WorldWideScience

Sample records for temperature fullerene encapsulation

  1. Melting of Pb clusters encapsulated in large fullerenes

    International Nuclear Information System (INIS)

    Delogu, Francesco

    2011-01-01

    Graphical abstract: Encapsulation significantly increases the melting point of nanometer-sized Pb particles with respect to the corresponding unsupported ones. Highlights: → Nanometer-sized Pb particles are encapsulated in fullerene cages. → Their thermal behavior is studied by molecular dynamics simulations. → Encapsulated particles undergo a pressure rise as temperature increases. → Encapsulated particles melt at temperatures higher than unsupported ones. - Abstract: Molecular dynamics simulations have been employed to explore the melting behavior of nanometer-sized Pb particles encapsulated in spherical and polyhedral fullerene cages of suitable size. The encapsulated particles, as well as the corresponding unsupported ones for comparison, were submitted to a gradual temperature rise. Encapsulation is shown to severely affect the thermodynamic behavior of Pb particles due to the different thermal expansion coefficients of particles and cages. This determines a volume constraint that induces a rise of pressure inside the fullerene cages, which operate for particles as rigid confinement systems. The result is that surface pre-melting and melting processes occur in encapsulated particles at temperatures higher than in unsupported ones.

  2. Micelle-encapsulated fullerenes in aqueous electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ala-Kleme, T., E-mail: timo.ala-kleme@utu.fi [Department of Chemistry, University of Turku, 20014 Turku (Finland); Maeki, A.; Maeki, R.; Kopperoinen, A.; Heikkinen, M.; Haapakka, K. [Department of Chemistry, University of Turku, 20014 Turku (Finland)

    2013-03-15

    Different micellar particles Mi(M{sup +}) (Mi=Triton X-100, Triton N-101 R, Triton CF-10, Brij-35, M{sup +}=Na{sup +}, K{sup +}, Cs{sup +}) have been prepared in different aqueous H{sub 3}BO{sub 3}/MOH background electrolytes. It has been observed that these particles can be used to disperse the highly hydrophobic spherical [60]fullerene (1) and ellipsoidal [70]fullerene (2). This dispersion is realised as either micelle-encapsulated monomers Mi(M{sup +})1{sub m} and Mi(M{sup +})2{sub m} or water-soluble micelle-bound aggregates Mi(M{sup +})1{sub agg} and Mi(M{sup +})2{sub agg}, where especially the hydration degree and polyoxyethylene (POE) thickness of the micellar particle seems to play a role of vital importance. Further, the encapsulation microenvironment of 1{sub m} was found to depend strongly on the selected monovalent electrolyte cation, i.e., the encapsulated 1{sub m} is accommodated in the more hydrophobic microenvironment the higher the cationic solvation number is. - Highlights: Black-Right-Pointing-Pointer Different micellar particles is used to disperse [60]fullerene and [70]fullerene. Black-Right-Pointing-Pointer Fullerene monomers or aggregates are dispersed encaging or bounding by micelles. Black-Right-Pointing-Pointer Effective facts are hydration degree and polyoxyethylene thickness of micelle.

  3. Cyclic water-trimer encapsulation into D2 (22)-C84 fullerene

    Science.gov (United States)

    Slanina, Zdeněk; Uhlík, Filip; Nagase, Shigeru; Akasaka, Takeshi; Lu, Xing; Adamowicz, Ludwik

    2018-03-01

    The cyclic water-trimer encapsulations into D2 (22)-C84 fullerene are evaluated. The encapsulation energy is computed at the M06-2X/6-31++G∗∗ level and it is found that the trimer storage in C84 yields the potential-energy gain of 10.4 kcal/mol. The encapsulated trimer can have two different forms, either the conformation known with the free gas-phase water trimer or the arrangement with the three non-hydrogen bonded H atoms on the same side of the O-O-O plane. The latter endohedral isomer is lower in the potential energy by 0.071 kcal/mol and forms about 57% of their equilibrium mixture at room temperature.

  4. Local magnetism in rare-earth metals encapsulated in fullerenes

    NARCIS (Netherlands)

    De Nadai, C; Mirone, A; Dhesi, SS; Bencok, P; Brookes, NB; Marenne, [No Value; Rudolf, P; Tagmatarchis, N; Shinohara, H; Dennis, TJS; Marenne, I.; Nadaï, C. De

    Local magnetic properties of rare-earth (RE) atoms encapsulated in fullerenes have been characterized using x-ray magnetic circular dichroism and x-ray absorption spectroscopy (XAS). The orbital and spin contributions of the magnetic moment have been determined through sum rules and theoretical

  5. Interaction energy for a fullerene encapsulated in a carbon nanotorus

    Science.gov (United States)

    Sarapat, Pakhapoom; Baowan, Duangkamon; Hill, James M.

    2018-06-01

    The interaction energy of a fullerene symmetrically situated inside a carbon nanotorus is studied. For these non-bonded molecules, the main interaction originates from the van der Waals energy which is modelled by the 6-12 Lennard-Jones potential. Upon utilising the continuum approximation which assumes that there are infinitely many atoms that are uniformly distributed over the surfaces of the molecules, the total interaction energy between the two structures is obtained as a surface integral over the spherical and the toroidal surfaces. This analytical energy is employed to determine the most stable configuration of the torus encapsulating the fullerene. The results show that a torus with major radius around 20-22 Å and minor radius greater than 6.31 Å gives rise to the most stable arrangement. This study will pave the way for future developments in biomolecules design and drug delivery system.

  6. The effects of encapsulating C60 fullerenes on the bending flexibility of carbon nanotubes

    International Nuclear Information System (INIS)

    Zhu, J; Pan, Z Y; Wang, Y X; Zhou, L; Jiang, Q

    2007-01-01

    We investigate the bending flexibility of carbon nanotubes (CNTs) with encapsulated C 60 fullerenes, using molecular dynamics (MD) simulations. Our simulations on the bending of the fully ((C 60 ) 12 -(10,10)) and partially ((C 60 ) 10 -(10,10)) filled peapods show an 18 and 6.3% increase of the flexural rigidity, and a 45 and 11% increase of the buckling strength, respectively, compared to the empty (10, 10) CNT. What is characteristically different for the peapod from the empty CNT is the presence of a transitional region in the loading process that proceeds to the onset of buckling. Within this transitional region, the interaction between the encapsulated fullerenes and the hosting CNT leads to an unusual configuration of the peapod, in which there are ripples along the inner arc of the bent peapod. The transition region in the partially filled peapod is short compared with the fully filled peapod. This is mainly caused by the axial motion of C 60 fullerenes, especially after the appearance of the small ripple. The rippling configuration has been reported previously in the bending of multi-walled CNTs, where it emerges after the critical bending angle. However, in the present case, the peapod remains perfectly elastic in this transitional region until buckling takes place

  7. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    International Nuclear Information System (INIS)

    Zope, Rajendra R.; Baruah, Tunna; Bhusal, Shusil; Basurto, Luis; Jackson, Koblar

    2015-01-01

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C 60 @C 240 and C 60 @C 180 onions shows that, compared to the polarizability of isolated C 60 fullerene, the encapsulation of the C 60 in C 240 and C 180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C 60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability

  8. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    Science.gov (United States)

    Zope, Rajendra R.; Bhusal, Shusil; Basurto, Luis; Baruah, Tunna; Jackson, Koblar

    2015-08-01

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C60@C240 and C60@C180 onions shows that, compared to the polarizability of isolated C60 fullerene, the encapsulation of the C60 in C240 and C180 fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C60 in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.

  9. Site specific atomic polarizabilities in endohedral fullerenes and carbon onions

    Energy Technology Data Exchange (ETDEWEB)

    Zope, Rajendra R., E-mail: rzope@utep.edu; Baruah, Tunna [Department of Physics, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Computational Science Program, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Bhusal, Shusil; Basurto, Luis [Department of Physics, The University of Texas at El Paso, El Paso, Texas 79958 (United States); Jackson, Koblar [Physics Department and Science of Advanced Materials Ph.D. Program, Central Michigan University, Mt. Pleasant, Michigan 48859 (United States)

    2015-08-28

    We investigate the polarizability of trimetallic nitride endohedral fullerenes by partitioning the total polarizability into site specific components. This analysis indicates that the polarizability of the endohedral fullerene is essentially due to the outer fullerene cage and has insignificant contribution from the encapsulated unit. Thus, the outer fullerene cages effectively shield the encapsulated clusters and behave like Faraday cages. The polarizability of endohedral fullerenes is slightly smaller than the polarizability of the corresponding bare carbon fullerenes. The application of the site specific polarizabilities to C{sub 60}@C{sub 240} and C{sub 60}@C{sub 180} onions shows that, compared to the polarizability of isolated C{sub 60} fullerene, the encapsulation of the C{sub 60} in C{sub 240} and C{sub 180} fullerenes reduces its polarizability by 75% and 83%, respectively. The differences in the polarizability of C{sub 60} in the two onions is a result of differences in the bonding (intershell electron transfer), fullerene shell relaxations, and intershell separations. The site specific analysis further shows that the outer atoms in a fullerene shell contribute most to the fullerene polarizability.

  10. Quantum rotation and translation of hydrogen molecules encapsulated inside C₆₀: temperature dependence of inelastic neutron scattering spectra.

    Science.gov (United States)

    Horsewill, A J; Goh, K; Rols, S; Ollivier, J; Johnson, M R; Levitt, M H; Carravetta, M; Mamone, S; Murata, Y; Chen, J Y-C; Johnson, J A; Lei, X; Turro, N J

    2013-09-13

    The quantum dynamics of a hydrogen molecule encapsulated inside the cage of a C60 fullerene molecule is investigated using inelastic neutron scattering (INS). The emphasis is on the temperature dependence of the INS spectra which were recorded using time-of-flight spectrometers. The hydrogen endofullerene system is highly quantum mechanical, exhibiting both translational and rotational quantization. The profound influence of the Pauli exclusion principle is revealed through nuclear spin isomerism. INS is shown to be exceptionally able to drive transitions between ortho-hydrogen and para-hydrogen which are spin-forbidden to photon spectroscopies. Spectra in the temperature range 1.6≤T≤280 K are presented, and examples are given which demonstrate how the temperature dependence of the INS peak amplitudes can provide an effective tool for assigning the transitions. It is also shown in a preliminary investigation how the temperature dependence may conceivably be used to probe crystal field effects and inter-fullerene interactions.

  11. Effect of Peierls transition in armchair carbon nanotube on dynamical behaviour of encapsulated fullerene

    Directory of Open Access Journals (Sweden)

    Hieu Nguyen

    2011-01-01

    Full Text Available Abstract The changes of dynamical behaviour of a single fullerene molecule inside an armchair carbon nanotube caused by the structural Peierls transition in the nanotube are considered. The structures of the smallest C20 and Fe@C20 fullerenes are computed using the spin-polarized density functional theory. Significant changes of the barriers for motion along the nanotube axis and rotation of these fullerenes inside the (8,8 nanotube are found at the Peierls transition. It is shown that the coefficients of translational and rotational diffusions of these fullerenes inside the nanotube change by several orders of magnitude. The possibility of inverse orientational melting, i.e. with a decrease of temperature, for the systems under consideration is predicted.

  12. Nanoencapsulation of Fullerenes in Organic Structures with Nonpolar Cavities

    International Nuclear Information System (INIS)

    Murthy, C. N.

    2005-01-01

    The formation of supramolecular structures, assemblies, and arrays held together by weak intermolecular interactions and non-covalent binding mimicking natural processes has been used in applications being anticipated in nanotechnology, biotechnology and the emerging field of nanomedicine. Encapsulation of C 60 fullerene by cyclic molecules like cyclodextrins and calixarenes has potential for a number of applications. Similarly, biomolecules like lysozyme also have been shown to encapsulate C 60 fullerene. This poster article reports the recent trends and the results obtained in the nanoencapsulation of fullerenes by biomolecules containing nonpolar cavities. Lysozyme was chosen as the model biomolecule and it was observed that there is no covalent bond formed between the bimolecule and the C 60 fullerene. This was confirmed from fluorescence energy transfer studies. UV-Vis studies further supported this observation that it is possible to selectively remove the C 60 fullerene from the nonpolar cavity. This behavior has potential in biomedical applications

  13. The study of dielectric properties of the endohedral fullerenes

    Science.gov (United States)

    Bhusal, Shusil

    Dielectric response of the metal nitride fullerenes is studied using the density functional theory at the all-electron level using generalized gradient approximation. The dielectric response is studied by computing the static dipole polarizabilities using the finite field method, i.e. by numerically differentiating the dipole moments with respect to electric field. The endohedral fullerenes studied in this work are Sc3N C68(6140), Sc3N C68(6146), Sc3N C70(7854), Sc3N C70(7960), Sc3N C76(17490), Sc3N C78(22010), Sc3N C80(31923), Sc3N C80(31924), Sc3N C82(39663), Sc3N C90(43), Sc3N C90(44), Sc3N C92(85), Sc3N C94(121), Sc3N C96(186), Sc3N C98(166). Using the Voronoi and Hirschfield approaches as implemented in our NRLMOL code, we determine the atomic contributions to the total polarizability. The site-specific contributions to the polarizability of endohedral fullerenes allowed us to determine the polarizability of two subsystems: the fullerene shell and the encapsulated Sc3N unit. Our results showed that the contributions to the total polarizability from the encapsulated Sc3N units are vanishingly small. Thus, the total polarizability of the endohedral fullerene is almost entirely due to the outer fullerene shell. These fullerenes are excellent molecular models of a Faraday cage.

  14. Atomic nitrogen encapsulated in fullerenes: realization of a chemical Faraday cage

    International Nuclear Information System (INIS)

    Lips, K.

    2000-01-01

    Fullerenes, C 60 and C 70 , are ideal containers for atomic nitrogen. We will show by electron paramagnetic resonance (EPR) experiments that nitrogen in C 60 keeps its atomic ground state configuration and resides in the center of the cage. This is the first time that atomic nitrogen is stabilized at ambient conditions. The inert shell of the fullerene protects the highly reactive nitrogen from undergoing chemical reactions with the surroundings. The fullerene cage is the chemical analogue of the Faraday cage in case of electrical fields, i.e. it shields off the chemical reactivity. As for the free nitrogen atom, the spins of the three p-electrons of nitrogen in C 60 are parallel (S = 3/2) and the atom has spherical symmetry. Due to the center position of nitrogen in C 60 , extremely sharp EPR lines are observed. This reflects the absence of a strong host-guest interaction and shows that the individuality of nitrogen in the fullerenes is preserved. Further evidence for the almost interaction-free suspension of nitrogen in the fullerene cages is provided by g-factor measurements. These investigations show that magnetic shielding of the host molecules can account for the observed differences between N rate at C 60 and N rate at C 70 . The fullerene cage can be chemically modified without destroying the endohedral complex. The chemical modifications change the symmetry of the molecule which is observed through an additional fine structure in the EPR spectrum. Influences of the modifications on the stability of N rate at C 60 will be discussed. (orig.)

  15. Sc2O@Cs(126339)-C92: Di-scandium oxide cluster encapsulated into a large fullerene cage

    Science.gov (United States)

    Gu, Yong-Xin; Li, Qiao-Zhi; Li, De-Huai; Zhao, Rui-Sheng; Zhao, Xiang

    2018-04-01

    The geometric, electronic structure and thermodynamic stability of Sc2O@C92 has been characterized by using hybrid density functional theory calculations combined with statistical thermodynamic analyses. Results indicate that the isolated pentagon rule (IPR) isomers Sc2O@Cs(126339)-C92, Sc2O@C1(126367)-C92 and Sc2O@C1(126390)-C92 are favorable. Noteworthy, it is the first time to declare that fullerene isomer Cs(126339)-C92 could be considered as the suitable cage to encapsulate metallic cluster. The electronic properties of these three isomers were performed with frontier molecular orbital (HOMO and LUMO) analyses and bond order calculations. Finally, 13C NMR and UV-vis-NIR spectra were simulated to provide valuable information for future experiments.

  16. Enhanced superconductivity of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Washington, II, Aaron L.; Teprovich, Joseph A.; Zidan, Ragaiy

    2017-06-20

    Methods for enhancing characteristics of superconductive fullerenes and devices incorporating the fullerenes are disclosed. Enhancements can include increase in the critical transition temperature at a constant magnetic field; the existence of a superconducting hysteresis over a changing magnetic field; a decrease in the stabilizing magnetic field required for the onset of superconductivity; and/or an increase in the stability of superconductivity over a large magnetic field. The enhancements can be brought about by transmitting electromagnetic radiation to the superconductive fullerene such that the electromagnetic radiation impinges on the fullerene with an energy that is greater than the band gap of the fullerene.

  17. Fullerenes and disk-fullerenes

    International Nuclear Information System (INIS)

    Deza, M; Dutour Sikirić, M; Shtogrin, M I

    2013-01-01

    A geometric fullerene, or simply a fullerene, is the surface of a simple closed convex 3-dimensional polyhedron with only 5- and 6-gonal faces. Fullerenes are geometric models for chemical fullerenes, which form an important class of organic molecules. These molecules have been studied intensively in chemistry, physics, crystallography, and so on, and their study has led to the appearance of a vast literature on fullerenes in mathematical chemistry and combinatorial and applied geometry. In particular, several generalizations of the notion of a fullerene have been given, aiming at various applications. Here a new generalization of this notion is proposed: an n-disk-fullerene. It is obtained from the surface of a closed convex 3-dimensional polyhedron which has one n-gonal face and all other faces 5- and 6-gonal, by removing the n-gonal face. Only 5- and 6-disk-fullerenes correspond to geometric fullerenes. The notion of a geometric fullerene is therefore generalized from spheres to compact simply connected two-dimensional manifolds with boundary. A two-dimensional surface is said to be unshrinkable if it does not contain belts, that is, simple cycles consisting of 6-gons each of which has two neighbours adjacent at a pair of opposite edges. Shrinkability of fullerenes and n-disk-fullerenes is investigated. Bibliography: 87 titles

  18. Fullerenes and disk-fullerenes

    Science.gov (United States)

    Deza, M.; Dutour Sikirić, M.; Shtogrin, M. I.

    2013-08-01

    A geometric fullerene, or simply a fullerene, is the surface of a simple closed convex 3-dimensional polyhedron with only 5- and 6-gonal faces. Fullerenes are geometric models for chemical fullerenes, which form an important class of organic molecules. These molecules have been studied intensively in chemistry, physics, crystallography, and so on, and their study has led to the appearance of a vast literature on fullerenes in mathematical chemistry and combinatorial and applied geometry. In particular, several generalizations of the notion of a fullerene have been given, aiming at various applications. Here a new generalization of this notion is proposed: an n-disk-fullerene. It is obtained from the surface of a closed convex 3-dimensional polyhedron which has one n-gonal face and all other faces 5- and 6-gonal, by removing the n-gonal face. Only 5- and 6-disk-fullerenes correspond to geometric fullerenes. The notion of a geometric fullerene is therefore generalized from spheres to compact simply connected two-dimensional manifolds with boundary. A two-dimensional surface is said to be unshrinkable if it does not contain belts, that is, simple cycles consisting of 6-gons each of which has two neighbours adjacent at a pair of opposite edges. Shrinkability of fullerenes and n-disk-fullerenes is investigated. Bibliography: 87 titles.

  19. Production of Endohedral Fullerenes by Ion Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Diener, M.D.; Alford, J. M.; Mirzadeh, S.

    2007-05-31

    The empty interior cavity of fullerenes has long been touted for containment of radionuclides during in vivo transport, during radioimmunotherapy (RIT) and radioimaging for example. As the chemistry required to open a hole in fullerene is complex and exceedingly unlikely to occur in vivo, and conformational stability of the fullerene cage is absolute, atoms trapped within fullerenes can only be released during extremely energetic events. Encapsulating radionuclides in fullerenes could therefore potentially eliminate undesired toxicity resulting from leakage and catabolism of radionuclides administered with other techniques. At the start of this project however, methods for production of transition metal and p-electron metal endohedral fullerenes were completely unknown, and only one method for production of endohedral radiofullerenes was known. They therefore investigated three different methods for the production of therapeutically useful endohedral metallofullerenes: (1) implantation of ions using the high intensity ion beam at the Oak Ridge National Laboratory (ORNL) Surface Modification and Characterization Research Center (SMAC) and fullerenes as the target; (2) implantation of ions using the recoil energy following alpha decay; and (3) implantation of ions using the recoil energy following neutron capture, using ORNL's High Flux Isotope Reactor (HFIR) as a thermal neutron source. While they were unable to obtain evidence of successful implantation using the ion beam at SMAC, recoil following alpha decay and neutron capture were both found to be economically viable methods for the production of therapeutically useful radiofullerenes. In this report, the procedures for preparing fullerenes containing the isotopes {sup 212}Pb, {sup 212}Bi, {sup 213}Bi, and {sup 177}Lu are described. None of these endohedral fullerenes had ever previously been prepared, and all of these radioisotopes are actively under investigation for RIT. Additionally, the chemistry for

  20. Detection of fullerenes (C60 and C70) in commercial cosmetics

    International Nuclear Information System (INIS)

    Benn, Troy M.; Westerhoff, Paul; Herckes, Pierre

    2011-01-01

    Detection methods are necessary to quantify fullerenes in commercial applications to provide potential exposure levels for future risk assessments of fullerene technologies. The fullerene concentrations of five cosmetic products were evaluated using liquid chromatography with mass spectrometry to separate and specifically detect C 60 and C 70 from interfering cosmetic substances (e.g., castor oil). A cosmetic formulation was characterized with transmission electron microscopy, which confirmed that polyvinylpyrrolidone encapsulated C 60 . Liquid-liquid extraction of fullerenes from control samples approached 100% while solid-phase and sonication in toluene extractions yielded recoveries of 27-42%. C 60 was detected in four commercial cosmetics ranging from 0.04 to 1.1 μg/g, and C 70 was qualitatively detected in two samples. A single-use quantity of cosmetic (0.5 g) may contain up to 0.6 μg of C 60 , demonstrating a pathway for human exposure. Steady-state modeling of fullerene adsorption to biosolids is used to discuss potential environmental releases from wastewater treatment systems. - Highlights: → Fullerenes were detected in cosmetics up to 1.1 μg/g. → Liquid-liquid extraction efficiently recovers fullerenes in cosmetic matrices. → Solid-phase extraction reduces LC-MS detection interferences for C60. → Cosmetics can increase human and environmental fullerene exposures. - Fullerenes were detected in cosmetics with liquid chromatography-mass spectrometry up to 1.1 μg/g, demonstrating a source for human/environmental exposure.

  1. He-3 NMR: from free gas to its encapsulation in fullerene

    Czech Academy of Sciences Publication Activity Database

    Kupka, T.; Stachów, M.; Stobinski, L.; Kaminský, Jakub

    2013-01-01

    Roč. 51, č. 8 (2013), s. 463-468 ISSN 0749-1581 R&D Projects: GA ČR GAP208/11/0105 Grant - others:AV ČR(CZ) M200551205 Institutional support: RVO:61388963 Keywords : He-3 NMR * GIAO * molecular modeling * ab initio * fullerene * SWCNT Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.559, year: 2013

  2. Encapsulation of a radiolabeled cluster inside a fullerene cage, (177)Lu(x)Lu((3-x))N@C(80): an interleukin-13-conjugated radiolabeled metallofullerene platform.

    Science.gov (United States)

    Shultz, Michael D; Duchamp, James C; Wilson, John D; Shu, Chun-Ying; Ge, Jiechao; Zhang, Jianyuan; Gibson, Harry W; Fillmore, Helen L; Hirsch, Jerry I; Dorn, Harry C; Fatouros, Panos P

    2010-04-14

    In this communication, we describe the successful encapsulation of (177)Lu into the endohedral metallofullerene (177)Lu(x)Lu(3-x)N@C(80) (x = 1-3) starting with (177)LuCl(3) in a modified quartz Kraschmer-Huffman electric generator. We demonstrate that the (177)Lu (beta-emitter) in this fullerene cage is not significantly released for a period of up to at least one-half-life (6.7 days). We also demonstrate that this agent can be conjugated with an interleukin-13 peptide that is designed to target an overexpressed receptor in glioblastoma multiforme tumors. This nanoparticle delivery platform provides flexibility for a wide range of radiotherapeutic and radiodiagnostic multimodal applications.

  3. Stable Au–C bonds to the substrate for fullerene-based nanostructures

    Directory of Open Access Journals (Sweden)

    Taras Chutora

    2017-05-01

    Full Text Available We report on the formation of fullerene-derived nanostructures on Au(111 at room temperature and under UHV conditions. After low-energy ion sputtering of fullerene films deposited on Au(111, bright spots appear at the herringbone corner sites when measured using a scanning tunneling microscope. These features are stable at room temperature against diffusion on the surface. We carry out DFT calculations of fullerene molecules having one missing carbon atom to simulate the vacancies in the molecules resulting from the sputtering process. These modified fullerenes have an adsorption energy on the Au(111 surface that is 1.6 eV higher than that of C60 molecules. This increased binding energy arises from the saturation by the Au surface of the bonds around the molecular vacancy defect. We therefore interpret the observed features as adsorbed fullerene-derived molecules with C vacancies. This provides a pathway for the formation of fullerene-based nanostructures on Au at room temperature.

  4. Fullerenes, PAHs, Amino Acids and High Energy Astrophysics

    Directory of Open Access Journals (Sweden)

    Susana Iglesias-Groth

    2014-12-01

    Full Text Available We present theoretical, observational and laboratory work on the spectral properties of fullerenes and hydrogenated fullerenes. Fullerenes in its various forms (individual, endohedral, hydrogenated, etc. can contribute to the UV bump in the extinction curves measured in many lines of sight of the Galaxy. They can also produce a large number of absorption features in the optical and near infrared which could be associated with diffuse interstellar bands. We summarise recent laboratory work on the spectral characterisation of fullerenes and hydrogenated fullerenes (for a range of temperatures. The recent detection of mid-IR bands of fullerenes in various astrophysical environments (planetary nebulae, reflection nebulae provide additional evidence for a link between fullerene families and diffuse interstellar bands. We describe recent observational work on near IR bands of C60+ in a protoplanetary nebula which support fullerene formation during the post-AGB phase. We also report on the survival of fullerenes to irradiation by high energy particles and gamma photons and laboratory work to explore the chemical  reactions that take place when fullerenes are exposed to this radiations in the presence of water, ammonia and other molecules as a potential path to form amino acids.

  5. Generation, Characterization and Applications of Fullerenes

    Science.gov (United States)

    Liu, Shengzhong

    A contact-arc sputtering configuration has been adopted and optimized in order to generate fullerene-containing soot. Several stages of design improvements have made our equipment more effective in terms of yield and production rate. Upon modification of Wudl's Soxhlet separation procedure, we have been able to significantly speed up C_ {60} separation and higher fullerene enrichment. At least ten more separable HPLC peaks after C_ {84} have been observed for the first time. Preliminary laser desorption time of flight mass spectra suggest that our enriched higher fullerene sample possibly contains, C_{86}, C_{88}, C_ {90}, C_{92} , C_{94} and C _{96} in addition to the previously isolated smaller fullerenes C_ {60}, C_{70} , C_{76}, C _{78}(D_2), C_{78}(C_ {rm 2v}) and C_{84 }. Among these, C_{86 }, C_{88}, C_{92} show up for the first time in separable amounts and the controversial species --C_{94} appears present too. HPLC has been successfully used for high fullerene separation, pure C_{76}, C_{84} samples so far having been obtained. Fullerene decomposition (especially of higher fullerenes) in the column has been clearly identified. We defined HPLC peaks indicate that the oxidation process may follow certain "well defined" routes. A yellow epoxide band containing various oxides of C_{60 } has been extracted and characterized using mass spectrometry. Characterizations of pure C _{60} and C_{70 } include HPLC, mass spectrometry, vibrational IR and Raman spectroscopy, STM, TEM etc. Our Raman measurements completed the full assignment of C_{60 } fundamental modes and supplied more structural information on C_{70}. STM imaging supplied clear pictures of both C_ {60} and C_{70} molecular topologies. Especially for C _{70}, both the long and the short axes of the molecule have been clearly resolved. TEM observations involving imaging, diffraction and electron energy loss spectroscopy of crystalline C_{60} and C_{70} were performed. The room temperature lattice

  6. Transient optical studies of charge recombination dynamics in a polymer/fullerene composite at room temperature

    NARCIS (Netherlands)

    Montanari, Ivan; Nogueira, Ana F.; Nelson, Jenny; Durrant, James R.; Winder, Christoph; Loi, Maria Antonietta; Sariciftci, Niyazi Serdar; Brabec, Christoph

    2002-01-01

    The recombination kinetics of photogenerated charge carriers in a composite of poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1-4-phenylene vinylene], (MDMO–PPV) and the functionalised fullerene 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 are investigated at room temperature by transient absorption

  7. Current Analysis and Modeling of Fullerene Single-Electron Transistor at Room Temperature

    Science.gov (United States)

    Khadem Hosseini, Vahideh; Ahmadi, Mohammad Taghi; Afrang, Saeid; Ismail, Razali

    2017-07-01

    Single-electron transistors (SETs) are interesting electronic devices that have become key elements in modern nanoelectronic systems. SETs operate quickly because they use individual electrons, with the number transferred playing a key role in their switching behavior. However, rapid transmission of electrons can cause their accumulation at the island, affecting the I- V characteristic. Selection of fullerene as a nanoscale zero-dimensional material with high stability, and controllable size in the fabrication process, can overcome this charge accumulation issue and improve the reliability of SETs. Herein, the current in a fullerene SET is modeled and compared with experimental data for a silicon SET. Furthermore, a weaker Coulomb staircase and improved reliability are reported. Moreover, the applied gate voltage and fullerene diameter are found to be directly associated with the I- V curve, enabling the desired current to be achieved by controlling the fullerene diameter.

  8. Synthesis of Nickel-Encapsulated Carbon Nanocapsules and Cup-Stacked-Type Carbon Nanotubes via Nickel-Doped Fullerene Nanowhiskers

    Directory of Open Access Journals (Sweden)

    Tokushi Kizuka

    2012-01-01

    Full Text Available Nickel- (Ni doped C60 nanowhiskers (NWs were synthesized by a liquid-liquid interfacial precipitation method using a C60-saturated toluene solution and isopropanol with Ni nitrate hexahydrate Ni(NO32·6H2O. By varying the heating temperature of Ni-doped C60 NWs, two types of one-dimensional carbon nanostructures were produced. By heating the NWs at 973 and 1173 K, carbon nanocapsules (CNCs that encapsulated Ni nanoparticles were produced. The Ni-encapsulated CNCs joined one dimensionally to form chain structures. Upon heating the NWs to 1373 K, cup-stacked-type carbon nanotubes were synthesized.

  9. Enthalpies of sublimation of fullerenes by thermogravimetry

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Herrera, Melchor; Campos, Myriam; Torres, Luis Alfonso; Rojas, Aarón, E-mail: arojas@cinvestav.mx

    2015-12-20

    Graphical abstract: - Highlights: • Enthalpies of sublimation of fullerenes were measured by thermogravimetry. • Results of enthalpies of sublimation are comparable with data reported in literature. • Not previously reported enthalpy of sublimation of C{sub 78} is supplied in this work. • Enthalpies of sublimation show a strong dependence with the number of carbon atoms in the cluster. • Enthalpies of sublimation are congruent with dispersion forces ruling cohesion of solid fullerene. - Abstract: The enthalpies of sublimation of fullerenes, as measured in the interval of 810–1170 K by thermogravimetry and applying the Langmuir equation, are reported. The detailed experimental procedure and its application to fullerenes C{sub 60}, C{sub 70}, C{sub 76}, C{sub 78} and C{sub 84} are supplied. The accuracy and uncertainty associated with the experimental results of the enthalpy of sublimation of these fullerenes show that the reliability of the measurements is comparable to that of other indirect high-temperature methods. The results also indicate that the enthalpy of sublimation increases proportionally to the number of carbon atoms in the cluster but there is also a strong correlation between the enthalpy of sublimation and the polarizability of each fullerene.

  10. Encapsulation of high temperature molten salts

    Science.gov (United States)

    Oxley, James D.; Mathur, Anoop Kumar

    2017-05-16

    The present disclosure relates to a method of encapsulating microcapsules containing relatively high temperature phase change materials and the microcapsules so produced. The microcapsules are coated with an inorganic binder, film former and an inorganic filler. The microcapsules may include a sacrificial layer that is disposed between the particle and the coating. The microcapsules may also include an inner coating layer, sacrificial layer and outer coating layer. The microcapsules are particularly useful for thermal energy storage in connection with, e.g., heat collected from concentrating solar collectors.

  11. Data on the detail information of influence of substrate temperature on the film morphology and photovoltaic performance of non-fullerene organic solar cells.

    Science.gov (United States)

    Zhang, Jicheng; Xie, SuFei; Lu, Zhen; Wu, Yang; Xiao, Hongmei; Zhang, Xuejuan; Li, Guangwu; Li, Cuihong; Chen, Xuebo; Ma, Wei; Bo, Zhishan

    2017-10-01

    This data contains additional data related to the article "Influence of Substrate Temperature on the Film Morphology and Photovoltaic Performance of Non-fullerene Organic Solar Cells" (Jicheng Zhang et al., In press) [1]. Data include measurement and characterization instruments and condition, detail condition to fabricate norfullerene solar cell devices, hole-only and electron-only devices. Detail condition about how to control the film morphology of devices via tuning the temperature of substrates was also displayed. More information and more convincing data about the change of film morphology for active layers fabricated from different temperature, which is attached to the research article of "Influence of Substrate Temperature on the Film Morphology and Photovoltaic Performance of Non-fullerene Organic Solar Cells" was given.

  12. Endo-Fullerene and Doped Diamond Nanocrystallite Based Models of Qubits for Solid-State Quantum Computers

    Science.gov (United States)

    Park, Seongjun; Srivastava, Deepak; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Models of encapsulated 1/2 nuclear spin H-1 and P-31 atoms in fullerene and diamond nanocrystallite, respectively, are proposed and examined with ab-initio local density functional method for possible applications as single quantum bits (qubits) in solid-state quantum computers. A H-1 atom encapsulated in a fully deuterated fullerene, C(sub 20)D(sub 20), forms the first model system and ab-initio calculation shows that H-1 atom is stable in atomic state at the center of the fullerene with a barrier of about 1 eV to escape. A P-31 atom positioned at the center of a diamond nanocrystallite is the second model system, and 3 1P atom is found to be stable at the substitutional site relative to interstitial sites by 15 eV, Vacancy formation energy is 6 eV in diamond so that substitutional P-31 atom will be stable against diffusion during the formation mechanisms within the nanocrystallite. The coupling between the nuclear spin and weakly bound (valance) donor electron coupling in both systems is found to be suitable for single qubit applications, where as the spatial distributions of (valance) donor electron wave functions are found to be preferentially spread along certain lattice directions facilitating two or more qubit applications. The feasibility of the fabrication pathways for both model solid-state qubit systems within practical quantum computers is discussed with in the context of our proposed solid-state qubits.

  13. Production of metal fullerene surface layer from various media in the process of steel carbonization

    Directory of Open Access Journals (Sweden)

    KUZEEV Iskander Rustemovich

    2018-04-01

    Full Text Available Studies devoted to production of metal fullerene layer in steels when introducing carbon from organic and inorganic media were performed. Barium carbonate was used as an inorganic medium and petroleum pitch was used as an organic medium. In order to generate the required amount of fullerenes in the process of steel samples carbonization, optimal temperature mode was found. The higher temperature, absorption and cohesive effects become less important and polymeric carbon structures destruction processes become more important. On the bottom the temperature is limited by petroleum pitch softening temperature and its transition to low-viscous state in order to enhance molecular mobility and improve the possibility of their diffusion to metal surface. Identification of fullerenes in the surface modified layer was carried out following the methods of IR-Fourier spectrometry and high-performance liquid chromatography. It was found out that nanocarbon structures, formed during carbonization in barium carbonate and petroleum pitch mediums, possess different morphology. In the process of metal carbonization from carbonates medium, the main role in fullerenes synthesis is belonged to catalytic effect of surface with generation of endohedral derivatives in the surface layer; but in the process of carbonization from pitch medium fullerenes are formed during crystallization of the latter and crystallization centers are of fullerene type. Based on theoretical data and dataof spectral and chromatographic analysis, optimal conditions of metal fullerene layer formation in barium carbonate and petroleum pitch mediums were determined. Low cohesion of layer, modified in barium carbonate medium, with metal basis was discovered. That was caused by limited carbon diffusion in the volume of α-Fe. According to the detected mechanism of fullerenes formation on steel surface in gaseous medium, fullerenes are formed on catalytic centers – ferrum atoms, forming thin metal

  14. Program Fullerene

    DEFF Research Database (Denmark)

    Wirz, Lukas; Peter, Schwerdtfeger,; Avery, James Emil

    2013-01-01

    Fullerene (Version 4.4), is a general purpose open-source program that can generate any fullerene isomer, perform topological and graph theoretical analysis, as well as calculate a number of physical and chemical properties. The program creates symmetric planar drawings of the fullerene graph, an......-Fowler, and Brinkmann-Fowler vertex insertions. The program is written in standard Fortran and C++, and can easily be installed on a Linux or UNIX environment....

  15. The encapsulation of trimetallic nitride clusters in fullerene cages

    International Nuclear Information System (INIS)

    Dorn, H.C.; Stevenson, S.; Craft, J.; Cromer, F.; Duchamp, J.; Rice, G.; Glass, T.; Harich, K.; Fowler, P.W.; Heine, T.; Hajdu, E.; Bible, R.; Olmstead, M.M.; Maitra, K.; Fisher, A.J.; Balch, A.L.

    2000-01-01

    The Kratschmer-Huffman electric-arc generator typically produces endohedral metallofullerenes in low yields with a wide array of different products, but the introduction of nitrogen leads to a new family of encapsulates. A family of endohedral metallofullerenes A n B 3-n N at C 2n (n=0-3, x=34, 39, and 40) where A and B are Group III and rare-earth metals is formed by a trimetallic nitride template (TNT) process in relatively high yields. The archetypal representative of this new class is the stable endohedral metallofullerene, Sc 3 N at C 80 containing a triscandium nitride cluster encapsulated in an icosahedron (I h ), C 80 cage. The Sc 3 N at C 80 is formed in yields even exceeding empty-cage C 84 . Other prominent scandium TNT members are Sc 3 N at C 68 and Sc 3 N at C 78 . The former Sc 3 N at C 68 molecule represents an exception to the well known isolated pentagon rule (IPR). These new molecules were purified by chromatography with corresponding characterization by various spectroscopic approaches. In this paper we focus on the characterization and properties of this fascinating new class of materials

  16. Influence of temperature on the formation and encapsulation of gold nanoparticles using a temperature-sensitive template

    Directory of Open Access Journals (Sweden)

    Noel Peter Bengzon Tan

    2015-12-01

    Full Text Available This data article describes the synthesis of temperature-sensitive and amine-rich microgel particle as a dual reductant and template to generate smart gold/polymer nanocomposite particle. TEM images illustrate the influence of reaction temperature on the formation and in-site encapsulation of gold nanoparticles using the temperature-sensitive microgel template. Thermal stability of the resultant gold/polymer composite particles was also examined.

  17. Polymer solar cells with novel fullerene-based acceptor

    International Nuclear Information System (INIS)

    Riedel, I.; Martin, N.; Giacalone, F.; Segura, J.L.; Chirvase, D.; Parisi, J.; Dyakonov, V.

    2004-01-01

    Alternative acceptor materials are possible candidates to improve the optical absorption and/or the open circuit voltage of polymer-fullerene solar cells. We studied a novel fullerene-type acceptor, DPM-12, for application in polymer-fullerene bulk heterojunction photovoltaic devices. Though DPM-12 has the identical redox potentials as methanofullerene PCBM, surprisingly high open circuit voltages in the range V OC =0.95 V were measured for OC 1 C 10 -PPV:DPM-12-based samples. The potential for photovoltaic application was studied by means of photovoltaic characterization of solar cells including current-voltage measurements and external quantum yield spectroscopy. Further studies were carried out by profiling the solar cell parameters vs. temperature and white light intensity

  18. Photophysics of fullerenes: Thermionic emission

    International Nuclear Information System (INIS)

    Compton, R.N.; Tuinman, A.A.; Huang, J.

    1996-01-01

    Multiphoton ionization of fullerenes using long-pulse length lasers occurs mainly through vibrational autoionization. In many cases the laser ionization can be described as thermionic in analogy to the boiling off of electrons from a filament. Thermionic emission manifests itself as a delayed emission of electrons following pulsed laser excitation. Klots has employed quasiequilibrium theory to calculate rate constants for thermionic emission from fullerenes which seem to quantitatively account for the observed delayed emission times and the measured electron energy distributions. The theory of Klots also accounts for the thermionic emission of C 60 excited by a low power CW Argon Ion laser. Recently Klots and Compton have reviewed the evidence for thermionic emission from small aggregates where mention was also made of experiments designed to determine the effects of externally applied electric fields on thermionic emission rates. The authors have measured the fullerene ion intensity as a function of the applied electric field and normalized this signal to that produced by single photon ionization of an atom in order to correct for all collection efficiency artifacts. The increase in fullerene ion signal relative to that of Cs + is attributed to field enhanced thermionic emission. From the slope of the Schottky plot they obtain a temperature of approximately 1,000 K. This temperature is comparable to but smaller than that estimated from measurements of the electron kinetic energies. This result for field enhanced thermionic emission is discussed further by Klots and Compton. Thermionic emission from neutral clusters has long been known for autodetachment from highly excited negative ions. Similarly, electron attachment to C 60 in the energy range from 8 to 12 eV results in C 60 anions with lifetimes in the range of microseconds. Quasiequilibrium theory (QET) calculations are in reasonable accord with these measurements

  19. Photophysics of fullerenes: Thermionic emission

    Energy Technology Data Exchange (ETDEWEB)

    Compton, R.N. [Univ. of Tennessee, Knoxville, TN (United States)]|[Oak Ridge National Lab., TN (United States); Tuinman, A.A. [Univ. of Tennessee, Knoxville, TN (United States); Huang, J. [Ames Lab., IA (United States)

    1996-09-01

    Multiphoton ionization of fullerenes using long-pulse length lasers occurs mainly through vibrational autoionization. In many cases the laser ionization can be described as thermionic in analogy to the boiling off of electrons from a filament. Thermionic emission manifests itself as a delayed emission of electrons following pulsed laser excitation. Klots has employed quasiequilibrium theory to calculate rate constants for thermionic emission from fullerenes which seem to quantitatively account for the observed delayed emission times and the measured electron energy distributions. The theory of Klots also accounts for the thermionic emission of C{sub 60} excited by a low power CW Argon Ion laser. Recently Klots and Compton have reviewed the evidence for thermionic emission from small aggregates where mention was also made of experiments designed to determine the effects of externally applied electric fields on thermionic emission rates. The authors have measured the fullerene ion intensity as a function of the applied electric field and normalized this signal to that produced by single photon ionization of an atom in order to correct for all collection efficiency artifacts. The increase in fullerene ion signal relative to that of Cs{sup +} is attributed to field enhanced thermionic emission. From the slope of the Schottky plot they obtain a temperature of approximately 1,000 K. This temperature is comparable to but smaller than that estimated from measurements of the electron kinetic energies. This result for field enhanced thermionic emission is discussed further by Klots and Compton. Thermionic emission from neutral clusters has long been known for autodetachment from highly excited negative ions. Similarly, electron attachment to C{sub 60} in the energy range from 8 to 12 eV results in C{sub 60} anions with lifetimes in the range of microseconds. Quasiequilibrium theory (QET) calculations are in reasonable accord with these measurements.

  20. INFRARED STUDY OF FULLERENE PLANETARY NEBULAE

    International Nuclear Information System (INIS)

    García-Hernández, D. A.; Acosta-Pulido, J. A.; Manchado, A.; Villaver, E.; García-Lario, P.; Stanghellini, L.; Shaw, R. A.; Cataldo, F.

    2012-01-01

    We present a study of 16 planetary nebulae (PNe) where fullerenes have been detected in their Spitzer Space Telescope spectra. This large sample of objects offers a unique opportunity to test conditions of fullerene formation and survival under different metallicity environments because we are analyzing five sources in our own Galaxy, four in the Large Magellanic Cloud (LMC), and seven in the Small Magellanic Cloud (SMC). Among the 16 PNe studied, we present the first detection of C 60 (and possibly also C 70 ) fullerenes in the PN M 1–60 as well as of the unusual ∼6.6, 9.8, and 20 μm features (attributed to possible planar C 24 ) in the PN K 3–54. Although selection effects in the original samples of PNe observed with Spitzer may play a potentially significant role in the statistics, we find that the detection rate of fullerenes in C-rich PNe increases with decreasing metallicity (∼5% in the Galaxy, ∼20% in the LMC, and ∼44% in the SMC) and we interpret this as a possible consequence of the limited dust processing occurring in Magellanic Cloud (MC) PNe. CLOUDY photoionization modeling matches the observed IR fluxes with central stars that display a rather narrow range in effective temperature (∼30,000-45,000 K), suggesting a common evolutionary status of the objects and similar fullerene formation conditions. Furthermore, the data suggest that fullerene PNe likely evolve from low-mass progenitors and are usually of low excitation. We do not find a metallicity dependence on the estimated fullerene abundances. The observed C 60 intensity ratios in the Galactic sources confirm our previous finding in the MCs that the fullerene emission is not excited by the UV radiation from the central star. CLOUDY models also show that line- and wind-blanketed model atmospheres can explain many of the observed [Ne III]/[Ne II] ratios using photoionization, suggesting that possibly the UV radiation from the central star, and not shocks, is triggering the decomposition

  1. Synthesis and radiation resistance of fullerenes and fullerene derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Shilin, V. A., E-mail: shilin@pnpi.spb.ru; Lebedev, V. T.; Sedov, V. P.; Szhogina, A. A. [St. Petersburg Nuclear Physics Institute, National Research Centre “Kurchatov Institute” (Russian Federation)

    2016-07-15

    The parameters of an electric-arc facility for the synthesis of fullerenes and endohedral metallofullerenes are optimized. The resistance of C{sub 60} and C{sub 70} fullerenes and C{sub 60}(OH){sub 30} and C{sub 70}(OH){sub 30} fullerenols against neutron irradiation is studied. It is established that the radiation resistance of the fullerenes is higher than that of the fullerenols, but the radiation resistance of the Gd@C{sub 2n} endometallofullerenes is lower than that of the corresponding Gd@C{sub 2n}(OH){sub 38} fullerenols. The radiation resistance of mixtures of Me@C{sub 2n}(OH){sub 38} (Me = Gd, Tb, Sc, Fe, and Pr) endometallofullerenes with C{sub 60}(OH){sub 30} is determined. The factors affecting the radiation resistance of the fullerenes and fullerenols are discussed.

  2. Spectroscopy on Polymer-Fullerene Photovoltaic Cells

    NARCIS (Netherlands)

    Dyakonov, V.; Riedel, I.; Godovsky, D.; Parisi, J.; Ceuster, J. De; Goovaerts, E.; Hummelen, J.C.

    2000-01-01

    We investigate the electrical transport properties of ITO/conjugated polymer-fullerene/Al photovoltaic cells and the role of defect states with current-voltage studies, admittance spectroscopy, and electron spin resonance technique. In the temperature range 293-40K, the characteristic step in the

  3. Fabrication of fullerene nano-strucutres in mixed films and devices utilizing fullerene nano-structures

    KAUST Repository

    Zhong, Yufei; Amassian, Aram; Tajima, Keisuke

    2017-01-01

    Embodiments provide methods for controlling crystallization of fullerene compounds in mixed films comprising one or more polymers. Methods can include depositing fullerene mixed films comprising one or more polymers on crystalline fullerene

  4. Laser controlled magnetism in hydrogenated fullerene films

    International Nuclear Information System (INIS)

    Makarova, Tatiana L.; Shelankov, Andrei L.; Kvyatkovskii, Oleg E.; Zakharova, Irina B.; Buga, Sergei G.; Volkov, Aleksandr P.

    2011-01-01

    Room temperature ferromagnetic-like behavior in fullerene photopolymerized films treated with monatomic hydrogen is reported. The hydrogen treatment controllably varies the paramagnetic spin concentration and laser induced polymerization transforms the paramagnetic phase to a ferromagnetic-like one. Excess laser irradiation destroys magnetic ordering, presumably due to structural changes, which was continuously monitored by Raman spectroscopy. We suggest an interpretation of the data based on first-principles density-functional spin-unrestricted calculations which show that the excess spin from mono-atomic hydrogen is delocalized within the host fullerene and the laser-induced polymerization promotes spin exchange interaction and spin alignment in the polymerized phase.

  5. Tunable electronic transport properties of silicon-fullerene-linked nanowires: Semiconductor, conducting wire, and tunnel diode

    OpenAIRE

    Nishio, Kengo; Ozaki, Taisuke; Morishita, Tetsuya; Mikami, Masuhiro

    2010-01-01

    We explore the possibility of controllable tuning of the electronic transport properties of silicon-fullerene-linked nanowires by encapsulating guest atoms into their cages. Our first-principles calculations demonstrate that the guest-free nanowires are semiconductors, and do not conduct electricity. The iodine or sodium doping improves the transport properties, and makes the nanowires metallic. In the junctions of I-doped and Na-doped NWs, the current travels through the boundary by quantum ...

  6. Molecular understanding of the open-circuit voltage of polymer: Fullerene solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Shunsuke; Orimo, Akiko; Benten, Hiroaki; Ito, Shinzaburo [Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo, Kyoto (Japan); Ohkita, Hideo [Japan Science and Technology Agency (JST), PRESTO, Saitama (Japan); Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo, Kyoto (Japan)

    2012-02-15

    The origin of open-circuit voltage (V{sub OC}) was studied for polymer solar cells based on a blend of poly(3-hexylthiophene) (P3HT) and seven fullerene derivatives with different LUMO energy levels and side chains. The temperature dependence of J-V characteristics was analyzed by an equivalent circuit model. As a result, V{sub OC} increased with the decrease in the saturation current density J{sub 0} of the device. Furthermore, J{sub 0} was dependent on the activation energy E{sub A} for J{sub 0}, which is related to the HOMO-LUMO energy gap between P3HT and fullerene. Interestingly, the pre-exponential term J{sub 00} for J{sub 0} was larger for pristine fullerenes than for substituted fullerene derivatives, suggesting that the electronic coupling between molecules also has substantial impact on V{sub OC}. This is probably because the recombination is non-diffusion-limited reaction depending on electron transfer at the P3HT/fullerene interface. In summary, the origin of V{sub OC} is ascribed not only to the relative HOMO-LUMO energy gap but also to the electronic couplings between fullerene/fullerene and polymer/fullerene. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Fullerene and apoptosis

    Directory of Open Access Journals (Sweden)

    M. A. Orlova

    2013-01-01

    Full Text Available Fullerene derivatives superfamily attracts a serious attention as antiviral and anticancer agents and drug delivery carriers as well. A large number of such fullerene С60 derivatives obtained to date. However, there is an obvious deficit of information about causes and mechanisms of immediately and long-term consequences of their effects in vivo which is a true obstacle on the way leading to practical medical use of them. First, this concerns their impact on the proliferation, apoptosis and necrosis regulation. Fullerene nanoparticle functionalization type, their sizes and surface nanopathology are of great importance to further promoting of either cytoprotective or cytotoxic effects. This lecture provides modern concept analysis regarding fullerenes effects on apoptosis pathway in normal and tumor cells.

  8. Fabrication of fullerene nano-strucutres in mixed films and devices utilizing fullerene nano-structures

    KAUST Repository

    Zhong, Yufei

    2017-04-06

    Embodiments provide methods for controlling crystallization of fullerene compounds in mixed films comprising one or more polymers. Methods can include depositing fullerene mixed films comprising one or more polymers on crystalline fullerene substrates and annealing the deposited mixed films. Methods can further include one or more of exposing the annealed mixed film to UV light, and washing the annealed mixed film with a solvent. Fullerene compounds can include one or more of PCBM, PCBNB, and PCBA.

  9. High temperature thermal storage for solar gas turbines using encapsulated phase change materials

    CSIR Research Space (South Africa)

    Klein, P

    2014-01-01

    Full Text Available in the near term. Sensible heat storage in packed beds involves a random packing of ceramic pebbles/particles in an insulated container. The temperature change of the solid during charging/discharging is used to store/release thermal energy. The primary... the packed bed due to vaporization and condensation effects. 2.3. Macro-encapsulation of PCM In the macro-encapsulation approach the PCM is retained within a hollow shell material. The shell can be preformed, filled with a molten PCM and sealed; or it can...

  10. Supramolecular solubilization of fullerenes and radio-fullerenes in aqueous media

    International Nuclear Information System (INIS)

    Braun, T.

    1999-01-01

    In this paper we are dealing with the supramolecular complexation of fullerenes C 60 , C 70 , some functionalized fullerenes and of the dumbbell structured C 120 dimer, with two host molecules, namely γ-cyclo-dextrin (GCD), and sulfocalix[8]arene in order to make them soluble in water. Previous investigations by others have shown that the reactions of some mentioned fullerenes and cyclo-dextrins and calixarenes are very slow and tedious in liquid phase as a result of solvatation effects. That we have decided to pursue the supramolecular complexation as solid-solid reactions by using mechanochemical activation in a ball mill. A mechanochemical treatment was used to enhance chemical reactivity in solid-solid reactions in which GCD give a complex with the C 60 as 2:1 host-guest complex. The calix[8]arene complex with C 60 molecule has been prepared. The sulfonated form of the host is well soluble in water. Endohedral radio-fullerenes of the XandC60 type (where * X is a rare gas, e.g. Ar, Xe, Kr, radionuclide) were prepared by nuclear recoil after neutron irradiation, a method developed by the author The endohedrally labelled fullerenes were then mechanochemically complexed into a labelled supramolecular complex with cyclo-dextrin and calixarene hosts. (author)

  11. Selective encapsulation by Janus particles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei, E-mail: wel208@mrl.ucsb.edu [Materials Research Laboratory, University of California, Santa Barbara, California 93106 (United States); Ruth, Donovan; Gunton, James D. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Rickman, Jeffrey M. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015 (United States)

    2015-06-28

    We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored, as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.

  12. Fullerene-biomolecule conjugates and their biomedicinal applications.

    Science.gov (United States)

    Yang, Xinlin; Ebrahimi, Ali; Li, Jie; Cui, Quanjun

    2014-01-01

    Fullerenes are among the strongest antioxidants and are characterized as "radical sponges." The research on biomedicinal applications of fullerenes has achieved significant progress since the landmark publication by Friedman et al in 1993. Fullerene-biomolecule conjugates have become an important area of research during the past 2 decades. By a thorough literature search, we attempt to update the information about the synthesis of different types of fullerene-biomolecule conjugates, including fullerene-containing amino acids and peptides, oligonucleotides, sugars, and esters. Moreover, we also discuss in this review recently reported data on the biological and pharmaceutical utilities of these compounds and some other fullerene derivatives of biomedical importance. While within the fullerene-biomolecule conjugates, in which fullerene may act as both an antioxidant and a carrier, specific targeting biomolecules conjugated to fullerene will undoubtedly strengthen the delivery of functional fullerenes to sites of clinical interest.

  13. Thermodynamics of TMPC/PSd/Fullerene Nanocomposites: SANS Study

    KAUST Repository

    Chua, Yang-Choo; Chan, Alice; Wong, Him-Cheng; Higgins, Julia S.; Cabral, João T.

    2010-01-01

    ) analysis demonstrate that 1-2 mass % of C60 fullerenes destabilizes a highly interacting mixture of poly(tetramethyl bisphenol A polycarbonate) and deuterated polystyrene (TMPC/PSd). We unequivocally corroborate these findings with time-resolved temperature

  14. Photoinduced energy and electron transfer in fullerene- oligothiophene-fullerene triads

    NARCIS (Netherlands)

    Hal, Paul A. van; Knol, Joop; Langeveld-Voss, Bea M.W.; Meskers, Stefan C.J.; Hummelen, J.C.; Janssen, René A.J.

    2000-01-01

    A series of fullerene-oligothiophene-fullerene (C60-nT-C60) triads with n = 3, 6, or 9 thiophene units has been synthesized, and their photophysical properties have been studied using photoinduced absorption and fluorescence spectroscopy in solution and in the solid state as thin films. The results

  15. Photodiodes based on fullerene semiconductor

    International Nuclear Information System (INIS)

    Voz, C.; Puigdollers, J.; Cheylan, S.; Fonrodona, M.; Stella, M.; Andreu, J.; Alcubilla, R.

    2007-01-01

    Fullerene thin films have been deposited by thermal evaporation on glass substrates at room temperature. A comprehensive optical characterization was performed, including low-level optical absorption measured by photothermal deflection spectroscopy. The optical absorption spectrum reveals a direct bandgap of 2.3 eV and absorption bands at 2.8 and 3.6 eV, which are related to the creation of charge-transfer excitons. Various photodiodes on indium-tin-oxide coated glass substrates were also fabricated, using different metallic contacts in order to compare their respective electrical characteristics. The influence of a poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) buffer layer between the indium-tin-oxide electrode and the fullerene semiconductor is also demonstrated. These results are discussed in terms of the workfunction for each electrode. Finally, the behaviour of the external quantum efficiency is analyzed for the whole wavelength spectrum

  16. Mechanism of plasma-arc formation of fullerenes from coal and related materials

    Energy Technology Data Exchange (ETDEWEB)

    Pang, L S.K.; Wilson, M A; Quezada, R A [CSIRO Petroleum, North Ryde (Australia); and others

    1996-12-31

    When an arc is struck across graphite or coal electrodes in a helium atmosphere several products are formed including soot containing fullerenes. The mechanism by which fullerenes and nanotubes are formed is not understood. At arc temperatures exceeding 3000{degrees}C, highly ordered fullerenes might be expected to be less stable than graphite, and hence fullerene production is believed to proceed in cooler regions at the edge of the arc. There is irrefutable evidence that [C{sub 60}]-fullerene grows in a plasma from atomic carbon vapour or equivalent. When {sup 13}C-labelled carbon powder is packed into the anode, the fullerenes as produced contain a statistical distribution of {sup 13}C atoms. This implies that graphite has split into small units, predominantly C{sub 1} or C{sub 2} in the plasma and these units are involved in fullerene formation. When coal or other organic materials are used in the anode, weaker bonds are present, which may break preferentially. As a result, larger fragments, other than C{sub 1} and C{sub 2} units can exist in the plasma. This paper demonstrates the existence of such larger fragments when various coals are used and this implies that fullerenes can be formed from larger units than C{sub 1} and C{sub 2}. The distribution of polycyclic hydrocarbons formed depends very much on the structure of the coal used for the arcing experiments. The distribution of the natural abundance of {sup 13}C/{sup 12}C ratios in the fullerene products further supports this evidence.

  17. Fullerene and oxidative stress

    Directory of Open Access Journals (Sweden)

    M. A. Orlova

    2012-01-01

    Full Text Available Fullerene derivatives superfamily attracts a serious attention as antiviral and anticancer agents and drug delivery carriers as well. A large number of such fullerene С60 derivatives obtained to date. However, there is an obvious deficit of information about causes and mechanisms of immediately and long-term consequences of their effects in vivo which is a true obstacle on the way leading to their practical medical using. First, this concerns their impact on the proliferation, apoptosis and necrosis regulation. Fullerene nanoparticle functionalization type, their sizes and surface nanopathology are of great importance for further promoting of either cytoprotective or cytotoxic effects. One of the main effects of fullerenes on living systems is the reactive oxygen species (ROS formation induction. This lecture provides a modern concept analysis regarding fullerenes effects on ROS formation and modulation of proliferation and apoptosis in normal and tumor cells.

  18. Electronic properties of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmany, H [ed.; Vienna Univ. (Austria). Inst. fuer Festkoerperphysik; Fink, J [ed.; Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Nukleare Festkoerperphysik; Mehring, M [ed.; Stuttgart Univ. (Germany). Physikalisches Teilinstitut 2; Roth, S [ed.; Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    1993-01-01

    Since 1991, research in the field of organic carbon materials has developed at a rapid pace due to the advent of the fullerenes and related materials. These forms of carbon are considered as a missing link between the previously discussed electroactive polymers and the oxidic superconductors. It was therefore challenging to select this topic for an international winter school in Kirchberg. Although still in its infancy, research on the physics and chemistry of fullerenes and related compounds has already led to a wealth of results, which was reflected in the wide range of topics covered and the numerous discussions which emerged at the meeting. For C[sub 60] itself, preparation methods and crystal growth techniques continue to evolve, while the understanding of the electronic and structural properties of its solid state continues to pose challenges to experimental and theoretical physicists. The ever-expanding range of higher fullerens and related materials, such as nanotubes and onions, poses a daunting but exciting task for researchers. For synthetic chemists, fullerenes represent the basis of a whole new range of synthetic compounds. The prospect of a periodic table of endohedral fullerene complexes has been discussed, and exohedrally complexed metal-fullerenes have already attracted the attention of physicists. The first endohedral materials are now available. (orig.)

  19. Electronic properties of fullerenes

    International Nuclear Information System (INIS)

    Kuzmany, H.

    1993-01-01

    Since 1991, research in the field of organic carbon materials has developed at a rapid pace due to the advent of the fullerenes and related materials. These forms of carbon are considered as a missing link between the previously discussed electroactive polymers and the oxidic superconductors. It was therefore challenging to select this topic for an international winter school in Kirchberg. Although still in its infancy, research on the physics and chemistry of fullerenes and related compounds has already led to a wealth of results, which was reflected in the wide range of topics covered and the numerous discussions which emerged at the meeting. For C 60 itself, preparation methods and crystal growth techniques continue to evolve, while the understanding of the electronic and structural properties of its solid state continues to pose challenges to experimental and theoretical physicists. The ever-expanding range of higher fullerens and related materials, such as nanotubes and onions, poses a daunting but exciting task for researchers. For synthetic chemists, fullerenes represent the basis of a whole new range of synthetic compounds. The prospect of a periodic table of endohedral fullerene complexes has been discussed, and exohedrally complexed metal-fullerenes have already attracted the attention of physicists. The first endohedral materials are now available. (orig.)

  20. The topology of fullerenes

    DEFF Research Database (Denmark)

    Schwerdtfeger, Peter; Wirz, Lukas; Avery, James Emil

    2014-01-01

    Fullerenes are carbon molecules that form polyhedral cages. Their bond structures are exactly the planar cubic graphs that have only pentagon and hexagon faces. Strikingly, a number of chemical properties of a fullerene can be derived from its graph structure. A rich mathematics of cubic planar g....... In this paper, we present a general overview of recent topological and graph theoretical developments in fullerene research over the past two decades, describing both solved and open problems....

  1. Superconducting Fullerene Nanowhiskers

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2012-04-01

    Full Text Available We synthesized superconducting fullerene nanowhiskers (C60NWs by potassium (K intercalation. They showed large superconducting volume fractions, as high as 80%. The superconducting transition temperature at 17 K was independent of the K content (x in the range between 1.6 and 6.0 in K-doped C60 nanowhiskers (KxC60NWs, while the superconducting volume fractions changed with x. The highest shielding fraction of a full shielding volume was observed in the material of K3.3C60NW by heating at 200 °C. On the other hand, that of a K-doped fullerene (K-C60 crystal was less than 1%. We report the superconducting behaviors of our newly synthesized KxC60NWs in comparison to those of KxC60 crystals, which show superconductivity at 19 K in K3C60. The lattice structures are also discussed, based on the x-ray diffraction (XRD analyses.

  2. Temperature-triggered release of a liquid cross-linker micro-encapsulated in a glassy polymer for low temperature curing

    NARCIS (Netherlands)

    Senatore, D.; Cate, ten A.T.; Laven, J.; Benthem, van R.A.T.M.; With, de G.

    2013-01-01

    In order to prevent a liquid epoxy cross-linker from premature, Arrhenius-law predicted, reaction with an acid-functional polyester resin, the liquid cross-linker has been physically separated from the resin by encapsulation while release is only possible by a temperature-controlled trigger. The

  3. [Prediction of Encapsulation Temperatures of Copolymer Films in Photovoltaic Cells Using Hyperspectral Imaging Techniques and Chemometrics].

    Science.gov (United States)

    Lin, Ping; Chen, Yong-ming; Yao, Zhi-lei

    2015-11-01

    A novel method of combination of the chemometrics and the hyperspectral imaging techniques was presented to detect the temperatures of Ethylene-Vinyl Acetate copolymer (EVA) films in photovoltaic cells during the thermal encapsulation process. Four varieties of the EVA films which had been heated at the temperatures of 128, 132, 142 and 148 °C during the photovoltaic cells production process were used for investigation in this paper. These copolymer encapsulation films were firstly scanned by the hyperspectral imaging equipment (Spectral Imaging Ltd. Oulu, Finland). The scanning band range of hyperspectral equipemnt was set between 904.58 and 1700.01 nm. The hyperspectral dataset of copolymer films was randomly divided into two parts for the training and test purpose. Each type of the training set and test set contained 90 and 10 instances, respectively. The obtained hyperspectral images of EVA films were dealt with by using the ENVI (Exelis Visual Information Solutions, USA) software. The size of region of interest (ROI) of each obtained hyperspectral image of EVA film was set as 150 x 150 pixels. The average of reflectance hyper spectra of all the pixels in the ROI was used as the characteristic curve to represent the instance. There kinds of chemometrics methods including partial least squares regression (PLSR), multi-class support vector machine (SVM) and large margin nearest neighbor (LMNN) were used to correlate the characteristic hyper spectra with the encapsulation temperatures of of copolymer films. The plot of weighted regression coefficients illustrated that both bands of short- and long-wave near infrared hyperspectral data contributed to enhancing the prediction accuracy of the forecast model. Because the attained reflectance hyperspectral data of EVA materials displayed the strong nonlinearity, the prediction performance of linear modeling method of PLSR declined and the prediction precision only reached to 95%. The kernel-based forecast models were

  4. Terrestrial and extraterrestrial fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Heymann, D.; Jenneskens, L.W.; Jehlicka, J; Koper, C.; Vlietstra, E. [Rice Univ, Houston, TX (United States). Dept. of Earth Science

    2003-07-01

    This paper reviews reports of occurrences of fullerenes in circumstellar media, interstellar media, meteorites, interplanetary dust particles (IDPs), lunar rocks, hard terrestrial rocks from Shunga (Russia), Sudbury (Canada) and Mitov (Czech Republic), coal, terrestrial sediments from the Cretaceous-Tertiary-Boundary and Pennian-Triassic-Boundary, fulgurite, ink sticks, dinosaur eggs, and a tree char. The occurrences are discussed in the context of known and postulated processes of fullerene formation, including the suggestion that some natural fullerenes might have formed from biological (algal) remains.

  5. Production of anti-fullerene C{sub 60} polyclonal antibodies and study of their interaction with a conjugated form of fullerene

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, O. D., E-mail: odhendrick@gmail.com; Fedyunina, N. S. [Russian Academy of Sciences, Institute of Biochemistry (Russian Federation); Martianov, A. A. [Moscow State University (Russian Federation); Zherdev, A. V.; Dzantiev, B. B. [Russian Academy of Sciences, Institute of Biochemistry (Russian Federation)

    2011-09-15

    The aim of this study was to produce anti-fullerene C{sub 60} antibodies for the development of detection systems for fullerene C{sub 60} derivatives. To produce anti-fullerene C{sub 60} antibodies, conjugates of the fullerene C{sub 60} carboxylic derivative with thyroglobulin, soybean trypsin inhibitor, and bovine serum albumin were synthesized by carbodiimide activation and characterized. Immunization of rabbits by the conjugates led to the production of polyclonal anti-fullerene antibodies. The specificity of the immune response to fullerene was investigated. Indirect competitive immunoenzyme assay was developed for the determination of conjugated fullerene with detection limits of 0.04 ng/mL (calculated for coupled C{sub 60}) and 0.4 ng/mL (accordingly to total fullerene-protein concentration).

  6. Thermodynamics of TMPC/PSd/Fullerene Nanocomposites: SANS Study

    KAUST Repository

    Chua, Yang-Choo

    2010-11-23

    Wereport a small angle neutron scattering study of the thermodynamics of a polymer mixture in the presence of nanoparticles, both in equilibrium and during phase separation. Neutron cloud point measurements and random phase approximation (RPA) analysis demonstrate that 1-2 mass % of C60 fullerenes destabilizes a highly interacting mixture of poly(tetramethyl bisphenol A polycarbonate) and deuterated polystyrene (TMPC/PSd). We unequivocally corroborate these findings with time-resolved temperature jump experiments that, in identical conditions, result in phase separation for the nanocomposite and stability for the neat polymer mixture. At lower C 60 loadings (viz. 0.2-0.5 mass %), stabilization of the mixture is observed. The nonmonotonic variation of the spinodal temperature with fullerene addition suggests a competitive interplay of asymmetric component interactions and nanoparticle dispersion. The stability line shift depends critically on particle dispersion and vanishes upon nanoparticle agglomeration. © 2010 American Chemical Society.

