technique starting from low cost raw materials like TiO 2 , B 4 C, Mg. The influence of the diluent phase (Mg, TiC) content on combustion temperature has been investigated. The use of magnesium as the reductant phase allowed acid leaching of the undesired oxide product (MgO), leaving pure hard materials with fine particle size suitable to be employed in cutting tools manufacturing through cold pressing and sintering route. The densification has shown to be strongly dependent on the wetting additions. The influence of the metal binder and wetting additions on the sintering process has been investigated. A characterization of the obtained materials was performed by the point of view of cutting tools life (hardness, toughness, strength). (author)

  8. Room temperature synthesis of a Zn(II) metal-organic coordination polymer for dye removal

    Science.gov (United States)

    Abbasi, Alireza; Gharib, Maniya; Najafi, Mahnaz; Janczak, Jan

    2016-03-01

    A new one-dimensional (1D) coordination polymer, [Zn(4,4‧-bpy)(H2O)4](ADC)·4H2O (1) (4,4‧-bpy=4,4‧-bipyridine and H2ADC=acetylenedicarboxylic acid), was synthesized at room temperature. The crystal structure of the coordination polymer was determined by single-crystal X-ray diffraction analysis. Compound 1 was also characterized by FT-IR, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). The catalytic activity of 1 was evaluated in the color removal of Bismarck brown as a representative of dye pollutant in water under mild conditions. Coordination polymer 1 exhibited good catalytic activity and stability in the decolorization of Bismarck brown and could be easily recovered and reused for at least three cycles.

  9. Synthesis of Bismuth Ferrite Nanoparticles via a Wet Chemical Route at Low Temperature

    Directory of Open Access Journals (Sweden)

    Yongming Hu

    2011-01-01

    Full Text Available Nanoparticles (NPs of multiferroic bismuth ferrite (BiFeO3 with narrow size distributions were synthesized via a wet chemical route using bismuth nitrate and iron nitrate as starting materials and excess tartaric acid and citric acid as chelating agent, respectively, followed by thermal treatment. It was found that BiFeO3 NPs crystallized at ∼350∘C when using citric acid as chelating agent. Such crystallization temperature is much lower than that of conventional chemical process in which other types of chelating agent are used. BiFeO3 NPs with different sizes distributions show obvious ferromagnetic properties, and the magnetization is increased with reducing the particle size.

  10. Effect of Calcination Temperature on the Alumina-Zirconia Nanostructures Prepared by Combustion Synthesis

    Directory of Open Access Journals (Sweden)

    M. Jafar Tafreshi

    2012-12-01

    Full Text Available In this research, a sol gel autocaombustion route has been proposed to synthesize alumina-zirconia composite powders, using ammonium bicarbonate as a new fuel. Then the effect of calcination temperature on phase transformation and crystallite sizes was investigated. To characterize the products XRD, TEM and BET analyses were used. XRD patterns of as-synthesized powder and calcined powders at 1100 ◦C and 1200 ◦C showed t-ZrO2 phase with small crystallite sizes (sintered at 1300 ◦C and the particle sizes after calcination were 14.90 nm and 50 nm for ZrO2 and Al2O3 phases, respectively as calculated from XRD and the transformation of t-ZrO2 to m-ZrO2 started at 1300 ◦C. TEM micrograph of as-synthesized powder revealed nanosize spherical particles of about 8 nm.

  11. Synthesis of hydrogen-carbon clathrate material and hydrogen evolution therefrom at moderate temperatures and pressures

    Science.gov (United States)

    Lueking, Angela [State College, PA; Narayanan, Deepa [Redmond, WA

    2011-03-08

    A process for making a hydrogenated carbon material is provided which includes forming a mixture of a carbon source, particularly a carbonaceous material, and a hydrogen source. The mixture is reacted under reaction conditions such that hydrogen is generated and/or released from the hydrogen source, an amorphous diamond-like carbon is formed, and at least a portion of the generated and/or released hydrogen associates with the amorphous diamond-like carbon, thereby forming a hydrogenated carbon material. A hydrogenated carbon material including a hydrogen carbon clathrate is characterized by evolution of molecular hydrogen at room temperature at atmospheric pressure in particular embodiments of methods and compositions according to the present invention.

  12. Ultrafine ferromagnetic iron oxide nanoparticles: Facile synthesis by low temperature decomposition of iron glycerolate

    Energy Technology Data Exchange (ETDEWEB)

    Bartůněk, Vilém, E-mail: vilem.bartunek@vscht.cz [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 (Czech Republic); Průcha, David [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 (Czech Republic); Švecová, Marie [Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 (Czech Republic); Ulbrich, Pavel [Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 3, 166 28 Prague 6 (Czech Republic); Huber, Štěpán; Sedmidubský, David; Jankovský, Ondřej [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 (Czech Republic)

    2016-09-01

    We synthesized dark colored ultrafine – sub 10 nm iron oxide nanoparticles by a facile and low temperature process based on thermal decomposition of an affordable precursor – iron glycerolate. Simultaneous thermal analysis (STA) was used to study the thermal behaviour during the decomposition. The iron glycerolate was thoroughly analysed by various methods. The size of the iron nanoparticles was determined from XRD patterns and by transmission electron microscopy (TEM) and their composition has been confirmed by XPS. Magnetic properties of the nanoparticles were studied by vibrating sample magnetometry. The prepared single phase material exhibiting ferromagnetic properties is usable in a wide range of applications and may be suitable even for large scale industrial applications. - Highlights: • Iron glycerolate prepared and characterised. • Iron oxide nanoparticles prepared by thermal decomposition of iron glycerolate. • STA used to study the decomposition. • Products characterised by XRD, XPS, FT-IR, SEM and TEM. • Magnetic behaviour of monophasic samples determined.

  13. In situ synthesis of manganese oxides on polyester fiber for formaldehyde decomposition at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jinlong [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center for Regional Environmental Quality (China); Yunus, Rizwangul [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084 (China); Xinjiang Zhongtai Chemical Company, Xinjiang 831511 (China); Li, Jinge; Li, Peilin [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084 (China); Zhang, Pengyi, E-mail: zpy@tsinghua.edu.cn [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center for Regional Environmental Quality (China); Kim, Jeonghyun [State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center for Regional Environmental Quality (China)

    2015-12-01

    Graphical abstract: - Highlights: • The MnO{sub x} particles assembled with nanosheets were uniformly coated on PET fibers. • The growth process of MnO{sub x} layer on PET is clearly clarified. • MnO{sub x}/PET showed good activity for HCHO decomposition at room temperature. • MnO{sub x}/PET material is promising for indoor air purification due to its light, flexible and low air-resistant properties. - Abstract: Removal of low-level formaldehyde (HCHO) is of great interest for indoor air quality improvement. Supported materials especially those with low air pressure drop are of necessity for air purification. Manganese oxides (MnO{sub x}) was in situ deposited on the surface of fibers of a non-woven fabric made of polyethylene terephthalate (PET). As-synthesized MnO{sub x}/PET were characterized by SEM, XRD, TEM, ATR-FTIR and XPS analysis. The growth of MnO{sub x} layer on PET is thought to start with partial hydrolysis of PET, followed by surface oxidation by KMnO{sub 4} and then surface-deposition of MnO{sub x} particles from the bulk phase. The MnO{sub x} particles assembled with nanosheets were uniformly coated on the PET fibers. MnO{sub x}/PET showed good activity for HCHO decomposition at room temperature which followed the Mars–van Krevelen mechanism. The removal of HCHO was kept over 94% after 10 h continuous reaction under the conditions of inlet HCHO concentration ∼0.6 mg/m{sup 3}, space velocity ∼17,000 h{sup −1} and relative humidity∼50%. This research provides a facile method to deposit active MnO{sub x} onto polymers with low air resistance, and composite MnO{sub x}/PET material is promising for indoor air purification.

  14. Candida antartica lipase B catalyzed polycaprolactone synthesis: effects of organic media and temperature.

    Science.gov (United States)

    Kumar, A; Gross, R A

    2000-01-01

    Engineering of the reaction medium and study of an expanded range of reaction temperatures were carried out in an effort to positively influence the outcome of Novozyme-435 (immobilized Lipase B from Candida antarctica) catalyzed epsilon-CL polymerizations. A series of solvents including acetonitrile, dioxane, tetrahydrofuran, chloroform, butyl ether, isopropyl ether, isooctane, and toluene (log P from -1.1 to 4.5) were evaluated at 70 degrees C. Statistically (ANOVA), two significant regions were observed. Solvents having log P values from -1.1 to 0.49 showed low propagation rates (< or = 30% epsilon-CL conversion in 4 h) and gave products of short chain length (Mn < or = 5200 g/mol). In contrast, solvents with log P values from 1.9 to 4.5 showed enhanced propagation rates and afforded polymers of higher molecular weight (Mn = 11,500-17,000 g/mol). Toluene, a preferred solvent for this work, was studied at epsilon-CL to toluene (wt/vol) ratios from 1:1 to 10:1. The ratio 1:2 was selected since, for polymerizations at 70 degrees C, 0.3 mL of epsilon-CL and 4 h, gave high monomer conversions and Mn values (approximately 85% and approximately 17,000 g/mol, respectively). Increasing the scale of the reaction from 0.3 to 10 mL of CL resulted in a similar isolated product yield, but the Mn increased from 17,200 to 44,800 g/mol. Toluene appeared to help stabilize Novozyme-435 so that lipase-catalyzed polymerizations could be conducted effectively at 90 degrees C. For example, within only 2 h at 90 degrees C (toluene-d8 to epsilon-CL, 5:1, approximately 1% protein), the % monomer conversion reached approximately 90%. Also, the controlled character of these polymerizations as a function of reaction temperature was evaluated.

  15. Hydrothermal synthesis of hexagonal CeO{sub 2} nanosheets and their room temperature ferromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Fanming, E-mail: mrmeng@ahu.edu.cn [School of Physics and Materials Science, Anhui University, Hefei 230601 (China); Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024 (China); Zhang, Cheng; Fan, Zhenghua; Gong, Jinfeng; Li, Aixia; Ding, Zongling; Tang, Huaibao; Zhang, Miao; Wu, Guifang [School of Physics and Materials Science, Anhui University, Hefei 230601 (China)

    2015-10-25

    Hexagonal CeO{sub 2} nanosheets of 40–50 nm in thickness and 300–400 nm in side-length have been successfully synthesized via controlling the morphology of CeCO{sub 3}OH precursors by a facile hydrothermal technique using CeCl{sub 3}·7H{sub 2}O as cerium source, ammonium hydrogen carbonate as precipitants, and ethylenediamine as complexant. The reaction time and the amount of CeCl{sub 3}·7H{sub 2}O and ethylenediamine were systematically investigated. The as-synthesized hexagonal CeO{sub 2} nanosheets were examined by XRD, SEM, TEM, XPS, Raman scattering and magnetization measurements. It is found that the amount of CeCl{sub 3}·7H{sub 2}O and ethylenediamine are key parameters for controlling the final morphology. The hexagonal CeO{sub 2} nanosheets have a fluorite cubic structure and there are Ce{sup 3+} ions and oxygen vacancies in surface of samples. The synthesized CeO{sub 2} shows excellent room temperature optical properties. M–H curve exhibits excellent room-temperature ferromagnetism (RTFM) with saturation magnetization (M{sub s}) of 3.02 × 10{sup −2} emu/g, residual magnetization (M{sub r}) of 0.68 × 10{sup −2} emu/g and coercivity (H{sub c}) of 210 Oe, which is likely attributed to the effects of the Ce{sup 3+} ions and oxygen vacancies. - Highlights: • Hexagonal CeO{sub 2} nanosheets with superexerllent RTFM are synthesized by a facile hydrothermal method. • RTFM mechanism of CeO{sub 2} nanosheets can be attributed to the influences of oxygen vacancies and Ce{sup 3+} ions. • A defect driven dissolution–recrystallization mechanism is suggested to explain the transformation from nanowires to nanosheets.

  16. Experimental Study of Abiotic Organic Synthesis at High Temperature and Pressure Conditions: Carbon Isotope and Mineral Surface Characterizations

    Science.gov (United States)

    Fu, Qi; Socki, R. A.; Niles, P. B.

    2010-01-01

    Abiotic organic synthesis processes have been proposed as potential mechanisms for methane generation in subseafloor hydrothermal systems on Earth, and on other planets. To better understand the detailed reaction pathways and carbon isotope fractionations in this process under a wide range of physical and chemical conditions, hydrothermal experiments at high temperature (750 C) and pressure (0.55 GPa) were performed using piston cylinder apparatus. Formic acid was used as the source of CO2 and H2, and magnetite was the mineral catalyst. The chemical and carbon isotopic compositions of dissolved organic products were determined by GC-C-MS-IRMS, while organic intermediaries on the mineral catalyst were characterized by Pyrolysis-GC-MS. Among experimental products, dissolved CO2 was the dominant carbon species with a relative abundance of 88 mol%. Dissolved CH4 and C2H6 were also identified with a mole ratio of CH4 over C2H6 of 15:1. No dissolved CO was detected in the experiment, which might be attributable to the loss of H2 through the Au capsule used in the experiments at high temperature and pressure conditions and corresponding conversion of CO to CO2 by the water-gas shift reaction. Carbon isotope results showed that the 13C values of CH4 and C2H6 were -50.3% and -39.3% (V-PDB), respectively. CO2 derived from decarboxylation of formic acid had a (sigma)C-13 value of -19.2%, which was 3.2% heavier than its source, formic acid. The (sigma)C-13 difference between CO2 and CH4 was 31.1%, which was higher than the value of 9.4% calculated from theoretical isotopic equilibrium predictions at experimental conditions, suggesting the presence of a kinetic isotope effect. This number was also higher than the values (4.6 to 27.1%) observed in similar experiments previously performed at 400 C and 50 MPa with longer reaction times. CH4 is 11.0% less enriched in C-13 than C2H6. Alcohols were observed as carbon compounds on magnetite surfaces by Pyrolysis-GC-MS, which confirms

  17. Synthesis of alpha'L-C2S cement from fly-ash using the hydrothermal method at low temperature and atmospheric pressure.

    Science.gov (United States)

    Kacimi, Larbi; Cyr, Martin; Clastres, Pierre

    2010-09-15

    The objective of this study was the synthesis of alpha'(L)-C(2)S (Ca(2)SiO(4)) belite cement, starting from fly-ash of system CaO-SiO(2)-Al(2)O(3)-SO(3), and using the hydrothermal method in alkaline solution. The lime deficit in these ashes was compensated by the addition of slaked lime from lime bagging workshops. The hydrothermal treatment of the mixture was carried out in demineralized water, NaOH or KOH solution, continually stirred at a temperature below 100 degrees C and atmospheric pressure. The dehydration and calcination of the mixtures at temperatures between 800 and 1100 degrees C allowed alpha'(L)-C(2)S-rich cement to be obtained. The optimization of the synthesis parameters (temperature and time of stirring, pH of solution, temperature and duration of mixture burning) was also studied. The phase formation during various synthesis stages was studied by X-ray diffraction (XRD). Other techniques, such as SEM and EDX, were used to characterize the cement minerals. The results obtained showed that these ashes could form belite cement composed of only one dicalcium silicate phase (alpha'(L)-C(2)S). Copyright 2010 Elsevier B.V. All rights reserved.

  18. Hydrothermal Synthesis of Zeolite from Coal Class F Fly Ash. Influence of Temperature

    Directory of Open Access Journals (Sweden)

    Goñi, S.

    2010-06-01

    Full Text Available The influence of temperature of alkaline hydrothermal treatment on the conversion in zeolite of Spanish coal low calcium-fly ash (ASTM class F is presented in this work. Zeolite Na-P1 gismondine type (Na6Al6Si10O32.12H2O was formed at the temperature of 100ºC, which transformed in zeolite; analcime-C type (Na(Si2AlO6H2O and sodalite (1.08 Na2O.Al2O3.1.68SiO2.1.8H2O at 200ºC together with traces of tobermorite-11Å (Ca5(OH2Si6O16.4H2O. At this temperature the 100% of the fly ash reaction was allowed. An equivalent study was carried out in water as reference. The zeolite conversion of the fly ash was characterized by X ray diffraction (XRD, FT infrared (FTIR spectroscopy, surface area (BET-N2 and thermal analyses.

    En este trabajo se presenta el papel que juega la temperatura durante el tratamiento hidrotermal en medio alcalino para convertir una ceniza volante de bajo contenido en cal (clase F, según la norma ASTM en zeolita. Durante este tratamiento a la temperatura de 100ºC se forma Zeolita Na-P1 tipo gismondina (Na6Al6Si10O32.12H2O; al elevar la temperatura a 200ºC, dicha zeolita se transforma en zeolita Analcima C (Na(Si2AlO6H2O y en fase sodalita (1.08 Na2O.Al2O3.1.68SiO2.1.8H2O junto con trazas de tobermorita-11Å (Ca5(OH2Si6O16.4H2O. A esta temperatura y en estas condiciones se ha conseguido un 100% de reacción. Un estudio equivalente se ha llevado a cabo empleando agua como medio de referencia. La conversión de ceniza volante en zeolita se ha caracterizado mediante técnicas, como difracción de Rayos X (DRX, espectroscopia

  19. Low temperature synthesis of nanocrystalline lanthanum monoaluminate powders by chemical coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, C.-L. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Wang, C.-L. [Department of Materials Science and Engineering, I-Shou University, 1 Section 1, Hsueh-Cheng Road, Ta-Hsu Hsiang, Kaohsiung 840, Taiwan (China); Chen, T.-Y. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Chen, G.-J. [Department of Materials Science and Engineering, I-Shou University, 1 Section 1, Hsueh-Cheng Road, Ta-Hsu Hsiang, Kaohsiung 840, Taiwan (China); Hung, I-M. [Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chungli, Taoyuan 320, Taiwan (China); Shih, C.-J. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan (China)]. E-mail: CJShih@kmu.edu.tw; Fung, K.-Z. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China)

    2007-08-16

    Nanocrystalline lanthanum monoaluminate (LaAlO{sub 3}) powders were prepared by chemical coprecipitation using 25 vol.% of NH{sub 4}OH, 0.05 M La(NO{sub 3}){sub 3}.6H{sub 2}O and 0.05 M Al(NO{sub 3}){sub 3}.9H{sub 2}O aqueous solutions as the starting materials. Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analyses (TGA/DTA), X-ray diffraction (XRD), Raman spectrometry, specific surface area (BET) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron diffraction (ED) were utilized to characterize the LaAlO{sub 3} powders prepared by chemical coprecipitation. The crystallization temperature of the LaAlO{sub 3} precursor gels precipitated at pH 9 is estimated as 810 deg. C by TG/DTA. The XRD pattern of the LaAlO{sub 3} precursor gels precipitated at pH 8-12 and calcined at 700 deg. C for 6 h shows a broad arciform continuum exist between 24{sup o} and 32{sup o} and sharp peaks of LaAlO{sub 3} except the precursor gels precipitated at pH 9. For the LaAlO{sub 3} precursor gels precipitated at pH 9 and calcined at 700 deg. C for 6 h, the formation of the perovskite LaAlO{sub 3} phase occurs and the presence of crystalline impurities is not found. The crystallite size of LaAlO{sub 3} slightly increases from 37.8 to 41.5 nm with calcination temperature increasing from 700 to 900 deg. C for 6 h. The LaAlO{sub 3} powders prepared by chemical coprecipitation have a considerably large specific surface of 30 m{sup 2}/g. The relative density greater than 97% is obtained when these nanocrystalline LaAlO{sub 3} powders are sintered at 1550 deg. C for 2 h.

  20. Mechano-chemical synthesis K2MF6 (M = Mn, Ni) by cation-exchange reaction at room temperature

    Science.gov (United States)

    Rawat, Pooja; Nagarajan, Rajamani

    2018-02-01

    In order to establish the power of mechanochemistry to produce industrially important phosphors, synthesis of K2MnF6 has been attempted by the successive grinding reactions of manganese (II) acetate with ammonium fluoride and potassium fluoride. The progress of reaction was followed by ex-situ characterization after periodic intervals of time. Cubic symmetry of K2MnF6 was evident from its powder X-ray diffraction pattern which was refined successfully in cubic space group (Fm-3m) with a = 8.4658 (20) Å. Stretching and bending vibration modes of MnF62- octahedral units appeared at 740 and 482 cm-1 in the fourier transformed infrared spectrum. Bands at 405 and 652 cm-1 appeared in the Raman spectrum and they were finger-print positions of cubic K2MnF6. Other than the ligand to metal charge transfer transition at 242 nm, transitions from 4A2g to 4T1g, 4T2g and 2T2g of Mn4+-ion appeared at 352, 429, 474 and 569 nm in the UV-visible diffuse reflectance spectrum of the sample. Red emission due to Mn4+ was observed in the photoluminescence spectrum with a decay time of 0.22 ms. Following the success in forming cubic K2MnF6, this approach has been extended to synthesize cubic K2NiF6 at room temperature. All these results confirmed the susceptibility of acetate salts of transition metals belonging to first-row of the periodic table to facile fluorination at room temperature aided by mechanical forces.

  1. I. The synthesis and characterization of annulated uranocenes. II. The variable temperature 1H NMR of uranocenes

    International Nuclear Information System (INIS)

    Luke, W.D.

    1980-01-01

    A general synthetic route to alkyl annulated cyclooctatetraene dianions and the corresponding annulated uranocenes has been developed. Dideprotonation of bicyclooctatrienes, resulting from reaction of cyclooctatetraene dianion with l,n-dialkylbromides or methanesulfonates, affords alkyl annulated cyclooctatetraene dianions in moderate yields. Dicyclopenteno-, bisdimethylcyclopenteno- and dicyclohexenouranocene were prepared from the corresponding cyclooctatetraene dianions and UCl 4 . The structures of dicyclobuteno- and dicyclopentenouranocene were elucidated by single crystal X-ray diffraction, and the effects of annulation on the uranocene skeleton are discussed. Attempted synthesis of benzocyclooctatetraene and a benzannulated uranocene is reported. The variable temperature 1 H NMR spectrum of uranocene has been reinvestigated from -100 to 100 0 C. The isotropic shift was found to be linear in T -1 with an extrapolated intercept of 0 at T -1 = 0. Variable temperature 1 H NMR spectra, from -80 to 70 0 C, of 17 substituted uranocenes are reported. The energy barrier to ring rotation in 1,1', 4,4'-tetra-t-butyl-uranocene was determined to be 8.24 +- 0.5 kcal/mole while the barrier in the corresponding 1,1', 3,3'-tetra-t-butylferrocene was determined to be 13.1 kcal/mole. Alkyl substitution is shown to have little effect on the electronic and magnetic properties of the uranocene skeleton, and thus alkyl substituted uranocenes are treated as having effective axial symmetry in analysis of the observed isotropic shifts. Using diannulated uranocenes as model systems an analysis of the contact and pseudocontact components of the observed isotropic shifts in uranocene and alkyl substituted uranocenes is presented

  2. Stereospecific growth of densely populated rutile mesoporous TiO2 nanoplate films: a facile low temperature chemical synthesis approach

    Science.gov (United States)

    Lee, Go-Woon; Ambade, Swapnil B.; Cho, Young-Jin; Mane, Rajaram S.; Shashikala, V.; Yadav, Jyotiprakash; Gaikwad, Rajendra S.; Lee, Soo-Hyoung; Jung, Kwang-Deog; Han, Sung-Hwan; Joo, Oh-Shim

    2010-03-01

    We report for the first time, using a simple and environmentally benign chemical method, the low temperature synthesis of densely populated upright-standing rutile TiO2 nanoplate films onto a glass substrate from a mixture of titanium trichloride, hydrogen peroxide and thiourea in triply distilled water. The rutile TiO2 nanoplate films (the phase is confirmed from x-ray diffraction analysis, selected area electron diffraction, energy-dispersive x-ray analysis, and Raman shift) are 20-35 nm wide and 100-120 nm long. The chemical reaction kinetics for the growth of these upright-standing TiO2 nanoplate films is also interpreted. Films of TiO2 nanoplates are optically transparent in the visible region with a sharp absorption edge close to 350 nm, confirming an indirect band gap energy of 3.12 eV. The Brunauer-Emmet-Teller surface area, Barret-Joyner-Halenda pore volume and pore diameter, obtained from N2 physisorption studies, are 82 m2 g - 1, 0.0964 cm3 g - 1 and 3.5 nm, respectively, confirming the mesoporosity of scratched rutile TiO2 nanoplate powder that would be ideal for the direct fabrication of nanoscaled devices including upcoming dye-sensitized solar cells and gas sensors.

  3. An assessment of the process of Self-propagating High-Temperature Synthesis for the fabrication of porous copper composite

    International Nuclear Information System (INIS)

    Moloodi, A.; Raiszadeh, R.; Vahdati-Khaki, J.; Babakhani, A.

    2009-01-01

    The present article describes the process of Self-propagating High-temperature Synthesis (SHS) that is employed for fabricating open cell copper-alumina composite foam. This foam was fabricated by the reactions between the powders of CuO, Al and C. The gas released during these reactions as well as the initial porosity of the green powder compact were suggested to be the sources of the produced pores. Further, the effect of C content and the precursor compressing pressure on the porosity content and morphology of the SHS product was determined. Optical microscopy (OM), scanning electron microscopy (SEM), and X-ray diffraction (XRD) were utilized to characterize the porous samples. The optimum weight fractions for blending the initial powders were determined to be 84 wt.% CuO, 9.5 wt.% Al, and 6.5 wt.% C, and the SHS reaction was sustainable only if the initial compacting pressure of the powders was between 100 and 300 MPa.

  4. Formulation and catalytic performance of MOF-derived Fe@C/Al composites for high temperature Fischer–Tropsch synthesis

    KAUST Repository

    Oar-Arteta, Lide

    2017-11-15

    High productivity towards C-2-C-4 olefins together with high catalyst stability are key for optimum operation in high temperature Fischer-Tropsch synthesis (HT-FTS). Here, we report the fabrication of Fe@C/Al composites that combine both the outstanding catalytic properties of the Fe-BTC MOF-derived Fe catalyst and the excellent mechanical resistance and textural properties provided by the inorganic AlOOH binder. The addition of AlOOH to Fe-BTC followed by pyrolysis in N-2 atmosphere at 500 degrees C results in composites with a large mesoporosity, a high Fe/Fe3O4 ratio, 10-35 nm average Fe crystallite size and coordinatively unsaturated Al3+ sites. In catalytic terms, the addition of AlOOH binder gives rise to enhanced C-2-C-4 selectivity and catalyst mechanical stability in HT-FTS, but at high Al contents the activity decreases. Altogether, the productivity of these Fe@C/Al composites is well above most known Fe catalysts for this process.

  5. Low-temperature synthesis of hexagonal transition metal ion doped ZnS nanoparticles by a simple colloidal method

    International Nuclear Information System (INIS)

    Wang, Liping; Huang, Shungang; Sun, Yujie

    2013-01-01

    A general route to synthesize transition metal ions doped ZnS nanoparticles with hexagonal phase by means of a conventional reverse micelle at a low temperature is developed. The synthesis involves N,N-dimethylformamide, Zn(AC) 2 solution, thiourea, ammonia, mercaptoacetic acid, as oil phase, water phase, sulfide source, pH regulator, and surfactant, respectively. Thiourea, ammonia and mercaptoacetic acid are demonstrated crucial factors, whose effects have been studied in detail. In addition, the FT-IR spectra suggest that mercaptoacetic acid may form complex chelates with Zn 2+ in the preparation. In the case of Cu 2+ as a doped ion, hexagonal ZnS:Cu 2+ nanoparticles were synthesized at 95 °C for the first time. The X-ray diffraction (XRD) and transmission electron microscope (TEM) measurements show that the ZnS:Cu 2+ nanoparticles are polycrystalline and possess uniform particle size. The possible formation mechanism of the hexagonal doped ZnS is discussed.

  6. Low-temperature synthesis of carbon nanotubes on indium tin oxide electrodes for organic solar cells.

    Science.gov (United States)

    Capasso, Andrea; Salamandra, Luigi; Di Carlo, Aldo; Bell, John Marcus; Motta, Nunzio

    2012-01-01

    The electrical performance of indium tin oxide (ITO) coated glass was improved by including a controlled layer of carbon nanotubes directly on top of the ITO film. Multiwall carbon nanotubes (MWCNTs) were synthesized by chemical vapor deposition, using ultrathin Fe layers as catalyst. The process parameters (temperature, gas flow and duration) were carefully refined to obtain the appropriate size and density of MWCNTs with a minimum decrease of the light harvesting in the cell. When used as anodes for organic solar cells based on poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM), the MWCNT-enhanced electrodes are found to improve the charge-carrier extraction from the photoactive blend, thanks to the additional percolation paths provided by the CNTs. The work function of as-modified ITO surfaces was measured by the Kelvin probe method to be 4.95 eV, resulting in an improved matching to the highest occupied molecular orbital level of the P3HT. This is in turn expected to increase the hole transport and collection at the anode, contributing to the significant increase of current density and open-circuit voltage observed in test cells created with such MWCNT-enhanced electrodes.

  7. Low-temperature synthesis of carbon nanotubes on indium tin oxide electrodes for organic solar cells

    Directory of Open Access Journals (Sweden)

    Andrea Capasso

    2012-07-01

    Full Text Available The electrical performance of indium tin oxide (ITO coated glass was improved by including a controlled layer of carbon nanotubes directly on top of the ITO film. Multiwall carbon nanotubes (MWCNTs were synthesized by chemical vapor deposition, using ultrathin Fe layers as catalyst. The process parameters (temperature, gas flow and duration were carefully refined to obtain the appropriate size and density of MWCNTs with a minimum decrease of the light harvesting in the cell. When used as anodes for organic solar cells based on poly(3-hexylthiophene (P3HT and phenyl-C61-butyric acid methyl ester (PCBM, the MWCNT-enhanced electrodes are found to improve the charge-carrier extraction from the photoactive blend, thanks to the additional percolation paths provided by the CNTs. The work function of as-modified ITO surfaces was measured by the Kelvin probe method to be 4.95 eV, resulting in an improved matching to the highest occupied molecular orbital level of the P3HT. This is in turn expected to increase the hole transport and collection at the anode, contributing to the significant increase of current density and open-circuit voltage observed in test cells created with such MWCNT-enhanced electrodes.

  8. Green synthesis of CuxO nanoscale MOS capacitors processed at low temperatures

    KAUST Repository

    Al-Shehri, Safeyah

    2017-01-10

    In this work, we employed two nontoxic green chemistry methods to develop solution-processed copper oxide CuxO thin films at low annealing temperature of 200 °C. The first aqueous precursor of CuxO was prepared by mixing the copper powder with spinach leaves extract, whereas the other solution was formulated using the water-based polyol reduction method of Cu(II) nitrate. The as-prepared precursors were then spun on SiO2/P+ Si substrates to form nanoscale Metal-Oxide-Semiconductor (MOS) capacitors by which some valuable information about the CuxO semiconductor films and their interfaces with dielectric were acquired. Both fabricated MOS capacitors exhibited p-type polarity with negative flat-band voltages. However, the MOS based on spinach extract-CuxO films showed small hysteresis of 100 mV, which could be attributed to its large grain size that sequentially leads to smooth interface and less trap density.

  9. In situ synthesis of TiO{sub 2}/polyethylene terephthalate hybrid nanocomposites at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Peng Xinyan [College of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640 (China); Ding Enyong, E-mail: eyding@scut.edu.cn [College of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640 (China); Xue Feng [College of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640 (China)

    2012-06-15

    TiO{sub 2} nanoflowers were in situ grown on polyethylene terephthalate (PET) non-woven fabric by hydrolysis of TiCl{sub 4} in aqueous solution in the presence of nanocrystal cellulose grafted PET fabric (NCC-g-PET) at a low temperature of 70 Degree-Sign C. Nanocrystal cellulose (NCC) pre-grafted on PET fabric acted as hydrophilic substrate and morphology inducing agent to promote the nucleation and crystal growth of TiO{sub 2}. Detailed information on the synthetic process was presented. The resulting samples were characterized using FE-SEM, EDS, ATR-IR, Raman microscopy, XRD and TG analysis. The photocatalytic activity of the samples was evaluated by the degradation of orange methyl under solar light. Characteristic results indicate that rutile TiO{sub 2} nanoflowers have grown abundantly on PET non-woven fabric, and the established hydrogen bonding strengthens the interfacial interaction between the inorganic particles and the polymeric substrates. The methyl orange decoloration test under natural solar light demonstrates that this TiO{sub 2}/PET hybrid nanocomposites exhibit excellent self-cleaning performance which is expected to have a good potential for commercialization.

  10. In situ synthesis of TiO2/polyethylene terephthalate hybrid nanocomposites at low temperature

    International Nuclear Information System (INIS)

    Peng Xinyan; Ding Enyong; Xue Feng

    2012-01-01

    TiO 2 nanoflowers were in situ grown on polyethylene terephthalate (PET) non-woven fabric by hydrolysis of TiCl 4 in aqueous solution in the presence of nanocrystal cellulose grafted PET fabric (NCC-g-PET) at a low temperature of 70 °C. Nanocrystal cellulose (NCC) pre-grafted on PET fabric acted as hydrophilic substrate and morphology inducing agent to promote the nucleation and crystal growth of TiO 2 . Detailed information on the synthetic process was presented. The resulting samples were characterized using FE-SEM, EDS, ATR-IR, Raman microscopy, XRD and TG analysis. The photocatalytic activity of the samples was evaluated by the degradation of orange methyl under solar light. Characteristic results indicate that rutile TiO 2 nanoflowers have grown abundantly on PET non-woven fabric, and the established hydrogen bonding strengthens the interfacial interaction between the inorganic particles and the polymeric substrates. The methyl orange decoloration test under natural solar light demonstrates that this TiO 2 /PET hybrid nanocomposites exhibit excellent self-cleaning performance which is expected to have a good potential for commercialization.

  11. In situ synthesis of zero-valent silver nanoparticles in polymethylmethacrylate under high temperature

    International Nuclear Information System (INIS)

    Xiong Yuanlu; Luo Guoqiang; Chen Cheng; Yuan Huan; Shen Qiang; Li Meijuan

    2012-01-01

    In this work, the silver nanoparticles were synthesized in polymethylmethacrylate (PMMA) matrix under high temperature with polyvinylpyrrolidone (PVP) as additional stabilizer and N,N-dimethylformamide (DMF) as reaction medium. The UV-vis spectroscopy and transmission electron microscopy (TEM) were adopted to investigate the growth and shape conversion of Ag nanoparticles with the lacking of additional Ag source. The results showed that the stable zero-valent Ag in PMMA was obtained successfully. Two types of Ag nanoparticles, single-crystal and twinned ones, could form in the initial period. While the twinned ones will gradually disappear along with the reaction processed, the single-crystal ones could survive and slowly grow by consuming the Ag atoms which were etched form twinned ones. The single-crystal ones will take shape conversion from sphere to nanocube with nearly the same particle size after the total disappearance of twinned ones. The size and shape of Ag nanoparticles can be well controlled by reaction time. The high viscosity PMMA matrix plays the important role of controlling the growth of the Ag nanoparticles, and the PVP takes the responsibility of the shape conversion.

