WorldWideScience

Sample records for temperature filament due

  1. Calibration and Temperature Profile of a Tungsten Filament Lamp

    Science.gov (United States)

    de Izarra, Charles; Gitton, Jean-Michel

    2010-01-01

    The goal of this work proposed for undergraduate students and teachers is the calibration of a tungsten filament lamp from electric measurements that are both simple and precise, allowing to determine the temperature of tungsten filament as a function of the current intensity. This calibration procedure was first applied to a conventional filament…

  2. Water quenching of a filament heated to high temperature

    International Nuclear Information System (INIS)

    Berthoud, G.; Boulin, A.; Gros D'Aillon, L.

    2006-01-01

    The aim of this study is to precise the type of heat transfer which takes place when a filament heated to high temperature is plunged into water. The originality of this study resides in the high temperature and in the study of pressure effects. A scale analysis allows to distinguish between two extreme cases: the strong under-cooling where the main part of the heat lost by the filament is used to heat the water, and the weak under-cooling where the main part of the heat is used to vaporize water. A correlation is proposed for the first case. (J.S.)

  3. Thermal Resonator Experiments Using A Magnetized Electron Temperature Filament

    Science.gov (United States)

    Karbashewski, Scott; Sydora, Richard; van Compernolle, Bart; Poulos, Matt; Morales, George

    2017-10-01

    We present results from basic heat transport experiments of a magnetized electron temperature filament that behaves as a thermal resonator. Experiments are performed in the Large Plasma Device at UCLA. A CeB6 cathode injects low energy electrons along a magnetic field into the center of a pre-existing plasma forming a hot electron filament embedded in a colder plasma. Previous work reported that the filament exhibits spontaneous excitation of thermal waves and temperature gradient driven drift-Alfvén waves that enhance cross-field transport. We have added to the cathode bias a series of low amplitude pulse trains tuned to the thermal resonance of the filament that externally excite thermal waves. Langmuir probe measurements allow for the determination of the phase velocity and radial decay length of the thermal mode. These results are used to compute the axial and transverse thermal conductivities of the magnetized plasma and compare with those given by classical theory. Agreement of the axial conductivity provides a measurement of electron temperature; deviation of the transverse conductivity suggests anomalous transport or non-uniform excitation. Work Supported by NSERC, Canada and NSF-DOE, USA.

  4. Blowout Surge due to Interaction between a Solar Filament and Coronal Loops

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haidong; Jiang, Yunchun; Yang, Jiayan; Yang, Bo; Xu, Zhe; Bi, Yi; Hong, Junchao; Chen, Hechao [Yunnan Observatories, Chinese Academy of Sciences, 396 Yangfangwang, Guandu District, Kunming, 650216 (China); Qu, Zhining, E-mail: lhd@ynao.ac.cn [Department of Physics, School of Science, Sichuan University of Science and Engineering, Zigong 643000 (China)

    2017-06-20

    We present an observation of the interaction between a filament and the outer spine-like loops that produces a blowout surge within one footpoint of large-scale coronal loops on 2015 February 6. Based the observation of the AIA 304 and 94 Å, the activated filament is initially embedded below a dome of a fan-spine configuration. Due to the ascending motion, the erupting filament reconnects with the outer spine-like field. We note that the material in the filament blows out along the outer spine-like field to form the surge with a wider spire, and a two-ribbon flare appears at the site of the filament eruption. In this process, small bright blobs appear at the interaction region and stream up along the outer spine-like field and down along the eastern fan-like field. As a result, a leg of the filament becomes radial and the material in it erupts, while another leg forms the new closed loops. Our results confirm that the successive reconnection occurring between the erupting filament and the coronal loops may lead to a strong thermal/magnetic pressure imbalance, resulting in a blowout surge.

  5. Computer Simulation of Temperature Parameter for Diamond Formation by Using Hot-Filament Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Chang Weon Song

    2017-12-01

    Full Text Available To optimize the deposition parameters of diamond films, the temperature, pressure, and distance between the filament and the susceptor need to be considered. However, it is difficult to precisely measure and predict the filament and susceptor temperature in relation to the applied power in a hot filament chemical vapor deposition (HF-CVD system. In this study, the temperature distribution inside the system was numerically calculated for the applied powers of 12, 14, 16, and 18 kW. The applied power needed to achieve the appropriate temperature at a constant pressure and other conditions was deduced, and applied to actual experimental depositions. The numerical simulation was conducted using the commercial computational fluent dynamics software ANSYS-FLUENT. To account for radiative heat-transfer in the HF-CVD reactor, the discrete ordinate (DO model was used. The temperatures of the filament surface and the susceptor at different power levels were predicted to be 2512–2802 K and 1076–1198 K, respectively. Based on the numerical calculations, experiments were performed. The simulated temperatures for the filament surface were in good agreement with the experimental temperatures measured using a two-color pyrometer. The results showed that the highest deposition rate and the lowest deposition of non-diamond was obtained at a power of 16 kW.

  6. Temperature-induced structural changes in the myosin thick filament of skinned rabbit psoas muscle.

    Science.gov (United States)

    Malinchik, S; Xu, S; Yu, L C

    1997-11-01

    and disordered cross-bridge populations in muscle (Poulsen, F. R., and J. Lowy. 1983. Small angle scattering from myosin heads in relaxed and rigor frog skeletal muscle. Nature (Lond.). 303:146-152.). However, our results added new insights into the disordered population. Present modeling together with data analysis (Xu, S., S. Malinchik, Th. Kraft, B. Brenner, and L. C. Yu. 1997. X-ray diffraction studies of cross-bridges weakly bound to actin in relaxed skinned fibers of rabbit psoas muscle. Biophys. J. 73:000-000) indicate that in a relaxed muscle, cross-bridges are distributed in three populations: those that are ordered on the thick filament helix and those that are disordered; and within the disordered population, some cross-bridges are detached and some are weakly attached to actin. One critical conclusion of the present study is that the apparent order disorder transition as a function of temperature is not due to an increase/decrease in thermal motion (temperature factor) for the entire population, but a redistribution of cross-bridges among the three populations. Changing the temperature leads to a change in the fraction of cross-bridges located on the helix, while changing the ionic strength at a given temperature affects the disordered population leading to a change in the relative fraction of cross-bridges detached from and weakly attached to actin. Since the redistribution is reversible, we suggest that there is an equilibrium among the three populations of cross-bridges.

  7. Operating limitations due to low gas temperature

    Energy Technology Data Exchange (ETDEWEB)

    Bruschi, R.; Ghiselli, W.; Spinazze, M.

    1995-12-31

    A number of projects concerning continental links for the transport of treated natural gas over long distance, both on and offshore, have been implemented during the last few years or are currently being implemented. The long trunklines in North America and subsea trunklines planned or already in operation in the North Sea, are outstanding examples of such long distance transmission of gas in large diameter pipelines operated at high pressure. The development of such network has paid special attention to the effects that low temperature resulting from the transportation process may imply in terms of pipe structural integrity and environmental impact. Scope of this paper is to discuss operating limitations due to low gas temperature. New project scenarios are presented in a brief introduction. The fluido-thermo-dynamic background for the development of low temperatures are outlined. Finally some topics relevant to structural integrity are discussed in particular such as the pipe steel behaviour at low temperature, the prediction techniques of the ice bulb growth around the pipe, the interactions of the cold line with the soil and the consequences due to the differential compliancy of the pipeline towards points of fixity (in-line valves/tees or fixed plants). 30 refs., 22 figs., 1 tab.

  8. Effects of differential thermal contraction between the matrix and the filaments in mono- and multifilamentary Nb3Sn on the superconducting critical temperature

    International Nuclear Information System (INIS)

    Aihara, K.; Suenage, M.; Luhman, T.

    1979-01-01

    The strain on Nb 3 Sn due to the differential thermal contraction between the matrix (Cu, bronze) and the filaments (Nb, Nb 3 Sn, Ta) of a superconducting wire is known to decrease the superconducting critical temperature T/sub c/. In order to study the effects of heat treatment conditions and filament size on the degradation of T/sub c/ by the strain. T/sub c/ for monofilamentary wires [(Nb 3 Sn and bronze in Ta) in Cu matrix, and (bronze in Nb tubings) in Cu matrix] were measured for heat-treating periods in of 1 to 120 h at 725 0 C. Several observations were made regarding the effects on T/sub c/ of thermal contraction strains from various components of the conductors. The influence of a Cu matrix on T/sub c/ was small (approx. 0.2 K). When the bronze matrix was inside Nb tubing the degradation of T/sub c/ due to strains was substantially larger than when the Nb filaments were in a bronze. Wires with smaller filament diameters achieved a maximum T/sub c/ in shorter heat treatment times than those with larger filaments. These results are discussed in terms of the critical currents of these wires under applied tensile strains

  9. Emerging infections due to filamentous fungi in humans and animals: only the tip of the iceberg?

    Science.gov (United States)

    Debourgogne, Anne; Dorin, Joséphine; Machouart, Marie

    2016-06-01

    Over the last few decades, the number of patients susceptible to invasive filamentous fungal infections has steadily increased, especially in populations suffering from hematological diseases. The pathogens responsible for such mycoses are now quite well characterized, such as Aspergillus spp. - the most commonly isolated mold -, Mucorales, Fusarium spp., Scedosporium spp. or melanized fungi. An increase in the incidence of this category of 'emerging' fungi has been recently highlighted, evoking a shift in fungal ecology. Starting from these medical findings, taking a step back and adopt a wider perspective offers possible explanations of this phenomenon on an even larger scale than previously reported. In this review, we illustrate the link between emerging fungi in medicine and changes in ecology or human behaviours, and we encourage integrative approaches to apprehend the adverse effects of progress and develop preventive measures in vast domains, such as agriculture or medicine. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Methodology to measure strains at high temperatures using electrical strain gages with free filaments

    International Nuclear Information System (INIS)

    Atanazio Filho, Nelson N.; Gomes, Paulo T. Vida; Scaldaferri, Denis H.B.; Silva, Luiz L. da; Rabello, Emerson G.; Mansur, Tanius R.

    2013-01-01

    An experimental methodology used for strains measuring at high temperatures is show in this work. In order to do the measurements, it was used electric strain gages with loose filaments attached to a stainless steel 304 beam with specific cements. The beam has triangular shape and a constant thickness, so the strain is the same along its length. Unless the beam surface be carefully prepared, the strain gage attachment is not efficient. The showed results are for temperatures ranging from 20 deg C to 300 deg C, but the experimental methodology could be used to measure strains at a temperature up to 900 deg C. Analytical calculations based on solid mechanics were used to verify the strain gage electrical installation and the measured strains. At a first moment, beam deformations as a temperature function were plotted. After that, beam deformations with different weighs were plotted as a temperature function. The results shown allowed concluding that the experimental methodology is trustable to measure strains at temperatures up to 300 deg C. (author)

  11. Helium temperature measurements in a hot filament magnetic mirror plasma using high resolution Doppler spectroscopy

    Science.gov (United States)

    Knott, S.; McCarthy, P. J.; Ruth, A. A.

    2016-09-01

    Langmuir probe and spectroscopic diagnostics are used to routinely measure electron temperature and density over a wide operating range in a reconfigured Double Plasma device at University College Cork, Ireland. The helium plasma, generated through thermionic emission from a negatively biased tungsten filament, is confined by an axisymmetric magnetic mirror configuration using two stacks of NdFeB permanent magnets, each of length 20 cm and diameter 3 cm placed just outside the 15 mm water cooling jacket enclosing a cylindrical vacuum vessel of internal diameter 25 cm. Plasma light is analysed using a Fourier Transform-type Bruker spectrometer with a highest achievable resolution of 0.08 cm-1 . In the present work, the conventional assumption of room temperature ions in the analysis of Langmuir probe data from low temperature plasmas is examined critically using Doppler spectroscopy of the 468.6 nm He II line. Results for ion temperatures obtained from spectroscopic data for a variety of engineering parameters (discharge voltage, gas pressure and plasma current) will be presented.

  12. Thermodynamic Temperatures of High-Temperature Fixed Points: Uncertainties Due to Temperature Drop and Emissivity

    Science.gov (United States)

    Castro, P.; Machin, G.; Bloembergen, P.; Lowe, D.; Whittam, A.

    2014-07-01

    This study forms part of the European Metrology Research Programme project implementing the New Kelvin to assign thermodynamic temperatures to a selected set of high-temperature fixed points (HTFPs), Cu, Co-C, Pt-C, and Re-C. A realistic thermal model of these HTFPs, developed in finite volume software ANSYS FLUENT, was constructed to quantify the uncertainty associated with the temperature drop across the back wall of the cell. In addition, the widely applied software package, STEEP3 was used to investigate the influence of cell emissivity. The temperature drop, , relates to the temperature difference due to the net loss of heat from the aperture of the cavity between the back wall of the cavity, viewed by the thermometer, defining the radiance temperature, and the solid-liquid interface of the alloy, defining the transition temperature of the HTFP. The actual value of can be used either as a correction (with associated uncertainty) to thermodynamic temperature evaluations of HTFPs, or as an uncertainty contribution to the overall estimated uncertainty. In addition, the effect of a range of furnace temperature profiles on the temperature drop was calculated and found to be negligible for Cu, Co-C, and Pt-C and small only for Re-C. The effective isothermal emissivity is calculated over the wavelength range from 450 nm to 850 nm for different assumed values of surface emissivity. Even when furnace temperature profiles are taken into account, the estimated emissivities change only slightly from the effective isothermal emissivity of the bare cell. These emissivity calculations are used to estimate the uncertainty in the temperature assignment due to the uncertainty in the emissivity of the blackbody.

  13. Mechanical and microstructural behaviour of alumina-zirconia ceramic filaments for high temperature applications; Comportement mecanique et microstructure de filaments ceramiques alumine-zircone pour applications a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Poulon-Quintin, A

    2002-04-01

    This thesis is a contribution to the development and to the study of two-phase alumina-zirconia ceramic filaments resistant to creep and chemical and microstructural degradation. The materials studied are experimental two-phase filaments (diameter of few millimeters) with a fibrillary structure obtained by coextrusion of sol-gels or of powder pastes and a nanocrystalline fiber of thin diameter (11{mu}m) with a homogeneous structure. They have been respectively perfected and chosen for their very promising microstructures and compositions concerning the creep resistance. This study is concentrated on the mechanical characterization at high temperature of these materials and especially on the understanding of the deformation and rupture mechanisms in relation with the microstructural evolution. The commercial fiber (Nextel 650) is a {alpha} alumina (grain size {>=}0.1{mu}m) in which the grains of the second phase zirconia are dispersed in a homogeneous way in intra (5-10 nm) as in inter-granular (20-30 nm). After a heat treatment at temperatures superior to 1200 C, it can be noted a strong grains growth preferentially to the axis of the fiber. The tensile properties decrease to a considerable extent with high temperatures ({>=}1000 C). The creep behaviour has been determined between 1000 and 1300 C (value of 2.5 for the stress exponent and of 850 kJ/mol for the activation energy). The evolution of the microstructure to a long grains microstructure is favourable for the creep resistance. A comparison with other fibers of compositions near the Nextel 650 fiber show that the Nextel 650 fiber has interesting properties for being used at high temperatures (until 1200 C). The study of co-extruded alumina-zirconia filaments with a fibrillary structure has at first required those of filaments which composition are each of the phases obtained from pastes (powder-thermoplastics or sol-gels). The composition of each of the phases has been optimized in order to adapt the

  14. Growth of filamentous blue-green algae at high temperatures: a source of biomass for renewable fuels

    Energy Technology Data Exchange (ETDEWEB)

    Timourian, H.; Ward, R.L.; Jeffries, T.W.

    1977-08-17

    The growth of filamentous blue-green algae (FBGA) at high temperatures in outdoor, shallow solar ponds is being investigated. The temperature of the 60-m/sup 2/ ponds can be controlled to an average temperature of 45/sup 0/C. The growth of FBGA at high temperatures offers an opportunity, not presently available from outdoor algal ponds or energy farms, to obtain large amounts of biomass. Growth of algae at high temperatures results in higher yields because of increased growth rate, the higher light intensity that can be used before saturating the photosynthetic process, easier maintenance of selected FBGA strains, and fewer predators to decimate culture. Additional advantages of growing FBGA as a source of biomass include: bypassing the limitations of nutrient sources, because FBGA fix their own nitrogen and require only CO/sub 2/ when inorganic nutrients are recycled; toleration of higher salinity and metal ion concentrations; and easier and less expensive harvesting procedures.

  15. Modelling atmospheric temperature rise due to pollutants and its ...

    African Journals Online (AJOL)

    Using a mathematical model we show that temperature increases (warming) as the Hartman number due to pollutant increases. Thus, temperature and pollutants contribute to global warming. We also discuss the implications of the result on agriculture and forestry. Journal of the Nigerian Association of Mathematical ...

  16. Hydrogen atom temperature measured with wavelength-modulated laser absorption spectroscopy in large scale filament arc negative hydrogen ion source

    International Nuclear Information System (INIS)

    Nakano, H.; Goto, M.; Tsumori, K.; Kisaki, M.; Ikeda, K.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O.; Nishiyama, S.; Sasaki, K.

    2015-01-01

    The velocity distribution function of hydrogen atoms is one of the useful parameters to understand particle dynamics from negative hydrogen production to extraction in a negative hydrogen ion source. Hydrogen atom temperature is one of the indicators of the velocity distribution function. To find a feasibility of hydrogen atom temperature measurement in large scale filament arc negative hydrogen ion source for fusion, a model calculation of wavelength-modulated laser absorption spectroscopy of the hydrogen Balmer alpha line was performed. By utilizing a wide range tunable diode laser, we successfully obtained the hydrogen atom temperature of ∼3000 K in the vicinity of the plasma grid electrode. The hydrogen atom temperature increases as well as the arc power, and becomes constant after decreasing with the filling of hydrogen gas pressure

  17. Thermal and Chemical Evolution of Collapsing Filaments

    Energy Technology Data Exchange (ETDEWEB)

    Gray, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scannapieco, Evan [Arizona State Univ., Mesa, AZ (United States). School of Earth and Space Exploration

    2013-01-15

    Intergalactic filaments form the foundation of the cosmic web that connect galaxies together, and provide an important reservoir of gas for galaxy growth and accretion. Here we present very high resolution two-dimensional simulations of the thermal and chemical evolution of such filaments, making use of a 32 species chemistry network that tracks the evolution of key molecules formed from hydrogen, oxygen, and carbon. We study the evolution of filaments over a wide range of parameters including the initial density, initial temperature, strength of the dissociating UV background, and metallicity. In low-redshift, Z ≈ 0.1Z filaments, the evolution is determined completely by the initial cooling time. If this is sufficiently short, the center of the filament always collapses to form dense, cold core containing a substantial fraction of molecules. In high-redshift, Z = 10-3Z filaments, the collapse proceeds much more slowly. This is due mostly to the lower initial temperatures, which leads to a much more modest increase in density before the atomic cooling limit is reached, making subsequent molecular cooling much less efficient. Finally, we study how the gravitational potential from a nearby dwarf galaxy affects the collapse of the filament and compare this to NGC 5253, a nearby starbusting dwarf galaxy thought to be fueled by the accretion of filament gas. In contrast to our fiducial case, a substantial density peak forms at the center of the potential. This peak evolves faster than the rest of the filament due to the increased rate at which chemical species form and cooling occur. We find that we achieve similar accretion rates as NGC 5253, but our two-dimensional simulations do not recover the formation of the giant molecular clouds that are seen in radio observations.

  18. Toward improvement of the properties of parts manufactured by FFF (fused filament fabrication) through understanding the influence of temperature and rheological behaviour on the coalescence phenomenon

    Science.gov (United States)

    Shahriar, Bakrani Balani; France, Chabert; Valerie, Nassiet; Arthur, Cantarel; Christian, Garnier

    2017-10-01

    In this paper, the printing temperature ranges of PLA and PEEK, two semi-crystalline thermoplastics, have been investigated for the Fused Filament Fabrication (FFF) process. The printing range, comprised between the melting temperature and the degradation of each polymer, is 160°C to 190°C for PLA and 350°C to 390°C for PEEK. The complex viscosity has been measured for both polymers within the printing range. The kinetics of coalescence has been registered by measuring the bonding length between two filaments of the same polymer according to the temperature. At 167°C, the filaments of PLA reached the maximum value of bonding length. For PEEK, the filaments reached the maximum value of bonding length at 380°C. For the both materials, the final height of the filament is 80% of the initial diameter. The comparison of the obtained results with experimental study and predictive model shows a good agreement when the polymer is totally in fusion state.

  19. Fully filamentized HTS coated conductor via striation and selective electroplating

    Energy Technology Data Exchange (ETDEWEB)

    Kesgin, Ibrahim; Majkic, Goran [Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States); Selvamanickam, Venkat, E-mail: selva@uh.edu [Department of Mechanical Engineering and Texas Center for Superconductivity, University of Houston, Houston, TX 77204 (United States)

    2013-03-15

    Highlights: ► Fully-filamentized coated conductor with 13-fold reduction in ac losses. ► Selective electroplating for filamentization of thick copper stabilizer. ► A twofold decrease in ac loss by filamentization of copper stabilizer. ► Absence of appreciable coupling loss contribution from electroplating. -- Abstract: A simple, cost-effective method involving top-down mechanical scribing, oxidation and bottom-up electroplating has been successfully developed to fabricate fully filamentized HTS coated conductors. The copper stabilizer layer is selectively electroplated on the superconducting filaments while the striations remain copper-free due to the formation of a resistive oxide layer in between filaments by oxidation of the striated grooves at elevated temperature in oxygen atmosphere. Magnetization AC loss measurements, performed in a frequency range of 45–500 Hz at 77 K, confirmed the expected N-fold reduction in AC loss of the filamentized tapes with no significant degradation in critical current beyond that due to the material removal from the striations (N – number of filaments). A considerable reduction in coupling AC loss was observed after high temperature annealing/oxidation of the striated tapes. Furthermore, a significant reduction in eddy current loss was achieved with selective copper electroplating, as evidenced by analyzing the field and frequency dependence of magnetization AC loss, as well as by comparing the AC loss performance of striated samples to that of non-striated samples after electroplating of copper stabilizer.

  20. Fully filamentized HTS coated conductor via striation and selective electroplating

    International Nuclear Information System (INIS)

    Kesgin, Ibrahim; Majkic, Goran; Selvamanickam, Venkat

    2013-01-01

    Highlights: ► Fully-filamentized coated conductor with 13-fold reduction in ac losses. ► Selective electroplating for filamentization of thick copper stabilizer. ► A twofold decrease in ac loss by filamentization of copper stabilizer. ► Absence of appreciable coupling loss contribution from electroplating. -- Abstract: A simple, cost-effective method involving top-down mechanical scribing, oxidation and bottom-up electroplating has been successfully developed to fabricate fully filamentized HTS coated conductors. The copper stabilizer layer is selectively electroplated on the superconducting filaments while the striations remain copper-free due to the formation of a resistive oxide layer in between filaments by oxidation of the striated grooves at elevated temperature in oxygen atmosphere. Magnetization AC loss measurements, performed in a frequency range of 45–500 Hz at 77 K, confirmed the expected N-fold reduction in AC loss of the filamentized tapes with no significant degradation in critical current beyond that due to the material removal from the striations (N – number of filaments). A considerable reduction in coupling AC loss was observed after high temperature annealing/oxidation of the striated tapes. Furthermore, a significant reduction in eddy current loss was achieved with selective copper electroplating, as evidenced by analyzing the field and frequency dependence of magnetization AC loss, as well as by comparing the AC loss performance of striated samples to that of non-striated samples after electroplating of copper stabilizer

  1. Structural properties of WO{sub 3} dependent of the annealing temperature deposited by hot-filament metal oxide deposition

    Energy Technology Data Exchange (ETDEWEB)

    Flores M, J. E. [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias de la Electronica, Av. San Claudio y 18 Sur, Ciudad Universitaria, Col. Jardines de San Manuel, 72570 Puebla (Mexico); Diaz R, J. [IPN, Centro de Investigacion en Biotecnologia Aplicada, Ex-Hacienda de San Molino Km 1.5 Tepetitla, 90700 Tlaxcala (Mexico); Balderas L, J. A., E-mail: eflores@ece.buap.mx [IPN, Unidad Profesional Interdisciplinaria de Biotecnologia, Av. Acueducto s/n, Col. Barrio la Laguna, 07340 Mexico D. F. (Mexico)

    2012-07-01

    In this work presents a study of the effect of the annealing temperature on structural and optical properties of WO{sub 3} that has been grown by hot-filament metal oxide deposition. The chemical stoichiometry was determined by X-ray photoelectron spectroscopy. By X-ray diffraction obtained that the as-deposited WO{sub 3} films present mainly monoclinic crystalline phase. WO{sub 3} optical band gap energy can be varied from 2.92 to 3.15 eV obtained by transmittance measurements by annealing WO{sub 3} from 100 to 500 C. The Raman spectrum of the as-deposited WO{sub 3} film shows four intense peaks that are typical Raman peaks of crystalline WO{sub 3} (m-phase) that corresponds to the stretching vibrations of the bridging oxygen that are assigned to W-O stretching ({upsilon}) and W-O bending ({delta}) modes, respectively, which enhanced and increased their intensity with the annealing temperature. (Author)

  2. Temperature dynamics and velocity scaling laws for interchange driven, warm ion plasma filaments

    DEFF Research Database (Denmark)

    Olsen, Jeppe Miki Busk; Madsen, Jens; Nielsen, Anders Henry

    2016-01-01

    The influence of electron and ion temperature dynamics on the radial convection of isolated structures in magnetically confined plasmas is investigated by means of numerical simulations. It is demonstrated that the maximum radial velocity of these plasma blobs roughly follows the inertial velocit...

  3. Anomalous plasma transport due to electron temperature gradient instability

    International Nuclear Information System (INIS)

    Tokuda, Sinji; Ito, Hiroshi; Kamimura, Tetsuo.

    1979-01-01

    The collisionless drift wave instability driven by an electron temperature inhomogeneity (electron temperature gradient instability) and the enhanced transport processes associated with it are studied using a two-and-a-half dimensional particle simulation code. The simulation results show that quasilinear diffusion in phase space is an important mechanism for the saturation of the electron temperature gradient instability. Also, the instability yields particle fluxes toward the hot plasma regions. The heat conductivity of the electron temperature perpendicular to the magnetic field, T sub(e'), is not reduced by magnetic shear but remains high, whereas the heat conductivity of the parallel temperature, T sub(e''), is effectively reduced, and the instability stabilized. (author)

  4. Extremely Low Passive Microwave Brightness Temperatures Due to Thunderstorms

    Science.gov (United States)

    Cecil, Daniel J.