  7. Silver nanowires network encapsulated by low temperature sol-gel ZnO for transparent flexible electrodes with ambient stability

    Science.gov (United States)

    Shin, Wonjung; Cho, Wonki; Baik, Seung Jae

    2018-01-01

    As a geometrically engineered realization of transparent electrode, Ag nanowires network is promising for its superior characteristics both on electrical conductivity and optical transmittance. However, for a potential commercialization of Ag nanowires network, further investigations on encapsulation materials are necessary to prevent degradation caused by ambient aging. In addition, the temperature range of the coating process for the encapsulation material needs to be low enough to prevent degradation of polymer substrates during the film coating processes, when considering emerging flexible device application of transparent electrodes. We present experimental results showing that low temperature sol-gel ZnO processed under 130 °C is an effective encapsulation material preventing ambient oxidation of Ag nanowires network without degrading electrical, optical, and mechanical properties.

  8. Characterizing the Polymer:Fullerene Intermolecular Interactions

    KAUST Repository

    Sweetnam, Sean

    2016-02-02

    Polymer:fullerene solar cells depend heavily on the electronic coupling of the polymer and fullerene molecular species from which they are composed. The intermolecular interaction between the polymer and fullerene tends to be strong in efficient photovoltaic systems, as evidenced by efficient charge transfer processes and by large changes in the energetics of the polymer and fullerene when they are molecularly mixed. Despite the clear presence of these strong intermolecular interactions between the polymer and fullerene, there is not a consensus on the nature of these interactions. In this work, we use a combination of Raman spectroscopy, charge transfer state absorption, and density functional theory calculations to show that the intermolecular interactions do not appear to be caused by ground state charge transfer between the polymer and fullerene. We conclude that these intermolecular interactions are primarily van der Waals in nature. © 2016 American Chemical Society.

  9. High temperature in-situ observations of multi-segmented metal nanowires encapsulated within carbon nanotubes by in-situ filling technique.

    Science.gov (United States)

    Hayashi, Yasuhiko; Tokunaga, Tomoharu; Iijima, Toru; Iwata, Takuya; Kalita, Golap; Tanemura, Masaki; Sasaki, Katsuhiro; Kuroda, Kotaro

    2012-08-08

    Multi-segmented one-dimensional metal nanowires were encapsulated within carbon nanotubes (CNTs) through in-situ filling technique during plasma-enhanced chemical vapor deposition process. Transmission electron microscopy (TEM) and environmental TEM were employed to characterize the as-prepared sample at room temperature and high temperature. The selected area electron diffractions revealed that the Pd4Si nanowire and face-centered-cubic Co nanowire on top of the Pd nanowire were encapsulated within the bottom and tip parts of the multiwall CNT, respectively. Although the strain-induced deformation of graphite walls was observed, the solid-state phases of Pd4Si and Co-Pd remain even at above their expected melting temperatures and up to 1,550 ± 50°C. Finally, the encapsulated metals were melted and flowed out from the tip of the CNT after 2 h at the same temperature due to the increase of internal pressure of the CNT.

  10. Temperature-Controlled Encapsulation and Release of an Active Enzyme in the Cavity of a Self-Assembled DNA Nanocage

    DEFF Research Database (Denmark)

    Juul, Sissel; Iacovelli, Federico; Falconi, Mattia

    2013-01-01

    ABSTRACT We demonstrate temperature-controlled encapsulation and release of the enzyme horseradish peroxidase using a preassembled and covalently closed three-dimensional DNA cage structure as a controllable encapsulation device. The utilized cage structure was covalently closed and composed of 12...... to fold into hairpin structures. As demonstrated by gel-electrophoretic and fluorophore-quenching experiments this design imposed a temperature-controlled conformational transition capability to the structure, which allowed entrance or release of an enzyme cargo at 37 C while ensuring retainment...

  11. Hydrogenated fullerenes in space: FT-IR spectra analysis

    Energy Technology Data Exchange (ETDEWEB)

    El-Barbary, A. A. [Physics Department, Faculty of Education, Ain-Shams University, Cairo, Egypt Physics Department, Faculty of Science, Jazan University, Jazan (Saudi Arabia)

    2016-06-10

    Fullerenes and hydrogenated fullerenes are found in circumstellar and interstellar environments. But the determination structures for the detected bands in the interstellar and circumstellar space are not completely understood so far. For that purpose, the aim of this article is to provide all possible infrared spectra for C{sub 20} and C{sub 60} fullerenes and their hydrogenated fullerenes. Density Functional theory (DFT) is applied using B3LYP exchange-functional with basis set 6–31G(d, p). The Fourier transform infrared spectroscopy (FT-IR) is found to be capable of distinguishing between fullerenes, mono hydrogenated fullerenes and fully hydrogenated fullerenes. In addition, deposition of one hydrogen atom outside the fully hydrogenated fullerenes is found to be distinguished by forming H{sub 2} molecule at peak around 4440 cm{sup −1}. However, deposition of one hydrogen atom inside the fully hydrogenated fullerenes cannot be distinguished. The obtained spectral structures are analyzed and are compared with available experimental results.

  12. Hydrogenated fullerenes in space: FT-IR spectra analysis

    International Nuclear Information System (INIS)

    El-Barbary, A. A.

    2016-01-01

    Fullerenes and hydrogenated fullerenes are found in circumstellar and interstellar environments. But the determination structures for the detected bands in the interstellar and circumstellar space are not completely understood so far. For that purpose, the aim of this article is to provide all possible infrared spectra for C 20 and C 60 fullerenes and their hydrogenated fullerenes. Density Functional theory (DFT) is applied using B3LYP exchange-functional with basis set 6–31G(d, p). The Fourier transform infrared spectroscopy (FT-IR) is found to be capable of distinguishing between fullerenes, mono hydrogenated fullerenes and fully hydrogenated fullerenes. In addition, deposition of one hydrogen atom outside the fully hydrogenated fullerenes is found to be distinguished by forming H 2 molecule at peak around 4440 cm −1 . However, deposition of one hydrogen atom inside the fully hydrogenated fullerenes cannot be distinguished. The obtained spectral structures are analyzed and are compared with available experimental results.

  13. Fullerenic structures and such structures tethered to carbon materials

    Science.gov (United States)

    Goel, Anish; Howard, Jack B.; Vander Sande, John B.

    2010-01-05

    The fullerenic structures include fullerenes having molecular weights less than that of C.sub.60 with the exception of C.sub.36 and fullerenes having molecular weights greater than C.sub.60. Examples include fullerenes C.sub.50, C.sub.58, C.sub.130, and C.sub.176. Fullerenic structure chemically bonded to a carbon surface is also disclosed along with a method for tethering fullerenes to a carbon material. The method includes adding functionalized fullerene to a liquid suspension containing carbon material, drying the suspension to produce a powder, and heat treating the powder.

  14. Solvothermal method as a green chemistry solution for micro-encapsulation of phase change materials for high temperature thermal energy storage

    Directory of Open Access Journals (Sweden)

    Tudor Albert Ioan

    2018-01-01

    Full Text Available Thermal energy storage systems using phase change materials (PCMs as latent heat storage are one of the main challenges at European level in improving the performances and efficiency of concentrated solar power energy generation due to their high energy density. PCM with high working temperatures in the temperature range 300–500 °C are required for these purposes. However their use is still limited due to the problems raised by the corrosion of the majority of high temperature PCMs and lower thermal transfer properties. Micro-encapsulation was proposed as one method to overcome these problems. Different micro-encapsulation methods proposed in the literature are presented and discussed. An original process for the micro-encapsulation of potassium nitrate as PCM in inorganic zinc oxide shells based on a solvothermal method followed by spray drying to produce microcapsules with controlled phase composition and distribution is proposed and their transformation temperatures and enthalpies measured by differential scanning calorimetry are presented.

  15. Solvothermal method as a green chemistry solution for micro-encapsulation of phase change materials for high temperature thermal energy storage

    Science.gov (United States)

    Tudor, Albert Ioan; Motoc, Adrian Mihail; Ciobota, Cristina Florentina; Ciobota, Dan. Nastase; Piticescu, Radu Robert; Romero-Sanchez, Maria Dolores

    2018-05-01

    Thermal energy storage systems using phase change materials (PCMs) as latent heat storage are one of the main challenges at European level in improving the performances and efficiency of concentrated solar power energy generation due to their high energy density. PCM with high working temperatures in the temperature range 300-500 °C are required for these purposes. However their use is still limited due to the problems raised by the corrosion of the majority of high temperature PCMs and lower thermal transfer properties. Micro-encapsulation was proposed as one method to overcome these problems. Different micro-encapsulation methods proposed in the literature are presented and discussed. An original process for the micro-encapsulation of potassium nitrate as PCM in inorganic zinc oxide shells based on a solvothermal method followed by spray drying to produce microcapsules with controlled phase composition and distribution is proposed and their transformation temperatures and enthalpies measured by differential scanning calorimetry are presented.

  16. Spin resolved electronic transport through N@C20 fullerene molecule between Au electrodes: A first principles study

    Science.gov (United States)

    Caliskan, Serkan

    2018-05-01

    Using first principles study, through Density Functional Theory combined with Non Equilibrium Green's Function Formalism, electronic properties of endohedral N@C20 fullerene molecule joining Au electrodes (Au-N@C20) was addressed in the presence of spin property. The electronic transport behavior across the Au-N@C20 molecular junction was investigated by spin resolved transmission, density of states, molecular orbitals, differential conductance and current-voltage (I-V) characteristics. Spin asymmetric variation was clearly observed in the results due to single N atom encapsulated in the C20 fullerene cage, where the N atom played an essential role in the electronic behavior of Au-N@C20. This N@C20 based molecular bridge, exhibiting a spin dependent I-V variation, revealed a metallic behavior within the bias range from -1 V to 1 V. The induced magnetic moment, spin polarization and other relevant quantities associated with the spin resolved transport were elucidated.

  17. Polyethene with pendant fullerene moieties

    NARCIS (Netherlands)

    Zhang, XC; Sieval, AB; Hummelen, JC; Hessen, B; Zhang, Xiaochun

    2005-01-01

    Polyethene with fullerene moieties pendant on short-chain branches was prepared by the catalytic copolymerisation of ethene and a fullerene-containing vinylic comonomer, yielding polyethene copolymers containing up to 25 wt% of C-60.

  18. Roll-coating fabrication of flexible organic solar cells: comparison of fullerene and fullerene-free systems

    DEFF Research Database (Denmark)

    Liu, Kuan; Larsen-Olsen, Thue Trofod; Lin, Yuze

    2016-01-01

    Flexible organic solar cells (OSCs) based on a blend of low-bandgap polymer donor PTB7-TH and nonfullerene small molecule acceptor IEIC were fabricated via a roll-coating process under ambient atmosphere. Both an indium tin oxide (ITO)-free substrate and a flexible ITO substrate were employed...... in these inverted OSCs. OSCs with flexible ITO and ITO-free substrates exhibited power conversion efficiencies (PCEs) up to 2.26% and 1.79%, respectively, which were comparable to those of the reference devices based on fullerene acceptors under the same conditions. This is the first example for all roll......-coating fabrication procedures for flexible OSCs based on non-fullerene acceptors with the PCE exceeding 2%. The fullerene-free OSCs exhibited better dark storage stability than the fullerene-based control devices....

  19. Encapsulation of high temperature thermoelectric modules

    Energy Technology Data Exchange (ETDEWEB)

    Salvador, James R.; Sakamoto, Jeffrey; Park, Youngsam

    2017-07-11

    A method of encapsulating a thermoelectric device and its associated thermoelectric elements in an inert atmosphere and a thermoelectric device fabricated by such method are described. These thermoelectric devices may be intended for use under conditions which would otherwise promote oxidation of the thermoelectric elements. The capsule is formed by securing a suitably-sized thin-walled strip of oxidation-resistant metal to the ceramic substrates which support the thermoelectric elements. The thin-walled metal strip is positioned to enclose the edges of the thermoelectric device and is secured to the substrates using gap-filling materials. The strip, substrates and gap-filling materials cooperatively encapsulate the thermoelectric elements and exclude oxygen and water vapor from atmospheric air so that the elements may be maintained in an inert, non-oxidizing environment.

  20. A plasma arc reactor for fullerene research

    Science.gov (United States)

    Anderson, T. T.; Dyer, P. L.; Dykes, J. W.; Klavins, P.; Anderson, P. E.; Liu, J. Z.; Shelton, R. N.

    1994-12-01

    A modified Krätschmer-Huffman reactor for the mass production of fullerenes is presented. Fullerene mass production is fundamental for the synthesis of higher and endohedral fullerenes. The reactor employs mechanisms for continuous graphite-rod feeding and in situ slag removal. Soot collects into a Soxhlet extraction thimble which serves as a fore-line vacuum pump filter, thereby easing fullerene separation from soot. Thermal gravimetric analysis (TGA) for yield determination is reported. This TGA method is faster and uses smaller samples than Soxhlet extraction methods which rely on aromatic solvents. Production of 10 g of soot per hour is readily achieved utilizing this reactor. Fullerene yields of 20% are attained routinely.

  1. Recent progresses in application of fullerenes in cosmetics.

    Science.gov (United States)

    Lens, Marko

    2011-08-01

    Cosmetic industry is a fast growing industry with the continuous development of new active ingredients for skin care products. Fullerene C(60) and its derivates have been subject of intensive research in the last few years. Fullerenes display a wide range of different biological activities. Strong antioxidant capacities and effective quenching radical oxygen species (ROS) made fullerenes suitable active compounds in the formulation of skin care products. Published evidence on biological activities of fullerenes relevant for their application in cosmetics use and examples of published patents are presented. Recent trends in the use of fullerenes in topical formulations and patents are reviewed. Future investigations covering application of fullerenes in skin care are discussed.

  2. Iron-fullerene mixture plasma

    International Nuclear Information System (INIS)

    Biri, S.; Fekete, E.

    2004-01-01

    Complete text of publication follows. In many laboratories new materials useful for nanotechnology and medical applications are searched and studied. In the ECR labo- ratory one of our future goals is to produce endohedral fullerene molecules (e.g Fe C 60 ) in large quantity. If this comes true, it will be possible to make building blocks for nanoparts, an ultra-contrast medium of MRI, and a magnetic nano-particle for treatment of cancer. For this experiment some modifications were carried out on the ATOMKI-ECRIS [1]. The waveguide of the 14.5 GHz microwave generator was divided in order to couple very low powers (1 watt or less) into the plasma. The C 60 component of the plasma was produced by using a simple oven. Among known methods (oven, sputtering, electron bombardment, compounds containing Fe), we have chosen the evaporation of ferrocene [Fe(C 5 H 5 ) 2 ] powder to introduce Fe atoms into the plasma. The ferrocene chamber was connected to one of the two gas feeding lines and the evaporation rate was controlled by needle valve. The extraction voltage had to be kept as low as 600V, because of the low mass-energy product of our bending magnet. First we developed independently the rough working conditions for single-charged dense iron and fullerene plasmas. Then a clean fullerene plasma was made. The temperature of the oven was about 450 deg C. The bending magnet was set to the C 60 peak (M=720) and about 50-100 nA intensity of single-charged fullerene peak was obtained. Then the magnet was set to the position of the searched Fe C 60 or FeC 60 peak (M=776) and the ferrocene valve was opened. A very difficult and long tuning followed. Finally we found a new large peak with higher mass than C 60 . In Figure 1 the centre of the new big peak on the right side is located at M=776 which corresponds to FeC 60 and/or Fe C 60 molecules. The peak is wide and shows some structure. We think it may contain impurities attached to the C 58 , C 59 , C 60 and FeC 60 molecules. We

  3. Synthetic Strategies towards Fullerene-Rich Dendrimer Assemblies

    Directory of Open Access Journals (Sweden)

    Jean-François Nierengarten

    2012-02-01

    Full Text Available The sphere-shaped fullerene has attracted considerable interest not least due to the peculiar electronic properties of this carbon allotrope and the fascinating materials emanating from fullerene-derived structures. The rapid development and tremendous advances in organic chemistry allow nowadays the modification of C60 to a great extent by pure chemical means. It is therefore not surprising that the fullerene moiety has also been part of dendrimers. At the initial stage, fullerenes have been examined at the center of the dendritic structure mainly aimed at possible shielding effects as exerted by the dendritic environment and light-harvesting effects due to multiple chromophores located at the periphery of the dendrimer. In recent years, also many research efforts have been devoted towards fullerene-rich nanohybrids containing multiple C60 units in the branches and/or as surface functional groups. In this review, synthetic efforts towards the construction of dendritic fullerene-rich nanostructures have been compiled and will be summarized herein.

  4. Physical properties of organic fullerene cocrystals

    Science.gov (United States)

    Macovez, Roberto

    2017-12-01

    The basic facts and fundamental properties of binary fullerene cocrystals are reviewed, focusing especially on solvates and salts of Buckminsterfullerene (C60), and hydrates of hydrophilic C60 derivatives. The examined properties include the lattice structure and the presence of orientational disorder and/or rotational dynamics (of both fullerenes and cocrystallizing moieties), thermodynamic properties such as decomposition enthalpies, and charge transport properties. Both thermodynamic properties and molecular orientational disorder shed light on the extent of intermolecular interactions in these binary solid-state systems. Comparison is carried out also with pristine fullerite and with the solid phases of functionalized C60. Interesting experimental findings on binary fullerene cocrystals include the simultaneous occurrence of rotations of both constituent molecular species, crystal morphologies reminiscent of quasi-crystalline behaviour, the observation of proton conduction in hydrate solids of hydrophilic fullerene derivatives, and the production of super-hard carbon materials by application of high pressures on solvated fullerene crystals.

  5. Non-fullerene electron acceptors for organic photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Jenekhe, Samson A.; Li, Haiyan; Earmme, Taeshik; Ren, Guoqiang

    2017-11-07

    Non-fullerene electron acceptors for highly efficient organic photovoltaic devices are described. The non-fullerene electron acceptors have an extended, rigid, .pi.-conjugated electron-deficient framework that can facilitate exciton and charge derealization. The non-fullerene electron acceptors can physically mix with a donor polymer and facilitate improved electron transport. The non-fullerene electron acceptors can be incorporated into organic electronic devices, such as photovoltaic cells.

  6. C{sub 60} fullerene decoration of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Demin, V. A., E-mail: victordemin88@gmail.com [Russian Academy of Sciences, Emanuel Institute of Biochemical Physics (Russian Federation); Blank, V. D.; Karaeva, A. R.; Kulnitskiy, B. A.; Mordkovich, V. Z. [Technological Institute for Superhard and Novel Carbon Materials (Russian Federation); Parkhomenko, Yu. N. [National University of Science and Technology MISiS (Russian Federation); Perezhogin, I. A.; Popov, M. Yu. [Technological Institute for Superhard and Novel Carbon Materials (Russian Federation); Skryleva, E. A. [National University of Science and Technology MISiS (Russian Federation); Urvanov, S. A. [Technological Institute for Superhard and Novel Carbon Materials (Russian Federation); Chernozatonskii, L. A. [Russian Academy of Sciences, Emanuel Institute of Biochemical Physics (Russian Federation)

    2016-12-15

    A new fully carbon nanocomposite material is synthesized by the immersion of carbon nanotubes in a fullerene solution in carbon disulfide. The presence of a dense layer of fullerene molecules on the outer nanotube surface is demonstrated by TEM and XPS. Fullerenes are redistributed on the nanotube surface during a long-term action of an electron beam, which points to the existence of a molecular bond between a nanotube and fullerenes. Theoretical calculations show that the formation of a fullerene shell begins with the attachment of one C{sub 60} molecule to a defect on the nanotube surface.

  7. Transmutation of fullerenes.

    Science.gov (United States)

    Cross, R James; Saunders, Martin

    2005-03-09

    Fullerenes were pyrolyzed by subliming them into a stream of flowing argon gas and then passing them through an oven heated to approximately 1000 degrees C. C(76), C(78), and C(84) all readily lost carbons to form smaller fullerenes. In the case of C(78), some isomerization was seen. Pyrolysis of (3)He@C(76) showed that all or most of the (3)He was lost during the decomposition. C(60) passes through the apparatus with no decomposition and no loss of helium.

  8. Encapsulation of nuclear wastes

    International Nuclear Information System (INIS)

    Arnold, J.L.; Boyle, R.W.

    1978-01-01

    Toxic waste materials are encapsulated by the method wherein the waste material in liquid or finely divided solid form is uniformly dispersed in a vinyl ester resin or an unsaturated polyester and the resin cured under conditions that the exotherm does not rise above the temperature at which the integrity of the encapsulating material is destroyed

  9. Competitive photometric enzyme immunoassay for fullerene C60 and its derivatives using a fullerene conjugated to horseradish peroxidase

    International Nuclear Information System (INIS)

    Hendrickson, Olga D.; Smirnova, Natalya I.; Zherdev, Anatoly V.; Dzantiev, Boris B.; Sveshnikov, Peter G.

    2016-01-01

    The article describes a highly sensitive single-step microplate enzyme immunoassay of the ELISA type for fullerene C 60 and its derivatives. Monoclonal anti-fullerene antibodies and a conjugate between fullerene and horseradish peroxidase were used as specific reagents. A direct competitive ELISA was carried out that was based on antibodies immobilized in the well of a microtiter plate, a peroxidase-labeled antigen, and detection via the dye formed from 3,3′,5,5′-tetramethylbenzidine and hydrogen peroxide. Both pristine fullerene C 60 and its water-soluble forms can be determined. The detection limits are 1.5 ng∙mL −1 for fullerene C 60 , and between 0.1 and 1.3 ng∙mL −1 for its derivatives. This ELISA format allows for almost two-fold reduction of the time needed for the assay in comparison to indirect scheme with labeled antibodies. (author)

  10. Fullerenes

    CERN Document Server

    Ehrenreich, Henry

    1994-01-01

    Fullerenes or"buckyballs,"a new carbon-based family of materials, have fascinated the scientific community for the past few years. These materials are likely to find applications ranging from lubricants to batteries to biological magic bullets, which will be of great importance in the science and technology of the next century. This carefully edited volume, the first to include Frans Spaepen as co-editor, summarizes our present understanding in a series of didacticarticles, which take the reader from the fundamentals to the present cutting-edge research. A general overview is followed by chapters devoted to synthesis and characterization of fullerenes and their derivatives, the novel structural properties of buckyballs, tubes, and buckyonions, a theoretical and experimental view of electrons and phonons, and finally to the fascinating superconducting properties of these materials.Key Features* Presents systematic overview of entire field* Discusses synthesis, characterization, structure, and superconducting p...

  11. Fullerenes doped with metal halides

    International Nuclear Information System (INIS)

    Martin, T.P.; Heinebrodt, M.; Naeher, U.; Goehlich, H.; Lange, T.; Schaber, H.

    1993-01-01

    The cage-like structure of fullerenes is a challenge to every experimental to put something inside - to dope the fullerenes. In fact, the research team that first identified C 60 as a football-like molecule quickly succeeded in trapping metal atoms inside and in shrinking the cage around this atom by photofragmentation. In this paper we report the results of ''shrink-wrapping'' the fullerenes around metal halide molecules. Of special interest is the critical size (the minimum number of carbon atoms) that can still enclose the dopant. A rough model for the space available inside a carbon cage gives good agreement with the measured shrinking limits. (author). 8 refs, 6 figs

  12. Memory operation mechanism of fullerene-containing polymer memory

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Anri, E-mail: anakajima@hiroshima-u.ac.jp; Fujii, Daiki [Research Institute for Nanodevice and Bio Systems, Hiroshima University, 1-4-2 Kagamiyama, Higashihiroshima, Hiroshima 739-8527 (Japan)

    2015-03-09

    The memory operation mechanism in fullerene-containing nanocomposite gate insulators was investigated while varying the kind of fullerene in a polymer gate insulator. It was cleared what kind of traps and which positions in the nanocomposite the injected electrons or holes are stored in. The reason for the difference in the easiness of programming was clarified taking the role of the charging energy of an injected electron into account. The dependence of the carrier dynamics on the kind of fullerene molecule was investigated. A nonuniform distribution of injected carriers occurred after application of a large magnitude programming voltage due to the width distribution of the polystyrene barrier between adjacent fullerene molecules. Through the investigations, we demonstrated a nanocomposite gate with fullerene molecules having excellent retention characteristics and a programming capability. This will lead to the realization of practical organic memories with fullerene-containing polymer nanocomposites.

  13. Sensitivity of encapsulated diamond-protein transistor renewed by low temperature hydrogen plasma

    Czech Academy of Sciences Publication Activity Database

    Krátká, Marie; Neykova, Neda; Ukraintsev, Egor; Kromka, Alexander; Rezek, Bohuslav

    2013-01-01

    Roč. 8, č. 2 (2013), s. 1598-1608 ISSN 1452-3981 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GAP108/12/0996; GA ČR GD202/09/H041 Institutional support: RVO:68378271 Keywords : nanocrystalline diamond * solution-gated field-effect transistor * low temperature hydrogen termination * proteins * encapsulation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.956, year: 2013 http://www.electrochemsci.org/list13.htm#current

  14. Fullerene solubility-current density relationship in polymer solar cells

    International Nuclear Information System (INIS)

    Renz, Joachim A.; Gobsch, Gerhard; Hoppe, Harald; Troshin, Pavel A.; Razumov, V.F.

    2008-01-01

    During the last decade polymer solar cells have undergone a steady increase in overall device efficiency. To date, essential efficiency improvements of polymer-fullerene solar cells require the development of new materials. Whilst most research efforts aim at an improved or spectrally extended absorption of the donor polymer, not so much attention has been paid to the fullerene properties themselves. We have investigated a number of structurally related fullerenes, in order to study the relationship between chemical structure and resulting polymer-fullerene bulk heterojunction photovoltaic properties. Our study reveals a clear connection between the fullerene solubility as material property on one hand and the solar cells short circuit photocurrent on the other hand. The tendency of the less soluble fullerene derivates to aggregate was accounted for smaller current densities in the respective solar cells. Once a minimum solubility of approx. 25 mg/ml in chlorobenzene was overcome by the fullerene derivative, the short circuit current density reached a plateau, of about 8-10 mA/cm 2 . Thus the solubility of the fullerene derivative directly influences the blend morphology and displays an important parameter for efficient polymer-fullerene bulk heterojunction solar cell operation. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  15. PREFACE: Fullerene Nano Materials (Symposium of IUMRS-ICA2008)

    Science.gov (United States)

    Miyazawa, Kun'ichi; Fujita, Daisuke; Wakahara, Takatsugu; Kizuka, Tokushi; Matsuishi, Kiyoto; Ochiai, Yuichi; Tachibana, Masaru; Ogata, Hironori; Mashino, Tadahiko; Kumashiro, Ryotaro; Oikawa, Hidetoshi

    2009-07-01

    This volume contains peer-reviewed invited and contributed papers that were presented in Symposium N 'Fullerene Nano Materials' at the IUMRS International Conference in Asia 2008 (IUMRS-ICA 2008), which was held on 9-13 December 2008, at Nagoya Congress Center, Nagoya, Japan. Over twenty years have passed since the discovery of C60 in 1985. The discovery of superconductivity of C60 in 1991 suggested infinite possibilities for fullerenes. On the other hand, a new field of nanocarbon has been developed recently, based on novel functions of the low-dimensional fullerene nanomaterials that include fullerene nanowhiskers, fullerene nanotubes, fullerene nanosheets, chemically modified fullerenes, endohedral fullerenes, thin films of fullerenes and so forth. Electrical, electrochemical, optical, thermal, mechanical and various other properties of fullerene nanomaterials have been investigated and their novel and anomalous nature has been reported. Biological properties of fullerene nanomaterials also have been investigated both in medical applications and toxicity aspects. The recent research developments of fullerene nanomaterials cover a variety of categories owing to their functional diversity. This symposium aimed to review the progress in the state-of-the-art technology based on fullerenes and to offer the forum for active interdisciplinary discussions. 24 oral papers containing 8 invited papers and 22 poster papers were presented at the two-day symposium. Topics on the social acceptance of nanomaterials including fullerene were presented on the first day of the symposium. Biological impacts of nanomaterials and the importance of standardization of nanomaterials characterization were also shown. On the second day, the synthesis, properties, functions and applications of various fullerene nanomaterials were shown in both the oral and poster presentations. We are grateful to all invited speakers and many participants for valuable contributions and active discussions

  16. Biochemical activity of fullerenes and related derivatives

    International Nuclear Information System (INIS)

    Huczko, A.; Lange, H.; Calko, E.

    1999-01-01

    An astonishing scientific interest, embodied in over 15000 research articles so far, has been encountered since 1985 when fullerenes were discovered. From new superconductors to a rich electrochemistry and reaction chemistry, fullerene nanostructures continue to excite the scientific world, and new findings continue at record pace. This review presents many examples of the biochemical activities of fullerenes and derivatives, e. g. cytotoxic activity, selective DNA cleavage and antiviral activity against HIV. We also present some results of our testing which show that, despite its chemical and biochemical activity, fullerene matter does not present any health hazard directly related to skin irritation and allergic risks. (author)

  17. Polymerized phase and amorphous diamond synthesized from C60 fullerene by shock compression

    International Nuclear Information System (INIS)

    Niwase, K.; Homae, T.; Nakamura, K.G.; Kondo, K.

    2006-01-01

    C 60 fullerene films were shock compressed to 23 and 52GPa. Both the recovered samples exhibit fracture into platelets and broad photoluminescence, and intensity of these increases with increasing pressure. At 23GPa, a characteristic single broad band appears at 1560-1570cm -1 , which is similar to the one found for three-dimensional (3D) polymerized C 60 fullerene under high-pressure-high-temperature treatment. At 52GPa, on the other hand, the single broad band has disappeared and a diamond peak sometimes appears, depending on platelets

  18. Graphene macro-assembly-fullerene composite for electrical energy storage

    Science.gov (United States)

    Campbell, Patrick G.; Baumann, Theodore F.; Biener, Juergen; Merrill, Matthew; Montalvo, Elizabeth; Worsley, Marcus A.; Biener, Monika M.; Hernandez, Maira Raquel Ceron

    2018-01-16

    Disclosed here is a method for producing a graphene macro-assembly (GMA)-fullerene composite, comprising providing a GMA comprising a three-dimensional network of graphene sheets crosslinked by covalent carbon bonds, and incorporating at least 20 wt. % of at least one fullerene compound into the GMA based on the initial weight of the GMA to obtain a GMA-fullerene composite. Also described are a GMA-fullerene composite produced, an electrode comprising the GMA-fullerene composite, and a supercapacitor comprising the electrode and optionally an organic or ionic liquid electrolyte in contact with the electrode.

  19. Recent advances in fullerene superconductivity

    CERN Document Server

    Margadonna, S

    2002-01-01

    Superconducting transition temperatures in bulk chemically intercalated fulleride salts reach 33 K at ambient pressure and in hole-doped C sub 6 sub 0 derivatives in field-effect-transistor (FET) configurations, they reach 117 K. These advances pose important challenges for our understanding of high-temperature superconductivity in these highly correlated organic metals. Here we review the structures and properties of intercalated fullerides, paying particular attention to the correlation between superconductivity and interfullerene separation, orientational order/disorder, valence state, orbital degeneracy, low-symmetry distortions, and metal-C sub 6 sub 0 interactions. The metal-insulator transition at large interfullerene separations is discussed in detail. An overview is also given of the exploding field of gate-induced superconductivity of fullerenes in FET electronic devices.

  20. Intratracheal administration of fullerene nanoparticles activates splenic CD11b+ cells

    International Nuclear Information System (INIS)

    Ding, Ning; Kunugita, Naoki; Ichinose, Takamichi; Song, Yuan; Yokoyama, Mitsuru; Arashidani, Keiichi; Yoshida, Yasuhiro

    2011-01-01

    Highlights: → Fullerene administration triggered splenic responses. → Splenic responses occurred at different time-points than in the lung tissue. → CD11b + cells were demonstrated to function as responder cells to fullerene. - Abstract: Fullerene nanoparticles ('Fullerenes'), which are now widely used materials in daily life, have been demonstrated to induce elevated pulmonary inflammation in several animal models; however, the effects of fullerenes on the immune system are not fully understood. In the present study, mice received fullerenes intratracheally and were sacrificed at days 1, 6 and 42. Mice that received fullerenes exhibited increased proliferation of splenocytes and increased splenic production of IL-2 and TNF-α. Changes in the spleen in response to fullerene treatment occurred at different time-points than in the lung tissue. Furthermore, fullerenes induced CDK2 expression and activated NF-κB and NFAT in splenocytes at 6 days post-administration. Finally, CD11b + cells were demonstrated to function as responder cells to fullerene administration in the splenic inflammatory process. Taken together, in addition to the effects on pulmonary responses, fullerenes also modulate the immune system.

  1. The first stable lower fullerene: C36

    International Nuclear Information System (INIS)

    Piskoti, C.; Zettl, A.

    1998-01-01

    A new pure carbon material, presumably composed of thirty six carbon atom molecules, has been synthesized and isolated in milligram quantities. It appears as though these molecules have a closed cage structure making them the smallest member of a new class of molecules known as fullerenes, most notably of which is the soccer ball shaped C 60 . However, unlike other known fullerenes, any closed, fullerene-like C 36 cage will necessarily contain fused pentagon rings. Therefore, this molecule apparently violates the isolated pentagon rule, a criterion which requires isolated pentagons for stability in fullerene molecules. Striking parallels between this problem and the synthesis of other fused five member fused ring systems will be discussed. Also, it will be shown that certain biological structures known as clathrin behave in a manner which gives excellent predictions about fullerenes and nanotubes. These predictions help to explain the presence of abundant quantities of C 36 in arced graphite soot. copyright 1998 American Institute of Physics

  2. Carboxylated Fullerene at the Oil/Water Interface.

    Science.gov (United States)

    Li, Rongqiang; Chai, Yu; Jiang, Yufeng; Ashby, Paul D; Toor, Anju; Russell, Thomas P

    2017-10-04

    The self-assembly of carboxylated fullerene with poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) with different molecular weights, poly-2-vinylpyridine, and amine-terminated polystyrene, at the interface between toluene and water was investigated. For all values of the pH, the functionalized fullerene interacted with the polymers at the water/toluene interface, forming a nanoparticle network, reducing the interfacial tension. At pH values of 4.84 and 7.8, robust, elastic films were formed at the interface, such that hollow tubules could be formed in situ when an aqueous solution of the functionalized fullerene was jetted into a toluene solution of PS-b-P2VP at a pH of 4.84. With variation of the pH, the mechanical properties of the fullerene/polymer assemblies can be varied by tuning the strength of the interactions between the functionalized fullerenes and the PS-b-P2VP.

  3. Specific features of fullerene-bearing thin film growth using ion beam vacuum sputtering of fullerene mixtures with B, Fe, Se, Gd and Na

    International Nuclear Information System (INIS)

    Semenov, A.P.; Semenova, I.A.; Bulina, N.V.; Lopatin, V.A.; Karmanov, N.S.; Churilov, G.N.

    2005-01-01

    A new approach to the growth of films containing fullerenes and doping elements is described. It is suggested that a cluster mechanism of the target sputtering by accelerated ions makes possible the deposition of fullerenes on a substrate with a certain probability for dopant atoms being introduced into the cavities of fullerene molecules and a higher probability of the doping element introduction between fullerene molecules. The proposed method has been experimentally implemented by using an Ar ion beam to sputter C 60 /C 70 fullerene mixtures, synthesized in a plasmachemical reactor at a pressure of 10 5 Pa and containing a doping element, i.e. Fe, Na, B, Gd or Se. Micron-thick films containing C 60 and C 70 fullerenes and the corresponding dopant element, i.e. Fe, Na, B, Gd or Se, were grown from dopant-containing fullerene mixtures by ion beam sputtering in a vacuum of ∼10 -2 Pa [ru

  4. The third, molecular, form of carbon: fullerenes, carbon nanotubes and onions. Some physical properties of fullerites

    International Nuclear Information System (INIS)

    Zubov, V.I.

    2004-01-01

    A brief review is presented of the pre-history and discovery of fullerenes (and then carbon nanotubes) that make the third molecular form of carbon, and of various, predominantly physical, properties of fullerites, i.e. of crystals composed of fullerene molecules. Particular attention is being given to the intermolecular forces, especially at orientationally disordered phases. The Girifalco potential is presented for eight fullerenes from C 28 to C 96 and its generalization is made for the interactions between the different fullerene molecules, C m and C n . The thermodynamics properties of the high-temperature modifications of a family of the fullerites, from C 36 up to C 96 , calculated in equilibrium with their saturated vapors on the basis of the correlative method of the unsymmetrized self-consistent field that enables one to take into account the strong anharmonicity of the lattice vibrations, are discussed. The calculations were accomplished up to the temperature of loss of stability (spinodal point) T s . We compare our results with available experimental data. The behaviour of some characteristics is considered in their dependence on the number of atoms in the molecule. Using the Lindermann's melting criterion we estimate a possible melting curve for the C 60 fullerite. (orig.)

  5. Adsorption characteristics of heat-treated fullerene nano-whiskers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z-M [Energy Storage Materials Group, Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Kato, R; Hotta, K; Miyazawa, K [Fullerene Engineering Group, Advanced Nano Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)], E-mail: zm-wang@aist.go.jp

    2009-04-01

    Fullerene nanowhiskers (FNWs) were synthesized by the liquid-liquid interfacial precipitation method and the adsorption properties of their heat-treated samples were characterized. It was found that vacuum-annealed FNWs at a high temperature are of microporous materials and, especially, ultramicropores are highly developed in these materials. Porosities even remain in samples after heat treatment at a temperature higher than 2273 K. The presence of ultramicroporosity is indicative of the molecular sieving properties of the vacuum-annealed FNW materials, suggesting the possibilities of their application as new materials for gas separation and gas storage.

  6. Status seminar on the application potential of fullerenes. Status seminar and panel discussion; Statusseminar Anwendungspotential der Fullerene. Vortraege und Podiumsdiskussion

    Energy Technology Data Exchange (ETDEWEB)

    Hoffschulz, H [comp.

    1997-12-31

    The application potential of fullerenes extends to the following areas: Owing to their similarity to active carbon the use of fullerenes as well as of the soot arising during their production in catalytic applications appears an interesting possibility. Structural modifications will permit influencing the catalytic properties of the employed substances. Addition of functional groups has led to a wide range of fullerne variants whose chemical properties and application potentials are still being studied. Polymers can be altered in their structure and properties by the integration of fullerenes. The possibility of increasing the photoconductivity of polymers in this way could be applied to photodetectors and solar cells, for example. Exposure to light causes fullerenes to polymerise and drastically reduces their solubility in commercial solvents. This may render them useful as a masking material in microstructuring. Diamond layers from fullerene vapour are very durable and can be manufactured in large sheets at comparatively low cost. In spite of their low density nanotubes are of incredible stiffness and as such an ideal component for composite materials. In monitors nanotubes can function as electron sources and replace the traditional cathode ray tube. A prerequisite for studying the properties of endohedral fullerenes is their availability in macroscopic amounts. In order to assess their potential it will first be necessary to develop suitable production methods. (orig./SR) [Deutsch] Folgende Anwendungspotentiale fuer Fullorene sind denkbar: - Die Verwandtschaft der Fullerene und des bei ihrer Erzeugung anfallenden Russes zur Aktivkohle sind fuer katalytische Anwendungen interessant, wobei die Katalyseeigenschaften durch Modifizierungen der Struktur veraendert werden koennen. - Mittlerweile stehen eine Vielzahl verschiedener Fulleren-Modifikationen durch Anbringen von funktionellen Gruppen zur Verfuegung, deren chemische Eigenschaften und Anwendungspotentiale

  7. Comparing the Device Physics and Morphology of Polymer Solar Cells Employing Fullerenes and Non-Fullerene Acceptors

    KAUST Repository

    Bloking, Jason T.

    2014-04-23

    There is a need to find electron acceptors for organic photovoltaics that are not based on fullerene derivatives since fullerenes have a small band gap that limits the open-circuit voltage (VOC), do not absorb strongly and are expensive. Here, a phenylimide-based acceptor molecule, 4,7-bis(4-(N-hexyl-phthalimide)vinyl)benzo[c]1,2,5-thiadiazole (HPI-BT), that can be used to make solar cells with VOC values up to 1.11 V and power conversion efficiencies up to 3.7% with two thiophene polymers is demonstrated. An internal quantum efficiency of 56%, compared to 75-90% for polymer-fullerene devices, results from less efficient separation of geminate charge pairs. While favorable energetic offsets in the polymer-fullerene devices due to the formation of a disordered mixed phase are thought to improve charge separation, the low miscibility (<5 wt%) of HPI-BT in polymers is hypothesized to prevent the mixed phase and energetic offsets from forming, thus reducing the driving force for charges to separate into the pure donor and acceptor phases where they can be collected. A small molecule electron acceptor, 4,7-bis(4-(N-hexyl-phthalimide)vinyl)benzo[c]1,2,5-thiadiazole (HPI-BT), achieves efficiencies of 3.7% and open-circuit voltage values of 1.11 V in bulk heterojunction (BHJ) devices with polythiophene donor materials. The lower internal quantum efficiency (56%) in these non-fullerene acceptor devices is attributed to an absence of the favorable energetic offsets resulting from nanoscale mixing of donor and acceptor found in comparable fullerene-based devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Simple method for determining fullerene negative ion formation★

    Science.gov (United States)

    Felfli, Zineb; Msezane, Alfred Z.

    2018-04-01

    A robust potential wherein is embedded the crucial core-polarization interaction is used in the Regge-pole methodology to calculate low-energy electron elastic scattering total cross section for the C60 fullerene in the electron impact energy range 0.02 ≤ E ≤ 10.0 eV. The energy position of the characteristic dramatically sharp resonance appearing at the second Ramsauer-Townsend minimum of the total cross section representing stable C60 - fullerene negative ion formation agrees excellently with the measured electron affinity of C60 [Huang et al., J. Chem. Phys. 140, 224315 (2014)]. The benchmarked potential and the Regge-pole methodology are then used to calculate electron elastic scattering total cross sections for selected fullerenes, from C54 through C240. The total cross sections are found to be characterized generally by Ramsauer-Townsend minima, shape resonances and dramatically sharp resonances representing long-lived states of fullerene negative ion formation. For the total cross sections of C70, C76, C78, and C84 the agreement between the energy positions of the very sharp resonances and the measured electron affinities is outstanding. Additionally, we compare our extracted energy positions of the resultant fullerene anions from our calculated total cross sections of the C86, C90 and C92 fullerenes with the estimated electron affinities ≥3.0 eV by the experiment [Boltalina et al., Rapid Commun. Mass Spectrom. 7, 1009 (1993)]. Resonance energy positions of other fullerenes, including C180 and C240 are also obtained. Most of the total cross sections presented in this paper are the first and only; our novel approach is general and should be applicable to other fullerenes as well and complex heavy atoms, such as the lanthanide atoms. We conclude with a remark on the catalytic properties of the fullerenes through their negative ions.

  9. Electron energy-loss spectroscopy on fullerenes and fullerene compounds

    International Nuclear Information System (INIS)

    Armbruster, J.

    1996-03-01

    A few years ago, a new form of pure carbon, the fullerenes, has been discovered, which shows many fascinating properties. Within this work the spatial and electronic structure of some selected fullerene compounds have been investigated by electron-energy-loss spectroscopy in transmission. Phase pure samples of alkali intercalated fullerides A x C 60 (A=Na, K, Cs) have been prepared using vacuum distillation. Measruements of K 3 C 60 show a dispersion of the charge carrier plasmon close to zero. This can be explained by calculations, which take into account both band structure and local-field (inhomogeneity) effects. The importance of the molecular structure can also be seen from the A 4 C 60 compounds, where the non-metallic properties are explained by a splitting of the t 1u and t 1g derived bands that is caused by electron-correlation and Jahn-Teller effects. First measurements of the electronic structure of Na x C 60 (x>6) are presented and reveal a complete transfer from the sodium atoms but an incomplete transfer onto the C 60 molecules. This behaviour can be explained by taking into account additional electronic states that are situated between the sodium atoms in the octahedral sites and are predicted by calculations using local density approximation. The crystal structure of the higher fullerenes C 76 and C 84 is found to be face-centered cubic

  10. Szeged Matrix Property Indices as Descriptors to Characterize Fullerenes

    Directory of Open Access Journals (Sweden)

    Jäntschi Lorentz

    2016-12-01

    Full Text Available Fullerenes are class of allotropes of carbon organized as closed cages or tubes of carbon atoms. The fullerenes with small number of atoms were not frequently investigated. This paper presents a detailed treatment of total strain energy as function of structural feature extracted from isomers of C40 fullerene using Szeged Matrix Property Indices (SMPI. The paper has a two-fold structure. First, the total strain energy of C40 fullerene isomers (40 structures was linked with SMPI descriptors under two scenarios, one which incorporate just the SMPI descriptors and the other one which contains also five calculated properties (dipole moment, scf-binding-energy, scf-core-energy, scf-electronic-energy, and heat of formation. Second, the performing models identified on C40 fullerene family or the descriptors of these models were used to predict the total strain energy on C42 fullerene isomers. The obtained results show that the inclusion of properties in the pool of descriptors led to the reduction of accurate linear models. One property, namely scf-binding-energy proved a significant contribution to total strain energy of C40 fullerene isomers. However, the top-three most performing models contain just SMPI descriptors. A model with four descriptors proved most accurate model and show fair abilities in prediction of the same property on C42 fullerene isomers when the approach considered the descriptors identified on C40 as the predicting descriptors for C42 fullerene isomers.

  11. An analytical method for determination of fullerenes and functionalized fullerenes in soils with high performance liquid chromatography and UV detection

    International Nuclear Information System (INIS)

    Carboni, Andrea; Emke, Erik; Parsons, John R.; Kalbitz, Karsten; Voogt, Pim de

    2014-01-01

    Graphical abstract: -- Highlights: •A total of eight fullerenes can be analyzed in a single run with HPLC-UV. •The method allows the analysis of fullerenes in soil at relatively low concentrations. •The method developed is robust, highly reproducible and relatively efficient. •The method can be applied to the study of the environmental fate and toxicology of fullerenes. -- Abstract: Fullerenes are carbon-based nanomaterials expected to play a major role in emerging nanotechnology and produced at an increasing rate for industrial and household applications. In the last decade a number of novel compounds (i.e. fullerene derivatives) is being introduced into the market and specific analytical methods are needed for analytical purposes as well as environmental and safety issues. In the present work eight fullerenes (C60 and C70) and functionalized fullerenes (C60 and C70 exohedral-derivatives) were selected and a novel liquid chromatographic method was developed for their analysis with UV absorption as a method of detection. The resulting HPLC-UV method is the first one suitable for the analysis of all eight compounds. This method was applied for the analysis of fullerenes added to clayish, sandy and loess top-soils at concentrations of 20, 10 and 5 μg kg −1 and extracted with a combination of sonication and shaking extraction. The analytical method limits of detection (LoD) and limits of quantification (LoQ) were in the range of 6–10 μg L −1 and 15–24 μg L −1 respectively for the analytical solutions. The extraction from soil was highly reproducible with recoveries ranging from 47 ± 5 to 71 ± 4% whereas LoD and LoQ for all soils tested were of 3 μg kg −1 and 10 μg kg −1 respectively. No significant difference in the extraction performance was observed depending of the different soil matrices and between the different concentrations. The developed method can be applied for the study of the fate and toxicity of fullerenes in complex matrices

  12. Fullerene-Related Nanocarbons and Their Applications

    DEFF Research Database (Denmark)

    Geng, Junfeng; Miyazawa, Kun'ichi; Hu, Zheng

    2012-01-01

    . From the vast amount of research that has been conducted over the last two decades, it is now apparent that these nanomaterials, notably, carbon nanotubes, carbon-based nanoparticles, graphene, fullerene and fullerene derivatives promise very distinct applications and will add great value to industries...

  13. Boron Fullerenes: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Gonzalez Szwacki Nevill

    2007-01-01

    Full Text Available AbstractA family of unusually stable boron cages was identified and examined using first-principles local-density functional method. The structure of the fullerenes is similar to that of the B12icosahedron and consists of six crossing double-rings. The energetically most stable fullerene is made up of 180 boron atoms. A connection between the fullerene family and its precursors, boron sheets, is made. We show that the most stable boron sheets are not necessarily precursors of very stable boron cages. Our finding is a step forward in the understanding of the structure of the recently produced boron nanotubes.

  14. Multiply-negatively charged aluminium clusters and fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Noelle

    2008-07-15

    Multiply negatively charged aluminium clusters and fullerenes were generated in a Penning trap using the 'electron-bath' technique. Aluminium monoanions were generated using a laser vaporisation source. After this, two-, three- and four-times negatively charged aluminium clusters were generated for the first time. This research marks the first observation of tetra-anionic metal clusters in the gas phase. Additionally, doubly-negatively charged fullerenes were generated. The smallest fullerene dianion observed contained 70 atoms. (orig.)

  15. Oscillations of spherical fullerenes interacting with graphene sheet

    Energy Technology Data Exchange (ETDEWEB)

    Ghavanloo, Esmaeal, E-mail: ghavanloo@shirazu.ac.ir; Fazelzadeh, S. Ahmad

    2017-01-01

    In the present study, the oscillations of spherical fullerenes in the vicinity of a fully constrained graphene sheet are investigated. Using the continuous approximation and Lennard-Jones potential, the van der Waals (vdW) potential energy and interaction forces are obtained. The equation of motion is derived and directly solved based on the actual force distribution between the fullerene molecules and the graphene sheet. Numerical results are obtained and shown that the oscillation is sensitive to the size of the fullerene as well as the distance between the center of the fullerene and the graphene sheet.

  16. Fullerene-containing polymeric stars in bulk and solution by neutron spin-echo

    CERN Document Server

    Lebedev, V T; Toeroek, G; Cser, L; Bershtein, V A; Zgonnik, V N; Melenevskaya, E Y; Vinogradova, L V

    2002-01-01

    Stars with C sub 6 sub 0 fullerene core and poly (styrene) (PS) arms have been studied in benzene and in the bulk by neutron spin echo (NSE). Behaviours of stars (six arms, each with a mass M=5.10 sup 3) at momentum transfer q=0.2-0.6 nm sup - sup 1 in the time range t=0.01-20 ns at temperatures T=20-60 C were compared with dynamics of free PS chains. Displaying depressed molecular mobility, the stars did not obey the usual dynamic Zimm or Rouse model. The fullerene polymer interaction at a specific molecular architecture results in oscillating dynamics. (orig.)

  17. Fullerenes as a new type of ligands for transition metals

    International Nuclear Information System (INIS)

    Sokolov, V.I.

    2007-01-01

    Fullerenes are considered as ligands in transition metal π-complexes. The following aspects are discussed: metals able to form π-complexes with fullerenes (Zr, V, Ta, Mo, W, Re, Ru, etc.); haptic numbers; homo- and hetero ligand complexes; ligand compatibility with fullerenes for different metals, including fullerenes with a disturbed structure of conjugation [ru

  18. Fullerenes and fulleranes in circumstellar envelopes

    International Nuclear Information System (INIS)

    Zhang, Yong; Kwok, Sun; Sadjadi, SeyedAbdolreza

    2016-01-01

    Three decades of search have recently led to convincing discoveries of cosmic fullerenes. The presence of C_6_0 and C"+ _6_0 in both circumstellar and interstellar environments suggests that these molecules and their derivatives can be efficiently formed in circumstellar envelopes and survive in harsh conditions. Detailed analysis of the infrared bands from fullerenes and their connections with the local properties can provide valuable information on the physical conditions and chemical processes that occurred in the late stages of stellar evolution. The identification of C"+ _6_0 as the carrier of four diffuse interstellar bands (DIBs) suggests that fullerene- related compounds are abundant in interstellar space and are essential for resolving the DIB mystery. Experiments have revealed a high hydrogenation rate when C_6_0 is exposed to atomic hydrogen, motivating the attempt to search for cosmic fulleranes. In this paper, we present a short review of current knowledge of cosmic fullerenes and fulleranes and briefly discuss the implications on circumstellar chemistry. (paper)

  19. Fullerenes and endohedrals as “big atoms”

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya., E-mail: amusia@vms.huji.ac.il

    2013-03-12

    Highlights: ► Response of multi-electron atoms to radiation is determined by correlation effects. ► The response of fullerenes and endohedrals is characterized by strong resonances. ► Most important are confinement and Giant endohedral resonances. ► Fullerene is described as a zero-thickness polarizable shell. ► Electron exchange can play a very important role in inner shell ionization. - Abstract: We present the main features of the electronic structure of the heavy atoms that is best of all seen in photoionization. We acknowledge how important was and still is investigation of the interaction between atoms and low- and high frequency lasers with big intensity. We discuss the fullerenes and endohedrals as big atoms concentrating upon their most prominent features revealed in photoionization. Namely, we discuss reflection of photoelectron wave by the static potential that mimics the fullerenes electron shell and modification of the incoming photon beam under the action of the polarizable fullerenes shell. Both effects are clearly reflected in the photoionization cross-section. We discuss the possible features of interaction between laser field of both low and high frequency and high intensity upon fullerenes and endohedrals. We envisage prominent effects of multi-electron ionization and photon emission, including high-energy photons. We emphasize the important role that can be played by electron exchange in these processes.

  20. Fullerenes and endohedrals as “big atoms”

    International Nuclear Information System (INIS)

    Amusia, M.Ya.

    2013-01-01

    Highlights: ► Response of multi-electron atoms to radiation is determined by correlation effects. ► The response of fullerenes and endohedrals is characterized by strong resonances. ► Most important are confinement and Giant endohedral resonances. ► Fullerene is described as a zero-thickness polarizable shell. ► Electron exchange can play a very important role in inner shell ionization. - Abstract: We present the main features of the electronic structure of the heavy atoms that is best of all seen in photoionization. We acknowledge how important was and still is investigation of the interaction between atoms and low- and high frequency lasers with big intensity. We discuss the fullerenes and endohedrals as big atoms concentrating upon their most prominent features revealed in photoionization. Namely, we discuss reflection of photoelectron wave by the static potential that mimics the fullerenes electron shell and modification of the incoming photon beam under the action of the polarizable fullerenes shell. Both effects are clearly reflected in the photoionization cross-section. We discuss the possible features of interaction between laser field of both low and high frequency and high intensity upon fullerenes and endohedrals. We envisage prominent effects of multi-electron ionization and photon emission, including high-energy photons. We emphasize the important role that can be played by electron exchange in these processes

  1. Pressure dependence of the solubility of light fullerenes in 1-hexanol from 298.15 K to 363.15 K

    DEFF Research Database (Denmark)

    Semenov, Konstantin N.; Regueira Muñiz, Teresa; Fernández, Josefa

    2015-01-01

    The solubility of light fullerenes (C60 and C70) in 1-hexanol was investigated in the range of pressures of 0.1-100 MPa and in the range of temperatures of 298.15-363.15 K. In all of the studied temperatures, solubility increases monotonously with increasing pressure. At ambient pressure, we have...... (monosolvated fullerene C60 and non-solvated C60). The composition of the solid crystallosolvate was determined by thermogravimetric analysis. The solubility diagram of the binary system C70-1-hexanol in the temperature range of 298.15-328.15 K at 0.1 MPa consists of only one branch corresponding...

  2. Inorganic Fullerene-Like Nanoparticles and Inorganic Nanotubes

    Directory of Open Access Journals (Sweden)

    Reshef Tenne

    2014-11-01

    Full Text Available Fullerene-like nanoparticles (inorganic fullerenes; IF and nanotubes of inorganic layered compounds (inorganic nanotubes; INT combine low dimensionality and nanosize, enhancing the performance of corresponding bulk counterparts in their already known applications, as well as opening new fields of their own [1]. This issue gathers articles from the diverse area of materials science and is devoted to fullerene-like nanoparticles and nanotubes of layered sulfides and boron nitride and collects the most current results obtained at the interface between fundamental research and engineering.[...

  3. Effects of Different End-Point Cooking Temperatures on the Efficiency of Encapsulated Phosphates on Lipid Oxidation Inhibition in Ground Meat.

    Science.gov (United States)

    Kılıç, B; Şimşek, A; Claus, J R; Atılgan, E; Aktaş, N

    2015-10-01

    Effects of 0.5% encapsulated (e) phosphates (sodium tripolyphosphate, STP; sodium hexametaphosphate, HMP; sodium pyrophosphate, SPP) on lipid oxidation during storage (0, 1, and 7 d) of ground meat (chicken, beef) after being cooked to 3 end-point cooking temperatures (EPCT; 71, 74, and 77 °C) were evaluated. The use of STP or eSTP resulted in lower (P cooking loss (CL) compared to encapsulated or unencapsulated forms of HMP and SPP. Increasing EPCT led to a significant increase in CL (P chicken compared to 74 and 71 °C (P chicken samples (P < 0.05). Findings suggest that encapsulated phosphates can be a strategy to inhibit lipid oxidation for meat industry and the efficiency of encapsulated phosphates on lipid oxidation inhibition can be enhanced by lowering EPCT. © 2015 Institute of Food Technologists®

  4. Intratracheal administration of fullerene nanoparticles activates splenic CD11b{sup +} cells

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ning [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan); Kunugita, Naoki [Department of Environmental Health, National Institute of Public Health, 2-3-6, Minami, Wako 351-0197 (Japan); Ichinose, Takamichi [Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita 870-1201 (Japan); Song, Yuan [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan); Yokoyama, Mitsuru [Bio-information Research Center, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan); Arashidani, Keiichi [School of Health Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan); Yoshida, Yasuhiro, E-mail: freude@med.uoeh-u.ac.jp [Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555 (Japan)

    2011-10-30

    Highlights: {yields} Fullerene administration triggered splenic responses. {yields} Splenic responses occurred at different time-points than in the lung tissue. {yields} CD11b{sup +} cells were demonstrated to function as responder cells to fullerene. - Abstract: Fullerene nanoparticles ('Fullerenes'), which are now widely used materials in daily life, have been demonstrated to induce elevated pulmonary inflammation in several animal models; however, the effects of fullerenes on the immune system are not fully understood. In the present study, mice received fullerenes intratracheally and were sacrificed at days 1, 6 and 42. Mice that received fullerenes exhibited increased proliferation of splenocytes and increased splenic production of IL-2 and TNF-{alpha}. Changes in the spleen in response to fullerene treatment occurred at different time-points than in the lung tissue. Furthermore, fullerenes induced CDK2 expression and activated NF-{kappa}B and NFAT in splenocytes at 6 days post-administration. Finally, CD11b{sup +} cells were demonstrated to function as responder cells to fullerene administration in the splenic inflammatory process. Taken together, in addition to the effects on pulmonary responses, fullerenes also modulate the immune system.

  5. Fullerene genesis by ion beams

    International Nuclear Information System (INIS)

    Gamaly, E.G.; Chadderton, L.T.; Commonwealth Scientific and Industrial Research Organization, Lindfield, NSW

    1995-01-01

    Clearly detectable quantities of molecular fullerene (C 60 ), the most recently discovered allotrope of carbon, have been observed in graphite following irradiation with heavy projectile ions at energies of about 1 GeV using high pressure chromatography. Similar experiments using lower ion energies gave no corresponding signal, indicating an absence of fullerene. This clear difference suggests that there exists an energy threshold for fullerene genesis. Beginning with a microscopic description of deposition and transfer of energy from the ion to the target, a theoretical model is developed for interpretation of these and similar experiments. An important consequence is a description of the formation of large carbon clusters in the hot dense 'primeval soup' of single carbon atoms by means of random 'sticky' collisions. The ion energy threshold is seen as arising, physically, from a balance in the competition between the rate of primary energy deposition and the rate of system cooling. Rate equations for the basic clustering process allow calculations of the time-dependent number densities for the different carbon clusters produced. An important consequence of the theory is that it is established that the region for the specific phase transition from graphite to fullerene lies in the same pressure regime on the phase diagram as does the corresponding transition for graphite to diamond. (author)

  6. Identification of fullerenes in iron-carbon alloys structure.

    Directory of Open Access Journals (Sweden)

    KUZEEV Iskander Rustemovich

    2017-11-01

    Full Text Available Steels of various purposes are used in the construction industry, for example, as the reinforcement material in reinforced concrete structures. In the oil and gas industry, steel structures are used for storage and transportation of explosive toxic media. In this case the catastrophic damages might take place, that points at insufficiently deep knowledge about the processes running in structural materials when load is applied. Recent studies show that many properties of steel are set at the nanoscale level during crystallization from the molten metal and thermal treatment. To detect and identify fullerenes С60 and С70, which are independent nanoscale objects in steel structure, by various methods requires studying of how these objects influence on formation of steel properties. Iron atoms can serve as a catalyst and, interacting with large aromatic structures or fragments of the graphite planes, they form voluminous fullerene-type structures. The inverse phenomenon, i.e. influence of the formed nanoscale objects on structuring of the iron atoms, is also possible, as fullerene size is comparable with the size of the stable nucleus of the iron crystalline phase. The article discusses the issue of mechanisms of fullerenes formation in steels and cast irons. The most complicated issue in the study is the fullerenes identification by spectral methods as the quantity of released molecules is small. In order to increase the sensitivity of the fullerenes IR-spectrometry method, potassium bromide has been proposed to use. Dried and reduced sediment obtained as a result of dissolving iron matrix in steels is mixed with potassium bromide, the mixture becomes bright-orange. This fact points to presence of bromic fullerenes and to presence of fullerenes in the studied specimens. It is shown that the offered specimen preparation algorithm significantly increases sensitivity of the method.

  7. Synthesis of MoS 2 Inorganic Fullerene-like Nanoparticles by a ...

    African Journals Online (AJOL)

    MoS2 nanoparticles with fullerene-like structure (IF-MoS2) were successfully obtained at heating temperature higher than 840 °C by a chemical vapour deposition method usingMoO3 and sulfur powders as raw materials. The synthesized samples were characterized by XRD, SEM, TEM, EDX and Raman spectrometry, ...

  8. A quantitative method for photovoltaic encapsulation system optimization

    Science.gov (United States)

    Garcia, A., III; Minning, C. P.; Cuddihy, E. F.

    1981-01-01

    It is pointed out that the design of encapsulation systems for flat plate photovoltaic modules requires the fulfillment of conflicting design requirements. An investigation was conducted with the objective to find an approach which will make it possible to determine a system with optimum characteristics. The results of the thermal, optical, structural, and electrical isolation analyses performed in the investigation indicate the major factors in the design of terrestrial photovoltaic modules. For defect-free materials, minimum encapsulation thicknesses are determined primarily by structural considerations. Cell temperature is not strongly affected by encapsulant thickness or thermal conductivity. The emissivity of module surfaces exerts a significant influence on cell temperature. Encapsulants should be elastomeric, and ribs are required on substrate modules. Aluminum is unsuitable as a substrate material. Antireflection coating is required on cell surfaces.

  9. Is the Use of Fullerene in Photodynamic Therapy Effective for Atherosclerosis?

    International Nuclear Information System (INIS)

    Nitta, Norihisa; Seko, Ayumi; Sonoda, Akinaga; Ohta, Shinichi; Tanaka, Toyohiko; Takahashi, Masashi; Murata, Kiyoshi; Takemura, Shizuki; Sakamoto, Tsutomu; Tabata, Yasuhiko

    2008-01-01

    The purpose of this study was to evaluate Fullerene as a therapeutic photosensitizer in the treatment of atherosclerosis. An atherosclerotic experimental rabbit model was prepared by causing intimal injury to bilateral external iliac arteries using balloon expansion. In four atherosclerotic rabbits and one normal rabbit, polyethylene glycol-modified Fullerene (Fullerene-PEG) was infused into the left external iliac artery and illuminated by light emitting diode (LED), while the right external iliac artery was only illuminated by LED. Two weeks later, the histological findings for each iliac artery were evaluated quantitatively and comparisons were made among atherosclerotic Fullerene+LED artery (n = 4), atherosclerotic light artery (n = 4), normal Fullerene+LED artery (n = 1), and normal light artery (n = 1). An additional two atherosclerotic rabbits were studied by fluorescence microscopy, after Fullerene-PEG-Cy5 complex infusion into the left external iliac artery, for evaluation of Fullerene-PEG incorporated within the atherosclerotic lesions. The degree of atherosclerosis in the atherosclerotic Fullerene+LED artery was significantly (p < 0.05) more severe than that in the atherosclerotic LED artery. No pathological change was observed in normal Fullerene+LED and LED arteries. In addition, strong accumulation of Fullerene-PEG-Cy5 complex within the plaque of the left iliac artery of the two rabbits was demonstrated, in contrast to no accumulation in the right iliac artery. We conclude that infusion of a high concentration of Fullerene-PEG followed by photo-illumination resulted not in a suppression of atherosclerosis but in a progression of atherosclerosis in experimental rabbit models. However, this intervention showed no adverse effects on the normal iliac artery

  10. Redox potentials and binding enhancement of fullerene and fullerene-cyclodextrin systems in water and dimethylsulfoxide

    Czech Academy of Sciences Publication Activity Database

    Pospíšil, Lubomír; Hromadová, Magdaléna; Gál, Miroslav; Kocábová, Jana; Sokolová, Romana; Filippone, S.; Yang, J.; Guan, Z.; Rassat, A.; Zhang, Y.

    2010-01-01

    Roč. 48, č. 1 (2010), s. 153-162 ISSN 0008-6223 R&D Projects: GA ČR GA203/09/0705; GA ČR GA203/08/1157; GA ČR GP203/09/P502; GA MŠk LC510; GA MŠk ME09114; GA MŠk OC 140 Institutional research plan: CEZ:AV0Z40400503 Keywords : electrochemistry * fullerene s * fullerene -cyclodextrin systems Subject RIV: CG - Electrochemistry Impact factor: 4.893, year: 2010

  11. Method for Aluminum Oxide Thin Films Prepared through Low Temperature Atomic Layer Deposition for Encapsulating Organic Electroluminescent Devices

    Directory of Open Access Journals (Sweden)

    Hui-Ying Li

    2015-02-01

    Full Text Available Preparation of dense alumina (Al2O3 thin film through atomic layer deposition (ALD provides a pathway to achieve the encapsulation of organic light emitting devices (OLED. Unlike traditional ALD which is usually executed at higher reaction n temperatures that may affect the performance of OLED, this application discusses the development on preparation of ALD thin film at a low temperature. One concern of ALD is the suppressing effect of ambient temperature on uniformity of thin film. To mitigate this issue, the pumping time in each reaction cycle was increased during the preparation process, which removed reaction byproducts and inhibited the formation of vacancies. As a result, the obtained thin film had both high uniformity and density properties, which provided an excellent encapsulation performance. The results from microstructure morphology analysis, water vapor transmission rate, and lifetime test showed that the difference in uniformity between thin films prepared at low temperatures, with increased pumping time, and high temperatures was small and there was no obvious influence of increased pumping time on light emitting performance. Meanwhile, the permeability for water vapor of the thin film prepared at a low temperature was found to reach as low as 1.5 × 10−4 g/(m2·day under ambient conditions of 25 °C and 60% relative humidity, indicating a potential extension in the lifetime for the OLED.