  12. Low Temperature Synthesis of MnO2/Graphene Nanocomposites for Supercapacitors

    Directory of Open Access Journals (Sweden)

    Hao Huang

    2015-01-01

    Full Text Available MnO2/graphene nanocomposites were synthesized through a simple route in a water-reflux condenser system. The as-prepared composites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman microscope, and Brunauer-Emmett-Teller surface area analysis. Capacitive properties of the synthesized composite electrodes were investigated via cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectrometry in a 0.5 M Na2SO4 electrolyte. Results show that this method can control the morphology and structure of MnO2 loaded onto the graphene sheets. Because excessive MnO2 enwrapping graphene would affect the overall conductivity, the composite prepared by lower temperature has better characteristics of supercapacitor. 60-MnO2/graphene composite (48 wt% MnO2 displays the specific capacitance as high as 350 F/g at 1000 mA/g, which is higher than that of 100-MnO2/graphene (302 F/g, and it is almost two times higher than that of MnO2 (163 F/g. Furthermore, the composite exhibits excellent long cycle life along with ~93% specific capacitance retained after 5000 cycle tests.

  13. Low temperature synthesis of ternary metal phosphides using plasma for asymmetric supercapacitors

    KAUST Repository

    Liang, Hanfeng

    2017-04-06

    We report a versatile route for the preparation of metal phosphides using PH plasma for supercapacitor applications. The high reactivity of plasma allows rapid and low temperature conversion of hydroxides into monometallic, bimetallic, or even more complex nanostructured phosphides. These same phosphides are much more difficult to synthesize by conventional methods. Further, we present a general strategy for significantly enhancing the electrochemical performance of monometallic phosphides by substituting extrinsic metal atoms. Using NiCoP as a demonstration, we show that the Co substitution into NiP not only effectively alters the electronic structure and improves the intrinsic reactivity and electrical conductivity, but also stabilizes Ni species when used as supercapacitor electrode materials. As a result, the NiCoP nanosheet electrodes achieve high electrochemical activity and good stability in 1 M KOH electrolyte. More importantly, our assembled NiCoP nanoplates//graphene films asymmetric supercapacitor devices can deliver a high energy density of 32.9 Wh kg at a power density of 1301 W kg, along with outstanding cycling performance (83% capacity retention after 5000 cycles at 20 A g). This activity outperforms most of the NiCo-based materials and renders the NiCoP nanoplates a promising candidate for capacitive storage devices.

  14. Room-temperature synthesis of gold nanoparticles and nanoplates using Shewanella algae cell extract

    Energy Technology Data Exchange (ETDEWEB)

    Ogi, Takashi; Saitoh, Norizoh; Nomura, Toshiyuki; Konishi, Yasuhiro, E-mail: yasuhiro@chemeng.osakafu-u.ac.j [Osaka Prefecture University, Department of Chemical Engineering (Japan)

    2010-09-15

    Biosynthesis of spherical gold nanoparticles and gold nanoplates was achieved at room temperature and pH 2.8 when cell extract from the metal-reducing bacterium Shewanella algae was used as both a reducing and shape-controlling agent. Cell extract, prepared by sonicating a suspension of S. algae cells, was capable of reducing 1 mol/m{sup 3} aqueous AuCl{sub 4}{sup -} ions into elemental gold within 10 min when H{sub 2} gas was provided as an electron donor. The time interval lapsed since the beginning of the bioreductive reaction was found to be an important factor in controlling the morphology of biogenic gold nanoparticles. After 1 h, there was a large population of well-dispersed, spherical gold nanoparticles with a mean size of 9.6 nm. Gold nanoplates with an edge length of 100 nm appeared after 6 h, and 60% of the total nanoparticle population was due to gold nanoplates with an edge length of 100-200 nm after 24 h. The yield of gold nanoplates prepared with S. algae extract was four times higher than that prepared with resting cells of S. algae. The resulting biogenic gold nanoparticle suspensions showed a large variation in color, ranging from pale pink to purple due to changes in nanoparticle morphology.

  15. Low-Temperature Synthesis and Thermodynamic and Electrical Properties of Barium Titanate Nanorods

    Directory of Open Access Journals (Sweden)

    Florentina Maxim

    2015-01-01

    Full Text Available Studies regarding the morphology dependence of the perovskite-type oxides functional materials properties are of recent interest. With this aim, nanorods (NRs and nanocubes (NCs of barium titanate (BaTiO3 have been successfully synthesized via a hydrothermal route at temperature as low as 408 K, employing barium acetate, titanium isopropoxide, and sodium hydroxide as reagents without any surfactant or template. Scanning electron microscopy (SEM, transmission electron microscopy (TEM, and X-ray powder diffraction (XRD, used for the morphology and structure analyses, showed that the NRs were formed by an oriented attachment of the NCs building-blocks with 20 nm average crystallites size. The thermodynamic properties represented by the relative partial molar free energies, enthalpies, and entropies of the oxygen dissolution in the perovskite phase, as well as the equilibrium partial pressure of oxygen, indicated that NRs powders have lower oxygen vacancies concentration than the NCs. This NRs characteristic, together with higher tetragonallity of the structure, leads to the enhancement of the dielectric properties of BaTiO3 ceramics. The results presented in this work show indubitably the importance of the nanopowders morphology on the material properties.

  16. Direct synthesis of chromium perovskite oxyhydride with a high magnetic-transition temperature.

    Science.gov (United States)

    Tassel, Cédric; Goto, Yoshihiro; Kuno, Yoshinori; Hester, James; Green, Mark; Kobayashi, Yoji; Kageyama, Hiroshi

    2014-09-22

    We report a novel oxyhydride SrCrO2H directly synthesized by a high-pressure high-temperature method. Powder neutron and synchrotron X-ray diffraction revealed that this compound adopts the ideal cubic perovskite structure (Pm3̄m) with O(2-)/H(-) disorder. Surprisingly, despite the non-bonding nature between Cr 3d t(2g) orbitals and the H 1s orbital, it exhibits G-type spin ordering at T(N)≈380 K, which is higher than that of RCrO3 (R=rare earth) and any chromium oxides. The enhanced T(N) in SrCrO2H with four Cr-O-Cr bonds in comparison with RCr(3+)O3 with six Cr-O-Cr bonds is reasonably explained by the tolerance factor. The present result offers an effective strategy to tune octahedral tilting in perovskites and to improve physical and chemical properties through mixed anion chemistry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. MgO:Eu3+ red nanophosphor: Low temperature synthesis and photoluminescence properties

    Science.gov (United States)

    Devaraja, P. B.; Avadhani, D. N.; Prashantha, S. C.; Nagabhushana, H.; Sharma, S. C.; Nagabhushana, B. M.; Nagaswarupa, H. P.; Premkumar, H. B.

    2014-03-01

    Nanoparticles of Eu3+ doped (0-9 mol%) MgO were prepared using low temperature (400 °C) solution combustion technique with metal nitrate as precursor and glycine as fuel. The powder X-ray diffraction (PXRD) patterns of the as-formed products show single cubic phase and no further calcination was required. The crystallite size was obtained using Scherer's formula and was found to be 5-6 nm. The effect of Eu3+ ions on luminescence characteristics of MgO was studied and the results were discussed in detail. These phosphors exhibit bright red emission upon 395 nm excitation. The characteristic photoluminescence (PL) emission peaks at ∼580, 596, 616, 653, 696 and 706 nm (5D0 → 7Fj= 0, 1, 2, 3, 4) were recorded due to Eu3+ ions. The electronic transition corresponding to 5D0 → 7F2 of Eu3+ ions (616 nm) was stronger than the magnetic dipole transition corresponding to 5D0 → 7F1 of Eu3+ ions (596 nm). The international commission on illumination (CIE) chromaticity co-ordinates were calculated from emission spectra, the values (x, y) were very close to national television system committee (NTSC) standard value of red emission. Therefore the present phosphor was highly useful for display applications.

  18. Room-temperature synthesis of gold nanoparticles and nanoplates using Shewanella algae cell extract

    International Nuclear Information System (INIS)

    Ogi, Takashi; Saitoh, Norizoh; Nomura, Toshiyuki; Konishi, Yasuhiro

    2010-01-01

    Biosynthesis of spherical gold nanoparticles and gold nanoplates was achieved at room temperature and pH 2.8 when cell extract from the metal-reducing bacterium Shewanella algae was used as both a reducing and shape-controlling agent. Cell extract, prepared by sonicating a suspension of S. algae cells, was capable of reducing 1 mol/m 3 aqueous AuCl 4 - ions into elemental gold within 10 min when H 2 gas was provided as an electron donor. The time interval lapsed since the beginning of the bioreductive reaction was found to be an important factor in controlling the morphology of biogenic gold nanoparticles. After 1 h, there was a large population of well-dispersed, spherical gold nanoparticles with a mean size of 9.6 nm. Gold nanoplates with an edge length of 100 nm appeared after 6 h, and 60% of the total nanoparticle population was due to gold nanoplates with an edge length of 100-200 nm after 24 h. The yield of gold nanoplates prepared with S. algae extract was four times higher than that prepared with resting cells of S. algae. The resulting biogenic gold nanoparticle suspensions showed a large variation in color, ranging from pale pink to purple due to changes in nanoparticle morphology.

  19. Low-temperature synthesis of single-phase Co7Sb2O12

    International Nuclear Information System (INIS)

    Brito, M.S.L.; Escote, M.T.; Santos, C.O.P.; Lisboa-Filho, P.N.; Leite, E.R.; Oliveira, J.B.L.; Gama, L.; Longo, E.

    2004-01-01

    Polycrystalline Co 7 Sb 2 O 12 compounds have been synthesized by a chemical route, which is based on a modified polymeric precursor method. In order to study the physical properties of the samples, X-ray diffraction (XRD), thermal analyses (TG and DSC), infrared spectroscopy (IR), specific surface area (BET), and magnetization measurements were performed on these materials. Characterization through XRD revealed that the samples are single-phase after a heat-treatment at 1100 deg. C for 2 h, while the X-ray patterns of the samples heat-treated at lower temperatures revealed the presence of additional Bragg reflections belonging to the Co 6 Sb 2 O 6 phase. These data were analyzed by means of Rietveld refinement and further analyze showed that Co 7 Sb 2 O 12 displays an inverse spinel crystalline structure. In this structure, the Co 2+ ions occupy the eight tetrahedral positions, and the sixteen octahedral positions are randomly occupied by the Sb 5+ and Co 2+ ions. IR studies disclosed two strong absorption bands, ν 1 and ν 2 , in the expected spectral range for a spinel-type binary oxide with space group Fd3m. Exploratory studies concerning the magnetic properties indicated that this sample presents a spin-glass transition at T f ∼ 64 K

  20. In situ synthesis of manganese oxides on polyester fiber for formaldehyde decomposition at room temperature

    Science.gov (United States)

    Wang, Jinlong; Yunus, Rizwangul; Li, Jinge; Li, Peilin; Zhang, Pengyi; Kim, Jeonghyun

    2015-12-01

    Removal of low-level formaldehyde (HCHO) is of great interest for indoor air quality improvement. Supported materials especially those with low air pressure drop are of necessity for air purification. Manganese oxides (MnOx) was in situ deposited on the surface of fibers of a non-woven fabric made of polyethylene terephthalate (PET). As-synthesized MnOx/PET were characterized by SEM, XRD, TEM, ATR-FTIR and XPS analysis. The growth of MnOx layer on PET is thought to start with partial hydrolysis of PET, followed by surface oxidation by KMnO4 and then surface-deposition of MnOx particles from the bulk phase. The MnOx particles assembled with nanosheets were uniformly coated on the PET fibers. MnOx/PET showed good activity for HCHO decomposition at room temperature which followed the Mars-van Krevelen mechanism. The removal of HCHO was kept over 94% after 10 h continuous reaction under the conditions of inlet HCHO concentration ∼0.6 mg/m3, space velocity ∼17,000 h-1 and relative humidity∼50%. This research provides a facile method to deposit active MnOx onto polymers with low air resistance, and composite MnOx/PET material is promising for indoor air purification.

  1. Room temperature synthesis of silver nanowires from tabular silver bromide crystals in the presence of gelatin

    Science.gov (United States)

    Liu, Suwen; Wehmschulte, Rudolf J.; Lian, Guoda; Burba, Christopher M.

    2006-03-01

    Long silver nanowires were synthesized at room temperature by a simple and fast process derived from the development of photographic films. A film consisting of an emulsion of tabular silver bromide grains in gelatin was treated with a photographic developer (4-(methylamino)phenol sulfate (metol), citric acid) in the presence of additional aqueous silver nitrate. The silver nanowires have lengths of more than 50 μm, some even more than 100 μm, and average diameters of about 80 nm. Approximately, 70% of the metallic silver formed in the reduction consists of silver nanowires. Selected area electron diffraction (SAED) results indicate that the silver nanowires grow along the [111] direction. It was found that the presence of gelatin, tabular silver bromide crystals and silver ions in solution are essential for the formation of the silver nanowires. The nanowires appear to originate from the edges of the silver bromide crystals. They were characterized by transmission electron microscopy (TEM), SAED, scanning electron microscopy (SEM), and powder X-ray diffraction (XRD).

  2. Low-temperature synthesis of ZrB2 powder from oxides using Na

    Directory of Open Access Journals (Sweden)

    Haruhiko Morito

    2017-12-01

    Full Text Available ZrB2 was synthesized by heating a mixture of ZrO2, B2O3, and Na in a molar ratio of 1:1:5 at 873–1273 K. While unreacted ZrO2 remained in the sample synthesized at 873 K, single phase ZrB2 powders were obtained at temperatures ≥1073 K. The diameters of the ZrB2 particles obtained at 1073 and 1273 K were 0.1–20 and 10–100 μm, respectively. Single phase ZrB2 was also obtained at 873 K when the starting material was rich in B2O3 and Na (ZrO2:B2O3:Na = 1:5:15. This route yielded fine particle aggregates of ZrB2, which were found to be <0.1 μm in size.

  3. Nanocellulose-assisted low-temperature synthesis and supercapacitor performance of reduced graphene oxide aerogels

    Science.gov (United States)

    Wang, Jie; Ran, Ran; Sunarso, Jaka; Yin, Chao; Zou, Honggang; Feng, Yi; Li, Xiaobao; Zheng, Xu; Yao, Jianfeng

    2017-04-01

    Here, we have synthesized reduced graphene oxide (rGO) aerogels using a nanocellulose-assisted low temperature (less than 500 °C) thermal treatment route where nanocelluloses promote the gelation of graphene oxide (GO) solution that benefits the fabrication of GO aerogels from low concentration dispersion (2.85 mg mL-1), and after their thermal decomposition the residual nanofibers act as spacer both prevent the re-stacking of graphene sheets and integrate with rGO sheets to give a particular kind of carbon-based aerogel along with numerous defects (holes). Thermal decomposition of nanocellulose appears to be complete beyond 350 °C thus its presence in form of amorphous carbon nanofibers in rGO sheets. The rGO aerogels synthesized at 350 °C provide the best balance in terms of wide interlayer spacing, high content of CO-type functional groups, and high defects content. This translates into a high discharge capacitance of 270 F g-1 at a current rate of 1 A g-1 for compressed rGO aerogels without any binder or conductive additive. Detailed electrochemical tests using 6 M KOH electrolyte establish the fact that pseudocapacitance component has substantial contribution towards the overall capacitance; closely approaching the contribution of the double layer capacitance that is the most dominant capacitance component.

  4. Facile, low temperature synthesis of SnO{sub 2}/reduced graphene oxide nanocomposite as anode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Chau-Chung; Brahma, Sanjaya; Weng, Shao-Chieh [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70001, Taiwan, ROC (China); Chang, Chia-Chin [Department of Greenergy, National University of Tainan, Tainan 70005, Taiwan, ROC (China); Huang, Jow-Lay, E-mail: jlh888@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70001, Taiwan, ROC (China); Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan, ROC (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan, ROC (China)

    2017-08-15

    Highlights: • Facile, one-pot, low temperature synthesis of SnO{sub 2}-RGO composite. • In-situ reduction of graphene oxide and growth of SnO{sub 2} nanoparticle. • Concentration of reductant during synthesis affects the properties significantly. • SnO{sub 2}-RGO composite shows good rate capability and stable capacitance. • Synthesis method is energy efficient and scalable for other metal oxides. - Abstract: We demonstrate a facile, single step, low temperature and energy efficient strategy for the synthesis of SnO{sub 2}-reduced graphene oxide (RGO) nanocomposite where the crystallization of SnO{sub 2} nanoparticles and the reduction of graphene oxide takes place simultaneously by an in situ chemical reduction process. The electrochemical property of the SnO{sub 2}-RGO composite prepared by using low concentrations of reducing agent shows better Li storage performance, good rate capability (378 mAh g{sup −1} at 3200 mA g{sup −1}) and stable capacitance (522 mAh g{sup −1} after 50 cycles). Increasing the reductant concentration lead to crystallization of high concentration of SnO{sub 2} nanoparticle aggregation and degrade the Li ion storage property.

  5. Influence of reaction time and synthesis temperature on the physical properties of ZnO nanoparticles synthesized by the hydrothermal method

    Science.gov (United States)

    Wasly, H. S.; El-Sadek, M. S. Abd; Henini, Mohamed

    2018-01-01

    Influence of synthesis temperature and reaction time on the structural and optical properties of ZnO nanoparticles synthesized by the hydrothermal method was investigated using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray, Fourier transform infra-red spectroscopy, and UV-visible and fluorescence spectroscopy. The XRD pattern and HR-TEM images confirmed the presence of crystalline hexagonal wurtzite ZnO nanoparticles with average crystallite size in the range 30-40 nm. Their energy gap determined by fluorescence was found to depend on the synthesis temperature and reaction time with values in the range 2.90-3.78 eV. Thermal analysis, thermogravimetric and the differential scanning calorimetry were used to study the thermal reactions and weight loss with heat of the prepared ZnO nanoparticles.

  6. Acquisition of Raman Spectrometer and High Temperature and Pressure Reactor for Synthesis and Characterization of Carbon Based Hybrid Nanoparticles from Waste Wood

    Science.gov (United States)

    2015-04-27

    bagasse using high temperature pressure reactor Rice Husk (RHs) and Bagasse (BG) are good sources of bio based Silica (SiO2), which derive from...length of bagasse (Quartz) 465cm-1 and 200 cm-1 confirm the quartz structure of silica. These results are consistent with the library data base and also...Figure 10. Raman spectra of Bagasse (Green spectra) and Rice Husk (Red spectra) silica. 4. Synthesis and surface area characterization carbon from

  7. Surface decoration through electrostatic interaction leading to enhanced reactivity: Low temperature synthesis of nanostructured chromium borides (CrB and CrB2)

    International Nuclear Information System (INIS)

    Menaka,; Kumar, Bharat; Kumar, Sandeep; Ganguli, A.K.

    2013-01-01

    The present study describes a novel low temperature route at ambient pressure for the synthesis of nanocrystalline chromium borides (CrB and CrB 2 ) without using any flux or additives. The favorable and intimate mixing of nanoparticles of chromium acetate (Cr source) and boron forms an active chromium–boron precursor which decomposes at much lower temperature (400 °C) to form CrB (which is ∼1000 °C less than the known ambient pressure synthesis). The chromium acetate nanoparticles (∼5 nm) decorate the larger boron particles (150–200 nm) due to electrostatic interactions resulting from opposing surface charges of boron (zeta potential:+48.101 mV) and chromium acetate (zeta potential:−4.021 mV) in ethanolic medium and is evident in the TEM micrographs. The above method leads to the formation of pure CrB film like structure at 400 °C and nanospheres (40–60 nm) at 600 °C. Also, chromium diboride (CrB 2 ) nanoparticles (25 nm) could be obtained at 1000 °C. - Graphical abstract: Variation of surface charge of reactants, precursor and the products, chromium borides (CrB and CrB 2 ). Highlights: ► Novel borothermal reduction process for synthesis of chromium boride. ► Significant lowering of reaction temperature to obtain nanocrystalline chromium boride. ► Enhanced reactivity due to appropriate surface interactions

  8. Melanin-gamma rays assistants for bismuth oxide nanoparticles synthesis at room temperature for enhancing antimicrobial, and photocatalytic activity.

    Science.gov (United States)

    El-Batal, Ahmed I; El-Sayyad, Gharieb S; El-Ghamry, Abbas; Agaypi, Kerolos M; Elsayed, Mohamed A; Gobara, Mohamed

    2017-08-01

    Melanin pigment has been deemed as a natural photoprotector with strong hydrophobicity. It allured considerable compatibility with many applications in medicine, food, and nanotechnology. Penicillium chrysogenium has been devoted to the green synthesis of melanin whereby optimizing its culture and environmental conditions. The impacts of alternative economic L-tyrosine natural sources (unprecedented alternate origins) and gamma radiation were pledged for the potential growing of the pigment. Herein, notable increases in melanin yield (6.4mg/ml; much higher than nonoptimized one by 40 folds) was obtained by optimizing the culture, and environmental requirements [potato starch (3.0%), yeast extract (5.0%), copper sulfate (0.2mM), 0.25% L-tyrosine, 0.1% L-glycine, and 0.1% Tween 20 at pH5.0, and 30°C for 7.0days using 180.0rpm shaking speed]. The addition of banana's peel (2.0%) has been led to increase the melanin production up to (8.3mg/ml; much higher than optimized one by 1.29 folds). It stimulated the induced enzymes, (i.e., tyrosinase) because it contained significant amounts of L-tyrosine, dopamine, and L-DOPA as resources for melanin biosynthesis. Then irradiated P. chrysogenium (2.5kGy) induced the pigment yield to 10.3mg/ml; much higher than optimized one by (1.61 folds). On the other hand, we tailored a methodology involved the product of melanin and gamma rays (25.0kGy) to an eco-friendly synthesis of Bismuth oxide nanoparticles (BiONPs) at the room temperature. Melanin under such alkaline condition functioning as simultaneously hydrolyzes, photoprotection of the Bi seeds, and stabilizer against the uncontrolled growth and the free radicals attack. Whereas the gamma irradiation induced the room temperature condensation reaction to occur, a novel mechanism proposal was discussed. BiONPs were characterized by UV-Vis., DLS, XRD, SEM, EDX, and FTIR. DLS and XRD calculations with TEM analysis exhibited the mean diameter of BiONPs was 29.82nm. Moreover, the as

  9. Prediction and experimental determination of the solubility of exotic scales at high temperatures - Zinc sulfide

    DEFF Research Database (Denmark)

    Carolina Figueroa Murcia, Diana; Fosbøl, Philip Loldrup; Thomsen, Kaj

    2016-01-01

    The presence of "exotic" scale such as Zinc Sulfide (ZnS), Lead Sulfide (PbS) and Iron Sulfide (FeS) in HP/HT reservoirs has been identified. "Exotic" scale materials come as a new challenge in HP/HT reservoirs. This has led to the development of more advanced tools to predict their behavior...... at extreme conditions. The aim of this work is to include ZnS into the group of scale materials that can be modeled with the Extended UNIQUAC model. Solubility data for ZnS are scarce in the open literature. In order to improve the available data, we study the experimental behavior of ZnS solubility at high...... temperatures. The determination of the solubility of ZnS is carried out at temperatures up to 250°C. Zinc sulfide (99.99%) and ultra-pure water are placed in a vial in a reduced oxygen atmosphere. The sample is placed in a controlled bath and stirred until equilibrium is attained. The suspension is filtered...

  10. Measured winter and spring-time indoor temperatures in UK homes over the period 1969–2010: A review and synthesis

    International Nuclear Information System (INIS)

    Vadodaria, K.; Loveday, D.L.; Haines, V.

    2014-01-01

    This paper presents a review and synthesis of average winter and spring-time indoor temperatures in UK homes measured over the period 1969–2010. Analysis of measured temperatures in a sample of solid wall dwellings in the UK, conducted as part of the CALEBRE research project, is included. The review suggests that, for periods when occupation was likely, there has been little or no increase in winter and spring-time average living room temperatures over the last 40 years, with average recorded living room temperatures having been historically lower than the WHO-recommended value of 21 °C. Correspondingly, for periods of likely occupation, average bedroom temperatures appear to have increased. Compared with non-domestic buildings, there have been fewer investigations of domestic thermal comfort, either in the UK or elsewhere, and hence the paper also calls for further detailed investigations of domestic indoor temperatures during occupied hours together with thermal comfort evaluations in order to better understand domestic thermal environments. Based on suggestions from the limited range of studies available to date, living room temperatures may need to be maintained within the range 20–22 °C for thermal satisfaction, though this requires confirmation through further research. The study also emphasises that improving the energy efficiency of homes should be the primary means to effect any increases in indoor temperatures that are deemed essential. Considerations for future policy are discussed. - Highlights: • We review indoor temperatures measured in UK homes during 1960-2010. • We present analysis of temperature recorded by our study in 20 UK homes. • Little or no increase observed in living room temperatures for the last 40 years. • Occupied bedroom temperatures appear to have increased. • Living room temperatures have been historically lower than the WHO guidelines

  11. Preparation of Al-Ti-B grain refiner by SHS technology[Self-propagating High-temperature Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, V.I.; Wanqi, J.I.E.; Kandalova, E.G.; Makarenko, A.G.; Yong, L.

    2000-02-01

    Since the discovery of the grain refinement effect of aluminum by titanium, especially with the existence of B or C in 1950, grain refiners are widely accepted in industry for microstructure control of aluminum alloys. Research on this topic is to obtain the highest grain refinement efficiency with the lowest possible addition of master alloy. It is widely accepted that the morphology and size of TiAl{sub 3} particles, which are known as heterogeneous nucleation centers, are important factors deterring the grain refinement efficiency. Fine TiAl{sub 3} particles are favorable. The grain refinement process shows a heredity phenomenon, which means that structural information from initial materials transfers through a melt to the final product. It is important to find the connection between microstructural parameters of the master alloy and the final product. To improve the quality of Al-Ti-B master alloys for the use as a grain refiner, a new method based on SHS (self-propagating high-temperature synthesis) technology has been developed in Samara State Technical University to produce the master alloys. SHS, as a new method for preparation of materials, was first utilized by Merzhanov in 1967. This method uses the energy from highly exothermic reactions to sustain the chemical reaction in a combustion wave. The advantages of SHS include simplicity, low energy requirement, and higher product purity. Because SHS reactions can take place between elemental reactants, it is easy to control product composition. The purposes of this investigation were to fabricate an SHS Al-5%Ti-1%B master alloy, to analyze its structure and to test its grain refining performance.

  12. Low-temperature synthesis of Zn{sub 2}SiO{sub 4}:Mn green photoluminescence phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Sivakumar, V. [Saveetha Engineering College, Thandalam, Chennai 602105 (India); Lakshmanan, Arunachalam, E-mail: arunachalamlakshmanan@yahoo.com [Saveetha Engineering College, Thandalam, Chennai 602105 (India); Kalpana, S.; Sangeetha Rani, R.; Satheesh Kumar, R. [Saveetha Engineering College, Thandalam, Chennai 602105 (India); Jose, M.T. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2012-08-15

    Zn{sub 2}SiO{sub 4}:Mn green phosphor having comparable photoluminescence (PL) efficiency with commercial phosphor has been synthesized at 1000 Degree-Sign C using solid state reactions involving ZnO, silicic acid and manganese acetate. The water of crystallization attached to SiO{sub 2} in silicic acid whose dissociation at 1000 Degree-Sign C seem to promote the sintering efficiency of Zn{sub 2}SiO{sub 4}:Mn. Incremental ZnO addition and re-firing at 1000 Degree-Sign C promote the diffusion rate of ZnO and SiO{sub 2}. The formation of a single crystalline phase of willemite structure in the samples was confirmed by powder XRD measurements. The phosphor exhibit an intense excitation band centered around 275 nm and a relatively weak excitation centered around 380 nm while the broad band green emission peaks at 524 nm. Other parameters studied include PL spectra, grain morphology, ZnO/SiO{sub 2} molar ratio, Mn concentration, co-dopant/flux and the effect of chemical forms of Mn dopant as well as silica on the PL efficiency. - Highlights: Black-Right-Pointing-Pointer Synthesis of Zn{sub 2}SiO{sub 4}:Mn by solid state sintering at a low temperature of 1000 Degree-Sign C in air. Black-Right-Pointing-Pointer Dissociation of water of crystallization in silicic acid promote sintering efficiency. Black-Right-Pointing-Pointer Photoluminescence efficiency comparable with that of the commercial phosphor. Black-Right-Pointing-Pointer Enhancement in luminescence with MgCO{sub 3} co-doping and refiring as well as ZnO addition. Black-Right-Pointing-Pointer XRD confirm single phase willemite structure (rhombohedral) of Zn{sub 2}SiO{sub 4}:Mn.

  13. Room Temperature Synthesis of Magnetite (Fe{sub 3-{delta}O4}) Nanoparticles by a Simple Reverse Co-Precipitation Method

    Energy Technology Data Exchange (ETDEWEB)

    Mahmed, N; Soederberg, O; Hannula, S-P [Aalto University School of Science and Technology, Department of Materials Science and Engineering, PO Box 16200, FI-00076 Aalto (Finland); Heczko, O, E-mail: norsuria@cc.hut.f [Institute of Physics, Academy of Sciences, Czech Republic Na Slovance 2, CZ-182 21 Praha 8 (Czech Republic)

    2011-10-29

    Magnetite (Fe{sub 3-{delta}O4}) nanoparticles with the size less than 30 nm have been synthesized by using a simple reverse co-precipitation method at room temperature. During the process, ferrous sulfate (FeSO{sub 4{center_dot}}7H{sub 2}O) powder was used as an iron precursor, and ammonium hydroxide (NH{sub 4}OH) as a precipitating agent. The experiment was carried out in ambient atmosphere without any surfactant added. In this method, the base solution for the precipitation process was adjusted to have a pH value suitable for the formation of the magnetite phase. The iron salt precursor was added into the solution during the synthesis by two different synthesis protocols. The phase, morphology and magnetic characteristic of differently synthesized magnetite particles were characterized by using an X-ray diffraction (XRD), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM). The morphologies of the particles were spherical or irregular in shape depending on the synthesis protocol used. Magnetic measurement shows that the particles are ferromagnetic at room temperature with relatively high saturation magnetization and low hysteresis. The saturation magnetization and magnetic hysteresis of the particles varied with preparation reaction conditions and the resulting oxidation state of the particles.

  14. Lithium-deficient Li YMn2O4 spinels (0.9 ≤ Y < 1): Lithium content, synthesis temperature, thermal behaviour and electrochemical properties

    International Nuclear Information System (INIS)

    Pascual, Laura; Perez-Revenga, M. Luz; Rojas, Rosa M.; Rojo, Jose M.; Amarilla, J. Manuel

    2006-01-01

    Lithium-deficient Li Y Mn 2 O 4 spinels (LD-Li Y Mn 2 O 4 ) with nominal composition (0.9 ≤ Y 2 O 3 and LiNO 3 at temperatures ranging from 700 deg. C to 850 deg. C. X-ray diffraction data show that LD-Li Y Mn 2 O 4 spinels are obtained as single phases in the range Y = 0.975-1 at 700 deg. C and 750 deg. C. Morphological characterization by transmission electron microscopy shows that the particle size of LD-Li Y Mn 2 O 4 spinels increases on decreasing the Li-content. The influence of the Li-content and the synthesis temperature on the thermal and electrochemical behaviours has been systematically studied. Thermal analysis studies indicate that the temperature of the first thermal effect in the differential thermal analysis (DTA)/thermogravimetric (TG) curves, T C1 , linearly increases on decreasing the Li-content. The electrochemical properties of LD-Li Y Mn 2 O 4 spinels, determined by galvanostatic cycling, notably change with the synthesis conditions. So, the first discharge capacity, Q disch. , at C rate increases on rising the Li-content and the synthesis temperature. The sample Li 0.975 Mn 2 O 4 synthesized at 700 deg. C has a Q disch. = 123 mAh g -1 and a capacity retention of 99.77% per cycle. This LD-Li Y Mn 2 O 4 sample had the best electrochemical characteristics of the series

  15. Facile synthesis of both needle-like and spherical hydroxyapatite nanoparticles: Effect of synthetic temperature and calcination on morphology, crystallite size and crystallinity

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, W.P.S.L.; Mantilaka, M.M.M.G.P.G. [Department of Chemistry, Faculty of Science, University of Peradeniya, Peradeniya 20400 (Sri Lanka); Post-graduate Institute of Science, P.O. Box: 25, University of Peradeniya, Peradeniya 20400 (Sri Lanka); Premalal, E.V.A. [Department of Materials Science, Shizuoka University, Johoku, Naka-ku Hamamatsu, 432-8011 (Japan); Herath, H.M.T.U. [Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya 20400 (Sri Lanka); Mahalingam, S.; Edirisinghe, M. [Department of Mechanical Engineering, University College London, London WC1E 7JE (United Kingdom); Rajapakse, R.P.V.J. [Department of Veterinary Pathobiology, Faculty of Veterinary, University of Peradeniya, Peradeniya 20400 (Sri Lanka); Rajapakse, R.M.G., E-mail: rmgr@pdn.ac.lk [Department of Chemistry, Faculty of Science, University of Peradeniya, Peradeniya 20400 (Sri Lanka); Post-graduate Institute of Science, P.O. Box: 25, University of Peradeniya, Peradeniya 20400 (Sri Lanka)

    2014-09-01

    Synthetic hydroxyapatite (HA) nanoparticles, that mimic natural HA, are widely used as biocompatible coatings on prostheses to repair and substitute human bones. In this study, HA nanoparticles are prepared by precipitating them from a precursor solution containing calcium sucrate and ammonium dihydrogen orthophosphate, at a Ca/P mole ratio of 1.67:1, at temperatures, ranging from 10 °C to 95 °C. A set of products, prepared at different temperatures, is analyzed for their crystallinity, crystallite size, morphology, thermal stability and composition, by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopic techniques, while the other set is analyzed after calcining the respective products, soon after their synthesis, for 3 h, at 700 °C. The as-prepared products, after 2 h of drying, without any calcination, are not crystalline, but they grow very slowly into needle-like morphologies, as they are ripened with time. The percentage crystallinity of the final products increases from 15% to 52%, with increasing the preparative temperature. The calcined samples always produce spherical nanoparticles of essentially the same diameter, between 90 nm and 100 nm, which does not change due to aging and preparative temperatures. Therefore, the same method can be utilized to synthesize both spherical and needle-like nanoparticles of hydroxyapatite, with well-defined sizes and shapes. The ability to use readily available cheap raw materials, for the synthesis of such well-defined crystallites of hydroxyapatite, is an added advantage of this method, which may be explored further for the scaling up of the procedures to suit to industrial scale synthesis of such hydroxyapatite nanoparticles. - Highlights: • Hydroxyapatite nanoparticles are synthesized using a simple precipitation method. • Both needle-like and spherical hydroxyapatite nanoparticles are synthesized. • The prepared

  16. Direct Synthesis of Dimethyl Carbonate from Carbon Dioxide and Methanol at Room Temperature Using Imidazolium Hydrogen Carbonate Ionic Liquid as a Recyclable Catalyst and Dehydrant.

