WorldWideScience

Sample records for temperature history device

  1. Development of temperature history device for measurement of FBR's irradiation environment

    CERN Document Server

    Abe, K; Satou, M; Tobita, K

    2002-01-01

    New surface modification and machining process which control swelling and exfoliation using rare gas ion beam had been developed. An attempt to make a memory device for temperature history was carried out using the process. As a prototype of the memory, array of the temperature monitor consist of thousand of small bulges was made on the surface of silicon carbide substrate. Baseline properties, which would be needed for the temperature monitor materials were examined. Microstructure observation of the swelling region was carried out by transmission electron microscopy. Mechanism of the changing of the surface morphology due to heating was discussed. Depending on temperature region, it was proposed that two mechanisms could be utilized for the temperature memory device. First one was surface exfoliation due to internal pressure of the implanted gas and second was surface exfoliation due to internal stress which caused by volume shrinking with thermal recovery process.

  2. High temperature measuring device

    Science.gov (United States)

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  3. Temperature Measurement and Monitoring Devices

    Science.gov (United States)

    1988-08-01

    feasibility based on potential usefulness in clinical medicine ’ias explored. All information herein wasn obtained from literature rrv’iew only. No...measurements, applications for temperature measuring devices, and description of several modern body temperature monitoring devices (techniques). Finally...gynecology, drug therapy, and ophthalmology. TEMPERATURE SENSING DEVICES Hippocrates is believed to be the first person Lo associate body temperature as

  4. Temperature differential detection device

    Science.gov (United States)

    Girling, P.M.

    1986-04-22

    A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions. 2 figs.

  5. TIME TEMPERATURE INTEGRATION DEVICE

    Science.gov (United States)

    JET ENGINES, * THERMOCOUPLES , AGING(PHYSIOLOGY), BONDING, CHROMIUM, ELECTRICAL CONDUCTIVITY, EXHAUST GASES, GOLD, IRON, MANUFACTURING, MEASUREMENT...PALLADIUM, PLATINUM, PREPARATION, ELECTRICAL RESISTANCE, SILVER, THERMAL DIFFUSION, THIN FILM STORAGE DEVICES , TURBOFAN ENGINES.

  6. Time temperature indicators as devices intelligent packaging

    Directory of Open Access Journals (Sweden)

    Adriana Pavelková

    2013-01-01

    Full Text Available Food packaging is an important part of food production. Temperature is a one of crucial factor which affecting the quality and safety of food products during distribution, transport and storage. The one way of control of food quality and safety is the application of new packaging systems, which also include the intelligent or smart packaging. Intelligent packaging is a packaging system using different indicators for monitoring the conditions of production, but in particular the conditions during transport and storage. Among these indicators include the time-temperature indicators to monitor changes in temperature, which is exposed the product and to inform consumers about the potential risks associated with consumption of these products. Time temperature indicators are devices that show an irreversible change in a physical characteristic, usually color or shape, in response to temperature history. Some are designed to monitor the evolution of temperature with time along the distribution chain and others are designed to be used in the consumer packages.

  7. Thermal History Devices, Systems For Thermal History Detection, And Methods For Thermal History Detection

    KAUST Repository

    Caraveo Frescas, Jesus Alfonso

    2015-05-28

    Embodiments of the present disclosure include nanowire field-effect transistors, systems for temperature history detection, methods for thermal history detection, a matrix of field effect transistors, and the like.

  8. 21 CFR 820.184 - Device history record.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Device history record. 820.184 Section 820.184 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES QUALITY SYSTEM REGULATION Records § 820.184 Device history record. Each manufacturer shall...

  9. Temperature histories from tree rings and corals

    Energy Technology Data Exchange (ETDEWEB)

    Cook, E.R. [Tree-Ring Lab., Palisades, NY (United States)

    1995-05-01

    Recent temperature trends in long tree-ring and coral proxy temperature histories are evaluated and compared in an effort to objectively determine how anomalous twentieth century temperature changes have been. These histories mostly reflect regional variations in summer warmth from the tree rings and annual warmth from the corals. In the Northern Hemisphere. the North American tree-ring temperature histories and those from the north Polar Urals, covering the past 1000 or more years, indicate that the twentieth century has been anomalously warm relative to the past. In contrast, the tree-ring history from northern Fennoscandia indicates that summer temperatures during the {open_quote}Medieval Warm Period{close_quote} were probably warmer on average than those than during this century. In the Southern Hemisphere, the tree-ring temperature histories from South America show no indication of recent warming, which is in accordance with local instrumental records. In contrast, the tree-ring, records from Tasmania and New Zealand indicate that the twentieth century has been unusually warm particularly since 1960. The coral temperature histories from the Galapagos Islands and the Great Barrier Reef are in broad agreement with the tree-ring temperature histories in those sectors, with the former showing recent cooling and the latter showing recent warming that may be unprecedented. Overall, the regional temperature histories evaluated here broadly support the larger-scale evidence for anomalous twentieth century warming based on instrumental records. However, this warming cannot be confirmed as an unprecedented event in all regions. 38 refs., 3 figs., 2 tabs.

  10. Managing Perishables with Time and temperature History

    NARCIS (Netherlands)

    Ketzenberg, M.; Bloemhof, J.M.; Gaukler, G.

    2015-01-01

    We address the use and value of time and temperature information to manage perishables in the contextof a retailer that sells a random lifetime product subject to stochastic demand and lost sales. The product’s lifetime is largely determined by the temperature history and the flow time through the

  11. Temperature monitoring device and thermocouple assembly therefor

    Science.gov (United States)

    Grimm, Noel P.; Bauer, Frank I.; Bengel, Thomas G.; Kothmann, Richard E.; Mavretish, Robert S.; Miller, Phillip E.; Nath, Raymond J.; Salton, Robert B.

    1991-01-01

    A temperature monitoring device for measuring the temperature at a surface of a body, composed of: at least one first thermocouple and a second thermocouple; support members supporting the thermocouples for placing the first thermocouple in contact with the body surface and for maintaining the second thermocouple at a defined spacing from the body surface; and a calculating circuit connected to the thermocouples for receiving individual signals each representative of the temperature reading produced by a respective one of the first and second thermocouples and for producing a corrected temperature signal having a value which represents the temperature of the body surface and is a function of the difference between the temperature reading produced by the first thermocouple and a selected fraction of the temperature reading provided by the second thermocouple.

  12. Organic Materials for Time-Temperature Integrator Devices.

    Science.gov (United States)

    Cavallini, Massimiliano; Melucci, Manuela

    2015-08-12

    Time-temperature integrators (TTIs) are devices capable of recording the thermal history of a system. They have an enormous impact in the food and pharmaceutical industries. TTIs exploit several irreversible thermally activated transitions such as recrystallization, dewetting, smoothening, chemical decomposition, and polymorphic transitions, usually considered drawbacks for many technological applications. The aim of this article is to sensitize research groups working in organic synthesis and surface science toward TTI devices, enlarging the prospects of many new materials. We reviewed the principal applications highlighting the need and criticisms of TTIs, which offer a new opportunity for the development of many materials.

  13. Statistics of particle time-temperature histories.

    Energy Technology Data Exchange (ETDEWEB)

    Hewson, John C.; Lignell, David O.; Sun, Guangyuan

    2014-10-01

    Particles in non - isothermal turbulent flow are subject to a stochastic environment tha t produces a distribution of particle time - temperature histories. This distribution is a function of the dispersion of the non - isothermal (continuous) gas phase and the distribution of particles relative to that gas phase. In this work we extend the one - dimensional turbulence (ODT) model to predict the joint dispersion of a dispersed particle phase and a continuous phase. The ODT model predicts the turbulent evolution of continuous scalar fields with a model for the cascade of fluctuations to smaller sc ales (the 'triplet map') at a rate that is a function of the fully resolved one - dimens ional velocity field . Stochastic triplet maps also drive Lagrangian particle dispersion with finite Stokes number s including inertial and eddy trajectory - crossing effect s included. Two distinct approaches to this coupling between triplet maps and particle dispersion are developed and implemented along with a hybrid approach. An 'instantaneous' particle displacement model matches the tracer particle limit and provide s an accurate description of particle dispersion. A 'continuous' particle displacement m odel translates triplet maps into a continuous velocity field to which particles respond. Particles can alter the turbulence, and modifications to the stochastic rate expr ession are developed for two - way coupling between particles and the continuous phase. Each aspect of model development is evaluated in canonical flows (homogeneous turbulence, free - shear flows and wall - bounded flows) for which quality measurements are ava ilable. ODT simulations of non - isothermal flows provide statistics for particle heating. These simulations show the significance of accurately predicting the joint statistics of particle and fluid dispersion . Inhomogeneous turbulence coupled with the in fluence of the mean flow fields on particles of varying properties

  14. Bias temperature instability for devices and circuits

    CERN Document Server

    2014-01-01

    This book provides a single-source reference to one of the more challenging reliability issues plaguing modern semiconductor technologies, negative bias temperature instability.  Readers will benefit from state-of-the art coverage of research in topics such as time dependent defect spectroscopy, anomalous defect behavior, stochastic modeling with additional metastable states, multiphonon theory, compact modeling with RC ladders and implications on device reliability and lifetime.  ·         Enables readers to understand and model negative bias temperature instability, with an emphasis on dynamics; ·         Includes coverage of DC vs. AC stress, duty factor dependence and bias dependence; ·         Explains time dependent defect spectroscopy, as a measurement method that operates on nanoscale MOSFETs; ·         Introduces new defect model for metastable defect states, nonradiative multiphonon theory and stochastic behavior.

  15. 46 CFR 154.1340 - Temperature measuring devices.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Temperature measuring devices. 154.1340 Section 154.1340... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Instrumentation § 154.1340 Temperature measuring devices. (a) Each cargo tank must have devices that measure the...

  16. Statistics of particle time-temperature histories :

    Energy Technology Data Exchange (ETDEWEB)

    Hewson, John C.; Gin, Craig; Lignell, David O.; Sun, Guangyuan

    2013-10-01

    Progress toward predictions of the statistics of particle time-temperature histories is presented. These predictions are to be made using Lagrangian particle models within the one-dimensional turbulence (ODT) model. In the present reporting period we have further characterized the performance, behavior and capabilities of the particle dispersion models that were added to the ODT model in the first period. We have also extended the capabilities in two manners. First we provide alternate implementations of the particle transport process within ODT; within this context the original implementation is referred to as the type-I and the new implementations are referred to as the type-C and type-IC interactions. Second we have developed and implemented models for two-way coupling between the particle and fluid phase. This allows us to predict the reduced rate of turbulent mixing associated with particle dissipation of energy and similar phenomena. Work in characterizing these capabilities has taken place in homogeneous decaying turbulence, in free shear layers, in jets and in channel flow with walls, and selected results are presented.

  17. Temperature dependence of a silicon power device switching parameters

    Science.gov (United States)

    Habchi, R.; Salame, C.; Khoury, A.; Mialhe, P.

    2006-04-01

    This study presents measurements of device switching parameters performed on a commercial power metal-oxide-semiconductor field-effect transistor under high-temperature conditions. Measured switching times show that the device response to being turned off becomes faster at high temperatures. The inverse drain-source current rapidly increases above the 300°C limit. I-V curves indicate that the saturation current in the channel increases with temperature.

  18. Note: Motor-piezoelectricity coupling driven high temperature fatigue device

    Science.gov (United States)

    Ma, Z. C.; Du, X. J.; Zhao, H. W.; Ma, X. X.; Jiang, D. Y.; Liu, Y.; Ren, L. Q.

    2018-01-01

    The design and performance evaluation of a novel high temperature fatigue device simultaneously driven by servo motor and piezoelectric actuator is our focus. The device integrates monotonic and cyclic loading functions with a maximum tensile load of 1800 N, driving frequency of 50 Hz, alternating load of 95 N, and maximum service temperature of 1200 °C. Multimodal fatigue tests with arbitrary combinations of static and dynamic loads are achieved. At temperatures that range from RT to 1100 °C, the tensile and tensile-fatigue coupling mechanical behaviors of UM Co50 alloys are investigated to verify the feasibility of the device.

  19. Temperature and precipitation history of the Arctic

    DEFF Research Database (Denmark)

    Miller, G. H.; Brigham-Grette, J.; Alley, R. B.

    2010-01-01

    its present extent. With the loss of land ice, sea level was about 5 m higher than present, with the extra melt coming from both Greenland and Antarctica as well as small glaciers. The Last Glacial Maximum (LGM) peaked w21 ka ago, when mean annual temperatures over parts of the Arctic were as much...

  20. Temperature Dependent Models of Semiconductor Devices for ...

    African Journals Online (AJOL)

    The paper presents an investigation of the temperature dependent model of a diode and bipolar transistor built-in to the NAP-2 program and comparison of these models with experimentally measured characteristics of the BA 100 diode and BC 109 transistor. The detail of the modelling technique has been discussed and ...

  1. Correlation of Handheld Infrared Skin Thermometer and Infrared Videothermography Device for Measurement of Corneal Temperature.

    Science.gov (United States)

    Oztas, Zafer; Barut Selver, Ozlem; Akkin, Cezmi; Canturk, Ecem; Afrashi, Filiz

    2016-05-01

    In our study, we aimed to investigate the correlation of handheld infrared skin thermometer and videothermography device for the measurement of corneal temperature. Forty healthy individuals (80 eyes) were enrolled to the study. Participants underwent a detailed ophthalmologic examination and medical history review for excluding any ocular and systemic diseases. The measurements of the central corneal temperature were performed in a room having constant temperature, humidity, and brightness levels. To avoid any variability, all the temperature measurements were performed in the same examination room by a single examiner. The temperature was measured with a handheld infrared skin thermometer (MEDISANA, FTN) from the corneal surface. The same instrument was also used to measure the subjects' body temperature. Moreover, the subjects underwent the corneal temperature measurement by a noncontact videothermography device (Optris PI 450; Optris GmbH). The male to female ratio was 19:21 among the subjects. The mean age was 25.1±4.7 years. The mean body temperature was 36.93±0.33°C. The mean corneal temperatures measured by the handheld infrared skin thermometer and the ocular videothermography device were 36.94±0.28°C and 35.61±0.61°C, respectively (Ptemperature difference was 1.34±0.57°C, with a 95% confidence interval. There was a moderate correlation between the corneal temperatures measured by the 2 devices in the right, the left eyes, and both eyes, respectively (P=0.450, 0.539, 0.490). Handheld infrared skin thermometers can be used for the evaluation of the corneal temperature. These devices may provide a simple, practical, and cheaper way to detect the corneal temperature, and the widely performed corneal temperature measurements may afford us to understand the temperature variability in numerous ocular conditions in a better way.

  2. Room-Temperature Skyrmion Shift Device for Memory Application.

    Science.gov (United States)

    Yu, Guoqiang; Upadhyaya, Pramey; Shao, Qiming; Wu, Hao; Yin, Gen; Li, Xiang; He, Congli; Jiang, Wanjun; Han, Xiufeng; Amiri, Pedram Khalili; Wang, Kang L

    2017-01-11

    Magnetic skyrmions are intensively explored for potential applications in ultralow-energy data storage and computing. To create practical skyrmionic memory devices, it is necessary to electrically create and manipulate these topologically protected information carriers in thin films, thus realizing both writing and addressing functions. Although room-temperature skyrmions have been previously observed, fully electrically controllable skyrmionic memory devices, integrating both of these functions, have not been developed to date. Here, we demonstrate a room-temperature skyrmion shift memory device, where individual skyrmions are controllably generated and shifted using current-induced spin-orbit torques. Particularly, it is shown that one can select the device operation mode in between (i) writing new single skyrmions or (ii) shifting existing skyrmions by controlling the magnitude and duration of current pulses. Thus, we electrically realize both writing and addressing of a stream of skyrmions in the device. This prototype demonstration brings skyrmions closer to real-world computing applications.

  3. Predation life history responses to increased temperature variability.

    Directory of Open Access Journals (Sweden)

    Miguel Barbosa

    Full Text Available The evolution of life history traits is regulated by energy expenditure, which is, in turn, governed by temperature. The forecasted increase in temperature variability is expected to impose greater stress to organisms, in turn influencing the balance of energy expenditure and consequently life history responses. Here we examine how increased temperature variability affects life history responses to predation. Individuals reared under constant temperatures responded to different levels of predation risk as appropriate: namely, by producing greater number of neonates of smaller sizes and reducing the time to first brood. In contrast, we detected no response to predation regime when temperature was more variable. In addition, population growth rate was slowest among individuals reared under variable temperatures. Increased temperature variability also affected the development of inducible defenses. The combined effects of failing to respond to predation risk, slower growth rate and the miss-match development of morphological defenses supports suggestions that increased variability in temperature poses a greater risk for species adaptation than that posed by a mean shift in temperature.

  4. Physics and performance of nanoscale semiconductor devices at cryogenic temperatures

    Science.gov (United States)

    Balestra, F.; Ghibaudo, G.

    2017-02-01

    The physics and performance of various advanced semiconductor devices, which are the most promising for the end of the ITRS roadmap, are investigated in a wide temperature range down to 20 K. The transport parameters in front and/or back channels in fully depleted ultrathin film SOI devices, Trigate, FinFET, Omega-gate nanowire FET and 3D-stacked SiGe nanowire FETs, fabricated with high-k dielectrics/metal gate, elevated source/drain, different channel orientations, shapes and strains, are addressed. The impacts of the gate length, Si film and wire diameter down to 10 nm, are also shown. The variations of the phonon, Coulomb, neutral defects and surface roughness scattering as a function of temperature and device architecture are highlighted. An overview of the influence of temperature on other main electrical parameters of MOSFETs, nanowires FETs and tunnel FETs, such as threshold voltage, subthreshold swing, leakage and driving currents is also given.

  5. Temperature and Dilatation Estimation for Modern Semiconductor Devices

    Directory of Open Access Journals (Sweden)

    Eric JOUBERT

    2015-01-01

    Full Text Available This paper presents a new approach for measuring physical variables on micro- electronic components. An optical system is used to simultaneously quantify the surface temperature of a component and its expansion. This double acquisition is realized by a Michelson interferometer coupled with a Charge Coupled Device (CCD line device. To validate this method, the temperature measurements were directly compared with the results obtained by an infrared camera and by a measurement of variation of I (V. The displacement measurements were compared with those obtained by a laser 3D vibrometer, whose physical principle is completely different. Consistent results were obtained regarding the different techniques.

  6. Towards a quantum network of room temperature quantum devices

    Science.gov (United States)

    Jordaan, Bertus; Shahrokhshahi, Reihaneh; Namazi, Mehdi; Goham, Connor; Figueroa, Eden

    2017-04-01

    Progressing quantum technologies to room temperature operation is key to unlock the potential and economical viability of novel many-device architectures. Along these lines, warm vapor alleviates the need for laser trapping and cooling in vacuum or cooling to cryogenic temperatures. Here we report our progress towards building a prototypical quantum network, containing several high duty cycle room-temperature quantum memories interconnected using high rate single photon sources. We have already demonstrated important capabilities, such as memory-built photon-shaping techniques, compatibility with BB84-like quantum communication links, and the possibility of interfacing with low bandwidth (MHz range), cavity enhanced, SPDC-based photon source tuned to the Rb transitions. This body of works suggest that an elementary quantum network of room temperature devices is already within experimental reach.

  7. Rational synthetic combination genetic devices boosting high temperature ethanol fermentation

    Directory of Open Access Journals (Sweden)

    Huan Sun

    2017-06-01

    Full Text Available The growth and production of yeast in the industrial fermentation are seriously restrained by heat stress and exacerbated by heat induced oxidative stress. In this study, a novel synthetic biology approach was developed to globally boost the viability and production ability of S. cerevisiae at high temperature through rationally designing and combing heat shock protein (HSP and superoxide dismutase (SOD genetic devices to ultimately synergistically alleviate both heat stress and oxidative stress. HSP and SOD from extremophiles were constructed to be different genetic devices and they were preliminary screened by heat resistant experiments and anti-oxidative experiments, respectively. Then in order to customize and further improve thermotolerance of S. cerevisiae, the HSP genetic device and SOD genetic device were rationally combined. The results show the simply assemble of the same function genetic devices to solve heat stress or oxidative stress could not enhance the thermotolerance considerably. Only S. cerevisiae with the combination genetic device (FBA1p-sod-MB4-FBA1p-shsp-HB8 solving both stress showed 250% better thermotolerance than the control and displayed further 55% enhanced cell density compared with the strains with single FBA1p-sod-MB4 or FBA1p-shsp-HB8 at 42 °C. Then the most excellent combination genetic device was introduced into lab S. cerevisiae and industrial S. cerevisiae for ethanol fermentation. The ethanol yields of the two strains were increased by 20.6% and 26.3% compared with the control under high temperature, respectively. These results indicate synergistically defensing both heat stress and oxidative stress is absolutely necessary to enhance the thermotolerance and production of S. cerevisiae.

  8. Integrated Microfibre Device for Refractive Index and Temperature Sensing

    Directory of Open Access Journals (Sweden)

    Sulaiman W. Harun

    2012-08-01

    Full Text Available A microfibre device integrating a microfibre knot resonator in a Sagnac loop reflector is proposed for refractive index and temperature sensing. The reflective configuration of this optical structure offers the advantages of simple fabrication and ease of sensing. To achieve a balance between responsiveness and robustness, the entire microfibre structure is embedded in low index Teflon, except for the 0.5–2 mm diameter microfibre knot resonator sensing region. The proposed sensor has exhibited a linear spectral response with temperature and refractive index. A small change in free spectral range is observed when the microfibre device experiences a large refractive index change in the surrounding medium. The change is found to be in agreement with calculated results based on dispersion relationships.

  9. Thin Film Materials and Devices for Resistive Temperature Sensing Applications

    Science.gov (United States)

    2015-05-21

    is based on the phenomenon known as the Seebeck effect . Named after the T. Seebeck who first observed this effect , he noted that there is a current...this effect is known as the thermal electromotive force. A device which uses the Seebeck effect for the measurement of temperature is known as a...21 Figure 2-7. Graph showing the effect of total deposition pressure on TCR and resistivity of deposited pm-Ge:H thin films

  10. Device and method for detecting sulfur dioxide at high temperatures

    Science.gov (United States)

    West, David L [Oak Ridge, TN; Montgomery, Frederick C [Oak Ridge, TN; Armstrong, Timothy R [Clinton, TN

    2011-11-01

    The present invention relates to a method for selectively detecting and/or measuring gaseous SO.sub.2 at a temperature of at least 500.degree. C., the method involving: (i) providing a SO.sub.2-detecting device including an oxygen ion-conducting substrate having on its surface at least three electrodes comprising a first, second, and third electrode; (ii) driving a starting current of specified magnitude and temporal variation between the first and second electrodes; (iii) contacting the SO.sub.2-detecting device with the SO.sub.2-containing sample while maintaining the magnitude and any temporal variation of the starting current, wherein said SO.sub.2-containing sample causes a change in the electrical conductance of said device; and (iv) detecting the change in electrical conductance of the device based on measuring an electrical property related to or indicative of the conductance of the device between the first and third electrodes, or between the second and third electrodes, and detecting SO.sub.2 in the SO.sub.2-containing sample based on the measured change in electrical conductance.

  11. Temperature mapping of operating nanoscale devices by scanning probe thermometry

    Science.gov (United States)

    Menges, Fabian; Mensch, Philipp; Schmid, Heinz; Riel, Heike; Stemmer, Andreas; Gotsmann, Bernd

    2016-03-01

    Imaging temperature fields at the nanoscale is a central challenge in various areas of science and technology. Nanoscopic hotspots, such as those observed in integrated circuits or plasmonic nanostructures, can be used to modify the local properties of matter, govern physical processes, activate chemical reactions and trigger biological mechanisms in living organisms. The development of high-resolution thermometry techniques is essential for understanding local thermal non-equilibrium processes during the operation of numerous nanoscale devices. Here we present a technique to map temperature fields using a scanning thermal microscope. Our method permits the elimination of tip-sample contact-related artefacts, a major hurdle that so far has limited the use of scanning probe microscopy for nanoscale thermometry. We map local Peltier effects at the metal-semiconductor contacts to an indium arsenide nanowire and self-heating of a metal interconnect with 7 mK and sub-10 nm spatial temperature resolution.

  12. Going Places No Infrared Temperature Devices Have Gone Before

    Science.gov (United States)

    2003-01-01

    Exergen's IRt/c is a self-powered sensor that matches a thermocouple within specified temperature ranges and provides a predictable and repeatable signal outside of this specified range. Possessing an extremely fast time constant, the infrared technology allows users to measure product temperature without touching the product. The IRt/c uses a device called a thermopile to measure temperature and generate current. Traditionally, these devices are not available in a size that would be compatible with the Exergen IRt/c, based on NASA s quarterinch specifications. After going through five circuit designs to find a thermopile that would suit the IRt/c design and match the signal needed for output, Exergen maintains that it developed a model that totaled just 20 percent of the volume of the previous smallest detector in the world. Following completion of the project with Glenn, Exergen continued development of the IRt/c for other customers, spinning off a new product line called the micro IRt/c. This latest development has broadened applications for industries that previously could not use infrared thermometers due to size constraints. The first commercial use of the micro IRt/c involved an original equipment manufacturer that makes laminating machinery consisting of heated rollers in very tight spots. Accurate temperature measurement for this application requires close proximity to the heated rollers. With the micro IRt/c s 50-millisecond time constant, the manufacturer is able to gain closer access to the intended temperature targets for exact readings, thereby increasing productivity and staying ahead of competition.In a separate application, the infrared temperature sensor is being utilized for avalanche warnings in Switzerland. The IRt/c is mounted about 5 meters above the ground to measure the snow cover throughout the mountainous regions of the country.

  13. Suspension Device for Use with Low Temperature Refrigerator

    Science.gov (United States)

    Wegel, Donald C. (Inventor)

    2015-01-01

    A suspension device for use with a low temperature refrigeration system, such as an adiabatic demagnetization refrigerator is provided. A support ring is provided with three spring-loaded tension assemblies equally spaced about the periphery of the support ring. The tension assemblies each have a pulley, about which is entrained a band of material. Connected to this band is a ring that laterally supports a cylindrical salt pill. Undesired variations in the amount of slack in the band as the salt pill cools are compensated for by the spring loading of the tension assemblies.

  14. Temperature Histories in Ceramic-Insulated Heat-Sink Nozzle

    Science.gov (United States)

    Ciepluch, Carl C.

    1960-01-01

    Temperature histories were calculated for a composite nozzle wall by a simplified numerical integration calculation procedure. These calculations indicated that there is a unique ratio of insulation and metal heat-sink thickness that will minimize total wall thickness for a given operating condition and required running time. The optimum insulation and metal thickness will vary throughout the nozzle as a result of the variation in heat-transfer rate. The use of low chamber pressure results in a significant increase in the maximum running time of a given weight nozzle. Experimentally measured wall temperatures were lower than those calculated. This was due in part to the assumption of one-dimensional or slab heat flow in the calculation procedure.

  15. Pressure-Temperature History of Shock-Induced Melt Veins

    Science.gov (United States)

    Decarli, P. S.; Sharp, T. G.; Xie, Z.; Aramovich, C.

    2002-12-01

    Shock-induced melt veins that occur in chondrites commonly contain metastable high-pressure phases such as (Mg,Fe)SiO3-perovskite, akimotoite, ringwoodite, and majorite, that crystallized from the melt at high pressure. The metastable high-pressure minerals invert rapidly to stable low-pressure phases if they remain at high temperatures after the pressure is released. Although shock compression mechanisms permit rapid heating of the vein volume, adiabatic cooling on decompression is negligible because of the relative incompressibility of the material in the vein. The presence of metastable mantle minerals in a vein thus implies that the vein was quenched via thermal conduction to adjacent cooler material at high pressure. The quenching time of the vein can be determined from ordinary heat flow calculations (Langenhorst and Poirier, 2000), given knowledge of the vein dimensions and the temperatures at the time of vein formation in both the vein and the surrounding material. We have calculated a synthetic Hugoniot for the Tenham L6 chondrite to estimate bulk post-shock and shock temperatures as a function of shock pressure. Assuming a superliquidus temperature of 2500°C for the melt vein, we use a simple thermal model to investigate then thermal histories of melt veins during shock. The variation in crystallization assemblages within melt veins can be explained in terms of variable cooling rates. Survival of (Mg,Fe)SiO3-perovskite in Tenham (Tomioka and Fugino, 1997) requires that melt veins cooled to below 565°C before pressure release, which further constrains shock pressure, duration of the pressure pulse and cooling histories.

  16. Josephson noise thermometry with high temperature superconducting devices

    CERN Document Server

    Peden, D A

    2000-01-01

    High Temperature Superconducting devices for absolute Noise Thermometry are under development for the measurement of temperature in the 10-50 K range. This Thesis is concerned with two complementary methods which have been developed in parallel. The first technique, Josephson Linewidth Thermometry, uses a HTS Josephson junction shunted by a low resistance noble metal resistor. The conversion of thermal voltage fluctuations via the ac Josephson effect results in thermal broadening of the Josephson oscillation linewidth. Single and double junction HTS R-SQUIDs have been fabricated where a shunt resistance approx 25 mu OMEGA has been achieved. In the double junction R-SQUIDs, where the voltage across the terminals is modulated at the Josephson heterodyne frequency, the first reported observations of Josephson heterodyne oscillations in HTS R-SQUIDs have been made and the linearity of the voltage-frequency relationship established. The second approach, known as the Quantum Roulette Noise Thermometer, uses the the...

  17. 21 CFR 882.1570 - Powered direct-contact temperature measurement device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered direct-contact temperature measurement....1570 Powered direct-contact temperature measurement device. (a) Identification. A powered direct-contact temperature measurement device is a device which contains a power source and is used to measure...

  18. Measuring the temperature history of isochorically heated warm dense metals

    Science.gov (United States)

    McGuffey, Chris; Kim, J.; Park, J.; Moody, J.; Emig, J.; Heeter, B.; Dozieres, M.; Beg, Fn; McLean, Hs

    2017-10-01

    A pump-probe platform has been designed for soft X-ray absorption spectroscopy near edge structure measurements in isochorically heated Al or Cu samples with temperature of 10s to 100s of eV. The method is compatible with dual picosecond-class laser systems and may be used to measure the temperature of the sample heated directly by the pump laser or by a laser-driven proton beam Knowledge of the temperature history of warm dense samples will aid equation of state measurements. First, various low- to mid-Z targets were evaluated for their suitability as continuum X-ray backlighters over the range 200-1800 eV using a 10 J picosecond-class laser with relativistic peak intensity Alloys were found to be more suitable than single-element backlighters. Second, the heated sample package was designed with consideration of target thickness and tamp layers using atomic physics codes. The results of the first demonstration attempts will be presented. This work was supported by the U.S. DOE under Contract No. DE-SC0014600.

  19. Asymmetric power device rating selection for even temperature distribution in NPC inverter

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede

    2017-01-01

    A major drawback of the NPC inverter is an unequal power loss distribution among the power devices which leads to unequal temperature stress among them. Therefore, certain power devices experience higher temperature stress, which is the main cause of power device module failure and thus both the ...

  20. Novel High Temperature Materials for In-Situ Sensing Devices

    Energy Technology Data Exchange (ETDEWEB)

    Florian Solzbacher; Anil Virkar; Loren Rieth; Srinivasan Kannan; Xiaoxin Chen; Hannwelm Steinebach

    2009-12-31

    The overriding goal of this project was to develop gas sensor materials and systems compatible with operation at temperatures from 500 to 700 C. Gas sensors operating at these temperatures would be compatible with placement in fossil-energy exhaust streams close to the combustion chamber, and therefore have advantages for process regulation, and feedback for emissions controls. The three thrusts of our work included investigating thin film gas sensor materials based on metal oxide materials and electroceramic materials, and also development of microhotplate devices to support the gas sensing films. The metal oxide materials NiO, In{sub 2}O{sub 3}, and Ga{sub 2}O{sub 3} were investigated for their sensitivity to H{sub 2}, NO{sub x}, and CO{sub 2}, respectively, at high temperatures (T > 500 C), where the sensing properties of these materials have received little attention. New ground was broken in achieving excellent gas sensor responses (>10) for temperatures up to 600 C for NiO and In{sub 2}O{sub 3} materials. The gas sensitivity of these materials was decreasing as temperatures increased above 500 C, which indicates that achieving strong sensitivities with these materials at very high temperatures (T {ge} 650 C) will be a further challenge. The sensitivity, selectivity, stability, and reliability of these materials were investigated across a wide range of deposition conditions, temperatures, film thickness, as using surface active promoter materials. We also proposed to study the electroceramic materials BaZr{sub (1-x)}Y{sub x}O{sub (3-x/2)} and BaCe{sub (2-x)}Ca{sub x}S{sub (4-x/2)} for their ability to detect H{sub 2}O and H{sub 2}S, respectively. This report focuses on the properties and gas sensing characteristics of BaZr{sub (1-x)}Y{sub x}O{sub (3-x/2)} (Y-doped BaZrO{sub 3}), as significant difficulties were encounter in generating BaCe{sub (2-x)}Ca{sub x}S{sub (4-x/2)} sensors. Significant new results were achieved for Y-doped BaZrO{sub 3}, including

  1. Device for self-verifying temperature measurement and control

    Science.gov (United States)

    Watkins, Arthur D.; Cannon, Collins P.; Tolle, Charles R.

    2004-08-03

    A measuring instrument includes a first temperature sensor, a second temperature sensor and circuitry. The first and second temperature sensors each generate a signal indicative of the temperature of a medium being detected. The circuitry is configured to activate verification of temperature being sensed with the first sensor. According to one construction, the first temperature sensor comprises at least one thermocouple temperature sensor and the second temperature sensor comprises an optical temperature sensor, each sensor measuring temperature over the same range of temperature, but using a different physical phenomena. Also according to one construction, the circuitry comprises a computer configured to detect failure of one of the thermocouples by comparing temperature of the optical temperature sensor with each of the thermocouple temperature sensors. Even further, an output control signal is generated via a fuzzy inference machine and control apparatus.

  2. Field-History Dependence of the Superconducting Transition Temperature in Erbium/Niobium Bilayers

    Science.gov (United States)

    Witt, James; Satchell, Nathan; Langridge, Sean; Burnell, Gavin

    Recently, there has been much interest in a new class of superconducting (S) spintronic devices based upon hybrid S/F (ferromagnet) heterostructures. The prototypical super-spintronic device is the superconducting spin valve (SSV), within which the critical temperature (Tc) of an S layer can be controlled by the relative orientation of two or more F layers. Such manipulation of the F layers requires careful engineering of the heterostructure and the rotation of the structure with respect to an applied magnetic field. Here, we show that such control over Tc is also possible in a simple S/F bilayer. By manipulating the remenant magnetic state of a thin Er layer - which is proximity coupled to a Nb S layer - we are able to demonstrate a high level of control over the Tc of the Nb (which is measured in zero field). The shifts in Tc are comparable in size to the largest seen in the SSV and are manipulated using solely the field history. The system can be reset by warming the sample through the Er Curie temperature (approximately 20 K). Our results are of particular interest due to the simplicity of both the bilayer and the measurement geometry in comparison to the SSV.

  3. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin

    National Research Council Canada - National Science Library

    Gao, Li; Zhang, Yihui; Malyarchuk, Viktor; Jia, Lin; Jang, Kyung-In; Webb, R Chad; Fu, Haoran; Shi, Yan; Zhou, Guoyan; Shi, Luke; Shah, Deesha; Huang, Xian; Xu, Baoxing; Yu, Cunjiang; Huang, Yonggang; Rogers, John A

    2014-01-01

    .... Here we introduce an ultrathin, compliant skin-like, or 'epidermal', photonic device that combines colorimetric temperature indicators with wireless stretchable electronics for thermal measurements...

  4. Resistive Switching and Temperature-dependent Transport in HfOx-based Resistive Memory Devices

    Science.gov (United States)

    Kim, Seyoung; Ahn, Chiyui; Gokmen, Tayfun; Dial, Oliver; Ritter, Mark

    2014-03-01

    Resistive switching phenomenon in transition metal oxide materials has been studied intensively as a candidate technology for future non-volatile memory applications and electronic synapse devices. Here, we demonstrate an HfOx-based resistive memory device with rare earth metal contact in which the device resistance can be modulated with applied voltage and current. Repeatable and self-compliance switching as well as high yield and device-to-device uniformity are achieved in our devices. To understand the conduction mechanism, we perform transport measurement in multiple devices at different resistance states (initial, low and high resistance states) by probing current as a function of applied voltage at temperatures from 40K to 350K. We find that temperature insensitive tunneling conduction dominates at low temperature, while thermally activated conduction is observed at high temperature. Trap-assisted tunneling and Poole-Frenkel mechanisms are accounted for the characteristics found in different regimes.

  5. Temperature measurement by IR camera of heated device to high temperature during a short time

    Science.gov (United States)

    Sonneck-Museux, Nathanaëlle; Vergé, Philippe; Judic, Jean-Pierre; Edard, Pierrick

    2015-04-01

    A device allowing heating a liquid to high temperatures during a very short time has been conceived in our laboratory. The goal of this survey is to find the suitable experimental configurations, so that tested material affected by the temperatures coved between 200 and 750°C. This study is achieved to the Solar Furnace of the DGA in Odeillo. The cavity containing the liquid is a thermocouple sleeve (capillary) in Inconel 600. Its extremity is closed tightly by a removable steel plug permitting the tightness after replenishment. An electromagnet associated to a generator of delay permit to make fall the whole after the solar irradiation in liquid nitrogen in order to stop the reaction of "deterioration" of the tested product. According to capillary dimensions and to heating time, the temperature measurement using a pyrometer is not possible. A second possibility is using thermocouple, but it is not easy to join this captor on Inconel 600. Using by infrared camera allows observing the presence or the absence of inflammation during the solar irradiation and the sleeve fall too. The measures of temperatures by thermocouple show a lot of variability. The measures comparison with those by infrared camera shows a phenomenon of "heat well". Several score of tests to the solar furnace have been achieved in different experimental configurations. Nine experimental configurations have been validated, for variable flux of 100 to 500W/cm². The observation by infrared camera permitted to validate the conceived system and to verify the homogeneity of the sleeve heated.

  6. Magnetic resonance flow velocity and temperature mapping of a shape memory polymer foam device.

    Science.gov (United States)

    Small, Ward; Gjersing, Erica; Herberg, Julie L; Wilson, Thomas S; Maitland, Duncan J

    2009-12-31

    Interventional medical devices based on thermally responsive shape memory polymer (SMP) are under development to treat stroke victims. The goals of these catheter-delivered devices include re-establishing blood flow in occluded arteries and preventing aneurysm rupture. Because these devices alter the hemodynamics and dissipate thermal energy during the therapeutic procedure, a first step in the device development process is to investigate fluid velocity and temperature changes following device deployment. A laser-heated SMP foam device was deployed in a simplified in vitro vascular model. Magnetic resonance imaging (MRI) techniques were used to assess the fluid dynamics and thermal changes associated with device deployment. Spatial maps of the steady-state fluid velocity and temperature change inside and outside the laser-heated SMP foam device were acquired. Though non-physiological conditions were used in this initial study, the utility of MRI in the development of a thermally-activated SMP foam device has been demonstrated.

  7. Magnetic Resonance Flow Velocity and Temperature Mapping of a Shape Memory Polymer Foam Device

    Energy Technology Data Exchange (ETDEWEB)

    Small IV, W; Gjersing, E; Herberg, J L; Wilson, T S; Maitland, D J

    2008-10-29

    Interventional medical devices based on thermally responsive shape memory polymer (SMP) are under development to treat stroke victims. The goals of these catheter-delivered devices include re-establishing blood flow in occluded arteries and preventing aneurysm rupture. Because these devices alter the hemodynamics and dissipate thermal energy during the therapeutic procedure, a first step in the device development process is to investigate fluid velocity and temperature changes following device deployment. A laser-heated SMP foam device was deployed in a simplified in vitro vascular model. Magnetic resonance imaging (MRI) techniques were used to assess the fluid dynamics and thermal changes associated with device deployment. Spatial maps of the steady-state fluid velocity and temperature change inside and outside the laser-heated SMP foam device were acquired. Though non-physiological conditions were used in this initial study, the utility of MRI in the development of a thermally-activated SMP foam device has been demonstrated.

  8. Efficacy of Ophthalmic Viscosurgical Devices in Preventing Temperature Rise at the Corneal Endothelium during Phacoemulsification.

    Science.gov (United States)

    Suzuki, Hisaharu; Igarashi, Tsutomu; Shiwa, Toshihiko; Takahashi, Hiroshi

    2016-12-01

    To investigate temperature alterations in the aqueous humor and the corneal endothelium during phacoemulsification, and to evaluate the effect of ophthalmic viscosurgical devices in preventing a temperature rise at the corneal endothelium during phacoemulsification. Temperatures of the aqueous humor and corneal endothelium were measured using two temperature probes set in the anterior chamber during ultrasound oscillation in porcine eyes, with or without ophthalmic viscosurgical devices. Without an ophthalmic viscosurgical device, temperatures in both the aqueous humor and the corneal endothelium rapidly rose during the ultrasound oscillation, while with an ophthalmic viscosurgical device, the temperature elevation of the corneal endothelium site was suppressed compared with the aqueous humor. Surgeons need to be especially aware of ophthalmic viscosurgical device retention during phacoemulsification, because it can protect the corneal endothelium from heat generated during this procedure.

  9. 46 CFR 154.1375 - Readout for temperature measuring device: Marking.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Readout for temperature measuring device: Marking. 154... DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Instrumentation § 154.1375 Readout for temperature measuring device: Marking. Each...

  10. Oral bacterial inactivation using a novel low-temperature atmospheric-pressure plasma device

    Directory of Open Access Journals (Sweden)

    Ya-Ting Chang

    2016-03-01

    Conclusion: The novel low-temperature atmospheric-pressure device was capable of achieving effective sterilization of E. faecalis within a 2-minute interval. Further studies are needed to validate complete inactivation, refine the laboratory-made low-temperature plasma device, and develop a new plasma-jet device, which will be superior to traditional sterilization methods and can be used in root canal environment. This novel sterilization method can also be used as a clinical reference tool.

  11. Nanoscopic voltage distribution of operating cascade laser devices in cryogenic temperature.

    Science.gov (United States)

    Dhar, R S; Ban, D

    2016-06-01

    A nanoscopic exploratory measurement technique to measure voltage distribution across an operating semiconductor device in cryogenic temperature has been developed and established. The cross-section surface of the terahertz (THz) quantum cascade laser (QCL) has been measured that resolves the voltage distribution at nanometer scales. The electric field dissemination across the active region of the device has been attained under the device's lasing conditions at cryogenic temperature of 77 K. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  12. Semiconductor terahertz technology devices and systems at room temperature operation

    CERN Document Server

    Carpintero, G; Hartnagel, H; Preu, S; Raisanen, A

    2015-01-01

    Key advances in Semiconductor Terahertz (THz) Technology now promises important new applications enabling scientists and engineers to overcome the challenges of accessing the so-called "terahertz gap".  This pioneering reference explains the fundamental methods and surveys innovative techniques in the generation, detection and processing of THz waves with solid-state devices, as well as illustrating their potential applications in security and telecommunications, among other fields. With contributions from leading experts, Semiconductor Terahertz Technology: Devices and Systems at Room Tempe

  13. Magnetic resonance flow velocity and temperature mapping of a shape memory polymer foam device

    OpenAIRE

    Wilson Thomas S; Herberg Julie L; Gjersing Erica; Small Ward; Maitland Duncan J

    2009-01-01

    Abstract Background Interventional medical devices based on thermally responsive shape memory polymer (SMP) are under development to treat stroke victims. The goals of these catheter-delivered devices include re-establishing blood flow in occluded arteries and preventing aneurysm rupture. Because these devices alter the hemodynamics and dissipate thermal energy during the therapeutic procedure, a first step in the device development process is to investigate fluid velocity and temperature cha...

  14. SiC device development for high temperature sensor applications

    Science.gov (United States)

    Shor, J. S.; Goldstein, David; Kurtz, A. D.; Osgood, R. M.

    1992-01-01

    Progress made in the processing and characterization of 3C-SiC for high temperature sensor applications is reviewed. Piezoresistance properties of silicon carbide and the temperature coefficient of resistivity of n-type beta-SiC are presented. In addition, photoelectrical etching and dopant selective etch-stops in SiC and high temperature Ohmic contacts for n-type beta-SiC sensors are discussed.

  15. 3D Printed "Earable" Smart Devices for Real-Time Detection of Core Body Temperature.

    Science.gov (United States)

    Ota, Hiroki; Chao, Minghan; Gao, Yuji; Wu, Eric; Tai, Li-Chia; Chen, Kevin; Matsuoka, Yasutomo; Iwai, Kosuke; Fahad, Hossain M; Gao, Wei; Nyein, Hnin Yin Yin; Lin, Liwei; Javey, Ali

    2017-07-28

    Real-time detection of basic physiological parameters such as blood pressure and heart rate is an important target in wearable smart devices for healthcare. Among these, the core body temperature is one of the most important basic medical indicators of fever, insomnia, fatigue, metabolic functionality, and depression. However, traditional wearable temperature sensors are based upon the measurement of skin temperature, which can vary dramatically from the true core body temperature. Here, we demonstrate a three-dimensional (3D) printed wearable "earable" smart device that is designed to be worn on the ear to track core body temperature from the tympanic membrane (i.e., ear drum) based on an infrared sensor. The device is fully integrated with data processing circuits and a wireless module for standalone functionality. Using this smart earable device, we demonstrate that the core body temperature can be accurately monitored regardless of the environment and activity of the user. In addition, a microphone and actuator are also integrated so that the device can also function as a bone conduction hearing aid. Using 3D printing as the fabrication method enables the device to be customized for the wearer for more personalized healthcare. This smart device provides an important advance in realizing personalized health care by enabling real-time monitoring of one of the most important medical parameters, core body temperature, employed in preliminary medical screening tests.

  16. Thin film materials and devices for resistive temperature sensing applications

    Science.gov (United States)

    Basantani, Hitesh A.

    Thin films of vanadium oxide (VOx) and hydrogenated amorphous silicon (a-Si:H) are the two dominant material systems used in resistive infrared radiation detectors (microbolometers) for sensing long wave infrared (LWIR) wavelengths in the 8--14 microm range. Typical thin films of VO x (x films of hydrogenated germanium (SiGe:H) have |TCR| between 3%/K to 4%/K. Devices made from either of these materials have resulted in similar device performance with NETD ≈ 25 mK. The performance of the microbolometers is limited by the electronic noise, especially 1/f noise. Therefore, regardless of the choice of bolometer sensing material and read out circuitry, manufacturers are constantly striving to reduce 1/f noise while simultaneously increasing TCR to give better signal to noise ratios in their bolometers and ultimately, better image quality with more thermal information to the end user. In this work, thin films of VOx and hydrogenated germanium (Ge:H), having TCR values > 4 %/K are investigated as potential candidates for higher sensitivity next generation of microbolometers. Thin films of VO x were deposited by Biased Target Ion Beam Deposition (BTIBD) (˜85 nm thick). Electrical characterization of lateral resistor structures showed resistivity ranging from 104 O--cm to 2.1 x 104 O--cm, TCR varying from --4%/K to --5%/K, normalized Hooge parameter (alphaH/n) of 5 x 10 -21 to 5 x 10-18 cm3. Thin films of Ge:H were deposited by plasma enhanced chemical vapor deposition (PECVD) by incorporating an increasing amount of crystal fraction in the growing thin films. Thin films of Ge:H having a mixed phase, amorphous + nanocrystalline, having a |TCR| > 6 %/K were deposited with resistivity Higher TCR materials are desired, however, such materials have higher resistivity and therefore unacceptable large electrical resistance in a lateral resistor configuration. This work looks at an alternate bolometer device design which incorporates higher TCR materials in a vertically

  17. A comparison of burial, maturity and temperature histories of selected wells from sedimentary basins in The Netherlands

    NARCIS (Netherlands)

    Nelskamp, S.; David, P.; Littke, R.

    2008-01-01

    Sedimentary basins in The Netherlands contain significant amounts of hydrocarbon resources, which developed in response to temperature and pressure history during Mesozoic and Cenozoic times. Quantification and modelling of burial, maturity and temperature histories are the major goals of this

  18. Silicon device performance measurements to support temperature range enhancement

    Science.gov (United States)

    Johnson, R. Wayne; Askew, Ray; Bromstead, James; Weir, Bennett

    1991-01-01

    The results of the NPN bipolar transistor (BJT) (2N6023) breakdown voltage measurements were analyzed. Switching measurements were made on the NPN BJT, the insulated gate bipolar transistor (IGBT) (TA9796) and the N-channel metal oxide semiconductor field effect transistor (MOSFET) (RFH75N05E). Efforts were also made to build a H-bridge inverter. Also discussed are the plans that have been made to do life testing on the devices, to build an inductive switching test circuit and to build a dc/dc switched mode converter.

  19. Room-temperature intermediate layer bonding for microfluidic devices

    NARCIS (Netherlands)

    Bart, J.; Tiggelaar, Roald M.; Yang, Mengjong; Schlautmann, Stefan; Zuilhof, Han; Gardeniers, Johannes G.E.

    2009-01-01

    In this work a novel room-temperature bonding technique based on chemically activated Fluorinated Ethylene Propylene (FEP) sheet as an intermediate between chemically activated substrates is presented. Surfaces of silicon and glass substrates are chemically modified with APTES bearing amine terminal

  20. Frequency and Temperature Dependence of Fabrication Parameters in Polymer Dispersed Liquid Crystal Devices

    OpenAIRE

    Juan C. Torres; Ricardo Vergaz; David Barrios; José Manuel Sánchez-Pena; Ana Viñuales; Hans Jürgen Grande; Germán Cabañero

    2014-01-01

    A series of polymer dispersed liquid crystal devices using glass substrates have been fabricated and investigated focusing on their electrical properties. The devices have been studied in terms of impedance as a function of frequency. An electric equivalent circuit has been proposed, including the influence of the temperature on the elements into it. In addition, a relevant effect of temperature on electrical measurements has been observed.

  1. Frequency and Temperature Dependence of Fabrication Parameters in Polymer Dispersed Liquid Crystal Devices.

    Science.gov (United States)

    Torres, Juan C; Vergaz, Ricardo; Barrios, David; Sánchez-Pena, José Manuel; Viñuales, Ana; Grande, Hans Jürgen; Cabañero, Germán

    2014-05-02

    A series of polymer dispersed liquid crystal devices using glass substrates have been fabricated and investigated focusing on their electrical properties. The devices have been studied in terms of impedance as a function of frequency. An electric equivalent circuit has been proposed, including the influence of the temperature on the elements into it. In addition, a relevant effect of temperature on electrical measurements has been observed.

  2. Frequency and Temperature Dependence of Fabrication Parameters in Polymer Dispersed Liquid Crystal Devices

    Science.gov (United States)

    Torres, Juan C.; Vergaz, Ricardo; Barrios, David; Sánchez-Pena, José Manuel; Viñuales, Ana; Grande, Hans Jürgen; Cabañero, Germán

    2014-01-01

    A series of polymer dispersed liquid crystal devices using glass substrates have been fabricated and investigated focusing on their electrical properties. The devices have been studied in terms of impedance as a function of frequency. An electric equivalent circuit has been proposed, including the influence of the temperature on the elements into it. In addition, a relevant effect of temperature on electrical measurements has been observed. PMID:28788632

  3. Frequency and Temperature Dependence of Fabrication Parameters in Polymer Dispersed Liquid Crystal Devices

    Directory of Open Access Journals (Sweden)

    Juan C. Torres

    2014-05-01

    Full Text Available A series of polymer dispersed liquid crystal devices using glass substrates have been fabricated and investigated focusing on their electrical properties. The devices have been studied in terms of impedance as a function of frequency. An electric equivalent circuit has been proposed, including the influence of the temperature on the elements into it. In addition, a relevant effect of temperature on electrical measurements has been observed.

  4. Strong temperature dependence of extraordinary magnetoresistance correlated to mobility in a two-contact device

    KAUST Repository

    Sun, Jian

    2012-02-21

    A two-contact extraordinary magnetoresistance (EMR) device has been fabricated and characterized at various temperatures under magnetic fields applied in different directions. Large performance variations across the temperature range have been found, which are due to the strong dependence of the EMR effect on the mobility. The device shows the highest sensitivity of 562ω/T at 75 K with the field applied perpendicularly. Due to the overlap between the semiconductor and the metal shunt, the device is also sensitive to planar fields but with a lower sensitivity of about 20 to 25% of the one to perpendicular fields. © 2012 The Japan Society of Applied Physics.

  5. Temperature and petroleum generation history of the Wilcox Formation, Louisiana

    Science.gov (United States)

    Pitman, Janet K.; Rowan, Elisabeth Rowan

    2012-01-01

    A one-dimensional petroleum system modeling study of Paleogene source rocks in Louisiana was undertaken in order to characterize their thermal history and to establish the timing and extent of petroleum generation. The focus of the modeling study was the Paleocene and Eocene Wilcox Formation, which contains the youngest source rock interval in the Gulf Coast Province. Stratigraphic input to the models included thicknesses and ages of deposition, lithologies, amounts and ages of erosion, and ages for periods of nondeposition. Oil-generation potential of the Wilcox Formation was modeled using an initial total organic carbon of 2 weight percent and an initial hydrogen index of 261 milligrams of hydrocarbon per grams of total organic carbon. Isothermal, hydrous-pyrolysis kinetics determined experimentally was used to simulate oil generation from coal, which is the primary source of oil in Eocene rocks. Model simulations indicate that generation of oil commenced in the Wilcox Formation during a fairly wide age range, from 37 million years ago to the present day. Differences in maturity with respect to oil generation occur across the Lower Cretaceous shelf edge. Source rocks that are thermally immature and have not generated oil (depths less than about 5,000 feet) lie updip and north of the shelf edge; source rocks that have generated all of their oil and are overmature (depths greater than about 13,000 feet) are present downdip and south of the shelf edge. High rates of sediment deposition coupled with increased accommodation space at the Cretaceous shelf margin led to deep burial of Cretaceous and Tertiary source rocks and, in turn, rapid generation of petroleum and, ultimately, cracking of oil to gas.

  6. Temperature influence on electrically controlled liquid crystal filled photonic bandgap fiber devices

    DEFF Research Database (Denmark)

    Wei, Lei; Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard

    2009-01-01

    We experimentally investigate the temperature influence on electrically controlled liquid crystal filled photonic bandgap fiber device. The phase shift in the wavelength range 1520nm-1600nm for realizing quarter and half wave plates at different temperatures by applying a certain voltage...

  7. Neutron and gamma radiation tests of the Analog Devices TMP37 temperature sensors

    CERN Document Server

    Mockett, P M; Twomey, M S

    2004-01-01

    The Analog Devices TMP37 temperature sensor is used to monitor the temperature gradients in the US ATLAS End Cap Muon Chambers. It was chosen because of its stability, linearity, high output signal, and especially the low self-heating. We have irradiated samples of these sensors with neutrons and gamma rays. The results of these measurements are presented.

  8. Magnetic resonance flow velocity and temperature mapping of a shape memory polymer foam device

    Directory of Open Access Journals (Sweden)

    Wilson Thomas S

    2009-12-01

    Full Text Available Abstract Background Interventional medical devices based on thermally responsive shape memory polymer (SMP are under development to treat stroke victims. The goals of these catheter-delivered devices include re-establishing blood flow in occluded arteries and preventing aneurysm rupture. Because these devices alter the hemodynamics and dissipate thermal energy during the therapeutic procedure, a first step in the device development process is to investigate fluid velocity and temperature changes following device deployment. Methods A laser-heated SMP foam device was deployed in a simplified in vitro vascular model. Magnetic resonance imaging (MRI techniques were used to assess the fluid dynamics and thermal changes associated with device deployment. Results Spatial maps of the steady-state fluid velocity and temperature change inside and outside the laser-heated SMP foam device were acquired. Conclusions Though non-physiological conditions were used in this initial study, the utility of MRI in the development of a thermally-activated SMP foam device has been demonstrated.

  9. Efficient dual layer interconnect coating for high temperature electrochemical devices

    DEFF Research Database (Denmark)

    Palcut, Marián; Mikkelsen, Lars; Neufeld, Kai

    2012-01-01

    that the oxidation reaction is limited by outward Cr3+ diffusion in the chromia scale. The coating effectively reduces the oxidation rate. Reactions and cation inter-diffusion between the coating and the oxide scale are observed. Long term effects of these interactions are discussed and practical implications......Effects of novel dual layer coatings Co3O4/La0.85Sr0.15MnO3−δ on high temperature oxidation behaviour of candidate steels for interconnects are studied at 1123 K in flowing simulated ambient air (air + 1% H2O) and oxygen. Four alloys are investigated: Crofer 22 APU, Crofer 22 H, E-Brite and AL 29......-4C. The reaction kinetics is followed by measuring the mass increase of the samples over time. The oxide scale microstructure and chemical composition are investigated by scanning electron microscopy/energy dispersive spectroscopy. The kinetic data follow the parabolic rate law. It is found...

  10. Performance analysis of Arithmetic Mean method in determining peak junction temperature of semiconductor device

    Directory of Open Access Journals (Sweden)

    Mohana Sundaram Muthuvalu

    2015-12-01

    Full Text Available High reliability users of microelectronic devices have been derating junction temperature and other critical stress parameters to improve device reliability and extend operating life. The reliability of a semiconductor is determined by junction temperature. This paper gives a useful analysis on mathematical approach which can be implemented to predict temperature of a silicon die. The problem could be modeled as heat conduction equation. In this study, numerical approach based on implicit scheme and Arithmetic Mean (AM iterative method will be applied to solve the governing heat conduction equation. Numerical results are also included in order to assert the effectiveness of the proposed technique.

  11. Temperature dependence of large positive magnetoresistance in hybrid ferromagnetic/semiconductor devices

    Science.gov (United States)

    Overend, N.; Nogaret, A.; Gallagher, B. L.; Main, P. C.; Henini, M.; Marrows, C. H.; Howson, M. A.; Beaumont, S. P.

    1998-04-01

    We investigate a new type of magnetoresistance (MR) in which the resistivity of a near-surface two-dimensional electron gas is controlled by the magnetization of a submicron ferromagnetic grating defined on the surface of the device. We observe an increase in resistance of up to ˜1500% at a temperature of 4 K and ˜1% at 300 K. The magnitude and temperature dependence of the MR are well accounted for by a semiclassical theory. Optimization of device parameters is expected to increase considerably the magnitude of the room temperature MR.

  12. The one device the secret history of the iPhone

    CERN Document Server

    Merchant, Brian

    2017-01-01

    The secret history of the invention that changed everything-and became the most profitable product in the world. Odds are that as you read this, an iPhone is within reach. But before Steve Jobs introduced us to "the one device," as he called it, a cell phone was merely what you used to make calls on the go. How did the iPhone transform our world and turn Apple into the most valuable company ever? Veteran technology journalist Brian Merchant reveals the inside story you won't hear from Cupertino-based on his exclusive interviews with the engineers, inventors, and developers who guided every stage of the iPhone's creation. This deep dive takes you from inside One Infinite Loop to 19th century France to WWII America, from the driest place on earth to a Kenyan pit of toxic e-waste, and even deep inside Shenzhen's notorious "suicide factories." It's a firsthand look at how the cutting-edge tech that makes the world work-touch screens, motion trackers, and even AI-made their way into our pockets. The One Device...

  13. Life-history responses of the rice stem borer Chilo suppressalis to temperature change: Breaking the temperature-size rule.