  12. Preparation and characterization of stable aqueous higher-order fullerenes

    International Nuclear Information System (INIS)

    Aich, Nirupam; Flora, Joseph R V; Saleh, Navid B

    2012-01-01

    Stable aqueous suspensions of nC 60 and individual higher fullerenes, i.e. C 70 , C 76 and C 84 , are prepared by a calorimetric modification of a commonly used liquid–liquid extraction technique. The energy requirement for synthesis of higher fullerenes has been guided by molecular-scale interaction energy calculations. Solubilized fullerenes show crystalline behavior by exhibiting lattice fringes in high resolution transmission electron microscopy images. The fullerene colloidal suspensions thus prepared are stable with a narrow distribution of cluster radii (42.7 ± 0.8 nm, 46.0 ± 14.0 nm, 60 ± 3.2 nm and 56.3 ± 1.1 nm for nC 60 , nC 70 , nC 76 and nC 84 , respectively) as measured by time-resolved dynamic light scattering. The ζ-potential values for all fullerene samples showed negative surface potentials with similar magnitude ( − 38.6 ± 5.8 mV, − 39.1 ± 4.2 mV, − 38.9 ± 5.8 mV and − 41.7 ± 5.1 mV for nC 60 , nC 70 , nC 76 and nC 84 , respectively), which provide electrostatic stability to the colloidal clusters. This energy-based modified solubilization technique to produce stable aqueous fullerenes will likely aid in future studies focusing on better applicability, determination of colloidal properties, and understanding of environmental fate, transport and toxicity of higher-order fullerenes. (paper)

  13. Temperature and Copper Concentration Effects on the Formation of Graphene-Encapsulated Copper Nanoparticles from Kraft Lignin

    Directory of Open Access Journals (Sweden)

    Weiqi Leng

    2017-06-01

    Full Text Available The effects of temperature and copper catalyst concentration on the formation of graphene-encapsulated copper nanoparticles (GECNs were investigated by means of X-ray diffraction, Fourier transform infrared spectroscopy-attenuated total reflectance, and transmission electron microscopy. Results showed that higher amounts of copper atoms facilitated the growth of more graphene islands and formed smaller size GECNs. A copper catalyst facilitated the decomposition of lignin at the lowest temperature studied (600 °C. Increasing the temperature up to 1000 °C retarded the degradation process, while assisting the reconfiguration of the defective sites of the graphene layers, thus producing higher-quality GECNs.

  14. Continuum simulations of water flow past fullerene molecules

    DEFF Research Database (Denmark)

    Popadic, A.; Praprotnik, M.; Koumoutsakos, P.

    2015-01-01

    We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest...... as computed by the present model are in good agreement with results from atomistic and atomistic-continuum simulations at a fraction of the cost. We simulate the flow past a single fullerene and an array of fullerenes and demonstrate that such nanoscale flows can be computed efficiently by continuum flow...

  15. Th(IV) Adsorption onto Oxidized Multi-Walled Carbon Nanotubes in the Presence of Hydroxylated Fullerene and Carboxylated Fullerene.

    Science.gov (United States)

    Wang, Jing; Liu, Peng; Li, Zhan; Qi, Wei; Lu, Yan; Wu, Wangsuo

    2013-09-17

    The adsorption of Th(IV) onto the surface of oxidized multi-walled carbon nanotubes (oMWCNTs) in the absence and presence of hydroxylated fullerene (C 60 (OH) n ) and carboxylated fullerene (C 60 (C(COOH)₂) n ) has been investigated. C 60 (OH) n , C 60 (C(COOH)₂) n and oMWCNTs have been chosen as model phases because of their representative in carbon nano-materials family. Adsorption experiments were performed by batch procedure as a function of contact time, pH, ionic strength, and temperature. The results demonstrated that the adsorption of Th(IV) was rapidly reached equilibrium and the kinetic process could be described by a pseudo-second-order rate model very well. Th(IV) adsorption on oMWCNTs was dependent on pH but independent on ionic strength. Adsorption isotherms were correlated better with the Langmuir model than with the Freundlich model. The thermodynamic parameters calculated from temperature-dependent adsorption isotherms suggested that Th(IV) adsorption on oMWCNTs was spontaneous and endothermic. Compared with the adsorption of Th(IV) on the same oMWCNTs free of C 60 (OH) n or C 60 (C(COOH)₂) n , the study of a ternary system showed the inhibition effect of C 60 (OH) n at high concentration on the adsorption of Th(IV) in a pH range from neutral to slightly alkaline; whereas the promotion effect of C 60 (C(COOH)₂) n , even at its low concentration, on Th(IV) adsorption was observed in acid medium.

  16. Th(IV Adsorption onto Oxidized Multi-Walled Carbon Nanotubes in the Presence of Hydroxylated Fullerene and Carboxylated Fullerene

    Directory of Open Access Journals (Sweden)

    Wangsuo Wu

    2013-09-01

    Full Text Available The adsorption of Th(IV onto the surface of oxidized multi-walled carbon nanotubes (oMWCNTs in the absence and presence of hydroxylated fullerene (C60(OHn and carboxylated fullerene (C60(C(COOH2n has been investigated. C60(OHn, C60(C(COOH2n and oMWCNTs have been chosen as model phases because of their representative in carbon nano-materials family. Adsorption experiments were performed by batch procedure as a function of contact time, pH, ionic strength, and temperature. The results demonstrated that the adsorption of Th(IV was rapidly reached equilibrium and the kinetic process could be described by a pseudo-second-order rate model very well. Th(IV adsorption on oMWCNTs was dependent on pH but independent on ionic strength. Adsorption isotherms were correlated better with the Langmuir model than with the Freundlich model. The thermodynamic parameters calculated from temperature-dependent adsorption isotherms suggested that Th(IV adsorption on oMWCNTs was spontaneous and endothermic. Compared with the adsorption of Th(IV on the same oMWCNTs free of C60(OHn or C60(C(COOH2n, the study of a ternary system showed the inhibition effect of C60(OHn at high concentration on the adsorption of Th(IV in a pH range from neutral to slightly alkaline; whereas the promotion effect of C60(C(COOH2n, even at its low concentration, on Th(IV adsorption was observed in acid medium.

  17. Oscillation of nested fullerenes (carbon onions) in carbon nanotubes

    International Nuclear Information System (INIS)

    Thamwattana, Ngamta; Hill, James M.

    2008-01-01

    Nested spherical fullerenes, which are sometimes referred to as carbon onions, of I h symmetries which have N(n) carbon atoms in the nth shell given by N(n) = 60n 2 are studied in this paper. The continuum approximation together with the Lennard-Jones potential is utilized to determine the resultant potential energy. High frequency nanoscale oscillators or gigahertz oscillators created from fullerenes and both single- and multi-walled carbon nanotubes have attracted much attention for a number of proposed applications, such as ultra-fast optical filters and ultra-sensitive nano-antennae that might impact on the development of computing and signalling nano-devices. Further, it is only at the nanoscale where such gigahertz frequencies can be achieved. This paper focuses on the interaction of nested fullerenes and the mechanics of such molecules oscillating in carbon nanotubes. Here we investigate such issues as the acceptance condition for nested fullerenes into carbon nanotubes, the total force and energy of the nested fullerenes, and the velocity and gigahertz frequency of the oscillating molecule. In particular, optimum nanotube radii are determined for which nested fullerenes oscillate at maximum velocity and frequency, which will be of considerable benefit for the design of future nano-oscillating devices

  18. Broadband electroluminescence in fullerene crystals

    International Nuclear Information System (INIS)

    Werner, A.T.; Anders, J.; Byrne, H.J.; Maser, W.K.; Kaiser, M.; Mittelbach, A.; Roth, S.

    1993-01-01

    The observation of electroluminescence from crystalline fullerenes is described. A broad band emission spectrum, extending from 400nm to 1100nm is observed. The spectrum has a primary maximum at 920nm and a weaker feature centered on 420nm. The spectral characteristics are independent of the applied field and the longer wavelength region is identical to that measured in the high excitation density photoluminescence spectrum. In addition, the electroluminescence intensity increases with the cube of the injection current, strengthening the association to the nonlinear phenomena observed in the highly excited state of fullerenes. (orig.)

  19. Efficient Regular Perovskite Solar Cells Based on Pristine [70]Fullerene as Electron-Selective Contact.

    Science.gov (United States)

    Collavini, Silvia; Kosta, Ivet; Völker, Sebastian F; Cabanero, German; Grande, Hans J; Tena-Zaera, Ramón; Delgado, Juan Luis

    2016-06-08

    [70]Fullerene is presented as an efficient alternative electron-selective contact (ESC) for regular-architecture perovskite solar cells (PSCs). A smart and simple, well-described solution processing protocol for the preparation of [70]- and [60]fullerene-based solar cells, namely the fullerene saturation approach (FSA), allowed us to obtain similar power conversion efficiencies for both fullerene materials (i.e., 10.4 and 11.4 % for [70]- and [60]fullerene-based devices, respectively). Importantly, despite the low electron mobility and significant visible-light absorption of [70]fullerene, the presented protocol allows the employment of [70]fullerene as an efficient ESC. The [70]fullerene film thickness and its solubility in the perovskite processing solutions are crucial parameters, which can be controlled by the use of this simple solution processing protocol. The damage to the [70]fullerene film through dissolution during the perovskite deposition is avoided through the saturation of the perovskite processing solution with [70]fullerene. Additionally, this fullerene-saturation strategy improves the performance of the perovskite film significantly and enhances the power conversion efficiency of solar cells based on different ESCs (i.e., [60]fullerene, [70]fullerene, and TiO2 ). Therefore, this universal solution processing protocol widens the opportunities for the further development of PSCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Permeability and storage ability of inorganic X12Y12 fullerenes for lithium atom and ion

    Science.gov (United States)

    Munsif, Sajida; Ayub, Khurshid

    2018-04-01

    In the current study, permeability and storage ability (exohedral and endohedral) of inorganic fullerenes X12Y12 (X = B, Al and Y = N, P) for lithium atom/ion (Li/Li+) is studied theoretically at M05-2X method. The translation of Li/Li+ through Al12P12 nano-cages is not only a kinetically feasible process but also has very high separation ratio in the favor of lithium atom over lithium ion. Adsorption/encapsulation energies of alkali metal on/in nano-cages show strong correlation with the size of the nano-cage. The percent changes in H-L gap for Li+-X12Y12 are about 1-25%, whereas the corresponding changes for Li-X12Y12 are 30-72%.

  1. Ability of Fullerene to Accumulate Hydrogen

    Directory of Open Access Journals (Sweden)

    Bubenchikov Mikhail A

    2016-01-01

    Full Text Available In the present paper, using a modification of the LJ-potential and the continuum approach, we define С60-H2 (He potentials, as well as interaction energy of two fullerene particles. The proposed approach allows to calculate interactions between carbon structures of any character (wavy graphenes, nanotubes, etc.. The obtained results allowed to localize global sorption zones both inside the particle and on the outer surface of the fullerene.

  2. Chemical Reaction and Flow Modeling in Fullerene and Nanotube Production

    Science.gov (United States)

    Scott, Carl D.; Farhat, Samir; Greendyke, Robert B.

    2004-01-01

    The development of processes to produce fullerenes and carbon nanotubes has largely been empirical. Fullerenes were first discovered in the soot produced by laser ablation of graphite [1]and then in the soot of electric arc evaporated carbon. Techniques and conditions for producing larger and larger quantities of fullerenes depended mainly on trial and error empirical variations of these processes, with attempts to scale them up by using larger electrodes and targets and higher power. Various concepts of how fullerenes and carbon nanotubes were formed were put forth, but very little was done based on chemical kinetics of the reactions. This was mainly due to the complex mixture of species and complex nature of conditions in the reactors. Temperatures in the reactors varied from several thousand degrees Kelvin down to near room temperature. There are hundreds of species possible, ranging from atomic carbon to large clusters of carbonaceous soot, and metallic catalyst atoms to metal clusters, to complexes of metals and carbon. Most of the chemical kinetics of the reactions and the thermodynamic properties of clusters and complexes have only been approximated. In addition, flow conditions in the reactors are transient or unsteady, and three dimensional, with steep spatial gradients of temperature and species concentrations. All these factors make computational simulations of reactors very complex and challenging. This article addresses the development of the chemical reaction involved in fullerene production and extends this to production of carbon nanotubes by the laser ablation/oven process and by the electric arc evaporation process. In addition, the high-pressure carbon monoxide (HiPco) process is discussed. The article is in several parts. The first one addresses the thermochemical aspects of modeling; and considers the development of chemical rate equations, estimates of reaction rates, and thermodynamic properties where they are available. The second part

  3. Fullerene surfactants and their use in polymer solar cells

    Science.gov (United States)

    Jen, Kwan-Yue; Yip, Hin-Lap; Li, Chang-Zhi

    2015-12-15

    Fullerene surfactant compounds useful as interfacial layer in polymer solar cells to enhance solar cell efficiency. Polymer solar cell including a fullerene surfactant-containing interfacial layer intermediate cathode and active layer.

  4. Electrospray deposition of fullerenes in ultra-high vacuum: in situ scanning tunneling microscopy and photoemission spectroscopy

    International Nuclear Information System (INIS)

    Satterley, Christopher J; Perdigao, LuIs M A; Saywell, Alex; Magnano, Graziano; Rienzo, Anna; Mayor, Louise C; Dhanak, Vinod R; Beton, Peter H; O'Shea, James N

    2007-01-01

    Electrospray deposition of fullerenes on gold has been successfully observed by in situ room temperature scanning tunneling microscopy and photoemission spectroscopy. Step-edge decoration and hexagonal close-packed islands with a periodicity of 1 nm are observed at low and multilayer coverages respectively, in agreement with thermal evaporation studies. Photoemission spectroscopy shows that fullerenes are being deposited in high purity and are coupling to the gold surface as for thermal evaporation. These results open a new route for the deposition of thermally labile molecules under ultra-high vacuum conditions for a range of high resolution surface science techniques

  5. Conjugation-promoted reaction of open-cage fullerene: A density functional theory study

    KAUST Repository

    Guo, Yong

    2012-01-20

    Density functional theory calculations are performed to study the addition mechanism of e-rich moieties such as triethyl phosphite to a carbonyl group on the rim of a fullerene orifice. Three possible reaction channels have been investigated. The obtained results show that the reaction of a carbonyl group on a fullerene orifice with triethyl phosphite most likely proceeds along the classical Abramov reaction; however, the classical product is not stable and is converted into the experimental product. An attack on a fullerene carbonyl carbon will trigger a rearrangement of the phosphate group to the carbonyl oxygen as the conversion transition state is stabilized by fullerene conjugation. This work provides a new insight on the reactivity of open-cage fullerenes, which may prove helpful in designing new switchable fullerene systems. Not that classical: The reaction of a carbonyl group on the fullerene orifice with triethyl phosphite most likely proceeds following the Abramov reaction to firstly form a classical product. However, this product is not stable and turns into an experimental product as the conversion transition state is stabilized by fullerene conjugation (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Fullerene-rare gas mixed plasmas in an electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Asaji, T., E-mail: asaji@oshima-k.ac.jp; Ohba, T. [Oshima National College of Maritime Technology, 1091-1 Komatsu, Suo-oshima, Oshima, Yamaguchi 742-2193 (Japan); Uchida, T.; Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan); Minezaki, H.; Ishihara, S. [Graduate School of Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan); Racz, R.; Biri, S. [Institute of Nuclear Research (ATOMKI), H-4026 Debrecen, Bem Tér 18/c (Hungary); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2014-02-15

    A synthesis technology of endohedral fullerenes such as Fe@C{sub 60} has developed with an electron cyclotron resonance (ECR) ion source. The production of N@C{sub 60} was reported. However, the yield was quite low, since most fullerene molecules were broken in the ECR plasma. We have adopted gas-mixing techniques in order to cool the plasma and then reduce fullerene dissociation. Mass spectra of ion beams extracted from fullerene-He, Ar or Xe mixed plasmas were observed with a Faraday cup. From the results, the He gas mixing technique is effective against fullerene destruction.

  7. The translocation of fullerenic nanoparticles into lysosome via the pathway of clathrin-mediated endocytosis

    International Nuclear Information System (INIS)

    Li Wei; Chen Chunying; Ye Chang; Zhao Yuliang; Chen Zhen; Meng Huan; Gao Yuxi; Yuan Hui; Xing Genmei; Zhao Feng; Chai Zhifang; Wei Taotao; Zhang Xujia; Yang Fuyu; Lao Fang; Han Dong; Tang Xianhua; Zhang Yingge

    2008-01-01

    Manufactured fullerene nanoparticles easily enter into cells and hence have been rapidly developed for biomedical uses. However, it is generally unknown which route the nanoparticles undergo when crossing cell membranes and where they localize to the intracellular compartments. Herein we have used both microscopic imaging and biological techniques to explore the processes of [C 60 (C(COOH) 2 ) 2 ] n nanoparticles across cellular membranes and their intracellular translocation in 3T3 L1 and RH-35 living cells. The fullerene nanoparticles are quickly internalized by the cells and then routed to the cytoplasm with punctate localization. Upon entering the cell, they are synchronized to lysosome-like vesicles. The [C 60 (C(COOH) 2 ) 2 ] n nanoparticles entering cells are mainly via endocytosis with time-, temperature- and energy-dependent manners. The cellular uptake of [C 60 (C(COOH) 2 ) 2 ] n nanoparticles was found to be clathrin-mediated but not caveolae-mediated endocytosis. The endocytosis mechanism and the subcellular target location provide key information for the better understanding and predicting of the biomedical function of fullerene nanoparticles inside cells

  8. Search for fullerenes in stone meteorites

    Science.gov (United States)

    Oester, M. Y.; Kuechl, D.; Sipiera, P. P.; Welch, C. J.

    1994-07-01

    The possibility of identifying fullerenes in stony meteorites became apparent from a paper given by Radicati de Brozolo. In this paper it was reported that fullerenes were present in the debris resulting from a collision between a micrometeoroid and an orbiting satellite. This fact generated sufficient curiosity to initiate a search for the presence of fullerenes in various stone meteorites. In the present study seven ordinary chondrites (al-Ghanim L6 (find), Dimmitt H4 (find), Lazbuddie LL5 (find), New Concord H5 (fall), Silverton H4 (find), Springlake L6 (find), and Umbarger L3/6 (find)). Four carbonaceous chondrites (ALH 83100 C2 (find), ALH 83108 C30 (find), Allende CV3 (fall), and Murchison CM2 (fall), and one achondrite (Monticello How (find)) were analyzed for the presence of fullerenes. The analytical procedure employed was as follows: 100 mg of meteorite was ground up with a mortar and pestle; 10 mL of toluene was then added and the mixture was refluxed for 90 min; this mixture was then filtered through a short column of silica; a 50 microliter sample was then analyzed by high pressure liquid chromatography (HPLC) using a Buckyclutcher I column with a mobile phase consisting of equal volumes of toluene and hexane at a flow rate of 1.00 mg per minute, with detection at 330 and 600 nm. Three of the meteorites, Allende, Murchison, and al-Ghanim, gave HPLC traces containing peaks with similar retention times to the HPLC trace of an authentic fullerene C60. However, further analysis using an HPLC instrument equipped with a diode-array detector failed to confirm any of the substances detected in the three meteorites as C60. Additional analyses will be conducted to identify what the HPLC traces actually represent.

  9. Fascinating serendipity some adventures in fullerene chemistry

    International Nuclear Information System (INIS)

    Braun, T.; Rauch, H.

    2001-01-01

    The lecture is divided to four chapters. Chapter one gives a short overview on the notion of serendipity and the serendipitous discovery of the fullerenes, the third allotropic form of carbon and will try to highlight why this discovery can be considered a revolution in chemistry. The second and third chapters present some results of the author's research group. Neutron irradiation of C 60 in a nuclear reactor has also made possible the serendipitous discovery of a new procedure for synthesis of endohedral C 60 compounds exemplified by the synthesis of many endohedral radio-fullerenes of * X at C 60 type. The fourth chapter of the lecture deals with 'Capture-captive chemistry' as a new typology for molecular containers including fullerenes. (author)

  10. Electronic structure of C and Si fullerenes and fullerides

    International Nuclear Information System (INIS)

    Saito, S.

    1996-01-01

    Fullerenes, i.e., cage-structure clusters are now studied intensively as a building unit for a new class of materials. The electronic structure of C 60 and Si 20 fullerenes and their fullerides obtained in the framework of the density-functional theory is discussed with emphasis on the electronic as well as the geometrical hierarchy in superconducting fullerides. In both C 60 and Si 20 fullerides, the charge transfer from alkali atoms to fullerenes and the hybridization between alkaline-earth states and fullerene states are observed. Also A 3 C 60 and (Ba 3 Si 3 Na rate at Si 20 ) 2 superconductors are found to have high Fermi-level density of states, although the mechanism giving it is different in two materials. Interesting materials to be produced in the future are also discussed. (orig.)

  11. The Influence of Solvent Additive on Polymer Solar Cells Employing Fullerene and Non-Fullerene Acceptors

    KAUST Repository

    Song, Xin

    2017-11-27

    Small-molecule-based non-fullerene acceptors (NFAs) are emerging as a new field in organic photovoltaics, due to their structural versatility, the tunability of their energy levels, and their ease of synthesis. High-efficiency polymer donors have been tested with these non-fullerene acceptors in order to further boost the efficiency of organic solar cells. Most of the polymer:fullerene systems are optimized with solvent additives for high efficiency, while little attention has been paid to NFA-based solar cells so far. In this report, the effect of the most common additive, 1,8-diiodooctane (DIO), on PTB7-Th:PC71BM solar cells is investigated and it is compared with non-fullerene acceptor 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno-[1,2-b:5,6b′]di-thiophene (ITIC) devices. It is interesting that the high boiling solvent additive does have a negative impact on the power conversion efficiency when PTB7-Th is blended with ITIC acceptor. The solar cell devices are studied in terms of their optical, photophysical, and morphological properties and find out that PTB7-Th:ITIC devices with DIO results in coarser domains, reduced absorption strength, and slightly lower mobility, while DIO improves the absorption strength of the PTB7-Th:PC71BM blend film and increase the aggregation of PC71BM in the blend, resulting in higher fill factor and Jsc.

  12. The Influence of Solvent Additive on Polymer Solar Cells Employing Fullerene and Non-Fullerene Acceptors

    KAUST Repository

    Song, Xin; Gasparini, Nicola; Baran, Derya

    2017-01-01

    Small-molecule-based non-fullerene acceptors (NFAs) are emerging as a new field in organic photovoltaics, due to their structural versatility, the tunability of their energy levels, and their ease of synthesis. High-efficiency polymer donors have been tested with these non-fullerene acceptors in order to further boost the efficiency of organic solar cells. Most of the polymer:fullerene systems are optimized with solvent additives for high efficiency, while little attention has been paid to NFA-based solar cells so far. In this report, the effect of the most common additive, 1,8-diiodooctane (DIO), on PTB7-Th:PC71BM solar cells is investigated and it is compared with non-fullerene acceptor 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno-[1,2-b:5,6b′]di-thiophene (ITIC) devices. It is interesting that the high boiling solvent additive does have a negative impact on the power conversion efficiency when PTB7-Th is blended with ITIC acceptor. The solar cell devices are studied in terms of their optical, photophysical, and morphological properties and find out that PTB7-Th:ITIC devices with DIO results in coarser domains, reduced absorption strength, and slightly lower mobility, while DIO improves the absorption strength of the PTB7-Th:PC71BM blend film and increase the aggregation of PC71BM in the blend, resulting in higher fill factor and Jsc.

  13. In-Silico Study Of Water Soluble C60-Fullerene Derivatives And Different Drug Targets

    Directory of Open Access Journals (Sweden)

    Mohammad Teimouri

    2015-08-01

    Full Text Available Fullerene C60 is a unique carbon molecule that adopts a sphere shape. It has been proved that fullerene and some of its derivatives several disease targets. Fullerene itself is insoluble in water. So fullerene application is hindered in medical field. In this study a literature search was performed and all derivatives were collected. The fullerene binding protein previously reported in literature were also retrieved from protein databank. The docking study were performed with fullerene derivatives and its binding proteins. The selected proteins include Voltage-Gated Potassium Channel estrogenic 17beta-hydroxysteroid dehydrogenase and monoclonal anti-progesterone antibody. The binding affinity and binding free energy were computed for these proteins and fullerene derivatives complexes. The binding affinity and binding free energy calculation of the co-crystal ligands were also carried out. The results show the good fitting of fullerene derivatives in the active site of different proteins. The binding affinities and binding free energies of fullerene derivatives are better. The present study gives a detail information about the binding mode of C60 derivatives. The finding will be helpful in fullerene-based drug discovery and facilitate the efforts of fighting many diseases.

  14. Topological edge properties of C60+12n fullerenes

    Directory of Open Access Journals (Sweden)

    A. Mottaghi

    2013-06-01

    Full Text Available A molecular graph M is a simple graph in which atoms and chemical bonds are the vertices and edges of M, respectively. The molecular graph M is called a fullerene graph, if M is the molecular graph of a fullerene molecule. It is well-known that such molecules exist for even integers n ≥ 24 or n = 20. The aim of this paper is to investigate the topological properties of a class of fullerene molecules containing 60 + 12n carbon atoms.

  15. The change of the state of an endohedral fullerene by encapsulation into SWCNT: a Raman spectroelectrochemical study of Dy3N@C80 peapods

    Czech Academy of Sciences Publication Activity Database

    Kalbáč, Martin; Kavan, Ladislav; Zukalová, Markéta; Yang, S.; Čech, J.; Roth, S.; Dunsch, L.

    2007-01-01

    Roč. 13, - (2007), s. 8811-8817 ISSN 0947-6539 R&D Projects: GA AV ČR KJB400400601; GA MŠk LC510 Institutional research plan: CEZ:AV0Z40400503 Keywords : dysprosium * electrochemistry * fullerenes * nanotubes Subject RIV: CG - Electrochemistry Impact factor: 5.330, year: 2007

  16. Conjugation-promoted reaction of open-cage fullerene: a density functional theory study.

    Science.gov (United States)

    Guo, Yong; Yan, Jingjing; Khashab, Niveen M

    2012-02-01

    Density functional theory calculations are performed to study the addition mechanism of e-rich moieties such as triethyl phosphite to a carbonyl group on the rim of a fullerene orifice. Three possible reaction channels have been investigated. The obtained results show that the reaction of a carbonyl group on a fullerene orifice with triethyl phosphite most likely proceeds along the classical Abramov reaction; however, the classical product is not stable and is converted into the experimental product. An attack on a fullerene carbonyl carbon will trigger a rearrangement of the phosphate group to the carbonyl oxygen as the conversion transition state is stabilized by fullerene conjugation. This work provides a new insight on the reactivity of open-cage fullerenes, which may prove helpful in designing new switchable fullerene systems. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The interactions of high-energy, highly-charged ions with fullerenes

    International Nuclear Information System (INIS)

    Ali, R.; Berry, H.G.; Cheng, S.

    1996-01-01

    In 1985, Robert Curl and Richard Smalley discovered a new form of carbon, the fullerene, C 60 , which consists of 60 carbon atoms in a closed cage resembling a soccer ball. In 1990, Kritschmer et al. were able to make macroscopic quantities of fullerenes. This has generated intense activity to study the properties of fullerenes. One area of research involves collisions between fullerenes and atoms, ions or electrons. In this paper we describe experiments involving interactions between fullerenes and highly charged ions in which the center-of-mass energies exceed those used in other work by several orders of magnitude. The high values of projectile velocity and charge state result in excitation and decay processes differing significantly from those seen in studies 3 at lower energies. Our results are discussed in terms of theoretical models analogous to those used in nuclear physics and this provides an interesting demonstration of the unity of physics

  18. Automatic production of fullerenes by a JxB arc jet discharge

    International Nuclear Information System (INIS)

    Mieno, Tetsu

    1995-01-01

    Effective production of many kinds of fullerenes including higher fullerenes and endohedral metallo-fullerenes are necessary to advance fullerene science and technology. Currently, the DC arc discharge method is the most effective method to produce fullerenes. However, carbon atoms evaporated from the anode tend to deposit on the cathode, which grow towards the anode, and obstruct the control of the arc discharge. Furthermore, deposited carbon should be removed to maintain continuous fullerene production. Here, to reduce the deposition of carbon on the cathode, a new discharge method is introduced and the experiment performed. When steady magnetic field is applied perpendicular to the DC current of the arc, ions and electrons are accelerated by JxB force as a plasma jet in the vertical direction. This plasma flow also accelerates helium convection due to the viscosity effect. Therefore, the carbon atoms and carbon neutrals are both blown up by the arc jet before arriving at the cathode. The arc flame in the experiment is actually observed to extend upwards, which dearly indicates the effect of the JxB force

  19. A new fullerene network phase obtained from C.sub.70./sub. at high-pressure and high-temperature

    Czech Academy of Sciences Publication Activity Database

    Marques, L.; Skorokhod, Yuriy; Soares, R.

    2015-01-01

    Roč. 9, č. 9 (2015), s. 535-538 ISSN 1862-6254 Institutional support: RVO:68378271 Keywords : fullerene s * high-pressure synthesis * X-ray diffraction * density functional calculations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.578, year: 2015

  20. Electronic structure of single- and multiple-shell carbon fullerenes

    International Nuclear Information System (INIS)

    Lin, Y.; Nori, F.

    1994-01-01

    We study the electronic states of giant single-shell and the recently discovered nested multiple-shell carbon fullerenes within the tight-binding approximation. We use two different approaches, one based on iterations and the other on symmetry, to obtain the π-state energy spectra of large fullerene cages: C 240 , C 540 , C 960 , C 1500 , C 2160 , and C 2940 . Our iteration technique reduces the size of the problem by more than one order of magnitude (factors of ∼12 and 20), while the symmetry-based approach reduces it by a factor of 10. We also find formulas for the highest occupied and lowest unoccupied molecular orbital energies of C 60n 2 fullerenes as a function of n, demonstrating a tendency towards a metallic regime for increasing n. For multiple-shell fullerenes, we analytically obtain the eigenvalues of the intershell interaction

  1. Metal nitride cluster as a template to tune the electronic and magnetic properties of rare-earth metal containing endohedral fullerenes

    International Nuclear Information System (INIS)

    Zhang, Yang

    2013-01-01

    good linear fitting (R 2 = 0.99) was obtained by considering the encapsulating LnSc 2 N cluster (Ln= Ce, Pr, Nd, Tb, Dy, Ho, Lu) inside C 80 :I h cage which indicated the fantastic nature of magnetic anisotropy of lanthanide metals. The Ce x Y 3-x N rate at C 2n (x= 1,2; 2n= 80-88) MMNCFs were synthesized by ''selective organic solid'' route. The isolated samples were characterized by LDI-TOF mass spectrometry, UVvis- NIR, NMR spectroscopy and electrochemistry. The electrochemical oxidation behaviors of CeM 2 N rate at C 80 (M= Sc, Lu and Y) were interpreted as the strain-driven endohedral redox couple Ce IV /Ce III in CeM 2 N rate at C 80 which supported by 13 C and/or 45 Sc NMR study of [CeM 2 N rate at C 80 ] + and DFT calculations. As far as we know, this work is the first discovery of (a) the (para)magnetic properties of rare-earth metal containing endohedral fullerenes can be tuned by the second diamagnetic metal with different metal ionic radius and (b) electrochemical properties of Ce-based endohedral fullerenes can be tuned by the strain-driven between the encaged cluster and carbon cage.

  2. Importance of the Donor:Fullerene intermolecular arrangement for high-efficiency organic photovoltaics

    KAUST Repository

    Graham, Kenneth; Cabanetos, Clement; Jahnke, Justin P.; Idso, Matthew N.; El Labban, Abdulrahman; Ngongang Ndjawa, Guy Olivier; Heumueller, Thomas; Vandewal, Koen; Salleo, Alberto; Chmelka, Bradley F.; Amassian, Aram; Beaujuge, Pierre; McGehee, Michael D.

    2014-01-01

    The performance of organic photovoltaic (OPV) material systems are hypothesized to depend strongly on the intermolecular arrangements at the donor:fullerene interfaces. A review of some of the most efficient polymers utilized in polymer:fullerene PV devices, combined with an analysis of reported polymer donor materials wherein the same conjugated backbone was used with varying alkyl substituents, supports this hypothesis. Specifically, the literature shows that higher-performing donor-acceptor type polymers generally have acceptor moieties that are sterically accessible for interactions with the fullerene derivative, whereas the corresponding donor moieties tend to have branched alkyl substituents that sterically hinder interactions with the fullerene. To further explore the idea that the most beneficial polymer:fullerene arrangement involves the fullerene docking with the acceptor moiety, a family of benzo[1,2-b:4,5-b]dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers (PBDTTPD derivatives) was synthesized and tested in a variety of PV device types with vastly different aggregation states of the polymer. In agreement with our hypothesis, the PBDTTPD derivative with a more sterically accessible acceptor moiety and a more sterically hindered donor moiety shows the highest performance in bulk-heterojunction, bilayer, and low-polymer concentration PV devices where fullerene derivatives serve as the electron-accepting materials. Furthermore, external quantum efficiency measurements of the charge-transfer state and solid-state two-dimensional (2D) 13C{1H} heteronuclear correlation (HETCOR) NMR analyses support that a specific polymer:fullerene arrangement is present for the highest performing PBDTTPD derivative, in which the fullerene is in closer proximity to the acceptor moiety of the polymer. This work demonstrates that the polymer:fullerene arrangement and resulting intermolecular interactions may be key factors in determining the performance of OPV material systems

  3. Importance of the Donor:Fullerene intermolecular arrangement for high-efficiency organic photovoltaics

    KAUST Repository

    Graham, Kenneth

    2014-07-09

    The performance of organic photovoltaic (OPV) material systems are hypothesized to depend strongly on the intermolecular arrangements at the donor:fullerene interfaces. A review of some of the most efficient polymers utilized in polymer:fullerene PV devices, combined with an analysis of reported polymer donor materials wherein the same conjugated backbone was used with varying alkyl substituents, supports this hypothesis. Specifically, the literature shows that higher-performing donor-acceptor type polymers generally have acceptor moieties that are sterically accessible for interactions with the fullerene derivative, whereas the corresponding donor moieties tend to have branched alkyl substituents that sterically hinder interactions with the fullerene. To further explore the idea that the most beneficial polymer:fullerene arrangement involves the fullerene docking with the acceptor moiety, a family of benzo[1,2-b:4,5-b]dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers (PBDTTPD derivatives) was synthesized and tested in a variety of PV device types with vastly different aggregation states of the polymer. In agreement with our hypothesis, the PBDTTPD derivative with a more sterically accessible acceptor moiety and a more sterically hindered donor moiety shows the highest performance in bulk-heterojunction, bilayer, and low-polymer concentration PV devices where fullerene derivatives serve as the electron-accepting materials. Furthermore, external quantum efficiency measurements of the charge-transfer state and solid-state two-dimensional (2D) 13C{1H} heteronuclear correlation (HETCOR) NMR analyses support that a specific polymer:fullerene arrangement is present for the highest performing PBDTTPD derivative, in which the fullerene is in closer proximity to the acceptor moiety of the polymer. This work demonstrates that the polymer:fullerene arrangement and resulting intermolecular interactions may be key factors in determining the performance of OPV material systems

  4. The role of fullerene shell upon stuffed atom polarization potential

    OpenAIRE

    Amusia, M. Ya.; Chernysheva, L. V.

    2015-01-01

    We have demonstrated that the polarization of the fullerene shell considerably alters the polarization potential of an atom, stuffed inside a fullerene. This essentially affects the electron elastic scattering phases as well as corresponding cross-sections. We illustrate the general trend by concrete examples of electron scattering by endohedrals of Neon and Argon. To obtain the presented results, we have suggested a simplified approach that permits to incorporate the effect of fullerenes pol...

  5. Comparative computational study of interaction of C60-fullerene and tris-malonyl-C60-fullerene isomers with lipid bilayer: relation to their antioxidant effect.

    Directory of Open Access Journals (Sweden)

    Marine E Bozdaganyan

    Full Text Available Oxidative stress induced by excessive production of reactive oxygen species (ROS has been implicated in the etiology of many human diseases. It has been reported that fullerenes and some of their derivatives-carboxyfullerenes-exhibits a strong free radical scavenging capacity. The permeation of C60-fullerene and its amphiphilic derivatives-C3-tris-malonic-C60-fullerene (C3 and D3-tris-malonyl-C60-fullerene (D3-through a lipid bilayer mimicking the eukaryotic cell membrane was studied using molecular dynamics (MD simulations. The free energy profiles along the normal to the bilayer composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC for C60, C3 and D3 were calculated. We found that C60 molecules alone or in clusters spontaneously translocate to the hydrophobic core of the membrane and stay inside the bilayer during the whole period of simulation time. The incorporation of cluster of fullerenes inside the bilayer changes properties of the bilayer and leads to its deformation. In simulations of the tris-malonic fullerenes we discovered that both isomers, C3 and D3, adsorb at the surface of the bilayer but only C3 tends to be buried in the area of the lipid headgroups forming hydrophobic contacts with the lipid tails. We hypothesize that such position has implications for ROS scavenging mechanism in the specific cell compartments.

  6. Fullerene C[sub 60

    Energy Technology Data Exchange (ETDEWEB)

    Koruga, D; Hameroff, S; Sundareshan, M [Univ. of Arizona, Tucson, AZ (United States); Withers, J; Loutfy, R [MER Corp., Tucson, AZ (United States)

    1993-01-01

    This book, one of the first to be published in the exciting field of fullerenes, includes a short history of scientific discovery, as well as one possible answer to the question: for what purposes can C[sub 60] be utilized. The book opens with a review of the life of Buckminster Fuller. Modern history of fivefold symmetry and the icosahedron began between 1984 and 1985, when Shechtman and his research team opened a new branch in crystallography (fivefold symmetry) and when the Kroto/Smalley research team discovered the C[sub 60] molecule (truncated icosahedron). Production of solid C[sub 60] by the Huffman/Kraeschner research team in 1990 provided a new stimulus for research by producing C[sub 60] in macroscopic amounts for use by the scientific and technological community. This achievement led to developments such as Koruga's August 1992 creation of the dimer C[sub 116] using scanning tunneling engineering and Loutfy's hydrogenation of C[sub 60] and construction of the first Ni/C[sub 60] rechargeable batteries in December 1992. New inventions based on C[sub 60] will continue to be forthcoming, particularly in the areas of superconductivity, quantum devices, and molecular electronic devices. Discovery of the C[sub 60] molecule (Kroto/Smalley), production of solid C[sub 60] (Huffman/Kraeschmer) and technological inventions such as C[sub 116] (Koruga) have been chance discoveries. A short history of these discoveries is detailed in the book along with the results of the authors' Fullerene research efforts, including atomic resolution images of Fullerene C[sub 60], Ni/C[sub 60] batteries, nanotechnology of C[sub 60], comparison of C[sub 60] with biological systems, and others. As Fullerene C[sub 60] will require control engineering, an overview of control systems, in particular, general and optimal control of the Schroedinger equation, is contained. Some experimental and theoretical work of other researchers are also presented. 140 figs., 4 tabs., 342 refs.

  7. Optical limiting properties of fullerenes and related materials

    Science.gov (United States)

    Riggs, Jason Eric

    Optical limiting properties of fullerene C60 and different C60 derivatives (methano-, pyrrolidino-, and amino-) towards nanosecond laser pulses at 532 nm were studied. The results show that optical limiting responses of the C60 derivatives are similar to those of the parent C60 despite their different linear absorption and emission properties. For C60 and the derivatives in room-temperature solutions of varying concentrations and optical path length, the optical limiting responses are strongly concentration dependent. The concentration dependence is not due to any optical artifacts since the results obtained under the same experimental conditions for reference systems show no such dependence. Similarly, optical limiting results of fullerenes are strongly dependent on the medium viscosity, with responses in viscous media weaker than that in room-temperature solutions. The solution concentration and medium viscosity dependencies are not limited to fullerenes. In fact, the results from a systematic investigation of several classes of nonlinear absorptive organic dyes show that the optical limiting responses are also concentration and medium viscosity dependent. Interestingly, however, such dependencies are uniquely absent in the optical limiting responses of metallophthalocyanines. In classical photophysics, the strong solution concentration and medium viscosity dependencies are indicative of significant contributions from photoexcited-state bimolecular processes. Thus, the experimental results are discussed in terms of a significantly modified five-level reverse saturable absorption mechanism. Optical limiting properties of single-walled and multiple-walled carbon nanotubes toward nanosecond laser pulses at 532 nm were also investigated. When suspended in water, the single-walled and multiple-walled carbon nanotubes exhibit essentially the same optical limiting responses, and the results are also comparable with those of carbon black aqueous suspension. For

  8. Synthesis and structure of the first fullerene complex of titanium Cp{sub 2}Ti({eta}{sup 2}-C{sub 60})

    Energy Technology Data Exchange (ETDEWEB)

    Burlakov, V.V.; Usatov, A.V.; Lyssenko, K.A.; Antipin, M.Yu.; Novikov, Yu.N.; Shur, V.B. [Russian Academy of Sciences, Moscow (Russian Federation). A.N. Nesmeyanov Inst. of Organoelement Compounds

    1999-11-01

    The first fullerene complex of titanium Cp{sub 2}Ti({eta}{sup 2}-C{sub 60}) has been synthesized by reaction of the bis(trimethylsilyl)-acetylene complex of titanocene Cp{sub 2}Ti({eta}{sup 2}-Me{sub 3}SiC{sub 2}SiMe{sub 3}) with an equimolar amount of fullerene-60 in toluene at room temperature under argon. An X-ray diffraction study of the complex has shown that it has the structure of a titanacyclopropane derivative. (orig.)

  9. Electrospun Phospholipid Fibers as Micro-Encapsulation and Antioxidant Matrices

    DEFF Research Database (Denmark)

    Shekarforoush, Elhamalsadat; Mendes, Ana Carina Loureiro; Baj, Vanessa

    2017-01-01

    Electrospun phospholipid (asolectin) microfibers were investigated as antioxidants and encapsulation matrices for curcumin and vanillin. These phospholipid microfibers exhibited antioxidant properties which increased after the encapsulation of both curcumin and vanillin. The total antioxidant...... capacity (TAC) and the total phenolic content (TPC) of curcumin/phospholipid and vanillin/phospholipid microfibers remained stable over time at different temperatures (refrigerated, ambient) and pressures (vacuum, ambient). ¹H-NMR confirmed the chemical stability of both encapsulated curcumin and vanillin...

  10. Electron density as the main parameter influencing the formation of fullerenes in a carbon plasma

    International Nuclear Information System (INIS)

    Churilov, G.N.; Bulina, N.V.; Novikov, P.V.; Lopatin, V.A.; Vnukova, N.G.; Bachilo, S.M.; Tsyboulski, D.; Weisman, R.B.

    2002-01-01

    Thermodynamic estimates are presented for the formation of spheroidal and flat carbon clusters from reactant species of different charges. Charge is shown to strongly influence the geometry and stability of flat clusters. Changes in the charge of flat clusters can promote both their folding to spheroidal structures and their dissociation. It is concluded that the fluctuations of electron concentration in carbon plasma can result in the accumulation of fullerene clusters and the dissociation of flat clusters. Computer simulations of fullerene C 60 formation from carbon clusters having different charges are carried out using the program HyperChem 5 to calculate the optimal geometry of molecules and their molecular dynamics at different temperatures [ru

  11. Two-chamber configuration of Bio-Nano electron cyclotron resonance ion source for fullerene modification

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, T., E-mail: uchida-t@toyo.jp [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585 (Japan); Rácz, R.; Biri, S. [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/C, H-4026 Debrecen (Hungary); Muramatsu, M.; Kitagawa, A. [National Institute of Radiological Sciences (NIRS), Chiba 263-8555 (Japan); Kato, Y. [Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Yoshida, Y. [Bio-Nano Electronics Research Centre, Toyo University, Kawagoe 350-8585 (Japan); Faculty of Science and Engineering, Toyo University, Kawagoe 350-8585 (Japan)

    2016-02-15

    We report on the modification of fullerenes with iron and chlorine using two individually controllable plasmas in the Bio-Nano electron cyclotron resonance ion source (ECRIS). One of the plasmas is composed of fullerene and the other one is composed of iron and chlorine. The online ion beam analysis allows one to investigate the rate of the vapor-phase collisional modification process in the ECRIS, while the offline analyses (e.g., liquid chromatography-mass spectrometry) of the materials deposited on the plasma chamber can give information on the surface-type process. Both analytical methods show the presence of modified fullerenes such as fullerene-chlorine, fullerene-iron, and fullerene-chlorine-iron.

  12. Fullerene films and fullerene-dodecylamine adduct monolayers at air-water interfaces studied by neutron and x-ray reflection

    DEFF Research Database (Denmark)

    Wang, J.Y.; Vaknin, D.; Uphaus, R.A.

    1994-01-01

    Neutron and X-ray reflection measurements and surface pressure isotherms of spread films of the fullerene-dodecylamine adduct C60-[NH2(CH2)11CH3]x all indicate that this material may form monomolecular layers on water surfaces. The reflection data sets (neutron on both H2O and D2O) can be accounted...... for by a single model structure defined in terms of the dimensions of an average cell and its chemical composition. This model ascribes a total thickness of about 29 angstrom to the molecular interface layer with the following internal structure. The fullerenes (with several alkyl chains attached) form a central...... stratum and the remainder alkyl tails are located close to both the air and the water interfaces. The alkyl moieties close to the aqueous substrate are hydrated. The reflection experiments and the isotherms suggest that on average 8 +/- 3 dodecylamine molecules are present per fullerene, consistent within...

  13. It's a wrap: encapsulation as a management tool for marine biofouling.

    Science.gov (United States)

    Atalah, Javier; Brook, Rosemary; Cahill, Patrick; Fletcher, Lauren M; Hopkins, Grant A

    2016-01-01

    Encapsulation of fouled structures is an effective tool for countering incursions by non-indigenous biofoulers. However, guidelines for the implementation of encapsulation treatments are yet to be established. This study evaluated the effects of temperature, biomass, community composition, treatment duration and the biocide acetic acid on biofoulers. In laboratory trials using the model organisms Ciona spp. and Mytilus galloprovincialis, increasing the temperature or biomass speeded up the development of a toxic environment. Total mortality for Ciona spp. occurred within 72 and 24 h at 10 and 19°C, respectively. M. galloprovincialis survived up to 18 days, with high biomass increasing mortality at 10°C only. In a field study, three-month-old and four-year-old communities were encapsulated with and without acetic acid. Mortality took up to 10 days for communities encapsulated without acetic acid, compared to 48 h with acetic acid. The insights gained from this study will be useful in developing standardised encapsulation protocols.

  14. The quest for inorganic fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Pietsch, Susanne; Dollinger, Andreas; Strobel, Christoph H.; Ganteför, Gerd, E-mail: gerd.gantefoer@uni-konstanz.de, E-mail: ydkim91@skku.edu [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Park, Eun Ji; Kim, Young Dok, E-mail: gerd.gantefoer@uni-konstanz.de, E-mail: ydkim91@skku.edu [Department of Chemistry, Sungkyunkwan University, 440-746 Suwon (Korea, Republic of); Seo, Hyun Ook [Center for Free-Electron Laser Science/DESY, D-22607 Hamburg (Germany); Idrobo, Juan-Carlos [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Pennycook, Stephen J. [Department of Materials Science and Engineering, National University of Singapore, Singapore 117575 (Singapore)

    2015-10-07

    Experimental results of the search for inorganic fullerenes are presented. Mo{sub n}S{sub m}{sup −} and W{sub n}S{sub m}{sup −} clusters are generated with a pulsed arc cluster ion source equipped with an annealing stage. This is known to enhance fullerene formation in the case of carbon. Analogous to carbon, the mass spectra of the metal chalcogenide clusters produced in this way exhibit a bimodal structure. The species in the first maximum at low mass are known to be platelets. Here, the structure of the species in the second maximum is studied by anion photoelectron spectroscopy, scanning transmission electron microscopy, and scanning tunneling microcopy. All experimental results indicate a two-dimensional structure of these species and disagree with a three-dimensional fullerene-like geometry. A possible explanation for this preference of two-dimensional structures is the ability of a two-element material to saturate the dangling bonds at the edges of a platelet by excess atoms of one element. A platelet consisting of a single element only cannot do this. Accordingly, graphite and boron might be the only materials forming nano-spheres because they are the only single element materials assuming two-dimensional structures.

  15. Organic-Inorganic Nanostructure Architecture via Directly Capping Fullerenes onto Quantum Dots.

    Science.gov (United States)

    Lee, Jae Kwan; Kim, Jonggi; Yang, Changduk

    2011-12-01

    A new form of fullerene-capped CdSe nanoparticles (PCBA-capped CdSe NPs), using carboxylate ligands with [60]fullerene capping groups that provides an effective synthetic methodology to attach fullerenes noncovalently to CdSe, is presented for usage in nanotechnology and photoelectric fields. Interestingly, either the internal charge transfer or the energy transfer in the hybrid material contributes to photoluminescence (PL) quenching of the CdSe moieties.

  16. Effects of a novel encapsulating technique on the temperature tolerance and anti-colitis activity of the probiotic bacterium Lactobacillus kefiranofaciens M1.

    Science.gov (United States)

    Wang, Sheng-Yao; Ho, Yi-Fang; Chen, Yen-Po; Chen, Ming-Ju

    2015-04-01

    Lactobacillus kefiranofaciens M1 (M1) has been shown to possess many different beneficial health effects including anti-colitis activity. The purpose of this study was to develop a novel and easily scaled-up encapsulating technique that would improve the temperature tolerance of the bacterium and reduce the sensitivity of the organism to gastrointestinal fluid. A mixture of sodium alginate, gellan gum and skim milk powder was used as a coating material to entrap M1. The M1 gel was then directly freeze dried in order to dehydrate the covering and form microcapsules. The viable cell numbers of M1 present only dropped ten folds after the freeze-drying encapsulation process. The viable cell counts remained constant at 5 × 10(7) CFU/g after heating from 25 °C to 75 °C and holding at 75 °C for 1 min. The viable cell counts were reduced to 10(6) CFU/g and 10(5) CFU/g after 8-week storage at 4 °C and subsequent heat treatment with simulated gastrointestinal fluid test (SGFT) and bile salts, respectively. The effect of encapsulated M1 on the organism's anti-colitis activity was evaluated using the dextran sodium sulfate (DSS) induced colitis mouse model. An in vivo study indicated that administration of heat treated encapsulated M1 was able to ameliorate DSS-induced colitis producing a significant reduction in the bleeding score and an attenuation of inflammatory score. These findings clearly demonstrate that encapsulation of M1 using this novel technique is able to provide good protection from temperature changes and SGFT treatment and also does not affect the organism's anti-colitis activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Self-organization processes in polysiloxane block copolymers, initiated by modifying fullerene additives

    Science.gov (United States)

    Voznyakovskii, A. P.; Kudoyarova, V. Kh.; Kudoyarov, M. F.; Patrova, M. Ya.

    2017-08-01

    Thin films of a polyblock polysiloxane copolymer and their composites with a modifying fullerene C60 additive are studied by atomic force microscopy, Rutherford backscattering, and neutron scattering. The data of atomic force microscopy show that with the addition of fullerene to the bulk of the polymer matrix, the initial relief of the film surface is leveled more, the larger the additive. This trend is associated with the processes of self-organization of rigid block sequences, which are initiated by the field effect of the surface of fullerene aggregates and lead to an increase in the number of their domains in the bulk of the polymer matrix. The data of Rutherford backscattering and neutron scattering indicate the formation of additional structures with a radius of 60 nm only in films containing fullerene, and their fraction increases with increasing fullerene concentration. A comparative analysis of the data of these methods has shown that such structures are, namely, the domains of a rigid block and are not formed by individual fullerene aggregates. The interrelation of the structure and mechanical properties of polymer films is considered.

  18. Fullerene-Based Symmetry in Hibiscus rosa-sinensis Pollen

    Science.gov (United States)

    Andrade, Kleber; Guerra, Sara; Debut, Alexis

    2014-01-01

    The fullerene molecule belongs to the so-called super materials. The compound is interesting due to its spherical configuration where atoms occupy positions forming a mechanically stable structure. We first demonstrate that pollen of Hibiscus rosa-sinensis has a strong symmetry regarding the distribution of its spines over the spherical grain. These spines form spherical hexagons and pentagons. The distance between atoms in fullerene is explained applying principles of flat, spherical, and spatial geometry, based on Euclid’s “Elements” book, as well as logic algorithms. Measurements of the pollen grain take into account that the true spine lengths, and consequently the real distances between them, are measured to the periphery of each grain. Algorithms are developed to recover the spatial effects lost in 2D photos. There is a clear correspondence between the position of atoms in the fullerene molecule and the position of spines in the pollen grain. In the fullerene the separation gives the idea of equal length bonds which implies perfectly distributed electron clouds while in the pollen grain we suggest that the spines being equally spaced carry an electrical charge originating in forces involved in the pollination process. PMID:25003375

  19. Fullerenes: prospects of using in medicine, biology and ecology

    Directory of Open Access Journals (Sweden)

    D. V. Schur

    2012-02-01

    Full Text Available Results of our own research and academic literature data on the properties of fullerenes and carbon nanotubes are analysed and summarized. Chemical stability of the structure and low toxicity of fullerenes determine their usage in medical chemistry, pharmacology and cosmetology. Due to its mechanical strength the nanotubes have become the basis of clean construction and barrier materials. It is shown that a matrix based on fullerit C60 can be obtained. It allows to store up to 7.7 wt. % hydrogen with formation of hydrofullerit C60H60. The usage of fullerenes for accumulation and storage of hydrogen enhances the prospects of clean hydrogen energy development.

  20. Table of periodic properties of fullerenes based on structural parameters.

    Science.gov (United States)

    Torrens, Francisco

    2004-01-01

    The periodic table (PT) of the elements suggests that hydrogen could be the origin of everything else. The construction principle is an evolutionary process that is formally similar to those of Darwin and Oparin. The Kekulé structure count and permanence of the adjacency matrix of fullerenes are related to structural parameters involving the presence of contiguous pentagons p, q and r. Let p be the number of edges common to two pentagons, q the number of vertices common to three pentagons, and r the number of pairs of nonadjacent pentagon edges shared between two other pentagons. Principal component analysis (PCA) of the structural parameters and cluster analysis (CA) of the fullerenes permit classifying them and agree. A PT of the fullerenes is built based on the structural parameters, PCA and CA. The periodic law does not have the rank of the laws of physics. (1) The properties of the fullerenes are not repeated; only, and perhaps, their chemical character. (2) The order relationships are repeated, although with exceptions. The proposed statement is the following: The relationships that any fullerene p has with its neighbor p + 1 are approximately repeated for each period.

  1. Metal nitride cluster as a template to tune the electronic and magnetic properties of rare-earth metal containing endohedral fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yang

    2013-10-16

    } from δ{sup para} was achieved by the primary {sup 13}C and {sup 45}Sc NMR analysis of LnSc{sub 2}N rate at C{sub 80} (I). The good linear fitting (R{sup 2}= 0.99) was obtained by considering the encapsulating LnSc{sub 2}N cluster (Ln= Ce, Pr, Nd, Tb, Dy, Ho, Lu) inside C{sub 80}:I{sub h} cage which indicated the fantastic nature of magnetic anisotropy of lanthanide metals. The Ce{sub x}Y{sub 3-x}N rate at C{sub 2n} (x= 1,2; 2n= 80-88) MMNCFs were synthesized by ''selective organic solid'' route. The isolated samples were characterized by LDI-TOF mass spectrometry, UVvis- NIR, NMR spectroscopy and electrochemistry. The electrochemical oxidation behaviors of CeM{sub 2}N rate at C{sub 80} (M= Sc, Lu and Y) were interpreted as the strain-driven endohedral redox couple Ce{sup IV}/Ce{sup III} in CeM{sub 2}N rate at C{sub 80} which supported by {sup 13}C and/or {sup 45}Sc NMR study of [CeM{sub 2}N rate at C{sub 80}]{sup +} and DFT calculations. As far as we know, this work is the first discovery of (a) the (para)magnetic properties of rare-earth metal containing endohedral fullerenes can be tuned by the second diamagnetic metal with different metal ionic radius and (b) electrochemical properties of Ce-based endohedral fullerenes can be tuned by the strain-driven between the encaged cluster and carbon cage.

  2. Procedure of identification of fullerenes isolated from iron-carbon alloys

    International Nuclear Information System (INIS)

    Zakirnichnaya, M.M.

    2001-01-01

    A method of fullerenes isolation from the structure of iron-carbon alloys and their identification using physical methods which provide determination of the different parameters of nanoobjects is developed. Qualitative (mass-spectrometry of positive and negative ions, small angle X-ray scattering) and quantitative (IR-spectrometry, liquid chromatography) evaluation of fullerenes in the samples obtained from iron-carbon alloys and their visual observation using scanning tunnel microscopy are performed. It is found that the method provides isolation and identification of fullerenes present in the structure of steels and irons [ru

  3. Continuum Navier-Stokes modelling of water ow past fullerene molecules

    DEFF Research Database (Denmark)

    Walther, J. H.; Popadic, A.; Koumoutsakos, P.

    We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest...... as computed by the present model are in good agreement with results from atomistic and atomistic-continuum simulations at a fraction of the computational cost. We simulate the flow past a single fullerene and an array of fullerenes and demonstrate that such nanoscale flows can be computed efficiently...

  4. Continuum Navier-Stokes modelling of water flow past fullerene molecules

    DEFF Research Database (Denmark)

    Walther, J. H.; Popadic, A.; Koumoutsakos, P.

    We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest...... as computed by the present model are in good agreement with results from atomistic and atomistic-continuum simulations at a fraction of the computational cost. We simulate the flow past a single fullerene and an array of fullerenes and demonstrate that such nanoscale flows can be computed efficiently...

  5. Organic–Inorganic Nanostructure Architecture via Directly Capping Fullerenes onto Quantum Dots

    Directory of Open Access Journals (Sweden)

    Kim Jonggi

    2011-01-01

    Full Text Available Abstract A new form of fullerene-capped CdSe nanoparticles (PCBA-capped CdSe NPs, using carboxylate ligands with [60]fullerene capping groups that provides an effective synthetic methodology to attach fullerenes noncovalently to CdSe, is presented for usage in nanotechnology and photoelectric fields. Interestingly, either the internal charge transfer or the energy transfer in the hybrid material contributes to photoluminescence (PL quenching of the CdSe moieties.

  6. Carboxylated fullerene at the oil/water interface

    OpenAIRE

    Li, R; Chai, Y; Jiang, Y; Ashby, PD; Toor, A; Russell, TP

    2017-01-01

    © 2017 American Chemical Society. The self-assembly of carboxylated fullerene with poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) with different molecular weights, poly-2-vinylpyridine, and amine-terminated polystyrene, at the interface between toluene and water was investigated. For all values of the pH, the functionalized fullerene interacted with the polymers at the water/toluene interface, forming a nanoparticle network, reducing the interfacial tension. At pH values of 4.84 and 7.8, robust,...

  7. Memory effect in the deposition of C20 fullerenes on a diamond surface

    Science.gov (United States)

    Du, A. J.; Pan, Z. Y.; Ho, Y. K.; Huang, Z.; Zhang, Z. X.

    2002-07-01

    In this paper, the deposition of C20 fullerenes on a diamond (001)-(2×1) surface and the fabrication of C20 thin film at 100 K were investigated by a molecular dynamics (MD) simulation using the many-body Brenner bond order potential. First, we found that the collision dynamic of a single C20 fullerene on a diamond surface was strongly dependent on its impact energy. Within the energy range 10-45 eV, the C20 fullerene chemisorbed on the surface retained its free cage structure. This is consistent with the experimental observation, where it was called the memory effect in ``C20-type'' films [P. Melion et al., Int. J. Mod. B 9, 339 (1995); P. Milani et al., Cluster Beam Synthesis of Nanostructured Materials (Springer, Berlin, 1999)]. Next, more than one hundred C20 (10-25 eV) were deposited one after the other onto the surface. The initial growth stage of C20 thin film was observed to be in the three-dimensional island mode. The randomly deposited C20 fullerenes stacked on diamond surface and acted as building blocks forming a polymerlike structure. The assembled film was also highly porous due to cluster-cluster interaction. The bond angle distribution and the neighbor-atom-number distribution of the film presented a well-defined local order, which is of sp3 hybridization character, the same as that of a free C20 cage. These simulation results are again in good agreement with the experimental observation. Finally, the deposited C20 film showed high stability even when the temperature was raised up to 1500 K.

  8. Vibrational Spectra of Tetrahedral Fullerenes.

    Science.gov (United States)

    Cheng; Li; Tang

    1999-01-01

    From the topological structures of the following classes of tetrahedral fullerenes-(1) Cn(h, h; -i, i), Cn(h, 0; -i, 2i), Cn(2h + i, -h + i; i, i), Cn(h - i, h + 2i; -i, 2i), and Cn(h, i; 0, i) for Td symmetry; (2) Cn(h, k; k, h), Cn(h, k; -h - k, k), and Cn(h, k; -h, h + k) for Th symmetry; (3) Cn(h, k; i, j) for T symmetry-we have obtained theoretically the formulas for the numbers of their IR and Raman active modes for all of the tetrahedral fullerenes through the decomposition of their nuclear motions into irreducible representations by means of group theory. Copyright 1999 Academic Press.

  9. In vivo biology and toxicology of fullerenes and their derivatives

    DEFF Research Database (Denmark)

    Nielsen, Gunnar Damgård; Roursgaard, Martin; Jensen, Keld Alstrup

    2008-01-01

    Fullerenes represent a group of nanoparticles discovered in 1985. They are spherical molecules consisting entirely of carbon atoms (C(x)) to which side chains can be added, furnishing compounds with widely different properties. Fullerenes interact with biological systems, for example, by enzyme i...

  10. Free Carrier Generation in Fullerene Acceptors and Its Effect on Polymer Photovoltaics

    KAUST Repository

    Burkhard, George F.; Hoke, Eric T.; Beiley, Zach M.; McGehee, Michael D.

    2012-01-01

    Early research on C60 led to the discovery that the absorption of photons with energy greater than 2.35 eV by bulk C60 produces free charge carriers at room temperature. We find that not only is this also true for many of the soluble fullerene derivatives commonly used in organic photovoltaics, but also that the presence of these free carriers has significant implications for the modeling, characterization, and performance of devices made with these materials. We demonstrate that the discrepancy between absorption and quantum efficiency spectra in P3HT:PCBM is due to recombination of such free carriers in large PCBM domains before they can be separated at a donor/acceptor interface. Since most theories assume that all free charges result from the separation of excitons at a donor/acceptor interface, the presence of free carrier generation in fullerenes can have a significant impact on the interpretation of data generated by numerous field-dependent techniques. © 2012 American Chemical Society.

  11. Free Carrier Generation in Fullerene Acceptors and Its Effect on Polymer Photovoltaics

    KAUST Repository

    Burkhard, George F.

    2012-12-20

    Early research on C60 led to the discovery that the absorption of photons with energy greater than 2.35 eV by bulk C60 produces free charge carriers at room temperature. We find that not only is this also true for many of the soluble fullerene derivatives commonly used in organic photovoltaics, but also that the presence of these free carriers has significant implications for the modeling, characterization, and performance of devices made with these materials. We demonstrate that the discrepancy between absorption and quantum efficiency spectra in P3HT:PCBM is due to recombination of such free carriers in large PCBM domains before they can be separated at a donor/acceptor interface. Since most theories assume that all free charges result from the separation of excitons at a donor/acceptor interface, the presence of free carrier generation in fullerenes can have a significant impact on the interpretation of data generated by numerous field-dependent techniques. © 2012 American Chemical Society.

  12. Electrospun Phospholipid Fibers as Micro-Encapsulation and Antioxidant Matrices.

    Science.gov (United States)

    Shekarforoush, Elhamalsadat; Mendes, Ana C; Baj, Vanessa; Beeren, Sophie R; Chronakis, Ioannis S

    2017-10-17

    Electrospun phospholipid (asolectin) microfibers were investigated as antioxidants and encapsulation matrices for curcumin and vanillin. These phospholipid microfibers exhibited antioxidant properties which increased after the encapsulation of both curcumin and vanillin. The total antioxidant capacity (TAC) and the total phenolic content (TPC) of curcumin/phospholipid and vanillin/phospholipid microfibers remained stable over time at different temperatures (refrigerated, ambient) and pressures (vacuum, ambient). ¹H-NMR confirmed the chemical stability of both encapsulated curcumin and vanillin within phospholipid fibers. Release studies in aqueous media revealed that the phenolic bioactives were released mainly due to swelling of the phospholipid fiber matrix over time. The above studies confirm the efficacy of electrospun phospholipid microfibers as encapsulation and antioxidant systems.

  13. Electrospun Phospholipid Fibers as Micro-Encapsulation and Antioxidant Matrices

    Directory of Open Access Journals (Sweden)

    Elhamalsadat Shekarforoush

    2017-10-01

    Full Text Available Electrospun phospholipid (asolectin microfibers were investigated as antioxidants and encapsulation matrices for curcumin and vanillin. These phospholipid microfibers exhibited antioxidant properties which increased after the encapsulation of both curcumin and vanillin. The total antioxidant capacity (TAC and the total phenolic content (TPC of curcumin/phospholipid and vanillin/phospholipid microfibers remained stable over time at different temperatures (refrigerated, ambient and pressures (vacuum, ambient. 1H-NMR confirmed the chemical stability of both encapsulated curcumin and vanillin within phospholipid fibers. Release studies in aqueous media revealed that the phenolic bioactives were released mainly due to swelling of the phospholipid fiber matrix over time. The above studies confirm the efficacy of electrospun phospholipid microfibers as encapsulation and antioxidant systems.

  14. Porphyrin and fullerene-based artificial photosynthetic materials for photovoltaics

    International Nuclear Information System (INIS)

    Imahori, Hiroshi; Kashiwagi, Yukiyasu; Hasobe, Taku; Kimura, Makoto; Hanada, Takeshi; Nishimura, Yoshinobu; Yamazaki, Iwao; Araki, Yasuyuki; Ito, Osamu; Fukuzumi, Shunichi

    2004-01-01

    We have developed artificial photosynthetic systems in which porphyrins and fullerenes are self-assembled as building blocks into nanostructured molecular light-harvesting materials and photovoltaic devices. Multistep electron transfer strategy has been combined with our finding that porphyrin and fullerene systems have small reorganization energies, which are suitable for the construction of light energy conversion systems as well as artificial photosynthetic models. Highly efficient photosynthetic electron transfer reactions have been realized at ITO electrodes modified with self-assembled monolayers of porphyrin oligomers as well as porphyrin-fullerene linked systems. Porphyrin-modified gold nanoclusters have been found to have potential as artificial photosynthetic materials. These results provide basic information for the development of nanostructured artificial photosynthetic systems

  15. Development of Hollow Steel Ball Macro-Encapsulated PCM for Thermal Energy Storage Concrete

    Directory of Open Access Journals (Sweden)

    Zhijun Dong

    2016-01-01

    Full Text Available The application of thermal energy storage with phase change materials (PCMs for energy efficiency of buildings grew rapidly in the last few years. In this research, octadecane paraffin was served as a PCM, and a structural concrete with the function of indoor temperature control was developed by using a macro-encapsulated PCM hollow steel ball (HSB. The macro-encapsulated PCM-HSB was prepared by incorporation of octadecane into HSBs through vacuum impregnation. Test results showed that the maximum percentage of octadecane carried by HSBs was 80.3% by mass. The macro-encapsulated PCM-HSB has a latent heat storage capacity as high as 200.5 J/g. The compressive strength of concrete with macro-encapsulated PCM-HSB at 28 days ranged from 22 to 40 MPa. The indoor thermal performance test revealed that concrete with macro-encapsulated octadecane-HSB was capable of reducing the peak indoor air temperature and the fluctuation of indoor temperature. It can be very effective in transferring the heating and cooling loads away from the peak demand times.

  16. Development of Hollow Steel Ball Macro-Encapsulated PCM for Thermal Energy Storage Concrete.

    Science.gov (United States)

    Dong, Zhijun; Cui, Hongzhi; Tang, Waiching; Chen, Dazhu; Wen, Haibo

    2016-01-19

    The application of thermal energy storage with phase change materials (PCMs) for energy efficiency of buildings grew rapidly in the last few years. In this research, octadecane paraffin was served as a PCM, and a structural concrete with the function of indoor temperature control was developed by using a macro-encapsulated PCM hollow steel ball (HSB). The macro-encapsulated PCM-HSB was prepared by incorporation of octadecane into HSBs through vacuum impregnation. Test results showed that the maximum percentage of octadecane carried by HSBs was 80.3% by mass. The macro-encapsulated PCM-HSB has a latent heat storage capacity as high as 200.5 J/g. The compressive strength of concrete with macro-encapsulated PCM-HSB at 28 days ranged from 22 to 40 MPa. The indoor thermal performance test revealed that concrete with macro-encapsulated octadecane-HSB was capable of reducing the peak indoor air temperature and the fluctuation of indoor temperature. It can be very effective in transferring the heating and cooling loads away from the peak demand times.