    Science.gov (United States)

    Zhao, Tianxiang; Hu, Xingbang; Wu, Dongsheng; Li, Rui; Yang, Guoqiang; Wu, Youting

    2017-05-09

    The direct synthesis of dimethyl carbonate (DMC) from CO 2 and CH 3 OH was achieved at room temperature with 74 % CH 3 OH conversion in the presence of an imidazolium hydrogen carbonate ionic liquid ([C n C m Im][HCO 3 ]). Experimental and theoretical results reveal that [C n C m Im][HCO 3 ] can transform quickly into a CO 2 adduct, which serves as an effective catalyst and dehydrant. Its dehydration ability is reversible. The energy barrier of the rate-determining step for the DMC synthesis is only 21.7 kcal mol -1 . The ionic liquid can be reused easily without a significant loss of its catalytic and dehydrating ability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Low temperature synthesis of polyaniline-crystalline TiO2-halloysite composite nanotubes with enhanced visible light photocatalytic activity.

    Science.gov (United States)

    Li, Cuiping; Wang, Jie; Guo, Hong; Ding, Shujiang

    2015-11-15

    A series of one-dimensional polyaniline-crystalline TiO2-halloysite composite nanotubes with different mass ratio of polyaniline to TiO2 are facilely prepared by employing the low-temperature synthesis of crystalline TiO2 on halloysite nanotubes. The halloysite nanotubes can adsorb TiO2/polyaniline precursors and induce TiO2 nanocrystals/polyaniline to grow on the support in situ simultaneously. By simply adjusting the acidity of reaction system, PANI-crystalline TiO2-HA composite nanotubes composed of anatase, a mixed phase TiO2 and different PANI redox state are obtained. The XRD and UV-vis results show that the surface polyaniline sensitization has no effect on the crystalline structure of halloysite and TiO2 and the light response of TiO2 is extended to visible-light regions. Photocatalysis test results reveal the photocatalytic activity will be affected by the pH value and the volume ratio of ANI to TTIP. The highest photocatalytic activity is achieved with the composite photocatalysts prepared at pH 0.5 and 1% volume ratio of ANI and TTIP owing to the sensitizing effect of polyaniline and the charge transfer from the photoexcited PANI sensitizer to TiO2. Moreover, the PANI-TiO2-HA composite nanotubes synthesized by one-step at pH 0.5 with 1% volume ratio of ANI to TTIP exhibit higher visible light photocatalytic activity than those synthesized by the two-step. Heterogeneous PANI-TiO2-HA composite nanotubes prepared at pH 0.5 exhibit a higher degradation activity than that prepared at pH 1.5. The redoped experiment proves that the PANI redox state plays the main contribution to the enhanced visible light catalytic degradation efficiency of PANI-TiO2-HA prepared at pH 0.5. Furthermore, the heterogeneous PANI-crystalline TiO2-HA nanotubes have good photocatalytic stability and can be reused four times with only gradual loss of activity under visible light irradiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Synthesis of ultrasmall CsPbBr3 nanoclusters and their transformation to highly deep-blue-emitting nanoribbons at room temperature.

    Science.gov (United States)

    Xu, Yibing; Zhang, Qiang; Lv, Longfei; Han, Wenqian; Wu, Guanhong; Yang, Dong; Dong, Angang

    2017-11-16

    Discretely sized semiconductor clusters have attracted considerable attention due to their intriguing optical properties and self-assembly behaviors. While lead halide perovskite nanostructures have been recently intensively explored, few studies have addressed perovskite clusters and their self-assembled superstructures. Here, we report the room-temperature synthesis of sub-2 nm CsPbBr 3 clusters and present strong evidence that these ultrasmall perovskite species, obtained under a wide range of reaction conditions, possess a specific size, with optical properties and self-assembly characteristics resembling those of well-known II-VI semiconductor magic-sized clusters. Unlike conventional CsPbBr 3 nanocrystals, the as-synthesized CsPbBr 3 nanoclusters spontaneously self-assemble into a hexagonally packed columnar mesophase in solution, which can be further converted to single-crystalline CsPbBr 3 quantum nanoribbons with bright deep-blue emission at room temperature. Such a conversion of CsPbBr 3 nanoclusters to nanoribbons is found to be driven by a ligand-destabilization-induced crystallization and mesophase transition process. Our study will facilitate the investigation of perovskite nanoclusters and offer new possibilities in the low-temperature synthesis of anisotropic perovskite nanostructures.

  19. Enhancement of yield point at high pressure high temperature wells by using polymer nanocomposites based on ZnO & CaCO3 nanoparticles

    Directory of Open Access Journals (Sweden)

    A.Z. Noah

    2017-03-01

    Full Text Available Zinc oxide nanoparticles (ZnO-NPs and modified calcium carbonate (nano-CaCO3 nanoparticles were successfully prepared and added to polystyrene-butadiene rubber copolymer (PSBR matrix to prepare PSBR nanocomposites. The prepared nanomaterials (ZnO-NPs & nano-CaCO3 were characterized using scanning electron microscope (SEM, transmission electron microscope (TEM and X-ray diffraction (XRD. Furthermore, the prepared polymer nanocomposites and oil base mud were used for drilling in high pressure high temperature (HPHT wells. The consequence of using polymer nanocomposites based on different loading of ZnO-NPs and nano-CaCO3 on the rheological properties of oil base mud was evaluated and enhanced the yield point at high pressure high temperature wells (HPHT. The using of the polymer with different percentage from (0.5 in all percent the obtained results is very promising; this means that the increase of polymer is reasonable for the increase of apparent viscosity, plastic viscosity and yield point at high temperature. Correspondingly, polymer nanocomposites displayed rise of apparent viscosity, plastic viscosity, and yield point, decreased in fluid loss and increased in electrical stability at high pressure high temperature wells.

  20. Fabrication and characterisation of Titanium Matrix Composites obtained using a combination of Self propagating High temperature Synthesis and Spark Plasma Sintering

    OpenAIRE

    Lagos, M.A.; Agote, Iñigo; Atxaga, G.; Adarraga, O.; Pambaguian, L.

    2016-01-01

    This work presents a novel processing method for the fabrication of particle reinforced Titanium Matrix Composites (TMCs). TMCs are a promising alternative to improve the mechanical properties of titanium alloys. In the processing method, the reinforcement (TiC–Ti) was obtained by Self-propagating High-temperature Synthesis (SHS). The composition of the reinforcement was Ti1.3C. An excess of titanium compared to the equiatomic TiC was introduced in the reaction in order to control the size of...

  1. High temperature continuous flow synthesis of CdSe/CdS/ZnS, CdS/ZnS, and CdSeS/ZnS nanocrystals.

    Science.gov (United States)

    Naughton, Matt S; Kumar, Vivek; Bonita, Yolanda; Deshpande, Kishori; Kenis, Paul J A

    2015-10-14

    Continuous flow reactors show great promise for large-scale synthesis of quantum dots. Here, we discuss results for the synthesis of multi-layered Cd-based hybrid nanocrystals - CdSe/CdS/ZnS, CdS/ZnS, and CdSeS/ZnS - in a continuous flow reactor. The simple reactor design and liquid-phase chemistry obviate the need for preheating or in-line mixing, and the chosen reactor dimensions and operating conditions allow for high flow rates (∼10 mL min(-1)). Additionally, the simple reactor design is well suited for scale-up. The CdSe/CdS/ZnS particles synthesized at elevated temperatures in the reactor exhibit quantum yields of over 60% at longer wavelengths (red region). The shell growth for these particles is conducted without the need for complex dropwise addition or SILAR shell growth procedures used in batch reactors. CdS-based particles were shown to have a higher performance when using octadecene-S instead of TOP-S, which improved the quality of shell growth. In addition, stoichiometric synthesis of the alternate CdSeS/ZnS alloy particles was conducted, removing the need for a large excess of S to offset the lower S reactivity. CdSeS/ZnS alloy nanoparticles exhibit quantum yields of about 50% in the intermediate wavelength range (500-600 nm).

  2. Combined Effect of Pressure and Temperature on the Viscous Behaviour of All-Oil Drilling Fluids

    Directory of Open Access Journals (Sweden)

    Hermoso J.

    2014-12-01

    Full Text Available The overall objective of this research was to study the combined influence of pressure and temperature on the complex viscous behaviour of two oil-based drilling fluids. The oil-based fluids were formulated by dispersing selected organobentonites in mineral oil, using a high-shear mixer, at room temperature. Drilling fluid viscous flow characterization was performed with a controlled-stress rheometer, using both conventional coaxial cylinder and non-conventional geometries for High Pressure/High Temperature (HPHT measurements. The rheological data obtained confirm that a helical ribbon geometry is a very useful tool to characterise the complex viscous flow behaviour of these fluids under extreme conditions. The different viscous flow behaviours encountered for both all-oil drilling fluids, as a function of temperature, are related to changes in polymer-oil pair solvency and oil viscosity. Hence, the resulting structures have been principally attributed to changes in the effective volume fraction of disperse phase due to thermally induced processes. Bingham’s and Herschel-Bulkley’s models describe the rheological properties of these drilling fluids, at different pressures and temperatures, fairly well. It was found that Herschel-Bulkley’s model fits much better B34-based oil drilling fluid viscous flow behaviour under HPHT conditions. Yield stress values increase linearly with pressure in the range of temperature studied. The pressure influence on yielding behaviour has been associated with the compression effect of different resulting organoclay microstructures. A factorial WLF-Barus model fitted the combined effect of temperature and pressure on the plastic viscosity of both drilling fluids fairly well, being this effect mainly influenced by the piezo-viscous properties of the continuous phase.

  3. High-temperature synthesis of highly hydrothermal stable mesoporous silica and Fe-SiO2 using ionic liquid as a template

    International Nuclear Information System (INIS)

    Liu, Hong; Wang, Mengyang; Hu, Hongjiu; Liang, Yuguang; Wang, Yong; Cao, Weiran; Wang, Xiaohong

    2011-01-01

    Mesoporous silicas and Fe-SiO 2 with worm-like structures have been synthesized using a room temperature ionic liquid, 1-hexadecane-3-methylimidazolium bromide, as a template at a high aging temperature (150-190 o C) with the assistance of NaF. The hydrothermal stability of mesoporous silica was effectively improved by increasing the aging temperature and adding NaF to the synthesis gel. High hydrothermally stable mesoporous silica was obtained after being aged at 190 o C in the presence of NaF, which endured the hydrothermal treatment in boiling water at least for 10 d or steam treatment at 600 o C for 6 h. The ultra hydrothermal stability could be attributed to its high degree of polymerization of silicate. Furthermore, highly hydrothermal stable mesoporous Fe-SiO 2 has been synthesized, which still remained its mesostructure after being hydrothermally treated at 100 o C for 12 d or steam-treated at 600 o C for 6 h. -- Graphical abstract: Worm-like mesoporous silica and Fe-SiO 2 with high hydrothermal stability have been synthesized using ionic liquid 1-hexadecane-3-methylimidazolium bromide as a template under the assistance of NaF at high temperature. Display Omitted Research highlights: → Increasing aging temperature improved the hydrothermal stability of materials. →Addition of NaF enhanced the polymerization degree of silicates. → Mesoporous SiO 2 and Fe-SiO 2 obtained have remarkable hydrothermal stability.

  4. Influence of temperature on the synthesis of calcining cement α--tricalcium phosphate; Influencia da temperatura de calcinacao na sintese de cimento de α-fosfato tricalcico

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, R.S.; Thurmer, M.B.; Coelho, W.T.; Fernandes, J.M.; Santos, L.A., E-mail: rafaelasv.eng@gmail.com [Universidade Federal do Rio Grande do Sul (UFRS), Porto Alegre (Brazil). Escola de Engenharia. Laboratorio de Biomateriais

    2011-07-01

    The calcium phosphate cement (CFCs) bone substitutes are of great potential use in medical and dental. However, one of the great difficulties of using this type of cement is its low mechanical strength due to the presence of undesirable phases, such as beta-tricalcium phosphate. The step of obtaining this compound is done at high temperature by solid state reaction. With the aim of obtaining calcium phosphate cements more resistant, we studied the conditions for obtaining an alpha-TCP at temperatures of 1300, 1400 and 1500 ° C with time 2h calcination. The samples were analyzed for crystalline phases, density, porosity and mechanical strength. The results show that the synthesis parameters studied strongly influence the obtained phases and the mechanical properties of cement. (author)

  5. Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-Nanotube-Based Electrocatalyst.

    Science.gov (United States)

    Chen, Shiming; Perathoner, Siglinda; Ampelli, Claudio; Mebrahtu, Chalachew; Su, Dangsheng; Centi, Gabriele

    2017-03-01

    Ammonia is synthesized directly from water and N 2 at room temperature and atmospheric pressure in a flow electrochemical cell operating in gas phase (half-cell for the NH 3 synthesis). Iron supported on carbon nanotubes (CNTs) was used as the electrocatalyst in this half-cell. A rate of ammonia formation of 2.2×10 -3  gNH3  m -2  h -1 was obtained at room temperature and atmospheric pressure in a flow of N 2 , with stable behavior for at least 60 h of reaction, under an applied potential of -2.0 V. This value is higher than the rate of ammonia formation obtained using noble metals (Ru/C) under comparable reaction conditions. Furthermore, hydrogen gas with a total Faraday efficiency as high as 95.1 % was obtained. Data also indicate that the active sites in NH 3 electrocatalytic synthesis may be associated to specific carbon sites formed at the interface between iron particles and CNT and able to activate N 2 , making it more reactive towards hydrogenation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synthesis of Li{sub 2}SiO{sub 3} at low temperature; Sintesis de Li{sub 2}SiO{sub 3} a baja temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Mondragon G, G. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)

    2007-07-01

    The main objective of this work is to develop a new synthesis method to obtain one of the more studied ceramics in this field Li{sub 2}SiO{sub 3}) in a simple and economic way using different solutions (urea and ammonium hydroxide). The particular objectives are first to prepare the Li{sub 2}SiO{sub 3} ceramic, by means of the use of the reaction conventional technique in solid state at temperatures between 800 and 900 C to compare it with the one proposed in this work and this way to observe the advantages that it would gives us the new method. Later on, the same one was synthesized lithium ceramic (Li{sub 2}SiO{sub 3}) by means of the new method at low temperature (between 80 and 90 C), using silicic acid and lithium hydroxide like precursory reagents and different solutions (urea and ammonium hydroxide) for the optimization in their synthesis. Finally, it was carried out the characterization of these materials by means of X-ray diffraction (XRD), electronic microscopes (SEM and TEM), nitrogen physisorption (method BET) and thermal gravimetric analysis (TGA) to observe the differences that exist among the conventional method and the proposed method and by this way to determine the advantages of the last method. (Author)

  7. Cooperation between Catalytic and DNA-binding Domains Enhances Thermostability and Supports DNA Synthesis at Higher Temperatures by Thermostable DNA Polymerases

    Science.gov (United States)

    Pavlov, Andrey R.; Pavlova, Nadejda V.; Kozyavkin, Sergei A.; Slesarev, Alexei I.

    2012-01-01

    We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases (Pavlov et. al., (2002) Proc. Natl. Acad. Sci. USA 99, 13510–13515). The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various non-specific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting Helix-hairpin-Helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species, but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of TopoV HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105°C by maintaining processivity of DNA synthesis at high temperatures. We also found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding templates to DNA polymerases. PMID:22320201

  8. Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity.

    Science.gov (United States)

    Kumar, Deenadayalan Ashok; Palanichamy, V; Roopan, Selvaraj Mohana

    2014-06-05

    A green rapid biogenic synthesis of silver nanoparticles AgNPs using Alternanthera dentata (A. dentata) aqueous extract was demonstrated in this present study. The formation of silver nanoparticles was confirmed by Surface Plasmon Resonance (SPR) at 430nm using UV-visible spectrophotometer. The reduction of silver ions to silver nanoparticles by A. dentata extract was completed within 10min. Synthesized nanoparticles were characterized using UV-visible spectroscopy; Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy and transmission electron microscopy (TEM). The extracellular silver nanoparticles synthesis by aqueous leaf extract demonstrates rapid, simple and inexpensive method comparable to chemical and microbial methods. The colloidal solution of silver nanoparticles were found to exhibit antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia and, Enterococcus faecalis. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Continuous-flow synthesis of adipic acid from cyclohexene using hydrogen peroxide in high-temperature explosive regimes.

    Science.gov (United States)

    Damm, Markus; Gutmann, Bernhard; Kappe, C Oliver

    2013-06-01

    Safe only in a microreactor! The synthesis of adipic acid from cyclohexene by tungstic acid-catalyzed oxidation using hydrogen peroxide following the classical Noyori protocol can be accomplished in good yields with residence times as short as 20 min at 140 °C using a safe and scalable microreactor environment. Under these intensified conditions the use of a phase-transfer catalyst is not required. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Carbon Isotopes of Alkanes in Hydrothermal Abiotic Organic Synthesis Processes at High Temperatures and Pressures: An Experimental Study

    Science.gov (United States)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.

    2010-01-01

    Observation of methane in the Martian atmosphere has been reported by different detection techniques [1-4]. With more evidence showing extensive water-rock interaction in Martian history [5-7], abiotic formation by Fischer-Tropsch Type (FTT) synthesis during serpentization reactions may be one possible process responsible for methane generation on Mars [8, 9]. While the experimental studies performed to date leave little doubt that chemical reactions exist for the abiotic synthesis of organic compounds by mineral surface-catalyzed reactions [10-12], little is known about the reaction pathways by which CO2 and/or CO are reduced under hydrothermal conditions. Carbon and hydrogen isotope measurements of alkanes have been used as an effective tool to constrain the origin and reaction pathways of hydrocarbon formation. Alkanes generated by thermal breakdown of high molecular weight organic compounds have carbon and hydrogen isotopic signatures completely distinct from those formed abiotically [13-15]. Recent experimental studies, however, showed that different abiogenic hydrocarbon formation processes (e.g., polymerization vs. depolymerization) may have different carbon and hydrogen isotopic patterns [16]. Results from previous experiments studying decomposition of higher molecular weight organic compounds (lignite) also suggested that pressure could be a crucial factor affecting fractionation of carbon isotopes [17]. Under high pressure conditions, no experimental data are available describing fractionation of carbon isotope during mineral catalyzed FTT synthesis. Thus, hydrothermal experiments present an excellent opportunity to provide the requisite carbon isotope data. Such data can also be used to identify reaction pathways of abiotic organic synthesis under experimental conditions.

  11. Low temperature synthesis of Ba1–xSrxSnO3 (x = 0–1) from molten ...

    Indian Academy of Sciences (India)

    Administrator

    The morphology of the particles of BaSnO3 and SrSnO3 is spherical and rod shaped, respectively. Effect of soaking periods on the grain growth is observed clearly in SrSnO3. Ba0⋅5Sr0⋅5SnO3 (BSS5) crystallizes in flake like morphology. Keywords. Perovskite; stannates; molten salt synthesis; X-ray diffraction; scanning ...

  12. Effect of Synthesis Temperature on Structure and Magnetic Properties of (La,Nd)0.7Sr0.3MnO3 Nanoparticles.

    Science.gov (United States)

    Shlapa, Yulia; Solopan, Sergii; Bodnaruk, Andrii; Kulyk, Mykola; Kalita, Viktor; Tykhonenko-Polishchuk, Yulia; Tovstolytkin, Alexandr; Belous, Anatolii

    2017-12-01

    Two sets of Nd-doped La 0.7 Sr 0.3 MnO 3 nanoparticles were synthesized via sol-gel method with further heat treatment at 1073 and 1573 K, respectively. Crystallographic and magnetic properties of obtained nanoparticles were studied, and the effect of synthesis conditions on these properties was investigated. According to X-ray data, all particles crystallized in the distorted perovskite structure. Magnetic parameters, such as saturation magnetization, coercivity, Curie temperature, and specific loss power, which is released on the exposure of an ensemble of nanoparticles to AC magnetic field, were determined for both sets of samples. The correlation between the values of Curie temperature and maximal heating temperature under AC magnetic field was found. It was revealed that for the samples synthesized at 1573 K, the dependences of crystallographic and magnetic parameters on Nd content were monotonous, while for the samples synthesized at 1073 K, they were non-monotonous. It was concluded that Nd-doped La 0.7 Sr 0.3 MnO 3 nanoparticles are promising materials for self-controlled magnetic hyperthermia applications, but the researchers should be aware of the unusual behavior of the particles synthesized at relatively low temperatures.

  13. Production of ceramic nanoparticles through self-propagating high-temperature synthesis (SHS) and their introduction into a metallic matrix to form metal matrix composites (MMC)

    Science.gov (United States)

    Nuechterlein, Jacob

    Self-propagating high-temperature synthesis (SHS) is a self-sustaining combustion reaction of reactant powders typically in the form of compacted pellets to form a desired product species. The reactants are ignited in one or more locations by several different techniques. After ignition the reaction travels as a wave through the pellet exothermically converting the reactants into products as it propagates. In this case the products are formed as discrete ceramic particles of TiC, Al2O3 and SiC. The goal of this research was to reduce the size of the particles formed by this technique from a diameter of 1-5μm to less than 100nm with the goal of then incorporating these nanoparticles as reinforcements in Al metal matrix composites. To accomplish this, many different SHS principles were studied and their associated variables were changed to reduce the combustion temperature of each reacting system. Several of these systems were investigated and discarded for a number of reasons such as: low ignition or high combustion temperatures, dangerous reaction conditions, or undesirable product densities and morphologies. The systems chosen exhibited low material costs, low combustion temperatures, and a wide range of stabilities when lowering the reaction temperature. The reacting systems pursued were based around the aluminothermic reduction of TiO2 in the presence of carbon to form TiC and Al2O 3. The combustion temperature of this reaction was reduced from 2053ºC to less than 1100ºC, which had a corresponding effect on the particle size of the products, reducing the average diameter of the particles to less than 100nm. This was accomplished by providing high heating rates, controlling the green density and adding diluents to the reaction such as Al, TiC, SiC or Al2O3. Cooling experiments were also investigated, but the cooling rate was found to have no effect on the particle size.

  14. THE EFFECT OF TEMPERATURE AND MAGNESIUM SIZE ON LOW TEMPERATURE MAGNESIOTHERMIC SYNTHESIS OF NANO STRUCTURES BORON CARBIDE BY MESOPOROUS CARBON (CMK-1

    Directory of Open Access Journals (Sweden)

    P. Amin

    2016-09-01

    Full Text Available In this study, Boron carbide was synthesized using Mesoporous Carbon CMK-1, Boron oxide, and magnesiothermic reduction process. The Effects of temperature and magnesium grain size on the formation of boron carbide were studied using nano composite precurser containg mesoporous carbon. Samples were leached in 2M Hydrochloric acid to separate Mg, MgO and magnesium-borat phases. SEM, XRD and Xray map analysis were caried out on the leached samples to characterize the  boron carbide. results showed that the reaction efficiency developed in samples with weight ratio of B2O3:C:Mg = 11:1.5:12, by increasing the temperature from 550 to 650 °C and magnesium powder size from 0.3 m to 3 m.

  15. Low temperature synthesis and characterization of Na–M–(O)–F phases with M=Ti, V

    Energy Technology Data Exchange (ETDEWEB)

    Nava-Avendaño, Jessica [Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E-08193 Bellaterra, Catalonia (Spain); Ayllón, José A. [Departament de Química, Universitat Autònoma de Barcelona, Campus UAB, E-08193 Bellaterra, Catalonia (Spain); Frontera, Carlos; Oró-Solé, Judith [Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E-08193 Bellaterra, Catalonia (Spain); Estruga, Marc [Departament de Química, Universitat Autònoma de Barcelona, Campus UAB, E-08193 Bellaterra, Catalonia (Spain); Molins, Elies [Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E-08193 Bellaterra, Catalonia (Spain); Palacín, M. Rosa, E-mail: rosa.palacin@icmab.es [Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E-08193 Bellaterra, Catalonia (Spain)

    2015-03-15

    Na{sub 5}Ti{sub 3}O{sub 3}F{sub 11} was prepared by the microwave assisted method, and presents a chiolite related structure with cell parameters a=10.5016(5), b=10.4025(5), and c=10.2911(5) Å and Cmca (no. 64) space group. From solvothermal synthesis at 100 °C the cryolite Na{sub 3−δ}VO{sub 1−δ}F{sub 5+δ} was prepared, which crystallizes in the monoclinic system with a=5.5403(2), b=5.6804(2), c=7.9523(2) Å, β=90.032(7)° cell parameters and P2{sub 1}/n (no. 14) space group. Under similar synthesis conditions but with higher HF concentration the chiolite-type phase Na{sub 5−δ}V{sub 3}F{sub 14} was achieved, which exhibits a=10.5482(2), b=10.4887(1) and c=10.3243(1) Å cell parameters and Cmc2{sub 1} (no. 36) space group. A single crystal also having the chiolite structure was synthesized at 200 °C which exhibits tetragonal symmetry (a=7.380(3) and c=10.381(11) Å and space group P4{sub 2}2{sub 1}2 (no. 94)). Bond valence sum indicates that it contains V{sup 4+} and therefore can be formulated as Na{sub 5}V{sub 3}O{sub 3}F{sub 11}. - Graphical abstract: Na{sub 5}M{sub 3}(O,F){sub 14} with M=Ti and V having chiolite structure and Na{sub 3−δ}VO{sub 1−δ}F{sub 5+δ} cryolite were prepared by means of microwave-assisted and solvothermal synthesis. - Highlights: • Na{sub 5}Ti{sub 3}O{sub 3}F{sub 11} chiolite was prepared by a microwave assisted method and characterized. • Na{sub 3−δ}VO{sub 1−δ}F{sub 5+δ} and Na{sub 5−δ}V{sub 3}F{sub 14} were prepared by solvothermal synthesis. • The compounds were structurally characterized by diffraction techniques. • O/F distribution was estimated by applying Pauling’s second rule.

  16. Flash pyrolysis at high temperature of ligno-cellulosic biomass and its components - production of synthesis gas; Pyrolyse flash a haute temperature de la biomasse ligno-cellulosique et de ses composes - production de gaz de synthese

    Energy Technology Data Exchange (ETDEWEB)

    Couhert, C

    2007-11-15

    Pyrolysis is the first stage of any thermal treatment of biomass and governs the formation of synthesis gas for the production of electricity, hydrogen or liquid fuels. The objective of this work is to establish a link between the composition of a biomass and its pyrolysis gas. We study experimental flash pyrolysis and fix the conditions in which quantities of gas are maximal, while aiming at a regime without heat and mass transfer limitations (particles about 100 {mu}m): temperature of 950 C and residence time of about 2 s. Then we try to predict gas yields of any biomass according to its composition, applicable in this situation where thermodynamic equilibrium is not reached. We show that an additivity law does not allow correlating gas yields of a biomass with fractions of cellulose, hemi-cellulose and lignin contained in this biomass. Several explanations are suggested and examined: difference of pyrolytic behaviour of the same compound according to the biomass from which it is extracted, interactions between compounds and influence of mineral matter. With the aim of industrial application, we study pyrolysis of millimetric and centimetric size particles, and make a numerical simulation of the reactions of pyrolysis gases reforming. This simulation shows that the choice of biomass affects the quantities of synthesis gas obtained. (author)

  17. Spectroscopic investigation on the chemical forms of Cu during the synthesis of zeolite X at low temperature

    International Nuclear Information System (INIS)

    Terzano, Roberto; Spagnuolo, Matteo; Medici, Luca; Tateo, Fabio; Vekemans, Bart; Janssens, Koen; Ruggiero, Pacifico

    2006-01-01

    The direct synthesis of zeolites in polluted soils has proved to be a promising process for the stabilization of metals inside these minerals. Nevertheless, more detailed information about this process is still needed in order to better foresee the fate of metals in treated soils. In this work, zeolite X has been synthesized under alkaline conditions in an aqueous solution containing 2500 mg kg -1 of Cu, starting from Na silicate and Al hydroxide at 60 deg. C. Aluminium, Si and Cu concentrations in the aqueous phase, during zeolite synthesis, were measured over a period of 160 h. The solid products have been characterized over time by XRD, SEM-EDX, ESR, FT-IR, and synchrotron radiation X-ray microbeam absorption near edge structure (μ-XANES) and extended X-ray absorption fine structure (μ-EXAFS) spectroscopy. It appears that the marked reduction of Cu concentration in solution is not only due to a simple precipitation effect, but also to processes connected with the formation of zeolite X which could entrap, inside its porous structure, nano- or micro-occlusions of precipitated Cu hydroxides and/or oxides. In addition, EXAFS observations strengthen the hypothesis of the presence of different Cu phases even at a short-range molecular level and suggest that some of these occlusions could be even bound to the zeolite framework. The results suggest that zeolite formation could be used to reduce the availability of metals in polluted soils

  18. Facile room-temperature synthesis of carboxylated graphene oxide-copper sulfide nanocomposite with high photodegradation and disinfection activities under solar light irradiation

    Science.gov (United States)

    Yu, Shuyan; Liu, Jincheng; Zhu, Wenyu; Hu, Zhong-Ting; Lim, Teik-Thye; Yan, Xiaoli

    2015-11-01

    Carboxylic acid functionalized graphene oxide-copper (II) sulfide nanoparticle composite (GO-COOH-CuS) was prepared from carboxylated graphene oxide and copper precursor in dimethyl sulfoxide (DMSO) by a facile synthesis process at room temperature. The high-effective combination, the interaction between GO-COOH sheets and CuS nanoparticles, and the enhanced visible light absorption were confirmed by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS) and Photoluminescence (PL) spectra. The as-synthesized GO-COOH-CuS nanocomposite exhibited excellent photocatalytic degradation performance of phenol and rhodamine B, high antibacterial activity toward E. coli and B. subtilis, and good recovery and reusability. The influence of CuS content, the synergistic reaction between CuS and GO-COOH, and the charge-transfer mechanism were systematically investigated. The facile and low-energy synthesis process combined with the excellent degradation and antibacterial performance signify that the GO-COOH-CuS has a great potential for water treatment application.

  19. Room temperature large-scale synthesis of layered frameworks as low-cost 4 V cathode materials for lithium ion batteries

    Science.gov (United States)

    Hameed, A. Shahul; Reddy, M. V.; Nagarathinam, M.; Runčevski, Tomče; Dinnebier, Robert E.; Adams, Stefan; Chowdari, B. V. R.; Vittal, Jagadese J.

    2015-11-01

    Li-ion batteries (LIBs) are considered as the best available technology to push forward the production of eco-friendly electric vehicles (EVs) and for the efficient utilization of renewable energy sources. Transformation from conventional vehicles to EVs are hindered by the high upfront price of the EVs and are mainly due to the high cost of LIBs. Hence, cost reduction of LIBs is one of the major strategies to bring forth the EVs to compete in the market with their gasoline counterparts. In our attempt to produce cheaper high-performance cathode materials for LIBs, an rGO/MOPOF (reduced graphene oxide/Metal-Organic Phosphate Open Framework) nanocomposite with ~4 V of operation has been developed by a cost effective room temperature synthesis that eliminates any expensive post-synthetic treatments at high temperature under Ar/Ar-H2. Firstly, an hydrated nanocomposite, rGO/K2[(VO)2(HPO4)2(C2O4)]·4.5H2O has been prepared by simple magnetic stirring at room temperature which releases water to form the anhydrous cathode material while drying at 90 °C during routine electrode fabrication procedure. The pristine MOPOF material undergoes highly reversible lithium storage, however with capacity fading. Enhanced lithium cycling has been witnessed with rGO/MOPOF nanocomposite which exhibits minimal capacity fading thanks to increased electronic conductivity and enhanced Li diffusivity.

  20. Functional Properties of Porous Ti-48.0 at.% Ni Shape Memory Alloy Produced by Self-Propagating High-Temperature Synthesis

    Science.gov (United States)

    Resnina, Natalia; Belyaev, Sergey; Voronkov, Andrew

    2018-03-01

    The functional behavior of the porous shape memory alloy produced by self-propagating high-temperature synthesis from the Ti-48.0 at.% Ni powder mixture was studied. It was found that a large unelastic strain recovered on unloading and it was not attributed to the pseudoelasticity effect. A decrease in deformation temperatures did not influence the value of strain that recovered on unloading, while the effective modulus decreased from 1.9 to 1.44 GPa. It was found that the porous Ti-48.0 at.% Ni alloy revealed the one-way shape memory effect, where the maximum recoverable strain was 5%. The porous Ti-48.0 at.% Ni alloy demonstrated the transformation plasticity and the shape memory effects on cooling and heating under a stress. An increase in stress did not influence the shape memory effect value, which was equal to 1%. It was shown that the functional properties of the porous alloy were determined by the TiNi phase consisted of the two volumes Ti49.3Ni50.7 and Ti50Ni50 where the martensitic transformation occurred at different temperatures. The results of the study showed that the existence of the Ti49.3Ni50.7 volumes in the porous Ti-48.0 at.% Ni alloy improved the functional properties of the alloy.

  1. Annual Temperature Reconstruction by Signal Decomposition and Synthesis from Multi-Proxies in Xinjiang, China, from 1850 to 2001.

    Directory of Open Access Journals (Sweden)

    Jingyun Zheng

    Full Text Available We reconstructed the annual temperature anomaly series in Xinjiang during 1850-2001 based on three kinds of proxies, including 17 tree-ring width chronologies, one tree-ring δ13C series and two δ18O series of ice cores, and instrumental observation data. The low- and high-frequency signal decomposition for the raw temperature proxy data was obtained by a fast Fourier transform filter with a window size of 20 years, which was used to build a good relationship that explained the high variance between the temperature and the proxy data used for the reconstruction. The results showed that for 1850-2001, the temperature during most periods prior to the 1920s was lower than the mean temperature in the 20th century. Remarkable warming occurred in the 20th century at a rate of 0.85°C/100a, which was higher than that during the past 150 years. Two cold periods occurred before the 1870s and around the 1910s, and a relatively warm interval occurred around the 1940s. In addition, the temperature series showed a warming hiatus of approximately 20 years around the 1970s, and a rapid increase since the 1980s.