    2015-01-01

    Extreme events by their nature fall outside the bounds of routine experience. With imperfect or ambiguous measuring systems, it is appropriate to question whether an unusual measurement represents an extreme event or is the result of instrument errors or other sources of noise. About three weeks after the Tropical Rainfall Measuring Mission (TRMM) satellite began collecting data in Dec 1997, a thunderstorm was observed over northern Argentina with 85 GHz brightness temperatures below 50 K and 37 GHz brightness temperatures below 70 K (Zipser et al. 2006). These values are well below what had previously been observed from satellite sensors with lower resolution. The 37 GHz brightness temperatures are also well below those measured by TRMM for any other storm in the subsequent 16 years. Without corroborating evidence, it would be natural to suspect a problem with the instrument, or perhaps an irregularity with the platform during the first weeks of the satellite mission. Automated quality control flags or other procedures in retrieval algorithms could treat these measurements as errors, because they fall outside the expected bounds. But the TRMM satellite also carries a radar and a lightning sensor, both confirming the presence of an intense thunderstorm. The radar recorded 40+ dBZ reflectivity up to about 19 km altitude. More than 200 lightning flashes per minute were recorded. That same storm's 19 GHz brightness temperatures below 150 K would normally be interpreted as the result of a low-emissivity water surface (e.g., a lake, or flood waters) if not for the simultaneous measurements of such intense convection. This paper will examine records from TRMM and related satellite sensors including SSMI, AMSR-E, and the new GMI to find the strongest signatures resulting from thunderstorms, and distinguishing those from sources of noise. The lowest brightness temperatures resulting from thunderstorms as seen by TRMM have been in Argentina in November and December. For

  5. Chaperonin filaments: The archael cytoskeleton

    Energy Technology Data Exchange (ETDEWEB)

    Trent, J.D.; Kagawa, H.K.; Yaoi, Takuro; Olle, E.; Zaluzec, N.J.

    1997-08-01

    Chaperonins are multi-subunit double-ring complexed composed of 60-kDa proteins that are believed to mediate protein folding in vivo. The chaperonins in the hyperthermophilic archaeon Sulfolobus shibatae are composed of the organism`s two most abundant proteins, which represent 4% of its total protein and have an intracellular concentration of {ge} 3.0 mg/ml. At concentrations of 1.0 mg/ml, purified chaperonin proteins aggregate to form ordered filaments. Filament formation, which requires Mg{sup ++} and nucleotide binding (not hydrolysis), occurs at physiological temperatures under conditions suggesting filaments may exist in vivo. If the estimated 4,600 chaperonins per cell, formed filaments in vivo, they could create a matrix of filaments that would span the diameter of an average S. shibatae cell 100 times. Direct observations of unfixed, minimally treated cells by intermediate voltage electron microscopy (300 kV) revealed an intracellular network of filaments that resembles chaperonin filaments produced in vitro. The hypothesis that the intracellular network contains chaperonins is supported by immunogold analyses. The authors propose that chaperonin activity may be regulated in vivo by filament formation and that chaperonin filaments may serve a cytoskeleton-like function in archaea and perhaps in other prokaryotes.

  6. Chaperonin filaments : their formation and an evaluation of methods for studying them.

    Energy Technology Data Exchange (ETDEWEB)

    Yaoi, T.; Kagawa, K. H.; Trent, J. D.; Center for Mechanistic Biology and Biotechnology

    1998-08-01

    Chaperonins are multisubunit protein complexes that can be isolated from cells as high-molecular-weight structures that appear as double rings in the electron microscope. We recently discovered that chaperonin double rings isolated from the hyperthermophilic archaeon Sulfolobus shibatae, when incubated at physiological temperatures in the presence of ATP and Mg{sup 2+}, stacked into filaments; we hypothesized that these filaments are related to filaments seen inside S. shibatae cells and that chaperonins exist as filaments in vivo. This paper elucidates the conditions under which we have observed S. shibatae chaperonins to form filaments and evaluates native polyacrylamide gel electrophoresis (PAGE), TEM, spectrophotometry, and centrifugation as methods for studying these filaments. We observed that in the presence of Mg{sup 2+} combined with ATP, ADP, ATP{gamma}S, or GTP, native PAGE indicated that chaperonin subunits assembled into double rings and that the conformation of these double rings was effected by nucleotide binding, but we saw no indication of chaperonin filament formation. Under these same conditions, however, TEM, spectroscopy, and centrifugation methods indicated that chaperonin subunits and double rings had assembled into filaments. We determined that this discrepancy in the representation of the chaperonin structure was due to the native PAGE method itself. When we exposed chaperonin filaments to the electrophoretic field used in native PAGE, the filaments dissociated into double rings. This suggests that TEM, spectrophotometry, and centrifugation are the preferred methods for studying the higher-order structures of chaperonins, which are likely to be of biological significance.

  7. Evolution and sub-surface characteristics of a sea-surface temperature filament and front in the northeastern Arabian Sea during November–December 2012

    Digital Repository Service at National Institute of Oceanography (India)

    Vipin, P.; Sarkar, K.; Aparna, S.G.; Shankar, D; Sarma, V.V.S.S.; Gracias, D; Krishna, M.S.; Srikanth, G.; Mandal, R.; RamaRao, E.P.; Rao, N.S.

    of Marine Systems 150 (2015) 1–11 Evolution and sub-surface characteristics of a sea-surface temperature filament and front in the northeastern Arabian Sea during November–December 2012 P. Vipina,b, Kankan Sarkara,b, S. G. Aparnaa,b,∗, D. Shankara,b, V. V. S.... S. Sarmac,b, D. G. Graciasa,b, M. S. Krishnac, G. Srikanthc, R. Mandala,1, E. P. Rama Raod, N. Srinivasa Raod aCSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India. bAcademy of Scientific and Innovative Research (AcSIR), CSIR...

  8. Airborne particle emission of a commercial 3D printer: the effect of filament material and printing temperature.

    Science.gov (United States)

    Stabile, L; Scungio, M; Buonanno, G; Arpino, F; Ficco, G

    2017-03-01

    The knowledge of exposure to the airborne particle emitted from three-dimensional (3D) printing activities is becoming a crucial issue due to the relevant spreading of such devices in recent years. To this end, a low-cost desktop 3D printer based on fused deposition modeling (FDM) principle was used. Particle number, alveolar-deposited surface area, and mass concentrations were measured continuously during printing processes to evaluate particle emission rates (ERs) and factors. Particle number distribution measurements were also performed to characterize the size of the emitted particles. Ten different materials and different extrusion temperatures were considered in the survey. Results showed that all the investigated materials emit particles in the ultrafine range (with a mode in the 10-30-nm range), whereas no emission of super-micron particles was detected for all the materials under investigation. The emission was affected strongly by the extrusion temperature. In fact, the ERs increase as the extrusion temperature increases. Emission rates up to 1×10 12  particles min -1 were calculated. Such high ERs were estimated to cause large alveolar surface area dose in workers when 3D activities run. In fact, a 40-min-long 3D printing was found to cause doses up to 200 mm 2 . © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Filament poisoning at typical carbon nanotube deposition conditions by hot-filament CVD

    CSIR Research Space (South Africa)

    Oliphant, CJ

    2009-05-01

    Full Text Available This paper reports on the poisoning of tungsten filaments during the hot-filament chemical vapour deposition process at typical carbon nanotube (CNT) deposition conditions and filament temperatures ranging from 1400 to 2000 °C. The morphological...

  10. Synthesis and functionalization of coiled carbon filaments

    Science.gov (United States)

    Hikita, Muneaki

    Coiled carbon filaments have one of the most attractive three-dimensional forms in carbon materials due to their helical morphologies. Because of their shape and carbon structure, they exhibit excellent mechanical and electrical properties such as superelasticity, low Young's modulus, relatively high electrical conductivity, and good electromagnetic (EM) wave absorption. Therefore, they are good candidates as fillers in composite materials for tactile sensor and electromagnetic interference shielding. In medical areas of interests, coiled carbon filaments can be used as micro and nano heaters or trigger for thermotherapy and biosensors using EM wave exposure because absorbed EM waves by coiled carbon filaments are converted into heat. Although various shapes of coiled carbon filaments have been discovered, optimum synthesis conditions and growth mechanisms of coiled carbon filaments are poorly understood. The study of growth kinetics is significant not only to analyze catalyst activity but also to establish the growth mechanisms of coiled carbon filaments. The establishment of growth mechanisms would be useful for determining optimum synthesis conditions and maximizing the quantity of carbon filaments synthesized for a given application. In the first study, tip grown single helical carbon filaments or carbon nanocoils (CNCs) were synthesized by a chemical vapor deposition method using tin-iron-oxide (Sn-Fe-O) xerogel film catalyst. The Sn-Fe-O catalyst was prepared by a low-cost sol-gel method using stannous acetate and ferric acetate as precursors. The growth kinetics of CNCs were monitored by a thermogravimetric analyzer, and the experimental result was correlated using a one-dimensional kinetic model, corresponding to one-dimensional tip growth. In the second study, bidirectionally grown double helical filaments or carbon microcoils (CMCs) were synthesized using a chemical vapor deposition method. CMCs obtained at two reaction temperatures were compared. CMCs

  11. Performance of mycology and histopathology tests for the diagnosis of toenail onychomycosis due to filamentous fungi: Dermatophyte and non-dermatophyte moulds.

    Science.gov (United States)

    Lavorato, Fernanda G; Guimarães, Dávson A; Premazzi, Mario G; Piñeiro-Maceira, Juan M; Bernardes-Engemann, Andréa R; Orofino-Costa, Rosane

    2017-09-01

    Improvement of laboratory diagnosis of onychomychosis is important so that adequate treatment can be safely implemented. To evaluate and compare the performance of mycological and histopathological examinations in onychomycoses caused by dermatophyte and non-dermatophyte moulds. Patients with lateral/distal subungual onychomycosis in at least one hallux were enrolled in the protocol and assessed via mycological and histopathological tests. The isolation of filamentous fungi was considered the gold standard. Test performance was evaluated through sensitivity, specificity and positive and negative predictive values. A total of 212 patients were enrolled in the study. Direct microscopy (DM) was positive in 57.5% patients, and cultures in 34.4%. Among these patients, 23.3% were positive for dermatophytes, with Trichophyton rubrum the most frequently isolated, and 86.3% were positive for non-dermatophytes, with Neoscytalidium dimidiatum predominance. Histopathology was positive in 41.0% samples. Direct microscopy showed better sensitivity for non-dermatophyte moulds (P=.000) and nail clipping was more specific for dermatophyte (P=.018). Histopathology of the distal nail plate is a valuable complementary tool for the diagnosis of onychomycosis caused by dermatophytes and direct microscopy is especially useful for non-dermatophyte molds. © 2017 Blackwell Verlag GmbH.

  12. Measurement of water transfer and swelling stress in the buffer material due to temperature gradient

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H. [ITC, Tokai, Ibaraki (Japan); Chijimatsu, M.; Fujita, A.

    1999-03-01

    Coefficients concerning the water transfer in the buffer material was obtained by empirically giving a temperature gradient, and the swelling stress was measured when water was soaked in the sample under the uniform temperature and temperature gradient conditions. The distributions of temperature and water in the buffer material empirically given a temperature gradient were measured to deduce water diffusion constant due to the temperature gradient. The diffusion constant was the order of 10{sup -8} cm{sup 2}/s/degC. As a result of a equitemperature soaking test, it was found that the swelling stress of the part where soaktion was slow was greater than that of the part with fast soaking at a stage of non-uniform water distribution. The water soaking quantity to the sample and swelling stress reached a stationary state after 7000 hours and the water distribution in the whole sample was found saturated. (H. Baba)

  13. Stresses and strains in pavement structures due to the effect of temperatures

    Directory of Open Access Journals (Sweden)

    Svilar Mila

    2016-01-01

    Full Text Available At its absolute amount, stresses due to the effect of temperature in the pavement structures, especially those rigid, are often of the same order of magnitude as those resulting from vehicles' load, but it happens that due to such impact many slabs become cracked before the road is handed over into operation. The temperature stresses which occur in pavement structures include stresses due to bending and buckling, stresses due to friction and hidden stresses. Stresses caused by the influence of temperature in the pavement structure during the day are generally below the strength of the component materials so they do not cause the consequences for structure. However, appearance of residual stresses and their accumulation after a sufficiently long period of time may lead to failure in structure, i.e. thermal fatigue. The paper presents the effects of temperature changes on the pavement structures in the physical and mechanical terms, and the manner in which the temperature is taken into account during the design of pavement structures.

  14. Chaperonin filaments: their formation and an evaluation of methods for studying them.

    Science.gov (United States)

    Yaoi, T; Kagawa, H K; Trent, J D

    1998-08-01

    Chaperonins are multisubunit protein complexes that can be isolated from cells as high-molecular-weight structures that appear as double rings in the electron microscope. We recently discovered that chaperonin double rings isolated from the hyperthermophilic archaeon Sulfolobus shibatae, when incubated at physiological temperatures in the presence of ATP and Mg2+, stacked into filaments; we hypothesized that these filaments are related to filaments seen inside S. shibatae cells and that chaperonins exist as filaments in vivo (J. D. Trent et al., 1997, Proc. Natl. Acad. Sci. USA 94, 5383-5388). This paper elucidates the conditions under which we have observed S. shibatae chaperonins to form filaments and evaluates native polyacrylamide gel electrophoresis (PAGE), TEM, spectrophotometry, and centrifugation as methods for studying these filaments. We observed that in the presence of Mg2+ combined with ATP, ADP, ATPgammaS, or GTP, native PAGE indicated that chaperonin subunits assembled into double rings and that the conformation of these double rings was effected by nucleotide binding, but we saw no indication of chaperonin filament formation. Under these same conditions, however, TEM, spectroscopy, and centrifugation methods indicated that chaperonin subunits and double rings had assembled into filaments. We determined that this discrepancy in the representation of the chaperonin structure was due to the native PAGE method itself. When we exposed chaperonin filaments to the electrophoretic field used in native PAGE, the filaments dissociated into double rings. This suggests that TEM, spectrophotometry, and centrifugation are the preferred methods for studying the higher-order structures of chaperonins, which are likely to be of biological significance. Copyright 1998 Academic Press.

  15. A First Approach to Filament Dynamics

    Science.gov (United States)

    Silva, P. E. S.; de Abreu, F. Vistulo; Simoes, R.; Dias, R. G.

    2010-01-01

    Modelling elastic filament dynamics is a topic of high interest due to the wide range of applications. However, it has reached a high level of complexity in the literature, making it unaccessible to a beginner. In this paper we explain the main steps involved in the computational modelling of the dynamics of an elastic filament. We first derive…

  16. Uncertainty contribution on the density of liquids due to unknown sinker temperature in hydrostatic weighing apparatus

    Science.gov (United States)

    Schiebl, M.; Zelenka, Z.; Buchner, C.; Pohl, R.; Steindl, D.

    2018-02-01

    In this study, the influence of the unknown sinker temperature on the measured density of liquids is evaluated. Generally, due to the intrinsic temperature instability of the heat bath temperature controller, the system will never reach thermal equilibrium but instead will oscillate around a mean temperature. The sinker temperature follows this temperature oscillation with a certain time lag. Since the sinker temperature is not measured directly in a hydrostatic weighing apparatus, the temperature of the sinker, and thus in turn the volume of the sinker, is not known exactly. As a consequence, this leads to uncertainty in the value of the density of the liquid. From an analysis of the volume relaxation of the sinker immersed into a heat bath with time-dependent temperature characteristics, the heat transfer coefficient can be estimated, and thus a characteristic time constant for achieving quasi thermal equilibrium for a hydrostatic weighing apparatus is proposed. Additionally, from a theoretical analysis of the transient behavior of the sinker volume, the systematic deviation of the theoretical to the actual measured liquid density is calculated.

  17. Chaperonin filaments: The archaeal cytoskeleton?

    Science.gov (United States)

    Trent, Jonathan D.; Kagawa, Hiromi K.; Yaoi, Takuro; Olle, Eric; Zaluzec, Nestor J.

    1997-01-01

    Chaperonins are high molecular mass double-ring structures composed of 60-kDa protein subunits. In the hyperthermophilic archaeon Sulfolobus shibatae the two chaperonin proteins represent ≈4% of its total protein and have a combined intracellular concentration of >30 mg/ml. At concentrations ≥ 0.5 mg/ml purified chaperonins form filaments in the presence of Mg2+ and nucleotides. Filament formation requires nucleotide binding (not hydrolysis), and occurs at physiological temperatures in biologically relevant buffers, including a buffer made from cell extracts. These observations suggest that chaperonin filaments may exist in vivo and the estimated 4600 chaperonins per cell suggest that such filaments could form an extensive cytostructure. We observed filamentous structures in unfixed, uranyl-acetate-stained S. shibatae cells, which resemble the chaperonin filaments in size and appearance. ImmunoGold (Janssen) labeling using chaperonin antibodies indicated that many chaperonins are associated with insoluble cellular structures and these structures appear to be filamentous in some areas, although they could not be uranyl-acetate-stained. The existence of chaperonin filaments in vivo suggests a mechanism whereby their protein-folding activities can be regulated. More generally, the filaments themselves may play a cytoskeletal role in Archaea. PMID:9144246

  18. A four-year record of UK‧37- and TEX86-derived sea surface temperature estimates from sinking particles in the filamentous upwelling region off Cape Blanc, Mauritania

    Science.gov (United States)

    Mollenhauer, Gesine; Basse, Andreas; Kim, Jung-Hyun; Sinninghe Damsté, Jaap S.; Fischer, Gerhard

    2015-03-01

    Lipid biomarker records from sinking particles collected by sediment traps can be used to study the seasonality of biomarker production as well as processes of particle formation and settling, ultimately leading to the preservation of the biomarkers in sediments. Here we present records of the biomarker indices U37K ‧ based on alkenones and TEX86 based on isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs), both used for the reconstruction of sea surface temperatures (SST). These records were obtained from sinking particles collected using a sediment trap moored in the filamentous upwelling zone off Cape Blanc, Mauritania, at approximately 1300 water depth during a four-year time interval between 2003 and 2007, and supplemented by U37K ‧ and TEX86 determined on suspended particulate matter collected from surface waters in the study area. Mass and lipid fluxes are highest during peak upwelling periods between October and June. The alkenone and GDGT records both display pronounced seasonal variability. Sinking velocities calculated from the time lag between measured SST maxima and minima and corresponding index maxima and minima in the trap samples are higher for particles containing alkenones (14-59 m d-1) than for GDGTs (9-17 m d-1). It is suggested that GDGTs are predominantly exported from shallow waters by incorporation in opal-rich particles. SST estimates based on the U37K ‧ index correspond to the amplitude observed fluctuations in SST during the study period. Temperature estimates based on TEX86 show smaller seasonal amplitudes, which can be explained by either predominant production of GDGTs during the warm season, or a contribution of GDGTs exported from deep waters, which are in this region known to carry GDGTs in a distribution that translates to a high TEX86 signal.

  19. Applicability of Temperature Distribution for Estimation of Medium Constants Using Temperature Rise due to Absorption of Ultrasound

    Science.gov (United States)

    Yamaya, Chiaki; Inoue, Hiroshi

    2008-05-01

    The analysis of temperature rise due to the absorption of ultrasound is important for the clarification of the effect of ultrasound waves and the estimation of medium constants. The thermal behavior of ultrasound is used not only for thermotherapy but also in measurement techniques. The estimation of a medium constant becomes possible by analyzing the temperature rise because the temperature change of the medium is particular to each medium. The purpose of this research is to establish a method of estimating medium constants and to develop a numerical simulation method that can be applied to the estimation of medium constants. We elucidated the requirements under which the simulation result corresponds to the experimental result. Good agreement between the experimental and simulation results is shown in this paper, and the validity of this method is described.

  20. Temperature dependent surface modification of molybdenum due to low energy He+ ion irradiation

    International Nuclear Information System (INIS)

    Tripathi, J.K.; Novakowski, T.J.; Joseph, G.; Linke, J.; Hassanein, A.

    2015-01-01

    In this paper, we report on the temperature dependent surface modifications in molybdenum (Mo) samples due to 100 eV He + ion irradiation in extreme conditions as a potential candidate to plasma-facing components in fusion devices alternative to tungsten. The Mo samples were irradiated at normal incidence, using an ion fluence of 2.6 × 10 24 ions m −2 (with a flux of 7.2 × 10 20 ions m −2 s −1 ). Surface modifications have been studied using high-resolution field emission scanning electron-(SEM) and atomic force (AFM) microscopy. At 773 K target temperature homogeneous evolution of molybdenum nanograins on the entire Mo surface were observed. However, at 823 K target temperature appearance of nano-pores and pin-holes nearby the grain boundaries, and Mo fuzz in patches were observed. The fuzz density increases significantly with target temperatures and continued until 973 K. However, at target temperatures beyond 973 K, counterintuitively, a sequential reduction in the fuzz density has been seen till 1073 K temperatures. At 1173 K and above temperatures, only molybdenum nano structures were observed. Our temperature dependent studies confirm a clear temperature widow, 823–1073 K, for Mo fuzz formation. Ex-situ high resolution X-ray photoelectron spectroscopy studies on Mo fuzzy samples show the evidence of MoO 3 3d doublets. This elucidates that almost all the Mo fuzz were oxidized during open air exposure and are thick enough as well. Likewise the microscopy studies, the optical reflectivity measurements also show a sequential reduction in the reflectivity values (i.e., enhancement in the fuzz density) up to 973 K and after then a sequential enhancement in the reflectivity values (i.e., reduction in the fuzz density) with target temperatures. This is in well agreement with microscopy studies where we observed clear temperature window for Mo fuzz growth

  1. Temperature distribution of a simplified rotor due to a uniform heat source

    Science.gov (United States)

    Welzenbach, Sarah; Fischer, Tim; Meier, Felix; Werner, Ewald; kyzy, Sonun Ulan; Munz, Oliver

    2018-03-01

    In gas turbines, high combustion efficiency as well as operational safety are required. Thus, labyrinth seal systems with honeycomb liners are commonly used. In the case of rubbing events in the seal system, the components can be damaged due to cyclic thermal and mechanical loads. Temperature differences occurring at labyrinth seal fins during rubbing events can be determined by considering a single heat source acting periodically on the surface of a rotating cylinder. Existing literature analysing the temperature distribution on rotating cylindrical bodies due to a stationary heat source is reviewed. The temperature distribution on the circumference of a simplified labyrinth seal fin is calculated using an available and easy to implement analytical approach. A finite element model of the simplified labyrinth seal fin is created and the numerical results are compared to the analytical results. The temperature distributions calculated by the analytical and the numerical approaches coincide for low sliding velocities, while there are discrepancies of the calculated maximum temperatures for higher sliding velocities. The use of the analytical approach allows the conservative estimation of the maximum temperatures arising in labyrinth seal fins during rubbing events. At the same time, high calculation costs can be avoided.

  2. Local temperature rise due to a 6-channel blockage in a 7-pin bundle

    International Nuclear Information System (INIS)

    Daigo, Y.; Haga, K.; Ohtsubo, A.; Kikuchi, Y.

    1975-09-01

    An experimental study was performed of local temperature rises due to a non-heat-generating blockage in an electrically heated 7-pin bundle. Each pin was 6.5 mm in diameter and had a 450 mm heated length. The pitch-to-diameter ratio (P/D) was 1.22. The bundle was inserted in a hexagonal duct. The central six channels in the bundle were blocked by a 0.5 mm thick stainless steel plate at 350 mm downstream from the start of the heated section. The temperature distributions were measured by the thermocouples which were mostly located downstream from the blockage. The experimental conditions were as follows; Coolant velocity : 0.37 -- 5,00 m/s Linear heat rate : 8.5 -- 127.2 w/cm Inlet coolant temperature : 298 -- 296 0 C. The hottest surface temperature of the central pin was observed immediately downstream from the blockage. The measured temperature rise was approximately two thirds of the predicted value by the LOCK code, in which the presence of a stagnation behind the blockage was assumed. When applied the experimental results to reactor conditions, the temperature rise due to a 6-channel blockage is considered to be less than 130 0 C. (auth.)

  3. Temperature effects on loss of prestress due to relaxation of steel

    International Nuclear Information System (INIS)

    Appa Rao, G.; Yamini Sreevalli, I.; Meher Prasad, A.; Reddy, G.R.; Prabhakar, G.

    2007-01-01

    Prestressed concrete is used in general civil engineering applications and in nuclear power plants for a number of structures such as containments, reactor pressure vessels, missile shield members, reactor cavity walls etc. Loss of prestress in containment structures is a serious concern for the longevity rather than serviceability. Loss of prestress higher than the initially designed values has been reported by various agencies at a number of nuclear power plants with prestressed concrete containment structures. At present the codes specify the prestress losses in Nuclear Power Plant Containment (NPPC) structures for 50 years. However there is a continuous effort to improve the life of NPPC particularly for a design life of 100 years. The long-term losses are mainly due to relaxation of prestressing cables, creep and shrinkage of concrete. The loss of prestress due to relaxation of prestressing cables is considered to be severe due to temperature effects. In this paper an effort has been made to understand the loss of prestress due to relaxation of steel at different temperatures namely 20 degC, 25 degC, 30 degC, 35 degC, 40 degC and 45 degC and the results up to 1000 hrs to estimate the losses over longer life of structures. The initial prestress was maintained at 0.70 times guaranteed ultimate tensile strength (GUTS) of cables. The prestressing loss due to relaxation of prestressing cables increases as the temperature increases. (author)

  4. The Mysterious Case of the Missing Filaments

    Science.gov (United States)

    Alden, C. R.

    2016-12-01

    Coronal Mass Ejections, or CMEs, are large solar eruptions that can have major debilitating impacts on society. Typically, these eruptions have the three following key structures: the leading edge, the empty chamber known as the cavity, and the filament which often is the brightest part of the CME. When we can see all three structures clearly with a coronagraph, it is called a classic three-part CME, also referred to as a 'lightbulb' CME. According to current knowledge, when a CME erupts, a filament should also erupt or lift off the Sun in order to have the bright center within the CME. However, we do not always see a filament erupt at the surface, and yet we still get a 'filament' within the coronagraph CME. To better understand what might be occurring with these missing filaments, we looked at three-part CMEs using the SOHO LASCO CME Catalog and filaments from the SDO AIA Filament Catalog in order to create a list of 50 CMEs without a listed filament erupting at the surface. For those CMEs without filaments in the list we closely inspected the AIA images for evidence of filament eruption. To ensure that there were no filaments past the limb of the Sun, we used data from the STEREO-A and STEREO-B spacecraft's to look at the Sun from other angles. We have found numerous events where no filament erupts from the surface, but we still see the classic three-part CME. We believe this may be due to an optical illusion occurring from the twisting of the flux rope.