  17. Development of Hollow Steel Ball Macro-Encapsulated PCM for Thermal Energy Storage Concrete

    Science.gov (United States)

    Dong, Zhijun; Cui, Hongzhi; Tang, Waiching; Chen, Dazhu; Wen, Haibo

    2016-01-01

    The application of thermal energy storage with phase change materials (PCMs) for energy efficiency of buildings grew rapidly in the last few years. In this research, octadecane paraffin was served as a PCM, and a structural concrete with the function of indoor temperature control was developed by using a macro-encapsulated PCM hollow steel ball (HSB). The macro-encapsulated PCM-HSB was prepared by incorporation of octadecane into HSBs through vacuum impregnation. Test results showed that the maximum percentage of octadecane carried by HSBs was 80.3% by mass. The macro-encapsulated PCM-HSB has a latent heat storage capacity as high as 200.5 J/g. The compressive strength of concrete with macro-encapsulated PCM-HSB at 28 days ranged from 22 to 40 MPa. The indoor thermal performance test revealed that concrete with macro-encapsulated octadecane-HSB was capable of reducing the peak indoor air temperature and the fluctuation of indoor temperature. It can be very effective in transferring the heating and cooling loads away from the peak demand times. PMID:28787859

  18. GTC/CanariCam Mid-IR Imaging of the Fullerene-rich Planetary Nebula IC 418: Searching for the Spatial Distribution of Fullerene-like Molecules

    Science.gov (United States)

    Díaz-Luis, J. J.; García-Hernández, D. A.; Manchado, A.; García-Lario, P.; Villaver, E.; García-Segura, G.

    2018-03-01

    We present seeing-limited narrow-band mid-IR GTC/CanariCam images of the spatially extended fullerene-containing planetary nebula (PN) IC 418. The narrow-band images cover the C60 fullerene band at 17.4 μm, the polycyclic aromatic hydrocarbon like (PAH-like) feature at 11.3 μm, the broad 9–13 μm feature, and their adjacent continua at 9.8 and 20.5 μm. We study the relative spatial distribution of these complex species, all detected in the Spitzer and Infrared Space Observatory spectra of IC 418, with the aim of getting observational constraints to the formation process of fullerenes in H-rich circumstellar environments. A similar ring-like extended structure is seen in all narrow-band filters, except in the dust continuum emission at 9.8 μm, which peaks closer to the central star. The continuum-subtracted images display a clear ring-like extended structure for the carrier of the broad 9–13 μm emission, while the spatial distribution of the (PAH-like) 11.3 μm emission is not so well defined. Interestingly, a residual C60 17.4 μm emission (at about 4σ from the sky background) is seen when subtracting the dust continuum emission at 20.5 μm. This residual C60 emission, if real, might have several interpretations, the most exciting being perhaps that other fullerene-based species like hydrogenated fullerenes with very low H-content may contribute to the observed 17.4 μm emission. We conclude that higher sensitivity mid-IR images and spatially resolved spectroscopic observations (especially in the Q-band) are necessary to get some clues about fullerene formation in PNe.

  19. Electronic transport properties aspects and structure of polymer-fullerene based organic semiconductors for photovoltaic devices

    International Nuclear Information System (INIS)

    Adamopoulos, G.; Heiser, T.; Giovanella, U.; Ould-Saad, S.; Wetering, K.I. van de; Brochon, C.; Zorba, T.; Paraskevopoulos, K.M.; Hadziioannou, G.

    2006-01-01

    A series of polystyrene (PS) and fullerene (C 60 ) based thin films containing from 23 to 60 wt.% in fullerene were investigated. Initially, the films were characterised by Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy where the characteristic absorption bands of both the fullerene and the polystyrene were revealed. The additional characteristic absorption bands due the grafted fullerene to polystyrene were revealed as well. The relative peak intensities provided with qualitative information of the films stoichiometry in terms of the fullerene's amount that was grafted to polystyrene. The optical properties of the films were investigated by spectroscopic ellipsometry (SE). It was found that the increase of the fullerene's amount that was grafted to polystyrene results in an increase of the absorption coefficient α, refractive index n, extinction coefficient k as well as in the dielectric constant ε ∝ within the range between 2.4 and 2.8 for the lower and higher fullerene content, respectively. The films' J-V characteristics, of the space charge limited current (SCLC) behaviour, showed increased currents with increasing the fullerene's content. The electron mobility was extracted and found to increase with increasing the fullerene amount, from 4 x 10 -9 cm 2 /V s to 2 x 10 -7 cm 2 /V s

  20. Rigid rod spaced fullerene as building block for nanoclusters

    Indian Academy of Sciences (India)

    By using phenylacetylene based rigid-rod linkers (PhA), we have successfully synthesized two fullerene derivatives, C60-PhA and C60-PhA-C60. The absorption spectral features of C60, as well as that of the phenylacetylene moiety are retained in the monomeric forms of these fullerene derivatives, ruling out the possibility ...

  1. Ultra-low friction and excellent elastic recovery of fullerene-like ...

    Indian Academy of Sciences (India)

    Multilayer fullerene-like hydrogenated carbon (FL-C:H) films were synthesized by using the chemical vapourdeposition technique with a different flow rate of methane. The typical fullerene-like structure of as-prepared films wasinvestigated by using transmission electron microscopy and Raman spectra. The prepared ...

  2. Preparation of thermosensitive magnetic liposome encapsulated recombinant tissue plasminogen activator for targeted thrombolysis

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hao-Lung [Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan, ROC (China); Chen, Jyh-Ping, E-mail: jpchen@mail.cgu.edu.tw [Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan, ROC (China); Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Kwei-San, Taoyuan 33305, Taiwan, ROC (China); Graduate Institute of Health Industry and Technology, Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kwei-San, Taoyuan 33302, Taiwan, ROC (China); Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan, ROC (China)

    2017-04-01

    Recombinant tissue plasminogen activator (rtPA) was encapsulated in thermosensitive magnetic liposome (TML) prepared from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, distearolyphosphatidyl ethanolamine-N-poly(ethylene glycol) 2000, cholesterol and Fe{sub 3}O{sub 4} magnetic nanoparticles by solvent evaporation/sonication and freeze-thaw cycles method. Response surface methodology was proved to be a powerful tool to predict the drug encapsulation efficiency and temperature-sensitive drug release. Validation experiments verified the accuracy of the model that provides a simple and effective method for fabricating TML with controllable encapsulation efficiency and predictable temperature-sensitive drug release behavior. The prepared samples were characterized for physico-chemical properties by dynamic light scattering, transmission electron microscopy, X-ray diffraction and differential scanning calorimetry. Temperature-sensitive release of rtPA could be confirmed from in vitro thrombolysis experiments. A thrombolytic drug delivery system using TML could be proposed for magnetic targeted delivery of rtPA to the site of thrombus followed by temperature-triggered controlled drug release in an alternating magnetic field. - Highlights: • rtPA and Fe{sub 3}O{sub 4} MNP were encapsulated in thermosensitive magnetic liposome (TML). • RSM could predict the drug encapsulation efficiency and temperature-sensitive drug release from TML. • Temperature-sensitive release of rtPA was confirmed from in vitro thrombolysis experiments. • TML-rtPA will be useful as a magnetic targeted nanodrug to improve clinical thrombolytic therapy.

  3. Kinetic study of the Diels-Alder reaction of Li⁺@C₆₀ with cyclohexadiene: greatly increased reaction rate by encapsulated Li⁺.

    Science.gov (United States)

    Ueno, Hiroshi; Kawakami, Hiroki; Nakagawa, Koji; Okada, Hiroshi; Ikuma, Naohiko; Aoyagi, Shinobu; Kokubo, Ken; Matsuo, Yutaka; Oshima, Takumi

    2014-08-06

    We studied the kinetics of the Diels-Alder reaction of Li(+)-encapsulated [60]fullerene with 1,3-cyclohexadiene and characterized the obtained product, [Li(+)@C60(C6H8)](PF6(-)). Compared with empty C60, Li(+)@C60 reacted 2400-fold faster at 303 K, a rate enhancement that corresponds to lowering the activation energy by 24.2 kJ mol(-1). The enhanced Diels-Alder reaction rate was well explained by DFT calculation at the M06-2X/6-31G(d) level of theory considering the reactant complex with dispersion corrections. The calculated activation energies for empty C60 and Li(+)@C60 (65.2 and 43.6 kJ mol(-1), respectively) agreed fairly well with the experimentally obtained values (67.4 and 44.0 kJ mol(-1), respectively). According to the calculation, the lowering of the transition state energy by Li(+) encapsulation was associated with stabilization of the reactant complex (by 14.1 kJ mol(-1)) and the [4 + 2] product (by 5.9 kJ mol(-1)) through favorable frontier molecular orbital interactions. The encapsulated Li(+) ion catalyzed the Diels-Alder reaction by lowering the LUMO of Li(+)@C60. This is the first detailed report on the kinetics of a Diels-Alder reaction catalyzed by an encapsulated Lewis acid catalyst rather than one coordinated to a heteroatom in the dienophile.

  4. On the Evaporation Kinetics of [60] Fullerene in Aromatic Organic Solvents

    KAUST Repository

    Amer, Maher S.; Wang, Wenhu; Kollins, Kaitlin N; Altalebi, Hasanain; Schwingenschlö gl, Udo

    2018-01-01

    We investigate the effect of C60 fullerene nanospheres on the evaporation kinetics of a number of aromatic solvents with different levels of molecular association, namely, benzene, toluene, and chlorobenzene. The dependence of the evaporation rate on the fullerene concentration is not monotonic but rather exhibits maxima and minima. The results strongly support the notion of molecular structuring within the liquid solvent controlled by the nature of fullerene/solvent interaction and the level of molecular association within the solvent itself.

  5. Centrosymmetric Graphs And A Lower Bound For Graph Energy Of Fullerenes

    Directory of Open Access Journals (Sweden)

    Katona Gyula Y.

    2014-11-01

    Full Text Available The energy of a molecular graph G is defined as the summation of the absolute values of the eigenvalues of adjacency matrix of a graph G. In this paper, an infinite class of fullerene graphs with 10n vertices, n ≥ 2, is considered. By proving centrosymmetricity of the adjacency matrix of these fullerene graphs, a lower bound for its energy is given. Our method is general and can be extended to other class of fullerene graphs.

  6. On the Evaporation Kinetics of [60] Fullerene in Aromatic Organic Solvents

    KAUST Repository

    Amer, Maher S.

    2018-04-03

    We investigate the effect of C60 fullerene nanospheres on the evaporation kinetics of a number of aromatic solvents with different levels of molecular association, namely, benzene, toluene, and chlorobenzene. The dependence of the evaporation rate on the fullerene concentration is not monotonic but rather exhibits maxima and minima. The results strongly support the notion of molecular structuring within the liquid solvent controlled by the nature of fullerene/solvent interaction and the level of molecular association within the solvent itself.

  7. Simulating fullerene ball bearings of ultra-low friction

    International Nuclear Information System (INIS)

    Li Xiaoyan; Yang Wei

    2007-01-01

    We report the direct molecular dynamics simulations for molecular ball bearings composed of fullerene molecules (C 60 and C 20 ) and multi-walled carbon nanotubes. The comparison of friction levels indicates that fullerene ball bearings have extremely low friction (with minimal frictional forces of 5.283 x 10 -7 and 6.768 x 10 -7 nN/atom for C 60 and C 20 bearings) and energy dissipation (lowest dissipation per cycle of 0.013 and 0.016 meV/atom for C 60 and C 20 bearings). A single fullerene inside the ball bearings exhibits various motion statuses of mixed translation and rotation. The influences of the shaft's distortion on the long-ranged potential energy and normal force are discussed. The phonic dissipation mechanism leads to a non-monotonic function between the friction and the load rate for the molecular bearings

  8. Experimental and computational studies of Si-doped fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Billas, I.M.L.; Tast, F.; Branz, W.; Malinowski, N.; Heinebrodt, M.; Martin, T.P.; Boero, M.; Massobrio, C.; Parrinello, M. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    1999-12-01

    Silicon in-cage doped fullerenes result from laser-induced photofragmentation of mixed clusters of composition C{sub 60}Si{sub x}. These parent clusters are produced in a low pressure condensation cell, through the mixing of silicon vapor with a vapor containing the preformed C{sub 60} molecules. The geometric and the electronic structures of fullerenes substitutionally doped with one and two silicon atoms are studied by ab-initio calculations within density functional theory. (orig.)

  9. Quasi 2D Mesoporous Carbon Microbelts Derived from Fullerene Crystals as an Electrode Material for Electrochemical Supercapacitors.

    Science.gov (United States)

    Tang, Qin; Bairi, Partha; Shrestha, Rekha Goswami; Hill, Jonathan P; Ariga, Katsuhiko; Zeng, Haibo; Ji, Qingmin; Shrestha, Lok Kumar

    2017-12-27

    Fullerene C 60 microbelts were fabricated using the liquid-liquid interfacial precipitation method and converted into quasi 2D mesoporous carbon microbelts by heat treatment at elevated temperatures of 900 and 2000 °C. The carbon microbelts obtained by heat treatment of fullerene C 60 microbelts at 900 °C showed excellent electrochemical supercapacitive performance, exhibiting high specific capacitances ca. 360 F g -1 (at 5 mV s -1 ) and 290 F g -1 (at 1 A g -1 ) because of the enhanced surface area and the robust mesoporous framework structure. Additionally, the heat-treated carbon microbelt showed good rate performance, retaining 49% of capacitance at a high scan rate of 10 A g -1 . The carbon belts exhibit super cyclic stability. Capacity loss was not observed even after 10 000 charge/discharge cycles. These results demonstrate that the quasi 2D mesoporous carbon microbelts derived from a π-electron-rich carbon source, fullerene C 60 crystals, could be used as a new candidate material for electrochemical supercapacitor applications.

  10. Preparation of fullerene/glass composites

    Science.gov (United States)

    Mattes, Benjamin R.; McBranch, Duncan W.; Robinson, Jeanne M.; Koskelo, Aaron C.; Love, Steven P.

    1995-01-01

    Synthesis of fullerene/glass composites. A direct method for preparing solid solutions of C.sub.60 in silicon dioxide (SiO.sub.2) glass matrices by means of sol-gel chemistry is described. In order to produce highly concentrated fullerene-sol-gel-composites it is necessary to increase the solubility of these "guests" in a delivery solvent which is compatible with the starter sol (receiving solvent). Sonication results in aggregate disruption by treatment with high frequency sound waves, thereby accelerating the rate of hydrolysis of the alkoxide precursor, and the solution process for the C.sub.60. Depending upon the preparative procedure, C.sub.60 dispersed within the glass matrix as microcrystalline domains, or dispersed as true molecular solutions of C.sub.60 in a solid glass matrix, is generated by the present method.

  11. Inflammogenic effect of well-characterized fullerenes in inhalation and intratracheal instillation studies

    Directory of Open Access Journals (Sweden)

    Yamamoto Kazuhiro

    2010-03-01

    Full Text Available Abstract Background We used fullerenes, whose dispersion at the nano-level was stabilized by grinding in nitrogen gas in an agitation mill, to conduct an intratracheal instillation study and an inhalation exposure study. Fullerenes were individually dispersed in distilled water including 0.1% Tween 80, and the diameter of the fullerenes was 33 nm. These suspensions were directly injected as a solution in the intratracheal instillation study. The reference material was nickel oxide in distilled water. Wistar male rats intratracheally received a dose of 0.1 mg, 0.2 mg, or 1 mg of fullerenes and were sacrificed after 3 days, 1 week, 1 month, 3 months, and 6 months. In the inhalation study, Wistar rats were exposed to fullerene agglomerates (diameter: 96 ± 5 nm; 0.12 ± 0.03 mg/m3; 6 hours/days for 5 days/week for 4 weeks and were sacrificed at 3 days, 1 month, and 3 months after the end of exposure. The inflammatory responses and gene expression of cytokine-induced neutrophil chemoattractants (CINCs were examined in rat lungs in both studies. Results In the intratracheal instillation study, both the 0.1 mg and 0.2 mg fullerene groups did not show a significant increase of the total cell and neutrophil count in BALF or in the expression of CINC-1,-2αβ and-3 in the lung, while the high-dose, 1 mg group only showed a transient significant increase of neutrophils and expression of CINC-1,-2αβ and -3. In the inhalation study, there were no increases of total cell and neutrophil count in BALF, CINC-1,-2αβ and-3 in the fullerene group. Conclusion These data in intratracheal instillation and inhalation studies suggested that well-dispersed fullerenes do not have strong potential of neutrophil inflammation.

  12. Adsorption of alanine with heteroatom substituted fullerene for solar cell application: A DFT study.

    Science.gov (United States)

    Dheivamalar, S; Sugi, L; Ravichandran, K; Sriram, S

    2018-05-14

    C 20 is the most important fullerene cage and alanine is the simplest representation of a backbone unit of the protein. The absorption feasibility of alanine molecule in the Si-doped C 20 and B-doped C 20 fullerenes has been studied based on calculated electronic properties of fullerenes using density functional theory (DFT). In this work, we explore the ability of Si-doped C 20 , B-doped C 20 fullerene to interact with alanine at the DFT-B3LYP/6-31G, RHF level of theory. We find that noticeable structural change takes place in C 20 when one of its carbon is substituted with Si or B. The molecular geometry, electronic properties and vibrational analysis have also been performed on the title compounds. The NMR study reveals the aromaticity of the pure and doped fullerene compounds. Stability of the doped fullerene - alanine compound arises from hyper conjugative interactions. It leads to one of the major property of bioactivity, charge transfer and delocalization of charge and this properties has been analyzed using Natural Bond Orbital (NBO) analysis. The energy gap of the doped fullerene reveals that there is a decrease in the size of energy gap significantly, making them more reactive as compared to C 20 fullerene. Theoretical studies of the electronic spectra by using time - dependent density functional theory (TD-DFT) method were helpful to interpret the observed electronic transition state. We aim to optimize the performance of the solar cells by altering the frontier orbital energy gaps. Considering all studied properties, it may be inferred that the applicability of C 20 fullerene as the non-linear optical (NLO) material and its NLO property would increase on doping fullerene with Si and B atom. Specifically C 19 Si would be better among them. Copyright © 2018. Published by Elsevier B.V.

  13. Nuclear reactions and radionuclides in the study of fullerenes

    International Nuclear Information System (INIS)

    Nakahara, H.; Sueki, K.; Sato, W.; Akiyama, K.

    2000-01-01

    Radiochemical techniques have been applied in various ways to the study of fullerenes and metallofullerenes for the past several years, and they have provided invaluable information pertaining to the stability, structures, and formation of the novel carbon material. This paper reviews those experimental results that have fully shown the usefullness and uniqueness of radionuclides demonstrated in the field of fullerene science. (author)

  14. Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer

    Science.gov (United States)

    Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.

    2015-12-01

    In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.

  15. Adverse effects of fullerenes (nC{sub 60}) spiked to sediments on Lumbriculus variegatus (Oligochaeta)

    Energy Technology Data Exchange (ETDEWEB)

    Pakarinen, K., E-mail: kukka.tervonen@uef.fi [Department of Biology, University of Eastern Finland, 80101 Joensuu (Finland); Petersen, E.J. [Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD (United States); Leppaenen, M.T.; Akkanen, J.; Kukkonen, J.V.K. [Department of Biology, University of Eastern Finland, 80101 Joensuu (Finland)

    2011-12-15

    Effects of fullerene-spiked sediment on a benthic organism, Lumbriculus variegatus (Oligochaeta), were investigated. Survival, growth, reproduction, and feeding rates were measured to assess possible adverse effects of fullerene agglomerates produced by water stirring and then spiked to a natural sediment. L. variegatus were exposed to 10 and 50 mg fullerenes/kg sediment dry mass for 28 d. These concentrations did not impact worm survival or reproduction compared to the control. Feeding activities were slightly decreased for both concentrations indicating fullerenes' disruptive effect on feeding. Depuration efficiency decreased in the high concentration only. Electron and light microscopy and extraction of the worm fecal pellets revealed fullerene agglomerates in the gut tract but not absorption into gut epithelial cells. Micrographs also indicated that 16% of the epidermal cuticle fibers of the worms were not present in the 50 mg/kg exposures, which may make worms susceptible to other contaminants. - Highlights: > Effects of fullerene-spiked sediment on black worms were investigated. > Survival, growth, reproduction, and feeding rates were measured. > Exposure did not impact worm survival or reproduction. > Feeding rates and depuration efficiency were decreased. > Worms transferred fullerenes from the sediment to the sediment surface. - Exposure to fullerene-spiked sediment decreased black worms' feeding and depuration efficiency, but fullerenes did not appear to be absorbed into the microvilli.

  16. Electronic transport properties aspects and structure of polymer-fullerene based organic semiconductors for photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Adamopoulos, G. [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (L.I.P.H.T.), Ecole Europeenne Chimie Polymeres Materiaux (E.C.P.M.), 25 Rue Becquerel, 67087 Strasbourg Cedex 02 (France)]. E-mail: geo_adamo@yahoo.fr; Heiser, T. [Institut d' Electronique du Solide et des Systemes (IN.E.S.S.), CNRS/ULP, 23 Rue du Loess, BP 20, 67037 Strasbourg Cedex 02 (France); Giovanella, U. [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (L.I.P.H.T.), Ecole Europeenne Chimie Polymeres Materiaux (E.C.P.M.), 25 Rue Becquerel, 67087 Strasbourg Cedex 02 (France); Ould-Saad, S. [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (L.I.P.H.T.), Ecole Europeenne Chimie Polymeres Materiaux (E.C.P.M.), 25 Rue Becquerel, 67087 Strasbourg Cedex 02 (France); Wetering, K.I. van de [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (L.I.P.H.T.), Ecole Europeenne Chimie Polymeres Materiaux (E.C.P.M.), 25 Rue Becquerel, 67087 Strasbourg Cedex 02 (France); Brochon, C. [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (L.I.P.H.T.), Ecole Europeenne Chimie Polymeres Materiaux (E.C.P.M.), 25 Rue Becquerel, 67087 Strasbourg Cedex 02 (France); Zorba, T. [Physics Department, Solid State Physics Section, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Paraskevopoulos, K.M. [Physics Department, Solid State Physics Section, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Hadziioannou, G. [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (L.I.P.H.T.), Ecole Europeenne Chimie Polymeres Materiaux (E.C.P.M.), 25 Rue Becquerel, 67087 Strasbourg Cedex 02 (France)

    2006-07-26

    A series of polystyrene (PS) and fullerene (C{sub 60}) based thin films containing from 23 to 60 wt.% in fullerene were investigated. Initially, the films were characterised by Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy where the characteristic absorption bands of both the fullerene and the polystyrene were revealed. The additional characteristic absorption bands due the grafted fullerene to polystyrene were revealed as well. The relative peak intensities provided with qualitative information of the films stoichiometry in terms of the fullerene's amount that was grafted to polystyrene. The optical properties of the films were investigated by spectroscopic ellipsometry (SE). It was found that the increase of the fullerene's amount that was grafted to polystyrene results in an increase of the absorption coefficient {alpha}, refractive index n, extinction coefficient k as well as in the dielectric constant {epsilon} {sub {proportional_to}} within the range between 2.4 and 2.8 for the lower and higher fullerene content, respectively. The films' J-V characteristics, of the space charge limited current (SCLC) behaviour, showed increased currents with increasing the fullerene's content. The electron mobility was extracted and found to increase with increasing the fullerene amount, from 4 x 10{sup -9} cm{sup 2}/V s to 2 x 10{sup -7} cm{sup 2}/V s.

  17. Disorder effect on carrier mobility in Fullerene organic semiconductor

    International Nuclear Information System (INIS)

    Mendil, N; Daoudi, M; Berkai, Z; Belghachi, A

    2015-01-01

    The critical factor that limits the efficiencies of organic electronic devices is the low charge carrier mobility which is attributed to disorder in organic films. In this context, we have studied the effects of disorder on carrier mobility in organic Schottky diode of electrons for the fullerene (C 60 ). Our results show that the mobility is sensitive probes of structural phase transitions and order-disorder underlying C 60 . Where it is one reason behind the low mobility which it take as value 1.4x10 -2 cm 2 /V.s above critical temperature Tc =289K. (paper)

  18. Fullerene C70 decorated TiO2 nanowires for visible-light-responsive photocatalyst

    International Nuclear Information System (INIS)

    Cho, Er-Chieh; Ciou, Jing-Hao; Zheng, Jia-Huei; Pan, Job; Hsiao, Yu-Sheng; Lee, Kuen-Chan; Huang, Jen-Hsien

    2015-01-01

    Graphical abstract: - Highlights: • TiO 2 nanowire decorated with C 60 and C 70 derivatives has been synthesized. • The fullerenes impede the charge recombination due to its high electron affinity. • The fullerenes expand the utilization of solar light from UV to visible light. • The modified-TiO 2 has great biocompatibility. - Abstract: In this study, we have synthesized C 60 and C 70 -modified TiO 2 nanowire (NW) through interfacial chemical bonding. The results indicate that the fullerenes (C 60 and C 70 derivatives) can act as sinks for photogenerated electrons in TiO 2 , while the fullerene/TiO 2 is illuminated under ultraviolet (UV) light. Therefore, in comparison to the pure TiO 2 NWs, the modified TiO 2 NWs display a higher photocatalytic activity under UV irradiation. Moreover, the fullerenes also can function as a sensitizer to TiO 2 which expand the utilization of solar light from UV to visible light. The results reveal that the C 70 /TiO 2 NWs show a significant photocatalytic activity for degradation of methylene blue (MB) in visible light region. To better understand the mechanism responsible for the effect of fullerenes on the photocatalytic properties of TiO 2 , the electron only devices and photoelectrochemical cells based on fullerenes/TiO 2 are also fabricated and evaluated.

  19. Elemental and Microscopic Analysis of Naturally Occurring C-O-Si Hetero-Fullerene-Like Structures.

    Science.gov (United States)

    Hullavarad, Nilima V; Hullavarad, Shiva S; Fochesatto, Javier

    2015-03-01

    Carbon exhibits an ability to form a wide range of structures in nature. Under favorable conditions, carbon condenses to form hollow, spheroid fullerenes in an inert atmosphere. Using high resolution FESEM, we have concealed the existence of giant hetero-fullerene like structures in the natural form. Clear, distinct features of connected hexagons and pentagons were observed. Energy dispersive X-ray analysis depth-profile of natural fullerene structures indicates that Russian-doll-like configurations composed of C, 0, and Si rings exist in nature. The analysis is based on an outstanding molecular feature found in the size fraction of aerosols having diameters 150 nm to 1.0 µm. The fullerene like structures, which are ~ 150 nm in diameter, are observed in large numbers. To the best of our knowledge, this is the first direct detailed observation of natural fullerene-like structures. This article reports inadvertent observation of naturally occurring hetero-fullerene-like structures in the Arctic.

  20. Geochemie fullerenů

    Czech Academy of Sciences Publication Activity Database

    Frank, Otakar; Jehlička, J.; Vítek, P.; Juha, Libor; Hamplová, Věra; Pokorná, Zdeňka

    2010-01-01

    Roč. 104, č. 8 (2010), s. 762-769 ISSN 0009-2770 R&D Projects: GA ČR GA205/07/0772; GA MŠk LC510; GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z10100520 Keywords : geochemistry * fullerene s * geological materials Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.620, year: 2010

  1. Glycofullerenes: Sweet fullerenes vanquish viruses

    Science.gov (United States)

    Vidal, Sébastien

    2016-01-01

    Fullerene-based dendritic structures coated with 120 sugars can be made in high yields in a relatively short sequence of reactions. The mannosylated compound is shown to inhibit Ebola infection in cells more efficiently than monofullerene-based glycoclusters.

  2. Plasmon-plasmon coupling in nested fullerenes: photoexcitation of interlayer plasmonic cross modes

    International Nuclear Information System (INIS)

    McCune, Mathew A; De, Ruma; Chakraborty, Himadri S; Madjet, Mohamed E; Manson, Steven T

    2011-01-01

    Considering the photoionization of a two-layer fullerene-onion system, C 60 -C 240 , strong plasmonic couplings between the nested fullerenes are demonstrated. The resulting hybridization produces four cross-over plasmons generated from the bonding and antibonding mixing of excited charge clouds of individual fullerenes. This suggests the possibility of designing buckyonions exhibiting plasmon resonances with specified properties and may motivate future research to modify the resonances with encaged atoms, molecules or clusters. (fast track communication)

  3. Polythiophenes and fullerene derivatives based donor-acceptor system: topography by atomic force microscopy

    International Nuclear Information System (INIS)

    Marcakova, M. L.; Repovsky, D.; Cik, G.; Velic, D.

    2017-01-01

    The goal of this work is to examine the surface of a polythiophene/fullerene film in order to understand the structure. In this work polythiophene is used as electron donor and fullerene-derivative is used as electron acceptor. Atomic force microscopy (AFM), is an ideal method to study surfaces and nanostructures. Surfaces of fullerene C60 , fullerene-derivates PCBM, polythiophene P12 and a mixture of P12 and PCBM are characterized. In all samples, the average roughness, the arithmetical value of divergence from the high of the surface, is determined concluding that P12 and PCBM mix together well and form a film with specific topography. (authors)

  4. Structural and phase changes in copper-fullerene films by ion implantation and annealing

    International Nuclear Information System (INIS)

    Shpilevsky, E.M.; Baran, L.V.; Okatova, G.P.; Jakimovich, A.V.

    2001-01-01

    The structural and phase changes and the electrical properties of copper - fullerene (Cu-C 60 ) films by the ion implantation(B + , E=80 keV, D 5·10 21 m -2 ) and the thermal annealing are described. We found the copper-fullerene solid supersaturated solution formed in process of the two-component films obtaining. The result of the thermal annealing is the phase segregation of fullerene. It has been established the ion implantation adduces to the partial fragmentation of fullerene, to the destruction of the C 60 molecules and to the formation of the CuB 24 , B 25 C and B 4 C phases

  5. Quantum translator-rotator: inelastic neutron scattering of dihydrogen molecules trapped inside anisotropic fullerene cages.

    Science.gov (United States)

    Horsewill, A J; Panesar, K S; Rols, S; Johnson, M R; Murata, Y; Komatsu, K; Mamone, S; Danquigny, A; Cuda, F; Maltsev, S; Grossel, M C; Carravetta, M; Levitt, M H

    2009-01-09

    We report an inelastic neutron scattering investigation of the quantum dynamics of hydrogen molecules trapped inside anisotropic fullerene cages. Transitions among the manifold of quantized rotational and translational states are directly observed. The spectra recorded as a function of energy and momentum transfer are interpreted in terms of the rotational potential and the cage dimensions. The thermodynamics of orthohydrogen and parahydrogen are investigated through temperature dependence measurements.

  6. Improvement of Stability and Antioxidant Activities by Using Phycocyanin - Chitosan Encapsulation Technique

    Science.gov (United States)

    Suzery, Meiny; Hadiyanto; Majid, Dian; Setyawan, Deny; Sutanto, Heri

    2017-02-01

    Encapsulation is a coating process to improve the stability of bioactive compounds. Phycocyanin with high antioxidant activity has been encapsulated with chitosan in microcapsules form. In this study aims to determine the best conditions in the encapsulation process using the extrusion method, characterization of the physicochemical properties of the microcapsules, antioxidant activity test using DPPH, in vitro release performance and evaluate the storage stability against temperature. The results of the encapsulation process is obtained: Na-TPP is better than Na-citrate as crosslinker and chitosan content 3% as a coating with ratio of chitosan to phycocyanin ratio 1: 1. Test of antioxidant activity also showed encapsulation with chitosan content 3% has the highest antioxidant activity. Morphological analysis microcapsules were found to have compact spherical shape with diameter range 900-1000 µm. In vitro release testing showed a quick release in an acidic environment (SGF) for 2 hours and slowly release under alkaline conditions (SIF) for 8 hours under mechanical stirring at 37°C. Phycocyanin much more stable against temperature during storage in microcapsules.

  7. Polymer solar cells based on poly(3-hexylthiophene) and fullerene: Pyrene acceptor systems

    Energy Technology Data Exchange (ETDEWEB)

    Cominetti, Alessandra; Pellegrino, Andrea; Longo, Luca [Research Center for Renewable Energies and Environment, Istituto Donegani, Eni S.p.A, Via Fauser 4, IT-28100 Novara (Italy); Po, Riccardo, E-mail: riccardo.po@eni.com [Research Center for Renewable Energies and Environment, Istituto Donegani, Eni S.p.A, Via Fauser 4, IT-28100 Novara (Italy); Tacca, Alessandra; Carbonera, Chiara; Salvalaggio, Mario [Research Center for Renewable Energies and Environment, Istituto Donegani, Eni S.p.A, Via Fauser 4, IT-28100 Novara (Italy); Baldrighi, Michele; Meille, Stefano Valdo [Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, via Mancinelli 7, IT-20131 Milano (Italy)

    2015-06-01

    The replacement of widely used fullerene derivatives, e.g. [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), with unfunctionalized C60 and C70 is an effective approach to reduce the costs of organic photovoltaics. However, solubility issues of these compounds have always represented an obstacle to their use. In this study, bulk-heterojunction solar cells made of poly(3-hexylthiophene) donor polymer, C60 or C70 acceptors and a pyrene derivative (1-pyrenebutiric acid butyl ester) are reported. Butyl 1-pyrenebutirate limits the aggregation of fullerenes and improves the active layer morphology, plausibly due to the formation of pyrene-fullerene complexes which, in the case of pyrene-C70, were also obtained in a crystalline form. Maximum power conversion efficiencies of 1.54% and 2.50% have been obtained using, respectively, C60 or C70 as acceptor. Quantum mechanical modeling provides additional insight into the formation of plausible supermolecular structures via π-π interactions and on the redox behaviour of pyrene-fullerene systems. - Highlights: • Pyrene derivatives favour the dispersion of unfunctionalized fullerenes. • Polymer solar cells with pyrene: C60 adduct as acceptor have efficiencies of 1.54%. • When C60 is substituted with C70 the efficiency is increased to 2.50%. • DFT calculations support the plausibility of the formation of pyrene: fullerene adducts. • The use of unfunctionalized fullerenes may decrease the costs of polymer solar cells.

  8. Interaction between fullerene halves C_n (n ≤ 40) and single wall carbon nanotube

    International Nuclear Information System (INIS)

    Sharma, Amrish; Kaur, Sandeep; Mudahar, Isha

    2016-01-01

    We have investigated the structural and electronic properties of carbon nanotube with small fullerene halves C_n (n ≤ 40) which are covalently bonded to the side wall of an armchair single wall carbon nanotube (SWCNT) using first principle method based on density functional theory. The fullerene size results in weak bonding between fullerene halves and carbon nanotube (CNT). Further, it was found that the C-C bond distance that attaches the fullerene half and CNT is of the order of 1.60 Å. The calculated binding energies indicate the stability of the complexes formed. The HOMO-LUMO gaps and electron density of state plots points towards the metallicity of the complex formed. Our calculations on charge transfer reveal that very small amount of charge is transferred from CNT to fullerene halves.

  9. Molecular design of novel fullerene-based acceptors for enhancing the open circuit voltage in polymer solar cells

    Science.gov (United States)

    Tajbakhsh, Mahmood; Kariminasab, Mohaddeseh; Ganji, Masoud Darvish; Alinezhad, Heshmatollah

    2017-12-01

    Organic solar cells, especially bulk hetero-junction polymer solar cells (PSCs), are the most successful structures for applications in renewable energy. The dramatic improvement in the performance of PSCs has increased demand for new conjugated polymer donors and fullerene derivative acceptors. In the present study, quantum chemical calculations were performed for several representative fullerene derivatives in order to determine their frontier orbital energy levels and electronic structures, thereby helping to enhance their performance in PSC devices. We found correlations between the theoretical lowest unoccupied molecular orbital levels and electrophilicity index of various fullerenes with the experimental open circuit voltage of photovoltaic devices according to the poly(3-hexylthiophene) (P3HT):fullerene blend. The correlations between the structure and descriptors may facilitate screening of the best fullerene acceptor for the P3HT donor. Thus, we considered fullerenes with new functional groups and we predicted the output factors for the corresponding P3HT:fullerene blend devices. The results showed that fullerene derivatives based on thieno-o-quinodimethane-C60 with a methoxy group will have enhanced photovoltaic properties. Our results may facilitate the design of new fullerenes and the development of favorable acceptors for use in photovoltaic applications.

  10. Superconductivity in doped fullerenes

    International Nuclear Information System (INIS)

    Hebard, A.F.

    1992-01-01

    While there is not complete agreement on the microscopic mechanism of superconductivity in alkali-metal-doped C 60 , further research may well lead to the production of analogous materials that lose resistance at even higher temperatures. Carbon 60 is a fascinating and arrestingly beautiful molecule. With 12 pentagonal and 20 hexagonal faces symmetrically arrayed in a soccer-ball-like structure that belongs to the icosahedral point group, I h , its high symmetry alone invites special attention. The publication in September 1990 of a simple technique for manufacturing and concentrating macroscopic amounts of this new form of carbon announced to the scientific community that enabling technology had arrived. Macroscopic amounts of C 60 (and the higher fullerenes, such as C 70 and C 84 ) can now be made with an apparatus as simple as an arc furnace powered with an arc welding supply. Accordingly, chemists, physicists and materials scientists have joined forces in an explosion of effort to explore the properties of this unusual molecular building block. 23 refs., 6 figs

  11. Superconductivity in doped fullerenes

    International Nuclear Information System (INIS)

    Herbard, A.F.

    1996-01-01

    While there is not complete agreement on the microscopic mechanism of superconductivity in alkali-metal-doped C sup 0, further research may well lead to the production of analogous materials that lose resistance at even higher temperatures. Carbon 60 is a fascinating and arrestingly beautiful molecule. With 12 pentagonal and 20 hexagonal faces symmetrically arrayed in a soccer-ball-like structure that belongs to the icosahedral point group, I sub h, its high symmetry alone invites special attention. The publication in september 1990 of a simple technique for manufacturing and concentrating macroscopic amounts of this new form of carbon announced to the scientific community that enabling technology had arrived. Macroscopic amounts of C sub 6 sub 0 (and the higher fullerenes, such as C sub 7 sub 0 and C sub 8 sub 4) can now be made with an apparatus as simple as an arc furnace powered with an arc welding supply. Accordingly, chemists, physicists and materials scientists have joined forces in an explosion of effort to explore the properties of this unusual molecular building block. (author). 23 refs., 6 figs

  12. Preparation of fluorescent mesoporous hollow silica-fullerene nanoparticles via selective etching for combined chemotherapy and photodynamic therapy

    Science.gov (United States)

    Yang, Yannan; Yu, Meihua; Song, Hao; Wang, Yue; Yu, Chengzhong

    2015-07-01

    Well-dispersed mesoporous hollow silica-fullerene nanoparticles with particle sizes of ~50 nm have been successfully prepared by incorporating fullerene molecules into the silica framework followed by a selective etching method. The fabricated fluorescent silica-fullerene composite with high porosity demonstrates excellent performance in combined chemo/photodynamic therapy.Well-dispersed mesoporous hollow silica-fullerene nanoparticles with particle sizes of ~50 nm have been successfully prepared by incorporating fullerene molecules into the silica framework followed by a selective etching method. The fabricated fluorescent silica-fullerene composite with high porosity demonstrates excellent performance in combined chemo/photodynamic therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02769a

  13. Co-Exposure with Fullerene May Strengthen Health Effects of Organic Industrial Chemicals

    DEFF Research Database (Denmark)

    Lehto, M.; Karilainen, T.; Rog, T.

    2014-01-01

    In vitro toxicological studies together with atomistic molecular dynamics simulations show that occupational co-exposure with C-60 fullerene may strengthen the health effects of organic industrial chemicals. The chemicals studied are acetophenone, benzaldehyde, benzyl alcohol, m-cresol, and toluene...... which can be used with fullerene as reagents or solvents in industrial processes. Potential co-exposure scenarios include a fullerene dust and organic chemical vapor, or a fullerene solution aerosolized in workplace air. Unfiltered and filtered mixtures of C-60 and organic chemicals represent different...... co-exposure scenarios in in vitro studies where acute cytotoxicity and immunotoxicity of C-60 and organic chemicals are tested together and alone by using human THP-1-derived macrophages. Statistically significant co-effects are observed for an unfiltered mixture of benzaldehyde and C-60 that is more...

  14. Properties of Natural Rubber-Based Composites Containing Fullerene

    Directory of Open Access Journals (Sweden)

    Omar A. Al-Hartomy

    2012-01-01

    Full Text Available In this study the influence of fullerenes in concentrations from 0.5 to 1.5 phr on both the vulcanization characteristics of the compounds and physicomechanical, dynamic, and dielectric properties and thermal aging resistance of nanocomposites on the basis of natural rubber has been investigated. The effect of the filler dispersion in the elastomeric matrix has been also investigated. Neat fullerene and the composites comprising it have been studied and characterized by scanning electron microscopy (SEM and transmission electron microscopy (TEM.

  15. The Effect of Alcohol on Bead Performance of Encapsulated Iron Using Deacetylated Glucomannan

    Directory of Open Access Journals (Sweden)

    Wardhani Dyah H.

    2018-01-01

    Full Text Available The success of encapsulation to protect iron from inhibitor degradation or oxidation depends on many factors including the excipient characteritics. Glucomannan, a neutral heterosaccharide, has a potential for the excipient. To improve the excipient performances, glucomannan is deacetylated to remove the acetyl groups by reacted with Na2CO3. This deacylated glucomannan is subject to bead formation after iron loading. The alcohol solution is commonly used in bead forming as dehydration medium during the encapsulation process. The objective of this work was to study the effect of alcohol on the bead performance of encapsulated iron using deacetylated glucomannan. The bead forming was conducted by dropping the excipient into ethanol and isopropyl alcohol (IPA solution at various concentrations (50, 60, 70, 80 and 90% and two condition temperatures (27-30° and 7-10°C. The encapsulation samples were subject to yield (YE and efficiency of encapsulation (EE. The concentration of alcohol showed a positive impact on the yield and efficiency of encapsulation. Ethanol has a better performance compared with that of IPA regarding yield and efficiency of encapsulation. The optimum of yield bead formation (69.67% and highest EE (66.80% were obtained at 90% ethanol. Temperature of dehydration did not affect the YE and EE significantly.

  16. Lateral translation of covalently bound fullerenes

    International Nuclear Information System (INIS)

    Humphry, M J; Beton, P H; Keeling, D L; Fawcett, R H J; Moriarty, P; Butcher, M J; Birkett, P R; Walton, D R M; Taylor, R; Kroto, H W

    2006-01-01

    Lateral manipulation of fullerenes on clean silicon surfaces may be induced by either an attractive or repulsive interaction between adsorbed molecules and the tip of a scanning probe microscope, and can result in a complex response arising from molecular rolling. The model for rolling is supported by new results which show that manipulation is suppressed for adsorbed functionalized fullerenes due to the presence of phenyl sidegroups. The influence of varying the dwell time of the tip during manipulation is also reported. By reducing this time to a value which is less than the response time of the feedback control loop it is possible to induce manipulation in a quasi-constant height mode which is accompanied by large increases/decreases in current

  17. Photopolymerizable liquid encapsulants for microelectronic devices

    Science.gov (United States)

    Baikerikar, Kiran K.

    2000-10-01

    Plastic encapsulated microelectronic devices consist of a silicon chip that is physically attached to a leadframe, electrically interconnected to input-output leads, and molded in a plastic that is in direct contact with the chip, leadframe, and interconnects. The plastic is often referred to as the molding compound, and is used to protect the chip from adverse mechanical, thermal, chemical, and electrical environments. Encapsulation of microelectronic devices is typically accomplished using a transfer molding process in which the molding compound is cured by heat. Most transfer molding processes suffer from significant problems arising from the high operating temperatures and pressures required to fill the mold. These aspects of the current process can lead to thermal stresses, incomplete mold filling, and wire sweep. In this research, a new strategy for encapsulating microelectronic devices using photopolymerizable liquid encapsulants (PLEs) has been investigated. The PLEs consist of an epoxy novolac-based vinyl ester resin (˜25 wt.%), fused silica filler (70--74 wt.%), and a photoinitiator, thermal initiator, and silane coupling agent. For these encapsulants, the use of light, rather than heat, to initiate the polymerization allows precise control over when the reaction starts, and therefore completely decouples the mold filling and the cure. The low viscosity of the PLEs allows for low operating pressures and minimizes problems associated with wire sweep. In addition, the in-mold cure time for the PLEs is equivalent to the in-mold cure times of current transfer molding compounds. In this thesis, the thermal and mechanical properties, as well as the viscosity and adhesion of photopolymerizable liquid encapsulants, are reported in order to demonstrate that a UV-curable formulation can have the material properties necessary for microelectronic encapsulation. In addition, the effects of the illumination time, postcure time, fused silica loading, and the inclusion

  18. APPLICATION FULLERENE FOR IDENTIFICATION OF MEAT PRODUCTS CONTAINING KLENBUTEROL

    Directory of Open Access Journals (Sweden)

    G. V. Popov

    2014-01-01

    Full Text Available Summary. In modern conditions the majority of developing livestock complexes, various chemical additives, apply to cattle feeding. One of such preparations is clenbuterol. Clenbuterol is β-2-adrenostimulyator belonging to group β-agonist who stimulate growth of muscular weight and regulate a ratio of fatty and muscular tissue at cultivation of agricultural animals and birds. In Russia results of researches in which it is recommended to apply clenbuterol as a growth factor at cattle cultivation are published. Thus the risk of influences of the residual maintenance of a preparation in animal husbandry production on health of consumers wasn't estimated. We conducted researches in the field of studying of properties fullerene and clenbuterol and their opportunities interaction among themselves. For identification clenbuterol in meat raw materials the synthesis of Prato based on a functionalization fullerene by C60 and C70 consisting in its transformation in fullerene on reactions of a 1,3-dipolar cycloaddition of azomethine ylide on multiple communications of C=C of a fulleren kernel was moved. Reaction took place with allocation of a deposit of the dark color which analysis proved that is a product of interaction of substances investigated by us. This experiment gives the chance to identify clenbuterolfullerene.

  19. Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation

    KAUST Repository

    Cates, Nichole C.

    2009-12-09

    We demonstrate that intercalation of fullerene derivatives between the side chains of conjugated polymers can be controlled by adjusting the fullerene size and compare the properties of intercalated and nonintercalated poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT):fullerene blends. The intercalated blends, which exhibit optimal solar-cell performance at 1:4 polymer:fullerene by weight, have better photoluminescence quenching and lower absorption than the nonintercalated blends, which optimize at 1:1. Understanding how intercalation affects performance will enable more effective design of polymer:fullerene solar cells. © 2009 American Chemical Society.

  20. Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation

    KAUST Repository

    Cates, Nichole C.; Gysel, Roman; Beiley, Zach; Miller, Chad E.; Toney, Michael F.; Heeney, Martin; McCulloch, Iain; McGehee, Michael D.

    2009-01-01

    We demonstrate that intercalation of fullerene derivatives between the side chains of conjugated polymers can be controlled by adjusting the fullerene size and compare the properties of intercalated and nonintercalated poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT):fullerene blends. The intercalated blends, which exhibit optimal solar-cell performance at 1:4 polymer:fullerene by weight, have better photoluminescence quenching and lower absorption than the nonintercalated blends, which optimize at 1:1. Understanding how intercalation affects performance will enable more effective design of polymer:fullerene solar cells. © 2009 American Chemical Society.

  1. Non-fullerene acceptors for organic solar cells

    Science.gov (United States)

    Yan, Cenqi; Barlow, Stephen; Wang, Zhaohui; Yan, He; Jen, Alex K.-Y.; Marder, Seth R.; Zhan, Xiaowei

    2018-03-01

    Non-fullerene acceptors (NFAs) are currently a major focus of research in the development of bulk-heterojunction organic solar cells (OSCs). In contrast to the widely used fullerene acceptors (FAs), the optical properties and electronic energy levels of NFAs can be readily tuned. NFA-based OSCs can also achieve greater thermal stability and photochemical stability, as well as longer device lifetimes, than their FA-based counterparts. Historically, the performance of NFA OSCs has lagged behind that of fullerene devices. However, recent developments have led to a rapid increase in power conversion efficiencies for NFA OSCs, with values now exceeding 13%, demonstrating the viability of using NFAs to replace FAs in next-generation high-performance OSCs. This Review discusses the important work that has led to this remarkable progress, focusing on the two most promising NFA classes to date: rylene diimide-based materials and materials based on fused aromatic cores with strong electron-accepting end groups. The key structure-property relationships, donor-acceptor matching criteria and aspects of device physics are discussed. Finally, we consider the remaining challenges and promising future directions for the NFA OSCs field.

  2. Packing and Disorder in Substituted Fullerenes

    KAUST Repository

    Tummala, Naga Rajesh; Elroby, Shaaban Ali Kamel; Aziz, Saadullah G.; Risko, Chad; Coropceanu, Veaceslav; Bredas, Jean-Luc

    2016-01-01

    Fullerenes are ubiquitous as electron-acceptor and electron-transport materials in organic solar cells. Recent synthetic strategies to improve the solubility and electronic characteristics of these molecules have translated into a tremendous

  3. Charge transfer in carbon composites based on fullerenes and exfoliated graphite

    Science.gov (United States)

    Berezkin, V. I.

    2017-07-01

    Kinetic processes have been studied in composites based on fullerenes and exfoliated graphite at the initial proportions of components from 1: 16 to 16: 1 in mass. The samples are produced by heat treatment of initial dispersed mixtures in vacuum in the diffusion-adsorption process, their further cold pressing, and annealing. It is shown that the annealing almost does not influence the conduction mechanisms and only induces additional structural defects acting as electron traps. As a whole, the results obtained at the noted proportions of components make it possible to consider the material as a compensated metallic system with a structural disorder in which the charge transfer at temperatures from 4.2 K to room temperature is controlled by quantum interference phenomena. At low temperatures, the effect of a weak localization is observed, and the electron-electron interactions take place at medium and high temperatures.

  4. Stereodivergent-at-metal synthesis of [60]fullerene hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Marco-Martinez, Juan; Vidal, Sara; Fernandez, Israel; Filippone, Salvatore [Departamento de Quimica Organica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid (Spain); Martin, Nazario [Departamento de Quimica Organica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid (Spain); IMDEA-Nanociencia, C/Faraday, Universidad Autonoma de Madrid (Spain)

    2017-02-13

    Chiral fullerene-metal hybrids with complete control over the four stereogenic centers, including the absolute configuration of the metal atom, have been synthesized for the first time. The stereochemistry of the four chiral centers formed during [60]fullerene functionalization is the result of both the chiral catalysts employed and the diastereoselective addition of the metal complexes used (iridium, rhodium, or ruthenium). DFT calculations underpin the observed configurational stability at the metal center, which does not undergo an epimerization process. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Affine Fullerene C60 in a GS-Quasigroup

    Directory of Open Access Journals (Sweden)

    Vladimir Volenec

    2014-01-01

    Full Text Available It will be shown that the affine fullerene C60, which is defined as an affine image of buckminsterfullerene C60, can be obtained only by means of the golden section. The concept of the affine fullerene C60 will be constructed in a general GS-quasigroup using the statements about the relationships between affine regular pentagons and affine regular hexagons. The geometrical interpretation of all discovered relations in a general GS-quasigroup will be given in the GS-quasigroup C(1/2(1+5.

  6. Changes in Agglomeration of Fullerenes During Ingestion and Excretion in Thamnocephalus Platuyrus

    Science.gov (United States)

    The crustacean Thamnocephalus platyurus was exposed to aqueous suspensions of fullerenes C60 and C70. Aqueous fullerene suspensions were formed by stirring C60 and C70 as received from a commercial vendor in deionized water (term...

  7. Fullerene C60 and graphene photosensibiles for photodynamic virus inactivation

    Science.gov (United States)

    Belousova, I.; Hvorostovsky, A.; Kiselev, V.; Zarubaev, V.; Kiselev, O.; Piotrovsky, L.; Anfimov, P.; Krisko, T.; Muraviova, T.; Rylkov, V.; Starodubzev, A.; Sirotkin, A.; Grishkanich, A.; Kudashev, I.; Kancer, A.; Kustikova, M.; Bykovskaya, E.; Mayurova, A.; Stupnikov, A.; Ruzankina, J.; Afanasyev, M.; Lukyanov, N.; Redka, D.; Paklinov, N.

    2018-02-01

    A solid-phase photosensitizer based on aggregated C60 fullerene and graphene oxide for photodynamic inactivation of pathogens in biological fluids was studied. The most promising technologies of inactivation include the photodynamic effect, which consists in the inactivation of infectious agents by active oxygen forms (including singlet oxygen), formed when light is activated by the photosensitizer introduced into the plasma. Research shows features of solid-phase systems based on graphene and fullerene C60 oxide, which is a combination of an effective inactivating pathogens (for example, influenza viruses) reactive oxygen species formed upon irradiation of the photosensitizer in aqueous and biological fluids, a high photostability fullerene coatings and the possibility of full recovery photosensitizer from the biological environment after the photodynamic action.

  8. Thermoresponsive latexes for fragrance encapsulation and release.

    Science.gov (United States)

    Popadyuk, N; Popadyuk, A; Kohut, A; Voronov, A

    2016-04-01

    To synthesize cross-linked latex particles protecting the encapsulated fragrance at ambient temperatures and facilitating the release of cargo at the temperature of the surface of the skin that varies in different regions of the body between 33.5 and 36.9°C. Poly(stearyl acrylate) (PSA), a polymer with long crystallizable alkyl side chains (undergoes order-disorder transitions at 45°C), was chosen as the main component of the polymer particles. As a result, new thermoresponsive polymer particles for fragrance encapsulation were synthesized and characterized, including assessing the performance of particles in triggered release by elevated temperature. To obtain network domains of various crystallinity, stearyl acrylate was copolymerized with dipropylene glycol acrylate caprylate (DGAC) (comonomer) in the presence of a dipropylene glycol diacrylate sebacate (cross-linker) using the miniemulsion process. Comonomers and a cross-linker were mixed directly in a fragrance during polymerization. Fragrance release was evaluated at 25, 31, 35 and 39°C to demonstrate a new material potential in personal/health care skin-related applications. Particles protect the fragrance from evaporation at 25°C. The fragrance release rate gradually increases at 31, 35 and 39°C. Two slopes were found on release plots. The first slope corresponds to a rapid fragrance release. The second slope indicates a subsequent reduction in the release rate. Crystalline-to-amorphous transition of PSA triggers the release of fragrances from cross-linked latex particles at elevated temperatures. The presence of the encapsulated fragrance, as well as the inclusion of amorphous fragments in the polymer network, reduces the particle crystallinity and enhances the release. Release profiles can be tuned by temperature and controlled by the amount of loaded fragrance and the ratio of comonomers in the feed mixture. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  9. Fullerene-doped conducting polymers: effects of enhanced photoconductivity and quenched photoluminescence

    International Nuclear Information System (INIS)

    Yoshino, K.; Yin, X.H.; Muro, K.; Kiyomatsu, S.; Morita, S.; Zakhidov, A.A.; Noguchi, T.; Ohnishi, T.

    1993-01-01

    It is found that fullerenes (C 60 , C 70 ), due to their strong electron accepting abilities can be hole generators in conducting polymers sensitizing photoinduced charge transfer. Here we report that photoconductivity of poly(2,5-dialkoxy-p-phenylene-vinylene) OO-PPV is found to be remarkably enhanced by several orders of magnitude upon introduction of several mol % of C 60 . Positive polarons (P + ) photogenerated with increased efficiency due to autoionization of excitons and/or photopumping from fullerene are considered to be responsible for enhanced photoconductivity. Photoluminescence of polymer is strongly quenched upon C 60 doping due to dissociation of excitons accompanied by electron transfer to fullerene. (orig.)

  10. Potentiometric urea biosensor based on an immobilised fullerene-urease bio-conjugate.

    Science.gov (United States)

    Saeedfar, Kasra; Heng, Lee Yook; Ling, Tan Ling; Rezayi, Majid

    2013-12-06

    A novel method for the rapid modification of fullerene for subsequent enzyme attachment to create a potentiometric biosensor is presented. Urease was immobilized onto the modified fullerene nanomaterial. The modified fullerene-immobilized urease (C60-urease) bioconjugate has been confirmed to catalyze the hydrolysis of urea in solution. The biomaterial was then deposited on a screen-printed electrode containing a non-plasticized poly(n-butyl acrylate) (PnBA) membrane entrapped with a hydrogen ionophore. This pH-selective membrane is intended to function as a potentiometric urea biosensor with the deposition of C60-urease on the PnBA membrane. Various parameters for fullerene modification and urease immobilization were investigated. The optimal pH and concentration of the phosphate buffer for the urea biosensor were 7.0 and 0.5 mM, respectively. The linear response range of the biosensor was from 2.31 × 10-3 M to 8.28 × 10-5 M. The biosensor's sensitivity was 59.67 ± 0.91 mV/decade, which is close to the theoretical value. Common cations such as Na+, K+, Ca2+, Mg2+ and NH4+ showed no obvious interference with the urea biosensor's response. The use of a fullerene-urease bio-conjugate and an acrylic membrane with good adhesion prevented the leaching of urease enzyme and thus increased the stability of the urea biosensor for up to 140 days.

  11. Transformation of methano[60]fullerenes in dihydrofullerofuranes induced by electron transfer

    International Nuclear Information System (INIS)

    Yanilkin, V.V.; Toropchina, A.V.; Morozov, V.I.; Nastapova, N.V.; Gubskaya, V.P.; Sibgatullina, F.G.; Azancheev, N.M.; Efremov, Yu.Ya.; Nuretdinov, I.A.

    2004-01-01

    The electrochemical reduction of methano[60]fullerenes (61-acetyl-61-(diethoxyphosphoryl)methano-60-fullerene 1, 61-acetyl-61-(diisopropoxyphosphoryl)methano-60-fullerene 2, 61-(2,2-diethoxyacetyl)-61-(diethoxy-phosphoryl)methano-60-fullerene 3, 61-phenyl-61-(1,2-dioxo-3,3-dimethyl-buthyl)methano-60-fullerene 4) in o-dichlorobenzene-DMF (3:1 v/v)/0.1 M Bu 4 NBF 4 on a glass-carbon electrode proceeds in a few steps. The reversible transfer of the first electron results in the formation of radical anions registered by ESR method. The subsequent reduction proceeds differently because of the various stability of anionic intermediates. The radical anions of the methanofullerenes 3 and 4 are less stable than the radical anions of compounds 1 and 2 and less stable than the radical anions of methanofullerenes, which contain an ester and/or a phosphonate group. The opening of a cyclopropane ring occurs during the stage of the formation of radical trianions of methanofullerenes 1, 2. The same process for compounds 3, 4 proceeds slowly in radical anions and fast in dianions. The opening of cyclopropane ring for all compounds is not accompanied by the elimination of methanogroup and results in the formation of dihydrofullerenofurane derivatives. The transformation of methanofullerene 3 induced by single electron transfer proceeds via a chain reaction mechanism

  12. Encapsulation of black carrot juice using spray and freeze drying.

    Science.gov (United States)

    Murali, S; Kar, Abhijit; Mohapatra, Debabandya; Kalia, Pritam

    2015-12-01

    Black carrot juice extracted using pectinase enzyme was encapsulated in three different carrier materials (maltodextrin 20DE, gum arabic and tapioca starch) using spray drying at four inlet temperatures (150, 175, 200 and 225 ℃) and freeze drying at a constant temperature of - 53 ℃ and vacuum of 0.22-0.11 mbar with the constant feed mixture. The products were analyzed for total anthocyanin content, antioxidant activity, water solubility index, encapsulation efficiency and total colour change. For both the drying methods followed in this study, maltodextrin 20DE as the carrier material has proven to be better in retaining maximum anthocyanin and antioxidant activity compared to gum arabic and tapioca starch. The best spray dried product, was obtained at 150 ℃. The most acceptable was the freeze dried product with maximum anthocyanin content, antioxidant activity, water solubility index, encapsulation efficiency and colour change. © The Author(s) 2014.

  13. Electronic Structure of Single- and Multiple-shell Carbon Fullerenes

    OpenAIRE

    Lin, Yeong-Lieh; Nori, Franco

    1993-01-01

    We study the electronic states of giant single-shell and the recently discovered nested multi-shell carbon fullerenes within the tight-binding approximation. We use two different approaches, one based on iterations and the other on symmetry, to obtain the $\\pi$-state energy spectra of large fullerene cages: $C_{240}$, $C_{540}$, $C_{960}$, $C_{1500}$, $C_{2160}$ and $C_{2940}$. Our iteration technique reduces the dimensionality of the problem by more than one order of magnitude (factors of $\\...

  14. The co-application effects of fullerene and ascorbic acid on UV-B irradiated mouse skin

    International Nuclear Information System (INIS)

    Ito, Shinobu; Itoga, Kazuyoshi; Yamato, Masayuki; Akamatsu, Hirohiko; Okano, Teruo

    2010-01-01

    The role of fullerene as a pro-oxidant or anti-oxidant in Ultraviolet B ray (UV-B)-induced disorders in mouse skin was investigated. Fullerene gave no photo-toxic effect to UV-B-irradiated mouse skin. Since erythema was concentrated at the pore circumference in a UV-B irradiation experiment in mouse skin, the sebaceous gland pairs was strongly implicated as a site for the generation of reactive oxygen species (ROS). In a histological evaluation of the skin stained with CH 3 MDFDA (ROS index) and YO-Pro-1 (apoptosis index), the fluorescence intensity of a sebaceous gland significantly increased with UV-B irradiation. With the application of fullerene to UV-irradiated mouse skin, no toxicity was recognized in comparison with the control, and erythema, the ROS index, and the apoptosis index decrease with the application of fullerene. Ascorbyl radical (AA·) increased with the application of ascorbate (AA) to UV-B-irradiated mouse skin, and AA· decreased with the application of fullerene. The co-application of AA and fullerene, which suppressed AA· in vitro, significantly suppressed erythema, and also suppressed both the ROS index and apoptosis index in mouse skin after UV-B irradiation. In both mouse skin at 48 h after UV-B irradiation and in an attempt to reproduce this phenomenon artificially in vitro, a similar high AA· peak (AA·/H· > 4) was observed in electron spin resonance (ESR) charts. The binding of fullerene with AA impairs the Fenton reaction between AA and Fe-protein based on the observation of ascorbate-specific UV absorption and a linear equation for the calibration curve. Therefore, fullerene may impair the intercalation of AA to a heme pocket by binding with AA. These results suggest that the co-application of AA and fullerene is effective against oxidative skin damage caused by UV-B irradiation, and the development of an AA· inhibitor such as fullerene should be useful for reducing organ damage associated with Fe-protein oxidation.

  15. Optimizing Conditions for Ultrasound Extraction of Fullerenes from Coal Matrices

    Czech Academy of Sciences Publication Activity Database

    Vítek, P.; Jehlička, J.; Frank, Otakar; Hamplová, Věra; Pokorná, Zdeňka; Juha, Libor; Boháček, J.

    2009-01-01

    Roč. 17, č. 2 (2009), s. 109-122 ISSN 1536-383X R&D Projects: GA ČR GA205/07/0772; GA ČR GA205/03/1468 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z10100520 Keywords : fullerene C60 * Ultrasound -assisted extraction * Extraction yield * Fullerene decomposition Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.710, year: 2009

  16. Synthesis and Photophysical Properties of Novel Fullerene Derivatives as Model Compounds for Bulk-Heterojunction PV Cells

    NARCIS (Netherlands)

    Hal, P.A. van; Langeveld-Voss, B.M.W.; Peeters, E.; Janssen, R.A.J.; Knol, J.; Hummelen, J.C.

    2000-01-01

    Covalent and well-defined oligomer-fullerene donor-acceptor molecular structures can serve as important model systems for plastic PV cells, based on interpenetrating networks of conjugated polymers and fullerene derivatives. Two series of [60]fullerene-oligomer dyads and triads were prepared and

  17. Interaction between fullerene halves C{sub n} (n ≤ 40) and single wall carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Amrish, E-mail: amrish99@gmail.com; Kaur, Sandeep, E-mail: sipusukhn@gmail.com [Department of Physics, Punjabi University, Patiala (India); Mudahar, Isha, E-mail: isha@pbi.ac.in [Department of Basic and Applied Sciences, Punjabi University, Patiala (India)

    2016-05-06

    We have investigated the structural and electronic properties of carbon nanotube with small fullerene halves C{sub n} (n ≤ 40) which are covalently bonded to the side wall of an armchair single wall carbon nanotube (SWCNT) using first principle method based on density functional theory. The fullerene size results in weak bonding between fullerene halves and carbon nanotube (CNT). Further, it was found that the C-C bond distance that attaches the fullerene half and CNT is of the order of 1.60 Å. The calculated binding energies indicate the stability of the complexes formed. The HOMO-LUMO gaps and electron density of state plots points towards the metallicity of the complex formed. Our calculations on charge transfer reveal that very small amount of charge is transferred from CNT to fullerene halves.

  18. Encapsulation layer design and scalability in encapsulated vertical 3D RRAM

    International Nuclear Information System (INIS)

    Yu, Muxi; Fang, Yichen; Wang, Zongwei; Chen, Gong; Pan, Yue; Yang, Xue; Yin, Minghui; Yang, Yuchao; Li, Ming; Cai, Yimao; Huang, Ru

    2016-01-01

    Here we propose a novel encapsulated vertical 3D RRAM structure with each resistive switching cell encapsulated by dielectric layers, contributing to both the reliability improvement of individual cells and thermal disturbance reduction of adjacent cells due to the effective suppression of unwanted oxygen vacancy diffusion. In contrast to the traditional vertical 3D RRAM, encapsulated bar-electrodes are adopted in the proposed structure substituting the previous plane-electrodes, thus encapsulated resistive switching cells can be naturally formed by simply oxidizing the tip of the metal bar-electrodes. In this work, TaO x -based 3D RRAM devices with SiO 2 and Si 3 N 4 as encapsulation layers are demonstrated, both showing significant advantages over traditional unencapsulated vertical 3D RRAM. Furthermore, it was found thermal conductivity and oxygen blocking ability are two key parameters of the encapsulation layer design influencing the scalability of vertical 3D RRAM. Experimental and simulation data show that oxygen blocking ability is more critical for encapsulation layers in the relatively large scale, while thermal conductivity becomes dominant as the stacking layers scale to the sub-10 nm regime. Finally, based on the notable impacts of the encapsulation layer on 3D RRAM scaling, an encapsulation material with both excellent oxygen blocking ability and high thermal conductivity such as AlN is suggested to be highly desirable to maximize the advantages of the proposed encapsulated structure. The findings in this work could pave the way for reliable ultrahigh-density storage applications in the big data era. (paper)

  19. Fullerenes as alternative acceptors by transfer doping of diamond surfaces; Fullerene als alternative Akzeptoren bei der Transferdotierung von Diamantoberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Paul

    2008-06-06

    The topic of this thesis is the fullerene induced surface conductivity on hydrogen terminated diamond. A systematic investigation of C{sub 60}, C{sub 60}F{sub 18}, C{sub 60}F{sub 36} and C{sub 60}F{sub 48} as transfer dopants on hydrogenated diamond has been performed. For C{sub 60}, the doping mechanism is more accurately described as a charge exchange in an extreme type II heterojunction. On the other hand a molecular surface acceptor model that takes the degeneracy of holes and the electric field caused by charge separation into account has been performed for the case of C{sub 60}F{sub 48} in excellent agreement with experimental results. Using in situ Hall Effect measurements of air, C{sub 60}, and C{sub 60}F{sub 48} induced conductivity the sign of the charge carriers that dominate the transport properties was determined. At ambient temperature the hole mobility {mu} as a function of the induced charge carrier density p between p=5.10{sup 10} cm{sup -2} and p=3.10{sup 13} cm{sup -2} was measured. A maximum of the mobility of 130-150 cm{sup 2}V{sup -1}s{sup -1} occurs for p=2.10{sup 1} cm{sup -2}. Temperature dependent Hall measurements between 77 and 350 K show a non-activated, constant charge carrier density on all examinated samples, independently of the kind of adsorbates. On the other hand, both the conductivity and the mobility exhibit temperature dependence, varying with the charge carrier concentration. An essential part of this thesis addressed the investigation and the improvement of the thermal stability of the fullerene layers. In order to achieve the covalent attachment of C{sub 60}F{sub 48} to a hydrogen terminated diamond surface a process for controlled partially hydrolisation was developed. Functionalization with hydroxyl groups could be achieved by using a remote water vapour plasma at room temperature for a few seconds as demonstrated by photoelectron spectroscopy. Prolonged water plasma exposure, however, as well as annealing at temperatures

  20. Electromagnetic properties of conducting polymers encapsulated in an insulating matrix

    International Nuclear Information System (INIS)

    Esnouf, Stephane

    1995-01-01

    The aim of this work is to study the electronic properties of conducting polymers encapsulated in zeolite. We studied two kinds of polymers: intrinsic conducting polymers (poly-pyrrole) and pyrolyzed polymers (polyacrylonitrile and poly-furfuryl alcohol). These systems were characterized by electron paramagnetic resonance and microwave conductivity measurements. In the first part, we present the preparation and the characterization of encapsulated poly-pyrrole. Conductivity measurements show that the encapsulated material is insulating, certainly because a strong interaction with the zeolite traps the charge carriers. In the second part, we focus on pyrolyzed encapsulated polyacrylonitrile. This system has a metal-like susceptibility at room temperature and a relatively high microwave conductivity. These results demonstrate the formation during the pyrolysis of extended aromatic clusters. Finally, we study pyrolyzed encapsulated poly-furfuryl alcohol. We show that the only effect of the pyrolysis is to fragment the polymers. We also discuss the spin relaxation and the EPR line broadening. (author) [fr

  1. Single or functionalized fullerenes interacting with heme group

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Wallison Chaves; Diniz, Eduardo Moraes, E-mail: eduardo.diniz@ufma.br [Departamento de Física, Universidade Federal do Maranhão, Avenida dos Portugueses, 1966, CEP 65080-805, São Luís - MA (Brazil)

    2014-09-15

    The heme group is responsible for iron transportation through the bloodstream, where iron participates in redox reactions, electron transfer, gases detection etc. The efficiency of such processes can be reduced if the whole heme molecule or even the iron is somehow altered from its original oxidation state, which can be caused by interactions with nanoparticles as fullerenes. To verify how such particles alter the geometry and electronic structure of heme molecule, here we report first principles calculations based on density functional theory of heme group interacting with single C{sub 60} fullerene or with C{sub 60} functionalized with small functional groups (−CH{sub 3}, −COOH, −NH{sub 2}, −OH). The calculations shown that the system heme + nanoparticle has a different spin state in comparison with heme group if the fullerene is functionalized. Also a functional group can provide a stronger binding between nanoparticle and heme molecule or inhibit the chemical bonding in comparison with single fullerene results. In addition heme molecule loses electrons to the nanoparticles and some systems exhibited a geometry distortion in heme group, depending on the binding energy. Furthermore, one find that such nanoparticles induce a formation of spin up states in heme group. Moreover, there exist modifications in density of states near the Fermi energy. Although of such changes in heme electronic structure and geometry, the iron atom remains in the heme group with the same oxidation state, so that processes that involve the iron might not be affected, only those that depend on the whole heme molecule.