  2. Thermodynamic and lattice parameter calculation of TiC x produced from Al-Ti-C powders by laser igniting self-propagating high-temperature synthesis

    International Nuclear Information System (INIS)

    Li, Y.X.; Hu, J.D.; Wang, H.Y.; Guo, Z.X.; Chumakov, A.N.

    2007-01-01

    TiC x has been formed by self-propagating high-temperature synthesis (SHS) from elemental powder mixtures with a range of C/Ti ratios. The combusting behavior of the powder mixtures was investigated. The effect of the processing variables on the lattice parameter and the composition of TiC were examined. The results show that lattice parameters of TiC x increase with the increase of C/Ti ratio. The variation of Gibbs free energy in Al-Ti-C system was studied based on the thermodynamics theory. The results show that TiC and Al 3 Ti phases are easier to form than Al 4 C 3 phase

  3. Effect of molybdenum on microstructure and strength on nickel base titanium carbide composites prepared with self-propagating high-temperature synthesis products, TiCx-Ni

    International Nuclear Information System (INIS)

    Choi, Y.; Lee, J.K.; Mullins, M.E.

    1993-01-01

    For reinforcement of metal matrix composites, titanium carbides were prepared through a self propagating high-temperature synthesis reaction, and then consolidated into the nickel-molybdenum matrix via liquid phase sintering followed by hot isostatic pressing. As the amount of molybdenum in the matrix phase increased up to 8.5 wt.%, the average titanium carbide size decreased and the bend rupture strength of the composites increased. This was attributed not only to the solid solution hardening effect and the decrease in the carbide particle size, but also to the (Ti, Mo)C x phase which was formed around titanium carbide cores. The formation of the (Ti, Mo)C x phase was also associated with a change in fracture mode from a mixed case of both transgranular and interfacial fracture to a transgranular fracture mode upon the molybdenum addition to the titanium carbide-nickel composites

  4. Microwave Assisted Synthesis of ZnO Nanoparticles: Effect of Precursor Reagents, Temperature, Irradiation Time, and Additives on Nano-ZnO Morphology Development

    Directory of Open Access Journals (Sweden)

    Gastón P. Barreto

    2013-01-01

    Full Text Available The effect of different variables (precursor reagents, temperature, irradiation time, microwave radiation power, and additives addition on the final morphology of nano-ZnO obtained through the microwave assisted technique has been investigated. The characterization of the samples has been carried out by field emission scanning electron microscopy (FE-SEM in transmission mode, infrared (FTIR, UV-Vis spectroscopy, and powder X-ray diffraction (XRD. The results showed that all the above-mentioned variables influenced to some extent the shape and/or size of the synthetized nanoparticles. In particular, the addition of an anionic surfactant (sodium di-2-ethylhexyl-sulfosuccinate (AOT to the reaction mixture allowed the synthesis of smaller hexagonal prismatic particles (100 nm, which show a significant increase in UV absorption.

  5. Synthesis Biodiesel from Palm Oil Through Interesterification Using Imobilized Lipase Enzym as Catalyst: The Effect of Amount of Biocatalyst, Mole Ratio of Reactan, Temperature to Yield

    Directory of Open Access Journals (Sweden)

    Melina Widyawati

    2014-10-01

    Full Text Available Biodiesel usually synthesized by transesterification of triglyceride and alcohol by addition of acid or base catalyst so there is could produce a waste of chemical process. Alternative process is by using biocatalyst such as enzyme to synthesize biodiesel without chemical process waste. In this research, synthesis of biodiesel from Crude Palm Oil (CPO that through the process of degumming and methyl acetate as acyl donor has been investigated with using Lipozyme as biocatalyst. Variables in this research are amount of biocatalyst, mole ratio of reactant, and temperature, and its respond to the yield conversion of biodiesel that presented by using Response Surface Methodology (RSM. Yield raging from 15% - 68% were achived during 10 hours reaction time. The results showed that the most influential variable is amount of biocatalyst.

  6. Investigation of the Effect of Magnesium on the Microstructure and Mechanical Properties of NiTi Shape Memory Alloy Prepared by Self-Propagating High-Temperature Synthesis

    Science.gov (United States)

    Školáková, Andrea; Novák, Pavel; Salvetr, Pavel; Moravec, Hynek; Šefl, Václav; Deduytsche, Davy; Detavernier, Christophe

    2017-07-01

    This work aims to describe the effect of magnesium on the microstructure, phase composition, amount of undesirable Ti2Ni phase, martensitic transformation, mechanical properties, and corrosion resistance of NiTi alloy. To minimize the quantity of Ti2Ni phase, we use the magnesium as an element with high affinity to oxygen, because this phase is stabilized by oxygen. Various quantities of magnesium (1, 3, and 5 wt pct) were tested. Self-propagating high-temperature synthesis (SHS) was used as a production method of the alloys. The samples prepared by SHS were pulverized by a vibrating mill, and the obtained powders were used for consolidation by means of spark plasma sintering. Results showed a significant reduction of the content of undesirable Ti2Ni phase by the addition of magnesium. Further, magnesium increased corrosion resistance and yield strength.

  7. Effect of Synthesis Temperature and NaOH Concentration on Microstructural and Magnetic Properties of Mn0.5Zn0.5Fe2O4 Nanoparticles

    Science.gov (United States)

    Siregar, N.; Indrayana, I. P. T.; Suharyadi, E.; Kato, T.; Iwata, S.

    2017-05-01

    Mn0.5Zn0.5Fe2O4 nanoparticles have been successfully synthesized through coprecipitation method by varying NaOH concentrations from 0.5 M to 6 M and synthesis temperatures from 30 to 120 °C. The X-ray diffraction (XRD) pattern indicates samples consisting of multiphase structures such as spinel of Mn0.5Zn0.5Fe2O4, α-MnO2, ZnO, λ-MnO2, and γ-Fe2O3. The crystallite size of Mn0.5Zn0.5Fe2O4 is in the range of 14.1 to 26.7 nm. The Transmission electron microscope (TEM) image shows that sample was agglomerate. The hysteresis loops confirm that nanoparticles are soft magnetic materials with low coercivity (H c) in the range of 45.9 to 68.5 Oe. Those values increased relatively with increasing particles size. For NaOH concentration variation, the maximum magnetization of the sample increased from 10.4 emu/g to 11.6 emu/g with increasing ferrite content. Meanwhile, the maximum magnetization increased from 7.9 to 15.7 emu/g for samples with various synthesis temperature. The highest coercivity of 68.5 Oe was attained for a sample of 6 M NaOH under 90 °C. The highest magnetization of 15.7 emu/g was achieved for a sample of 1.5 M NaOH under 120 °C caused by the maximum crystallinity of sample.

  8. Synthesis, microstructure and magnetic properties of nanocrystalline MgFe2O4 particles: Effect of mixture of fuels and sintering temperature

    Directory of Open Access Journals (Sweden)

    Osereme Ehi-Eromosele Cyril

    2016-01-01

    Full Text Available The present article reports the results of studies related to the synthesis of MgFe2O4 nanocomposite powder by solution combustion process using mixture of fuels containing urea (U and ammonium acetate (AA. The effect of mixture of fuel and sintering temperature on phase formation, structural, morphological and magnetic properties of MgFe2O4 particles were investigated by X-ray diffraction (XRD, thermogravimetric analysis (TGA, Raman spectroscopy, scanning electron microscopy (SEM, energy dispersive absorption x-ray (EDAX and vibrating sample magnetometer (VSM. Thermodynamic modeling of the combustion reaction shows that by using a mixture of urea and ammonium acetate fuels, the adiabatic flame temperature (Tad, exothermicity and amount of gases produced during the combustion process as well as product characteristics could be controlled. The use of mixture of fuels (U and AA in the synthesis of MgFe2O4 was found to produce ferrites with finer agglomerates, higher crystallinity, higher magnetic properties and smaller crystallite sizes than when only urea was used. It was found that only samples prepared with a mixture of fuels (0.5U + 0.5AA and sintered at 900oC for 2 h produced pure ferrite spinel phase while the auto-combusted and powders sintered at 600oC for 2 h had secondary phases. Apart from giving detailed information about the structural order of the samples, Raman spectroscopy also confirmed that MgFe2O4 is a mixed spinel ferrite.

  9. Molten salts activated by high-energy milling: A useful, low-temperature route for the synthesis of multiferroic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hernández-Ramírez, Anayantzin; Martínez-Luévanos, Antonia [Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, V. Carranza s/n, Saltillo, Coahuila 25280 (Mexico); Fuentes, Antonio F. [CINVESTAV Unidad Saltillo, Apdo. Postal 663, Saltillo, Coahuila 25000 (Mexico); Earth and Environmental Science, University of Michigan, 3514 C.C. Little Building, 1100 N. University Avenue, Ann Arbor, MI 48109-1005 (United States); Nelson, Anna-Gay D.; Ewing, Rodney C. [Earth and Environmental Science, University of Michigan, 3514 C.C. Little Building, 1100 N. University Avenue, Ann Arbor, MI 48109-1005 (United States); Montemayor, Sagrario M., E-mail: smmontemayor@gmail.com [Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, V. Carranza s/n, Saltillo, Coahuila 25280 (Mexico); Earth and Environmental Science, University of Michigan, 3514 C.C. Little Building, 1100 N. University Avenue, Ann Arbor, MI 48109-1005 (United States)

    2014-01-25

    Highlights: • The synthesis route purposed demonstrates the formation of BiFeO{sub 3} at only 500 °C. • The magnetic and ferroelectric properties are comparable to those of bulk BiFeO{sub 3}. • By this route, several phases in Bi{sub 1−x}La{sub x}FeO{sub 3} system are obtained at only 500 °C. • The route developed here could be useful to synthesize other perovskite-type oxides. -- Abstract: There are only a few multiferroic compounds, among which BiFeO{sub 3} is the most important. Research the synthesis of bismuth ferrite, with novel and improved magnetic and electrical properties, has been mainly based on the use of hydrothermal or sol gel methods. However, these methods require either rather extreme conditions or several steps for synthesis. We demonstrate that the use of molten salts, activated by high energy milling, results in pure nanometric BiFeO{sub 3}, LaFeO{sub 3} and intermediate phases in the Bi{sub 1−x}La{sub x}FeO{sub 3} system. The chemical reagents used are Bi(NO{sub 3}){sub 3}⋅5H{sub 2}O, La(NO{sub 3}){sub 3}⋅6H{sub 2}O, Fe(NO{sub 3}){sub 3}⋅9H{sub 2}O and NaOH. A brief milling process of the reagents creates an amorphous precursor and crystalline NaNO{sub 3}. The thermal treatment of the precursors, at 500 °C for two hours, produces a crystalline mixture of Bi{sub 1−x}La{sub x}FeO{sub 3} and NaNO{sub 3}. Simple washing eliminates the NaNO{sub 3}. The characterization of intermediates and final products, through thermal analysis, X-ray diffraction and scanning electronic microscopy, allows the inference of possible mechanism. In addition, vibrating sample magnetometry (VSM) and ferroelectric tests show the typical magnetic and electric polarization loops characteristic of these materials even when formed at the nano-scale.

  10. Microwave assisted low temperature synthesis of sodium zirconium phosphate (NZP) and the leachability of some selected fission products incorporated in its structure

    International Nuclear Information System (INIS)

    Dharwadkar, S.R.

    2008-01-01

    Full text: Microwave assisted procedure for low temperature solid state synthesis of sodium zirconium phosphate (NZP), a material with the potential for immobilization and disposal of high level nuclear waste, was developed. Four selected fission products, namely cesium, strontium, tellurium and ruthenium were introduced (substituted) in the NZP matrix during its synthesis at 450 deg C. More than 85% of these elements incorporated at this temperature could be retained in the NZP compacts, sintered in air at 1000 deg C to nearly 90% of the theoretical density of pure sodium zirconium phosphate. Leaching studies were carried out on the fission product substituted sintered NZP compacts in pure de-ionized water and 80% saturated brine solution at the ambient temperatures of 30 deg C and 90 deg C for four weeks. The major part of leaching in all the cases was observed in the first week. The maximum amount of the substituted element leached in the liquid media after four weeks, however did not exceed 12% of the total amount originally present in the sample before leaching. No significant leaching was observed for any of the dopant elements after four weeks. Among the substituted elements maximum leaching was observed for tellurium followed by cesium and strontium. Ruthenium showed virtually no leaching under the conditions employed. Leaching was found to decrease considerably in multiple element substituted NZP. The effect of temperature on the leaching rate was marginal but substantial difference was observed when the leachant was changed from pure de-ionized water to brine solution. Tellurium and strontium exhibited three and two fold decrease in the leaching rate respectively on changing the leachant from pure de-ionized water to 80% saturated brine solution. The leach rate of Cs however remained virtually unaffected by this change. The SEM and EDX analysis of the surfaces of the leached pellets showed virtual absence of the dopants introduced in the NZP matrix

  11. Low-temperature synthesis of single-domain Sr-hexaferrite particles by solid-state reaction route

    Energy Technology Data Exchange (ETDEWEB)

    Soezeri, Hueseyin [TUBITAK-UME, National Metrology Institute, PO Box 54, 41470, Gebze-Kocaeli (Turkey); Baykal, Abduelhadi [Department of Chemistry, Fatih University, B. Cekmece, 34500 Istanbul (Turkey); BioNanoTechnology R and D Center, Fatih University, B. Cekmece, 34500 Istanbul (Turkey); Uenal, Bayram [BioNanoTechnology R and D Center, Fatih University, B. Cekmece, 34500 Istanbul (Turkey); Department of Electrical and Electronics Engineering, Fatih University, B. Cekmece, 34500 Istanbul (Turkey)

    2012-10-15

    Sr-hexaferrite particles have been synthesized by conventional solid-state reaction route at low temperatures by boron addition that is used as an inhibitor for crystal growth. The effect of boron concentration on the structural, magnetic and electrical properties of Sr-hexaferrite particles are investigated by X-ray crystallography, scanning electron microscopy, magnetization and conductivity measurements. Saturation magnetization of Sr-hexaferrite increases up to 1 wt% boron addition, while coercivity becomes maximum with a boron amount of 2 wt%. Then, both magnetic parameters start to decrease with higher boron concentrations. Single-domain and single-phase powders have been obtained in the sample containing 1 wt% of boron that is sintered at 1050 C. Impedance spectroscopies reveal that the dc conductivity increases tremendously with boron addition, while the ac conductivity increases with elevated temperature. The ac conductivity obeys roughly the power law of angular frequency in which tendencies change with temperature at low and medium temperature. Furthermore, higher contents of the dopant over approximately 2.0 wt% cause its temperature independency at higher frequencies. These are due to the grain size and secondary phase of hexaferrites that increases with the increase in boron amount. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Self-propagating high-temperature synthesis of LaMO3 perovskitetype oxide using heteronuclearcyano metal complex precursors

    OpenAIRE

    Sánchez-Rodríguez, Daniel; Wada, Hiroki; Yamaguchi, Syuhei; Farjas Silva, Jordi; Yahiro, Hidenori

    2015-01-01

    The decomposition of La[Fe(CN)6]·5H2O and La[Co(CN)6]·5H2O under different atmospheres has been analyzed by thermogravimetry (TG) and differential thermal analysis (DTA). In addition, the decomposition temperature at different sample locations was monitored for sample masses around 2 g of La[Fe(CN)6]·5H2O and La[Co(CN)6]·5H2O, when they were calcined for 1 h at temperatures ranging from 200 to 400 °C in a controlled gas-flow system. Results showed that, the large enough of the cyano complex p...

  13. Solvent-free and room temperature synthesis of 3-arylquinolines from different anilines and styrene oxide in the presence of Al2O3/MeSO3H

    Directory of Open Access Journals (Sweden)

    Hashem Sharghi

    2017-09-01

    Full Text Available A highly efficient, simple and environmentally friendly synthesis of 3-arylquinolines has been developed in the presence of Al2O3/MeSO3H via one-pot reaction of anilines and styrene oxide. This methodology provides very rapid access to 3-arylquinolines in good to excellent yields under solvent-free conditions at room temperature in air.

  14. Room temperature synthesis of free-standing HKUST-1 membranes from copper hydroxide nanostrands for gas separation.

    Science.gov (United States)

    Mao, Yiyin; shi, Li; Huang, Hubiao; Cao, Wei; Li, Junwei; Sun, Luwei; Jin, Xianda; Peng, Xinsheng

    2013-06-25

    Large scale, robust, well intergrown free-standing HKUST-1 membranes were converted from copper hydroxide nanostrand free-standing films in 1,3,5-benzenetricarboxylic acid water-ethanol solution at room temperature, and explored for gas separation. The truncated crystals are controllable and favorable for the dense intergrowth.

  15. Room Temperature Magnetic Behavior In Nanocrystalline Ni-Doped Zro2 By Microwave-Assisted Polyol Synthesis

    Science.gov (United States)

    Parimita Rath, Pragyan; Parhi, Pankaj Kumar; Ranjan Panda, Sirish; Priyadarshini, Barsharani; Ranjan Sahoo, Tapas

    2017-08-01

    This article, deals with a microwave-assisted polyol method to demonstrate a low temperature route polyol precursors decompose exothermically below 300°C. IR data confirms the reduction of Zr(OH)4 precipitates to ZrO2, in agreement with the conclusions drawn from the TGA analysis.

  16. Synthesis and analysis of Mo-Si-B based coatings for high temperature oxidation protection of ceramic materials

    Science.gov (United States)

    Ritt, Patrick J.

    The use of Ni-based superalloys in turbine engines has all but been exhausted, with operating temperatures nearing the melting point of these materials. The use of ceramics in turbine engines, particularly ceramic matrix composites such as SiC/C and SiC/SiC, is of interest due to their low density and attractive mechanical properties at elevated temperatures. The same materials are also in consideration for leading edges on hypersonic vehicles. However, SiC-based composites degrade in high temperature environments with low partial pressures of oxygen due to active oxidation, as well as high temperature environments containing water or sand. The need for a protective external coating for SiC-based composites in service is obvious. To date, no coating investigated for SiC/C or SiC/SiC has been proven to be resistant to oxidation and corrosion at intermediate and high temperatures, as well as in environments deficient in oxygen. The Mo-Si-B coating shows great promise in this area, having been proven resistant to attack from oxidation at extreme temperatures, from water vapor and from calcia-magnesia-aluminosilicate (CMAS). The adaptation of the Mo-Si-B coating for ceramic materials is presented in detail here. Evaluation of the coating under a range of oxidation conditions as well as simulated re-entry conditions confirms the efficacy of the Mo-Si-B based coating as protection from catastrophic failure. The key to the oxidation and corrosion resistance is a robust external aluminoborosilica glass layer that forms and flows quickly to cover the substrate, even under the extreme simulated re-entry conditions. Suppression of active oxidation of SiC, which may occur during atmospheric re-entry and hypersonic flight trajectories, has also been examined. In order to adapt the Mo-Si-B based coating to low partial pressures of oxygen and elevated temperatures, controlled amounts of Al were added to the Mo-Si-B based coating. The resulting coating decreased the inward

  17. A Temperature Window for the Synthesis of Single-Walled Carbon Nanotubes by Catalytic Chemical Vapor Deposition of CH4over Mo2-Fe10/MgO Catalyst

    Directory of Open Access Journals (Sweden)

    Yu Ouyang

    2009-01-01

    Full Text Available Abstract A temperature window for the synthesis of single-walled carbon nanotubes by catalytic chemical vapor deposition of CH4over Mo2-Fe10/MgO catalyst has been studied by Raman spectroscopy. The results showed that when the temperature is lower than 750 °C, there were few SWCNTs formed, and when the temperature is higher than 950 °C, mass amorphous carbons were formed in the SWCNTs bundles due to the self-decomposition of CH4. The temperature window of SWCNTs efficient growth is between 800 and 950 °C, and the optimum growth temperature is about 900 °C. These results were supported by transmission electron microscope images of samples formed under different temperatures. The temperature window is important for large-scale production of SWCNTs by catalytic chemical vapor deposition method.

  18. Effects of temperature on growth and lipid synthesis of diatom Chaetoceros Curvisetus and the Northern Adriatic (Mediteranean) plankton community

    Science.gov (United States)

    Novak, Tihana; Gašparović, Blaženka; Godrijan, Jelena; Maric, Daniela; Djakovac, Tamara; Mlakar, Marina

    2017-04-01

    Phytoplankton is the major primary producer in the world. Marine phytoplankton lives in a rather changing environment, with variations in temperature, light, salinity, nutrient availability, etc. In such changing environment phytoplankton should live, grow and reproduce, and, in order to achieve that, they fix carbon and nutrients to produce biomolecules (lipids, proteins and carbohydrates). Lipids are a good indicator of organic matter (OM) processes in the seas and oceans, also good bioindicators for OM origin, and phytoplankton adaptations to environmental stress. Marine lipids are produced by organisms, mostly in phototrophic part of the seas and oceans, and their crucial producer is phytoplankton. We were interested to see how the increasing temperature and different nutrient availability affect quantitative and qualitative lipid and lipid classes production by plankton community. To test how marine phytoplankton would respond to predicted increasing temperature we conducted monoculture batch experiments in laboratory on model diatom Chaetoceros curvisetus at five different temperatures from 10 to 30C. Also we conducted experiments in phosphorous replete and deplete conditions mimicking eutrophic and oligotrophic marine conditions. We have chosen Chaetoceros curvisetus as a model culture since it is a major component of Northern Adriatic (NA) phytoplankton, but also Chaetoceros genus of diatoms is most abundant in wide range of marine ecosystems. We also conducted annual sampling of the NA particulate matter that covers the same temperature range as for the batch experiments. NA samples were taken on two stations with different nutrient supply that were characterized as oligotrophic and mesotrophic stations. Samples were taken from 2013 to 2014 on a monthly basis. Lipid classes were characterized with thin-layer chromatography-flame ionization detection. Data are supported by particulate organic carbon (POC), chlorophyll a (Chl a) concentrations and

  19. Standard practice for evaluation of disbonding of bimetallic stainless alloy/steel plate for use in high-pressure, high-temperature refinery hydrogen service

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This practice covers a procedure for the evaluation of disbonding of bimetallic stainless alloy/steel plate for use in refinery high-pressure/high-temperature (HP/HT) gaseous hydrogen service. It includes procedures to (1) produce suitable laboratory test specimens, (2) obtain hydrogen charging conditions in the laboratory that are similar to those found in refinery HP/HT hydrogen gas service for evaluation of bimetallic specimens exposed to these environments, and (3) perform analysis of the test data. The purpose of this practice is to allow for comparison of data among test laboratories on the resistance of bimetallic stainless alloy/steels to hydrogen-induced disbonding (HID). 1.2 This practice applies primarily to bimetallic products fabricated by weld overlay of stainless alloy onto a steel substrate. Most of the information developed using this practice has been obtained for such materials. The procedures described herein, may also be appropriate for evaluation of hot roll bonded, explosive bonded...

  20. Synthesis of carbon nitride powder by selective etching of TiC0.3N0.7 in chlorine-containing atmosphere at moderate temperature

    International Nuclear Information System (INIS)

    Sui Jian; Lu Jinjun

    2010-01-01

    We reported the synthesis of carbon nitride powder by extracting titanium from single inorganic precursor TiC 0.3 N 0.7 in chlorine-containing atmosphere at ambient pressure and temperature not exceeding 500 deg. C. The TiC 0.3 N 0.7 crystalline structure acted as a template, supplying active carbon and nitrogen atoms for carbon nitride when it was destroyed in chlorination. X-ray diffraction data showed that the obtained carbon nitride powders were amorphous, which was in good agreement with transmission electron microscope analysis. The composition and structure of carbon nitride powders were analyzed by employing Fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. Results indicated that disorder structure was most likely for the carbon nitride powders and the N content depended greatly on the chlorination temperature. Thermal analysis in flowing N 2 indicated that the mass loss started from 300 deg. C and the complete decomposition occurred at around 650 deg. C, confirming the low thermal stability of the carbon nitride material.

  1. Synthesis of amorphous Mg(BH{sub 4}){sub 2} from MgB{sub 2} and H{sub 2} at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Pistidda, Claudio [Karlsruhe Institute of Technology, Institute of Nanotechnology, Postfach 3640, 76021 Karlsruhe (Germany); Garroni, Sebastiano [Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Dolci, Francesco; Bardaji, Elisa Gil [Karlsruhe Institute of Technology, Institute of Nanotechnology, Postfach 3640, 76021 Karlsruhe (Germany); Khandelwal, Ashish [Dipartimento di Ingegneria Meccanica, Settore Materiali and CNISM, Universita di Padova, Via Marzolo 9, 35131 Padova (Italy); Nolis, Pau [Servei de Ressonancia Magnetica Nuclear (SeRMN), Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Dornheim, Martin; Gosalawit, Rapee [Institute of Materials Research, Materials Technology, GKSS Research Centre Geesthacht GmbH, Max-Planck-Strasse 1, D-21502 Geesthacht (Germany); Jensen, Torben [Interdisciplinary Nanoscience Centre (iNANO) and Department of Chemistry, University of Aarhus, Langelandsgabe 140, DK-8000 (Denmark); Cerenius, Yngve [MAX-lab, Lund University, S-22100 Lund (Sweden); Surinach, Santiago; Baro, Maria Dolors [Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Lohstroh, Wiebke [Karlsruhe Institute of Technology, Institute of Nanotechnology, Postfach 3640, 76021 Karlsruhe (Germany); Fichtner, Maximilian, E-mail: m.fichtner@kit.ed [Karlsruhe Institute of Technology, Institute of Nanotechnology, Postfach 3640, 76021 Karlsruhe (Germany)

    2010-10-15

    Graphical abstract: Display Omitted Research highlights: {yields} Amorphous Mg(BH{sub 4}){sub 2} can be synthesized from MgB{sub 2} in a solvent-free route. {yields} Synthesis is performed room temperature by ball milling MgB{sub 2} under hydrogen pressure. {yields} The material is X-ray amorphous but shows characteristic near order and decomposition products. - Abstract: Due to its high hydrogen content and its favourable overall thermodynamics magnesium tetrahydroborate has been considered interesting for hydrogen storage applications. In this work we show that unsolvated amorphous magnesium tetrahydroborate can be obtained by reactive ball milling of commercial MgB{sub 2} under 100 bar hydrogen atmosphere. The material was characterized by solid-state NMR which showed the characteristic features of Mg(BH{sub 4}){sub 2}, together with those of higher borohydride species. High pressure DSC and TPD-MS showed thermal behaviour similar to that of Mg(BH{sub 4}){sub 2} but with broadened signals. In situ synchrotron X-ray powder diffraction confirmed the amorphous state of the material and showed the typical crystalline decomposition products of Mg(BH{sub 4}){sub 2} at elevated temperatures.

  2. Effect of precursor solutions stirring on deep level defects concentration and spatial distribution in low temperature aqueous chemical synthesis of zinc oxide nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Alnoor, Hatim, E-mail: hatim.alnoor@liu.se; Chey, Chan Oeurn; Pozina, Galia; Willander, Magnus; Nur, Omer [Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-601 74 Norrköping (Sweden); Liu, Xianjie; Khranovskyy, Volodymyr [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-583 81 Linköping (Sweden)

    2015-08-15

    Hexagonal c-axis oriented zinc oxide (ZnO) nanorods (NRs) with 120-300 nm diameters are synthesized via the low temperature aqueous chemical route at 80 °C on silver-coated glass substrates. The influence of varying the precursor solutions stirring durations on the concentration and spatial distributions of deep level defects in ZnO NRs is investigated. Room temperature micro-photoluminesnce (μ-PL) spectra were collected for all samples. Cathodoluminescence (CL) spectra of the as-synthesized NRs reveal a significant change in the intensity ratio of the near band edge emission (NBE) to the deep-level emission (DLE) peaks with increasing stirring durations. This is attributed to the variation in the concentration of the oxygen-deficiency with increasing stirring durations as suggested from the X-ray photoelectron spectroscopy analysis. Spatially resolved CL spectra taken along individual NRs revealed that stirring the precursor solutions for relatively short duration (1-3 h), which likely induced high super saturation under thermodynamic equilibrium during the synthesis process, is observed to favor the formation of point defects moving towards the tip of the NRs. In contrary, stirring for longer duration (5-15 h) will induce low super saturation favoring the formation of point defects located at the bottom of the NRs. These findings demonstrate that it is possible to control the concentration and spatial distribution of deep level defects in ZnO NRs by varying the stirring durations of the precursor solutions.

  3. Construction, study and mathematical modelling of the electrical behavior of CZTiS photovoltaic material as function of time and synthesis temperature

    Science.gov (United States)

    Patarroyo, M.; Pérez, H.; Gómez, J.; Vera, E.

    2017-12-01

    This work reports the obtaining, study and mathematical modeling of a photovoltaic material type CZTiS (Cu2ZnTiS4), in function of two thermodynamic variables such as temperature and hydrothermal synthesis time. The obtention the materials had to be validated through the implementation of characterization techniques such as X-Ray Diffraction (XRD) and solid state Impedance Spectroscopy (IS). The results of the characterization, allowed to confirm in all cases the obtention of the materials, with a crystalline structure concordant with a tetragonal geometry space group of I-42m, a preferential crystalline orientation in the plane (1 1 2), with crystal sizes in the nanometric order (5-6nm). The electrical characterization, showed a semiconductor behavior of the solids concordant with values of conductivity that can be modeled by the analysis of variance and verified through the Kramers-kronig transform. The information obtained confirms that the temperature variable is the most strong influence in the electrical behavior of the CZTiS material, which is in agreement with similar works evaluated with alternative techniques [1].

  4. The influence of calcination temperatures on the acid-based properties and catalytic activity for the 1,3-butadiene synthesis from ethanol/acetaldehyde mixture

    Science.gov (United States)

    Gao, Meixiang; Jiang, Haoxi; Zhang, Minhua

    2018-05-01

    The influences of the calcination temperature on the catalysts' acid-based properties and catalytic activity for the 1,3-butadiene synthesis from ethanol are investigated. The results show that the 2 wt% ZrO2/Nano-SiO2 calcined at 773 K shows the best performance with the selectivity of 93.18% and conversion of 58.52% when reacted at 593 K, a WHSV of 1.8 h-1 and 3.5:1 volume ratio ethanol-to-acetaldehyde in an atmospheric fixed-bed reactor. Prepared catalysts were characterized by N2 adsorption-desorption, XRD, temperature-programmed desorption of NH3 and CO2, FTIR spectroscopy of adsorbed pyridine and CO2. Based on the relationship between the catalyst activity and its properties, the fact can be presumed that the formation and strength of Zrsbnd Osbnd Si bond determines the acid-based properties of the catalyst. In addition, moderate-intensity weak acid-basic sites are more suitable for ethanol conversion to BD with the amount of acid and basic sites as close as possible.

  5. Template Free Synthesis of Hollow Ball-Like Nano-Fe2O3 and Its Application to the Detection of Dimethyl Methylphosphonate at Room Temperature

    Directory of Open Access Journals (Sweden)

    Guang Li

    2012-04-01

    Full Text Available This paper is focused on the template-free synthesis of nanosized ferric oxide (nano-Fe2O3 and its application in quartz crystal microbalance (QCM resonators to detect dimethyl methylphosphonate (DMMP, a simulant of Sarin. The X-ray diffraction (XRD patterns confirm that the synthesized samples are made of Fe2O3 and the scanning electron microscopy (SEM pictures show that the samples have ball-like shapes. The DMMP sensors with a sensing film of hollow ball-like and solid ball-like Fe2O3 are fabricated and their sensing characteristics are compared. The sensitivity of the hollow ball-like Fe2O3 sensor is more than 500% higher than the one of the solid ball-like Fe2O3 sensor. The hollow ball-like nano-Fe2O3 can be synthesized by a novel low temperature hydrothermal method. The sensors with the hollow ball-like Fe2O3 film perform well in a range of 1 to 6 ppm, with a sensitivity of 29 Hz/ppm at room temperature, while the appropriate recoverability and selectivity are maintained. In addition, the performance of different thicknesses of the sensing film of the hollow ball-like nano-Fe2O3 is investigated and the optimized relative film thickness of the hollow ball-like nano-Fe2O3 is found to be 20 μg/mm2.

  6. Synthesis of Metal-Oxide/Carbon-Fiber Heterostructures and Their Properties for Organic Dye Removal and High-Temperature CO2 Adsorption

    Science.gov (United States)

    Shao, Liangzhi; Nie, Shibin; Shao, Xiankun; Zhang, LinLin; Li, Benxia

    2018-03-01

    One-dimensional metal-oxide/carbon-fiber (MO/CF) heterostructures were prepared by a facile two-step method using the natural cotton as a carbon source the low-cost commercial metal salts as precursors. The metal oxide nanostructures were first grown on the cotton fibers by a solution chemical deposition, and the metal-oxide/cotton heterostructures were then calcined and carbonized in nitrogen atmosphere. Three typical MO/CF heterostructures of TiO2/CF, ZnO/CF, and Fe2O3/CF were prepared and characterized. The loading amount of the metal oxide nanostructures on carbon fibers can be tuned by controlling the concentration of metal salt in the chemical deposition process. Finally, the performance of the as-obtained MO/CF heterostructures for organic dye removal from water was tested by the photocatalytic degradation under a simulated sunlight, and their properties of high-temperature CO2 adsorption were predicted by the temperature programmed desorption. The present study would provide a desirable strategy for the synthesis of MO/CF heterostructures for various applications.

  7. Saccharide-derived microporous spherical biochar prepared from hydrothermal carbonization and different pyrolysis temperatures: synthesis, characterization, and application in water treatment.