  5. Heat generation and temperature-rise in ordinary concrete due to capture of thermal neutrons

    International Nuclear Information System (INIS)

    Abdo, E.A.; Amin, E.

    1997-01-01

    The aim of this work is the evaluation of the heat generation and temperature-rise in local ordinary concrete as a biological shield due to capture of total thermal and reactor thermal neutrons. The total thermal neutron fluxes were measured and calculated. The channel number 2 of the ETRR-1 reactor was used in the measurements as a neutron source. Computer code ANISN (VAX version) and neutron multigroup cross-section library EURLiB-4 was used in the calculations. The heat generation and temperature-rise in local ordinary concrete were evaluated and calculated. The results were displayed in curves to show the distribution of thermal neutron fluxes and heat generation as well as temperature-rise with the shield thickness. The results showed that, the heat generation as well as the temperature-rise have their maximum values in the first layers of the shield thickness. 4 figs., 12 refs

  6. Enzyme activity deviates due to spatial and temporal temperature profiles in commercial microtiter plate readers.

    Science.gov (United States)

    Grosch, Jan-Hendrik; Sieben, Michaela; Lattermann, Clemens; Kauffmann, Kira; Büchs, Jochen; Spieß, Antje C

    2016-03-01

    Microtiter plates (MTP) and automatized techniques are increasingly applied in the field of biotechnology. However, the susceptibility of MTPs to edge effects such as thermal gradients can lead to high variation of measured enzyme activities. In an effort to enhance experimental reliability, to quantify, and to minimize instrument-caused deviations in enzyme kinetics between two MTP-readers, we comprehensively quantified temperature distribution in 96-well MTPs. We demonstrated the robust application of the absorbance dye cresol red as easily applicable temperature indicator in cuvettes and MTPs and determined its accuracy to ±0.16°C. We then quantified temperature distributions in 96-well MTPs revealing temperature deviations over single MTP of up to 2.2°C and different patterns in two commercial devices (BioTek Synergy 4 and Synergy Mx). The obtained liquid temperature was shown to be substantially controlled by evaporation. The temperature-induced enzyme activity variation within MTPs amounted to about 20 %. Activity deviations between MTPs and to those in cuvettes were determined to 40 % due to deviations from the set temperature in MTPs. In conclusion, we propose a better control of experimental conditions in MTPs or alternative experimental systems for reliable determination of kinetic parameters for bioprocess development. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Temperature rise due to mechanical energy dissipation in undirectional thermoplastic composites(AS4/PEEK)

    Science.gov (United States)

    Georgious, I. T.; Sun, C. T.

    1992-01-01

    The history of temperature rise due to internal dissipation of mechanical energy in insulated off-axis uniaxial specimens of the unidirectional thermoplastic composite (AS4/PEEK) has been measured. The experiment reveals that the rate of temperature rise is a polynomial function of stress amplitude: It consists of a quadratic term and a sixth power term. This fact implies that the specific heat of the composite depends on the stretching its microstructure undergoes during deformation. The Einstein theory for specific heat is used to explain the dependence of the specific heat on the stretching of the microstructure.

  8. Potential high temperature corrosion problems due to co-firing of biomass and fossil fuels

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vilhelmsen, T.; Jensen, S.A.

    2007-01-01

    Over the past years, considerable high temperature corrosion problems have been encountered when firing biomass in power plants due to the high content of potassium chloride in the deposits. Therefore to combat chloride corrosion problems co-firing of biomass with a fossil fuel has been undertaken...... significant corrosion attack was due to sulphidation attack at the grain boundaries of 18-8 steel after 3 years exposure. The corrosion mechanisms and corrosion rates are compared with biomass firing and coal firing. Potential corrosion problems due to co-firing biomass and fossil fuels are discussed....... appear such as sulphidation and hot corrosion due to sulphate deposits. At Studstrup power plant Unit 4, based on trials with exposure times of 3000 hours using 0-20% straw co-firing with coal, the plant now runs with a fuel of 10% straw + coal. After three years exposure in this environment...

  9. Intense EM filamentation in relativistic hot plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qiang-Lin [Department of Physics, Jinggangshan University, Ji' an, Jiangxi 343009 (China); Chen, Zhong-Ping [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Mahajan, Swadesh M., E-mail: mahajan@mail.utexas.edu [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Department of Physics, School of Natural Sciences, Shiv Nadar University, Uttar Pradesh 201314 (India)

    2017-03-03

    Highlights: • Breaking up of an intense EM pulse into filaments is a spectacular demonstration of the nonlinear wave-plasma interaction. • Filaments are spectacularly sharper, highly extended and longer lived at relativistic temperatures. • EM energy concentration can trigger new nonlinear phenomena with absolute consequences for high energy density matter. - Abstract: Through 2D particle-in-cell (PIC) simulations, we demonstrate that the nature of filamentation of a high intensity electromagnetic (EM) pulse propagating in an underdense plasma, is profoundly affected at relativistically high temperatures. The “relativistic” filaments are sharper, are dramatically extended (along the direction of propagation), and live much longer than their lower temperature counterparts. The thermally boosted electron inertia is invoked to understand this very interesting and powerful phenomenon.

  10. Solar Features - Prominences and Filaments - Filaments

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Filaments are formed in magnetic loops that hold relatively cool, dense gas suspended above the surface of the Sun (David Hathaway/NASA)

  11. Projecting future summer mortality due to ambient ozone concentration and temperature changes

    Science.gov (United States)

    Lee, Jae Young; Lee, Soo Hyun; Hong, Sung-Chul; Kim, Ho

    2017-05-01

    Climate change is known to affect the human health both directly by increased heat stress and indirectly by altering environments, particularly by altering the rate of ambient ozone formation in the atmosphere. Thus, the risks of climate change may be underestimated if the effects of both future temperature and ambient ozone concentrations are not considered. This study presents a projection of future summer non-accidental mortality in seven major cities of South Korea during the 2020s (2016-2025) and 2050s (2046-2055) considering changes in temperature and ozone concentration, which were predicted by using the HadGEM3-RA model and Integrated Climate and Air Quality Modeling System, respectively. Four Representative Concentration Pathway (RCP) scenarios (RCP 2.6, 4.5, 6.0, and 8.5) were considered. The result shows that non-accidental summer mortality will increase by 0.5%, 0.0%, 0.4%, and 0.4% in the 2020s, 1.9%, 1.5%, 1.2%, and 4.4% in the 2050s due to temperature change compared to the baseline mortality during 2001-2010, under RCP 2.6, 4.5, 6.0, and 8.5, respectively, whereas the mortality will increase by 0.0%, 0.5%, 0.0%, and 0.5% in the 2020s, and 0.2%, 0.2%, 0.4%, and 0.6% in the 2050s due to ozone concentration change. The projection result shows that the future summer morality in South Korea is increased due to changes in both temperature and ozone, and the magnitude of ozone-related increase is much smaller than that of temperature-related increase, especially in the 2050s.

  12. Nonlinear vacuum gas flow through a short tube due to pressure and temperature gradients

    Energy Technology Data Exchange (ETDEWEB)

    Pantazis, Sarantis; Naris, Steryios; Tantos, Christos [Department of Mechanical Engineering, University of Thessaly, Pedion Areos, 38334 Volos (Greece); Valougeorgis, Dimitris, E-mail: diva@mie.uth.gr [Department of Mechanical Engineering, University of Thessaly, Pedion Areos, 38334 Volos (Greece); André, Julien; Millet, Francois; Perin, Jean Paul [Service des Basses Températures, UMR-E CEA/UJF-Grenoble 1, INAC, Grenoble, F-38054 (France)

    2013-10-15

    The flow of a rarefied gas through a tube due to both pressure and temperature gradients has been studied numerically. The main objective is to investigate the performance of a mechanical vacuum pump operating at low temperatures in order to increase the pumped mass flow rate. This type of pump is under development at CEA-Grenoble. The flow is modelled by the Shakhov kinetic model equation, which is solved by the discrete velocity method. Results are presented for certain geometry and flow parameters. Since according to the pump design the temperature driven flow is in the opposite direction than the main pressure driven flow, it has been found that for the operating pressure range studied here the net mass flow rate through the pump may be significantly reduced.

  13. Potential high temperature corrosion problems due to co-firing of biomass and fossil fuels

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Vilhelmsen, T.; Jensen, S.A.

    2008-01-01

    Over the past few years, considerable high temperature corrosion problems have been encountered when firing biomass in power plants due to the high content of potassium chloride in the deposits. Therefore, to combat chloride corrosion problems cofiring of biomass with a fossil fuel has been....... However, the most significant corrosion attack was sulphidation attack at the grain boundaries of 18-8 steel after 3 years exposure. The corrosion mechanisms and corrosion rates are compared with biomass firing and coal firing. Potential corrosion problems due to co-firing biomass and fossil fuels...... corrosion mechanisms appear such as sulphidation and hot corrosion due to sulphate deposits. At Studstrup power plant Unit 4, based on trials with exposure times of 3000 h using 0–20% straw co-firing with coal, the plant now runs with a fuel mix of 10% strawþcoal. Based on results from a 3 years exposure...

  14. High-resolution Observations of Sympathetic Filament Eruptions by NVST

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shangwei; Su, Yingna; Zhou, Tuanhui; Ji, Haisheng [Key Laboratory for Dark Matter and Space Science, Purple Mountain Observatory, CAS, Nanjing 210008 (China); Van Ballegooijen, Adriaan [5001 Riverwood Avenue, Sarasota, FL 34231 (United States); Sun, Xudong, E-mail: ynsu@pmo.ac.cn [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2017-07-20

    We investigate two sympathetic filament eruptions observed by the New Vacuum Solar Telescope on 2015 October 15. The full picture of the eruptions is obtained from the corresponding Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA) observations. The two filaments start from active region NOAA 12434 in the north and end in one large quiescent filament channel in the south. The left filament erupts first, followed by the right filament eruption about 10 minutes later. Clear twist structure and rotating motion are observed in both filaments during the eruption. Both eruptions failed, since the filaments first rise up, then flow toward the south and merge into the southern large quiescent filament. We also observe repeated activations of mini filaments below the right filament after its eruption. Using magnetic field models constructed based on SDO /HMI magnetograms via the flux rope insertion method, we find that the left filament eruption is likely to be triggered by kink instability, while the weakening of overlying magnetic fields due to magnetic reconnection at an X-point between the two filament systems might play an important role in the onset of the right filament eruption.

  15. Fine filament NbTi superconductive composite

    International Nuclear Information System (INIS)

    Hong, S.; Grabinsky, G.; Marancik, W.; Pattanayak, D.

    1986-01-01

    The large superconducting magnet for the high energy physics accelerator requires fine filament composite to minimize the field error due to the persistent current in the filaments. New concepts toward the fine filament composite and its cable fabrication are discussed. Two-stage cables of fine wire with intermediate number of filaments were introduced. The first stage was six wires cables around one and in the second stage this was used to produce a Rutherford cable. The advantage of this process is in the ease of billet fabrication since the number of filaments in a single wire is within the range of easy billet fabrication. The disadvantage is in the cable fabrication. One of the major concerns in the fabrication of fine NbTi filaments composite in a copper matrix is the intermetallic compound formation during the extrusion and heat treatment steps. The hard intermetallic particles degrade the uniformity of the filaments and reduce the critical current density. The process of using Nb barrier between the filaments and copper matrix in order to prevent this CuTi intermetallic particle formation is described

  16. Material degradation due to moisture and temperature. Part 1: mathematical model, analysis, and analytical solutions

    Science.gov (United States)

    Xu, C.; Mudunuru, M. K.; Nakshatrala, K. B.

    2016-11-01

    The mechanical response, serviceability, and load-bearing capacity of materials and structural components can be adversely affected due to external stimuli, which include exposure to a corrosive chemical species, high temperatures, temperature fluctuations (i.e., freezing-thawing), cyclic mechanical loading, just to name a few. It is, therefore, of paramount importance in several branches of engineering—ranging from aerospace engineering, civil engineering to biomedical engineering—to have a fundamental understanding of degradation of materials, as the materials in these applications are often subjected to adverse environments. As a result of recent advancements in material science, new materials such as fiber-reinforced polymers and multi-functional materials that exhibit high ductility have been developed and widely used, for example, as infrastructural materials or in medical devices (e.g., stents). The traditional small-strain approaches of modeling these materials will not be adequate. In this paper, we study degradation of materials due to an exposure to chemical species and temperature under large strain and large deformations. In the first part of our research work, we present a consistent mathematical model with firm thermodynamic underpinning. We then obtain semi-analytical solutions of several canonical problems to illustrate the nature of the quasi-static and unsteady behaviors of degrading hyperelastic solids.

  17. Fabrication of PLA Filaments and its Printable Performance

    Science.gov (United States)

    Liu, Wenjie; Zhou, Jianping; Ma, Yuming; Wang, Jie; Xu, Jie

    2017-12-01

    Fused deposition modeling (FDM) is a typical 3D printing technology and preparation of qualified filaments is the basis. In order to prepare polylactic acid (PLA) filaments suitable for personalized FDM 3D printing, this article investigated the effect of factors such as extrusion temperature and screw speed on the diameter, surface roughness and ultimate tensile stress of the obtained PLA filaments. The optimal process parameters for fabrication of qualified filaments were determined. Further, the printable performance of the obtained PLA filaments for 3D objects was preliminarily explored.

  18. NMR relaxation in spin ice at low temperature due to diffusing emergent monopoles

    Science.gov (United States)

    Henley, Christopher L.

    2013-03-01

    At low temperatures, spin dynamics in ideal spin ice is due mainly to dilute, thermally excited magnetic ``monopole'' excitations. I consider how these will affect the longitudinal (T1) and dephasing (T2) relaxation functions of a nuclear spin in the spin-ice pyrochlore Dy2Ti2O4. Up to the time scale for nearby monopoles to be rearranged, a stretched-exponential form of the relaxation functions is expected, due to averaging over nuclei that have different local environments. ror the dephasing (T2) relaxation, the power of time in the stretched exponential is 3/2 in the case of diffusing monopoles, but 1/2 in the case of fixed, fluctuating magnetic impurities. The flip rate and density of fluctuating spins (whatever their nature) can be extracted from the measured relaxation times T1 and T2, and from known parameters. However, the actual experimental relaxation measured by Kitagawa and Takigawa becomes temperature independent in the very low T limit, and the T2 has a power t 1 / 2 in the exponential, neither of which can be explained by monopoles. I suggest the very low T behavior could be due to magnetic impurities on the (normally nonmagnetic) Ti sites. Supported by NSF grant DMR-1005466.

  19. Lifetime of titanium filament at constant current

    International Nuclear Information System (INIS)

    Chou, T.S.; Lanni, C.

    1981-01-01

    Titanium Sublimation Pump (TSP) represents the most efficient and the least expensive method to produce Ultra High Vacuum (UHV) in storage rings. In ISABELLE, a proton storage accelerator under construction at Brookhaven National Laboratory, for example, TSP provides a pumping speed for hydrogen of > 2 x 10 6 l/s. Due to the finite life of titanium filaments, new filaments have to be switched in before the end of filament burn out, to ensure smooth operation of the accelerator. Therefore, several operational modes that can be used to activate the TSP were studied. The constant current mode is a convenient way of maintaining constant evaporating rate by increasing the power input while the filament diameter decreases as titanium evaporates. The filaments used in this experiment were standard Varian 916-0024 filaments made of Ti 85%, Mo 15% alloy. During their lifetime at a constant current of 48 amperes, the evaporation rate rose to a maximum at about 10% of their life and then flattened out to a constant value, 0.25 g/hr. The maximum evaporation rate occurs coincidently with the recrystallization of 74% Ti 26% Mo 2 from microstructure crystalline at higher titanium concentration to macrostructure crystalline at lower titanium concentration. As the macrocrystal grows, the slip plane develops at the grain boundary resulting in high resistance at the slip plane which will eventually cause the filament burn out due to local heating

  20. On axial temperature gradients due to large pressure drops in dense fluid chromatography.

    Science.gov (United States)

    Colgate, Sam O; Berger, Terry A

    2015-03-13

    The effect of energy degradation (Degradation is the creation of net entropy resulting from irreversibility.) accompanying pressure drops across chromatographic columns is examined with regard to explaining axial temperature gradients in both high performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC). The observed effects of warming and cooling can be explained equally well in the language of thermodynamics or fluid dynamics. The necessary equivalence of these treatments is reviewed here to show the legitimacy of using whichever one supports the simpler determination of features of interest. The determination of temperature profiles in columns by direct application of the laws of thermodynamics is somewhat simpler than applying them indirectly by solving the Navier-Stokes (NS) equations. Both disciplines show that the preferred strategy for minimizing the reduction in peak quality caused by temperature gradients is to operate columns as nearly adiabatically as possible (i.e. as Joule-Thomson expansions). This useful fact, however, is not widely familiar or appreciated in the chromatography community due to some misunderstanding of the meaning of certain terms and expressions used in these disciplines. In fluid dynamics, the terms "resistive heating" or "frictional heating" have been widely used as synonyms for the dissipation function, Φ, in the NS energy equation. These terms have been widely used by chromatographers as well, but often misinterpreted as due to friction between the mobile phase and the column packing, when in fact Φ describes the increase in entropy of the system (dissipation, ∫TdSuniv>0) due to the irreversible decompression of the mobile phase. Two distinctly different contributions to the irreversibility are identified; (1) ΔSext, viscous dissipation of work done by the external surroundings driving the flow (the pump) contributing to its warming, and (2) ΔSint, entropy change accompanying decompression of

  1. Aggregation of human sperm at higher temperature is due to hyperactivation.

    Science.gov (United States)

    Keppler, E L; Chan, P J; Patton, W C; King, A

    1999-01-01

    Chemotaxis of sperm cells to chemicals and hormones, such as progesterone, helps us to understand the concept of sperm transport. Here, the hypothesis was that heat increased sperm hyperactive motility, which caused the sperm to aggregate at the higher temperature. The objectives were (1) to determine the concentration of sperm at both halves of an artificial female reproductive tract made from a hermetically sealed cryopreservation straw filled with culture medium and placed with each end at different temperatures, and (2) to analyze the motility or kinematic parameters and hyperactivation of sperm found at the different temperatures. Cryopreserved-thawed human donor sperm (N = 6) were pooled and processed through 2-layer colloid solution. Analyses of the motile sperm were carried out and the washed sperm were homogeneously mixed and pipetted into several 0.5-mL French cryopreservation straws and heat-sealed. The control substance, consisting of acid-treated sperm, was also placed in several straws. The plastic straws of sperm were placed half at 23 degrees C and half was at either 37 or 40 degrees C. After 4 h, sperm at different sections of the straws were analyzed using the Hamilton Thorn motility analyzer (HTM-C). After 4 h of incubation, the concentration of sperm was doubled at the 40 degrees C heated half of the straw when compared with the other half of the straw at 23 degrees C. There were no differences in sperm concentration in the straw kept half at 37 degrees C and half at 23 degrees C. There were significantly higher percent motility, mean average path velocity, straight line velocity, lateral head displacement, and percent hyperactivation in sperm at the 40 degrees C temperature. The aggregation of sperm at the higher temperature of 40 degrees C may be due to enhanced motility, increased sperm velocities, and a 10-fold increase in hyperactivation at that temperature. The 37 degrees C temperature was not sufficient to attract sperm. Sperm cells

  2. Tungsten Filament Fire

    Science.gov (United States)

    Ruiz, Michael J.; Perkins, James

    2016-01-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent…

  3. Proteomics of Filamentous Fungi

    NARCIS (Netherlands)

    Passel, van M.W.J.; Schaap, P.J.; Graaff, de L.H.

    2013-01-01

    Filamentous fungi, such as Aspergillus niger and Aspergillus oryzae traditionally have had an important role in providing enzymes and enzyme cocktails that are used in food industry. In recent years the genome sequences of many filamentous fungi have become available. This combined with

  4. Numerical simulation of wall temperature on gas pipeline due to radiation of natural gas during combustion

    Directory of Open Access Journals (Sweden)

    Ilić Marko N.

    2012-01-01

    Full Text Available This paper presents one of the possible hazardous situations during transportation of gas through the international pipeline. It describes the case when at high-pressure gas pipeline, due to mechanical or chemical effect, cracks and a gas leakage appears and the gas is somehow triggered to burn. As a consequence of heat impingement on the pipe surface, change of material properties (decreasing of strength at high temperatures will occur. In order to avoid greater rapture a reasonable pressure relief rate needs to be applied. Standards in this particular domain of depressurizing procedure are not so exact (DIN EN ISO 23251; API 521. This paper was a part of the project to make initial contribution in defining the appropriate procedure of gas operator behaving during the rare gas leakage and burning situations on pipeline network. The main part of the work consists of two calculations. The first is the numerical simulation of heat radiation of combustible gas, which affects the pipeline, done in the FLUENT software. The second is the implementation of obtained results as a boundary condition in an additional calculation of time resolved wall temperature of the pipe under consideration this temperature depending on the incident flux as well as a number of other heat flow rates, using the Matlab. Simulations were done with the help of the “E.ON Ruhrgas AG” in Essen.

  5. Variation in thermal conductivity of porous media due to temperature and pressure

    International Nuclear Information System (INIS)

    Rehman, M.A.; Maqsood, A.

    2003-01-01

    In the last decade, a great amount of attention has been paid to the study of the temperature dependence of the thermal transport properties of insulating materials. Thermal insulators constitute one of the major areas of the porous ceramic consumption. Measurements of thermal transport properties are important tools in this field. In the present work a set of synthetic porous insulating foams, used as insulating materials is studied. Advantageous Transient Plane Source (ATPS) method is used for the simultaneous measurement of thermal conductivity and thermal diffusivity of these materials in air and then volumetric heat capacity is calculated. The study of thermal transport properties of three synthetic porous insulators that are foam, closed cell foam and fiberglass, under different conditions of temperature pressure and with corresponding densities was done. Due to this research it is possible to work out the material with optimum performance, lower thermal expansion and conductivity, high temperature use, low as well as high-pressure use, so that the insulation with high margin of safety and space with lower cost could be obtained. As a result the proper type of insulation can be recommended in accordance with the specific application. The change in the temperature and pressure causes different behavior on the samples, even then all these samples are suitable for insulation purposes in scientific and commercial fields. Foam is the best choice because of its lowest thermal conductivity values, fiberglass is a better choice because of its consistency, and closed cell foam is the third choice because of its plastic nature and high density. (author)

  6. Chronic Inflammation in an Anophthalmic Socket due to a Room Temperature Vulcanized Silicone Implant

    Directory of Open Access Journals (Sweden)

    Alicia Galindo-Ferreiro

    2016-04-01

    Full Text Available Two case reports are used to illustrate the signs and symptoms, complications and treatments of chronic socket inflammation due to intraorbital implants. The ophthalmic examination, surgeries and treatments are documented. Two anophthalmic cases that underwent enucleation and multiple orbital surgeries to enhance the anophthalmic socket volume developed pain, intense discharge and contracted cavities with chronic inflammation in the socket which was nonresponsive to medical therapy. Computed tomography indicated a hypodense foreign body in both cases causing an intense inflammatory reaction. The implants were removed by excisional surgery and a room temperature vulcanized silicone implant was retrieved in both cases. Socket inflammation resolved in both cases after implant removal. An intraorbital inflammatory reaction against an intraorbital implant can cause chronic socket inflammation in patients with a history of multiple surgeries. Diagnosis requires imaging and the definitive treatment is implant removal.

  7. Role of multiple filaments in self-accelerating actions of laser filamentation in air

    Science.gov (United States)

    Hu, Yuze; Nie, Jinsong; Sun, Ke

    2017-11-01

    The nonlinear dynamics of multiple filaments in self-accelerating actions by using corrected accelerating parabolic beams (CAPBs) are numerically investigated. By increasing the number of main lobes, the curved filaments can be elongated, leading to a longer displacement. The replenished energy originating from curved multiple filaments (MFs) that constructively interfere with the central one plays a crucial role in the phenomenon. At the bifurcation position, a beam pattern in which secondary lobes tightly follow the main lobes is formed, which is beneficial for the accelerating action of MFs. A new curved filament is generated due to the merging of side-curved MFs, and its accelerating strength decreases gradually with further propagation. Moreover, a special spatiotemporal profile that enhances the possibility of acceleration is also formed. The use of the accelerating beam with the appropriate amount of main lobes provides a new approach to elongate curved filaments.

  8. Calculation of pressure and temperature in medium-voltage electrical installations due to fault arcs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X; Gockenbach, E [Institute of Electric Power Systems, Division of High Voltage Engineering, Leibniz University of Hanover, Hanover, 30167 Germany (Germany); Zhang, J [SIEMENS High Voltage Circuit Breaker Ltd Co., Hangzhou, 310018 (China)], E-mail: zhang@si.uni-hannover.de

    2008-05-21

    In order to determine the pressure rise due to arc faults in electrical installations, the portion of energy heating the surrounding gas of fault arcs has to be known. The ratio of the portion of energy to the electric energy, the thermal transfer coefficient, is adopted as the k{sub p} factor. This paper presents a theoretical approach for the determination of the thermal transfer coefficient and the pressure rise in electrical installations. It is based on the fundamental hydro- and thermodynamic conservation equations and the equation of gas state taking into account melting and evaporation of metals as well as chemical reactions with the surrounding gas. In order to consider the dependence of the arc energy on the gas density, the radiative effect of fault arcs on the energy balance is introduced into the arc model by using the net emission coefficient as a function of gas density, arc temperature and arc radius. The results for a test container show that factors such as the kinds of insulating gases and of electrode materials, the size of test vessels and the gas density considerably influence the thermal transfer coefficient and thus the pressure rise. Furthermore, it is demonstrated, for an example of the arc fault in a compact medium-voltage station with pressure relief openings and a pressure relief channel, that the arc energy and the arc temperature can be simulated based on the changing gas density.

  9. Evolution of Filament Barbs

    OpenAIRE

    Liu, Rui; Xu, Yan; Wang, Haimin

    2010-01-01

    We present a selected few cases in which the sense of chirality of filament barbs changed within as short as hours. We investigate in detail a quiescent filament on 2003 September 10 and 11. Of its four barbs displaying such changes only one overlay a small polarity inversion line inside the EUV filament channel (EFC). No magnetic elements with magnitude above the noise level were detected at the endpoints of all barbs. In particular, a pair of barbs first approached toward and then departed ...