    Science.gov (United States)

    Fu, Dao-Meng; He, Hai-Min; Zou, Chao; Xiao, Hai-Jun; Xue, Fang-Sen

    2016-10-01

    Temperature is a key environmental factor for ectotherms and affects a large number of life history traits. In the present study, development time from hatching to pupation and adult eclosion, pupal and adult weights of the rice stem borer, Chilo suppressalis were examined at 22, 25, 28 and 31°C under L18:D 6. Larval and pupal times were significantly decreased with increasing rearing temperature and growth rate was positively correlated with temperature. Larval and pupal developmental times were not significantly different between females and males. The relationship between body weight and rearing temperature in C. suppressalis did not follow the temperature-size rule (TSR), both males and females gained the highest body weight at 31°C. Females were significantly larger than males at all temperatures, showing a female biased sex size dimorphism (SSD). Contrary to Rensch's rule, SSD and body weight in C. suppressalis tended to increase with rising temperature. Male pupae lost significantly more weight at metamorphosis compared to females. We discuss the adaptive significance of the reverse-TSR in the moth's life history. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Impact of landfill liner time-temperature history on the service life of HDPE geomembranes.

    Science.gov (United States)

    Rowe, R Kerry; Islam, M Z

    2009-10-01

    The observed temperatures in different landfills are used to establish a number of idealized time-temperature histories for geomembrane liners in municipal solid waste (MSW) landfills. These are then used for estimating the service life of different HDPE geomembranes. The predicted antioxidant depletion times (Stage I) are between 7 and 750 years with the large variation depending on the specific HDPE geomembrane product, exposure conditions, and most importantly, the magnitude and duration of the peak liner temperature. The higher end of the range corresponds to data from geomembranes aged in simulated landfill liner tests and a maximum liner temperature of 37 degrees C. The lower end of the range corresponds to a testing condition where geomembranes were immersed in a synthetic leachate and a maximum liner temperature of 60 degrees C. The total service life of the geomembranes was estimated to be between 20 and 3300 years depending on the time-temperature history examined. The range illustrates the important role that time-temperature history could play in terms of geomembrane service life. The need for long-term monitoring of landfill liner temperature and for geomembrane ageing studies that will provide improved data for assessing the likely long-term performance of geomembranes in MSW landfills are highlighted.

  15. Silicon-On-Insulator (SOI) Devices and Mixed-Signal Circuits for Extreme Temperature Applications

    Science.gov (United States)

    Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Electronic systems in planetary exploration missions and in aerospace applications are expected to encounter extreme temperatures and wide thermal swings in their operational environments. Electronics designed for such applications must, therefore, be able to withstand exposure to extreme temperatures and to perform properly for the duration of the missions. Electronic parts based on silicon-on-insulator (SOI) technology are known, based on device structure, to provide faster switching, consume less power, and offer better radiation-tolerance compared to their silicon counterparts. They also exhibit reduced current leakage and are often tailored for high temperature operation. However, little is known about their performance at low temperature. The performance of several SOI devices and mixed-signal circuits was determined under extreme temperatures, cold-restart, and thermal cycling. The investigations were carried out to establish a baseline on the functionality and to determine suitability of these devices for use in space exploration missions under extreme temperatures. The experimental results obtained on selected SOI devices are presented and discussed in this paper.

  16. Development of Instrument Transmitter Protecting Device against High-Temperature Condition during Severe Accidents

    Directory of Open Access Journals (Sweden)

    Min Yoo

    2014-01-01

    Full Text Available Reliable information through instrumentation systems is essential in mitigating severe accidents such as the one that occurred at the Fukushima Daiichi nuclear power plant. There are five elements which might pose a potential threat to the reliability of parameter detection at nuclear power plants during a severe accident: high temperature, high pressure, high humidity, high radiation, and missiles generated during the evolution of a severe accident. Of these, high temperature apparently poses the most serious threat, since thin shielding can get rid of pressure, humidity, radiation (specifically, alpha and beta radiations, and missile effects. In view of this fact, our study focused on designing an instrument transmitter protecting device that can eliminate the high-temperature effect on transmitters to maintain their functional integrity. We present herein a novel concept for designing such a device in terms of heat transfer model that takes into account various heat transfer mechanisms associated with the device.

  17. A Review on Die Attach Materials for SiC-Based High-Temperature Power Devices

    Science.gov (United States)

    Chin, Hui Shun; Cheong, Kuan Yew; Ismail, Ahmad Badri

    2010-08-01

    Recently, high-temperature power devices have become a popular discussion topic because of their various potential applications in the automotive, down-hole oil and gas industries for well logging, aircraft, space exploration, nuclear environments, and radars. Devices for these applications are fabricated on silicon carbide-based semiconductor material. For these devices to perform effectively, an appropriate die attach material with specific requirements must be selected and employed correctly. This article presents a review of this topic, with a focus on the die attach materials operating at temperatures higher than 623 K (350 °C). Future challenges and prospects related to high-temperature die attach materials also are proposed at the end of this article.

  18. Recovery of failed resistive switching random access memory devices by a low-temperature supercritical treatment

    Science.gov (United States)

    Du, Xiaoqin; Wu, Xiaojing; Chang, Ting-Chang; Chang, Kuan-Chang; Pan, Chih-Hung; Wu, Cheng-Hsien; Lin, Yu-Shuo; Chen, Po-Hsun; Zhang, Shengdong; Sze, Simon M.

    2017-06-01

    The successful recovery of resistive switching random access memory (RRAM) devices that have undergone switching failure is achieved by introducing a low-temperature supercritical-fluid process that passivates the switching layer. These failed RRAM devices, which are incapable of switching between high- and low-resistance states, were treated with supercritical carbon dioxide with pure water at 120 °C for 1 h. After the treatment, the devices became operational again and showed excellent current-voltage (I-V) characteristics and reliability as before. On the basis of the current conduction mechanism fitting results, we propose a model to explain the phenomenon.

  19. [Development of electronic clinical device for concentrated measurement of body temperature].

    Science.gov (United States)

    Zhang, Xu; Ouyang, Bin-lin

    2009-11-01

    An kind of device for concentrated measurement of body temperature which takes ATmega16 microcontroller as the core is designed according to the current situation of measuring body temperature in the hospitals of our country. Taking DS18B20 as the transducer, the device uses PTR8000 wireless communication module to realize the communication from multi-point to single-point. Meanwhile photoelectric detection and USB interfaces are added in the design. Clock chip PCF8563, voice chip ISD1820 and LCD screen I JM12864M are used to realize the functions such as timekeeping, playing voice and displaying and so on.

  20. Graphene, a material for high temperature devices; intrinsic carrier density, carrier drift velocity, and lattice energy

    CERN Document Server

    Yin, Yan; Wang, Li; Jin, Kuijuan; Wang, Wenzhong

    2016-01-01

    Heat has always been a killing matter for traditional semiconductor machines. The underlining physical reason is that the intrinsic carrier density of a device made from a traditional semiconductor material increases very fast with a rising temperature. Once reaching a temperature, the density surpasses the chemical doping or gating effect, any p-n junction or transistor made from the semiconductor will fail to function. Here, we measure the intrinsic Fermi level (|E_F|=2.93k_B*T) or intrinsic carrier density (n_in=3.87*10^6 cm^-2 K^-2*T^2), carrier drift velocity, and G mode phonon energy of graphene devices and their temperature dependencies up to 2400 K. Our results show intrinsic carrier density of graphene is an order of magnitude less sensitive to temperature than those of Si or Ge, and reveal the great potentials of graphene as a material for high temperature devices. We also observe a linear decline of saturation drift velocity with increasing temperature, and identify the temperature coefficients of ...

  1. Design, Qualification and Integration Testing of the High-Temperature Resistance Temperature Device for Stirling Power System

    Science.gov (United States)

    Chan, Jack; Hill, Dennis H.; Elisii, Remo; White, Jonathan R.; Lewandowski, Edward J.; Oriti, Salvatore M.

    2015-01-01

    The Advanced Stirling Radioisotope Generator (ASRG), developed from 2006 to 2013 under the joint sponsorship of the United States Department of Energy (DOE) and National Aeronautics and Space Administration (NASA) to provide a high-efficiency power system for future deep space missions, employed Sunpower Incorporated's Advanced Stirling Convertors (ASCs) with operating temperature up to 840 C. High-temperature operation was made possible by advanced heater head materials developed to increase reliability and thermal-to-mechanical conversion efficiency. During a mission, it is desirable to monitor the Stirling hot-end temperature as a measure of convertor health status and assist in making appropriate operating parameter adjustments to maintain the desired hot-end temperature as the radioisotope fuel decays. To facilitate these operations, a Resistance Temperature Device (RTD) that is capable of high-temperature, continuous long-life service was designed, developed and qualified for use in the ASRG. A thermal bridge was also implemented to reduce the RTD temperature exposure while still allowing an accurate projection of the ASC hot-end temperature. NASA integrated two flight-design RTDs on the ASCs and assembled into the high-fidelity Engineering Unit, the ASRG EU2, at Glenn Research Center (GRC) for extended operation and system characterization. This paper presents the design implementation and qualification of the RTD, and its performance characteristics and calibration in the ASRG EU2 testing.

  2. Interface engineering: broadband light and low temperature gas detection abilities using a nano-heterojunction device.

    Science.gov (United States)

    Chang, Chien-Min; Hsu, Ching-Han; Liu, Yi-Wei; Chien, Tzu-Chiao; Sung, Chun-Han; Yeh, Ping-Hung

    2015-12-21

    Herein, we have designed a nano-heterojunction device using interface defects and band bending effects, which can have broadband light detection (from 365-940 nm) and low operating temperature (50 °C) gas detection abilities. The broadband light detection mechanism occurs because of the defects and band bending between the heterojunction interface. We have demonstrated this mechanism using CoSi2/SnO2, CoSi2/TiO2, Ge/SnO2 and Ge/TiO2 nano-heterojunction devices, and all these devices show broadband light detection ability. Furthermore, the nano-heterojunction of the nano-device has a local Joule-heating effect. For gas detection, the results show that the nano-heterojunction device presents a high detection ability. The reset time and sensitivity of the nano-heterojunction device are an order faster and larger than Schottky-contacted devices (previous works), which is due to the local Joule-heating effect between the interface of the nano-heterojunction. Based on the abovementioned idea, we can design diverse nano-devices for widespread use.

  3. An overview of temperature monitoring devices for early detection of diabetic foot disorders

    OpenAIRE

    Roback, Kerstin

    2010-01-01

    Diabetic foot complications are associated with substantial costs and loss of quality of life. This article gives an overview of available and emerging devices for the monitoring of foot temperature as a means of early detection of foot disorders in diabetes. The aim is to describe the technologies and to summarize experiences from experimental use. Studies show that regular monitoring of foot temperature may limit the incidence of disabling conditions such as foot ulcers and lower-limb amput...

  4. Effect of Curing Temperature Histories on the Compressive Strength Development of High-Strength Concrete

    Directory of Open Access Journals (Sweden)

    Keun-Hyeok Yang

    2015-01-01

    Full Text Available This study examined the relative strength-maturity relationship of high-strength concrete (HSC specifically developed for nuclear facility structures while considering the economic efficiency and durability of the concrete. Two types of mixture proportions with water-to-binder ratios of 0.4 and 0.28 were tested under different temperature histories including (1 isothermal curing conditions of 5°C, 20°C, and 40°C and (2 terraced temperature histories of 20°C for an initial age of individual 1, 3, or 7 days and a constant temperature of 5°C for the subsequent ages. On the basis of the test results, the traditional maturity function of an equivalent age was modified to consider the offset maturity and the insignificance of subsequent curing temperature after an age of 3 days on later strength of concrete. To determine the key parameters in the maturity function, the setting behavior, apparent activation energy, and rate constant of the prepared mixtures were also measured. This study reveals that the compressive strength development of HSC cured at the reference temperature for an early age of 3 days is insignificantly affected by the subsequent curing temperature histories. The proposed maturity approach with the modified equivalent age accurately predicts the strength development of HSC.

  5. Room-temperature treatments for all-inorganic nanocrystal solar cell devices

    Energy Technology Data Exchange (ETDEWEB)

    Loiudice, Anna, E-mail: anna.loiudice@iit.it [Dipartimento di Matematica e Fisica " E. De Giorgi" , Università del Salento, via Arnesano, 73100 Lecce (Italy); CBN — Center for Biomolecular Nanotechnologies, Italian Institute of Technology, Energy Platform, Via Barsanti sn, 73010 Arnesano (Lecce) (Italy); Rizzo, Aurora [CBN — Center for Biomolecular Nanotechnologies, Italian Institute of Technology, Energy Platform, Via Barsanti sn, 73010 Arnesano (Lecce) (Italy); NNL CNR-Istituto Nanoscienze, c/o Distretto Tecnologico, via per Arnesano km. 5, 73100 Lecce (Italy); Corricelli, Michela [Istituto per i Processi Chimico Fisici (IPCF-CNR) Bari, c/o Department of Chemistry, University of Bari, Via Orabona 4, I-70126 Bari (Italy); Department of Chemistry, University of Bari, Via Orabona 4, I-70126 Bari (Italy); Curri, M. Lucia [Istituto per i Processi Chimico Fisici (IPCF-CNR) Bari, c/o Department of Chemistry, University of Bari, Via Orabona 4, I-70126 Bari (Italy); Belviso, Maria R. [NNL CNR-Istituto Nanoscienze, c/o Distretto Tecnologico, via per Arnesano km. 5, 73100 Lecce (Italy); Cozzoli, P. Davide [Dipartimento di Matematica e Fisica " E. De Giorgi" , Università del Salento, via Arnesano, 73100 Lecce (Italy); NNL CNR-Istituto Nanoscienze, c/o Distretto Tecnologico, via per Arnesano km. 5, 73100 Lecce (Italy); Grancini, Giulia; Petrozza, Annamaria [Center for Nano Science and Technology at PoliMi, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano (Italy); Gigli, Giuseppe [Dipartimento di Matematica e Fisica " E. De Giorgi" , Università del Salento, via Arnesano, 73100 Lecce (Italy); CBN — Center for Biomolecular Nanotechnologies, Italian Institute of Technology, Energy Platform, Via Barsanti sn, 73010 Arnesano (Lecce) (Italy); NNL CNR-Istituto Nanoscienze, c/o Distretto Tecnologico, via per Arnesano km. 5, 73100 Lecce (Italy)

    2014-06-02

    We have developed a room-temperature solution processing approach to integrate colloidal anatase titanium dioxide nanorods (TiO{sub 2} NRs) and lead sulfide quantum dots (PbS QDs) into a heterostructured p-n junction device. To this aim we have exploited a post-deposition treatment to remove surface-adsorbed ligands by means of UV-light-irradiation of TiO{sub 2} NRs and a dilute acid treatment of PbS QDs. Here we report a systematic study on the optimization of the post-deposition treatments and device fabrication. Our approach is fully compatible with plastic device technology and is potentially useful for the integration of crystalline TiO{sub 2} as active component into disparate solar cell architectures and organic optoelectronic devices. - Highlights: • Colloidal nanocrystals offer path to low-cost manufacturing atop flexible substrates. • We fabricate an all-inorganic solar cell under room temperature treatments. • Our approach is fully compatible with plastic device technology. • It is useful for the integration of nanocrystals into disparate device architectures.

  6. Unified approach for determining the enthalpic fictive temperature of glasses with arbitrary thermal history

    DEFF Research Database (Denmark)

    Guo, Xiaoju; Potuzak, M.; Mauro, J. C.

    2011-01-01

    We propose a unified routine to determine the enthalpic fictive temperature of a glass with arbitrary thermal history under isobaric conditions. The technique is validated both experimentally and numerically using a novel approach for modeling of glass relaxation behavior. The technique is applic...

  7. Flexible Polymer Device Based on Parylene-C with Memory and Temperature Sensing Functionalities

    Directory of Open Access Journals (Sweden)

    Min Lin

    2017-07-01

    Full Text Available Polychloro-para-xylylene (parylene-C is a flexible and transparent polymer material which has excellent chemical stability and high biocompatibility. Here we demonstrate a polymer device based on single-component parylene-C with memory and temperature sensing functionalities. The device shows stable bipolar resistive switching behavior, remarkable storage window (>104, and low operation voltages, exhibiting great potential for flexible resistive random-access memory (RRAM applications. The I-V curves and conductive atomic force microscopy (CAFM results verify the metallic filamentary-type switching mechanism based on the formation and dissolution of a metal bridge related to the redox reaction of the active metal electrode. In addition, due to the metallic properties of the low-resistance state (LRS in the polymer device, the resistance in the LRS exhibits a nearly linear relationship at the temperature regime between 25 °C and 100 °C. With a temperature coefficient of resistance (TCR of 2.136 × 10−3/°C, the device is also promising for the flexible temperature sensor applications.

  8. 76 FR 81363 - Temperature-Indicating Devices; Thermally Processed Low-Acid Foods Packaged in Hermetically...

    Science.gov (United States)

    2011-12-28

    ... HUMAN SERVICES Food and Drug Administration 21 CFR Part 113 (formerly 2007N-0026) Temperature-Indicating Devices; Thermally Processed Low-Acid Foods Packaged in Hermetically Sealed Containers; Correction AGENCY... (76 FR 11892). The final rule amended FDA's regulations for thermally processed low-acid foods...

  9. Ground surface temperature history in southern Canada: Temperatures at the base of the Laurentide ice sheet and during the Holocene

    Science.gov (United States)

    Chouinard, Christian; Mareschal, J.-C.

    2009-01-01

    We use temperature profiles from 7 deep (≈ 2000 m) boreholes located in southern Canada to infer ground surface temperature histories (GSTH) during the Last Glacial Maximum (LGM) and the Holocene. Visual inspection of the heat flow and of the reduced temperature depth profiles reveals significant regional differences with some sites showing conspicuous signs of post glacial warming, and other indicating only very small changes in ground surface temperature. These differences are confirmed by the inversions of the temperature profiles. The most prominent variations in GST are found at the Sudbury, Ontario, sites where the present ground surface temperature is high. With the exception of Sept-Iles, Quebec, the other sites only show moderate or no variation in GST. For all the sites, except possibly Sept-Iles, temperatures at the base of the ice sheet during the LGM were at or slightly below the melting point of ice. Temperatures might have been lower, a few degrees below 0 °C, at Sept-Iles. These results are consistent with field observations and model predictions suggesting high velocity basal flows in the ice sheet above the studied regions. These new data on basal temperatures will provide better quantitative constraints on glacier flow dynamics. The inversions give a chronology for the retreat of the ice sheet comparable to other proxies. Inversion and direct modeling show that, following the ice retreat, there was a warm period between 2 and 5 ka with temperatures 1-2 K higher than present. The inversion yields a time for this episode 1-2 kyr more recent than that inferred by other proxies for the Holocene climate optimum (HCO).

  10. Extracting Concrete Thermal Characteristics from Temperature Time History of RC Column Exposed to Standard Fire

    Directory of Open Access Journals (Sweden)

    Jung J. Kim

    2014-01-01

    Full Text Available A numerical method to identify thermal conductivity from time history of one-dimensional temperature variations in thermal unsteady-state is proposed. The numerical method considers the change of specific heat and thermal conductivity with respect to temperature. Fire test of reinforced concrete (RC columns was conducted using a standard fire to obtain time history of temperature variations in the column section. A thermal equilibrium model in unsteady-state condition was developed. The thermal conductivity of concrete was then determined by optimizing the numerical solution of the model to meet the observed time history of temperature variations. The determined thermal conductivity with respect to temperature was then verified against standard thermal conductivity measurements of concrete bricks. It is concluded that the proposed method can be used to conservatively estimate thermal conductivity of concrete for design purpose. Finally, the thermal radiation properties of concrete for the RC column were estimated from the thermal equilibrium at the surface of the column. The radiant heat transfer ratio of concrete representing absorptivity to emissivity ratio of concrete during fire was evaluated and is suggested as a concrete criterion that can be used in fire safety assessment.

  11. Advanced Multi-Junction Photovoltaic Device Optimization For High Temperature Space Applications

    Science.gov (United States)

    Sherif, Michael

    2011-10-01

    Almost all solar cells available today for space or terrestrial applications are optimized for low temperature or "room temperature" operations, where cell performances demonstrate favourable efficiency figures. The fact is in many space applications, as well as when using solar concentrators, operating cell temperature are typically highly elevated, where cells outputs are severely depreciated. In this paper, a novel approach for the optimization of multi-junction photovoltaic devices at such high expected operating temperature is presented. The device optimization is carried out on the novel cell physical model previously developed at the Naval Postgraduate School using the SILVACO software tools [1]. Taking into account the high cost of research and experimentation involved with the development of advanced cells, this successful modelling technique was introduced and detailed results were previously presented by the author [2]. The flexibility of the proposed methodology is demonstrated and example results are shown throughout the whole process. The research demonstrated the capability of developing a realistic model of any type of solar cell, as well as thermo-photovoltaic devices. Details of an example model of an InGaP/GaAs/Ge multi-junction cell was prepared and fully simulated. The major stages of the process are explained and the simulation results are compared to published experimental data. An example of cell parameters optimization for high operating temperature is also presented. Individual junction layer optimization was accomplished through the use of a genetic search algorithm implemented in Matlab.

  12. Thermoplastic Elastomer Part Color as Function of Temperature Histories and Oxygen Atmosphere During Selective Laser Sintering

    Science.gov (United States)

    Kummert, C.; Josupeit, S.; Schmid, H.-J.

    2017-11-01

    The influence of selective laser sintering (SLS) parameters on PA12 part properties is well known, but research on other materials is rare. One alternative material is a thermoplastic elastomer (TPE) called PrimePart ST that is more elastic and shows a distinct SLS processing behavior. It undergoes a three-dimensional temperature distribution during the SLS process within the TPE part cake. To examine this further, a temperature measurement system that allows temperature measurements inside the part cake is applied to TPE in the present work. Position-dependent temperature histories are directly correlated with the color and mechanical properties of built parts and are in very good agreement with artificial heat treatment in a furnace. Furthermore, it is clearly shown that the yellowish discoloration of parts in different intensities is not only temperature dependent but also influenced by the residual oxygen content in the process atmosphere. Nevertheless, the discoloration has no influence on the mechanical part properties.

  13. Historie

    DEFF Research Database (Denmark)

    Poulsen, Jens Aage

    Historie i serien handler om læreplaner og læremidler og deres brug i skolefaget historie. Bogen indeholder nyttige redskaber til at analysere og vurdere læremidler......Historie i serien handler om læreplaner og læremidler og deres brug i skolefaget historie. Bogen indeholder nyttige redskaber til at analysere og vurdere læremidler...

  14. High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells

    Energy Technology Data Exchange (ETDEWEB)

    Fabian, Paul [Composite Technology Development, Inc, Lafayette, CO (United States)

    2012-03-31

    The U.S. Department of Energy is leading the development of alternative energy sources that will ensure the long-term energy independence of our nation. One key renewable resource being advanced is geothermal energy which offers an environmentally benign, reliable source of energy for the nation. To utilize this resource, water will be introduced into wells 3 to 10 km deep to create a geothermal reservoir. This approach is known as an Enhanced Geothermal System (EGS). The high temperatures and pressures at these depths have become a limiting factor in the development of this energy source. For example, reliable zonal isolation for high-temperature applications at high differential pressures is needed to conduct mini-fracs and other stress state diagnostics. Zonal isolation is essential for many EGS reservoir development activities. To date, the capability has not been sufficiently demonstrated to isolate sections of the wellbore to: 1) enable stimulation; and 2) seal off unwanted flow regions in unknown EGS completion schemes and high-temperature (>200°C) environments. In addition, packers and other zonal isolation tools are required to eliminate fluid loss, to help identify and mitigate short circuiting of flow from injectors to producers, and to target individual fractures or fracture networks for testing and validating reservoir models. General-purpose open-hole packers do not exist for geothermal environments, with the primary barrier being the poor stability of elastomeric seals at high temperature above 175°C. Experimental packer systems have been developed for geothermal environments but they currently only operate at low pressure, they are not retrievable, and they are not commercially available. The development of the high-temperature, high-pressure (HTHP) zonal isolation device would provide the geothermal community with the capability to conduct mini-fracs, eliminate fluid loss, to help identify and mitigate short circuiting of flow from injectors to

  15. Modified T-history method for measuring thermophysical properties of phase change materials at high temperature

    Science.gov (United States)

    Omaraa, Ehsan; Saman, Wasim; Bruno, Frank; Liu, Ming

    2017-06-01

    Latent heat storage using phase change materials (PCMs) can be used to store large amounts of energy in a narrow temperature difference during phase transition. The thermophysical properties of PCMs such as latent heat, specific heat and melting and solidification temperature need to be defined at high precision for the design and estimating the cost of latent heat storage systems. The existing laboratory standard methods, such as differential thermal analysis (DTA) and differential scanning calorimetry (DSC), use a small sample size (1-10 mg) to measure thermophysical properties, which makes these methods suitable for homogeneous elements. In addition, this small amount of sample has different thermophysical properties when compared with the bulk sample and may have limitations for evaluating the properties of mixtures. To avoid the drawbacks in existing methods, the temperature - history (T-history) method can be used with bulk quantities of PCM salt mixtures to characterize PCMs. This paper presents a modified T-history setup, which was designed and built at the University of South Australia to measure the melting point, heat of fusion, specific heat, degree of supercooling and phase separation of salt mixtures for a temperature range between 200 °C and 400 °C. Sodium Nitrate (NaNO3) was used to verify the accuracy of the new setup.

  16. Temperature effects on gametophyte life-history traits and geographic distribution of two cryptic kelp species.

    Science.gov (United States)

    Oppliger, L Valeria; Correa, Juan A; Engelen, Aschwin H; Tellier, Florence; Vieira, Vasco; Faugeron, Sylvain; Valero, Myriam; Gomez, Gonzalo; Destombe, Christophe

    2012-01-01

    A major determinant of the geographic distribution of a species is expected to be its physiological response to changing abiotic variables over its range. The range of a species often corresponds to the geographic extent of temperature regimes the organism can physiologically tolerate. Many species have very distinct life history stages that may exhibit different responses to environmental factors. In this study we emphasized the critical role of the haploid microscopic stage (gametophyte) of the life cycle to explain the difference of edge distribution of two related kelp species. Lessonia nigrescens was recently identified as two cryptic species occurring in parapatry along the Chilean coast: one located north and the other south of a biogeographic boundary at latitude 29-30°S. Six life history traits from microscopic stages were identified and estimated under five treatments of temperature in eight locations distributed along the Chilean coast in order to (1) estimate the role of temperature in the present distribution of the two cryptic L. nigrescens species, (2) compare marginal populations to central populations of the two cryptic species. In addition, we created a periodic matrix model to estimate the population growth rate (λ) at the five temperature treatments. Differential tolerance to temperature was demonstrated between the two species, with the gametophytes of the Northern species being more tolerant to higher temperatures than gametophytes from the south. Second, the two species exhibited different life history strategies with a shorter haploid phase in the Northern species contrasted with considerable vegetative growth in the Southern species haploid stage. These results provide strong ecological evidence for the differentiation process of the two cryptic species and show local adaptation of the life cycle at the range limits of the distribution. Ecological and evolutionary implications of these findings are discussed.

  17. Temperature effects on gametophyte life-history traits and geographic distribution of two cryptic kelp species.

    Directory of Open Access Journals (Sweden)

    L Valeria Oppliger

    Full Text Available A major determinant of the geographic distribution of a species is expected to be its physiological response to changing abiotic variables over its range. The range of a species often corresponds to the geographic extent of temperature regimes the organism can physiologically tolerate. Many species have very distinct life history stages that may exhibit different responses to environmental factors. In this study we emphasized the critical role of the haploid microscopic stage (gametophyte of the life cycle to explain the difference of edge distribution of two related kelp species. Lessonia nigrescens was recently identified as two cryptic species occurring in parapatry along the Chilean coast: one located north and the other south of a biogeographic boundary at latitude 29-30°S. Six life history traits from microscopic stages were identified and estimated under five treatments of temperature in eight locations distributed along the Chilean coast in order to (1 estimate the role of temperature in the present distribution of the two cryptic L. nigrescens species, (2 compare marginal populations to central populations of the two cryptic species. In addition, we created a periodic matrix model to estimate the population growth rate (λ at the five temperature treatments. Differential tolerance to temperature was demonstrated between the two species, with the gametophytes of the Northern species being more tolerant to higher temperatures than gametophytes from the south. Second, the two species exhibited different life history strategies with a shorter haploid phase in the Northern species contrasted with considerable vegetative growth in the Southern species haploid stage. These results provide strong ecological evidence for the differentiation process of the two cryptic species and show local adaptation of the life cycle at the range limits of the distribution. Ecological and evolutionary implications of these findings are discussed.

  18. Moderation of neoclassical impurity accumulation in high temperature plasmas of helical devices

    CERN Document Server

    Velasco, J L; Satake, S; Alonso, A; Nunami, M; Yokoyama, M; Sato, M; Dinklage, A; Estrada, T; Fontdecaba, J M; Liniers, M; McCarthy, K J; Medina, F; Van Milligen, B Ph; Ochando, M; Parra, F; Sugama, H; Zhezhera, A

    2016-01-01

    Achieving impurity and helium ash control is a crucial issue in the path towards fusion-grade magnetic confinement devices, and this is particularly the case of helical reactors, whose low-collisionality ion-root operation scenarios usually display a negative radial electric field which is expected to cause inwards impurity pinch. In these work we discuss, based on experimental measurements and standard predictions of neoclassical theory, how plasmas of very low ion collisionality, similar to those observed in the impurity hole of the Large Helical Device, can be an exception to this general rule, and how a negative radial electric field can coexist with an outward impurity flux. This interpretation is supported by comparison with documented discharges available in the International Stellarator-Heliotron Profile Database, and it can be extrapolated to show that achievement of high ion temperature in the core of helical devices is not fundamentally incompatible with low core impurity content.

  19. Microelectromechanical System (MEMS) Device Being Developed for Active Cooling and Temperature Control

    Science.gov (United States)

    Beach, Duane E.

    2003-01-01

    High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) using a Stirling thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface is being developed at the NASA Glenn Research Center to meet this need. The device can be used strictly in the cooling mode or can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly employ techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces, limited failure modes, and minimal induced vibration. The MEMS cooler has potential applications across a broad range of industries such as the biomedical, computer, automotive, and aerospace industries. The basic capabilities it provides can be categorized into four key areas: 1) Extended environmental temperature range in harsh environments; 2) Lower operating temperatures for electronics and other components; 3) Precision spatial and temporal thermal control for temperature-sensitive devices; and 4) The enabling of microsystem devices that require active cooling and/or temperature control. The rapidly expanding capabilities of semiconductor processing in general, and microsystems packaging in particular, present a new opportunity to extend Stirling-cycle cooling to the MEMS domain. The comparatively high capacity and efficiency possible with a MEMS Stirling cooler provides a level of active cooling that is impossible at the microscale with current state-of-the-art techniques. The MEMS cooler technology builds on decades of research at Glenn on Stirling-cycle machines, and capitalizes on Glenn s emerging microsystems capabilities.

  20. Low-temperature optical processing of semiconductor devices using photon effects

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B.L.; Cudzinovic, M.; Symko, M. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1995-08-01

    In an RTA process the primary purpose of the optical energy incident on the semiconductor sample is to increase its temperature rapidly. The activation of reactions involved in processes such as the formation of junctions, metal contacts, deposition of oxides or nitrides, takes place purely by the temperature effects. We describe the observation of a number of new photonic effects that take place within the bulk and at the interfaces of a semiconductor when a semiconductor device is illuminated with a spectrally broad-band light. Such effects include changes in the diffusion properties of impurities in the semiconductor, increased diffusivity of impurities across interfaces, and generation of electric fields that can alter physical and chemical properties of the interface. These phenomena lead to certain unique effects in an RTA process that do not occur during conventional furnace annealing under the same temperature conditions. Of particular interest are observations of low-temperature alloying of Si-Al interfaces, enhanced activation of phosphorus in Si during drive-in, low-temperature oxidation of Si, and gettering of impurities at low-temperatures under optical illumination. These optically induced effects, in general, diminish with an increase in the temperature, thus allowing thermally activated reaction rates to dominate at higher temperatures.

  1. Reconstruction of burial history, temperature, source rock maturity and hydrocarbon generation in the northwestern Dutch offshore

    OpenAIRE

    Abdul Fattah, R.; Verweij, J.M.; Witmans, N.; Veen, J.H. ten

    2012-01-01

    3D basin modelling is used to investigate the history of maturation and hydrocarbon generation on the main platforms in the northwestern part of the offshore area of the Netherlands. The study area covers the Cleaverbank and Elbow Spit Platforms. Recently compiled maps and data are used to build the input geological model. An updated and refined palaeo water depth curve and newly refined sediment water interface temperatures (SWIT) are used in the simulation. Basal heat flow is calculated usi...

  2. A device to investigate the delamination strength in laminates at room and cryogenic temperature.

    Science.gov (United States)

    Zhang, Xingyi; Liu, Wei; Zhou, Jun; Zhou, You-He

    2014-12-01

    We construct an instrument to study the behavior of delamination strength in laminates which can be defined as the critical transverse stress at which an actual delamination occurs. The device allows the anvil measurements at room temperature or the liquid nitrogen temperature. For the electro-magnetic laminated materials (e.g., a superconducting YaBa2Cu3O(7-x) coated conductor which has a typical laminated structure), the delamination strength was measured while the properties of transport current were also recorded. Moreover, the influences of external magnetic field on the delamination strength were presented.

  3. Effects of nuclear radiation and elevated temperature storage on electroexplosive devices

    Science.gov (United States)

    Menichelli, V. J.

    1976-01-01

    Aerospace type electroexplosive devices (EEDs) were subjected to nuclear radiation. Components and chemicals used in the EEDs were also included. The kind of radiation and total dosage administered were those which may be experienced in a space flight of 10 years duration, based on information available at this time. After irradiation, the items were stored in elevated constant-temperature ovens to accelerate early effects of the exposure to radiation. Periodically, samples were withdrawn for visual observation and testing. Significant changes occurred which were attributed to elevated-temperature storage and not radiation.

  4. Measurement of dynamic ocular surface temperature in healthy subjects using a new thermography device.

    Science.gov (United States)

    Klamann, Matthias K J; Maier, Anna-Karina B; Gonnermann, Johannes; Klein, Julian P; Pleyer, Uwe

    2012-08-01

    To investigate the routine use and applicability of a new ocular thermography device (TG 1000; Tomey Corp, Nagoya, Japan) in healthy individuals. Sixty eyes of 30 healthy subjects were included in this prospective study. Intraobserver reproducibility was tested with an ocular surface-oriented infrared radiation thermographic device in a non-contact manner. Using a standard examination protocol, the ocular surface temperature was assessed by dynamic thermal imaging over a time period of 10 s. The procedure was repeated three times during a single session by one examiner. Intraclass correlation coefficients (ICC) were calculated. Ocular surface temperature measurements were highly reproducible. The mean ocular surface temperature was 34.02°C ± 0.22. The ICC was 0.947%, 0.949%, and 0.955% for minimum, maximum, and mean temperatures, respectively. Ocular surface temperature measurements made using the Tomey TG 1000 in healthy subjects showed excellent intraobserver reproducibility. This novel non-invasive technique offers new options for increased understanding of the physiology of the ocular surface.

  5. Temperature sensing in E.M.D. environment with periodically poled lithium niobate devices

    Science.gov (United States)

    Margheri, G.; Del Rosso, T.; Trigari, S.; Sottini, S.; Grando, D.; D'Orazio, A.; De Sario, M.; Petruzzelli, V.; Prudenzano, F.

    2006-04-01

    A temperature sensor immune to electromagnetic noise is designed and fabricated. The sensor key element is a periodically poled lithium niobate (PPLN) substrate. PPLN allows a direct and efficient frequency conversion of lightwave through the quasi-phase matching (QPM) of the pump radiation propagating at the fundamental and second harmonic wavelengths. For these devices, the efficiency of second harmonic generation (SHG) depends on the QPM condition, and it strongly changes with respect to the wavelength and the temperature. The effect of temperature variation on the SHG in periodically poled lithium niobate annealed proton exchange (APE) channel waveguides (WG) is theoretically modeled via a home-made computer code and experimentally validated via a suitable measurement set-up. A lot of simulations have been performed to test the temperature sensor feasibility and to identify its optimal configuration. Another sensor configuration made by two waveguides with suitable gratings of inverted ferroelectric domains is designed and refined, too. For an optimised PPLN-WG device, which could be fabricated through electric field poling and annealed proton exchange or titanium diffusion, a sensitivity S≡0.03μW/°C for the temperature range equal to 100 °C is demonstrated by using an input power at a fundamental wavelength equal to 40 mW. Similar evaluations and measurements, performed on bulk substrates, allowed us to design a layout of a sensor particularly suited for rugged in-field applications.

  6. Large Conductance Switching in a Single-Molecule Device through Room Temperature Spin-Dependent Transport.

    Science.gov (United States)

    Aragonès, Albert C; Aravena, Daniel; Cerdá, Jorge I; Acís-Castillo, Zulema; Li, Haipeng; Real, José Antonio; Sanz, Fausto; Hihath, Josh; Ruiz, Eliseo; Díez-Pérez, Ismael

    2016-01-13

    Controlling the spin of electrons in nanoscale electronic devices is one of the most promising topics aiming at developing devices with rapid and high density information storage capabilities. The interface magnetism or spinterface resulting from the interaction between a magnetic molecule and a metal surface, or vice versa, has become a key ingredient in creating nanoscale molecular devices with novel functionalities. Here, we present a single-molecule wire that displays large (>10000%) conductance switching by controlling the spin-dependent transport under ambient conditions (room temperature in a liquid cell). The molecular wire is built by trapping individual spin crossover Fe(II) complexes between one Au electrode and one ferromagnetic Ni electrode in an organic liquid medium. Large changes in the single-molecule conductance (>100-fold) are measured when the electrons flow from the Au electrode to either an α-up or a β-down spin-polarized Ni electrode. Our calculations show that the current flowing through such an interface appears to be strongly spin-polarized, thus resulting in the observed switching of the single-molecule wire conductance. The observation of such a high spin-dependent conductance switching in a single-molecule wire opens up a new door for the design and control of spin-polarized transport in nanoscale molecular devices at room temperature.

  7. Reconstruction of the ground surface temperature history from the borehole temperature data in the southeastern part of the Republic of Korea

    Science.gov (United States)

    Goto, Shusaku; Kim, Hyoung Chan; Uchida, Youhei; Okubo, Yasukuni

    2005-12-01

    The changes in the temperature on the Earth's surface in the past have penetrated into the subsurface and have been recorded as transient temperature perturbations to the background thermal field. In this study, we reconstruct the ground surface temperature (GST) history of the last 300 years by analysing three borehole temperature profiles in Ulsan, the southeastern part of the Republic of Korea. The borehole temperature profiles show positive temperature anomalies caused by recent warming. The reconstructed GST history showed a cold period in the late 19th century and subsequent warming in the present time. After the cold event, the GST increased by 1.5 K up to 1980. The warming trend from 1900 to 1980 was 2.0 K/century. We compare the GST history with proxy temperature reconstructions obtained by other studies in Northeast Asia. The result suggests spatial variability of the climate in Northeast Asia.

  8. Multi-species time-history measurements during high-temperature acetone and 2-butanone pyrolysis

    KAUST Repository

    Lam, Kingyiu

    2013-01-01

    High-temperature acetone and 2-butanone pyrolysis studies were conducted behind reflected shock waves using five species time-history measurements (ketone, CO, CH3, CH4 and C2H4). Experimental conditions covered temperatures of 1100-1600 Kat 1.6 atm, for mixtures of 0.25-1.5% ketone in argon. During acetone pyrolysis, the CO concentration time-history was found to be strongly sensitive to the acetone dissociation rate constant κ1 (CH3COCH3 → CH3 + CH3CO), and this could be directly determined from the CO time-histories, yielding κ1(1.6 atm) = 2.46 × 1014 exp(-69.3 [kcal/mol]/RT) s-1 with an uncertainty of ±25%. This rate constant is in good agreement with previous shock tube studies from Sato and Hidaka (2000) [3] and Saxena et al. (2009) [4] (within 30%) at temperatures above 1450 K, but is at least three times faster than the evaluation from Sato and Hidaka at temperatures below 1250 K. Using this revised κ1 value with the recent mechanism of Pichon et al. (2009) [5], the simulated profiles during acetone pyrolysis show excellent agreement with all five species time-history measurements. Similarly, the overall 2-butanone decomposition rate constant κtot was inferred from measured 2-butanone time-histories, yielding κ tot(1.5 atm) = 6.08 × 1013 exp(-63.1 [kcal/mol]/RT) s -1 with an uncertainty of ±35%. This rate constant is approximately 30% faster than that proposed by Serinyel et al. (2010) [11] at 1119 K, and approximately 100% faster at 1412 K. Using the measured 2-butanone and CO time-histories and an O-atom balance analysis, a missing removal pathway for methyl ketene was identified. The rate constant for the decomposition of methyl ketene was assumed to be the same as the value for the ketene decomposition reaction. Using the revised κtot value and adding the methyl ketene decomposition reaction to the Serinyel et al. mechanism, the simulated profiles during 2-butanone pyrolysis show good agreement with the measurements for all five species.

  9. Two-wavelength Raman imaging for non-intrusive monitoring of transient temperature in microfluidic devices

    Science.gov (United States)

    Kuriyama, Reiko; Sato, Yohei

    2014-09-01

    The present study proposes a non-intrusive visualization technique based on two-wavelength Raman imaging for in-situ monitoring of the unsteady temperature field in microfluidic systems. The measurement principle relies on the contrasting temperature dependencies of hydrogen-bonded and non-hydrogen-bonded OH stretching modes of the water Raman band, whose intensities were simultaneously captured by two cameras equipped with corresponding bandpass filters. The temperature distributions were then determined from the intensity ratio of the simultaneously-obtained Raman images, which enables compensation for temporal fluctuation and spatial inhomogeneity of the excitation laser intensity. A calibration experiment exhibited a linear relationship between the temperature and the intensity ratio in the range 293-343 K and least-regression analysis gave an uncertainty of 1.43 K at 95% confidence level. By applying the calibration data, time series temperature distributions were quantitatively visualized in a Y-shaped milli-channel at a spatial resolution of 6.0  ×  6.0 µm2 with an acquisition time of 16.5 s. The measurement result clearly exhibited the temporal evolution of the temperature field and was compared with the values obtained by thermocouples. This paper therefore demonstrates the viability of employing the two-wavelength Raman imaging technique for temperature measurements in microfluidic devices.

  10. Maximum Efficiency of Thermoelectric Heat Conversion in High-Temperature Power Devices

    Directory of Open Access Journals (Sweden)

    V. I. Khvesyuk

    2016-01-01

    Full Text Available Modern trends in development of aircraft engineering go with development of vehicles of the fifth generation. The features of aircrafts of the fifth generation are motivation to use new high-performance systems of onboard power supply. The operating temperature of the outer walls of engines is of 800–1000 K. This corresponds to radiation heat flux of 10 kW/m2 . The thermal energy including radiation of the engine wall may potentially be converted into electricity. The main objective of this paper is to analyze if it is possible to use a high efficiency thermoelectric conversion of heat into electricity. The paper considers issues such as working processes, choice of materials, and optimization of thermoelectric conversion. It presents the analysis results of operating conditions of thermoelectric generator (TEG used in advanced hightemperature power devices. A high-temperature heat source is a favorable factor for the thermoelectric conversion of heat. It is shown that for existing thermoelectric materials a theoretical conversion efficiency can reach the level of 15–20% at temperatures up to 1500 K and available values of Ioffe parameter being ZT = 2–3 (Z is figure of merit, T is temperature. To ensure temperature regime and high efficiency thermoelectric conversion simultaneously it is necessary to have a certain match between TEG power, temperature of hot and cold surfaces, and heat transfer coefficient of the cooling system. The paper discusses a concept of radiation absorber on the TEG hot surface. The analysis has demonstrated a number of potentialities for highly efficient conversion through using the TEG in high-temperature power devices. This work has been implemented under support of the Ministry of Education and Science of the Russian Federation; project No. 1145 (the programme “Organization of Research Engineering Activities”.

  11. Liquid Oxygen Liquid Acquisition Device Bubble Point Tests with High Pressure LOX at Elevated Temperatures

    Science.gov (United States)

    Jurns, John M.; Hartwig, Jason W.

    2011-01-01

    When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth s gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMD) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. The present work reports on testing with liquid oxygen (LOX) at elevated pressures (and thus temperatures) (maximum pressure 1724 kPa and maximum temperature 122K) as part of NASA s continuing cryogenic LAD development program. These tests evaluate LAD performance for LOX stored in higher pressure vessels that may be used in propellant systems using pressure fed engines. Test data shows a significant drop in LAD bubble point values at higher liquid temperatures, consistent with lower liquid surface tension at those temperatures. Test data also indicates that there are no first order effects of helium solubility in LOX on LAD bubble point prediction. Test results here extend the range of data for LOX fluid conditions, and provide insight into factors affecting predicting LAD bubble point pressures.

  12. An overview of temperature monitoring devices for early detection of diabetic foot disorders.

    Science.gov (United States)

    Roback, Kerstin

    2010-09-01

    Diabetic foot complications are associated with substantial costs and loss of quality of life. This article gives an overview of available and emerging devices for the monitoring of foot temperature as a means of early detection of foot disorders in diabetes. The aim is to describe the technologies and to summarize experiences from experimental use. Studies show that regular monitoring of foot temperature may limit the incidence of disabling conditions such as foot ulcers and lower-limb amputations. Infrared thermometry and liquid crystal thermography were identified as the leading technologies in use today. Both technologies are feasible for temperature monitoring of the feet and could be used as a complement to current practices for foot examinations in diabetes.

  13. Low Temperature Processed Complementary Metal Oxide Semiconductor (CMOS) Device by Oxidation Effect from Capping Layer

    KAUST Repository

    Wang, Zhenwei

    2015-04-20

    In this report, both p- and n-type tin oxide thin-film transistors (TFTs) were simultaneously achieved using single-step deposition of the tin oxide channel layer. The tuning of charge carrier polarity in the tin oxide channel is achieved by selectively depositing a copper oxide capping layer on top of tin oxide, which serves as an oxygen source, providing additional oxygen to form an n-type tin dioxide phase. The oxidation process can be realized by annealing at temperature as low as 190°C in air, which is significantly lower than the temperature generally required to form tin dioxide. Based on this approach, CMOS inverters based entirely on tin oxide TFTs were fabricated. Our method provides a solution to lower the process temperature for tin dioxide phase, which facilitates the application of this transparent oxide semiconductor in emerging electronic devices field.

  14. Ion and electron temperatures in the SUMMA mirror device by emission spectroscopy

    Science.gov (United States)

    Patch, R. W.; Voss, D. E.; Reinmann, J. J.; Snyder, A.

    1974-01-01

    Ion temperatures were obtained in the SUMMA mirror device by observing the Doppler-broadened charge-exchange component of the 667.8and 587.6-nm He lines in He plasma and the H alpha and H beta lines in H2 plasma. The second moment of the line profiles was used as the parameter to determine ion temperature. Corrections for magnetic splitting, fine structure, monochromator slit function, and variation in charge-exchange cross section with energy are derived and included. Even for constant cross section, no magnetic splitting or fine structure, and infinitely narrow slit function, the line profile is not Gaussian, because the excitation results from a change-exchange process. Comparison is made with temperatures from a neutral particle analyzer.-

  15. Spintronics: Towards room temperature ferromagnetic devices via manganese and rare earth doped gallium nitride

    Science.gov (United States)

    Luen, Melvyn Oliver

    Spintronics is a multidisciplinary field aimed at the active manipulation of spin degrees of freedom in solid-state systems. The goal being the understanding of the interaction between the particle spin and its solid-state environment, and the making of useful devices based on the acquired knowledge. If Moore's law is to continue, then we need to find alternatives to conventional microelectronics. Where conventional electronic devices rely on manipulating charge to produce desired functions, spintronic devices would manipulate both the charge flow and electron spin within that flow. This would add an extra degree of freedom to microelectronics and usher in the era of truly nanoelectronic devices. Research aimed at a whole new generation of electronic devices is underway by introducing electron spin as a new or additional physical variable, and semiconductor devices that exploit this new freedom will operate faster and more efficiently than conventional microelectronic devices and offer new functionality that promises to revolutionize the electronics industry. Long recognized as the material of choice for next-generation solid-state lighting, gallium nitride (GaN) also has proven uses in the field of high power, high frequency field-effect transistors (FETs). But its promise as a material system for spintronic applications may be its ultimate legacy. In this dissertation, the growth of gallium-manganese-nitride (GaMnN) compound semiconductor alloy was investigated through the use of an in-house built metal-organic chemical vapor deposition (MOCVD) reactor. Building on previous investigations of ferromagnetic mechanisms in GaMnN, where ferromagnetism was shown to be carrier mediated, a above room temperature ferromagnetic GaMnN i-p-n diode structure was conceived. This device proved to be the first of its kind in the world, where ferromagnetic properties are controlled via proximity of the mediating holes, upon voltage bias of adjacent structure layers

  16. Comparative analysis of selected exhaled breath biomarkers obtained with two different temperature-controlled devices

    Directory of Open Access Journals (Sweden)

    Brüning Thomas

    2009-11-01

    Full Text Available Abstract Background The collection of exhaled breath condensate (EBC is a suitable and non-invasive method for evaluation of airway inflammation. Several studies indicate that the composition of the condensate and the recovery of biomarkers are affected by physical characteristics of the condensing device and collecting circumstances. Additionally, there is an apparent influence of the condensing temperature, and often the level of detection of the assay is a limiting factor. The ECoScreen2 device is a new, partly single-use disposable system designed for studying different lung compartments. Methods EBC samples were collected from 16 healthy non-smokers by using the two commercially available devices ECoScreen2 and ECoScreen at a controlled temperature of -20°C. EBC volume, pH, NOx, LTB4, PGE2, 8-isoprostane and cys-LTs were determined. Results EBC collected with ECoScreen2 was less acidic compared to ECoScreen. ECoScreen2 was superior concerning condensate volume and detection of biomarkers, as more samples were above the detection limit (LTB4 and PGE2 or showed higher concentrations (8-isoprostane. However, NOx was detected only in EBC sampled by ECoScreen. Conclusion ECoScreen2 in combination with mediator specific enzyme immunoassays may be suitable for measurement of different biomarkers. Using this equipment, patterns of markers can be assessed that are likely to reflect the complex pathophysiological processes in inflammatory respiratory disease.

  17. A review of TLD's zero-count based on temperature and radiation history of them

    Science.gov (United States)

    Tunçel, Nina; Karakuş, İsmail; Dündar, Ertuğrul; Toykan Çiflikçi, Özlem

    2017-09-01

    In order to review the background value of a group of TLD-100, the zero-count values were collected from the first reading and after seven years after using them in experimental irradiations. The zero-counts for these two conditions were collected, as well as the dependence of temperature and radiation history of this group was evaluated. This study recommended that after frequently irradiation of TLDs the rearrangement for obtaining zero-count value must be performed before using TLDs in a new irradiation examination. Regarding on memory of radiation and thermal history, the sensitivity can change after receiving a large dose of radiation and undergoing readout. Additional annealing would be necessary to restore the original sensitivity. TLDs must be used under reproducible conditions to obtain consistent results.

  18. Temperature-dependent life history of Oligonychus mangiferus (Acari: Tetranychidae) on Mangifera indica.

    Science.gov (United States)

    Lin, Ming-Ying

    2013-12-01

    The mango red spider mite, Oligonychus mangiferus (Rhaman and Sapra), is a major mango pest in Taiwan. This mite damages the leaves of the mango tree and affects the quality of the fruit. This study investigates the life history of the mango red spider mite on Mangifera indica L. cv. Irwin at five constant temperatures (17, 21, 25, 29, and 33 °C), under 80 ± 5 % RH and L12:D12 photoperiod conditions. An increase in temperature significantly decreased the developmental times for each stage and the overall immature period in females and males. The lower developmental thresholds of the immature stage were 12.5 and 12.4 °C for females and males, respectively. The thermal summations for the development of the immature stage were 185.9 and 175.7 degree-days for females and males, respectively. Based on the annual field temperature, an estimated 26 generations can reproduce in a mango orchard annually. The longevity of adults of both sexes decreased as temperature increased, and adult males lived longer than females. The preoviposition periods were shorter than 1 day when the temperature exceeded 25 °C. The development period and the oviposition period were shortest at 29 °C. At this point, daily fecundity was highest, and fecundity was second highest, resulting in the highest intrinsic rate of increase (r m ), 0.182 day(-1). These life history traits are applied to improve the management of O. mangiferus.

  19. Bipolar Switching Properties of Neodymium Oxide RRAM Devices Using by a Low Temperature Improvement Method

    Directory of Open Access Journals (Sweden)

    Kai-Huang Chen

    2017-12-01

    Full Text Available Bipolar resistive switching properties and endurance switching behavior of the neodymium oxide (Nd2O3 thin films resistive random access memory (RRAM devices for a high resistive status/low resistive status (HRS/LRS using a low temperature supercritical carbon dioxide fluid (SCF improvement post-treatment process were investigated. Electrical and physical properties improvement of Nd2O3 thin films were measured by X-ray diffraction (XRD, scanning electron microscopy (SEM, X-ray photoelectron spectroscopy (XPS, and current versus voltage (I-V measurement. The metal-like behavior of ohmic conduction mechanism and metallic cluster reaction of hopping conduction mechanism in initial metallic filament path forming process of the SCF-treated thin films RRAM devices was assumed and discussed. Finally, the electrical conduction mechanism of the thin films RRAM derives for set/reset was also discussed and verified in filament path physical model.

  20. On the question of gas-dynamic temperature stratification device optimization

    Science.gov (United States)

    Khazov, Dmitry

    2017-11-01

    One- and two-dimensional mathematical models of the devices for the machine-free energy separation of compressible gas flows have been considered. The device is a “pipe in a pipe” heat exchanger; the supersonic flow passes along an internal cylindrical channel, the subsonic flow — along an external annular channel. Energy separation takes place without any moving pieces. Main stream divides in two parts: a cold one (subsonic) and a hot one (supersonic). The proposed models were validated in a wide range of input parameters changes. The influence of a direct and counter flow pattern at the energy separation effect was investigated in terms of subsonic cooling maximization. By using the developed models, the optimal profiles of the supersonic channel were determined from the maximum energy separation effect point of view at identical initial total pressures, total temperatures and mass flows.

  1. Order reconstruction phenomena and temperature-driven dynamics in a 3D zenithally bistable device

    KAUST Repository

    Raisch, A.

    2014-07-01

    We model the zenithally bistable device (ZBD) in three dimensions (3D), within the Landau-de Gennes theory, and find three stable static states in 3D without an applied field: the vertically aligned nematic (VAN) state, the hybrid aligned nematic (HAN) state and a third, high-tilt state, which we call the THAN state, with an interior and a surface defect. We recover the order reconstruction (OR) phenomenon around the defects in the HAN and THAN states and the 3D THAN and HAN solutions exhibit stable biaxial cylinders connecting defects on opposite faces of the ZBD device. We demonstrate a two-way temperature-driven switching between high-tilt and low-tilt states through controlled heating and cooling procedures in two dimensions (2D), with no applied fields. © CopyrightEPLA, 2014.

  2. Sensitive biomolecule detection in lateral flow assay with a portable temperature-humidity control device.

    Science.gov (United States)

    Choi, Jane Ru; Hu, Jie; Feng, Shangsheng; Wan Abas, Wan Abu Bakar; Pingguan-Murphy, Belinda; Xu, Feng

    2016-05-15

    Lateral flow assays (LFAs) have currently attracted broad interest for point-of-care (POC) diagnostics, but their application has been restricted by poor quantification and limited sensitivity. While the former has been currently solved to some extent by the development of handheld or smartphone-based readers, the latter has not been addressed fully, particularly the potential influences of environmental conditions (e.g., temperature and relative humidity (RH)), which have not yet received serious attention. The present study reports the use of a portable temperature-humidity control device to provide an optimum environmental requirement for sensitivity improvement in LFAs, followed by quantification by using a smartphone. We found that a RH beyond 60% with temperatures of 55-60°C and 37-40°C produced optimum nucleic acid hybridization and antigen-antibody interaction in LFAs, respectively representing a 10-fold and 3-fold signal enhancement over ambient conditions (25°C, 60% RH). We envision that in the future the portable device could be coupled with a fully integrated paper-based sample-to-answer biosensor for sensitive detection of various target analytes in POC settings. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Zirconium diboride thin films for use in high temperature sensors and MEMS devices

    Science.gov (United States)

    Stewart, David M.; Bernhardt, George P.; Lad, Robert J.

    2017-05-01

    Sensors and MEMS devices operating in high temperature environments require stable thin films with high electrical conductivity for use as electrodes, bond pads, and other components. Metal films are unreliable because of thermodynamically driven morphological instability and agglomeration over long times. Zirconium diboride (ZrB2) is an ultra-high temperature conducting ceramic with a melting point of 3245°C, with low atomic diffusion rates compared to other materials. To evaluate ZrB2 as a high temperature film, 200 nm thick ZrB2 films were synthesized on r-sapphire substrates using e-beam co-evaporation of elemental Zr and B sources. Film stability was characterized after post-deposition thermal treatments from 600-1000°C in both reducing (vacuum) and oxidizing (air) environments. ZrB2 films deposited at room temperature are amorphous, but have short-range order characteristic of ZrB2 bonding. ZrB2 films grown at 600°C are polycrystalline with preferred changes occur after annealing at 850°C for 55 hours in vacuum, and film electrical conductivity remains leads to ZrB2 film decomposition into ZrO2 and B2O3 phases, the latter of which is volatile. X-ray diffraction indicates that a 50 nm thick hexagonal boron nitride (h-BN) capping layer grown on top of ZrB2 via magnetron sputtering hinders oxidation, but the ZrB2 eventually transforms to ZrO2. These results indicate that ZrB2 films are attractive for potential use in sensors and MEMS devices in high temperature reducing environments, and for short times in oxidizing environments when covered with a h-BN capping layer.

  4. An eco-physiological model of the impact of temperature on Aedes aegypti life history traits.

    Science.gov (United States)

    Padmanabha, Harish; Correa, Fabio; Legros, Mathieu; Nijhout, H Fredrick; Lord, Cynthia; Lounibos, L Philip

    2012-12-01

    Physiological processes mediate the impact of ecological conditions on the life histories of insect vectors. For the dengue/chikungunya mosquito, Aedes aegypti, three life history traits that are critical to urban population dynamics and control are: size, development rate and starvation mortality. In this paper we make use of prior laboratory experiments on each of these traits at 2°C intervals between 20 and 30°C, in conjunction with eco-evolutionary theory and studies on A.aegypti physiology, in order to develop a conceptual and mathematical framework that can predict their thermal sensitivity. Our model of reserve dependent growth (RDG), which considers a potential tradeoff between the accumulation of reserves and structural biomass, was able to robustly predict laboratory observations, providing a qualitative improvement over the approach most commonly used in other A.aegypti models. RDG predictions of reduced size at higher temperatures, but increased reserves relative to size, are supported by the available evidence in Aedes spp. We offer the potentially general hypothesis that temperature-size patterns in mosquitoes are driven by a net benefit of finishing the growing stage with proportionally greater reserves relative to structure at warmer temperatures. By relating basic energy flows to three fundamental life history traits, we provide a mechanistic framework for A.aegypti development to which ecological complexity can be added. Ultimately, this could provide a framework for developing and field testing hypotheses on how processes such as climate variation, density dependent regulation, human behavior or control strategies may influence A.aegypti population dynamics and disease risk. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Smoothing effect of the thermal interface material on the temperature distribution in a stepwise varying width microchannel cooling device

    Science.gov (United States)

    Riera, Sara; Barrau, Jérôme; Rosell, Joan I.; Fréchette, Luc G.; Omri, Mohamed; Vilarrubí, Montse; Laguna, Gerard

    2017-09-01

    The impact of the thermal interface material (TIM) layer on the performance of a stepwise varying width microchannel cooling device is analysed. A numerical model shows that the TIM layer, besides its well known negative impact on the temperature, also generates a smoothing effect on the temperature distribution. In this study, an analytical model is used to define a nondimensional parameter, called Smoothing Resistance ratio, as the quotient between the origin of the temperature non uniformities and the TIM thermal resistance that flatten the temperature distribution. The relationship between the temperature uniformity of the cooled device, expressed through the temperature standard deviation, and the Smoothing Resistance ratio is shown to be linear. These results lead to the definition of a new design procedure for this kind of cooling device, which aims to reduce the Smoothing Resistance ratio. Two solutions are identified and their drawbacks are analysed.