    Science.gov (United States)

    Tran, Hai Nguyen; Lee, Chung-Kung; Nguyen, Tien Vinh; Chao, Huan-Ping

    2017-08-24

    Three saccharides (glucose, sucrose, and xylose) were used as pure precursors for synthesizing spherical biochars (GB, SB, and XB), respectively. The two-stage synthesis process comprised: (1) the hydrothermal carbonization of saccharides to produce spherical hydrochar' and (2) pyrolysis of the hydrochar at different temperatures from 300°C to 1200°C. The results demonstrated that the pyrolysis temperatures insignificantly affected the spherical morphology and surface chemistry of biochar. The biochar' isoelectric point ranged from 2.64 to 3.90 (abundant oxygen-containing functionalities). The Brunauer-Emmett-Teller (BET)-specific surface areas (S BET ) and total pore volumes (V total ) of biochar increased with the increasing pyrolysis temperatures. The highest S BET and V total were obtained at a pyrolysis temperature of 900°C for GB (775 m 2 /g and 0.392 cm 3 /g), 500°C for SB (410 m 2 /g and 0.212 cm 3 /g), and 600°C for XB (426 m 2 /g and 0.225 cm 3 /g), respectively. The spherical biochar was a microporous material with approximately 71-98% micropore volume. X-ray diffraction results indicated that the biochar' structure was predominantly amorphous. The spherical biochar possessed the graphite structure when the pyrolysis temperature was higher than 600°C. The adsorption capacity of GB depended strongly on the pyrolysis temperature. The maximum Langmuir adsorption capacities ([Formula: see text]) of 900GB exhibited the following selective order: phenol (2.332 mmol/g) > Pb 2+ (1.052 mmol/g) > Cu 2+ (0.825 mmol/g) > methylene green 5 (0.426 mmol/g) > acid red 1 (0.076 mmol/g). This study provides a simple method to prepare spherical biochar - a new and potential adsorbent for adsorbing heavy metals and aromatic contaminants.

  8. Synthesis and characterization of nano crystalline BaFe12O19 powders by low temperature combustion

    International Nuclear Information System (INIS)

    Huang Jianguo; Zhuang Hanrui; Li Wenlan

    2003-01-01

    Nano crystalline BaFe 12 O 19 powders have been prepared at a relatively low calcination temperature by a gel combustion technique using citric acid as a fuel/reductant and nitrates as oxidants. The effects of processing parameters, such as Ba/Fe ratio, citric acid/nitrates ratio, reaction temperature on the powder characteristics and magnetic properties of the resultant barium ferrites were investigated. By controlling the molar ratio of citric acid to metal nitrates, nano crystalline BaFe 12 O 19 powders with different particle sizes have been obtained. Phase attributes, microstructures and magnetic properties of the powders were characterized using X-ray diffraction analysis, X-ray line-broadening technique, Fourier transform infrared spectroscopy measurements, transmission electron microscopy and vibrating sample magnetometer. The maximum saturation magnetization value and intrinsic coercivity value for the obtained barium hexaferrites are 59.36 emu/g and 5540 Oe

  9. Low-temperature synthesis and photoluminescence properties of oriented ZnAl2O4 nanowire arrays

    Science.gov (United States)

    Han, Dongqiang

    2017-11-01

    Using zinc nitrate and anodic aluminum oxide membrane as starting materials, oriented nanowire arrays of the spinel ZnAl2O4 have been successfully fabricated at a relative low temperature of 350 °C by the proposed simple and facile ;MID; method, which exploits the membrane as a reactive template. The elaborative investigations by X-ray diffraction, scanning electron microscopy and transmission electron microscopy demonstrate that the sample not only crystalizes well but also exhibits continuous nanowire morphology with a high-aspect-ratio. A discussion of the possible mechanism based on the Kirkendall effect for the formation of the oriented ZnAl2O4 nanowire arrays is also given. Photoluminescence measurement of the oriented ZnAl2O4 nanowire arrays presents a strong green emission centered at about 500 nm at room temperature. Such supported ZnAl2O4 nanowire arrays may have advantages in different applications.

  10. Unveiling the uncatalyzed reaction of alkynes with 1,2-dipoles for the room temperature synthesis of cyclobutenes.

    Science.gov (United States)

    Alcaide, Benito; Almendros, Pedro; Fernández, Israel; Lázaro-Milla, Carlos

    2015-02-25

    2-(Pyridinium-1-yl)-1,1-bis(triflyl)ethanides have been used as 1,2-dipole precursors in a metal-free direct [2+2] cycloaddition reaction of alkynes. Starting from stable zwitterionic pyridinium salts, the electron deficient olefin 1,1-bis(trifluoromethylsulfonyl)ethene is generated in situ and immediately reacted at room temperature with an alkyne to afford substituted cyclobutenes. Remarkably, this mild and facile uncatalyzed protocol requires neither irradiation nor heating.

  11. Alloy synthesis using the mach stem region in an axial symmetric implosive shock: Understanding the pressure strain-temperature contributions

    Energy Technology Data Exchange (ETDEWEB)

    Staudhammer, Karl P.

    2004-01-01

    The Mach stem region in an axial symmetric shock implosion has generally been avoided in the dynamic consolidation of powders for a number of reasons. The prime reason being that the convergence of the shock waves in the cylindrical axis produce enormous pressures and concomitant temperatures that have melted tungsten. This shock wave convergence consequently results in a discontinuity in the hydro-code calculations. Dynamic deformation experiments on gold plated 304L stainless steel powders were undertaken. These experiments utilized pressures of 0.08 to 1.0 Mbar and contained a symmetric radial melt region along the central axis of the sample holder. To understand the role of deformation in a porous material, the pressure, and temperature as well as the deformation heat and associated defects must be accounted for. When the added heat of consolidation deformation exceeds the melt temperature of the 304 powders, a melt zone results that can consume large regions of the compact while still under the high-pressure pulse. As the shock wave traverses the sample and is removed in a momentum trap, its pressure/temperature are quenched. It is within this region that very high diffusion/alloying occurs and has been observed in the gold plated powders. Anomalous increases of gold diffusion into 304 stainless steel have been observed via optical microscopy, scanning electron microscopy and EDAX measurements. Values exceeding 1200 m/sec have been measured and correlated to the powder sizes, size distribution and packing density, concomitant with sample container strains ranging from 2.0% to 26%.

  12. Continuous Solvothermal Synthesis and Surface Treatment for Improved and Scalable Processing of Ultra High Temperature Ceramic (UHTC) Nanopowders

    Science.gov (United States)

    2017-06-13

    The pressure-temperature relationship of Benzene in the high pressure reactor ... .. ...... ... 17 FTIR of commercial ZrB2 nanopowders and results...ZrCLJCCl,JNa. The identity of sharp absorbance at 1720 and 690 after heating the product to 1000 and 1500 °C is not clear...reacted first; BN7 = 1:2; BN8 = 1:2 with cat. ........................................................... 49 Figure 35. FTIR of polymer pyrolyzed in Ar

  13. Low temperature synthesis of ZnS and CdZnS shells on CdSe quantum dots

    Science.gov (United States)

    Zhu, Huiguang; Prakash, Arjun; Benoit, Denise N.; Jones, Christopher J.; Colvin, Vicki L.

    2010-06-01

    Methods for synthesizing quantum dots generally rely on very high temperatures to both nucleate and grow core and core-shell semiconductor nanocrystals. In this work, we generate highly monodisperse ZnS and CdZnS shells on CdSe semiconductor nanocrystals at temperatures as low as 65 °C by enhancing the precursor solubility. Relatively small amounts of trioctylphosphine and trioctylphosphine oxide have marked effects on the solubility of the metal salts used to form shells; their inclusion in the precursor solutions, which use thiourea as a sulfur source, can lead to homogeneous and fully dissolved solutions. Upon addition to suspensions of quantum dot cores, these precursors deposit as uniform shells; the lowest temperature for shell growth (65 °C) yields the thinnest shells (d forms thicker shells (d ~ 1-2 nm). The growth of the shell structures, average particle size, size distribution, and shape were examined using optical spectroscopy, transmission electron microscopy, x-ray diffraction, and transmittance small angle x-ray scattering. The photoluminescence quantum yield (QY) of the as-prepared CdSe/ZnS quantum dots ranged from 26% to 46% as compared to 10% for the CdSe cores. This method was further generalized to CdZnS shells by mixing cadmium and zinc acetate precursors. The CdSe/CdZnS nanocrystals have a thicker shell and higher QY (40% versus 36%) as compared to the CdSe/ZnS prepared under similar conditions. These low temperature methods for shell growth are readily amenable to scale-up and can provide a route for economical and less energy intensive production of quantum dots.

  14. Synthesis, FTIR, 13C-NMR and Temperature-Dependent 1H‑NMR Characteristics of Bis-naphthalimide Derivatives

    Directory of Open Access Journals (Sweden)

    Waldemar Grzesiak

    2012-10-01

    Full Text Available Chemotherapy is still the most important method of cancer treatment. To make this method more effective and safe, new drugs to destroy cancer cells are needed. Some bis-naphthalimide derivatives show potential anticancer activity via an intercalation mechanism. A higher degree of DNA intercalation corresponds to better therapeutic effects. The degree of intercalation of naphthalimides depends on their structure, molecular dynamics and intermolecular interactions with DNA. In order to apply any active substance as a drug, its molecular dynamics as well as possible interactions with target molecules have to be examined in exhaustive details. This paper describes a practical preparation of some novel bis-naphthalimide derivatives with different functional groups and their FTIR and 1H- and 13C-NMR spectral characteristics. To determine the molecular dynamics of the obtained compounds the temperature, their 1H-NMR spectra were measured. It has been clearly proven in this paper that the unusual temperature-dependent 1H-NMR behavior of the aromatic protons of phthalimide derivatives, previously described in the literature as “hypersensitivity” and explained by n-π interactions and molecular motions of aromatic amide rings, is a result of temperature driven changes of the geometry of carbonyl groups.

  15. Experimental Studies on the Synthesis and Performance of Boron-containing High Temperature Resistant Resin Modified by Hydroxylated Tung Oil

    Science.gov (United States)

    Zhang, J. X.; Y Ren, Z.; Zheng, G.; Wang, H. F.; Jiang, L.; Fu, Y.; Yang, W. Q.; He, H. H.

    2017-12-01

    In this work, hydroxylated tung oil (HTO) modified high temperature resistant resin containing boron and benzoxazine was synthesized. HTO and ethylenediamine was used to toughen the boron phenolic resin with specific reaction. The structure of product was studied by Fourier-transform infrared spectroscopy(FTIR), and the heat resistance was tested by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis(TGA). The results indicated that the conjugated triene structure of HTO was involved in the crosslinking of the heating curing progress, and in addition, the open-loop polymerization reaction of benzoxazine resin during heating can effectively reduce the curing temperature of the resin and reduce the release of small molecule volatiles, which is advantageous to follow-up processing. DSC data showed that the initial decomposition temperature of the resin is 350-400 °C, the carbon residue rate under 800 °C was 65%. It indicated that the resin has better heat resistance than normal boron phenolic resin. The resin can be used as an excellent ablative material and anti-friction material and has a huge application market in many fields.

  16. Low-Temperature Synthesis and Gas Sensitivity of Perovskite-Type LaCoO3 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Lorenzo Gildo Ortiz

    2014-01-01

    Full Text Available LaCoO3 nanoparticles with perovskite-type structure were prepared by a microwave-assisted colloidal method. Lanthanum nitrate, cobalt nitrate, and ethylenediamine were used as precursors and ethyl alcohol as solvent. The thermal decomposition of the precursors leads to the formation of LaCoO3 from a temperature of 500°C. The structural, morphological, and compositional properties of LaCoO3 nanoparticles were studied in this work by X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and atomic force microscopy (AFM. Pellets were manufactured in order to test the gas sensing properties of LaCoO3 powders in carbon monoxide (CO and propane (C3H8 atmospheres. Agglomerates of nanoparticles with high connectivity, forming a porous structure, were observed from SEM and TEM analysis. LaCoO3 pellets presented a high sensitivity in both CO and C3H8 at different concentrations and operating temperatures. As was expected, sensitivity increased with the gas concentration and operation temperature increase.

  17. Room temperature synthesis and photocatalytic property of AgO/Ag2Mo2O7 heterojunction nanowires

    International Nuclear Information System (INIS)

    Hashim, Muhammad; Hu, Chenguo; Wang, Xue; Wan, Buyong; Xu, Jing

    2012-01-01

    Graphical abstract: The AgO nanoparticles are attached on the surface of the Ag 2 Mo 2 O 7 nanowires to form a heterojunction structure. The AgO nanoparticles start embedding into the nanowires with increasing reaction temperature or time. Highlights: ► AgO/Ag 2 Mo 2 O 7 heterojunction NWs were synthesized at room temperature for the first time. ► AgO particles embed into the Ag 2 Mo 2 O 7 NWs with increase in reaction time and temperature. ► The heterojunction NWs display much better photocatalytic activity than the none-heterojunction NWs. ► The catalytic mechanism was proposed. -- Abstract: AgO/Ag 2 Mo 2 O 7 heterojunction nanowires were synthesized at temperatures of 25 °C, 50 °C, 80 °C, and 110 °C, under magnetic stirring in solution reaction. The catalytic activity of AgO/Ag 2 Mo 2 O 7 nanowires was evaluated by the degradation of Rhodmine B dye under the irradiation of the simulated sunlight. The synthesized samples were characterized by X-ray diffractometer, energy dispersive spectrometry, X-ray photoelectron spectrometer, scanning electron microscopy, and transmission electron microscopy. The results show that the AgO nanoparticles are attached on the surface of the Ag 2 Mo 2 O 7 nanowires to form a heterojunction structure. The length of the nanowires is up to 10 μm and the size of the AgO nanoparticles is 10–20 nm. The length of nanowires increases with increasing reaction time and temperature while the AgO particles are gradually embedded into the nanowires. The photocatalytic activity is greatly improved for the AgO/Ag 2 Mo 2 O 7 heterojunction nanowires compared with that of the pure Ag 2 Mo 2 O 7 nanowires, indicating a remarkable role of AgO particles on the Ag 2 Mo 2 O 7 nanowires in the photodegradation.

  18. Low temperature in situ synthesis and the formation mechanism of various carbon-encapsulated nanocrystals by the electrophilic oxidation of metallocene complexes

    Science.gov (United States)

    Liu, Boyang; Fan, Chunhua; Chen, Jianwei; Wang, Junhua; Lu, Zepeng; Ren, Jiayuan; Yu, Shuaiqin; Dong, Lihua; Li, Wenge

    2016-02-01

    The core-shell nanostructures have the advantages of combining distinctive properties of varied materials and improved properties over their single-component counterparts. Synthesis approaches for this class of nanostructures have been intensively explored, generally involving multiple steps. Here, a general and convenient strategy is developed for one-step in situ synthesis of various carbon-encapsulated nanocrystals with a core-shell structure via a solid-state reaction of metallocene complexes with (NH4)2S2O8 in an autoclave at 200 °C. A variety of near-spherical and equiaxed nanocrystals with a small median size ranging from 6.5 to 50.6 nm are prepared as inner cores, including Fe7S8, Ni3S4 and NiS, CoS, TiO2, TiO2 and S8, ZrO2, (NH4)3V(SO4)3 and VO2, Fe7S8 and Fe3O4, MoS2 and MoO2. The worm-like carbon shell provides exclusive room for hundreds of nanocrystals separated from each other, preventing nanocrystal aggregation. The synergistic effect of ammonium and a strong oxidizing anion on the electrophilic oxidation of metallocene complexes containing a metal-ligand π bond contributes to the carbon formation at low temperature. It is considered that the cyclopentadienyl ligand in a metallocene complex will decompose into highly reactive straight chain olefinic pieces and the metal-olefin π interaction enables an ordered self-assembly of olefinic pieces on nanocrystals to partially form graphitizable carbon and a core-shell structure. The high capacity, good cycling behavior and rate capability of Fe7S8@C and Ni3S4 and NiS@C electrodes are attributed to the good protection and electrical conductivity of the carbon shell.

  19. Low temperature in situ synthesis and the formation mechanism of various carbon-encapsulated nanocrystals by the electrophilic oxidation of metallocene complexes

    International Nuclear Information System (INIS)

    Liu, Boyang; Fan, Chunhua; Chen, Jianwei; Wang, Junhua; Lu, Zepeng; Ren, Jiayuan; Yu, Shuaiqin; Dong, Lihua; Li, Wenge

    2016-01-01

    The core–shell nanostructures have the advantages of combining distinctive properties of varied materials and improved properties over their single-component counterparts. Synthesis approaches for this class of nanostructures have been intensively explored, generally involving multiple steps. Here, a general and convenient strategy is developed for one-step in situ synthesis of various carbon-encapsulated nanocrystals with a core–shell structure via a solid-state reaction of metallocene complexes with (NH 4 ) 2 S 2 O 8 in an autoclave at 200 °C. A variety of near-spherical and equiaxed nanocrystals with a small median size ranging from 6.5 to 50.6 nm are prepared as inner cores, including Fe 7 S 8 , Ni 3 S 4 and NiS, CoS, TiO 2 , TiO 2 and S 8 , ZrO 2 , (NH 4 ) 3 V(SO 4 ) 3 and VO 2 , Fe 7 S 8 and Fe 3 O 4 , MoS 2 and MoO 2 . The worm-like carbon shell provides exclusive room for hundreds of nanocrystals separated from each other, preventing nanocrystal aggregation. The synergistic effect of ammonium and a strong oxidizing anion on the electrophilic oxidation of metallocene complexes containing a metal–ligand π bond contributes to the carbon formation at low temperature. It is considered that the cyclopentadienyl ligand in a metallocene complex will decompose into highly reactive straight chain olefinic pieces and the metal–olefin π interaction enables an ordered self-assembly of olefinic pieces on nanocrystals to partially form graphitizable carbon and a core–shell structure. The high capacity, good cycling behavior and rate capability of Fe 7 S 8 @C and Ni 3 S 4 and NiS@C electrodes are attributed to the good protection and electrical conductivity of the carbon shell. (paper)

  20. The High-Temperature Synthesis of the Nanoscaled White-Light Phosphors Applied in the White-Light LEDs

    Directory of Open Access Journals (Sweden)

    Hao-Ying Lu

    2015-01-01

    Full Text Available The white-light phosphors consisting of Dy3+ doped YPO4 and Dy3+ doped YP1-XVXO4 were prepared by the chemical coprecipitation method. After the 1200°C thermal treatment in the air atmosphere, the white-light phosphors with particle sizes around 90 nm can be obtained. In order to reduce the average particle size of phosphors, the alkaline washing method was applied to the original synthesis process, which reduces the particle sizes to 65 nm. From the PLE spectra, four absorption peaks locating at 325, 352, 366, and 390 nm can be observed in the YPO4-based phosphors. These peaks appear due to the following electron transitions: 6H15/2→4K15/2, 6H15/2→4M15/2+6P7/2, 6H15/2→4I11/2, and 6H15/2→4M19/2. Besides, the emission peaks of wavelengths 484 nm and 576 nm can be observed in the PL spectra. In order to obtain the white-light phosphors, the vanadium ions were applied to substitute the phosphorus ions to compose the YP1-XVXO4 phosphors. From the PL spectra, the strongest PL intensity can be obtained with 30% vanadium ions. As the concentration of vanadium ions increases to 40%, the phosphors with the CIE coordinates locating at the white-light area can be obtained.

  1. Synthesis and room-temperature ferromagnetism of CeO2 nanocrystals with nonmagnetic Ca2+ doping.

    Science.gov (United States)

    Chen, Xiaobo; Li, Guangshe; Su, Yiguo; Qiu, Xiaoqing; Li, Liping; Zou, Zhigang

    2009-03-18

    This work initiates an investigation on the creation of room-temperature ferromagnetism in diamagnetic solid via a nonmagnetic doping. CeO(2) is taken as a prototype compound. A series of Ce(1-x)Ca(x)O(2-delta) solid solutions with x = 0-0.25 were prepared by a solution combustion method using L-glutamic acid as the fuel. Sample characterization indicates that all as-prepared samples crystallized in a pure face-centered cubic fluorite structure with crystallite sizes smaller than 10 nm. On increasing the dopant content, the crystallite size decreased from about 8 to 4 nm, while the lattice parameter increased systematically. At room temperature, all samples are ferromagnetic admixed with an apparent diamagnetic component, as composed to a mixture of paramagnetic and antiferromagnetic behaviors or the absence of the ferromagnetism reported in the literature (Bouaine et al 2007 J. Phys. Chem. C 111 2924-8; Ney et al 2008 Phys. Rev. Lett. 100 157201) for magnetically doped semiconductors such as Sn(1-x)Co(x)O(2) and Zn(1-x)Co(x)O. The coercivity and saturation magnetization for x = 0 are 110 Oe and 2.01 x 10(-4) emu g(-1), respectively, which slightly increased to 148 Oe and 2.26 x 10(-4) emu g(-1) on increasing the dopant content to x = 0.10. Upon annealing the as-prepared samples at 800 degrees C for 2 h, these magnetic parameters were weakened. This observation was interpreted in terms of the mixed valence state of Ce(3+)/Ce(4+) and the doping effects. Finally, the nature of the room-temperature ferromagnetism is discussed by taking into account the oxygen vacancies and defects at the surface/interfaces that act as the electron and hole traps.

  2. Shape- and size-controlled synthesis of nanometre ZnO from a simple solution route at room temperature

    International Nuclear Information System (INIS)

    Cao, H L; Qian, X F; Gong, Q; Du, W M; Ma, X D; Zhu, Z K

    2006-01-01

    Single crystalline ZnO nanorods with a diameter of about 5 nm were synthesized without the presence of any surfactants in ethanol solvent at room temperature. Nanodots and nanorods with different size and shape could be observed by TEM via simply altering NaOH concentration and reaction time. The polar ZnO nanorod growth mechanism was discussed by the 'Ostwald ripening' mechanism. Optical absorption and photoluminescence properties of ZnO nanorods have been characterized. The UV absorption spectrum revealed a clear blue-shift with a single absorption peak centred at 350 nm

  3. High temperature low vacuum synthesis of a freestanding three-dimensional graphene nano-ribbon foam electrode

    OpenAIRE

    Brownson, Dale A.C.; Figueiredo-Filho, Luiz C.S.; Riehl, Bill L.; Riehl, Bonnie D.; Gomez-Mingot, Maria; Iniesta, Jesus; Fatibello-Filho, Orlando; Banks, Craig E.

    2016-01-01

    The fabrication of a freestanding three-dimensional (3D) graphene nano-ribbon open cell foam electrode is reported based upon a facile high temperature (1700 °C) low vacuum (50 Torr) process. The graphene nano-ribbon (GNR) foam comprises on average 4 graphene layers and has an O/C ratio of 0.14; a quasi-graphene structure. This unique material is demonstrated to be electrochemically useful, with the electrochemical properties and resultant electroanalytical performance of the novel freestandi...

  4. Synthesis of Ionic Liquid Based Electrolytes, Assembly of Li-ion Batteries, and Measurements of Performance at High Temperature.

    Science.gov (United States)

    Lin, Xinrong; Chapman Varela, Jennifer; Grinstaff, Mark W

    2016-12-20

    The chemical instability of the traditional electrolyte remains a safety issue in widely used energy storage devices such as Li-ion batteries. Li-ion batteries for use in devices operating at elevated temperatures require thermally stable and non-flammable electrolytes. Ionic liquids (ILs), which are non-flammable, non-volatile, thermally stable molten salts, are an ideal replacement for flammable and low boiling point organic solvent electrolytes currently used today. We herein describe the procedures to: 1) synthesize mono- and di-phosphonium ionic liquids paired with chloride or bis(trifluoromethane)sulfonimide (TFSI) anions; 2) measure the thermal properties and stability of these ionic liquids by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA); 3) measure the electrochemical properties of the ionic liquids by cyclic voltammetry (CV); 4) prepare electrolytes containing lithium bis(trifluoromethane)sulfonamide; 5) measure the conductivity of the electrolytes as a function of temperature; 6) assemble a coin cell battery with two of the electrolytes along with a Li metal anode and LiCoO2 cathode; and 7) evaluate battery performance at 100 °C. We additionally describe the challenges in execution as well as the insights gained from performing these experiments.

  5. Size-Controlled Synthesis of Colloidal Gold Nanoparticles at Room Temperature Under the Influence of Glow Discharge

    Directory of Open Access Journals (Sweden)

    Liang Xi

    2009-01-01

    Full Text Available Abstract Highly dispersed colloidal gold (Au nanoparticles were synthesized at room temperature using glow discharge plasma within only 5 min. The prepared Au colloids were characterized with UV–visible absorption spectra (UV–vis, X-ray photoelectron spectroscopy (XPS, and transmission electron microscopy (TEM equipped with an energy dispersion X-ray spectrometer (EDX. UV–vis, XPS and EDX results confirmed that Au3+ ions in HAuCl4 solution could be effectively reduced into the metallic state at room temperature with the glow discharge plasma. TEM images showed that Au nanoparticles were highly dispersed. The size of colloidal Au nanoparticles could be easily tuned in the nanometer range by adjusting the initial concentration of HAuCl4 solution. Moreover, the as-synthesized Au colloids (d av = 3.64 nm exhibited good catalytic activity for glucose oxidation. The nucleation and growth of colloidal Au particles under the influence of the plasma was closely related with the high-energy electrons generated by glow discharge plasma.

  6. Single step synthesis of ZnS quantum dots and their microstructure characterization and electrical transport below room temperature

    Science.gov (United States)

    Mukherjee, P. S.; Patra, S.; Chakraborty, G.; Pradhan, S. K.; Meikap, A. K.

    2016-09-01

    Low dimensional cubic phase ZnS quantum dots (QDs) are formed by mechanical alloying the stoichiometric mixture of Zn and S powders at room temperature. During milling process the primary mixed phase ZnS is formed at about 3.5 h of milling and strain less single phase (cubic) ZnS QDs are formed with ∼4.5 nm in size after 20 h of milling. Detailed microstructure study has been done by both Rietveld analysis of x-ray diffraction pattern and high resolution transmission electron microscope images. Dc resistivity decreases with increasing temperature which can be explained by three-dimensional hopping conduction mechanisms. Observed negative magnetoconductivity has been analyzed by wave function shrinkage model. Alternating current conductivity can be described by the correlated barrier hopping conduction mechanism. Analysis of complex impedance indicates that the grain boundary resistance is found to be dominating over the grain resistance. Relaxation behavior has been explained by the analysis of the electric modulus.

  7. Facile synthesis of Mn-doped ZnS nanocrystals and determination of critical temperature for lattice diffusion process.

    Science.gov (United States)

    Shen, Rongan; Zeng, Ruosheng; Yin, Yuehong; Wan, Jie; Sun, Zhiguo; Zhao, Yunqiang; Zhao, Haixing

    2012-11-01

    High-quality Mn:ZnS doped nanocrystals (d-dots) with photoluminescence (PL) quantum yield (QY) of 50-70% have been synthesized based on nucleation-doping strategy by choosing 1-dodecanethiol (DDT) as the capping ligand. Controlling the growth of small-sized MnS core nanoclusters was successfully achieved by changing the injection temperature of sulfur precursor, the growth time of MnS nuclei, and the amount of DDT. Furthermore, MnS/ZnS core/shell d-dots with a diffusion layer at the interface between the MnS core and the ZnS shell were fabricated through an overcoating of the ZnS shell layer on the presynthesized MnS core nanoclusters. The resulting monodisperse d-dots exhibited spherical shape with a zinc-blende crystal structure. The critical temperature for lattice diffusion of Mn ions in the ZnS host lattice was determined to be about 260 degrees C by annealing the presynthesized and purified Mn:ZnS d-dots.

  8. Synthesis and characterization of flexible and high-temperature resistant polyimide aerogel with ultra-low dielectric constant

    Directory of Open Access Journals (Sweden)

    X. M. Zhang

    2016-10-01

    Full Text Available A polyimide (PI aerogel with excellent combined thermal and dielectric properties was successfully prepared by the polycondensation of 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA, 5-amino-2-(4-aminophenylbenzoxazole (APBO and octa(amino-phenylsilsesquioxane (OAPS crosslinker, followed by a supercritical carbon dioxide (scCO2 drying treatment. The developed PI aerogel exhibited an ultra-low dielectric constant (k of 1.15 at a frequency of 2.75 GHz, a volume resistivity of 5.45·1014 Ω·cm, and a dielectric strength of 132 kV/cm. The flexible PI aerogel exhibited an openpore microstructure consisting of three-dimensional network with tangled nanofibers morphology with a porosity of 85.6% (volume ratio, an average pore diameter of 19.2 nm, and a Brunauer-Emmet-Teller (BET surface area of 428.6 m2/g. In addition, the PI aerogel showed excellent thermal stability with a glass transition temperature (Tg of 358.3 °C, a 5% weight loss temperature over 500 °C, and a residual weight ratio of 66.7% at 750 °C in nitrogen.

  9. Green synthesis of ZnSe and core–shell ZnSe@ZnS nanocrystals (NCs) using a new, rapid and room temperature photochemical approach

    Energy Technology Data Exchange (ETDEWEB)

    Molaei, M., E-mail: m.molaei@vru.ac.ir; Bahador, A.R.; Karimipour, M.

    2015-10-15

    In this work, ZnSe and core–shell ZnSe@ZnS nanocrystals (NCs) were synthesized using a one-pot, rapid and room temperature photochemical method. UV illumination provided the required energy for the chemical reactions. Synthesized NCs were characterized using X-ray diffraction spectroscopy (XRD), transmission electron microscopy (TEM), UV–vis and photoluminescence (PL) spectroscopy. XRD pattern indicated cubic zinc blende structure for ZnSe NCs and the TEM image indicated round-shaped particles, most of which had a diameter of about 3 nm. Band gap of ZnSe NCs was obtained as about 3.6 eV, which was decreased by increasing the illumination time. Synthesized NCs indicated intensive and narrow emission in the UV-blue area (370 nm) related to the excitonic recombination and a broad band emission with a peak located at about 490 nm originated from the DAP (donor–acceptor pairs) recombination. ZnS shell was grown on ZnSe cores using a reaction based on the photo-sensitivity of Na{sub 2}S{sub 2}O{sub 3}. For ZnSe@ZnS core–shell NCs, XRD diffraction peaks shifted to higher angles. TEM image indicated a shell around cores and most of the ZnSe@ZnS NCs have a diameter of about 5 nm. After the ZnS growth, ZnSe excitonic emission shifted to the longer wavelength and PL intensity was increased considerably. PL QY was obtained about 11% and 17% for ZnSe and ZnSe@ZnS core–shell QDs respectively. - Highlights: • A green photochemical approach was reported for synthesis of ZnSe NCs. • ZnS shell was grown around ZnSe using a new method. • Synthesis method was rapid, simple and at room temperature. • ZnSe NCs indicated a narrow UV-blue and a broad DAP emissions. • PL intensity was increased considerably by ZnS shell growth.

  10. Synthesis, Characterization, and Variable-Temperature NMR Studies of Silver(I) Complexes for Selective Nitrene Transfer.

    Science.gov (United States)

    Huang, Minxue; Corbin, Joshua R; Dolan, Nicholas S; Fry, Charles G; Vinokur, Anastasiya I; Guzei, Ilia A; Schomaker, Jennifer M

    2017-06-05

    An array of silver complexes supported by nitrogen-donor ligands catalyze the transformation of C═C and C-H bonds to valuable C-N bonds via nitrene transfer. The ability to achieve high chemoselectivity and site selectivity in an amination event requires an understanding of both the solid- and solution-state behavior of these catalysts. X-ray structural characterizations were helpful in determining ligand features that promote the formation of monomeric versus dimeric complexes. Variable-temperature 1 H and DOSY NMR experiments were especially useful for understanding how the ligand identity influences the nuclearity, coordination number, and fluxional behavior of silver(I) complexes in solution. These insights are valuable for developing improved ligand designs.

  11. Self propagating high temperature synthesis (SHS) of the Fe(TiMo)C master alloy using ferroalloys

    International Nuclear Information System (INIS)

    Erauskin, J. I.; Sargyan, A.; Arana, J. L.

    2009-01-01

    Titanium monocarbide TiC is very hard, stable both at high and low temperatures and relatively easy to synthesize from its constituent elements by SHS. Nevertheless, it is difficult to use, as alloying element, in the reinforcement of steels manufactured by liquid metallurgy due to its low wettability by molten steel. To achieve this purpose and due to its better wettability, it is more appropriate to use a master alloy formed by the complex carbide (TiMo)C bonded in Fe. The simplest and most economic way to fabricate such a master alloy Fe(TiMo)C is, again, by SHS, with the added advantage that it can be manufactured using the commercial ferroalloys FeTi and FeMo instead of the individual elements Fe, Ti and Mo. In this work, we describe such a process as well as the characteristics of the master alloy obtained. (Author) 13 refs

  12. Room-temperature synthesis of TiO 2 nanospheres and their solar driven photoelectrochemical hydrogen production

    KAUST Repository

    Avasare, Vidya

    2015-08-13

    Highly monodisperse and crystalline anatase phase TiO2 nanospheres have been synthesized at room temperature from organometallic precursor, titanocene dichloride and sodium azide. The photoelectrochemical (PEC) water splitting performance on the TiO2 nanospheres was studied under illumination of AM 1.5G. The optimized photocurrent density and photoconversion efficiency of TiO2 NSPs were observed ~0.95mAcm-2 at 1.23V and 0.69%, respectively. The transient photocurrent response measurements on the TiO2 NSPs during repeated ON/OFF visible light illumination cycles at 1.23V vs RHE show that both samples exhibited fast and reproducible photocurrent responses. The TiO2 NSPs show excellent catalytic stability, and significant dark current was not observed even at high potentials (2.0V vs RHE). © 2015 John Wiley & Sons, Ltd.

  13. Low-temperature solvothermal approach to the synthesis of La4Ni3O8 by topotactic oxygen deintercalation.

    Science.gov (United States)

    Blakely, Colin K; Bruno, Shaun R; Poltavets, Viktor V

    2011-07-18

    A chimie douce solvothermal reduction method is proposed for topotactic oxygen deintercalation of complex metal oxides. Four different reduction techniques were employed to qualitatively identify the relative reduction activity of each including reduction with H(2) and NaH, solution-based reduction using metal hydrides at ambient pressure, and reduction under solvothermal conditions. The reduction of the Ruddlesden-Popper nickelate La(4)Ni(3)O(10) was used as a test case to prove the validity of the method. The completely reduced phase La(4)Ni(3)O(8) was produced via the solvothermal technique at 150 °C--a lower temperature than by other more conventional solid state oxygen deintercalation methods.

  14. Synthesis and properties of poly(aryl sulfone benzimidazole) and its copolymers for high temperature membrane electrolytes for fuel cells

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Li, Qingfeng; Cleemann, Lars Nilausen

    2012-01-01

    Poly(aryl sulfone benzimidazole) (SO2PBI) and its copolymers with poly[2,2′-p-(phenylene)-5,5′-bibenzimidazole] (pPBI), termed as Co-SO2PBI, were synthesized with varied feeding ratios of 4,4′-sulfonyldibenzoic acid (SDBA) to terephthalic acid (TPA). Incorporation of the stiff para......, the membrane swelling was reduced and the mechanical strength was improved, as compared with their meta structured analogues. At an acid doping level of 11 mol H3PO4 per average molar repeat unit, the Co-20%SO2PBI membrane exhibited a tensile strength of 16 MPa at room temperature and an H2-air fuel cell peak...