  2. Pyrrolidinium fullerene induces apoptosis by activation of procaspase-9 via suppression of Akt in primary effusion lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tadashi [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan); Nakamura, Shigeo [Department of Chemistry, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-0023 (Japan); Ono, Toshiya; Ui, Sadaharu [Department of Biotechnology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu 400-8511 (Japan); Yagi, Syota; Kagawa, Hiroki [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan); Watanabe, Hisami [Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213 (Japan); Ohe, Tomoyuki; Mashino, Tadahiko [Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512 (Japan); Fujimuro, Masahiro, E-mail: fuji2@mb.kyoto-phu.ac.jp [Department of Cell Biology, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashinaku, Kyoto 607-8412 (Japan)

    2014-08-15

    Highlights: • Seven fullerenes were evaluated in terms of their cytotoxic effects on B-lymphomas. • Pyrrolidinium fullerene induced apoptosis of KSHV-infected B-lymphoma PEL cells. • The activation of Akt is essential for PEL cell survival. • Pyrrolidinium fullerene activated caspase-9 by inactivating Akt in PEL cells. • Pyrrolidinium fullerene have potential as novel drugs for the treatment of PEL. - Abstract: Primary effusion lymphoma (PEL) is a subtype of non-Hodgkin’s B-cell lymphoma and is an aggressive neoplasm caused by Kaposi’s sarcoma-associated herpesvirus (KSHV) in immunosuppressed patients. In general, PEL cells are derived from post-germinal center B-cells and are infected with KSHV. To evaluate potential novel anti-tumor compounds against KSHV-associated PEL, seven water-soluble fullerene derivatives were evaluated as potential drug candidates for the treatment of PEL. Herein, we discovered a pyrrolidinium fullerene derivative, 1,1,1′,1′-tetramethyl [60]fullerenodipyrrolidinium diiodide, which induced apoptosis of PEL cells via a novel mechanism, the caspase-9 activation by suppressing the caspase-9 phosphorylation, causing caspase-9 inactivation. Pyrrolidinium fullerene treatment reduced significantly the viability of PEL cells compared with KSHV-uninfected lymphoma cells, and induced the apoptosis of PEL cells by activating caspase-9 via procaspase-9 cleavage. Pyrrolidinium fullerene additionally reduced the Ser473 phosphorylation of Akt and Ser196 of procaspase-9. Ser473-phosphorylated Akt (i.e., activated Akt) phosphorylates Ser196 in procaspase-9, causing inactivation of procaspase-9. We also demonstrated that Akt inhibitors suppressed the proliferation of PEL cells compared with KSHV-uninfected cells. Our data therefore suggest that Akt activation is essential for cell survival in PEL and a pyrrolidinium fullerene derivative induced apoptosis by activating caspase-9 via suppression of Akt in PEL cells. In addition, we evaluated

  3. Pyrrolidinium fullerene induces apoptosis by activation of procaspase-9 via suppression of Akt in primary effusion lymphoma

    International Nuclear Information System (INIS)

    Watanabe, Tadashi; Nakamura, Shigeo; Ono, Toshiya; Ui, Sadaharu; Yagi, Syota; Kagawa, Hiroki; Watanabe, Hisami; Ohe, Tomoyuki; Mashino, Tadahiko; Fujimuro, Masahiro

    2014-01-01

    Highlights: • Seven fullerenes were evaluated in terms of their cytotoxic effects on B-lymphomas. • Pyrrolidinium fullerene induced apoptosis of KSHV-infected B-lymphoma PEL cells. • The activation of Akt is essential for PEL cell survival. • Pyrrolidinium fullerene activated caspase-9 by inactivating Akt in PEL cells. • Pyrrolidinium fullerene have potential as novel drugs for the treatment of PEL. - Abstract: Primary effusion lymphoma (PEL) is a subtype of non-Hodgkin’s B-cell lymphoma and is an aggressive neoplasm caused by Kaposi’s sarcoma-associated herpesvirus (KSHV) in immunosuppressed patients. In general, PEL cells are derived from post-germinal center B-cells and are infected with KSHV. To evaluate potential novel anti-tumor compounds against KSHV-associated PEL, seven water-soluble fullerene derivatives were evaluated as potential drug candidates for the treatment of PEL. Herein, we discovered a pyrrolidinium fullerene derivative, 1,1,1′,1′-tetramethyl [60]fullerenodipyrrolidinium diiodide, which induced apoptosis of PEL cells via a novel mechanism, the caspase-9 activation by suppressing the caspase-9 phosphorylation, causing caspase-9 inactivation. Pyrrolidinium fullerene treatment reduced significantly the viability of PEL cells compared with KSHV-uninfected lymphoma cells, and induced the apoptosis of PEL cells by activating caspase-9 via procaspase-9 cleavage. Pyrrolidinium fullerene additionally reduced the Ser473 phosphorylation of Akt and Ser196 of procaspase-9. Ser473-phosphorylated Akt (i.e., activated Akt) phosphorylates Ser196 in procaspase-9, causing inactivation of procaspase-9. We also demonstrated that Akt inhibitors suppressed the proliferation of PEL cells compared with KSHV-uninfected cells. Our data therefore suggest that Akt activation is essential for cell survival in PEL and a pyrrolidinium fullerene derivative induced apoptosis by activating caspase-9 via suppression of Akt in PEL cells. In addition, we evaluated

  4. Fullerenes, nanotubes, onions and related carbon structures

    Energy Technology Data Exchange (ETDEWEB)

    Rao, C N.R.; Seshadri, Ram; Govindaraj, A; Sen, Rahul [Solid State and Structural Chemistry Unit, CSIR Centre of Excellence in Chemistry and Materials Research Centre, Indian Institute of Science, Bangalore (India)

    1995-12-01

    Fullerenes, containing five- and six-membered carbon rings, of which C{sub 6}0 and C{sub 7}0 are the prominent members, exhibit phase transitions associated with orientational ordering. When C{sub 6}0 is suitably doped with electrons, it shows novel superconducting and magnetic properties. We review these and other properties of fullerenes in bulk or in film form along with the preparative and structural aspects. Carbon nanotubes and onions (hyperfullerenes) are the other forms of carbon whose material properties have aroused considerable interest. Besides discussing these new forms of carbon, we briefly introduce other possible forms, such as those involving five-, six- and seven-membered rings and hybrids between diamond and graphite

  5. Fullerenes: prospects of using in medicine, biology and ecology

    OpenAIRE

    D. V. Schur; Z. Z. Matysina; S. Y. Zaginaichenko; N. P. Botsva; О. V. Elina

    2012-01-01

    Results of our own research and academic literature data on the properties of fullerenes and carbon nanotubes are analysed and summarized. Chemical stability of the structure and low toxicity of fullerenes determine their usage in medical chemistry, pharmacology and cosmetology. Due to its mechanical strength the nanotubes have become the basis of clean construction and barrier materials. It is shown that a matrix based on fullerit C60 can be obtained. It allows to store up to 7.7 wt. % hydro...

  6. Calculations of the thermal expansion, cohesive energy and thermodynamic stability of a Van der Waals crystal - fullerene C60

    International Nuclear Information System (INIS)

    Zubov, V.I.; Tretiakov, N.P.; Teixeira Rabelo, J.N.; Sanchez Ortiz, J.F.

    1994-01-01

    The temperature dependence of the intermolecular distance and the cohesive energy in the high-temperature modification of C 60 solid fullerene was studied on basis of the correlative method of unsymmetrized self-consistent field. The central intermolecular potential of Girifalco and its approximation by Yakub were used. We conclude about the decisive role of anharmonic effects at high temperatures. The discrepancy between the calculated and experimental values of intermolecular distance does not exceed 0.8% on the whole temperature interval. The temperature of loss of thermodynamic stability was obtained (∼1915 K) and a possible melting temperature was estimated (∼1400 K). ((orig.))

  7. Electrochemical oxidation of sulfites by DWCNTs, MWCNTs, higher fullerenes and manganese

    Science.gov (United States)

    Uzun, Dzhamal; Pchelarov, George; Dimitrov, Ognian; Vassilev, Sasho; Obretenov, Willi; Petrov, Konstantin

    2018-03-01

    Different electrocatalysts were tested for oxidation of sulfites to sulfates, namely, manganese thin films deposited on fullerenes and carbon nanotubes. The results presented clearly show that electrodes containing HFs (higher fullerenes), DWCNTs (double-wall carbon nanotubes) and manganese acetate are effective catalysts in S/O2 fuel cells. HFs and DWCNTs have high catalytic activity and can be employed as standalone catalysts. Manganese was deposited on DWCNTs, HFs and fullerenes C60/C70 by a thermal process. The electrocatalysts were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The electrochemical testing was carried out by plotting the E/V polarization curve. The polarization curves of the electrodes composed of pristine DWCNTs showed the lowest overpotentials.

  8. Single-size thermometric measurements on a size distribution of neutral fullerenes.

    Science.gov (United States)

    Cauchy, C; Bakker, J M; Huismans, Y; Rouzée, A; Redlich, B; van der Meer, A F G; Bordas, C; Vrakking, M J J; Lépine, F

    2013-05-10

    We present measurements of the velocity distribution of electrons emitted from mass-selected neutral fullerenes, performed at the intracavity free electron laser FELICE. We make use of mass-specific vibrational resonances in the infrared domain to selectively heat up one out of a distribution of several fullerene species. Efficient energy redistribution leads to decay via thermionic emission. Time-resolved electron kinetic energy distributions measured give information on the decay rate of the selected fullerene. This method is generally applicable to all neutral species that exhibit thermionic emission and provides a unique tool to study the stability of mass-selected neutral clusters and molecules that are only available as part of a size distribution.

  9. Encapsulation in the food industry: a review.

    Science.gov (United States)

    Gibbs, B F; Kermasha, S; Alli, I; Mulligan, C N

    1999-05-01

    Encapsulation involves the incorporation of food ingredients, enzymes, cells or other materials in small capsules. Applications for this technique have increased in the food industry since the encapsulated materials can be protected from moisture, heat or other extreme conditions, thus enhancing their stability and maintaining viability. Encapsulation in foods is also utilized to mask odours or tastes. Various techniques are employed to form the capsules, including spray drying, spray chilling or spray cooling, extrusion coating, fluidized bed coating, liposome entrapment, coacervation, inclusion complexation, centrifugal extrusion and rotational suspension separation. Each of these techniques is discussed in this review. A wide variety of foods is encapsulated--flavouring agents, acids bases, artificial sweeteners, colourants, preservatives, leavening agents, antioxidants, agents with undesirable flavours, odours and nutrients, among others. The use of encapsulation for sweeteners such as aspartame and flavours in chewing gum is well known. Fats, starches, dextrins, alginates, protein and lipid materials can be employed as encapsulating materials. Various methods exist to release the ingredients from the capsules. Release can be site-specific, stage-specific or signalled by changes in pH, temperature, irradiation or osmotic shock. In the food industry, the most common method is by solvent-activated release. The addition of water to dry beverages or cake mixes is an example. Liposomes have been applied in cheese-making, and its use in the preparation of food emulsions such as spreads, margarine and mayonnaise is a developing area. Most recent developments include the encapsulation of foods in the areas of controlled release, carrier materials, preparation methods and sweetener immobilization. New markets are being developed and current research is underway to reduce the high production costs and lack of food-grade materials.

  10. Investigation of the possibility of functionalization of C20 fullerene by benzene via Diels-Alder reaction

    Science.gov (United States)

    Siadati, Seyyed Amir; Nami, Navabeh

    2016-10-01

    C20 fullerene, this novel species with all its pentagonal faces has displayed some unique operations in making fast pericyclic reactions. As an example, the high dienophile character of the C20 fullerene and the ability of this species in making an ultra-fast Diels-Alder reaction with 1,3-butadiene, has been recently reported. Moreover, new experimental reports claim that the C60 fullerene, one of the fullerene family, could make a Diels-Alder reaction with the central ring of anthracene and make the ring non-aromatic. These reports may encourage researchers to do more studies on the properties of this small carbon cage. To address this question, the present research has discussed all the reaction channels of the Diels-Alder cycloaddition of benzene molecule as a 1,3-diene with the C20 fullerene in order to answer this question: ;Is C20fullerene able to make a Diels-Alder reaction with this molecule?;.

  11. Characteristics of thin film fullerene coatings formed under different deposition conditions by power ion beams

    International Nuclear Information System (INIS)

    Petrov, A.V.; Ryabchikov, A.I.; Struts, V.K.; Usov, Yu.P.; Renk, T.J.

    2007-01-01

    Carbon allotropic form - C 60 and C 70 can be used in microelectronics, superconductors, solar batteries, logic and memory devices to increase processing tool wear resistance, as magnetic nanocomposite materials for record and storage information, in biology, medicine and pharmacology. In many cases it is necessary to have a thin-film containing C 60 and C 70 fullerene carbon coatings. A possibility in principle of thin carbon films formation with nanocrystalline structure and high content ∼30-95% of C 60 and C 70 fullerene mixture using the method of graphite targets sputtering by a power ion beam has been shown. Formation of thin-film containing C 60 and C 70 fullerene carbon coatings were carried out by means of deposition of ablation plasma on silicon substrates. Ablation plasma was generated as result of interaction of high-power pulsed ion beams (HPPIB) with graphite targets of different densities. It has been demonstrated that formation of fullerenes, their amount and characteristics of thin-film coatings depend on the deposition conditions. The key parameter for such process is the deposition rate, which determines thin film formation conditions and, subsequently, its structure and mechanical properties. Nano-hardness, Young module, adhesion to mono-crystalline silicon substrate, friction coefficient, roughness surface of synthesized coatings at the different deposition conditions were measured. These characteristics are under influence of such main process parameters as energy density of HPPIB, which, in turn, determinates the density and temperature of ablation plasma and deposition speed, which is thickness of film deposited for one pulse of ion current. Nano-hardness and Young module meanings are higher at the increasing of power density of ion beam. Adhesion value is less at the high deposition speed. As rule, friction coefficient depends on vice versa from roughness. (authors)

  12. C(60 fullerene prevents genotoxic effects of doxorubicin in human lymphocytes in vitro

    Directory of Open Access Journals (Sweden)

    K. S. Afanasieva

    2015-02-01

    Full Text Available The self-ordering of C60 fullerene, doxorubicin and their mixture precipitated from aqueous solutions was investigated using atomic-force microscopy. The results suggest the complexation between the two compounds. The genotoxicity of doxorubicin in complex with C60 fullerene (С60+Dox was evaluated in vitro with comet assay using human lymphocytes. The obtained results show that the C60 fullerene prevents the toxic effect of Dox in normal cells and, thus, С60+Dox complex might be proposed for biomedical application.

  13. Potentiometric Urea Biosensor Based on an Immobilised Fullerene-Urease Bio-Conjugate

    Directory of Open Access Journals (Sweden)

    Kasra Saeedfar

    2013-12-01

    Full Text Available A novel method for the rapid modification of fullerene for subsequent enzyme attachment to create a potentiometric biosensor is presented. Urease was immobilized onto the modified fullerene nanomaterial. The modified fullerene-immobilized urease (C60-urease bioconjugate has been confirmed to catalyze the hydrolysis of urea in solution. The biomaterial was then deposited on a screen-printed electrode containing a non-plasticized poly(n-butyl acrylate (PnBA membrane entrapped with a hydrogen ionophore. This pH-selective membrane is intended to function as a potentiometric urea biosensor with the deposition of C60-urease on the PnBA membrane. Various parameters for fullerene modification and urease immobilization were investigated. The optimal pH and concentration of the phosphate buffer for the urea biosensor were 7.0 and 0.5 mM, respectively. The linear response range of the biosensor was from 2.31 × 10−3 M to 8.28 × 10−5 M. The biosensor’s sensitivity was 59.67 ± 0.91 mV/decade, which is close to the theoretical value. Common cations such as Na+, K+, Ca2+, Mg2+ and NH4+ showed no obvious interference with the urea biosensor’s response. The use of a fullerene-urease bio-conjugate and an acrylic membrane with good adhesion prevented the leaching of urease enzyme and thus increased the stability of the urea biosensor for up to 140 days.

  14. Thiamakrocykly pro komplexaci fullerenů

    Czech Academy of Sciences Publication Activity Database

    Holý, Petr; Buchta, Michal; Rybáček, Jiří; Závada, Jiří

    2009-01-01

    Roč. 5, č. 9 (2009), s. 186-187 ISSN 1336-7242. [Zjazd chemikov /61./. 07.09.2009-11.09.2009, Tatranské Matliare] R&D Projects: GA AV ČR IAA400550704 Institutional research plan: CEZ:AV0Z40550506 Keywords : makrocycles * alkylation * fullerene s Subject RIV: CC - Organic Chemistry

  15. Boron hydride analogues of the fullerenes

    International Nuclear Information System (INIS)

    Quong, A.A.; Pederson, M.R.; Broughton, J.Q.

    1994-01-01

    The BH moiety is isoelectronic with C. We have studied the stability of the (BH) 60 analogue of the C 60 fullerene as well as the dual-structure (BH) 32 icosahedron, both of them being putative structures, by performing local-density-functional electronic calculations. To aid in our analysis, we have also studied other homologues of these systems. We find that the latter, i.e., the dual structure, is the more stable although the former is as stable as one of the latter's lower homologues. Boron hydrides, it seems, naturally form the dual structures used in algorithmic optimization of complex fullerene systems. Fully relaxed geometries are reported as well as electron affinities and effective Hubbard U parameters. These systems form very stable anions and we conclude that a search for BH analogues of the C 60 alkali-metal supeconductors might prove very fruitful

  16. Fulereno[C60]: química e aplicações Fullerene C60: chemistry and applications

    Directory of Open Access Journals (Sweden)

    Leandro José dos Santos

    2010-01-01

    Full Text Available Fullerene chemistry has become a very active research field in the two last decades, largely because of the exceptional properties of the C60 molecule and the variety of fullerene derivatives that appear to be possible. In this review, a general analysis of fullerene C60 reactivity is performed. The principal methods for the covalent modification of this fascinating carbon cage are presented. The prospects of using fullerene derivatives as medicinal drugs and photoactive materials in light converting devices are demonstrated.

  17. Characterizing the Polymer:Fullerene Intermolecular Interactions

    KAUST Repository

    Sweetnam, Sean; Vandewal, Koen; Cho, Eunkyung; Risko, Chad; Coropceanu, Veaceslav; Salleo, Alberto; Bredas, Jean-Luc; McGehee, Michael D.

    2016-01-01

    the polymer and fullerene, there is not a consensus on the nature of these interactions. In this work, we use a combination of Raman spectroscopy, charge transfer state absorption, and density functional theory calculations to show that the intermolecular

  18. Effect of linear alcohol molecular size on the self-assembly of fullerene whiskers

    International Nuclear Information System (INIS)

    Amer, Maher S.; Todd, T. Kyle; Busbee, John D.

    2011-01-01

    Highlights: → The longer the alcohol molecule, the shorter the length of the assembled whisker. → Interaction between alcohol and fullerene solvent is the key factor. → The stronger the alcohol/solvent interaction, the longer the whisker. - Abstract: The recent development of self-assembled fullerene whiskers and wires has created an enormous potential and resolved a serious challenge for utilizing such unique class of carbon material in advanced nano-scale, molecular-based electronic, optical, and thermal devices. In this paper we investigate, the self-assembly of C 60 molecules into one-dimensional whiskers using a series of linear alcohols H(CH 2 ) n OH, with n changing from 1 (methanol) to 3 (isopropyl alcohol), to elucidate the effect of alcohol molecular size on the size distribution of the self-assemble fullerene whiskers. Our results show that the length of the produced fullerene whiskers is affected by the molecular size of the alcohol used in the process. The crucial role played by solvent/alcohol interaction in the assembly process is discussed. In addition, Raman spectroscopy measurements support the notion that the self-assembled whiskers are primarily held by depletion forces and no evidence of fullerene polymerization was observed.

  19. Probing the thermal stability and the decomposition mechanism of a magnesium-fullerene polymer via X-ray Raman spectroscopy, X-ray diffraction and molecular dynamics simulations.

    Science.gov (United States)

    Aramini, Matteo; Niskanen, Johannes; Cavallari, Chiara; Pontiroli, Daniele; Musazay, Abdurrahman; Krisch, Michael; Hakala, Mikko; Huotari, Simo

    2016-02-21

    We report the microscopic view of the thermal structural stability of the magnesium intercalated fullerene polymer Mg2C60. With the application of X-ray Raman spectroscopy and X-ray diffraction, we study in detail the decomposition pathways of the polymer system upon annealing at temperatures between 300 and 700 °C. We show that there are at least two energy scales involved in the decomposition reaction. Intermolecular carbon bonds, which are responsible for the formation of a 2D fullerene polymer, are broken with a relatively modest thermal energy, while the long-range order of the original polymer remains intact. With an increased thermal energy, the crystal structure in turn is found to undergo a transition to a novel intercalated cubic phase that is stable up to the highest temperature studied here. The local structure surrounding magnesium ions gets severely modified close to, possibly at, the phase transition. We used density functional theory based calculations to study the thermodynamic and kinetic aspects of the collapse of the fullerene network, and to explain the intermediate steps as well as the reaction pathways in the break-up of this peculiar C60 intermolecular bonding architecture.

  20. Wax encapsulation of water-soluble compounds for application in foods.

    Science.gov (United States)

    Mellema, M; Van Benthum, W A J; Boer, B; Von Harras, J; Visser, A

    2006-11-01

    Water-soluble ingredients have been successfully encapsulated in wax using two preparation techniques. The first technique ('solid preparation') leads to relatively large wax particles. The second technique ('liquid preparation') leads to relatively small wax particles immersed in vegetable oil. On the first technique: stable encapsulation of water-soluble colourants (dissolved at low concentration in water) has been achieved making use of beeswax and PGPR. The leakage from the capsules, for instance of size 2 mm, is about 30% after 16 weeks storage in water at room temperature. To form such capsules a minimum wax mass of 40% relative to the total mass is needed. High amounts of salt or acids at the inside water phase causes more leaking, probably because of the osmotic pressure difference. Osmotic matching of inner and outer phase can lead to a dramatic reduction in leakage. Fat capsules are less suitable to incorporate water soluble colourants. The reason for this could be a difference in crystal structure (fat is less ductile and more brittle). On the second technique: stable encapsulation of water-soluble colourants (encapsulated in solid wax particles) has been achieved making use of carnauba wax. The leakage from the capsules, for instance of size 250 mm, is about 40% after 1 weeks storage in water at room temperature.

  1. Electron transport in doped fullerene molecular junctions

    Science.gov (United States)

    Kaur, Milanpreet; Sawhney, Ravinder Singh; Engles, Derick

    The effect of doping on the electron transport of molecular junctions is analyzed in this paper. The doped fullerene molecules are stringed to two semi-infinite gold electrodes and analyzed at equilibrium and nonequilibrium conditions of these device configurations. The contemplation is done using nonequilibrium Green’s function (NEGF)-density functional theory (DFT) to evaluate its density of states (DOS), transmission coefficient, molecular orbitals, electron density, charge transfer, current, and conductance. We conclude from the elucidated results that Au-C16Li4-Au and Au-C16Ne4-Au devices behave as an ordinary p-n junction diode and a Zener diode, respectively. Moreover, these doped fullerene molecules do not lose their metallic nature when sandwiched between the pair of gold electrodes.

  2. Changes in Agglomeration of Fullerenes During Ingestion and Excretion in Thamnocephalus Platyurus

    Science.gov (United States)

    The crustacean Thamnocephalus platyurus was exposed to aqueous suspensions of fullerenes C60 and C70. Aqueous fullerene suspensions were formed by stirring C60 and C70 as received from a commercial vendor in deionized water (termed aqu/C60 and aqu/C70) for approximately 100 d. Th...

  3. Exciton and Hole-Transfer Dynamics in Polymer: Fullerene Blends

    Directory of Open Access Journals (Sweden)

    van Loosdrecht P. H. M.

    2013-03-01

    Full Text Available Ultrafast hole transfer dynamics from fullerene derivative to polymer in bulk heterojunction blends are studied with visible-pump - IR-probe spectroscopy. The hole transfer process is found to occur in 50/300 fs next to the interface, while a longer 15-ps time is attributed to exciton diffusion towards interface in PC71BM domains. High polaron generation efficiency in P3HT blends indicates excellent intercalation between the polymer and the fullerene even at highest PC71BM concentration thereby yielding a valuable information on the blend morphology.

  4. Co-exposure with fullerene may strengthen health effects of organic industrial chemicals.

    Directory of Open Access Journals (Sweden)

    Maili Lehto

    Full Text Available In vitro toxicological studies together with atomistic molecular dynamics simulations show that occupational co-exposure with C60 fullerene may strengthen the health effects of organic industrial chemicals. The chemicals studied are acetophenone, benzaldehyde, benzyl alcohol, m-cresol, and toluene which can be used with fullerene as reagents or solvents in industrial processes. Potential co-exposure scenarios include a fullerene dust and organic chemical vapor, or a fullerene solution aerosolized in workplace air. Unfiltered and filtered mixtures of C60 and organic chemicals represent different co-exposure scenarios in in vitro studies where acute cytotoxicity and immunotoxicity of C60 and organic chemicals are tested together and alone by using human THP-1-derived macrophages. Statistically significant co-effects are observed for an unfiltered mixture of benzaldehyde and C60 that is more cytotoxic than benzaldehyde alone, and for a filtered mixture of m-cresol and C60 that is slightly less cytotoxic than m-cresol. Hydrophobicity of chemicals correlates with co-effects when secretion of pro-inflammatory cytokines IL-1β and TNF-α is considered. Complementary atomistic molecular dynamics simulations reveal that C60 co-aggregates with all chemicals in aqueous environment. Stable aggregates have a fullerene-rich core and a chemical-rich surface layer, and while essentially all C60 molecules aggregate together, a portion of organic molecules remains in water.

  5. The existence of a plastic phase and a solid-liquid dynamical bistability region in small fullerene cluster (C60)7: molecular dynamics simulation

    International Nuclear Information System (INIS)

    Piatek, A; Dawid, A; Gburski, Z

    2006-01-01

    We have simulated (by the molecular dymanics (MD) method) the dynamics of fullerenes (C 60 ) in an extremely small cluster composed of only as many as seven C 60 molecules. The interaction is taken to be the full 60-site pairwise additive Lennard-Jones (LJ) potential which generates both translational and anisotropic rotational motions of each molecule. Our atomically detailed MD simulations discover the plastic phase (no translations but active reorientations of fullerenes) at low energies (temperatures) of the (C 60 ) 7 cluster. We provide the in-depth evidence of the dynamical solid-liquid bistability region in the investigated cluster. Moreover, we confirm the existence of the liquid phase in (C 60 ) 7 , the finding of Gallego et al (1999 Phys. Rev. Lett. 83 5258) obtained earlier on the basis of Girifalco's model, which assumes single-site only and spherically symmetrical interaction between C 60 molecules. We have calculated the translational and angular velocity autocorrelation functions and estimated the diffusion coefficient of fullerene in the liquid phase

  6. Fullerene C{sub 70} decorated TiO{sub 2} nanowires for visible-light-responsive photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Er-Chieh [Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan (China); Ciou, Jing-Hao [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Zheng, Jia-Huei; Pan, Job [Department of Clinical Pharmacy, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan (China); Hsiao, Yu-Sheng, E-mail: yshsiao@mail.mcut.edu.tw [Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan (China); Lee, Kuen-Chan, E-mail: kclee@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Huang, Jen-Hsien, E-mail: 295604@cpc.com.tw [Department of Green Material Technology, Green Technology Research Institute, CPC Corporation, Kaohsiung 30010, Taiwan (China)

    2015-11-15

    Graphical abstract: - Highlights: • TiO{sub 2} nanowire decorated with C{sub 60} and C{sub 70} derivatives has been synthesized. • The fullerenes impede the charge recombination due to its high electron affinity. • The fullerenes expand the utilization of solar light from UV to visible light. • The modified-TiO{sub 2} has great biocompatibility. - Abstract: In this study, we have synthesized C{sub 60} and C{sub 70}-modified TiO{sub 2} nanowire (NW) through interfacial chemical bonding. The results indicate that the fullerenes (C{sub 60} and C{sub 70} derivatives) can act as sinks for photogenerated electrons in TiO{sub 2}, while the fullerene/TiO{sub 2} is illuminated under ultraviolet (UV) light. Therefore, in comparison to the pure TiO{sub 2} NWs, the modified TiO{sub 2} NWs display a higher photocatalytic activity under UV irradiation. Moreover, the fullerenes also can function as a sensitizer to TiO{sub 2} which expand the utilization of solar light from UV to visible light. The results reveal that the C{sub 70}/TiO{sub 2} NWs show a significant photocatalytic activity for degradation of methylene blue (MB) in visible light region. To better understand the mechanism responsible for the effect of fullerenes on the photocatalytic properties of TiO{sub 2}, the electron only devices and photoelectrochemical cells based on fullerenes/TiO{sub 2} are also fabricated and evaluated.

  7. Hanford waste encapsulation: strontium and cesium

    International Nuclear Information System (INIS)

    Jackson, R.R.

    1976-06-01

    The strontium and cesium fractions separated from high radiation level wastes at Hanford are converted to the solid strontium fluoride and cesium chloride salts, doubly encapsulated, and stored underwater in the Waste Encapsulation and Storage Facility (WESF). A capsule contains approximately 70,000 Ci of 137 Cs or 70,000 to 140,000 Ci of 90 Sr. Materials for fabrication of process equipment and capsules must withstand a combination of corrosive chemicals, high radiation dosages and frequently, elevated temperatures. The two metals selected for capsules, Hastelloy C-276 for strontium fluoride and 316-L stainless steel for cesium chloride, are adequate for prolonged containment. Additional materials studies are being done both for licensing strontium fluoride as source material and for second generation process equipment

  8. Aggregation behavior of fullerenes in aqueous solutions: a capillary electrophoresis and asymmetric flow field-flow fractionation study

    NARCIS (Netherlands)

    Astefanei, A.; Núñez, O.; Galceran, M.T.; Kok, W.Th.; Schoenmakers, P.J.

    2015-01-01

    In this work, the electrophoretic behavior of hydrophobic fullerenes [buckminsterfullerene (C-60), C-70, and N-methyl-fulleropyrrolidine (C-60-pyrr)] and water-soluble fullerenes [fullerol (C-60(OH)(24)); polyhydroxy small gap fullerene, hydrated (C-120(OH)(30)); C-60 pyrrolidine tris acid

  9. Growth and Potential Damage of Human Bone-Derived Cells on Fresh and Aged Fullerene C60 Films

    Directory of Open Access Journals (Sweden)

    Jiri Vacik

    2013-04-01

    Full Text Available Fullerenes are nanoparticles composed of carbon atoms arranged in a spherical hollow cage-like structure. Numerous studies have evaluated the therapeutic potential of fullerene derivates against oxidative stress-associated conditions, including the prevention or treatment of arthritis. On the other hand, fullerenes are not only able to quench, but also to generate harmful reactive oxygen species. The reactivity of fullerenes may change in time due to the oxidation and polymerization of fullerenes in an air atmosphere. In this study, we therefore tested the dependence between the age of fullerene films (from one week to one year and the proliferation, viability and metabolic activity of human osteosarcoma cells (lines MG-63 and U-2 OS. We also monitored potential membrane and DNA damage and morphological changes of the cells. After seven days of cultivation, we did not observe any cytotoxic morphological changes, such as enlarged cells or cytosolic vacuole formation. Furthermore, there was no increased level of DNA damage. The increasing age of the fullerene films did not cause enhancement of cytotoxicity. On the contrary, it resulted in an improvement in the properties of these materials, which are more suitable for cell cultivation. Therefore, fullerene films could be considered as a promising material with potential use as a bioactive coating of cell carriers for bone tissue engineering.

  10. Growth and potential damage of human bone-derived cells on fresh and aged fullerene c60 films.

    Science.gov (United States)

    Kopova, Ivana; Bacakova, Lucie; Lavrentiev, Vasily; Vacik, Jiri

    2013-04-26

    Fullerenes are nanoparticles composed of carbon atoms arranged in a spherical hollow cage-like structure. Numerous studies have evaluated the therapeutic potential of fullerene derivates against oxidative stress-associated conditions, including the prevention or treatment of arthritis. On the other hand, fullerenes are not only able to quench, but also to generate harmful reactive oxygen species. The reactivity of fullerenes may change in time due to the oxidation and polymerization of fullerenes in an air atmosphere. In this study, we therefore tested the dependence between the age of fullerene films (from one week to one year) and the proliferation, viability and metabolic activity of human osteosarcoma cells (lines MG-63 and U-2 OS). We also monitored potential membrane and DNA damage and morphological changes of the cells. After seven days of cultivation, we did not observe any cytotoxic morphological changes, such as enlarged cells or cytosolic vacuole formation. Furthermore, there was no increased level of DNA damage. The increasing age of the fullerene films did not cause enhancement of cytotoxicity. On the contrary, it resulted in an improvement in the properties of these materials, which are more suitable for cell cultivation. Therefore, fullerene films could be considered as a promising material with potential use as a bioactive coating of cell carriers for bone tissue engineering.

  11. Machine Phase Fullerene Nanotechnology: 1996

    Science.gov (United States)

    Globus, Al; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    NASA has used exotic materials for spacecraft and experimental aircraft to good effect for many decades. In spite of many advances, transportation to space still costs about $10,000 per pound. Drexler has proposed a hypothetical nanotechnology based on diamond and investigated the properties of such molecular systems. These studies and others suggest enormous potential for aerospace systems. Unfortunately, methods to realize diamonoid nanotechnology are at best highly speculative. Recent computational efforts at NASA Ames Research Center and computation and experiment elsewhere suggest that a nanotechnology of machine phase functionalized fullerenes may be synthetically relatively accessible and of great aerospace interest. Machine phase materials are (hypothetical) materials consisting entirely or in large part of microscopic machines. In a sense, most living matter fits this definition. To begin investigation of fullerene nanotechnology, we used molecular dynamics to study the properties of carbon nanotube based gears and gear/shaft configurations. Experiments on C60 and quantum calculations suggest that benzyne may react with carbon nanotubes to form gear teeth. Han has computationally demonstrated that molecular gears fashioned from (14,0) single-walled carbon nanotubes and benzyne teeth should operate well at 50-100 gigahertz. Results suggest that rotation can be converted to rotating or linear motion, and linear motion may be converted into rotation. Preliminary results suggest that these mechanical systems can be cooled by a helium atmosphere. Furthermore, Deepak has successfully simulated using helical electric fields generated by a laser to power fullerene gears once a positive and negative charge have been added to form a dipole. Even with mechanical motion, cooling, and power; creating a viable nanotechnology requires support structures, computer control, a system architecture, a variety of components, and some approach to manufacture. Additional

  12. Adsorption of amino acids by fullerenes and fullerene nanowhiskers

    Science.gov (United States)

    Hashizume, Hideo; Hirata, Chika; Fujii, Kazuko; Miyazawa, Kun'ichi

    2015-12-01

    We have investigated the adsorption of some amino acids and an oligopeptide by fullerene (C60) and fullerene nanowhiskers (FNWs). C60 and FNWs hardly adsorbed amino acids. Most of the amino acids used have a hydrophobic side chain. Ala and Val, with an alkyl chain, were not adsorbed by the C60 or FNWs. Trp, Phe and Pro, with a cyclic structure, were not adsorbed by them either. The aromatic group of C60 did not interact with the side chain. The carboxyl or amino group, with the frame structure of an amino acid, has a positive or negative charge in solution. It is likely that the C60 and FNWs would not prefer the charged carboxyl or amino group. Tri-Ala was adsorbed slightly by the C60 and FNWs. The carboxyl or amino group is not close to the center of the methyl group of Tri-Ala. One of the methyl groups in Tri-Ala would interact with the aromatic structure of the C60 and FNWs. We compared our results with the theoretical interaction of 20 bio-amino acids with C60. The theoretical simulations showed the bonding distance between C60 and an amino acid and the dissociation energy. The dissociation energy was shown to increase in the order, Val changed a little by C60. In our study Try and Tyr were hardly adsorbed by C60 and FNWs. These amino acids did not show a different adsorption behavior compared with other amino acids. The adsorptive behavior of mono-amino acids might be different from that of polypeptides.

  13. Bioactive Compounds And Encapsulation Of Yanang ( Tiliacora ...

    African Journals Online (AJOL)

    Furthermore, this paper reports the design of the experimental method for optimization of Yanang encapsulation using three independent variables: the ratio of core material (Yanang), to wall material (gum Arabic), gum Arabic concentration and inlet temperature of spray drying on bioactive compounds stability. The stability ...

  14. 2D-QSAR study of fullerene nanostructure derivatives as potent HIV-1 protease inhibitors

    Science.gov (United States)

    Barzegar, Abolfazl; Jafari Mousavi, Somaye; Hamidi, Hossein; Sadeghi, Mehdi

    2017-09-01

    The protease of human immunodeficiency virus1 (HIV-PR) is an essential enzyme for antiviral treatments. Carbon nanostructures of fullerene derivatives, have nanoscale dimension with a diameter comparable to the diameter of the active site of HIV-PR which would in turn inhibit HIV. In this research, two dimensional quantitative structure-activity relationships (2D-QSAR) of fullerene derivatives against HIV-PR activity were employed as a powerful tool for elucidation the relationships between structure and experimental observations. QSAR study of 49 fullerene derivatives was performed by employing stepwise-MLR, GAPLS-MLR, and PCA-MLR models for variable (descriptor) selection and model construction. QSAR models were obtained with higher ability to predict the activity of the fullerene derivatives against HIV-PR by a correlation coefficient (R2training) of 0.942, 0.89, and 0.87 as well as R2test values of 0.791, 0.67and 0.674 for stepwise-MLR, GAPLS-MLR, and PCA -MLR models, respectively. Leave-one-out cross-validated correlation coefficient (R2CV) and Y-randomization methods confirmed the models robustness. The descriptors indicated that the HIV-PR inhibition depends on the van der Waals volumes, polarizability, bond order between two atoms and electronegativities of fullerenes derivatives. 2D-QSAR simulation without needing receptor's active site geometry, resulted in useful descriptors mainly denoting ;C60 backbone-functional groups; and ;C60 functional groups; properties. Both properties in fullerene refer to the ligand fitness and improvement van der Waals interactions with HIV-PR active site. Therefore, the QSAR models can be used in the search for novel HIV-PR inhibitors based on fullerene derivatives.

  15. On the continuous spectrum electromagnetic radiation in electron-fullerene collision

    International Nuclear Information System (INIS)

    Amusia, M.Y.

    1995-01-01

    It is demonstrated that the electromagnetic radiation spectrum in electron-fullerene collisions is dominated by a huge maximum of multielectron nature, similar to that already predicted and observed in photoabsorption. Due to coherence, the intensity of this radiation is much stronger than the sum of the intensities of isolated atoms. Experimental detection of such radiation would be of great importance for understanding the mechanism of its formation and for investigating fullerene structures. A paper describing these results was published

  16. Analysis of Co-Tunneling Current in Fullerene Single-Electron Transistor

    Science.gov (United States)

    KhademHosseini, Vahideh; Dideban, Daryoosh; Ahmadi, MohammadTaghi; Ismail, Razali

    2018-05-01

    Single-electron transistors (SETs) are nano devices which can be used in low-power electronic systems. They operate based on coulomb blockade effect. This phenomenon controls single-electron tunneling and it switches the current in SET. On the other hand, co-tunneling process increases leakage current, so it reduces main current and reliability of SET. Due to co-tunneling phenomenon, main characteristics of fullerene SET with multiple islands are modelled in this research. Its performance is compared with silicon SET and consequently, research result reports that fullerene SET has lower leakage current and higher reliability than silicon counterpart. Based on the presented model, lower co-tunneling current is achieved by selection of fullerene as SET island material which leads to smaller value of the leakage current. Moreover, island length and the number of islands can affect on co-tunneling and then they tune the current flow in SET.

  17. Thermal and optical performance of encapsulation systems for flat-plate photovoltaic modules

    Science.gov (United States)

    Minning, C. P.; Coakley, J. F.; Perrygo, C. M.; Garcia, A., III; Cuddihy, E. F.

    1981-01-01

    The electrical power output from a photovoltaic module is strongly influenced by the thermal and optical characteristics of the module encapsulation system. Described are the methodology and computer model for performing fast and accurate thermal and optical evaluations of different encapsulation systems. The computer model is used to evaluate cell temperature, solar energy transmittance through the encapsulation system, and electric power output for operation in a terrestrial environment. Extensive results are presented for both superstrate-module and substrate-module design schemes which include different types of silicon cell materials, pottants, and antireflection coatings.

  18. Accelerated/abbreviated test methods of the low-cost silicon solar array project. Study 4, task 3: Encapsulation

    Science.gov (United States)

    Kolyer, J. M.; Mann, N. R.

    1977-01-01

    Methods of accelerated and abbreviated testing were developed and applied to solar cell encapsulants. These encapsulants must provide protection for as long as 20 years outdoors at different locations within the United States. Consequently, encapsulants were exposed for increasing periods of time to the inherent climatic variables of temperature, humidity, and solar flux. Property changes in the encapsulants were observed. The goal was to predict long term behavior of encapsulants based upon experimental data obtained over relatively short test periods.

  19. Dynamically fluctuating electric dipole moments in fullerene-based magnets.

    Science.gov (United States)

    Kambe, Takashi; Oshima, Kokichi

    2014-09-19

    We report here the direct evidence of the existence of a permanent electric dipole moment in both crystal phases of a fullerene-based magnet--the ferromagnetic α-phase and the antiferromagnetic α'-phase of tetra-kis-(dimethylamino)-ethylene-C60 (TDAE-C60)--as determined by dielectric measurements. We propose that the permanent electric dipole originates from the pairing of a TDAE molecule with surrounding C60 molecules. The two polymorphs exhibit clear differences in their dielectric responses at room temperature and during the freezing process with dynamically fluctuating electric dipole moments, although no difference in their room-temperature structures has been previously observed. This result implies that two polymorphs have different local environment around the molecules. In particular, the ferromagnetism of the α-phase is founded on the homogeneous molecule displacement and orientational ordering. The formation of the different phases with respect to the different rotational states in the Jahn-Teller distorted C60s is also discussed.

  20. Polymer-fullerene bulk heterojunction solar cells

    NARCIS (Netherlands)

    Janssen, RAJ; Hummelen, JC; Saricifti, NS

    Nanostructured phase-separated blends, or bulk heterojunctions, of conjugated Polymers and fullerene derivatives form a very attractive approach to large-area, solid-state organic solar cells.The key feature of these cells is that they combine easy, processing from solution on a variety of

  1. Fullerenes and nanostructured plastic solar cells

    NARCIS (Netherlands)

    Knol, Joop; Hummelen, Jan C.; Kuzmany, H; Fink, J; Mehring, M; Roth, S

    1998-01-01

    We report on the present on the present status of the plastic solar cell and on the design of fullerene derivatives and pi-conjugated donor molecules that can function as acceptor-donor pairs and (supra-) molecular building blocks in organized, nanostructured interpenetrating networks, forming a

  2. Electronic stopping in ion-fullerene collisions

    NARCIS (Netherlands)

    Schlathölter, T.A.; Hadjar, O.; Hoekstra, R.A.; Morgenstern, R.W.H.

    The electronic friction experienced by a multiply charged ion interacting with the valence electrons of a single fullerene is an important aspect of the collision dynamics. It manifests itself in a considerable loss of projectile kinetic energy transferred to the target, resulting in excitation. The

  3. Fullerene C60 hydroxylated with peracetic acid and its radioprotective effects tested in vivo

    International Nuclear Information System (INIS)

    Zemanova, Eva; Klouda, Karel

    2011-01-01

    A water-soluble C60 derivative (DF) was obtained by reacting C60 fullerene with peracetic acid followed by hydrolysis. The highest DF concentration achieved at room temperature and neutral pH was 443.2 mg/L. TEM and SEM observations and FTIR spectra were interpreted The possibility of DF application as a substance improving resistance to ionizing radiation (6X, linear accelerator, 10-70 Gry) was investigated in vivo using juvenile (2.5 months) Danio rerio without sex selection. A prolonged toxicity test gave evidence that an aqueous DF solution 147 mg/L is not toxic to this fish species in the long run. A radioprotective effect was demonstrated for a five-day exposure to this solution prior to irradiation. The survival times after irradiation with 10 to 70 Gy doses were up to 70% longer. The LD50 values for various times of survival roughly doubled. The effect is preventive rather than curative and is associated with the capability of fullerenes to eliminate free radicals and oxidants formed by radiolysis of water. (orig.)

  4. Photophysical and photochemical investigations of fullerene presence in amorphous hydrogenated carbon films

    Science.gov (United States)

    Chen, J. Q.; Meeker, D. L.; Barashkov, N. N.

    1997-07-01

    The plasma-enhanced chemical vapor deposition system was used to grow amorphous hydrogenated carbon films deposited on silicon substrates. Extracts of the films were obtained by treatment with boiling cyclohexane solvent. The absorption spectra of these extracts showed the existence of small quantities of fullerenes. Using the molar extinction coefficient of C60 in cyclohexane, the mass of fullerenes in the films was estimated to be about 0.019 mg. C60 induced fluorescence quenching of anthracene was also observed. Additional evidence for the presence of fullerenes was based on their capability to accelerate the photo-oxidation of anthracene through the generation of singlet oxygen with a high quantum yield under ultraviolet irradiation.

  5. Chironomus riparius exposure to fullerene-contaminated sediment results in oxidative stress and may impact life cycle parameters

    International Nuclear Information System (INIS)

    Waissi, G.C.; Bold, S.; Pakarinen, K.; Akkanen, J.; Leppänen, M.T.; Petersen, E.J.; Kukkonen, J.V.K.

    2017-01-01

    Highlights: • FullerenesC_6_0 were tested to C. riparius with acute and chronic exposures. • The rapid uptake of fullerenes by C. riparius observed after an acute experiment. • Oxidative stress was localized in tissues under microvilli layer. - Abstract: A key component of understanding the potential environmental risks of fullerenes (C_6_0) is their potential effects on benthic invertebrates. Using the sediment dwelling invertebrate Chironomus riparius we explored the effects of acute (12 h and 24 h) and chronic (10 d, 15 d, and 28 d) exposures of sediment associated fullerenes. The aims of this study were to assess the impact of exposure to C_6_0 in the sediment top layer ((0.025, 0.18 and 0.48) C_6_0 mg/cm"2) on larval growth, oxidative stress and emergence rates and to quantify larval body burdens in similarly exposed organisms. Oxidative stress localization was observed in the tissues next to the microvilli and exoskeleton through a method for identifying oxidative stress reactions generated by reactive oxygen species. Rapid intake of fullerenes was shown in acute experiments, whereas body residues decreased after chronic exposure. Transmission electron microscopy analysis revealed oxidative damage and structural changes in cells located between the lipid droplets and next to the microvilli layer in fullerene exposed samples. Fullerene associated sediments also caused changes in the emergence rate of males and females, suggesting that the cellular interactions described above or other effects from the fullerenes may influence reproduction rates.

  6. The encapsulation and intracellular delivery of trehalose using a thermally responsive nanocapsule

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Wujie; He Xiaoming [Department of Mechanical Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States); Rong Jianhua; Wang Qian [Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208 (United States)], E-mail: xmhe@sc.edu

    2009-07-08

    The thermally responsive wall permeability of an empty core-shell structured Pluronic nanocapsule (together with its temperature dependent size and surface charge) was successfully utilized for encapsulation, intracellular delivery, and controlled release of trehalose, a highly hydrophilic small (M{sub W} = 342 D) molecule (a disaccharide of glucose) that is exceptional for long-term stabilization of biologicals (particularly at ambient temperatures). It was found that trehalose can be physically encapsulated in the nanocapsule using a soaking-freeze-drying-heating procedure. The nanocapsule is capable of physically withholding trehalose with negligible release in hours for cellular uptake at 37 deg. C when its wall permeability is low. A quick release of the encapsulated sugar can be achieved by thermally cycling the nanocapsule between 37 and 22 deg. C (or lower). A significant amount of trehalose (up to 0.3 M) can be delivered into NIH 3T3 fibroblasts by incubating the cells with the trehalose-encapsulated nanocapsules at 37 deg. C for 40 min. Moreover, cytotoxicity of the nanocapsule for the purpose of intracellular delivery of trehalose was found to be negligible. Altogether, the thermally responsive nanocapsule is effective for intracellular delivery of trehalose, which is critical for the long-term stabilization of mammalian cells at ambient temperatures and the eventual success of modern cell-based medicine.

  7. Synthesis of Polythiophene–Fullerene Hybrid Additives as Potential Compatibilizers of BHJ Active Layers

    Directory of Open Access Journals (Sweden)

    Sofia Kakogianni

    2016-12-01

    Full Text Available Perfluorophenyl functionalities have been introduced as side chain substituents onto regioregular poly(3-hexyl thiophene (rr-P3HT, under various percentages. These functional groups were then converted to azides which were used to create polymeric hybrid materials with fullerene species, either C60 or C70. The P3HT–fullerene hybrids thus formed were thereafter evaluated as potential compatibilizers of BHJ active layers comprising P3HT and fullerene based acceptors. Therefore, a systematic investigation of the optical and morphological properties of the purified polymer–fullerene hybrid materials was performed, via different complementary techniques. Additionally, P3HT:PC70BM blends containing various percentages of the herein synthesized hybrid material comprising rr-P3HT and C70 were investigated via Transmission Electron Microscopy (TEM in an effort to understand the effect of the hybrids as additives on the morphology and nanophase separation of this typically used active layer blend for OPVs.

  8. Analysis of Double-encapsulated Fuel Rods

    Energy Technology Data Exchange (ETDEWEB)

    Hales, Jason Dean [Idaho National Laboratory; Medvedev, Pavel G [Idaho National Laboratory; Novascone, Stephen Rhead [Idaho National Laboratory; Perez, Danielle Marie [Idaho National Laboratory; Williamson, Richard L [Idaho National Laboratory

    2014-09-01

    In an LWR fuel rod, the cladding encapsulates the fuel, contains fission products, and transfers heat directly to the water coolant. In some situations, it may be advantageous to separate the cladding from the coolant through use of a secondary cladding or capsule. This may be done to increase confidence that the fuel or fission products will not mix with the coolant, to provide a mechanism for controlling the rod temperature, or to place multiple experimental rodlets within a single housing. With an axisymmetric assumption, it is possible to derive closed-form expressions for the temperature profile in a fuel rod using radially-constant thermal conductivity in the fuel. This is true for both a traditional fuel-cladding rod and a double-encapsulated fuel (fuel, cladding, capsule) configuration. Likewise, it is possible to employ a fuel performance code to analyse both a traditional and a double-encapsulated fuel. In the case of the latter, two sets of gap heat transfer conditions must be imposed. In this work, we review the equations associated with radial heat transfer in a cylindrical system, present analytic and computational results for a postulated power and gas mixture history for IFA-744, and describe the analysis of the AFC-2A, 2B metallic fuel alloy experiments at the Advanced Test Reactor, including the effect of a release of fission products into the cladding-capsule gap. The computational results for these two cases were obtained using BISON, a fuel performance code under development at Idaho National Laboratory.

  9. THERMOOXIDATIVE STABILITY OF JET FUEL WITH FULLERENES AS AN ADDITIVE

    Directory of Open Access Journals (Sweden)

    С.В. Іванов

    2012-10-01

    Full Text Available  Heating of fuels in presence of oxygen reduces their thermal-oxidative stability, leads to a solid phase in the form of sludge and tar, which, sedimented at the details of the fuel system, change its characteristics and cause contamination of fuel filters and injectors, spool control sticking, reduce efficiency of heat exchangers. Nanomaterials, performance of which is considerably superior to the natural materials, are the basis for the movement of humanity's progress. Therefore, with a develpoment of technologies it has become necessary to carry out a research of modified additives – fullerens, to improve an oxidative stability of fuels. We have carried out an investigation of thermal-oxidative stability of fuel RT as a function of additive C60 concentration. The results has shown that even 0,043 g/l fullerene addition as an antioxidant, reduces the amount of sediment in the fuel almost by half. Usage of fullerenes for improvement of petroleum products performance properties is a promising area of research.

  10. Use of Electrohydrodynamic Processing for Encapsulation of Sensitive Bioactive Compounds and Applications in Food

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; García Moreno, Pedro Jesús; Mendes, Ana Carina Loureiro

    2018-01-01

    or in the gastrointestinal tract. For that purpose, efficient encapsulation of the compounds may be required. Spray drying is one of the most commonly used encapsulation techniques in the food industry, but it uses high temperature, which can lead to decomposition of the bioactive compounds. Recently, alternative...

  11. A Sensitive Gold Nanoplasmonic SERS Quantitative Analysis Method for Sulfate in Serum Using Fullerene as Catalyst

    Directory of Open Access Journals (Sweden)

    Chongning Li

    2018-04-01

    Full Text Available Fullerene exhibited strong catalysis of the redox reaction between HAuCl4 and trisodium citrate to form gold nanoplasmon with a strong surface-enhanced Raman scattering (SERS effect at 1615 cm−1 in the presence of Vitoria blue B molecule probes. When fullerene increased, the SERS peak enhanced linearly due to formation of more AuNPs as substrate. Upon addition of Ba2+, Ba2+ ions adsorb on the fullerene surface to inhibit the catalysis of fullerene that caused the SERS peak decreasing. Analyte SO42− combined with Ba2+ to form stable BaSO4 precipitate to release free fullerene that the catalysis recovered, and the SERS intensity increased linearly. Thus, a new SERS quantitative analysis method was established for the detection of sulfate in serum samples, with a linear range of 0.03–3.4 μM.

  12. Fullerene nanostructures, monolayers and thin films

    International Nuclear Information System (INIS)

    Cotier, B.N.

    2000-10-01

    The interaction of submonolayer, monolayer and multilayer coverages of C 60 with the Ag/Si(111)-(√3x√3)R30 deg. (√3Ag/Si) and Si(111)-7x7 surfaces has been investigated using atomic force microscopy (AFM), photoelectron spectroscopy (PES) and ultra high vacuum scanning tunneling microscopy (UHV-STM). It is shown that it is possible to preserve the √3Ag/Si surface, normally corrupted by exposure to air, in ambient conditions when immersed beneath a few layers of C 60 molecules. Upon removal of the fullerene layers in the UHV-STM some corruption is observed which is linked to the morphology of the fullerene film (defined by the nature of the interaction of C 60 with √3Ag/Si). This technique opens up the possibility of performing experiments on the clean √3Ag/Si surface outside of UHV conditions. With the discovery of techniques whereby structures may be formed that are composed of only a few atoms/molecules, there is a need to perform electrical measurements in order to probe the fascinating properties of these 'nano-scale' devices. Using AFM, PES and STM evaporated metals and ion implantation have been investigated as materials for use in forming sub-micron scale contacts to nanostructures. It is found that ion implantation is a more promising approach after studying the response to annealing of treated surfaces. Electrical measurements between open/short circuited contacts and through Ag films clearly demonstrate the validity of the method, further confirmed by a PES study which probes the chemical nature of the near surface region of ion-implanted samples. Attempts have been made to form nanostructure templates between sub-micron scale contacts as a possible precursor to forming nanostructures. The bonding state of C 60 molecules on the Si(111)-7x7 surface has been in dispute for many years. To properly understand the system a comprehensive AFM, PES and STM study has been performed. PES results indicate covalent bond formation, with the number of bonds

  13. Diazo compounds in the chemistry of fullerenes

    International Nuclear Information System (INIS)

    Tuktarov, Airat R; Dzhemilev, Usein M

    2010-01-01

    Experimental and theoretical data on the reactions of different diazo compounds (diazomethane, its derivatives, cyclic diazo compounds and diazocarbonyl compounds) with fullerenes are summarized. The structures and stereochemistry of cycloadducts formed in these reactions are considered.

  14. Diazo compounds in the chemistry of fullerenes

    Science.gov (United States)

    Tuktarov, Airat R.; Dzhemilev, Usein M.

    2010-09-01

    Experimental and theoretical data on the reactions of different diazo compounds (diazomethane, its derivatives, cyclic diazo compounds and diazocarbonyl compounds) with fullerenes are summarized. The structures and stereochemistry of cycloadducts formed in these reactions are considered.

  15. Diazo compounds in the chemistry of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Tuktarov, Airat R; Dzhemilev, Usein M [Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa (Russian Federation)

    2010-09-14

    Experimental and theoretical data on the reactions of different diazo compounds (diazomethane, its derivatives, cyclic diazo compounds and diazocarbonyl compounds) with fullerenes are summarized. The structures and stereochemistry of cycloadducts formed in these reactions are considered.

  16. Investigation of test methods, material properties, and processes for solar cell encapsulants. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Willis, P. B.; Baum, B.; Schnitzer, H. S.

    1980-07-01

    The goal of this program is to identify, evaluate, and recommend encapsulant materials and processes for the production of cost-effective, long-life solar cell modules. Technical activities during the past year have covered a number of topics and have emphasized the development of solar module encapsulation technology that employs ethylene/vinyl acetate, copolymer (EVA) as the pottant. These activities have included: (1) continued production of encapsulation grade EVA in sheet form to meet the needs of the photovoltaic industry; (2) investigations of three non-blocking techniques for EVA sheet; (3) performed an economic analysis of the high volume production of each pottant in order to estimate the large volume selling price (EVA, EPDM, aliphatic urethane, PVC plastisol, and butyl acrylate); (4) initiated an experimental corrosion protection program to determine if metal components could be successfully protected by encapsulation; (5) began an investigation to determine the maximum temperature which can be tolerated by the candidate pottant material in the event of hot spot heating or other temperature override; (6) continuation of surveys of potentially useful outer cover materials; and (7) continued with the accelerated artificial weathering of candidate encapsulation materials. Study results are presented. (WHK)

  17. The production of volvox spheres and their potential application in multi-drugs encapsulation and release

    Energy Technology Data Exchange (ETDEWEB)

    Teong, Benjamin; Chang, Shwu Jen [Department of Biomedical Engineering, I-Shou University, College of Medicine, No. 8, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City 82445, Taiwan (China); Chuang, Chin Wen [Department of Electrical Engineering, I-Shou University, No. 1, Sec. 1, Syuecheng Rd., Dashu District, Kaohsiung City 84001, Taiwan (China); Kuo, Shyh Ming, E-mail: smkuo@isu.edu.tw [Department of Biomedical Engineering, I-Shou University, College of Medicine, No. 8, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City 82445, Taiwan (China); Manousakas, Ioannis, E-mail: i.manousakas@ieee.org [Department of Biomedical Engineering, I-Shou University, College of Medicine, No. 8, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City 82445, Taiwan (China)

    2013-12-01

    Volvox sphere is a bio-mimicking concept of an innovative biomaterial structure of a sphere that contains smaller microspheres which then encapsulate chemicals, drugs and/or cells. The volvox spheres were produced via a high-voltage electrostatic field system, using alginate as the primary material. Encapsulated materials tested in this study include staining dyes, nuclear fast red and trypan blue, and model drugs, bovine serum albumin (BSA) and cytochrome c (CytC). The external morphology of the volvox spheres was observed via electron microscopy whereas the internal structure of the volvox spheres was observed via an optical microscope with the aid of the staining dyes, since alginate is colorless and transparent. The diameter of the microspheres was about 200 to 300 μm, whereas the diameter of the volvox spheres was about 1500 μm. Volvox spheres were durable, retaining about 95% of their mass after 4 weeks. Factors affecting entrapment efficiency, such as temperature and concentration of the bivalent cross-linker, were compared followed by a 7-day in vitro release study. The encapsulation efficiency of CytC within the microspheres was higher at cold (∼ 4 °C) and warm (∼ 50 °C) temperatures whereas temperature has no obvious effect on the BSA encapsulation. High crosslinking concentration (25% w/v) of calcium chloride has resulted higher entrapment efficiency for BSA but not for CytC. Furthermore, volvox spheres showed a different release pattern of BSA and CytC when compared to microspheres encapsulating BSA and CytC. Despite the fact that the mechanisms behind remain unclear and further investigation is required, this study demonstrates the potential of the volvox spheres for drug delivery. - Highlights: • Volvox spheres contain smaller microspheres which can encapsulate drugs and/or cells. • Alginate is the primary material for the inner and outer spheres. • Encapsulation is affected by the crosslinking, temperature and the selection of drugs.

  18. The production of volvox spheres and their potential application in multi-drugs encapsulation and release

    International Nuclear Information System (INIS)

    Teong, Benjamin; Chang, Shwu Jen; Chuang, Chin Wen; Kuo, Shyh Ming; Manousakas, Ioannis

    2013-01-01

    Volvox sphere is a bio-mimicking concept of an innovative biomaterial structure of a sphere that contains smaller microspheres which then encapsulate chemicals, drugs and/or cells. The volvox spheres were produced via a high-voltage electrostatic field system, using alginate as the primary material. Encapsulated materials tested in this study include staining dyes, nuclear fast red and trypan blue, and model drugs, bovine serum albumin (BSA) and cytochrome c (CytC). The external morphology of the volvox spheres was observed via electron microscopy whereas the internal structure of the volvox spheres was observed via an optical microscope with the aid of the staining dyes, since alginate is colorless and transparent. The diameter of the microspheres was about 200 to 300 μm, whereas the diameter of the volvox spheres was about 1500 μm. Volvox spheres were durable, retaining about 95% of their mass after 4 weeks. Factors affecting entrapment efficiency, such as temperature and concentration of the bivalent cross-linker, were compared followed by a 7-day in vitro release study. The encapsulation efficiency of CytC within the microspheres was higher at cold (∼ 4 °C) and warm (∼ 50 °C) temperatures whereas temperature has no obvious effect on the BSA encapsulation. High crosslinking concentration (25% w/v) of calcium chloride has resulted higher entrapment efficiency for BSA but not for CytC. Furthermore, volvox spheres showed a different release pattern of BSA and CytC when compared to microspheres encapsulating BSA and CytC. Despite the fact that the mechanisms behind remain unclear and further investigation is required, this study demonstrates the potential of the volvox spheres for drug delivery. - Highlights: • Volvox spheres contain smaller microspheres which can encapsulate drugs and/or cells. • Alginate is the primary material for the inner and outer spheres. • Encapsulation is affected by the crosslinking, temperature and the selection of drugs.

  19. Adsorption of amino acids by fullerenes and fullerene nanowhiskers

    International Nuclear Information System (INIS)

    Hashizume, Hideo; Hirata, Chika; Fujii, Kazuko; Miyazawa, Kun’ichi

    2015-01-01

    We have investigated the adsorption of some amino acids and an oligopeptide by fullerene (C 60 ) and fullerene nanowhiskers (FNWs). C 60 and FNWs hardly adsorbed amino acids. Most of the amino acids used have a hydrophobic side chain. Ala and Val, with an alkyl chain, were not adsorbed by the C 60 or FNWs. Trp, Phe and Pro, with a cyclic structure, were not adsorbed by them either. The aromatic group of C 60 did not interact with the side chain. The carboxyl or amino group, with the frame structure of an amino acid, has a positive or negative charge in solution. It is likely that the C 60 and FNWs would not prefer the charged carboxyl or amino group. Tri-Ala was adsorbed slightly by the C 60 and FNWs. The carboxyl or amino group is not close to the center of the methyl group of Tri-Ala. One of the methyl groups in Tri-Ala would interact with the aromatic structure of the C 60 and FNWs. We compared our results with the theoretical interaction of 20 bio-amino acids with C 60 . The theoretical simulations showed the bonding distance between C 60 and an amino acid and the dissociation energy. The dissociation energy was shown to increase in the order, Val < Phe < Pro < Asp < Ala < Trp < Tyr < Arg < Leu. However, the simulation was not consistent with our experimental results. The adsorption of albumin (a protein) by C 60 showed the effect on the side chains of Try and Trp. The structure of albumin was changed a little by C 60 . In our study Try and Tyr were hardly adsorbed by C 60 and FNWs. These amino acids did not show a different adsorption behavior compared with other amino acids. The adsorptive behavior of mono-amino acids might be different from that of polypeptides. (paper)

  20. Recombination in polymer:Fullerene solar cells with open-circuit voltages approaching and exceeding 1.0 V

    KAUST Repository

    Hoke, Eric T.

    2012-09-14

    Polymer:fullerene solar cells are demonstrated with power conversion efficiencies over 7% with blends of PBDTTPD and PC 61 BM. These devices achieve open-circuit voltages ( V oc ) of 0.945 V and internal quantum efficiencies of 88%, making them an ideal candidate for the large bandgap junction in tandem solar cells. V oc \\'s above 1.0 V are obtained when the polymer is blended with multiadduct fullerenes; however, the photocurrent and fill factor are greatly reduced. In PBDTTPD blends with multiadduct fullerene ICBA, fullerene emission is observed in the photoluminescence and electroluminescence spectra, indicating that excitons are recombining on ICBA. Voltage-dependent, steady state and time-resolved photoluminescence measurements indicate that energy transfer occurs from PBDTTPD to ICBA and that back hole transfer from ICBA to PBDTTPD is inefficient. By analyzing the absorption and emission spectra from fullerene and charge transfer excitons, we estimate a driving free energy of -0.14 ± 0.06 eV is required for efficient hole transfer. These results suggest that the driving force for hole transfer may be too small for efficient current generation in polymer:fullerene solar cells with V oc values above 1.0 V and that non-fullerene acceptor materials with large optical gaps ( > 1.7 eV) may be required to achieve both near unity internal quantum efficiencies and values of V oc exceeding 1.0 V. © 2013 WILEY-VCH Verlag GmbH and Co.

  1. Recombination in polymer:Fullerene solar cells with open-circuit voltages approaching and exceeding 1.0 V

    KAUST Repository

    Hoke, Eric T.; Vandewal, Koen; Bartelt, Jonathan A.; Mateker, William R.; Douglas, Jessica D.; Noriega, Rodrigo; Graham, Kenneth; Frechet, Jean; Salleo, Alberto; McGehee, Michael D.