  6. Single superconducting quantum interference device multiplexer for arrays of low-temperature sensors

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jongsoo; Clarke, John; Gildemeister, J. M.; Lee, Adrian T.; Myers, M. J.; Richards, P. L.; Skidmore, J. T.

    2001-01-15

    We present the design and experimental evaluation of a superconducting quantum interference device (SQUID) multiplexer for an array of low-temperature sensors. Each sensor is inductively coupled to a superconducting summing loop which, in turn, is inductively coupled to the readout SQUID. The flux-locked loop of the SQUID is used to null the current in the summing loop and thus cancel crosstalk. The sensors are biased with an alternating current, each with a separate frequency, and the individual sensor signals are separated by lock-in detection at the SQUID output. We have fabricated a prototype 8 channel multiplexer and discuss the application to a larger array.

  7. Finite element analysis of spot laser of steel welding temperature history

    Directory of Open Access Journals (Sweden)

    Shibib Khalid S.

    2009-01-01

    Full Text Available Laser welding process reduces the heat input to the work-piece which is the main goal in aerospace and electronics industries. A finite element model for axi-symmetric transient heat conduction has been used to predict temperature distribution through a steel cylinder subjected to CW laser beam of rectangular beam profile. Many numerical improvements had been used to reduce time of calculation and size of the program so as to achieve the task with minimum time required. An experimental determined absorptivity has been used to determine heat induced when laser interact with material. The heat affected zone and welding zone have been estimated to determine the effect of welding on material. The ratio of depth to width of the welding zone can be changed by proper selection of beam power to meet the specific production requirement. The temperature history obtained numerically has been compared with experimental data indicating good agreement.

  8. Potential effects of changes in temperature and food resources on life history trajectories of juvenile Oncorhynchus mykiss

    Science.gov (United States)

    Benjamin, Joseph R.; Connolly, Patrick J.; Romine, Jason G.; Perry, Russell W.

    2013-01-01

    Increasing temperatures and changes in food resources owing to climate change may alter the growth and migratory behavior of organisms. This is particularly important for salmonid species like Oncorhynchus mykiss, where some individuals remain in freshwater to mature (nonanadromous Rainbow Trout) and others migrate to sea (anadromous Steelhead). Whether one strategy is adopted over the other may depend on the individual's growth and size. In this study, we explored (1) how water temperature in Beaver Creek, a tributary to the Methow River, Washington, may increase under four climate scenarios, (2) how these thermal changes may alter the life history trajectory followed by O. mykiss (i.e., when and if to smolt), and (3) how changes in food quality or quantity might interact with increasing temperatures. We combined bioenergetic and state-dependent life history models parameterized for O. mykiss in Beaver Creek to mimic baseline life history trajectories. Based on our simulations, when mean water temperature was increased by 0.6°C there was a reduction in life history diversity and a 57% increase in the number of individuals becoming smolts. When mean temperature was increased by 2.7°C, it resulted in 87% fewer smolts than in the baseline and fewer life history trajectories expressed. A reduction in food resources led to slower growth, more life history trajectories, and a greater proportion of smolts. In contrast, when food resources were increased, fish grew faster, which reduced the proportion of smolts and life history diversity. Our modeling suggests that warmer water temperatures associated with climate change could decrease the life history diversity of O. mykiss in the central portion of their range and thereby reduce resiliency to other disturbances. In addition, changes in food resources could mediate or exacerbate the effect of water temperature on the life history trajectories of O. mykiss.

  9. Mechanism of a-IGZO TFT device deterioration—illumination light wavelength and substrate temperature effects

    Science.gov (United States)

    Chen, Te-Chih; Kuo, Yue; Chang, Ting-Chang; Chen, Min-Chen; Chen, Hua-Mao

    2017-10-01

    Device characteristics changes in an a-IGZO thin film transistor under light illumination and at raised temperature have been investigated. Light exposure causes a large leakage current, which is more obvious with an increase in the illumination energy, power and the temperature. The increase in the leakage current is due to the trap assisted photon excitation process that generates electron-hole pairs and the mechanism is enhanced with the additional thermal energy. The leakage current comes from the source side because holes generated in the process drift to the source side and therefore lower the barrier height. The above mechanism has been further verified with experiments of drain bias induced shifts in the threshold voltage and the subthreshold slope.

  10. The anatomy of a pipe bomb explosion: the effect of explosive filler, container material and ambient temperature on device fragmentation.

    Science.gov (United States)

    Bors, Dana; Cummins, Josh; Goodpaster, John

    2014-01-01

    Understanding the mechanical properties of different piping material under various conditions is important to predicting the behavior of pipe bombs. In this study, the effect of temperature on pipe bomb containers (i.e., PVC, black steel and galvanized steel) containing low explosive fillers (i.e., Pyrodex and double-base smokeless powder (DBSP)) was investigated. Measurements of fragment velocity and mass were compared for similar devices exploded in the spring (low/high temperature was 8°C/21°C) and winter (low/high temperature range was -9°C/-3°C). The explosions were captured using high speed filmography and fragment velocities were plotted as particle vector velocity maps (PVVM). The time that elapsed between the initiation of the winter devices containing double-base smokeless powder (DBSP) and the failure of their pipe containers ranged from 5.4 to 8.1 ms. The maximum fragment velocities for these devices ranged from 332 to 567 m/s. The steel devices ruptured and exploded more quickly than the PVC device. The steel devices also generated fragments with higher top speeds. Distributions of fragment masses were plotted as histograms and fragment weight distribution maps (FWDM). As expected, steel devices generated fewer, larger fragments than did the PVC devices. Comparison to devices exploded in the spring revealed several pieces of evidence for temperature effects on pipe bombs. For example, the mean fragment velocities for the winter devices were at or above those observed in the spring. The maximum fragment velocity was also higher for the winter steel devices. Although there were no significant differences in mean relative fragment mass, the fragment weight distribution maps (FWDMs) for two winter devices had anomalous slopes, where lower energy filler caused more severe fragmentation than higher energy filler. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Analysis of three-year Wisconsin temperature histories for roof systems using wood, wood-thermoplastic composite, and fiberglass shingles

    Science.gov (United States)

    Jerrold E. Winandy; Cherilyn A. Hatfield

    2007-01-01

    Temperature histories for various types of roof shingles, wood roof sheathing, rafters, and nonventilated attics were monitored in outdoor attic structures using simulated North American light-framed construction. In this paper, 3-year thermal load histories for wood-based composite roof sheathing, wood rafters, and attics under western redcedar (WRC) shingles, wood-...

  12. Reproductive strategy, spawning induction, spawning temperatures and early life history of captive sicklefin chub Macrhybopsis meeki

    Science.gov (United States)

    Albers, Janice; Wildhaber, Mark L.

    2017-01-01

    Macrhybopsis reproduction and propagule traits were studied in the laboratory using two temperature regimes and three hormone treatments to determine which methods produced the most spawns. Only sicklefin chub Macrhybopsis meeki spawned successfully although sturgeon chub Macrhybopsis gelida released unfertilized eggs. All temperature and hormone treatments produced M. meeki spawns, but two treatments had similar success rates at 44 and 43%, consisting of a constant daily temperature with no hormone added, or daily temperature fluctuations with hormone added to the water. Spawns consisted of multiple successful demersal circular swimming spawning embraces interspersed with circular swims without embraces. The most spawns observed for one female was four and on average, 327 eggs were collected after each spawn. The water-hardened eggs were semi-buoyant and non-adhesive, the first confirmation of this type of reproductive guild in the Missouri River Macrhybopsis sp. From spawn, larvae swam vertically until 123 accumulated degree days (° D) and 167° D for consumption of first food. Using average water speed and laboratory development time, the predicted drift distance for eggs and larvae could be 468–592 km in the lower Missouri River. Results from this study determined the reproductive biology and early life history of Macrhybopsis spp. and provided insight into their population dynamics in the Missouri River.

  13. Newborns' temperature submitted to radiant heat and to the Top Maternal device at birth

    Directory of Open Access Journals (Sweden)

    Rosemeire Sartori de Albuquerque

    Full Text Available ABSTRACT Objective: to compare the axillar temperatures of newborns that are put immediately after birth in skin-to-skin contact under the Top Maternal device, as compared to those in a radiant heat crib. Methods: comparatives observational study of the case-control type about temperature of 60 babies born at the Obstetric Center and Normal Delivery Center of a public hospital of the municipality of Sao Paulo, being them: 29 receiving assistance in heated crib and 31 in skin-to skin contact, shielded by a cotton tissue placed on mother's thorax, called Top Maternal. Results: the temperature of the babies of the skin-to-skin contact group presented higher values in a larger share of the time measures verified, as compared to those that were placed in radiant heat crib, independently from the place of birth. Differences between the two groups were not statistically significant. Conclusion: the study contributes to generate new knowledge, supporting the idea of keeping babies with their mothers immediately after birth protected with the Maternal Top, without harming their wellbeing, as it keeps the axillar temperature in recommendable levels.

  14. Tracing the exhumation history of the Rwenzori Mountains, Albertine Rift, Uganda, using low-temperature thermochronology

    Science.gov (United States)

    Bauer, Friederike U.; Glasmacher, Ulrich A.; Ring, Uwe; Karl, Markus; Schumann, Andreas; Nagudi, Betty

    2013-06-01

    The Rwenzori Mtns form a striking feature within the Albertine Rift of the East African Rift System. They are made up of a dissected Precambrian metamorphic basement block reaching heights of more than 5 km. Applying low-temperature thermochronology a complex exhumation history becomes evident, where rock and surface uplift can be traced from Palaeozoic to Neogene times. Fission-track and (U-Th-Sm)/He cooling ages and derived cooling histories allow distinguishing different blocks in the Rwenzori Mtns. In the central part a northern and a southern block are separated by a putative NW-SE trending fault; with the northern block showing distinctly younger apatite fission-track ages (~ 130 Ma) than the southern block (~ 300 Ma). Cooling ages in both blocks do not vary significantly with elevation, despite considerable differences in elevation. Thermal history modelling reflects protracted cooling histories. Modelled t-T paths show decoupled blocks that were relocated separately along distinct fault planes, which reactivated pre-existing structures, inherited from Palaeozoic folding and thrusting. Initial cooling affected the Rwenzori area in Silurian to Devonian times, followed by Mesozoic and Cainozoic cooling events. Pre-Neogene evolution seems to be triggered by tectonic processes like the opening of the Indian Ocean and the south Atlantic. From thermochronological data the formation of a Mesozoic "Albertine high" is conceivable. In Cainozoic times the area was affected by rifting, resulting in differentiated surface uplift. Along the western flank of the Rwenzori Mtns, surface uplift was more pronounced. This is also reflected in their recent topography, formed by accelerated rock uplift in the near past (Pliocene to Pleistocene). Erosion could not compensate for this most recent uplift, resulting in apatite He ages of Oligocene to Miocene age or even older.

  15. Conservatism of lizard thermal tolerances and body temperatures across evolutionary history and geography.

    Science.gov (United States)

    Grigg, Joseph W; Buckley, Lauren B

    2013-04-23

    Species may exhibit similar thermal tolerances via either common ancestry or environmental filtering and local adaptation, if the species inhabit similar environments. We ask whether upper and lower thermal limits (critical thermal maxima and minima) and body temperatures are more strongly conserved across evolutionary history or geography for lizard populations distributed globally. We find that critical thermal maxima are highly conserved with location accounting for a higher proportion of the variation than phylogeny. Notably, thermal tolerance breadth is conserved across the phylogeny despite critical thermal minima showing little niche conservatism. Body temperatures observed during activity in the field show the greatest degree of conservatism, with phylogeny accounting for most of the variation. This suggests that propensities for thermoregulatory behaviour, which can buffer body temperatures from environmental variation, are similar within lineages. Phylogeny and geography constrain thermal tolerances similarly within continents, but variably within clades. Conservatism of thermal tolerances across lineages suggests that the potential for local adaptation to alleviate the impacts of climate change on lizards may be limited.

  16. Bipolar resistive switching in room temperature grown disordered vanadium oxide thin-film devices

    Science.gov (United States)

    Wong, Franklin J.; Sriram, Tirunelveli S.; Smith, Brian R.; Ramanathan, Shriram

    2013-09-01

    We demonstrate bipolar switching with high OFF/ON resistance ratios (>104) in Pt/vanadium oxide/Cu structures deposited entirely at room temperature. The SET (RESET) process occurs when negative (positive) bias is applied to the top Cu electrode. The vanadium oxide (VOx) films are amorphous and close to the vanadium pentoxide stoichiometry. We also investigated Cu/VOx/W structures, reversing the position of the Cu electrode, and found the same polarity dependence with respect to the top and bottom electrodes, which suggests that the bipolar nature is linked to the VOx layer itself. Bipolar switching can be observed at 100 °C, indicating that it not due to a temperature-induced metal-insulator transition of a vanadium dioxide second phase. We discuss how ionic drift can lead to the bipolar electrical behavior of our junctions, similar to those observed in devices based on several other defective oxides. Such low-temperature processed oxide switches could be of relevance to back-end or package integration processing schemes.

  17. Potential Usage of Thermoelectric Devices in a High Temperature PEM Fuel Cell System

    DEFF Research Database (Denmark)

    Xin, Gao; Chen, Min; Andreasen, Søren Juhl

    2012-01-01

    Methanol fuelled high temperature polymer electrolyte membrane fuel cell (HTPEMFC) power systems are promising as the next generation of vehicle engines, efficient and environmentally friendly. Currently, their performance still needs to be improved and they still rely on a large Li-ion battery...... for system startup. In this paper, to handle these two issues, the potential of thermoelectric (TE) devices applied in a HTPEMFC power system has been preliminarily evaluated. Firstly, right after the fuel cell stack or the methanol reformer, thermoelectric generators (TEGs) are embedded inside a gas......-difference model is then employed and two main parameters are identified. Secondly, TE coolers are integrated into the methanol steam reformer to regulate heat fluxes herein and improve the system dynamic performance. Similar modification is also done on the evaporator to improve its dynamic performance as well...

  18. High temperature superconducting thin films and quantum interference devices (SQUIDs) for gradiometers

    CERN Document Server

    Graf zu Eulenburg, A

    1999-01-01

    the best balance and gradient sensitivity at 1kHz were 3x10 sup - sup 3 and 222fT/(cm sq root Hz))) respectively. The measured spatial response to a current carrying wire was in good agreement with a theoretical model. A significant performance improvement was obtained with the development of a single layer gradiometer with 13mm baseline, fabricated on 30x10mm sup 2 bicrystals. For such a device, the gradient sensitivity at 1kHz was 50fT/(cm sq root Hz)) and the gradiometer was used successfully for unshielded magnetocardiography. A parasitic effective area compensation scheme was employed with two neighbouring SQUIDs coupled in an opposite sense to the same gradiometer loop. This improved the balance from the intrinsic value of 10 sup - sup 3 to 3x10 sup - sup 5. This thesis describes several aspects of the development of gradiometers using high temperature Superconducting Quantum Interference Devices (SQUID). The pulsed laser deposition of thin films of YBa sub 2 Cu sub 3 O sub 7 sub - subdelta (YBCO) on Sr...

  19. Characterization of Flame Cut Heavy Steel: Modeling of Temperature History and Residual Stress Formation

    Science.gov (United States)

    Jokiaho, T.; Laitinen, A.; Santa-aho, S.; Isakov, M.; Peura, P.; Saarinen, T.; Lehtovaara, A.; Vippola, M.

    2017-12-01

    Heavy steel plates are used in demanding applications that require both high strength and hardness. An important step in the production of such components is cutting the plates with a cost-effective thermal cutting method such as flame cutting. Flame cutting is performed with a controlled flame and oxygen jet, which burns the steel and forms a cutting edge. However, the thermal cutting of heavy steel plates causes several problems. A heat-affected zone (HAZ) is generated at the cut edge due to the steep temperature gradient. Consequently, volume changes, hardness variations, and microstructural changes occur in the HAZ. In addition, residual stresses are formed at the cut edge during the process. In the worst case, unsuitable flame cutting practices generate cracks at the cut edge. The flame cutting of thick steel plate was modeled using the commercial finite element software ABAQUS. The results of modeling were verified by X-ray diffraction-based residual stress measurements and microstructural analysis. The model provides several outcomes, such as obtaining more information related to the formation of residual stresses and the temperature history during the flame cutting process. In addition, an extensive series of flame cut samples was designed with the assistance of the model.

  20. Characterization of Flame Cut Heavy Steel: Modeling of Temperature History and Residual Stress Formation

    Science.gov (United States)

    Jokiaho, T.; Laitinen, A.; Santa-aho, S.; Isakov, M.; Peura, P.; Saarinen, T.; Lehtovaara, A.; Vippola, M.

    2017-09-01

    Heavy steel plates are used in demanding applications that require both high strength and hardness. An important step in the production of such components is cutting the plates with a cost-effective thermal cutting method such as flame cutting. Flame cutting is performed with a controlled flame and oxygen jet, which burns the steel and forms a cutting edge. However, the thermal cutting of heavy steel plates causes several problems. A heat-affected zone (HAZ) is generated at the cut edge due to the steep temperature gradient. Consequently, volume changes, hardness variations, and microstructural changes occur in the HAZ. In addition, residual stresses are formed at the cut edge during the process. In the worst case, unsuitable flame cutting practices generate cracks at the cut edge. The flame cutting of thick steel plate was modeled using the commercial finite element software ABAQUS. The results of modeling were verified by X-ray diffraction-based residual stress measurements and microstructural analysis. The model provides several outcomes, such as obtaining more information related to the formation of residual stresses and the temperature history during the flame cutting process. In addition, an extensive series of flame cut samples was designed with the assistance of the model.

  1. Analysis and investigation of temperature and hydrostatic pressure effects on optical characteristics of multiple quantum well slow light devices.

    Science.gov (United States)

    Abdolhosseini, Saeed; Kohandani, Reza; Kaatuzian, Hassan

    2017-09-10

    This paper represents the influences of temperature and hydrostatic pressure variations on GaAs/AlGaAs multiple quantum well slow light systems based on coherence population oscillations. An analytical model in non-integer dimension space is used to study the considerable effects of these parameters on optical properties of the slow light apparatus. Exciton oscillator strength and fractional dimension constants have special roles on the analytical model in fractional dimension. Hence, the impacts of hydrostatic pressure and temperature on exciton oscillator strength and fractional dimension quantity are investigated theoretically in this paper. Based on the achieved results, temperature and hydrostatic pressure play key roles on optical parameters of the slow light systems, such as the slow down factor and central energy of the device. It is found that the slope and value of the refractive index real part change with alterations of temperature and hydrostatic pressure in the range of 5-40 deg of Kelvin and 1 bar to 2 kbar, respectively. Thus, the peak value of the slow down factor can be adjusted by altering these parameters. Moreover, the central energy of the device shifts when the hydrostatic pressure is applied to the slow light device or temperature is varied. In comparison with previous reported experimental results, our simulations follow them successfully. It is shown that the maximum value of the slow down factor is estimated close to 5.5×104 with a fine adjustment of temperature and hydrostatic pressure. Meanwhile, the central energy shift of the slow light device rises up to 27 meV, which provides an appropriate basis for different optical devices in which multiple quantum well slow light is one of their essential subsections. This multiple quantum well slow light device has potential applications for use as a tunable optical buffer and pressure/temperature sensors.

  2. Optimized low-temperature fabrication of WO3 films for electrochromic devices

    Science.gov (United States)

    Bae, Jaehyun; Seo, Dong Gyu; Park, Su Mi; Park, Kyu Tae; Kim, Haekyoung; Moon, Hong Chul; Kim, Se Hyun

    2017-11-01

    We investigated the effect of process conditions on the electrochromic (EC) properties of tungsten trioxide (WO3) films. When WO3 films deposited using a sol-gel method were thermally treated in air at 150 °C, the majority of tungsten species in the films became W6+, which is important for the realization of an optically transparent bleached state. On the other hand, annealing in a vacuum required only 60 °C to induce a similar level of W6+ in the WO3 films. However, a cracked film morphology was observed at higher temperatures, regardless of whether the films were annealed in air or vacuum. Using the WO3 films prepared under various conditions, EC devices (ECDs) were fabricated to evaluate EC properties. We concluded that the optimal annealing conditions for WO3 films for ECDs are 60 °C in vacuum, at which the highest coloration efficiency, largest transmittance difference, and fastest bleaching/coloration dynamics were obtained. These mild fabrication conditions at a low temperature (60 °C) provide the opportunity to utilize flexible electrodes on plastic. Therefore, we successfully demonstrated a flexible WO3-based ECD.

  3. Metal-Controlled Magnetoresistance at Room Temperature in Single-Molecule Devices.

    Science.gov (United States)

    Aragonès, Albert C; Aravena, Daniel; Valverde-Muñoz, Francisco J; Real, José Antonio; Sanz, Fausto; Díez-Pérez, Ismael; Ruiz, Eliseo

    2017-04-26

    The appropriate choice of the transition metal complex and metal surface electronic structure opens the possibility to control the spin of the charge carriers through the resulting hybrid molecule/metal spinterface in a single-molecule electrical contact at room temperature. The single-molecule conductance of a Au/molecule/Ni junction can be switched by flipping the magnetization direction of the ferromagnetic electrode. The requirements of the molecule include not just the presence of unpaired electrons: the electronic configuration of the metal center has to provide occupied or empty orbitals that strongly interact with the junction metal electrodes and that are close in energy to their Fermi levels for one of the electronic spins only. The key ingredient for the metal surface is to provide an efficient spin texture induced by the spin-orbit coupling in the topological surface states that results in an efficient spin-dependent interaction with the orbitals of the molecule. The strong magnetoresistance effect found in this kind of single-molecule wire opens a new approach for the design of room-temperature nanoscale devices based on spin-polarized currents controlled at molecular level.

  4. Comprehensive device Simulation modeling of heavily irradiated silicon detectors at cryogenic temperatures

    CERN Document Server

    Moscatelli, F; MacEvoy, B; Hall, G; Passeri, D; Petasecca, M; Pignatel, Giogrio Umberto

    2004-01-01

    Radiation hardness is a critical design concern for present and future silicon detectors in high energy physics. Tracking systems at the CERN Large Hadron Collider (LHC) are expected to operate for ten years and to receive fast hadron fluences equivalent to 10/sup 15/cm /sup -2/ 1-MeV neutrons. Recently, low temperature operating conditions have been suggested as a means of suppressing the negative effects of radiation damage on detector charge collection properties. To investigate this effect, simulations have been carried out using the ISE-TCAD DESSIS device simulator. The so-called "three-level model" has been used. A comprehensive analysis of the influence of the V/sub 2/, C/sub i/O/sub i/ and V/sub 2/O capture cross sections on the effective doping concentration (N/sub eff/) as a function of temperature and fluence has been carried out. The capture cross sections have been varied in the range 10/sup -18/-10/sup -12/ cm/sup 2/. The simulated results are compared with charge collection spectra obtained wit...

  5. An enhanced device simulation of heavily irradiated silicon detectors at cryogenic temperatures

    CERN Document Server

    Moscatelli, F; MacEvoy, B; Hall, G; Passeri, D; Merlani, R; Pignatel, Giogrio Umberto

    2004-01-01

    Radiation hardness is a critical design concern for present and future silicon detectors in high energy physics. Tracking systems at the CERN Large Hadron Collider (LHC) are expected to operate for ten years and to receive fast hadron fluences equivalent to 10/sup 15/ cm /sup -2/ 1MeV neutrons. Recently, low temperature operating conditions have been suggested as an effective means to mitigate the damaging effects of radiation on detector charge collection properties. In order to investigate this effect, simulations have been carried out using the ISE-TCAD DESSIS device simulator. The so- called "three-level" model has been used. A comprehensive analysis of the influence of the V/sub 2/, C/sub i/O/sub i/ and V/sub 2/O defect capture cross-sections on the effective doping concentration (N/sub eff/) as a function of temperature and fluence has been carried out. The capture cross sections have been varied in the range 10/sup -18 /-10/sup -12/ cm/sup 2/. The simulated results are compared with charge collection s...

  6. 2-D simulation and analysis of temperature effects on electrical parameters degradation of power RF LDMOS device

    Energy Technology Data Exchange (ETDEWEB)

    Belaid, M.A. [LEMI, University of Rouen, IUT Rouen, 76821 Mont Saint Aignan (France)]. E-mail: Mohamed-ali.belaid@univ-rouen.fr; Ketata, K. [LEMI, University of Rouen, IUT Rouen, 76821 Mont Saint Aignan (France); Gares, M. [LEMI, University of Rouen, IUT Rouen, 76821 Mont Saint Aignan (France); Marcon, J. [LEMI, University of Rouen, IUT Rouen, 76821 Mont Saint Aignan (France); Mourgues, K. [LEMI, University of Rouen, IUT Rouen, 76821 Mont Saint Aignan (France); Masmoudi, M. [LEMI, University of Rouen, IUT Rouen, 76821 Mont Saint Aignan (France)

    2006-12-15

    This paper presents a synthesis of temperature effects on power RF Laterally Diffused (LD) MOS performances, which can modify and degrade transistor physical and electrical behaviour. In this work, the temperature influence on device electrical characteristics is discussed with regard to physical limits for device operation. A developed 2-D structure was implemented and simulated using the physical simulator Silvaco-Atlas to explain the observed data and offer insight into the physical origin of LDMOS temperature behaviour. The temperature dependence of most important electrical parameters such as channel current I {sub ds}, threshold voltage V {sub th} and inter-electrodes capacitances (C {sub ds}, C {sub gs}) is investigated. The temperature effects on mobility, electron concentration, electric field, current flow lines and Fermi level are taken into account. Finally, initial failure analysis is discussed.

  7. Comparison of Two Surface Cooling Devices for Temperature Management in a Neurocritical Care Unit.

    Science.gov (United States)

    Aujla, Gurpreet Singh; Nattanmai, Premkumar; Premkumar, Keerthivaas; Newey, Christopher R

    2017-09-01

    Fever increases mortality and morbidity and length of stay in neurocritically ill patients. Various methods are used in the neuroscience intensive care unit (NSICU) to control fever. Two such methods involve the Arctic Sun hydrogel wraps and the Gaymar cooling wraps. The purpose of our study was to compare these two methods in neurocritical care patients who had temperature >37.5°C for more than three consecutive hours and that was refractory to standard treatments. Data of patients requiring cooling wraps for treatment of hyperthermia at an NSICU at an academic, tertiary referral center were retrospectively reviewed. The average temperature before cooling was 38.5°C ± 0.38°C and 38.4°C ± 0.99°C for the Gaymar and Arctic Sun groups, respectively (p = 0.89). The Gaymar group took on average 16 ± 21.9 hours to reach goal temperature, whereas the Arctic Sun group took 2.22 ± 1.39 hours (p = 0.08). The average time outside of the target temperature was 57.0 ± 58.0 hours in the Gaymar group compared with 13.7 ± 17.1 hours in the Arctic Sun group (p = 0.04). Average duration of using the cooling wraps was similar between the two groups; 81.8% of patients had rebound hyperthermia in the Gaymar group compared with 20% in the Arctic Sun group (p = 0.0089). The Arctic Sun group had a nonsignificant increased incidence of shivering compared with the Gaymar group (40% vs. 18.18%, p = 0.36). We found that Arctic Sun surface cooling device was more efficient in attaining the target temperature, had less incidence of rebound hyperthermia, and was able to maintain normothermia better than Gaymar cooling wraps. The incidence of shivering tended to be more common in the Arctic Sun group.

  8. Mid-Pliocene to Early Pleistocene sea surface temperature history of the NW Australian Shelf

    Science.gov (United States)

    Castañeda, I. S.; Gilchrist, S.; Salacup, J.; Bogus, K.; Fulthorpe, C.; Gallagher, S. J.; Expedition 356 Scientists, I.

    2016-12-01

    During the Late Pliocene, warm conditions gave way to colder conditions as Northern Hemisphere glaciations intensified. Changes in oceanic thermohaline circulation likely played an important role in driving this climate transition. However, studies fail to provide consensus on whether oceanic heat transport from the low to high latitudes increased or decreased. Several studies provide evidence for a weakening of the North Atlantic Current, thereby reducing northward heat transport and leading to high-latitude cooling. In contrast, other studies suggest an increase in northward heat transport in response to the closure of the Central American Seaway. Furthermore, some areas of the global ocean remain understudied leading to an incomplete picture of global thermohaline circulation during the Plio-Pleistocene transition. The Indonesian Throughflow (ITF) is a critical part of the global thermohaline conveyor and provides a conduit for the movement of warm and fresh Pacific water from the Indo-Pacific Warm Pool to the Indian Ocean, facilitating heat transport from the low to the high latitudes. The ITF is also a driver of the Leeuwin Current, which carries tropical waters along the western Australian coast and has a large impact on the climate of the adjacent continent. Both the timing and history of the ITF and the Leeuwin Current remain poorly constrained. Here we address these outstanding questions by investigating the sea surface temperature (SST) history from International Ocean Discovery Program (IODP) Site U1463 from the northwest Australian Shelf (18° 57.9190' S, 117° 37.4340' E). We present preliminary SST data based on three organic geochemical proxies, the Uk'37 Index, TEX86, and the long-chain diol index (LDI), to investigate variability in the ITF and the Leeuwin Current during the Mid-Pliocene and across the Plio-Pleistocene transition.

  9. High temperature radio-frequency superconducting quantum interference device system for detection of magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pretzell, Alf

    2012-07-01

    This doctoral thesis was aimed at establishing a set-up with high-temperature superconductor (HTS) radio-frequency (rf) superconducting quantum interference device (SQUID) technology for the detection of magnetic nanoparticles and in particular for testing applications of magnetic nanoparticle immunoassays. It was part of the EU-project ''Biodiagnostics'' running from 2005 to 2008. The method of magnetic binding assays was developed as an alternative to other methods of concentration determination like enzyme linked immunosorbent assay (ELISA), or fluorescent immunoassay. The ELISA has sensitivities down to analyte-concentrations of pg/ml. Multiple incubation and washing steps have to be performed for these techniques, the analyte has to diffuse to the site of binding. The magnetic assay uses magnetic nanoparticles as markers for the substance to be detected. It is being explored by current research and shows similar sensitivity compared to ELISA but in contrast - does not need any washing and can be read out directly after binding - can be applied in solution with opaque media, e.g. blood or muddy water - additionally allows magnetic separation or concentration - in combination with small magnetoresistive or Hall sensors, allows detection of only a few particles or even single beads. For medical or environmental samples, maybe opaque and containing a multitude of substances, it would be advantageous to devise an instrument, which allows to be read out quickly and with high sensitivity. Due to the mentioned items the magnetic assay might be a possibility here.

  10. Device and method for self-verifying temperature measurement and control

    Science.gov (United States)

    Watkins, Arthur D.; Cannon, Collins P.; Tolle, Charles R.

    2002-10-29

    A measuring instrument includes a first temperature sensor, a second temperature sensor and circuitry. The first and second temperature sensors each generate a signal indicative of the temperature of a medium being detected. The circuitry is configured to activate verification of temperature being sensed with the first sensor. According to one construction, the first temperature sensor comprises at least one thermocouple temperature sensor and the second temperature sensor comprises an optical temperature sensor, each sensor measuring temperature over the same range of temperature, but using a different physical phenomena. Also according to one construction, the circuitry comprises a computer configured to detect failure of one of the thermocouples by comparing temperature of the optical temperature sensor with each of the thermocouple temperature sensors. Even further, an output control signal is generated via a fuzzy inference machine and control apparatus.

  11. Effects of temperature and salinity on life history of the marine amphipod Gammarus locusta. Implications for ecotoxicological testing.

    Science.gov (United States)

    Neuparth, T; Costa, F O; Costa, M H

    2002-02-01

    The life history of Gammarus locusta was analysed in the laboratory under the following temperature and salinity combinations: 20 degrees C-33/1000, 15 degrees C-20/1000 and 15 degrees C-33/1000 (reference condition). Life history analysis comprised survival, individual growth, reproductive traits and life table parameters. Compared to 15 degrees C, life history at 20 degrees C was characterised by at least a four-week reduction in the life-span, lower life expectancy, shorter generation time, faster individual growth, anticipation of age at maturity and higher population growth rate. These temperature effects constituted an acceleration and condensation of the life cycle, compared to the reference condition. Concerning salinity effects, with few exceptions, results show that overall this amphipod life history did not differ significantly between the salinity conditions tested. Regarding ecotoxicological testing implications, findings from this study indicate that the range of temperature and salinity conditions acceptable for testing was substantially expanded both for acute and chronic assays. A temperature of 20 degrees C or higher (for a salinity of 33/1000) is suggested for routine chronic sediment toxicity testing with G. locusta, in order to reduce the life cycle and consequently improve cost-effectiveness and standardisation. Results also suggest that a multiple-response approach, including survival, growth and reproduction, should be applied in chronic toxicity tests.

  12. Low-temperature MTBE biodegradation in aquifer sediments with a history of low, seasonal ground water temperatures

    Science.gov (United States)

    Bradley, P.M.; Landmeyer, J.E.

    2006-01-01

    Sediments from two shallow, methyl tert-butyl ether (MTBE)-contaminated aquifers, with mean ground water temperatures ???10??C, demonstrated significant mineralization of [U-14C] MTBE to 14CO 2 at incubation temperatures as low as 4??C. These results indicate that microbial degradation can continue to contribute to the attenuation of MTBE in ground water under wintertime, low-temperature conditions. ?? 2006 National Ground Water Association.

  13. Low temperature Phanerozoic history of the Northern Yilgarn Craton, Western Australia

    Science.gov (United States)

    Weber, U. D.; Kohn, B. P.; Gleadow, A. J. W.; Nelson, D. R.

    2005-05-01

    The Phanerozoic cooling history of the Western Australian Shield has been investigated using apatite fission track (AFT) thermochronology. AFT ages from the northern part of the Archaean Yilgarn Craton, Western Australia, primarily range between 200 and 280 Ma, with mean confined horizontal track lengths varying between 11.5 and 14.3 μm. Time-temperature modelling of the AFT data together with geological information suggest the onset of a regional cooling episode in the Late Carboniferous/Early Permian, which continued into Late Jurassic/Early Cretaceous time. Present-day heat flow measurements on the Western Australian Shield fall in the range of 40-50 mW m -2. If the present day geothermal gradient of ˜ 18 ± 2 °C km -1 is representative of average Phanerozoic gradients, then this implies a minimum of ˜ 50 °C of Late Palaeozoic to Mesozoic cooling. Assuming that cooling resulted from denudation, the data suggest the removal of at least 3 km of rock section from the northern Yilgarn Craton over this interval. The Perth Basin, located west of the Yilgarn Craton, contains up to 15 km of mostly Permian to Lower Cretaceous clastic sediment. However, published U-Pb data of detrital zircons from Permian and Lower Triassic basin strata show relatively few or no grains of Archaean age. This suggests that the recorded cooling can probably be attributed to the removal of a sedimentary cover rather than by denudation of material from the underlying craton itself. The onset of cooling is linked to tectonism related to either the waning stages of the Alice Springs Orogeny or to the early stages of Gondwana breakup.

  14. Effect Of Steel Flow Control Devices On Flow And Temperature Field In The Tundish Of Continuous Casting Machine

    Directory of Open Access Journals (Sweden)

    Sowa L.

    2015-06-01

    Full Text Available The mathematical model and numerical simulations of the liquid steel flow in a tundish are presented in this paper. The problem was treated as a complex and solved by the finite element method. One takes into consideration in the mathematical model the changes of thermophysical parameters depending on the temperature. The single-strand tundish is used to casting slabs. The internal work space of the tundish was modified by flow control devices. The first device was a pour pad situated in the pouring tundish zone. The second device was a dam. The third device was a baffle with three holes. The dam and baffle were placed in the tundish at different positions depending on the variant. The main purpose of using these was to put barriers in the steel flow path as well as give directional metal flow upwards which facilitated inclusion floatation. The interaction of flow control devices on hydrodynamic conditions was received from numerical simulations. As a result of the computations carried out, the liquid steel flow and steel temperature fields were obtained. The influences of the tundish modifications on the velocity fields in liquid phase of the steel were estimated, because these have essential an influence on high-quality of a continuous steel cast slab.

  15. Optoelectronic devices, low temperature preparation methods, and improved electron transport layers

    KAUST Repository

    Eita, Mohamed S.

    2016-08-04

    An optoelectronic device such as a photovoltaic device which has at least one layer, such as an electron transport layer, which comprises a plurality of alternating, oppositely charged layers including metal oxide layers. The metal oxide can be zinc oxide. The plurality of layers can be prepared by layer-by-layer processing in which alternating layers are built up step-by-step due to electrostatic attraction. The efficiency of the device can be increased by this processing method compared to a comparable method like sputtering. The number of layers can be controlled to improve device efficiency. Aqueous solutions can be used which is environmentally friendly. Annealing can be avoided. A quantum dot layer can be used next to the metal oxide layer to form a quantum dot heterojunction solar device.

  16. 40 CFR 60.1815 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Science.gov (United States)

    2010-07-01

    ... I monitor the temperature of flue gases at the inlet of my particulate matter control device? You... 40 Protection of Environment 6 2010-07-01 2010-07-01 false How do I monitor the temperature of flue gases at the inlet of my particulate matter control device? 60.1815 Section 60.1815 Protection of...

  17. Intrinsic vs. extrinsic influences on life history expression: metabolism and parentally induced temperature influences on embryo development rate

    Science.gov (United States)

    Martin, Thomas E.; Ton, Riccardo; Nikilson, Alina

    2013-01-01

    Intrinsic processes are assumed to underlie life history expression and trade-offs, but extrinsic inputs are theorised to shift trait expression and mask trade-offs within species. Here, we explore application of this theory across species. We do this based on parentally induced embryo temperature as an extrinsic input, and mass-specific embryo metabolism as an intrinsic process, underlying embryonic development rate. We found that embryonic metabolism followed intrinsic allometry rules among 49 songbird species from temperate and tropical sites. Extrinsic inputs via parentally induced temperatures explained the majority of variation in development rates and masked a relationship with metabolism; metabolism explained a minor proportion of the variation in development rates among species, and only after accounting for temperature effects. We discuss evidence that temperature further obscures the expected interspecific trade-off between development rate and offspring quality. These results demonstrate the importance of considering extrinsic inputs to trait expression and trade-offs across species.

  18. A temperature control method for shortening thermal cycling time to achieve rapid polymerase chain reaction (PCR) in a disposable polymer microfluidic device

    DEFF Research Database (Denmark)

    Bu, Minqiang; Perch-Nielsen, Ivan R.; Sørensen, Karen Skotte

    2013-01-01

    We present a temperature control method capable of effectively shortening the thermal cycling time of polymerase chain reaction (PCR) in a disposable polymer microfluidic device with an external heater and a temperature sensor. The method employs optimized temperature overshooting and undershooting...... steps to achieve a rapid ramping between the temperature steps for DNA denaturation, annealing and extension. The temperature dynamics within the microfluidic PCR chamber was characterized and the overshooting and undershooting parameters were optimized using the temperature-dependent fluorescence...

  19. A novel temperature control method for shortening thermal cycling time to achieve rapid polymerase chain reaction (PCR) in a disposable polymer microfluidic device

    DEFF Research Database (Denmark)

    Bu, Minqiang; R. Perch-Nielsen, Ivan; Sørensen, Karen Skotte

    We present a new temperature control method capable of effectively shortening the thermal cycling time of polymerase chain reaction (PCR) in a disposable polymer microfluidic device with external heater and temperature sensor. The method employs optimized temperature overshooting and undershooting...... steps to achieve a rapid ramping between the temperature steps for DNA denaturation, annealing and extension. The temperature dynamics within the microfluidic PCR chamber was characterized and the overshooting and undershooting parameters were optimized using the temperature dependent fluorescence...

  20. Room-Temperature, Electric Field-Induced Creation of Stable Devices in CulnSe2 Crystals.

    Science.gov (United States)

    Cahen, D; Gilet, J M; Schmitz, C; Chernyak, L; Gartsman, K; Jakubowicz, A

    1992-10-09

    Multiple-junction structures were formed, on a microscopic scale, at room temperature, by the application of a strong electric field across originally homogeneous crystals of the ternary chalcopyrite semiconductor CulnSe(2). After removal of the electric field, the structures were examined with electron beam-induced current microscopy and their current-voltage characteristics were measured. Bipolar transistor action was observed, indicating that sharp bulk junctions can form in this way at low ambient temperatures. The devices are stable under normal (low-voltage) operating conditions. Possible causes for this effect, including electromigration and electric field-assisted defect reactions, are suggested.

  1. Evaluation of mechanical and thermal properties of insulation materials for HTS power devices at liquid nitrogen temperature

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyung Seop; Diaz, Mark Angelo [Dept. of Mechanical Design Engineering, Andong National University, Andong (Korea, Republic of)

    2017-06-15

    In superconducting power devices including power cables in which high temperature superconducting (HTS) tapes are utilized, a reliable electrical insulation should be achieved for its maximum performance. For an efficient design of HTS superconducting devices, a comparative evaluation of the mechanical and thermal propperties for various insulation materials at cryogenic temperatures is required. Especially, in the process of the property evaluation of the sheet-shaped insulation materials, anisotropy according to the machining direction should be considered because the mechanical and thermal properties are significantly influenced by the sample orientation. In this study, the cryogenic thermal and mechanical properties of various insulation material sheets such as PPLP, Cryoflex, Teflon, and Kapton were determined considering sample orientation. All samples tested at cryogenic temperature showed significantly higher tensile strength as compared with that of room temperature. The ultimate tensile strength at both temperature conditions significantly depended upon the sample orientation. The thermal properties of the insulation materials exhibited a slight difference among samples depending on the orientation: for the PPLP and Cryoflex, the CD orientation showed larger thermal contraction up to 77 K as compared to the MD one. MD samples in PPLP and Cryoflex showed a lower CTE and thermal contraction which made it more promising as an insulation material due to its comparable CTE with HTS CC tapes.

  2. Large thermoelectric figure of merit in graphene layered devices at low temperature

    Science.gov (United States)

    Olaya, Daniel; Hurtado-Morales, Mikel; Gómez, Daniel; Alejandro Castañeda-Uribe, Octavio; Juang, Zhen-Yu; Hernández, Yenny

    2018-01-01

    Nanostructured materials have emerged as an alternative to enhance the figure of merit (ZT) of thermoelectric (TE) devices. Graphene exhibits a high electrical conductivity (in-plane) that is necessary for a high ZT; however, this effect is countered by its impressive thermal conductivity. In this work TE layered devices composed of electrochemically exfoliated graphene (EEG) and a phonon blocking material such as poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), polyaniline (PANI) and gold nanoparticles (AuNPs) at the interface were prepared. The figure of merit, ZT, of each device was measured in the cross-plane direction using the Transient Harman Method (THM) and complemented with AFM-based measurements. The results show remarkable high ZT values (0.81  devices at the nanoscale.

  3. Newborns' temperature submitted to radiant heat and to the Top Maternal device at birth.

    Science.gov (United States)

    Albuquerque, Rosemeire Sartori de; Mariani, Corintio; Bersusa, Ana Aparecida Sanches; Dias, Vanessa Macedo; Silva, Maria Izabel Mota da

    2016-08-08

    to compare the axillar temperatures of newborns that are put immediately after birth in skin-to-skin contact under the Top Maternal device, as compared to those in a radiant heat crib. comparatives observational study of the case-control type about temperature of 60 babies born at the Obstetric Center and Normal Delivery Center of a public hospital of the municipality of Sao Paulo, being them: 29 receiving assistance in heated crib and 31 in skin-to skin contact, shielded by a cotton tissue placed on mother's thorax, called Top Maternal. the temperature of the babies of the skin-to-skin contact group presented higher values in a larger share of the time measures verified, as compared to those that were placed in radiant heat crib, independently from the place of birth. Differences between the two groups were not statistically significant. the study contributes to generate new knowledge, supporting the idea of keeping babies with their mothers immediately after birth protected with the Maternal Top, without harming their wellbeing, as it keeps the axillar temperature in recommendable levels. comparar a temperatura axilar dos recém-nascidos acomodados - imediatamente após o nascimento - em contato pele a pele, sob o Top Maternal, em berço de calor radiante. estudo comparativo observacional do tipo Caso-Controle sobre a temperatura de 60 bebês nascidos no Centro Obstétrico e Centro de Parto Normal de um hospital público do município de São Paulo, sendo: 29 assistidos em berço aquecido e 31 em contato pele a pele, protegidos por uma malha de algodão colocada sobre o tórax da mãe, denominada Top Maternal. a temperatura dos bebês do grupo de contato pele a pele teve maior valor na maioria dos tempos verificados comparada à dos que foram colocados em berço de calor radiante, independentemente do local de nascimento. A diferença entre os grupos não foi estatisticamente significante. o estudo contribui com a geração de um novo conhecimento que sustenta a

  4. Impact of constant versus fluctuating temperatures on the development and life history parameters of Tetranychus urticae (Acari: Tetranychidae).

    Science.gov (United States)

    Bayu, M S Y I; Ullah, M S; Takano, Y; Gotoh, T

    2017-07-01

    The impact of daily temperature fluctuations on arthropod life history parameters is inadequately studied compared with the ample amount of research that has been conducted on the effects of constant temperatures. Fluctuating temperatures are likely to be more realistic, as they are ecologically more similar to what these arthropods experience in nature. Here, we compared the impact of 11 constant temperatures that ranged from 10 to 35 °C with fluctuating temperatures with the same corresponding mean temperature and an amplitude of 10 °C between high (12 h) and low (12 h) temperatures on the development and life history parameters of Tetranychus urticae under continuous light conditions. No eggs hatched at constant 10 °C, whereas 81.5% of eggs successfully completed development at fluctuating 10 °C (15/5 °C). Egg-to-female adult development was faster under fluctuating temperatures from 12.5 to 27.5 °C than under constant temperatures, whereas the opposite trend was observed at >30 °C. The lower thermal thresholds (T) were 11.63 and 8.63 °C, and thermal constants (K) were 127.81 and 150.69 degree-days for egg-to-female adults at constant and fluctuating temperatures, respectively. The numbers of oviposition days were significantly higher at fluctuating 15 °C than at the corresponding constant temperature, whereas the opposite trend was observed from 20 to 30 °C. The intrinsic rate of increase (r) was higher at fluctuating than at constant 15 °C. The net reproductive rate (R 0) was also higher at fluctuating than at constant 15 and 35 °C, but showed an opposite trend at 20 and 25 °C. We conclude that fluctuating temperatures should be considered to accurately predict spider mite population dynamics in nature.

  5. Differentiation and thermal history of the post-collapse magma reservoir at Yellowstone caldera as revealed by combining the temperature-age-compositional history of zircons

    Science.gov (United States)

    Vazquez, J. A.; Reid, M. R.; Kyriazis, S. F.

    2006-12-01

    Coupling the age and compositional history recorded between and within single accessory minerals, such as zircon or allanite, may provide a high-resolution perspective on the thermochemical evolution of voluminous magma reservoirs in the prelude to eruption. At Yellowstone caldera, USA, more than 900km3 of high- silica rhyolite erupted sequentially in the aftermath of caldera collapse from an evolving magma reservoir. At least 21 lavas and tuffs comprise the voluminous Central Plateau Member (CPM) of the Plateau Rhyolite which erupted between 160 ka and 70 ka. 238U-230Th disequilibrium and U-Pb dating reveal that CPM zircons crystallized approximately 0 to 60 thousand years prior to their respective K-Ar eruption ages, and contain little inheritance from the caldera-forming magma. To obtain a temperature-time-compositional history for CPM zircons and evaluate the applicability of the zircon thermometry to high-silica rhyolites, we performed ion microprobe analyses of trace element concentrations in >65 of the dated zircons from four lavas representing early, middle, and late tapping of the CPM reservoir. Most CPM zircons contain typical REE patterns with chondrite-normalized Lu/La of up to 30,000, and with Eu/Eu* as low as 0.03. A subset of the results (~45%) yield elevated light REE, Ti, and Fe concentrations where sampled zircon domains included small inclusions of Fe-Ti oxides, chevkinite, and/or monazite. Application of Ti-in-zircon thermometry to dated zircons that are unaffected by inclusions yield temperatures that have a range of approximately 70 degrees. Calculated temperatures would largely fall within the range of 800°-840°C for CPM magmas obtained by Zr-glass, zircon saturation, and QUILF thermometry if an essentially fixed melt aTiO2 of 0.3 due to ilmenite saturation is assumed. Where analyzed, the rims of single zircons yield temperatures that are 10°-20° lower than their cores. Our combination of zircon thermometry, age, and composition reveals

  6. Simulated Seasonal Photoperiods and Fluctuating Temperatures Have Limited Effects on Blood Feeding and Life History in Aedes triseriatus (Diptera: Culicidae)

    Science.gov (United States)

    Westby, K. M.

    2015-01-01

    Biotic and abiotic factors change seasonally and impact life history in temperate-zone ectotherms. Temperature and photoperiod are factors that change in predictable ways. Most studies testing for effects of temperature on vectors use constant temperatures and ignore potential correlated effects of photoperiod. In two experiments, we tested for effects of larval rearing environments creating ecologically relevant temperatures and photoperiods simulating early and late season conditions (June and August), or constant temperatures (cool and warm) with the June or August photoperiods, respectively. We determined effects on survivorship, development, size, and a composite performance index in a temperate-zone population of Aedes triseriatus (Say). We followed cohorts of resulting females, all held under the same environmental conditions, to assess carry-over effects of rearing conditions for larvae on longevity, blood feeding, and egg production. Larval survivorship was affected by treatment in one experiment. Development time was greater in the June and cool treatments, but the constant and fluctuating temperatures did not differ. Significantly larger mosquitoes were produced in fluctuating versus constant temperature treatments. There were no significant treatment effects on the composite performance index. Adult female longevity was lower after rearing at constant versus fluctuating temperature, but there was no difference between June and August, nor did size affect longevity. There was no effect of treatments on blood feeding and a limited effect on egg production. We conclude that seasonal temperatures and photoperiods during development have limited effects on this population of A. triseriatus and find little evidence of strong effects of fluctuating versus constant temperatures. PMID:26336255

  7. Chemical etching of Tungsten thin films for high-temperature surface acoustic wave-based sensor devices

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, M., E-mail: m.spindler@ifw-dresden.de [IFW Dresden, SAWLab Saxony, P.O. Box 270116, D-01171 Dresden (Germany); Herold, S.; Acker, J. [BTU Cottbus – Senftenberg, Faculty of Sciences, P.O. Box 101548, 01968 Senftenberg (Germany); Brachmann, E.; Oswald, S.; Menzel, S.; Rane, G. [IFW Dresden, SAWLab Saxony, P.O. Box 270116, D-01171 Dresden (Germany)

    2016-08-01

    Surface acoustic wave devices are widely used as wireless sensors in different application fields. Recent developments aimed to utilize those devices as temperature sensors even in the high temperature range (T > 300 °C) and in harsh environmental conditions. Therefore, conventional materials, which are used for the substrate and for the interdigital transducer finger electrodes such as multilayers or alloys based on Al or Cu have to be exchanged by materials, which fulfill some important criteria regarding temperature related effects. Electron beam evaporation as a standard fabrication method is not well applicable for depositing high temperature stable electrode materials because of their very high melting points. Magnetron sputtering is an alternative deposition process but is also not applicable for lift-off structuring without any further improvement of the structuring process. Due to a relatively high Ar gas pressure of about 10{sup −1} Pa, the sidewalls of the photoresist line structures are also covered by the metallization, which subsequently prevents a successful lift-off process. In this study, we investigate the chemical etching of thin tungsten films as an intermediate step between magnetron sputtering deposition of thin tungsten finger electrodes and the lift-off process to remove sidewall covering for a successful patterning process of interdigital transducers. - Highlights: • We fabricated Tungsten SAW Electrodes by magnetron sputtering technology. • An etching process removes sidewall covering of photoresist, which allows lift-off. • Tungsten etching rates based on a hydrogen peroxide solutions were determined.

  8. Ultra-low temperature sintering of Cu@Ag core-shell nanoparticle paste by ultrasonic in air for high-temperature power device packaging.

    Science.gov (United States)

    Ji, Hongjun; Zhou, Junbo; Liang, Meng; Lu, Huajun; Li, Mingyu

    2018-03-01

    Sintering of low-cost Cu nanoparticles (NPs) for interconnection of chips to substrate at low temperature and in atmosphere conditions is difficult because they are prone to oxidation, but dramatically required in semiconductor industry. In the present work, we successfully synthesized Cu@Ag NPs paste, and they were successfully applied for joining Cu/Cu@Ag NPs paste/Cu firstly in air by the ultrasonic-assisted sintering (UAS) at a temperature of as low as 160 °C. Their sintered microstructures featuring with dense and crystallized cells are completely different from the traditional thermo-compression sintering (TCS). The optimized shear strength of the joints reached to 54.27 MPa, exhibiting one order of magnitude higher than TCS at the same temperature (180 °C) under the UAS. This ultra-low sintering temperature and high performance of the sintered joints were ascribed to ultrasonic effects. The ultrasonic vibrations have distinct effects on the metallurgical reactions of the joints, resulting in the contact and growth of Cu core and the stripping and connection of Ag shell, which contributes to the high shear strength. Thus, the UAS of Cu@Ag NPs paste has a great potential to be applied for high-temperature power device packaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Reconstruction of burial history, temperature, source rock maturity and hydrocarbon generation in the northwestern Dutch offshore

    NARCIS (Netherlands)

    Abdul Fattah, R.; Verweij, J.M.; Witmans, N.; Veen, J.H. ten

    2012-01-01

    3D basin modelling is used to investigate the history of maturation and hydrocarbon generation on the main platforms in the northwestern part of the offshore area of the Netherlands. The study area covers the Cleaverbank and Elbow Spit Platforms. Recently compiled maps and data are used to build the

  10. Develpment of Higher Temperature Membrane and Electrode Assembly (MEA) for Proton Exchange Membrane Fuel Cell Devices

    Energy Technology Data Exchange (ETDEWEB)

    Susan Agro, Anthony DeCarmine, Shari Williams

    2005-12-30

    Our work will fucus on developing higher temperature MEAs based on SPEKK polymer blends. Thse MEAs will be designed to operatre at 120 degrees C Higher temperatures, up to 200 degrees C will also be explored. This project will develop Nafion-free MEAs using only SPEKK blends in both membrane and catalytic layers.

  11. Effects of basal-plane thermal conductivity and interface thermal conductance on the hot spot temperature in graphene electronic devices

    Science.gov (United States)

    Choi, David; Poudel, Nirakar; Cronin, Stephen B.; Shi, Li

    2017-02-01

    Electrostatic force microscopy and scanning thermal microscopy are employed to investigate the electric transport and localized heating around defects introduced during transfer of graphene grown by chemical vapor deposition to an oxidized Si substrate. Numerical and analytical models are developed to explain the results based on the reported basal-plane thermal conductivity, κ, and interfacial thermal conductance, G, of graphene and to investigate their effects on the peak temperature. Irrespective of the κ values, increasing G beyond 4 × 107 W m-2 K-1 can reduce the peak temperature effectively for graphene devices made on sub-10 nm thick gate dielectric, but not for the measured device made on 300-nm-thick oxide dielectric, which yields a cross-plane thermal conductance (Gox) much smaller than the typical G of graphene. In contrast, for typical G values reported for graphene, increasing κ from 300 W m-1 K-1 toward 3000 W m-1 K-1 is effective in reducing the hot spot temperature for the 300-nm-thick oxide devices but not for the sub-10 nm gate dielectric case, because the heat spreading length (l) can be appreciably increased relative to the micron-scale localized heat generation spot size (r0) only when the oxide layer is sufficiently thick. As such, enhancement of κ increases the vertical heat transfer area above the gate dielectric only for the thick oxide case. In all cases considered, the hot spot temperature is sensitive to varying G and κ only when the G/Gox ratio and r0/l ratio are below about 5, respectively.

  12. Low-temperature atomic layer deposition of TiO{sub 2} thin layers for the processing of memristive devices

    Energy Technology Data Exchange (ETDEWEB)

    Porro, Samuele, E-mail: samuele.porro@polito.it; Conti, Daniele; Guastella, Salvatore; Ricciardi, Carlo [Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Jasmin, Alladin; Pirri, Candido F. [Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy and Center for Space Human Robotics@PoliTo, Istituto Italiano di Tecnologia, C.so Trento 21, 10129 Torino (Italy); Bejtka, Katarzyna; Perrone, Denis; Chiolerio, Alessandro [Center for Space Human Robotics@PoliTo, Istituto Italiano di Tecnologia, C.so Trento 21, 10129 Torino (Italy)

    2016-01-15

    Atomic layer deposition (ALD) represents one of the most fundamental techniques capable of satisfying the strict technological requirements imposed by the rapidly evolving electronic components industry. The actual scaling trend is rapidly leading to the fabrication of nanoscaled devices able to overcome limits of the present microelectronic technology, of which the memristor is one of the principal candidates. Since their development in 2008, TiO{sub 2} thin film memristors have been identified as the future technology for resistive random access memories because of their numerous advantages in producing dense, low power-consuming, three-dimensional memory stacks. The typical features of ALD, such as self-limiting and conformal deposition without line-of-sight requirements, are strong assets for fabricating these nanosized devices. This work focuses on the realization of memristors based on low-temperature ALD TiO{sub 2} thin films. In this process, the oxide layer was directly grown on a polymeric photoresist, thus simplifying the fabrication procedure with a direct liftoff patterning instead of a complex dry etching process. The TiO{sub 2} thin films deposited in a temperature range of 120–230 °C were characterized via Raman spectroscopy and x-ray photoelectron spectroscopy, and electrical current–voltage measurements taken in voltage sweep mode were employed to confirm the existence of resistive switching behaviors typical of memristors. These measurements showed that these low-temperature devices exhibit an ON/OFF ratio comparable to that of a high-temperature memristor, thus exhibiting similar performances with respect to memory applications.

  13. Room-temperature spintronic effects in Alq3-based hybrid devices

    NARCIS (Netherlands)

    Dediu, V.; Hueso, L.E.; Bergenti, I; Riminucci, A.; Borgatti, F.; Graziosi, P.; Newby, C.; Casoli, F.; de Jong, Machiel Pieter; Taliani, C.; Zhan, Y.

    2008-01-01

    We report on efficient spin polarized injection and transport in long 102 nm channels of Alq3 organic semiconductor. We employ vertical spin valve devices with a direct interface between the bottom manganite electrode and Alq3, while the top-electrode geometry consists of an insulating tunnel

  14. 76 FR 11891 - Temperature-Indicating Devices; Thermally Processed Low-Acid Foods Packaged in Hermetically...

    Science.gov (United States)

    2011-03-03

    ... International Vocabulary of Metrology as ``closeness of agreement between a measured quantity value and a true... International Vocabulary of Metrology as the ``property of a measurement result whereby the result can be... facility, which may have no knowledge of the calibration interval for the specific device. (Response) We...

  15. Method for Aluminum Oxide Thin Films Prepared through Low Temperature Atomic Layer Deposition for Encapsulating Organic Electroluminescent Devices

    Directory of Open Access Journals (Sweden)

    Hui-Ying Li

    2015-02-01

    Full Text Available Preparation of dense alumina (Al2O3 thin film through atomic layer deposition (ALD provides a pathway to achieve the encapsulation of organic light emitting devices (OLED. Unlike traditional ALD which is usually executed at higher reaction n temperatures that may affect the performance of OLED, this application discusses the development on preparation of ALD thin film at a low temperature. One concern of ALD is the suppressing effect of ambient temperature on uniformity of thin film. To mitigate this issue, the pumping time in each reaction cycle was increased during the preparation process, which removed reaction byproducts and inhibited the formation of vacancies. As a result, the obtained thin film had both high uniformity and density properties, which provided an excellent encapsulation performance. The results from microstructure morphology analysis, water vapor transmission rate, and lifetime test showed that the difference in uniformity between thin films prepared at low temperatures, with increased pumping time, and high temperatures was small and there was no obvious influence of increased pumping time on light emitting performance. Meanwhile, the permeability for water vapor of the thin film prepared at a low temperature was found to reach as low as 1.5 × 10−4 g/(m2·day under ambient conditions of 25 °C and 60% relative humidity, indicating a potential extension in the lifetime for the OLED.