  15. An inexpensive and efficient method for the synthesis of BTO and STO at temperatures lower than 200 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Bacha, Elsy, E-mail: m.gooley@elsevier.com [Institut de Recherche en Electrotechnique et Electronique de Nantes Atlantique, E.A. 1770, Universite de Nantes, 2 rue de la Houssiniere, 44322, Nantes (France); Deniard, Philippe; Richard-Plouet, Mireille; Brohan, Luc [Institut des Materiaux Jean Rouxel, Universite de Nantes, CNRS, UMR 6502, Universite de Nantes, 2 rue de la Houssiniere, 44322, Nantes (France); Gundel, Hartmut W. [Institut de Recherche en Electrotechnique et Electronique de Nantes Atlantique, E.A. 1770, Universite de Nantes, 2 rue de la Houssiniere, 44322, Nantes (France)

    2011-06-30

    During the past decade the reduction in size of functional architectures has been a dominating trend in many fields of science and technology. The search for electronic materials that can be cheaply solution-processed into nanopowders, while simultaneously providing quality device characteristics, represents a major challenge for material scientists. Solvothermal process is used in order to obtain fine nanoparticles of BaTiO{sub 3} and SrTiO{sub 3} at low temperatures by using an inorganic, ionic precursor. Rietveld refinement proves the presence of a mixture of 65% tetragonal and 35% cubic nanoparticles in the barium titanate powder with an average size of 73 nm and 67 nm, respectively. FTIR shows that an acid treatment allows the elimination of carbonate impurities.

  16. Effect of precursor solutions stirring on deep level defects concentration and spatial distribution in low temperature aqueous chemical synthesis of zinc oxide nanorods

    Directory of Open Access Journals (Sweden)

    Hatim Alnoor

    2015-08-01

    Full Text Available Hexagonal c-axis oriented zinc oxide (ZnO nanorods (NRs with 120-300 nm diameters are synthesized via the low temperature aqueous chemical route at 80 °C on silver-coated glass substrates. The influence of varying the precursor solutions stirring durations on the concentration and spatial distributions of deep level defects in ZnO NRs is investigated. Room temperature micro-photoluminesnce (μ-PL spectra were collected for all samples. Cathodoluminescence (CL spectra of the as-synthesized NRs reveal a significant change in the intensity ratio of the near band edge emission (NBE to the deep-level emission (DLE peaks with increasing stirring durations. This is attributed to the variation in the concentration of the oxygen-deficiency with increasing stirring durations as suggested from the X-ray photoelectron spectroscopy analysis. Spatially resolved CL spectra taken along individual NRs revealed that stirring the precursor solutions for relatively short duration (1-3 h, which likely induced high super saturation under thermodynamic equilibrium during the synthesis process, is observed to favor the formation of point defects moving towards the tip of the NRs. In contrary, stirring for longer duration (5-15 h will induce low super saturation favoring the formation of point defects located at the bottom of the NRs. These findings demonstrate that it is possible to control the concentration and spatial distribution of deep level defects in ZnO NRs by varying the stirring durations of the precursor solutions.

  17. Ion-Exchange-Induced Selective Etching for the Synthesis of Amino-Functionalized Hollow Mesoporous Silica for Elevated-High-Temperature Fuel Cells.

    Science.gov (United States)

    Zhang, Jin; Liu, Jian; Lu, Shanfu; Zhu, Haijin; Aili, David; De Marco, Roland; Xiang, Yan; Forsyth, Maria; Li, Qingfeng; Jiang, San Ping

    2017-09-20

    As differentiated from conventional synthetic processes, amino-functionalized hollow mesoporous silica (NH 2 -HMS) has been synthesized using a new and facile strategy of ion-exchange-induced selective etching of amino-functionalized mesoporous silica (NH 2 -meso-silica) by an alkaline solution. Nuclear magnetic resonance (NMR) spectroscopy and in situ time-resolved small-angle X-ray scattering (SAXS) reveal that ion-exchange-induced selective etching arises from the gradient distribution of OH - in the NH 2 -meso-silica nanospheres. Moreover, the ion-exchange-induced selective etching mechanism is verified through a successful synthesis of hollow mesoporous silica. After infiltration with phosphotungstic acid (PWA), PWA-NH 2 -HMS nanoparticles are dispersed in the poly(ether sulfone)-polyvinylpyrrolidone (PES-PVP) matrix, forming a hybrid PWA-NH 2 -HMS/PES-PVP nanocomposite membrane. The resultant nanocomposite membrane with an optimum loading of 10 wt % of PWA-NH 2 -HMS showed an enhanced proton conductivity of 0.175 S cm -1 and peak power density of 420 mW cm -2 at 180 °C under anhydrous conditions. Excellent durability of the hybrid composite membrane fuel cell has been demonstrated at 200 °C. The results of this study demonstrated the potential of the facile synthetic strategy in the fabrication of NH 2 -HMS with controlled mesoporous structure for application in nanocomposite membranes as a technology platform for elevated-temperature proton exchange membrane fuel cells.

  18. Low temperature synthesis of {tau}-zirconium hydrogenophosphate [{tau}-Zr(HPO{sub 4}){sub 2}] and a new sodic form obtained by ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Valverde, Suilma M., E-mail: suilma.fernandez@inin.gob.mx [Depto. de Quimica, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Mexico D.F. C.P. 11801 (Mexico); Contreras-Ramirez, Aida [Depto. de Quimica, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Mexico D.F. C.P. 11801 (Mexico); Depto. de Tecnologia de Materiales, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Mexico D.F. C.P. 11801 (Mexico); Facultad de Ciencias, Universidad Autonoma del Estado de Mexico, Piedras Blancas El Cerrillo, Tlachaloya Estado de Mexico, CP.5000 (Mexico); Ordonez-Regil, Eduardo [Depto. de Quimica, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Mexico D.F. C.P. 11801 (Mexico); Fernandez-Garcia, M. Eufemia [Depto. de Tecnologia de Materiales, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Mexico D.F. C.P. 11801 (Mexico); Perez-Alvarez, Mario [Depto. de Ambientales, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Mexico D.F. C.P. 11801 (Mexico)

    2013-02-15

    A new method for the synthesis of 3-D {tau}-zirconium hydrogenophosphate (TZP) was developed using solid-state reactions at low temperature and atmospheric pressure in a nitrogen atmosphere in a two-hour reaction time. The characterization of the compound was performed using X-ray diffraction, infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, differential scanning calorimetric, thermochemical analysis and X-ray photoelectron spectroscopy. A sodic form of the compound obtained by the immersion of TZP in a sodium hydroxide solution was characterized using the same techniques along with neutron activation analysis. The XPS spectra confirm the binding energy value for sodium-oxygen, and the XRD diffraction reveals the formation of a new sodium compound. - Graphical abstract: DRX, XPS and MEB of {tau}-zirconium hydrogenophosphate and its sodic form on the surface of TZP. Highlights: Black-Right-Pointing-Pointer New method for the syntheses of 3-D {tau}-zirconium hydrogenophosphate (TZP). Black-Right-Pointing-Pointer A sodic form of the TZP was obtained by the immersion of TZP in a sodium hydroxide. Black-Right-Pointing-Pointer The sodium compound is only formed on the TZP surface.

  19. Synthesis of dual temperature - and pH-responsive yolk-shell nanoparticles by conventional etching and new deswelling approaches: DOX release behavior.

    Science.gov (United States)

    Nikravan, Goolia; Haddadi-Asl, Vahid; Salami-Kalajahi, Mehdi

    2018-05-01

    Dual stimuli-responsive yolk-shell nanoparticles with cross-linked poly(acrylic acid) (PAA) pH-responsive core and cross-linked poly(2-hydroxyethyl methacrylate) (PHEMA) temperature-responsive shell were synthesized via two different methods In the first method, silica encapsulated PAA (PAA@SiO 2 ) was used as seed in distillation precipitation polymerization (DPP) of HEMA to yield PAA@SiO 2 @PHEMA from which silica layer was etched by HF solution to produce yolk-shell PAA@air@PHEMA nanoparticles. In the second method, swollen PAA nanoparticles at pH = 10 were used as seeds in emulsion polymerization of HEMA to yield core-shell PAA@PHEMA nanoparticles. After dispersion of PAA@PHEMA nanoparticles in acidic medium at pH = 2, yolk-shell nanoparticles were formed through deswelling of pH-responsive cores due to protonation of carboxyl groups. Synthesized nanoparticles were characterized using FT-IR, FE-SEM and TEM methods to observe yolk-shell nanostructure for both synthesis routes. Stimuli-responsive behavior of the nanoparticles was investigated by UV-vis spectrometer where similar behaviors were obtained for template-assisted and template-free synthesized yolk-shell nanoparticles. Finally, both yolk-shell nanoparticles were examined as potential carriers for controlled release of doxorubicin hydrochloride (DOX) anti-cancer drug. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Waste-Glycerol-Directed Synthesis of Mesoporous Silica and Carbon with Superior Performance in Room-Temperature Hydrogen Production from Formic Acid

    Science.gov (United States)

    Lee, Dong-Wook; Jin, Min-Ho; Park, Ji Chan; Lee, Chun-Boo; Oh, Duckkyu; Lee, Sung-Wook; Park, Jin-Woo; Park, Jong-Soo

    2015-10-01

    The development of easier, cheaper, and more ecofriendly synthetic methods for mesoporous materials remains a challenging topic to commercialize them, and the transformation of waste glycerol, as a biodiesel byproduct, into something useful and salable is one of the pending issues to be resolved. Here we first report that mesoporous silica (KIE-6) and carbon (KIE-7) can be simultaneously synthesized by using cheap and ecofriendly crude-waste-glycerol of biodiesel with or without glycerol purification, and we demonstrated the excellent performance of the mesoporous material as a catalyst support for formic acid decomposition. As a result, Pd-MnOx catalysts supported on NH2-functionalized KIE-6 showed the highest catalytic activity (TOF: 540.6 h-1) ever reported for room-temperature formic acid decomposition without additives. Moreover, we conducted life-cycle assessment (LCA) from biomass cultivation through biodiesel production to KIE-6 and KIE-7 preparation, and it was confirmed that CO2 emission during synthesis of KIE-6 and KIE-7 could be reduced by 87.1% and 85.7%, respectively. We believe that our study suggested more ecofriendly and industry-friendly approaches for preparation of mesoporous materials, and utilization of waste glycerol.

  1. Sol–gel synthesis of highly TiO2 aerogel photocatalyst via high temperature supercritical drying

    Directory of Open Access Journals (Sweden)

    Rebah Moussaoui

    2017-09-01

    Full Text Available Nanocrystalline powders of TiO2 xerogel and aerogel were prepared by using acid-modified sol–gel approach. For TiO2 aerogel material (TA, the solvent was high temperature supercritically extracted at 300 °C and 100 bars. However, the TiO2 xerogel material (TX was dried at 200 °C and ambient pressure. The effects of the drying processes on the crystalline structure, phase transformation and grain growth were determined by Raman spectroscopy, SAED and X-ray diffraction (XRD analyses using Rietveld refinement method. The TiO2 aerogel was composed of anatase crystalline structure. The TiO2 xerogel material was composed of anatase, brookite and small amount of amorphous phase with anatase as dominant phase. The TX sample still contains a relatively high concentration of carbon than that of TA, indicating the amorphous character of TiO2 xerogel. These materials were applied as catalyst for the degradation of indigo carmine in aqueous medium. Photo-degradation ability of TA and TX was compared to the TiO2 commercial Degussa P25. The photo-catalytic results showed that the degradation efficiency was in the order TA > P25 > TX. The photo-degradation of indigo carmine followed pseudo first order reaction kinetics.

  2. A simple method for large scale synthesis of highly monodisperse gold nanoparticles at room temperature and their electron relaxation properties

    International Nuclear Information System (INIS)

    Polavarapu, Lakshminarayana; Xu Qinghua

    2009-01-01

    Here we demonstrate a simple method for large scale preparation of monodisperse gold nanoparticles by simple mixing of chloroauricacid (HAuCl 4 ) with oleylamine (OA) at room temperature. The as-prepared gold nanoparticles have high monodispersity with an average diameter of 13 nm and can self-organize into two-dimensional (2D) hexagonal close-packed arrays. The size of the gold nanoparticles can be experimentally controlled. The capping agent, oleylamine, can be easily replaced with other capping agents such as thiol groups for further functionalization. The electron relaxation dynamics of these gold nanoparticles in toluene was studied by femtosecond pump-probe measurements, in comparison with the citrate-stabilized gold nanoparticles in water. The phonon-phonon relaxation time of gold nanoparticles in toluene is slower than that of citrate-capped gold nanoparticles in water, due to the lower thermal conductivity of toluene than water. The electron-phonon relaxation of the gold nanoparticles in toluene was found to display weaker pump energy dependence, compared to that of citrate-capped gold nanoparticles in water. The different electron-phonon relaxation dynamics is ascribed to the extra vibrational states provided by gold- NH 2 , which serves as an extra nonradiative relaxation pathway for the e-ph relaxation in oleylamine-capped gold nanoparticles in toluene.

  3. Simple synthesis of porous melamine-formaldehyde resins by low temperature solvothermal method and its CO2 adsorption properties

    Directory of Open Access Journals (Sweden)

    F. Yin

    2017-11-01

    Full Text Available A simple and environmentally-friendly approach for the preparation of porous melamine-formaldehyde resins (PMFRs was developed by using low-boiling-point solvents, such as water, as pore-forming agent. With using dimethyl sulfoxide (DMSO and low-boiling solvents cosolvent method, PMFRs with a high specific surface area and well-defined pore structure can be synthesized at a low reaction temperature of 140 °C for a short reaction duration in 20 hours, which can replace the conventional methods that use dimethyl sulfoxide (DMSO as reaction medium and require 3 days at 170 °C to achieve similar surface area. When loaded with polyethylenimine (PEI, the PMFR-PEI-30% showed good CO2 adsorption performance with a capacity of up to 2.89 mmol/g at 30 °C. These results bring new perspectives for the development of lowcost and environmentally-friendly synthetic methods for porous materials, which can boost their widespread applications.

  4. Low-Temperature Synthesis of Anatase TiO2 Nanoparticles with Tunable Surface Charges for Enhancing Photocatalytic Activity

    Science.gov (United States)

    Li, Ye; Qin, Zhenping; Guo, Hongxia; Yang, Hanxiao; Zhang, Guojun; Ji, Shulan; Zeng, Tingying

    2014-01-01

    In this work, the positively or negatively charged anatase TiO2 nanoparticles were synthesized via a low temperature precipitation-peptization process (LTPPP) in the presence of poly(ethyleneimine) (PEI) and poly(sodium4- styrenesulfonate) (PSS). X-ray diffraction (XRD) pattern and high-resolution transmission electron microscope (HRTEM) confirmed the anatase crystalline phase. The charges of the prepared TiO2, PEI-TiO2 and PSS-TiO2 nanoparticles were investigated by zeta potentials. The results showed that the zeta potentials of PEI-TiO2 nanoparticles can be tuned from +39.47 mV to +95.46 mV, and that of PSS-TiO2 nanoparticles can be adjusted from −56.63 mV to −119.32 mV. In comparison with TiO2, PSS-TiO2 exhibited dramatic adsorption and degradation of dye molecules, while the PEI modified TiO2 nanoparticles showed lower photocatalytic activity. The photocatalytic performances of these charged nanoparticles were elucidated by the results of UV-vis diffuse reflectance spectra (DRS) and the photoluminescence (PL) spectra, which indicated that the PSS-TiO2 nanoparticles showed a lower recombination rate of electron-hole pairs than TiO2 and PEI-TiO2. PMID:25506839

  5. Temperature effects during Ostwald ripening on structural and bandgap properties of TiO2 nanoparticles prepared by sonochemical synthesis

    International Nuclear Information System (INIS)

    Gonzalez-Reyes, L.; Hernandez-Perez, I.; Diaz-Barriga Arceo, L.; Dorantes-Rosales, H.; Arce-Estrada, E.; Suarez-Parra, R.; Cruz-Rivera, J.J.

    2010-01-01

    Anatase TiO 2 nanocrystalline (6 nm) with BET specific surface area of 300 m 2 /g and direct bandgap of 3.31 eV were prepared sonochemically and then it was subjected to thermal treatment from 400 to 900 deg. C for 2 h, in order to produce variable anatase-rutile ratio. Three stages were considered in the samples thermally treated: (i) anatase grains coarsening as a result of heat treatment temperature increasing the structural homogeneity and crystallinity and both phenomena produce a reduction in the specific surface area, (ii) coexistence of two phases (anatase and rutile) separated by a transition region, called an interface, and (iii) process where the rutile grains evolve into a new equilibrium shape without the presence of anatase phase, minimizing the total surface and the grain boundary energies, by mass transport diffusion. In this last stage the rutile phase has the sole function of growth and densification. The structure evolution, morphology and microstructure characteristics were obtained by X-ray diffraction (XRD) and transmission electron microscopy (TEM). All the stages of phase transformation are subject to thermal effects that stem from the redistribution of energy in the system. The UV-vis absorption spectra show that direct and indirect transitions can take place in the same sample simultaneously. This is attributed to the combined effect of samples with variable anatase-rutile ratio and particle size effect.

  6. Low Temperature Synthesis of α-Fe2O3 Nano-rods Using Simple Chemical Route

    Directory of Open Access Journals (Sweden)

    M. Farahmandjou

    2014-10-01

    Full Text Available Iron oxide (Fe2O3 is widely used as a catalyst, pigment and gas sensitive material.  In this article, α-Fe2O3 nano-rods were first synthesized via a simple chemical method using iron(III nitrate 9- hydrate (Fe(NO33.9H2O as precursor. XRD pattern showed that the iron oxide nanoparticles exhibited alpha-Fe2O3 (hematite structure in nanocrystals. The single-phase α- Fe2O3 nano-rods were prepared when the samples calcined at 500 °C. The smallest particle size was found to be 18 nm in diameter. The SEM studies depicted rod-like shaped particles with formation of clusters by increasing annealing temperature. The sharp peaks in FTIR spectrum determined the purity of Fe2O3 nanoparticles and absorbance peak of UV-Vis spectrum showed the small bandgap energy of 2.77 ev. The VSM result showed a coercive field and saturation magnetism around 90 G and 9.95 emu/g, respectively.

  7. Room Temperature Synthesis and Antibacterial Activity of New Sulfonamides Containing N,N-Diethyl-Substituted Amido Moieties

    Directory of Open Access Journals (Sweden)

    Olayinka O. Ajani

    2012-01-01

    Full Text Available Sulfonamide drugs which have brought about an antibiotic revolution in medicine are associated with a wide range of biological activities. We have synthesized a series of α-tolylsulfonamide, 1–11 and their substituted N,N-diethyl-2-(phenylmethylsulfonamido alkanamide derivatives, 12–22 in improved and excellent yields in aqueous medium at room temperature through highly economical synthetic routes. The chemical structures of the synthesized compounds 1–22 were confirmed by analytical and spectral data such as IR, 1H- and 13C-NMR, and mass spectra. The in vitro antibacterial activity of these compounds along with standard clinical reference, streptomycin, was investigated on two key targeted organisms. It was observed that 1-(benzylsulfonylpyrrolidine-2-carboxylic acid, 2 emerged as the most active compound against Staphylococcus aureus at MIC value of 1.8 μg/mL while 4-(3-(diethylamino-3-oxo-2-(phenylmethylsulfonamido propylphenyl phenylmethanesulfonate, 22 was the most active sulfonamide scaffold on Escherichia coli at MIC value of 12.5 μg/mL.

  8. Low temperature synthesis of Zn{sub 2}GeO{sub 4} nanorods and their photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Meng-Yen [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu 300, Taiwan (China); Huang, Sheng-Hsin [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Perng, Tsong-Pyng, E-mail: tpperng@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli 320, Taiwan (China)

    2013-04-15

    Zn{sub 2}GeO{sub 4} nanorods were synthesized using a simple reflux method. The product with 0.05 M Zn{sub 2}GeO{sub 4} is an aggregation of short nanorods with the diameter ranging from 30 to 50 nm. If the Zn{sub 2}GeO{sub 4} molarity was increased, the nanorods became longer and aggregated as bundles. An intense white-bluish photoluminescence (PL) was observed from these nanorods, and the PL band can be dissolved into four Gaussian peaks that are associated with the native defects. Since the PL intensity of the nanorods is comparable to that of sintered particles, this reflux method provides a time- and energy-efficient route to prepare Zn{sub 2}GeO{sub 4} phosphor. -- Highlights: ► Zn{sub 2}GeO{sub 4} nanorods were prepared by a simple refluxing method at low temperature without any surfactants. ► The morphologies and crystal structures of Zn{sub 2}GeO{sub 4} growth were studied from beginning to the end (0 min to 3 h). ► The photoluminescence of Zn{sub 2}GeO{sub 4} synthesized by different methods was studied.

  9. Synthesis aspects, structural, spectroscopic, antimicrobial and room temperature ferromagnetism of zinc iodide complex with Schiff based ligand

    Science.gov (United States)

    Shakila, K.; Kalainathan, S.

    2015-01-01

    In this paper, we report the successful growth of complex compound of zinc iodide with thiocarbamide by slow evaporation method. The single crystal XRD study reveals that the crystal belongs to monoclinic system with centrosymmetric space group and powder XRD analysis shows that the perfect crystalline nature of the crystal. The presence of functional group and element were confirmed from FT-IR and EDAX analysis. Optical absorbance of the grown crystal was studied by UV-Vis spectrophotometer. The optical constants were calculated from the optical absorbance data such as refractive index (n), extinction coefficient (K) and reflectance (R). The optical band gap (Eg) of thiocarbamide zinc iodide crystal is 4.22 eV. The magnetic properties of grown crystal have been determined by Vibrating Sample Magnetometry (VSM). Room temperature magnetization revealed a ferromagnetic behaviour for the grown crystal. The antibacterial and antifungal activities of the title compound were performed by well diffusion method and MIC method against the standard bacteria like Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia and against fungus like Aspergillus niger, Rhizopus sps and Penicillium sps. Thermal behaviour of the crystal has been investigated using thermogravimetric analysis (TGA) and differential thermal analysis (DTA).

  10. ENGINEERING DESIGN: EICOSANE MICROCAPSULES SYNTHESIS AND APPLICATION IN POLYURETHANE FOAMS AIMING TO DIMINISH WHEELCHAIR CUSHION EFFECT ON SKIN TEMPERATURE

    Directory of Open Access Journals (Sweden)

    ELISA M. BERETTA

    2016-12-01

    Full Text Available Thermal comfort of wheelchairs still requires improvements, since users remain on the chair for as long as 12 h a day. Increased sweating makes the skin more susceptible to colonization by fungi and bacteria, and may cause pressure ulcers. In this sense, the microencapsulation of Phase-Change Materials (PCMs may help to enhance wheelchair cushion comfort by regulating heat exchange. This study describes the production of PCM microcapsules and their application in flexible polyurethane foams after expansion, and assesses improvements in heat exchange. Microcapsules with eicosane core coated with melamine-formaldehyde were produced. Eicosane is a thermoregulation agent whose phase-change temperature is near that of the human body’s. Microcapsules were characterized by thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy, and Fourier transform infrared spectroscopy. Then, microcapsules were applied on polyurethane foams by vacuum filtration and high-pressure air gun. Samples were exposed to a heat source and analysed by infrared thermography. The results indicate that thermal load increased in samples treated with microcapsules, especially by pressure air gun, and show that it is possible to enhance thermal comfort in wheelchair seats. Thereby, this study contributes to enhance quality of life for wheelchair users, focusing on thermal comfort provided by cushion seats made from PU foam.

  11. The application of thermal solar energy to high temperature processes: case study of the synthesis of alumina from boehmite.

    Science.gov (United States)

    Padilla, Isabel; López-Delgado, Aurora; López-Andrés, Sol; Álvarez, Marta; Galindo, Roberto; Vazquez-Vaamonde, Alfonso J

    2014-01-01

    The aim of this paper is to evaluate the feasibility of obtaining alumina from boehmite using a free, clean, and unlimited power source as the solar energy. Boehmite was obtained by hydrothermal treatment of a hazardous waste coming from aluminum slag milling. The waste is considered as a hazardous substance because of it releasing toxic gases (hydrogen, ammonia, methane, and hydrogen sulfide) in the presence of water. The as-obtained boehmite was transformed into alumina, in air atmosphere, using a solar energy concentrator (Fresnel lens). The solar installation provides a power density of 260 W · cm(-2) which allows reaching temperatures upper than 1000 °C at few minutes of exposure. Tests were performed at different periods of time that ranged between 5 and 90 min. The percentage of transformation of boehmite into alumina was followed by the water content of samples after solar radiation exposure. Samples were characterized by X-ray diffraction, infrared spectroscopy, and thermogravimetry. Metastable aluminas started to appear at 5 min and the crystalline and stable phase corundum at 10 min of solar radiation exposure.

  12. The Application of Thermal Solar Energy to High Temperature Processes: Case Study of the Synthesis of Alumina from Boehmite

    Directory of Open Access Journals (Sweden)

    Isabel Padilla

    2014-01-01

    Full Text Available The aim of this paper is to evaluate the feasibility of obtaining alumina from boehmite using a free, clean, and unlimited power source as the solar energy. Boehmite was obtained by hydrothermal treatment of a hazardous waste coming from aluminum slag milling. The waste is considered as a hazardous substance because of it releasing toxic gases (hydrogen, ammonia, methane, and hydrogen sulfide in the presence of water. The as-obtained boehmite was transformed into alumina, in air atmosphere, using a solar energy concentrator (Fresnel lens. The solar installation provides a power density of 260 W·cm−2 which allows reaching temperatures upper than 1000°C at few minutes of exposure. Tests were performed at different periods of time that ranged between 5 and 90 min. The percentage of transformation of boehmite into alumina was followed by the water content of samples after solar radiation exposure. Samples were characterized by X-ray diffraction, infrared spectroscopy, and thermogravimetry. Metastable aluminas started to appear at 5 min and the crystalline and stable phase corundum at 10 min of solar radiation exposure.

  13. One-step chemical synthesis of ZnO/graphene oxide molecular hybrids for high-temperature thermoelectric applications.

    Science.gov (United States)

    Chen, Dongsheng; Zhao, Yan; Chen, Yani; Wang, Biao; Chen, Haiyan; Zhou, Jun; Liang, Ziqi

    2015-02-11

    ZnO as high-temperature thermoelectric material suffers from high lattice thermal conductivity and poor electrical conductivity. Al is often used to n-dope ZnO to form Zn1-xAlxO (AZO). Owing to very limited Al solubility (less than 2 atom %) in AZO, however, electrical conductivity is difficult to improve further. Moreover, such a low concentration of Al dopants can hardly reduce the thermal conductivity. Here, we propose slightly adding chemically reduced graphene oxides (rGOs) to AZO in various contents to modulate the carrier concentration and simultaneously optimize the electrical and thermal conductivities. Such nanocomposites with rGO embedded in AZO matrix are formed on the molecular level by one-step solution chemistry method. No obvious changes are found in crystalline structures of AZO after introducing rGOs. The rGO inclusions are shown to uniformly mix the AZO matrix that consists of compacted nanoparticles. In such AZO/rGO hybrids, Zn2+ is captured by the rGO, releasing extra electrons and thus increasing electron density, as confirmed by Hall measurements. The phonon-boundary scattering at the interface between AZO and rGO remarkably reduces the lattice thermal conductivity. Therefore, a respectable thermoelectric figure of merit of 0.28 at 900 °C is obtained in these nanocomposites at the rGO content of 1.5 wt %, which is 8 times larger than that of pure ZnO and 60% larger than that of alloyed AZO. This work demonstrates a facile wet chemistry route to produce nanostructured thermoelectric composites in which electrical conductivity can be greatly increased while largely lowering thermal conductivity, collectively enhancing the thermoelectric performance.

  14. Ultra high temperature gasification of municipal wastewater primary biosolids in a rotary kiln reactor for the production of synthesis gas.

    Science.gov (United States)

    Gikas, Petros

    2017-12-01

    Primary Fine-Sieved Solids (PFSS) are produced from wastewater by the use of micro-sieves, in place of primary clarification. Biosolids is considered as a nuisance product, however, it contains significant amounts of energy, which can be utilized by biological (anaerobic digestion) or thermal (combustion or gasification) processes. In the present study, an semi-industrial scale UHT rotary kiln gasifier, operating with electric energy, was employed for the gasification of PFSS (at 17% moisture content), collected from a municipal wastewater treatment plant. Two gasification temperatures (950 and 1050 °C) had been tested, with minimal differences, with respect to syngas yield. The system appears to reach steady state after about 30-40 min from start up. The composition of the syngas at near steady state was measured approximately as 62.4% H 2 , 30.0% CO, 2.4% CH 4 and 3.4% CO 2 , plus 1.8% unidentified gases. The potential for electric energy production from the syngas produced is theoretically greater than the electric energy required for gasification. Theoretically, approximately 3.8 MJ/kg PFSS of net electric energy may be produced. However, based on the measured electric energy consumption, and assuming that all the syngas produced is used for electric energy production, addition of excess electric energy (about 0.43 MJ/kg PFSS) is required to break even. The latter is probably due to heat losses to the environment, during the heating process. With the improvement of energy efficiency, the process can be self sustained, form the energy point of view. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Single-source-precursor synthesis of dense SiC/HfC(x)N(1-x)-based ultrahigh-temperature ceramic nanocomposites.

    Science.gov (United States)

    Wen, Qingbo; Xu, Yeping; Xu, Binbin; Fasel, Claudia; Guillon, Olivier; Buntkowsky, Gerd; Yu, Zhaoju; Riedel, Ralf; Ionescu, Emanuel

    2014-11-21

    A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfC(x)N(1-x)-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfC(x)N(1-x)-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfC(x)N(1-x)-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm(-1), the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm(-1).

  16. Production of BaAl2O4 doped with Eu3+ in low temperature: research of the influence of the synthesis route, temperature and calcination time in the optical properties

    International Nuclear Information System (INIS)

    Gomes, Manasses Almeida

    2017-01-01

    In this work, the synthesis condition (complexing agent and temperature and time of calcination) were studied aiming to produce BaAl 2 O 4 samples in the ferroelectric hexagonal phase. Pure and Eu 3+ - doped samples were produced and its luminescent properties were investigated. BaAl 2 O 4 was prepared using several thermal treatment conditions, via an alternative sol-gel route, using coconut water or PVA as the complexing agents. The sample production at 600 °C/5h is quite interesting, since to date the lowest calcination temperatures found in the literature was 650 ° C using reagents with high degree of toxicity DTA / TG measurements indicated a possible start of the crystallization of the material at approximately 600 ° C, and the X-ray powder diffraction (XRD) confirm the formation of the desired phase of the calcined barium aluminate at that temperature. The results of the Rietveld refinements showed the occurrence of secondary phase in the samples produced at 600 ° C / 5h, presenting 5% of phase Ba(NO 3 ) 2 , while single phase was found for samples calcined at 1200 ° C for 2 and 5h. Analysis of the diffractogram by the Scherrer equation showed smaller crystallite size for samples calcified at 600 °C/5h, but apparently with a lower degree of crystallinity than the sample prepared at 1200 ° C/ 2 and 5h. The photoluminescence measurements showed that the emission spectra of the samples have great dependence on the times, temperatures and complexing agents used. In particular, samples calcined at 600 ° C have very different characteristics with regard to the probabilities of emissions associated with Eu 3+ when compared with samples produced at higher temperatures. Differences observed in the spectra of samples produced via different complexing agents are possibly due to defects created in the materials by impurities present in the coconut water. Samples produced using PVA present sites with higher symmetry, which was evidenced by a lower relative

  17. Single-source-precursor synthesis of dense SiC/HfCxN1-x-based ultrahigh-temperature ceramic nanocomposites

    Science.gov (United States)

    Wen, Qingbo; Xu, Yeping; Xu, Binbin; Fasel, Claudia; Guillon, Olivier; Buntkowsky, Gerd; Yu, Zhaoju; Riedel, Ralf; Ionescu, Emanuel

    2014-10-01

    A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfCxN1-x-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfCxN1-x-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfCxN1-x-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm-1, the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm-1.A novel single-source precursor was synthesized by the reaction of an allyl hydrido

  18. Graphene-assisted room-temperature synthesis of 2D nanostructured hybrid electrode materials: dramatic acceleration of the formation rate of 2D metal oxide nanoplates induced by reduced graphene oxide nanosheets.

    Science.gov (United States)

    Sung, Da-Young; Gunjakar, Jayavant L; Kim, Tae Woo; Kim, In Young; Lee, Yu Ri; Hwang, Seong-Ju

    2013-05-27

    A new prompt room temperature synthetic route to 2D nanostructured metal oxide-graphene-hybrid electrode materials can be developed by the application of colloidal reduced graphene oxide (RGO) nanosheets as an efficient reaction accelerator for the synthesis of δ-MnO2 2D nanoplates. Whereas the synthesis of the 2D nanostructured δ-MnO2 at room temperature requires treating divalent manganese compounds with persulfate ions for at least 24 h, the addition of RGO nanosheet causes a dramatic shortening of synthesis time to 1 h, underscoring its effectiveness for the promotion of the formation of 2D nanostructured metal oxide. To the best of our knowledge, this is the first example of the accelerated synthesis of 2D nanostructured hybrid material induced by the RGO nanosheets. The observed acceleration of nanoplate formation upon the addition of RGO nanosheets is attributable to the enhancement of the oxidizing power of persulfate ions, the increase of the solubility of precursor MnCO3, and the promoted crystal growth of δ-MnO2 2D nanoplates. The resulting hybridization between RGO nanosheets and δ-MnO2 nanoplates is quite powerful not only in increasing the surface area of manganese oxide nanoplate but also in enhancing its electrochemical activity. Of prime importance is that the present δ-MnO2 -RGO nanocomposites show much superior electrode performance over most of 2D nanostructured manganate systems including a similar porous assembly of RGO and layered MnO2 nanosheets. This result underscores that the present RGO-assisted solution-based synthesis can provide a prompt and scalable method to produce nanostructured hybrid electrode materials. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Direct dimethyl ether synthesis from synthesis gas: The influence of methanol dehydration on methanol synthesis reaction

    OpenAIRE

    Dadgar, Farbod; Myrstad, Rune; Pfeifer, Peter; Holmen, Anders; Venvik, Hilde Johnsen

    2016-01-01

    Direct dimethyl ether (DME) synthesis from synthesis gas is studied with regard to potential effects of methanol dehydration on methanol formation and copper-based catalyst performance. For this, the influence of the operating conditions (space velocity, temperature, pressure, time-on-stream and syngas composition) on activity, selectivity and stability of the catalyst was studied and compared for methanol synthesis and direct DME synthesis. The advantage of the direct over the two-step DME s...