  10. Femtosecond Laser Filamentation

    CERN Document Server

    Chin, See Leang

    2010-01-01

    Femtosecond Laser Filamentation gives a comprehensive review of the physics of propagation of intense femtosecond laser pulses in optical media (principally air) and the applications and challenges of this new technique. This book presents the modern understanding of the physics of femtosecond laser pulse propagation, including unusual new effects such as the self-transformation of the pulse into a white light laser pulse, intensity clamping, the physics of multiple filamentation and competition, and how filaments’ ability to melt glass leads to wave guide writing. The potential applications of laser filamentation in atmospheric sensing and the generation of other electromagnetic pulses from the UV to the radio frequency are treated, together with possible future challenges in the excitation of super-excited states of molecules. Exciting new phenomena such as filament induced ultrafast birefringence and the excitation of molecular rotational wave packets and their multiple revivals in air (gases) will also ...

  11. Bias to CMB lensing reconstruction from temperature anisotropies due to large-scale galaxy motions

    Science.gov (United States)

    Ferraro, Simone; Hill, J. Colin

    2018-01-01

    Gravitational lensing of the cosmic microwave background (CMB) is expected to be amongst the most powerful cosmological tools for ongoing and upcoming CMB experiments. In this work, we investigate a bias to CMB lensing reconstruction from temperature anisotropies due to the kinematic Sunyaev-Zel'dovich (kSZ) effect, that is, the Doppler shift of CMB photons induced by Compton scattering off moving electrons. The kSZ signal yields biases due to both its own intrinsic non-Gaussianity and its nonzero cross-correlation with the CMB lensing field (and other fields that trace the large-scale structure). This kSZ-induced bias affects both the CMB lensing autopower spectrum and its cross-correlation with low-redshift tracers. Furthermore, it cannot be removed by multifrequency foreground separation techniques because the kSZ effect preserves the blackbody spectrum of the CMB. While statistically negligible for current data sets, we show that it will be important for upcoming surveys, and failure to account for it can lead to large biases in constraints on neutrino masses or the properties of dark energy. For a stage 4 CMB experiment, the bias can be as large as ≈15 % or 12% in cross-correlation with LSST galaxy lensing convergence or galaxy overdensity maps, respectively, when the maximum temperature multipole used in the reconstruction is ℓmax=4000 , and about half of that when ℓmax=3000 . Similarly, we find that the CMB lensing autopower spectrum can be biased by up to several percent. These biases are many times larger than the expected statistical errors. We validate our analytical predictions with cosmological simulations and present the first complete estimate of secondary-induced CMB lensing biases. The predicted bias is sensitive to the small-scale gas distribution, which is affected by pressure and feedback mechanisms, thus making removal via "bias-hardened" estimators challenging. Reducing ℓmax can significantly mitigate the bias at the cost of a decrease

  12. UNVEILING A NETWORK OF PARALLEL FILAMENTS IN THE INFRARED DARK CLOUD G14.225-0.506

    Energy Technology Data Exchange (ETDEWEB)

    Busquet, Gemma [INAF-Istituto di Astrofisica e Planetologia Spaziali, via Fosso del Cavaliere 100, I-00133 Roma (Italy); Zhang, Qizhou; Ho, Paul T. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Palau, Aina; Girart, Josep M. [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB, Facultat de Ciencies, Torre C-5 parell, E-08193 Bellaterra, Catalunya (Spain); Liu, Hauyu Baobab [Academia Sinica Institute of Astronomy and Astrophysics, Taipei, Taiwan (China); Sanchez-Monge, Alvaro [INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-05125 Firenze (Italy); Estalella, Robert [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E-08028 Barcelona, Catalunya (Spain); De Gregorio-Monsalvo, Itziar [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Pillai, Thushara [Caltech Astronomy Department, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Wyrowski, Friedrich [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Santos, Fabio P.; Franco, Gabriel A. P., E-mail: gemma.busquet@iaps.inaf.it [Departamento de Fisica-ICEx-UFMG, Caixa Postal 702, 30.123-970 Belo Horizonte-MG (Brazil)

    2013-02-20

    We present the results of combined NH{sub 3} (1,1) and (2,2) line emission observed with the Very Large Array and the Effelsberg 100 m telescope of the infrared dark cloud G14.225-0.506. The NH{sub 3} emission reveals a network of filaments constituting two hub-filament systems. Hubs are associated with gas of rotational temperature T{sub rot} {approx} 15 K, non-thermal velocity dispersion {sigma}{sub NT} {approx} 1 km s{sup -1}, and exhibit signs of star formation, while filaments appear to be more quiescent (T{sub rot} {approx} 11 K and {sigma}{sub NT} {approx} 0.6 km s{sup -1}). Filaments are parallel in projection and distributed mainly along two directions, at P.A. {approx} 10 Degree-Sign and 60 Degree-Sign , and appear to be coherent in velocity. The averaged projected separation between adjacent filaments is between 0.5 pc and 1 pc, and the mean width of filaments is 0.12 pc. Cores within filaments are separated by {approx}0.33 {+-} 0.09 pc, which is consistent with the predicted fragmentation of an isothermal gas cylinder due to the {sup s}ausage{sup -}type instability. The network of parallel filaments observed in G14.225-0.506 is consistent with the gravitational instability of a thin gas layer threaded by magnetic fields. Overall, our data suggest that magnetic fields might play an important role in the alignment of filaments, and polarization measurements in the entire cloud would lend further support to this scenario.

  13. Filament Substructures and their Interrelation

    Science.gov (United States)

    Lin, Y.; Martin, S. F.; Engvold, O.

    The main structural components of solar filaments, their spines, barbs, and legs at the extreme ends of the spine, are illustrated from recent high-resolution observations. The thread-like structures appear to be present in filaments everywhere and at all times. They are the fundamental elements of solar filaments. The interrelation of the spines, barbs and legs are discussed. From observations, we present a conceptual model of the magnetic field of a filament. We suggest that only a single physical model is needed to explain filaments in a continuous spectrum represented by active region filaments at one end and quiescent filaments at the other end.

  14. Temperature resolution enhancing of commercially available THz passive cameras due to computer processing of images

    Science.gov (United States)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Kuchik, Igor E.

    2014-06-01

    As it is well-known, application of the passive THz camera for the security problems is very promising way. It allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. Efficiency of using the passive THz camera depends on its temperature resolution. This characteristic specifies possibilities of the detection of concealed object: minimal size of the object, maximal distance of the detection, image detail. One of probable ways for a quality image enhancing consists in computer processing of image. Using computer processing of the THz image of objects concealed on the human body, one may improve it many times. Consequently, the instrumental resolution of such device may be increased without any additional engineering efforts. We demonstrate new possibilities for seeing the clothes details, which raw images, produced by the THz cameras, do not allow to see. We achieve good quality of the image due to applying various spatial filters with the aim to demonstrate independence of processed images on math operations. This result demonstrates a feasibility of objects seeing. We consider images produced by THz passive cameras manufactured by Microsemi Corp., and ThruVision Corp., and Capital Normal University (Beijing, China).

  15. Filament-filament switching can be regulated by separation between filaments together with cargo motor number.

    Directory of Open Access Journals (Sweden)

    Robert P Erickson

    Full Text Available How intracellular transport controls the probability that cargos switch at intersections between filaments is not well understood. In one hypothesis some motors on the cargo attach to one filament while others attach to the intersecting filament, and the ensuing tug-of-war determines which filament is chosen. We investigate this hypothesis using 3D computer simulations, and discover that switching at intersections increases with the number of motors on the cargo, but is not strongly dependent on motor number when the filaments touch. Thus, simply controlling the number of active motors on the cargo cannot account for in vivo observations that found reduced switching with increasing motor number, suggesting additional mechanisms of regulation. We use simulations to show that one possible way to regulate switching is by simultaneously adjusting the separation between planes containing the crossing filaments and the total number of active motors on the cargo. Heretofore, the effect of filament-filament separation on switching has been unexplored. We find that the switching probability decreases with increasing filament separation. This effect is particularly strong for cargos with only a modest number of motors. As the filament separation increases past the maximum head-to-head distance of the motor, individual motors walking along a filament will be unable to reach the intersecting filament. Thus, any switching requires that other motors on the cargo attach to the intersecting filament and haul the cargo along it, while motor(s engaged on the original filament detach. Further, if the filament separation is large enough, the cargo can have difficulty proceeding along the initial filament because the engaged motors can walk underneath the intersecting filament, but the cargo itself cannot fit between the filaments. Thus, the cargo either detaches entirely from the original filament, or must dip to the side of the initial filament and then pass below

  16. Filament-filament switching can be regulated by separation between filaments together with cargo motor number.

    Science.gov (United States)

    Erickson, Robert P; Gross, Steven P; Yu, Clare C

    2013-01-01

    How intracellular transport controls the probability that cargos switch at intersections between filaments is not well understood. In one hypothesis some motors on the cargo attach to one filament while others attach to the intersecting filament, and the ensuing tug-of-war determines which filament is chosen. We investigate this hypothesis using 3D computer simulations, and discover that switching at intersections increases with the number of motors on the cargo, but is not strongly dependent on motor number when the filaments touch. Thus, simply controlling the number of active motors on the cargo cannot account for in vivo observations that found reduced switching with increasing motor number, suggesting additional mechanisms of regulation. We use simulations to show that one possible way to regulate switching is by simultaneously adjusting the separation between planes containing the crossing filaments and the total number of active motors on the cargo. Heretofore, the effect of filament-filament separation on switching has been unexplored. We find that the switching probability decreases with increasing filament separation. This effect is particularly strong for cargos with only a modest number of motors. As the filament separation increases past the maximum head-to-head distance of the motor, individual motors walking along a filament will be unable to reach the intersecting filament. Thus, any switching requires that other motors on the cargo attach to the intersecting filament and haul the cargo along it, while motor(s) engaged on the original filament detach. Further, if the filament separation is large enough, the cargo can have difficulty proceeding along the initial filament because the engaged motors can walk underneath the intersecting filament, but the cargo itself cannot fit between the filaments. Thus, the cargo either detaches entirely from the original filament, or must dip to the side of the initial filament and then pass below the crossing

  17. Dynamics of contracting surfactant-covered filaments

    Science.gov (United States)

    Kamat, Pritish; Thete, Sumeet; Xu, Qi; Basaran, Osman

    2013-11-01

    When drops are produced from a nozzle, a thin liquid thread connects the primary drop that is about to form to the rest of the liquid in the nozzle. Often, the thread becomes disconnected from both the primary drop and the remnant liquid mass hanging from the nozzle and thereby gives rise to a free filament. Due to surface tension, the free filament then contracts or recoils. During recoil, the filament can either contract into a single satellite droplet or break up into several small satellites. Such satellite droplets are undesirable in applications where they can, for example, cause misting in a manufacturing environment and mar product quality in ink-jet printing. In many applications, the filaments are coated with a monolayer of surfactant. In this work, we study the dynamics of contraction of slender filaments of a Newtonian fluid that are covered with a monolayer of surfactant when the surrounding fluid is a passive gas. Taking advantage of the fact that the filaments are long and slender, we use a 1D-slender-jet approximation of the governing system of equations consisting of the Navier-Stokes system and the convection-diffusion equation for surfactant transport. We solve the 1D system of equations by a finite element based numerical method.

  18. Mediating water temperature increases due to livestock and global change in high elevation meadow streams of the Golden Trout Wilderness

    Science.gov (United States)

    Sebastien Nussle; Kathleen R. Matthews; Stephanie M. Carlson

    2015-01-01

    Rising temperatures due to climate change are pushing the thermal limits of many species, but how climate warming interacts with other anthropogenic disturbances such as land use remains poorly understood. To understand the interactive effects of climate warming and livestock grazing on water temperature in three high elevation meadow streams in the Golden Trout...

  19. Evaluating biochemical response of filamentous algae integrated with different water bodies.

    Science.gov (United States)

    Çelekli, Abuzer; Kapı, Emine; Soysal, Çiğdem; Arslanargun, Hamdullah; Bozkurt, Hüseyin

    2017-08-01

    The present study prompted the second attempts to evaluate biochemical responses of filamentous algae under different physico-chemical variables in various water bodies in Turkey. These variables were investigated by use of multivariate approach in the years of 2013 (May and November) and 2014 (May and October). Studied ecoregions had the different geographic position, climate, land-use, and anthropogenic activities, could strongly affect physico-chemical variables of water bodies, which caused to change or regulate in algal biomass composition due to the different response of filamentous species. Besides, biochemical responses of species changed at different sampling times and stations. Multivariate analyses indicated that temperature, heavy metals, and nutrient contents of aquatic systems were found to be major variables driving the spatial and temporal occurrence and biochemical contents of filamentous species. Total protein and pigment production by filamentous algae were high in water bodies having high nutrients, whereas they were low in high heavy metal contents. Amount of malondialdehyde (MDA), H 2 O 2 , total thiol group, total phenolic compounds, proline, total carbohydrate, and bioaccumulation of metals by filamentous algae were closely related with heavy metal contents of water bodies, indicated by the multivariate approach. Significant increase in aforementioned biochemical compounds with a distinct range of habitats and sensitive-tolerance to environmental conditions could make them highly valuable indicators. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Interaction of Two Filaments in a Long Filament Channel Associated with Twin Coronal Mass Ejections

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruisheng; Chen, Yao; Wang, Bing; Du, Guohui; Li, Chuanyang [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, 264209 Weihai (China); Zhang, Qingmin [Key Laboratory for Dark Matter and Space Science, Purple Mountain Observatory, CAS, Nanjing 210008 (China); Yang, Kai, E-mail: ruishengzheng@sdu.edu.cn [School of Astronomy and Space Science, Nanjing University, 210023 Nanjing (China)

    2017-02-20

    Using the high-quality observations of the Solar Dynamics Observatory , we present the interaction of two filaments (F1 and F2) in a long filament channel associated with twin coronal mass ejections (CMEs) on 2016 January 26. Before the eruption, a sequence of rapid cancellation and emergence of the magnetic flux has been observed, which likely triggered the ascending of the west filament (F1). The east footpoints of rising F1 moved toward the east far end of the filament channel, accompanied by post-eruption loops and flare ribbons. This likely indicated a large-scale eruption involving the long filament channel, which resulted from the interaction between F1 and the east filament (F2). Some bright plasma flew over F2, and F2 stayed at rest during the eruption, likely due to the confinement of its overlying lower magnetic field. Interestingly, the impulsive F1 pushed its overlying magnetic arcades to form the first CME, and F1 finally evolved into the second CME after the collision with the nearby coronal hole. We suggest that the interaction of F1 and the overlying magnetic field of F2 led to the merging reconnection that forms a longer eruptive filament loop. Our results also provide a possible picture of the origin of twin CMEs and show that the large-scale magnetic topology of the coronal hole is important for the eventual propagation direction of CMEs.

  1. Evolution of filament barbs.

    Science.gov (United States)

    Liu, R.; Xu, Y.; Wang, H.

    We present a selected few cases in which the sense of chirality of filament barbs changed within periods as short as hours. We investigate in detail a quiescent filament on 2003 September 10 and 11. Of its four barbs displaying such changes, only one overlays a small polarity inversion line inside the EUV filament channel (EFC). No magnetic elements with magnitude above the noise level were detected at the endpoints of all barbs. In particular, a pair of barbs first approached toward, and then departed from, each other in Halpha , with the barb endpoints migrating as far as ˜ 10 arcsec. We conclude that the evolution of the barbs was driven by flux emergence and cancellation of small bipolar units at the EFC border.

  2. Filaments in Lupus I

    Science.gov (United States)

    Takahashi, Satoko; Rodon, J.; De Gregorio-Monsalvo, I.; Plunkett, A.

    2017-06-01

    The mechanisms behind the formation of sub-stellar mass sources are key to determine the populations at the low-mass end of the stellar distribution. Here, we present mapping observations toward the Lupus I cloud in C18O(2-1) and 13CO(2-1) obtained with APEX. We have identified a few velocity-coherent filaments. Each contains several substellar mass sources that are also identified in the 1.1mm continuum data (see also SOLA catalogue presentation). We will discuss the velocity structure, fragmentation properties of the identified filaments, and the nature of the detected sources.

  3. MATERIAL SUPPLY AND MAGNETIC CONFIGURATION OF AN ACTIVE REGION FILAMENT

    Energy Technology Data Exchange (ETDEWEB)

    Zou, P.; Fang, C.; Chen, P. F.; Yang, K.; Hao, Q. [School of Astronomy and Space Science, Nanjing University, Nanjing 210023 (China); Cao, Wenda, E-mail: fangc@nju.edu.cn [Big Bear Solar Observatory, New Jersey Institute of Technology, 40386 North Shore Lane, Big Bear City, CA 92314 (United States)

    2016-11-10

    It is important to study the fine structures of solar filaments with high-resolution observations, since it can help us understand the magnetic and thermal structures of the filaments and their dynamics. In this paper, we study a newly formed filament located inside the active region NOAA 11762, which was observed by the 1.6 m New Solar Telescope at Big Bear Solar Observatory from 16:40:19 UT to 17:07:58 UT on 2013 June 5. As revealed by the H α filtergrams, cool material is seen to be injected into the filament spine with a speed of 5–10 km s{sup -1}. At the source of the injection, brightenings are identified in the chromosphere, which are accompanied by magnetic cancellation in the photosphere, implying the importance of magnetic reconnection in replenishing the filament with plasmas from the lower atmosphere. Counter-streamings are detected near one endpoint of the filament, with the plane-of-the-sky speed being 7–9 km s{sup -1} in the H α red-wing filtergrams and 9–25 km s{sup -1} in the blue-wing filtergrams. The observations are indicative that this active region filament is supported by a sheared arcade without magnetic dips, and the counter-streamings are due to unidirectional flows with alternative directions, rather than due to the longitudinal oscillations of filament threads as in many other filaments.

  4. Temperature effects on He bubbles production due to cascades in α-iron

    International Nuclear Information System (INIS)

    Yang, L.; Zu, X.T.; Xiao, H.Y.; Gao, F.; Liu, K.Z.; Heinisch, H.L.; Kurtz, R.J.; Yang, S.Z.

    2006-01-01

    The effects of irradiation temperature on the formation of He-vacancy clusters by displacement cascades in α-Fe are investigated by molecular dynamics (MD) methods. The irradiation temperatures of 100 and 600 K are considered for primary knock-on atom (PKA) energy, E p , from 500 eV to 20 keV. The concentration of He in Fe varies from 1 to 5 at.%. We find that the number of Frenkel pairs (N F ) at 600 K is slightly lower than that at 100 K for the same He concentration and E p , but the number of He-vacancy clusters increases with increasing temperature for the same He concentration and energy recoils. However, the mean size of He-vacancy clusters is independent on temperature. The mechanisms of He bubble nucleation in displacement cascades at different temperatures are discussed in detail

  5. Distortion of the activation energy of high temperature internal friction background due to temperature dependence frequency variations

    International Nuclear Information System (INIS)

    Lambri, O.; Povolo, F.; Molinas, B.

    1991-01-01

    In this work, a study is made of how the variation of frequency with temperature affects an activation enthalpy. This effect is usually neglected, but in some cases like Cu-Au or Zry-4 (an alloy of nuclear interest base or Zr alloyed with Sn, Fe and Cr) such variation can rise up to as much as 16%/4/ and 37%/5/. (Author) [es

  6. Large concentration changes due to thermal diffusion effects in gas flow microsystems with temperature gradients

    DEFF Research Database (Denmark)

    Quaade, Ulrich; Johannessen, Tue; Jensen, Søren

    Thermal diffusion, or Sorét diffusion, is shown to cause significant concentration changes and transients in gas flow microsystems with temperature gradients. In a silicon microsystem, a temperature gradient of about 100 oC/mm is measured to produce concentration transients of up to 13.7 % in an ......Thermal diffusion, or Sorét diffusion, is shown to cause significant concentration changes and transients in gas flow microsystems with temperature gradients. In a silicon microsystem, a temperature gradient of about 100 oC/mm is measured to produce concentration transients of up to 13.......7 % in an argon/helium mixture, when the flow is abruptly changed from a high value to a low value. Finite element simulations of the thermal diffusion in a geometry similar to the experimental setup reproduce the measurements....

  7. Effect of ammonia on Ta filaments in the hot wire CVD process

    NARCIS (Netherlands)

    Verlaan, V.; van der Werf, C.H.M.; Oliphant, C.J.; Bakker, R.; Houweling, Z.S.; Schropp, R.E.I.

    2009-01-01

    The exposure of Ta filaments to a pure NH3 ambient in a hot wire chemical vapour deposition (HWCVD) reactor affects the resistance of the wires. For filament temperatures below 1950 °C the resistance increases over time, which is probably caused by in-diffusion of N atoms. Using the filaments in a

  8. Positrusion Filament Recycling System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TUI proposes a novel process to produce 3d printer feedstock filament out of scrap ABS on the ISS. Currently the plastic filament materials that most 3d printers use...

  9. Solar Features - Prominences and Filaments

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Prominences and filaments are two manifestations of the same phenomenon. Both prominences and filaments are features formed above the chromosphere by cool dense...

  10. Can human local activities worsen the rise of temperature due to Climate Change?

    Science.gov (United States)

    Mateos, E.; Santana, J.; Deeb, A.; Grünwaldt, A.; Prieto, R.

    2013-12-01

    Several studies have shown a global scale temperature rise which in consequence, have brought up the need to propose various impact scenarios for this change on the planet and its life forms. Climate changes have a direct effect on human activities. Particularly these alterations have a negative impact on economy which in turn affects the most vulnerable and marginal population on developing nations. In a recent study based on 30 years climatological observed temperature in ten Mexican watersheds, from the period between 1970 and 1999, positive trend on maximum temperature were found in all watersheds. At each watershed at least 10 climatological stations from the net operated by the National Meteorological Service (Servicio Meterologico Nacional), whose data are maintained in the CLICOM database (Computerized Climate database), were selected. The climatological stations have at least 70% valid data per decade. In eight watersheds a maximum temperature trend oscillates between +0.5 to +1 oC every 30 years with a 95% confidence level. Nonetheless, in Rio Bravo and Rio Verde watersheds the tendencies are +1.75 and +2.75 oC over 30 years. The result in these two last watersheds evinces that: 1) there are fragile systems; 2) the human activities have a strong impact in those places, and 3) a principal anthropogenic influence on temperature rise is the change in land use. Temperature rised on Jalostitlan within Rio Verde watershed

  11. Pre-analytical variation in glucose concentration due to atmospheric temperature and clot in blood specimens

    International Nuclear Information System (INIS)

    Butt, T.; Masud, K.; Khan, J.A.; Bhatti, M.S.

    2016-01-01

    Objective: To determine the effect of temperature and contact of clot with serum on laboratory results of glucose concentration in blood. Study Design: Quasi-experimental study. Place and Duration of Study: December 2014 to August 2015 at the laboratory of Shoaib Hospital, Fateh Jang, Attock Pakistan. Material and Methods: Samples were collected for estimation of blood glucose (Random) concentration from patients reporting to the hospital. Blood specimens (n=94) of such volunteers were analyzed for glucose level. Each sample was put up in five tubes. When the blood clotted the serum from tube-1 was analyzed for glucose level within 30 minutes. In tube-2 and tube-3 serum was kept for 24 hours at room temperature and refrigerator temperature respectively before glucose estimation. In tube-4 and tube-5 serum was not separated from clot and kept at room temperature and refrigerator temperature respectively before glucose estimation. The value of tube 1 was taken as reference value for comparison with other parts of the specimen. The equipment used for blood glucose level estimation was semi auto chemistry analyzer (Rayto, China). The kit used for analysis was Glucose - Liquizyme (Germany). Results: The difference between the mean reference value (tube-1) and refrigerated serum without clot (tube-3) was 4.63 mg/100 ml while that of unrefrigerated portion (tube-2) had a difference of 10.68 mg/100 ml. The mean of unrefrigerated (tube-4) and refrigerated (tube-5) portions of serum kept with the clot had difference of 42.05 mg/100 ml and 25.84 mg/100 ml respectively. The fall in the blood glucose level in all (n=94) the samples in the tube number 3 (serum separated and kept at refrigerated temperature) was 4.63 mg/100 ml +- 3.68 (Mean +- SD) and it ranged from 0 to 20 mg/100 ml whereas fall was maximum in the tube number 4 (serum with clotted blood and kept at room temperature) was 42.04 mg/100 ml +- 10.61 (Mean +- SD) and it ranged from 13 to 82 mg/100 ml. The sample in

  12. Projection of temperature-related mortality due to cardiovascular disease in beijing under different climate change, population, and adaptation scenarios.

    Science.gov (United States)

    Zhang, Boya; Li, Guoxing; Ma, Yue; Pan, Xiaochuan

    2018-04-01

    Human health faces unprecedented challenges caused by climate change. Thus, studies of the effect of temperature change on total mortality have been conducted in numerous countries. However, few of those studies focused on temperature-related mortality due to cardiovascular disease (CVD) or considered future population changes and adaptation to climate change. We present herein a projection of temperature-related mortality due to CVD under different climate change, population, and adaptation scenarios in Beijing, a megacity in China. To this end, 19 global circulation models (GCMs), 3 representative concentration pathways (RCPs), 3 socioeconomic pathways, together with generalized linear models and distributed lag non-linear models, were used to project future temperature-related CVD mortality during periods centered around the years 2050 and 2070. The number of temperature-related CVD deaths in Beijing is projected to increase by 3.5-10.2% under different RCP scenarios compared with that during the baseline period. Using the same GCM, the future daily maximum temperatures projected using the RCP2.6, RCP4.5, and RCP8.5 scenarios showed a gradually increasing trend. When population change is considered, the annual rate of increase in temperature-related CVD deaths was up to fivefold greater than that under no-population-change scenarios. The decrease in the number of cold-related deaths did not compensate for the increase in that of heat-related deaths, leading to a general increase in the number of temperature-related deaths due to CVD in Beijing. In addition, adaptation to climate change may enhance rather than ameliorate the effect of climate change, as the increase in cold-related CVD mortality greater than the decrease in heat-related CVD mortality in the adaptation scenarios will result in an increase in the total number of temperature-related CVD mortalities. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Failure to reach the optimal temperature during cryoablation due to refrigerant cylinder problem.