  16. 40 CFR 60.1325 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Science.gov (United States)

    2010-07-01

    ... June 6, 2001 Other Monitoring Requirements § 60.1325 How do I monitor the temperature of flue gases at... a device to continuously measure the temperature of the flue gas stream at the inlet of each... 40 Protection of Environment 6 2010-07-01 2010-07-01 false How do I monitor the temperature of...

  17. 40 CFR 62.15270 - How do I monitor the temperature of flue gases at the inlet of my particulate matter control device?

    Science.gov (United States)

    2010-07-01

    ....15270 How do I monitor the temperature of flue gases at the inlet of my particulate matter control... temperature of the flue gas stream at the inlet of each particulate matter control device. ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false How do I monitor the temperature of...

  18. Magnetic field and temperature control over Pt/Co/Ir/Co/Pt multistate magnetic logic device

    Science.gov (United States)

    Morgunov, R.; Hamadeh, A.; Fachec, T.; Lvovaa, G.; Koplak, O.; Talantsev, A.; Mangin, S.

    2017-04-01

    Magnetic configurations in Pt/Co/Ir/Co/Pt synthetic ferrimagnet bilayer of strong perpendicular anisotropy have been systematically studied. Magnetization versus field hysteresis loops have been measured for different temperatures ranging from 5 to 300 K. The applied field - temperature (H-T) magnetization switching diagram has been constructed by extracting the different switching fields as a function of temperature. This switching diagram can be well explained by considering the competition between energy barrier of layer's magnetization reversal, interlayer exchange coupling, and Zeeman energy.

  19. Local adaptation at the transcriptome level in brown trout: Evidence from early life history temperature genomic reaction norms

    DEFF Research Database (Denmark)

    Meier, Kristian; Hansen, Michael Møller; Normandeau, Eric

    2014-01-01

    reaction norms and significantly higher QST than FST among populations for two early life-history traits. In the present study we investigated if genomic reaction norm patterns were also present at the transcriptome level. Eggs from the three populations were incubated at two temperatures (5 and 8 degrees......, the latter indicating locally adapted reaction norms. Moreover, the reaction norms paralleled those observed previously at early life-history traits. We identified 90 cDNA clones among the genes with an interaction effect that were differently expressed between the ecologically divergent populations....... These included genes involved in immune- and stress response. We observed less plasticity in the resident as compared to the anadromous populations, possibly reflecting that the degree of environmental heterogeneity encountered by individuals throughout their life cycle will select for variable level...

  20. Bimetallic devices help maintain constant sealing forces down to cryogenic temperatures

    Science.gov (United States)

    De Boskey, W. R.

    1966-01-01

    Tantalum washers compensate for different thermal coefficients of expansion between stainless steel and an aluminum O-ring. The washers have sufficient thickness to maintain a vacuum seal from room to cryogenic temperatures.

  1. Low-noise and wide-bandwidth current readout at low temperatures using a superconducting-quantum-interference-device amplifier

    Science.gov (United States)

    Tran, Ngoc Thanh Mai; Okazaki, Yuma; Nakamura, Shuji; Ortolano, Massimo; Kaneko, Nobu-Hisa

    2017-04-01

    We report on the development of a current amplifier for measuring small currents from mesoscopic electronic devices at low temperatures down to the milli-Kelvin range. In our setup, a superconducting quantum interference device (SQUID) located at the mixing chamber stage of the dilution refrigerator is used as the first-stage current amplifier, thereby improving the noise floor down to 8 × 10-27 A2/Hz, which is one order of magnitude as low as those obtained by the conventional methods that utilize a semiconductor-based cryogenic current amplifier. We show the configuration of this setup and demonstrate the amplification of the current generated by a quantum point contact. This approach can open a new way to examine solid-state phenomena that are elusive owing to their small current.

  2. A process to fabricate fused silica nanofluidic devices with embedded electrodes using an optimized room temperature bonding technique

    Science.gov (United States)

    Boden, Seth; Karam, P.; Schmidt, A.; Pennathur, S.

    2017-05-01

    Fused silica is an ideal material for nanofluidic systems due to its extreme purity, chemical inertness, optical transparency, and native hydrophilicity. However, devices requiring embedded electrodes (e.g., for bioanalytical applications) are difficult to realize given the typical high temperature fusion bonding requirements (˜1000 °C). In this work, we optimize a two-step plasma activation process which involves an oxygen plasma treatment followed by a nitrogen plasma treatment to increase the fusion bonding strength of fused silica at room temperature. We conduct a parametric study of this treatment to investigate its effect on bonding strength, surface roughness, and microstructure morphology. We find that by including a nitrogen plasma treatment to the standard oxygen plasma activation process, the room temperature bonding strength increases by 70% (0.342 J/m2 to 0.578 J/m2). Employing this optimized process, we fabricate and characterize a nanofluidic device with an integrated and dielectrically separated electrode. Our results prove that the channels do not leak with over 1 MPa of applied pressure after a 24 h storage time, and the electrode exhibits capacitive behavior with a finite parallel resistance in the upper MΩ range for up to a 6.3Vdc bias. These data thus allow us to overcome the barrier that has barred nanofluidic progress for the last decade, namely, the development of nanometer scale well-defined channels with embedded metallic materials for far-reaching applications such as the exquisite manipulation of biomolecules.

  3. Finite volume analysis of temperature effects induced by active MRI implants with cylindrical symmetry: 1. Properly working devices

    Directory of Open Access Journals (Sweden)

    Schnorr Jörg

    2005-04-01

    Full Text Available Abstract Background Active Magnetic Resonance Imaging implants are constructed as resonators tuned to the Larmor frequency of a magnetic resonance system with a specific field strength. The resonating circuit may be embedded into or added to the normal metallic implant structure. The resonators build inductively coupled wireless transmit and receive coils and can amplify the signal, normally decreased by eddy currents, inside metallic structures without affecting the rest of the spin ensemble. During magnetic resonance imaging the resonators generate heat, which is additional to the usual one described by the specific absorption rate. This induces temperature increases of the tissue around the circuit paths and inside the lumen of an active implant and may negatively influence patient safety. Methods This investigation provides an overview of the supplementary power absorbed by active implants with a cylindrical geometry, corresponding to vessel implants such as stents, stent grafts or vena cava filters. The knowledge of the overall absorbed power is used in a finite volume analysis to estimate temperature maps around different implant structures inside homogeneous tissue under worst-case assumptions. The "worst-case scenario" assumes thermal heat conduction without blood perfusion inside the tissue around the implant and mostly without any cooling due to blood flow inside vessels. Results The additional power loss of a resonator is proportional to the volume and the quality factor, as well as the field strength of the MRI system and the specific absorption rate of the applied sequence. For properly working devices the finite volume analysis showed only tolerable heating during MRI investigations in most cases. Only resonators transforming a few hundred mW into heat may reach temperature increases over 5 K. This requires resonators with volumes of several ten cubic centimeters, short inductor circuit paths with only a few 10 cm and a quality

  4. Silicon Carbide Diodes Characterization at High Temperature and Comparison With Silicon Devices

    Science.gov (United States)

    Lebron-Velilla, Ramon C.; Schwarze, Gene E.; Gardner, Brent G.; Adams, Jerry D., Jr.

    2004-01-01

    Commercially available silicon carbide (SiC) Schottky diodes from different manufacturers rated at 200, 300, 600, and 1200 V, were electrically tested and characterized as a function of temperature up to 300 C. Electrical tests included both steady state and dynamic tests. Steady state tests produced forward and reverse I-V characteristic curves. Transient tests evaluated the switching performance of the diodes in either a hard-switched DC to DC buck converter or a half-bridge boost converter. For evaluation and comparison purposes, the same tests were performed with current state-of-the-art ultra fast silicon (Si) pn-junction diodes of similar ratings and also a Si Schottky diode. The comparisons made were forward voltage drop at rated current, reverse current at rated voltage, and turn-off peak reverse recovery current and reverse recovery time. In addition, efficiency measurements were taken for the buck DC to DC converter using both the SiC Schottky diodes and the Si pn-junction diodes at different temperatures and frequencies. The test results showed that at high temperature, the forward voltage drop for SiC Schottky diodes is higher than the forward drop of the ultra fast Si pn-junction diodes. As the temperature increased, the forward voltage drop of the SiC Schottky increased while for the ultra fast Si pn-junction diodes, the forward voltage drop decreased as temperature increased. For the elevated temperature steady state reverse voltage tests, the SiC Schottky diodes showed low leakage current at their rated voltage. Likewise, for the transient tests, the SiC Schottky diodes displayed low reverse recovery currents over the range of temperatures tested. Conversely, the Si pn-junction diodes showed increasing peak reverse current values and reverse recovery times with increasing temperature. Efficiency measurements in the DC to DC buck converter showed the advantage of the SiC Schottky diodes over the ultra fast Si pn-junction diodes, especially at the

  5. Self-compliance Pt/HfO2/Ti/Si one-diode-one-resistor resistive random access memory device and its low temperature characteristics

    Science.gov (United States)

    Lu, Chao; Yu, Jue; Chi, Xiao-Wei; Lin, Guang-Yang; Lan, Xiao-Ling; Huang, Wei; Wang, Jian-Yuan; Xu, Jian-Fang; Wang, Chen; Li, Cheng; Chen, Song-Yan; Liu, Chunli; Lai, Hong-Kai

    2016-04-01

    A bipolar one-diode-one-resistor (1D1R) device with a Pt/HfO2/Ti/n-Si(001) structure was demonstrated. The 1D1R resistive random access memory (RRAM) device consists of a Ti/n-Si(001) diode and a Pt/HfO2/Ti resistive switching cell. By using the Ti layer as the shared electrode for both the diode and the resistive switching cell, the 1D1R device exhibits the property of stable self-compliance and the characteristic of robust resistive switching with high uniformity. The high/low resistance ratio reaches 103. The electrical RESET/SET curve does not deteriorate after 68 loops. Low-temperature studies show that the 1D1R RRAM device has a critical working temperature of 250 K, and at temperatures below 250 K, the device fails to switch its resistances.

  6. Distribution of Heat Stabilizers in Plasticized PVC-Based Biomedical Devices: Temperature and Time Effects

    Directory of Open Access Journals (Sweden)

    Lidia Maria Bodecchi

    2011-01-01

    Full Text Available Thermoplastic polymers can be viewed as a dynamic framework in which additives allocation is strongly dependent on the system' chemistry. Considering the complexity of the distribution phenomena that may occur in plastics obtained by blending polymeric resins with different additives, this work constitutes an attempt to the description of the behavior of PVC heat stabilizers (calcium and zinc carboxylates, as regard temperature and time. Thanks to the Fourier Transform Infrared Spectroscopy, it is possible to observe a first decreasing trend of the additives related IR-bands as a function of the increasing temperature and the higher the temperature the faster the decrease of the heat stabilizers intensities bands is, with respect to time. Additives distribution in not sterilized, sterilized, aged not sterilized and aged sterilized materials have been investigated to determine their behavior with respect to temperature, from 30 to 120°C, and time. A simulated supplementary aging process equivalent to 9 months aging was carried out on aged not sterilized and aged sterilized materials to gain more data on the transport/reaction phenomena these additives in the plastic material. Experimental evidences allow hypothesizing that reaction and redistribution phenomena probably concur to determine the additives allocation in PVC as a function of temperature and time.

  7. Influence of temperature and light intensity on Ru(II) complex based organic-inorganic device

    Energy Technology Data Exchange (ETDEWEB)

    Asubay, Sezai [Department of Physics, Faculty of Science, Dicle University, Diyarbakir, 21280 (Turkey); Durap, Feyyaz; Aydemir, Murat; Baysal, Akin [Department of Chemistry, Faculty of Science, Dicle University, Diyarbakir, 21280 (Turkey); Ocak, Yusuf Selim [Department of Science, Faculty of Education, Dicle University, Diyarbakir, 21280 (Turkey); Tombak, Ahmet, E-mail: tahmet@yahoo.com [Department of Physics, Faculty of Science, Batman University, Batman (Turkey)

    2016-03-25

    An organic-inorganic junction was fabricated by forming [Ru(Cy{sub 2}PNHCH{sub 2}-C{sub 4}H{sub 3}O)(η{sup 6}-p-cymene)Cl{sub 2}] complex thin film using spin coating technique on n-Si and evaporating Au metal on the film. It was seen that the structure had perfect rectification property. Current-voltage (I-V) measurements were carried out in dark and under various illumination conditions (between 50-100 mW/cm{sup 2}) and with the temperature range from 303 to 380 K. The structure showed unusually forward and reverse bias temperature and light sensing behaviors. It was seen that the current both in forward and reverse bias increased with the increase in light intensity and temperature.

  8. Impact of temperature and relative humidity on life history parameters of adult Sitotroga cerealella (Lepidoptera: Gelechiidae)

    Science.gov (United States)

    The Angoumois grain moth, Sitotroga cerealella (Olivier) (Lepidoptera: Gelechiidae), is a pest of stored corn, Zea mays L., and other grains throughout the world. S. cerealella are routinely exposed to temperatures below 20°C in regions of the U.S. where corn is grown, yet there are no data describi...

  9. Computer program determines thermal environment and temperature history of lunar orbiting space vehicles

    Science.gov (United States)

    Head, D. E.; Mitchell, K. L.

    1967-01-01

    Program computes the thermal environment of a spacecraft in a lunar orbit. The quantities determined include the incident flux /solar and lunar emitted radiation/, total radiation absorbed by a surface, and the resulting surface temperature as a function of time and orbital position.

  10. Constraining the temperature history of the past millennium using early instrumental observations

    Directory of Open Access Journals (Sweden)

    P. Brohan

    2012-10-01

    Full Text Available The current assessment that twentieth-century global temperature change is unusual in the context of the last thousand years relies on estimates of temperature changes from natural proxies (tree-rings, ice-cores, etc. and climate model simulations. Confidence in such estimates is limited by difficulties in calibrating the proxies and systematic differences between proxy reconstructions and model simulations. As the difference between the estimates extends into the relatively recent period of the early nineteenth century it is possible to compare them with a reliable instrumental estimate of the temperature change over that period, provided that enough early thermometer observations, covering a wide enough expanse of the world, can be collected.

    One organisation which systematically made observations and collected the results was the English East India Company (EEIC, and their archives have been preserved in the British Library. Inspection of those archives revealed 900 log-books of EEIC ships containing daily instrumental measurements of temperature and pressure, and subjective estimates of wind speed and direction, from voyages across the Atlantic and Indian Oceans between 1789 and 1834. Those records have been extracted and digitised, providing 273 000 new weather records offering an unprecedentedly detailed view of the weather and climate of the late eighteenth and early nineteenth centuries.

    The new thermometer observations demonstrate that the large-scale temperature response to the Tambora eruption and the 1809 eruption was modest (perhaps 0.5 °C. This provides an out-of-sample validation for the proxy reconstructions – supporting their use for longer-term climate reconstructions. However, some of the climate model simulations in the CMIP5 ensemble show much larger volcanic effects than this – such simulations are unlikely to be accurate in this respect.

  11. Effects of growth temperature and device structure on GaP solar cells grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Vaisman, M.; Tomasulo, S.; Masuda, T.; Lang, J. R.; Faucher, J.; Lee, M. L. [Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511 (United States)

    2015-02-09

    Gallium phosphide (GaP) is an attractive candidate for wide-bandgap solar cell applications, possessing the largest bandgap of the III-arsenide/phosphides without aluminum. However, GaP cells to date have exhibited poor internal quantum efficiency (IQE), even for photons absorbed by direct transitions, motivating improvements in material quality and device structure. In this work, we investigated GaP solar cells grown by molecular beam epitaxy over a range of substrate temperatures, employing a much thinner emitter than in prior work. Higher growth temperatures yielded the best solar cell characteristics, indicative of increased diffusion lengths. Furthermore, the inclusion of an AlGaP window layer improved both open-circuit voltage and short wavelength IQE.

  12. Exhumation history along the eastern Amundsen Sea coast, West Antarctica, revealed by low-temperature thermochronology

    Science.gov (United States)

    Lindow, Julia; Kamp, Peter J. J.; Mukasa, Samuel B.; Kleber, Michel; Lisker, Frank; Gohl, Karsten; Kuhn, Gerhard; Spiegel, Cornelia

    2016-10-01

    West Antarctica experienced a complex tectonic history, which is still poorly documented, in part due to extensive ice cover. Here we reconstruct the Cretaceous to present thermotectonic history of Pine Island Bay area and its adjacent coasts, based on a combination of apatite and zircon fission track and apatite (U-Th-Sm)/He thermochronology. In addition, we report petrographic information for the catchments of Pine Island, Thurston Island, and Thwaites glaciers. Our data suggest that the underlying bedrock of the Pine Island and Thwaites Glacier catchments are very different and vary from granitoids to (Cenozoic?) volcanogenic sequences and low-grade metamorphics. Our thermochronology data show that the upper crustal rocks of Pine Island Bay experienced very rapid cooling during the late Cretaceous. We attribute this rapid cooling of basement rocks and associated reduction in mean elevation to tectonic denudation driven by gravitational collapse of the Cretaceous orogen along the proto-Pacific Gondwana margin. Rapid Cretaceous crustal cooling was followed by very slow cooling during the Cenozoic, with no erosional response—within the limits of thermochronological methods—to the onset of glaciation and subsequent climatic changes. Cenozoic rifting within the West Antarctic Rift appears to have had little effect on erosion processes around Pine Island Bay; instead, our data suggest Cenozoic crustal tilting toward Pine Island Trough, a major geomorphic feature previously suggested to be a branch of the rift system.

  13. Instrument-free exothermic heating with phase change temperature control for paper microfluidic devices

    Science.gov (United States)

    Singleton, Jered; Zentner, Chris; Buser, Josh; Yager, Paul; LaBarre, Paul; Weigl, Bernhard H.

    2013-03-01

    Many infectious diseases, as well as some cancers, that affect global health are most accurately diagnosed through nucleic acid amplification and detection. There is a great need to simplify nucleic acid-based assay systems for use in global health in low-resource settings as well as in settings that do not have convenient access to laboratory staff and equipment such as doctors' offices and home care settings. In developing countries, unreliable electric power, inadequate supply chains, and lack of maintenance for complex diagnostic instruments are all common infrastructure shortfalls. Many elements of instrument-free, disposable, nucleic acid amplification assays have been demonstrated in recent years. However, the problem of instrument-free,1 low-cost, temperature-controlled chemical heating remains unsolved. In this paper we present the current status and results of work towards developing disposable, low-cost, temperature-controlled heaters designed to support isothermal nucleic acid amplification assays that are integrated with a two-dimensional paper network. Our approach utilizes the heat generated through exothermic chemical reactions and controls the heat through use of engineered phase change materials to enable sustained temperatures required for nucleic acid amplification. By selecting appropriate exothermic and phase change materials, temperatures can be controlled over a wide range, suitable for various isothermal amplification methods, and maintained for over an hour at an accuracy of +/- 1°C.

  14. Thermal history and differential exhumation across the Eastern Musgrave Province, South Australia: Insights from low-temperature thermochronology

    Science.gov (United States)

    Glorie, Stijn; Agostino, Kate; Dutch, Rian; Pawley, Mark; Hall, James; Danišík, Martin; Evans, Noreen J.; Collins, Alan S.

    2017-04-01

    Multi-method geo- and thermochronological data obtained for Palaeo- and Mesoproterozoic granitoids traversing the main structural architecture of the eastern Musgrave Province within South Australia reveal multiphase cooling histories. Apatite U-Pb dating on six samples yield consistent ages of 1075-1025 Ma, suggesting a thermal reset coinciding with mantle-derived magmatism of the greater Warakurna Large Igneous Province ( 1080-1040 Ma). Apatite fission track (AFT) analysis indicate that four discrete thermal events affected the study area, inducing cooling through the AFT partial annealing zone ( 60-120 °C), supported by apatite and zircon (U-Th-Sm)/He data. Late Neoproterozoic cooling from deep crustal levels to temperatures history for the eastern Musgraves and help to elucidate the poorly appreciated tectonic evolution of inland Australia. This study further demonstrates how high-density sample transects across structural architecture can assess the relative crustal level and associated preservation of the thermal history record within fault-reactivated terranes.

  15. The Influence of Eddy Effect of Coils on Flow and Temperature Fields of Molten Droplet in Electromagnetic Levitation Device

    Science.gov (United States)

    Feng, Lin; Shi, Wan-Yuan

    2015-08-01

    In this work, the influence of eddy effect of coils on magnetic, flow, and temperature fields in an electromagnetically levitated molten droplet was investigated by a serial of axisymmetric numerical simulations. In an electromagnetic levitation device, both metal droplet and coils are conductive materials, therefore the distributions of current density in them should be non-uniform as a result of the eddy effect. However, in previous works, the eddy effect was considered alone in metal droplet but ignored in coils usually. As the distance of coils and metal droplet is several millimetres in general, the non-uniform distribution of current density in coils actually gives important influences on calculations of magnetic, flow, and temperature fields. Here, we consider the eddy effect both in metal droplet as well as that in coils simultaneously. Lifting force, absorbed power, fluid flow, and temperature field inside a 4-mm radius molten copper droplet as a typical example are then calculated and analyzed carefully under such condition. The results show that eddy effect leads to higher magnetic force, velocity, and temperature in both levitating and melting processes than those when the eddy effect is ignored. What is more, such influence increases as the distance of droplet and coils becomes closer, which corresponds to experimental measurement. Therefore, we suggest that eddy effect of coils should be considered in numerical simulation on this topic to obtain more reliable result.

  16. A device for fluorescence temperature measurement based on fast fourier transform

    Science.gov (United States)

    Wang, Dong-Sheng; Wang, Gui-Mei; Pan, Wei-Wei; Wang, Yu-Tian

    2008-03-01

    A sapphire fiber thermal probe with Cr3+ ion-doped end was grown using the laser heated pedestal method. The fluorescence thermal probe offers advantages of compact structure, high performance and the ability to sustain high temperature from the room temperature to 450 °C. Based on the fast fourier transform (FFT), the fluorescence lifetime is obtained from the tangent function of the phase angle of the first non-zeroth item of FFT result. Compared with other traditional fitting methods, our method has advantages such as fast speed, high accuracy and being free from the influence of the base signal. The standard deviation of FFT method is about half of that of the Prony method and close to the one of the Marquardt method. In addition, since the FFT method is immunity to the background noise of the signal, the background noise analysis can be skipped.

  17. Influence of a heating device and adhesive temperature on bond strength of a simplified ethanol-based adhesive system

    Directory of Open Access Journals (Sweden)

    Marcos Paulo Marchiori CARVALHO

    Full Text Available Abstract Introduction Increased adhesive temperature has been reported to promote solvent evaporation, reduce viscosity, and improve monomeric permeation into dentin. Objective The aim of this study was to determine the influence of different heating methods on the microtensile bond strength of an etch-and-rinse adhesive to dentin. Material and method Twenty-four caries-free extracted human third molars were transversally sectioned to expose a flat dentinal surface. The samples were etched with 37% phosphoric acid gel and divided into three groups (n = 8: 1 Control - the adhesive system (Adper Single Bond 2; 3M ESPE was applied at room temperature; 2 Warming device - the adhesive was warmed to 37°C in a custom device before application; and 3 Warm air - the adhesive was warmed to 50°C with an air jet after application on dentin. The specimens were restored with a composite resin (Filtek Z250 A2, 3M ESPE and prepared for microtensile bond strength testing, after 24 h in water storage. The data were subjected to one-way ANOVA and Tukey's test (p 0.05. The mean bond strength values in the control, the warming device, and the warm air groups were 48.5 (± 5.2, 40.35 (± 4.9, and 47.2 (± 5.3 MPa, respectively (p = 0.05. Conclusion The different heating methods had no significant influence on the immediate microtensile bond strength of an etch-and-rinse ethanol-based adhesive to dentin.

  18. Devices comprised of discrete high-temperature superconductor chips disposed on a surface

    Energy Technology Data Exchange (ETDEWEB)

    Van Duzer, T.

    1993-06-01

    A structure exposed to electromagnetic radiation is described, comprising: a metal surface and a plurality of discrete elements, each element including an insulating substrate and a high-temperature superconducting material substantially covering a face of said substrate, a portion of said metal surface being substantially covered with said elements with said superconducting material thereof adjacent to and in electrical contact with said metal surface, thereby reducing ohmic losses on exposure of said structure to said electromagnetic radiation.

  19. Enhanced performance of CdS/CdTe thin-film devices through temperature profiling techniques applied to close-spaced sublimation deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xiaonan Li; Sheldon, P.; Moutinho, H.; Matson, R. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    The authors describe a methodology developed and applied to the close-spaced sublimation technique for thin-film CdTe deposition. The developed temperature profiles consisted of three discrete temperature segments, which the authors called the nucleation, plugging, and annealing temperatures. They have demonstrated that these temperature profiles can be used to grow large-grain material, plug pinholes, and improve CdS/CdTe photovoltaic device performance by about 15%. The improved material and device properties have been obtained while maintaining deposition temperatures compatible with commercially available substrates. This temperature profiling technique can be easily applied to a manufacturing environment by adjusting the temperature as a function of substrate position instead of time.

  20. The embryonic life history of the tropical sea hare Stylocheilus striatus (Gastropoda: Opisthobranchia) under ambient and elevated ocean temperatures.

    Science.gov (United States)

    Horwitz, Rael; Jackson, Matthew D; Mills, Suzanne C

    2017-01-01

    Ocean warming represents a major threat to marine biota worldwide, and forecasting ecological ramifications is a high priority as atmospheric carbon dioxide (CO2) emissions continue to rise. Fitness of marine species relies critically on early developmental and reproductive stages, but their sensitivity to environmental stressors may be a bottleneck in future warming oceans. The present study focuses on the tropical sea hare, Stylocheilus striatus (Gastropoda: Opisthobranchia), a common species found throughout the Indo-West Pacific and Atlantic Oceans. Its ecological importance is well-established, particularly as a specialist grazer of the toxic cyanobacterium, Lyngbya majuscula. Although many aspects of its biology and ecology are well-known, description of its early developmental stages is lacking. First, a detailed account of this species' life history is described, including reproductive behavior, egg mass characteristics and embryonic development phases. Key developmental features are then compared between embryos developed in present-day (ambient) and predicted end-of-century elevated ocean temperatures (+3 °C). Results showed developmental stages of embryos reared at ambient temperature were typical of other opisthobranch species, with hatching of planktotrophic veligers occurring 4.5 days post-oviposition. However, development times significantly decreased under elevated temperature, with key embryonic features such as the velum, statocysts, operculum, eyespots and protoconch developing approximately 24 h earlier when compared to ambient temperature. Although veligers hatched one day earlier under elevated temperature, their shell size decreased by approximately 20%. Our findings highlight how an elevated thermal environment accelerates planktotrophic development of this important benthic invertebrate, possibly at the cost of reducing fitness and increasing mortality.

  1. The embryonic life history of the tropical sea hare Stylocheilus striatus (Gastropoda: Opisthobranchia under ambient and elevated ocean temperatures

    Directory of Open Access Journals (Sweden)

    Rael Horwitz

    2017-02-01

    Full Text Available Ocean warming represents a major threat to marine biota worldwide, and forecasting ecological ramifications is a high priority as atmospheric carbon dioxide (CO2 emissions continue to rise. Fitness of marine species relies critically on early developmental and reproductive stages, but their sensitivity to environmental stressors may be a bottleneck in future warming oceans. The present study focuses on the tropical sea hare, Stylocheilus striatus (Gastropoda: Opisthobranchia, a common species found throughout the Indo-West Pacific and Atlantic Oceans. Its ecological importance is well-established, particularly as a specialist grazer of the toxic cyanobacterium, Lyngbya majuscula. Although many aspects of its biology and ecology are well-known, description of its early developmental stages is lacking. First, a detailed account of this species’ life history is described, including reproductive behavior, egg mass characteristics and embryonic development phases. Key developmental features are then compared between embryos developed in present-day (ambient and predicted end-of-century elevated ocean temperatures (+3 °C. Results showed developmental stages of embryos reared at ambient temperature were typical of other opisthobranch species, with hatching of planktotrophic veligers occurring 4.5 days post-oviposition. However, development times significantly decreased under elevated temperature, with key embryonic features such as the velum, statocysts, operculum, eyespots and protoconch developing approximately 24 h earlier when compared to ambient temperature. Although veligers hatched one day earlier under elevated temperature, their shell size decreased by approximately 20%. Our findings highlight how an elevated thermal environment accelerates planktotrophic development of this important benthic invertebrate, possibly at the cost of reducing fitness and increasing mortality.

  2. Reconstruction of Holocene Temperature History in the Rwenzori Mountains (uganda - DR Congo) Based on Midge Analysis of Lake Sediments

    Science.gov (United States)

    Eggermont, H.; Audenaert, L.; Russell, J. M.; Verschuren, D.

    2011-12-01

    The Rwenzori Mountains (Uganda-DR Congo) are still one of the most glaciated areas in tropical Africa, but permanent ice will probably disappear entirely in the next few decades. Post-glacial retreat of the Rwenzori glaciers has created numerous lakes, which are hydrologically and ecologically sensitive to climate warming. Sediments accumulating on the bottom of these lakes chronicle the history of central African climate and environmental dynamics, and thus provide the long-term perspective needed to predict the impacts of future climate change on these unique tropical cold-water ecosystems and their biota. In this context, we studied the sediment record of Lake Upper Kachope at ~3960 m elevation, which roughly spans the last 9000 years, and used fossil chironomid remains (Insecta: Diptera) to reconstruct Holocene temperature changes at high elevation in the Rwenzori. Taking into account a probable mid-Holocene hiatus, the obtained temperature reconstruction shows a clear long-term trend in Holocene temperature variation, but with a modest amplitude of ~2-3 °C. From the early to the mid-Holocene, there is a marked shift from species with a lower to species with a higher temperature optimum. In the last few millennia there is a return of chironomid species with colder optima, with century-scale variation that may reflect temperature fluctuation during the Medieval Climate Anomaly and Little Ice Age. Inferences from the very top of the cored section clearly reflect a warming trend over the past century. These data suggest that today's Rwenzori glaciers have existed for the last ~2000 years, but may have been lacking during much of the mid- to late-Holocene.

  3. Mesozoic and Cenozoic exhumation history of the SW Iberian Variscides inferred from low-temperature thermochronology

    Science.gov (United States)

    Vázquez-Vílchez, Mercedes; Jabaloy-Sánchez, Antonio; Azor, Antonio; Stuart, Finlay; Persano, Cristina; Alonso-Chaves, Francisco M.; Martín-Parra, Luis Miguel; Matas, Jerónimo; García-Navarro, Encarnación

    2015-11-01

    The post-Paleozoic tectonothermal evolution of the SW Iberian Variscides is poorly known mainly due to the scarce low-temperature geochronological data available. We have obtained new apatite fission-tracks and apatite (U-Th)/He ages to constrain the Mesozoic and Cenozoic tectonic evolution of this portion of the Iberian Massif located just north of the Betic-Rif Alpine orogen. We have obtained nine apatite fission-track ages on samples from Variscan and pre-Variscan granitoids. These ages range from 174.4 (± 10.8) to 54.1 (± 4.9) Ma, with mean track lengths between 10.3 and 13.9 μm. We have also performed 5 (U-Th)/He datings on some of the same samples, obtaining ages between 74.6 (± 1.6) and 18.5 (± 1.4) Ma. Time-temperature path modeling of these low-temperature geochronological data leads us to envisage four post-Paleozoic tectonically controlled exhumation episodes in the SW Iberian Variscides. Three of these episodes occurred in Mesozoic times (Middle Triassic to Early Jurassic, Early Cretaceous, and Late Cretaceous) at rates of ≈ 1.1 to 2.5 °C Ma- 1, separated by periods with almost no cooling. We relate these Mesozoic cooling events to the formation of important marginal reliefs during the rifting and opening of the central and northern Atlantic realm. The fourth exhumation episode occurred in Cenozoic times at rates of ≈ 3.2 to 3.6 °C Ma- 1, being only recorded in samples next to faults with topographic escarpments. These samples cooled below 80 °C at ≈ 20 Ma at rates of 3-13 °C Ma- 1 due to roughly N-S oriented compressional stresses affecting the whole Iberian plate, which, in the particular case of SW Iberia, reactivated some of the previous Late Paleozoic thrusts.

  4. Magnetic Effects in a Moderate-Temperature, High-Beta, Toroidal Plasma Device

    Science.gov (United States)

    Edwards, W. F.; Singh, A. K.; Held, E. D.

    2011-10-01

    A small toroidal machine (STOR-1M; minor radius 4.5 cm), on loan from the University of Saskatchewan, has been modified to operate at hydrogen ionization levels ~0.1%, beta values between 0.1 and 1, electron number density ~5x1016/m3, temperature ~5 eV, and applied toroidal magnetic field ~20 gauss. Plasma is generated using magnetron-produced microwaves. Langmuir and Hall probes determine radial profiles of electron number density, temperature, and magnetic field. For most values of the externally-applied magnetic field, the internal field is the same with or without plasma, however, in a narrow window of B, diamagnetism and other effects are present. The effect is observed with no externally induced current; plasma currents are self generated through some sort of relaxation process. Beta and radius conditions correlate well with similar magnetic structures in the laboratory (eg., plasma focus, Z pinch) and in space (eg., Venus flux ropes, solar coronal loops).

  5. Influence of the starting materials on performance of high temperature oxide fuel cells devices

    Directory of Open Access Journals (Sweden)

    Emília Satoshi Miyamaru Seo

    2004-03-01

    Full Text Available High temperature solid oxide fuel cells (SOFCs offer an environmentally friendly technology to convert gaseous fuels such as hydrogen, natural gas or gasified coal into electricity at high efficiencies. Besides the efficiency, higher than those obtained from the traditional energy conversion systems, a fuel cell provides many other advantages like reliability, modularity, fuel flexibility and very low levels of NOx and SOx emissions. The high operating temperature (950-1000 °C used by the current generation of the solid oxide fuel cells imposes severe constraints on materials selection in order to improve the lifetime of the cell. Besides the good electrical, electrochemical, mechanical and thermal properties, the individual cell components must be stable under the fuel cell operating atmospheres. Each material has to perform not only in its own right but also in conjunction with other system components. For this reason, each cell component must fulfill several different criteria. This paper reviews the materials and the methods used to fabricate the different cell components, such as the cathode, the electrolyte, the anode and the interconnect. Some remarkable results, obtained at IPEN (Nuclear Energy Research Institute in São Paulo, have been presented.

  6. Identifying Biologically Meaningful Hot-Weather Events Using Threshold Temperatures That Affect Life-History

    Science.gov (United States)

    Cunningham, Susan J.; Kruger, Andries C.; Nxumalo, Mthobisi P.

    2013-01-01

    Increases in the frequency, duration and intensity of heat waves are frequently evoked in climate change predictions. However, there is no universal definition of a heat wave. Recent, intense hot weather events have caused mass mortalities of birds, bats and even humans, making the definition and prediction of heat wave events that have the potential to impact populations of different species an urgent priority. One possible technique for defining biologically meaningful heat waves is to use threshold temperatures (Tthresh) above which known fitness costs are incurred by species of interest. We set out to test the utility of this technique using Tthresh values that, when exceeded, affect aspects of the fitness of two focal southern African bird species: the southern pied babbler Turdiodes bicolor (Tthresh = 35.5°C) and the common fiscal Lanius collaris (Tthresh = 33°C). We used these Tthresh values to analyse trends in the frequency, duration and intensity of heat waves of magnitude relevant to the focal species, as well as the annual number of hot days (maximum air temperature > Tthresh), in north-western South Africa between 1961 and 2010. Using this technique, we were able to show that, while all heat wave indices increased during the study period, most rapid increases for both species were in the annual number of hot days and in the maximum intensity (and therefore intensity variance) of biologically meaningful heat waves. Importantly, we also showed that warming trends were not uniform across the study area and that geographical patterns in warming allowed both areas of high risk and potential climate refugia to be identified. We discuss the implications of the trends we found for our focal species, and the utility of the Tthresh technique as a conservation tool. PMID:24349296

  7. Identifying biologically meaningful hot-weather events using threshold temperatures that affect life-history.

    Science.gov (United States)

    Cunningham, Susan J; Kruger, Andries C; Nxumalo, Mthobisi P; Hockey, Philip A R

    2013-01-01

    Increases in the frequency, duration and intensity of heat waves are frequently evoked in climate change predictions. However, there is no universal definition of a heat wave. Recent, intense hot weather events have caused mass mortalities of birds, bats and even humans, making the definition and prediction of heat wave events that have the potential to impact populations of different species an urgent priority. One possible technique for defining biologically meaningful heat waves is to use threshold temperatures (T(thresh)) above which known fitness costs are incurred by species of interest. We set out to test the utility of this technique using T(thresh) values that, when exceeded, affect aspects of the fitness of two focal southern African bird species: the southern pied babbler Turdiodes bicolor (T(thresh) = 35.5 °C) and the common fiscal Lanius collaris (T(thresh) = 33 °C). We used these T(thresh) values to analyse trends in the frequency, duration and intensity of heat waves of magnitude relevant to the focal species, as well as the annual number of hot days (maximum air temperature > T(thresh)), in north-western South Africa between 1961 and 2010. Using this technique, we were able to show that, while all heat wave indices increased during the study period, most rapid increases for both species were in the annual number of hot days and in the maximum intensity (and therefore intensity variance) of biologically meaningful heat waves. Importantly, we also showed that warming trends were not uniform across the study area and that geographical patterns in warming allowed both areas of high risk and potential climate refugia to be identified. We discuss the implications of the trends we found for our focal species, and the utility of the T(thresh) technique as a conservation tool.

  8. Identifying biologically meaningful hot-weather events using threshold temperatures that affect life-history.

    Directory of Open Access Journals (Sweden)

    Susan J Cunningham

    Full Text Available Increases in the frequency, duration and intensity of heat waves are frequently evoked in climate change predictions. However, there is no universal definition of a heat wave. Recent, intense hot weather events have caused mass mortalities of birds, bats and even humans, making the definition and prediction of heat wave events that have the potential to impact populations of different species an urgent priority. One possible technique for defining biologically meaningful heat waves is to use threshold temperatures (T(thresh above which known fitness costs are incurred by species of interest. We set out to test the utility of this technique using T(thresh values that, when exceeded, affect aspects of the fitness of two focal southern African bird species: the southern pied babbler Turdiodes bicolor (T(thresh = 35.5 °C and the common fiscal Lanius collaris (T(thresh = 33 °C. We used these T(thresh values to analyse trends in the frequency, duration and intensity of heat waves of magnitude relevant to the focal species, as well as the annual number of hot days (maximum air temperature > T(thresh, in north-western South Africa between 1961 and 2010. Using this technique, we were able to show that, while all heat wave indices increased during the study period, most rapid increases for both species were in the annual number of hot days and in the maximum intensity (and therefore intensity variance of biologically meaningful heat waves. Importantly, we also showed that warming trends were not uniform across the study area and that geographical patterns in warming allowed both areas of high risk and potential climate refugia to be identified. We discuss the implications of the trends we found for our focal species, and the utility of the T(thresh technique as a conservation tool.

  9. Local adaptation at the transcriptome level in brown trout: Evidence from early life history temperature genomic reaction norms

    DEFF Research Database (Denmark)

    Meier, Kristian; Hansen, Michael Møller; Normandeau, Eric

    2014-01-01

    Local adaptation and its underlying molecular basis has long been a key focus in evolutionary biology. There has recently been increased interest in the evolutionary role of plasticity and the molecular mechanisms underlying local adaptation. Using transcriptome analysis, we assessed differences...... reaction norms and significantly higher QST than FST among populations for two early life-history traits. In the present study we investigated if genomic reaction norm patterns were also present at the transcriptome level. Eggs from the three populations were incubated at two temperatures (5 and 8 degrees....... These included genes involved in immune- and stress response. We observed less plasticity in the resident as compared to the anadromous populations, possibly reflecting that the degree of environmental heterogeneity encountered by individuals throughout their life cycle will select for variable level...

  10. Comparison of thermoregulatory devices used during anesthesia of C57BL/6 mice and correlations between body temperature and physiologic parameters.

    Science.gov (United States)

    Caro, Adam C; Hankenson, F Claire; Marx, James O

    2013-09-01

    General anesthesia affects several body systems, including thermoregulation. Decreased body temperature during anesthesia has potential negative effects, including delayed recovery to consciousness. Thermoregulatory support devices are used to maintain temperature in anesthetized rodents. We analyzed 2 novel thermoregulatory devices, thermogenic gel packs and reflective foils, to compare their effectiveness in maintaining temperatures with that of a standard circulating-warm-water blanket (CWWB) in C57BL/6 mice. Mice were grouped randomly: control (no thermal support), reflective foil, gel pack, gel pack plus reflective foil, CWWB on medium setting, CWWB on high setting, and CWWB on high setting plus reflective foil. Mice were anesthetized with isoflurane for 30 min, and temperature and heart and respiratory rates were monitored. Results indicated that the temperatures of mice with reflective foil only (start temperature, 36.2 ± 0.38 °C; end temperature, 28.8 ± 0.78 °C) did not differ significantly from those of control mice; however, the inclusion of foil heightened thermogenic properties when combined with other devices. Thermogenic gel packs and CWWB on high setting, both with and without reflective foil, caused significant temperature increases (that is, 1.6 °C to 4.4 °C) in mice. CWWB on medium setting (blanket temperature, 37.5 °C) maintained mice at temperatures within 1 °C of the 36.1 °C baseline. Strong correlations existed between temperature, heart and respiratory rates, and recovery time to consciousness. This information provides guidance regarding the use of thermoregulatory devices in anesthetized rodents and demonstrates the effect of maintaining a consistent core temperature on physiologic parameters.

  11. Temperature-Dependent Electric Field Poling Effects in CH3NH3PbI3 Optoelectronic Devices.

    Science.gov (United States)

    Zhang, Chuang; Sun, Dali; Liu, Xiaojie; Sheng, Chuan-Xiang; Vardeny, Zeev Valy

    2017-04-06

    Organo-lead halide perovskites show excellent optoelectronic properties; however, the unexpected inconsistency in forward-backward I-V characteristics remains a problem for fabricating solar panels. Here we have investigated the reasons behind this "hysteresis" by following the changes in photocurrent and photoluminescence under electric field poling in transverse CH3NH3PbI3-based devices from 300 to 10 K. We found that the hysteresis disappears at cryogenic temperatures, indicating the "freeze-out" of the ionic diffusion contribution. When the same device is cooled under continuous poling, the built-in electric field from ion accumulation brings significant photovoltaic effect even at 10 K. From the change of photoluminescence upon polling, we found a second dipole-related mechanism which enhances radiative recombination upon the alignment of the organic cations. The ionic origin of hysteresis was also verified by applying a magnetic field to affect the ion diffusion. These findings reveal the coexistence of ionic and dipole-related mechanisms for the hysteresis in hybrid perovskites.

  12. Nanocrystalline Silicon Carrier Collectors for Silicon Heterojunction Solar Cells and Impact on Low-Temperature Device Characteristics

    KAUST Repository

    Nogay, Gizem

    2016-09-26

    Silicon heterojunction solar cells typically use stacks of hydrogenated intrinsic/doped amorphous silicon layers as carrier selective contacts. However, the use of these layers may cause parasitic optical absorption losses and moderate fill factor (FF) values due to a high contact resistivity. In this study, we show that the replacement of doped amorphous silicon with nanocrystalline silicon is beneficial for device performance. Optically, we observe an improved short-circuit current density when these layers are applied to the front side of the device. Electrically, we observe a lower contact resistivity, as well as higher FF. Importantly, our cell parameter analysis, performed in a temperature range from -100 to +80 °C, reveals that the use of hole-collecting p-type nanocrystalline layer suppresses the carrier transport barrier, maintaining FF s in the range of 70% at -100 °C, whereas it drops to 40% for standard amorphous doped layers. The same analysis also reveals a saturation onset of the open-circuit voltage at -100 °C using doped nanocrystalline layers, compared with saturation onset at -60 °C for doped amorphous layers. These findings hint at a reduced importance of the parasitic Schottky barrier at the interface between the transparent electrodes and the selective contact in the case of nanocrystalline layer implementation. © 2011-2012 IEEE.

  13. Low-temperature synthesis of indium tin oxide nanowires as the transparent electrodes for organic light emitting devices.

    Science.gov (United States)

    Kee, Yeh Yee; Tan, Sek Sean; Yong, Thian Khok; Nee, Chen Hon; Yap, Seong Shan; Tou, Teck Yong; Sáfrán, György; Horváth, Zsolt Endre; Moscatello, Jason P; Yap, Yoke Khin

    2012-01-20

    Low-temperature growth of indium tin oxide (ITO) nanowires (NWs) was obtained on catalyst-free amorphous glass substrates at 250 °C by Nd:YAG pulsed-laser deposition. These ITO NWs have branching morphology as grown in Ar ambient. As suggested by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM), our ITO NWs have the tendency to grow vertically outward from the substrate surface, with the (400) plane parallel to the longitudinal axis of the nanowires. These NWs are low in electrical resistivity (1.6×10⁻⁴ Ω cm) and high in visible transmittance (~90–96%), and were tested as the electrode for organic light emitting devices (OLEDs). An enhanced current density of ~30 mA cm⁻² was detected at bias voltages of ~19–21 V with uniform and bright emission. We found that the Hall mobility of these NWs is 2.2–2.7 times higher than that of ITO film, which can be explained by the reduction of Coulomb scattering loss. These results suggested that ITO nanowires are promising for applications in optoelectronic devices including OLED, touch screen displays, and photovoltaic solar cells.

  14. Potential Usage of Thermoelectric Devices in a High-Temperature Polymer Electrolyte Membrane (PEM) Fuel Cell System: Two Case Studies

    Science.gov (United States)

    Gao, Xin; Chen, Min; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2012-06-01

    Methanol-fueled, high-temperature polymer electrolyte membrane fuel cell (HTPEMFC) power systems are promising as the next generation of vehicle engines, efficient and environmentally friendly. Currently, their performance still needs to be improved, and they still rely on a large Li-ion battery for system startup. In this article, to handle these two issues, the potential of thermoelectric (TE) devices applied in a HTPEMFC power system has been preliminarily evaluated. First, right after the fuel cell stack or the methanol reformer, thermoelectric generators (TEGs) are embedded inside a gas-liquid heat exchanger to form a heat recovery subsystem jointly for electricity production. It is calculated that the recovered power can increase the system efficiency and mitigate the dependence on Li-ion battery during system startup. To improve the TEG subsystem performance, a finite-difference model is then employed and two main parameters are identified. Second, TE coolers are integrated into the methanol steam reformer to regulate heat fluxes herein and improve the system dynamic performance. Similar modification is also done on the evaporator to improve its dynamic performance as well as to reduce the heat loss during system startup. The results demonstrate that the TE-assisted heat flux regulation and heat-loss reduction can also effectively help solve the abovementioned two issues. The preliminary analysis in this article shows that a TE device application inside HTPEMFC power systems is of great value and worthy of further study.

  15. Measurement of body temperature in adult patients: comparative study of accuracy, reliability and validity of different devices.

    Science.gov (United States)

    Rubia-Rubia, J; Arias, A; Sierra, A; Aguirre-Jaime, A

    2011-07-01

    We compared a range of alternative devices with core body temperature measured at the pulmonary artery to identify the most valid and reliable instrument for measuring temperature in routine conditions in health services. 201 patients from the intensive care unit of the Candelaria University Hospital, Canary Islands, admitted to hospital between April 2006 and July 2007. All patients (or their families) gave informed consent. Readings from gallium-in-glass, reactive strip and digital in axilla, infra-red ear and frontal thermometers were compared with the pulmonary artery core temperature simultaneously. External factors suspected of having an influence on the differences were explored. The cut-off point readings for each thermometer were fixed for the maximum negative predictive value in comparison with the core temperature. The validity, reliability, accuracy, external influence, the waste they generated, ease of use, speed, durability, security, comfort and cost of each thermometer was evaluated. An ad hoc overall valuation score was obtained from these parameters for each instrument. For an error of ± 0.2°C and concordance with respect to fever, the gallium-in-glass thermometer gave the best results. The largest area under the receiver operating characteristic (ROC) curve is obtained by the digital axillar thermometer with probe (0.988 ± 0.007). The minimum difference between readings was given by the infrared ear thermometer, in comparison with the core temperature (-0.1 ± 0.3°C). Age, weight, level of conscience, male sex, environmental temperature and vaso-constrictor medication increases the difference in the readings and fever treatment reduces it, although this is not the same for all thermometers. The compact digital axillar thermometer and the digital thermometer with probe obtained the highest overall valuation score. If we only evaluate the aspects of validity, reliability, accuracy and external influence, the best thermometer would be the

  16. Effect of temperature on the life-history traits of Neoseiulus californicus (Acari: Phytoseiidae) fed on Panonychus ulmi.

    Science.gov (United States)

    El Taj, H F; Jung, Chuleui

    2012-03-01

    The developmental rate and reproductive biology of Neoseiulus californicus, a generalist predator on spider mites and small insects, was investigated in the laboratory at five constant temperatures: 15, 20, 25, 30, and 34°C. The European red mite, Panonychus ulmi, an important pest in Korean apple orchards, was used as prey. Mean developmental time and adult longevity were inversely related to temperature from 15 to 30°C. Lifetime fecundity was greatest at 25°C, whereas daily fecundity was highest at 30°C. The sex ratio (female to male) was highest (0.77) at 25°C and lowest (0.67) at 34°C. Survivorship during immature development varied from 74.3 to 92.9%, with the lowest rate at 34°C. Life table parameters were analyzed and pseudo-replicates for the generation time (t ( G )), the intrinsic rate of natural increase (r (m)), finite rate of increase (λ), net reproductive rate (R (0)), and doubling time (t ( D )) were generated using the Jackknife method. Generation time (t ( G )) was lowest (10.7 days) at 34°C, R (0) was highest (49.2) at 25°C, and both r (m) (0.29) and λ (1.34) were highest at 30°C. In conclusion, the development and adult life-history traits obtained for N. californicus fed on P. ulmi indicated significant potential for biological control.

  17. Comparison of a continuous temperature-controlled cryotherapy device to a simple icing regimen following outpatient knee arthroscopy.

    Science.gov (United States)

    Woolf, Shane K; Barfield, William R; Merrill, Keith D; McBryde, Angus M

    2008-01-01

    This prospective, randomized study compared postoperative pain control with use of a continuous temperature-controlled cryotherapy system versus a traditional ice therapy regimen following outpatient knee arthroscopy. Patients with unilateral knee pathology scheduled for outpatient arthroscopic surgery were included. Patients with major ligament reconstructions were excluded. A specific cold therapy regimen was begun postoperatively and continued for 2 weeks as adjunctive management of postoperative pain. Preoperative and postoperative pain intensity, pain type, functionality, and sleep quality were assessed. Patients were randomly assigned to either an ice or a continuous cryotherapy group. Follow-up questionnaires were completed on 5 postoperative days. Data were analyzed using a chi-square test with a level of significance at P ice therapy group (P = 0.04). No significant differences existed between groups regarding functional ability, and no differences were noted on other follow-up days. These findings support use of continuous temperature-controlled cold therapy devices for nighttime pain control and improved quality of life in the early period following routine knee arthroscopy.

  18. Energy audit of three energy-conserving devices in a steel industry demonstration program. Task III. GTE high temperature recuperation

    Energy Technology Data Exchange (ETDEWEB)

    Holden, F.C.; Hoffman, A.O.; Lownie, H.W.

    1983-06-01

    The Office of Industrial Programs of the Department of Energy has undertaken a program to demonstrate to industry the benefits of installing various energy-conserving devices and equipment. This report presents results on one of those systems, a high-temperature ceramic recuperator designed and manufactured by Sylvania Chemical and Metallurgical Division, GTE Products Corporation of Towanda, Pennsylvania. The ceramic cross-flow recuperator unit recovers waste heat from the hot combustion gases and delivers preheated air to high-temperature burners of various manufacture. Of the 38 host site installations included in the program, sufficient operating data were obtained from 28 sites to evaluate the benefits in terms of energy and economic savings that can be achieved. Performance and cost data are analyzed and presented for those 28 installations, which covered a variety of applications, sizes, and industry types. Except for 5 sites where unusual operating or data-collection problems were encountered, the improvements in performance of the recuperated furnaces equalled or exceeded estimates; the average of the total fuel savings for these 23 sites was 44.0 percent, some portion of which resulted from furnace improvements other than recuperation. Payback times were calculated for both total costs and for recuperator-related costs, using a cumulative annual after-tax cash flow method which includes tax investment credits, estimates of general and fuel-price inflation, and maintenance costs.

  19. High Density Schottky Barrier Infrared Charge-Coupled Device (IRCCD) Sensors For Short Wavelength Infrared (SWIR) Applications At Intermediate Temperature

    Science.gov (United States)

    Elabd, H.; Villani, T. S.; Tower, J. R.

    1982-11-01

    Monolithic 32 x 64 and 64 x 128 palladium silicide (Pd2Si) interline transfer IRCCDs sensitive in the 1-3.5 pm spectral band have been developed. This silicon imager exhibits a low response nonuniformity of typically 0.2-1.6% rms, and has been operated in the temperature range between 40-140K. Spectral response measurements of test Pd2Si p-type Si devices yield quantum efficiencies of 7.9% at 1.25 μm, 5.6% at 1.65 μm and 2.2% at 2.22 μm. Improvement in quantum efficiency is expected by optimizing the different structural parameters of the Pd2Si detectors. The spectral response of the Pd2Si detectors fit a modified Fowler emission model. The measured photo-electric barrier height for the Pd2Si detector is ≍0.34 eV and the measured quantum efficiency coefficient, C1, is 19%/eV. The dark current level of Pd2Si Schottky barrier focal plane arrays (FPAs) is sufficiently low to enable operation at intermediate tem-peratures at TV frame rates. Typical dark current level measured at 120K on the FPA is 2 nA/cm2. The Pd2Si Schottky barrier imaging technology has been developed for satellite sensing of earth resources. The operating temperature of the Pd2Si FPA is compatible with passive cooler performance. In addition, high density Pd2Si Schottky barrier FPAs are manufactured with high yield and therefore represent an economical approach to short wavelength IR imaging. A Pd2Si Schottky barrier image sensor for push-broom multispectral imaging in the 1.25, 1.65, and 2.22 μm bands is being studied. The sensor will have two line arrays (dual band capability) of 512 detectors each, with 30 μm center-to-center detector spacing. The device will be suitable for chip-to-chip abutment, thus providing the capability to produce large, multiple chip focal planes with contiguous, in-line sensors.

  20. Minimization of Temperature Ranges between the Top and Bottom of an Air Flow Controlling Device through Hybrid Control in a Plant Factory

    OpenAIRE

    Seung-Mi Moon; Sook-Youn Kwon; Jae-Hyun Lim

    2014-01-01

    To maintain the production timing, productivity, and product quality of plant factories, it is necessary to keep the growth environment uniform. A vertical multistage type of plant factory involves different levels of growing trays, which results in the problem of difference in temperature among vertically different locations. To address it, it is necessary to install air flow devices such as air flow fan and cooling/heating device at the proper locations in order to facilitate air circulatio...

  1. Effect of junction temperature on the large-signal properties of a 94 GHz silicon based double-drift region impact avalanche transit time device

    Science.gov (United States)

    Acharyya, Aritra; Banerjee, Suranjana; Banerjee, J. P.

    2013-02-01

    The authors have developed a large-signal simulation technique extending an in-house small-signal simulation code for analyzing a 94 GHz double-drift region impact avalanche transit time device based on silicon with a non-sinusoidal voltage excitation and studied the effect of junction temperature between 300 and 550 K on the large-signal characteristics of the device for both continuous wave (CW) and pulsed modes of operation. Results show that the large-signal RF power output of the device in both CW and pulsed modes increases with the increase of voltage modulation factor up to 60%, but decreases sharply with further increase of voltage modulation factor for a particular junction temperature; while the same parameter increases with the increase of junction temperature for a particular voltage modulation factor. Heat sinks made of copper and type-IIA diamond are designed to carry out the steady-state and transient thermal analysis of the device operating in CW and pulsed modes respectively. Authors have adopted Olson's method to carry out the transient analysis of the device, which clearly establishes the superiority of type-IIA diamond over copper as the heat sink material of the device from the standpoint of the undesirable effect of frequency chirping due to thermal transients in the pulsed mode.

  2. Modelling the impact of temperature-induced life history plasticity and mate limitation on the epidemic potential of a marine ectoparasite.

    Directory of Open Access Journals (Sweden)

    Maya L Groner

    Full Text Available Temperature is hypothesized to contribute to increased pathogenicity and virulence of many marine diseases. The sea louse (Lepeophtheirus salmonis is an ectoparasite of salmonids that exhibits strong life-history plasticity in response to temperature; however, the effect of temperature on the epidemiology of this parasite has not been rigorously examined. We used matrix population modelling to examine the influence of temperature on demographic parameters of sea lice parasitizing farmed salmon. Demographically-stochastic population projection matrices were created using parameters from the existing literature on vital rates of sea lice at different fixed temperatures and yearly temperature profiles. In addition, we quantified the effectiveness of a single stage-specific control applied at different times during a year with seasonal temperature changes. We found that the epidemic potential of sea lice increased with temperature due to a decrease in generation time and an increase in the net reproductive rate. In addition, mate limitation constrained population growth more at low temperatures than at high temperatures. Our model predicts that control measures targeting preadults and chalimus are most effective regardless of the temperature. The predictions from this model suggest that temperature can dramatically change vital rates of sea lice and can increase population growth. The results of this study suggest that sea surface temperatures should be considered when choosing salmon farm sites and designing management plans to control sea louse infestations. More broadly, this study demonstrates the utility of matrix population modelling for epidemiological studies.

  3. Genetic and phenotypic relationships between immune defense, melanism and life-history traits at different temperatures and sexes in Tenebrio molitor.

    Science.gov (United States)

    Prokkola, J; Roff, D; Kärkkäinen, T; Krams, I; Rantala, M J

    2013-08-01

    Insect cuticle melanism is linked to a number of life-history traits, and a positive relationship is hypothesized between melanism and the strength of immune defense. In this study, the phenotypic and genetic relationships between cuticular melanization, innate immune defense, individual development time and body size were studied in the mealworm beetle (Tenebrio molitor) using three different temperatures with a half-sib breeding design. Both innate immune defense and cuticle darkness were higher in females than males, and a positive correlation between the traits was found at the lowest temperature. The effect of temperature on all the measured traits was strong, with encapsulation ability and development time decreasing and cuticle darkness increasing with a rise in temperature, and body size showing a curved response. The analysis showed a highly integrated system sensitive to environmental change involving physiological, morphological and life-history traits.