  20. Synthesis, strong room-temperature PL and photocatalytic activity of ZnO/ZnWO{sub 4} rod-like nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Validzic, Ivana Lj., E-mail: validzic@vinca.rs [Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Savic, Tatjana D.; Krsmanovic, Radenka M.; Jovanovic, Dragana J.; Novakovic, Mirjana M.; Popovic, Maja C.; Comor, Mirjana I. [Vinca Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia)

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer Novel low temperature method for the synthesis of ZnO/ZnWO{sub 4} rod-like nanoparticles. Black-Right-Pointing-Pointer PL showed strong UV band peaked at 3.30 eV and a visible band at 2.71 and 2.53 eV. Black-Right-Pointing-Pointer Variations of the two PL bands were observed for different excitation wavelengths. Black-Right-Pointing-Pointer Band-gap energies of ZnO/ZnWO{sub 4} nanoparticles were found to be 3.62 and 3.21 eV. Black-Right-Pointing-Pointer Photocatalytic behaviour of ZnO is dependent on the formation of ZnWO{sub 4} phase. - Abstract: Zinc oxide (ZnO)/zinc tungstate (ZnWO{sub 4}) rod-like nanoparticles with diameters in the range of 6-11 nm and length of about 30 nm were synthesized by a low temperature soft solution method at 95 Degree-Sign C in the presence of non-ionic copolymer surfactant. It was found that their crystallinity was enhanced with the increase of heating time from 1 h up to 120 h. The photoluminescence (PL) measurements showed very strong, narrow UV band peaked at 3.30 eV and a broad visible band peaking at 2.71 eV with a shoulder at about 2.53 eV, for {lambda}{sub exc} < 300 nm. Quite large variations in the intensities of the two PL bands were observed for different excitation wavelengths. The intensity of the main visible band decreases with decreasing excitation energy and disappears when samples are excited {lambda} = 320 nm (E{sub exc} = 3.875 eV). We found that observed optical properties originate from ZnO phase. UV band gap PL had high intensity for all applied excitations, probably induced by ZnWO{sub 4} phase presence on the surface. In addition, two values were found for direct band-gap energy of ZnO/ZnWO{sub 4} rod-like nanoparticles 3.62 and 3.21 eV, determined from reflectance spectrum. The photocatalytic behaviour of ZnO is strongly dependent on the formation of ZnWO{sub 4} phase, of the obtained rod-like nanoparticles.

  1. Room temperature synthesis of magnetite (Fe.sub.3−δ./sub.O.sub.4./sub.) nanoparticles by a simple reverse co-precipitation method

    Czech Academy of Sciences Publication Activity Database

    Mahmed, N.; Heczko, Oleg; Söderberg, O.; Hannula, S.-P.

    2011-01-01

    Roč. 18, č. 3 (2011), 032020/1-032020/4 ISSN 1757-8981 Institutional research plan: CEZ:AV0Z10100520 Keywords : ferromagnetic nanoparticles * magnetite nanoparticles synthesis * maghemi Subject RIV: BM - Solid Matter Physics ; Magnetism

  2. Synthesis of Pb-doped Bi-2223 from Pb-doped Bi-2212, Ca2CuO3, and CuO Above the Glass Transition Temperature of Bi-2212

    Directory of Open Access Journals (Sweden)

    Marvin U. Herrera

    2002-12-01

    Full Text Available Synthesis of Pb-doped Bi-2223 from Pb-doped Bi-2212 (Pb=0.3, Ca2CuO3, and CuO was done by sintering at the glass-phase temperature of Pb-doped Bi-2212. The sample sintered at 850°C possesses nearly 100% Pb-doped Bi-2223, as revealed from the XRD pattern and magnetic susceptibility data. The presence of holes, terrace-like features, and magma-like flow features in the SE< micrographs of the sample strongly support a glass-state Pb-doped Bi-2223 formation.

  3. Influence of the temperature on the synthesis of CdS quantum dots stabilized with poly (vinil alcohol); Influencia da temperatura na sintese de pontos quanticos de sulfeto de cadmio estabilizados por poli (alcool vinilico)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Semiconductor nanoparticles (Quantum Dots, QDs) have been the subject of recent research by presenting quantum properties. This property has stimulated the study of these particles in biological applications such as bookmarks, which creates the necessity of using different synthesis routes resulting in biocompatible systems. Thus, this study aimed to evaluate the effect of temperature on the properties of QDs cadmium sulfide, aqueous route using poly (vinyl alcohol), a biocompatible polymer, such as stabilizing agent. The characterization of particles produced was performed by UV-Vis spectroscopy and photoluminescence (PL) spectra for obtaining the absorption and emission, respectively and Transmission microscopy (TEM) for analysis of the diameter of the nanocrystals. (author)

  4. Ion-Exchange-Induced Selective Etching for the Synthesis of Amino-Functionalized Hollow Mesoporous Silica for Elevated-High-Temperature Fuel Cells

    DEFF Research Database (Denmark)

    Zhang, Jin; Liu, Jian; Lu, Shanfu

    2017-01-01

    is verified through a successful synthesis of hollow mesoporous silica. After infiltration with phosphotungstic acid (PWA), PWA–NH2–HMS nanoparticles are dispersed in the poly(ether sulfone)–polyvinylpyrrolidone (PES–PVP) matrix, forming a hybrid PWA–NH2–HMS/PES–PVP nanocomposite membrane. The resultant...

  5. Design and Synthesis of Cross-Linked Copolymer Membranes Based on Poly(benzoxazine and Polybenzimidazole and Their Application to an Electrolyte Membrane for a High-Temperature PEM Fuel Cell

    Directory of Open Access Journals (Sweden)

    Hyuk Chang

    2013-01-01

    Full Text Available Elevated-temperature (100~200 °C polymer electrolyte membrane (PEM fuel cells have many features, such as their high efficiency and simple system design, that make them ideal for residential micro-combined heat and power systems and as a power source for fuel cell electric vehicles. A proton-conducting solid-electrolyte membrane having high conductivity and durability at elevated temperatures is essential, and phosphoric-acid-containing polymeric material synthesized from cross-linked polybenzoxazine has demonstrated feasible characteristics. This paper reviews the design rules, synthesis schemes, and characteristics of this unique polymeric material. Additionally, a membrane electrode assembly (MEA utilizing this polymer membrane is evaluated in terms of its power density and lifecycle by an in situ accelerated lifetime test. This paper also covers an in-depth discussion ranging from the polymer material design to the cell performance in consideration of commercialization requirements.

  6. New Hybrid Route to Biomimetic Synthesis

    National Research Council Canada - National Science Library

    Morse, Daniel

    2003-01-01

    To develop economical low-temperature routes to biomimetic synthesis of high-performance composite materials, with control of composition and structure based on the molecular mechanisms controlling...

  7. Lactobacillusassisted synthesis of titanium nanoparticles

    Directory of Open Access Journals (Sweden)

    Jha Anal

    2007-01-01

    Full Text Available AbstractAn eco-friendlylactobacillussp. (microbe assisted synthesis of titanium nanoparticles is reported. The synthesis is performed at room temperature. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of Ti nanoparticles. Individual nanoparticles as well as a number of aggregates almost spherical in shape having a size of 40–60 nm are found.

  8. Modeling Study of High Pressure and High Temperature Reservoir Fluids

    DEFF Research Database (Denmark)

    Varzandeh, Farhad

    S-characterization combinations and 260 reservoir fluids. PC-SAFT with the new general characterization method is shown to give the lowest AAD% and maximum deviation in calculation of saturation pressure, density and STO density, among all the tested characterization methods for PC-SAFT. Application of the new characterization...... be highly rewarding if successfully produced. This PhD project is part of the NextOil (New Extreme Oil and Gas in the Danish North Sea) project which is intended to reduce the uncertainties in HPHT field development. The main focus of this PhD is on accurate description of the reservoir fluid behavior under...... HPHT conditions to minimize the production risks from these types of reservoirs. In particular, the study has thoroughly evaluated several non-cubic Equations of State (EoSs) which are considered promising for HPHT fluid modeling, showing their advantages and short comings based on an extensive...

  9. Low-temperature synthesis of Mn-based mixed metal oxides with novel fluffy structures as efficient catalysts for selective reduction of nitrogen oxides by ammonia.

    Science.gov (United States)

    Meng, Bo; Zhao, Zongbin; Chen, Yongsheng; Wang, Xuzhen; Li, Yong; Qiu, Jieshan

    2014-10-21

    A series of Mn-based mixed metal oxide catalysts (Co-Mn-O, Fe-Mn-O, Ni-Mn-O) with high surface areas were prepared via low temperature crystal splitting and exhibited extremely high catalytic activity for the low-temperature selective catalytic reduction of nitrogen oxides with ammonia.

  10. Synthesis of ammonia using sodium melt

    OpenAIRE

    Kawamura, Fumio; Taniguchi, Takashi

    2017-01-01

    Research into inexpensive ammonia synthesis has increased recently because ammonia can be used as a hydrogen carrier or as a next generation fuel which does not emit CO2. Furthermore, improving the efficiency of ammonia synthesis is necessary, because current synthesis methods emit significant amounts of CO2. To achieve these goals, catalysts that can effectively reduce the synthesis temperature and pressure, relative to those required in the Haber-Bosch process, are required. Although severa...

  11. Synthesis of submicron silver powder from scrap low-temperature co-fired ceramic an e-waste: Understanding the leaching kinetics and wet chemistry.

    Science.gov (United States)

    Swain, Basudev; Shin, Dongyoon; Joo, So Yeong; Ahn, Nak Kyoon; Lee, Chan Gi; Yoon, Jin-Ho

    2018-03-01

    The current study focuses on the understanding of leaching kinetics of metal in the LTCC in general and silver leaching in particular along with wet chemical reduction involving silver nanoparticle synthesis. Followed by metal leaching, the silver was selectively precipitated using HCl as AgCl. The precipitated AgCl was dissolved in ammonium hydroxide and reduced to pure silver metal nanopowder (NPs) using hydrazine as a reductant. Polyvinylpyrrolidone (PVP) used as a stabilizer and Polyethylene glycol (PEG) used as reducing reagent as well as stabilizing reagent to control size and shape of the Ag NPs. An in-depth investigation indicated a first-order kinetics model fits well with high accuracy among all possible models. Activation energy required for the first order reaction was 21.242 kJ mol -1 for Silver. PVP and PEG 1% each together provide better size control over silver nanoparticle synthesis using 0.4 M hydrazine as reductant, which provides relatively regular morphology in comparison to their individual application. The investigation revealed that the waste LTCC (an industrial e-waste) can be recycled through the reported process even in industrial scale. The novelty of reported recycling process is simplicity, versatile and eco-efficiency through which waste LTCC recycling can address various issues like; (i) industrial waste disposal (ii) synthesis of silver nanoparticles from waste LTCC (iii) circulate metal economy within a closed loop cycle in the industrial economies where resources are scarce, altogether. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Low-temperature synthesis and characterization of anatase TiO{sub 2} nanoparticles by an acid assisted sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Leyva-Porras, C. [Centro de Investigación en Materiales DIP-CUCEI, Universidad de Guadalajara, Av. Revolución # 1500, Col. Olímpica, C.P. 44430, Guadalajara (Mexico); Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Alianza Norte No. 202, Parque de Investigación e Innovación Tecnológica (PIIT), Carretera Aeropuerto km. 10, C.P. 66600, Apodaca, N.L. (Mexico); Toxqui-Teran, A.; Vega-Becerra, O. [Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Alianza Norte No. 202, Parque de Investigación e Innovación Tecnológica (PIIT), Carretera Aeropuerto km. 10, C.P. 66600, Apodaca, N.L. (Mexico); Miki-Yoshida, M. [Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Miguel de Cervantes No. 120, Parque Industrial Chihuahua, C.P. 31109, Chihuahua (Mexico); Rojas-Villalobos, M.; García-Guaderrama, M. [Centro de Investigación en Materiales DIP-CUCEI, Universidad de Guadalajara, Av. Revolución # 1500, Col. Olímpica, C.P. 44430, Guadalajara (Mexico); and others

    2015-10-25

    The synthesis of anatase TiO{sub 2} nanoparticles by an acid-assisted sol–gel method at 25 and 80 °C is described. Specifically, acetic acid (AA) was used and the evolution of the anatase phase with the amount of AA was observed. The results of X-ray diffraction (XRD) and transmission electron microscopy (TEM) both showed that a pure anatase phase was obtained with particle size smaller than 5 nm. Structural refinements and quantitative determination of phase composition was achieved by using the Rietveld method. The particle size distribution became slightly narrower as the amount of AA was increased. Raman spectroscopy showed that when the amount of AA was increased a small amount of brookite was present at the contamination level. The anatase phase was studied by differential thermal analysis (DTA), providing phase stability up to 600 °C. These and other results were discussed in terms of particle size and structure. Likewise, the formation of the anatase phase under these synthesis conditions was explained. - Highlights: • Synthesis of anatase TiO{sub 2} nanoparticles by an acid assisted sol–gel method at mild conditions. • Microstructure characterization by XRD, TEM and Raman spectroscopy. • Observation of the formation and evolution of the anatase phase as acetic acid was increased. • Anatase thermal stability up to 600 °C and band gap range between 3.2 and 3.5 eV. • A simplified method which can be considered as a green chemistry process.

  13. High temperature thermoelectric properties of Ca3Co4O9+δ by auto-combustion synthesis and spark plasma sintering

    DEFF Research Database (Denmark)

    Wu, NingYu; Holgate, Tim; Van Nong, Ngo

    2014-01-01

    A rapid method for the synthesis of Ca3Co4O9+δpowder is introduced. The procedure is a modification of the conventional citric-nitrate sol–gelmethod where an auto-combustion process is initiated by a controlled thermal oxidation–reduction reaction. The resulting powders inherit theadvantages...... conductivities values of 2.53 W/m K (⊥) and 1.25 W/m K (||), and resulting figures-of-merit, ZT, of 0.21 (⊥) and 0.13 (||) were observed.© 2013 Elsevier Ltd. All rights reserved....

  14. The defective phosphoribosyl diphosphate synthase in a temperature-sensitive prs-2 mutant of Escherichia coli is compensated by increased enzyme synthesis

    DEFF Research Database (Denmark)

    Post, David A.; Switzer, Robert L.; Hove-Jensen, Bjarne

    1996-01-01

    An Escherichia coli strain which is temperature-sensitive for growth due to a mutation (prs-2) causing a defective phosphoribosyl diphosphate (PRPP) synthase has been characterized. The temperature-sensitive mutation was mapped to a 276 bp HindIII-BssHII DNA fragment located within the open reading...... temperature shift to 42 degrees C. The other mutation was a C -> T transition located 39 bp upstream of the G -> A mutation, i.e. outside the coding sequence and close to the Shine-Dalgarno sequence. Cells harbouring only the C -> T mutation in a plasmid contained approximately three times as much PRPP...

  15. Facile synthesis of PbTiO3 truncated octahedra via solid-state reaction and their application in low-temperature CO oxidation by loading Pt nanoparticles

    KAUST Repository

    Yin, Simin

    2014-01-01

    Perovskite PbTiO3 (PTO) nanocrystals with a truncated octahedral morphology have been prepared by a facile solid-state reaction. Pt nanoparticles preferentially nucleated on the {111} facet of PTO nanocrystals exhibit a remarkable low-temperature catalytic activity towards CO oxidation from a temperature as low as 30 °C and achieve 100% conversion at ∼50 °C. © 2014 the Partner Organisations.

  16. Green synthesis of copper nanoparticles using Ginkgo biloba L. leaf extract and their catalytic activity for the Huisgen [3+2] cycloaddition of azides and alkynes at room temperature.

    Science.gov (United States)

    Nasrollahzadeh, Mahmoud; Sajadi, S Mohammad

    2015-11-01

    During this study, we report the green synthesis of copper nanoparticles (Cu NPs) using Ginkgo biloba L. leaf extract as a reducing and stabilizing agent under surfactant-free conditions. The formation of Cu NPs is monitored by recording the UV-vis absorption spectra. The green synthesized Cu NPs are characterized by TEM, EDS, FT-IR and UV-visible techniques. According to UV-vis results, the synthesized Cu NPs by this method are quite stable even after one month indicating the stability of Cu NPs. In terms of environmental impact and economy, metallic Cu NPs offer several advantages over homogeneous and traditional heterogeneous catalysts. In addition, due to the increased metal surface area, Cu NPs shows very high catalytic activity for the Huisgen [3+2] cycloaddition of azides and alkynes at room temperature. Furthermore, the catalyst can be simply recovered and reused several times with almost no loss in activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Optimization of HPHT wells: Reducing the cost of design integrity

    International Nuclear Information System (INIS)

    Watkins, D.M.; Johnson, R.E.; Moe, G.R.

    1994-01-01

    Optimization of casing and tubing designs for critical wells has become increasingly important for economic reasons. This paper describes an investigation into the relationship between design criteria (minimum acceptable design factors and maximum acceptable number of pipes) and cost. The measurement of design integrity by both design factors and by probability of failure was evaluated with respect to reduction of costs. The results indicate that significant cost reductions, often on the order of 10--20%, are available by optimization of the string design

  18. Low-temperature vapor synthesis of 1D {beta}-Ga{sub 2}O{sub 3} nanostructures on Si substrate by inert salt-assisted route

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Yingying [School of Chemistry and Chemical Engineering, Key Laboratory of Applied Organic Chemistry in Higher Institutions, Shangrao Normal University, 334000 Jiangxi (China); Yu, Leshu, E-mail: yuleshu2008@126.com [School of Chemistry and Chemical Engineering, Key Laboratory of Applied Organic Chemistry in Higher Institutions, Shangrao Normal University, 334000 Jiangxi (China); Zheng, Dagui; Xie, Aili; Chen, Xueli [School of Chemistry and Chemical Engineering, Key Laboratory of Applied Organic Chemistry in Higher Institutions, Shangrao Normal University, 334000 Jiangxi (China)

    2012-12-01

    Graphical abstract: In this work inert salt-assisted route has been extended to prepare {beta}-Ga{sub 2}O{sub 3} nanowires and nanobelts on bare Si substrate, and thus the depositing temperature was down to 650 Degree-Sign C, much lower than synthetic temperatures in previous reports via the direct oxidation of metallic Ga. Highlights: Black-Right-Pointing-Pointer Inert salt-assisted route has been extended to synthesize {beta}-Ga{sub 2}O{sub 3} nanostructures. Black-Right-Pointing-Pointer {beta}-Ga{sub 2}O{sub 3} nanowires and nanobelts covered bare Si substrate. Black-Right-Pointing-Pointer The depositing temperature was lower down to 650 Degree-Sign C. Black-Right-Pointing-Pointer Low temperature growth was attributed to the well dispersion of Ga over inert salt. Black-Right-Pointing-Pointer The synthesized products have a stable and broad green emission band. - Abstract: The attractive feature of one-dimensional inorganic nanomaterials grown on substrate at low temperature is the good adhesion between the deposited material and the substrate. In this work inert salt-assisted route has been extended to prepare Ga{sub 2}O{sub 3} product on bare Si substrate. By using CaF{sub 2} powder as a dispersant, the vapor pressure of metallic Ga is increased greatly as compared to its non-dispersed state. This allows for the {beta}-Ga{sub 2}O{sub 3} nanostructures to be formed at a relatively low temperature of 650 Degree-Sign C as a result of direct oxidation of the well-mixed metallic Ga and CaF{sub 2} powder. This temperature is much lower than the synthetic temperature required in the cases of direct oxidation of metallic Ga as reported by others. The as-prepared Ga{sub 2}O{sub 3} nanowires and nanobelts are characterized by XRD, SEM, EDX, TEM and PL. The vapor-solid growth process was also discussed for the as-prepared Ga{sub 2}O{sub 3} product on Si substrate. The interesting results indicate the wide applications of inert salt-assisted route to vapor growth of other

  19. Fabrication of Au-Pd Core-shell Nanoparticles using Au Thin-Film Dewetting at High Temperature and Chemical Synthesis Methods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Gyu; Lee, Hye-Jung; Oh, Yong-Jun [Hanbat National Univ., Daejeon (Korea, Republic of)

    2016-07-15

    Au-Pd bimetallic nanoparticles (NPs) have received a lot of attention in the fields of catalysts and hydrogen sensors. In this study, Au-Pd core-shell NP arrays were successfully fabricated using two steps: formation of the ordered array of Au NPs cores via solid-state dewetting of a Au thin film on a topographic silica substrate, and Pd shell formation via chemical synthesis using two different surfactants (CTAB and CTAC). Using the CTAB surfactant in particular, a 2-D composite structure comprised of an ordered array of Au-Pd NPs, with smaller Pd NPs on the nanoscopic gaps between the Au-Pd NPs, could be formed. This structure is expected to have potential application in resistance-base hydrogen sensors.

  20. Synthesis and Characterization of Nafion-SiO2 Composite Membranes as an Electrolyte for Medium Temperature and Low Relative Humidity

    Directory of Open Access Journals (Sweden)

    Mahreni Mahreni

    2011-12-01

    Full Text Available The weakness of the Nafion membrane as electrolyte of PEMFC associated with physical properties that is easy to shrink at temperatures above 80°C due to dehydration. Shrinkage will decrease the conductivity and membrane damage. Nafion-SiO2 composite membranes can improve membrane stability. The role of SiO2 in the Nafion clusters is as water absorbent cause the membrane remains wet at high temperatures and low humidity and conductivity remains high. The results showed the content of 2.8 wt% of SiO2 in the Nafion membrane, the conductivity of composite membrane is higher than the pure Nafion membrane that are 0.127 S cm-1 in dry conditions and 0.778 S cm-1 in wet conditions at room temperature. Compared with the pure Nafion membrane conductivity are 0.0661 S cm-1 and 0.448 S cm-1 respectively in dry and wet conditions.

  1. High-pressure and high-temperature synthesis and physical properties of Ca{sub 2}CrO{sub 4} solid

    Energy Technology Data Exchange (ETDEWEB)

    Cao, L. P. [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Key Laboratory of Extreme Conditions Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190 (China); Jin, M. L.; Li, W. M.; Wang, X. C.; Liu, Q. Q.; Jin, C. Q., E-mail: lpan@ctgu.edu.cn, E-mail: Jin@iphy.ac.cn [Key Laboratory of Extreme Conditions Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190 (China); Xu, Y. L. [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); College of Science, China Three Gorges University, Yichang 443002 (China); Pan, L. Q., E-mail: lpan@ctgu.edu.cn, E-mail: Jin@iphy.ac.cn [College of Science, China Three Gorges University, Yichang 443002 (China)

    2016-05-15

    The bulk Ca{sub 2}CrO{sub 4} samples were synthesized under high pressure and high temperature conditions using CaO and CrO{sub 2} as starting materials. The structure of the prepared Ca{sub 2}CrO{sub 4} solid is characterized by X-ray diffraction with Rietveld refinement as tetragonal structure with the space group I4{sub 1}/acd. The CrO{sub 6} octahedrons elongate along c axis and rotate in ab plane. DC and AC magnetic susceptibility measurement results indicate spin glass behavior at low temperature. Temperature dependence of resistivity measurement results show Ca{sub 2}CrO{sub 4} is an insulator at both ambient condition and high pressure.

  2. Low-Temperature Sol-Gel Synthesis of Nitrogen-Doped Anatase/Brookite Biphasic Nanoparticles with High Surface Area and Visible-Light Performance

    Directory of Open Access Journals (Sweden)

    Liang Jiang

    2017-12-01

    Full Text Available Nitrogen doping in combination with the brookite phase or a mixture of TiO2 polymorphs nanomaterials can enhance photocatalytic activity under visible light. Generally, nitrogen-dopedanatase/brookite mixed phases TiO2 nanoparticles obtained by hydrothermal or solvothermal method need to be at high temperature and with long time heating treatment. Furthermore, the surface areas of them are low (<125 m2/g. There is hardly a report on the simple and direct preparation of N-doped anatase/brookite mixed phase TiO2 nanostructures using sol-gel method at low heating temperature. In this paper, the nitrogen-doped anatase/brookite biphasic nanoparticles with large surface area (240 m2/g were successfully prepared using sol-gel method at low temperature (165 °C, and with short heating time (4 h under autogenous pressure. The obtained sample without subsequent annealing at elevated temperatures showed enhanced photocatalytic efficiency for the degradation of methyl orange (MO with 4.2-, 9.6-, and 7.5-fold visible light activities compared to P25 and the amorphous samples heated in muffle furnace with air or in tube furnace with a flow of nitrogen at 165 °C, respectively. This result was attributed to the synergistic effects of nitrogen doping, mixed crystalline phases, and high surface area.

  3. Low temperature molten salt synthesis of Y(sub2)Sn(sub2)O(sub7) anode material for lithium ion batteries

    CSIR Research Space (South Africa)

    Nithyadharseni, P

    2015-10-01

    Full Text Available is reheated at three different temperatures of 600, 800 and 1000 _C for 6 h in air, are physically and chemically characterized by various techniques such as X-ray diffraction (XRD), scanning electron microscope (SEM) and electrochemical studies...

  4. Aqueous chemical route synthesis and the effect of calcination temperature on the structural and optical properties of ZnO nanoparticles

    Directory of Open Access Journals (Sweden)

    Mohammad Ramzan Parra

    2014-10-01

    Full Text Available This article reports the controlled size of ZnO nanoparticles synthesized via simple aqueous chemical route without the involvement of any capping agent. The effect of different calcination temperatures on the size of the ZnO nanoparticles was investigated. X-ray diffraction (XRD results indicated that all the samples have crystalline wurtzite phase, and peak broadening analysis was used to evaluate the average crystallite size and lattice strain using Scherrer's equation and Williamson–Hall (W–H method. Morphology and elemental compositions were investigated using atomic force microscopy (AFM and scanning electron microscopy (SEM with energy-dispersive X-ray (EDX spectroscopy. The average crystallite size of ZnO nanoparticles estimated from Scherrer's formula and W–H analysis was found to increase with the increase in calcination temperature. These results were in good agreement with AFM results. Optical properties were investigated using UV–vis spectroscopy in diffused reflectance (DR mode, with a sharp increase in reflectivity at 375 nm and the material has a strong reflective characteristic after 420 nm at 500 °C calcination temperature. Furthermore, photoluminescence spectroscopic results revealed intensive ultraviolet (UV emission with reduced defect concentrations and a slight shifting in band gap energies with increased calcination temperature from 200 °C to 500 °C. This study suggests that the as-prepared ZnO nanoparticles with bandgap tunability might be utilized as window layer in optoelectronic devices.

  5. C-H activation of imidazolium salts by Pt(0) at ambient temperature: synthesis of hydrido platinum bis(carbene) compounds.

    Science.gov (United States)

    Duin, Marcel A; Clement, Nicolas D; Cavell, Kingsley J; Elsevier, Cornelis J

    2003-02-07

    A zerovalent platinum(carbene) complex with two monoalkene ligands, which is able to activate C-H bonds of imidazolium salts at room temperature to yield isolable hydrido platinum(II) bis(carbene) compounds, has been synthesised for the first time.

  6. Choice of precipitant and calcination temperature of precursor for synthesis of NiCo2O4 for control of CO-CH4 emissions from CNG vehicles.

    Science.gov (United States)

    Trivedi, Suverna; Prasad, Ram

    2018-03-01

    Compressed natural gas (CNG) is most appropriate an alternative of conventional fuel for automobiles. However, emissions of carbon-monoxide and methane from such vehicles adversely affect human health and environment. Consequently, to abate emissions from CNG vehicles, development of highly efficient and inexpensive catalysts is necessary. Thus, the present work attempts to scan the effects of precipitants (Na 2 CO 3 , KOH and urea) for nickel cobaltite (NiCo 2 O 4 ) catalysts prepared by co-precipitation from nitrate solutions and calcined in a lean CO-air mixture at 400°C. The catalysts were used for oxidation of a mixture of CO and CH 4 (1:1). The catalysts were characterized by X-ray diffractometer, Brunauer-Emmett-Teller surface-area, X-ray photoelectron spectroscopy; temperature programmed reduction and Scanning electron microscopy coupled with Energy-Dispersive X-Ray Spectroscopy. The Na 2 CO 3 was adjudged as the best precipitant for production of catalyst, which completely oxidized CO-CH 4 mixture at the lowest temperature (T 100 =350°C). Whereas, for catalyst prepared using urea, T 100 =362°C. On the other hand the conversion of CO-CH 4 mixture over the catalyst synthesized by KOH limited to 97% even beyond 400°C. Further, the effect of higher calcination temperatures of 500 and 600°C was examined for the best catalyst. The total oxidation of the mixture was attained at higher temperatures of 375 and 410°C over catalysts calcined at 500 and 600°C respectively. Thus, the best precipitant established was Na 2 CO 3 and the optimum calcination temperature of 400°C was found to synthesize the NiCo 2 O 4 catalyst for the best performance in CO-CH 4 oxidation. Copyright © 2017. Published by Elsevier B.V.

  7. Controlled flame synthesis of {alpha}Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} nanoparticles: effect of flame configuration, flame temperature, and additive loading

    Energy Technology Data Exchange (ETDEWEB)

    Buyukhatipoglu, K.; Morss Clyne, A., E-mail: alisam@coe.drexel.ed [Drexel University, Mechanical Engineering and Mechanics Department (United States)

    2010-05-15

    Superparamagnetic iron oxide nanoparticles are used in diverse applications, including optical magnetic recording, catalysts, gas sensors, targeted drug delivery, magnetic resonance imaging, and hyperthermic malignant cell therapy. Combustion synthesis of nanoparticles has significant advantages, including improved nanoparticle property control and commercial production rate capability with minimal post-processing. In the current study, superparamagnetic iron oxide nanoparticles were produced by flame synthesis using a coflow flame. The effect of flame configuration (diffusion and inverse diffusion), flame temperature, and additive loading on the final iron oxide nanoparticle morphology, elemental composition, and particle size were analyzed by transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), energy dispersive spectroscopy (EDS), and Raman spectroscopy. The synthesized nanoparticles were primarily composed of two well known forms of iron oxide, namely hematite {alpha}Fe{sub 2}O{sub 3} and magnetite Fe{sub 3}O{sub 4}. We found that the synthesized nanoparticles were smaller (6-12 nm) for an inverse diffusion flame as compared to a diffusion flame configuration (50-60 nm) when CH{sub 4}, O{sub 2}, Ar, and N{sub 2} gas flow rates were kept constant. In order to investigate the effect of flame temperature, CH{sub 4}, O{sub 2}, Ar gas flow rates were kept constant, and N{sub 2} gas was added as a coolant to the system. TEM analysis of iron oxide nanoparticles synthesized using an inverse diffusion flame configuration with N{sub 2} cooling demonstrated that particles no larger than 50-60 nm in diameter can be grown, indicating that nanoparticles did not coalesce in the cooler flame. Raman spectroscopy showed that these nanoparticles were primarily magnetite, as opposed to the primarily hematite nanoparticles produced in the hot flame configuration. In order to understand the effect of additive loading on iron oxide nanoparticle morphology, an Ar

  8. High Surface Area Tungsten Carbides: Synthesis, Characterization and Catalytic Activity towards the Hydrogen Evolution Reaction in Phosphoric Acid at Elevated Temperatures

    DEFF Research Database (Denmark)

    Tomás García, Antonio Luis; Li, Qingfeng; Jensen, Jens Oluf

    2014-01-01

    Tungsten carbide powders were synthesized as a potential electrocatalyst for the hydrogen evolution reaction in phosphoric acid at elevated temperatures. With ammonium metatungstate as the precursor, two synthetic routes with and without carbon templates were investigated. Through the intermediate...... nitride route and with carbon black as template, the obtained tungsten carbide samples had higher BET area. In 100% H3PO4 at temperatures up to 185°C, the carbide powders showed superior activity towards the hydrogen evolution reaction. A deviation was found in the correlation between the BET area...... and catalytic activity; this was attributed to the presence of excess amorphous carbon in the carbide powder. TEM imaging and TGA-DTA results revealed a better correlation of the activity with the carbide particle size....

  9. Synthesis and characterization of Ba0.5Pb0.5TiO3 perovskite - type thin films deposited by spin coating at low temperatures

    International Nuclear Information System (INIS)

    Wermuth, T.B.; Wiederkehr, N.A.; Alves, A.K.; Bergmann, C.P.

    2014-01-01

    In this paper we present a non-aqueous sol-gel route for the obtention of solid compounds and thin films of oxide type- perovskite ABO 3 , such as Ba 0.5 Pb 0.5 TiO 3 , synthesized by sol - gel route with subsequent heat treatment. The solid compounds were characterized by X-ray diffraction (XRD) techniques and thermal analysis (TGA / DTA). The thin film was obtained by using spin-coating techniques at low temperatures onto commercial substrates of polymethylmethacrylate (PMMA) and characterized by contact angle, atomic force microscopy (AFM) and scanning electron microscopy (SEM). The results show that the films present microstructures and roughness directly related to annealing temperatures, characterized by the formation of crystalline nanostructures with surface regularity and transparency. (author)

  10. Poly(ε-caprolactone) decorated with one room-temperature red-emitting ruthenium(II) complex: synthesis, characterization, thermal and optical properties.

    Science.gov (United States)

    Schulze, Marcus; Jäger, Michael; Schubert, Ulrich S

    2012-04-13

    The incorporation of room-temperature red-emissive [Ru(II)(dqp)(dqp-CH(2) OH)](2+) (dqp is 2,6-di(quinolin-8-yl)pyridine) in poly(ε-caprolactone) (PCL) is explored following two routes. First, the ring-opening polymerization of ε-caprolactone is investigated using the free ligand and the complex as initiators. Alternatively, the complexation strategy utilizing PCL-dqp as a macroligand is detailed. Both routes yield room-temperature emissive polymers centered at 400 nm (free ligand) and 680 nm (complex) in aerated solvent. DSC and TGA showed the typical properties of PCL, for example, the melting point (59 °C). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nucleation temperature-controlled synthesis and in vitro toxicity evaluation of L-cysteine-capped Mn:ZnS quantum dots for intracellular imaging.