    2012-01-01

    Polymer:fullerene solar cells are demonstrated with power conversion efficiencies over 7% with blends of PBDTTPD and PC 61 BM. These devices achieve open-circuit voltages ( V oc ) of 0.945 V and internal quantum efficiencies of 88%, making them an ideal candidate for the large bandgap junction in tandem solar cells. V oc 's above 1.0 V are obtained when the polymer is blended with multiadduct fullerenes; however, the photocurrent and fill factor are greatly reduced. In PBDTTPD blends with multiadduct fullerene ICBA, fullerene emission is observed in the photoluminescence and electroluminescence spectra, indicating that excitons are recombining on ICBA. Voltage-dependent, steady state and time-resolved photoluminescence measurements indicate that energy transfer occurs from PBDTTPD to ICBA and that back hole transfer from ICBA to PBDTTPD is inefficient. By analyzing the absorption and emission spectra from fullerene and charge transfer excitons, we estimate a driving free energy of -0.14 ± 0.06 eV is required for efficient hole transfer. These results suggest that the driving force for hole transfer may be too small for efficient current generation in polymer:fullerene solar cells with V oc values above 1.0 V and that non-fullerene acceptor materials with large optical gaps ( > 1.7 eV) may be required to achieve both near unity internal quantum efficiencies and values of V oc exceeding 1.0 V. © 2013 WILEY-VCH Verlag GmbH and Co.

  2. Photophysical and photochemical investigations of fullerene presence in amorphous hydrogenated carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.Q.; Meeker, D.L. [The Physics Program, University of Texas at Dallas, Richardson, Texas 75083 (United States); Barashkov, N.N. [Department of Chemistry, University of Texas at Dallas, Richardson, Texas 75083 (United States)

    1997-07-01

    The plasma-enhanced chemical vapor deposition system was used to grow amorphous hydrogenated carbon films deposited on silicon substrates. Extracts of the films were obtained by treatment with boiling cyclohexane solvent. The absorption spectra of these extracts showed the existence of small quantities of fullerenes. Using the molar extinction coefficient of C{sub 60} in cyclohexane, the mass of fullerenes in the films was estimated to be about 0.019 mg. C{sub 60} induced fluorescence quenching of anthracene was also observed. Additional evidence for the presence of fullerenes was based on their capability to accelerate the photo-oxidation of anthracene through the generation of singlet oxygen with a high quantum yield under ultraviolet irradiation. {copyright} {ital 1997 American Institute of Physics.}

  3. Fullerene monolayer formation by spray coating

    Czech Academy of Sciences Publication Activity Database

    Červenka, Jiří; Flipse, C.F.J.

    2010-01-01

    Roč. 21, č. 6 (2010), 065302/1-065302/7 ISSN 0957-4484 Institutional research plan: CEZ:AV0Z10100521 Keywords : monolayer * spray coating * fullerene * atomic force microscopy * scanning tunnelling microscopy * electronic structure * graphite * gold Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.644, year: 2010

  4. Effects of dissolving microneedle fabrication parameters on the activity of encapsulated lysozyme.

    Science.gov (United States)

    Fakhraei Lahiji, Shayan; Jang, Yoojung; Ma, Yonghao; Dangol, Manita; Yang, Huisuk; Jang, Mingyu; Jung, Hyungil

    2018-05-30

    Dissolving microneedle (DMN) is referred to a microscale needle that encapsulates drug(s) within a biodegradable polymer matrix and delivers it into the skin in a minimally invasive manner. Although vast majority of studies have emphasized DMN as an efficient drug delivery system, the activity of DMN-encapsulated proteins or antigens can be significantly affected due to a series of thermal, physical and chemical stress factors during DMN fabrication process and storage period. The objective of this study is to evaluate the effects of DMN fabrication parameters including polymer type, polymer concentration, fabrication and storage temperature, and drying conditions on the activity of the encapsulated therapeutic proteins by employing lysozyme (LYS) as a model protein. Our results indicate that a combination of low temperature fabrication, mild drying condition, specific polymer concentration, and addition of protein stabilizer can maintain the activity of encapsulated LYS up to 99.8 ± 3.8%. Overall, findings of this study highlight the importance of optimizing DMN fabrication parameters and paves way for the commercialization of an efficient delivery system for therapeutics. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Synthesis and Isolation of the Titanium-Scandium Endohedral Fullerenes-Sc2 TiC@Ih -C80 , Sc2 TiC@D5h -C80 and Sc2 TiC2 @Ih -C80 : Metal Size Tuning of the Ti(IV) /Ti(III) Redox Potentials.

    Science.gov (United States)

    Junghans, Katrin; Ghiassi, Kamran B; Samoylova, Nataliya A; Deng, Qingming; Rosenkranz, Marco; Olmstead, Marilyn M; Balch, Alan L; Popov, Alexey A

    2016-09-05

    The formation of endohedral metallofullerenes (EMFs) in an electric arc is reported for the mixed-metal Sc-Ti system utilizing methane as a reactive gas. Comparison of these results with those from the Sc/CH4 and Ti/CH4 systems as well as syntheses without methane revealed a strong mutual influence of all key components on the product distribution. Whereas a methane atmosphere alone suppresses the formation of empty cage fullerenes, the Ti/CH4 system forms mainly empty cage fullerenes. In contrast, the main fullerene products in the Sc/CH4 system are Sc4 C2 @C80 (the most abundant EMF from this synthesis), Sc3 C2 @C80 , isomers of Sc2 C2 @C82 , and the family Sc2 C2 n (2 n=74, 76, 82, 86, 90, etc.), as well as Sc3 CH@C80 . The Sc-Ti/CH4 system produces the mixed-metal Sc2 TiC@C2 n (2 n=68, 78, 80) and Sc2 TiC2 @C2 n (2 n=80) clusterfullerene families. The molecular structures of the new, transition-metal-containing endohedral fullerenes, Sc2 TiC@Ih -C80 , Sc2 TiC@D5h -C80 , and Sc2 TiC2 @Ih -C80 , were characterized by NMR spectroscopy. The structure of Sc2 TiC@Ih -C80 was also determined by single-crystal X-ray diffraction, which demonstrated the presence of a short Ti=C double bond. Both Sc2 TiC- and Sc2 TiC2 -containing clusterfullerenes have Ti-localized LUMOs. Encapsulation of the redox-active Ti ion inside the fullerene cage enables analysis of the cluster-cage strain in the endohedral fullerenes through electrochemical measurements. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  6. Chironomus riparius exposure to fullerene-contaminated sediment results in oxidative stress and may impact life cycle parameters

    Energy Technology Data Exchange (ETDEWEB)

    Waissi, G.C., E-mail: greta.waissi@uef.fi [Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu (Finland); Bold, S. [GEOMAR Helmholtz Centre of Ocean for Research Kiel (Germany); Pakarinen, K.; Akkanen, J. [Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu (Finland); Leppänen, M.T. [Finnish Environment Institute, Jyväskylä (Finland); Petersen, E.J. [Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD (United States); Kukkonen, J.V.K. [University of Jyväskylä, Department of Biological and Environmental Science, Jyväskylä (Finland)

    2017-01-15

    Highlights: • FullerenesC{sub 60} were tested to C. riparius with acute and chronic exposures. • The rapid uptake of fullerenes by C. riparius observed after an acute experiment. • Oxidative stress was localized in tissues under microvilli layer. - Abstract: A key component of understanding the potential environmental risks of fullerenes (C{sub 60}) is their potential effects on benthic invertebrates. Using the sediment dwelling invertebrate Chironomus riparius we explored the effects of acute (12 h and 24 h) and chronic (10 d, 15 d, and 28 d) exposures of sediment associated fullerenes. The aims of this study were to assess the impact of exposure to C{sub 60} in the sediment top layer ((0.025, 0.18 and 0.48) C{sub 60} mg/cm{sup 2}) on larval growth, oxidative stress and emergence rates and to quantify larval body burdens in similarly exposed organisms. Oxidative stress localization was observed in the tissues next to the microvilli and exoskeleton through a method for identifying oxidative stress reactions generated by reactive oxygen species. Rapid intake of fullerenes was shown in acute experiments, whereas body residues decreased after chronic exposure. Transmission electron microscopy analysis revealed oxidative damage and structural changes in cells located between the lipid droplets and next to the microvilli layer in fullerene exposed samples. Fullerene associated sediments also caused changes in the emergence rate of males and females, suggesting that the cellular interactions described above or other effects from the fullerenes may influence reproduction rates.

  7. Identifying the source of a strong fullerene envelope arising from laser desorption mass spectrometric analysis of meteoritic insoluble organic matter

    Science.gov (United States)

    Hammond, Matthew R.; Zare, Richard N.

    2008-11-01

    Insoluble organic matter (IOM) has been obtained from two carbonaceous chondrite meteorites and subjected to analysis by laser desorption mass spectrometry (LDMS) using standard operating conditions that were optimized for fullerene detection (3-6 μJ pulses at 337 nm focused to a spot size of approximately 100 μm in diameter). The preparation process yields no free C 60 in the IOM, and other experiments suggest that this material does not contain appreciable amounts of fullerenes. Nevertheless, a pronounced high-mass envelope is observed in LDMS, extending from 720 amu to about 4000 amu, with peaks spaced apart every 24 amu (corresponding to the gain or loss of C 2 units). We attribute this high-mass envelope to the existence of various fullerene molecules. The present work demonstrates that these fullerene molecules are created by the laser desorption laser ionization process under typical laser conditions used for studying free fullerenes in organic solvent extracts of natural samples (toluene and 1,2,4-trichlorobenzene). The implications of this false positive detection of fullerene molecules on the reports of fullerenes in other meteoritic samples have been investigated by introducing IOM into typical fullerene extraction procedures and examining the LDMS results. We found that IOM is capable of producing false positive signals in these experiments. The effect of ambient laboratory contamination producing fullerene signals is also described. It is found that extensive centrifugation of the meteoritic extracts is able to reduce the observed fullerene envelope, which points to an association of this envelope with IOM particulates that have passed through the filtering steps. We suggest the exercise of extreme caution in interpreting fullerene data from LDMS experiments.

  8. Fullerene-based materials for solar cell applications: design of novel acceptors for efficient polymer solar cells--a DFT study.

    Science.gov (United States)

    Mohajeri, Afshan; Omidvar, Akbar

    2015-09-14

    Fossil fuel alternatives, such as solar energy, are moving to the forefront in a variety of research fields. Polymer solar cells (PSCs) hold promise for their potential to be used as low-cost and efficient solar energy converters. PSCs have been commonly made from bicontinuous polymer:fullerene composites or so-called bulk heterojunctions. The conjugated polymer donors and the fullerene derivative acceptors are the key materials for high performance PSCs. In the present study, we have performed density functional theory calculations to investigate the electronic structures and magnetic properties of several representative C60 fullerene derivatives, seeking ways to improve their efficiency as acceptors of photovoltaic devices. In our survey, we have successfully correlated the LUMO energy level as well as chemical hardness, hyper-hardness, nucleus-independent chemical shift, and static dipole polarizability of PC60BM-like fullerene derivative acceptors with the experimental open circuit voltage of the photovoltaic device based on the P3HT:fullerene blend. The obtained structure-property correlations allow finding the best fullerene acceptor match for the P3HT donor. For this purpose, four new fullerene derivatives are proposed and the output parameters for the corresponding P3HT-based devices are predicted. It is found that the proposed fullerene derivatives exhibit better photovoltaic properties than the traditional PC60BM acceptor. The present study opens the way for manipulating fullerene derivatives and developing promising acceptors for solar cell applications.

  9. Fullerene C70 as a p-type donor in organic photovoltaic cells

    International Nuclear Information System (INIS)

    Zhuang, Taojun; Wang, Xiao-Feng; Sano, Takeshi; Kido, Junji; Hong, Ziruo; Li, Gang; Yang, Yang

    2014-01-01

    Fullerenes and their derivatives have been widely used as n-type materials in organic transistor and photovoltaic devices. Though it is believed that they shall be ambipolar in nature, there have been few direct experimental proofs for that. In this work, fullerene C 70 , known as an efficient acceptor, has been employed as a p-type electron donor in conjunction with 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile as an electron acceptor in planar-heterojunction (PHJ) organic photovoltaic (OPV) cells. High fill factors (FFs) of more than 0.70 were reliably achieved with the C 70 layer even up to 100 nm thick in PHJ cells, suggesting the superior potential of fullerene C 70 as the p-type donor in comparison to other conventional donor materials. The optimal efficiency of these unconventional PHJ cells was 2.83% with a short-circuit current of 5.33 mA/cm 2 , an open circuit voltage of 0.72 V, and a FF of 0.74. The results in this work unveil the potential of fullerene materials as donors in OPV devices, and provide alternative approaches towards future OPV applications.

  10. Encapsulation plant at Forsmark

    International Nuclear Information System (INIS)

    Nystroem, Anders

    2007-08-01

    SKB has already carried out a preliminary study of an encapsulation plant detached from Clab (Central interim storage for spent fuels). This stand-alone encapsulation plant was named FRINK and its assumed siting was the above-ground portion of the final repository, irrespective of the repository's location. The report previously presented was produced in cooperation with BNFL Engineering Ltd in Manchester and the fuel reception technical solution was examined by Gesellschaft fuer Nuklear-Service mbH (GNS) in Hannover and by Societe Generale pour les Techniques Nouvelles (SGN) in Paris. This report is an update of the earlier preliminary study report and is based on the assumption that the encapsulation plant and also the final repository will be sited in the Forsmark area. SKB's main alternative for siting the encapsulation plant is next to Clab. Planning of this facility is ongoing and technical solutions from the planning work have been incorporated in this report. An encapsulation plant placed in proximity to any final repository in Forsmark forms part of the alternative presentation in the application for permission to construct and operate an installation at Clab. The main technical difference between the planned encapsulation plant at Clab and an encapsulation plant at a final repository at Forsmark is how the fuel is managed and prepared before actual encapsulation. Fuel reception at the encapsulation plant in Forsmark would be dry, i.e. there would be no water-filled pools at the facility. Clab is used for verificatory fuel measurements, sorting and drying of the fuel before transport to Forsmark. This means that Clab will require a measure of rebuilding and supplementary equipment. In purely technical terms, the prospects for building an encapsulation plant sited at Forsmark are good. A description of the advantages and drawbacks of siting the encapsulation plant at Clab as opposed to any final repository at Forsmark is presented in a separate report

  11. Encapsulation plant at Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Nystroem, Anders

    2007-08-15

    SKB has already carried out a preliminary study of an encapsulation plant detached from Clab (Central interim storage for spent fuels). This stand-alone encapsulation plant was named FRINK and its assumed siting was the above-ground portion of the final repository, irrespective of the repository's location. The report previously presented was produced in cooperation with BNFL Engineering Ltd in Manchester and the fuel reception technical solution was examined by Gesellschaft fuer Nuklear-Service mbH (GNS) in Hannover and by Societe Generale pour les Techniques Nouvelles (SGN) in Paris. This report is an update of the earlier preliminary study report and is based on the assumption that the encapsulation plant and also the final repository will be sited in the Forsmark area. SKB's main alternative for siting the encapsulation plant is next to Clab. Planning of this facility is ongoing and technical solutions from the planning work have been incorporated in this report. An encapsulation plant placed in proximity to any final repository in Forsmark forms part of the alternative presentation in the application for permission to construct and operate an installation at Clab. The main technical difference between the planned encapsulation plant at Clab and an encapsulation plant at a final repository at Forsmark is how the fuel is managed and prepared before actual encapsulation. Fuel reception at the encapsulation plant in Forsmark would be dry, i.e. there would be no water-filled pools at the facility. Clab is used for verificatory fuel measurements, sorting and drying of the fuel before transport to Forsmark. This means that Clab will require a measure of rebuilding and supplementary equipment. In purely technical terms, the prospects for building an encapsulation plant sited at Forsmark are good. A description of the advantages and drawbacks of siting the encapsulation plant at Clab as opposed to any final repository at Forsmark is presented in a separate

  12. Plasma-chemical synthesis of carbon nanotubes and fullerenes to create frost-resistant composite building materials

    International Nuclear Information System (INIS)

    Semenov, A P; Smirnyagina, N N; Tsyrenov, B O; Dasheev, D E; Khaltarov, Z M

    2017-01-01

    This paper considers a method of synthesis fullerenes and carbon nanotubes at atmospheric pressure. Carbon evaporates into the plasma arc. The paper discusses the method of synthesis of helium at a pressure of 10 5 Pa. We show the dependence yield of fullerenes and carbon nanotubes from the buffer gas pressure. It has been found that the fullerene yield increased with increasing pressure. The obtained fullerenes and nanotubes find their application in the modification of construction materials. The use of carbon nanomodifiers in the modification of the construction is promising since their introduction significantly improves the physico-mechanical properties using a small quantity of additives. With the introduction of the carbon nanomodifier decrease the porosity of cement stone, which leads to high strength and frost-resistant indicators of the modified cement. (paper)

  13. Multiscale simulation of water flow past a C540 fullerene

    DEFF Research Database (Denmark)

    Walther, Jens Honore; Praprotnik, Matej; Kotsalis, Evangelos M.

    2012-01-01

    We present a novel, three-dimensional, multiscale algorithm for simulations of water flow past a fullerene. We employ the Schwarz alternating overlapping domain method to couple molecular dynamics (MD) of liquid water around the C540 buckyball with a Lattice–Boltzmann (LB) description for the Nav......We present a novel, three-dimensional, multiscale algorithm for simulations of water flow past a fullerene. We employ the Schwarz alternating overlapping domain method to couple molecular dynamics (MD) of liquid water around the C540 buckyball with a Lattice–Boltzmann (LB) description...

  14. Theory of normal and superconducting properties of fullerene-based solids

    International Nuclear Information System (INIS)

    Cohen, M.L.

    1992-10-01

    Recent experiments on the normal-state and superconducting properties of fullerene-based solids are used to constrain the proposal theories of the electronic nature of these materials. In general, models of superconductivity based on electron pairing induced by phonons are consistent with electronic band theory. The latter experiments also yield estimates of the parameters characterizing these type H superconductors. It is argued that, at this point, a ''standard model'' of phonons interacting with itinerant electrons may be a good first approximation for explaining the properties of the metallic fullerenes

  15. Effect of fullerene C(60 on ATPase activity and superprecipitation of skeletal muscle actomyosin

    Directory of Open Access Journals (Sweden)

    K. S. Andreichenko

    2013-04-01

    Full Text Available Creation of new biocompatible nanomaterials, which can exhibit the specific biological effects, is an important complex problem that requires the use of last accomplishments of biotechnology. The effect of pristine water-soluble fullerene C60 on ATPase activity and superprecipitation reaction of rabbit skeletal muscle natural actomyosin has been revealed, namely an increase of actomyosin superprecipitation and Мg2+, Са2+– and K+-ATPase activity by fullerene was investigated. We conclude that this finding offers a real possibility for the regulation of contraction-relaxation of skeletal muscle with fullerene C60.

  16. Nanostructured Al/Al4C3 composites reinforced with graphite or fullerene and manufactured by mechanical milling and spark plasma sintering

    International Nuclear Information System (INIS)

    Robles Hernández, F.C.; Calderon, H.A.

    2012-01-01

    Highlights: ► Fullerene mix (C 60 + C 70 + soot) is effective to manufacture nanostructured Al/Al 4 C 3 . ► Carbon in the fullerene mix is more reactive with Al that that present in graphite. ► A complete transformation of carbon into Al 4 C 3 is observed in the Al/fullerene. ► Milling and sintering conditions preserve the nanostructured nature of the composites. ► Hardness improvement: 375% Al/graphite and 582% for Al/fullerene composites. - Abstract: Nanostructured Al matrix composites with reinforcements of graphite or fullerene (C 60 + C 70 + soot) have been produced by mechanical milling and spark plasma sintering (SPS). X-ray diffraction and transmission electron microscopy show that C 60 + C 70 withstand longer mechanical milling/alloying times than graphite. Fullerene is a good control agent during mechanical alloying resulting in a denser Al/fullerene composite when compared to the Al/graphite one. A refinement mechanism that takes place during mechanical alloying of fullerene and graphite is experimentally found and correspondingly discussed. Such a mechanism plays a major role in the amorphization of graphite. The larger surface area of the fullerene mix after milling promotes a better interaction with Al and hence allows its complete transformation into Al 4 C 3 during the SPS process. The sintered products show an increase in hardness for the Al/fullerene composite of 6 times and only 4 times for the Al/graphite composite. The SPS technique shows to be an excellent method to transform the fullerene into Al 4 C 3 while preserving its nanostructured nature.

  17. Fullerene-based low-density superhard materials with tunable bandgaps

    Science.gov (United States)

    Cao, Ai-Hua; Zhao, Wen-Juan; Gan, Li-Hua

    2018-06-01

    Four carbon allotropes built from tetrahedral symmetrical fullerenes C28 and C40 are predicted to be superhard materials with mass density around that of water, and all of them are porous semiconductors. Both the bandgaps and hardness decrease with increasing ratio of sp2 hybridized carbon atoms. The mechanical and thermodynamic stabilities of C28- and C40-based allotropes at zero pressure are confirmed by a variety of state-of-the-art theoretical calculations. The evolution trend of bandgap found here suggests that one can obtain low-density hard materials with tunable bandgaps by substituting the carbon atom in diamond with different Td-symmetrical non-IPR fullerene Cn.

  18. Characterization of the Structural, Mechanical, and Electronic Properties of Fullerene Mixtures: A Molecular Simulations Description

    KAUST Repository

    Tummala, Naga Rajesh; Aziz, Saadullah; Coropceanu, Veaceslav; Bredas, Jean-Luc

    2017-01-01

    We investigate mixtures of fullerenes and fullerene derivatives, the most commonly used electron accepting materials in organic solar cells, by using a combination of molecular dynamics and density functional theory methods. Our goal is to describe

  19. Growth of Fullerene Fragments Using the Diels-Alder Cycloaddition Reaction: First Step towards a C60 Synthesis by Dimerization

    Directory of Open Access Journals (Sweden)

    Julio A. Alonso

    2013-02-01

    Full Text Available Density Functional Theory has been used to model the Diels-Alder reactions of the fullerene fragments triindenetriphenilene and pentacyclopentacorannulene with ethylene and 1,3-butadiene. The purpose is to prove the feasibility of using Diels-Alder cycloaddition reactions to grow fullerene fragments step by step, and to dimerize fullerene fragments, as a way to obtain C60. The dienophile character of the fullerene fragments is dominant, and the reaction of butadiene with pentacyclopentacorannulene is favored.

  20. Spectra of elementary excitations of fullerenes C60 and electron irradiation effect

    International Nuclear Information System (INIS)

    Gordeev, Yu.S.; Mikushkin, V.M.; Shnitov, V.V.

    2000-01-01

    The electron-stimulated changes in the spectra of the fullerenes C 60 elementary excitations are determined. They are manifested in decreasing the π-plasmon energy, the forbidden zone width, the HOMO-LUMO transition energy and also in smoothing the corresponding peculiarities of the spectra. The observed red shifts are connected with collectivization of the part of the π-electrons, formation of chemically-bound neighbouring molecules (polymerization) and with the corresponding increase in the part of the sp 3 -hybridized electrons. The spectra of the characteristic energy losses of the fullerene electrons, unperturbed by the polymerization process, are measured. The multipole structure of the (σ + π) plasmon and the exciton peculiarity, which manifests high sensitivity to the electron impact and may be used for the fullerene initial structure characterization, is identified [ru

  1. Effects of the fullerene (C{sub 60}) potential and position of the atom (A) on spectral characteristics of endohedral atoms A and C{sub 60}

    Energy Technology Data Exchange (ETDEWEB)

    Baltenkov, A S [Arifov Institute of Electronics, 100125 Tashkent (Uzbekistan); Becker, U [Fritz-Haber-Institute der Max-Planck-Gesellschaft, D-14195 Berlin (Germany); Manson, S T [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Msezane, A Z, E-mail: arkbalt@mail.r, E-mail: becker@fhi-berlin.mpg.d, E-mail: manson@phy-astr.gsu.ed, E-mail: amsezane@cau.ed [Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta, GA 30314 (United States)

    2010-06-14

    Within the framework of a model representing the potential of a C{sub 60} cage as a spherical electro-neutral layer U(r) formed by smeared carbon atoms, the effect of the details of the potential on spectral characteristics of atoms localized inside the fullerene shell has been studied. Using examples of encapsulated H and He atoms, it is shown that for potential shell thickness not exceeding 1.3-1.5 au, confinement resonance oscillations in the photoionization cross section weakly depend on the shape of the function U(r). With increasing width of the potential well, the confinement resonances in the energy dependence of the photoionization cross section disappear. In addition, it is demonstrated that displacing the doped atom from the centre of the cavity also diminishes the amplitude of the confinement resonance.

  2. Review of metal-matrix encapsulation of solidified radioactive high-level waste

    International Nuclear Information System (INIS)

    Jardine, L.J.; Steindler, M.J.

    1978-05-01

    Literature describing previous and current work on the encapsulation of solidified high-level waste forms in a metal matrix was reviewed. Encapsulation of either stabilized calcine pellets or glass beads in alloys by casting techniques was concluded to be the most developed and direct approach to fabricating solid metal-matrix waste forms. Further characterizations of the physical and chemical properties of metal-matrix waste forms are still needed to assess the net attributes of metal-encapsulation alternatives. Steady-state heat transfer properties of waste canisters in air and water environments were calculated for four reference waste forms: (1) calcine, (2) glass monoliths, (3) metal-encapsulated calcine, and (4) metal-encapsulated glass beads. A set of criteria for the maximum allowable canister centerline and surface temperatures and heat generation rates per canister at the time of shipment to a Federal repository was assumed, and comparisons were made between canisters of these reference waste forms of the shortest time after reactor discharge that canisters could be filled and the subsequent ''interim'' storage times prior to shipment to a Federal repository for various canister diameters and waste ages. A reference conceptual flowsheet based on existing or developing technology for encapsulation of stabilized calcine pellets is discussed. Conclusions and recommendations are presented

  3. Features of interaction of fullerenes with microwave radiation

    International Nuclear Information System (INIS)

    Venger, E.F.; Konakova, R.V.; Kolyadina, E.Yu.; Matveeva, L.A.; Nelyuba, P.L.; Shinkarenko, V.V.

    2015-01-01

    Hetero systems with C 6 0 fullerenes were obtained by thermal sublimation method of microcrystalline C 6 0 powder from effusion tantalum cell in vacuum at a pressure of 10 -4 Pa onto non-heated silicon substrates. Composition, structural perfection and electronic properties, internal mechanical stresses in the films and the substrate at the interface, the influence on them of electromagnetic radiation (frequency of 2.45 GHz, power of 1.5 W/cm 2 ) were studied. Investigations were carried out by atomic force microscopy, Raman spectroscopy, electro reflectance modulation spectroscopy and hetero systems profilography to determine the sign and magnitude of mechanical stresses. There was the possibility of obtaining heterostructures with fullerenes without mechanical stress and the decomposition of the C 6 0 molecules in the film. Improvement of electronic properties of the films and the substrate was determined by the shift and value of transition energy Eg. This decreases the phenomenological broadening parameter Γ, increases the energy relaxation time of charge carriers τ and their mobility μ. For the first time determined the change of the fullerenes band gap depending on availability of internal mechanical stresses in the film: - 2.8×10 -10 eV/Pa and - 4.2×10 -10 eV/Pa for E0 and E0' transitions, respectively. (authors)

  4. Active self-healing encapsulation of vaccine antigens in PLGA microspheres

    Science.gov (United States)

    Desai, Kashappa-Goud H.; Schwendeman, Steven P.

    2013-01-01

    Herein, we describe the detailed development of a simple and effective method to microencapsulate vaccine antigens in poly(lactic-co-glycolic acid) (PLGA) by simple mixing of preformed active self-microencapsulating (SM) PLGA microspheres in a low concentration aqueous antigen solution at modest temperature (10-38 °C). Co-encapsulating protein-sorbing vaccine adjuvants and polymer plasticizers were used to “actively” load the protein in the polymer pores and facilitate polymer self-healing at temperature > hydrated polymer glass transition temperature, respectively. The microsphere formulation parameters and loading conditions to provide optimal active self-healing microencapsulation of vaccine antigen in PLGA was investigated. Active self-healing encapsulation of two vaccine antigens, ovalbumin and tetanus toxoid (TT), in PLGA microspheres was adjusted by preparing blank microspheres containing different vaccine adjuvant (aluminum hydroxide (Al(OH)3) or calcium phosphate). Active loading of vaccine antigen in Al(OH)3-PLGA microspheres was found to: a) increase proportionally with an increasing loading of Al(OH)3 (0.88-3 wt%) and addition of porosigen, b) decrease when the inner Al(OH)3/trehalose phase to 1 mL outer oil phase and size of microspheres was respectively > 0.2 mL and 63 μm, and c) change negligibly by PLGA concentration and initial incubation (loading) temperature. Encapsulation of protein sorbing Al(OH)3 in PLGA microspheres resulted in suppression of self-healing of PLGA pores, which was then overcome by improving polymer chain mobility, which in turn was accomplished by coincorporating hydrophobic plasticizers in PLGA. Active self-healing microencapsulation of manufacturing process-labile TT in PLGA was found to: a) obviate micronization- and organic solvent-induced TT degradation, b) improve antigen loading (1.4-1.8 wt% TT) and encapsulation efficiency (~ 97%), c) provide nearly homogeneous distribution and stabilization of antigen in polymer

  5. Encapsulation of radioactive waste

    International Nuclear Information System (INIS)

    Pordes, O.; Plows, J.P.

    1980-01-01

    A method is described for encapsulating a particular radioactive waste which consists of suspending the waste in a viscous liquid encapsulating material, of synthetic resin monomers or prepolymers, and setting the encapsulating material by addition or condensation polymerization to form a solid material in which the waste is dispersed. (author)

  6. Etching effects of low temperature hydrogen plasma on encapsulated diamond transistors

    Czech Academy of Sciences Publication Activity Database

    Krátká, Marie; Neykova, Neda; Kromka, Alexander; Rezek, Bohuslav

    2012-01-01

    Roč. 53, č. 2 (2012), s. 97-103 ISSN 0001-7140 R&D Projects: GA ČR GD202/09/H041; GA ČR(CZ) GBP108/12/G108; GA ČR GAP108/12/0996 Institutional research plan: CEZ:AV0Z10100521 Keywords : encapsulated diamond transistors * hydrogen plasma Subject RIV: BM - Solid Matter Physics ; Magnetism

  7. Li interactions with the B40 fullerene and its application in Li-ion batteries: DFT studies

    Science.gov (United States)

    Moradi, Morteza; Bagheri, Zargham; Bodaghi, Ali

    2017-05-01

    The interaction of Li and Li+ with a B40 all-boron fullerene was theoretically investigated at the B3LYP, and Minnesota 2006 levels of theory. It was found that, unexpectedly, the interaction Li+ cation with the electron deficient B40 fullerene is stronger than the Li atom. It indicates that the B40 fullerene does not act as a conventional Lewis acid because of its highly correlated structure. Frontier molecular orbitals, partial density of states, and natural bond orbital analyses were used to discuss this unusual behavior. Our calculations indicate that this behavior makes the B40 fullerene more appropriate for application in the Li-ion batteries as anode material. The calculated cell voltage is about 530 mV. Also, it was found that Hartree Fock (HF) exchange percentage of density functionals has a reverse effect on the adsorption energies of Li and Li+. This energy is increased and decreased, respectively, for Li+ and Li adsorptions by increasing %HF exchange. Finally, a potential energy surface for Li and Li+ penetration into B40 fullerene was predicted.

  8. Accurate density-functional calculations on large systems: Fullerenes and magnetic clusters

    International Nuclear Information System (INIS)

    Dunlap, B.I.

    1996-01-01

    Efforts to accurately compute all-electron density-functional energies for large molecules and clusters using Gaussian basis sets will be reviewed. The foundation of this effort, variational fitting, will be described and followed by three applications of the method. The first application concerns fullerenes. When first discovered, C 60 is quite unstable relative to the higher fullerenes. In addition, to raising questions about the relative abundance of the various fullerenes, this work conflicted with the then state-of-the art density-funcitonal calculations on crystalline graphite. Now high accuracy molecular and band structure calculations are in fairly good agreement. Second, we have used these methods to design transition metal clusters having the highest magnetic moment by maximizing the symmetry-required degeneracy of the one-electron orbitals. Most recently, we have developed accurate, variational generalized-gradient approximation (GGA) forces for use in geometry optimization of clusters and in molecular-dynamics simulations of friction. The GGA optimized geometries of a number of large clusters will be given

  9. Nature of the Binding Interactions between Conjugated Polymer Chains and Fullerenes in Bulk Heterojunction Organic Solar Cells

    KAUST Repository

    Ravva, Mahesh Kumar

    2016-10-24

    Blends of π-conjugated polymers and fullerene derivatives are ubiquitous as the active layers of organic solar cells. However, a detailed understanding of the weak noncovalent interactions at the molecular level between the polymer chains and fullerenes is still lacking and could help in the design of more efficient photoactive layers. Here, using a combination of long-range corrected density functional theory calculations and molecular dynamic simulations, we report a thorough characterization of the nature of binding between fullerenes (C60 and PC61BM) and poly(benzo[1,2-b:4,5-b′]dithiophene–thieno[3,4-c]pyrrole-4,6-dione) (PBDTTPD) chains. We illustrate the variations in binding strength when the fullerenes dock on the electron-rich vs electron-poor units of the polymer as well as the importance of the role played by the polymer and fullerene side chains and the orientations of the PC61BM molecules with respect to the polymer backbones.

  10. Observation and Characterization of Fragile Organometallic Molecules Encapsulated in Single-Wall Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Daisuke Ogawa

    2014-01-01

    Full Text Available Thermally fragile tris(η5-cyclopentadienylerbium (ErCp3 molecules are encapsulated in single-wall carbon nanotubes (SWCNTs with high yield. We realized the encapsulation of ErCp3 with high filling ratio by using high quality SWCNTs at an optimized temperature under higher vacuum. Structure determination based on high-resolution transmission electron microscope observations together with the image simulations reveals the presence of almost free rotation of each ErCp3 molecule in SWCNTs. The encapsulation is also confirmed by X-ray diffraction. Trivalent character of Er ions (i.e., Er3+ is confirmed by X-ray absorption spectrum.

  11. Derivatization and diffusive motion of molecular fullerenes: Ab initio and atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Berdiyorov, G., E-mail: gberdiyorov@qf.org.qa; Tabet, N. [Qatar Environment and Energy Research Institute (QEERI), Hamad Ben Khalifa University (HBKU), Qatar Foundation, P.O. Box 5825, Doha (Qatar); Harrabi, K. [Department of Physics, King Fahd University of Petroleum and Minerals, 31261 Dhahran (Saudi Arabia); Mehmood, U.; Hussein, I. A. [Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, 31261 Dharan (Saudi Arabia); Peeters, F. M. [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Zhang, J. [Department of Materials and London Centre for Nanotechnology, Imperial College London, SW7 2AZ London (United Kingdom); McLachlan, M. A. [Department of Materials and Centre for Plastic Electronics, Imperial College London, SW7 2AZ London (United Kingdom)

    2015-07-14

    Using first principles density functional theory in combination with the nonequilibrium Green's function formalism, we study the effect of derivatization on the electronic and transport properties of C{sub 60} fullerene. As a typical example, we consider [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM), which forms one of the most efficient organic photovoltaic materials in combination with electron donating polymers. Extra peaks are observed in the density of states (DOS) due to the formation of new electronic states localized at/near the attached molecule. Despite such peculiar behavior in the DOS of an isolated molecule, derivatization does not have a pronounced effect on the electronic transport properties of the fullerene molecular junctions. Both C{sub 60} and PCBM show the same response to finite voltage biasing with new features in the transmission spectrum due to voltage induced delocalization of some electronic states. We also study the diffusive motion of molecular fullerenes in ethanol solvent and inside poly(3-hexylthiophene) lamella using reactive molecular dynamics simulations. We found that the mobility of the fullerene reduces considerably due to derivatization; the diffusion coefficient of C{sub 60} is an order of magnitude larger than the one for PCBM.

  12. Optoelectronic Properties of Van Der Waals Hybrid Structures: Fullerenes on Graphene Nanoribbons.

    Science.gov (United States)

    Correa, Julián David; Orellana, Pedro Alejandro; Pacheco, Mónica

    2017-03-20

    The search for new optical materials capable of absorbing light in the frequency range from visible to near infrared is of great importance for applications in optoelectronic devices. In this paper, we report a theoretical study of the electronic and optical properties of hybrid structures composed of fullerenes adsorbed on graphene and on graphene nanoribbons. The calculations are performed in the framework of the density functional theory including the van der Waals dispersive interactions. We found that the adsorption of the C 60 fullerenes on a graphene layer does not modify its low energy states, but it has strong consequences for its optical spectrum, introducing new absorption peaks in the visible energy region. The optical absorption of fullerenes and graphene nanoribbon composites shows a strong dependence on photon polarization and geometrical characteristics of the hybrid systems, covering a broad range of energies. We show that an external electric field across the nanoribbon edges can be used to tune different optical transitions coming from nanoribbon-fullerene hybridized states, which yields a very rich electro-absorption spectrum for longitudinally polarized photons. We have carried out a qualitative analysis on the potential of these hybrids as possible donor-acceptor systems in photovoltaic cells.

  13. Optoelectronic Properties of Van Der Waals Hybrid Structures: Fullerenes on Graphene Nanoribbons

    Directory of Open Access Journals (Sweden)

    Julián David Correa

    2017-03-01

    Full Text Available The search for new optical materials capable of absorbing light in the frequency range from visible to near infrared is of great importance for applications in optoelectronic devices. In this paper, we report a theoretical study of the electronic and optical properties of hybrid structures composed of fullerenes adsorbed on graphene and on graphene nanoribbons. The calculations are performed in the framework of the density functional theory including the van der Waals dispersive interactions. We found that the adsorption of the C 60 fullerenes on a graphene layer does not modify its low energy states, but it has strong consequences for its optical spectrum, introducing new absorption peaks in the visible energy region. The optical absorption of fullerenes and graphene nanoribbon composites shows a strong dependence on photon polarization and geometrical characteristics of the hybrid systems, covering a broad range of energies. We show that an external electric field across the nanoribbon edges can be used to tune different optical transitions coming from nanoribbon–fullerene hybridized states, which yields a very rich electro-absorption spectrum for longitudinally polarized photons. We have carried out a qualitative analysis on the potential of these hybrids as possible donor-acceptor systems in photovoltaic cells.

  14. Functionalized Fullerene Targeting Human Voltage-Gated Sodium Channel, hNav1.7.

    Science.gov (United States)

    Hilder, Tamsyn A; Robinson, Anna; Chung, Shin-Ho

    2017-08-16

    Mutations of hNa v 1.7 that cause its activities to be enhanced contribute to severe neuropathic pain. Only a small number of hNa v 1.7 specific inhibitors have been identified, most of which interact with the voltage-sensing domain of the voltage-activated sodium ion channel. In our previous computational study, we demonstrated that a [Lys 6 ]-C 84 fullerene binds tightly (affinity of 46 nM) to Na v Ab, the voltage-gated sodium channel from the bacterium Arcobacter butzleri. Here, we extend this work and, using molecular dynamics simulations, demonstrate that the same [Lys 6 ]-C 84 fullerene binds strongly (2.7 nM) to the pore of a modeled human sodium ion channel hNa v 1.7. In contrast, the fullerene binds only weakly to a mutated model of hNa v 1.7 (I1399D) (14.5 mM) and a model of the skeletal muscle hNa v 1.4 (3.7 mM). Comparison of one representative sequence from each of the nine human sodium channel isoforms shows that only hNa v 1.7 possesses residues that are critical for binding the fullerene derivative and blocking the channel pore.

  15. Fullerene-based Anchoring Groups for Molecular Electronics

    DEFF Research Database (Denmark)

    Martin, Christian A.; Ding, Dapeng; Sørensen, Jakob Kryger

    2008-01-01

    We present results on a new fullerene-based anchoring group for molecular electronics. Using lithographic mechanically controllable break junctions in vacuum we have determined the conductance and stability of single-molecule junctions of 1,4-bis(fullero[c]pyrrolidin-1-yl)benzene. The compound can...

  16. The Role of Electron Affinity in Determining Whether Fullerenes Catalyze or Inhibit Photooxidation of Polymers for Solar Cells

    KAUST Repository

    Hoke, Eric T.

    2012-05-21

    Understanding the stability and degradation mechanisms of organic solar materials is critically important to achieving long device lifetimes. Here, an investigation of the photodegradation of polymer:fullerene blend fi lms exposed to ambient conditions for a variety of polymer and fullerene derivative combinations is presented. Despite the wide range in polymer stabilities to photodegradation, the rate of irreversible polymer photobleaching in blend fi lms is found to consistently and dramatically increase with decreasing electron affi nity of the fullerene derivative. Furthermore, blends containing fullerenes with the smallest electron affi nities photobleached at a faster rate than fi lms of the pure polymer. These observations can be explained by a mechanism where both the polymer and fullerene donate photogenerated electrons to diatomic oxygen to form the superoxide radical anion which degrades the polymer. © 2012 WILEY-VCH Verlag GmbH & Co.

  17. Investigation of fullerene ions in crossed-beams experiments

    International Nuclear Information System (INIS)

    Hathiramani, D.; Scheier, P.; Braeuning, H.; Trassl, R.; Salzborn, E.; Presnyakov, L.P.; Narits, A.A.; Uskov, D.B.

    2003-01-01

    Employing the crossed-beams technique, we have studied the interaction of fullerene ions both with electrons and He 2+ -ions. Electron-impact ionization cross sections for C 60 q+ (q=1,2,3) have been measured at electron energies up to 1000 eV. Unusual features in shape and charge state dependence have been found, which are not observed for atomic ions. The evaporative loss of neutral C 2 fragments in collisions with electrons indicates the presence of two different mechanisms. In a first-ever ion-ion crossed-beams experiment involving fullerene ions a cross section of (1.05 ± 0.06) x 10 -15 cm 2 for charge transfer in the collision C 60 + + He 2+ at 117.2 keV center-of-mass energy has been obtained

  18. Preparation and tribology properties of water-soluble fullerene derivative nanoball

    Directory of Open Access Journals (Sweden)

    Guichang Jiang

    2017-02-01

    Full Text Available Water-soluble fullerene derivatives were synthesized via radical polymerization. They are completely soluble in water, yielding a clear brown solution. The products were characterized by FTIR, UV–Vis, 1H-NMR, 13CNMR, GPC, TGA, and SEM. Four-ball tests show that the addition of a certain concentration of the fullerene derivatives to base stock (2 wt.% triethanolamine aqueous solution can effectively increase both the load-carrying capacity (PB value, and the resistance to wear. SEM observations confirm the additive results in a reduced diameter of the wear scar and decreased wear.

  19. Fullerene faraday cage keeps magnetic properties of inner cluster pristine.

    Science.gov (United States)

    Avdoshenko, Stanislav M

    2018-04-21

    Any single molecular magnets (SMMs) perspective for application is as good as its magnetization stability in ambient conditions. Endohedral metallofullerenes (EMFs) provide a solid basis for promising SMMs. In this study, we investigated the behavior of functionalized EMFs on a gold surface (EMF-L-Au). Having followed the systems molecular dynamics paths, we observed that the chemically locked inner cluster inside fullerene cage will remain locked even at room temperature due to the ligand-effect. We have located multiple possible minima with different charge arrangements between EMF-L-Au fragments. Remarkably, the charge state of the EMF inner cluster remained virtually constant and so magnetic properties are expected to be untouched. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  20. Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms.

    Science.gov (United States)

    Pilehvar, Sanaz; De Wael, Karolien

    2015-11-23

    Nanotechnology is becoming increasingly important in the field of (bio)sensors. The performance and sensitivity of biosensors is greatly improved with the integration of nanomaterials into their construction. Since its first discovery, fullerene-C60 has been the object of extensive research. Its unique and favorable characteristics of easy chemical modification, conductivity, and electrochemical properties has led to its tremendous use in (bio)sensor applications. This paper provides a concise review of advances in fullerene-C60 research and its use as a nanomaterial for the development of biosensors. We examine the research work reported in the literature on the synthesis, functionalization, approaches to nanostructuring electrodes with fullerene, and outline some of the exciting applications in the field of (bio)sensing.

  1. Interface engineering for efficient fullerene-free organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Shivanna, Ravichandran; Narayan, K. S., E-mail: rajaram@jncasr.ac.in, E-mail: narayan@jncasr.ac.in [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Rajaram, Sridhar, E-mail: rajaram@jncasr.ac.in, E-mail: narayan@jncasr.ac.in [International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India)

    2015-03-23

    We demonstrate the role of zinc oxide (ZnO) morphology and addition of an acceptor interlayer to achieve high efficiency fullerene-free bulk heterojunction inverted organic solar cells. Nanopatterning of the ZnO buffer layer enhances the effective light absorption in the active layer, and the insertion of a twisted perylene acceptor layer planarizes and decreases the electron extraction barrier. Along with an increase in current homogeneity, the reduced work function difference and selective transport of electrons prevent the accumulation of charges and decrease the electron-hole recombination at the interface. These factors enable an overall increase of efficiency to 4.6%, which is significant for a fullerene-free solution-processed organic solar cell.

  2. Utilization of macro encapsulated phase change materials for the development of thermal energy storage and structural lightweight aggregate concrete

    International Nuclear Information System (INIS)

    Memon, Shazim Ali; Cui, H.Z.; Zhang, Hang; Xing, Feng

    2015-01-01

    Highlights: • Compressive strength of LWAC with Paraffin–LWA was higher than 15 MPa. • Shrinkage strain with Paraffin–LWA reduced by 41.8%. • For outdoor testing, temperature at room center with Paraffin–LWA reduced by 2.9 °C. • Recovery period with Paraffin–LWA was less than average life span of building. • A reduction of 465 kg CO 2 -eq/year or 12.91 kg CO 2 -eq/year/m 2 was achieved. - Abstract: Structural–functional integrated materials are one of directions of rapid development for saving-energy materials. Phase Change Materials (PCMs) are latent thermal storage materials possessing a large amount of heat energy stored during its phase change stage. Porous lightweight aggregate (LWA) can serve as the carrier for PCM. In this research, a structural concrete with function of indoor temperature control were prepared by using macro encapsulated PCM–LWA. The indoor and outdoor tests were performed to determine the thermal performance of the lightweight aggregate concrete (LWAC) containing macro encapsulated Paraffin–LWA. The compressive strength and shrinkage strain of LWAC with macro encapsulated PCM–LWA were evaluated. Finally, the economic and environmental aspects of application of macro encapsulated Paraffin–LWA in a typical floor area of public housing rental flat in Hong Kong were assessed. From indoor thermal performance test, it was found that LWAC incorporated with macro encapsulated Paraffin–LWA has a function of reducing the energy consumption by decreasing the indoor temperature; flatten the fluctuation of indoor temperature and shifting the loads away from the peak periods. Moreover, from outdoor thermal performance test, it was found that the performance of macro encapsulated Paraffin–LWA in adjusting the room temperature was optimized when there was a remarkable temperature difference between the day and night. Test results showed that the compressive strengths of LWAC incorporating macro encapsulated Paraffin

  3. Characterizing Cavities in Model Inclusion Fullerenes: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Francisco Torrens

    2001-06-01

    Full Text Available Abstract: The fullerene-82 cavity is selected as a model system in order to test several methods for characterizing inclusion molecules. The methods are based on different technical foundations such as a square and triangular tessellation of the molecular surface, spherical tessellation of the molecular surface, numerical integration of the atomic volumes and surfaces, triangular tessellation of the molecular surface, and cubic lattice approach to the molecular volume. Accurate measures of the molecular volume and surface area have been performed with the pseudorandom Monte Carlo (MCVS and uniform Monte Carlo (UMCVS methods. These calculations serve as a reference for the rest of the methods. The SURMO2 method does not recognize the cavity and may not be convenient for intercalation compounds. The programs that detect the cavities never exceed 1% deviation relative to the reference value for molecular volume and 5% for surface area. The GEPOL algorithm, alone or combined with TOPO, shows results in good agreement with those of the UMCVS reference. The uniform random number generator provides the fastest convergence for UMCVS and a correct estimate of the standard deviations. The effect of the internal cavity on the solvent-accessible surfaces has been calculated. Fullerene-82 is compared with fullerene-60 and -70.

  4. A Close Look at Charge Generation in Polymer:Fullerene Blends with Microstructure Control

    KAUST Repository

    Scarongella, Mariateresa

    2015-03-04

    © 2015 American Chemical Society. We reveal some of the key mechanisms during charge generation in polymer:fullerene blends exploiting our well-defined understanding of the microstructures obtained in pBTTT:PCBM systems via processing with fatty acid methyl ester additives. Based on ultrafast transient absorption, electro-absorption, and fluorescence up-conversion spectroscopy, we find that exciton diffusion through relatively phase-pure polymer or fullerene domains limits the rate of electron and hole transfer, while prompt charge separation occurs in regions where the polymer and fullerene are molecularly intermixed (such as the co-crystal phase where fullerenes intercalate between polymer chains in pBTTT:PCBM). We moreover confirm the importance of neat domains, which are essential to prevent geminate recombination of bound electron-hole pairs. Most interestingly, using an electro-absorption (Stark effect) signature, we directly visualize the migration of holes from intermixed to neat regions, which occurs on the subpicosecond time scale. This ultrafast transport is likely sustained by high local mobility (possibly along chains extending from the co-crystal phase to neat regions) and by an energy cascade driving the holes toward the neat domains.

  5. A Close Look at Charge Generation in Polymer:Fullerene Blends with Microstructure Control

    KAUST Repository

    Scarongella, Mariateresa; De Jonghe-Risse, Jelissa; Buchaca-Domingo, Ester; Causa’ , Martina; Fei, Zhuping; Heeney, Martin; Moser, Jacques-E.; Stingelin, Natalie; Banerji, Natalie

    2015-01-01

    © 2015 American Chemical Society. We reveal some of the key mechanisms during charge generation in polymer:fullerene blends exploiting our well-defined understanding of the microstructures obtained in pBTTT:PCBM systems via processing with fatty acid methyl ester additives. Based on ultrafast transient absorption, electro-absorption, and fluorescence up-conversion spectroscopy, we find that exciton diffusion through relatively phase-pure polymer or fullerene domains limits the rate of electron and hole transfer, while prompt charge separation occurs in regions where the polymer and fullerene are molecularly intermixed (such as the co-crystal phase where fullerenes intercalate between polymer chains in pBTTT:PCBM). We moreover confirm the importance of neat domains, which are essential to prevent geminate recombination of bound electron-hole pairs. Most interestingly, using an electro-absorption (Stark effect) signature, we directly visualize the migration of holes from intermixed to neat regions, which occurs on the subpicosecond time scale. This ultrafast transport is likely sustained by high local mobility (possibly along chains extending from the co-crystal phase to neat regions) and by an energy cascade driving the holes toward the neat domains.

  6. Study of the Si fullerene cage isomers

    NARCIS (Netherlands)

    Fthenakis, Z.G.; Havenith, R.W.A.; Menon, M.; Fowler, P.W.

    2005-01-01

    We present the results of a study on the structural and electronic properties of the Si38 fullerene isomers, which are constructed by making all possible permutations among their pentagons and hexagons. These structures were firstly fully optimized with a tight binding molecular dynamics method and

  7. Fullerene alloy formation and the benefits for efficient printing of ternary blend organic solar cells

    DEFF Research Database (Denmark)

    Angmo, Dechan; Bjerring, Morten; Nielsen, Niels Chr.

    2015-01-01

    behaving as pseudo-binary mixtures due to alloying of the fullerene components. This finding has vast implications for the understanding of polymer–fullerene mixtures and quite certainly also their application in organic solar cells where performance hinges critically on the blend behaviour which is also...

  8. Mechanical and thermal behaviour of isotactic polypropylene reinforced with inorganic fullerene-like WS2 nanoparticles: Effect of filler loading and temperature

    International Nuclear Information System (INIS)

    Díez-Pascual, Ana M.; Naffakh, Mohammed

    2013-01-01

    The thermal and mechanical behaviour of isotactic polypropylene (iPP) nanocomposites reinforced with different loadings of inorganic fullerene-like tungsten disulfide (IF-WS 2 ) nanoparticles was investigated. The IF-WS 2 noticeably enhanced the polymer stiffness and strength, ascribed to their uniform dispersion, the formation of a large nanoparticle–matrix interface combined with a nucleating effect on iPP crystallization. Their reinforcement effect was more pronounced at high temperatures. However, a drop in ductility and toughness was found at higher IF-WS 2 concentrations. The tensile behaviour of the nanocomposites was extremely sensitive to the strain rate and temperature, and their yield strength was properly described by the Eyring's equation. The activation energy increased while the activation volume decreased with increasing nanoparticle loading, indicating a reduction in polymer chain motion. The nanoparticles improved the thermomechanical properties of iPP: raised the glass transition and heat deflection temperatures while decreased the coefficient of thermal expansion. The nanocomposites also displayed superior flame retardancy with longer ignition time and reduced peak heat release rate. Further, a gradual rise in thermal conductivity was found with increasing IF-WS 2 loading both in the glassy and rubbery states. The results presented herein highlight the benefits and high potential of using IF-nanoparticles for enhancing the thermomechanical properties of thermoplastic polymers compared to other nanoscale fillers. - Graphical abstract: Display Omitted - Highlights: • The thermal and mechanical behaviour of iPP/IF-WS 2 nanocomposites was studied. • Low IF-WS 2 contents provide a good balance between stiffness, strength and toughness. • Their tensile behaviour is sensitive to the strain rate and temperature. • The nanocomposites exhibit superior thermal conductivity and flame retardancy than iPP. • The benefits of using IF-WS 2 compared

  9. Final Scientific/Technical Report (DOE F 241.3) Next-Generation LED Package Architectures Enabled by Thermally Conductive Transparent Encapsulants

    Energy Technology Data Exchange (ETDEWEB)

    Murugaiah, Anand [Momentive Performance Materials Quartz, Inc., Strongsville, OH (United States)

    2016-12-30

    The objective of this program is to generate novel LED package designs that would provide 30% improvement in lumen/$ output. This was to be achieved by improving thermal management in encapsulants/ phosphors to reduce their temperatures. Currently, the heat that is generated during down conversion of blue light to longer wavelengths by the phosphors dispersed in the encapsulant does not have optimum thermal pathways for dissipation due to poor thermal conductivity of the encapsulant material. Additionally, high temperature in the encapsulant during operation is one of the primary failure modes in LED luminaires resulting in much shorter than expected life. The thermal issues manifest in color instability (yellowing, browning), cracking and hot spots in the encapsulant leading to failures. This work explored boron nitride (hBN) as thermal fillers in encapsulants to improve thermal conductivity while minimally impacting optical properties. Various approaches to Boron Nitride (BN) were evaluated and over 380 samples were generated to down select appropriate BN morphologies. We developed a range or BN materials for enabling thermal properties while attempting to minimally impact to optical properties.

  10. Use of Melt Flow Rate Test in Reliability Study of Thermoplastic Encapsulation Materials in Photovoltaic Modules

    Energy Technology Data Exchange (ETDEWEB)

    Moseley, J.; Miller, D.; Shah, Q.-U.-A. S. J.; Sakurai, K.; Kempe, M.; Tamizhmani, G.; Kurtz, S.

    2011-10-01

    Use of thermoplastic materials as encapsulants in photovoltaic (PV) modules presents a potential concern in terms of high temperature creep, which should be evaluated before thermoplastics are qualified for use in the field. Historically, the issue of creep has been avoided by using thermosetting polymers as encapsulants, such as crosslinked ethylene-co-vinyl acetate (EVA). Because they lack crosslinked networks, however, thermoplastics may be subject to phase transitions and visco-elastic flow at the temperatures and mechanical stresses encountered by modules in the field, creating the potential for a number of reliability and safety issues. Thermoplastic materials investigated in this study include PV-grade uncured-EVA (without curing agents and therefore not crosslinked); polyvinyl butyral (PVB); thermoplastic polyurethane (TPU); and three polyolefins (PO), which have been proposed for use as PV encapsulation. Two approaches were used to evaluate the performance of these materials as encapsulants: module-level testing and a material-level testing.

  11. A thermal study of an encapsulated electrical transformer

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A. [Unidad Geotermia, Temixco (Mexico). Instituto de Investigaciones Electricas; Espinosa-Paredes, G. [Universidad Autonoma Metropolitana, Vicentina (Mexico). Dpto. de Ingenieria de Procesos e Hidraulica; Hernandez, I. [Centro de Sistemas de Manufactura, Nuevo Leon (Mexico). Instituto Tecnologico y de Estudios Superiores de Monterrey

    2002-11-01

    A thermal study of a 45 KVA-prototype encapsulated transformer is described. Casting resin systems were used as insulating systems for encapsulated electric transformers. Normal transformer operation is at full load and, thus the conductor and insulating system becomes hot owing to current circulation through the winding. To determine the various temperature distributions throughout the transformer, the thermal properties of the insulating system and boundary conditions must be known, so that hot spots are located via numerical modelling and maximum permissible temperatures are not attained. Results presented herein include thermal conductivity, thermal diffusivity, and specific heat capacity. Thermal conductivity was obtained experimentally by means of the line-source technique at various temperatures, between room temperature and 155{sup o}C which is the thermal limit of class F insulators. The thermal diffusivity was obtained by parameter estimation by fitting an approximate analytical model to the temperature-time data of the thermal conductivity experiment. Specific heat capacity was obtained from the definition of thermal diffusivity and the insulating-system density. In order to improve the electrical performance of the transformer criteria, a numerical simulation of the different dielectric structures was made using computer program. The boundary conditions for the thermal simulation stage were also determined experimentally from temperature test runs. Finally, in order to obtain data for thermal design, a numerical simulation of the high tension winding was carried out. The thermal simulation stage was performed at different current densities in the conductor with and without electrostatic shields to determine the temperature field and maximum attainable temperatures. Maximum transformer temperature were found to be 15-20{sup o}C below its thermal limit and a correlation of maximum temperature as function of circulating current was developed for design

  12. The impact of electrostatic interactions on ultrafast charge transfer at Ag 29 nanoclusters–fullerene and CdTe quantum dots–fullerene interfaces

    KAUST Repository

    Ahmed, Ghada H.; Parida, Manas R.; Tosato, Alberto; AbdulHalim, Lina G.; Usman, Anwar; Alsulami, Qana; Banavoth, Murali; Alarousu, Erkki; Bakr, Osman; Mohammed, Omar F.

    2015-01-01

    investigate the electrostatic interactions between the positively charged fullerene derivative C60-(N,N dimethylpyrrolidinium iodide) (CF) employed as an efficient molecular acceptor and two different donor molecules: Ag29 nanoclusters (NCs) and CdTe quantum

  13. Application of Electrostatic Extrusion – Flavour Encapsulation and Controlled Release

    Science.gov (United States)

    Manojlovic, Verica; Rajic, Nevenka; Djonlagic, Jasna; Obradovic, Bojana; Nedovic, Viktor; Bugarski, Branko

    2008-01-01

    The subject of this study was the development of flavour alginate formulations aimed for thermally processed foods. Ethyl vanilline was used as the model flavour compound. Electrostatic extrusion was applied for the encapsulation of ethyl vanilline in alginate gel microbeads. The obtained microbeads with approx. 10 % w/w of ethyl vanilline encapsulated in about 2 % w/w alginate were uniformly sized spheres of about 450 μm. Chemical characterization by H-NMR spectroscopy revealed that the alginate used in this study had a high content (67 %) of guluronic residues and was rich in GG diad blocks (FGG = 55%) and thus presented a high-quality immobilisation matrix. The thermal behaviour of alginate beads encapsulating ethyl vanilline was investigated by thermogravimetric (TG) and differential scanning calorimetry measurements (TG-DSC) under heating conditions which mimicked usual food processing to provide information about thermal decomposition of alginate matrix and kinetics of aroma release. Two well resolved weight losses were observed. The first one was in the 50-150 °C temperature range with the maximum at approx. 112 °C, corresponding to the dehydration of the polymer network. The second loss in the 220-325 °C temperature range, with a maximum at ∼ 247 °C corresponded to the release of vanilline. The obtained results indicate that up to 230 °C most of the vanilline remained intacta, while prolonged heating at elevated temperatures led to the entire loss of the aroma compound. PMID:27879775

  14. A Molecular-Scale Understanding of Cohesion and Fracture in P3HT:Fullerene Blends

    KAUST Repository

    Tummala, Naga Rajesh

    2015-04-21

    Quantifying cohesion and understanding fracture phenomena in thin-film electronic devices are necessary for improved materials design and processing criteria. For organic photovoltaics (OPVs), the cohesion of the photoactive layer portends its mechanical flexibility, reliability, and lifetime. Here, the molecular mechanism for the initiation of cohesive failure in bulk heterojunction (BHJ) OPV active layers derived from the semiconducting polymer poly-(3-hexylthiophene) [P3HT] and two mono-substituted fullerenes is examined experimentally and through molecular-dynamics simulations. The results detail how, under identical conditions, cohesion significantly changes due to minor variations in the fullerene adduct functionality, an important materials consideration that needs to be taken into account across fields where soluble fullerene derivatives are used.

  15. Cytokine production induced by non-encapsulated and encapsulated Porphyromonas gingivalis strains

    NARCIS (Netherlands)

    Kunnen, A.; Dekker, D.C.; van Pampus, M.G.; Harmsen, H.J.; Aarnoudse, J.G.; Abbas, F.; Faas, M.M.

    Objective: Although the exact reason is not known, encapsulated gram-negative Porphyromonas gingivalis strains are more virulent than non-encapsulated strains. Since difference in virulence properties may be due to difference in cytokine production following recognition of the bacteria or their

  16. Improved spectrophotometric analysis of fullerenes C60 and C70 in high-solubility organic solvents.

    Science.gov (United States)

    Törpe, Alexander; Belton, Daniel J

    2015-01-01

    Fullerenes are among a number of recently discovered carbon allotropes that exhibit unique and versatile properties. The analysis of these materials is of great importance and interest. We present previously unreported spectroscopic data for C60 and C70 fullerenes in high-solubility solvents, including error bounds, so as to allow reliable colorimetric analysis of these materials. The Beer-Lambert-Bouguer law is found to be valid at all wavelengths. The measured data were highly reproducible, and yielded high-precision molar absorbance coefficients for C60 and C70 in o-xylene and o-dichlorobenzene, which both exhibit a high solubility for these fullerenes, and offer the prospect of improved extraction efficiency. A photometric method for a C60/C70 mixture analysis was validated with standard mixtures, and subsequently improved for real samples by correcting for light scattering, using a power-law fit. The method was successfully applied to the analysis of C60/C70 mixtures extracted from fullerene soot.

  17. Organic solar cells based on anthracene-containing PPE–PPVs and non-fullerene acceptors

    KAUST Repository

    Alam, Shahidul

    2018-04-13

    Lately, non-fullerene acceptors (NFAs) have received increasing attention for use in polymer-based bulk-heterojunction (BHJ) organic solar cells (OSCs), as improved photovoltaic performance compared to classical polymer–fullerene blends could be demonstrated. In this study, polymer solar cells based on a statistically substituted anthracene-containing poly(p-phenylene ethynylene)-alt-poly(p-phenylene vinylene)s (PPE–PPVs) copolymer (AnE-PVstat) as donor in combination with a number of different electron accepting materials were investigated. Strong photoluminescence quenching of the polymer donor indicates intimate intermixing of both materials. However, the photovoltaic performances were found to be poor compared to blends that use fullerene as acceptor. Time-delayed collection field (TDCF) measurements demonstrate: charge generation is field-independent, but bimolecular recombination processes limit the fill factor and thus the efficiency of devices.

  18. Organic solar cells based on anthracene-containing PPE–PPVs and non-fullerene acceptors

    KAUST Repository

    Alam, Shahidul; Meitzner, Rico; Nwadiaru, Ogechi V.; Friebe, Christian; Cann, Jonathan; Ahner, Johannes; Ulbricht, Christoph; Kan, Zhipeng; Hö ppener, Stephanie; Hager, Martin D.; Egbe, Daniel A. M.; Welch, Gregory C.; Laquai, Fré dé ric; Schubert, Ulrich S.; Hoppe, Harald

    2018-01-01

    Lately, non-fullerene acceptors (NFAs) have received increasing attention for use in polymer-based bulk-heterojunction (BHJ) organic solar cells (OSCs), as improved photovoltaic performance compared to classical polymer–fullerene blends could be demonstrated. In this study, polymer solar cells based on a statistically substituted anthracene-containing poly(p-phenylene ethynylene)-alt-poly(p-phenylene vinylene)s (PPE–PPVs) copolymer (AnE-PVstat) as donor in combination with a number of different electron accepting materials were investigated. Strong photoluminescence quenching of the polymer donor indicates intimate intermixing of both materials. However, the photovoltaic performances were found to be poor compared to blends that use fullerene as acceptor. Time-delayed collection field (TDCF) measurements demonstrate: charge generation is field-independent, but bimolecular recombination processes limit the fill factor and thus the efficiency of devices.

  19. Tuning Fullerene Intercalation in a Poly (thiophene) derivative by Controlling the Polymer Degree of Self-Organisation

    Science.gov (United States)

    Paternò, G. M.; Skoda, M. W. A.; Dalgliesh, Robert; Cacialli, F.; Sakai, V. García

    2016-10-01

    Controlling the nanoscale arrangement in polymer-fullerene organic solar cells is of paramount importance to boost the performance of such promising class of photovoltaic diodes. In this work, we use a pseudo-bilayer system made of poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (PBTTT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), to acquire a more complete understanding of the diffusion and intercalation of the fullerene-derivative within the polymer layer. By exploiting morphological and structural characterisation techniques, we observe that if we increase the film solidification time the polymer develops a higher crystalline order, and, as a result, it does not allow fullerene molecules to intercalate between the polymer side-chains. Gaining insight into the detailed fullerene intercalation mechanism is important for the development of organic photovoltaic diodes (PVDs).

  20. Discriminating between Different Heavy Metal Ions with Fullerene-Derived Nanoparticles

    Directory of Open Access Journals (Sweden)

    Erica Ciotta

    2018-05-01

    Full Text Available A novel type of graphene-like nanoparticle, synthesized by oxidation and unfolding of C60 buckminsterfullerene fullerene, showed multiple and reproducible sensitivity to Cu2+, Pb2+, Cd2+, and As(III through different degrees of fluorescence quenching or, in the case of Cd2+, through a remarkable fluorescence enhancement. Most importantly, only for Cu2+ and Pb2+, the fluorescence intensity variations came with distinct modifications of the optical absorption spectrum. Time-resolved fluorescence study confirmed that the common origin of these diverse behaviors lies in complexation of the metal ions by fullerene-derived carbon layers, even though further studies are required for a complete explanation of the involved processes. Nonetheless, the different response of fluorescence and optical absorbance towards distinct cationic species makes it possible to discriminate between the presence of Cu2+, Pb2+, Cd2+, and As(III, through two simple optical measurements. To this end, the use of a three-dimensional calibration plot is discussed. This property makes fullerene-derived nanoparticles a promising material in view of the implementation of a selective, colorimetric/fluorescent detection system.

  1. Improving gas sensor properties of encapsulated ZnO nanorods for ethanol detection using ZnO:Cr layer as an encapsulated layer

    Directory of Open Access Journals (Sweden)

    S. Safa

    2017-11-01

    Full Text Available In this study, encapsulated ZnO nanorods with different amount of chromium (Cr dopant (0-4.5 at.% were prepared with hydrothermal method, and their sensitivities as gas sensors against ethanol vapor were investigated. Morphologies of samples were explored by field emission scanning electron microscope (FESEM which showed that encapsulation process increased the diameter of ZnO nanorods. Existence of Cr in ZnO nanorods structures was confirmed by Energy-dispersive X-ray spectroscopy (EDX. Based on X-ray diffraction (XRD analysis, the ZnO:Cr nanorods had wurtzite crystal structure, and adding Cr did not alter the crystal structure of ZnO. Electrical measurements revealed that current levels of samples were decreased by adding Cr, while the current level of the sample with 4.5 at.% was increased. This reduction could be attributed to the presence of Cr3+ ions, which led to decrease of charge carriers. Besides, due to the catalytic properties of Cr and its lower ionization energy than Zn, it was observed that Cr dopant improved the detection sensitivity of samples, and decreased the optimum operating temperature of samples. Among all samples, the most sensitivity (14 was obtained based on the sample with 1.5 at.% of Cr for 500 ppm ethanol vapor at the optimum temperature (250 . In fact, by encapsulating the samples, they became rougher, so the appropriate places to absorb and decompose of gas molecules are increased.