  4. New experimental device for VHTR structural material testing and helium coolant chemistry investigation - High Temperature Helium Loop in NRI Rez

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Jan, E-mail: bej@cvrez.cz [Research Centre Rez, Ltd, Husinec-Rez 130, 25068 Rez (Czech Republic); Institute of Chemical Technology Prague, Technicka 1905, 16628 Prague 6 (Czech Republic); Matecha, Josef, E-mail: josef.matecha@ujv.cz [Nuclear Research Institute Rez plc., Husinec-Rez 130, 25068 Rez (Czech Republic); Cerny, Michal [Institute of Chemical Technology Prague, Technicka 1905, 16628 Prague 6 (Czech Republic); Viden, Ivan, E-mail: ivan.viden@vscht.cz [Institute of Chemical Technology Prague, Technicka 1905, 16628 Prague 6 (Czech Republic); Sus, Frantisek [Research Centre Rez, Ltd, Husinec-Rez 130, 25068 Rez (Czech Republic); Nuclear Research Institute Rez plc., Husinec-Rez 130, 25068 Rez (Czech Republic); Hajek, Petr [Nuclear Research Institute Rez plc., Husinec-Rez 130, 25068 Rez (Czech Republic)

    2012-10-15

    The High Temperature Helium Loop (HTHL) is an experimental device for simulation of VHTR helium coolant conditions. The purpose of the HTHL is structural materials testing and helium coolant chemistry investigation. In the HTHL pure helium will be used as working medium and its main physical parameters are 7 MPa, max. temperature in the test section 900 Degree-Sign C and flow rate 37.8 kg/h. The HTHL consists of an active channel, the helium purification system, the system of impurities dosage (e.g. CO, CO{sub 2}, H{sub 2}, H{sub 2}O, O{sub 2}, N{sub 2}, and CH{sub 4}) and the helium chemistry monitoring system (sampling and on-line analysis and determination of impurities in the helium flow). The active channel is planned to be placed into the core of the experimental reactor LVR-15 which will serve as a neutron flux source (max. 2.5 Multiplication-Sign 10{sup 18} n/m{sup 2} s for fast neutrons). The HTHL is now under construction. Some of its main parts are finished, some are still being produced (active channel internals, etc.), some should be improved to work correctly (the helium circulatory compressor); certain sub-systems are planned to be integrated to the loop (systems for the determination of moisture and other impurities in helium, etc.). The start of the HTHL operation is expected during 2011 and the integration of the active channel into the LVR-15 core during 2012.

  5. Laser induced fluorescence measurements of axial velocity, velocity shear, and parallel ion temperature profiles during the route to plasma turbulence in a linear magnetized plasma device

    Science.gov (United States)

    Chakraborty Thakur, S.; Adriany, K.; Gosselin, J. J.; McKee, J.; Scime, E. E.; Sears, S. H.; Tynan, G. R.

    2016-11-01

    We report experimental measurements of the axial plasma flow and the parallel ion temperature in a magnetized linear plasma device. We used laser induced fluorescence to measure Doppler resolved ion velocity distribution functions in argon plasma to obtain spatially resolved axial velocities and parallel ion temperatures. We also show changes in the parallel velocity profiles during the transition from resistive drift wave dominated plasma to a state of weak turbulence driven by multiple plasma instabilities.

  6. Effects of Temperature and Humidity History on Brittleness of α-Sulfonated Fatty Acid Methyl Ester Salt Crystals.

    Science.gov (United States)

    Watanabe, Hideaki; Morigaki, Atsunori; Kaneko, Yukihiro; Tobori, Norio; Aramaki, Kenji

    2016-01-01

    α-Sulfonated fatty acid methyl ester salts (MES), which were made from vegetable sources, are attractive candidates for eco-friendly washing detergents because they have various special features like excellent detergency, favorable biodegradability, and high stability against enzymes. To overcome some disadvantages of powder-type detergents like caking, sorting, and dusting, we studied how temperature and humidity history, as a model for long-term storage conditions, can affect crystalline structures and reduce the brittleness of MES powder. We characterized the crystalline structure of MES grains using small-angle X-ray scattering, wide-angle X-ray scattering, differential scanning calorimetry, and Fourier transform infrared spectroscopy measurements and determined the yield values, which measure the brittleness of MES grains, in shear stress using dynamic viscoelasticity measurements. This study confirmed that MES crystals form three pseudo-polymorphs via thermal or humidity conditioning: metastable crystals (αsubcell), anhydrous crystals (β subcell), and dihydrate crystals (β' subcell). Further, we found that the yield value increases upon phase transition from the β subcell to the β' subcell and from the β' subcell to the αsubcell. Therefore, controlling the thermal and humidity conditioning of MES grains is an effective way to decrease the brittleness of MES powders and can be used to overcome the above mentioned disadvantages of powder-type detergents in the absence of co-surfactants.

  7. A possible connection between the spin temperature of damped Lyman α absorption systems and star formation history

    Science.gov (United States)

    Curran, S. J.

    2017-09-01

    We present a comprehensive analysis of the spin temperature/covering factor degeneracy, Tspin/f, in damped Lyman α absorption systems. By normalizing the upper limits and including these via a survival analysis, there is, as previously claimed, an apparent increase in Tspin/f with redshift at zabs ≳ 1. However, when we account for the geometry effects of an expanding Universe, neglected by the previous studies, this increase in Tspin at zabs ≳ 1 is preceded by a decrease at zabs ≲ 1. Using high resolution radio images of the background continuum sources, we can transform the Tspin/f degeneracy to T_spin/d_abs^{ 2}, where dabs is the projected linear size of the absorber. Again, there is no overall increase with redshift, although a dip at zabs ≈ 2 persists. Furthermore, we find d_abs^{ 2}/T_spin to follow a similar variation with redshift as the star formation rate, ψ*. This suggests that, although the total hydrogen column density, N_{H I}, shows little relation to ψ*, the fraction of the cold neutral medium, \\int τ_obs dv/N_{H I}, may. Therefore, further efforts to link the neutral gas with the star formation history should also consider the cool component of the gas.

  8. Novel room temperature synthesis of ZnO nanosheets, characterization and potentials in light harvesting applications and electrochemical devices.

    Science.gov (United States)

    Mansournia, Mohammadreza; Rafizadeh, Somayeh; Hosseinpour-Mashkani, S Mostafa; Motaghedifard, Mohammad Hassan

    2016-08-01

    Zinc oxide nanosheets (ZnONSs) were successfully synthesized using Zn(NO3)2·4H2O as the starting reagent in ammonia atmosphere at room temperature by a novel gas-solution precipitation method. XRD and EDS patterns indicated that pure ZnONSs were produced only in 15min reaction time. Besides, investigating the optical properties of the as-prepared ZnO nanosheets using UV-Vis diffused reflectance spectroscopy (DRS) exhibited their semiconducting property by revealing one optical band gap in 3.3eV. Moreover, rhodamine B and methylene blue degradation were used as a probe reaction to test the as-synthesized ZnONSs photoactivity. Furthermore, a possible reaction mechanism for ZnONSs formation was discussed. On the other hand, operation of ZnONSs in Dye-sensitized solar cell (DSSC) was investigated by current density-voltage (Jsc-Voc) curve. Finally, a pencil graphite electrode was decorated using ZnONSs and pure MWCNT to provide an electrochemical device for Pb(+2) ions sensing. This modified electrode showed agreeable responses to trace amounts of Pb(+2) in NaOAC/HOAC buffer solutions. The limit of detection was found to be 0.112nmolL(-1) for Pb(+2). Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Minimization of temperature ranges between the top and bottom of an air flow controlling device through hybrid control in a plant factory.

    Science.gov (United States)

    Moon, Seung-Mi; Kwon, Sook-Youn; Lim, Jae-Hyun

    2014-01-01

    To maintain the production timing, productivity, and product quality of plant factories, it is necessary to keep the growth environment uniform. A vertical multistage type of plant factory involves different levels of growing trays, which results in the problem of difference in temperature among vertically different locations. To address it, it is necessary to install air flow devices such as air flow fan and cooling/heating device at the proper locations in order to facilitate air circulation in the facility as well as develop a controlling technology for efficient operation. Accordingly, this study compares the temperature and air distribution within the space of a vertical multistage closed-type plant factory by controlling cooling/heating devices and air flow fans harmoniously by means of the specially designed testbed. The experiment results indicate that in the hybrid control of cooling and heating devices and air flow fans, the difference in temperature decreased by as much as 78.9% compared to that when only cooling and heating devices were operated; the air distribution was improved by as much as 63.4%.

  10. Minimization of Temperature Ranges between the Top and Bottom of an Air Flow Controlling Device through Hybrid Control in a Plant Factory

    Directory of Open Access Journals (Sweden)

    Seung-Mi Moon

    2014-01-01

    Full Text Available To maintain the production timing, productivity, and product quality of plant factories, it is necessary to keep the growth environment uniform. A vertical multistage type of plant factory involves different levels of growing trays, which results in the problem of difference in temperature among vertically different locations. To address it, it is necessary to install air flow devices such as air flow fan and cooling/heating device at the proper locations in order to facilitate air circulation in the facility as well as develop a controlling technology for efficient operation. Accordingly, this study compares the temperature and air distribution within the space of a vertical multistage closed-type plant factory by controlling cooling/heating devices and air flow fans harmoniously by means of the specially designed testbed. The experiment results indicate that in the hybrid control of cooling and heating devices and air flow fans, the difference in temperature decreased by as much as 78.9% compared to that when only cooling and heating devices were operated; the air distribution was improved by as much as 63.4%.

  11. Tuning Néel temperature and anisotropy of magnetoelectric Cr2O3 via doping for enhanced performance in voltage-controlled spintronic devices

    Science.gov (United States)

    Street, Michael; Echtenkamp, Will; Komesu, Takashi; Cao, Shi; Wang, Jian; Dowben, Peter; Binek, Christian

    Spintronic devices have been considered a promising route to revolutionizing current logic and memory technologies. This work is an effort to realizing such spintronic devices by voltage-control of the magnetoelectric Cr2O3. The electrically switchable boundary magnetization of Cr2O3can be used to voltage-control the magnetic states of an adjacent ferromagnet. For this technique to be utilized in a spintronic device, the Néel temperature of Cr2O3must be increased above the bulk value of TN = 307K, Previously, B-doped Cr2O3thin films were fabricated via PLD showing boundary magnetization at elevated temperatures via magnetometry and spin polarized inverse photoemission spectroscopy (SPIPES). Temperature dependent exchange bias measurements of B-doped Cr2O3 were also investigated using VSM and MOKE. The data indicate a substantial increase in the blocking temperature by about 100K accompanied, however, by a detrimental change in the anisotropy of Cr2O3. Conclusions from magnetometry are supported by SPIPES. Chemical straining is investigated to recover anisotropy while maintaining increased blocking temperature. This project was supported by SRC through CNFD, an SRC-NRI Center under Task ID 2398.001, and by C-SPIN, part of STARnet, an SRC program sponsored by MARCO and DARPA (SRC 2381.001).

  12. Development of core ion temperature gradients and edge sheared flows in a helicon plasma device investigated by laser induced fluorescence measurements

    Science.gov (United States)

    Thakur, S. C.; Gosselin, J. J.; McKee, J.; Scime, E. E.; Sears, S. H.; Tynan, G. R.

    2016-08-01

    We report experimental observation of ion heating and subsequent development of a prominent ion temperature gradient in the core of a linear magnetized plasma device, and the controlled shear de-correlation experiment. Simultaneously, we also observe the development of strong sheared flows at the edge of the device. Both the ion temperature and the azimuthal velocity profiles are quite flat at low magnetic fields. As the magnetic field is increased, the core ion temperature increases, producing centrally peaked ion temperature profiles and therefore strong radial gradients in the ion temperature. Similarly, we observe the development of large azimuthal flows at the edge, with increasing magnetic field, leading to strong radially sheared plasma flows. The ion velocities and temperatures are derived from laser induced fluorescence measurements of Doppler resolved velocity distribution functions of argon ions. These features are consistent with the previous observations of simultaneously existing radially separated multiple plasma instabilities that exhibit complex plasma dynamics in a very simple plasma system. The ion temperature gradients in the core and the radially sheared azimuthal velocities at the edge point to mechanisms that can drive the multiple plasma instabilities, that were reported earlier.

  13. Tuning the Seebeck effect in C60-based hybrid thermoelectric devices through temperature-dependent surface polarization and thermally-modulated interface dipoles.

    Science.gov (United States)

    Liu, Yuchun; Xu, Ling; Zhao, Chen; Shao, Ming; Hu, Bin

    2017-06-07

    Fullerene (C60) is an important n-type organic semiconductor with high electron mobility and low thermal conductivity. In this work, we report the experimental results on the tunable Seebeck effect of C60 hybrid thin-film devices by adopting different oxide layers. After inserting n-type high-dielectric constant titanium oxide (TiOx) and zinc oxide (ZnO) layers, we observed a significantly enhanced n-type Seebeck effect in oxide/C60 hybrid devices with Seebeck coefficients of -5.8 mV K-1 for TiOx/C60 and -2.08 mV K-1 for ZnO/C60 devices at 100 °C, compared with the value of -400 μV K-1 for the pristine C60 device. However, when a p-type nickel oxide (NiO) layer is inserted, the C60 hybrid devices show a p-type to n-type Seebeck effect transition when the temperature increases. The remarkable Seebeck effect and change in Seebeck coefficient in different oxide/C60 hybrid devices can be attributed to two reasons: the temperature-dependent surface polarization difference and thermally-dependent interface dipoles. Firstly, the surface polarization difference due to temperature-dependent electron-phonon coupling can be enhanced by inserting an oxide layer and functions as an additional driving force for the Seebeck effect development. Secondly, thermally-dependent interface dipoles formed at the electrode/oxide interface play an important role in modifying the density of interface states and affecting the charge diffusion in hybrid devices. The surface polarization difference and interface dipoles function in the same direction in hybrid devices with TiOx and ZnO dielectric layers, leading to enhanced n-type Seebeck effect, while the surface polarization difference and interface dipoles generate the opposite impact on electron diffusion in ITO/NiO/C60/Al, leading to a p-type to n-type transition in the Seebeck effect. Therefore, inserting different oxide layers could effectively modulate the Seebeck effect of C60-based hybrid devices through the surface polarization

  14. Permittivity and temperature effects on rectification performance of self-switching diodes with different geometrical structures using two-dimensional device simulator

    Science.gov (United States)

    Zakaria, N. F.; Kasjoo, S. R.; Zailan, Z.; Isa, M. M.; Taking, S.; Arshad, M. K. M.

    2017-12-01

    Characterization on an InGaAs-based self-switching diode (SSD) using technology computer aided design (TCAD) aimed for optimizing the electrical rectification performance of the device is reported. The rectifying performance is mainly contributed by a parameter known as the curvature coefficient which is derived from the current-voltage (I-V) behavior of the device. As such, the curvature coefficient of SSD was analyzed in this work, not only by varying the device's geometrical structure, but also by implementing different dielectric relative permittivity of the device's trenches, ranging from 1.0 to 10. Furthermore, the simulations were performed under temperature range of 300-600 K. The results showed that increased temperature degraded the SSD's rectifying performance due to increased reverse current which can deteriorate the nonlinearity of the device's I-V characteristic. Moreover, an improved curvature coefficient can be achieved using silicon dioxide (∼3.9) as the SSD trenches. The cut-off frequency of SSD with zero-bias curvature coefficient of ∼30 V-1 attained in this work was approximately 80 GHz, operating at unbiased condition. The results obtained can assist the design of SSD to efficiently operate as rectifiers at microwave and terahertz frequencies.

  15. Temperature-controlled continuous cold flow device versus traditional icing regimen following anterior cruciate ligament reconstruction: a prospective randomized comparative trial.

    Science.gov (United States)

    Ruffilli, Alberto; Buda, Roberto; Castagnini, Francesco; Di Nicolantonio, Daniela; Evangelisti, Giulia; Giannini, Sandro; Faldini, Cesare

    2015-10-01

    Anterior cruciate ligament (ACL) reconstruction requires an intensive rehabilitation program to be completely successful. Cryotherapy has been described to be helpful in reducing post-operative pain and edema. Aim of this prospective randomized study is to compare two homogeneous groups of patients, one receiving traditional icing regimen and the other a temperature-controlled continuous cold flow device, in post-operative setting after ACL reconstruction. Forty-seven patients treated for ACL reconstruction using "over the top" technique were enrolled for this study. All patients received the same elastocompressive bandage. Regarding the coolant device, 23 patients were randomized to temperature-controlled continuous cold flow device (Hilotherm® group) and 24 patients were randomized to receive ice bag (control group). The two groups were homogenous for pre-operative (age, sex, and time "lesion to surgery") and intra-operative parameters (duration of the procedure, meniscectomy, and chondral damage). NRS (numeric rating scale), blood loss, knee volume increase at three established sites, ROM, and pain killers consumption were assessed. The subjective evaluation of the device including practicality and usefulness of the device was investigated. Hilotherm group resulted in lower pain perception (NRS), blood loss, knee volume increase at the patellar apex and 10 cm proximal to the superior patellar pole, and higher range of motion (p < 0.05) in the first post-operative day. No difference in pain killers consumption was noted. Hilotherm device was considered "comfortable" and "useful" by the majority of patients. Hilotherm group showed significant better results in first post-operative day. Further studies with higher number of patients and longer follow-up are required to assess the beneficial effects on rehabilitation and the cost-effectiveness of the routinely use of this device. II.

  16. Surface Effects and Challenges for Application of Piezoelectric Langasite Substrates in Surface Acoustic Wave Devices Caused by High Temperature Annealing under High Vacuum

    Directory of Open Access Journals (Sweden)

    Marietta Seifert

    2015-12-01

    Full Text Available Substrate materials that are high-temperature stable are essential for sensor devices which are applied at high temperatures. Although langasite is suggested as such a material, severe O and Ga diffusion into an O-affine deposited film was observed during annealing at high temperatures under vacuum conditions, leading to a damage of the metallization as well as a change of the properties of the substrate and finally to a failure of the device. Therefore, annealing of bare LGS (La 3 Ga 5 SiO 14 substrates at 800 ∘ C under high vacuum conditions is performed to analyze whether this pretreatment improves the suitability and stability of this material for high temperature applications in vacuum. To reveal the influence of the pretreatment on the subsequently deposited metallization, RuAl thin films are used as they are known to oxidize on LGS at high temperatures. A local study of the pretreated and metallized substrates using transmission electron microscopy reveals strong modification of the substrate surface. Micro cracks are visible. The composition of the substrate is strongly altered at those regions. Severe challenges for the application of LGS substrates under high-temperature vacuum conditions arise from these substrate damages, revealing that the pretreatment does not improve the applicability.

  17. Mechanical Deformation of Sintered Porous Ag Die Attach at High Temperature and Its Size Effect for Wide-Bandgap Power Device Design

    Science.gov (United States)

    Chen, Chuantong; Nagao, Shijo; Zhang, Hao; Jiu, Jinting; Sugahara, Tohru; Suganuma, Katsuaki; Iwashige, Tomohito; Sugiura, Kazuhiko; Tsuruta, Kazuhiro

    2017-03-01

    The mechanical properties of sintered Ag paste with microporous structure have been investigated by tensile and shear tests, focusing on the temperature-dependent plastic deformation at various temperatures from 25°C to 300°C, corresponding to the target operating temperature range of emerging wide-bandgap semiconductor devices. Specimens were prepared by sintering hybrid Ag paste consisting of microflake and submicron spherical Ag particles, simulating a typical bonding process for power semiconductor die attach. Mechanical tests revealed that the unique microstructure caused a brittle-to-ductile transition at temperature of around 160°C, remarkably lower than that of bulk Ag. The obtained Young's modulus and shear modulus values indicate obvious softening with increasing temperature, together with a remarkable decrease in Poisson's ratio. These plastic behaviors at elevated temperature can be explained based on Coble creep in the microporous network structure. Fracture surfaces after tensile and shear tests indicated unique features on scanning electron microscopy, reflecting the variation in the ductile behavior with the test temperature. Furthermore, these temperature-dependent mechanical parameters were employed in three-dimensional finite-element analysis of the thermomechanical stress distribution in wide-bandgap semiconductor module structures including Ag paste die attach of different sizes. Detailed thermal stress analysis enabled precise evaluation of the packaging design for wide-bandgap semiconductor modules for use in high-temperature applications.

  18. Temperature rise during removal of fractured components out of the implant body: an in vitro study comparing two ultrasonic devices and five implant types.

    Science.gov (United States)

    Meisberger, Eric W; Bakker, Sjoerd J G; Cune, Marco S

    2015-12-01

    Ultrasonic instrumentation under magnification may facilitate mobilization of screw remnants but may induce heat trauma to surrounding bone. An increase of 5°C is considered detrimental to osseointegration. The objective of this investigation was to examine the rise in temperature of the outer implant body after 30 s of ultrasonic instrumentation to the inner part, in relation to implant type, type of ultrasonic equipment, and the use of coolants in vitro. Two ultrasonic devices (Satelec Suprasson T Max and Electro Medical Systems (EMS) miniMaster) were used on five different implant types that were provided with a thermo couple (Astra 3.5 mm, bone level Regular CrossFit (RC) 4.1 mm, bone level Narrow CrossFit (NC) 3.3 mm, Straumann tissue level regular body regular neck 3.3 mm, and Straumann tissue level wide body regular neck 4.8 mm), either with or without cooling during 30 s. Temperature rise at this point in time is the primary outcome measure. In addition, the mean maximum rise in temperature (all implants combined) was assessed and statistically compared among devices, implant systems, and cooling mode (independent t-tests, ANOVA, and post hoc analysis). The Satelec device without cooling induces the highest temperature change of up to 13°C, particularly in both bone level implants (p < 0.05) but appears safe for approximately 10 s of continuous instrumentation, after which a cooling down period is rational. Cooling is effective for both devices. However, when the Satelec device is used with coolant for a longer period of time, a rise in temperature must be anticipated after cessation of instrumentation, and post-operational cooling is advised. The in vitro setup used in this experiment implies that care should be taken when translating the observations to clinical recommendations, but it is carefully suggested that the EMS device causes limited rise in temperature, even without coolant.

  19. A Comparison between Temperature-Controlled Laminar Airflow Device and a Room Air-Cleaner in Reducing Exposure to Particles While Asleep

    DEFF Research Database (Denmark)

    Spilak, Michal; Sigsgaard, Torben; Takai, Hisamitsu

    2016-01-01

    environment might be a feasible method to alleviate these health symptoms. We performed full-scale laboratory measurements using a thermal manikin positioned on an experimental bed. Three ventilation settings were tested: with no filtration system operated, use of portable air cleaner and use of a temperature-controlled...... laminar airflow (TLA) device. The first part of the experiment investigated the air-flow characteristics in the breathing zone. In the second part, particle removal efficiency was estimated. Measured in the breathing zone, the room air cleaner demonstrated high turbulence intensity, high velocity...... was significantly lower with the TLA device compared to the room air cleaner. The TLA device provided a barrier which significantly reduced the introduction of airborne particles into the breathing zone. Further studies should be conducted for the understanding of the transport of resuspended particles between...

  20. Wearable, Flexible, and Multifunctional Healthcare Device with an ISFET Chemical Sensor for Simultaneous Sweat pH and Skin Temperature Monitoring.

    Science.gov (United States)

    Nakata, Shogo; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2017-03-24

    Real-time daily healthcare monitoring may increase the chances of predicting and diagnosing diseases in their early stages which, currently, occurs most frequently during medical check-ups. Next-generation noninvasive healthcare devices, such as flexible multifunctional sensor sheets designed to be worn on skin, are considered to be highly suitable candidates for continuous real-time health monitoring. For healthcare applications, acquiring data on the chemical state of the body, alongside physical characteristics such as body temperature and activity, are extremely important for predicting and identifying potential health conditions. To record these data, in this study, we developed a wearable, flexible sweat chemical sensor sheet for pH measurement, consisting of an ion-sensitive field-effect transistor (ISFET) integrated with a flexible temperature sensor: we intend to use this device as the foundation of a fully integrated, wearable healthcare patch in the future. After characterizing the performance, mechanical flexibility, and stability of the sensor, real-time measurements of sweat pH and skin temperature are successfully conducted through skin contact. This flexible integrated device has the potential to be developed into a chemical sensor for sweat for applications in healthcare and sports.

  1. Mechanical properties of Inconel 718 and Nickel 201 alloys after thermal histories simulating brazing and high temperature service

    Science.gov (United States)

    James, W. F.

    1985-01-01

    An experimental investigation was made to evaluate two nickel base alloys (Nickel-201 and Inconel-718) in three heat treated conditions. These conditions were: (1) annealed; (2) after thermal exposure simulating a braze cycle; and (3) after a thermal exposure simulating a braze cycle plus one operational lifetime of high temperature service. For the Nickel-201, two different braze cycle temperatures were evaluated. A braze cycle utilizing a lower braze temperature resulted in less grain growth for Nickel-201 than the standard braze cycle used for joining Nickel-201 to Inconel-718. It was determined, however, that Nickel-201, was marginal for temperatures investigated due to large grain growth. After the thermal exposures described above, the mechanical properties of Nickel-201 were degraded, whereas similar exposure on Inconel-718 actually strengthened the material compared with the annealed condition. The investigation included tensile tests at both room temperature and elevated temperatures, stress-rupture tests, and metallographic examination.

  2. A Reliability Study Using a Long-Wave Infrared Thermography Device to Identify Relative Tissue Temperature Variations of the Body Surface and Underlying Tissue.

    Science.gov (United States)

    Langemo, Diane K; Spahn, James G

    2017-03-01

    This study assesses the ability of the Scout (WoundVision LLC, Indianapolis, Indiana), an FDA-approved visual and thermal imaging device and software analysis tool, to provide clinicians with a reliable and reproducible way to incorporate long-wave infrared thermography and relative temperature differential into clinical wound assessment by consistently identifying control areas against which to measure wound temperature. This laboratory-based study utilized 3 adult wound care professionals experienced in control area selection. Twenty-six previously collected wound images were used for the study. The 3 readers placed a control area on each of the 26 wounds 3 different times (n = 78 independent placements) to establish within-reader agreement. To establish between-reader agreement, the readers again placed a control area on each of the 26 wounds (n = 26 independent placements). This study evaluates 2 aspects of the Scout device's reliability: (1) within- and between-reader agreement of initial patient encounter control area images and (2) between-reader agreement of follow-up encounter control area images. The control area measurements were very consistent both within (percent coefficient of variation [%CV] approximately 1%) and between readers (%CV approximately 2%). The average maximum temperature within-reader %CV was 1.14% and the between-reader variation was %CV 1.97%. The average minimum temperature had a within-reader %CV of 1.1% and the between-reader coefficient of variation was 2.01%. The within- and between-reader average difference in mean temperature was 0.14° C and 0.29° C, respectively. The largest mean temperature difference observed within-readers was 0.68° C, and the smallest difference was 0.01° C. The largest difference observed in between-reader mean temperature was 0.96° C, and the smallest was 0.03° C. This study demonstrates that clinicians can repeatedly and reliably perform a relative temperature differential analysis using the Scout

  3. Temperature-controlled electrothermal atomization-atomic absorption spectrometry using a pyrometric feedback system in conjunction with a background monitoring device

    Science.gov (United States)

    Van Deijck, W.; Roelofsen, A. M.; Pieters, H. J.; Herber, R. F. M.

    The construction of a temperature-controlled feedback system for electrothermal atomization-atomic absorption spectrometry (ETA-AAS) using an optical pyrometer applied to the atomization stage is described. The system was used in conjunction with a fast-response background monitoring device. The heating rate of the furnace amounted to 1400° s -1 with a reproducibility better than 1%. The precision of the temperature control at a steady state temperature of 2000°C was 0.1%. The analytical improvements offered by the present system have been demonstrated by the determination of cadmium and lead in blood and finally by the determination of lead in serum. Both the sensitivity and the precision of the method have been improved. The accuracy of the method was checked by determining the lead content for a number of scrum samples both by ETA-AAS and differential pulse anodic stripping voltametry (DPASV) and proved to be satisfactory.

  4. Individual condition, standard metabolic rate, and rearing temperature influence steelhead and rainbow trout (Oncorhynchus mykiss) life histories

    Science.gov (United States)

    Matthew R. Sloat; Gordon H. Reeves

    2014-01-01

    We reared juvenile Oncorhychus mykiss with low and high standard metabolic rates (SMR) under alternative thermal regimes to determine how these proximate factors influence life histories in a partially migratory salmonid fish. High SMR significantly decreased rates of freshwater maturation and increased rates of smoltification in females, but not...

  5. Temperature alters reproductive life history patterns in Batrachochytrium dendrobatidis, a lethal pathogen associated with the global loss of amphibians.

    Science.gov (United States)

    Voyles, Jamie; Johnson, Leah R; Briggs, Cheryl J; Cashins, Scott D; Alford, Ross A; Berger, Lee; Skerratt, Lee F; Speare, Rick; Rosenblum, Erica Bree

    2012-09-01

    Understanding how pathogens respond to changing environmental conditions is a central challenge in disease ecology. The environmentally sensitive fungal pathogen Batrachochytrium dendrobatidis (Bd), which causes the amphibian disease chytridiomycosis, has spread globally causing amphibian extirpations in a wide variety of climatic regions. To gain an in-depth understanding of Bd's responses to temperature, we used an integrative approach, combining empirical laboratory experiments with mathematical modeling. First, we selected a single Bd isolate and serially propagated two lineages of the isolate for multiple generations in two stable thermal conditions: 4°C (cold-adapted lineage) and 23°C (warm-adapted lineage). We quantified the production of infectious zoospores (fecundity), the timing of zoospore release, and zoospore activity in reciprocal temperature transplant experiments in which both Bd lineages were grown in either high or low temperature conditions. We then developed population growth models for the Bd lineages under each set of temperature conditions. We found that Bd had lower population growth rates, but longer periods of zoospore activity in the low temperature treatment (4°C) compared to the high temperature treatment (23°C). This effect was more pronounced in Bd lineages that were propagated in the low temperature treatment (4°C), suggesting a shift in Bd's response to low temperature conditions. Our results provide novel insights into the mechanisms by which Bd can thrive in a wide variety of temperature conditions, potentially altering the dynamics of chytridiomycosis and thus, the propensity for Bd to cause amphibian population collapse. We also suggest that the adaptive responses of Bd to thermal conditions warrant further investigation, especially in the face of global climate change.

  6. A Comparison between Temperature-Controlled Laminar Airflow Device and a Room Air-Cleaner in Reducing Exposure to Particles While Asleep.

    Directory of Open Access Journals (Sweden)

    Michal P Spilak

    Full Text Available People spend approximately one third of their life sleeping. Exposure to pollutants in the sleep environment often leads to a variety of adverse health effects, such as development and exacerbation of asthma. Avoiding exposure to these pollutants by providing a sufficient air quality in the sleep environment might be a feasible method to alleviate these health symptoms. We performed full-scale laboratory measurements using a thermal manikin positioned on an experimental bed. Three ventilation settings were tested: with no filtration system operated, use of portable air cleaner and use of a temperature-controlled laminar airflow (TLA device. The first part of the experiment investigated the air-flow characteristics in the breathing zone. In the second part, particle removal efficiency was estimated. Measured in the breathing zone, the room air cleaner demonstrated high turbulence intensity, high velocity and turbulence diffusivity level, with a particle reduction rate of 52% compared to baseline after 30 minutes. The TLA device delivered a laminar airflow to the breathing zone with a reduction rate of 99.5%. During a periodical duvet lifting mimicking a subject's movement in bed, the particle concentration was significantly lower with the TLA device compared to the room air cleaner. The TLA device provided a barrier which significantly reduced the introduction of airborne particles into the breathing zone. Further studies should be conducted for the understanding of the transport of resuspended particles between the duvet and the laying body.

  7. Cumulative effects of suspended sediments, organic nutrients and temperature stress on early life history stages of the coral Acropora tenuis

    Science.gov (United States)

    Humanes, Adriana; Ricardo, Gerard F.; Willis, Bette L.; Fabricius, Katharina E.; Negri, Andrew P.

    2017-03-01

    Coral reproduction is vulnerable to both declining water quality and warming temperatures, with simultaneous exposures likely compounding the negative impact of each stressor. We investigated how early life processes of the coral Acropora tenuis respond to increasing levels of suspended sediments in combination with temperature or organic nutrients. Fertilization success and embryo development were more sensitive to suspended sediments than to high temperatures or nutrient enrichment, while larval development (after acquisition of cilia) and settlement success were predominantly affected by thermal stress. Fertilization success was reduced 80% by suspended sediments, and up to 24% by temperature, while the addition of nutrients to suspended sediments had no further impact. Larval survivorship was unaffected by any of these treatments. However, settlement success of larvae developing from treatment-exposed embryos was negatively affected by all three stressors (e.g. up to 55% by suspended sediments), while exposure only during later larval stages predominantly responded to temperature stress. Environmentally relevant levels of suspended sediments and temperature had the greatest impacts, affecting more processes than the combined impacts of sediments and nutrients. These results suggest that management strategies to maintain suspended sediments at low concentrations during coral spawning events will benefit coral recruitment, especially with warming climate.

  8. THE SEMICONDUCTOR THERMOELECTRIC DEVICE FOR TEMPERATURE CONTROL OF COMPUTER PROCESSOR WITH USE OF MATERIALS IN THE CONDITION OF PHASE TRANSITION

    Directory of Open Access Journals (Sweden)

    H. M. Gadjiyev

    2015-01-01

    Full Text Available The article deals with the cooling system computer processor on the based sublimation phase transitions, allowing to provide temperature control mode in a transient thermal load, which will prevent the failure of the VLSI processor. 

  9. Measurements of ion temperature and flow of pulsed plasmas produced by a magnetized coaxial plasma gun device using an ion Doppler spectrometer

    Science.gov (United States)

    Kitagawa, Y.; Sakuma, I.; Iwamoto, D.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    It is important to know surface damage characteristics of plasma-facing component materials during transient heat and particle loads such as type I ELMs. A magnetized coaxial plasma gun (MCPG) device has been used as transient heat and particle source in ELM simulation experiments. Characteristics of pulsed plasmas produced by the MCPG device play an important role for the plasma material interaction. In this study, ion temperature and flow velocity of pulsed He plasmas were measured by an ion Doppler spectrometer (IDS). The IDS system consists of a light collection system including optical fibers, 1m-spectrometer and a 16 channel photomultiplier tube (PMT) detector. The IDS system measures the width and Doppler shift of HeII (468.58 nm) emission line with the time resolution of 1 μs. The Doppler broadened and shifted spectra were measured with 45 and 135 degree angles with respect to the plasmoid traveling direction. The observed emission line profile was represented by sum of two Gaussian components to determine the temperature and flow velocity. The minor component at around the wavelength of zero-velocity was produced by the stationary plasma. As the results, the ion velocity and temperature were 68 km/s and 19 eV, respectively. Thus, the He ion flow energy is 97 eV. The observed flow velocity agrees with that measured by a time of flight technique.

  10. Tungsten as a Chemically-Stable Electrode Material on Ga-Containing Piezoelectric Substrates Langasite and Catangasite for High-Temperature SAW Devices

    Directory of Open Access Journals (Sweden)

    Gayatri K. Rane

    2016-02-01

    Full Text Available Thin films of tungsten on piezoelectric substrates La3Ga5SiO14 (LGS and Ca3TaGa3Si2O14 (CTGS have been investigated as a potential new electrode material for interdigital transducers for surface acoustic wave-based sensor devices operating at high temperatures up to 800 °C under vacuum conditions. Although LGS is considered to be suitable for high-temperature applications, it undergoes chemical and structural transformation upon vacuum annealing due to diffusion of gallium and oxygen. This can alter the device properties depending on the electrode nature, the annealing temperature, and the duration of the application. Our studies present evidence for the chemical stability of W on these substrates against the diffusion of Ga/O from the substrate into the film, even upon annealing up to 800 °C under vacuum conditions using Auger electron spectroscopy and energy-dispersive X-ray spectroscopy, along with local studies using transmission electron microscopy. Additionally, the use of CTGS as a more stable substrate for such applications is indicated.

  11. Pulsed-laser-deposited AlN films for high-temperature SiC MIS devices[Metal-Insulator-Semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Vispute, R.D.; Patel, A.; Baynes, K. [and others

    2000-07-01

    The authors report on the fabrication of device-quality AlN heterostructures grown on SiC for high-temperature electronic devices. The AlN films were grown by pulsed laser deposition (PLD) at substrate temperatures ranging from 25 C (room temperature) to 1000 C. The as-grown films were investigated using x-ray diffraction, Rutherford backscattering spectroscopy, ion channeling, atomic force microscopy, and transmission electron microscopy. The AlN films grown above 700 C were highly c-axis oriented with rocking curve FWHM of 5 to 6 arc-min. The ion channeling minimum yields near the surface region for the AlN films were {approximately}2 to 4%, indicating their high degree of crystallinity. TEM studies indicated that AlN films were epitaxial and single crystalline in nature with a large number of stacking faults as a result of lattice mismatch and growth induced defects. The surface roughness for the films was about 0.5 nm, which is close to the unit cell height of the AlN. Epitaxial TiN ohmic contacts were also developed on SiC, GaN, and AlN by in-situ PLD. Epitaxial TiN/AlN/SiC MIS capacitors with gate areas of 4 {sup {minus}} 10{sup {minus}4} cm{sup 2} were fabricated, and high-temperature current-voltage (I-V) characteristics were studied up to 450 C. The authors have measured leakage current densities of low 10{sup {minus}8} A/cm{sup 2} at room temperature, and have mid 10{sup {minus}3} A/cm{sup 2} at 450 C under a field of 2 MV/cm.

  12. Coral Bleaching Susceptibility Is Decreased following Short-Term (1–3 Year Prior Temperature Exposure and Evolutionary History

    Directory of Open Access Journals (Sweden)

    Joshua A. Haslun

    2011-01-01

    Full Text Available Coral exposed to short periods of temperature stress (≥1.0°C above mean monthly maximum and/or increased frequencies of high temperatures may bolster resilience to global warming associated with climate change. We compared Montastraea cavernosa (Linnaeus, 1767; Cnidaria, Scleractinia, Faviidae from the Florida Keys National Marine Sanctuary (FKNMS and the Flower Garden Banks National Marine Sanctuary (FGBNMS. Thermal stress has been reported frequently within the FKNMS; however, corals in the FGBNMS experience nominal exposures to similar stressors. Corals were exposed to three temperatures (27°C, 31°C, and 35°C for 72 h. Colonies from the FKNMS lost significantly fewer viable and necrotic zooxanthellae under conditions of acute stress (35°C than the FGBNMS colonies. This indicates that the FKNMS corals are less temperature-sensitive than those in the FGBNMS. The observed differences point to greater prior temperature exposure and adaptation in the former versus the latter site when correlated to previous years of thermal exposure.

  13. Effects of Deposition Temperature on the Device Characteristics of Oxide Thin-Film Transistors Using In-Ga-Zn-O Active Channels Prepared by Atomic-Layer Deposition.

    Science.gov (United States)

    Yoon, Sung-Min; Seong, Nak-Jin; Choi, Kyujeong; Seo, Gi-Ho; Shin, Woong-Chul

    2017-07-12

    We demonstrated the physical and electrical properties of the In-Ga-Zn-O (IGZO) thin films prepared by atomic-layer deposition (ALD) method and investigated the effects of the ALD temperature. The film composition (atomic ratio of In:Ga:Zn) and film density were examined to be 1:1:3 and 5.9 g/cm3, respectively, for all the temperature conditions. The optical band gaps decreased from 3.81 to 3.21 eV when the ALD temperature increased from 130 to 170 °C. The amounts of oxygen-related defects such as oxygen vacancies increased with increasing the ALD temperature. It was found from the in situ temperature-dependent electrical conductivity measurements that the electronic natures including the defect structures and conduction mechanism of the IGZO thin films prepared at different temperatures showed marked variations. The carrier mobilities in the saturation regions (μsat's) for the fabricated thin film transistors (TFTs) using the IGZO channel layers were estimated to be 6.1 to 14.8 cm2 V-1 s-1 with increasing the ALD temperature from 130 to 170 °C. Among the devices, when the ALD temperature was controlled to be 150 °C, the IGZO TFTs showed the best performance, which resulted from the fact that the amounts of oxygen vacancies and interstitial defects could be appropriately modulated at this condition. Consequently, the μsat, subthreshold swing, and on/off ratio for the TFT using the IGZO channel prepared at 150 °C showed 10.4 cm2 V-1 s-1, 90 mV/dec, and 2 × 109, respectively. The threshold voltage shifts of this device could also be effectively reduced to be 0.6 and -3.2 V under the positive-bias and negative-bias-illumination stress conditions. These obtained characteristics can be comparable to those for the sputter-deposited IGZO TFTs.

  14. Development of an improved wearable device for core body temperature monitoring based on the dual heat flux principle.

    Science.gov (United States)

    Feng, Jingjie; Zhou, Congcong; He, Cheng; Li, Yuan; Ye, Xuesong

    2017-04-01

    In this paper, a miniaturized wearable core body temperature (CBT) monitoring system based on the dual heat flux (DHF) principle was developed. By interspersing calcium carbonate powder in PolyDimethylsiloxane (PDMS), a reformative heat transfer medium was produced to reduce the thermal equilibrium time. Besides, a least mean square (LMS) algorithm based active noise cancellation (ANC) method was adopted to diminish the impact of ambient temperature fluctuations. Theoretical analyses, finite element simulation, experiments on a hot plate and human volunteers were performed. The results showed that the proposed system had the advantages of small size, reduced initial time (~23.5 min), and good immunity to fluctuations of the air temperature. For the range of 37-41 °C on the hot plate, the error compared with a Fluke high accuracy thermometer was 0.08  ±  0.20 °C. In the human experiments, the measured temperature in the rest trial (34 subjects) had a difference of 0.13  ±  0.22 °C compared with sublingual temperature, while a significant increase of 1.36  ±  0.44 °C from rest to jogging was found in the exercise trial (30 subjects). This system has the potential for reliable continuous CBT measurement in rest and can reflect CBT variations during exercise.

  15. Preliminary study of the importance of hydrothermal reactions on the temperature history of a hot, dry rock geothermal reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J.R.

    1975-07-01

    The conditions under which the heat associated with hydrothermal reactions may be recovered from a dry rock geothermal reservoir were assessed. A theoretical computer model, based upon the finite element method, of a two-dimensional fracture in a hot, dry rock geothermal reservoir was developed and tested. Simulated water circulation through the fracture at constant velocity extracted heat from the wall rock via conduction as well as from chemical processes. Water temperature was assumed equal to the temperature of the wall rock boundary: thus, the combined processes of water circulation and heat transport were simply described by the two-dimensional heat diffusion equation with a time dependent water circulation boundary. The accuracy of the basic finite element approximation was tested by comparing numerical solutions to known analytical solutions for related mathematical models. Hydrothermal reactions occurring between water and a granitic source rock were subdivided into two categories; dissolving reactions and alteration reactions. It was found that the quartz dissolving reaction had little or no direct effect on reservoir temperatures for any combination of flow and fracture parameters. It was shown that hydrothermal alteration reactions could contribute significant chemical energy to a fractured system under conditions of small flow rate and large alteration velocities. Detailed studies of the time dependence of rock and water temperatures with and without alteration were determined.

  16. High-pressure, high-temperature magic angle spinning nuclear magnetic resonance devices and processes for making and using same

    Science.gov (United States)

    Hu, Jian Zhi; Hu, Mary Y.; Townsend, Mark R.; Lercher, Johannes A.; Peden, Charles H. F.

    2015-10-06

    Re-usable ceramic magic angle spinning (MAS) NMR rotors constructed of high-mechanic strength ceramics are detailed that include a sample compartment that maintains high pressures up to at least about 200 atmospheres (atm) and high temperatures up to about least about 300.degree. C. during operation. The rotor designs minimize pressure losses stemming from penetration over an extended period of time. The present invention makes possible a variety of in-situ high pressure, high temperature MAS NMR experiments not previously achieved in the prior art.

  17. High-temperature dc superconducting quantum interference device with deep-submicron YBa sub 2 Cu sub 3 O sub 7 weak links

    Energy Technology Data Exchange (ETDEWEB)

    Romaine, S.E.; Mankiewich, P.M.; Skocpol, W.J. (Department of Physics, Boston University, Boston, Massachusetts (USA)); Westerwick, E. (AT T Bell Laboratories, Holmdel, New Jersey (USA))

    1991-11-11

    We have fabricated a YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO) thin-film dc superconducting quantum interference device (SQUID) with lithographically defined deep-submicron weak links. At 77 K the voltage response to dc flux is sinusoidal and nonhysteretic, with maximum peak-to-peak amplitude of 5 {mu}V. The maximum response is 8 {mu}V at 70 K, where 2{ital LI}{sub 0}/{Phi}{sub 0}{approx}1. At lower temperatures, the maximum response oscillates in the range 4--6 {mu}V. Random telegraph noise was observed near 30--40 K. Well-behaved Shapiro steps were observable at all measured temperatures below {ital T}{sub {ital c}}.

  18. Development and characterization of high temperature, high energy density dielectric materials to establish routes towards power electronics capacitive devices

    Science.gov (United States)

    Shay, Dennis P.

    The maximum electrostatic energy density of a capacitor is a function of the relative permittivity (epsilonr) and the square of the dielectric breakdown strength (Eb). Currently, state-of-the art high temperature (>200 °C), SiC-based power electronics utilize CaZrO3-rich NP0/C0G-type capacitors, which have low relative permittivities of epsilonr ˜ 30-40, high breakdown strengths (> 1.0 MV/cm), and are chosen for their minimal change in energy storage with temperature. However, with operating temperatures exceeding the rated temperatures for such capacitors, there is an opportunity to develop new dielectric ceramics having higher energy densities and volumetric efficiencies at high temperatures (>200 °C) by utilizing higher permittivity dielectrics while maintaining high breakdown strengths via doping. The solid solution behavior of was characterized in order to determine the optimal composition for balancing permittivity and dielectric breakdown strength to obtain high energy densities at elevated temperatures. Characterization by X-ray diffraction (XRD) showed Vegard's law behavior across the solid solution with minimal 2nd phases. To determine a Ca(TixZr1-x)O3 composition that will also minimize electronic or band conduction, the optical properties of the Ca(TixZr1-x)O3 solid solution were investigated to identify a composition on the CaTiO3 - rich end of the solid solution with a large band gap. Both ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis) and spectroscopic ellipsometry were utilized to determine the Ca(TixZr1-x)O3 band gaps and optical properties. The resistivity at 250 °C scaled with the band gap energy across the solid solution. Comparing the current-voltage (I--V) behavior at 250 °C for Ca(Tix-yMnyZr0.2)O3 (CTZ + Mn) where x = 0.7, 0.8, 0.9, and y = 0.005, it was found that the Ca(Ti 0.795Mn0.005Zr0.2)O3 composition showed the lowest current density and a decrease in current density of 5 orders of magnitude compared to the un

  19. Stage-Specific Changes in Physiological and Life-History Responses to Elevated Temperature and Pco2 during the Larval Development of the European Lobster Homarus gammarus (L.).

    Science.gov (United States)

    Small, Daniel P; Calosi, Piero; Boothroyd, Dominic; Widdicombe, Steve; Spicer, John I

    2015-01-01

    An organism's physiological processes form the link between its life-history traits and the prevailing environmental conditions, especially in species with complex life cycles. Understanding how these processes respond to changing environmental conditions, thereby affecting organismal development, is critical if we are to predict the biological implications of current and future global climate change. However, much of our knowledge is derived from adults or single developmental stages. Consequently, we investigated the metabolic rate, organic content, carapace mineralization, growth, and survival across each larval stage of the European lobster Homarus gammarus, reared under current and predicted future ocean warming and acidification scenarios. Larvae exhibited stage-specific changes in the temperature sensitivity of their metabolic rate. Elevated Pco2 increased C∶N ratios and interacted with elevated temperature to affect carapace mineralization. These changes were linked to concomitant changes in survivorship and growth, from which it was concluded that bottlenecks were evident during H. gammarus larval development in stages I and IV, the transition phases between the embryonic and pelagic larval stages and between the larval and megalopa stages, respectively. We therefore suggest that natural changes in optimum temperature during ontogeny will be key to larvae survival in a future warmer ocean. The interactions of these natural changes with elevated temperature and Pco2 significantly alter physiological condition and body size of the last larval stage before the transition from a planktonic to a benthic life style. Thus, living and growing in warm, hypercapnic waters could compromise larval lobster growth, development, and recruitment.

  20. Transient, three-dimensional heat transfer model for the laser assisted machining of silicon nitride: 1. Comparison of predictions with measured surface temperature histories

    Energy Technology Data Exchange (ETDEWEB)

    Rozzi, J.C.; Pfefferkorn, F.E.; Shin, Y.C. [Purdue University, (United States). Laser Assisted Materials Processing Laboratory, School of Mechanical Engineering; Incropera, F.P. [University of Notre Dame, (United States). Aerospace and Mechanical Engineering Department

    2000-04-01

    Laser assisted machining (LAM), in which the material is locally heated by an intense laser source prior to material removal, provides an alternative machining process with the potential to yield higher material removal rates, as well as improved control of workpiece properties and geometry, for difficult-to-machine materials such as structural ceramics. To assess the feasibility of the LAM process and to obtain an improved understanding of governing physical phenomena, experiments have been performed to determine the thermal response of a rotating silicon nitride workpiece undergoing heating by a translating CO{sub 2} laser and material removal by a cutting tool. Using a focused laser pyrometer, surface temperature histories were measured to determine the effect of the rotational and translational speeds, the depth of cut, the laser-tool lead distance, and the laser beam diameter and power on thermal conditions. The measurements are in excellent agreement with predictions based on a transient, three-dimensional numerical solution of the heating and material removal processes. The temperature distribution within the unmachined workpiece is most strongly influenced by the laser power and laser-tool lead distance, as well as by the laser/tool translational velocity. A minimum allowable operating temperature in the material removal region corresponds to the YSiAlON glass transition temperature, below which tool fracture may occur. In a companion paper, the numerical model is used to further elucidate thermal conditions associated with laser assisted machining. (author)

  1. Effect of temperature on life history and population growth parameters of Planococcus citri (Homoptera, Pseudococcidae on coleus [Solenostemon scutellarioides (L. Codd.

    Directory of Open Access Journals (Sweden)

    Goldasteh Shila

    2009-01-01

    Full Text Available The development, life history, reproduction, and population growth parameters of Planococcus citri Risso on coleus [Solenostemon scutellarioides (L. Codd.] were studied at various temperatures ranging from 10 to 37ºC, 70±10% RH, and photoperiod length of 16: 8 h (L: D. Females and males successfully developed into adults at from 15 to 32ºC and 18 to 32ºC, respectively. All first instars died at 10, 12, and 37ºC. Lower temperatures (10, 12, and 15ºC caused higher egg mortality than did higher temperatures (32, 35, and 37ºC. At all temperatures (except 15ºC, the highest percentage of nymphal mortality was observed in the first instar. The sex ratio was female-biased between 15 and 30ºC, but there was a slightly higher number of males at 32ºC. The highest adult longevities of females and males were obtained at 18 and 25°C, respectively. The pre-oviposition, oviposition, and post-oviposition periods were significantly different at various temperatures. The highest fecundity was observed at 23ºC. The shortest and longest oviposition periods occurred at 32 and 18ºC, respectively. Maximum values of the intrinsic rate of natural increase (rm, net reproduction rate (R0, and finite rate of increase (λ and the shortest mean generation time (T and doubling time (DT were obtained at 25ºC. Our findings showed citrus mealybug performances to be highly affected by temperature.

  2. Resistive switching and electrical control of ferromagnetism in a Ag/HfO₂/Nb:SrTiO₃/Ag resistive random access memory (RRAM) device at room temperature.

    Science.gov (United States)

    Ren, Shaoqing; Zhu, Gengchang; Xie, Jihao; Bu, Jianpei; Qin, Hongwei; Hu, Jifan

    2016-02-10

    Electrically induced resistive switching and modulated ferromagnetism are simultaneously found in a Ag/HfO2/Nb:SrTiO3/Ag resistive random access memory device at room temperature. The bipolar resistive switching (RS) can be controlled by the modification of a Schottky-like barrier with an electron injection-trapped/detrapped process at the interface of HfO2-Nb:SrTiO3. The multilevel RS transition can be observed in the reset process with larger negative voltage sweepings, which is connected to the different degree of electron detrapping in the interfacial depletion region of the HfO2 layer during the reset process. The origin of the electrical control of room-temperature ferromagnetism may be connected to the change of density of oxygen vacancies in the HfO2 film. The multilevel resistance states and the electric field controlled ferromagnetism have potential for applications in ultrahigh-density storage and magnetic logic device.

  3. Development of Room Temperature Excitonic Lasing From ZnO and MgZnO Thin Film Based Metal-Semiconductor-Metal Devices

    Science.gov (United States)

    Suja, Mohammad Zahir Uddin

    Room temperature excitonic lasing is demonstrated and developed by utilizing metal-semiconductor-metal devices based on ZnO and MgZnO materials. At first, Cu-doped p-type ZnO films are grown on c-sapphire substrates by plasma-assisted molecular beam epitaxy. Photoluminescence (PL) experiments reveal a shallow acceptor state at 0.15 eV above the valence band edge. Hall effect results indicate that a growth condition window is found for the formation of p-type ZnO thin films and the best conductivity is achieved with a high hole concentration of 1.54x1018 cm-3, a low resistivity of 0.6 O cm and a moderate mobility of 6.65 cm2 V -1 s-1 at room temperature. Metal oxide semiconductor (MOS) capacitor devices have been fabricated on the Cu-doped ZnO films and the characteristics of capacitance-voltage measurements demonstrate that the Cu-doped ZnO thin films under proper growth conditions are p-type. Seebeck measurements on these Cu-doped ZnO samples lead to positive Seebeck coefficients and further confirm the p-type conductivity. Other measurements such as XRD, XPS, Raman and absorption are also performed to elucidate the structural and optical characteristics of the Cu-doped p-type ZnO films. The p-type conductivity is explained to originate from Cu substitution of Zn with a valency of +1 state. However, all p-type samples are converted to n-type over time, which is mostly due to the carrier compensation from extrinsic defects of ZnO. To overcome the stability issue of p-type ZnO film, alternate devices other than p-n junction has been developed. Electrically driven plasmon-exciton coupled random lasing is demonstrated by incorporating Ag nanoparticles on Cu-doped ZnO metal-semiconductor-metal (MSM) devices. Both photoluminescence and electroluminescence studies show that emission efficiencies have been enhanced significantly due to coupling between ZnO excitons and Ag surface plasmons. With the incorporation of Ag nanoparticles on ZnO MSM structures, internal quantum

  4. The effect of time, temperature and storage device on umbilical cord blood gas and lactate measurement: a randomized controlled trial.

    Science.gov (United States)

    White, Christopher R H; Mok, Tabitha; Doherty, Dorota A; Henderson, Jennifer J; Newnham, John P; Pennell, Craig E

    2012-06-01

    Umbilical cord blood gas analysis has a significant and growing role in early neonatal assessment. Factors often delay analysis of cord blood allowing values to change. Consequently, this study evaluates the impact of time, temperature and method of storage on umbilical blood gas and lactate analyses. Umbilical cord segments from 80 singleton deliveries were randomized to: cords at room temperature (CR), cords stored on ice (CI), syringes at room temperature (SR) or syringes stored on ice (SI). Analysis occurred every 15 minutes for one-hour. Mixed model analysis of variance allowing for repeated measures was utilized. Cord arterial pH deteriorated in CR, CI, and SI within 15 minutes (p ≤ 0.001), with SR stable until 60 minutes (p = 0.002). Arterial pCO(2) remained stable in SR and CI, increased in SI (p = 0.002; 45 minutes) and decreased in CR (p blood gas values change rapidly after delivery. Smallest changes were seen in SR group. Data suggest that analyses should be conducted as soon as possible after delivery.

  5. Advances in Fiber Optic Sensors Technology Development for temperature and strain measurements in Superconducting magnets and devices

    CERN Document Server

    Chiuchiolo, A.; Bajko, M.; Bottura, L.; Consales, M.; Cusano, A.; Giordano, M.; Perez, J. C.

    2016-01-01

    The luminosity upgrade of the Large Hadron Collider (HL-LHC) requires the development of a new generation of superconducting magnets based on Nb3Sn technology. In order to monitor the magnet thermo-mechanical behaviour during its service life, from the coil fabrication to the magnet operation, reliable sensing systems need to be implemented. In the framework of the FP7 European project EUCARD, Nb3Sn racetrack coils are developed as test beds for the fabrication validation, the cable characterization and the instrumentation development. Fiber optic sensors (FOS) based on Fiber Bragg Grating (FBG) technology have been embedded in the coils of the Short Model Coil (SMC) magnet. The FBG sensitivity to both temperature and strain required the development of a solution able to separate the mechanical and temperature effects. This work presents the feasibility study of the implementation of embedded FBG sensors for the temperature and strain monitoring of the 11 T type conductor. We aim to monitor and register these...

  6. Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films.

    Science.gov (United States)

    Kim, Yong-Hoon; Heo, Jae-Sang; Kim, Tae-Hyeong; Park, Sungjun; Yoon, Myung-Han; Kim, Jiwan; Oh, Min Suk; Yi, Gi-Ra; Noh, Yong-Young; Park, Sung Kyu

    2012-09-06

    Amorphous metal-oxide semiconductors have emerged as potential replacements for organic and silicon materials in thin-film electronics. The high carrier mobility in the amorphous state, and excellent large-area uniformity, have extended their applications to active-matrix electronics, including displays, sensor arrays and X-ray detectors. Moreover, their solution processability and optical transparency have opened new horizons for low-cost printable and transparent electronics on plastic substrates. But metal-oxide formation by the sol-gel route requires an annealing step at relatively high temperature, which has prevented the incorporation of these materials with the polymer substrates used in high-performance flexible electronics. Here we report a general method for forming high-performance and operationally stable metal-oxide semiconductors at room temperature, by deep-ultraviolet photochemical activation of sol-gel films. Deep-ultraviolet irradiation induces efficient condensation and densification of oxide semiconducting films by photochemical activation at low temperature. This photochemical activation is applicable to numerous metal-oxide semiconductors, and the performance (in terms of transistor mobility and operational stability) of thin-film transistors fabricated by this route compares favourably with that of thin-film transistors based on thermally annealed materials. The field-effect mobilities of the photo-activated metal-oxide semiconductors are as high as 14 and 7 cm(2) V(-1) s(-1) (with an Al(2)O(3) gate insulator) on glass and polymer substrates, respectively; and seven-stage ring oscillators fabricated on polymer substrates operate with an oscillation frequency of more than 340 kHz, corresponding to a propagation delay of less than 210 nanoseconds per stage.

  7. A History of Warming Sea Surface Temperature and Ocean Acidification Recorded by Planktonic Foraminifera Geochemistry from the Santa Barbara Basin, California

    Science.gov (United States)

    Osborne, E.; Thunell, R.; Bizimis, M.; Buckley, W. P., Jr.; benitez-Nelson, C. R.; Chartier, C. J.

    2015-12-01

    The geochemistry of foraminiferal shells has been widely used to reconstruct past conditions of the ocean and climate. Since the onset of the Industrial Revolution, anthropogenically produced CO2 has resulted in an increase in global temperatures and a decline in the mean pH of the world's oceans. The California Current System is a particularly susceptible region to ocean acidification due to natural upwelling processes that also cause a reduction in seawater pH. The trace element concentration of magnesium and boron in planktonic foraminiferal shells are used here as proxies for temperature and carbonate ion concentration ([CO32-]), respectively. Newly developed calibrations relating Mg/Ca ratios to temperature (R2 0.91) and B/Ca ratios to [CO32-] (R2 0.84) for the surface-mixed layer species Globogerina bulloides were generated using material collected in the Santa Barbara Basin sediment trap time-series. Using these empirical relationships, temperature and [CO32-] are reconstructed using a 0.5 meter long multi-core collected within the basin. 210Pb activities were used to determine a sedimentation rate for the core to estimate ages for core samples (sedimentation rate: 0.341 cm/yr). A spike in 137Cs activity is used as a tie-point to the year 1965 coinciding with the peak of nuclear bomb testing. Our down-core record extends through the mid-19th century to create a history of rising sea surface temperatures and declining [CO32-] as a result of anthropogenic CO2 emissions.

  8. Measuring device for synchrotron X-ray imaging and first results of high temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Kuhn, R.; Scholta, J.; Krüger, Ph.; Hartnig, Ch.; Lehnert, W.; Arlt, T.; Manke, I.