    Science.gov (United States)

    Pandey, Vivek; Pandey, Gajanan; Tripathi, Vinay Kumar; Yadav, Sapna; Mudiam, Mohana Krishna Reddy

    2016-03-01

    Quantum dots (QDs), one of the fastest developing and most exciting fluorescent materials, have attracted increasing interest in bioimaging and biomedical applications. The long-term stability and emission in the visible region of QDs have proved their applicability as a significant fluorophore in cell labelling. In this study, an attempt has been made to explore the efficacy of L-cysteine as a capping agent for Mn-doped ZnS QD for intracellular imaging. A room temperature nucleation strategy was adopted to prepare non-toxic, water-dispersible and biocompatible Mn:ZnS QDs. Aqueous and room temperature QDs with L-cysteine as a capping agent were found to be non-toxic even at a concentration of 1500 µg/mL and have wide applications in intracellular imaging. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Biomimetic Aerobic C–H Olefination of Cyclic Enaminones at Room Temperature: Development toward the Synthesis of 1,3,5-Trisubstituted Benzenes

    Science.gov (United States)

    Yu, Yi-Yun

    2014-01-01

    A green and mild protocol for the dehydrogenative olefination of cyclic enaminones was devised via palladium catalysis at room temperature using oxygen as the terminal oxidant. The synthetic utility of the olefinated cyclic enaminones afforded a series of unique 1,3,5-trisubstituted benzenes via an unanticipated Diels-Alder tandem reaction. The broad substrate scope and good yields achieved with this new protocol provide an alternative pathway for arene functionalization. PMID:25071423

  13. Biomimetic Aerobic C-H Olefination of Cyclic Enaminones at Room Temperature: Development toward the Synthesis of 1,3,5-Trisubstituted Benzenes.

    Science.gov (United States)

    Yu, Yi-Yun; Georg, Gunda I

    2014-04-14

    A green and mild protocol for the dehydrogenative olefination of cyclic enaminones was devised via palladium catalysis at room temperature using oxygen as the terminal oxidant. The synthetic utility of the olefinated cyclic enaminones afforded a series of unique 1,3,5-trisubstituted benzenes via an unanticipated Diels-Alder tandem reaction. The broad substrate scope and good yields achieved with this new protocol provide an alternative pathway for arene functionalization.

  14. A new hypercrosslinked supermicroporous polymer, with scope for sulfonation, and its catalytic potential for the efficient synthesis of biodiesel at room temperature.

    Science.gov (United States)

    Bhunia, Subhajit; Banerjee, Biplab; Bhaumik, Asim

    2015-03-25

    We have designed a new hypercrosslinked supermicroporous polymer (HMP-1) with a BET surface area of 913 m(2) g(-1) by FeCl3 via a catalyzed Friedel-Crafts alkylation reaction between carbazole and α,α'-dibromo-p-xylene. Upon sulfonation HMP-1 yielded a very efficient solid acid catalyst for the production of biodiesels via esterification/transesterification of free fatty acids (FFA)/esters at room temperature.

  15. Solvent-Based Synthesis of Nano-Bi0.85Sb0.15 for Low-Temperature Thermoelectric Applications

    Science.gov (United States)

    Kaspar, K.; Fritsch, K.; Habicht, K.; Willenberg, B.; Hillebrecht, H.

    2017-01-01

    In this study we show a preparation method for nanostructured Bi0.85Sb0.15 powders via a chemical reduction route in a polyol medium, yielding material with particle sizes of 20-150 nm in scalable amounts. The powders were consolidated by spark plasma sintering (SPS) in order to maintain the nanostructure. To investigate influence of the sinter process, the powders were characterized by x-ray diffraction (XRD), energy dispersive x-ray spectroscopy (EDX), and scanning electron microscopy (SEM) measurements before and after SPS. Transport properties, Seebeck effect, and thermal conductivity were determined in the low temperature range below 300 K. The samples showed excellent thermal conductivity of 2.3-2.6 W/m × K at 300 K and Seebeck coefficients from -97 μV/K to -107 μV/K at 300 K with a maximum of -141 μV/K at 110 K, thus leading to ZT values of up to 0.31 at room temperature. The results show that Bi-Sb-alloys are promising materials for low-temperature applications. Our wet chemical approach gives access to scalable amounts of nano-material with increased homogeneity and good thermoelectric properties after SPS.

  16. Recycling Y and Eu from Waste Fluorescent Powder and High Temperature Solid-State Synthesis of Y2O3:Eu Phosphors

    Directory of Open Access Journals (Sweden)

    Xiaodong Chen

    2017-03-01

    Full Text Available Y2O3:Eu were prepared through precursors synthesized by leaching tests, removing impurities, enrichment of Y and Eu from residual purified liquors, annealing treatment, and high temperature solid-state reaction method, which is the most suitable for large-scale production. The analysis of product shows that the purity is 99.42%. The resultant powders were characterized by X-ray diffraction (XRD, differential thermal analysis (TG-DTA, scanning electron microscope (SEM, and photoluminescence (PL. Compared with the commercial phosphors, the XRD spectrum of the product samples revealed the synthesized particles to have a pure cubic Y2O3:Eu structure without any impurities in the crystalline phase. On the morphology, the Y2O3:Eu particles synthesized by a combustion and high temperature solid state process with sintering aids, were large and uniform. For luminescence property, the emission intensity of Y2O3:Eu phosphors synthesized by combustion process and high temperature solid state process with sintering aids were higher than those without sintering aids, at 1400 °C.

  17. Synthesis of organosilicon compounds

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, G. [Iowa State Univ., Ames, IA (United States)

    1996-01-01

    Silicon-containing polymers have been a focus of synthesis and study in Dr. Barton`s group because of their chemistry and properties which are not offered by other systems or materials. For example, the polymer -[-SiMe2C≡C-]n-can be easily processed to films or fibers from melt or solution, and thermally converted to a SiC-containing ceramic in high yield at high temperature. In recent years, carbosilane dendritic polymers have been of great interests in many research groups. However, no synthesis of carbosilane dendrimers with functionalties both inside and outside the dendrimer has been reported. Functionality is very important in the synthesis of preceramic polymers. This thesis will be devoted to exploring several new organosilicon polymer systems.

  18. Synthesis, spectral (IR, UV-Vis and variable temperature NMR) characterization and crystal structure of (N-benzyl-N-furfuryldithicarbamato-S,S‧)(thiocyanato-N)(triphenylphosphine)nickel(II)

    Science.gov (United States)

    Valarmathi, P.; Thirumaran, S.; Sarmal, Lovely; Kant, Rajni

    2014-08-01

    Planar (N-benzyl-N-furfuryldithiocarbamato-S,S‧)(thiocyanato-N)(triphenylphospine)nickel(II), [Ni(bfdtc)(NCS)(PPh3)], (1) was prepared from bis(N-benzyl-N-furfuryldithiocarbamato-S,S‧)nickel(II), [Ni(bfdtc)2], (2) and characterized by elemental analysis, cyclic voltammetry, electronic, IR and variable temperature 1H and 13C NMR spectra. For complex 1, the thioureide vCsbnd N value is shifted to higher wavenumber compared to 2 and N13CS2 carbon signal observed for 1 is additionally shielded compared to the parent complex 2, suggesting increased strength of the thioureide bond due to the presence of the π-accepting phosphine. In the room temperature 13C NMR spectrum of 1, two pseudo doublets are observed in the aliphatic region. Variable temperature 13C NMR spectral studies suggest that the fast thiocyanate exchange appears to be responsible for the appearance of pseudo doublets. Single crystal X-ray structural analysis of 1 and 2 confirm the presence of four coordinated nickel in a distorted square planar arrangement with the NiS2PN and NiS4 chromophores, respectively. The Nisbnd S bonds are symmetric in 2 (2.1914(14) and 2.2073(13) Å). But significant asymmetry in Nisbnd S bond distances was observed in 1 (2.2202(8) Å and 2.1841 Å). This observation clearly supports the less effective trans effect of SCN- over PPh3. Cyclic voltammetric studies revealed easier reduction of nickel(II) to nickel(I) in complex 1 compared to 2.

  19. Regulation of anthrax toxin activator gene (atxA) expression in Bacillus anthracis: temperature, not CO2/bicarbonate, affects AtxA synthesis.

    OpenAIRE

    Dai, Z; Koehler, T M

    1997-01-01

    Anthrax toxin gene expression in Bacillus anthracis is dependent on the presence of atxA, a trans-acting regulatory gene located on the resident 185-kb plasmid pXO1. In atxA+ strains, expression of the toxin genes (pag, lef, and cya) is enhanced by two physiologically significant signals: elevated CO2/bicarbonate and temperature. To determine whether increased toxin gene expression in response to these signals is associated with increased atxA expression, we monitored steady-state levels of a...

  20. Synthesis of fiber Bragg grating parameters from experimental reflectivity: a simplex approach and its application to the determination of temperature-dependent properties.

    Science.gov (United States)

    Lhommé, Frederic; Caucheteur, Christophe; Chah, Karima; Blondel, Michel; Mégret, Patrice

    2005-02-01

    A simple, accurate, and fast method to synthesize the physical parameters of a fiber Bragg grating numerically from its reflectivity is proposed and demonstrated. Our program uses the transfer matrix method and is based on a Nelder-Mead simplex optimization algorithm. It can be applied to both uniform and nonuniform (apodized and chirped) fiber Bragg gratings. The method is then used to synthesize a uniform Bragg grating from its reflectivity taken at different temperatures. It gives a good estimate of the thermal expansion coefficient and the thermo-optic coefficient of the fiber.

  1. Room-temperature synthesis of nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) with highly enhanced photocatalytic activity and stability

    OpenAIRE

    Pawar, Rajendra C.; Kang, Suhee; Park, Jung Hyun; Kim, Jong-ho; Ahn, Sunghoon; Lee, Caroline S.

    2016-01-01

    A one-dimensional (1D) nanostructure having a porous network is an exceptional photocatalytic material to generate hydrogen (H2) and decontaminate wastewater using solar energy. In this report, we synthesized nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) via a facile and template-free chemical approach at room temperature. The use of concentrated acids induced etching and lift-off because of strong oxidation and protonation. Compared with the bulk g-C3N4, the porous 1D microrod...

  2. Characterization of alumina obtained from the synthesis of gelatinous precipitates of aluminum hydroxide obtained from the reaction of aluminum sulfate and ammonium hydroxide in different temperatures; Caracterizacao de aluminas obtidas a partir da sintese de precipitados gelatinosos de hidroxido de aluminio obtidos pela reacao de sulfato de aluminio e hidroxido de amonio em diferentes temperaturas

    Energy Technology Data Exchange (ETDEWEB)

    Mercury, Jose Manuel Rivas [Centro Federal de Educacao Tecnologica do Maranhao (CEFET), Sao Luiz, MA (Brazil); Freitas Neves, R. de [Para Univ., Belem, Pa (Brazil). Dept. de Engenharia Quimica

    1996-07-01

    Aluminum hydroxide was obtained by synthesis through neutralization of solutions aluminum sulphate solutions with ammonium hydroxide at different level of temperatures of synthesis (30, 60, 90 deg C) on the molar [OH]/[Al{sup +3}] of 6,5. All products was burned at 950 deg C during two hours of dried aluminum hydroxide powder. Alumina obtained and A-16SG, APC-2011, produced by Alcoa Co. was characterized by Bulk Density, Tap density, Real Density, Particle Size Distribution, X-Ray Diffractions and Chemical Analysis and both compared. (author) 11 refs., 3 figs., 3 tabs.

  3. Room-temperature synthesis of nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) with highly enhanced photocatalytic activity and stability

    Science.gov (United States)

    Pawar, Rajendra C.; Kang, Suhee; Park, Jung Hyun; Kim, Jong-ho; Ahn, Sunghoon; Lee, Caroline S.

    2016-01-01

    A one-dimensional (1D) nanostructure having a porous network is an exceptional photocatalytic material to generate hydrogen (H2) and decontaminate wastewater using solar energy. In this report, we synthesized nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) via a facile and template-free chemical approach at room temperature. The use of concentrated acids induced etching and lift-off because of strong oxidation and protonation. Compared with the bulk g-C3N4, the porous 1D microrod structure showed five times higher photocatalytic degradation performance toward methylene blue dye (MB) under visible light irradiation. The photocatalytic H2 evolution of the 1D nanostructure (34 μmol g−1) was almost 26 times higher than that of the bulk g-C3N4 structure (1.26 μmol g−1). Additionally, the photocurrent stability of this nanoporous 1D morphology over 24 h indicated remarkable photocorrosion resistance. The improved photocatalytic activities were attributed to prolonged carrier lifetime because of its quantum confinement effect, effective separation and transport of charge carriers, and increased number of active sites from interconnected nanopores throughout the microrods. The present 1D nanostructure would be highly suited for photocatalytic water purification as well as water splitting devices. Finally, this facile and room temperature strategy to fabricate the nanostructures is very cost-effective. PMID:27498979

  4. Low temperature synthesis of CaZrO3 nanoceramics from CaCl2–NaCl molten eutectic salt

    Directory of Open Access Journals (Sweden)

    Rahman Fazli

    2015-06-01

    Full Text Available CaZrO3 nanoceramics were successfully synthesized at 700 C using the molten salt method, and the effects of processing parameters, such as temperature, holding time, and amount of salt on the crystallization of CaZrO3 were investigated. CaCl2, Na2CO3, and nano-ZrO2 were used as starting materials. On heating, CaCl2–NaCl molten eutectic salt provided a liquid medium for the reaction of CaCO3 and ZrO2 to form CaZrO3. The results demonstrated that CaZrO3 started to form at about 600C and that, after the temperature was increased to 1,000C, the amounts of CaZrO3 in the resultant powders increased with a concomitant decrease in CaCO3and ZrO2 contents. After washing with hot distilled water, the samples heated for 3 h at 700C were single-phase CaZrO3 with 90–95 nm particle size. Furthermore, the synthesized CaZrO3 particles retained the size and morphology of the ZrO2 powders which indicated that a template mechanism dominated the formation of CaZrO3 by molten-salt method.

  5. Synthesis of nano-sized ceria (CeO2 particles via a cerium hydroxy carbonate precursor and the effect of reaction temperature on particle morphology

    Directory of Open Access Journals (Sweden)

    Majid Farahmandjou

    2015-06-01

    Full Text Available Cerium oxide (CeO2 or ceria has been shown to be an interesting support material for noble metals in catalysts designed for emission control, mainly due to its oxygen storage capacity. Ceria nanoparticles were prepared by precipitation method. The precursor materials used in this research were cerium nitrate hexahydrate (as a basic material, potassium carbonate and potassium hydroxide (as precipitants. The morphological properties were characterized by high resolution transmission electron microscopy (HRTEM, scanning electron microscopy (SEM and X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR and UV-Vis spectrophotometer. XRD results showed face centered cubic CeO2 nanoparticles for annealed nanoparticles at 1000°C. SEM measurement showed that by increasing the calcinations temperature from 200 to 600°C, the crystallite size decreased from 90 to 28 nm. The SEM results showed that the size of the CeO2 nanoparticles decreased with increasing temperature. The particle size of CeO2 was around 25 nm as estimated by XRD technique and direct HRTEM observation. SEM and TEM studies showed that the morphology of the prepared powder was sphere-like with a narrow size distribution. The sharp peaks in FTIR spectrum determined the purity of CeO2 nanoparticles and absorbance peak of UV-Vis spectrum showed the small band gap energy of 3.26 ev.

  6. H2O2 Synthesis Induced by Irradiation of H2O with Energetic H(+) and Ar(+) Ions at Various Temperatures

    Science.gov (United States)

    Baragiola, R. A.; Loeffler, M. J.; Raut, U.; Vidal, R. A.; Carlson, R. W.

    2004-01-01

    The detection of H2O2 on Jupiter's icy satellite Europa by the Galileo NIMS instrument presented a strong evidence for the importance of radiation effects on icy surfaces. A few experiments have investigated whether solar flux of protons incident on Europa ice could cause a significant if any H2O2 production. These published results differ as to whether H2O2 can be formed by ions impacting water at temperatures near 80 K, which are appropriate to Europa. This discrepancy may be a result of the use of different incident ion energies, different vacuum conditions, or different ways of processing the data. The latter possibility comes about from the difficulty of identifying the 3.5 m peroxide OH band on the long wavelength wing of the much stronger water 3.1 m band. The problem is aggravated by using straight line baselines to represent the water OH band with a curvature, in the region of the peroxide band, that increases with temperature. To overcome this problem, we use polynomial baselines that provide good fits to the water band and its derivative.

  7. Room-temperature synthesis of nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) with highly enhanced photocatalytic activity and stability.

    Science.gov (United States)

    Pawar, Rajendra C; Kang, Suhee; Park, Jung Hyun; Kim, Jong-Ho; Ahn, Sunghoon; Lee, Caroline S

    2016-08-08

    A one-dimensional (1D) nanostructure having a porous network is an exceptional photocatalytic material to generate hydrogen (H2) and decontaminate wastewater using solar energy. In this report, we synthesized nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) via a facile and template-free chemical approach at room temperature. The use of concentrated acids induced etching and lift-off because of strong oxidation and protonation. Compared with the bulk g-C3N4, the porous 1D microrod structure showed five times higher photocatalytic degradation performance toward methylene blue dye (MB) under visible light irradiation. The photocatalytic H2 evolution of the 1D nanostructure (34 μmol g(-1)) was almost 26 times higher than that of the bulk g-C3N4 structure (1.26 μmol g(-1)). Additionally, the photocurrent stability of this nanoporous 1D morphology over 24 h indicated remarkable photocorrosion resistance. The improved photocatalytic activities were attributed to prolonged carrier lifetime because of its quantum confinement effect, effective separation and transport of charge carriers, and increased number of active sites from interconnected nanopores throughout the microrods. The present 1D nanostructure would be highly suited for photocatalytic water purification as well as water splitting devices. Finally, this facile and room temperature strategy to fabricate the nanostructures is very cost-effective.

  8. Room-temperature synthesis of nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) with highly enhanced photocatalytic activity and stability

    Science.gov (United States)

    Pawar, Rajendra C.; Kang, Suhee; Park, Jung Hyun; Kim, Jong-Ho; Ahn, Sunghoon; Lee, Caroline S.

    2016-08-01

    A one-dimensional (1D) nanostructure having a porous network is an exceptional photocatalytic material to generate hydrogen (H2) and decontaminate wastewater using solar energy. In this report, we synthesized nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) via a facile and template-free chemical approach at room temperature. The use of concentrated acids induced etching and lift-off because of strong oxidation and protonation. Compared with the bulk g-C3N4, the porous 1D microrod structure showed five times higher photocatalytic degradation performance toward methylene blue dye (MB) under visible light irradiation. The photocatalytic H2 evolution of the 1D nanostructure (34 μmol g-1) was almost 26 times higher than that of the bulk g-C3N4 structure (1.26 μmol g-1). Additionally, the photocurrent stability of this nanoporous 1D morphology over 24 h indicated remarkable photocorrosion resistance. The improved photocatalytic activities were attributed to prolonged carrier lifetime because of its quantum confinement effect, effective separation and transport of charge carriers, and increased number of active sites from interconnected nanopores throughout the microrods. The present 1D nanostructure would be highly suited for photocatalytic water purification as well as water splitting devices. Finally, this facile and room temperature strategy to fabricate the nanostructures is very cost-effective.

  9. Room temperature biogenic synthesis of multiple nanoparticles (Ag, Pd, Fe, Rh, Ni, Ru, Pt, Co, and Li) by Pseudomonas aeruginosa SM1

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Sarvesh Kumar; Constanti, Magda, E-mail: magdalena.constanti@urv.cat [Universitat Rovira i Virgili, Departament d' Enginyeria Quimica (Spain)

    2012-03-15

    Room temperature biosynthesis of Ag, Pd, Fe, Rh, Ni, Ru, Pt, Co, and Li nanoparticles was achieved using Pseudomonas aeruginosa SM1 without the addition of growth media, electron donors, stabilizing agents, preparation of cell/cell-free extract or temperature, and pH adjustments. The resulting nanoparticles were characterized by Transmission electron microscopy and X-ray diffraction. It was observed that P. aeruginosa SM1 is capable of producing both intracellular (Co and Li) and extracellular (Ag, Pd, Fe, Rh, Ni, Ru, and Pt) nanoparticles in both crystalline and amorphous state. The FT-IR spectra clearly showed the presence of primary and secondary amines which may be responsible for the reduction and subsequent stabilization of the resulting extracellular nanoparticles which were obtained as a one-step process. This suggests toward an unknown 'selection mechanism' that reduces certain metal ions and allows others to enter the cell membrane. Finally, in this first of its kind study, single strain of bacteria was used to produce several different mono-metallic nanoparticles.

  10. Organic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, S.E.

    1991-01-01

    This paper reports on reactions of organoboranes. Organoboron routes to unsaturated hydrocarbons. Boronic ester homologation. Properties of organosilicon compounds. Alkene synthesis (Peterson olefination). Allylsilanes and acylsilanes.

  11. Sm doped mesoporous CeO2 nanocrystals: aqueous solution-based surfactant assisted low temperature synthesis, characterization and their improved autocatalytic activity.

    Science.gov (United States)

    Mandal, Bappaditya; Mondal, Aparna; Ray, Sirsendu Sekhar; Kundu, Amar

    2016-01-28

    Mesoporous Sm(3+) doped CeO2 (Ce-Sm) with a nanocrystalline framework, a high content of Ce(3+) and surface area (184 m(2) g(-1)), have been synthesized through a facile aqueous solution-based surfactant assisted route by using inorganic precursors and sodium dodecyl sulphate as a template. The XRD results indicate that the calcined Ce-Sm and even the as-prepared material have a cubic fluorite structure of CeO2 with no crystalline impurity phase. XRD studies along with HRTEM results confirmed the formation of mesoporous nanocrystalline CeO2 at a lower temperature as low as 100 °C. A detailed analysis revealed that Sm(3+) doping in CeO2 has increased the lattice volume, surface area, mesopore volume and engineered the surface defects. Higher concentrations of Ce(3+) and oxygen vacancies of Ce-Sm resulted in lowering of the band gap. It is evident from the H2-TPR results that Sm(3+) doping in CeO2 strongly modified the reduction behavior of CeO2 by shifting the bulk reduction at a much lower temperature, indicating increased oxygen mobility in the sample which enables enhanced oxygen diffusion at lower temperatures, thus promoting reducibility, i.e., the process of Ce(4+)→ Ce(3+). UV-visible transmission studies revealed improved autocatalytic performance due to easier Ce(4+)/Ce(3+) recycling in the Sm(3+) doped CeO2 nanoparticles. From the in vitro cytotoxicity of both pure CeO2 and Sm(3+) doped CeO2 calcined at 500 °C in a concentration as high as 100 μg mL(-1) (even after 120 h) on MG-63 cells, no obvious decrease in cell viability is observed, confirming their excellent biocompatibility. The presence of an increased amount of surface hydroxyl groups, mesoporosity, and surface defects have contributed towards an improved autocatalytic activity of mesoporous Ce-Sm, which appear to be a potential candidate for biomedical (antioxidant) applications.

  12. Low temperature synthesis of α-Al2O3 films by high-power plasma-assisted chemical vapour deposition

    Science.gov (United States)

    Jiang, Kaiyun; Sarakinos, Kostas; Konstantinidis, Stephanos; Schneider, Jochen M.

    2010-08-01

    In this study, we deposit Al2O3 films using plasma-assisted chemical vapour deposition (PACVD) in an Ar-H2-O2-AlCl3 atmosphere. A novel generator delivering approximately 4 times larger power densities than those conventionally employed in PACVD enabling efficient AlCl3 dissociation in the gas phase as well as a more intense energetic bombardment of the growing film is utilized. We demonstrate that these deposition conditions allow for the growth of dense α-Al2O3 films with negligible Cl incorporation and elastic properties similar to those of the bulk α-Al2O3 at a temperature of 560 ± 10 °C.

  13. Synthesis and characterization polymer composites prepared by low-temperature post-irradiation polymerization of C2F4 in the presence of graphene-like material

    International Nuclear Information System (INIS)

    Shulga, Y.M.; Kiryukhin, D.P.; Vasilets, V.N.

    2015-01-01

    Polymer polytetrafluoroethylene (Ptfe)-microwave exfoliated graphene oxide (MEGO) composites containing up to 80 wt.% PTFE were prepared by low-temperature post-irradiation polymerization of C 2 F 4 in the presence of the graphene-like material. Composites were characterized by elemental analysis, XPS, NMR, and DSC techniques. The melting point of PTFE in the composite (332.5°C) was higher than that of pure PTFE by 8.8°C. The measured values of the melting enthalpy (ΔHm=51.5 and 45.4 J/g) were used to calculate the extent of crystallinity in the PTFE and PTFE-MEGO composite (0.63 and 0.55, respectively). No - CF 3 end groups typical of commercial PTFE have been detected in the PTFE-MEGO composites. (authors)

  14. Solid state synthesis of tin-doped ZnO at room temperature: Characterization and its enhanced gas sensing and photocatalytic properties

    International Nuclear Information System (INIS)

    Jia, Xiaohua; Fan, Huiqing; Afzaal, Mohammad; Wu, Xiangyang; O'Brien, Paul

    2011-01-01

    Highlights: → A room temperature solid-state reaction was used to prepare crystalline tin-doped ZnO. → The obtained products were well-dispersed, which is attributed to the difference in sizes between Zn and Sn atoms and the change of pH value. → Gas response of sample S4 to ethanol vapor can reach 124. The same sample exhibit photocatalysis characteristics to methyl orange (MO) solution. - Abstract: A room temperature solid-state reaction has been used to prepare crystalline tin-doped ZnO. Zinc nitrate hexahydrate, cetyltrimethyl ammonium bromide, stannic chloride pentahydrate and sodium hydroxide with proper ratios were ground together. As-synthesized samples were characterized by inductively coupled plasma analysis (ICP), scanning electron microscopy (SEM) and X-ray powder diffraction (XRD); The products were of different morphologies, well dispersed and exhibited good crystallinity, it is also found that the growth direction and morphology of ZnO depend on the amount of Sn doped, which is mainly caused by the difference in sizes between Zn and Sn atoms as well as the change of pH value. Moreover, gas sensing and photocatalytic properties of the obtained products were studied. The materials showed a high gas response to ethanol vapor, and the gas response can reach a maximum of R a /R g = 124. In addition, tin-doped ZnO materials exhibited improved photocatalytic performance toward methyl orange (MO) solution under a current density of 0.03 mg L -1 comparison with undoped ZnO.

  15. Fire Synthesis

    Indian Academy of Sciences (India)

    1000ºC or special infrastructure which require careful maintenance. In such a situation fire synthesis is a simpler method that can be adopted for the bulk production of high purity alumina and related oxides. Fire Synthesis. Preparation of Alumina ...

  16. Microstructure evolution and mechanical properties of Ni{sub 3}Al/Al{sub 2}O{sub 3} composite during self-propagation high-temperature synthesis and hot extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, L.Y., E-mail: lysheng@yeah.net [PKU-HKUST ShenZhen-Hong Kong Institution, Shenzhen 518057 (China); College of Engineering, Peking University, Beijing 100871 (China); Yang, F. [Shenzhen Airlines, Shenzhen Bao' an International Airport, Shenzhen 518128 (China); Xi, T.F. [PKU-HKUST ShenZhen-Hong Kong Institution, Shenzhen 518057 (China); Guo, J.T.; Ye, H.Q. [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2012-10-15

    The Ni{sub 3}Al/Al{sub 2}O{sub 3} composite was fabricated by self-propagation high-temperature synthesis with and without hot extrusion methods. Its microstructure and mechanical properties were investigated by using combination of optical microscope, transmission electron microscope and compression test. The results show that the Ni{sub 3}Al/Al{sub 2}O{sub 3} composite without hot extrusion has relative coarse microstructure, which contains {gamma}-Ni and Ni{sub 4}Al{sub 3} phases along the Ni{sub 3}Al phase boundary. In addition, {kappa}-Al{sub 2}O{sub 3}, {theta}-Al{sub 2}O{sub 3}, {alpha}-Al{sub 2}O{sub 3} and cavities are observed in the composite without hot extrusion, which segregate greatly in original powder boundary. The hot extrusion process densifies the composite; eliminates the element segregation and redistributes Al{sub 2}O{sub 3} particles homogeneously. Moreover fine Ni{sub 3}Al crystalline with high density of dislocations and twinned Ni{sub 3}Al crystals are observed in the extruded part. The hot extrusion improves the mechanical properties of the Ni{sub 3}Al/Al{sub 2}O{sub 3} composite significantly, especially its ductility.

  17. Solid-state-reaction synthesis of cotton-like CoB alloy at room temperature as a catalyst for hydrogen generation.

    Science.gov (United States)

    Wang, Xingpu; Liao, Jinyun; Li, Hao; Wang, Hui; Wang, Rongfang

    2016-08-01

    A novel room-temperature solid-state reaction is developed to synthesize cotton-like CoB alloy (CoBSSR) catalysts with a large specific surface area of 222.4m(2)g(-1). In the hydrolysis of ammonia borane catalyzed by the CoBSSR, the rate of hydrogen generation can reach 68.7mLmin(-1) with a turnover frequency (TOF) value of ca. 6.9Lhydrogenmin(-1)gcatalyst(-1) at 25°C. The TOF value is about 2 times as large as that of CoB alloy prepared by a regular solid-state reaction, which is also much higher than those of the CoB catalysts recently reported in the literature. The activation energy of the hydrolysis of ammonia borane catalyzed by the CoBSSR is as low as 22.78kJmol(-1), hinting that the CoBSSR possesses high catalytic activity, which may be attributed to the large specific surface area and the abundant porous structure. The high catalytic performance, good recoverability and low cost of the CoBSSR enable it to be a promissing catalyst condidate in the hydrolysis of ammonia borane for hydrogen production in commercial application. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Synthesis of Nanocrystalline SnOx (x = 1–2 Thin Film Using a Chemical Bath Deposition Method with Improved Deposition Time, Temperature and pH

    Directory of Open Access Journals (Sweden)

    Zulkarnain Zainal

    2011-09-01

    Full Text Available Nanocrystalline SnOx (x = 1–2 thin films were prepared on glass substrates by a simple chemical bath deposition method. Triethanolamine was used as complexing agent to decrease time and temperature of deposition and shift the pH of the solution to the noncorrosive region. The films were characterized for composition, surface morphology, structure and optical properties. X-ray diffraction analysis confirms that SnOx thin films consist of a polycrystalline structure with an average grain size of 36 nm. Atomic force microscopy studies show a uniform grain distribution without pinholes. The elemental composition was evaluated by energy dispersive X-ray spectroscopy. The average O/Sn atomic percentage ratio is 1.72. Band gap energy and optical transition were determined from optical absorbance data. The film was found to exhibit direct and indirect transitions in the visible spectrum with band gap values of about 3.9 and 3.7 eV, respectively. The optical transmittance in the visible region is 82%. The SnOx nanocrystals exhibit an ultraviolet emission band centered at 392 nm in the vicinity of the band edge, which is attributed to the well-known exciton transition in SnOx. Photosensitivity was detected in the positive region under illumination with white light.

  19. Synthesis of LaCoO{sub 3} nano-powders by aqueous gel-casting for intermediate temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chia Siang; Zhang, Lan; Jiang, San Ping [School of Mechanical and Aerospace Engineering, Nanyang Technological University (Singapore); Zhang, Yu.Jun [Key Lab for Liquid Structure and Heredity of Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan (China)

    2008-04-15

    LaCoO{sub 3} (LC) perovskite powders for intermediate temperature solid oxide fuel cells (IT-SOFCs) are synthesized by a simple and cost-effective aqueous gel-casting technique using metal nitrates as raw materials. Effect of the ratio of organic precursors (acrylamide (AM) monomer and N,N'-Methylenebisacrylamide (MBAM) crosslinker) to metal nitrates (lanthanum nitrate, cobalt nitrate) and the ratio of AM to MBAM on the particle size are investigated in detail. TEM results indicate that the particle size of LC nano-powders is in the range of 31-60 nm and decreases with increasing ratio of organic precursor to metal nitrates but is not affected by the ratio of AM to MBAM. Preliminary results show that the nano-structured electrode approach based on wet impregnation is effective to combine the high electrocatalytic activity of LC nano-powders and the structural stability of La{sub 0.72}Sr{sub 0.18}MnO{sub 3} {sub -} {sub {delta}} (LSM) electrodes for the development of IT-SOFC cathodes. (author)

  20. Temperature effects during Ostwald ripening on structural and bandgap properties of TiO{sub 2} nanoparticles prepared by sonochemical synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Reyes, L., E-mail: lgr@correo.azc.uam.mx [Instituto de Ciencia y Tecnologia del Distrito Federal, ICyTDF. Republica de Chile 6, Centro 06010, Mexico D.F. (Mexico); Universidad Autonoma Metropolitana-A, Departamento de Ciencias Basicas, Av. Sn. Pablo No. 180, Mexico 02200 D.F. (Mexico); Hernandez-Perez, I., E-mail: ihp@correo.azc.uam.mx [Universidad Autonoma Metropolitana-A, Departamento de Ciencias Basicas, Av. Sn. Pablo No. 180, Mexico 02200 D.F. (Mexico); Diaz-Barriga Arceo, L.; Dorantes-Rosales, H.; Arce-Estrada, E. [Instituto Politecnico Nacional, Departamento de Ingenieria Metalurgica y Materiales, ESIQIE-UPALM, Mexico 07738 D.F. (Mexico); Suarez-Parra, R. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico. Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos 62580 (Mexico); Cruz-Rivera, J.J. [Instituto de Metalurgia-Facultad de Ingenieria, UASLP, San Luis Potosi (Mexico)

    2010-11-15

    Anatase TiO{sub 2} nanocrystalline (6 nm) with BET specific surface area of 300 m{sup 2}/g and direct bandgap of 3.31 eV were prepared sonochemically and then it was subjected to thermal treatment from 400 to 900 deg. C for 2 h, in order to produce variable anatase-rutile ratio. Three stages were considered in the samples thermally treated: (i) anatase grains coarsening as a result of heat treatment temperature increasing the structural homogeneity and crystallinity and both phenomena produce a reduction in the specific surface area, (ii) coexistence of two phases (anatase and rutile) separated by a transition region, called an interface, and (iii) process where the rutile grains evolve into a new equilibrium shape without the presence of anatase phase, minimizing the total surface and the grain boundary energies, by mass transport diffusion. In this last stage the rutile phase has the sole function of growth and densification. The structure evolution, morphology and microstructure characteristics were obtained by X-ray diffraction (XRD) and transmission electron microscopy (TEM). All the stages of phase transformation are subject to thermal effects that stem from the redistribution of energy in the system. The UV-vis absorption spectra show that direct and indirect transitions can take place in the same sample simultaneously. This is attributed to the combined effect of samples with variable anatase-rutile ratio and particle size effect.