    Science.gov (United States)

    Kumar, Narendra; Dinh, Trang; Magdi Abbas, Mohamed; Phan, Kevin; Manusama, Randolph; Philippens, Suzanne; Maessen, Jos; Timmermans, Carl

    2015-02-01

    Pulmonary vein (PV) isolation is considered as a key to atrial fibrillation (AF) treatment. Cryoballoon ablation is an effective therapy for PV isolation for AF with minimal side effects and was approved by the US Food and Drug Administration (FDA) several years ago. Successful isolation of PVs during cryoablation depends on the balloon temperature and helps in early identification of noneffective cryoballoon applications. A lower balloon temperature has been associated with long-term success in isolation of PVs. At the start of the procedure, the cryoconsole displayed "low refrigerant level". After a few cycles of successful cryoballoon applications, for a fresh application for a new PV, the optimal temperature was not obtained in spite of obtaining good grade of occlusion and ostial positioning for right inferior pulmonary vein (RIPV). Later, immediately after changing the refrigerant cylinder, suitable temperature was obtained. We faced this situation thrice in a span of eight months. Low refrigerant level may cause nonoptimal temperature during cryoablation, which can be resolved by premature change of a gas cylinder.

  14. European seasonal mortality and influenza incidence due to winter temperature variability

    Science.gov (United States)

    Rodó, X.; Ballester, J.; Robine, J. M.; Herrmann, F. R.

    2017-12-01

    Recent studies have vividly emphasized the lack of consensus on the degree of vulnerability (sensu IPCC) of European societies to current and future winter temperatures. Here we consider several climate factors, influenza incidence and daily numbers of deaths to characterize the relationship between winter temperature and mortality in a very large ensemble of European regions representing more than 400 million people. Analyses highlight the strong association between the year-to-year fluctuations in winter mean temperature and mortality, with higher seasonal cases during harsh winters, in all of the countries except the United Kingdom, the Netherlands and Belgium. This spatial distribution contrasts with the well-documented latitudinal orientation of the dependency between daily temperature and mortality within the season. A theoretical framework is proposed to reconcile the apparent contradictions between recent studies, offering an interpretation to regional differences in the vulnerability to daily, seasonal and long-term winter temperature variability. Despite the lack of a strong year-to-year association between winter mean values in some countries, it can be concluded that warmer winters will contribute to the decrease in winter mortality everywhere in Europe. More information in Ballester J, et al. (2016) Nature Climate Change 6, 927-930, doi:10.1038/NCLIMATE3070.

  15. Fabrication of Polylactide Nanocomposite Filament Using Melt Extrusion and Filament Characterization for 3D Printing

    Science.gov (United States)

    Jain, Shrenik Kumar

    Fused deposition modeling (FDM) technology uses thermoplastic filament for layer by layer fabrication of objects. To make functional objects with desired properties, composite filaments are required in the FDM. In this thesis, less expensive mesoporous Nano carbon (NC) and carbon nanotube (CNT) infused in Polylactide (PLA) thermoplastic filaments were fabricated to improve the electrical properties and maintain sufficient strength for 3D printing. Solution blending was used for nanocomposite fabrication and melt extrusion was employed to make cylindrical filaments. Mechanical and electrical properties of 1 to 20 wt% of NC and 1 to 3 wt% of CNT filaments were investigated and significant improvement of conductivity (3.76 S/m) and sufficient yield strength (35MPa) were obtained. Scanning electron microscopy (SEM) images exhibited uniform dispersion of nanoparticles in polymer matrix and differential scanning calorimetry (DSC) results showed no significant changes in the glass transition temperature (Tg) for all the compositions. Perspective uses of this filament are for fabrication of electrical wires in 3D printed robots, drones, prosthetics, orthotics and others.

  16. Oxidative Stress at High Temperatures in Lactococcus lactis Due to an Insufficient Supply of Riboflavin

    DEFF Research Database (Denmark)

    Chen, Jun; Shen, Jing; Solem, Christian

    2013-01-01

    Lactococcus lactis MG1363 was found to be unable to grow at temperatures above 37°C in a defined medium without riboflavin, and the cause was identified to be dissolved oxygen introduced during preparation of the medium. At 30°C, growth was unaffected by dissolved oxygen and oxygen was consumed...... riboflavin to the medium, it was possible to improve growth and oxygen consumption at 37°C, and this also normalized the [ATP]-to-[ADP] ratio. A codon-optimized redox-sensitive green fluorescent protein (GFP) was introduced into L. lactis and revealed a more oxidized cytoplasm at 37°C than at 30°C....... These results indicate that L. lactis suffers from heat-induced oxidative stress at increased temperatures. A decrease in intracellular flavin adenine dinucleotide (FAD), which is derived from riboflavin, was observed with increasing growth temperature, but the presence of riboflavin made the decrease smaller...

  17. Heterologous expression of cellobiohydrolases in filamentous fungi

    DEFF Research Database (Denmark)

    Zoglowek, Marta; Lübeck, Peter S.; Ahring, Birgitte K.

    2015-01-01

    Cellobiohydrolases are among the most important enzymes functioning in the hydrolysis of crystalline cellulose, significantly contributing to the efficient biorefining of recalcitrant lignocellulosic biomass into biofuels and bio-based products. Filamentous fungi are recognized as both well...... into valuable products. However, due to low cellobiohydrolase activities, certain fungi might be deficient with regard to enzymes of value for cellulose conversion, and improving cellobiohydrolase expression in filamentous fungi has proven to be challenging. In this review, we examine the effects of altering...... promoters, signal peptides, culture conditions and host post-translational modifications. For heterologous cellobiohydrolase production in filamentous fungi to become an industrially feasible process, the construction of site-integrating plasmids, development of protease-deficient strains and glycosylation...

  18. Native bare zone assemblage nucleates myosin filament assembly.

    Science.gov (United States)

    Niederman, R; Peters, L K

    1982-11-15

    Native myosin filaments from rabbit psoas muscle are always 1.5 micrometer long. The regulated assembly of these filaments is generally considered to occur by an initial antiparallel and subsequent parallel aggregation of identical myosin subunits. In this schema myosin filament length is controlled by either a self-assembly or a Vernier process. We present evidence which refines these ideas. Namely, that the intact myosin bare zone assemblage nucleates myosin filament assembly. This suggestion is based on the following experimental evidence. (1) A native bare zone assemblage about 0.3 micrometer long can be formed by dialysis of native myosin filaments to either a pH 8 or a 0.2 M-KCl solution. (2) Upon dialysis back to 0.1 M-KCl, bare zone assemblages and distal myosin molecules recombine to form 1.5 micrometer long bipolar filaments. (3) The bare zone assemblage can be separated from the distal myosin molecules by column chromatography in 0.2 M-KCl. Upon dialysis of the fractionated subsets back to 0.1 M-KCl, the bare zone assemblage retains its length of about 0.3 micrometer. However, the distal molecules reassemble to form filaments about 5 micrometers long. (4) Filaments are formed from mixes of the isolated subsets. The lengths of these filaments vary with the amount of distal myosin present. (5) When native filaments, isolated bare zone assemblages or distal myosin molecules are moved sequentially to 0.6 M-KCl and then to 0.1 M-KCl, the final filament lengths are all about 5 micrometers. The capacity of the bare zone assemblage to nucleate filament assembly may be due to the bare zone myosin molecules, the associated M band components or both.

  19. High temperature limit of the Standard Model due to gauge groups contraction

    Science.gov (United States)

    Gromov, N. A.

    2017-12-01

    The high temperature (high energy) limit of the Standard Model is developed with the help of contractions its gauge groups. The elementary particles evolution in the early Universe from Plank time up to several milliseconds is deduced from this limit theory. Particle properties at the infinite temperature look very unusual: all particles are massless, only neutral Z-bosons, u-quarks, neutrinos and photons are survived in this limit. The weak interactions become long-range and are mediated by neutral currents, quarks have only one color degree of freedom.

  20. Numerical investigation of temperature distribution in a confined heterogeneous geothermal reservoir due to injection-production

    NARCIS (Netherlands)

    Ganguly, Sayantan; Tan, Lippong; Date, Abhijit; Mohan Kumar, M.S.

    The present study deals with the modeling of transient temperature distribution in a heterogeneous geothermal reservoir in response to the injection-production process. The heterogeneous geothermal aquifer considered here is a confined aquifer with homogeneous layers of finite length and overlain

  1. Oxidative Stress at High Temperatures in Lactococcus lactis Due to an Insufficient Supply of Riboflavin

    Science.gov (United States)

    Chen, Jun; Shen, Jing

    2013-01-01

    Lactococcus lactis MG1363 was found to be unable to grow at temperatures above 37°C in a defined medium without riboflavin, and the cause was identified to be dissolved oxygen introduced during preparation of the medium. At 30°C, growth was unaffected by dissolved oxygen and oxygen was consumed quickly. Raising the temperature to 37°C resulted in severe growth inhibition and only slow removal of dissolved oxygen. Under these conditions, an abnormally low intracellular ratio of [ATP] to [ADP] (1.4) was found (normally around 5), which indicates that the cells are energy limited. By adding riboflavin to the medium, it was possible to improve growth and oxygen consumption at 37°C, and this also normalized the [ATP]-to-[ADP] ratio. A codon-optimized redox-sensitive green fluorescent protein (GFP) was introduced into L. lactis and revealed a more oxidized cytoplasm at 37°C than at 30°C. These results indicate that L. lactis suffers from heat-induced oxidative stress at increased temperatures. A decrease in intracellular flavin adenine dinucleotide (FAD), which is derived from riboflavin, was observed with increasing growth temperature, but the presence of riboflavin made the decrease smaller. The drop was accompanied by a decrease in NADH oxidase and pyruvate dehydrogenase activities, both of which depend on FAD as a cofactor. By overexpressing the riboflavin transporter, it was possible to improve FAD biosynthesis, which resulted in increased NADH oxidase and pyruvate dehydrogenase activities and improved fitness at high temperatures in the presence of oxygen. PMID:23913422

  2. Enhancement in electron and ion temperatures due to solar flares as measured by SROSS-C2 satellite

    Directory of Open Access Journals (Sweden)

    D. K. Sharma

    2004-06-01

    Full Text Available The observations on the ionospheric electron and ion temperatures (Te and Ti measured by the RPA payload aboard the SROSS-C2 satellite have been used to study the effect of solar flares on ionospheric heating. The data on solar flare has been obtained from the National Geophysical Data Center (NGDC Boulder, Colorado (USA. It has been found that the electron and ion temperatures have a consistent enhancement during the solar flares on the dayside Earth's ionosphere. The estimated enhancement for the average electron temperature is from 1.3 to 1.9 times whereas for ion temperature it is from 1.2 to 1.4 times to the normal days average temperature. The enhancement of ionospheric temperatures due to solar flares is correlated with the diurnal variation of normal days' ionospheric temperatures. The solar flare does not have any significant effect on the nightside ionosphere. A comparison with the temperature obtained from the IRI-95 model also shows a similar enhancement.

  3. Enhancement in electron and ion temperatures due to solar flares as measured by SROSS-C2 satellite

    Directory of Open Access Journals (Sweden)

    D. K. Sharma

    2004-06-01

    Full Text Available The observations on the ionospheric electron and ion temperatures (Te and Ti measured by the RPA payload aboard the SROSS-C2 satellite have been used to study the effect of solar flares on ionospheric heating. The data on solar flare has been obtained from the National Geophysical Data Center (NGDC Boulder, Colorado (USA. It has been found that the electron and ion temperatures have a consistent enhancement during the solar flares on the dayside Earth's ionosphere. The estimated enhancement for the average electron temperature is from 1.3 to 1.9 times whereas for ion temperature it is from 1.2 to 1.4 times to the normal days average temperature. The enhancement of ionospheric temperatures due to solar flares is correlated with the diurnal variation of normal days' ionospheric temperatures. The solar flare does not have any significant effect on the nightside ionosphere. A comparison with the temperature obtained from the IRI-95 model also shows a similar enhancement.

  4. Temperature field due to time-dependent heat sources in a large rectangular grid - Derivation of analytical solution

    Energy Technology Data Exchange (ETDEWEB)

    Claesson, J.; Probert, T. [Lund Univ. (Sweden). Dept. of Building Physics and Mathematical Physics

    1996-01-01

    The temperature field in rock due to a large rectangular grid of heat releasing canisters containing nuclear waste is studied. The solution is by superposition divided into different parts. There is a global temperature field due to the large rectangular canister area, while a local field accounts for the remaining heat source problem. The global field is reduced to a single integral. The local field is also solved analytically using solutions for a finite line heat source and for an infinite grid of point sources. The local solution is reduced to three parts, each of which depends on two spatial coordinates only. The temperatures at the envelope of a canister are given by a single thermal resistance, which is given by an explicit formula. The results are illustrated by a few numerical examples dealing with the KBS-3 concept for storage of nuclear waste. 8 refs.

  5. Bacterial intermediate filaments

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Cabeen, M.; Jacobs-Wagner, C.

    2009-01-01

    Crescentin, which is the founding member of a rapidly growing family of bacterial cytoskeletal proteins, was previously proposed to resemble eukaryotic intermediate filament (IF) proteins based on structural prediction and in vitro polymerization properties. Here, we demonstrate that crescentin...... also shares in vivo properties of assembly and dynamics with IF proteins by forming stable filamentous structures that continuously incorporate subunits along their length and that grow in a nonpolar fashion. De novo assembly of crescentin is biphasic and involves a cell size-dependent mechanism...... a new function for MreB and providing a parallel to the role of actin in IF assembly and organization in metazoan cells. Additionally, analysis of an MreB localization mutant suggests that cell wall insertion during cell elongation normally occurs along two helices of opposite handedness, each...

  6. Filamentous Fungi Fermentation

    DEFF Research Database (Denmark)

    Nørregaard, Anders; Stocks, Stuart; Woodley, John

    2014-01-01

    Filamentous fungi (including microorganisms such as Aspergillus niger and Rhizopus oryzae) represent an enormously important platform for industrial fermentation. Two particularly valuable features are the high yield coefficients and the ability to secrete products. However, the filamentous...... morphology, together with non-Newtonian rheological properties (shear thinning), result in poor oxygen transfer unless sufficient energy is provided to the fermentation. While genomic research may improve the organisms, there is no doubt that to enable further application in future it will be necessary...... to match such research with studies of oxygen transfer and energy supply to high viscosity fluids. Hence, the implementation of innovative solutions (some of which in principle are already possible) will be essential to ensure the further development of such fermentations....

  7. Transient temperature rise in a mouse due to low-frequency regional hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Trakic, Adnan; Liu Feng; Crozier, Stuart [School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Qld 4072 (Australia)

    2006-04-07

    A refined nonlinear heat transfer model of a mouse has been developed to simulate the transient temperature rise in a neoplastic tumour and neighbouring tissue during regional hyperthermia using a 150 kHz inductive coil. In this study, we incorporate various bio-energetic enhancements to the heat transfer equation and numerical validations based on experimental findings for the mouse, in terms of nonlinear metabolic heat production, homeothermy, blood perfusion parameters, thermoregulation, psychological and physiological effects. The discretized bio-heat transfer equation has been validated with the commercial software FEMLAB on a canonical multi-sphere object before applying the scheme to the inhomogeneous mouse voxel phantom. The time-dependent numerical results of regional hyperthermia of mouse thigh have been compared with the available experimental temperature results with only a few small disparities. During the first 20 min of local unfocused heating, the temperature in the tumour and the surrounding tissue increased by around 7.5 deg. C. The objective of this preliminary study was to develop a validated electrothermal numerical scheme for inductive hyperthermia of a small mammal with the intention of expanding the model into a complete numerical solution involving ferromagnetic nanoparticles for targeted heating of tumours at low frequencies. In addition, the numerical scheme herein could assist in optimizing and tailoring of focused electromagnetic fields for hyperthermia.

  8. Fabricating and controlling PCL electrospun microfibers using filament feeding melt electrospinning technique

    International Nuclear Information System (INIS)

    Ko, Junghyuk; Ahsani, Vahid; Jun, Martin B G; Yao, Selina Xiangxiao; Lee, Patrick C; Mohtaram, Nima K

    2017-01-01

    The process of melt electrospinning has received noteworthy attention due to its ability to fabricate micro scaled polymer fibers. Recently, a melt electrospinning process has been attracting attention for biomedical applications, in particular with scaffold fabrication for tissue engineering. In order to enhance cell attachment and proliferation on scaffolds, it is important to control fiber diameters to create an environment to which cells can attach, grow, and proliferate with ease. However, because electrospinning is a process with many parameters, it is particularly difficult to precisely control the diameter of the resulting fibers. Also, polymer powders or pellets melted in nozzles are typically used for melt electrospinning. However, a filament feeding melt electrospinning process has not been yet been implemented. In this study, we developed a melt electrospinning device which can feed PCL (Polycaprolactone, Mw: 80 000 g mol −1 ) filaments for advanced electrospun fiber diameter control. The PCL filaments were first fabricated by a small scale micro-compounder and then fed into the melting chamber of the electrospinning device. The system was then heated to a desired temperature, and the melt was extruded through a nozzle. The potential difference between the nozzle and counter electrode then drew down the PCL extrudate, creating fine microfibers. Temperature was controlled and monitored via a customized temperature control system. In order to control the dispensing of the PCL filaments, a customized control algorithm using NI (National Instruments) LabVIEW was used. In order to actively cool PCL filaments, a miniature computer fan was attached on the side of the melting chamber so that the filaments would not buckle. This paper reveals the investigation of significant process parameters that influence fiber diameters and their optimization. For instance, applied voltages, distances between the nozzle and a counter electrode, processing temperatures

  9. Biophysical effects on temperature and precipitation due to land cover change

    Science.gov (United States)

    Perugini, Lucia; Caporaso, Luca; Marconi, Sergio; Cescatti, Alessandro; Quesada, Benjamin; de Noblet-Ducoudré, Nathalie; House, Johanna I.; Arneth, Almut

    2017-05-01

    Anthropogenic land cover changes (LCC) affect regional and global climate through biophysical variations of the surface energy budget mediated by albedo, evapotranspiration, and roughness. This change in surface energy budget may exacerbate or counteract biogeochemical greenhouse gas effects of LCC, with a large body of emerging assessments being produced, sometimes apparently contradictory. We reviewed the existing scientific literature with the objective to provide an overview of the state-of-the-knowledge of the biophysical LCC climate effects, in support of the assessment of mitigation/adaptation land policies. Out of the published studies that were analyzed, 28 papers fulfilled the eligibility criteria, providing surface air temperature and/or precipitation change with respect to LCC regionally and/or globally. We provide a synthesis of the signal, magnitude and uncertainty of temperature and precipitation changes in response to LCC biophysical effects by climate region (boreal/temperate/tropical) and by key land cover transitions. Model results indicate that a modification of biophysical processes at the land surface has a strong regional climate effect, and non-negligible global impact on temperature. Simulations experiments of large-scale (i.e. complete) regional deforestation lead to a mean reduction in precipitation in all regions, while air surface temperature increases in the tropics and decreases in boreal regions. The net global climate effects of regional deforestation are less certain. There is an overall consensus in the model experiments that the average global biophysical climate response to complete global deforestation is atmospheric cooling and drying. Observed estimates of temperature change following deforestation indicate a smaller effect than model-based regional estimates in boreal regions, comparable results in the tropics, and contrasting results in temperate regions. Regional/local biophysical effects following LCC are important for

  10. Curie Temperature and Microstructural Changes Due to the Heating Treatment of Magnetic Amorphous Materials

    Directory of Open Access Journals (Sweden)

    Gondro J.

    2016-03-01

    Full Text Available Three distinct alloys: Fe86Zr7Nb1Cu1B5, Fe82Zr7Nb2Cu1B8, and Fe81Pt5Zr7Nb1Cu1B5 were characterized both magnetically and structurally. The samples, obtained with spinning roller method as a ribbons 3 mm in width and 20 μm thick, were investigated as-quenched and after each step of a multi steps heating treatment procedure. Each sample was annealed at four steps, fifteen minutes at every temperature, starting from 573K+600K up to +700K depending on type of alloy. Mössbauer spectroscopy data and transmission electron microscope (HRE M pictures confirmed that the as-quenched samples are fully amorphous. This is not changed after the first stages of treatment heating leads to a reduction of free volumes. The heating treatment has a great influence on the magnetic susceptibilities. The treatment up to 600K improves soft magnetic properties: an χ increase was observed, from about 400 to almost 1000 for the samples of alloys without Pt, and from about 200 to 450 at maximum, for the Fe81Pt5Zr7Nb1Cu1B5. Further heating, at more elevated temperatures, leads to magnetic hardening of the samples. Curie temperatures, established from the location of Hopkinson’s maxima on the χ(T curve are in very good agreement with those obtained from the data of specific magnetization, σ(T, measured in a field of 0.75T. As a critical parameter β was chosen to be equal 0.36 for these calculations, it confirmed that the alloys may be considered as ferromagnetic of Heisenberg type. Heating treatment resulted in decreasing of TC. These changes are within a range of several K.

  11. Heterologous gene expression in filamentous fungi.

    Science.gov (United States)

    Su, Xiaoyun; Schmitz, George; Zhang, Meiling; Mackie, Roderick I; Cann, Isaac K O

    2012-01-01

    Filamentous fungi are critical to production of many commercial enzymes and organic compounds. Fungal-based systems have several advantages over bacterial-based systems for protein production because high-level secretion of enzymes is a common trait of their decomposer lifestyle. Furthermore, in the large-scale production of recombinant proteins of eukaryotic origin, the filamentous fungi become the vehicle of choice due to critical processes shared in gene expression with other eukaryotic organisms. The complexity and relative dearth of understanding of the physiology of filamentous fungi, compared to bacteria, have hindered rapid development of these organisms as highly efficient factories for the production of heterologous proteins. In this review, we highlight several of the known benefits and challenges in using filamentous fungi (particularly Aspergillus spp., Trichoderma reesei, and Neurospora crassa) for the production of proteins, especially heterologous, nonfungal enzymes. We review various techniques commonly employed in recombinant protein production in the filamentous fungi, including transformation methods, selection of gene regulatory elements such as promoters, protein secretion factors such as the signal peptide, and optimization of coding sequence. We provide insights into current models of host genomic defenses such as repeat-induced point mutation and quelling. Furthermore, we examine the regulatory effects of transcript sequences, including introns and untranslated regions, pre-mRNA (messenger RNA) processing, transcript transport, and mRNA stability. We anticipate that this review will become a resource for researchers who aim at advancing the use of these fascinating organisms as protein production factories, for both academic and industrial purposes, and also for scientists with general interest in the biology of the filamentous fungi. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. W nano-fuzzes: A metastable state formed due to large-flux He+ irradiation at an elevated temperature

    International Nuclear Information System (INIS)

    Wu, Yunfeng; Liu, Lu; Lu, Bing; Ni, Weiyuan; Liu, Dongping

    2016-01-01

    W nano-fuzzes have been formed due to the large-flux and low-energy (200eV) He + irradiation at W surface temperature of 1480 °C. Microscopic evolution of W nano-fuzzes during annealing or low-energy (200 eV) He + bombardments has been observed using scanning electron microscopy and thermal desorption spectroscopy. Our measurements show that both annealing and He + bombardments can significantly alter the structure of W nano-fuzzes. W nano-fuzzes are thermally unstable due to the He release during annealing, and they are easily sputtered during He + bombardments. The current study shows that W nano-fuzzes act as a metastable state during low-energy and large-flux He + irradiation at an elevated temperature. - Highlights: • W nano-fuzzes microscopic evolution during annealing or He + irradiated have been measured. • W nano-fuzzes are thermally unstable due to He release during annealing. • He are released from the top layer of W fuzzes by annealing. • Metastable W nano-fuzzes are formed due to He + irradiation at an elevated temperature.

  13. Stress and Damage in Polymer Matrix Composite Materials Due to Material Degradation at High Temperatures

    Science.gov (United States)

    McManus, Hugh L.; Chamis, Christos C.

    1996-01-01

    This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) is presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.

  14. Experimental Facility for Checking the Possibility to Obtain Super-High Temperature Due to Acoustic Cavitation

    CERN Document Server

    Miller, M B; Sobolev, Yu G; Kostenko, B F

    2004-01-01

    An experimental facility developed for checking the possibility to obtain super-high temperature sufficient for thermonuclear reaction D($d, n$)$^{3}$He in an acoustic cavitation is described. The acoustic part of the instrumentation consists of a resonator and a system exciting high amplitude of the acoustic field within the resonator. The cavitation process is controlled with the use of fast neutron pulses. The instrument includes a system of pumping out solute gases from the liquid (acetone enriched with deuterium up to 99{\\%}) without losses of matter. Measuring of the field is based on the calibration procedure including observation of sonoluminescence. The system of detection and identification of D($d, n$)$^{3}$He reaction is based on a scintillation detector of fast neutrons and a system of measuring multiparameter events by the correlation technique with separation of the neutrons from the $\\gamma $-radiation background (pulse shape discrimination).

  15. Effects of external environments on the short beam shear strength of filament wound graphite/epoxy

    Science.gov (United States)

    Penn, B. G.; Clemons, J. M.

    1986-01-01

    Filament wound graphite/epoxy samples were immersed in seawater, deionized water, and toluene at room temperature and 80 deg C for 5, 15, and 43 days, and in methanol at room temperature for 15 and 43 days. The percent weight gains and short beam shear strengths were determined after environmental exposure. Samples immersed in deionized water and seawater had higher percent weight gains than those immersed in toluene at room temperature and 80 deg C. The percent weight gains for samples immersed in methanol at room temperature were comparable to those of deionized water and seawater immersed samples. A comparison of percent decreases in short beam shear strengths could not be made due to a large scatter in data. This may indicate defects in samples due to machining or variations in material properties due to processing.

  16. A catalytic oligomeric motor that walks along a filament track

    Science.gov (United States)

    Huang, Mu-Jie; Kapral, Raymond

    2015-06-01

    Most biological motors in the cell execute chemically powered conformational changes as they walk on biopolymer filaments in order to carry out directed transport functions. Synthetic motors that operate in a similar manner are being studied since they have the potential to perform similar tasks in a variety of applications. In this paper, a synthetic nanomotor that moves along a filament track, without invoking motor conformational changes, is constructed and its properties are studied in detail. The motor is an oligomer comprising three linked beads with specific binding properties. The filament track is a stiff polymer chain, also described by a linear chain of linked coarse-grained molecular groups modeled as beads. Reactions on the filament that are catalyzed by a motor bead and use fuel in the environment, in conjunction within the binding affinities of the motor beads to the filament beads, lead to directed motion. The system operates out of equilibrium due to the state of the filament and supply of fuel. The motor, filament, and surrounding medium are all described at microscopic level that permits a full analysis of the motor motion. A stochastic model that captures the main trends seen in the simulations is also presented. The results of this study point to some of the key features that could be used to construct nanomotors that undergo biased walks powered by chemical reactions on filaments.