    In this paper, a measurement cell for recording synchrotron X-ray images of low and high temperature PEM fuel cells is described. The experimental setup allows for recording of cross-sectional images, as well as for radiograms in through-plane direction, with limited signal degradation. First results on H 3PO 4 concentration and distribution as a function of the operating conditions are presented. This basic cell design is optimized for liquid water detection. To visualize water in an operating cell the energy of the synchrotron X-ray beam has been chosen in a range between 7 and 30 keV where high resolution images can be obtained. The cell design is described in detail, and references to results obtained with LT-PEMFC applications focusing on liquid water evolution are given. For HT-PEMFC applications, the method of synchrotron X-ray imaging can provide an insight on electrolyte concentration and distribution. These investigations show that significant information can be collected on electrolyte distribution and concentration as a function of operating parameters such as temperature, media utilization and humidification degree. First results for the dependence of electrolyte distribution on operating conditions are presented.

  9. Along strike variations of high temperature (350-500°C) thermal histories along the northern Andean margin of South America

    Science.gov (United States)

    Navin Paul, Andre; Spikings, Richard; Ulyanov, Alexey

    2017-04-01

    High temperature thermochronometers (apatite U-Pb and muscovite 40Ar/39Ar; >350°C) are used to constrain the thermal history of the long lived (>450 Ma) Pacific margin of northern South America from the Triassic to the late Cretaceous. We acquired single grain apatite U-Pb and muscovite 40Ar/39Ar dates from Triassic monzogranites and migmatites located along a trench-parallel traverse spanning the Andes of Ecuador and Colombia. The relationship between apatite U-Pb dates and their individual grain sizes suggests that Pb was lost by thermally activated, volume diffusion. Apatite U-Pb dates, grain size information and Pb-in-apatite diffusion parameters were then used to recover t-T histories using mathematical inversion (E.g. Cochrane et al., 2014). The best fit t-T solutions corroborate 40Ar/39Ar muscovite dates. All t-T solutions yield rapid post-anatexis cooling during the Triassic. However, a sudden change in t-T topology occurs in the northern Cordillera Real of Ecuador. Apatite U-Pb and muscovite 40Ar/39Ar dates from southern Ecuador span between 70 to 130 Ma and 70 to 75 Ma respectively, whereas the same techniques yielded dates of 220 to 160 Ma and 165 to 140 Ma, from northern Ecuador and Colombia. The corresponding t-T paths reveal a period of re-heating into the apatite Pb partial retention zone during the Early Cretaceous in southern Ecuador, which is not observed towards the north. This is consistent with previous tectonic interpretations for the N. Andes (Spikings et al., 2015), and is interpreted to be due to increased amounts of extension, subsidence and heat flow in S. Ecuador. The concordance between the best fit t-T paths obtained from the apatite U-Pb data, and the muscovite 40Ar/39Ar dates supports the diffusion parameters of Harrison et al. (2009) for Ar-in-muscovite, that yield closure temperatures higher than 400°C. We conclude that Pb-in-apatite closure temperature is slightly higher then Ar-in-muscovite, supporting the closure temperature

  10. High-temperature superconducting quantum interference device with cooled LC resonant circuit for measuring alternating magnetic fields with improved signal-to-noise ratio.

    Science.gov (United States)

    Qiu, Longqing; Zhang, Yi; Krause, Hans-Joachim; Braginski, Alex I; Usoskin, Alexander

    2007-05-01

    Certain applications of superconducting quantum interference devices (SQUIDs) require a magnetic field measurement only in a very narrow frequency range. In order to selectively improve the alternating-current (ac) magnetic field sensitivity of a high-temperature superconductor SQUID for a distinct frequency, a single-coil LC resonant circuit has been used. Within the liquid nitrogen bath, the coil surrounds the SQUID and couples to it inductively. Copper coils with different numbers of windings were used to cover the frequency range from circuit, the signal-to-noise ratio of measurements could be improved typically by one order of magnitude or more in a narrow frequency band around the resonance frequency exceeding a few kilohertz. The best attained equivalent magnetic field resolution was 2.5 fT/radicalHz at 88 kHz. The experimental findings are in good agreement with mathematical analysis of the circuit with copper coil.

  11. Lowering of L1{sub 0} phase transition temperature of FePt thin films by single shot H{sup +} ion exposure using plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Z.Y.; Lin, J.J. [NSSE, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore); Zhang, T. [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Karamat, S.; Tan, T.L.; Lee, P.; Springham, S.V. [NSSE, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore); Ramanujan, R.V. [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Rawat, R.S. [NSSE, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore)], E-mail: rajdeep.rawat@nie.edu.sg

    2009-02-27

    FePt thin films are exposed to pulsed energetic H{sup +} ion beam from plasma focus. In irradiated films, the phase transition from the low K{sub u} disordered face-centered-cubic structure to high K{sub u} ordered face-centered-tetragonal phase was achieved at 400 deg. C with the order parameter S ranging from 0.73 to 0.83, high coercivity of about 5356 kA/m, high negative nucleation field of about 7700 kA/m and high squareness ratio ranging from 0.73 to 0.79. The advantage of using plasma focus device is that it can lower phase transition temperature and significantly enhance the magnetic properties by a pulsed single shot exposure.

  12. Nitrogen Gas Flow Ratio and Rapid Thermal Annealing Temperature Dependences of Sputtered Titanium Nitride Gate Work Function and Their Effect on Device Characteristics

    Science.gov (United States)

    Liu, Yongxun; Hayashida, Tetsuro; Matsukawa, Takashi; Endo, Kazuhiko; Masahara, Meishoku; O'uchi, Shinich; Sakamoto, Kunihiro; Ishii, Kenichi; Tsukada, Junichi; Ishikawa, Yuki; Yamauchi, Hiromi; Ogura, Atsushi; Suzuki, Eiichi

    2008-04-01

    A sputtered titanium nitride (TiN) metal gate has systematically been investigated, and the dependences of TiN work function (φTiN) and device performance on nitrogen gas flow ratio [RN=N2/(N2+Ar)] in sputtering and rapid thermal annealing (RTA) temperature (TR) are clarified. It is experimentally found that φTiN slightly decreases from 4.87 to 4.78 eV with increasing RN from 17 to 83%, and it markedly decreases with increasing TR. The analysis of the electrical characteristics of fabricated metal-oxide-semiconductor field-effect transistors (MOSFETs) shows that the optimal RN range is 17-50%, and a higher RN offers a lower Vth owing to the lower φTiN. The origin of φTiN decrease with increasing RN and TR is discussed. The obtained results indicate that φTiN can be controlled by sputtering and RTA conditions, and are very useful for setting the appropriate Vth for lightly doped channel devices such as a FinFET.

  13. TiB₂-Based Composites for Ultra-High-Temperature Devices, Fabricated by SHS, Combining Strong and Weak Exothermic Reactions.

    Science.gov (United States)

    Ziemnicka-Sylwester, Marta

    2013-05-10

    TiB₂-based ceramic matrix composites (CMCs) were fabricated using elemental powders of Ti, B and C. The self-propagating high temperature synthesis (SHS) was carried out for the highly exothermic "in situ" reaction of TiB₂ formation and the "tailing" synthesis of boron carbide characterized by weak exothermicity. Two series of samples were fabricated, one of them being prepared with additional milling of raw materials. The effects of TiB₂ vol fraction as well as grain size of reactant were investigated. The results revealed that combustion was not successful for a TiB₂:B₄C molar ratio of 0.96, which corresponds to 40 vol% of TiB₂ in the composite, however the SHS reaction was initiated and self-propagated for the intended TiB₂:B₄C molar ratio of 2.16 or above. Finally B13C₂ was formed as the matrix phase in each composite. Significant importance of the grain size of the C precursor with regard to the reaction completeness, which affected the microstructure homogeneity and hardness of investigated composites, was proved in this study. The grain size of Ti powder did not influence the microstructure of TiB₂ grains. The best properties (HV = 25.5 GPa, average grain size of 9 μm and homogenous microstructure), were obtained for material containing 80 vol% of TiB₂, fabricated using a graphite precursor of 2 μm.

  14. Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: From Earth history to global change

    Science.gov (United States)

    PöRtner, Hans O.; Langenbuch, Martina; Michaelidis, Basile

    2005-09-01

    Currently rising CO2 levels in atmosphere and marine surface waters as well as projected scenarios of CO2 disposal in the ocean emphasize that CO2 sensitivities need to be investigated in aquatic organisms, especially in animals which may well be the most sensitive. Moreover, to understand causes and effects, we need to identify the physiological processes that are sensitive to CO2 beyond the current emphasis on calcification. Few animals may be acutely sensitive to moderate CO2 increases, but subtle changes due to long-term exposure may already have started to be felt in a wide range of species. CO2 effects identified in invertebrate fauna from habitats characterized by oscillating CO2 levels include depressed metabolic rates and reduced ion exchange and protein synthesis rates. These result in shifts in metabolic equilibria and slowed growth. Long-term moderate hypercapnia has been observed to produce enhanced mortality with as yet unidentified cause and effect relationships. During future climate change, simultaneous shifts in temperature, CO2, and hypoxia levels will enhance sensitivity to environmental extremes relative to a change in just one of these variables. Some interactions between these variables result from joint effects on the same physiological mechanisms. Such interactions need to be considered in terms of future increases in atmospheric CO2 and its uptake by the ocean as well as in terms of currently proposed mitigation scenarios. These include purposeful injection of CO2 in the deep ocean or Fe fertilization of the surface ocean, which reduces subsurface O2 levels. The resulting ecosystem shifts could develop progressively, rather than beyond specific thresholds, such that effects parallel CO2 oscillations. It is unsure to what extent and how quickly species may adapt to permanently elevated CO2 levels by microevolutionary compensatory processes.

  15. Screen-Printed Graphite Electrodes as Low-Cost Devices for Oxygen Gas Detection in Room-Temperature Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Junqiao Lee

    2017-11-01

    Full Text Available Screen-printed graphite electrodes (SPGEs have been used for the first time as platforms to detect oxygen gas in room-temperature ionic liquids (RTILs. Up until now, carbon-based SPEs have shown inferior behaviour compared to platinum and gold SPEs for gas sensing with RTIL solvents. The electrochemical reduction of oxygen (O2 in a range of RTILs has therefore been explored on home-made SPGEs, and is compared to the behaviour on commercially-available carbon SPEs (C-SPEs. Six common RTILs are initially employed for O2 detection using cyclic voltammetry (CV, and two RTILs ([C2mim][NTf2] and [C4mim][PF6] chosen for further detailed analytical studies. Long-term chronoamperometry (LTCA was also performed to test the ability of the sensor surface for real-time gas monitoring. Both CV and LTCA gave linear calibration graphs—for CV in the 10–100% vol. range, and for LTCA in the 0.1–20% vol. range—on the SPGE. The responses on the SPGE were far superior to the commercial C-SPEs; more instability in the electrochemical responses were observed on the C-SPEs, together with some breaking-up or dissolution of the electrode surface materials. This study highlights that not all screen-printed ink formulations are compatible with RTIL solvents for longer-term electrochemical experiments, and that the choice of RTIL is also important. Overall, the low-cost SPGEs appear to be promising platforms for the detection of O2, particularly in [C4mim][PF6].

  16. Metal-silicate partitioning of potassium at high pressure and temperature conditions and implications for thermal history of the Earth

    Science.gov (United States)

    Nomura, R.; Hirose, K.

    2011-12-01

    melting experiments were performed at high P-T conditions using LHDAC. Fine powdered mixtures of Fe (or Fe-FeS, Fe-FeSi) metal and gels with chemical compositions of KLB-1 peridotite doped with 1wt% K were used as a starting material. The gel powder was dehydrated by heating to 1273 K for 1 h in a H2-CO2 gas mixing furnace, in which oxygen fugacity was controlled to be slightly above the iron-wustite buffer. Pressure was measured after quenching with the Raman shift of diamond anvil. Ar was used as a pressure medium. The sample was heated from double side using Nd:YLF laser. A recovered sample was processed with Ion Slicer (JEOL EM-09100 IS), and subsequently examined by energy-dispersive X-ray spectrometry (EDS) attached with field emission scanning electron microscope (FE-SEM: JOEL JSM-7000F). Our preliminary results at ~20 GPa, fO2 of ~IW-1 and high temperature up to 5000 K with KLB-1 gel and S-free metal shows the clear correlation between O contents in molten iron and K partition coefficients suggested by Corgne et al. (2007). The results of partitioning coefficient at high P-T range up to primordial CMB conditions will be discussed in our presentation.

  17. Identification and prediction of the fertile window with a new web-based medical device using a vaginal biosensor for measuring the circadian and circamensual core body temperature.

    Science.gov (United States)

    Regidor, Pedro-Antonio; Kaczmarczyk, Marta; Schiweck, Esther; Goeckenjan-Festag, Maren; Alexander, Henry

    2017-10-28

    Fertility awareness-based (FAB) methods represent a term that includes all family planning methods that are based on the identification of the fertile window. They are based on the woman's observation of physiological signs of the fertile and infertile phases of the menstrual cycle. The first approach consists basically in symptothermal methods accompanied by cervical mucus measurements and clinical menstrual cycling data recording. The second most often used methods are the urinary measurement of E3G and luteinizing hormone (LH) with a personalized computer system. Hence these systems lack the efficacy of the continuous circadian and circamensual measurement of the core body temperature. Only this approach enables the accurate detection of the ovulation during the fertile window. A new medical device called OvulaRing has been developed to fill this gap. In the present study, the system and its first clinical results are presented. OvulaRing is a medical device used just like a tampon. The device is a vaginal ring of evatane that contains an integrated biosensor. This sensor measures continuously every 5 min the core body temperature throughout the entire cycle. This device allows a circadian and circamensual intravaginal exact measurement. With this system, 288 measurements are created per day. The system can detect retrospectively and predict prospectively the fertile window of the users. One hundred and fifty eight women aged between 18 and 45 years used this medical device in an open non-randomized clinical study for 15 months. A total of 470 cycles could be recorded and were able for analysis. By the same time in a subgroup of patients, hormonal assessments of LH, follicle-stimulating hormone, estradiol and progesterone as well as vaginal ultrasound were performed in parallel between the 9th and the 36th day of the cycle. The validation error due to software errors was 0.89% for the retrospective analysis; that means that the accuracy for the detection of

  18. Rapid Ag/Sn/Ag transient liquid phase bonding for high-temperature power devices packaging by the assistance of ultrasound.

    Science.gov (United States)

    Shao, Huakai; Wu, Aiping; Bao, Yudian; Zhao, Yue; Liu, Lei; Zou, Guisheng

    2017-07-01

    Rapid transient liquid phase (TLP) bonding process on Ag/Sn/Ag system is achieved in air by the assistance of ultrasonic, which has great potential to be applied to high-temperature power devices packaging. In this study, the influence of ultrasonic effect on the morphology and growth kinetics of Ag3Sn grains, and the joint microstructure, mechanical property and thermal reliability were systematically investigated. Experimental results indicated that the rapid consumption of the "dynamic" transient liquid phase was attributed to the accelerated dissolution of Ag substrate and the extrusion of liquid Sn, which were entirely induced by the complex sonochemical effects on the liquid/solid intermetallic compounds (IMCs) interface. An elongated scallop-like morphology of Ag3Sn grains was developed during Ag/Sn interfacial reaction with ultrasonic, accompanied by widening of grooves between neighbored grains. This phenomenon is called as a strengthening thermal grooving, in which the grooves at grain boundaries provide stable molten channels for Ag atoms diffusion from the substrate. Consequently, the improved elemental diffusion was evaluated through the growth kinetics of Ag3Sn IMCs, with conservative estimation of 6-16.5 times faster than the traditional TLP process. In addition, both excellent mechanical property and thermal reliability of the Ag-Sn intermetallic joint were experimentally verified by shear test and high-temperature storage test, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effect of heat curing methods on the temperature history and strength development of slab concrete for nuclear power plant structures in cold climates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gun Cheol [Korea Conformity Laboratories, Seoul (Korea, Republic of); Han, Min Cheol [Cheong-ju University, Cheong Ju (Korea, Republic of); Baek, Dae Hyun; Koh, Kyung Taek [Korea Institute of Construction Technology, Goyang (Korea, Republic of)

    2012-06-15

    The objective of this study was to experimentally investigate the effect of heat curing methods on the temperature history and strength development of slab concrete exposed to -10 degrees Celsius. The goal was to determine proper heat curing methods for the protection of nuclear power plant structures against early-age frost damage under adverse (cold) conditions. Two types of methods were studied: heat insulation alone and in combination with a heating cable. For heat curing with heat insulation alone, either sawdust or a double layer bubble sheet (2-BS) was applied. For curing with a combination of heat insulation and a heating cable, an embedded heating cable was used with either a sawdust cover, a 2-BS cover, or a quadruple layer bubble sheet (4-BS) cover. Seven different slab specimens with dimensions of 1200, 600, 200 mm and a design strength of 27 MPa were fabricated and cured at -10 degrees Celsius for 7 d. The application of sawdust and 2-BS allowed the concrete temperature to fall below 0 degrees Celsius within 40 h after exposure to -10 degrees Celsius, and then, the temperature dropped to -10 degrees Celsius and remained there for 7 d owing to insufficient thermal resistance. However, the combination of a heating cable plus sawdust or 2-BS maintained the concrete temperature around 5 degrees Celsius for 7 d. Moreover, the combination of the heating cable and 4-BS maintained the concrete temperature around 10 degrees Celsius for 7 d. This was due to the continuous heat supply from the heating cable and the prevention of heat loss by the 4-BS. For maturity development, which is an index of early-age frost damage, the application of heat insulation materials alone did not allow the concrete to meet the minimum maturity required to protect against early-age frost damage after 7 d, owing to poor thermal resistance. However, the combination of the heating cable and the heat insulating materials allowed the concrete to attain the minimum maturity level after

  20. Psychology, education and history: the paths offered by social studies of science to analyze the mobilization of conceptual and practice devices

    Directory of Open Access Journals (Sweden)

    Joan Sebastian Soto Triana

    2015-07-01

    Full Text Available This paper provides a reflection about the way in which the analysis of the history of psychology in Colombia has been constituted. It contributes a conceptual development to the classical tradition of viewing history as a reference to moments and “heroic” characters, neglecting analytical possibilities around various narratives that enable a broad understanding of the movements of psychology as a space for social appropriation of knowledge, sociotechnical network building and practices of translation of interests. Through a brief exposition of the case of psychology and education at the Gimnasio Moderno School of Bogota in the early twentieth century, the way in which Social Studies of Science provide important tools in terms of their epistemology and methodology for monitoring concepts, practices, adaptations and staging of European developmental psychology in an educational institution where childhood is a “mandatory step” in narratives about modernization is presented.

  1. Tungsten as a plasma-facing material in fusion devices: impact of helium high-temperature irradiation on hydrogen retention and damages in the material

    Science.gov (United States)

    Bernard, E.; Sakamoto, R.; Kreter, A.; Barthe, M. F.; Autissier, E.; Desgardin, P.; Yamada, H.; Garcia-Argote, S.; Pieters, G.; Chêne, J.; Rousseau, B.; Grisolia, C.

    2017-12-01

    Plasma-facing materials for next generation fusion devices, like ITER and DEMO, have to withstand intense fluxes of light elements (notably helium and hydrogen isotopes). For tungsten (W), helium (He) irradiation leads to major changes in the material morphology, rising concerns about properties such as material structure conservation and hydrogen (H) retention. The impact of preceeding He irradiation conditions (temperature, flux and fluence) on H trapping were investigated on a set of W samples exposed to the linear plasma device PSI-2. Positron annihilation spectroscopy (PAS) was carried out to probe the free volume of defects created by the He exposure in the W structure at the atomic scale. In parallel, tritium (T) inventory after exposure was evaluated through T gas loading and desorption at the Saclay Tritium Lab. First, we observed that the material preparation prior to He irradiation was crucial, with a major reduction of the T trapping when W was annealed at 1773 K for 2 h compared to the as-received material. PAS study confirms the presence of He in the bubbles created in the material surface layer, whose dimensions were previously characterized by transmission electron microscopy and grazing-incidence small-angle x-ray scattering, and demonstrates that even below the minimal energy for displacement of He in W, defects are created in almost all He irradiation conditions. The T loading study highlights that increasing the He fluence leads to higher T inventory. Also, for a given fluence, increasing the He flux reduces the T trapping. The very first steps of a parametric study were set to understand the mechanisms at stake in those observed material modifications, confirming the need to pursue the study with a more complete set of surface and irradiation conditions.

  2. Devices and methods to measure H2 and CO2 concentrations in gases released from soils and low temperature fumaroles in volcanic areas

    Science.gov (United States)

    di Martino, R. M. R.; Camarda, M.; Gurrieri, S.; Valenza, M.

    2009-04-01

    Hydrogen solubility and diffusion have a great relevance to change the redox state of magmas, usually expressed by oxygen fugacity. This influences many chemical and physical properties, such as oxidation state of multivalent elements, kind and abundance of minerals and gas species. These processes change the phase ratios into the volcanic system and so the magma movement capability toward the earth surface and the eruptive dynamics. In past studies several authors (Carapezza et al., 1980; Sato et al., 1982; Sato and McGee, 1985; Wakita et al., 1980) proposed the application of the fuel cells in order to measure reducing capacity of volcanic gases. Their found some clear correlations between variation peaks and volcanic activity but a few reducing capacity changes showed no correlation with it. In this study we characterize a fuel cell device designed to measure hydrogen concentration in a gas mixture. We present test results obtained in laboratory and in field trip, carried out to verify the major interferences of others reducing gas species, commonly present in volcanic emissions, in the measurement carried out with a hydrogen fuel cell sensor. Tests were performed at controlled temperature ad pressure conditions and at air saturated pressure vapour in the cell cathode. A new device to measure simultaneously hydrogen (H2) and carbon dioxide (CO2) concentrations in soil and in low temperature fumaroles in volcanic areas was proposed. The H2-detector is a hydrogen fuel cell, whereas CO2 is measured using an I.R. spectrometer. To build a continuous monitoring station of volcanic activity both sensors were put in a case together with a data logger. Our device has 0.2 mV ppm-1 sensitivity, accuracy of ± 5 ppm and about 10 ppm resolution whit respect to the hydrogen concentration. These instrumental characteristics were obtained applying a 500 ohm resistor to the external circuit that represents the best compromise between sensitivity, resolution, instrumental

  3. Effect of annealing temperature on the structural, morphological, and mechanical properties of polycrystalline zirconium oxynitride composite films deposited by plasma focus device

    Science.gov (United States)

    Khan, Ijaz A.; Kashif, Muhammad; Farid, Amjad; Rawat, Rajdeep S.; Ahmad, Riaz

    2017-12-01

    In this article, we reveal the post deposition annealing effect on the structural, morphological, and mechanical properties of polycrystalline zirconium oxynitride (P-ZrON) composite films deposited for 40 focus shots using a plasma focus device. The development of Zr(101), ZrN(111), ZrN(200), Zr3N4(320), ZrN0.28(002), and m-ZrO2(200) diffraction peaks confirms the deposition of P-ZrON composite films. The peak intensity, crystallite size, dislocation density, compressive stress, and texture coefficient of the Zr3N4(320) plane and the microstructural features such as the shape, size and distribution of nanoparticles as well as the film compactness are influenced by the annealing temperature. Elemental analysis confirms the presence of Zr, N, and O in the deposited films. The microhardness of the P-ZrON composite film annealed at 500 °C is found to be 11.87 GPa which is 7.8 times that of virgin zirconium.

  4. Device performances of organic light-emitting diodes with indium tin oxide, gallium zinc oxide, and indium zinc tin oxide anodes deposited at room temperature.

    Science.gov (United States)

    Lee, Changhun; Ko, Yoonduk; Kim, Youngsung

    2013-12-01

    Thin films of Indium tin oxide (ITO), Gallium zinc oxide (GZO), and Indium zinc tin oxide (IZTO) were deposited on glass substrates by pulsed direct current magnetron sputtering at room temperature. The structural, optical, and electrical properties of the films were investigated towards evaluating their applications as flexible anodes. IZTO films exhibited the lowest resistivity (6.3 x 10(-4) Omega cm). Organic light-emitting diodes (OLEDs) were fabricated using the ITO, GZO, and IZTO films as anode layers. The turn-on voltages at a current density of 4.5 mA/cm2, 5.5 mA/cm2, 6.5 mA/cm2 were 5.5 V, 13.7 V, and 4.7 V for the devices with ITO, GZO, and IZTO anodes, respectively. The best performance was observed with the IZTO film, indicating its suitability as an alternative material for conventional ITO anodes used in OLEDs and flexible displays.

  5. 75 FR 68200 - Medical Devices; Radiology Devices; Reclassification of Full-Field Digital Mammography System

    Science.gov (United States)

    2010-11-05

    ..., Drug, and Cosmetic Act (the FD&C Act) (21 U.S.C. 301 et seq.), as amended by the Medical Device... History of the Device An FFDM system is a postamendments device classified into class III under section... supports, component parts, and accessories. Based on the history of use of this type of device since the...

  6. Polycrystalline Cadmium Telluride Photovoltaic Devices

    Science.gov (United States)

    Gessert, Timothy A.; Bonnet, Dieter

    2015-10-01

    The following sections are included: * Introduction * Brief history of CdTe PV devices * Initial attempts towards commercial modules * Review of present commercial industry/device designs * General CdTe material properties * Layer-specific process description for superstrate CdTe devices * Where is the junction? * Considerations for large-scale deployment * Conclusions * Acknowledgements * References

  7. Linking time-Temperature history of the Aquitaine basin with post-orogenic evolution of the Pyrenees : new insights from borehole thermochronology

    Science.gov (United States)

    Fillon, Charlotte; Calassou, Sylvain; Mouthereau, Frédéric; Pik, Raphaël; Bellahsen, Nicolas; Gautheron, Cécile

    2017-04-01

    Within their sedimentary record, foreland basins document vertical movements of the lithosphere, climatic changes, paleogeograhic evolution but also history of exhumation of the adjacent mountain belt. Comparing vertical movements in a range and in its foreland is key to identify processes involved in growth and destruction of mountain belts. The Aquitaine basin, geomorphologically stable since the early Pyrenean orogenesis has the potential to help understanding the driving mechanisms during the late to post-orogenic phases, but the lack of outcrops makes the studies particularly difficult to achieve. To bring a new point of vue on the processes involved in the Cenozoic exhumation of this range, we present new low-Temperature thermochronology data from boreholes of the Aquitaine basin. With the objectives to study rift-related to post-orogenic processes, numerous low-T thermochronological ages ( 300 across the range) have been published, documenting pre-, syn- , and post-orogenic exhumation in the Pyrenees. Using thermal modeling of a new low-T database in the western Axial Zone, we show that a late Miocene (around 10 Ma) uplift occured in the western Pyrenees, which generalizes the post-orogenic signal already detected in the south central Pyrenees. In previous studies, we linked the post-orogenic exhumation in the Southern Pyrenees to the excavation of the foreland valleys caused by the opening of the endorheic Ebro basin towards the Mediterranean Sea. To the West, the tectonic out-of sequence reactivation of the Gavarnie thrust has been invoked to explain the late Miocene AHe ages in the Bielsa massif. These new data might lead us to re-think the causes for such an exhumation signal during "post-orogenic" times. We thus summarize all evidences for the post-orogenic phase and attempt to provide explanation for it: is exhumation driven by Aquitaine foreland basin evolution? Does it reflect a tectonic reactivation of the Pyrenees? or is the signature of a regional

  8. Electroluminescence from silicon-based light-emitting devices with erbium-doped TiO2 films annealed at different temperatures

    Science.gov (United States)

    Chen, Jinxin; Gao, Zhifei; Jiang, Miaomiao; Gao, Yuhan; Ma, Xiangyang; Yang, Deren

    2017-10-01

    We have previously developed silicon-based light-emitting devices (LEDs) with luminescent erbium (Er)-doped TiO2 (TiO2:Er) films [Yang et al., Appl. Phys. Lett. 100, 031103 (2012)]. In an LED therein, the TiO2:Er film is sandwiched between the ITO film and heavily boron-doped p-type silicon (p+-Si). In this work, we have investigated the electroluminescence (EL) from two LEDs with the TiO2:Er films annealed at 650 and 850 °C, respectively. It is revealed that between the TiO2:Er film and p+-Si, there is an intermediate silicon oxide (SiOx, x ≤ 2) layer and its thickness increases from ˜4 to 8 nm with the increase of annealing temperature from 650 to 850 °C. Interestingly, the thickness of the intermediate SiOx layer is found to exhibit a profound impact on the EL from the LED with the TiO2:Er film on p+-Si. The EL from the LED with the 650 °C-annealed TiO2:Er film is activated only under the forward bias with the positive voltage connecting to the p+-Si substrate. Such EL consists of the oxygen-vacancy-related emissions from TiO2 host and the characteristic visible and ˜1540 nm emissions from the Er3+ ions, while the EL from the LED with the 850 °C-annealed TiO2:Er film can only be enabled by the reverse bias with the negative voltage applied on the p+-Si substrate. Such EL features only the visible and ˜1540 nm emissions from the Er3+ ions. The difference in the EL behaviors of the two LEDs as mentioned above is found to be ascribed to the different electrical conduction mechanisms.

  9. Physics of photonic devices

    CERN Document Server

    Chuang, Shun Lien

    2009-01-01

    The most up-to-date book available on the physics of photonic devices This new edition of Physics of Photonic Devices incorporates significant advancements in the field of photonics that have occurred since publication of the first edition (Physics of Optoelectronic Devices). New topics covered include a brief history of the invention of semiconductor lasers, the Lorentz dipole method and metal plasmas, matrix optics, surface plasma waveguides, optical ring resonators, integrated electroabsorption modulator-lasers, and solar cells. It also introduces exciting new fields of research such as:

  10. Insertion devices

    CERN Document Server

    Bahrdt, J

    2006-01-01

    The interaction of an insertion device with the electron beam in a storage ring is discussed. The radiation property including brightness, ux and polarization of an ideal and real planar and helical / elliptical device is described. The magnet design of planar, helical, quasiperiodic devices and of devices with a reduced on axis power density are resumed.

  11. Influence of temperature histories during reactor startup periods on microstructural evolution and mechanical properties of austenitic stainless steel irradiated with neutrons

    Science.gov (United States)

    Kasahara, Shigeki; Kitsunai, Yuji; Chimi, Yasuhiro; Chatani, Kazuhiro; Koshiishi, Masato; Nishiyama, Yutaka

    2016-11-01

    This paper addresses influence of two different temperature profiles during startup periods in the Japan Materials Testing Reactor and a boiling water reactor upon microstructural evolution and mechanical properties of austenitic stainless steel irradiated with neutrons to about 1 dpa and 3 dpa. One of the temperature profiles was that the specimens experienced neutron irradiation in both reactors, under which the irradiation temperature transiently increased to 290 °C from room temperature with increasing reactor power during reactor startup periods. Another was that the specimens were pre-heated to about 150 °C prior to the irradiation to suppress the transient temperature increase. Tensile tests at 290 °C and Vickers hardness tests at room temperature were carried out, and their microstructures were observed by FEG-TEM. Difference of the temperature profiles was observed obviously in interstitial cluster formation, in particular, growth of Frank loops. Although influence of neutron irradiation involving transient temperature increase to 290 °C from room temperature on the yield strength and the Vickers hardness is buried in the trend curves of existing data, the influence was also found certainly in increment of in yield strength, existence of modest yield drop, and loss of strain hardening capacity and ductility. As a result, Frank loops, which were observed in austenitic stainless steel irradiated at doses of 1 dpa or more, seemed to have important implications regarding the interpretation of not irradiation hardening, but deformation of the austenitic stainless steel.

  12. Plasma-on-chip device for stable irradiation of cells cultured in media with a low-temperature atmospheric pressure plasma.

    Science.gov (United States)

    Okada, Tomohiro; Chang, Chun-Yao; Kobayashi, Mime; Shimizu, Tetsuji; Sasaki, Minoru; Kumagai, Shinya

    2016-09-01

    We have developed a micro electromechanical systems (MEMS) device which enables plasma treatment for cells cultured in media. The device, referred to as the plasma-on-chip, comprises microwells and microplasma sources fabricated together in a single chip. The microwells have through-holes between the microwells and microplasma sources. Each microplasma source is located on the backside of each microwells. The reactive components generated by the microplasma sources pass through the through-holes and reach cells cultured in the microwells. In this study, a plasma-on-chip device was modified for a stable plasma treatment. The use of a dielectric barrier discharge (DBD) technique allowed a stable plasma treatment up to 3 min. The plasma-on-chip with the original electrode configuration typically had the maximum stable operation time of around 1 min. Spectral analysis of the plasma identified reactive species such as O and OH radicals that can affect the activity of cells. Plasma treatment was successfully performed on yeast (Saccharomyces cerevisiae) and green algae (Chlorella) cells. While no apparent change was observed with yeast, the treatment degraded the activity of the Chlorella cells and decreased their fluorescence. The device has the potential to help understand interactions between plasma and cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. TiB2-Based Composites for Ultra-High-Temperature Devices, Fabricated by SHS, Combining Strong and Weak Exothermic Reactions

    National Research Council Canada - National Science Library

    Marta Ziemnicka-Sylwester

    2013-01-01

    .... The self-propagating high temperature synthesis (SHS) was carried out for the highly exothermic "in situ" reaction of TiB2 formation and the "tailing" synthesis of boron carbide characterized by weak exothermicity...

  14. Effect of temperature on life history traits during immature development of Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) from Córdoba city, Argentina.

    Science.gov (United States)

    Grech, Marta G; Sartor, Paolo D; Almirón, Walter R; Ludueña-Almeida, Francisco F

    2015-06-01

    We investigated how ambient temperature under fluctuating conditions affects the larval-pupal immature traits of Aedes aegypti and Culex quinquefasciatus mosquitoes from Córdoba city, Argentina, and established each species development threshold and physiological time. Based on life tables, three cohorts of each mosquito species were reared in the laboratory under small fluctuating temperatures conditions of 15.2±1.7°C, 17.9±1.6°C, 21.6±0.7°C and 25.3±0.4°C for Ae. aegypti, and 16.6±1.7°C, 18.7±1.7°C and 25.2±0.3°C for Cx. quinquefasciatus. Immature development time and survival values, and also thermal development threshold and physiological time were estimated. Development times of all larval and pupal stages of Ae. aegypti and Cx. quinquefasciatus were significantly affected by the rearing temperatures, decreasing when temperature increased. Mean Ae. aegypti total (larva+pupa) development time ranged from 21.9 to 8.6 days, at 15.2 and 25.3°C, whereas, for Cx. quinquefasciatus varied between 23.5 to 9.2 days at 16.6 and 25.2°C, respectively. Larval and pupal survival of both species was affected by different rearing temperatures, increasing in general as temperature increased. For Ae. aegypti the total immature survival ranged from 26% at 15.2°C to 92% at 21.6°C; however, temperature did not have significant effect on this variable. The total immature survival of Cx. quinquefasciatus was significantly and positively affected by temperatures, ranging from 32 to 88%, at 16.6 and 25.2°C. The temperature development threshold and the physiological time estimated for Ae. aegypti and Cx. quinquefasciatus were 11.11°C and 93.74 degree-days, and 10.96°C and 136.87 degree-days, respectively. The results of the present study showed that temperature significantly affects the larval-pupal immature traits of these mosquito species of sanitary importance, from the central region of Argentina. All the parameters recorded are useful for the development of

  15. Benefit of innovative connection devices for customers of district heating. Redcution of low return temperature; Nutzen innovativer Anschlussanlagen fuer den Fernwaermekunden. Reduzierung der Ruecklauftemperatur

    Energy Technology Data Exchange (ETDEWEB)

    Triesch, F. [Thermo Integral GmbH und Co. KG, Leipzig (Germany); Weinmann, E. [SWM Services GmbH, Muenchen (Germany)

    2008-04-15

    Reducing the return temperature in district heating networks can have very substantial effects. Anything that serves to increase transport capacities, reduce heat loss in district heating networks, reduce auxiliary energy demand, or increase the output of cogeneration plants represents a strong economic incentive for district heating suppliers. But how do district heating customers benefit from the use of innovative connection installations with low return temperatures?.

  16. Rare-Earth Ions in Niobium-Based Devices as a Quantum Memory: Magneto-Optical Effects on Room Temperature Electrical Transport

    Science.gov (United States)

    2016-09-01

    Electrical Transport Vincent DinH Brad Liu Dave Rees Kenneth Simonsen Osama Nayfeh SSC Pacific Lance Lerum NREIP Approved for public release...SSC Pacific San Diego, CA 92152-5001 SB SSC Pacific San Diego, California 92152-5001 K. J. Rothenhaus, CAPT, USN Commanding Officer C. A...superconductor devices to provide a low dissipation environment and access to the systems Hamiltonian. In this report we show results and success in integrating

  17. History and modern applications of nano-composite materials carrying GA/cm2 current density due to a Bose-Einstein Condensate at room temperature produced by Focused Electron Beam Induced Processing for many extraordinary novel technical applications

    Science.gov (United States)

    Koops, Hans W. P.

    2015-12-01

    The discovery of Focused Electron Beam Induced Processing and early applications of this technology led to the possible use of a novel nanogranular material “Koops-GranMat®” using Pt/C and Au/C material. which carries at room temperature a current density > 50 times the current density which high TC superconductors can carry. The explanation for the characteristics of this novel material is given. This fact allows producing novel products for many applications using Dual Beam system having a gas supply and X.Y.T stream data programming and not using GDSII layout pattern control software. Novel products are possible for energy transportation. -distribution.-switching, photon-detection above 65 meV energy for very efficient energy harvesting, for bright field emission electron sources used for vacuum electronic devices like amplifiers for HF electronics, micro-tubes, 30 GHz to 6 THz switching amplifiers with signal to noise ratio >10(!), THz power sources up to 1 Watt, in combination with miniaturized vacuum pumps, vacuum gauges, IR to THz detectors, EUV- and X-Ray sources. Since focusing electron beam induced deposition works also at low energy, selfcloning multibeam-production machines for field emitter lamps, displays, multi-beam - lithography, - imaging, and - inspection, energy harvesting, and power distribution with switches controlling field-emitter arrays for KA of currents but with < 100 V switching voltage are possible. Finally the replacement of HTC superconductors and its applications by the Koops-GranMat® having Koops-Pairs at room temperature will allow the investigation devices similar to Josephson Junctions and its applications now called QUIDART (Quantum interference devices at Room Temperature). All these possibilities will support a revolution in the optical, electric, power, and electronic technology.

  18. Photovoltaic device

    Science.gov (United States)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  19. Photovoltaic device

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Jason A; Keenihan, James R; Gaston, Ryan S; Kauffmann, Keith L; Langmaid, Joseph A; Lopez, Leonardo; Maak, Kevin D; Mills, Michael E; Ramesh, Narayan; Teli, Samar R

    2017-03-21

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  20. Concentration device

    DEFF Research Database (Denmark)

    2013-01-01

    A concentration device (2) for filter filtration concentration of particles (4) from a volume of a fluid (6). The concentration device (2) comprises a filter (8) configured to filter particles (4) of a predefined size in the volume of the fluid (6). The concentration device (2) comprises...

  1. Rapid formation of Ni3Sn4 joints for die attachment of SiC-based high temperature power devices using ultrasound-induced transient liquid phase bonding process.

    Science.gov (United States)

    Li, Z L; Dong, H J; Song, X G; Zhao, H Y; Feng, J C; Liu, J H; Tian, H; Wang, S J

    2017-05-01

    High melting point Ni3Sn4 joints for the die attachment of SiC-based high temperature power devices was successfully achieved using an ultrasound-induced transient liquid phase (TLP) bonding process within a remarkably short bonding time of 8s. The formed intermetallic joints, which are completely composed of the refined equiaxial Ni3Sn4 grains with the average diameter of 2μm, perform the average shear strength of 26.7MPa. The sonochemical effects of ultrasonic waves dominate the mechanism and kinetics of the rapid formation of Ni3Sn4 joints. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. - History, Technology, and the Future

    Science.gov (United States)

    Lampert, C. M.

    2002-12-01

    This paper begins with the history of electrochromism, first discovered in the 1880's. The physics, electrochemistry, device design and materials are covered. The science of electrochromism involves the coloration of a variety of metal oxides, organics and polymers. Dual ion and electron intercalation is used to color and bleach electrochromic materials. Considerable science has been undertaken to make devices that resemble thin film transparent batteries in their structure. A number of materials have been developed to make layers for electrochromic devices. Applications for electrochromics include low information content displays, such as banner displays, smart windows and mirrors for automotive applications. Several companies throughout the world are developing dynamic glazing. Switchable glazing for building and vehicle application is very attractive for energy and light management. From the standpoint of materials much research and development in electrochromics focuses on the development or improvement of materials with ionic and electronic properties. Much of the work on electrochromics draws on the vast knowledge developed for advanced batteries. National Laboratory and university groups are researching new materials and processes to improve electrochromic materials. Also, much industrial work is directed towards deposition and fabrication processes for glass and possibly plastic that can make electrochromics cost effective. Plastic can yield both flexibility and weight savings for many applications. Although plastics are permeable, outgas and require lower processing temperatures, they can be more universally applied. Some developments in plastics may come from OLED sealing technology. Comparisons are made between the properties of electrochromics and other switchable technologies. Technology comparisons are made between suspended particles, polymer dispersed liquid crystals, themotropics and gas-chromics.

  3. Understanding History

    OpenAIRE

    Gorman, Jonathan

    2017-01-01

    Has any question about the historical past ever been finally answered? Of course there is much disagreement among professional historians about what happened in the past and how to explain it. But this incisive study goes one step further and brings into question the very ability of historians to gather and communicate genuine knowledge about the past. Understanding History applies this general question from the philosophy of history to economic history of American slaveholders. Do we unders...

  4. Financial History

    OpenAIRE

    Cassis, Y.; Cottrell, P. L

    2017-01-01

    The considerable renewal of interest in all aspects of financial history over recent years provided one motivation for this new venture. Yet, the foundations for our specialism, which draws from both History and the Social Sciences, especially economics, have been laid by many. Some would point to continuity in our interest from the publication in the 1930s of jubilee banking history volumes, such as those written for British institutions by Gregory, and by Crick and Wadsworth. Further schola...

  5. The High-Pressure Assemblage Majorite-Pyrope Solid Solution + Magnesiowustite: A New Constraint on the High Pressure and Temperature History of Shock Melt Veins in Chondrites

    Science.gov (United States)

    Chen, M.; Sharp, T. G.; El Goresy, A.; Wopenka, B.; Xie, X.

    1996-03-01

    Two coexisting distinct high pressure assemblages were discovered in shock melt veins of the Sixiangkou (L6) chondrite: (1) majorite-pyrope(sub)ss + magnesiowustite and (2) ringwoodite + low-Ca majorite. The majorite-pyrope(sub)ss + magnesiowustite evidently crystallized from a dense melt of bulk Sixiangkou composition that was produced by shock-fusion under high pressures and temperatures, whereas ringwoodite and low-Ca majorite in the second assemblage were formed by solid state transformation of olivine and low-Ca pyroxene originally present in the meteorite. The two high pressure assemblages indicate a duration over a time on the order of seconds under a high pressure (20-24 GPa) and high temperature (2050-2300 degrees C) regime.

  6. Spin superfluid Josephson quantum devices

    Science.gov (United States)

    Takei, So; Tserkovnyak, Yaroslav; Mohseni, Masoud

    2017-04-01

    A macroscopic spintronic qubit based on spin superfluidity and spin Hall phenomena is proposed. This magnetic quantum information processing device realizes the spin-supercurrent analog of the superconducting phase qubit and allows for full electrical control and readout. We also show that an array of interacting magnetic phase qubits can realize a quantum annealer. These devices can be built through standard solid-state fabrication technology, allowing for scalability. However, the upper bound for the operational temperature can, in principle, be higher than the superconducting counterpart, as it is ultimately governed by the magnetic ordering temperatures, which could be much higher than the critical temperatures of the conventional superconducting devices.

  7. Conceptual History, Cultural History, Social History

    Directory of Open Access Journals (Sweden)

    Viktor Zhivov (†

    2014-10-01

    Full Text Available V. M. Zhivov’s introduction to Studies in Historical Semantics of the Russian Language in the Early Modern Period (2009, translated here for the first time, offers a critical survey of the historiography on Begriffsgeschichte, the German school of conceptual history associated with the work of Reinhart Koselleck, as well as of its application to the study of Russian culture.  By situating Begriffsgeschichte in the context of late-nineteenth and early twentieth-century European philosophy, particularly hermeneutics and phenomenology, the author points out the important, and as yet unacknowledged, role that Russian linguists have played in the development of a native school of conceptual history.  In the process of outlining this alternative history of the discipline, Zhivov provides some specific examples of the way in which the study of “historical semantics” can be used to analyze the development of Russian modernity.

  8. GaN-Si direct wafer bonding at room temperature for thin GaN device transfer after epitaxial lift off

    Science.gov (United States)

    Mu, Fengwen; Morino, Yuki; Jerchel, Kathleen; Fujino, Masahisa; Suga, Tadatomo

    2017-09-01

    Room temperature GaN-Si direct wafer bonding was done by surface activated bonding (SAB). At first, a feasibility study using GaN template has been done. Then, crystal-face dependence of the bonding results for freestanding GaN substrate has been investigated between Ga-face and N-face. The results of Ga-face to Si bonding are better than that of N-face to Si bonding such as higher bonding energy and larger bonded area. This difference should be caused by their different surface roughnesses after chemical-mechanical polishing (CMP). Besides, both of the structure and composition of the two kinds of interfaces were investigated to understand the bonding mechanisms. The phenomenon of Ga-enrichment during surface activation and Ga-diffusion into Si at room temperature for both Ga-face bonding and N-face bonding has been confirmed.

  9. Optical and Structural Properties of Multi-wall-carbon-nanotube-modified ZnO Synthesized at Varying Substrate Temperatures for Highly Efficient Light Sensing Devices

    Directory of Open Access Journals (Sweden)

    Valentine Saasa

    2015-12-01

    Full Text Available Structural, optical and light detection properties on carbon-nanotube-modified ZnO thin films grown at various temperatures from room to 1173 K are investigated. The optical band gap values calculated from reflectivity data show a hump at a critical temperature range of 873-1073 K. Similar trends in surface roughness as well as crystallite size of the films are observed. These changes have been attributed to structural change from wurzite hexagonal to cubic carbon modified ZnO as also validated by x-ray diffraction, RBS and PIXE of these layers. UV and visible light detection properties show similar trends. It is demonstrated that the present films can sense both UV and visible light to a maximum response efficiency of 66 % which is much higher than the last reported efficiency 10 %. This high response is given predominantly by cubic crystallite rather than the wurzite hexagonal composites.

  10. Near Room-Temperature Memory Devices Based on Hybrid Spin-Crossover@SiO2 Nanoparticles Coupled to Single-Layer Graphene Nanoelectrodes.

    Science.gov (United States)

    Holovchenko, Anastasia; Dugay, Julien; Giménez-Marqués, Mónica; Torres-Cavanillas, Ramón; Coronado, Eugenio; van der Zant, Herre S J

    2016-09-01

    The charge transport properties of SCO [Fe(Htrz)2 (trz)](BF4 ) NPs covered with a silica shell placed in between single-layer graphene electrodes are reported. A reproducible thermal hysteresis loop in the conductance above room-temperature is evidenced. This bistability combined with the versatility of graphene represents a promising scenario for a variety of technological applications but also for future sophisticated fundamental studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Silicon Carbide Electronic Devices

    Science.gov (United States)

    Neudeck, P. G.

    2001-01-01

    The status of emerging silicon carbide (SiC) widebandgap semiconductor electronics technology is briefly surveyed. SiC-based electronic devices and circuits are being developed for use in high-temperature, high-power, and/or high-radiation conditions under which conventional semiconductors cannot function. Projected performance benefits of SiC electronics are briefly illustrated for several applications. However, most of these operational benefits of SiC have yet to be realized in actual systems, primarily owing to the fact that the growth techniques of SiC crystals are relatively immature and device fabrication technologies are not yet sufficiently developed to the degree required for widespread, reliable commercial use. Key crystal growth and device fabrication issues that limit the performance and capability of high-temperature and/or high-power SiC electronics are identified. The electrical and material quality differences between emerging SiC and mature silicon electronics technology are highlighted.

  12. Intellectual History

    DEFF Research Database (Denmark)

    In the 5 Questions book series, this volume presents a range of leading scholars in Intellectual History and the History of Ideas through their answers to a brief questionnaire. Respondents include Michael Friedman, Jacques le Goff, Hans Ulrich Gumbrecht, Jonathan Israel, Phiip Pettit, John Pocock...

  13. Romerrigets historie

    DEFF Research Database (Denmark)

    Christiansen, Erik

    Romerrigets historie fra Roms legendariske grundlæggelse i 753 f.v.t. til Heraklios' tronbestigelse i 610 e.v.t.......Romerrigets historie fra Roms legendariske grundlæggelse i 753 f.v.t. til Heraklios' tronbestigelse i 610 e.v.t....

  14. Holocene vegetation and climate histories in the eastern Tibetan Plateau: controls by insolation-driven temperature or monsoon-derived precipitation changes?

    Science.gov (United States)

    Zhao, Y.; Yu, Z.; Zhao, W.

    2012-12-01

    The climates on the eastern Tibetan Plateau are strongly influenced by direct insolation heating as well as monsoon-derived precipitation change. However, the moisture and temperature influences on regional vegetation and climate have not been well documented in paleoclimate studies. Here we present a well-dated and high-resolution loss-on-ignition, peat property and fossil pollen record over the last 10,000 years from a sedge-dominated fen peatland in the central Zoige Basin on the eastern Tibetan Plateau and discuss its ecological and climatic interpretations. Lithology results indicate that organic matter content is high at 60-80% between 10 and 3 ka (1 ka = 1000 cal yr BP) and shows large-magnitude fluctuations in the last 3000 years. Ash-free bulk density, as a proxy of peat decomposition and peatland surface moisture conditions, oscillates around a mean value of 0.1 g/cm3, with low values at 6.5-4.7 ka, reflecting a wet interval, and an increasing trend from 4.7 to 2 ka, suggesting a drying trend. The time-averaged mean carbon accumulation rates are 30.6 gC/m2/yr for the last 10,000 years, higher than that from many northern peatlands. Tree pollen (mainly from Picea), mostly reflecting temperature change in this alpine meadow-forest ecotonal region, has variable values (from 3 to 34%) during the early Holocene, reaches the peak value during the mid-Holocene at 6.5 ka, and then decreases until 2 ka. The combined peat property and pollen data indicate that a warm and wet climate prevailed in the mid-Holocene (6.5-4.7 ka), representing a monsoon maximum or "optimum climate" for the region. The timing is consistent with recent paleo-monsoon records from southern China and with the idea that the interplays of summer insolation and other extratropical large-scale boundary conditions, including sea-surface temperature and sea-level change, control regional climate. The cooling and drying trend since the mid-Holocene likely reflects the decrease in insolation heating

  15. Room-temperature serial crystallography using a kinetically optimized microfluidic device for protein crystallization and on-chip X-ray diffraction

    Directory of Open Access Journals (Sweden)

    Michael Heymann

    2014-09-01

    Full Text Available An emulsion-based serial crystallographic technology has been developed, in which nanolitre-sized droplets of protein solution are encapsulated in oil and stabilized by surfactant. Once the first crystal in a drop is nucleated, the small volume generates a negative feedback mechanism that lowers the supersaturation. This mechanism is exploited to produce one crystal per drop. Diffraction data are measured, one crystal at a time, from a series of room-temperature crystals stored on an X-ray semi-transparent microfluidic chip, and a 93% complete data set is obtained by merging single diffraction frames taken from different unoriented crystals. As proof of concept, the structure of glucose isomerase was solved to 2.1 Å, demonstrating the feasibility of high-throughput serial X-ray crystallography using synchrotron radiation.

  16. Spring-temperature variability and eutrophication history inferred from sedimentary pigments in the varved sediments of Lake Żabińskie, NE Poland

    Science.gov (United States)

    Amann, Benjamin; Lobsiger, Simon; Tylmann, Wojciech; Filipiak, Janusz; Grosjean, Martin

    2014-05-01

    Principal Component Analysis and cluster analysis, we demonstrate that concentrations of chlorins (diagenetic products of chlorophyll a) are not affected by the eutrophication signal, and instead respond to temperature. We calibrated the concentrations of chlorins with meteorological data spatially averaged and downscaled from close stations to the lake site. The results revealed that concentrations of chlorins are significantly correlated to mean spring (MAM) temperature (r = 0.63, p < 0.05, for AD 1907-2008, 5-yr filtered resolution). These results are consistent with monthly limnological measurements of the lake water column from autumn 2011 to autumn 2013, where the highest chlorophyll a concentrations in the surface water were also found in spring. Similar performances were gained from scanning VIS-RS-inferred chlorins data on the fresh sediment core. This allows us to extend the chlorins-inferred spring-temperature reconstruction further back in time at high temporal resolution.

  17. Rhetoric and History in Brian Friel’s Making History

    Directory of Open Access Journals (Sweden)

    Manfredi Bernardini

    2014-05-01

    Full Text Available This paper proposes an analysis of the rhetorical devices of representation and recording of history, investigated and deconstructed by the so-called "history play" Making History, written by Brian Friel and performed by the Field Day Theatre Company in 1988. The play tells of the heroic deeds of Hugh O’ Neill, a Sixteenth century Ulster gaelic Lord, intertwining his personal facts with the crucial events in Irish History.Friel rediscovers a paradigmatic figure in Irish history, using the theatrical performance in order to dissect and thoroughly scrutinize the basis for the nationalist rhetoric which is at the root of contemporary conflicts in Northern Ireland.Starting from the theoretical contributions of seminal authors such as Hayden White, Paul Ricoeur, Walter Benjamin, Michel De Certeau, the northern Irish playwright challenges the supposedly scientific nature of History, that would decidedly mark it as different from other forms of narrative, such as literature. Hence History’s metalinguistic nature, based on specific rhetorical strategies, is uncovered. Therefore, on the one hand Friel questions the theoretical foundations of History, of its “grand narratives”,  giving ‘stories’ the chance to be part of official History’s discourse. On the other hand, he lifts the veil on the rhetorical (and in some ways ideological mechanisms involved in the process of History writing, through the character of archbishop Peter Lombard - O’ Neill’s biographer, storyteller and master in elocutio - and sheds light on how History is a form of rhetorical narrative, almost a patchwork of events collected (inventio and assembled (dispositio by the historian according to specific criteria of representation.By taking us inside the very nucleus of the rhetorical devices used by storiography, Friel unmasks the delicate processes of making and unmaking history, the ones that help give birth to identity as well as History.

  18. Interannual to decadal variability of summer sea surface temperature in the Sea of Okhotsk recorded in the shell growth history of Stimpson's hard clams (Mercenaria stimpsoni)

    Science.gov (United States)

    Tanabe, Kazushige; Mimura, Toshihiro; Miyaji, Tsuzumi; Shirai, Kotaro; Kubota, Kaoru; Murakami-Sugihara, Naoko; Schöne, Bernd R.

    2017-10-01

    Sclerochronological and shell stable oxygen isotopic analyses were conducted on live-caught specimens of Stimpson's hard clams, Mercenaria stimpsoni, from the southern Sea of Okhotsk, off northern Hokkaido, Japan. In this region, the main growing season of this species during early ontogeny (below the age of 12 years) lasts from mid-spring to mid-fall at sea surface temperatures (SST) between approximately 10 and 22 °C. Growth cessation begins between late fall and early spring at SST, below approximately 6 °C; however, shell growth was largely limited to the summer season later in life. Counting of annual increments indicated that this species had a relatively long life span of up to 100 years. Annual shell growth rates were high during early ontogeny and declined abruptly afterwards. Mean standardized shell growth indices (SGIs) of long-lived specimens were positively correlated to the mean summer SSTs near the sampling site and in the coastal waters off northern Hokkaido. The SGI chronology of the longest-lived specimen (99 years old) exhibited periodicities of approximately 10 and 5 years during the calendar years 1920-2011, possibly reflecting the quasi-decadal variability of summer SST in the southern Sea of Okhotsk. These findings indicate that M. stimpsoni could serve as an archive to reconstruct past marine climate changes in the Sea of Okhotsk.

  19. Advanced Superconducting Materials and Device Concepts

    National Research Council Canada - National Science Library

    Beasley, M

    2001-01-01

    .... These include the conducting magnetic oxide strontium ruthenate relevant to high-temperature Josephson devices, the doped magnetic oxide lanthanum manganate relevant to magnetic sensing, and scanning...

  20. Purification of 1.9-nm-diameter semiconducting single-wall carbon nanotubes by temperature-controlled gel-column chromatography and its application to thin-film transistor devices

    Science.gov (United States)

    Thendie, Boanerges; Omachi, Haruka; Hirotani, Jun; Ohno, Yutaka; Miyata, Yasumitsu; Shinohara, Hisanori

    2017-06-01

    Large-diameter semiconductor single-wall carbon nanotubes (s-SWCNTs) have superior mobility and conductivity to small-diameter s-SWCNTs. However, the purification of s-SWCNTs with diameters larger than 1.6 nm by gel filtration has been difficult owing to the low selectivity of the conventional purification method in these large-diameter regions. We report a combination of temperature-controlled gel filtration and the gradient elution technique that we developed to enrich a high-purity s-SWCNT with a diameter as large as 1.9 nm. The thin-film transistor (TFT) device using the 1.9-nm-diameter SWCNT shows an average channel mobility of 23.7 cm2 V-1 s-1, which is much higher than those of conventional SWCNT-TFTs with smaller-diameters of 1.5 and 1.4 nm.

  1. Ferroelectric devices

    CERN Document Server

    Uchino, Kenji

    2009-01-01

    Updating its bestselling predecessor, Ferroelectric Devices, Second Edition assesses the last decade of developments-and setbacks-in the commercialization of ferroelectricity. Field pioneer and esteemed author Uchino provides insight into why this relatively nascent and interdisciplinary process has failed so far without a systematic accumulation of fundamental knowledge regarding materials and device development.Filling the informational void, this collection of information reviews state-of-the-art research and development trends reflecting nano and optical technologies, environmental regulat

  2. Catalytic devices

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ming; Zhang, Xiang

    2018-01-23

    This disclosure provides systems, methods, and apparatus related to catalytic devices. In one aspect, a device includes a substrate, an electrically insulating layer disposed on the substrate, a layer of material disposed on the electrically insulating layer, and a catalyst disposed on the layer of material. The substrate comprises an electrically conductive material. The substrate and the layer of material are electrically coupled to one another and configured to have a voltage applied across them.

  3. Temperature sensitivity of surface tension-driven flows: Application to time-temperature integration

    Science.gov (United States)

    Thomas, John; Hunter, Lawrence; Boyle, Michael

    2011-11-01

    The effects of time-dependent temperature fluctuations on surface-tension driven fluid flow inside a capillary are modeled using classical hydrodynamics. To begin, we use Newton's second law to derive a non-dimensional equation of motion that describes capillary flow as a function of system geometry, fluid properties, and fluid temperature. We use this model to examine how temperature excursions affect the instantaneous and long-term position and velocity of the fluid front inside the capillary. Next, we examine the combined effects of orientation change and temperature change on fluid movement through the capillary. Using this data, we show how to design a non-powered time-temperature integration device for recording the cumulative temperature exposure history of an asset or local environment. By selecting an appropriate fluid and capillary geometry, we show how such devices can be designed to exhibit arbitrary temperature sensitivities, operate over arbitrary monitoring periods (months to decades), and operate in a manner that does not depend on orientation.