  2. Charge-associated effects of fullerene derivatives on microbialstructural integrity and central metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yinjie J.; Ashcroft, Jared M.; Chen, Ding; Min, Guangwei; Kim, Chul; Murkhejee, Bipasha; Larabell, Carolyn; Keasling, Jay D.; Chen,Fanqing Frank

    2007-01-23

    The effects of four types of fullerene compounds (C60,C60-OH, C60-COOH, C60-NH2) were examined on two model microorganisms(Escherichia coli W3110 and Shewanella oneidensis MR-1). Positivelycharged C60-NH2 at concentrations as low as 10 mg/L inhibited growth andreduced substrate uptake for both microorganisms. Scanning ElectronMicroscopy (SEM) revealed damage to cellular structures.Neutrally-charged C60 and C60-OH had mild negative effects on S.oneidensis MR-1, whereas the negatively-charged C60-COOH did not affecteither microorganism s growth. The effect of fullerene compounds onglobal metabolism was further investigated using [3-13C]L-lactateisotopic labeling, which tracks perturbations to metabolic reaction ratesin bacteria by examining the change in the isotopic labeling pattern inthe resulting metabolites (often amino acids).1-3 The 13C isotopomeranalysis from all fullerene-exposed cultures revealed no significantdifferences in isotopomer distributions from unstressed cells. Thisresult indicates that microbial central metabolism is robust toenvironmental stress inflicted by fullerene nanoparticles. In addition,although C60-NH2 compounds caused mechanical stress on the cell wall ormembrane, both S. oneidensis MR-1 and E. coli W3110 can efficientlyalleviate such stress by cell aggregation and precipitation of the toxicnanoparticles. The results presented here favor the hypothesis thatfullerenes cause more membrane stress4, 5, 6 than perturbation to energymetabolism7

  3. Survival of encapsulated potentially probiotic Lactobacillus plantarum D6SM3 with bioemulsifier derived from spent yeast in simulated gastrointestinal conditions

    Directory of Open Access Journals (Sweden)

    Paweena Dikit

    2015-08-01

    Full Text Available The effect of encapsulation with three kinds of emulsifier (Tween 80, gum arabic and bioemulsifier extracted from spent yeast on the survival of Lactobacillus plantarum D6SM3 in simulated gastrointestinal tract during storage at 4°C and room temperature was investigated. The survival of all encapsulated cells treated in simulated gastric juice was higher than free cells at both pH 2.5 and 3.0. The viability of the free and encapsulated cells showed a gradual decline throughout the storage period at 4°C. However, the viability rapidly declined at room temperature. In addition, the droplet size distribution of encapsulated cells was compared between those with and without an emulsifier by using the laser diffraction method. The particle size and polydispersity value of encapsulated cells were controlled better in emulsion with emulsifier added. The surface of encapsulated cells with emulsifier exhibited smoother characteristics than those without emulsifier.

  4. Encapsulant Adhesion to Surface Metallization on Photovoltaic Cells

    Energy Technology Data Exchange (ETDEWEB)

    Tracy, Jared; Bosco, Nick; Dauskardt, Reinhold

    2017-11-01

    Delamination of encapsulant materials from PV cell surfaces often appears to originate at regions with metallization. Using a fracture mechanics based metrology, the adhesion of ethylene vinyl acetate (EVA) encapsulant to screen-printed silver metallization was evaluated. At room temperature, the fracture energy Gc [J/m2] of the EVA/silver interface (952 J/m2) was ~70% lower than that of the EVA/antireflective (AR) coating (>2900 J/m2) and ~60% lower than that of the EVA to the surface of cell (2265 J/m2). After only 300 h of damp heat aging, the adhesion energy of the silver interface dropped to and plateaued at ~50-60 J/m2 while that of the EVA/AR coating and EVA/cell remained mostly unchanged. Elemental surface analysis showed that the EVA separates from the silver in a purely adhesive manner, indicating that bonds at the interface were likely displaced in the presence of humidity and chemical byproducts at elevated temperature, which in part accounts for the propensity of metalized surfaces to delaminate in the field.

  5. Encapsulation by Janus spheroids

    OpenAIRE

    Li, Wei; Liu, Ya; Brett, Genevieve; Gunton, James D.

    2011-01-01

    The micro/nano encapsulation technology has acquired considerable attention in the fields of drug delivery, biomaterial engineering, and materials science. Based on recent advances in chemical particle synthesis, we propose a primitive model of an encapsulation system produced by the self-assembly of Janus oblate spheroids, particles with oblate spheroidal bodies and two hemi-surfaces coded with dissimilar chemical properties. Using Monte Carlo simulation, we investigate the encapsulation sys...

  6. Fullerene derivatives as components for 'plastic' photovoltaic cells

    NARCIS (Netherlands)

    Hummelen, J.C.; Knol, J.; Kadish, KM; Ruoff, RS

    1998-01-01

    Derivatives of [60]fullerene, mixed with conducting polymers to yield donor-acceptor bulk-heterojunction (beta-junction) materials, are useful in 'plastic' photovoltaic devices. In order to enhance the charge carrier mobilities in the two individual interpenetrating networks, one important goal of

  7. Thermodynamics of association of water soluble fullerene derivatives

    Indian Academy of Sciences (India)

    SONANKI KESHRI

    2017-08-31

    Aug 31, 2017 ... Entropic and enthalpic contributions to the association of solute molecules are calculated ... authors.7,46–70 The association of fullerene in aque- ous media is ..... The main mechanism accounting for the stabiliza- tion of the ...

  8. Non-Markovian reduced dynamics of ultrafast charge transfer at an oligothiophene–fullerene heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Keith H., E-mail: keith.hughes@bangor.ac.uk [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Cahier, Benjamin [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Martinazzo, Rocco [Dipartimento di Chimica Università degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Tamura, Hiroyuki [WPI-Advanced Institute for Material Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Burghardt, Irene [Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main (Germany)

    2014-10-17

    Highlights: • Quantum dynamical study of exciton dissociation at a heterojunction interface. • The non-Markovian quantum dynamics involves a highly structured spectral density. • Spectral density is reconstructed from an effective mode transformation of the Hamiltonian. • The dynamics is studied using the hierarchical equations of motion approach. • It was found that the temperature has little effect on the charge transfer. - Abstract: We extend our recent quantum dynamical study of the exciton dissociation and charge transfer at an oligothiophene–fullerene heterojunction interface (Tamura et al., 2012) [6] by investigating the process using the non-perturbative hierarchical equations of motion (HEOM) approach. Based upon an effective mode reconstruction of the spectral density the effect of temperature on the charge transfer is studied using reduced density matrices. It was found that the temperature had little effect on the charge transfer and a coherent dynamics persists over the first few tens of femtoseconds, indicating that the primary charge transfer step proceeds by an activationless pathway.

  9. Electric field dependent photocurrent generation in a thin-film organic photovoltaic device with a [70]fullerene-benzodifuranone dyad.

    Science.gov (United States)

    Ulmann, Pirmin A; Tanaka, Hideyuki; Matsuo, Yutaka; Xiao, Zuo; Soga, Iwao; Nakamura, Eiichi

    2011-12-21

    A [70]fullerene-benzodifuranone acceptor dyad synthesized by a Ag⁺-mediated coupling reaction was used to construct a thin-film organic solar cell. The fullerene and the benzodifuranone dye in the dyad have close-lying LUMO levels in the range of 3.7-3.9 eV, so that energy transfer from the dye to the fullerene can take place. A p-n heterojunction photovoltaic device consisting of a tetrabenzoporphyrin and a [70]fullerene-benzodifuranone dyad showed a weak but discernible contribution from light absorption of the dyad to the photocurrent under both a positive and a negative effective bias. These results indicate that the benzodifuranone moiety attached to the acceptor contributes to light-harvesting by energy transfer.

  10. Modified denatured lysozyme effectively solubilizes fullerene c60 nanoparticles in water

    Science.gov (United States)

    Siepi, Marialuisa; Politi, Jane; Dardano, Principia; Amoresano, Angela; De Stefano, Luca; Monti, Daria Maria; Notomista, Eugenio

    2017-08-01

    Fullerenes, allotropic forms of carbon, have very interesting pharmacological effects and engineering applications. However, a very low solubility both in organic solvents and water hinders their use. Fullerene C60, the most studied among fullerenes, can be dissolved in water only in the form of nanoparticles of variable dimensions and limited stability. Here the effect on the production of C60 nanoparticles by a native and denatured hen egg white lysozyme, a highly basic protein, has been systematically studied. In order to obtain a denatured, yet soluble, lysozyme derivative, the four disulfides of the native protein were reduced and exposed cysteines were alkylated by 3-bromopropylamine, thus introducing eight additional positive charges. The C60 solubilizing properties of the modified denatured lysozyme proved to be superior to those of the native protein, allowing the preparation of biocompatible highly homogeneous and stable C60 nanoparticles using lower amounts of protein, as demonstrated by dynamic light scattering, transmission electron microscopy and atomic force microscopy studies. This lysozyme derivative could represent an effective tool for the solubilization of other carbon allotropes.

  11. Bulk Heterojunction Solar Cells: Impact of Minor Structural Modifications to the Polymer Backbone on the Polymer-Fullerene Mixing and Packing and on the Fullerene-Fullerene Connecting Network

    KAUST Repository

    Wang, Tonghui

    2018-01-25

    The morphology of the active layer of a bulk heterojunction solar cell, made of a blend of an electron-donating polymer and an electron-accepting fullerene derivative, is known to play a determining role in device performance. Here, a combination of molecular dynamics simulations and long-range corrected density functional theory calculations is used to elucidate the molecular-scale effects that even minor structural changes to the polymer backbone can have on the “local” morphology; this study focuses on the extent of polymer–fullerene mixing, on their packing, and on the characteristics of the fullerene–fullerene connecting network in the mixed regions, aspects that are difficult to access experimentally. Three representative polymer donors are investigated: (i) poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3′″-di(2-octyldodecyl)-2,2′;5′,2″;5″,2′″-quaterthiophen-5,5′″-diyl)] (PffBT4T-2OD); (ii) poly[(2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3′″-di(2-octyldodecyl)-2,2′;5′,2″;5″,2′″-quaterthiophen-5,5′″-diyl)] (PBT4T-2OD), where the fluorine atoms in the benzothiadiazole moieties of PffBT4T-2OD are replaced with hydrogen atoms; and (iii) poly[(2,2′-bithiophene)-alt-(4,7-bis((2-decyltetradecyl)thiophen-2-yl)-5,6-difluoro-2-propyl-2H-benzo[d][1,2,3]triazole)] (PT2-FTAZ), where the sulfur atoms in the benzothiadiazole moieties of PffBT4T-2OD are replaced with nitrogen atoms carrying a linear C3H7 side-chain; these polymers are mixed with the phenyl-C71-butyric acid methyl ester (PC71BM) acceptor. This study also discusses the nature of the charge-transfer electronic states appearing at the donor–acceptor interfaces, the electronic couplings relevant for the charge-recombination process, and the electron-transfer features between neighboring PC71BM molecules.

  12. Bulk Heterojunction Solar Cells: Impact of Minor Structural Modifications to the Polymer Backbone on the Polymer-Fullerene Mixing and Packing and on the Fullerene-Fullerene Connecting Network

    KAUST Repository

    Wang, Tonghui; Chen, Xiankai; Ashokan, Ajith; Zheng, Zilong; Ravva, Mahesh Kumar; Bré das, Jean-Luc

    2018-01-01

    The morphology of the active layer of a bulk heterojunction solar cell, made of a blend of an electron-donating polymer and an electron-accepting fullerene derivative, is known to play a determining role in device performance. Here, a combination of molecular dynamics simulations and long-range corrected density functional theory calculations is used to elucidate the molecular-scale effects that even minor structural changes to the polymer backbone can have on the “local” morphology; this study focuses on the extent of polymer–fullerene mixing, on their packing, and on the characteristics of the fullerene–fullerene connecting network in the mixed regions, aspects that are difficult to access experimentally. Three representative polymer donors are investigated: (i) poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3′″-di(2-octyldodecyl)-2,2′;5′,2″;5″,2′″-quaterthiophen-5,5′″-diyl)] (PffBT4T-2OD); (ii) poly[(2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3′″-di(2-octyldodecyl)-2,2′;5′,2″;5″,2′″-quaterthiophen-5,5′″-diyl)] (PBT4T-2OD), where the fluorine atoms in the benzothiadiazole moieties of PffBT4T-2OD are replaced with hydrogen atoms; and (iii) poly[(2,2′-bithiophene)-alt-(4,7-bis((2-decyltetradecyl)thiophen-2-yl)-5,6-difluoro-2-propyl-2H-benzo[d][1,2,3]triazole)] (PT2-FTAZ), where the sulfur atoms in the benzothiadiazole moieties of PffBT4T-2OD are replaced with nitrogen atoms carrying a linear C3H7 side-chain; these polymers are mixed with the phenyl-C71-butyric acid methyl ester (PC71BM) acceptor. This study also discusses the nature of the charge-transfer electronic states appearing at the donor–acceptor interfaces, the electronic couplings relevant for the charge-recombination process, and the electron-transfer features between neighboring PC71BM molecules.

  13. Thermally Stable Bulk Heterojunction Prepared by Sequential Deposition of Nanostructured Polymer and Fullerene

    Directory of Open Access Journals (Sweden)

    Heewon Hwang

    2017-09-01

    Full Text Available A morphologically-stable polymer/fullerene heterojunction has been prepared by minimizing the intermixing between polymer and fullerene via sequential deposition (SqD of a polymer and a fullerene solution. A low crystalline conjugated polymer of PCPDTBT (poly[2,6-(4,4-bis-(2-ethylhexyl-4H-cyclopenta [2,1-b;3,4-b′]dithiophene-alt-4,7(2,1,3-benzothiadiazole] has been utilized for the polymer layer and PC71BM (phenyl-C71-butyric-acid-methyl ester for the fullerene layer, respectively. Firstly, a nanostructured PCPDTBT bottom layer was developed by utilizing various additives to increase the surface area of the polymer film. The PC71BM solution was prepared by dissolving it in the 1,2-dichloroethane (DCE, exhibiting a lower vapor pressure and slower diffusion into the polymer layer. The deposition of the PC71BM solution on the nanostructured PCPDTBT layer forms an inter-digitated bulk heterojunction (ID-BHJ with minimized intermixing. The organic photovoltaic (OPV device utilizing the ID-BHJ photoactive layer exhibits a highly reproducible solar cell performance. In spite of restricted intermixing between the PC71BM and the PCPDTBT, the efficiency of ID-BHJ OPVs (3.36% is comparable to that of OPVs (3.87% prepared by the conventional method (deposition of a blended solution of polymer:fullerene. The thermal stability of the ID-BHJ is superior to the bulk heterojunction (BHJ prepared by the conventional method. The ID-BHJ OPV maintains 70% of its initial efficiency after thermal stress application for twelve days at 80 °C, whereas the conventional BHJ OPV maintains only 40% of its initial efficiency.

  14. Evidence for the existence of sulfur-doped fullerenes from elucidation of their photophysical properties

    Energy Technology Data Exchange (ETDEWEB)

    Glenis, S.; Cooke, S.; Chen, X.; Labes, M.M. [Temple Univ., Philadelphia, PA (United States)

    1996-01-01

    Cage carbon atoms of fullerenes were substituted by sulfur in sulfur-doped fullerenes synthesized by the authors. The synthesis method was based on the arc evaporation of graphite in the presence of thiophene or 3-methylthiophene. Structural characterization was accomplished through mass spectrometry and fluorescence spectroscopy and crude purification regimens using column chromatography were established. 24 refs., 4 figs., 1 tab.

  15. Physicochemical Characterization and Thermodynamic Studies of Nanoemulsion-Based Transdermal Delivery System for Fullerene

    Directory of Open Access Journals (Sweden)

    Cheng Loong Ngan

    2014-01-01

    Full Text Available Fullerene nanoemulsions were formulated in palm kernel oil esters stabilized by low amount of mixed nonionic surfactants. Pseudoternary phase diagrams were established in the colloidal system of PKOEs/Tween 80 : Span 80/water incorporated with fullerene as antioxidant. Preformulation was subjected to combination of high and low energy emulsification methods and the physicochemical characteristics of fullerene nanoemulsions were analyzed using electroacoustic spectrometer. Oil-in-water (O/W nanoemulsions with particle sizes in the range of 70–160 nm were formed. The rheological characteristics of colloidal systems exhibited shear thinning behavior which fitted well into the power law model. The effect of xanthan gum (0.2–1.0%, w/w and beeswax (1–3%, w/w in the estimation of thermodynamics was further studied. From the energetic parameters calculated for the viscous flow, a moderate energy barrier for transport process was observed. Thermodynamic study showed that the enthalpy was positive in all xanthan gum and beeswax concentrations indicating that the formation of nanoemulsions could be endothermic in nature. Fullerene nanoemulsions with 0.6% or higher xanthan gum content were found to be stable against creaming and flocculation when exposed to extreme environmental conditions.

  16. [60]Fullerene Displacement from (Dihapto-Buckminster-Fullerene) Pentacarbonyl Tungsten(0): An Experiment for the Inorganic Chemistry Laboratory, Part II

    Science.gov (United States)

    Cortes-Figueroa, Jose E.; Moore-Russo, Deborah A.

    2006-01-01

    The kinetics experiments on the ligand-C[subscript 60] exchange reactions on (dihapto-[60]fullerene) pentacarbonyl tungsten(0), ([eta][superscript 2]-C[subscript 60])W(CO)[subscript 5], form an educational activity for the inorganic chemistry laboratory that promotes graphical thinking as well as the understanding of kinetics, mechanisms, and the…

  17. Accelerated Lifetime Testing of Organic-Inorganic Perovskite Solar Cells Encapsulated by Polyisobutylene.

    Science.gov (United States)

    Shi, Lei; Young, Trevor L; Kim, Jincheol; Sheng, Yun; Wang, Lei; Chen, Yifeng; Feng, Zhiqiang; Keevers, Mark J; Hao, Xiaojing; Verlinden, Pierre J; Green, Martin A; Ho-Baillie, Anita W Y

    2017-08-02

    Metal halide perovskite solar cells (PSCs) have undergone rapid progress. However, unstable performance caused by sensitivity to environmental moisture and high temperature is a major impediment to commercialization of PSCs. In the present work, a low-temperature, glass-glass encapsulation technique using high performance polyisobutylene (PIB) as the moisture barrier is investigated on planar glass/FTO/TiO 2 /FAPbI 3 /PTAA/gold perovskite solar cells. PIB was applied as either an edge seal or blanket layer. Electrical connections to the encapsulated PSCs were provided by either the FTO or Au layers. Results of a "calcium test" demonstrated that a PIB edge-seal effectively prevents moisture ingress. A shelf life test was performed and the PIB-sealed PSC was stable for at least 200 days. Damp heat and thermal cycling tests, in compliance with IEC61215:2016, were used to evaluate different encapsulation methods. Current-voltage measurements were performed regularly under simulated AM1.5G sunlight to monitor changes in PCE. The best results we have achieved to date maintained the initial efficiency after 540 h of damp heat testing and 200 thermal cycles. To the best of the authors' knowledge, these are among the best damp heat and thermal cycle test results for perovskite solar cells published to date. Given the modest performance of the cells (8% averaged from forward and reverse scans) especially with the more challenging FAPbI 3 perovskite material tested in this work, it is envisaged that better stability results can be further achieved when higher performance perovskite solar cells are encapsulated using the PIB packaging techniques developed in this work. We propose that heat rather than moisture was the main cause of our PSC degradation. Furthermore, we propose that preventing the escape of volatile decomposition products from the perovskite solar cell materials is the key for stability. PIB encapsulation is a very promising packaging solution for perovskite

  18. J-V and C-V investigation of the effect of small molecular fullerene and non-fullerene acceptors for CH3NH3PbI3 perovskite solar cell

    Science.gov (United States)

    Zheng, Yanqiong; Wang, Chao; Yu, Junle; Yang, Fang; Zhang, Jing; Wei, Bin; Li, Weishi

    2017-11-01

    To find the ideal acceptors for perovskite solar cells (PSCs) and get insight into the dielectric property at the interface between perovskite and acceptor, series of small molecular fullerene and non-fullerene acceptors were comparatively investigated. Fullerene acceptors based PSCs show higher performance than non-fullerene acceptors based PSCs. However, the perylene tetracarboxylic diimide based PSC has achieved a η PCE of 4.70%, implying that it is a promising acceptor candidate for PSCs because of its suitable energy level, high electron mobility, and smooth surface. By employing double acceptors of (6,6)-phenyl-C61-butyric acid methyl ester (PCBM)/C60 or PCBM/3,4,9,10-perylenetetracarboxylic bisbenzimidazole, the PSC stability is greatly improved even without performance enhancement. The perovskite (Pero)/PCBM film shows smooth surface, suggesting that PCBM penetrates into the Pero layer. The hydrophobicity trend of Pero/acceptor composite films is same as the device performance by judging from the water contact angle, and Pero/PCBM as well as Pero/C60 show higher hydrophobicity than other Pero/small-molecular-acceptor composite films. Capacitance-voltage characteristics of the series of single and double acceptor based PSCs were measured. The double acceptor based PSCs show larger depletion layer width (W d) than single acceptor based PSCs. Meanwhile, the defect density (N A) in Pero layer for single acceptor based PSCs is larger than that for double acceptor based PSCs, implying better n-doping of Pero layer by using a single acceptor.

  19. Electronic charge transfer in cobalt doped fullerene thin films and effect of energetic ion impacts by x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Thakur, P.; Kumar, Amit; Gautam, S.; Chae, K.H.

    2011-01-01

    We report on the electronic charge transfer in cobalt doped fullerene thin films by means of near-edge x-ray-absorption fine structure (NEXAFS) spectroscopy measurement. Co-doped fullerene films were prepared by co-deposition technique and subjected to energetic ion irradiation (120 MeV Au) for possibly alignment or interconnect of randomly distributed metal particles. Polarization dependent NEXAFS spectra revealed the alignment of Co and C atoms along the irradiated ionic path. The structural changes in Co-doped as-deposited and ion irradiated fullerene films were investigated by means of Raman spectroscopy measurements. Downshift of pentagonal pinch mode A g (2) in Raman spectroscopy indicated the electronic charge transfer from Co atom to fullerene molecules, which is further confirmed by NEXAFS at C K-edge for Co-doped fullerene films.

  20. Spectroscopic investigation of new fullerene based acceptors for organic solar cells; Spektroskopische Untersuchung neuartiger Fullerenakzeptoren fuer organische Solarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Liedte, Moritz Nils

    2012-04-27

    The main topic of my thesis was the optical spectroscopy of accepters for organic bulk-heterojunction polymer-fullerene solar cells in the visible till near-infrared regime. Pure fullerene samples as well as blends of fullerenes with polymers were studied. Additionally measurements regarding the morphology, spin states and solar cell performance were done. The aims were to determine the ability of new molecules as acceptors for organic solar cells, to find and understand the photoinduced absorption signatures of optical excited anions on fullerene bulks of different sizes and finally to learn about the charge carrier generation process in polymer:Lu{sub 3}N rate at C{sub 80} blends and thus understand the origin of the comparable low current density in this devices, about 25 % less than for P3HT:PC{sub 61}BM solar cells. In our publications due to these topics we presented that the novel C{sub 70}-C{sub 70} dimer fullerenes are fine acceptors for polymer:fullerene solar cells, showing a better absorption coefficient around 500 nm than C{sub 60} based acceptors and high singlet-exciton quenching rates. Anion signatures for fullerene molecules of different sizes were clearly found for C{sub 60{sup -}} at 1.18 eV and for C{sub 70{sup -}} at 0.92 eV. Less clear are my findings regarding the signatures for C{sub 80{sup -}} and C{sub 84{sup -}}. Due to the low signal-to-noise ratio in these measurements and some unique properties of the available materials I was only able to indicate a range from 0.7 eV down to 0.4 eV for the optically detected anion signatures of these fullerenes. Still all fullerenes showed a red shift to lower energies for the anion signatures getting stronger the more carbon atoms the fullerenes were made of. The most detailed research in this thesis was done about the Lu{sub 3}N rate at C{sub 80} molecules application as electron acceptor in P3HT:Lu{sub 3}N rate at C{sub 80} solar cells. The use of this acceptor in combination with P3HT lead to a

  1. Thermally Induced Encapsulation of Food Nutrients into Phytoferritin through the Flexible Channels without Additives.

    Science.gov (United States)

    Yang, Rui; Tian, Jing; Liu, Yuqian; Yang, Zhiying; Wu, Dandan; Zhou, Zhongkai

    2017-11-22

    The cavity of phytoferritin provides a nanospace to encapsulate and deliver food nutrient molecules. However, tranditional methods to prepare the ferritin-nutrient complexes must undergo acid/alkaline conditions or apply additives. In this work, we provide a novel guideline that thermal treatment at 60 °C can expand ferritin channels by uncoiling the surrounding α-helix. Upon reduction of the temperature to 20 °C, food nutrient rutin can be encapsulated in apo-soybean seed ferritin (apoSSF) at pH 7.0 through channels without disassembly of the protein cage and with no addition of additives. Results indicated that one apoSSF could encapsulate about 10.5 molecules of rutin, with an encapsulation ratio of 8.08% (w/w). In addition, the resulting rutin-loaded SSF complexes were monodispersed in a size of 12 nm in aqueous solution. This work provides a novel pathway for the encapsulation of food nutrient molecules into the nanocavity of ferritin under a neutral pH condition induced by thermal treatment.

  2. Encapsulation of nanoparticles into single-crystal ZnO nanorods and microrods.

    Science.gov (United States)

    Liu, Jinzhang; Notarianni, Marco; Rintoul, Llew; Motta, Nunzio

    2014-01-01

    One-dimensional single crystal incorporating functional nanoparticles of other materials could be an interesting platform for various applications. We studied the encapsulation of nanoparticles into single-crystal ZnO nanorods by exploiting the crystal growth of ZnO in aqueous solution. Two types of nanodiamonds with mean diameters of 10 nm and 40 nm, respectively, and polymer nanobeads with size of 200 nm have been used to study the encapsulation process. It was found that by regrowing these ZnO nanorods with nanoparticles attached to their surfaces, a full encapsulation of nanoparticles into nanorods can be achieved. We demonstrate that our low-temperature aqueous solution growth of ZnO nanorods do not affect or cause degradation of the nanoparticles of either inorganic or organic materials. This new growth method opens the way to a plethora of applications combining the properties of single crystal host and encapsulated nanoparticles. We perform micro-photoluminescence measurement on a single ZnO nanorod containing luminescent nanodiamonds and the spectrum has a different shape from that of naked nanodiamonds, revealing the cavity effect of ZnO nanorod.

  3. Synthesis of alumina ceramic encapsulation for self-healing materials on thermal barrier coating

    Science.gov (United States)

    Golim, O. P.; Prastomo, N.; Izzudin, H.; Hastuty, S.; Sundawa, R.; Sugiarti, E.; Thosin, K. A. Z.

    2018-03-01

    Durability of Thermal Barrier Coating or TBC can be optimized by inducing Self-Healing capabilities with intermetallic materials MoSi2. Nevertheless, high temperature operation causes the self-healing materials to become oxidized and lose its healing capabilities. Therefore, a method to introduce ceramic encapsulation for MoSi2 is needed to protect it from early oxidation. The encapsulation process is synthesized through a simple precipitation method with colloidal aluminum hydroxide as precursor and variations on calcination process. Semi-quantitative analysis on the synthesized sample is done by using X-ray diffraction (XRD) method. Meanwhile, qualitative analysis on the morphology of the encapsulation was carried out by using Scanning Electron Microscope (SEM) and Field Emission Scanning Electron Microscope (FESEM) equipped with dual Focus Ion Beam (FIB). The result of the experiment shows that calcination process significantly affects the final characteristic of encapsulation. The optimum encapsulation process was synthesized by colloidal aluminum hydroxide as a precursor, with a double step calcination process in low pressure until 900 °C.

  4. Preparation of encapsulated proteins dissolved in low viscosity fluids

    International Nuclear Information System (INIS)

    Ehrhardt, Mark R.; Flynn, Peter F.; Wand, A. Joshua

    1999-01-01

    The majority of proteins are too large to be comprehensively examined by solution NMR methods, primarily because they tumble too slowly in solution. One potential approach to making the NMR relaxation properties of large proteins amenable to modern solution NMR techniques is to encapsulate them in a reverse micelle which is dissolved in a low viscosity fluid. Unfortunately, promising low viscosity fluids such as the short chain alkanes, supercritical carbon dioxide, and various halocarbon refrigerants all require the application of significant pressure to be kept liquefied at room temperature. Here we describe the design and use of a simple cost effective NMR tube suitable for the preparation of solutions of proteins encapsulated in reverse micelles dissolved in such fluids

  5. Electronic structure of multi-walled carbon fullerenes

    International Nuclear Information System (INIS)

    Doore, Keith; Cook, Matthew; Clausen, Eric; Lukashev, Pavel V; Kidd, Tim E; Stollenwerk, Andrew J

    2017-01-01

    Despite an enormous amount of research on carbon based nanostructures, relatively little is known about the electronic structure of multi-walled carbon fullerenes, also known as carbon onions. In part, this is due to the very high computational expense involved in estimating electronic structure of large molecules. At the same time, experimentally, the exact crystal structure of the carbon onion is usually unknown, and therefore one relies on qualitative arguments only. In this work we present the results of a computational study on a series of multi-walled fullerenes and compare their electronic structures to experimental data. Experimentally, the carbon onions were fabricated using ultrasonic agitation of isopropanol alcohol and deposited onto the surface of highly ordered pyrolytic graphite using a drop cast method. Scanning tunneling microscopy images indicate that the carbon onions produced using this technique are ellipsoidal with dimensions on the order of 10 nm. The majority of differential tunneling spectra acquired on individual carbon onions are similar to that of graphite with the addition of molecular-like peaks, indicating that these particles span the transition between molecules and bulk crystals. A smaller, yet sizable number exhibited a semiconducting gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) levels. These results are compared with the electronic structure of different carbon onion configurations calculated using first-principles. Similar to the experimental results, the majority of these configurations are metallic with a minority behaving as semiconductors. Analysis of the configurations investigated here reveals that each carbon onion exhibiting an energy band gap consisted only of non-metallic fullerene layers, indicating that the interlayer interaction is not significant enough to affect the total density of states in these structures. (paper)

  6. Diffusion-controlled growth of molecular heterostructures: fabrication of two-, one-, and zero-dimensional C(60) nanostructures on pentacene substrates.

    Science.gov (United States)

    Breuer, Tobias; Witte, Gregor

    2013-10-09

    A variety of low dimensional C60 structures has been grown on supporting pentacene multilayers. By choice of substrate temperature during growth the effective diffusion length of evaporated fullerenes and their nucleation at terraces or step edges can be precisely controlled. AFM and SEM measurements show that this enables the fabrication of either 2D adlayers or solely 1D chains decorating substrate steps, while at elevated growth temperature continuous wetting of step edges is prohibited and instead the formation of separated C60 clusters pinned at the pentacene step edges occurs. Remarkably, all structures remain thermally stable at room temperature once they are formed. In addition the various fullerene structures have been overgrown by an additional pentacene capping layer. Utilizing the different probe depth of XRD and NEXAFS, we found that no contiguous pentacene film is formed on the 2D C60 structure, whereas an encapsulation of the 1D and 0D structures with uniformly upright oriented pentacene is achieved, hence allowing the fabrication of low dimensional buried organic heterostructures.

  7. Fullerene nanoparticles in soil: Analysis, occurrence and fate

    NARCIS (Netherlands)

    Carboni, A.

    2016-01-01

    Fullerenes are carbon-based nanomaterials that can occur in the environment due to both natural events and human production. Recently, the increasing use in novel nanotechnologies raised concern for the possible adverse effects on humans and the environment. However, the assessment is complicated by

  8. Raman spectroelectrochemistry of ordered C-60 fullerene layers

    Czech Academy of Sciences Publication Activity Database

    Krause, M.; Deutsch, D.; Dunsch, L.; Janda, Pavel; Kavan, Ladislav

    2005-01-01

    Roč. 13, - (2005), s. 159-166 ISSN 1536-383X R&D Projects: GA AV ČR IAA4040306 Institutional research plan: CEZ:AV0Z40400503 Keywords : fullerenes * thin films * nanostructuring * Raman spectroscopy Subject RIV: CG - Electrochemistry Impact factor: 0.776, year: 2005

  9. Electron scattering on metal clusters and fullerenes

    International Nuclear Information System (INIS)

    Solov'yov, A.V.

    2001-01-01

    This paper gives a survey of physical phenomena manifesting themselves in electron scattering on atomic clusters. The main emphasis is made on electron scattering on fullerenes and metal clusters, however some results are applicable to other types of clusters as well. This work is addressed to theoretical aspects of electron-cluster scattering, however some experimental results are also discussed. It is demonstrated that the electron diffraction plays important role in the formation of both elastic and inelastic electron scattering cross sections. It is elucidated the essential role of the multipole surface and volume plasmon excitations in the formation of electron energy loss spectra on clusters (differential and total, above and below ionization potential) as well as the total inelastic scattering cross sections. Particular attention is paid to the elucidation of the role of the polarization interaction in low energy electron-cluster collisions. This problem is considered for electron attachment to metallic clusters and the plasmon enhanced photon emission. Finally, mechanisms of electron excitation widths formation and relaxation of electron excitations in metal clusters and fullerenes are discussed. (authors)

  10. Photophysical properties of fullerenes prepared in an atmosphere of pyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Glenis, S.; Cooke, S.; Chen, X.; Labes, M.M. (Temple Univ., Philadelphia, PA (United States))

    1994-10-01

    Samples of C[sub 60] and C[sub 70] containing a variety of nitrogen-doped species were prepared by arc vaporization of graphite in the presence of pyrrole. Cage-doped fractions were isolated by column chromatography and characterized by mass spectroscopy, optical absorption, and fluorescence measurements. Mass spectra were consistent with the substitution of an even number of carbon atoms of the C[sub 60] and C[sub 70] cages by nitrogen atoms. Carbonaceous clusters including fragmented fullerenes containing hydrogen atoms were also formed. UV-visible spectral analysis indicated that there is an influence of the molecular weight on the fundamental [pi]-[pi]* electronic transition. Fluorescence spectra showed a broad band containing vibrational fine structure that is attributed to photoseparated charges in the fragmented fullerenes and a shoulder on the low-energy side that is related to intrinsic excitation in the nitrogen-doped species. Fluorescence results imply a bandgap of 2.36 eV for the N doped fullerenes and the existence of intermediate excitonic transitions below the optical bandgap. Although it has not yet been possible to isolate a pure cage-doped material, the photophysical studies add credence to their existence and the importance of further attempts at their isolation. 17 refs., 4 figs., 1 tab.

  11. The impact of electrostatic interactions on ultrafast charge transfer at Ag 29 nanoclusters–fullerene and CdTe quantum dots–fullerene interfaces

    KAUST Repository

    Ahmed, Ghada H.

    2015-11-09

    A profound understanding of charge transfer (CT) at semiconductor quantum dots (QDs) and nanoclusters (NCs) interfaces is extremely important to optimize the energy conversion efficiency in QDs and NCs-based solar cell devices. Here, we report on the ground- and excited-state interactions at the interface of two different bimolecular non-covalent donor-acceptor (D-A) systems using steady-state and femtosecond transient absorption (fs-TA) spectroscopy with broadband capabilities. We systematically investigate the electrostatic interactions between the positively charged fullerene derivative C60-(N,N dimethylpyrrolidinium iodide) (CF) employed as an efficient molecular acceptor and two different donor molecules: Ag29 nanoclusters (NCs) and CdTe quantum dots (QDs). For comparison purposes, we also monitor the interaction of each donor molecule with the neutral fullerene derivative C60-(malonic acid)n, which has minimal electrostatic interactions. Our steady-state and time-resolved data demonstrate that both QDs and NCs have strong interfacial electrostatic interactions and dramatic fluorescence quenching when the CF derivative is present. In other words, our results reveal that only CF can be in close molecular proximity with the QDs and NCs, allowing ultrafast photoinduced CT to occur. It turned out that the intermolecular distances, electronic coupling and subsequently CT from the excited QDs or NCs to fullerene derivatives can be controlled by the interfacial electrostatic interactions. Our findings highlight some of the key variable components for optimizing CT at QDs and NCs interfaces, which can also be applied to other D-A systems that rely on interfacial CT. © The Royal Society of Chemistry 2016.

  12. On the possibility of considering the fullerene shell C{sub 60} as a conducting sphere

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Baltenkov, A.S. [Arifov Institute of Electronics, Tashkent 700125 (Uzbekistan)]. E-mail: arkbalt@mail.ru

    2006-12-25

    The dynamical and static dipole polarizabilities of the C{sub 60} molecule have been calculated on the basis of the experimental data on the cross section of the fullerene photoabsorption. It has been shown that the fullerene shell in the static electric field behaves most likely as a set of separate carbon atoms rather than as a conducting sphere.

  13. Micro-Encapsulated Phase Change Materials: A Review of Encapsulation, Safety and Thermal Characteristics

    Directory of Open Access Journals (Sweden)

    Ahmed Hassan

    2016-10-01

    Full Text Available Phase change materials (PCMs have been identified as potential candidates for building energy optimization by increasing the thermal mass of buildings. The increased thermal mass results in a drop in the cooling/heating loads, thus decreasing the energy demand in buildings. However, direct incorporation of PCMs into building elements undermines their structural performance, thereby posing a challenge for building integrity. In order to retain/improve building structural performance, as well as improving energy performance, micro-encapsulated PCMs are integrated into building materials. The integration of microencapsulation PCMs into building materials solves the PCM leakage problem and assures a good bond with building materials to achieve better structural performance. The aim of this article is to identify the optimum micro-encapsulation methods and materials for improving the energy, structural and safety performance of buildings. The article reviews the characteristics of micro-encapsulated PCMs relevant to building integration, focusing on safety rating, structural implications, and energy performance. The article uncovers the optimum combinations of the shell (encapsulant and core (PCM materials along with encapsulation methods by evaluating their merits and demerits.

  14. Density functional study of the electronic structure of dye-functionalized fullerenes and their model donor-acceptor complexes containing P3HT

    International Nuclear Information System (INIS)

    Baruah, Tunna; Garnica, Amanda; Paggen, Marina; Basurto, Luis; Zope, Rajendra R.

    2016-01-01

    We study the electronic structure of C 60 fullerenes functionalized with a thiophene-diketo-pyrrolopyrrole-thiophene based chromophore using density functional theory combined with large polarized basis sets. As the attached chromophore has electron donor character, the functionalization of the fullerene leads to a donor-acceptor (DA) system. We examine in detail the effect of the linker and the addition site on the electronic structure of the functionalized fullerenes. We further study the electronic structure of these DA complexes with a focus on the charge transfer excitations. Finally, we examine the interface of the functionalized fullerenes with the widely used poly(3-hexylthiophene-2,5-diyl) (P3HT) donor. Our results show that all functionalized fullerenes with an exception of the C 60 -pyrrolidine [6,6], where the pyrrolidine is attached at a [6,6] site, have larger electron affinities relative to the pristine C 60 fullerene. We also estimate the quasi-particle gap, lowest charge transfer excitation energy, and the exciton binding energies of the functionalized fullerene-P3MT model systems. Results show that the exciton binding energies in these model complexes are slightly smaller compared to a similarly prepared phenyl-C 61 -butyric acid methyl ester (PCBM)-P3MT complex.

  15. Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells

    KAUST Repository

    Wadsworth, Andrew; Moser, Maximilian; Marks, Adam; Little, Mark S.; Gasparini, Nicola; Brabec, Christoph J.; Baran, Derya; McCulloch, Iain

    2018-01-01

    Fullerenes have formed an integral part of high performance organic solar cells over the last 20 years, however their inherent limitations in terms of synthetic flexibility, cost and stability have acted as a motivation to develop replacements; the so-called non-fullerene electron acceptors. A rapid evolution of such materials has taken place over the last few years, yielding a number of promising candidates that can exceed the device performance of fullerenes and provide opportunities to improve upon the stability and processability of organic solar cells. In this review we explore the structure-property relationships of a library of non-fullerene acceptors, highlighting the important chemical modifications that have led to progress in the field and provide an outlook for future innovations in electron acceptors for use in organic photovoltaics.

  16. Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells

    KAUST Repository

    Wadsworth, Andrew

    2018-04-26

    Fullerenes have formed an integral part of high performance organic solar cells over the last 20 years, however their inherent limitations in terms of synthetic flexibility, cost and stability have acted as a motivation to develop replacements; the so-called non-fullerene electron acceptors. A rapid evolution of such materials has taken place over the last few years, yielding a number of promising candidates that can exceed the device performance of fullerenes and provide opportunities to improve upon the stability and processability of organic solar cells. In this review we explore the structure-property relationships of a library of non-fullerene acceptors, highlighting the important chemical modifications that have led to progress in the field and provide an outlook for future innovations in electron acceptors for use in organic photovoltaics.

  17. Water around fullerene shape amphiphiles: A molecular dynamics simulation study of hydrophobic hydration

    Energy Technology Data Exchange (ETDEWEB)

    Varanasi, S. R., E-mail: s.raovaranasi@uq.edu.au, E-mail: guskova@ipfdd.de; John, A. [Institut Theorie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden D-01069 (Germany); Guskova, O. A., E-mail: s.raovaranasi@uq.edu.au, E-mail: guskova@ipfdd.de [Institut Theorie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden D-01069 (Germany); Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, Dresden D-01069 (Germany); Sommer, J.-U. [Institut Theorie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden D-01069 (Germany); Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, Dresden D-01069 (Germany); Institut für Theoretische Physik, Technische Universität Dresden, Zellescher Weg 17, Dresden D-01069 (Germany)

    2015-06-14

    Fullerene C{sub 60} sub-colloidal particle with diameter ∼1 nm represents a boundary case between small and large hydrophobic solutes on the length scale of hydrophobic hydration. In the present paper, a molecular dynamics simulation is performed to investigate this complex phenomenon for bare C{sub 60} fullerene and its amphiphilic/charged derivatives, so called shape amphiphiles. Since most of the unique properties of water originate from the pattern of hydrogen bond network and its dynamics, spatial, and orientational aspects of water in solvation shells around the solute surface having hydrophilic and hydrophobic regions are analyzed. Dynamical properties such as translational-rotational mobility, reorientational correlation and occupation time correlation functions of water molecules, and diffusion coefficients are also calculated. Slower dynamics of solvent molecules—water retardation—in the vicinity of the solutes is observed. Both the topological properties of hydrogen bond pattern and the “dangling” –OH groups that represent surface defects in water network are monitored. The fraction of such defect structures is increased near the hydrophobic cap of fullerenes. Some “dry” regions of C{sub 60} are observed which can be considered as signatures of surface dewetting. In an effort to provide molecular level insight into the thermodynamics of hydration, the free energy of solvation is determined for a family of fullerene particles using thermodynamic integration technique.

  18. Water around fullerene shape amphiphiles: A molecular dynamics simulation study of hydrophobic hydration

    International Nuclear Information System (INIS)

    Varanasi, S. R.; John, A.; Guskova, O. A.; Sommer, J.-U.

    2015-01-01

    Fullerene C 60 sub-colloidal particle with diameter ∼1 nm represents a boundary case between small and large hydrophobic solutes on the length scale of hydrophobic hydration. In the present paper, a molecular dynamics simulation is performed to investigate this complex phenomenon for bare C 60 fullerene and its amphiphilic/charged derivatives, so called shape amphiphiles. Since most of the unique properties of water originate from the pattern of hydrogen bond network and its dynamics, spatial, and orientational aspects of water in solvation shells around the solute surface having hydrophilic and hydrophobic regions are analyzed. Dynamical properties such as translational-rotational mobility, reorientational correlation and occupation time correlation functions of water molecules, and diffusion coefficients are also calculated. Slower dynamics of solvent molecules—water retardation—in the vicinity of the solutes is observed. Both the topological properties of hydrogen bond pattern and the “dangling” –OH groups that represent surface defects in water network are monitored. The fraction of such defect structures is increased near the hydrophobic cap of fullerenes. Some “dry” regions of C 60 are observed which can be considered as signatures of surface dewetting. In an effort to provide molecular level insight into the thermodynamics of hydration, the free energy of solvation is determined for a family of fullerene particles using thermodynamic integration technique

  19. New insights in low-energy electron-fullerene interactions

    Science.gov (United States)

    Msezane, Alfred Z.; Felfli, Zineb

    2018-03-01

    The robust Regge-pole methodology has been used to probe for long-lived metastable anionic formation in Cn (n = 20, 24, 26, 28, 44, 70, 92 and 112) through the calculated electron elastic scattering total cross sections (TCSs). All the TCSs are found to be characterized by Ramsauer-Townsend minima, shape resonances and dramatically sharp resonances manifesting metastable anionic formation during the collisions. The energy positions of the anionic ground states resonances are found to match the measured electron affinities (EAs). We also investigated the size-effect through the correlation and polarization induced metastable resonances as the fullerene size varied from C20 through C112. The C20 TCSs exhibit atomic behavior while the C112 TCSs demonstrate strong departure from atomic behavior attributed to the size effect. Surprisingly C24 is found to have the largest EA among the investigated fullerenes making it suitable for use in organic solar cells and nanocatalysis.

  20. Adsorption of Cu(II) on Oxidized Multi-Walled Carbon Nanotubes in the Presence of Hydroxylated and Carboxylated Fullerenes

    Science.gov (United States)

    Wang, Jing; Li, Zhan; Li, Shicheng; Qi, Wei; Liu, Peng; Liu, Fuqiang; Ye, Yuanlv; Wu, Liansheng; Wang, Lei; Wu, Wangsuo

    2013-01-01

    The adsorption of Cu(II) on oxidized multi-walled carbon nanotubes (oMWCNTs) as a function of contact time, pH, ionic strength, temperature, and hydroxylated fullerene (C60(OH)n) and carboxylated fullerene (C60(C(COOH)2)n) were studied under ambient conditions using batch techniques. The results showed that the adsorption of Cu(II) had rapidly reached equilibrium and the kinetic process was well described by a pseudo-second-order rate model. Cu(II) adsorption on oMWCNTs was dependent on pH but independent of ionic strength. Compared with the Freundlich model, the Langmuir model was more suitable for analyzing the adsorption isotherms. The thermodynamic parameters calculated from temperature-dependent adsorption isotherms suggested that Cu(II) adsorption on oMWCNTs was spontaneous and endothermic. The effect of C60(OH)n on Cu(II) adsorption of oMWCNTs was not significant at low C60(OH)n concentration, whereas a negative effect was observed at higher concentration. The adsorption of Cu(II) on oMWCNTs was enhanced with increasing pH values at pH adsorption of Cu(II) onto oMWCNTs at pH 4–6. The double sorption site model was applied to simulate the adsorption isotherms of Cu(II) in the presence of C60(OH)n and fitted the experimental data well. PMID:24009683

  1. Fullerene derivatives as electron acceptors for organic photovoltaic cells.

    Science.gov (United States)

    Mi, Dongbo; Kim, Ji-Hoon; Kim, Hee Un; Xu, Fei; Hwang, Do-Hoon

    2014-02-01

    Energy is currently one of the most important problems humankind faces. Depletion of traditional energy sources such as coal and oil results in the need to develop new ways to create, transport, and store electricity. In this regard, the sun, which can be considered as a giant nuclear fusion reactor, represents the most powerful source of energy available in our solar system. For photovoltaic cells to gain widespread acceptance as a source of clean and renewable energy, the cost per watt of solar energy must be decreased. Organic photovoltaic cells, developed in the past two decades, have potential as alternatives to traditional inorganic semiconductor photovoltaic cells, which suffer from high environmental pollution and energy consumption during production. Organic photovoltaic cells are composed of a blended film of a conjugated-polymer donor and a soluble fullerene-derivative acceptor sandwiched between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated indium tin oxide positive electrode and a low-work-function metal negative electrode. Considerable research efforts aim at designing and synthesizing novel fullerene derivatives as electron acceptors with up-raised lowest unoccupied molecular orbital energy, better light-harvesting properties, higher electron mobility, and better miscibility with the polymer donor for improving the power conversion efficiency of the organic photovoltaic cells. In this paper, we systematically review novel fullerene acceptors synthesized through chemical modification for enhancing the photovoltaic performance by increasing open-circuit voltage, short-circuit current, and fill factor, which determine the performance of organic photovoltaic cells.

  2. Reduction of conspicuous facial pores by topical fullerene: possible role in the suppression of PGE2 production in the skin

    OpenAIRE

    Inui, Shigeki; Mori, Ayako; Ito, Masayuki; Hyodo, Sayuri; Itami, Satoshi

    2014-01-01

    Background Conspicuous facial pores are therapeutic targets for cosmeceuticals. Here we examine the effect of topical fullerene on conspicuous facial pores using a new image analyser called the VISIA® system. Ten healthy Japanese females participated in this study, and they received applications of 1% fullerene lotion to the face twice a day for 8 weeks. Findings Fullerene lotion significantly decreased conspicuous pores by 17.6% (p 

  3. Pentacene–fullerene bulk-heterojunction solar cell: A computational study

    Energy Technology Data Exchange (ETDEWEB)

    Pramanik, Anup [Department of Chemistry, Visva-Bharati University, Santiniketan 731235 (India); Sarkar, Sunandan [Department of Chemistry, Visva-Bharati University, Santiniketan 731235 (India); Dept. of Physical Chemistry, Palacký University, Olomouc (Czech Republic); Pal, Sougata [Department of Chemistry, University of Gour Banga, Malda 732103 (India); Sarkar, Pranab, E-mail: pranab.sarkar@visva-bharati.ac.in [Department of Chemistry, Visva-Bharati University, Santiniketan 731235 (India)

    2015-06-12

    We perform DFT/TDDFT calculations to study the optoelectronic properties of some pentacene-based organic molecules and their derivatives, which can serve as donor moiety when blended with fullerene acceptors in the bulk-heterojunction solar cell model. We are motivated by a recent experiment in which an unoptimized device was shown to have a good photovoltaic performance and we aim to further improve the efficiency of this device. We try to optimize the photovoltaic properties on the basis of a quantum-mechanical calculation of the frontier energy levels and of the absorption properties of individual molecules and of the molecule–fullerine composite. - Highlights: • Optoelectronic properties of pentacene–fullerene nanocomposites are presented. • Photovoltaic properties of the nanocomposites are predicted. • DFT/TDDFT results are in well agreement with available experimental results. • Calculated results give a direction for optimizing device performance.

  4. Morphology control of polymer: Fullerene solar cells by nanoparticle self-assembly

    Science.gov (United States)

    Zhang, Wenluan

    During the past two decades, research in the field of polymer based solar cells has attracted great effort due to their simple processing, mechanical flexibility and potential low cost. A standard polymer solar cell is based on the concept of a bulk-heterojunction composed of a conducting polymer as the electron donor and a fullerene derivative as the electron acceptor. Since the exciton lifetime is limited, this places extra emphasis on control of the morphology to obtain improved device performance. In this thesis, detailed characterization and novel morphological design of polymer solar cells was studied, in addition, preliminary efforts to transfer laboratory scale methods to industrialized device fabrication was made. Magnetic contrast neutron reflectivity was used to study the vertical concentration distribution of fullerene nanoparticles within poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2- b]thiophene (pBTTT) thin film. Due to the wide space between the side chains of polymer, these fullerene nanoparticles intercalate between them creating a stable co-crystal structure. Therefore, a high volume fraction of fullerene was needed to obtain optimal device performance as phase separated conductive pathways are required and resulted in a homogeneous fullerene concentration profile through the film. Small angle neutron scattering was used to find there is amorphous fullerene even at lower concentration since it was previously believed that all fullerene formed a co-crystal. These fullerene molecules evolve into approximately 15 nm sized agglomerates at higher concentrations to improve electron transport. Unfortunately, thermal annealing gives these agglomerates mobility to form micrometer sized crystals and reduce the device performance. In standard poly(3-hexylthiophene) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PCMBM) solar cells, a higher concentration of PCBM at the cathode interface is desired due to the band alignment structure. This was

  5. Two-chamber configuration of the bio-nano ECRIS

    International Nuclear Information System (INIS)

    Uchida, T.; Minezaki, H.; Yoshida, Y.; Biri, S.; Racz, R.; Kitagawa, A.; Muramatsu, M.; Kato, Y.; Asaji, T.; Tanaka, K.

    2012-01-01

    We are studying the application of the electron cyclotron resonance ion source (ECRIS) for the new materials production on nano-scale. Our main target is the endohedral fullerenes. There are several promising approaches to produce the endohedral fullerenes using an ECRIS. One of them is the ion-ion collision reaction of fullerenes and aliens ions to be encapsulated in the mixture plasma of them. Another way is the shooting of ion beam into a pre-prepared fullerene layer. In this study, the new device configuration of the Bio-Nano ECRIS is reported which allows the application of both methods. The basic concept and the preliminary results using Ar gas and fullerenes plasmas are described. The paper is followed by the associated poster. (authors)

  6. Semi-flexible polymer engendered aggregation/dispersion of fullerene (C60) nano-particles: An atomistic investigation

    Science.gov (United States)

    Kumar, Sunil; Pattanayek, Sudip K.

    2018-06-01

    Semi flexible polymer chain has been modeled by choosing various values of persistent length (stiffness). As the polymer chain stiffness increases, the shape of polymer chain changes from globule to extended cigar to toroid like structure during cooling from a high temperature. The aggregation of fullerene nano-particles is found to depend on the morphology of polymer chain. To maximize, the number of polymer bead-nanoparticle contacts, all nano-particle have positioned inside the polymer globule. To minimize, the energy penalty, due to bending of the polymer chain, all nano-particle have positioned on the surface of the polymer's cigar and toroid morphology.

  7. Self-assembled nitrogen-doped fullerenes and their catalysis for fuel cell and rechargeable metal-air battery applications.

    Science.gov (United States)

    Noh, Seung Hyo; Kwon, Choah; Hwang, Jeemin; Ohsaka, Takeo; Kim, Beom-Jun; Kim, Tae-Young; Yoon, Young-Gi; Chen, Zhongwei; Seo, Min Ho; Han, Byungchan

    2017-06-08

    In this study, we report self-assembled nitrogen-doped fullerenes (N-fullerene) as non-precious catalysts, which are active for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), and thus applicable for energy conversion and storage devices such as fuel cells and metal-air battery systems. We screen the best N-fullerene catalyst at the nitrogen doping level of 10 at%, not at the previously known doping level of 5 or 20 at% for graphene. We identify that the compressive surface strain induced by doped nitrogen plays a key role in the fine-tuning of catalytic activity.

  8. Synthesis of Polyamidoamine Dendrimer for Encapsulating Tetramethylscutellarein for Potential Bioactivity Enhancement.

    Science.gov (United States)

    Shadrack, Daniel M; Mubofu, Egid B; Nyandoro, Stephen S

    2015-11-04

    The biomedical potential of flavonoids is normally restricted by their low water solubility. However, little has been reported on their encapsulation into polyamidoamine (PAMAM) dendrimers to improve their biomedical applications. Generation four (G4) PAMAM dendrimer containing ethylenediaminetetraacetic acid core with acrylic acid and ethylenediamine as repeating units was synthesized by divergent approach and used to encapsulate a flavonoid tetramethylscutellarein (TMScu, 1) to study its solubility and in vitro release for potential bioactivity enhancement. The as-synthesized dendrimer and the dendrimer-TMScu complex were characterized by spectroscopic and spectrometric techniques. The encapsulation of 1 into dendrimer was achieved by a co-precipitation method with the encapsulation efficiency of 77.8% ± 0.69% and a loading capacity of 6.2% ± 0.06%. A phase solubility diagram indicated an increased water solubility of 1 as a function of dendrimer concentration at pH 4.0 and 7.2. In vitro release of 1 from its dendrimer complex indicated high percentage release at pH 4.0. The stability study of the TMScu-dendrimer at 0, 27 and 40 °C showed the formulations to be stable when stored in cool and dark conditions compared to those stored in light and warmer temperatures. Overall, PAMAM dendrimer-G4 is capable of encapsulating 1, increasing its solubility and thus could enhance its bioactivity.

  9. Adsorption and possible dissociation of glucose by the [BN fullerene-B6]- magnetic nanocomposite. In silico studies

    Science.gov (United States)

    Anota, E. Chigo; Villanueva, M. Salazar; Shakerzadeh, E.; Castro, M.

    2018-02-01

    The adsorption, activation and possible dissociation of the glucose molecule on the magnetic [BN fullerene-B6]- system is performed by means of density functional theory calculations. Three models of magnetic nanocomposites were inspected: i) pristine BN fullerene, BN fullerene functionalized with a magnetic B6 cluster which generates two structures: ii) pyramidal (P) and iii) triangular (T). Chemical interactions of glucose appear for all these cases; however, for the BNF:B6(T)—glucose system, the interaction generates an effect of dissociation on glucose, due to the magnetic effects, since it has high spin multiplicity. The latter nanocomposite shows electronic behavior like-conductor and like-semi-conductor for the P and T geometries, respectively. Intrinsic magnetism associated to values of 1.0 magneton bohr (µB) for the pyramidal and 5.0 µB for the triangular structure, high polarity, and low-chemical reactivity are found for these systems. These interesting properties make these functionalized fullerenes a good option for being used as nano-vehicles for drug delivery. These quantum descriptors remain invariant when the [BN]-fullerene and [BNF:B6 (P) or (T)]- nanocomposites are interacting with the glucose molecule. According to the determined adsorption energy, chemisorption regimes occur in both the phases: gas and aqueous medium.

  10. Study of the nickel-fullerene nano-structured thin films

    Czech Academy of Sciences Publication Activity Database

    Vacík, Jiří; Naramoto, H.; Narumi, K.; Yamamoto, S.; Abe, H.

    2004-01-01

    Roč. 219, č. 20 (2004), s. 862-866 ISSN 0168-583X Institutional research plan: CEZ:AV0Z1048901 Keywords : nickel * fullerene * magnesium oxide Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.997, year: 2004

  11. Self assembly of amphiphilic C60 fullerene derivatives into nanoscale supramolecular structures

    Directory of Open Access Journals (Sweden)

    Casscells S Ward

    2007-08-01

    Full Text Available Abstract Background The amphiphilic fullerene monomer (AF-1 consists of a "buckyball" cage to which a Newkome-like dendrimer unit and five lipophilic C12 chains positioned octahedrally to the dendrimer unit are attached. In this study, we report a novel fullerene-based liposome termed 'buckysome' that is water soluble and forms stable spherical nanometer sized vesicles. Cryogenic electron microscopy (Cryo-EM, transmission electron microscopy (TEM, and dynamic light scattering (DLS studies were used to characterize the different supra-molecular structures readily formed from the fullerene monomers under varying pH, aqueous solvents, and preparative conditions. Results Electron microscopy results indicate the formation of bilayer membranes with a width of ~6.5 nm, consistent with previously reported molecular dynamics simulations. Cryo-EM indicates the formation of large (400 nm diameter multilamellar, liposome-like vesicles and unilamellar vesicles in the size range of 50–150 nm diameter. In addition, complex networks of cylindrical, tube-like aggregates with varying lengths and packing densities were observed. Under controlled experimental conditions, high concentrations of spherical vesicles could be formed. In vitro results suggest that these supra-molecular structures impose little to no toxicity. Cytotoxicity of 10–200 μM buckysomes were assessed in various cell lines. Ongoing studies are aimed at understanding cellular internalization of these nanoparticle aggregates. Conclusion In this current study, we have designed a core platform based on a novel amphiphilic fullerene nanostructure, which readily assembles into supra-molecular structures. This delivery vector might provide promising features such as ease of preparation, long-term stability and controlled release.

  12. Encapsulation of nanoparticles into single-crystal ZnO nanorods and microrods

    Directory of Open Access Journals (Sweden)

    Jinzhang Liu

    2014-04-01

    Full Text Available One-dimensional single crystal incorporating functional nanoparticles of other materials could be an interesting platform for various applications. We studied the encapsulation of nanoparticles into single-crystal ZnO nanorods by exploiting the crystal growth of ZnO in aqueous solution. Two types of nanodiamonds with mean diameters of 10 nm and 40 nm, respectively, and polymer nanobeads with size of 200 nm have been used to study the encapsulation process. It was found that by regrowing these ZnO nanorods with nanoparticles attached to their surfaces, a full encapsulation of nanoparticles into nanorods can be achieved. We demonstrate that our low-temperature aqueous solution growth of ZnO nanorods do not affect or cause degradation of the nanoparticles of either inorganic or organic materials. This new growth method opens the way to a plethora of applications combining the properties of single crystal host and encapsulated nanoparticles. We perform micro-photoluminescence measurement on a single ZnO nanorod containing luminescent nanodiamonds and the spectrum has a different shape from that of naked nanodiamonds, revealing the cavity effect of ZnO nanorod.

  13. Comparison of the Acidity of Heteropolyacids Encapsulated in or Impregnated on SBA-15

    Directory of Open Access Journals (Sweden)

    Pinto Teresa

    2016-03-01

    Full Text Available Heteropolyacids (HPA immobilized onto SBA-15 silica were prepared by two different ways using either impregnation or encapsulation methodologies. Two Keggin-type HPA, H3PW12O40 and H4SiW12O40 were considered in this study. The resulting hybrid materials were fully characterized by N2 adsorption-desorption isotherms, XRD, FT-IR, Raman, diffuse reflectance UV-Vis spectroscopies and 31P MAS NMR. All characterization methods showed that at room temperature the catalysts contained well-dispersed and intact Keggin units throughout the solid. The catalytic activity of these solids was investigated in the isomerization of n-hexane. The impregnated and encapsulated phosphotungstic catalysts performed similarly in catalysis showing that the amount of active sites was nearly the same in both catalysts. On the contrary, the tungstosilicic encapsulated material was completely inactive while its impregnated counterpart was even more active than the phosphotungstic derived catalysts. The acidity of the solids was measured by various methods: microcalorimetry of ammonia adsorption, ammonia desorption followed by Temperature Programmed Desorption (TPD and DRIFT/GC-MS and pyridine adsorption followed by infrared spectroscopy. Only pyridine adsorption and ammonia desorption followed by DRIFT/GC-MS agreed with the catalytic data. Ammonia adsorption followed by microcalorimetry was not able to differentiate between the four catalysts while the TPD experiments led to unreliable results, as not only the evolved ammonia but also other molecules such as water were taken into account in the measurements. The behavior difference between the encapsulated silico- and phosphotungstic acids was explained by a more pronounced encapsulation in the case of silicon.

  14. Green chemistry solutions for sol–gel micro-encapsulation of phase change materials for high-temperature thermal energy storage

    Directory of Open Access Journals (Sweden)

    Romero-Sanchez Maria Dolores

    2018-01-01

    Full Text Available NaNO3 has been selected as phase change material (PCM due to its convenient melting and crystallization temperatures for thermal energy storage (TES in solar plants or recovering of waste heat in industrial processes. However, incorporation of PCMs and NaNO3 in particular requires its protection (i.e. encapsulation into containers or support materials to avoid incompatibility or chemical reaction with the media where incorporated (i.e. corrosion in metal storage tanks. As a novelty, in this study, microencapsulation of an inorganic salt has been carried out also using an inorganic compound (SiO2 instead of the conventional polymeric shells used for organic microencapsulations and not suitable for high temperature applications (i.e. 300–500 °C. Thus, NaNO3 has been microencapsulated by sol–gel technology using SiO2 as shell material. Feasibility of the microparticles synthetized has been demonstrated by different experimental techniques in terms of TES capacity and thermal stability as well as durability through thermal cycles. The effectiveness of microencapsulated NaNO3 as TES material depends on the core:shell ratio used for the synthesis and on the maximum temperature supported by NaNO3 during use.

  15. Solvent-free functionalization of fullerene C{sub 60} and pristine multi-walled carbon nanotubes with aromatic amines

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Calera, Itzel J. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510, México, D.F. (Mexico); Meza-Laguna, Victor [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510 México, D.F. (Mexico); Gromovoy, Taras Yu. [O.O. Chuiko Institute of Surface Chemistry, National Academy of Sciences of the Ukraine, Gen. Naumova 17, 03164 Kiev (Ukraine); Chávez-Uribe, Ma. Isabel [Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510 México, D.F. (Mexico); Basiuk, Vladimir A., E-mail: basiuk@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510 México, D.F. (Mexico); Basiuk, Elena V., E-mail: elbg1111@gmail.com [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior C. U., 04510, México, D.F. (Mexico)

    2015-02-15

    Highlights: • Pristine multi-walled carbon nanotubes were functionalized with aromatic amines. • The amines add onto nanotube defects, likewise they add onto fullerene C{sub 60}. • The addition takes place at elevated temperature and without organic solvents. • Functionalized nanotubes were characterized by a number of instrumental techniques. - Abstract: We employed a direct one-step solvent-free covalent functionalization of solid fullerene C{sub 60} and pristine multi-walled carbon nanotubes (MWCNTs) with aromatic amines 1-aminopyrene (AP), 2-aminofluorene (AF) and 1,5-diaminonaphthalene (DAN). The reactions were carried out under moderate vacuum, in a wide temperature range of 180–250 °C, during relatively short time of about 2 h. To confirm successful amine attachment, a large number of analytical techniques were used (depending on the nanomaterial functionalized) such as Fourier transform infrared, Raman, X-ray photoelectron, {sup 13}C cross-polarization magic angle spinning NMR spectroscopy, thermogravimetric analysis, laser-desorption ionization time-of-flight mass spectrometry, temperature-programmed desorption with mass spectrometric detection, as well as scanning and transmission electron microscopy. The nucleophilic addition of the aromatic amines to C{sub 60} molecule was studied theoretically by using density functional theory (PBE GGA functional with Grimme dispersion correction in conjunction with the DNP basis set). In the case of crystalline C{sub 60}, the solvent-free technique has a limited applicability due to poor diffusion of vaporous aromatic amines into the bulk. Nevertheless, the approach proposed allows for a facile preparation of aromatic amine-functionalized pristine MWCNTs without contamination with other chemical reagents, detergents and solvents, which is especially important for a vast variety of nanotube applications spanning from nanoelectronics to nanomedicine.

  16. Structure of fullerene aggregates in pyridine/water solutions by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Belushkin, A.V.; Avdeev, M.V.; Rosta, L.; Mihailovic, D.; Mrzel, A.; Serdyuk, I.N.; Timchenko, A.A.

    2001-01-01

    Results of small-angle neutron scattering experiments on fullerenes (C 60 ) in pyridine/water solutions are reported. They confirm conclusions of the previous studies, in particular, dynamic light scattering experiments. Aggregates with characteristic radius of about 20 nm are formed in the solutions. The contrast variation using different combinations of protonated/deuterated components (water and pyridine) of the solutions points to the small pyridine content inside the aggregates. This fact testifies that the aggregates consist of a massive fullerene core covered by a thin pyridine shell

  17. Degradation mechanism of AlInGaP light emitting diodes during PMMA encapsulation and operation

    Energy Technology Data Exchange (ETDEWEB)

    Preuss, S.

    2007-11-15

    In this thesis we investigate the degradation mechanism of AlInGaP light emitting diodes (LEDs) during encapsulation and operation. The AlInGaP LEDs are encapsulated using an injection moulding tool. The molded part acts as physical housing as well as tailors the radiation pattern. Thus a narrow light beam with a spread angle of {alpha}=10 has been observed. The LED temperature has been measured by the voltage variation of the LED which is caused by the temperature change at a constant current. Thus the thermal load of the LED chips during the encapsulation process is investigated. To verify the temperature measurement a simulation based on the finite element method has been carried out. The experimental and theoretical data are in good agreement. The LED properties are investigated before and after the encapsulation. The results are compared and we found a reduction of the serial resistance and an enhanced luminous efficiency. The peak emission energy remained constant, but a peak broadening of {delta}E=9meV has been observed. A slight polarisation of the emitted light is an indication for a polarization effect of the polymethylmethacrylat (PMMA) housing. Accelerated degradation experiments using high forward currents are performed to estimate the lifetime of the PMMA encapsulated LEDs. A diffusion model is presented to explain the decay in luminous flux versus degradation time and degradation current. We believe that the reduction of quantum efficiency is caused by p-type dopant diffusion into the active layer where it acts as a non-radiative recombination centre. Using this model we determine the lifetime under the recommended drive current of I=20mA. The resulting lifetime is t=1.5.10{sup 6}h using a reduction of 50% in the luminous flux as failure criteria. (orig.)

  18. Theoretical exploration of the nanoscale host-guest interactions between [n]cycloparaphenylenes (n = 10, 8 and 9) and fullerene C₆₀: from single- to three-potential well.