  17. Physical principles of filamentous protein self-assembly kinetics

    International Nuclear Information System (INIS)

    Michaels, Thomas C T; Liu, Lucie X; Meisl, Georg; Knowles, Tuomas P J

    2017-01-01

    The polymerization of proteins and peptides into filamentous supramolecular structures is an elementary form of self-organization of key importance to the functioning biological systems, as in the case of actin biofilaments that compose the cellular cytoskeleton. Aberrant filamentous protein self-assembly, however, is associated with undesired effects and severe clinical disorders, such as Alzheimer’s and Parkinson’s diseases, which, at the molecular level, are associated with the formation of certain forms of filamentous protein aggregates known as amyloids. Moreover, due to their unique physicochemical properties, protein filaments are finding extensive applications as biomaterials for nanotechnology. With all these different factors at play, the field of filamentous protein self-assembly has experienced tremendous activity in recent years. A key question in this area has been to elucidate the microscopic mechanisms through which filamentous aggregates emerge from dispersed proteins with the goal of uncovering the underlying physical principles. With the latest developments in the mathematical modeling of protein aggregation kinetics as well as the improvement of the available experimental techniques it is now possible to tackle many of these complex systems and carry out detailed analyses of the underlying microscopic steps involved in protein filament formation. In this paper, we review some classical and modern kinetic theories of protein filament formation, highlighting their use as a general strategy for quantifying the molecular-level mechanisms and transition states involved in these processes. (topical review)

  18. Spondylodiscitis due to Parvimonas micra diagnosed by the melting temperature mapping method: a case report.

    Science.gov (United States)

    Higashi, Yoshitsugu; Nakamura, Shigeki; Niimi, Hideki; Ueno, Tomohiro; Matsumoto, Kaoru; Kawago, Koyomi; Sakamaki, Ippei; Kitajima, Isao; Yamamoto, Yoshihiro

    2017-08-23

    It has been suggested that more than 100 bacterial species can be identified using only seven universal bacterial primer sets in the melting temperature (Tm) mapping method and that these findings can be obtained within 3 h of sterile site collection. A 67-year-old Japanese man with type 2 diabetes visited our hospital complaining of progressive lower back pain for 2 months. The patient was suspected to have spondylodiscitis on magnetic resonance imaging of the spine. Blood culture and transcutaneous vertebral biopsy were subsequently performed. Using the Tm mapping method, Parvimonas micra was detected from a transcutaneous vertebral biopsy specimen in 3 h. Gram-positive cocci were also detected by Gram staining and P. micra was identified directly from the anaerobic blood culture by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Four days after admission, the biopsy specimen culture isolate was identified as P. micra. The Tm mapping method may be useful for the diagnosis of bacterial infections where diagnosis is challenging because of the difficulty of culturing.

  19. Filament wound structure and method

    International Nuclear Information System (INIS)

    Dritt, W.S.; Gerth, H.L.; Knight, C.E. Jr.; Pardue, R.M.

    1977-01-01

    A filament wound spherical structure is described comprising a plurality of filament band sets disposed about the surface of a mandrel with each band of each set formed of a continuous filament circumferentially wound about the mandrel a selected number of circuits and with each circuit of filament being wound parallel to and contiguous with an immediate previously wound circuit. Each filament band in each band set is wound at the same helix angle from the axis of revolution of the mandrel and all of the bands of each set are uniformly distributed about the mandrel circumference. The pole-to-equator wall thickness taper associated with each band set, as several contiguous band sets are wound about the mandrel starting at the poles, is accumulative as the band sets are nested to provide a complete filament wound sphere of essentially uniform thickness

  20. Inter-annual variability in fossil-fuel CO2 emissions due to temperature anomalies

    Science.gov (United States)

    Bréon, F.-M.; Boucher, O.; Brender, P.

    2017-07-01

    It is well known that short-term (i.e. interannual) variations in fossil-fuel CO2 emissions are closely related to the evolution of the national economies. Nevertheless, a fraction of the CO2 emissions are linked to domestic and business heating and cooling, which can be expected to be related to the meteorology, independently of the economy. Here, we analyse whether the signature of the inter-annual temperature anomalies is discernible in the time series of CO2 emissions at the country scale. Our analysis shows that, for many countries, there is a clear positive correlation between a heating-degree-person index and the component of the CO2 emissions that is not explained by the economy as quantified by the gross domestic product (GDP). Similarly, several countries show a positive correlation between a cooling-degree-person (CDP) index and CO2 emissions. The slope of the linear relationship for heating is on the order of 0.5-1 kg CO2 (degree-day-person)-1 but with significant country-to-country variations. A similar relationship for cooling shows even greater diversity. We further show that the inter-annual climate anomalies have a small but significant impact on the annual growth rate of CO2 emissions, both at the national and global scale. Such a meteorological effect was a significant contribution to the rather small and unexpected global emission growth rate in 2014 while its contribution to the near zero emission growth in 2015 was insignificant.

  1. Evidence for modified transport due to sheared E x B flows in high-temperature plasmas

    International Nuclear Information System (INIS)

    Groebner, R.J.; Burrell, K.H.; Austin, M.E.

    1994-11-01

    Sheared mass flows are generated in many fluids and are often important for the dynamics of instabilities in these fluids. Similarly, large values of the E x B velocity have been observed in magnetic confinement machines and there is theoretical and experimental evidence that sufficiently large shear in this velocity may stabilize important instabilities. Two examples of this phenomenon have been observed in the DIII-D tokamak. In the first example, sufficient heating power can lead to the L-H transition, a rapid improvement in confinement in the boundary layer of the plasma. For discharges with heating power close to the threshold required to get the transition, changes in the edge radial electric field are observed to occur prior to the transition itself. In the second example, certain classes of discharges with toroidal momentum input from neutral beam injection exhibit a further improvement of confinement in the plasma core leading to a regime called the VH-mode. In both examples, the region of improved confinement is characterized by an increase of shear in the radial electric field E r , reduced levels of turbulence and increases in gradients of temperatures and densities. These observations are consistent with the hypothesis that the improved confinement is caused by an increase in shear of the E x B velocity which leads to a reduction of turbulence. For the VH-mode, the dominant term controlling E r is the toroidal rotation v φ , indicating that the E r profile is controlled by the source and transport of toroidal momentum

  2. Magnetic vortex filament flows

    International Nuclear Information System (INIS)

    Barros, Manuel; Cabrerizo, Jose L.; Fernandez, Manuel; Romero, Alfonso

    2007-01-01

    We exhibit a variational approach to study the magnetic flow associated with a Killing magnetic field in dimension 3. In this context, the solutions of the Lorentz force equation are viewed as Kirchhoff elastic rods and conversely. This provides an amazing connection between two apparently unrelated physical models and, in particular, it ties the classical elastic theory with the Hall effect. Then, these magnetic flows can be regarded as vortex filament flows within the localized induction approximation. The Hasimoto transformation can be used to see the magnetic trajectories as solutions of the cubic nonlinear Schroedinger equation showing the solitonic nature of those

  3. Solar Filament Extraction and Characterizing

    Science.gov (United States)

    Yuan, Yuan; Shih, F. Y.; Jing, J.; Wang, H.

    2010-05-01

    This paper presents a new method to extract and characterize solar filaments from H-alpha full-disk images produced by Big Bear Solar Observatory. A cascading Hough Transform method is designed to identify solar disk center location and radius. Solar disks are segmented from the background, and unbalanced illumination on the surface of solar disks is removed using polynomial surface fitting. And then a localized adaptive thresholding is employed to extract solar filament candidates. After the removal of small solar filament candidates, the remaining larger candidates are used as the seeds of region growing. The procedure of region growing not only connects broken filaments but also generate complete shape for each filament. Mathematical morphology thinning is adopted to produce the skeleton of each filament, and graph theory is used to prune branches and barbs to get the main skeleton. The length and the location of the main skeleton is characterized. The proposed method can help scientists and researches study the evolution of solar filament, for instance, to detect solar filament eruption. The presented method has already been used by Space Weather Research Lab of New Jersey Institute of Technology (http://swrl.njit.edu) to generate the solar filament online catalog using H-alpha full-disk images of Global H-alpha Network (http://swrl.njit.edu/ghn_web/).

  4. The role of ClpP, RpoS and CsrA in growth and filament formation of Salmonella enterica serovar Typhimurium at low temperature

    DEFF Research Database (Denmark)

    Knudsen, Gitte Maegaard; Nielsen, Maj-Britt; Thomsen, Line Elnif

    2014-01-01

    Background: Salmonellae are food-borne pathogens of great health and economic importance. To pose a threat to humans, Salmonellae normally have to cope with a series of stressful conditions in the food chain, including low temperature. In the current study, we evaluated the importance of the Clp....... The clpP mutant formed cold resistant suppressor mutants at a frequency of 2.5 x 10(-3) and these were found not to express RpoS. Together these results indicated that the impaired growth of the clpP mutant was caused by high level of RpoS. Evaluation by microscopy of the clpP mutant revealed...... that the phenotype of the csrA mutant was independent from RpoS. Conclusions: The cold sensitivity of clpP mutant was associated with increased levels of RpoS and probably caused by toxic levels of RpoS. Although a csrA mutant also accumulated high level of RpoS, growth impairment caused by lack of csr...

  5. In-vitro Study on Temperature Changes in the Pulp Chamber Due to Thermo-Cure Glass Ionomer Cements.

    Science.gov (United States)

    van Duinen, Raimond Nb; Shahid, Saroash; Hill, Robert; Glavina, Domagoj

    2016-12-01

    The application of the Glass Ionomer Cements in clinical dentistry is recommended due to properties such as fluoride release, chemical adhesion to tooth, negligible setting shrinkage, and coefficient of thermal expansion close to tooth, low creep, and good color stability. However, the cement is vulnerable to early exposure to moisture due to slow setting characteristics. The uses of external energy such as ultrasound and radiant heat (Thermo-curing) have been reported to provide acceleration of the setting chemistry and enhance physical properties. Aim: The aim of this in vitro study was to analyze temperature changes in the pulpal chamber when using radiant heat to accelerate the setting of GICs. Material and Methods: The encapsulated GIC Equia Forte was used for this study. The temperature changes in the pulp were measured using thermocouple in the cavities which were 2,6 and 4,7mm deep with and without filling. Results :The results showed that a temperature rise (ΔT) in the pulp chamber was 3,7°C. ΔT for the 2.6mm and 4.7mm deep cavity and without placing any restoration the temperature was 4,2°C and 2,6°C respectively. After the restoration has been placed, the ΔT range in the pulp chamber was lower ranging from 1.9°C to 2.4°C. Conclusion : It could be concluded that Thermo-curing of the GIC during the setting is safe for the pulp and can be recommended in clinical practice.

  6. Heat transfer study during quenching of a high temperature filament (2000-3000 K) under pressure from 1 to 210 bar

    International Nuclear Information System (INIS)

    Boulin, Anne

    2007-01-01

    Intense and fast vaporization of a coolant following its contact with very hot bodies can result in a vapor explosion. This vaporization can produce a shock pressure wave. This doctoral thesis is devoted to the analysis of the TREPAM results for a better understanding of the vapor explosion phenomenon. TREPAM is an experimental apparatus which is dedicated to the quenching of a very hot (up to 3000 K) cylinder under pressure from 1 to 210 bar. Firstly, the heat transfer was studied and secondly, the heat transfer partition between the vaporization and the heating of the coolant was determined. The examination of the TREPAM results and a simplified film boiling heat transfer representation provided scales necessary for the establishment of a correlation. According to the scaling analysis, we defined two extremes cases: - First case: most of the heat transfer is dedicated to the heating of the coolant - Second case: most of the heat transfer is dedicated to the coolant vaporization A correlation can be established in the first case because in the second one, there are not enough experiments. The agreement between this correlation and other quenching experiments is good. As the heat transfer partition is not provided by the experiment a more complex film boiling heat transfer model is elaborated. This model is based on the integration of the momentum and energy equations in the liquid boundary layer and in the vapor film. The experimental results are well provided by this model (better than the models used till now). This is due to the modelling of convection terms. It gives a good estimation of the heat transfer partition. This partition is studied according to the different parameters. (author) [fr

  7. Filament winding cylinders. I - Process model

    Science.gov (United States)

    Lee, Soo-Yong; Springer, George S.

    1990-01-01

    A model was developed which describes the filament winding process of composite cylinders. The model relates the significant process variables such as winding speed, fiber tension, and applied temperature to the thermal, chemical and mechanical behavior of the composite cylinder and the mandrel. Based on the model, a user friendly code was written which can be used to calculate (1) the temperature in the cylinder and the mandrel, (2) the degree of cure and viscosity in the cylinder, (3) the fiber tensions and fiber positions, (4) the stresses and strains in the cylinder and in the mandrel, and (5) the void diameters in the cylinder.

  8. Conformational and dynamic differences between actin filaments polymerized from ATP- or ADP-actin monomers.

    Science.gov (United States)

    Nyitrai, M; Hild, G; Hartvig, N; Belágyi, J; Somogyi, B

    2000-12-29

    Conformational and dynamic properties of actin filaments polymerized from ATP- or ADP-actin monomers were compared by using fluorescence spectroscopic methods. The fluorescence intensity of IAEDANS attached to the Cys(374) residue of actin was smaller in filaments from ADP-actin than in filaments from ATP-actin monomers, which reflected a nucleotide-induced conformational difference in subdomain 1 of the monomer. Radial coordinate calculations revealed that this conformational difference did not modify the distance of Cys(374) from the longitudinal filament axis. Temperature-dependent fluorescence resonance energy transfer measurements between donor and acceptor molecules on Cys(374) of neighboring actin protomers revealed that the inter-monomer flexibility of filaments assembled from ADP-actin monomers were substantially greater than the one of filaments from ATP-actin monomers. Flexibility was reduced by phalloidin in both types of filaments.

  9. Microwave structure of quiescent solar filaments at high resolution

    International Nuclear Information System (INIS)

    Gary, D.E.

    1986-01-01

    High resolution very low altitude maps of a quiescent filament at three frequencies are presented. The spatial resolution (approx. 15'' at 1.45 GHz, approx. 6'' at 4.9 GHz, and approx. 2'' at 15 GHz) is several times better than previously attained. At each frequency, the filament appears as a depression in the quiet Sun background. The depression is measurably wider and longer in extent than the corresponding H alpha filament at 1.45 GHz and 4.9 GHz, indicating that the depression is due in large part to a deficit in coronal density associated with the filament channel. In contrast, the shape of the radio depression at 15 CHz closely matches that of the H alpha filament. In addition, the 15 GHz map shows enhanced emission along both sides of the radio depression. A similar enhancement is seen in an observation of a second filament 4 days later, which suggests that the enhancement is a general feature of filaments. Possible causes of the enhanced emission are explored

  10. Influence of thermal effects on stability of nanoscale films and filaments on thermally conductive substrates

    Science.gov (United States)

    Seric, Ivana; Afkhami, Shahriar; Kondic, Lou

    2018-01-01

    We consider fluid films and filaments of nanoscale thickness on thermally conductive substrates exposed to external heating and discuss the influence of the variation of material parameters with temperature on film stability. Particular focus is on metal films exposed to laser irradiation. Due to the short length scales involved, the absorption of heat in the metal is directly coupled to the film evolution, since the absorption length and the film thickness are comparable. Such a setup requires self-consistent consideration of fluid mechanical and thermal effects. We approach the problem via volume-of-fluid-based simulations that include destabilizing liquid metal-solid substrate interaction potentials. These simulations couple fluid dynamics directly with the spatio-temporal evolution of the temperature field both in the fluid and in the substrate. We focus on the influence of the temperature variation of material parameters, in particular of surface tension and viscosity. Regarding variation of surface tension with temperature, the main finding is that while the Marangoni effect may not play a significant role in the considered setting, the temporal variation of surface tension (modifying normal stress balance) is significant and could lead to complex evolution including oscillatory evolution of the liquid metal-air interface. Temperature variation of film viscosity is also found to be relevant. Therefore, the variations of surface tensions and viscosity could both influence the emerging wavelengths in experiments. By contrast, the filament geometry is found to be much less sensitive to a variation of material parameters with temperature.

  11. Morphogenesis of filaments growing in flexible confinements

    Science.gov (United States)

    Vetter, R.; Wittel, F. K.; Herrmann, H. J.

    2014-07-01

    Space-saving design is a requirement that is encountered in biological systems and the development of modern technological devices alike. Many living organisms dynamically pack their polymer chains, filaments or membranes inside deformable vesicles or soft tissue-like cell walls, chorions and buds. Surprisingly little is known about morphogenesis due to growth in flexible confinements—perhaps owing to the daunting complexity lying in the nonlinear feedback between packed material and expandable cavity. Here we show by experiments and simulations how geometric and material properties lead to a plethora of morphologies when elastic filaments are growing far beyond the equilibrium size of a flexible thin sheet they are confined in. Depending on friction, sheet flexibility and thickness, we identify four distinct morphological phases emerging from bifurcation and present the corresponding phase diagram. Four order parameters quantifying the transitions between these phases are proposed.

  12. Development and Application of Wood Flour-Filled Polylactic Acid Composite Filament for 3D Printing.

    Science.gov (United States)

    Tao, Yubo; Wang, Honglei; Li, Zelong; Li, Peng; Shi, Sheldon Q

    2017-03-24

    This paper presents the development of wood flour (WF)-filled polylactic acid (PLA) composite filaments for a fused deposition modeling (FDM) process with the aim of application to 3D printing. The composite filament consists of wood flour (5 wt %) in a PLA matrix. The detailed formulation and characterization of the composite filament were investigated experimentally, including tensile properties, microstructure, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The feedstock filaments of this composite were produced and used successfully in an assembled FDM 3D printer. The research concludes that compared with pure PLA filament, adding WF changed the microstructure of material fracture surface, the initial deformation resistance of the composite was enhanced, the starting thermal degradation temperature of the composite decreased slightly, and there were no effects on the melting temperature. The WF/PLA composite filament is suitable to be printed by the FDM process.

  13. Footpoint detection and mass-motion in chromospheric filaments

    Science.gov (United States)

    V, Aparna; Hardersen, P. S.; Martin, S. F.

    2013-07-01

    A quiescent region on the Sun containing three filaments is used to study the properties of mass motion. This study determines if the footpoints or end-points of the filaments are the locations from where mass gets injected into the filaments. Several hypotheses have been put forth in the past to determine how a filament acquires mass. Trapping of coronal mass in the filament channel due to condensation (Martin, 1996) and injection of mass into the filaments during magnetic reconnection (Priest, et al., 1995) are some of the speculations. This study looks for indications for injection of mass via chromospheric footpoints. The data consists of blue (Hα-0.5 Å) and red (Hα+0.5 Å) wing high resolution Hα images of the W29N37 region of the Sun taken on Oct 30, 2010, from 1200 - 1600 UT. The Dutch Open Telescope was used to obtain the data. The images are aligned and animated to see Doppler motion in the fibrils. Smaller fibrils merge to form longer ones; barbs appear and disappear in one of the long filaments and is seen moving along the length of the filament. A region with no typical filament-like absorption feature is observed to be continuously receiving mass. Fibrils appear to be converging from opposite sides along what appears to be a neutral line; mass motion is seen in these fibrils as well. An eruption occurs in a region of fibrils lumped together at the end of the first hour (1300 UT) followed by plage brightening at 1430 UT near one of the filament regions. Helioviewer (Panasenco, et al., 2011) is used for aligning the images; GIMP is used for precision alignment and animation. Each frame in the sequence is studied carefully to note changes in the filament regions. The footpoints of the filaments are determined by the changes observed in the position of the filament ‘legs’ in each frame. Variations in the magnetic polarity corresponding to changes observed in the chromosphere are analyzed using HMI magnetograms. Bright and dark points on the

  14. Health Risks Associated with Exposure to Filamentous Fungi

    Science.gov (United States)

    Egbuta, Mary Augustina; Mwanza, Mulunda

    2017-01-01

    Filamentous fungi occur widely in the environment, contaminating soil, air, food and other substrates. Due to their wide distribution, they have medical and economic implications. Regardless of their use as a source of antibiotics, vitamins and raw materials for various industrially important chemicals, most fungi and filamentous fungi produce metabolites associated with a range of health risks, both in humans and in animals. The association of filamentous fungi and their metabolites to different negative health conditions in humans and animals, has contributed to the importance of investigating different health risks induced by this family of heterotrophs. This review aims to discuss health risks associated with commonly occurring filamentous fungal species which belong to genera Aspergillus, Penicillium and Fusarium, as well as evaluating their pathogenicity and mycotoxic properties. PMID:28677641

  15. Comparative Biomechanics of Thick Filaments and Thin Filaments with Functional Consequences for Muscle Contraction

    Directory of Open Access Journals (Sweden)

    Mark S. Miller

    2010-01-01

    Full Text Available The scaffold of striated muscle is predominantly comprised of myosin and actin polymers known as thick filaments and thin filaments, respectively. The roles these filaments play in muscle contraction are well known, but the extent to which variations in filament mechanical properties influence muscle function is not fully understood. Here we review information on the material properties of thick filaments, thin filaments, and their primary constituents; we also discuss ways in which mechanical properties of filaments impact muscle performance.

  16. Biochemical responses of filamentous algae in different aquatic ecosystems in South East Turkey and associated water quality parameters.

    Science.gov (United States)

    Çelekli, Abuzer; Arslanargun, Hamdullah; Soysal, Çiğdem; Gültekin, Emine; Bozkurt, Hüseyin

    2016-11-01

    To the best of our knowledge, any study about biochemical response of filamentous algae in the complex freshwater ecosystems has not been found in the literature. This study was designed to explore biochemical response of filamentous algae in different water bodies from May 2013 to October 2014, using multivariate approach in the South East of Turkey. Environmental variables were measured in situ: water temperature, oxygen concentration, saturation, conductivity, salinity, pH, redox potential, and total dissolved solid. Chemical variables of aqueous samples and biochemical compounds of filamentous algae were also measured. It was found that geographic position and anthropogenic activities had strong effect on physico-chemical variables of water bodies. Variation in environmental conditions caused change in algal biomass composition due to the different response of filamentous species, also indicated by FTIR analysis. Biochemical responses not only changed from species to species, but also varied for the same species at different sampling time and sampling stations. Multivariate analyses showed that heavy metals, nutrients, and water hardness were found as the important variables governing the temporal and spatial succession and biochemical compounds. Nutrients, especially nitrate, could stimulate pigment and total protein production, whereas high metal content had adverse effects. Amount of malondialdehyde (MDA), H2O2, total thiol groups, total phenolic compounds, proline, total carbohydrate, and metal bioaccumulation by filamentous algae could be closely related with heavy metals in the ecosystems. Significant increase in MDA, H2O2, total thiol group, total phenolic compounds, and proline productions by filamentous algae and chlorosis phenomenon seemed to be an important strategy for alleviating environmental factors-induced oxidative stress as biomarkers. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Colloidal transport by active filaments.

    Science.gov (United States)

    Manna, Raj Kumar; Kumar, P B Sunil; Adhikari, R

    2017-01-14

    Enhanced colloidal transport beyond the limit imposed by diffusion is usually achieved through external fields. Here, we demonstrate the ballistic transport of a colloidal sphere using internal sources of energy provided by an attached active filament. The latter is modeled as a chain of chemo-mechanically active beads connected by potentials that enforce semi-flexibility and self-avoidance. The fluid flow produced by the active beads and the forces they mediate are explicitly taken into account in the overdamped equations of motion describing the colloid-filament assembly. The speed and efficiency of transport depend on the dynamical conformational states of the filament. We characterize these states using filament writhe as an order parameter and identify ones yielding maxima in speed and efficiency of transport. The transport mechanism reported here has a remarkable resemblance to the flagellar propulsion of microorganisms which suggests its utility in biomimetic systems.

  18. Colloidal transport by active filaments

    Science.gov (United States)

    Manna, Raj Kumar; Kumar, P. B. Sunil; Adhikari, R.

    2017-01-01

    Enhanced colloidal transport beyond the limit imposed by diffusion is usually achieved through external fields. Here, we demonstrate the ballistic transport of a colloidal sphere using internal sources of energy provided by an attached active filament. The latter is modeled as a chain of chemo-mechanically active beads connected by potentials that enforce semi-flexibility and self-avoidance. The fluid flow produced by the active beads and the forces they mediate are explicitly taken into account in the overdamped equations of motion describing the colloid-filament assembly. The speed and efficiency of transport depend on the dynamical conformational states of the filament. We characterize these states using filament writhe as an order parameter and identify ones yielding maxima in speed and efficiency of transport. The transport mechanism reported here has a remarkable resemblance to the flagellar propulsion of microorganisms which suggests its utility in biomimetic systems.

  19. Analysis of temperature profile and electric field in natural rubber glove due to microwave heating: effects of waveguide position

    Science.gov (United States)

    Keangin, P.; Narumitbowonkul, U.; Rattanadecho, P.

    2018-01-01

    Natural rubber (NR) is the key raw material used in the manufacture of other products such as rubber band, tire and shoes. Recently, the NR is used in natural rubber glove ( NRG) manufacturing in the industrial and medical fields. This research aims to investigate the electromagnetic wave propagation and heat transfer in NRG due to heating with microwave energy within the microwave oven at a microwave frequency of 2.45 GHz. Three-dimensional model of NRG and microwave oven are considered in this work. The comparative effects of waveguide position on the electric field and temperature profile in NRG when subjected to microwave energy are discussed. The finite element method (FEM) is used to solve the transient Maxwell’s equation coupled with the transient heat transfer equation. The simulation results with computer programs are validated with experimental results. The placement of waveguides in three cases are left hand side of microwave oven, right hand side of microwave oven and left and right hand sides of microwave oven are investigated. The findings revealed that the placing the waveguide on the right side of the microwave oven gives the highest electric field and temperature profile. The values obtained provide an indication toward understanding the study of heat transfer in NRG during microwave heating in the industry.

  20. Stability of two-dimensional vorticity filaments

    International Nuclear Information System (INIS)

    Elhmaidi, D.; Provenzale, A.; Lili, T.; Babiano, A.

    2004-01-01

    We discuss the results of a numerical study on the stability of two-dimensional vorticity filaments around a circular vortex. We illustrate how the stability of the filaments depends on the balance between the strain associated with the far field of the vortex and the local vorticity of the filament, and we discuss an empirical criterion for filament stability

  1. Boolean gates on actin filaments

    Energy Technology Data Exchange (ETDEWEB)

    Siccardi, Stefano, E-mail: ssiccardi@2ssas.it [The Unconventional Computing Centre, University of the West of England, Bristol (United Kingdom); Tuszynski, Jack A., E-mail: jackt@ualberta.ca [Department of Oncology, University of Alberta, Edmonton, Alberta (Canada); Adamatzky, Andrew, E-mail: andrew.adamatzky@uwe.ac.uk [The Unconventional Computing Centre, University of the West of England, Bristol (United Kingdom)

    2016-01-08

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications. - Highlights: • We simulate interaction between voltage pulses using on actin filaments. • We use a coupled nonlinear transmission line model. • We design Boolean logical gates via interactions between the voltage pulses. • We construct one-bit half-adder with interacting voltage pulses.