  4. TiB2-Based Composites for Ultra-High-Temperature Devices, Fabricated by SHS, Combining Strong and Weak Exothermic Reactions

    Directory of Open Access Journals (Sweden)

    Marta Ziemnicka-Sylwester

    2013-05-01

    Full Text Available TiB2-based ceramic matrix composites (CMCs were fabricated using elemental powders of Ti, B and C. The self-propagating high temperature synthesis (SHS was carried out for the highly exothermic “in situ” reaction of TiB2 formation and the “tailing” synthesis of boron carbide characterized by weak exothermicity. Two series of samples were fabricated, one of them being prepared with additional milling of raw materials. The effects of TiB2 vol fraction as well as grain size of reactant were investigated. The results revealed that combustion was not successful for a TiB2:B4C molar ratio of 0.96, which corresponds to 40 vol% of TiB2 in the composite, however the SHS reaction was initiated and self-propagated for the intended TiB2:B4C molar ratio of 2.16 or above. Finally B13C2 was formed as the matrix phase in each composite. Significant importance of the grain size of the C precursor with regard to the reaction completeness, which affected the microstructure homogeneity and hardness of investigated composites, was proved in this study. The grain size of Ti powder did not influence the microstructure of TiB2 grains. The best properties (HV = 25.5 GPa, average grain size of 9 μm and homogenous microstructure, were obtained for material containing 80 vol% of TiB2, fabricated using a graphite precursor of 2 μm.

  5. TiB2-Based Composites for Ultra-High-Temperature Devices, Fabricated by SHS, Combining Strong and Weak Exothermic Reactions

    Science.gov (United States)

    Ziemnicka-Sylwester, Marta

    2013-01-01

    TiB2-based ceramic matrix composites (CMCs) were fabricated using elemental powders of Ti, B and C. The self-propagating high temperature synthesis (SHS) was carried out for the highly exothermic “in situ” reaction of TiB2 formation and the “tailing” synthesis of boron carbide characterized by weak exothermicity. Two series of samples were fabricated, one of them being prepared with additional milling of raw materials. The effects of TiB2 vol fraction as well as grain size of reactant were investigated. The results revealed that combustion was not successful for a TiB2:B4C molar ratio of 0.96, which corresponds to 40 vol% of TiB2 in the composite, however the SHS reaction was initiated and self-propagated for the intended TiB2:B4C molar ratio of 2.16 or above. Finally B13C2 was formed as the matrix phase in each composite. Significant importance of the grain size of the C precursor with regard to the reaction completeness, which affected the microstructure homogeneity and hardness of investigated composites, was proved in this study. The grain size of Ti powder did not influence the microstructure of TiB2 grains. The best properties (HV = 25.5 GPa, average grain size of 9 μm and homogenous microstructure), were obtained for material containing 80 vol% of TiB2, fabricated using a graphite precursor of 2 μm. PMID:28809250

  6. Matematikkens historie

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    2009-01-01

    Matematikkens historie i syv kapitler: 1. Matematik i støbeskeen; 2. Matematikkens græske arv; 3. Den gyldne tidsalder for hinduer og arabere; 4. Matematik i Kina; 5. Renæssancens matematik; 6. Regning med infinitesimaler ser dagens lys; 7. Matematik i det tyvende århundrede.......Matematikkens historie i syv kapitler: 1. Matematik i støbeskeen; 2. Matematikkens græske arv; 3. Den gyldne tidsalder for hinduer og arabere; 4. Matematik i Kina; 5. Renæssancens matematik; 6. Regning med infinitesimaler ser dagens lys; 7. Matematik i det tyvende århundrede....

  7. 78 FR 1162 - Cardiovascular Devices; Reclassification of External Cardiac Compressor

    Science.gov (United States)

    2013-01-08

    ..., including cardiopulmonary resuscitation (CPR) aids, from class III devices into class II (special controls.... Automated external cardiac compressor devices are used as an adjunct to manual cardiopulmonary resuscitation... assure the safety and effectiveness of the device. II. Regulatory History of the Device On March 9, 1979...

  8. Vacuum distillation device

    Energy Technology Data Exchange (ETDEWEB)

    Hamer, J.A.; Burg, C.J. Van Der; Kanbier, D.; Heijden, P. Van Der.

    1990-09-18

    This invention relates to a vacuum distillation device comprising a vacuum distillation column, a furnace provided with a heat exchange tube, and a connecting conduit between the column and the heat exchange tube. Such a device is used to fractionate a hydrocarbon-containing feed sometimes referred to as long residue. An object of this invention is to provide a vacuum distillation device which allows vaporization of a major part of the feed upstream of the column inlet. To this end, the device according to the invention comprises a vacuum distillation device as described above, in which the inner diameter of the heat exchange tube increases along its length to between 2.4 and 3 times the inner diameter of the tube inlet, and in which the inner diameter of the connecting conduit gradually increases along its length to between 2.5 and 5.4 times the inner diameter of the tube outlet. During normal operation of the device of the invention, only less than 50 wt % of the feed is vaporized in the heat exchange tube in the furnace, and more feed is vaporized in the connecting conduit, so that at the outlet end of the conduit the feed comprises about 0.9 kg vapor per kg of feed. The invention provides improved heat transfer in the heat exchange tubes such that fouling is reduced, consequently more heat can be applied per unit of time in the heat exchange tube. This allows either heating of the feed to a higher temperature or increasing the throughput for the same temperature.

  9. Identification device

    Science.gov (United States)

    Lin, Jian-Shian; Su, Chih-Chieh; Chou, Ta-Hsin; Wu, Mount-Learn; Lai, Chieh-Lung; Hsu, Che-Lung; Lan, Hsiao-Chin; Huang, Hung-I.; Liu, Yung-Chih; Tu, Zong-Ru; Lee, Chien-Chieh; Chang, Jenq-Yang

    2007-09-01

    In this Letter, the identification device disclosed in the present invention is comprised of: a carrier and a plurality of pseudo-pixels; wherein each of the plural pseudo-pixels is formed on the carrier and is further comprised of at least a light grating composed of a plurality of light grids. In a preferred aspect, each of the plural light grids is formed on the carrier while spacing from each other by an interval ranged between 50nm and 900nm. As the aforesaid identification device can present specific colors and patterns while it is being viewed by naked eye with respect to a specific viewing angle, the identification device is preferred for security and anti-counterfeit applications since the specific colors and patterns will become invisible when it is viewed while deviating from the specific viewing angle.

  10. 77 FR 16239 - Medical Device User Fee Act; Public Meeting

    Science.gov (United States)

    2012-03-20

    ... participants better understand the history and evolution of the medical device user fee program and the current... MDUFA III including: Additional scientific, regulatory, and leadership training; additional staff...

  11. Optical Near-field Interactions and Forces for Optoelectronic Devices

    Science.gov (United States)

    Kohoutek, John Michael

    Throughout history, as a particle view of the universe began to take shape, scientists began to realize that these particles were attracted to each other and hence came up with theories, both analytical and empirical in nature, to explain their interaction. The interaction pair potential (empirical) and electromagnetics (analytical) theories, both help to explain not only the interaction between the basic constituents of matter, such as atoms and molecules, but also between macroscopic objects, such as two surfaces in close proximity. The electrostatic force, optical force, and Casimir force can be categorized as such forces. A surface plasmon (SP) is a collective motion of electrons generated by light at the interface between two mediums of opposite signs of dielectric susceptibility (e.g. metal and dielectric). Recently, surface plasmon resonance (SPR) has been exploited in many areas through the use of tiny antennas that work on similar principles as radio frequency (RF) antennas in optoelectronic devices. These antennas can produce a very high gradient in the electric field thereby leading to an optical force, similar in concept to the surface forces discussed above. The Atomic Force Microscope (AFM) was introduced in the 1980s at IBM. Here we report on its uses in measuring these aforementioned forces and fields, as well as actively modulating and manipulating multiple optoelectronic devices. We have shown that it is possible to change the far field radiation pattern of an optical antenna-integrated device through modification of the near-field of the device. This modification is possible through change of the local refractive index or reflectivity of the "hot spot" of the device, either mechanically or optically. Finally, we have shown how a mechanically active device can be used to detect light with high gain and low noise at room temperature. It is the aim of several of these integrated and future devices to be used for applications in molecular sensing

  12. Cultural history as polyphonic history

    Directory of Open Access Journals (Sweden)

    Burke, Peter

    2010-06-01

    Full Text Available This texts offers a reflection on the origins and actual development of the field of cultural history through a comparison with the term that has served as title for this seminar: “polyphonic history”. The author provides an overview of the themes that have structured the seminar (the history of representations, the history of the body and the cultural history of science with the aim of making explicit and clarifying this plurality of voices in the field of history as well as its pervasiveness in other research areas.

    En este texto se ofrece una reflexión sobre el origen y actual desarrollo del campo de la historia cultural a través de una comparación con el término que ha dado título a este seminario: “historia polifónica”. El autor propone un recorrido por las áreas temáticas que han conformado la estructura del seminario (la historia de las representaciones, la historia del cuerpo y la historia cultural de la ciencia con el objeto de explicitar y explicar esta pluralidad de voces en el campo de la historia, así como su repercusión en otras áreas del conocimiento.

  13. Potted history

    NARCIS (Netherlands)

    Groot, N.; Van Dijk, T.

    2010-01-01

    The Jordan Valley was once populated by a people, now almost forgotten by historians, with whom the pharaoh of Egypt sought favour. That is the conclusion reached by Niels Groot, the first researcher to take a PhD at the Delft-Leiden Centre for Archaeology, Art History and Science.

  14. LCA History

    DEFF Research Database (Denmark)

    Bjørn, Anders; Owsianiak, Mikołaj; Molin, Christine

    2017-01-01

    The idea of LCA was conceived in the 1960s when environmental degradation and in particular the limited access to resources started becoming a concern. This chapter gives a brief summary of the history of LCA since then with a focus on the fields of methodological development, application...

  15. Thermal energy storage devices, systems, and thermal energy storage device monitoring methods

    Science.gov (United States)

    Tugurlan, Maria; Tuffner, Francis K; Chassin, David P.

    2016-09-13

    Thermal energy storage devices, systems, and thermal energy storage device monitoring methods are described. According to one aspect, a thermal energy storage device includes a reservoir configured to hold a thermal energy storage medium, a temperature control system configured to adjust a temperature of the thermal energy storage medium, and a state observation system configured to provide information regarding an energy state of the thermal energy storage device at a plurality of different moments in time.

  16. Stratification devices

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    2008-01-01

    Thermal stratification in the storage tank is extremely important in order to achieve high thermal performance of a solar heating system. High temperatures in the top of the storage tank and low temperatures in the bottom of the storage tank lead to the best operation conditions for any solar...... stratifiers. A new multi layer fabric stratification pipe is presented together with marketed stratification pipes....

  17. Detection device

    Science.gov (United States)

    Smith, J.E.

    1981-02-27

    The present invention is directed to a detection device comprising: (1) an entrance chamber; (2) a central chamber; and (3) an exit chamber. The central chamber includes an ionizing gas, anode, and means for connecting the anode with an external power supply and pulse counter.

  18. Medical Devices

    NARCIS (Netherlands)

    Verkerke, Gijsbertus Jacob; Mahieu, H.F.; Geertsema, A.A.; Hermann, I.F.; van Horn, J.R.; Hummel, J. Marjan; van Loon, J.P.; Mihaylov, D.; van der Plaats, A.; Schraffordt Koops, H.; Schutte, H.K.; Veth, R.P.H.; de Vries, M.P.; Rakhorst, G.; Shi, Donglu

    2004-01-01

    The development of new medical devices is a very time-consuming and costly process. Besides the time between the initial idea and the time that manufacturing and testing of prototypes takes place, the time needed for the development of production facilities, production of test series, marketing,

  19. Printing Device

    NARCIS (Netherlands)

    Berg, van den M.J.; Markies, P.R.; Zuilhof, H.

    2014-01-01

    An ink jetprinting device includes a pressure chamber formed by a plurality of wall segments, a first aperture extending through a wall segment and communicating with an ink jet orifice and a second aperture extending through a wall segment and communicating with an ink supply duct. The pressure

  20. Business History as Cultural History

    DEFF Research Database (Denmark)

    Lunde Jørgensen, Ida

    The paper engages with the larger question of how cultural heritage becomes taken for granted and offers a complimentary view to the anthropological ʻCopenhagen School’ of business history, one that draws attention to the way corporate wealth directly and indirectly influences the culture available...

  1. Sommerferiens historie

    DEFF Research Database (Denmark)

    Lützen, Karin

    2011-01-01

    Summer holiday is a pleasure which did not become available to many people until the 20th Century. The article describes the early mountain rambles of the bourgeoisie and their holidays in seaside boarding houses. Outdoor pursuits and stays in boarding houses at bathing resorts also became...... pattern. Finally, the history of the special holiday camps is told, which were established by American Jews because they were excluded from many hotels....

  2. Business History

    DEFF Research Database (Denmark)

    Hansen, Per H.

    2012-01-01

    This article argues that a cultural and narrative perspective can enrich the business history field, encourage new and different questions and answers, and provide new ways of thinking about methods and empirical material. It discusses what culture is and how it relates to narratives. Taking...... a cultural and narrative approach may affect questions, sources, and methodologies, as well as the status of our results. Finally, a narrative approach may contribute to our historical understanding of entrepreneurship and globalization....

  3. Analytical history

    OpenAIRE

    Bertrand M. Roehner

    2017-01-01

    The purpose of this note is to explain what is "analytical history", a modular and testable analysis of historical events introduced in a book published in 2002 (Roehner and Syme 2002). Broadly speaking, it is a comparative methodology for the analysis of historical events. Comparison is the keystone and hallmark of science. For instance, the extrasolar planets are crucial for understanding our own solar system. Until their discovery, astronomers could observe only one instance. Single instan...

  4. Survey of cryogenic semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Talarico, L.J.; McKeever, J.W.

    1996-04-01

    Improved reliability and electronic performance can be achieved in a system operated at cryogenic temperatures because of the reduction in mechanical insult and in disruptive effects of thermal energy on electronic devices. Continuing discoveries of new superconductors with ever increasing values of T{sub c} above that of liquid nitrogen temperature (LNT) have provided incentive for developing semiconductor electronic systems that may also operate in the superconductor`s liquid nitrogen bath. Because of the interest in high-temperature superconductor (HTS) devices, liquid nitrogen is the cryogen of choice and LNT is the temperature on which this review is focused. The purpose of this survey is to locate and assemble published information comparing the room temperature (298 K), performance of commercially available conventional and hybrid semiconductor device with their performance at LNT (77K), to help establish their candidacy as cryogenic electronic devices specifically for use at LNT. The approach to gathering information for this survey included the following activities. Periodicals and proceedings were searched for information on the behavior of semiconductor devices at LNT. Telephone calls were made to representatives of semiconductor industries, to semiconductor subcontractors, to university faculty members prominent for their research in the area of cryogenic semiconductors, and to representatives of the National Aeronautics and Space Administration (NASA) and NASA subcontractors. The sources and contacts are listed with their responses in the introduction, and a list of references appears at the end of the survey.

  5. Laser device

    Science.gov (United States)

    Scott, Jill R.; Tremblay, Paul L.

    2008-08-19

    A laser device includes a virtual source configured to aim laser energy that originates from a true source. The virtual source has a vertical rotational axis during vertical motion of the virtual source and the vertical axis passes through an exit point from which the laser energy emanates independent of virtual source position. The emanating laser energy is collinear with an orientation line. The laser device includes a virtual source manipulation mechanism that positions the virtual source. The manipulation mechanism has a center of lateral pivot approximately coincident with a lateral index and a center of vertical pivot approximately coincident with a vertical index. The vertical index and lateral index intersect at an index origin. The virtual source and manipulation mechanism auto align the orientation line through the index origin during virtual source motion.

  6. Temperature stabilization of microwave ferrite devices

    Science.gov (United States)

    Kaminsky, R.; Wendt, E. J.

    1978-01-01

    Thin-film heating element for strip-line circulator is sandwiched between insulation and copper laminations. Disks conform to shape of circulator ferrite disks and are installed between copper-clad epoxy ground planes. Heater design eliminates external cartridges and reduces weight by approximately one-third.

  7. "Distinvar" device

    CERN Multimedia

    CERN PhotoLab

    1965-01-01

    The alignment of one of the accelerator magnets being checked by the AR Division survey group. A "distinvar" device, invented by the group, using calibrated invar wires stretched between the fixed survey pillar (on the left) and a fixed point on the magnet. In two days it is thus possible to measure the alignment of the 100 magnets with an accuracy better than 1/10.

  8. Temperature Measurement for the LSST

    OpenAIRE

    Czekala, Ian; Paul O'Connor

    2014-01-01

    We explore the various means of temperature measurement to search for a low-cost accurate temperature measuring device.  This poster was completed as part of the Brookhaven National Laboratory High School intern program in 2005.

  9. Effectively utilizing device maintenance data to optimize a medical device maintenance program.

    Science.gov (United States)

    Brewin, D; Leung, J; Easty, T

    2001-01-01

    Methods developed by the clinical engineering community and the principles outlined by ISO regulations for the application of risk management to medical devices were integrated to provide a basis for the unique optimization system implemented into the University Health Network medical device maintenance program. Device maintenance history data stored in the database is used to conduct a risk analysis and to compute predefined benchmarks to highlight groups of equipment for which the current maintenance regime is not optimal. Using a software data research tool we are able to investigate device history data and support alterations in maintenance intervals, user training, maintenance procedures, and/or device purchasing. These alterations are justified, documented, and monitored for risk in a continuous management cycle. The predicted benefits are an overall improvement in the reliability of the devices maintained, coupled with a drop in repetitive device checks that result in no measurable benefits.

  10. Ildens historier

    DEFF Research Database (Denmark)

    Lassen, Henrik Roesgaard

    In December 2012 a manuscript entitled "Tællelyset" ['The Tallow Candle'] was discovered in an archive. The story was subsequently presented to the world as Hans Christian Andersen's first fairy tale and rather bombastically celebrated as such. In this book it is demonstrated that the text cannot...... have been written by Andersen. In several chapters the curiously forgotten history of fire-lighting technology is outlined, and it is demonstrated that "Tællelyset" is written by a person with a modern perspective on how to light a candle - among other things. The central argument in the book springs...

  11. Large Helical Device project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    In this book, the results of the scientific research on the design, trial manufacture and manufacturing processes of the Large Helical Device which was constructed in National Institute for Fusion Science are summarized. The LHD is the largest helical device in the world, and the largest superconducting system in the world. It possesses the following features: the optimization of heliotron magnetic field coordination, the adoption of superconducting magnets for 2 helical magnetic field coils and 6 poloidal coils, the adoption of helical diverter which enables steady plasma experiment, the flexible specification as the experimental facility and so on. The construction has been carried out smoothly, and in March, 1998, first plasma was generated. The outline of the Large Helical Device project, the physical design, the equipment design, the research and development of superconductivity and low temperature system, the design and manufacture of the superconducting and low temperature systems, the design and manufacture of the power source and superconducting bus-line, vacuum vessel and others, electron cyclotron heating, neutral beam injection and ion cyclotron RF heating, measurement system, control and data processing, safety management, the theory and analysis of LHD plasma, the visualization of the result of theoretical analysis, the analysis of the experimental data, and the experiment plan are described. (K.I.)

  12. Combined application of numerical simulation models and fission tracks analysis in order to determine the history of temperature, subsidence and lifting of sedimentary basins. A case study from the Ruhr Coal basin inWest Germany; Die kombinierte Anwendung numerischer Simulationsmodelle und Spaltspurenuntersuchungen zur Entschluesselung der Temperatur-, Subsidenz- und Hebungsgeschichte von Sedimentbecken - Ein Fallbeispiel aus dem Ruhrkohlenbecken Westdeutschlands

    Energy Technology Data Exchange (ETDEWEB)

    Karg, H. [Forschungszentrum Juelich (Germany). Inst. fuer Erdoel und organische Geochemie; Littke, R. [RWTH Aachen (Germany); Bueker, C. [Univ. Bern (Switzerland). Inst. fuer Geologie

    1998-12-31

    The Ruhr Coal basin is one of the globally best known sedimentary basins. According to classical, established the Ruhr Basin is a typical foreland molasse basins. The thermal history (heating and cooling) and the structural and sedimentary development since the formation of the basin, i.e. subsidence and lifting and erosion are of the first importance for the potential formation of hydrocarbons. In order to quantify these processes, two-dimensional numerical simulation models (based on geological and seismological sections) of the Ruhr basin were developed from which one could conclude the heat flow at the time of maximum basin depth after variscis orogenesis, maximum temperatures of individual strata sections and thickness of eroded strata. The PetroMod program package of the company IES/Juelich was used for these analyses. Finite-element-grids enable mathematican mapping and reconstruction of complex geological structures and processes. The models on temperature history are calibrated by comparing measured and calculated carbonification (vitrinite reflection) data. (orig./MSK). [Deutsch] Das Ruhrkohlenbecken stellt weltweit eines der am besten erforschten Sedimentbecken dar. Nach klassischen und etablierten Beckenmodellen kann das Ruhrbecken als typisches Vorlandmolassebecken angesehen werden. Besonders relevant fuer die potentielle Bildung von Kohlenwasserstoffen sind in erster Linie die thermische Geschichte (Aufheizung und Abkuehlung) sowie die strukturelle und sedimentaere Entwicklung seit der Beckenbildung, sprich Versenkungs-, Hebungs- und Erosionsprozesse. Um solche Prozesse zu quantifizieren, wurden im Ruhrbecken zweidimensionale (d.h. auf der Grundlage von geologischen und seismischen Sektionen) numerische Simulationsmodelle entwickelt, die Aufschluss ueber Waermefluesse zur Zeit der maximalen Beckeneintiefung im Anschluss an die variszische Orogenese, erreichte Maximaltemperaturen einzelner Schichtglieder sowie die Maechtigkeit erodierter Schichten im

  13. Review of GaN-based devices for terahertz operation

    Science.gov (United States)

    Ahi, Kiarash

    2017-09-01

    GaN provides the highest electron saturation velocity, breakdown voltage, operation temperature, and thus the highest combined frequency-power performance among commonly used semiconductors. The industrial need for compact, economical, high-resolution, and high-power terahertz (THz) imaging and spectroscopy systems are promoting the utilization of GaN for implementing the next generation of THz systems. As it is reviewed, the mentioned characteristics of GaN together with its capabilities of providing high two-dimensional election densities and large longitudinal optical phonon of ˜90 meV make it one of the most promising semiconductor materials for the future of the THz emitters, detectors, mixers, and frequency multiplicators. GaN-based devices have shown capabilities of operation in the upper THz frequency band of 5 to 12 THz with relatively high photon densities in room temperature. As a result, THz imaging and spectroscopy systems with high resolution and deep depth of penetration can be realized through utilizing GaN-based devices. A comprehensive review of the history and the state of the art of GaN-based electronic devices, including plasma heterostructure field-effect transistors, negative differential resistances, hetero-dimensional Schottky diodes, impact avalanche transit times, quantum-cascade lasers, high electron mobility transistors, Gunn diodes, and tera field-effect transistors together with their impact on the future of THz imaging and spectroscopy systems is provided.

  14. 21 CFR 882.5500 - Lesion temperature monitor.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lesion temperature monitor. 882.5500 Section 882...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5500 Lesion temperature monitor. (a) Identification. A lesion temperature monitor is a device used to monitor the tissue...

  15. Microelectromechanical reprogrammable logic device

    KAUST Repository

    Hafiz, Md Abdullah Al

    2016-03-29

    In modern computing, the Boolean logic operations are set by interconnect schemes between the transistors. As the miniaturization in the component level to enhance the computational power is rapidly approaching physical limits, alternative computing methods are vigorously pursued. One of the desired aspects in the future computing approaches is the provision for hardware reconfigurability at run time to allow enhanced functionality. Here we demonstrate a reprogrammable logic device based on the electrothermal frequency modulation scheme of a single microelectromechanical resonator, capable of performing all the fundamental 2-bit logic functions as well as n-bit logic operations. Logic functions are performed by actively tuning the linear resonance frequency of the resonator operated at room temperature and under modest vacuum conditions, reprogrammable by the a.c.-driving frequency. The device is fabricated using complementary metal oxide semiconductor compatible mass fabrication process, suitable for on-chip integration, and promises an alternative electromechanical computing scheme.

  16. Scalable devices

    KAUST Repository

    Krüger, Jens J.

    2014-01-01

    In computer science in general and in particular the field of high performance computing and supercomputing the term scalable plays an important role. It indicates that a piece of hardware, a concept, an algorithm, or an entire system scales with the size of the problem, i.e., it can not only be used in a very specific setting but it\\'s applicable for a wide range of problems. From small scenarios to possibly very large settings. In this spirit, there exist a number of fixed areas of research on scalability. There are works on scalable algorithms, scalable architectures but what are scalable devices? In the context of this chapter, we are interested in a whole range of display devices, ranging from small scale hardware such as tablet computers, pads, smart-phones etc. up to large tiled display walls. What interests us mostly is not so much the hardware setup but mostly the visualization algorithms behind these display systems that scale from your average smart phone up to the largest gigapixel display walls.

  17. Legislation to regulate medical devices.

    Science.gov (United States)

    Harris, M

    1975-01-01

    The history of medical device regulation began with the need to rid the marketplace of bogus inventions which were either harmful in themselves or harmful because they delayed meaningful treatment of illness. Since World War II, sophistication in medical technology and development of electronic and other types of medical devices has created a new need for regulation of safety and performance of devices used to cure and mitigate disease in man. The 1938 amendments to the Food, Drug, and Cosmetic Act gave FDA authority over labeling and advertising of devices, enforceable only after devices were marketed. In 1969 a study by an HEW commission documented the need for further legislation. The commission recommended three categories of medical devices: those requiring premarket clearance or scientific review, those for which standards could be established to protect the public, and those which are generally recognized as safe and for which nor standards would be necessary. In 1974 the Senate unanimously approved Senator Kennedy's "Medical Device Amendments of 1973" legislation which fulfills the recommendations of the HEW commission report. The House of Representatives failed to pass their version of the legislation in the 93rd Congress. Senator Kennedy re-introduced the bill in the 94th Congress and it passed the Senate in April 1975. Representative Rogers re-introduced an amended bill. The bill is expected to become law in 1975.

  18. Physics of semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Prew, B.A.

    1975-09-01

    The properties of semiconductors which make them important in the electronic devices industry, and how these properties are controlled by doping, are described. The physics and applications of p-n and other junction devices, and of bulk effect devices are discussed. Avalanche devices, optical devices, solar cells, Schottky barriers, MOS devices, heterojunctions, photoconductors, and transferred electron devices are considered.

  19. Environmental history

    DEFF Research Database (Denmark)

    Pawson, Eric; Christensen, Andreas Aagaard

    2017-01-01

    risks”. These are exposed by environmental history’s focus on long-run analysis and its narrative form that identifies the stories that we tell ourselves about nature. How a better understanding of past environmental transformations helps to analyse society and agency, and what this can mean......Environmental history is an interdisciplinary pursuit that has developed as a form of conscience to counter an increasingly powerful, forward-looking liberal theory of the environment. It deals with the relations between environmental ideas and materialities, from the work of the geographers George...... Perkins Marsh, Carl Sauer, and Clarence Glacken, to more recent global-scale assessments of the impact of the “great acceleration” since 1950. Today’s “runaway world” paradoxically embraces risk management in an attempt to determine its own future whilst generating a whole new category of “manufactured...

  20. Practical microwave electron devices

    CERN Document Server

    Meurant, Gerard

    2013-01-01

    Practical Microwave Electron Devices provides an understanding of microwave electron devices and their applications. All areas of microwave electron devices are covered. These include microwave solid-state devices, including popular microwave transistors and both passive and active diodes; quantum electron devices; thermionic devices (including relativistic thermionic devices); and ferrimagnetic electron devices. The design of each of these devices is discussed as well as their applications, including oscillation, amplification, switching, modulation, demodulation, and parametric interactions.

  1. Frequency-domain thermal modelling of power semiconductor devices

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede; Andresen, Markus

    2015-01-01

    to correctly predict the device temperatures, especially when considering the thermal grease and heat sink attached to the power semiconductor devices. In this paper, the frequency-domain approach is applied to the modelling of thermal dynamics for power devices. The limits of the existing RC lump...... network. The proposed model can be used to predict not only the internal temperature behaviours of devices but also the behaviours of heat flowing out of the devices. As a result, more correct estimation of device temperature can be achieved when considering the attached cooling conditions....

  2. Heating device for nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shiratori, Yoshitake; Ijima, Takashi; Katano, Yoshiaki; Saito, Masaki

    1996-05-31

    The present invention provides a control system of a heating device which elevates the temperature of a reactor from a normal temperature to an operation temperature by using a nuclear heating. Namely, the device of the present invention comprises (1) means for detecting reactor temperature, (2) means for detecting reactor power, (3) means for memorizing the corresponding relation of each value of the means (1) and means (2) as standard data when temperature is elevated at a predetermined temperature elevation rate, (4) means for calculating the power corresponding to the current temperature based on the standard data upon elevation of the reactor temperature, and (5) means for controlling the progress or retraction of the power control material of the reactor core based on the power calculated by the means (4). With such a constitution, since the current reactor power elevation rate corresponding to the coolants is controlled based on the standard data upon actual start-up of the reactor, the control for the temperature of coolants can be facilitated. (I.S.)

  3. A time-temperature integrator based on fluorescent and polymorphic compounds.

    Science.gov (United States)

    Gentili, Denis; Durso, Margherita; Bettini, Cristian; Manet, Ilse; Gazzano, Massimo; Capelli, Raffaella; Muccini, Michele; Melucci, Manuela; Cavallini, Massimiliano

    2013-01-01

    Despite the variety of functional properties of molecular materials, which make them of interest for a number of technologies, their tendency to form inhomogeneous aggregates in thin films and to self-organize in polymorphs are considered drawbacks for practical applications. Here, we report on the use of polymorphic molecular fluorescent thin films as time temperature integrators, a class of devices that monitor the thermal history of a product. The device is fabricated by patterning the fluorescent model compound thieno(bis)imide-oligothiophene. The fluorescence colour of the pattern changes as a consequence of an irreversible phase variation driven by temperature, and reveals the temperature at which the pattern was exposed. The experimental results are quantitatively analysed in the range 20-200°C and interpreted considering a polymorph recrystallization in the thin film. Noteworthy, the reported method is of general validity and can be extended to every compound featuring irreversible temperature-dependent change of fluorescence.

  4. CLOSURE DEVICE

    Science.gov (United States)

    Linzell, S.M.; Dorcy, D.J.

    1958-08-26

    A quick opening type of stuffing box employing two banks of rotatable shoes, each of which has a caraming action that forces a neoprene sealing surface against a pipe or rod where it passes through a wall is presented. A ring having a handle or wrench attached is placed eccentric to and between the two banks of shoes. Head bolts from the shoes fit into slots in this ring, which are so arranged that when the ring is rotated a quarter turn in one direction the shoes are thrust inwardly to cramp the neopnrene about the pipe, malting a tight seal. Moving the ring in the reverse direction moves the shoes outwardly and frees the pipe which then may be readily removed from the stuffing box. This device has particular application as a closure for the end of a coolant tube of a neutronic reactor.

  5. Public History

    Directory of Open Access Journals (Sweden)

    Marta Gouveia de Oliveira Rovai

    2017-04-01

    Full Text Available Este artigo tem como proposta apresentar o conceito e as práticas de História Pública como um novo posicionamento da ciência histórica em diálogo com profissionais da comunicação, no sentido de produzir e divulgar as experiências humanas. Para isso, discute-se a origem do conceito de História Pública e as diferentes formas de educação histórica que a utilização das novas tecnologias podem proporcionar (dentre elas a internet. Nesse sentido, convida-se o leitor para a reflexão sobre as possibilidades de publicização e de democratização do conhecimento histórico e da cultura, ampliando-se a oportunidade de produção, de divulgação e de acesso do público a diferentes formas experiências no tempo. O artigo também intenciona chamar atenção dos profissionais que lidam com a História e com a Comunicação para os perigos de produções exclusivamente submetidas ao mercado que transformam a popularização da História no reforço de estigmas culturais.   PALAVRAS-CHAVE: História Pública; Educação histórica e Comunicação; democratização e estigmatização.     ABSTRACT This article aims to present the concept and practices of Public History as a new positioning of historical science in dialogue with communication professionals, in the sense of producing and disseminating human experiences. For this, the origin of the concept of Public History and the different forms of historical education that the use of the new technologies can provide (among them the Internet is discussed. In this sense, the reader is invited to reflect on the possibilities of publicizing and democratizing historical knowledge and culture, expanding the opportunity for production, dissemination and public access to different forms of experience in time. The article also intends to draw attention from professionals dealing with History and Communication to the dangers of exclusively commercialized productions that transform the popularization

  6. RFID and Memory Devices Fabricated Integrally on Substrates

    Science.gov (United States)

    Schramm, Harry F.

    2004-01-01

    Electronic identification devices containing radio-frequency identification (RFID) circuits and antennas would be fabricated integrally with the objects to be identified, according to a proposal. That is to say, the objects to be identified would serve as substrates for the deposition and patterning of the materials of the devices used to identify them, and each identification device would be bonded to the identified object at the molecular level. Vacuum arc vapor deposition (VAVD) is the NASA derived process for depositing layers of material on the substrate. This proposal stands in contrast to the current practice of fabricating RFID and/or memory devices as wafer-based, self-contained integrated-circuit chips that are subsequently embedded in or attached to plastic cards to make smart account-information cards and identification badges. If one relies on such a chip to store data on the history of an object to be tracked and the chip falls off or out of the object, then one loses both the historical data and the means to track the object and verify its identity electronically. Also, in contrast is the manufacturing philosophy in use today to make many memory devices. Today s methods involve many subtractive processes such as etching. This proposal only uses additive methods, building RFID and memory devices from the substrate up in thin layers. VAVD is capable of spraying silicon, copper, and other materials commonly used in electronic devices. The VAVD process sprays most metals and some ceramics. The material being sprayed has a very strong bond with the substrate, whether that substrate is metal, ceramic, or even wood, rock, glass, PVC, or paper. An object to be tagged with an identification device according to the proposal must be compatible with a vacuum deposition process. Temperature is seldom an issue as the substrate rarely reaches 150 F (66 C) during the deposition process. A portion of the surface of the object would be designated as a substrate for

  7. Ras history

    Science.gov (United States)

    2010-01-01

    Although the roots of Ras sprouted from the rich history of retrovirus research, it was the discovery of mutationally activated RAS genes in human cancer in 1982 that stimulated an intensive research effort to understand Ras protein structure, biochemistry and biology. While the ultimate goal has been developing anti-Ras drugs for cancer treatment, discoveries from Ras have laid the foundation for three broad areas of science. First, they focused studies on the origins of cancer to the molecular level, with the subsequent discovery of genes mutated in cancer that now number in the thousands. Second, elucidation of the biochemical mechanisms by which Ras facilitates signal transduction established many of our fundamental concepts of how a normal cell orchestrates responses to extracellular cues. Third, Ras proteins are also founding members of a large superfamily of small GTPases that regulate all key cellular processes and established the versatile role of small GTP-binding proteins in biology. We highlight some of the key findings of the last 28 years. PMID:21686117

  8. Temperature measurement and control

    CERN Document Server

    Leigh, JR

    1988-01-01

    This book treats the theory and practice of temperature measurement and control and important related topics such as energy management and air pollution. There are no specific prerequisites for the book although a knowledge of elementary control theory could be useful. The first half of the book is an application oriented survey of temperature measurement techniques and devices. The second half is concerned mainly with temperature control in both simple and complex situations.

  9. 78 FR 49272 - Circulatory System Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-08-13

    ... 510(k) of the Federal Food, Drug, and Cosmetic Act (the FD&C Act) (21 U.S.C. 360(k)) (510(k)) pathway... regulatory history of ECC devices has been discussed as part of the proposed rule (77 FR 36951, June 20, 2012... to premarket notification (510(k)) and special controls. The regulatory history of external pacemaker...

  10. Coherent exciton-polariton devices

    Science.gov (United States)

    Fraser, Michael D.

    2017-09-01

    The Bose-Einstein condensate of exciton-polaritons has emerged as a unique, coherent system for the study of non-equilibrium, macroscopically coherent Bose gases, while the full confinement of this coherent state to a semiconductor chip has also generated considerable interest in developing novel applications employing the polariton condensate, possibly even at room temperature. Such devices include low-threshold lasers, precision inertial sensors, and circuits based on superfluidity with ultra-fast non-linear elements. While the demonstration and development of such devices are at an early stage, rapid progress is being made. In this review, an overview of the exciton-polariton condensate system and the established and emerging material systems and fabrication techniques are presented, followed by a critical, in-depth assessment of the ability of the coherent polariton system to deliver on its promise of devices offering either new functionality and/or room-temperature operation.

  11. A brief history of videogames

    Directory of Open Access Journals (Sweden)

    Simone Belli

    2008-11-01

    Full Text Available The following text contains a brief journey through a short and yet intense adventure, the history of videogames. Since its beginnings in the 1950's decade to the present time, videogames have progressively changed from a hobby for ingeneering studens to the most powerfull leisure industry. In order to gain a better understanding of this phenomenon it is necessary to look over the path of its transformation from a retrospecive point of view. Such a look has necessarily to focus on those devices and games that had made a landmark in the history of videogames, taking them to their current position. Besides, it is crucial to address their implications in contemporary visual culture, along with current prejudices against them. This is a short account about a great history.

  12. Reactor power monitoring device

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Naotaka; Igawa, Shinji; Kitazono, Hideaki

    1998-02-13

    The present invention provides a reactor power monitoring device capable of ensuring circumstance resistance, high reliability and high speed transmission even if an APRM is disposed in a reactor building (R/B). Namely, signal processing sections (APRM) for transmitting data to a central control chamber are distributed in the reactor building at an area at the lowest temperature among areas where the temperature control in an emergency state is regulated, and a transmission processing section (APRM-I/F) for transmitting data to the other systems is disposed to the central control chamber. An LPRM signal transmission processing section is constituted such that LPRM signals can be transmitted at a high speed by DMA. Set values relevant to reactor tripping (neutron flux high, thermal output high and sudden reduction of a reactor core flow rate) are stored in the APRM-I/F, and reactor tripping calculation is conducted in the APRM-I/F. With such procedure, a reactor power monitoring device having enhanced control function can be attained. (N.H.)

  13. Fluid flow monitoring device

    Science.gov (United States)

    McKay, Mark D.; Sweeney, Chad E.; Spangler, Jr., B. Samuel

    1993-01-01

    A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.

  14. Liquid-level sensing device

    Science.gov (United States)

    Goldfuss, G.T.

    1975-09-16

    This invention relates to a device for sensing the level of a liquid while preventing the deposition and accumulation of materials on the exterior surfaces thereof. Two dissimilar metal wires are enclosed within an electrical insulating material, the wires being joined together at one end to form a thermocouple junction outside the insulating material. Heating means is disposed within the electrical insulating material and maintains the device at a temperature substantially greater than that of the environment surrounding the device, the heating means being electrically insulated from the two dissimilar thermocouple wires. In addition, a metal sheath surrounds and contacts both the electrical insulating material and the thermocouple junction. Electrical connections are provided for connecting the heating means with a power source and for connecting the thermocouple wires with a device for sensing the electrical potential across the thermocouple junction. (auth)

  15. Thermoelectric device for treatment of radiculitis and spinal massage

    Science.gov (United States)

    Anatychuk, L. I.; Kobylyansky, R. R.

    2012-06-01

    Results of development of a thermoelectric device that enables controlled cyclic temperature impact on the damaged area of human organism are presented. Unlike the existing medical devices employing direct supply current for thermoelectric module, the present device controls supply current according to time dependence of temperature change assigned by doctor. It is established that such a device is an efficient means of therapy at herniation of intervertebral disks with marked radiculitis and tunicary syndromes, at meningitis, other spinal diseases and back traumas.

  16. 78 FR 9010 - Dental Devices; Reclassification of Temporary Mandibular Condyle Prosthesis

    Science.gov (United States)

    2013-02-07

    ... Food, Drug, and Cosmetic Act (the FD&C Act), as amended by the Medical Device Amendments of 1976 (the... notification is not necessary to assure the safety and effectiveness of the device. II. Regulatory History of... class II. The new information includes the history of use of the device and the relative absence of...

  17. Medical devices: US medical device regulation.

    Science.gov (United States)

    Jarow, Jonathan P; Baxley, John H

    2015-03-01

    Medical devices are regulated by the US Food and Drug Administration (FDA) within the Center for Devices and Radiological Health. Center for Devices and Radiological Health is responsible for protecting and promoting the public health by ensuring the safety, effectiveness, and quality of medical devices, ensuring the safety of radiation-emitting products, fostering innovation, and providing the public with accurate, science-based information about the products we oversee, throughout the total product life cycle. The FDA was granted the authority to regulate the manufacturing and marketing of medical devices in 1976. It does not regulate the practice of medicine. Devices are classified based on complexity and level of risk, and "pre-1976" devices were allowed to remain on the market after being classified without FDA review. Post-1976 devices of lower complexity and risk that are substantially equivalent to a marketed "predicate" device may be cleared through the 510(k) premarket notification process. Clinical data are typically not needed for 510(k) clearance. In contrast, higher-risk devices typically require premarket approval. Premarket approval applications must contain data demonstrating reasonable assurance of safety and efficacy, and this information typically includes clinical data. For novel devices that are not high risk, the de novo process allows FDA to simultaneously review and classify new devices. Devices that are not legally marketed are permitted to be used for clinical investigation purposes in the United States under the Investigational Device Exemptions regulation. Published by Elsevier Inc.

  18. Early History of Cardiac Pacing and Defibrillation

    Directory of Open Access Journals (Sweden)

    Seymour Furman

    2002-01-01

    Full Text Available The Electricity and the Heart website1 is intended to facilitate the collection, cataloging and presentation of historical information about technical and scientific advances in cardiac devices. Over the course of the past century as the fields of cardiac pacing and electrophysiology have evolved, the technological devices used by physicians and researchers has been a fascinating and rapidly changing portion of the history of the fields. NASPE's Oral History Project houses hundreds of devices collected over the years that illustrate the evolution from crude and simple machines to the sophisticated and advanced technological wonders that are used in the field today. The photos and descriptions of many of these devices show just how far we have come in the advancement of treatment and patient care.

  19. Device and method for determining freezing points

    Science.gov (United States)

    Mathiprakasam, Balakrishnan (Inventor)

    1986-01-01

    A freezing point method and device (10) are disclosed. The method and device pertain to an inflection point technique for determining the freezing points of mixtures. In both the method and device (10), the mixture is cooled to a point below its anticipated freezing point and then warmed at a substantially linear rate. During the warming process, the rate of increase of temperature of the mixture is monitored by, for example, thermocouple (28) with the thermocouple output signal being amplified and differentiated by a differentiator (42). The rate of increase of temperature data are analyzed and a peak rate of increase of temperature is identified. In the preferred device (10) a computer (22) is utilized to analyze the rate of increase of temperature data following the warming process. Once the maximum rate of increase of temperature is identified, the corresponding temperature of the mixture is located and earmarked as being substantially equal to the freezing point of the mixture. In a preferred device (10), the computer (22), in addition to collecting the temperature and rate of change of temperature data, controls a programmable power supply (14) to provide a predetermined amount of cooling and warming current to thermoelectric modules (56).

  20. Nouveau dispositif expérimental pour l'étude du comportement viscoplastique des poudres métalliques à hautes températures : application à une poudre de cuivreNew experimental device to study the viscoplastic behaviour of metallic powder at high temperature: use of copper powder

    Science.gov (United States)

    Viot, Philippe; Stutz, Pierre

    Models currently used to simulate the behaviour of metallic powder at high temperature use two rheological functions determined by two tests of uniaxial pressing and hot isostatic pressing. Experimental results carried out on lead powder and many simulations show that these models do not describe the real behaviour with a sufficient accuracy. A new experimental device devoted to hot die pressing has been designed in order to study the powder behaviour at high temperature under a state of stress intermediate between isotropic stress and uniaxial compression. Several experimental results on copper powder are reported in this note. To cite this article: P. Viot, P. Stutz, C. R. Mecanique 330 (2002) 653-659.

  1. Methods for tracking the motion and temperature histories of fuel particles in grate furnaces and waste incinerators - phase 2; Metoder foer kartlaeggning av braenslepartiklars roerelse- och temperaturhistorik i rosterpannor och avfallsugnar - etapp 2

    Energy Technology Data Exchange (ETDEWEB)

    Blom, Elisabet; Gustavsson, Lennart; Oskarsson, Jan; Petersson, Mats

    2003-03-01

    The objective of this project has been to demonstrate and evaluate the feasibility of some proposed measuring methods for tracking the motion and temperature history of fuel particles in a grate furnace through full-scale trials. The methods use radioactive isotopes and are based on marking of single fuel particles. The methods have the following objectives: To continuously track the motion of a single fuel particle from the fuel feed to the burn-out; To determine when a fuel particle arrives at certain temperatures; To study the drying process for a fuel particle; To determine the density in different parts of the fuel bed. The method for continuous position determination is based on the construction of a mathematical model of the dimensions and materials of the furnace. Detectors are placed in a number of positions on the outside of the furnace, and the model is then calibrated with a radioactive source placed in a number of given positions inside the furnace. When using the method, fuel particles marked with the radioactive isotope {sup 24}Na is fed to the fuel inlet. From the detector signals the position of the source can be continuously determined. The full-scale trials showed that the uncertainty in the position determination was greater than expected. At the calibration, the mean error of the position determination was 0,62 m, and the error was less than 0,5 m for 80% of the calibration positions. At the trials during boiler operation the results from the original calculation model were partly not reasonable, i.e. in that positions outside the possible volume were achieved during certain periods. However, some conclusions about the time scales could be drawn, e.g. about the residence times on different parts of the grate. A number of factors are thought to contribute to the low accuracy. The number of detectors influences the accuracy, and during the boiler operation trials one detector ceased to function. Further it was assumed in the model that the

  2. Methods for tracking the motion and temperature history of fuel particles in grate furnaces and waste boilers; Metoder foer kartlaeggning av braenslepartiklars roerelse- och temperaturhistorik i rosterpannor och avfallsugnar - etapp 2

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Lennart; Blom, Elisabet; Oskarsson, Jan; Petersson, Mats [Swedish National Testing and Research Inst., Boraas (Sweden)

    2003-03-01

    The objective of this project has been to demonstrate and evaluate the feasibility of some proposed measuring methods for tracking the motion and temperature history of fuel particles in a grate furnace through full-scale trials. The methods use radioactive isotopes and are based on marking of single fuel particles. The methods have the following objectives: To continuously track the motion of a single fuel particle from the fuel feed to the burn-out; To determine when a fuel particle arrives at certain temperatures; To study the drying process for a fuel particle; To determine the density in different parts of the fuel bed. The method for continuous position determination is based on the construction of a mathematical model of the dimensions and materials of the furnace. Detectors are placed in a number of positions on the outside of the furnace, and the model is then calibrated with a radioactive source placed in a number of given positions inside the furnace. When using the method, fuel particles marked with the radioactive isotope Na is fed to the fuel inlet. From the detector signals the position of the source can be continuously determined. The full-scale trials showed that the uncertainty in the position determination was greater than expected. At the calibration, the mean error of the position determination was 0,62 m, and the error was less than 0,5 m for 80 % of the calibration positions. At the trials during boiler operation the results from the original calculation model were partly not reasonable, i.e. in that positions outside the possible volume were achieved during certain periods. However, some conclusions about the time scales could be drawn, e.g. about the residence times on different parts of the grate. A number of factors are thought to contribute to the low accuracy. The number of detectors influences the accuracy, and during the boiler operation trials one detector ceased to function. Further it was assumed in the model that the density of

  3. Battery system with temperature sensors

    Science.gov (United States)

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  4. Temperature and humidity independent control (THIC) of air-conditioning system

    CERN Document Server

    Liu, Xiaohua; Zhang, Tao

    2014-01-01

    This book presents the main components of the Temperature and Humidity Independent Control (THIC) of air-conditioning systems, including dehumidification devices, high-temperature cooling devices and indoor terminal devices.

  5. Connector device for building integrated photovoltaic device

    Energy Technology Data Exchange (ETDEWEB)

    Keenihan, James R.; Langmaid, Joe A.; Eurich, Gerald K.; Lesniak, Michael J.; Mazor, Michael H.; Cleerman, Robert J.; Gaston, Ryan S.

    2015-11-10

    The present invention is premised upon a connector device and method that can more easily electrically connect a plurality of PV devices or photovoltaic system components and/or locate these devices/components upon a building structure. It also may optionally provide some additional sub-components (e.g. at least one bypass diode and/or an indicator means) and may enhance the serviceability of the device.

  6. Popular history magazines and history education

    Directory of Open Access Journals (Sweden)

    Robert Thorp

    2016-05-01

    Full Text Available This paper argues that popular history magazines may be a welcome complement to other forms of historical media in history teaching. By outlining a theoretical framework that captures uses of history, the paper analyses popular history magazine articles from five European countries all dealing with the outbreak of World War I. The study finds that while the studied articles provide a rather heterogeneous view of the causes of the Great War, they can be used to discuss and analyse the importance of perspective in history, thus offering an opportunity to further a more disciplinary historical understanding.

  7. Medical Device Safety

    Science.gov (United States)

    A medical device is any product used to diagnose, cure, or treat a condition, or to prevent disease. They ... may need one in a hospital. To use medical devices safely Know how your device works. Keep ...

  8. Infrared criminalistic devices

    Science.gov (United States)

    Gibin, Igor S.; Savkov, E. V.; Popov, Pavel G.

    1996-12-01

    We are presenting the devices of near-IR spectral range in this report. The devices may be used in criminalistics, in bank business, in restoration works, etc. the action principle of these devices is describing briefly.

  9. Implantable electronic medical devices

    CERN Document Server

    Fitzpatrick, Dennis

    2014-01-01

    Implantable Electronic Medical Devices provides a thorough review of the application of implantable devices, illustrating the techniques currently being used together with overviews of the latest commercially available medical devices. This book provides an overview of the design of medical devices and is a reference on existing medical devices. The book groups devices with similar functionality into distinct chapters, looking at the latest design ideas and techniques in each area, including retinal implants, glucose biosensors, cochlear implants, pacemakers, electrical stimulation t

  10. 33 CFR 159.115 - Temperature range test.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Temperature range test. 159.115...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.115 Temperature range test. (a) The device must be held at a temperature of 60 °C or higher for a period of 16 hours. (b) The device...

  11. Emissivity modulating electrochromic device

    Science.gov (United States)

    Demiryont, Hulya; Shannon, Kenneth C., III; Sheets, Judd

    2009-05-01

    The IR-ECDTM (Infra-Red ElectroChromic Device) variable emitance device (VED) is an all-solid-state monolithic vacuum deposited thin film system with a unique metamaterial IR transparent-electrode system which functions as an electrically controlled dimmable mirror in the IR region. The maximum reflectance corresponding to the bleached condition of the system is around 90% (low-e condition, e=0.1). The minimum reflectance reaches nearly zero in the colored condition of the system (high emittance, e=1). The average emissivity modulation of the IRECDTM is 0.7 in the 8-12 micron region, and at 9.7 micron (room temperature) it reaches a value of 0.9. Half and full emissivity modulations occur within 2 and10 minutes respectively. Because of its light weight (5g/m2), low voltage requirement (+/- 1 Volts), extremely good emissivity control properties (from 0 to 0.9 at 300K) and highly repeatable deposition process, the IR-ECDTM technology is very attractive for satellite thermal control applications. The IR-ECDTM has been under evaluation in a real space environment since March 8, 2007. This paper presents recent achievements of the IR-ECDTM including space test results.

  12. Ultraefficient Themoelectric Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermoelectric (TE) devices already found a wide range of commercial, military and aerospace applications. However, at present commercially available TE devices...

  13. History highlights and future trends of infrared sensors

    Science.gov (United States)

    Corsi, Carlo

    2010-10-01

    Infrared (IR) technologies (materials, devices and systems) represent an area of excellence in science and technology and, even if they have been generally confined to a selected scientific community, they have achieved technological and scientific highlights constituting 'innovation drivers' for neighbouring disciplines, especially in the sensors field. The development of IR sensors, initially linked to astronomical observations, since World War II and for many years has been fostered essentially by defence applications, particularly thermo-vision and, later on, smart vision and detection, for surveillance and warning. Only in the last few decades, the impact of silicon technology has changed the development of IR detectors dramatically, with the advent of integrated signal read-outs and the opening of civilian markets (EO communications, biomedical, environmental, transport and energy applications). The history of infrared sensors contains examples of real breakthroughs, particularly true in the case of focal plane arrays that first appeared in the late 1970s, when the superiority of bi-dimensional arrays for most applications pushed the development of technologies providing the highest number of pixels. An impressive impulse was given to the development of FPA arrays by integration with charge coupled devices (CCD), with strong competition from different technologies (high-efficiency photon sensors, Schottky diodes, multi-quantum wells and, later on, room temperature microbolometers/cantilevers). This breakthrough allowed the development of high performance IR systems of small size, light weight and low cost - and therefore suitable for civil applications - thanks to the elimination of the mechanical scanning system and the progressive reduction of cooling requirements (up to the advent of microbolometers, capable of working at room temperature). In particular, the elimination of cryogenic cooling allowed the development and commercialisation of IR Smart Sensors

  14. Hole-doped cuprate high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chu, C.W.; Deng, L.Z.; Lv, B.

    2015-07-15

    Highlights: • Historical discoveries of hole-doped cuprates and representative milestone work. • Several simple and universal scaling laws of the hole-doped cuprates. • A comprehensive classification list with references for hole-doped cuprates. • Representative physical parameters for selected hole-doped cuprates. - Abstract: Hole-doped cuprate high temperature superconductors have ushered in the modern era of high temperature superconductivity (HTS) and have continued to be at center stage in the field. Extensive studies have been made, many compounds discovered, voluminous data compiled, numerous models proposed, many review articles written, and various prototype devices made and tested with better performance than their nonsuperconducting counterparts. The field is indeed vast. We have therefore decided to focus on the major cuprate materials systems that have laid the foundation of HTS science and technology and present several simple scaling laws that show the systematic and universal simplicity amid the complexity of these material systems, while referring readers interested in the HTS physics and devices to the review articles. Developments in the field are mostly presented in chronological order, sometimes with anecdotes, in an attempt to share some of the moments of excitement and despair in the history of HTS with readers, especially the younger ones.

  15. Deconstruction and Graphic Design: History Meets Theory.

    Science.gov (United States)

    Lupton, Ellen; Miller, J. Abbott

    1994-01-01

    Considers the reception and use of deconstruction in the recent history of graphic design. Considers the place of graphics within the theory of deconstruction in the work of philosopher Jacques Derrida. Argues that deconstruction is not a style but a mode of questioning through and about the technologies, formal devices, social institutions and…

  16. Nanoscale Electronic Devices

    Science.gov (United States)

    Jing, Xiaoye

    consistently at different temperatures and the mechanism was explained through the energy band diagram in which NDR effect was caused by misalignment between Fermi energy level at the source and resonance states in the potential well. The consistent NDR effect shows possible application for microelectronic devices.

  17. Conceptual history and History of Education

    Directory of Open Access Journals (Sweden)

    Conrad VILANOU I TORRANO

    2013-11-01

    Full Text Available After noting the importance of linguistic turn in the field of historiography, the two leading currents in the field of conceptual history are identi- fied, the Cambridge school and Reinhart Koselleck’s Begriffsgeschichte. The paper focuses on the analysis of the latter trend in conceptual history, linked to the phi- losophical (Heidegger, Gadamer, political (Schmitt and historical (Dilthey tradi- tion within the German academic community. The paper then reviews the origin and nature of the History of Pedagogy, which arose as part of the classic History of Ideas and later gave rise, after the Second World War, to a Social History of Education. Finally, a conceptual History of Education is proposed that, in addi- tion to addressing the various conceptual strata included in the different terms, also takes into account the intellectual and cultural aspects through a return to discourses and pedadogic narratives.

  18. 76 FR 43582 - Cardiovascular Devices; Classification of Electrocardiograph Electrodes

    Science.gov (United States)

    2011-07-21

    .... Regulatory History of the Device In the Federal Register of October 4, 2007 (72 FR 56702; Docket No. 2007N.../ANSI/ISO ST79, ``Comprehensive Guide to Steam Sterilization and Sterility Assurance in Health Care...

  19. Microforms and Sport History.

    Science.gov (United States)

    Levine, Peter

    1986-01-01

    Explores the importance of sport history as it reflects the social and cultural history of the United States. Discussion covers the various sport history materials that are available in microform, including the Spalding Collection, twentieth-century microfilm sources, and sports and social history (Sports Periodicals microfilm series). (EJS)

  20. Kiropraktikkens historie i Danmark

    DEFF Research Database (Denmark)

    Jørgensen, Per

    Bogen er den første samlede, forskningsbaserede fremstilling om kiropraktikkens danske historie. Den har udblik til kiropraktikkens historie i USA.......Bogen er den første samlede, forskningsbaserede fremstilling om kiropraktikkens danske historie. Den har udblik til kiropraktikkens historie i USA....

  1. Reinventing Entrepreneurial History

    DEFF Research Database (Denmark)

    Wadhwani, R. Daniel; Lubinski, Christina

    2017-01-01

    Research on entrepreneurship remains fragmented in business history. A lack of conceptual clarity inhibits comparisons between studies and dialogue among scholars. To address these issues, we propose to reinvent entrepreneurial history as a research field. We define “new entrepreneurial history...... and reconfiguring resources, and legitimizing novelty. The article elaborates on the historiography, premises, and potential contributions of new entrepreneurial history....

  2. Temperature responsive cooling apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Weker, M.L.; Stearns, R.M.

    1987-08-11

    A temperature responsive cooling apparatus is described for an air conditioner or refrigeration system in operative association with a reservoir of fluid, the air conditioner or refrigeration system having an air cooled coil and means for producing a current of air for cooling the coil, the temperature responsive cooling apparatus comprising: (a) means for transferring the fluid from the reservoir to the air conditioner temperature responsive cooling apparatus, (b) a fluid control device activated by the current of air for cooling the coil; (c) a temperature activated, nonelectrical device for terminating and initiating the flow of fluid therethrough in an intermittent fashion for enhancing the operability of the compressor associated with the refrigeration system and for reducing the quantity of fluid required to cool the coil of the refrigeration system, (d) a fluid treatment device for preventing, reducing or mitigating the deposition of nonevaporative components on the air cooled coil, and (e) means for dispersing the fluid to the air cooled coil from the fluid control device for cooling the coil and increasing the efficiency of the air conditioner thereby reducing the cost of operating and maintaining the air conditioner without damaging the air conditioner and without the deposition of nonevaporative components thereupon.

  3. Implantable CMOS Biomedical Devices

    Directory of Open Access Journals (Sweden)

    Toshihiko Noda

    2009-11-01

    Full Text Available The results of recent research on our implantable CMOS biomedical devices are reviewed. Topics include retinal prosthesis devices and deep-brain implantation devices for small animals. Fundamental device structures and characteristics as well as in vivo experiments are presented.

  4. Hip supporting device

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a device for limiting movements in one or more anatomical joints, such as a device for limiting movement in the human hip joint after hip replacement surgery. This is provided by a device for limiting movement in the human hip joint, said device comprising: at least...

  5. Solar heat utilization for adsorption cooling device

    Science.gov (United States)

    Pilát, Peter; Patsch, Marek; Malcho, Milan

    2012-04-01

    This article deals with possibility of solar system connection with adsorption cooling system. Waste heat from solar collectors in summer is possible to utilize in adsorption cooling systems, which desorption temperatures have to be lower than temperature of heat transport medium operation temperature. For verification of work of this system was constructed on the Department of power engineering on University of Zilina solar adsorption cooling device.

  6. Inducer Hydrodynamic Load Measurement Devices

    Science.gov (United States)

    Skelley, Stephen E.; Zoladz, Thomas F.

    2002-01-01

    Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This "rotating balance" was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.

  7. Nonlinear electrical properties of Si three-terminal junction devices

    DEFF Research Database (Denmark)

    Fantao, Meng; Jie, Sun; Graczyk, Mariusz

    2010-01-01

    This letter reports on the realization and characterization of silicon three-terminal junction devices made in a silicon-on-insulator wafer. Room temperature electrical measurements show that the fabricated devices exhibit pronounced nonlinear electrical properties inherent to ballistic electron...... transport in a three-terminal ballistic junction (TBJ) device. The results show that room temperature functional TBJ devices can be realized in a semiconductor material other than high-mobility III-V semiconductor heterostructures and provide a simple design principle for compact silicon devices...