    Science.gov (United States)

    Yuan, Kun; Zhou, Cai-Hua; Zhu, Yuan-Cheng; Zhao, Xiang

    2015-07-28

    The nanoscale host-guest interactions between [n]cycloparaphenylene ([n]CPP; n = 10, 8 and 9) nano-ring and fullerene C60 were explored theoretically. It is found that relatively small variations in the sizes of the [n]CPP host lead to very significant changes in encapsulation property toward the fullerene C60 guest. Expectedly, one stable inclusion-configuration of [10]CPP⊃C60 and one floating-configuration of [8]CPP⊃C60 are located on the potential surfaces of the two complexes, respectively. Unexpectedly, besides a floating-configuration (F-[9]CPP⊃C60), another stable inclusion-configuration (I-[9]CPP⊃C60) is also located on the potential surface of [9]CPP⊃C60 host-guest complex. Interaction energies and natural steric analysis show that these complexes are stabilized by balancing concave-convex π-π attractive and steric repulsive host-guest interactions. In contrast, the steric repulsive energy (Es) between host and guest of I-[9]CPP⊃C60 is as high as 233.12 kJ mol(-1), which is much larger than those in other complexes. The movements of C60 guest through the cavities of [n]CPP host (n = 10, 8 and 9) are simulated by calculating the energy profile, and the results interestingly reveal that the encapsulation of C60 by [10]CPP is in the manner of a single-potential well, by [8]CPP in the manner of a double-potential well, and by [9]CPP in the special manner of a three-potential well. We predict that the movement of C60 guest through the cavity of [9]CPP host should be experimentally observable owing to the relatively low energy barrier (<50 kJ mol(-1), M06-2X/6-31G(d)). Charge population analysis shows that an obvious charge transfer between host and guest takes place during the formation of I-[9]CPP⊃C60, which is different from those during the formation of [8]CPP⊃C60, [10]CPP⊃C60 and F-[9]CPP⊃C60. Additionally, the host-guest interaction regions were detected and visualized in real space based on the electron density and reduced density

  19. Effects of Thermal Annealing Upon the Morphology of Polymer-Fullerene Blends

    KAUST Repository

    Verploegen, Eric

    2010-08-18

    Grazing incidence X-ray scattering (GIXS) is used to characterize the morphology of poly(3-hexylthiophene) (P3HT)-phenyl-C61-butyric acid methyl ester (PCBM) thin film bulk heterojunction (BHJ) blends as a function of thermal annealing temperature, from room temperature to 220 °C. A custom-built heating chamber for in situ GIXS studies allows for the morphological characterization of thin films at elevated temperatures. Films annealed with a thermal gradient allow for the rapid investigation of the morphology over a range of temperatures that corroborate the results of the in situ experiments. Using these techniques the following are observed: the melting points of each component; an increase in the P3HT coherence length with annealing below the P3HT melting temperature; the formation of well-oriented P3HT crystallites with the (100) plane parallel to the substrate, when cooled from the melt; and the cold crystallization of PCBM associated with the PCBM glass transition temperature. The incorporation of these materials into BHJ blends affects the nature of these transitions as a function of blend ratio. These results provide a deeper understanding of the physics of how thermal annealing affects the morphology of polymer-fullerene BHJ blends and provides tools to manipulate the blend morphology in order to develop high-performance organic solar cell devices. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Effects of Thermal Annealing Upon the Morphology of Polymer-Fullerene Blends

    KAUST Repository

    Verploegen, Eric; Mondal, Rajib; Bettinger, Christopher J.; Sok, Seihout; Toney, Michael F.; Bao, Zhenan

    2010-01-01

    Grazing incidence X-ray scattering (GIXS) is used to characterize the morphology of poly(3-hexylthiophene) (P3HT)-phenyl-C61-butyric acid methyl ester (PCBM) thin film bulk heterojunction (BHJ) blends as a function of thermal annealing temperature, from room temperature to 220 °C. A custom-built heating chamber for in situ GIXS studies allows for the morphological characterization of thin films at elevated temperatures. Films annealed with a thermal gradient allow for the rapid investigation of the morphology over a range of temperatures that corroborate the results of the in situ experiments. Using these techniques the following are observed: the melting points of each component; an increase in the P3HT coherence length with annealing below the P3HT melting temperature; the formation of well-oriented P3HT crystallites with the (100) plane parallel to the substrate, when cooled from the melt; and the cold crystallization of PCBM associated with the PCBM glass transition temperature. The incorporation of these materials into BHJ blends affects the nature of these transitions as a function of blend ratio. These results provide a deeper understanding of the physics of how thermal annealing affects the morphology of polymer-fullerene BHJ blends and provides tools to manipulate the blend morphology in order to develop high-performance organic solar cell devices. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. New trends in encapsulation of liposoluble vitamins.

    Science.gov (United States)

    Gonnet, M; Lethuaut, L; Boury, F

    2010-09-15

    Liposoluble vitamins (A, D, E, and K) and carotenoids have many benefits on health. They are provided mainly by foods. At pharmacological doses, they can also be used to treat skin diseases, several types of cancer or decrease oxidative stress. These molecules are sensitive to oxidation, thus encapsulation might constitute an appropriate mean to preserve their properties during storage and enhance their physiological potencies. Formulation processes have been adapted for sensitive molecule, limiting their exposure to high temperature, light or oxygen. Each administration pathway, oral, systemic, topical, transdermal and local, requires different particle sizes and release profile. Encapsulation can lead to greater efficiency allowing smaller administration doses thus diminishing potential hypervitaminosis syndrome appearance and side effects. Carrier formulation can be based on vitamin dissolution in lipid media and its stabilization by surfactant mixture, on its entrapment in a matrix or molecular system. Suitability of each type of carrier will be discussed for each pathway. 2010 Elsevier B.V. All rights reserved.

  2. Encapsulation of nodal segments of lobelia chinensis

    Directory of Open Access Journals (Sweden)

    Weng Hing Thong

    2015-04-01

    Full Text Available Lobelia chinensis served as an important herb in traditional chinese medicine. It is rare in the field and infected by some pathogens. Therefore, encapsulation of axillary buds has been developed for in vitro propagation of L. chinensis. Nodal explants of L. chinensis were used as inclusion materials for encapsulation. Various combinations of calcium chloride and sodium alginate were tested. Encapsulation beads produced by mixing 50 mM calcium chloride and 3.5% sodium alginate supported the optimal in vitro conversion potential. The number of multiple shoots formed by encapsulated nodal segments was not significantly different from the average of shoots produced by non-encapsulated nodal segments. The encapsulated nodal segments regenerated in vitro on different medium. The optimal germination and regeneration medium was Murashige-Skoog medium. Plantlets regenerated from the encapsulated nodal segments were hardened, acclimatized and established well in the field, showing similar morphology with parent plants. This encapsulation technology would serve as an alternative in vitro regeneration system for L. chinensis.

  3. Non-Fullerene Electron Acceptors for Use in Organic Solar Cells

    KAUST Repository

    Nielsen, Christian B.; Holliday, Sarah; Chen, Hung-Yang; Cryer, Samuel J.; McCulloch, Iain

    2015-01-01

    The active layer in a solution processed organic photovoltaic device comprises a light absorbing electron donor semiconductor, typically a polymer, and an electron accepting fullerene acceptor. Although there has been huge effort targeted

  4. First prediction of the direct effect of a confined atom on photoionization of the confining fullerene

    International Nuclear Information System (INIS)

    McCune, Matthew A; De, Ruma; Chakraborty, Himadri S; Madjet, Mohamed E

    2010-01-01

    We predict that the confined atom can qualitatively modify the energetic photoionization of some cage levels, even though these levels are of very dominant fullerene character. The effect imposes strong new oscillations in the cross sections which are forbidden to the ionization of empty fullerenes. Results are presented for the AratC 60 endofullerene compound. (fast track communication)

  5. First prediction of the direct effect of a confined atom on photoionization of the confining fullerene

    Energy Technology Data Exchange (ETDEWEB)

    McCune, Matthew A; De, Ruma; Chakraborty, Himadri S [Center for Innovation and Entrepreneurship, Department of Chemistry and Physics, Northwest Missouri State University, Maryville, MO 64468 (United States); Madjet, Mohamed E, E-mail: himadri@nwmissouri.ed [Institute of Chemistry and Biochemistry, Free University, Fabeckstrasse 36a, D-14195 Berlin (Germany)

    2010-09-28

    We predict that the confined atom can qualitatively modify the energetic photoionization of some cage levels, even though these levels are of very dominant fullerene character. The effect imposes strong new oscillations in the cross sections which are forbidden to the ionization of empty fullerenes. Results are presented for the AratC{sub 60} endofullerene compound. (fast track communication)

  6. Mechanical properties and tribological behavior of fullerene-like hydrogenated carbon films prepared by changing the flow rates of argon gas

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Junmeng [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou 730000 (China); School of Petrochemical Engineering, Lanzhou University of Technology , Lanzhou 730000 (China); Wang, Yongfu; Liang, Hongyu; Liang, Aimin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou 730000 (China); Zhang, Junyan, E-mail: zhangjunyan@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou 730000 (China)

    2016-02-28

    Graphical abstract: - Highlights: • We prepared hydrogenated carbon films with different content of the fullerene-like nanostructure. • There is a linear relationship between the fullerene-like content and the mechanical properties, tribological behavior of as-deposited FL-C:H films. • New fullerene-like nanostructure may serve as a self-lubrication without addition of any other lubricant during the friction process. • New fullerene-like nanostructure may originate from the rapid annealing and stress relaxation during friction process. - Abstract: Fullerene-like hydrogenated carbon (FL-C:H) films as carbon materials were prepared by direct current plasma enhanced chemical vapor deposition (dc-PECVD) technique. The content of FL nanostructure was confirmed by high-resolution transmission electron microscopy (HRTEM), visible Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The effect of fullerene-like nanostructure on the friction behavior of the films was studied using a reciprocating ball-on-flat tribometer in humid environment. It is concluded that the curved FL nanostructure provide the film excellent mechanical properties and friction performance. Interestingly, combining with the results of Raman analyses of the wear debris, we find that new FL nanostructure form during the friction process. These new FL nanostructure may originate from the rapid annealing and stress relaxation of unstable carbon clusters.

  7. Thermoluminescent signal fading of encapsulated lif: Mg,Ti detectors in PTFE-Teflon registered trademark

    International Nuclear Information System (INIS)

    Sasho Nikolovski, Sasho; Nikolovska, Lidija; Velevska, Marija; Velev, Velko

    2010-01-01

    Fading is a process when the latent information of a detector is unintentionally lost mainly due to the thermal influence. Thermoluminescent (TL) detectors have different sensitivities as far as the fading effect. Encapsulated TL detectors mounted within shielded filter holders are used during the personal monitoring of occupationally exposed persons in R. Macedonia. PTFE-Teflon registered trademark polymer is an example of encapsulation material that has a temperature resistance and it allows the luminescence signal to pass through. Since the encapsulated TL detectors cannot be submitted to annealing treatment in an oven, another fading reduction method is needed. The TL evaluation method suggested in this work is based on a specific glow-curve region. Irradiations were conducted using 90Sr/90Y source. Post-irradiation fade investigations were conducted for evaluation periods that varied up to 4 months. Two areas of the TL glow-curve were selected with the WimRems software. They correspond to the high and the low fading emission peaks (the lower temperature peaks display a greater degree of thermal fading than the higher temperature peaks). Post-irradiation fade is a contributing factor that affects the response of a thermoluminescent (TL) phosphor as a function of time. PTFE - Polytetrafluoroethylene most well known by the DuPont brand name Teflon registered trademark. (Author)

  8. Bipolar polaron pair recombination in polymer/fullerene solar cells

    DEFF Research Database (Denmark)

    Kupijai, Alexander J.; Behringer, Konstantin M.; Schaeble, Florian G.

    2015-01-01

    We present a study of the rate-limiting spin-dependent charge-transfer processes in different polymer/fullerene bulk-heterojunction solar cells at 10 K. Observing central spin-locking signals in pulsed electrically detected magnetic resonance and an inversion of Rabi oscillations in multifrequency...

  9. Fullerene Derivatives as Components for ‘Plastic’ Photovoltaic Cells

    NARCIS (Netherlands)

    Knol, Joop; Hummelen, Jan C.

    1998-01-01

    Derivatives of [60]fullerene, mixed with conducting polymers to yield donor-acceptor bulk-heterojunction (β-junction) materials, are useful in ‘plastic’ photovoltaic devices. In order to enhance the charge carrier mobilities in the two individual interpenetrating networks, one important goal of our

  10. In Pursuit of Sustainable Hydrogen Storage with Boron-Nitride Fullerene as the Storage Medium.

    Science.gov (United States)

    Ganguly, Gaurab; Malakar, Tanmay; Paul, Ankan

    2016-06-22

    Using well calibrated DFT studies we predict that experimentally synthesized B24 N24 fullerene can serve as a potential reversible chemical hydrogen storage material with hydrogen-gas storage capacity up to 5.13 wt %. Our theoretical studies show that hydrogenation and dehydrogenation of the fullerene framework can be achieved at reasonable rates using existing metal-free hydrogenating agents and base metal-containing dehydrogenation catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effect of С(60 fullerene on metabolic and proliferative activity of PKE cell line

    Directory of Open Access Journals (Sweden)

    I. V. Belochkina

    2014-04-01

    Full Text Available The effect of С60 fullerene aqueous colloid solution (C60FAS on activity of redox and proliferative processes in PKE (transplantable cell line of pig kidney embryo cells has been studied. In particular, it was established that the presence of С60 fullerene (127 μМ in culturing medium of PKE cells during 48 h did not change their ability to reduce non-toxic АlamarBlue redox indicator and proliferative acti­vity.

  12. The encapsulation of nuclear waste in a magnesium aluminosilicate glass-ceramic

    International Nuclear Information System (INIS)

    Luk, K.M.

    1999-07-01

    The use of Magnesium aluminosilicate (MAS) glass-ceramics for the immobilisation of nuclear waste has been investigated. Nuclear waste is currently immobilised in a borosilicate glass. It is possible that immobilisation in an MAS glass-ceramic will reduce processing temperature of the waste, offer greater thermal and chemical stabilities and chemical durabilities. The primary reason for investigating sintered glass-ceramics is the possible advent of wastes containing high levels of refractory elements such as zirconia from the future reprocessing techniques such as electrochemical dissolution. In the first instance zirconia was used as a simulated waste with the principal of encapsulating zirconia with the minimum of porosity. Attempts were made to encapsulate 0, 20 and 40 volume % of zirconia in MAS sintering at temperatures of around 950 deg. C. It was found that the main cause of porosity was the agglomeration of fine zirconia powder. Three Taguchi experiments to optimise conditions for encapsulation of zirconia in MAS were carried out. In each case 10 volume % of zirconia was encapsulated. A Taguchi L 8 was carried out to optimise thermal conditions and powder characteristics. A Taguchi L 9 was carried out to improve knowledge of the thermal characteristics and an L 16 was carried out to provide information on curvature of thermal parameters and powder particle sizes. The conditions predicted to be optimum from these Taguchi experiments were a temperature of 940 - 960 deg. C, a heating rate of 30 deg. C/min, a hold time of 30 - 50 minutes and particle sizes of 2-4 and ∼ 15μm respectively. Densifications of up to 99% have been observed. Tapping experiments were carried out in an attempt to remove the pressing stage from processing. MAS was tapped into an alumina crucible with and without the addition of a dead weight. Almost fully dense MAS pellets were produced. This is an indication that it may be possible to process glass-ceramic waste forms in their final

  13. Encapsulation process for diffraction gratings.

    Science.gov (United States)

    Ratzsch, Stephan; Kley, Ernst-Bernhard; Tünnermann, Andreas; Szeghalmi, Adriana

    2015-07-13

    Encapsulation of grating structures facilitates an improvement of the optical functionality and/or adds mechanical stability to the fragile structure. Here, we introduce novel encapsulation process of nanoscale patterns based on atomic layer deposition and micro structuring. The overall size of the encapsulated structured surface area is only restricted by the size of the available microstructuring and coating devices; thus, overcoming inherent limitations of existing bonding processes concerning cleanliness, roughness, and curvature of the components. Finally, the process is demonstrated for a transmission grating. The encapsulated grating has 97.5% transmission efficiency in the -1st diffraction order for TM-polarized light, and is being limited by the experimental grating parameters as confirmed by rigorous coupled wave analysis.

  14. Non-Fullerene Electron Acceptors for Use in Organic Solar Cells

    KAUST Repository

    Nielsen, Christian B.

    2015-10-27

    The active layer in a solution processed organic photovoltaic device comprises a light absorbing electron donor semiconductor, typically a polymer, and an electron accepting fullerene acceptor. Although there has been huge effort targeted to optimize the absorbing, energetic, and transport properties of the donor material, fullerenes remain as the exclusive electron acceptor in all high performance devices. Very recently, some new non-fullerene acceptors have been demonstrated to outperform fullerenes in comparative devices. This Account describes this progress, discussing molecular design considerations and the structure–property relationships that are emerging. The motivation to replace fullerene acceptors stems from their synthetic inflexibility, leading to constraints in manipulating frontier energy levels, as well as poor absorption in the solar spectrum range, and an inherent tendency to undergo postfabrication crystallization, resulting in device instability. New acceptors have to address these limitations, providing tunable absorption with high extinction coefficients, thus contributing to device photocurrent. The ability to vary and optimize the lowest unoccupied molecular orbital (LUMO) energy level for a specific donor polymer is also an important requirement, ensuring minimal energy loss on electron transfer and as high an internal voltage as possible. Initially perylene diimide acceptors were evaluated as promising acceptor materials. These electron deficient aromatic molecules can exhibit good electron transport, facilitated by close packed herringbone crystal motifs, and their energy levels can be synthetically tuned. The principal drawback of this class of materials, their tendency to crystallize on too large a length scale for an optimal heterojunction nanostructure, has been shown to be overcome through introduction of conformation twisting through steric effects. This has been primarily achieved by coupling two units together, forming dimers

  15. Enhancing heat capacity of colloidal suspension using nanoscale encapsulated phase-change materials for heat transfer.

    Science.gov (United States)

    Hong, Yan; Ding, Shujiang; Wu, Wei; Hu, Jianjun; Voevodin, Andrey A; Gschwender, Lois; Snyder, Ed; Chow, Louis; Su, Ming

    2010-06-01

    This paper describes a new method to enhance the heat-transfer property of a single-phase liquid by adding encapsulated phase-change nanoparticles (nano-PCMs), which absorb thermal energy during solid-liquid phase changes. Silica-encapsulated indium nanoparticles and polymer-encapsulated paraffin (wax) nanoparticles have been made using colloid method, and suspended into poly-alpha-olefin (PAO) and water for potential high- and low-temperature applications, respectively. The shells prevent leakage and agglomeration of molten phase-change materials, and enhance the dielectric properties of indium nanoparticles. The heat-transfer coefficients of PAO containing indium nanoparticles (30% by mass) and water containing paraffin nanoparticles (10% by mass) are 1.6 and 1.75 times higher than those of corresponding single-phase fluids. The structural integrity of encapsulation allows repeated use of such nanoparticles for many cycles in high heat generating devices.

  16. Nitrogen-doped fullerene as a potential catalyst for hydrogen fuel cells.

    Science.gov (United States)

    Gao, Feng; Zhao, Guang-Lin; Yang, Shizhong; Spivey, James J

    2013-03-06

    We examine the possibility of nitrogen-doped C60 fullerene (N-C60) as a cathode catalyst for hydrogen fuel cells. We use first-principles spin-polarized density functional theory calculations to simulate the electrocatalytic reactions on N-C60. The first-principles results show that an O2 molecule can be adsorbed and partially reduced on the N-C complex sites (Pauling sites) of N-C60 without any activation barrier. Through a direct pathway, the partially reduced O2 can further react with H(+) and additional electrons and complete the water formation reaction (WFR) with no activation energy barrier. In the indirect pathway, reduced O2 reacts with H(+) and additional electrons to form H2O molecules through a transition state (TS) with a small activation barrier (0.22-0.37 eV). From an intermediate state to a TS, H(+) can obtain a kinetic energy of ∼0.95-3.68 eV, due to the Coulomb electric interaction, and easily overcome the activation energy barrier during the WFR. The full catalytic reaction cycles can be completed energetically, and N-C60 fullerene recovers to its original structure for the next catalytic reaction cycle. N-C60 fullerene is a potential cathode catalyst for hydrogen fuel cells.

  17. Fullerene nanostructure design with cluster ion impacts

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Vacík, Jiří; Naramoto, H.; Narumi, K.

    2009-01-01

    Roč. 483, - (2009), s. 479-483 ISSN 0925-8388 R&D Projects: GA AV ČR IAA200480702; GA AV ČR IAA400100701; GA AV ČR(CZ) KAN400480701 Institutional research plan: CEZ:AV0Z10480505 Keywords : fullerene films, clusters C60+ * cluster ion implantation * patterning Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.135, year: 2009

  18. Sulfur polymer cement encapsulation of RCRA toxic metals and metal oxides

    International Nuclear Information System (INIS)

    Calhoun, C.L. Jr.; Nulf, L.E.; Gorin, A.H.

    1995-06-01

    A study was conducted to determine the suitability of Sulfur Polymer Cement (SPC) encapsulation technology for the stabilization of RCRA toxic metal and metal oxide wastes. In a series of bench-scale experiments, the effects of sodium sulfide additions to the waste mixture, residence time, and temperature profile were evaluated. In addition, an effort was made to ascertain the degree to which SPC affords chemical stabilization as opposed to physical encapsulation. Experimental results have demonstrated that at the 25 wt % loading level, SPC can effectively immobilize Cr, Cr 2 O 3 , Hg, Pb, and Se to levels below regulatory limits. SPC encapsulation also has been shown to significantly reduce the leachability of other toxic compounds including PbO, PbO 2 , As 2 O 3 , BaO, and CdO. In addition, data has confirmed sulfide conversion of Hg, Pb, PbO, PbO 2 , and BaO as the product of their reaction with SPC

  19. Review of encapsulation technologies

    International Nuclear Information System (INIS)

    Shaulis, L.

    1996-09-01

    The use of encapsulation technology to produce a compliant waste form is an outgrowth from existing polymer industry technology and applications. During the past 12 years, the Department of Energy (DOE) has been researching the use of this technology to treat mixed wastes (i.e., containing hazardous and radioactive wastes). The two primary encapsulation techniques are microencapsulation and macroencapsulation. Microencapsulation is the thorough mixing of a binding agent with a powdered waste, such as incinerator ash. Macroencapsulation coats the surface of bulk wastes, such as lead debris. Cement, modified cement, and polyethylene are the binding agents which have been researched the most. Cement and modified cement have been the most commonly used binding agents to date. However, recent research conducted by DOE laboratories have shown that polyethylene is more durable and cost effective than cements. The compressive strength, leachability, resistance to chemical degradation, etc., of polyethylene is significantly greater than that of cement and modified cement. Because higher waste loads can be used with polyethylene encapsulant, the total cost of polyethylene encapsulation is significantly less costly than cement treatment. The only research lacking in the assessment of polyethylene encapsulation treatment for mixed wastes is pilot and full-scale testing with actual waste materials. To date, only simulated wastes have been tested. The Rocky Flats Environmental Technology Site had planned to conduct pilot studies using actual wastes during 1996. This experiment should provide similar results to the previous tests that used simulated wastes. If this hypothesis is validated as anticipated, it will be clear that polyethylene encapsulation should be pursued by DOE to produce compliant waste forms

  20. RBS and SEM analysis of the nickel-fullerene hybrid systems

    Czech Academy of Sciences Publication Activity Database

    Vacík, Jiří; Naramoto, J.; Narumi, K.; Yamanoto, S.; Abe, J.

    2003-01-01

    Roč. 206, - (2003), s. 395-398 ISSN 0168-583X Institutional research plan: CEZ:AV0Z1048901 Keywords : nicke-fullerene hybrid Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.041, year: 2003

  1. An endohedral fullerene-based nuclear spin quantum computer

    International Nuclear Information System (INIS)

    Ju Chenyong; Suter, Dieter; Du Jiangfeng

    2011-01-01

    We propose a new scalable quantum computer architecture based on endohedral fullerene molecules. Qubits are encoded in the nuclear spins of the endohedral atoms, which posses even longer coherence times than the electron spins which are used as the qubits in previous proposals. To address the individual qubits, we use the hyperfine interaction, which distinguishes two modes (active and passive) of the nuclear spin. Two-qubit quantum gates are effectively implemented by employing the electronic dipolar interaction between adjacent molecules. The electron spins also assist in the qubit initialization and readout. Our architecture should be significantly easier to implement than earlier proposals for spin-based quantum computers, such as the concept of Kane [B.E. Kane, Nature 393 (1998) 133]. - Research highlights: → We propose an endohedral fullerene-based scalable quantum computer architecture. → Qubits are encoded on nuclear spins, while electron spins serve as auxiliaries. → Nuclear spins are individually addressed using the hyperfine interaction. → Two-qubit gates are implemented through the medium of electron spins.

  2. Solution-processed, molecular photovoltaics that exploit hole transfer from non-fullerene, n-type materials

    KAUST Repository

    Douglas, Jessica D.

    2014-05-12

    Solution-processed organic photovoltaic devices containing p-type and non-fullerene n-type small molecules obtain power conversion efficiencies as high as 2.4%. The optoelectronic properties of the n-type material BT(TTI-n12)2 allow these devices to display high open-circuit voltages (>0.85 V) and generate significant charge carriers through hole transfer in addition to the electron-transfer pathway, which is common in fullerene-based devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Non-Covalent Functionalisation of C30 Fullerene by Pyrrole-n-Carboxylic Acid (n=2, 3): Density Functional Theory Studies

    Science.gov (United States)

    Harismah, Kun; Mirzaei, Mahmoud; Ghasemi, Nahid; Nejati, Mohammad

    2017-12-01

    For functionalisation of a representative C30 fullerene nanostructure by pyrrole-n-carboxylic acid (PnCA; n=2, 3) their stabilities and properties were investigated based on density functional theory calculations. Parallel calculations were also done for C60 fullerene as evidence for comparing the results. Non-covalent interactions are considered to make the functionalised structures. In contrast with the spherical shape of C60, the shape of C30 fullerene is elliptical; therefore, the functionalisation processes were done for both axial and equatorial elliptical positions (AC30 and EC30). The results indicated that both the positions of C30 have almost equivalent chances to be functionalised by PnCA; but functionalisation by P2CA is slightly more favourable than P3CA, either for C60. The illustrated molecular orbitals' distributions indicated that the direction of charge transfer could be considered from PnCA counterparts to fullerene counterparts. The molecular properties indicated more reactivity for C30 than for C60 fullerene. Finally, the atomic scale quadrupole coupling constants indicated different roles for N and O atoms of PnCA in the functionalised models.

  4. Preparation of SnSe thin films by encapsulated selenization

    International Nuclear Information System (INIS)

    Sabar D. Hutagalung; Samsudi Sakrani; Yussof Wahab

    1994-01-01

    Tin selenide thin films were prepared by encapsulated selenization. A stacked layer of evaporated Sn and Se films were annealed in a carbon block at temperatures 100 - 500 degree Celsius for 3 hours. X-ray analysis and SEM (Scanning electron) micrograph results showed that SnSe was initially formed at 150 degree Celsius with crystal size 30.0 nm and reached optimum formation at 200 daximum of 57.4 % yield of 5-decene. Other factors such as reaction temperatures, types of solvent and wt% of rhenium loadings influence the activity of the catalytic system

  5. Factors Governing Intercalation of Fullerenes and Other Small Molecules Between the Side Chains of Semiconducting Polymers Used in Solar Cells

    KAUST Repository

    Miller, Nichole Cates

    2012-08-22

    While recent reports have established signifi cant miscibility in polymer:fullerene blends used in organic solar cells, little is actually known about why polymers and fullerenes mix and how their mixing can be controlled. Here, X-ray diffraction (XRD), differential scanning calorimetry (DSC), and molecular simulations are used to study mixing in a variety of polymer:molecule blends by systematically varying the polymer and smallmolecule properties. It is found that a variety of polymer:fullerene blends mix by forming bimolecular crystals provided there is suffi cient space between the polymer side chains to accommodate a fullerene. Polymer:tetrafl uoro-tetracyanoquinodimethane (F4-TCNQ) bimolecular crystals were also observed, although bimolecular crystals did not form in the other studied polymer:nonfullerene blends, including those with both conjugated and non-conjugated small molecules. DSC and molecular simulations demonstrate that strong polymer-fullerene interactions can exist, and the calculations point to van der Waals interactions as a signifi cant driving force for molecular mixing. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Functional Design of Dielectric-Metal-Dielectric-Based Thin-Film Encapsulation with Heat Transfer and Flexibility for Flexible Displays.

    Science.gov (United States)

    Kwon, Jeong Hyun; Choi, Seungyeop; Jeon, Yongmin; Kim, Hyuncheol; Chang, Ki Soo; Choi, Kyung Cheol

    2017-08-16

    In this study, a new and efficient dielectric-metal-dielectric-based thin-film encapsulation (DMD-TFE) with an inserted Ag thin film is proposed to guarantee the reliability of flexible displays by improving the barrier properties, mechanical flexibility, and heat dissipation, which are considered to be essential requirements for organic light-emitting diode (OLED) encapsulation. The DMD-TFE, which is composed of Al 2 O 3 , Ag, and a silica nanoparticle-embedded sol-gel hybrid nanocomposite, shows a water vapor transmission rate of 8.70 × 10 -6 g/m 2 /day and good mechanical reliability at a bending radius of 30 mm, corresponding to 0.41% strain for 1000 bending cycles. The electrical performance of a thin-film encapsulated phosphorescent organic light-emitting diode (PHOLED) was identical to that of a glass-lid encapsulated PHOLED. The operational lifetimes of the thin-film encapsulated and glass-lid encapsulated PHOLEDs are 832 and 754 h, respectively. After 80 days, the thin-film encapsulated PHOLED did not show performance degradation or dark spots on the cell image in a shelf-lifetime test. Finally, the difference in lifetime of the OLED devices in relation to the presence and thickness of a Ag film was analyzed by applying various TFE structures to fluorescent organic light-emitting diodes (FOLEDs) that could generate high amounts of heat. To demonstrate the difference in heat dissipation effect among the TFE structures, the saturated temperatures of the encapsulated FOLEDs were measured from the back side surface of the glass substrate, and were found to be 67.78, 65.12, 60.44, and 39.67 °C after all encapsulated FOLEDs were operated at an initial luminance of 10 000 cd/m 2 for sufficient heat generation. Furthermore, the operational lifetime tests of the encapsulated FOLED devices showed results that were consistent with the measurements of real-time temperature profiles taken with an infrared camera. A multifunctional hybrid thin-film encapsulation

  7. Dispersion of fullerenes in phospholipid bilayers and the subsequent phase changes in the host bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Jeng, U-S. [National Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan (China)]. E-mail: usjeng@nsrrc.org.tw; Hsu, C.-H. [National Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan (China); Lin, T.-L. [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Wu, C.-M. [Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chen, H.-L. [Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Tai, L.-A. [Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Hwang, K.-C. [Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2005-02-28

    We have studied the structure and phase transition characteristics of the fullerenes (C{sub 60})-embedded lipid bilayers. With small-angle neutron scattering (SANS), we have observed a degradation of bilayer ordering and a suppression effect on the phase transitions of the host vesicle bilayers of dipalmitoylphosphatidylcholine (DPPC), due to the embedment of fullerenes. The fullerene-embedded lipid system with substrate-oriented bilayers is also investigated using X-ray reflectivity and grazing incident small-angle X-ray scattering (GISAXS). In the depth direction, the multilamellar peaks observed in the X-ray reflectivity profile for the oriented DPPC/C{sub 60} bilayers reveal a larger head-to-head distance D{sub HH} of 50.6 A and a bilayer spacing D of 59.8 A, compared to the D{sub HH}=47.7 A and D=59.5 A for a pure DPPC membrane measured at the same conditions. Furthermore, the lipid head layers and water layers in the extracted electron density profile for the complex system are highly smeared, implying a fluctuating or corrugated structure in this zone. Correspondingly, GISAXS for the oriented DPPC/C{sub 60} membrane reveals stronger diffuse scatterings along the membrane plane than that for the pure DPPC system, indicating a higher in-plane correlation associated with the embedded fullerenes.

  8. Method of encapsulating a phase change material with a metal oxide

    Science.gov (United States)

    Ram, Manoj Kumar; Jotshi, Chand K.; Stefanakos, Elias K.; Goswami, Dharendra Yogi

    2016-11-15

    Storage systems based on latent heat storage have high-energy storage density, which reduces the footprint of the system and the cost. However, phase change materials (PCMs), such as NaNO.sub.3, NaCl, KNO.sub.3, have very low thermal conductivities. To enhave the storage of PCMs, macroencapsulation of PCMs was performed using a metal oxide, such as SiO.sub.2 or a graphene-SiO.sub.2, over polyimide-coated or nickel-embedded, polyimide-coated pellets The macro encapsulation provides a self-supporting structure, enhances the heat transfer rate, and provides a cost effective and reliable solution for thermal energy storage for use in solar thermal power plants. NaNO.sub.3 was selected for thermal storage in a temperature range of 300.degree. C. to 500.degree. C. The PCM was encapsulated in a metal oxide cell using self-assembly reactions, hydrolysis, and simultaneous chemical oxidation at various temperatures.

  9. Naming polyhedra by general face-spirals - theory and applications to fullerenes and other polyhedral molecules

    DEFF Research Database (Denmark)

    Wirz, Lukas; Schwerdtfeger, Peter; Avery, James Emil

    2018-01-01

    We present a general face-spiral algorithm for cubic polyhedral graphs (including fullerenes and fulleroids), and extend it to the full class of all polyhedral graphs by way of the leapfrog transform. This yields compact canonical representations of polyhedra with a simple and intuitive geometrical...... polyhedral molecules, and an especially compact form for the special class of fullerenes. A unique numbering of vertices is obtained as a byproduct of the spiral algorithm. This is required to denote modifications of the parent cage in IUPAC naming schemes. Similarly, the symmetry group of the molecule can...... be found together with the canonical general spiral at negligible cost. The algorithm is fully compatible with the classical spiral algorithm developed by Manolopoulos for fullerenes, i. e., classical spirals are accepted as input, and spiralable graphs lead to identical output. We prove that the algorithm...

  10. Rectification of current responds to incorporation of fullerenes into mixed-monolayers of alkanethiolates in tunneling junctions.

    Science.gov (United States)

    Qiu, Li; Zhang, Yanxi; Krijger, Theodorus L; Qiu, Xinkai; Hof, Patrick Van't; Hummelen, Jan C; Chiechi, Ryan C

    2017-03-01

    This paper describes the rectification of current through molecular junctions comprising self-assembled monolayers of decanethiolate through the incorporation of C 60 fullerene moieties bearing undecanethiol groups in junctions using eutectic Ga-In (EGaIn) and Au conducting probe AFM (CP-AFM) top-contacts. The degree of rectification increases with increasing exposure of the decanethiolate monolayers to the fullerene moieties, going through a maximum after 24 h. We ascribe this observation to the resulting mixed-monolayer achieving an optimal packing density of fullerene cages sitting above the alkane monolayer. Thus, the degree of rectification is controlled by the amount of fullerene present in the mixed-monolayer. The voltage dependence of R varies with the composition of the top-contact and the force applied to the junction and the energy of the lowest unoccupied π-state determined from photoelectron spectroscopy is consistent with the direction of rectification. The maximum value of rectification R = | J (+)/ J (-)| = 940 at ±1 V or 617 at ±0.95 V is in agreement with previous studies on pure monolayers relating the degree of rectification to the volume of the head-group on which the frontier orbitals are localized.

  11. Extraction of fullerenes from environmental matrices as affected by solvent characteristics and analyte concentration.

    Science.gov (United States)

    Place, Benjamin J; Kleber, Markus; Field, Jennifer A

    2013-03-01

    Fullerenes possess unique chemical properties that make the isolation of these compounds from heterogeneous environmental matrices difficult. For example, previous reports indicate that toluene-based extraction techniques vary in their ability to extract C60, especially from highly carbonaceous solid matrices. Here, we examined the effects of (i) solvent type (toluene alone versus an 80:20 v/v mixture of toluene and 1-methylnaphthalene) and (ii) analyte concentration on the extraction efficiency of an isotopically labeled surrogate compound, (13)C60. The toluene/1-methylnaphthalene mixture increased fullerene extraction efficiency from carbon lampblack by a factor of five, but was not significantly different from 100% toluene when applied to wood stove soot or montmorillonite. Recovery of the (13)C60 surrogate declined with decreasing analyte concentration. The usefulness of isotopically labeled surrogate is demonstrated and the study provides a quantitative assessment regarding the dependence of fullerene extraction efficiencies on the geochemical characteristics of solid matrices. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Photoconducting properties of fullerene derivatized with a biphenil moiety

    Czech Academy of Sciences Publication Activity Database

    Corvis, Y.; Trzcinska, K.; Rink, R.; Bílková, Petra; Gorecka, E.; Bilewicz, R.; Rogalska, E.

    2006-01-01

    Roč. 80, č. 3 (2006), s. 1899-1907 ISSN 0137- 5083 Grant - others:Research Training Network(XE) HPRN-CT-2002-00171 Institutional research plan: CEZ:AV0Z10100520 Keywords : fullerene * photoconductivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.491, year: 2006

  13. Use of X-ray diffraction, molecular simulations, and spectroscopy to determine the molecular packing in a polymer-fullerene bimolecular crystal

    KAUST Repository

    Miller, Nichole Cates

    2012-09-05

    The molecular packing in a polymer: fullerene bimolecular crystal is determined using X-ray diffraction (XRD), molecular mechanics (MM) and molecular dynamics (MD) simulations, 2D solid-state NMR spectroscopy, and IR absorption spectroscopy. The conformation of the electron-donating polymer is significantly disrupted by the incorporation of the electron-accepting fullerene molecules, which introduce twists and bends along the polymer backbone and 1D electron-conducting fullerene channels. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Reduction of conspicuous facial pores by topical fullerene: possible role in the suppression of PGE2 production in the skin.

    Science.gov (United States)

    Inui, Shigeki; Mori, Ayako; Ito, Masayuki; Hyodo, Sayuri; Itami, Satoshi

    2014-02-22

    Conspicuous facial pores are therapeutic targets for cosmeceuticals. Here we examine the effect of topical fullerene on conspicuous facial pores using a new image analyser called the VISIA® system. Ten healthy Japanese females participated in this study, and they received applications of 1% fullerene lotion to the face twice a day for 8 weeks. Fullerene lotion significantly decreased conspicuous pores by 17.6% (p facial pores after an 8-week treatment possibly through the suppression of PGE2 production in the epidermis.

  15. Use of X-ray diffraction, molecular simulations, and spectroscopy to determine the molecular packing in a polymer-fullerene bimolecular crystal

    KAUST Repository

    Miller, Nichole Cates; Cho, Eunkyung; Junk, Matthias J N; Gysel, Roman; Risko, Chad; Kim, Dongwook; Sweetnam, Sean; Miller, Chad E.; Richter, Lee J.; Kline, Regis Joseph; Heeney, Martin J.; McCulloch, Iain A.; Amassian, Aram; Acevedo-Feliz, Daniel; Knox, Christopher; Hansen, Michael Ryan; Dudenko, Dmytro V.; Chmelka, Bradley F.; Toney, Michael F.; Bré das, Jean Luc; McGehee, Michael D.

    2012-01-01

    The molecular packing in a polymer: fullerene bimolecular crystal is determined using X-ray diffraction (XRD), molecular mechanics (MM) and molecular dynamics (MD) simulations, 2D solid-state NMR spectroscopy, and IR absorption spectroscopy. The conformation of the electron-donating polymer is significantly disrupted by the incorporation of the electron-accepting fullerene molecules, which introduce twists and bends along the polymer backbone and 1D electron-conducting fullerene channels. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effect of collective response on electron capture and excitation in collisions of highly charged ions with fullerenes.

    Science.gov (United States)

    Kadhane, U; Misra, D; Singh, Y P; Tribedi, Lokesh C

    2003-03-07

    Projectile deexcitation Lyman x-ray emission following electron capture and K excitation has been studied in collisions of bare and Li-like sulphur ions (of energy 110 MeV) with fullerenes (C(60)/C(70)) and different gaseous targets. The intensity ratios of different Lyman x-ray lines in collisions with fullerenes are found to be substantially lower than those for the gas targets, both for capture and excitation. This has been explained in terms of a model based on "solidlike" effect, namely, wakefield induced stark mixing of the excited states populated via electron capture or K excitation: a collective phenomenon of plasmon excitation in the fullerenes under the influence of heavy, highly charged ions.

  17. Negative differential resistance observation in complex convoluted fullerene junctions

    Science.gov (United States)

    Kaur, Milanpreet; Sawhney, Ravinder Singh; Engles, Derick

    2018-04-01

    In this work, we simulated the smallest fullerene molecule, C20 in a two-probe device model with gold electrodes. The gold electrodes comprised of (011) miller planes were carved to construct the novel geometry based four unique shapes, which were strung to fullerene molecules through mechanically controlled break junction techniques. The organized devices were later scrutinized using non-equilibrium Green's function based on the density functional theory to calculate their molecular orbitals, energy levels, charge transfers, and electrical parameters. After intense scrutiny, we concluded that five-edged and six-edged devices have the lowest and highest current-conductance values, which result from their electrode-dominating and electrode-subsidiary effects, respectively. However, an interesting observation was that the three-edged and four-edged electrodes functioned as semi-metallic in nature, allowing the C20 molecule to demonstrate its performance with the complementary effect of these electrodes in the electron conduction process of a two-probe device.

  18. Encapsulation of TRISO particle fuel in durable soda-lime-silicate glasses

    International Nuclear Information System (INIS)

    Heath, Paul G.; Corkhill, Claire L.; Stennett, Martin C.; Hand, Russell J.; Meyer, Willem C.H.M.; Hyatt, Neil C.

    2013-01-01

    Tri-Structural Isotropic (TRISO) coated particle-fuel is a key component in designs for future high temperature nuclear reactors. This study investigated the suitability of three soda lime silicate glass compositions, for the encapsulation of simulant TRISO particle fuel. A cold press and sinter (CPS) methodology was employed to produce TRISO particle–glass composites. Composites produced were determined to have an aqueous durability, fracture toughness and Vickers’ hardness comparable to glasses currently employed for the disposal of high level nuclear wastes. Sintering at 700 °C for 30 min was found to remove all interconnected porosity from the composite bodies and oxidation of the outer pyrolytic carbon layer during sintering was prevented by processing under a 5% H 2 /N 2 atmosphere. However, the outer pyrolytic carbon layer was not effectively wetted by the encapsulating glass matrix. The aqueous durability of the TRISO particle–glass composites was investigated using PCT and MCC-1 tests combined with geochemical modelling. It was found that durability was dependent on silicate and calcium solution saturation. This study provides significant advancements in the preparation of TRISO particle encapsulant waste forms. The potential for the use of non-borosilicate sintered glass composites for TRISO particle encapsulation has been confirmed, although further refinements are required

  19. Encapsulation of TRISO particle fuel in durable soda-lime-silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Heath, Paul G.; Corkhill, Claire L.; Stennett, Martin C.; Hand, Russell J. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, Robert Hadfield Building, University of Sheffield, Sheffield S1 3JD (United Kingdom); Meyer, Willem C.H.M. [Necsa, South African Nuclear Energy Corporation, PO Box 582, Pretoria, Gauteng (South Africa); Hyatt, Neil C., E-mail: n.c.hyatt@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, Robert Hadfield Building, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2013-05-15

    Tri-Structural Isotropic (TRISO) coated particle-fuel is a key component in designs for future high temperature nuclear reactors. This study investigated the suitability of three soda lime silicate glass compositions, for the encapsulation of simulant TRISO particle fuel. A cold press and sinter (CPS) methodology was employed to produce TRISO particle–glass composites. Composites produced were determined to have an aqueous durability, fracture toughness and Vickers’ hardness comparable to glasses currently employed for the disposal of high level nuclear wastes. Sintering at 700 °C for 30 min was found to remove all interconnected porosity from the composite bodies and oxidation of the outer pyrolytic carbon layer during sintering was prevented by processing under a 5% H{sub 2}/N{sub 2} atmosphere. However, the outer pyrolytic carbon layer was not effectively wetted by the encapsulating glass matrix. The aqueous durability of the TRISO particle–glass composites was investigated using PCT and MCC-1 tests combined with geochemical modelling. It was found that durability was dependent on silicate and calcium solution saturation. This study provides significant advancements in the preparation of TRISO particle encapsulant waste forms. The potential for the use of non-borosilicate sintered glass composites for TRISO particle encapsulation has been confirmed, although further refinements are required.

  20. An examination of sulfur polymer cement as a waste encapsulation agent

    International Nuclear Information System (INIS)

    McNew, E.B.

    1995-01-01

    Sulfur polymer cement (SPC) is a unique material having potential applications for hazardous and radioactive waste encapsulation. This material was originally developed by the US Bureau of Mines as an acid and chemical resistant construction cement and has since been applied in tie waste encapsulation field. The material is easily prepared from elemental sulfur and organic dienes. It is an easy to use low-viscosity thermoplastic, and has many favorable properties such as low porosity, high compressive strength, and resistance to chemical attack. The results of several invetigations on this material will be discussed, and include: (1) the chemical form and physical structure of the material, (2) the compressive strength of cylindrical test samples after gamma radiation testing, (3) the aqueous leaching behavior of lead, cerium, cesium, cobalt, and strontium from SPC-ash mixtures at room and elevated temperatures, (4) the casting compatibility of mixtures of SPC with different waste materials, (5) the ability of SPC to encapsulate elemental mercury contaminated soils, (6) laboratory and field studies of SPC biocorrosion by Thiobacillus bacteria, (7) small scale (10 kg) SPC-ash monolith casting studies, and (8) methods for the formulation of a grade of SPC more applicable to the encapsulation of aggregate waste materials

  1. Surfactant-free fabrication of fullerene C{sub 60} nanotubules under shear

    Energy Technology Data Exchange (ETDEWEB)

    Vimalanathan, Kasturi; Raston, Colin L. [Flinders Centre for NanoScale Science Technology (CNST) Chemical and Physical Sciences, Flinders University, Adelaide (Australia); Shrestha, Rekha Goswami [International Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki (Japan); Zhang, Zhi; Zou, Jin [Materials Engineering and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD (Australia); Nakayama, Tomonobu [International Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki (Japan)

    2017-07-10

    A method for controlling the self-assembly of fullerene C{sub 60} molecules into nanotubules in the fcc phase, devoid of entrapped solvent, has been established in a thin film microfluidic device. The micron length C{sub 60} nanotubules, with individual hollow diameters of 100 to 400 nm, are formed under continuous flow processing during high shear micromixing of water and a toluene solution of the fullerene, in the absence of surfactant, and without the need for further down-stream processing. TEM revealed pores on the surface of the nanotubes, and the isolated material has a much higher response to small molecule sensing than that for analogous material formed using multistep batch processing. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Fullerene hydride - A potential hydrogen storage material

    International Nuclear Information System (INIS)

    Nai Xing Wang; Jun Ping Zhang; An Guang Yu; Yun Xu Yang; Wu Wei Wang; Rui long Sheng; Jia Zhao

    2005-01-01

    Hydrogen, as a clean, convenient, versatile fuel source, is considered to be an ideal energy carrier in the foreseeable future. Hydrogen storage must be solved in using of hydrogen energy. To date, much effort has been put into storage of hydrogen including physical storage via compression or liquefaction, chemical storage in hydrogen carriers, metal hydrides and gas-on-solid adsorption. But no one satisfies all of the efficiency, size, weight, cost and safety requirements for transportation or utility use. C 60 H 36 , firstly synthesized by the method of the Birch reduction, was loaded with 4.8 wt% hydrogen indicating [60]fullerene might be as a potential hydrogen storage material. If a 100% conversion of C 60 H 36 is achieved, 18 moles of H 2 gas would be liberated from each mole of fullerene hydride. Pure C 60 H 36 is very stable below 500 C under nitrogen atmosphere and it releases hydrogen accompanying by other hydrocarbons under high temperature. But C 60 H 36 can be decomposed to generate H 2 under effective catalyst. We have reported that hydrogen can be produced catalytically from C 60 H 36 by Vasks's compound (IrCl(CO)(PPh 3 ) 2 ) under mild conditions. (RhCl(CO)(PPh 3 ) 2 ) having similar structure to (IrCl(CO)(PPh 3 ) 2 ), was also examined for thermal dehydrogenation of C 60 H 36 ; but it showed low catalytic activity. To search better catalyst, palladium carbon (Pd/C) and platinum carbon (Pt/C) catalysts, which were known for catalytic hydrogenation of aromatic compounds, were tried and good results were obtained. A very big peak of hydrogen appeared at δ=5.2 ppm in 1 H NMR spectrum based on Evans'work (fig 1) at 100 C over a Pd/C catalyst for 16 hours. It is shown that hydrogen can be produced from C 60 H 36 using a catalytic amount of Pd/C. Comparing with Pd/C, Pt/C catalyst showed lower activity. The high cost and limited availability of Vaska's compounds, Pd and Pt make it advantageous to develop less expensive catalysts for our process based on

  3. Physical and electrical properties of trimetallic nitride template endohedral metallofullerenes and their polymer nanocomposites

    Science.gov (United States)

    Ahmed, Hanaa Mohammed

    The main objective of this study was characterization of pure metallic nitride fullerene, MNF, and MNF containing polymers to evaluate these materials as suitable devices for tunable applications. Polymer-fullerene nanocomposites consisting of linear polyurethane (PU) segments crosslinked via polyhydroxylated fullerenes (C60 and Sc3N C 80, a metallic nitride fullerene) were prepared and characterized for their mechanical and dielectric properties using dynamic mechanical analysis (DMA) and broadband dielectric spectroscopic techniques. Polyhydroxylated fullerenes C60(OH)29 and Sc3N C80(OH) 18 were synthesized in a high yield through a solid-state high sheer ball-milling procedure and were characterized using a verity of techniques, such as FT-R, mass spectroscopy (MS) and thermal gravimetric analysis (TGA), to elucidate their structures. A difunctional isocyanate-terminated prepolymer was prepared from the reaction of poly(tetramethylene oxide) glycol (PTMO, ˜2000 g/mol) and methylene bis(4-isocyanatobenzene) (MDI) followed by the addition of the crosslinking fullerene agent. Fullerene-polymer networks [C60 -PU and Sc3N C80-PU] having high gel fractions and good mechanical properties and thermal stabilities were produced. Dynamic mechanical analyses of (C60 or Sc3N C80)-PU networks indicated a glass transition temperature, Tg, of -50°C with a sub-Tg relaxation due to local chain motions. Broadband dielectric spectroscopic analyses of the nanoparticles prior to incorporation into the networks revealed one relaxation and large epsilon' values in hydroxylated C60 relative to unfunctionalized C60. The analogous hydroxylated Sc3N C80 exhibited two relaxations, and the extra relaxation may be due to reorientations of cage-encapsulated Sc 3N clusters. Permittivity values (epsilon') for Sc3N C 80-PU were found to be higher than the corresponding values for C 60-PU, likely because of the rotationally mobile dipoles. For temperature voltage characteristics of the fullerene

  4. Leach characterization of cement encapsulated wastes

    International Nuclear Information System (INIS)

    Roy, D.M.; Scheetz, B.E.; Wakeley, L.D.; Barnes, M.W.

    1982-01-01

    Matrix encapsulation of defense nuclear waste as well as intermediate-level commercial wastes within a low-temperature cementitious composite were investigated. The cements for this study included both as-received and modified calcium silicate and calcium aluminate cements. Specimens were prepared following conventional formulation techniques designed to produce dense monoliths, followed by curing at 60 0 C. An alternative preparation procedure is contrasted in which the specimens were ''warm'' pressed in a uniaxial press at 150 0 C at 50,000 psi for 0.5 h. Specimens of the waste/cement composites were leached in deionized water following three different procedures which span a wide range of temperatures and solution saturation conditions. Aluminate and compositionally adjusted silicate cements exhibited a better retentivity for Cs and Sr than did the as-received silicate cement. 15 refs

  5. Enhanced Stability of Inactivated Influenza Vaccine Encapsulated in Dissolving Microneedle Patches.

    Science.gov (United States)

    Chu, Leonard Y; Ye, Ling; Dong, Ke; Compans, Richard W; Yang, Chinglai; Prausnitz, Mark R

    2016-04-01

    This study tested the hypothesis that encapsulation of influenza vaccine in microneedle patches increases vaccine stability during storage at elevated temperature. Whole inactivated influenza virus vaccine (A/Puerto Rico/8/34) was formulated into dissolving microneedle patches and vaccine stability was evaluated by in vitro and in vivo assays of antigenicity and immunogenicity after storage for up to 3 months at 4, 25, 37 and 45°C. While liquid vaccine completely lost potency as determined by hemagglutination (HA) activity within 1-2 weeks outside of refrigeration, vaccine in microneedle patches lost 40-50% HA activity during or shortly after fabrication, but then had no significant additional loss of activity over 3 months of storage, independent of temperature. This level of stability required reduced humidity by packaging with desiccant, but was not affected by presence of oxygen. This finding was consistent with additional stability assays, including antigenicity of the vaccine measured by ELISA, virus particle morphological structure captured by transmission electron microscopy and protective immune responses by immunization of mice in vivo. These data show that inactivated influenza vaccine encapsulated in dissolving microneedle patches has enhanced stability during extended storage at elevated temperatures.

  6. Isothermal crystallization kinetics of isotactic polypropylene with inorganic fullerene-like WS2 nanoparticles

    International Nuclear Information System (INIS)

    Naffakh, Mohammed; Martin, Zulima; Marco, Carlos; Gomez, Marian A.; Jimenez, Ignacio

    2008-01-01

    Nanometric-sized inorganic fullerene-like tungsten disulfide particles (IF-WS 2 ) were used to produce new isotactic polypropylene (iPP) nanocomposites. A remarkable increase of the crystallization rate of iPP in the nanocomposites was observed by DSC and X-ray diffraction techniques using synchrotron radiation. This fact was related to the high nucleation efficiency of IF-WS 2 nanoparticles on the α-form crystals of iPP. Other parameters such as the Avrami exponent, the equilibrium melting temperature, and the fold surface free energy of crystallization of iPP chains in the nanocomposites were obtained from the calorimetric data in order to determine the effect of the nanoparticles on them. A decrease in the fold surface free energy was calculated with increasing IF-WS 2 content

  7. Transport of encapsulated nuclear fuels

    International Nuclear Information System (INIS)

    Broman, Ulrika; Dybeck, Peter; Ekendahl, Ann-Mari

    2005-12-01

    The transport system for encapsulated fuel is described, including a preliminary drawing of a transport container. In the report, the encapsulation plant is assumed to be located to Oskarshamn, and the repository to Oskarshamn or Forsmark

  8. Exohedral and skeletal rearrangements in the molecules of fullerene derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Ignat' eva, Daria V; Ioffe, I N; Troyanov, Sergey I; Sidorov, Lev N [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2011-07-31

    The data on the migration of monoatomic addends, perfluoroalkyl and more complex organic groups in the molecules of fullerene derivatives published mainly in the last decade are analyzed. Skeletal rearrangements of the carbon cage occurring during chemical reactions are considered.

  9. Enantiopure vs. Racemic Naphthalimide End-Capped Helicenic Non-Fullerene Electron Acceptors: Impact on Organic Photovoltaics Performance

    OpenAIRE

    Josse , Pierre; Favereau , Ludovic; Shen , Chengshuo; Dabos-Seignon , Sylvie; Blanchard , Philippe; Cabanetos , Clement; Crassous , Jeanne

    2017-01-01

    International audience; Impact of the enantiopurity on organic photovoltaics (OPV) performance was investigated through the synthesis of racemic and enantiomerically pure naphthalimide end-capped helicenes and their application as non-fullerene molecular electron acceptors in OPV devices. A very strong increase of the device performance was observed by simply switching from the racemic to the enantiopure forms of these π-helical non-fullerene acceptors with power conversion efficiencies jumpi...

  10. Non-covalent functionalisation of C{sub 30} fullerene by pyrrole-n-carboxylic acid (n=2, 3). Density functional theory studies

    Energy Technology Data Exchange (ETDEWEB)

    Harismah, Kun [Univ. Muhammadiyah Surakarta (Indonesia). Dept. of Chemical Engineering; Mirzaei, Mahmoud [Isfahan Univ. of Medical Sciences (Iran, Islamic Republic of). Bioinformatics Research Center; Ghasemi, Nahid [Islamic Azad Univ., Arak (Iran, Islamic Republic of). Dept. of Chemistry; Nejati, Mohammad [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Chemistry

    2018-04-01

    For functionalisation of a representative C{sub 30} fullerene nanostructure by pyrrole-n-carboxylic acid (PnCA; n=2, 3) their stabilities and properties were investigated based on density functional theory calculations. Parallel calculations were also done for C{sub 60} fullerene as evidence for comparing the results. Non-covalent interactions are considered to make the functionalised structures. In contrast with the spherical shape of C{sub 60}, the shape of C{sub 30} fullerene is elliptical; therefore, the functionalisation processes were done for both axial and equatorial elliptical positions (AC{sub 30} and EC{sub 30}). The results indicated that both the positions of C{sub 30} have almost equivalent chances to be functionalised by PnCA; but functionalisation by P2CA is slightly more favourable than P3CA, either for C{sub 60}. The illustrated molecular orbitals' distributions indicated that the direction of charge transfer could be considered from PnCA counterparts to fullerene counterparts. The molecular properties indicated more reactivity for C{sub 30} than for C{sub 60} fullerene. Finally, the atomic scale quadrupole coupling constants indicated different roles for N and O atoms of PnCA in the functionalised models.

  11. OSR encapsulation basis -- 100-KW

    International Nuclear Information System (INIS)

    Meichle, R.H.

    1995-01-01

    The purpose of this report is to provide the basis for a change in the Operations Safety Requirement (OSR) encapsulated fuel storage requirements in the 105 KW fuel storage basin which will permit the handling and storing of encapsulated fuel in canisters which no longer have a water-free space in the top of the canister. The scope of this report is limited to providing the change from the perspective of the safety envelope (bases) of the Safety Analysis Report (SAR) and Operations Safety Requirements (OSR). It does not change the encapsulation process itself

  12. Making and exploiting fullerenes, graphene, and carbon nanotubes

    International Nuclear Information System (INIS)

    Marcaccio, Massimo; Paolucci, Francesco

    2014-01-01

    This volume contains nine chapters which are presenting critical reviews of the present and future trends in modern chemistry research. The chapter ''Solubilization of Fullerenes, Carbon Nanotubes and Graphene'' by Alain Penicaud describes the various ingenious approaches to solve the solubility issue and describes in particular how graphite, and modern nanocarbons, can be made soluble by reductive dissolution. A large part of the present volume concerns the merging of nanocarbons with nanotechnology and their impact on technical development in many areas. Fullerenes, carbon nanotubes, nanodiamond and graphene find, for instance, various applications in the development of solar cells, including dye sensitized solar cells. The chapter ''Incorporation of Balls, Tubes and Bowls in Nanotechnology'' by James Mack describes the recent development of the area of fullerene fragments, and corannulene in particular, and their direct applications to organic light emitting diode (OLED) technology, while, in the chapter ''Exploiting Nanocarbons in Dye-Sensitized Solar Cells'' by Ladislav Kavan, the exploitation of nanocarbons in the development of novel dye sensitized solar cells with improved efficiency, durability and costs is thoroughly reviewed. The functionalization of CNSs has the invaluable advantage of combining their unique properties with those of other classes of materials. Supramolecular chemistry represents an elegant alternative approach for the construction of functional systems by means of noncovalent bonding interactions. In the chapter ''Supramolecular Chemistry of Carbon Nanotubes'' by Gildas Gavrel et al., the incredibly varied world of supramolecular, non-covalent functionalization of carbon nanotubes and their applications is examined and reviewed, and the synthetic strategies devised for fabricating mechanically-linked molecular architectures are described in the chapter ''Fullerene-Stoppered Bistable Rotaxanes'' by Aurelio Mateo-Alonso, which presents an

  13. Making and exploiting fullerenes, graphene, and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Marcaccio, Massimo; Paolucci, Francesco (eds.) [Bologna Univ. (Italy). Dept. of Chemistry G. Ciamician

    2014-11-01

    This volume contains nine chapters which are presenting critical reviews of the present and future trends in modern chemistry research. The chapter ''Solubilization of Fullerenes, Carbon Nanotubes and Graphene'' by Alain Penicaud describes the various ingenious approaches to solve the solubility issue and describes in particular how graphite, and modern nanocarbons, can be made soluble by reductive dissolution. A large part of the present volume concerns the merging of nanocarbons with nanotechnology and their impact on technical development in many areas. Fullerenes, carbon nanotubes, nanodiamond and graphene find, for instance, various applications in the development of solar cells, including dye sensitized solar cells. The chapter ''Incorporation of Balls, Tubes and Bowls in Nanotechnology'' by James Mack describes the recent development of the area of fullerene fragments, and corannulene in particular, and their direct applications to organic light emitting diode (OLED) technology, while, in the chapter ''Exploiting Nanocarbons in Dye-Sensitized Solar Cells'' by Ladislav Kavan, the exploitation of nanocarbons in the development of novel dye sensitized solar cells with improved efficiency, durability and costs is thoroughly reviewed. The functionalization of CNSs has the invaluable advantage of combining their unique properties with those of other classes of materials. Supramolecular chemistry represents an elegant alternative approach for the construction of functional systems by means of noncovalent bonding interactions. In the chapter ''Supramolecular Chemistry of Carbon Nanotubes'' by Gildas Gavrel et al., the incredibly varied world of supramolecular, non-covalent functionalization of carbon nanotubes and their applications is examined and reviewed, and the synthetic strategies devised for fabricating mechanically-linked molecular architectures are described in the chapter ''Fullerene

  14. Photodynamics of a constrained parachute-shaped fullerene-porphyrin dyad

    NARCIS (Netherlands)

    Schuster, D.I.; Cheng, P.; Wilson, S.R.; Prokhorenko, V.; Katterle, M.; Holzwarth, A.R.; Braslavsky, S.E.; Klihm, G.; Williams, R.M.

    1999-01-01

    The pronounced ability of fullerene C60 to act as an electron and energy acceptor has led to the synthesis of a large number of compounds in which C60 is covalently linked to photoactivatable groups which can serve as potential donors. Such compounds are of interest as model systems for

  15. Micro-Encapsulation of Probiotics

    Science.gov (United States)

    Meiners, Jean-Antoine

    Micro-encapsulation is defined as the technology for packaging with the help of protective membranes particles of finely ground solids, droplets of liquids or gaseous materials in small capsules that release their contents at controlled rates over prolonged periods of time under the influences of specific conditions (Boh, 2007). The material encapsulating the core is referred to as coating or shell.

  16. Viscous effects in liquid encapsulated liquid bridges

    International Nuclear Information System (INIS)

    Johnson, Duane T.

    2002-01-01

    An analytical derivation of the surface deflections and the streamfunctions for the flow inside a liquid encapsulated liquid bridge has been derived using an asymptotic expansion about a small capillary number. The model assumes an initially flat and cylindrical interface under the assumption that the densities of both fluids are equal. To simplify the analysis, the top and bottom walls are assumed to be stress-free and the Reynolds number is assumed to be negligible. Flow is generated either by a moving outer wall (shear-driven flow) or by applying a temperature difference across the top and bottom walls (Marangoni-driven flow). The resulting equations show that for the shear-driven flow, as the viscosity ratio increases, the surface deflections increase monotonically. For the Marangoni-driven flow there exist values of the viscosity ratio where the surface deflections reach a minimum and then switch signs. This investigation shows that it may be possible in more realistic systems to use an outer encapsulating liquid of the proper viscosity ratio to stabilize the liquid-liquid interface during float zone crystal growth

  17. Controlled synthesis of graphitic carbon-encapsulated α-Fe2O3 nanocomposite via low-temperature catalytic graphitization of biomass and its lithium storage property

    International Nuclear Information System (INIS)

    Wu, Feng; Huang, Rong; Mu, Daobin; Wu, Borong; Chen, Yongjian

    2016-01-01

    Highlights: • Facile synthesis of graphitic carbon/α-Fe 2 O 3 nano-sized anode composite. • In situ low temperature catalytic graphitization of biomass material. • Onion-like graphitic carbon layers conformally encapsulating around α-Fe 2 O 3 core. • High lithium storage properties, especially, outstanding cycle performance. - Abstract: A delicate structure of graphitic carbon-encapsulated α-Fe 2 O 3 nanocomposite is in situ constructed via “Absorption–Catalytic graphitization–Oxidation” strategy, taking use of biomass matter of degreasing cotton as carbon precursor and solution reservoir. With the assistance of the catalytic graphitization effect of iron core, onion-like graphitic carbon (GC) shell is made directly from the biomass at low temperature (650 °C). The nanosized α-Fe 2 O 3 particles would effectively mitigate volumetric strain and shorten Li + transport path during charge/discharge process. The graphitic carbon shells may promote charge transfer and protect active particles from directly exposing to electrolyte to maintain interfacial stability. As a result, the as-prepared α-Fe 2 O 3 @GC composite displays an outstanding cycle performance with a reversible capacity of 1070 mA h g −1 after 430 cycles at 0.2C, as well as a good rate capability of ∼ 950 mA h g −1 after 100 cycles at 1C and ∼ 850 mA h g −1 even up to 200 cycles at a 2C rate.

  18. Encapsulation of Clay Platelets inside Latex Particles

    NARCIS (Netherlands)

    Voorn, D.J.; Ming, W.; Herk, van A.M.; Fernando, R.H.; Sung, Li-Piin

    2009-01-01

    We present our recent attempts in encapsulating clay platelets inside latex particles by emulsion polymerization. Face modification of clay platelets by cationic exchange has been shown to be insufficient for clay encapsulation, leading to armored latex particles. Successful encapsulation of

  19. Development and Characterization of Biocompatible Fullerene [C60]/Amphiphilic Block Copolymer Nanocomposite

    Directory of Open Access Journals (Sweden)

    Alok Chaurasia

    2015-01-01

    Full Text Available We report a supramolecular process for the synthesis of well-defined fullerene (C60/polymer colloid nanocomposites in an aqueous solution via complex formation. A biocompatible triblock poly(4-vinylpyridine-b-polyethylene-b-poly(4-vinylpyridine, P4VP8-b-PEO105-b-P4VP8, was synthesized by atom transfer radical polymerization. The block copolymer formed complexes with C60 in toluene and resulted in fullerene assembly in cluster form. Nanocomposite dispersion in an aqueous solution could be obtained using an aged solution of the polymer/C60/toluene solution by a solvent evaporation technique. The UV-Vis and FTIR spectroscopy confirmed the complex formation of fullerene with the polymer which plays a significant role in controlling the PDI and size of polymer/C60 micelles in the toluene solution. The particle size and morphology of P4VP8-b-PEO105-b-P4VP8 and P4VP8-b-PEO105-b-P4VP8/C60 mixture were studied by dynamic light scattering (DLS and transmission electron microscopy (TEM. In a cytotoxicity test, both pure polymer and the resulting polymer/C60 composite in water showed more than 90% cell viability at 1 mg/mL concentration.

  20. Liquid-Phase Packaging of a Glucose Oxidase Solution with Parylene Direct Encapsulation and an Ultraviolet Curing Adhesive Cover for Glucose Sensors

    Directory of Open Access Journals (Sweden)

    Seiichi Takamatsu

    2010-06-01

    Full Text Available We have developed a package for disposable glucose sensor chips using Parylene encapsulation of a glucose oxidase solution in the liquid phase and a cover structure made of an ultraviolet (UV curable adhesive. Parylene was directly deposited onto a small volume (1 μL of glucose oxidase solution through chemical vapor deposition. The cover and reaction chamber were constructed on Parylene film using a UV-curable adhesive and photolithography. The package was processed at room temperature to avoid denaturation of the glucose oxidase. The glucose oxidase solution was encapsulated and unsealed. Glucose sensing was demonstrated using standard amperometric detection at glucose concentrations between 0.1 and 100 mM, which covers the glucose concentration range of diabetic patients. Our proposed Parylene encapsulation and UV-adhesive cover form a liquid phase glucose-oxidase package that has the advantages of room temperature processing and direct liquid encapsulation of a small volume solution without use of conventional solidifying chemicals.