  2. A first approach to filament dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Silva, P E S; De Abreu, F Vistulo; Dias, R G [Department of Physics, University of Aveiro (Portugal); Simoes, R, E-mail: fva@ua.p [I3N-Institute for Nanostructures, Nanomodelling and Nanofabrication (Portugal)

    2010-11-15

    Modelling elastic filament dynamics is a topic of high interest due to the wide range of applications. However, it has reached a high level of complexity in the literature, making it unaccessible to a beginner. In this paper we explain the main steps involved in the computational modelling of the dynamics of an elastic filament. We first derive equations governing the dynamics of an elastic lament suitable for a computer simulation implementation. The derivation starts from the relation between forces and potential energy in conservative systems in order to derive the equation of motion of any bead in the filament. Only two-dimensional movements are considered, but extensions to three dimensions can follow similar lines. Suggestions for computer implementations are provided in Matlab as well as an example of application related to the generation of musical sounds. This example allows a critical analysis of the numerical results obtained using a cross-disciplinary perspective. Since derivations start from basic physics equations, use simple calculus and computational implementations are straightforward, this paper proposes a different approach to introduce simple molecular dynamics simulations or animations of real systems in undergraduate elasticity or computer modelling courses.

  3. A first approach to filament dynamics

    International Nuclear Information System (INIS)

    Silva, P E S; De Abreu, F Vistulo; Dias, R G; Simoes, R

    2010-01-01

    Modelling elastic filament dynamics is a topic of high interest due to the wide range of applications. However, it has reached a high level of complexity in the literature, making it unaccessible to a beginner. In this paper we explain the main steps involved in the computational modelling of the dynamics of an elastic filament. We first derive equations governing the dynamics of an elastic lament suitable for a computer simulation implementation. The derivation starts from the relation between forces and potential energy in conservative systems in order to derive the equation of motion of any bead in the filament. Only two-dimensional movements are considered, but extensions to three dimensions can follow similar lines. Suggestions for computer implementations are provided in Matlab as well as an example of application related to the generation of musical sounds. This example allows a critical analysis of the numerical results obtained using a cross-disciplinary perspective. Since derivations start from basic physics equations, use simple calculus and computational implementations are straightforward, this paper proposes a different approach to introduce simple molecular dynamics simulations or animations of real systems in undergraduate elasticity or computer modelling courses.

  4. Optical and electrical properties of a spiral LED filament

    Science.gov (United States)

    Wang, Liping; Zou, Jun; Yang, Bobo; Li, Wenbo; Li, Yang; Shi, Mingming; Zhu, Wei; Zhang, Canyun; Wang, Fengchao; Lin, Yujie

    2018-02-01

    This paper introduces a new type of spiral white light-emitting diodes (WLED) filament with high luminous efficiency and uniform optical performance. The optical and thermal properties of the flexible filament were investigated at different stretching heights, namely 0, 1, 2, and 3 cm. The results indicated that the filament showed the best optical characteristics at the stretching height of 2 cm, because of good heat dissipation. In addition, the radiation temperature of the filament was inversely proportional to the output luminous flux. The reliability of the filament at a stretching height of 2 cm was also evaluated after 1000 h of use. The result demonstrated that the luminous flux decay of the bulb was only 0.85%. The flexible spiral WLED filament exhibiting high luminous flux and good reliability could be adapted to promote industrial development in the near future. Project supported by the National Nature Science Foundation of China (No. 51302171), the Science and Technology Commission of Shanghai Municipality (CN) (No. 14500503300), the Shanghai Municipal Alliance Program (No. Lm201547), the Shanghai Cooperative Project (No. ShanghaiCXY-2013-61), and the Jiashan County Technology Program (No. 20141316).

  5. The elastic modulus of isolated polytetrafluoroethylene filaments

    Directory of Open Access Journals (Sweden)

    Patrick Drawe

    2014-09-01

    Full Text Available We report vibrational Raman spectra of small extended perfluoro-n-alkanes (CnF2n+2 with n = 6, 8–10, 12–14 isolated in supersonic jet expansions and use wavenumbers of longitudinal acoustic vibrations to extrapolate the elastic modulus of cold, isolated polytetrafluoroethylene filaments. The derived value E = 209(10 GPa defines an upper limit for the elastic modulus of the perfectly crystalline, noninteracting polymer at low temperatures and serves as a benchmark for quantum chemical predictions.

  6. Preserved Filamentous Microbial Biosignatures in the Brick Flat Gossan, Iron Mountain, California.

    Science.gov (United States)

    Williams, Amy J; Sumner, Dawn Y; Alpers, Charles N; Karunatillake, Suniti; Hofmann, Beda A

    2015-08-01

    A variety of actively precipitating mineral environments preserve morphological evidence of microbial biosignatures. One such environment with preserved microbial biosignatures is the oxidized portion of a massive sulfide deposit, or gossan, such as that at Iron Mountain, California. This gossan may serve as a mineralogical analogue to some ancient martian environments due to the presence of oxidized iron and sulfate species, and minerals that only form in acidic aqueous conditions, in both environments. Evaluating the potential biogenicity of cryptic textures in such martian gossans requires an understanding of how microbial textures form biosignatures on Earth. The iron-oxide-dominated composition and morphology of terrestrial, nonbranching filamentous microbial biosignatures may be distinctive of the underlying formation and preservation processes. The Iron Mountain gossan consists primarily of ferric oxide (hematite), hydrous ferric oxide (HFO, predominantly goethite), and jarosite group minerals, categorized into in situ gossan, and remobilized iron deposits. We interpret HFO filaments, found in both gossan types, as HFO-mineralized microbial filaments based in part on (1) the presence of preserved central filament lumina in smooth HFO mineral filaments that are likely molds of microbial filaments, (2) mineral filament formation in actively precipitating iron-oxide environments, (3) high degrees of mineral filament bending consistent with a flexible microbial filament template, and (4) the presence of bare microbial filaments on gossan rocks. Individual HFO filaments are below the resolution of the Mars Curiosity and Mars 2020 rover cameras, but sinuous filaments forming macroscopic matlike textures are resolvable. If present on Mars, available cameras may resolve these features identified as similar to terrestrial HFO filaments and allow subsequent evaluation for their biogenicity by synthesizing geochemical, mineralogical, and morphological analyses. Sinuous

  7. UHECR acceleration in dark matter filaments of cosmological structure formation

    Science.gov (United States)

    Malkov, M. A.; Sagdeev, R. Z.; Diamond, P. H.

    2011-04-01

    A mechanism for proton acceleration to ~ 1021 eV is suggested. It may operate in accretion flows onto thin dark matter filaments of cosmic structure formation. The flow compresses the ambient magnetic field to strongly increase and align it with the filament. Particles begin the acceleration by E × B drift with the accretion flow. The energy gain in the drift regime is limited by the conservation of the adiabatic invariant p⊥2/B(r). Upon approaching the filament, the drift turns into the gyro-motion around the filament so that the particle moves parallel to the azimuthal electric field. In this `betatron' regime the acceleration speeds up to rapidly reach the electrodynamic limit cpmax = eBR for an accelerator with magnetic field B and the orbit radius R (Larmor radius). The periodic orbit becomes unstable and the particle slings out of the filament to the region of a weak (uncompressed) magnetic field, which terminates the acceleration. To escape the filament, accelerated particles must have gyro-radii comparable with the filament radius. Therefore, the mechanism requires pre-acceleration that is likely to occur in large scale shocks upstream or nearby the filament accretion flow. Previous studies identify such shocks as efficient proton accelerators, with a firm upper limit ~ 1019.5 eV placed by the catastrophic photo-pion losses. The present mechanism combines explosive energy gain in its final (betatron) phase with prompt particle release from the region of strong magnetic field. It is this combination that allows protons to overcome both the photo-pion and the synchrotron-Compton losses and therefore attain energy ~ 1021 eV. A customary requirement on accelerator power to reach a given Emax, which is placed by the accelerator energy dissipation proptoEmax2/Z0 due to the finite vacuum impedance Z0, is circumvented by the cyclic operation of the accelerator.

  8. Validation of the filament winding process model

    Science.gov (United States)

    Calius, Emilo P.; Springer, George S.; Wilson, Brian A.; Hanson, R. Scott

    1987-01-01

    Tests were performed toward validating the WIND model developed previously for simulating the filament winding of composite cylinders. In these tests two 24 in. long, 8 in. diam and 0.285 in. thick cylinders, made of IM-6G fibers and HBRF-55 resin, were wound at + or - 45 deg angle on steel mandrels. The temperatures on the inner and outer surfaces and inside the composite cylinders were recorded during oven cure. The temperatures inside the cylinders were also calculated by the WIND model. The measured and calculated temperatures were then compared. In addition, the degree of cure and resin viscosity distributions inside the cylinders were calculated for the conditions which existed in the tests.

  9. Boolean gates on actin filaments

    Science.gov (United States)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  10. Room-temperature superparamagnetism due to giant magnetic anisotropy in Mo S defected single-layer MoS2

    Science.gov (United States)

    Khan, M. A.; Leuenberger, Michael N.

    2018-04-01

    Room-temperature superparamagnetism due to a large magnetic anisotropy energy (MAE) of a single atom magnet has always been a prerequisite for nanoscale magnetic devices. Realization of two dimensional (2D) materials such as single-layer (SL) MoS2, has provided new platforms for exploring magnetic effects, which is important for both fundamental research and for industrial applications. Here, we use density functional theory (DFT) to show that the antisite defect (Mo S ) in SL MoS2 is magnetic in nature with a magnetic moment μ of  ∼2 μB and, remarkably, exhibits an exceptionally large atomic scale MAE =\\varepsilon\\parallel-\\varepsilon\\perp of  ∼500 meV. Our calculations reveal that this giant anisotropy is the joint effect of strong crystal field and significant spin–orbit coupling (SOC). In addition, the magnetic moment μ can be tuned between 1 μB and 3 μB by varying the Fermi energy \\varepsilonF , which can be achieved either by changing the gate voltage or by chemical doping. We also show that MAE can be raised to  ∼1 eV with n-type doping of the MoS2:Mo S sample. Our systematic investigations deepen our understanding of spin-related phenomena in SL MoS2 and could provide a route to nanoscale spintronic devices.

  11. On the possible mechanism of formation of emission rim in hydrogen filaments

    International Nuclear Information System (INIS)

    Kostik, R.I.; Orlova, T.V.

    1975-01-01

    Hα filtergrams of the chromosphere show an emission rim in many hydrogen filaments. It is supposed that formation of this rim is due to photospheric radiation reflected by the filament in the direction of the chromosphere. The calculations show that: (1) the maximum contrast of the rim relative to the undisturbed chromosphere amounts to 1.4; (2) the larger the optical thickness of the filament and the closer to the solar limb it is situated, the brighter and wider is the rim; (3) the rim was not observed in filaments whose heights exceeds 10000 km above the chromosphere. These results are in close agreement with observations. (Auth.)

  12. Measurement of Reversed Extension Flow using the Filament Stretch Rheometer

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Skov, Anne Ladegaard; Nielsen, Jens Kromann

    2008-01-01

    ). The latter is applicable on highly extensible elastomers, whereas in LAOE measurements on liquids (including polymer melts) the LAOE flow needs to be imposed upon a constant strain rate uniaxial elongation. The used Filament Stretching Rheometer allows measurements on polymeric fluids (including polymeric...... melts) from room temperature until 200 degrees C....

  13. Beam distribution function after filamentation

    Energy Technology Data Exchange (ETDEWEB)

    Raubenheimer, T.O.; Decker, F.J.; Seeman, J.T.

    1995-05-01

    In this paper, the authors calculate the beam distribution function after filamentation (phase-mixing) of a focusing mismatch. This distribution is relevant when interpreting beam measurements and sources of emittance dilution in linear colliders. It is also important when considering methods of diluting the phase space density, which may be required for the machine protection system in future linear colliders, and it is important when studying effects of trapped ions which filament in the electron beam potential. Finally, the resulting distribution is compared with measured beam distributions from the SLAC linac.

  14. Body temperature variability (Part 1): a review of the history of body temperature and its variability due to site selection, biological rhythms, fitness, and aging.

    Science.gov (United States)

    Kelly, Greg

    2006-12-01

    Body temperature is a complex, non-linear data point, subject to many sources of internal and external variation. While these sources of variation significantly complicate interpretation of temperature data, disregarding knowledge in favor of oversimplifying complex issues would represent a significant departure from practicing evidence-based medicine. Part 1 of this review outlines the historical work of Wunderlich on temperature and the origins of the concept that a healthy normal temperature is 98.6 degrees F (37.0 degrees C). Wunderlich's findings and methodology are reviewed and his results are contrasted with findings from modern clinical thermometry. Endogenous sources of temperature variability, including variations caused by site of measurement, circadian, menstrual, and annual biological rhythms, fitness, and aging are discussed. Part 2 will review the effects of exogenous masking agents - external factors in the environment, diet, or lifestyle that can influence body temperature, as well as temperature findings in disease states.

  15. Experimental study of infrared filaments under different initial conditions

    Science.gov (United States)

    Mirell, Daniel Joseph

    In 1964, four years after the first working laser was constructed, long skinny damage tracks and fluorescence trails were seen inside of certain transparent media that were excited by intense light pulses [1]. What was so remarkable about these features was the narrowness of the spatial profile and their long propagation length in the beam in concert with the very high intensity of the light that would be necessary to produce them. A purely linear model of light propagation through such media was insufficient to explain the results of these experiments and hence a new area of nonlinear optics, latex coined filamentation (to describe the length, slimness, and intensity of the light field), was born. Filament studies begin with a medium that has a nonlinear index of refraction, n¯2, that interacts with an intense beam of light so as to cause it to self-focus. The n¯2 of liquid and solid transparent media is much higher than the n¯ 2 of gases and therefore a much higher intensity of laser source would need to be invented to begin the study of filaments in air. With the advent of the Ti-Sapphire Kerr-lens modelocked laser [2], working in combination with the development of the chirped pulse amplifier system in the mid-1990's, light intensities sufficient to produce filaments in air was realized. Since that time much experimental and theoretical work has been done to better understand some of the additional complexities that arise specifically in the filamentation of light in air using several different wavelengths (UV to IR) and pulsewidths (femto- to pico-seconds). Many theoretical models exist each with a different emphasis on the various physical mechanisms that may produce the features experimentally observed in filaments. The experimental work has sought to give the theoretician better data on some of the properties of filaments such as the: (a) spatial and temporal structure of the beam and of the produced plasma (that arises due to the high intensity light

  16. Magnetic helicity and active filament configuration

    Science.gov (United States)

    Romano, P.; Zuccarello, F.; Poedts, S.; Soenen, A.; Zuccarello, F. P.

    2009-11-01

    Context: The role of magnetic helicity in active filament formation and destabilization is still under debate. Aims: Although active filaments usually show a sigmoid shape and a twisted configuration before and during their eruption, it is unclear which mechanism leads to these topologies. In order to provide an observational contribution to clarify these issues, we describe a filament evolution whose characteristics seem to be directly linked to the magnetic helicity transport in corona. Methods: We applied different methods to determine the helicity sign and the chirality of the filament magnetic field. We also computed the magnetic helicity transport rate at the filament footpoints. Results: All the observational signatures provided information on the positive helicity and sinistral chirality of the flux rope containing the filament material: its forward S shape, the orientation of its barbs, the bright and dark threads at 195 Å. Moreover, the magnetic helicity transport rate at the filament footpoints showed a clear accumulation of positive helicity. Conclusions: The study of this event showed a correspondence between several signatures of the sinistral chirality of the filament and several evidences of the positive magnetic helicity of the filament magnetic field. We also found that the magnetic helicity transported along the filament footpoints showed an increase just before the change of the filament shape observed in Hα images. We argued that the photospheric regions where the filament was rooted might be the preferential ways where the magnetic helicity was injected along the filament itself and where the conditions to trigger the eruption were yielded.

  17. Ultra small angle neutron scattering from superconducting filament structures

    International Nuclear Information System (INIS)

    Amenitsch, H.

    1999-01-01

    With a perfect crystal camera, ultra small-angle scattering measurements were performed to investigate the internal diffusion process of tin inside a superconducting multi-filament wire caused by a temperature treatment. Commercially available Nb 3 Sn superconducting multi-filament wires were treated at 700 C with varying ageing times up to 144 h. A theoretical model taking into account the geometrical form, the size distribution, the interference term and the multiple scattering has been developed to understand and to describe the small angle diffraction pattern. Additionally, the diffusion of H and D into the filament wires was used to vary the scattering length density inside the wires. The results show a direct relationship between the different technological treatments and the characteristic small-angle scattering parameters, like Guinier radius and small-angle scattering probability. (orig.) [de

  18. Attractive interactions among intermediate filaments determine network mechanics in vitro.

    Directory of Open Access Journals (Sweden)

    Paul Pawelzyk

    Full Text Available Mechanical and structural properties of K8/K18 and vimentin intermediate filament (IF networks have been investigated using bulk mechanical rheometry and optical microrheology including diffusing wave spectroscopy and multiple particle tracking. A high elastic modulus G0 at low protein concentration c, a weak concentration dependency of G0 (G0 ∼ c(0.5 ± 0.1 and pronounced strain stiffening are found for these systems even without external crossbridgers. Strong attractive interactions among filaments are required to maintain these characteristic mechanical features, which have also been reported for various other IF networks. Filament assembly, the persistence length of the filaments and the network mesh size remain essentially unaffected when a nonionic surfactant is added, but strain stiffening is completely suppressed, G0 drops by orders of magnitude and exhibits a scaling G0 ∼ c(1.9 ± 0.2 in agreement with microrheological measurements and as expected for entangled networks of semi-flexible polymers. Tailless K8Δ/K18ΔT and various other tailless filament networks do not exhibit strain stiffening, but still show high G0 values. Therefore, two binding sites are proposed to exist in IF networks. A weaker one mediated by hydrophobic amino acid clusters in the central rod prevents stretched filaments between adjacent cross-links from thermal equilibration and thus provides the high G0 values. Another strong one facilitating strain stiffening is located in the tail domain with its high fraction of hydrophobic amino acid sequences. Strain stiffening is less pronounced for vimentin than for K8/K18 due to electrostatic repulsion forces partly compensating the strong attraction at filament contact points.

  19. Filament Winding. A Unified Approach

    NARCIS (Netherlands)

    Koussios, S.

    2004-01-01

    In this dissertation we have presented an overview and comprehensive treatment of several facets of the filament winding process. With the concepts of differential geometry and the theory of thin anisotropic shells of revolution, a parametric shape generator has been formulated for the design

  20. Towards filament free semiconductor lasers

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter; Skovgaard, Peter M. W.

    2000-01-01

    We outline physical models and simulations for suppression of self-focusing and filamentation in large aperture semiconductor lasers. The principal technical objective is to generate multi-watt CW or quasi-CW outputs with nearly diffraction limited beams, suitable for long distance free space...

  1. Capillary thinning of polymeric filaments

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Szabo, Peter

    1999-01-01

    The capillary thinning of filaments of a Newtonian polybutene fluid and a viscoelastic polyisobutylene solution are analyzed experimentally and by means of numerical simulation. The experimental procedure is as follows. Initially, a liquid sample is placed between two cylindrical plates. Then...

  2. Capillary thinning of polymeric filaments

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Szabo, Peter; Hassager, Ole

    1998-01-01

    The capillary thinning of a polymeric filament is analysed experimentally as well as by means of numerical simulation. The experimental procedure is as follows. Initially a liquid sample is kept between two cylindrical plates. Then the bottom plate is lowered under gravity to yield a given strain...

  3. Various Barbs in Solar Filaments

    Science.gov (United States)

    Filippov, Boris

    2017-07-01

    Interest to lateral details of the solar filament shape named barbs, motivated by their relationship to filament chirality and helicity, showed their different orientation relative to the expected direction of the magnetic field. While the majority of barbs are stretched along the field, some barbs seem to be transversal to it and are referred to as anomalous barbs. We analyse the deformation of helical field lines by a small parasitic polarity using a simple flux rope model with a force-free field. A rather small and distant source of parasitic polarity stretches the bottom parts of the helical lines in its direction creating a lateral extension of dips below the flux-rope axis. They can be considered as normal barbs of the filament. A stronger and closer source of parasitic polarity makes the flux-rope field lines to be convex below its axis and creates narrow and deep dips near its position. As a result, the narrow structure, with thin threads across it, is formed whose axis is nearly perpendicular to the field. The structure resembles an anomalous barb. Hence, the presence of anomalous barbs does not contradict the flux-rope structure of a filament.

  4. Transient filament stretching rheometer II

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Rasmussen, Henrik K.; Hassager, Ole

    1997-01-01

    The Lagrangian sspecification is used to simulate the transient stretching filament rheometer. Simulations are performed for dilute PIB-solutions modeled as a four mode Oldroyd-B fluid and a semidilute PIB-solution modeled as a non-linear single integral equation. The simulations are compared...

  5. Towards filament free semiconductor lasers

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter; Skovgaard, Peter M. W.

    2000-01-01

    We outline physical models and simulations for suppression of self-focusing and filamentation in large aperture semiconductor lasers. The principal technical objective is to generate multi-watt CW or quasi-CW outputs with nearly diffraction limited beams, suitable for long distance free space...... propagation structures in lasers and amplifiers which suppress lateral reflections....

  6. Positrusion Filament Recycling System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TUI proposes a novel process to produce 3d printer feedstock filament out of scrap ABS on the ISS. Currently the plastic filament materials that most 3d printers use...

  7. Femtosecond Laser Filamentation for Atmospheric Sensing

    OpenAIRE

    Huai Liang Xu; See Leang Chin

    2010-01-01

    Powerful femtosecond laser pulses propagating in transparent materials result in the formation of self-guided structures called filaments. Such filamentation in air can be controlled to occur at a distance as far as a few kilometers, making it ideally suited for remote sensing of pollutants in the atmosphere. On the one hand, the high intensity inside the filaments can induce the fragmentation of all matters in the path of filaments, resulting in the emission of characteristic fluorescence sp...

  8. Filament Winding Of Carbon/Carbon Structures

    Science.gov (United States)

    Jacoy, Paul J.; Schmitigal, Wesley P.; Phillips, Wayne M.

    1991-01-01

    Improved method of winding carbon filaments for carbon/carbon composite structures less costly and labor-intensive, also produces more consistent results. Involves use of roller squeegee to ensure filaments continuously wet with resin during winding. Also involves control of spacing and resin contents of plies to obtain strong bonds between carbon filaments and carbon matrices. Lends itself to full automation and involves use of filaments and matrix-precursor resins in their simplest forms, thereby reducing costs.

  9. Effects due to temperature-dependent nuclear binding energies on the equation of state for hot nuclear matter

    International Nuclear Information System (INIS)

    Benvenuto, O.G.; Civitarese, O.; Reboiro, M.

    1993-01-01

    The influence of finite temperature nuclear effects upon the adiabatic index, for a system of nuclei, nucleons, and leptons, is discussed. It is found that the inclusion of temperature-dependent nuclear binding energies affects the behavior of the adiabats and of the adiabatic index, particularly, at low entropies

  10. Impacts of rainfall and air temperature variations due to climate change upon hydrological characteristics: A case study

    Science.gov (United States)

    Ying Ouyang; Jia-En Zhang; Yide Li; Prem Parajuli; Gary Feng

    2015-01-01

    Rainfall and air temperature variations resulting from climate change are important driving forces to change hydrologic processes in watershed ecosystems. This study investigated the impacts of past and future rainfall and air temperature variations upon water discharge, water outflow (from the watershed outlet), and evaporative loss in the Lower Yazoo River Watershed...

  11. Transport properties of bilayer graphene due to charged impurity scattering: Temperature-dependent screening and substrate effects

    Science.gov (United States)

    Linh, Dang Khanh; Khanh, Nguyen Quoc

    2018-03-01

    We calculate the zero-temperature conductivity of bilayer graphene (BLG) impacted by Coulomb impurity scattering using four different screening models: unscreened, Thomas-Fermi (TF), overscreened and random phase approximation (RPA). We also calculate the conductivity and thermal conductance of BLG using TF, zero- and finite-temperature RPA screening functions. We find large differences between the results of the models and show that TF and finite-temperature RPA give similar results for diffusion thermopower Sd. Using the finite-temperature RPA, we calculate temperature and density dependence of Sd in BLG on SiO2, HfO2 substrates and suspended BLG for different values of interlayer distance c and distance between the first layer and the substrate d.

  12. Solar Filaments as Tracers of Subsurface Processes

    Indian Academy of Sciences (India)

    tribpo

    Filaments are clouds of relatively cool and dense gas in the solar atmosphere. ... First-tier filaments may be related to a peculiar feature of the solar dynamo. .... Still, an appeal to subsurface processes should be resisted, but surface motion models have been able to reproduce neither the pattern of filament field orientations ...

  13. Striation and convection in penumbral filaments

    NARCIS (Netherlands)

    Spruit, H.C.; Scharmer, G.B.; Löfdahl, M.G.

    2010-01-01

    Observations with the 1-m Swedish Solar Telescope of the flows seen in penumbral filaments are presented. Time sequences of bright filaments show overturning motions strikingly similar to those seen along the walls of small isolated structures in the active regions. The filaments show outward

  14. Solar Filaments as Tracers of Subsurface Processes

    Indian Academy of Sciences (India)

    tribpo

    according to which, probably all the magnetic flux that emerges into the photosphere is twisted. Twisted flux forms sunspots, active regions (ARs) and filaments. The twist accumulates in filaments and coronal arcades. Eventually the accumulated, highly twisted fields become unstable and erupt. From a study of filament ...

  15. Studies of the laser filament instability in a semicollisional plasma

    International Nuclear Information System (INIS)

    Michel, P.; Labaune, C.; Weber, S.; Tikhonchuk, V.T.; Bonnaud, G.; Riazuelo, G.; Walraet, F.