  8. A cryogenic measurement setup for characterization microwave devices

    DEFF Research Database (Denmark)

    Rybalko, Oleksandr

    2017-01-01

    A cryogenic measurement setup for characterization microwave devices from room to cryogenic temperatures is presented. The setup allows testing microwave devices at variable temperatures ranging from 300 to 77 K. Frequency doubler (94/188 GHz) has been cooled to 77 K and peak efficiency of 32...

  9. Materials and Reliability Handbook for Semiconductor Optical and Electron Devices

    CERN Document Server

    Pearton, Stephen

    2013-01-01

    Materials and Reliability Handbook for Semiconductor Optical and Electron Devices provides comprehensive coverage of reliability procedures and approaches for electron and photonic devices. These include lasers and high speed electronics used in cell phones, satellites, data transmission systems and displays. Lifetime predictions for compound semiconductor devices are notoriously inaccurate due to the absence of standard protocols. Manufacturers have relied on extrapolation back to room temperature of accelerated testing at elevated temperature. This technique fails for scaled, high current density devices. Device failure is driven by electric field or current mechanisms or low activation energy processes that are masked by other mechanisms at high temperature. The Handbook addresses reliability engineering for III-V devices, including materials and electrical characterization, reliability testing, and electronic characterization. These are used to develop new simulation technologies for device operation and ...

  10. History Circles: The Doing of Teaching History

    Science.gov (United States)

    Brown, Sarah Drake

    2009-01-01

    Lesson planning is a critical task in the education of pre-service teachers, but the author has often questioned the extent to which traditional lesson plan formats truly contribute to the teaching and learning of history. Since current research in history education calls for an emphasis on building "historical thinking" skills and content…

  11. Subhyaloid Hemorrhage in a Case of Devic's Disease

    African Journals Online (AJOL)

    disorder or trauma. There was no significant family history and no history of exposure to any toxins. His best‑corrected visual acuity (BCVA) in right eye (RE). INTRODUCTION. The term “neuromyelitis optica (NMO)” (“Devic's syndrome”) refers to a syndrome characterized by optic neuritis and myelitis.[1] Patients with multiple.

  12. Heat transport in bulk/nanoporous/bulk silicon devices

    Energy Technology Data Exchange (ETDEWEB)

    Criado-Sancho, M. [Departamento de Ciencias y Técnicas Físicoquimicas, Facultad de Ciencias, UNED, Senda del Rey 9, 20040 Madrid (Spain); Jou, D., E-mail: David.Jou@uab.cat [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Institut d' Estudis Catalans, Carme 47, 08001 Barcelona, Catalonia (Spain)

    2013-02-04

    We study heat transport in bulk/nanoporous/bulk silicon devices; we show that, despite bulk/nanoporous devices may act as thermal rectifiers, the non-linear aspects of their joint thermal conductance are not strong enough to lead to a negative differential thermal resistance, necessary to allow bulk/nanoporous/bulk Si devices to act as thermal transistors. Furthermore, we explicitly study the effective thermal conductivity of the mentioned devices for several temperatures, geometries, porosities, and pore size.

  13. Identification of the Limiting Factors for High-Temperature GaAs, GaInP, and AlGaInP Solar Cells from Device and Carrier Lifetime Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kuciauskas, Darius [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Perl, Emmett [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Simon, John D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Friedman, Daniel J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Steiner, Myles A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-19

    We analyze the temperature-dependent dark saturation current density and open-circuit voltage (VOC) for GaAs, GaInP, and AlGaInP solar cells from 25 to 400 degrees C. As expected, the intrinsic carrier concentration, ni, dominates the temperature dependence of the dark currents. However, at 400 degrees C, we measure VOC that is ~50 mV higher for the GaAs solar cell and ~60-110 mV lower for the GaInP and AlGaInP solar cells compared to what would be expected from commonly used solar cell models that consider only the ni2 temperature dependence. To better understand these deviations, we measure the carrier lifetimes of p-type GaAs, GaInP, and AlGaInP double heterostructures (DHs) from 25 to 400 degrees C using time-resolved photoluminescence. Temperature-dependent minority carrier lifetimes are analyzed to determine the relative contributions of the radiative recombination, interface recombination, Shockley-Read-Hall recombination, and thermionic emission processes. We find that radiative recombination dominates for the GaAs DHs with the effective lifetime approximately doubling as the temperature is increased from 25 degrees C to 400 degrees C. In contrast, we find that thermionic emission dominates for the GaInP and AlGaInP DHs at elevated temperatures, leading to a 3-4x reduction in the effective lifetime and ~40x increase in the surface recombination velocity as the temperature is increased from 25 degrees C to 400 degrees C. These observations suggest that optimization of the minority carrier confinement layers for the GaInP and AlGaInP solar cells could help to improve VOC and solar cell efficiency at elevated temperatures. We demonstrate VOC improvement at 200-400 degrees C in GaInP solar cells fabricated with modified AlGaInP window and back surface field layers.

  14. Identification of the limiting factors for high-temperature GaAs, GaInP, and AlGaInP solar cells from device and carrier lifetime analysis

    Science.gov (United States)

    Perl, E. E.; Kuciauskas, D.; Simon, J.; Friedman, D. J.; Steiner, M. A.

    2017-12-01

    We analyze the temperature-dependent dark saturation current density and open-circuit voltage (VOC) for GaAs, GaInP, and AlGaInP solar cells from 25 to 400 °C. As expected, the intrinsic carrier concentration, ni, dominates the temperature dependence of the dark currents. However, at 400 °C, we measure VOC that is ˜50 mV higher for the GaAs solar cell and ˜60-110 mV lower for the GaInP and AlGaInP solar cells compared to what would be expected from commonly used solar cell models that consider only the ni2 temperature dependence. To better understand these deviations, we measure the carrier lifetimes of p-type GaAs, GaInP, and AlGaInP double heterostructures (DHs) from 25 to 400 °C using time-resolved photoluminescence. Temperature-dependent minority carrier lifetimes are analyzed to determine the relative contributions of the radiative recombination, interface recombination, Shockley-Read-Hall recombination, and thermionic emission processes. We find that radiative recombination dominates for the GaAs DHs with the effective lifetime approximately doubling as the temperature is increased from 25 °C to 400 °C. In contrast, we find that thermionic emission dominates for the GaInP and AlGaInP DHs at elevated temperatures, leading to a 3-4× reduction in the effective lifetime and ˜40× increase in the surface recombination velocity as the temperature is increased from 25 °C to 400 °C. These observations suggest that optimization of the minority carrier confinement layers for the GaInP and AlGaInP solar cells could help to improve VOC and solar cell efficiency at elevated temperatures. We demonstrate VOC improvement at 200-400 °C in GaInP solar cells fabricated with modified AlGaInP window and back surface field layers.

  15. IMAPS Device Packaging Conference 2017 - Engineered Micro Systems & Devices Track

    Science.gov (United States)

    Varnavas, Kosta

    2017-01-01

    NASA field center Marshall Space Flight Center (Huntsville, AL), has invested in advanced wireless sensor technology development. Developments for a wireless microcontroller back-end were primarily focused on the commercial Synapse Wireless family of devices. These devices have many useful features for NASA applications, good characteristics and the ability to be programmed Over-The-Air (OTA). The effort has focused on two widely used sensor types, mechanical strain gauges and thermal sensors. Mechanical strain gauges are used extensively in NASA structural testing and even on vehicle instrumentation systems. Additionally, thermal monitoring with many types of sensors is extensively used. These thermal sensors include thermocouples of all types, resistive temperature devices (RTDs), diodes and other thermal sensor types. The wireless thermal board will accommodate all of these types of sensor inputs to an analog front end. The analog front end on each of the sensors interfaces to the Synapse wireless microcontroller, based on the Atmel Atmega128 device. Once the analog sensor output data is digitized by the onboard analog to digital converter (A/D), the data is available for analysis, computation or transmission. Various hardware features allow custom embedded software to manage battery power to enhance battery life. This technology development fits nicely into using numerous additional sensor front ends, including some of the low-cost printed circuit board capacitive moisture content sensors currently being developed at Auburn University.

  16. Temperature Monitoring System Based on PLC

    OpenAIRE

    Shoucheng Ding; Wenhui Li

    2013-01-01

    The programmable controller is an industrial control computer; it is the new automatic device inherited computer, automatic control technology and communication technology. System temperature signal detected by the temperature sensor. The temperature transmitter will be the temperature value converted into a voltage signal of 0-10V into PLC. PLC voltage signal setting compared to the temperature deviation after PID operation; the system will issue a temperature control signal to reach the ele...

  17. Active Wireless Temperature Sensors for Aerospace Thermal Protection Systems

    Science.gov (United States)

    Milos, Frank S.; Karunaratne, K.; Arnold, Jim (Technical Monitor)

    2002-01-01

    Health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles in order to reduce life-cycle costs, to increase safety margins, and to improve mission reliability. NASA Ames is leading the effort to advance inspection and health management technologies for thermal protection systems. This paper summarizes a joint project between NASA Ames and Korteks to develop active wireless sensors that can be embedded in the thermal protection system to monitor sub-surface temperature histories. These devices are thermocouples integrated with radio-frequency identification circuitry to enable acquisition and non-contact communication of temperature data through aerospace thermal protection materials. Two generations of prototype sensors are discussed. The advanced prototype collects data from three type-k thermocouples attached to a 2.54-cm square integrated circuit.

  18. Productivity patterns and abundance-area relationships in 3 marine fish species (cod,herring and haddock); meta-analyses on the effects of temperature, life-history andhabitat size across the N Atlantic

    DEFF Research Database (Denmark)

    Mantzouni, Irene; MacKenzie, Brian

    to have significant effects on the productivities of all species,while carrying capacity was shown to depend also on the available habitat size. Using thederived relationships, it was possible to predict the expected changes in population-specificdynamics resulting from temperature increases. Synthesizing...... these patterns can improve ourunderstanding of environmental impacts on key population parameters, which is required foran ecosystem approach to management...

  19. History of Bioterrorism: Botulism

    Science.gov (United States)

    ... is Doing Blog: Public Health Matters Video: "The History of Bioterrorism" Recommend on Facebook Tweet Share Compartir ... as bioterrorist weapons. Watch the Complete Program "The History of Bioterroism" (26 min 38 sec) Watch Specific ...

  20. History of Bioterrorism: Botulism

    Medline Plus

    Full Text Available ... is Doing Blog: Public Health Matters Video: "The History of Bioterrorism" Recommend on Facebook Tweet Share Compartir ... as bioterrorist weapons. Watch the Complete Program "The History of Bioterroism" (26 min 38 sec) Watch Specific ...

  1. "Hillary - en god historie"

    DEFF Research Database (Denmark)

    Bjerre, Thomas Ærvold

    2007-01-01

    Anmeldelse af Carl Bernsteins Hillary Rodham Clinton og Michael Ehrenreichs Hillary - En amerikansk historie Udgivelsesdato: 15. november......Anmeldelse af Carl Bernsteins Hillary Rodham Clinton og Michael Ehrenreichs Hillary - En amerikansk historie Udgivelsesdato: 15. november...

  2. History of Bioterrorism: Botulism

    Medline Plus

    Full Text Available ... Information Social Media Zombie Apocalypse What’s New Video: "The History of Bioterrorism" Recommend on Facebook Tweet Share ... or can be used as bioterrorist weapons. Watch the Complete Program "The History of Bioterroism" (26 min ...

  3. Mere historie og kulturarv?

    DEFF Research Database (Denmark)

    Olesen, Marie Bonde; Brunbech, Peter

    2016-01-01

    Præsentation af HistorieLab og om folkeskolereformen og kulturinstitutionernes muligheder og udfordringer i samarbejdet med skolerne......Præsentation af HistorieLab og om folkeskolereformen og kulturinstitutionernes muligheder og udfordringer i samarbejdet med skolerne...

  4. History of Bioterrorism: Botulism

    Medline Plus

    Full Text Available ... Social Media Zombie Apocalypse What’s New Video: "The History of Bioterrorism" Recommend on Facebook Tweet Share Compartir ... as bioterrorist weapons. Watch the Complete Program "The History of Bioterroism" (26 min 38 sec) Watch Specific ...

  5. History and Epic Poetry.

    Science.gov (United States)

    Turk, Thomas N.

    1994-01-01

    Describes the use of epic poetry in a combined English/history humanities class. Concludes that epic poetry, the combination of history and verse, helps students understand the continuity and meaning of the Western tradition. (CFR)

  6. History of Bioterrorism: Botulism

    Medline Plus

    Full Text Available ... CDC is Doing Blog: Public Health Matters Video: "The History of Bioterrorism" Recommend on Facebook Tweet Share ... or can be used as bioterrorist weapons. Watch the Complete Program "The History of Bioterroism" (26 min ...

  7. Canadian petroleum history bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Cass, D.

    2003-09-27

    The Petroleum History Bibliography includes a list of more than 2,000 publications that record the history of the Canadian petroleum industry. The list includes books, theses, films, audio tapes, published articles, company histories, biographies, autobiographies, fiction, poetry, humour, and an author index. It was created over a period of several years to help with projects at the Petroleum History Society. It is an ongoing piece of work, and as such, invites comments and additions.

  8. Blood Glucose Monitoring Devices

    Science.gov (United States)

    ... In Vitro Diagnostics Blood Glucose Monitoring Devices Blood Glucose Monitoring Devices Share Tweet Linkedin Pin it More ... care settings to measure the amount of sugar (glucose) in your blood. What is glucose? Glucose is ...

  9. Implantable Medical Devices

    Science.gov (United States)

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Implantable Medical Devices Updated:Sep 16,2016 For Rhythm Control ... a Heart Attack Introduction Medications Surgical Procedures Implantable Medical Devices • Life After a Heart Attack • Heart Attack ...

  10. High temperature superconductors

    CERN Document Server

    Paranthaman, Parans

    2010-01-01

    This essential reference provides the most comprehensive presentation of the state of the art in the field of high temperature superconductors. This growing field of research and applications is currently being supported by numerous governmental and industrial initiatives in the United States, Asia and Europe to overcome grid energy distribution issues. The technology is particularly intended for densely populated areas. It is now being commercialized for power-delivery devices, such as power transmission lines and cables, motors and generators. Applications in electric utilities include current limiters, long transmission lines and energy-storage devices that will help industries avoid dips in electric power.

  11. Diet History Questionnaire: Database Revision History

    Science.gov (United States)

    The following details all additions and revisions made to the DHQ nutrient and food database. This revision history is provided as a reference for investigators who may have performed analyses with a previous release of the database.

  12. Towards a European History

    NARCIS (Netherlands)

    H. van Dijk (Henk)

    2000-01-01

    textabstractAlthough historical writing is a profession with a long tradition, history as an academic discipline is strongly related to the development of the nation state in the nineteenth century. Notwithstanding specialisations like e.g. cultural history and social and economic history put less

  13. Mellem historie- og krigsvidenskab

    DEFF Research Database (Denmark)

    Hansen Schøning, Anna Sofie

    2016-01-01

    The article investigates how military history was taught as part of the Danish higher officer education from 1830 to 1920 and how the subject was affected by developments in academic history and the science of war. It argues that military history, as it was taught in the formal officer education...

  14. Heterostructures and quantum devices

    CERN Document Server

    Einspruch, Norman G

    1994-01-01

    Heterostructure and quantum-mechanical devices promise significant improvement in the performance of electronic and optoelectronic integrated circuits (ICs). Though these devices are the subject of a vigorous research effort, the current literature is often either highly technical or narrowly focused. This book presents heterostructure and quantum devices to the nonspecialist, especially electrical engineers working with high-performance semiconductor devices. It focuses on a broad base of technical applications using semiconductor physics theory to develop the next generation of electrical en

  15. Photovoltaic device and method

    Science.gov (United States)

    Cleereman, Robert J; Lesniak, Michael J; Keenihan, James R; Langmaid, Joe A; Gaston, Ryan; Eurich, Gerald K; Boven, Michelle L

    2015-01-27

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  16. Air Stable Photovoltaic Device

    DEFF Research Database (Denmark)

    2010-01-01

    A method of forming a conducting polymer based photovoltaic device comprising the steps of : (a) providing a transparent first electrode; (b) providing the transparent first electrode with a layer of metal oxide nanoparticles, wherein the metal oxide is selected from the group consisting of : TiO2...... polymer based photovoltaic device, and polymeric compounds suitable for use in such devices and methods....

  17. Device-less interaction

    NARCIS (Netherlands)

    Monaci, G.; Triki, M.; Sarroukh, B.E.

    2009-01-01

    This document describes the results of a technology survey for device-less interaction. The Device-less Interaction project (2007-307) aims at providing interaction options for future home appliances without resorting to a remote control or any other dedicated control device. The target home

  18. Photovoltaic device and method

    Energy Technology Data Exchange (ETDEWEB)

    Cleereman, Robert; Lesniak, Michael J.; Keenihan, James R.; Langmaid, Joe A.; Gaston, Ryan; Eurich, Gerald K.; Boven, Michelle L.

    2015-11-24

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  19. Tribology of medical devices

    Directory of Open Access Journals (Sweden)

    Z.M. Jin

    2016-12-01

    Full Text Available Importance of tribology in a number of medical devices and surgical instruments is reviewed, including artificial joints, artificial teeth, dental implants and orthodontic appliances, cardiovascular devices, contact lenses, artificial limbs and surgical instruments. The current focus and future developments of these medical devices are highlighted from a tribological point of view, together with the underlying mechanisms.

  20. Infrared control coating of thin film devices

    Energy Technology Data Exchange (ETDEWEB)

    Berland, Brian Spencer; Stowell, Jr., Michael Wayne; Hollingsworth, Russell

    2017-02-28

    Systems and methods for creating an infrared-control coated thin film device with certain visible light transmittance and infrared reflectance properties are disclosed. The device may be made using various techniques including physical vapor deposition, chemical vapor deposition, thermal evaporation, pulsed laser deposition, sputter deposition, and sol-gel processes. In particular, a pulsed energy microwave plasma enhanced chemical vapor deposition process may be used. Production of the device may occur at speeds greater than 50 Angstroms/second and temperatures lower than 200.degree. C.

  1. Location tracking forensics on mobile devices

    Science.gov (United States)

    Sack, Stefan; Kröger, Knut; Creutzburg, Reiner

    2013-03-01

    The spread of navigation devices has increased significantly over the last 10 years. With the help of the current development of even smaller navigation receiver units it is to navigate with almost any current smart phone. Modern navigation systems are no longer limited to satellite navigation, but use current techniques, e.g. WLAN localization. Due to the increased use of navigation devices their relevance to forensic investigations has risen rapidly. Because navigation, for example with navigation equipment and smartphones, have become common place these days, also the amount of saved navigation data has risen rapidly. All of these developments lead to a necessary forensic analysis of these devices. However, there are very few current procedures for investigating of navigation devices. Navigation data is forensically interesting because by the position of the devices in most cases the location and the traveled path of the owner can be reconstructed. In this work practices for forensic analysis of navigation devices are developed. Different devices will be analyzed and it is attempted, by means of forensic procedures to restore the traveled path of the mobile device. For analysis of the various devices different software and hardware is used. There will be presented common procedures for securing and testing of mobile devices. Further there will be represented the specials in the investigation of each device. The different classes considered are GPS handhelds, mobile navigation devices and smartphones. It will be attempted, wherever possible, to read all data of the device. The aim is to restore complete histories of the navigation data and to forensically study and analyze these data. This is realized by the usage of current forensic software e.g. TomTology or Oxygen Forensic Suite. It is also attempted to use free software whenever possible. Further alternative methods are used (e.g. rooting) to access locked data of the unit. To limit the practical work the

  2. KSC History Project

    Science.gov (United States)

    Moore, Patrick K.

    2003-01-01

    The 2003 NASA/ASEE KSC History Project focused on a series of six history initiatives designed to acquire, preserve, and interpret the history of Kennedy Space Center. These six projects included the completion of Voices From the Cape, historical work co-authored with NASA historian Roger Launius, the completion of a series of oral histories with key KSC personnel, expansion of monograph on Public Affairs into two comprehensive pieces on KSC press operations and KSC visitor operations, the expansion of KSC Historical Concept Maps (Cmap) for history knowledge preservation, the expansion of the KSC oral history program through the administration of an oral history workshop for KSC-based practitioners, and the continued collaborative relationships between Kennedy Space Center, the University of West Florida, the University of Central Florida and other institutions including the University of Louisiana at Lafayette.

  3. Portraying User Interface History

    DEFF Research Database (Denmark)

    Jørgensen, Anker Helms

    2008-01-01

    The user interface is coming of age. Papers adressing UI history have appeared in fair amounts in the last 25 years. Most of them address particular aspects such as an in­novative interface paradigm or the contribution of a visionary or a research lab. Contrasting this, papers addres­sing UI...... history at large have been sparse. However, a small spate of publications appeared recently, so a reasonable number of papers are available. Hence this work-in-progress paints a portrait of the current history of user interfaces at large. The paper first describes a theoretical framework recruited from...... in that they largely address prevailing UI techno­logies, and thirdly history from above in that they focus on the great deeds of the visionaries. The paper then compares this state-of-art in UI history to the much more mature fields history of computing and history of technology. Based hereon, some speculations...

  4. Three concepts of history

    Directory of Open Access Journals (Sweden)

    Antonio Campillo

    2016-05-01

    Full Text Available The aim of this article is twofold. On the one hand, I will outline the diverse usages that the concept of history has taken on throughout Western history. These different usages may be grouped together in three semantic fields (history as a way of knowing, as a way of being and as a way of doing, which correspond to three ways of understanding the Philosophy of History: as Epistemology of History, as Ontology of historicity and as ethical-political Critique of the present. On the other hand, I will show that these three concepts of history (and, accordingly, the three ways of understanding the Philosophy of History refer mutually to each other and, thus, are inseparable from each other.

  5. Creating a family health history

    Science.gov (United States)

    Family health history; Create a family health history; Family medical history ... include your: Genes Diet and exercise habits Environment Family members tend to share certain behaviors, genetic traits, ...

  6. Calibration of amino acid racemization (AAR) kinetics in United States mid-Atlantic Coastal Plain Quaternary mollusks using 87Sr/ 86Sr analyses: Evaluation of kinetic models and estimation of regional Late Pleistocene temperature history

    Science.gov (United States)

    Wehmiller, J. F.; Harris, W.B.; Boutin, B.S.; Farrell, K.M.

    2012-01-01

    The use of amino acid racemization (AAR) for estimating ages of Quaternary fossils usually requires a combination of kinetic and effective temperature modeling or independent age calibration of analyzed samples. Because of limited availability of calibration samples, age estimates are often based on model extrapolations from single calibration points over wide ranges of D/L values. Here we present paired AAR and 87Sr/ 86Sr results for Pleistocene mollusks from the North Carolina Coastal Plain, USA. 87Sr/ 86Sr age estimates, derived from the lookup table of McArthur et al. [McArthur, J.M., Howarth, R.J., Bailey, T.R., 2001. Strontium isotopic stratigraphy: LOWESS version 3: best fit to the marine Sr-isotopic curve for 0-509 Ma and accompanying Look-up table for deriving numerical age. Journal of Geology 109, 155-169], provide independent age calibration over the full range of amino acid D/L values, thereby allowing comparisons of alternative kinetic models for seven amino acids. The often-used parabolic kinetic model is found to be insufficient to explain the pattern of racemization, although the kinetic pathways for valine racemization and isoleucine epimerization can be closely approximated with this function. Logarithmic and power law regressions more accurately represent the racemization pathways for all amino acids. The reliability of a non-linear model for leucine racemization, developed and refined over the past 20 years, is confirmed by the 87Sr/ 86Sr age results. This age model indicates that the subsurface record (up to 80m thick) of the North Carolina Coastal Plain spans the entire Quaternary, back to ???2.5Ma. The calibrated kinetics derived from this age model yield an estimate of the effective temperature for the study region of 11??2??C., from which we estimate full glacial (Last Glacial Maximum - LGM) temperatures for the region on the order of 7-10??C cooler than present. These temperatures compare favorably with independent paleoclimate information

  7. Multifunctional Energy Storage and Conversion Devices.

    Science.gov (United States)

    Huang, Yan; Zhu, Minshen; Huang, Yang; Pei, Zengxia; Li, Hongfei; Wang, Zifeng; Xue, Qi; Zhi, Chunyi

    2016-10-01

    Multifunctional energy storage and conversion devices that incorporate novel features and functions in intelligent and interactive modes, represent a radical advance in consumer products, such as wearable electronics, healthcare devices, artificial intelligence, electric vehicles, smart household, and space satellites, etc. Here, smart energy devices are defined to be energy devices that are responsive to changes in configurational integrity, voltage, mechanical deformation, light, and temperature, called self-healability, electrochromism, shape memory, photodetection, and thermal responsivity. Advisable materials, device designs, and performances are crucial for the development of energy electronics endowed with these smart functions. Integrating these smart functions in energy storage and conversion devices gives rise to great challenges from the viewpoint of both understanding the fundamental mechanisms and practical implementation. Current state-of-art examples of these smart multifunctional energy devices, pertinent to materials, fabrication strategies, and performances, are highlighted. In addition, current challenges and potential solutions from materials synthesis to device performances are discussed. Finally, some important directions in this fast developing field are considered to further expand their application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The teaching of history through histories

    Directory of Open Access Journals (Sweden)

    María Gabriela Calvas-Ojeda

    2017-12-01

    Full Text Available The comic strips have been introduced into the world of history as a didactic resource for their learning; However, there are still shortcomings in their use by teachers, motivated on many occasions due to lack of knowledge and insufficient methodological preparation; The purpose of this work is to socialize knowledge related to these didactic resources to contribute to the didactic-methodological enrichment of the teacher, in order to change this attitude. The methodological strategy responds to the quantitative-qualitative paradigm; in the collection of the information a participant observation guide was used to the history classes and interview to a sample of 9 teachers of Third Degree of the schools of the city of Machala randomly selected. We recorded the observations of the knowledge acquired by the 98 students who received the classes mediated by comic strips, which allowed us to conclude that comics for the teaching and learning of History constitute a powerful didactic resource.

  9. Marine Environmental History

    DEFF Research Database (Denmark)

    Poulsen, Bo

    2012-01-01

    This essay provides an overview of recent trends in the historiography of marine environmental history, a sub-field of environmental history which has grown tremendously in scope and size over the last c. 15 years. The object of marine environmental history is the changing relationship between...... human society and natural marine resources. Within this broad topic, several trends and objectives are discernable. The essay argue that the so-called material marine environmental history has its main focus on trying to reconstruct the presence, development and environmental impact of past fisheries...... and whaling operations. This ambition often entails a reconstruction also of how marine life has changed over time. The time frame rages from Paleolithicum to the present era. The field of marine environmental history also includes a more culturally oriented environmental history, which mainly has come...

  10. The history of the

    Directory of Open Access Journals (Sweden)

    G.Ruocco

    2008-03-01

    Full Text Available This paper aims to discuss the present understanding of the high frequency dynamics in liquid water, with particular attention to a specific phenomenon - the so-called fast sound - since its first appearance in the literature up to its most recent explanation. A particular role in this history is played by the inelastic x-ray scattering (IXS technique, which - with its introduction in the middle '90- allowed to face a large class of problems related to the high frequency dynamics in disordered materials, such as glass and liquids. The results concerning the fast sound in water obtained using the IXS technique are here compared with the inelastic neutron scattering (INS and molecular dynamics simulation works. The IXS work has allowed us to demonstrate experimentally the existence of two branches of collective modes in liquid water: one linearly dispersing with the momentum (apparent sound velocity of ≈3200 m/s, the "fast sound" and the other at almost constant energy (5..7 meV. It has been possible to show that the dispersing branch originates from the viscoelastic bend up of the ordinary sound branch. The study of this sound velocity dispersion, marking a transition from the ordinary sound, co to the "fast sound", c∞, as a function of temperature, has made it possible to relate the origin of this phenomenon to a structural relaxation process, which presents many analogies to those observed in glass-forming systems. The possibility to estimate from the IXS data the value of the relaxation time, τ, as a function of temperature leads to relating the relaxation process to the structural re-arrangements induced by the making and breaking of hydrogen bonds. In this framework, it is then possible to recognize an hydrodynamical "normal" regime, i. e. when one considers density fluctuations whose period of oscillation is on a timescale long with respect to τ, and a solid-like regime in the opposite limit. In the latter regime, the density

  11. Smart portable rehabilitation devices

    Directory of Open Access Journals (Sweden)

    Leahey Matt

    2005-07-01

    Full Text Available Abstract Background The majority of current portable orthotic devices and rehabilitative braces provide stability, apply precise pressure, or help maintain alignment of the joints with out the capability for real time monitoring of the patient's motions and forces and without the ability for real time adjustments of the applied forces and motions. Improved technology has allowed for advancements where these devices can be designed to apply a form of tension to resist motion of the joint. These devices induce quicker recovery and are more effective at restoring proper biomechanics and improving muscle function. However, their shortcoming is in their inability to be adjusted in real-time, which is the most ideal form of a device for rehabilitation. This introduces a second class of devices beyond passive orthotics. It is comprised of "active" or powered devices, and although more complicated in design, they are definitely the most versatile. An active or powered orthotic, usually employs some type of actuator(s. Methods In this paper we present several new advancements in the area of smart rehabilitation devices that have been developed by the Northeastern University Robotics and Mechatronics Laboratory. They are all compact, wearable and portable devices and boast re-programmable, real time computer controlled functions as the central theme behind their operation. The sensory information and computer control of the three described devices make for highly efficient and versatile systems that represent a whole new breed in wearable rehabilitation devices. Their applications range from active-assistive rehabilitation to resistance exercise and even have applications in gait training. The three devices described are: a transportable continuous passive motion elbow device, a wearable electro-rheological fluid based knee resistance device, and a wearable electrical stimulation and biofeedback knee device. Results Laboratory tests of the devices

  12. Family Health History and Diabetes

    Science.gov (United States)

    ... Diabetes Diabetes Risk Test Family Health History Quiz Family Health History Quiz Family health history is an ... health problems. Four Questions You Should Ask Your Family About Diabetes & Family Health History Knowing your family ...

  13. FLUIDICS DEVICE FOR ASSAY

    DEFF Research Database (Denmark)

    2007-01-01

    The present invention relates to a device for use in performing assays on standard laboratory solid supports whereon chemical entities are attached. The invention furthermore relates to the use of such a device and a kit comprising such a device. The device according to the present invention...... is adapted to receive one or more replaceable solid support(s) (40) onto which chemical entities (41) are attached, said device comprising a base (1, 60, 80, 300, 400, 10, 70, 140, 20, 90, 120, 150, 30, 100), one or more inlet(s) (5), one or more outlet(s) (6). The base and the solid support (40) defines......, when operatively connected, one or more chambers (21) comprising the chemical entities (41), the inlet(s) (5) and outlet(s) (6) and chambers (21) being in fluid connection. The device further comprise means for providing differing chemical conditions in each chamber (21)....

  14. Ranking Economic History Journals

    DEFF Research Database (Denmark)

    Di Vaio, Gianfranco; Weisdorf, Jacob Louis

    This study ranks - for the first time - 12 international academic journals that have economic history as their main topic. The ranking is based on data collected for the year 2007. Journals are ranked using standard citation analysis where we adjust for age, size and self-citation of journals. We...... also compare the leading economic history journals with the leading journals in economics in order to measure the influence on economics of economic history, and vice versa. With a few exceptions, our results confirm the general idea about what economic history journals are the most influential...

  15. Ranking economic history journals

    DEFF Research Database (Denmark)

    Di Vaio, Gianfranco; Weisdorf, Jacob Louis

    2010-01-01

    This study ranks-for the first time-12 international academic journals that have economic history as their main topic. The ranking is based on data collected for the year 2007. Journals are ranked using standard citation analysis where we adjust for age, size and self-citation of journals. We also...... compare the leading economic history journals with the leading journals in economics in order to measure the influence on economics of economic history, and vice versa. With a few exceptions, our results confirm the general idea about what economic history journals are the most influential for economic...

  16. History: Hindrance to Unity

    Science.gov (United States)

    Rosenbaum, Robert J.

    1973-01-01

    Differing histories, racial compositions, economic interests, and present circumstances cut across the Mexican American people obliquely and work against a sense of ethnic identity or cultural nationalism. (Author)

  17. Public and popular history

    CERN Document Server

    De Groot, Jerome

    2013-01-01

    This interdisciplinary collection considers public and popular history within a global framework, seeking to understand considerations of local, domestic histories and the ways they interact with broader discourses. Grounded in particular local and national situations, the book addresses the issues associated with popular history in a globalised cultural world, such as: how the study of popular history might work in the future; new ways in which the terms 'popular' and 'public' might inform one another and nuance scholarship; transnational, intercultural models of 'pastness'; cultural translat

  18. Cooperative Station History Forms

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Various forms, photographs and correspondence documenting the history of Cooperative station instrumentation, location changes, inspections, and...

  19. Teaching Sport as History, History through Sport

    Science.gov (United States)

    Wheeler, Robert F.

    1978-01-01

    Describes an undergraduate history course based on two themes: sport as a reflection of society and sport as a socializing agent affecting society. The course focuses on sports and industrialization, traditional and modern sports, political and economic aspects of sport, and inequality and discrimination in sports. (Author/JK)

  20. 21 CFR 880.2200 - Liquid crystal forehead temperature strip.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Liquid crystal forehead temperature strip. 880... Personal Use Monitoring Devices § 880.2200 Liquid crystal forehead temperature strip. (a) Identification. A liquid crystal forehead temperature strip is a device applied to the forehead that is used to indicate...

  1. Establishment Registration & Device Listing

    Data.gov (United States)

    U.S. Department of Health & Human Services — This searchable database contains establishments (engaged in the manufacture, preparation, propagation, compounding, assembly, or processing of medical devices...

  2. Smart devices are different

    DEFF Research Database (Denmark)

    Stisen, Allan; Blunck, Henrik; Bhattacharya, Sourav

    2015-01-01

    research results. This is due to variations in training and test device hardware and their operating system characteristics among others. In this paper, we systematically investigate sensor-, device- and workload-specific heterogeneities using 36 smartphones and smartwatches, consisting of 13 different......The widespread presence of motion sensors on users' personal mobile devices has spawned a growing research interest in human activity recognition (HAR). However, when deployed at a large-scale, e.g., on multiple devices, the performance of a HAR system is often significantly lower than in reported...

  3. Understanding medical device regulation.

    Science.gov (United States)

    Galgon, Richard E

    2016-12-01

    The purpose of this article is to provide a structural and functional understanding of the systems used for the regulation of medical devices in the USA and European Union (EU). Safe and effective anesthesia care depends heavily on medical devices, including simple, low risk devices to complex life-supporting and life-sustaining devices. In the USA and EU, the Food and Drug Administration and European Commission, respectively, provide regulatory oversight to ensure medical devices are reasonably safe and effective when used for their intended purposes. Unfortunately, practicing anesthesiologists generally have little or no understanding of how medical devices are regulated, nor do they have sufficient knowledge of available adverse event reporting systems. The US and EU medical device regulatory systems are similar in many ways, but differ in important ways too, which impacts the afforded level of safety and effectiveness assurance. In both systems, medical devices are classified and regulated on a risk basis, which fundamentally differs from drug regulation, where uniform requirements are imposed. Anesthesia providers must gain knowledge of these systems and be active players in both premarket and postmarket activities, particularly with regard to vigilance and adverse event/device failure reporting.

  4. Virtual Training Devices Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Virtual Training Devices (VTD) Laboratory at the Life Cycle Software Engineering Center, Picatinny Arsenal, provides a software testing and support environment...

  5. Investigation of Electronic Corrosion at Device Level

    DEFF Research Database (Denmark)

    Jellesen, Morten Stendahl; Minzari, Daniel; Rathinavelu, Umadevi

    2010-01-01

    board assembly (PCBA) in the device is more prone to corrosion reliability and this was further analysed using thermography to detect areas that have high risk of condensation due to lower temperature under working condition. Tested PCBAs are subjected to detailed investigation before and after testing...

  6. DEVICES FOR COOLING ELECTRONIC CIRCUIT BOARDS

    Directory of Open Access Journals (Sweden)

    T. A. Ismailov

    2014-01-01

    Full Text Available In the work described structural variants of devices for cooling electronic circuit boards, made on the basis of thermoelectric batteries and consumable working substances, implementing uneven process of removing heat from heat-generating components. A comparison of temperature fields of electronic circuit simulator with his uniform and non-uniform cooling. 

  7. Thermoelectric devices and applications for the same

    Science.gov (United States)

    DeSteese, John G [Kennewick, WA; Olsen, Larry C [Richland, WA; Martin, Peter M [Kennewick, WA

    2010-12-14

    High performance thin film thermoelectric couples and methods of making the same are disclosed. Such couples allow fabrication of at least microwatt to watt-level power supply devices operating at voltages greater than one volt even when activated by only small temperature differences.

  8. The intrauterine device today.

    Science.gov (United States)

    Rioux, J E

    1993-10-01

    The intrauterine contraceptive device (IUD) is effective and reversible and has a high continuation rate. It can also be used within 7 days postcoitus. Developed separately by Richter, Grafenberg, and Ota between 1909 and 1934, the IUD gained popularity in the 1960s and 1970s with the introduction of the Margulies Spiral, the Lippes Loop, the Birnberg Bow, and the Dalkon Shield. The last proved dangerous, and the IUD became unpopular. The 4 IUDs which are available in Canada include the TCu-380S (GYNE T Slimline), the TCu-200, the NOVA-T, and the Progestasert. All are T shaped and medicated (copper or progesterone). The 1st and 3rd can be left in situ for 10 years; the 2nd, for 4 years; and the 4th, for 1 year. The NOVA-T has a copper wire with a silver core and is inserted with a unique pull-push technique. The Progestasert, which contains 38 mg of progesterone, releases 65 mcg of the hormone daily. The best candidate for IUD use is parous, but not pregnant, is in a stable monogamous relationship, and has a healthy reproductive tract and no history of ectopic pregnancy, sexually transmitted disease, pelvic inflammatory disease, undiagnosed genital bleeding, endometrial or cervical neoplasia, abnormal endometrial anatomy, compromised immune system, allergy to copper, or Wilson's Disease. The only infection related to the IUD is that associated with insertion. Such an infection is polymicrobial and involves the endogenous, cervicovaginal flora (primarily anaerobes). It is usually asymptomatic and contained by the immune system. 200 mg of Doxycycline can be given orally as a prophylactic 1 hour prior to insertion. A nonprescription, nonsteroidal, anti-inflammatory drug, also taken 1 hour before the procedure, will prevent pain and a vasovagal reaction. Paracervical anesthesia should be used. If the depth of the uterus is less than 6 cm or greater than 10 cm, another form of contraception should be used. Although little research is being done in Canada on new IUDs

  9. History of ultrahigh carbon steels

    Energy Technology Data Exchange (ETDEWEB)

    Wadsworth, J.; Sherby, O.D.

    1997-06-20

    The history and development of ultrahigh carbon steels (i.e., steels containing between 1 and 2.l percent C and now known as UHCS) are described. The early use of steel compositions containing carbon contents above the eutectoid level is found in ancient weapons from around the world. For example, both Damascus and Japanese sword steels are hypereutectoid steels. Their manufacture and processing is of interest in understanding the role of carbon content in the development of modern steels. Although sporadic examples of UHCS compositions are found in steels examined in the early part of this century, it was not until the mid-1970s that the modern study began. This study had its origin in the development of superplastic behavior in steels and the recognition that increasing the carbon content was of importance in developing that property. The compositions that were optimal for superplasticity involved the development of steels that contained higher carbon contents than conventional modern steels. It was discovered, however, that the room temperature properties of these compositions were of interest in their own right. Following this discovery, a period of intense work began on understanding their manufacture, processing, and properties for both superplastic forming and room temperature applications. The development of superplastic cast irons and iron carbides, as well as those of laminated composites containing UHCS, was an important part of this history.

  10. A method for mapping the motion and temperature history of fuel particles in grate boilers and waste incinerators - stage 1; Metod foer kartlaeggning av braenslepartiklars roerelse och temperaturhistorik i rosterpannor/avfallsugnar - etapp 1

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Lennart; Blom, Elisabeth; Hald Pedersen, Niels; Moritz, Anders; Maardsjoe, Olle; Oskarsson, Jan; Petersson, Mats

    2000-04-01

    A feasibility study has been conducted where methods using radioactive tracer techniques for studying the behaviour of fuel particles on a grate are proposed and assessed. The following topics are addressed: - the possibility to continuously register the position of a single fuel particle on a grate from the fuel feed to burn-out; - the possibility to determine when a single fuel particle reach a certain temperature; and - the possibility to study drying and pyrolysis processes for a single fuel particle. In addition, a method to determine the height and density profiles of a fuel bed on a grate is proposed. The method for continuous determination of position is based on including a radiation source of the isotope {sup 24}Na in a fuel particle which is then supplied to the fuel feed. The gamma radiation emitted is registered by a number of detectors, mounted on the outside of the boiler. Since the radiation registered is dependent on both the distance between the source and detector and on the materials in the pathway, it is possible to continuously calculate the position of the fuel particle with the aid of Monte Carlo simulation. The inaccuracy in the determination is estimated to less than 5 cm. This is deemed to be accurate enough to be interesting. In order to study when a fuel particle reach a certain temperature, it is proposed that vials, manufactured in materials that will be broken at a defined temperature, is filled with the isotope {sup 85}Kr and mounted in fuel particles. When this noble gas is released, it follows the flue gases through the boiler and can be detected in the flue gas duct through its beta emission. The drying process of a fuel particle is proposed to be studied through impregnating fuel particles with tritium-containing water. The tritium-containing water is evaporated as the fuel particle dries and through analysing the tritium content of the flue gases the drying process can be followed. The feasibility study also deals with the

  11. Devices for SRF material characterization

    Science.gov (United States)

    Goudket, P.; Junginger, T.; Xiao, B. P.

    2017-01-01

    The surface resistance R s of superconducting materials can be obtained by measuring the quality factor of an elliptical cavity excited in a transverse magnetic mode (TM010). The value obtained has however to be taken as averaged over the whole surface. A more convenient way to obtain R s, especially of materials which are not yet technologically ready for cavity production, is to measure small samples instead. These can be easily manufactured at low cost, duplicated and placed in film deposition and surface analytical tools. A commonly used design for a device to measure R s consists of a cylindrical cavity excited in a transverse electric (TE110) mode with the sample under test serving as one replaceable endplate. Such a cavity has two drawbacks. For reasonably small samples the resonant frequency will be larger than frequencies of interest concerning SRF application and it requires a reference sample of known R s. In this article we review several devices which have been designed to overcome these limitations, reaching sub-nΩ resolution in some cases. Some of these devices also comprise a parameter space in frequency and temperature which is inaccessible to standard cavity tests, making them ideal tools to test theoretical surface resistance models.

  12. Essays on the history of mechanical engineering

    CERN Document Server

    Genchi, Giuseppe

    2016-01-01

    This book treats several subjects from the History of Mechanism and Machine Science, and also contains an illustrative presentation of the Museum of Engines and Mechanisms of the University of Palermo, Italy, which houses a collection of various pieces of machinery from the last 150 years. The various sections deal with some eminent scientists of the past, with the history of industrial installations, machinery and transport, with the human inventiveness for mechanical and scientific devices, and with robots and human-driven automata. All chapters have been written by experts in their fields. The volume shows a wide-ranging panorama on the historical progress of scientific and technical knowledge in the past centuries. It will stimulate new research and ideas for those involved in the history of Science and Technology.

  13. New algorithm for extreme temperature measurements

    NARCIS (Netherlands)

    Damean, N.

    2000-01-01

    A new algorithm for measurement of extreme temperature is presented. This algorithm reduces the measurement of the unknown temperature to the solving of an optimal control problem, using a numerical computer. Based on this method, a new device for extreme temperature measurements is projected. It

  14. Noninvasive Measurement of Core Temperature. Phase 1.

    Science.gov (United States)

    Topical Testing proposes the development of a noninvasive device to monitor core temperature by sampling the maximal temperature of the respiratory...air during expiration. Phase I development used a fast rise-time thermocouple to monitor the temperature of the expired air of an anesthetized animal

  15. Polariton devices and quantum fluids

    Science.gov (United States)

    Ballarini, D.; De Giorgi, M.; Lerario, G.; Cannavale, A.; Cancellieri, E.; Bramati, A.; Gigli, G.; Laussy, F.; Sanvitto, D.

    2014-02-01

    Exciton-polaritons, composite particles resulting from the strong coupling between excitons and photons, have shown the capability to undergo condensation into a macroscopically coherent quantum state, demonstrating strong non-linearities and unique propagation properties. These strongly-coupled light-matter particles are promising candidates for the realization of semiconductor all-optical devices with fast time response and small energy consumption. Recently, quantum fluids of polaritons have been used to demonstrate the possibility to implement optical functionalities as spin switches, transistors or memories, but also to provide a channel for the transmission of information inside integrated circuits. In this context, the possibility to extend the range of light-matter interaction up to room temperature becomes of crucial importance. One of the most intriguing promises is to use organic Frenkel excitons, which, thanks to their huge oscillator strength, not only sustain the polariton picture at room temperature, but also bring the system into the unexplored regime of ultra-strong coupling. The combination of these materials with ad-hoc designed structures may allow the control of the propagation properties of polaritons, paving the way towards their implementation of the polariton functionalities in actual devices for opto-electronic applications.

  16. Aggersborg through history

    DEFF Research Database (Denmark)

    Roesdahl, Else

    2014-01-01

    Aggersborg's history from the time of the end of the circular fortress till the present day, with a focus on the late Viking Age and the Middle Ages......Aggersborg's history from the time of the end of the circular fortress till the present day, with a focus on the late Viking Age and the Middle Ages...

  17. HISTORY OF LEPROSY

    OpenAIRE

    Hanumanthayya; Manjunath; Anisha; Nida; Minakshi

    2016-01-01

    Leprosy is one of the oldest and most dreaded diseases, which has tormented humans throughout history, leaving lasting impressions on religion, literature and art. If history is traced, evidence of leprosy is found in all the four Yugas of Hindu religion, quotes of Jesus in Bible of Christianity and verses of Prophet in Muslim religion.

  18. HISTORY OF LEPROSY

    Directory of Open Access Journals (Sweden)

    Hanumanthayya

    2016-01-01

    Full Text Available Leprosy is one of the oldest and most dreaded diseases, which has tormented humans throughout history, leaving lasting impressions on religion, literature and art. If history is traced, evidence of leprosy is found in all the four Yugas of Hindu religion, quotes of Jesus in Bible of Christianity and verses of Prophet in Muslim religion.

  19. History of Bioterrorism: Botulism

    Medline Plus

    Full Text Available ... Information Social Media Zombie Apocalypse What’s New Video: "The History of Bioterrorism" Recommend on Facebook Tweet Share Compartir This ... or can be used as bioterrorist weapons. Watch the Complete Program "The History of Bioterroism" (26 min ...

  20. History and Ecological Education.

    Science.gov (United States)

    Cherif, Abour H.

    1988-01-01

    Discusses the main objectives of ecohistory and sources of information for this study. Details five themes that are important for students to know about the history of ecology including the history of Earth, fauna and flora, the human species, human civilization, and changes in the human environment. (CW)

  1. The Two World Histories

    Science.gov (United States)

    Dunn, Ross E.

    2008-01-01

    In the arenas where the two world histories have taken shape, educators vigorously debate among themselves intellectual, pedagogical, and policy issues surrounding world history as a school subject. The people in each arena tend to share, despite internal disagreements, a common set of premises and assumptions for ordering the discussion of world…

  2. History of Mathematics

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard; Gray, Jeremy

    Volume 1 in Theme on "History of Mathematics", in "Encyclopedia of Life Support Systems (EOLSS), developed under the auspices of the UNESCO.......Volume 1 in Theme on "History of Mathematics", in "Encyclopedia of Life Support Systems (EOLSS), developed under the auspices of the UNESCO....

  3. Sigmoid Colon Migration of an Intrauterine Device

    Directory of Open Access Journals (Sweden)

    Funda Akpinar

    2014-01-01

    Full Text Available Background. Intrauterine devices (IUD are commonly used birth control methods. Colonic perforation is an infrequent but serious complication of IUD. Case. A 34-year-old woman with 2-years history of IUD, inserted at early puerperal period, presented to gynecologist with chronic pelvic pain and dyspareunia. Radiological assessment revealed that there were two copper-T devices: one in uterine cavity and another in the colonic lumen. Attempts of retrieval with colonoscopy and laparoscopy were unsuccessful. Intrauterine device embedded in sigmoid colon wall was removed with resection of the involved segment and primary anastomosis was performed. Conclusion. Although there are cases in literature that are successfully managed with colonoscopy, in chronic cases, formation of granulation tissue complicates retrieval of an IUD by this intervention.

  4. Temperature measurement

    Science.gov (United States)

    ... an oral temperature. Other factors to take into account are: In general, rectal temperatures are considered to ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  5. Determination of complement to the value of thermal resistance of power semiconductor devices

    Directory of Open Access Journals (Sweden)

    V. S. Ostrenko

    2010-12-01

    Full Text Available The author justifies the procedure for determining a complement to the value of thermal resistance of a direct current semiconductor device which permits to determine a maximum temperature of the device junction when loaded by current pulses.

  6. Small cryotherapy devices for the treatment of skin warts.

    Science.gov (United States)

    Zouboulis, Viktor A; Zouboulis, Christos C

    2017-12-01

    Effectiveness of cryotherapy on skin wart models. Two small cryotherapy devices, Wartner and Wortie, were administered for 10″-60″ on tomatoes and potatoes used as skin wart models. Frozen surface and depth were evaluated by standardized photography and computer analysis. Tissue temperature at depths of 0.1-10 mm was assessed by an electronic thermometer during treatment. Cryotherapy induced a transient freezing of the tomato surface. The devices produced similar tomato tissue temperature reduction at all depths examined. At 5 mm, Wortie induced lower tissue temperatures than Wartner. Both devices induced potato tissue destruction to a depth of 0.5-1.2 mm at 40″ and 50″. Wartner induced a maximum destruction at 40″, Wortie led to a partially linear destruction depth with freezing time. The devices produced similar reduction of potato tissue temperature at all depths tested. Wartner induced more rapidly lower temperatures (1.5 mm, 10″, p = .001). Wortie induced lower tissue temperatures with time (0.1 mm, 50″, p = .025; 60″, p = .039; 5 mm, 60″, p = .05). None of the devices reached the lethal temperature of -22 °C. Both cryotherapy devices produced sufficient tissue damage, at least in the potatoes, to a depth of 0.5-1.2 mm when applied for 40″ (commercially proposed time).

  7. Rooting an Android Device

    Science.gov (United States)

    2015-09-01

    o 8-GB Memory o Intel Xeon X5472 Central Processing Unit (CPU)  64-bit quad and dual-core  3.0 GHz 3. Rooting Android Devices The rooting...root access has been granted. 4. Conclusion This document serves as a tutorial on how to grant user administrative privilege to an Android device by

  8. Microfabricated particle focusing device

    Energy Technology Data Exchange (ETDEWEB)

    Ravula, Surendra K.; Arrington, Christian L.; Sigman, Jennifer K.; Branch, Darren W.; Brener, Igal; Clem, Paul G.; James, Conrad D.; Hill, Martyn; Boltryk, Rosemary June

    2013-04-23

    A microfabricated particle focusing device comprises an acoustic portion to preconcentrate particles over large spatial dimensions into particle streams and a dielectrophoretic portion for finer particle focusing into single-file columns. The device can be used for high throughput assays for which it is necessary to isolate and investigate small bundles of particles and single particles.

  9. Incore measuring device

    Energy Technology Data Exchange (ETDEWEB)

    Nishimiya, Akira

    1997-01-28

    In an incore measuring device comprising a first function for controlling a state of a neutron flux distribution in a reactor core and a second function for analyzing, displaying and memorizing information of a state such as of a neutron flux distribution, the second function is separated from the main processing device and it is constituted in other processing device, and further a display device is connected to the other processing device. In addition, a tool for performing maintenance of memory device, touch panel, and software is disposed. Then, load on the main processing device can be reduced, high speed control of the neutron distribution state measuring and controlling portion is enabled, and high speed control of the device for displaying information on the recognized and analyzed state is also enabled. Further, it is possible for high speed data memorizing processing, and improvement of safety of indication operation such as for incore measurement and workability of the maintenance of control softwares. (N.H.)

  10. Process control device

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Toshifumi; Kobayashi, Hiroshi

    1994-09-09

    A process control device comprises a memory device for memorizing a plant operation target, a plant state or a state of equipments related with each other as control data, a read-only memory device for storing programs, a plant instrumentation control device or other process control devices, an input/output device for performing input/output with an operator, and a processing device which conducts processing in accordance with the program and sends a control demand or a display demand to the input/output device. The program reads out control data relative to a predetermined operation target, compares and verify them with actual values to read out control data to be a practice premise condition which is further to be a practice premise condition if necessary, thereby automatically controlling the plant or requiring or displaying input. Practice presuming conditions for the operation target can be examined succesively in accordance with the program without constituting complicated logical figures and AND/OR graphs. (N.H.).

  11. A nanophotonic solar thermophotovoltaic device.

    Science.gov (United States)

    Lenert, Andrej; Bierman, David M; Nam, Youngsuk; Chan, Walker R; Celanović, Ivan; Soljačić, Marin; Wang, Evelyn N

    2014-02-01

    The most common approaches to generating power from sunlight are either photovoltaic, in which sunlight directly excites electron-hole pairs in a semiconductor, or solar-thermal, in which sunlight drives a mechanical heat engine. Photovoltaic power generation is intermittent and typically only exploits a portion of the solar spectrum efficiently, whereas the intrinsic irreversibilities of small heat engines make the solar-thermal approach best suited for utility-scale power plants. There is, therefore, an increasing need for hybrid technologies for solar power generation. By converting sunlight into thermal emission tuned to energies directly above the photovoltaic bandgap using a hot absorber-emitter, solar thermophotovoltaics promise to leverage the benefits of both approaches: high efficiency, by harnessing the entire solar spectrum; scalability and compactness, because of their solid-state nature; and dispatchablility, owing to the ability to store energy using thermal or chemical means. However, efficient collection of sunlight in the absorber and spectral control in the emitter are particularly challenging at high operating temperatures. This drawback has limited previous experimental demonstrations of this approach to conversion efficiencies around or below 1% (refs 9, 10, 11). Here, we report on a full solar thermophotovoltaic device, which, thanks to the nanophotonic properties of the absorber-emitter surface, reaches experimental efficiencies of 3.2%. The device integrates a multiwalled carbon nanotube absorber and a one-dimensional Si/SiO2 photonic-crystal emitter on the same substrate, with the absorber-emitter areas optimized to tune the energy balance of the device. Our device is planar and compact and could become a viable option for high-performance solar thermophotovoltaic energy conversion.

  12. 33 CFR 159.119 - Operability test; temperature range.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Operability test; temperature... Operability test; temperature range. The device must operate in an ambient temperature of 5 °C with inlet operating fluid temperature varying from 2 °C to 32 °C and in an ambient temperature of 50 °C with inlet...

  13. Compound semiconductor device modelling

    CERN Document Server

    Miles, Robert

    1993-01-01

    Compound semiconductor devices form the foundation of solid-state microwave and optoelectronic technologies used in many modern communication systems. In common with their low frequency counterparts, these devices are often represented using equivalent circuit models, but it is often necessary to resort to physical models in order to gain insight into the detailed operation of compound semiconductor devices. Many of the earliest physical models were indeed developed to understand the 'unusual' phenomena which occur at high frequencies. Such was the case with the Gunn and IMPATI diodes, which led to an increased interest in using numerical simulation methods. Contemporary devices often have feature sizes so small that they no longer operate within the familiar traditional framework, and hot electron or even quantum­ mechanical models are required. The need for accurate and efficient models suitable for computer aided design has increased with the demand for a wider range of integrated devices for operation at...

  14. Metallic spintronic devices

    CERN Document Server

    Wang, Xiaobin

    2014-01-01

    Metallic Spintronic Devices provides a balanced view of the present state of the art of metallic spintronic devices, addressing both mainstream and emerging applications from magnetic tunneling junction sensors and spin torque oscillators to spin torque memory and logic. Featuring contributions from well-known and respected industrial and academic experts, this cutting-edge work not only presents the latest research and developments but also: Describes spintronic applications in current and future magnetic recording devicesDiscusses spin-transfer torque magnetoresistive random-access memory (STT-MRAM) device architectures and modelingExplores prospects of STT-MRAM scaling, such as detailed multilevel cell structure analysisInvestigates spintronic device write and read optimization in light of spintronic memristive effectsConsiders spintronic research directions based on yttrium iron garnet thin films, including spin pumping, magnetic proximity, spin hall, and spin Seebeck effectsProposes unique solutions for ...

  15. Device for cutting protrusions

    Science.gov (United States)

    Bzorgi, Fariborz M [Knoxville, TN

    2011-07-05

    An apparatus for clipping a protrusion of material is provided. The protrusion may, for example, be a bolt head, a nut, a rivet, a weld bead, or a temporary assembly alignment tab protruding from a substrate surface of assembled components. The apparatus typically includes a cleaver having a cleaving edge and a cutting blade having a cutting edge. Generally, a mounting structure configured to confine the cleaver and the cutting blade and permit a range of relative movement between the cleaving edge and the cutting edge is provided. Also typically included is a power device coupled to the cutting blade. The power device is configured to move the cutting edge toward the cleaving edge. In some embodiments the power device is activated by a momentary switch. A retraction device is also generally provided, where the retraction device is configured to move the cutting edge away from the cleaving edge.

  16. The teaching of history through histories

    OpenAIRE

    María Gabriela Calvas-Ojeda; Enrique Espinoza-Freire

    2017-01-01

    The comic strips have been introduced into the world of history as a didactic resource for their learning; However, there are still shortcomings in their use by teachers, motivated on many occasions due to lack of knowledge and insufficient methodological preparation; The purpose of this work is to socialize knowledge related to these didactic resources to contribute to the didactic-methodological enrichment of the teacher, in order to change this attitude. The methodological strategy respond...

  17. Development of cryotribological theories & application to cryogenic devices. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Iwasa, Yukikazu

    2001-03-12

    This is the final report of a research program on low-temperature friction and wear, primarily focused on development of cryotribological theories and application to cryogenic devices, particularly superconducting magnets.

  18. Lateral spread of heat during thyroidectomy using different haemostatic devices

    Directory of Open Access Journals (Sweden)

    Zbigniew Adamczewski

    2015-09-01

    The thermo-visual camera allows non-invasive, safe, and real-time monitoring and analysis of temperature distribution in the operation area during thyroidectomy. Proposed minimal safety margin for the analysed devices is 5.51 mm.

  19. Materials Challenges for High Performance Magnetocaloric Refrigeration Devices

    DEFF Research Database (Denmark)

    Smith, Anders; Bahl, Christian; Bjørk, Rasmus

    2012-01-01

    Magnetocaloric materials with a Curie temperature near room temperature have attracted signifi cant interest for some time due to their possible application for high-effi ciency refrigeration devices. This review focuses on a number of key issues of relevance for the characterization, performance....... An overview of several important materials classes is given before considering the performance of materials in actual devices. Finally, an outlook on further developments is presented.......Magnetocaloric materials with a Curie temperature near room temperature have attracted signifi cant interest for some time due to their possible application for high-effi ciency refrigeration devices. This review focuses on a number of key issues of relevance for the characterization, performance...... and implementation of such materials in actual devices. The phenomenology and fundamental thermodynamics of magnetocaloric materials is discussed, as well as the hysteresis behavior often found in fi rst-order materials. A number of theoretical and experimental approaches and their implications are reviewed...

  20. 49 CFR 179.300-15 - Pressure relief devices.

    Science.gov (United States)

    2010-10-01

    ... percent of the tank test pressure. When relief devices of the fusible plug type are used, the required... exceeding that specified in § 179.301. (d) Fusible plugs shall function at a temperature not exceeding 175...