    2003-01-01

    The stability and nonlinear evolution of a laser filament in an underdense, semicollisional plasma are studied with a simulation code accounting for the ponderomotive and thermal effects together with the nonlocal electron transport. It is found that the filament is stable at low intensities, where the trapped laser power is below the self-focusing threshold. For larger powers, the filament is unstable with respect to bending. This instability, though predicted in theory (the m=1 mode), has not been seen so far in monospeckle modelling probably because of simulation symmetry. In our simulations an artificial noise source has been implemented in order to make nonsymmetric features appear. The instability leads to a complete breakup of the filament which reconstructs itself after some time and the process then repeats itself. Due to the filament instability the plasma sets in a regime of self-supported oscillations and results in temporal modulation and angular spreading of transmitted light. The numerical simulations are compared with theoretical predictions and experimental observations of speckle dynamics in the interaction of a randomized laser beam with preformed plasmas

  16. Chemical Strategies for the Covalent Modification of Filamentous Phage

    Directory of Open Access Journals (Sweden)

    Matthew B Francis

    2014-12-01

    Full Text Available Historically filamentous bacteriophage have been known to be the workhorse of phage display due to their ability to link genotype to phenotype. More recently, the filamentous phage scaffold has proved to be powerful outside the realms of phage display technology in fields such as molecular imaging, cancer research and materials and vaccine development. The ability of the virion to serve as a platform for a variety of applications heavily relies on the functionalization of the phage coat proteins with a wide variety of functionalities. Genetic modification of the coat proteins has been the most widely used strategy for functionalizing the virion; however complementary chemical modification strategies can help to diversify the range of materials that can be developed. This review emphasizes the recent advances that have been made in the chemical modification of filamentous phage as well as some of the challenges that are involved functionalizing the virion.

  17. Spatial correlation of conductive filaments for multiple switching cycles in CBRAM

    KAUST Repository

    Pey, K. L.

    2014-06-01

    Conducting bridge random access memory (CBRAM) is one of the potential technologies being considered for replacement of Flash memory for non-volatile data storage. CBRAM devices operate on the principle of nucleation and rupture of metallic filaments. One key concern for commercializing this technology is the question of variability which could arise due to nucleation of multiple filaments across the device at spatially different locations. The spatial spread of the filament location may cause long tails at the low and high percentile regions for the switching parameter distribution as the new filament that nucleates may have a completely different shape and size. It is therefore essential to probe whether switching in CBRAM occurs every time at the same filament location or whether there are other new filaments that could nucleate during repeated cycling with some spatial correlation (if any) to the original filament. To investigate this issue, we make use of a metal-insulator-semiconductor (M-I-S) transistor test structure with Ni as the top electrode and HfOx/SiOx as the dielectric stack. In-situ stressing using a nano-tip on the M-I-S stack is performed and the filament is imaged in real-time using a high resolution transmission electron microscope (TEM). We also extract the location of the filament (LFIL) along the channel of the transistor after the nucleation stage using the weighted proportion of the source and drain currents. © 2014 IEEE.

  18. Transient temperature response of in-vessel components due to pulsed operation in tokamak fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    Minato, Akio; Tone, Tatsuzo

    1985-12-01

    A transient temperature response of the in-vessel components (first wall, blanket, divertor/limiter and shielding) surrounding plasma in Tokamak Fusion Experimental Reactor (FER) has been analysed. Transient heat load during start up/shut down and pulsed operation cycles causes the transient temperature response in those components. The fatigue lifetime of those components significantly depends upon the resulting cyclic thermal stress. The burn time affects the temperature control in the solid breeder (Li 2 O) and also affects the thermo-mechanical design of the blanket and shielding which are constructed with thick structure. In this report, results of the transient temperature response obtained by the heat transfer and conduction analyses for various pulsed operation scenarios (start up, shut down, burn and dwell times) have been investigated in view of thermo-mechanical design of the in-vessel components. (author)

  19. Ion pair formation and distribution in organic materials at low temperature due to radiation-induced isothermal luminescence

    International Nuclear Information System (INIS)

    Hama, Yoshimasa; Motomatsu, Makoto; Nishikawa, Takao; Aida, Kazuo.

    1987-01-01

    Organic materials used in the fusion-reactor superconductive magnet are subjected to various radiation at low temperature so that variety of ion species are accumulated. These ion species may lead to part discharge. And then, when the temperature returns to normal temperature, these ion species cause deterioration of the material by reaction. In analysis of the isothermal decay curve of long-lived lumines cence observed in organic materials irradiated at low temperature, the ionization process during the irradiation, the distance distribution of ion pairs occurring upon termination of the irradiation, etc., were studied both theoretically and experimentally. The organic materials tested are PET, PEA, etc. And the radiations used are γ-rays from cobalt-60 and x-rays from an x-ray generator. (Mori, K.)

  20. Elasticity of a Filament with Kinks

    Science.gov (United States)

    Razbin, Mohammadhosein

    2017-12-01

    Using the wormlike chain model, we analytically study the elasticity of a filament with kinks. We calculate the position probability density function and the force constant of a kinked filament with a general kink angle. Then, using the mathematical induction, we obtain the positional-orientational probability density function of a filament with regular kinks. For this filament, we compute the force constant in two different directions. In longitudinal direction of the filament, the force constant is proportional to the inverse of the number of the segments, i.e., 1 / m, while in transverse direction, it is proportional to 1/m^3.

  1. Dynamical origin of non-thermal states in galactic filaments

    Science.gov (United States)

    Di Cintio, Pierfrancesco; Gupta, Shamik; Casetti, Lapo

    2018-03-01

    Observations strongly suggest that filaments in galactic molecular clouds are in a non-thermal state. As a simple model of a filament, we study a two-dimensional system of self-gravitating point particles by means of numerical simulations of the dynamics, with various methods: direct N-body integration of the equations of motion, particle-in-cell simulations, and a recently developed numerical scheme that includes multiparticle collisions in a particle-in-cell approach. Studying the collapse of Gaussian overdensities, we find that after the damping of virial oscillations the system settles in a non-thermal steady state whose radial density profile is similar to the observed ones, thus suggesting a dynamical origin of the non-thermal states observed in real filaments. Moreover, for sufficiently cold collapses, the density profiles are anticorrelated with the kinetic temperature, i.e. exhibit temperature inversion, again a feature that has been found in some observations of filaments. The same happens in the state reached after a strong perturbation of an initially isothermal cylinder. Finally, we discuss our results in the light of recent findings in other contexts (including non-astrophysical ones) and argue that the same kind of non-thermal states may be observed in any physical system with long-range interactions.

  2. Evidence of Room Temperature Ferromagnetism Due to Oxygen Vacancies in (In1- x Fe x )2O3 Thin Films

    Science.gov (United States)

    Chakraborty, Deepannita; Munuswamy, Kuppan; Shaik, Kaleemulla; Nasina, Madhusudhana Rao; Dugasani, Sreekantha Reddy; Inturu, Omkaram

    2018-03-01

    Iron substituted indium oxide (In1- x Fe x )2O3 thin films at x = 0.00, 0.03, 0.05 and 0.07 were coated onto Corning 7059 glass substrates using the electron beam evaporation technique followed by annealing at different temperatures. The prepared thin films were subjected to different characterization techniques to study their structural, optical and magnetic properties. The structural properties of the thin films were studied using x-ray diffractometry (XRD). From the XRD results it was found that the films were crystallized in cubic structure, and no change in crystal structure was observed with annealing temperature. No secondary phases related to iron were observed from the XRD profiles. The chemical composition and surface morphology of the films were examined by field emission scanning electron microscope (FE-SEM) attached with energy dispersive analysis of x-ray (EDAX). The valence state of the elements were studied by x-ray photoelectron spectroscopy (XPS) and found that the indium, iron and oxygen were in In+3, Fe+3 and O-2 states. From the data, the band gap of the (In1- x Fe x )2O3 thin films were calculated and it increased with increase of annealing temperature. The magnetic properties of the films were studied at room temperature by vibrating sample magnetometer (VSM). The films exhibited ferromagnetism at room temperature.

  3. A multi-scale analysis of influenza A virus fitness trade-offs due to temperature-dependent virus persistence.

    Directory of Open Access Journals (Sweden)

    Andreas Handel

    Full Text Available Successful replication within an infected host and successful transmission between hosts are key to the continued spread of most pathogens. Competing selection pressures exerted at these different scales can lead to evolutionary trade-offs between the determinants of fitness within and between hosts. Here, we examine such a trade-off in the context of influenza A viruses and the differential pressures exerted by temperature-dependent virus persistence. For a panel of avian influenza A virus strains, we find evidence for a trade-off between the persistence at high versus low temperatures. Combining a within-host model of influenza infection dynamics with a between-host transmission model, we study how such a trade-off affects virus fitness on the host population level. We show that conclusions regarding overall fitness are affected by the type of link assumed between the within- and between-host levels and the main route of transmission (direct or environmental. The relative importance of virulence and immune response mediated virus clearance are also found to influence the fitness impacts of virus persistence at low versus high temperatures. Based on our results, we predict that if transmission occurs mainly directly and scales linearly with virus load, and virulence or immune responses are negligible, the evolutionary pressure for influenza viruses to evolve toward good persistence at high within-host temperatures dominates. For all other scenarios, influenza viruses with good environmental persistence at low temperatures seem to be favored.

  4. UNUSUAL FILAMENTS INSIDE THE UMBRA

    Energy Technology Data Exchange (ETDEWEB)

    Kleint, L. [High Altitude Observatory/NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); Sainz Dalda, A., E-mail: kleintl@ucar.edu [Stanford-Lockheed Institute for Space Research, Stanford University, HEPL, 466 Via Ortega, Stanford, CA 94305 (United States)

    2013-06-10

    We analyze several unusual filamentary structures which appeared in the umbra of one of the sunspots in AR 11302. They do not resemble typical light bridges in morphology or in evolution. We analyze data from SDO/HMI to investigate their temporal evolution, Hinode/SP for photospheric inversions, IBIS for chromospheric imaging, and SDO/AIA for the overlying corona. Photospheric inversions reveal a horizontal, inverse Evershed flow along these structures, which we call umbral filaments. Chromospheric images show brightenings and energy dissipation, while coronal images indicate that bright coronal loops seem to end in these umbral filaments. These rapidly evolving features do not seem to be common, and are possibly related to the high flare-productivity of the active region. Their analysis could help to understand the complex evolution of active regions.

  5. [Chitinolytic activity of filamentous fungi].

    Science.gov (United States)

    Shubakov, A A; Kucheriavykh, P S

    2004-01-01

    The chitinolytic activity of nine species of filamentous fungi, classified with seven genera (specifically, Aspergillus, Penicillium, Trichoderma, Paecilomyces, Sporotrichum, Beaueria, and Mucor), was studied. When cultured in liquid medium containing 1% crystalline chitin, all fungi produced extracellular chitosans with activity varying from 0.2 U/mg protein (Sporotrichum olivaceum, Mucor sp., etc.) to 4.0-4.2 U/mg protein (Trichoderma lignorum, Aspergillus niger).

  6. Energy loss in degenerate semiconductors due to inelastic interaction with acoustic and piezoelectric phonons at low lattice temperatures

    International Nuclear Information System (INIS)

    Midday, S; Bhattacharya, D P

    2011-01-01

    The energy loss rate of an electron in a degenerate semiconductor because of inelastic interaction with deformation potential and piezoelectric acoustic phonons is calculated in the case when the lattice temperature is low, so that the approximations of the well-known traditional theory are not valid. Compared to the traditional results and those for non-degenerate semiconductors, the theory here reveals a more complex and altogether different dependence of the loss rate on the carrier energy and the lattice temperature. The numerical results obtained here for Si and GaAs show how significantly the degeneracy level, the true phonon distribution or the inelasticity of the interaction affects the loss characteristics at low temperatures.

  7. Thermally induced permeability reduction due to particle migration in sandstones: the effect of temperature on kaolinite mobilisation and aggregation

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Fabricius, Ida Lykke; Yuan, Hao

    2012-01-01

    The seasonal imbalance in supply and demand of renewable energy requires seasonal storage, which potentially may be achieved by hot water injection in geothermal aquifers to minimize heat loss by advection. A reduction of porosity and permeability is a risk of heating the rock above the in...... the interaction energy between quartz and kaolinite particles for different saturating fluids. The results are compared to the published data addressing the effect of temperature on permeability. This provides a qualitative explanation for the observed changes in permeability with temperature for the tests...

  8. Numerical simulation of temperature distribution in cylindrical ilmenite (FeTiO3) due to microwave heating

    Science.gov (United States)

    Hidayat, Mas Irfan P.; Fellicia, Dian Mughni; Rafandi, Ferdiansyah Iqbal

    2018-04-01

    Microwave assisted heating has been extensively used in materials processing particularly in extraction of TiO2 from Ilmenite (FeTiO3) minerals. Nevertheless, this method could generate non-uniform temperature distribution during the heating process. The observation of this phenomena in cylindrical ilmenite has been conducted by numerical simulation using finite element method according to the Poynthing's theorem. Four different cylinders with variation on its height were simulated in ANSYS 17 with input microwave power of 5.5 Kw. The results indicated that height of heated object could vigorously influence the uniformity of temperature inside the body.

  9. Lighting the universe with filaments.

    Science.gov (United States)

    Gao, Liang; Theuns, Tom

    2007-09-14

    The first stars in the universe form when chemically pristine gas heats as it falls into dark-matter potential wells, cools radiatively because of the formation of molecular hydrogen, and becomes self-gravitating. Using supercomputer simulations, we demonstrated that the stars' properties depend critically on the currently unknown nature of the dark matter. If the dark-matter particles have intrinsic velocities that wipe out small-scale structure, then the first stars form in filaments with lengths on the order of the free-streaming scale, which can be approximately 10(20) meters (approximately 3 kiloparsecs, corresponding to a baryonic mass of approximately 10(7) solar masses) for realistic "warm dark matter" candidates. Fragmentation of the filaments forms stars with a range of masses, which may explain the observed peculiar element abundance pattern of extremely metal-poor stars, whereas coalescence of fragments and stars during the filament's ultimate collapse may seed the supermassive black holes that lurk in the centers of most massive galaxies.

  10. Quality loss in packed rose flowers due to Botrytis cinerea infection as related to temperature regimes and packaging design

    NARCIS (Netherlands)

    Sman, van der R.G.M.; Evelo, R.G.; Wilkinson, E.C.; Doorn, van W.G.

    1996-01-01

    The effects of package design and temperature treatment (cooling and rewarming) on the quality of rose flowers (cv. Sweet Promise) packed in five types of boxes were investigated, with special regard to fungus (Botrytis cinerea) infection. A significant increase of B. cinerea spotting was observed

  11. The versatility of hot-filament activated chemical vapor deposition

    International Nuclear Information System (INIS)

    Schaefer, Lothar; Hoefer, Markus; Kroeger, Roland

    2006-01-01

    In the field of activated chemical vapor deposition (CVD) of polycrystalline diamond films, hot-filament activation (HF-CVD) is widely used for applications where large deposition areas are needed or three-dimensional substrates have to be coated. We have developed processes for the deposition of conductive, boron-doped diamond films as well as for tribological crystalline diamond coatings on deposition areas up to 50 cm x 100 cm. Such multi-filament processes are used to produce diamond electrodes for advanced electrochemical processes or large batches of diamond-coated tools and parts, respectively. These processes demonstrate the high degree of uniformity and reproducibility of hot-filament CVD. The usability of hot-filament CVD for diamond deposition on three-dimensional substrates is well known for CVD diamond shaft tools. We also develop interior diamond coatings for drawing dies, nozzles, and thread guides. Hot-filament CVD also enables the deposition of diamond film modifications with tailored properties. In order to adjust the surface topography to specific applications, we apply processes for smooth, fine-grained or textured diamond films for cutting tools and tribological applications. Rough diamond is employed for grinding applications. Multilayers of fine-grained and coarse-grained diamond have been developed, showing increased shock resistance due to reduced crack propagation. Hot-filament CVD is also used for in situ deposition of carbide coatings and diamond-carbide composites, and the deposition of non-diamond, silicon-based films. These coatings are suitable as diffusion barriers and are also applied for adhesion and stress engineering and for semiconductor applications, respectively

  12. Mechanosensitive kinetic preference of actin-binding protein to actin filament.

    Science.gov (United States)

    Inoue, Yasuhiro; Adachi, Taiji

    2016-04-01

    The kinetic preference of actin-binding proteins to actin filaments is altered by external forces on the filament. Such an altered kinetic preference is largely responsible for remodeling the actin cytoskeletal structure in response to intracellular forces. During remodeling, actin-binding proteins and actin filaments interact under isothermal conditions, because the cells are homeostatic. In such a temperature homeostatic state, we can rigorously and thermodynamically link the chemical potential of actin-binding proteins to stresses on the actin filaments. From this relationship, we can construct a physical model that explains the force-dependent kinetic preference of actin-binding proteins to actin filaments. To confirm the model, we have analyzed the mechanosensitive alternation of the kinetic preference of Arp2/3 and cofilin to actin filaments. We show that this model captures the qualitative responses of these actin-binding proteins to the forces, as observed experimentally. Moreover, our theoretical results demonstrate that, depending on the structural parameters of the binding region, actin-binding proteins can show different kinetic responses even to the same mechanical signal tension, in which the double-helix nature of the actin filament also plays a critical role in a stretch-twist coupling of the filament.

  13. A hot X-ray filament associated with A3017 galaxy cluster

    Science.gov (United States)

    Parekh, V.; Durret, F.; Padmanabh, P.; Pandge, M. B.

    2017-09-01

    Recent simulations and observations have shown large-scale filaments in the cosmic web connecting nodes, with accreting materials (baryonic and dark matter) flowing through them. Current high-sensitivity observations also show that the propagation of shocks through filaments can heat them up and make filaments visible between two or more galaxy clusters or around massive clusters, based on optical and/or X-ray observations. We are reporting here the special case of the cluster A3017 associated with a hot filament. The temperature of the filament is 3.4^{-0.77}_{+1.30} keV and its length is ∼1 Mpc. We have analysed its archival Chandra data and report various properties. We also analysed GMRT 235/610 MHz radio data. Radio observations have revealed symmetric two-sided lobes that fill cavities in the A3017 cluster core region, associated with central active galactic nucleus. In the radio map, we also noticed a peculiar linear vertical radio structure in the X-ray filament region which might be associated with a cosmic filament shock. This radio structure could be a radio phoenix or old plasma where an old relativistic population is re-accelerated by shock propagation. Finally, we put an upper limit on the radio luminosity of the filament region.

  14. FDTD analysis of temperature elevation in the lens of human and rabbit models due to near-field and far-field exposures at 2.45 GHz

    International Nuclear Information System (INIS)

    Oizumi, T.; Laakso, I.; Hirata, A.; Fujiwara, O.; Watanabe, S.; Taki, M.; Kojima, M.; Sasaki, H.; Sasaki, K.

    2013-01-01

    The eye is said to be one of the most sensitive organs to microwave heating. According to previous studies, the possibility of microwave-induced cataract formation has been experimentally investigated in rabbit and monkey eyes, but not for the human eye due to ethical reasons. In the present study, the temperature elevation in the lens, the skin around the eye and the core temperature of numerical human and rabbit models for far-field and near-field exposures at 2.45 GHz are investigated. The temperature elevations in the human and rabbit models were compared with the threshold temperatures for inducing cataracts, thermal pain in the skin and reversible health effects such as heat exhaustion or heat stroke. For plane-wave exposure, the core temperature elevation is shown to be essential both in the human and in the rabbit models as suggested in the international guidelines and standards. For localised exposure of the human eye, the temperature elevation of the skin was essential, and the lens temperature did not reach its threshold for thermal pain. On the other hand, the lens temperature elevation was found to be dominant for the rabbit eye. (authors)

  15. Temperature-dependent surface modification of Ta due to high-flux, low-energy He+ ion irradiation

    International Nuclear Information System (INIS)

    Novakowski, T.J.; Tripathi, J.K.; Hassanein, A.

    2015-01-01

    This work examines the response of Tantalum (Ta) as a potential candidate for plasma-facing components (PFCs) in future nuclear fusion reactors. Tantalum samples were exposed to high-flux, low-energy He + ion irradiation at different temperatures in the range of 823–1223 K. The samples were irradiated at normal incidence with 100 eV He + ions at constant flux of 1.2 × 10 21 ions m −2  s −1 to a total fluence of 4.3 × 10 24 ions m −2 . An additional Ta sample was also irradiated at 1023 K using a higher ion fluence of 1.7 × 10 25 ions m −2 (at the same flux of 1.2 × 10 21 ions m −2  s −1 ), to confirm the possibility of fuzz formation at higher fluence. This higher fluence was chosen to roughly correspond to the lower fluence threshold of fuzz formation in Tungsten (W). Surface morphology was characterized with a combination of field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). These results demonstrate that the main mode of surface damage is pinholes with an average size of ∼70 nm 2 for all temperatures. However, significantly larger pinholes are observed at elevated temperatures (1123 and 1223 K) resulting from the agglomeration of smaller pinholes. Ex situ X-ray photoelectron spectroscopy (XPS) provides information about the oxidation characteristics of irradiated surfaces, showing minimal exfoliation of the irradiated Ta surface. Additionally, optical reflectivity measurements are performed to further characterize radiation damage on Ta samples, showing gradual reductions in the optical reflectivity as a function of temperature.

  16. Bursting of filaments in the plasma focus

    International Nuclear Information System (INIS)

    Gratton, F.T.L.

    1976-01-01

    Photographs of the current sheath of (low energy) plasma focus show a disruption of the filaments. This phenomenon is interpreted as a vortex breakdown. Physical parameters which support this hypothesis are obtained from measurements, from the theoretical thickness of the current sheath given by Nardi and from some models of the plasma flow. The widening of a vortex due to axial velocity increase is analyzed by means of magnetohydrodynamic collinear models. The main results are: (1) the existence of a limit separating supercritical from subcritical regimes (their character changes with the ratio between kinetic and magnetic energy); (2) the existence of flow regimes where the vortex radius remains approximately constant for moderate increments of the external velocity; (3) the structure of the vortex may change substantially for a sufficiently large increment of the external velocity, even in subcritical states; (4) the possibility that a burst of the vortex may occur when the external velocity suffers a slowdown

  17. Natural Fiber Filament Wound Composites: A Review

    Directory of Open Access Journals (Sweden)

    Mohamed Ansari Suriyati

    2017-01-01

    Full Text Available In recent development, natural fibers have attracted the interest of engineers, researchers, professionals and scientists all over the world as an alternative reinforcement for fiber reinforced polymer composites. This is due to its superior properties such as high specific strength, low weight, low cost, fairly good mechanical properties, non-abrasive, eco-friendly and bio-degradable characteristics. In this point of view, natural fiber-polymer composites (NFPCs are becoming increasingly utilized in a wide variety of applications because they represent an ecological and inexpensive alternative to conventional petroleum-derived materials. On the other hand, considerable amounts of organic waste and residue from the industrial and agricultural processes are still underutilized as low-value energy sources. This is a comprehensive review discussing about natural fiber reinforced composite produced by filament winding technique.

  18. Characterization of type-I ELM induced filaments in the far scrape-off layer of ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Andreas

    2008-03-18

    This thesis focuses on the characterization of filaments and their propagation in the ASDEX Upgrade tokamak. The aim is to provide experimental measurements for understanding the filament formation process and their temporal evolution, and to provide a comprehensive database for an extrapolation to future fusion devices. For this purpose, a new magnetically driven probe for filament measurements has been developed and installed in ASDEX Upgrade. The probe carries several Langmuir probes and a magnetic coil in between. The Langmuir probes allow for measurements of the radial and poloidal/toroidal propagation of filaments as well as for measurements of filament size, density, and their radial (or temporal) evolution. The magnetic coil on the filament probe allows for measurements of currents in the filaments. A set of 7 coils, measuring 3 field components at different positions along the filament, has been used to measure the magnetic signature during an ELM. The aim was, on the one hand, to study which role filaments play for the magnetic structure, and on the other hand if the parallel currents predicted by the sheath damped model could be verified. Filament temperatures have been derived and the corresponding heat transport mechanisms have been studied. (orig.)

  19. In Tomotherapy, for the Maintenance of Body Temperature due to Substance Use, Changes in Dose Assessment in the Organization

    International Nuclear Information System (INIS)

    Hwang, Jae Woong; Jeong, Do Hyeong; Kim, Dae Woong; Yang, Jin Ho; Choi, Gye Suk

    2010-01-01

    TOMO therapy treatment for a relatively long run Beam time and temperature-sensitive detector, such as CT clinics in optimal temperature (20-21 degree) to maintain a constant temperature in addition to its own Chamber Cooling system is activating. TOMO This clinic has been reduced in the patients' body temperature to keep the sheets and covers over the treated area. Therefore, these materials for any changes in the organization gives the dose were analyzed. To compare changes in the organization Dose Phantom cheese (Cheese Phantom) were used, CT-simulation taking the center point of the cheese phantom PTV (Planning Target Volume, treatment planning target volume) by setting Daily dose 200 cGy, 3 meetings planned treatment. PTV, PTV +7 cm, PTV +14 cm, the total count points on the phantom using the Ion chamber cover without any substance to measure the dose, and one of the most commonly used treatment, including the frequently used four kinds of bedding materials (febric 0.8 mm, gown 1.4 mm, rug, 3.3 mm, blanket 13.7 mm) and covered with a phantom and the dose measured at the same location were analyzed 3 times each. PTV, PTV +7 cm, PTV +14 cm from the point of any substance measured in the state are covered with four kinds of materials (fabric, gown, rug, blanket) was measured in the covered states and compares their results, PTV respectively -0.17%, -0.44%, -0.53% and -0.9% change, PTV +7 cm, respectively -0.04%, +0.07%, +0.06%, +0.07%, were changed, PTV +14 cm, respectively 0%, -0.06%, -0.02%, +0.6%, respectively. These results TOMO treatment to patients to maintain their body mass by using PTV thickness of the material decreased in proportion to. PTV +7 cm, but showed slight changes in the point, PTV +14 cm at the point of the dose was increased a little. Sejijeom all the difference in treatment tolerance ±3% range, this is confirmed in the coming treatment will not affect the larger should be considered.

  20. Filament growth and resistive switching in hafnium oxide memristive devices.

    Science.gov (United States)

    Dirkmann, Sven; Kaiser, Jan; Wenger, Christian; Mussenbrock, Thomas

    2018-03-30

    We report on the resistive switching in TiN/Ti/HfO 2 /TiN memristive devices. A resistive switching model for the device is proposed, taking into account important experimental and theoretical findings. The proposed switching model is validated using 2D and 3D kinetic Monte Carlo simulation models. The models are consistently coupled to the electric field and different current transport mechanisms as direct tunneling, trap assisted tunneling (TAT), ohmic transport, and transport through a quantum point contact (QPC) have been considered. We find that the numerical results are in excellent agreement with experimentally obtained data. Important device parameters, which are difficult or impossible to measure in experiments, are calculated. This includes the shape of the conductive filament, width of filament constriction, current density, and temperature distribution. To obtain insights in the operation of the device, consecutive cycles have been simulated. Furthermore, the switching kinetic for the forming and set process for different applied voltages is investigated. Finally, the influence of an annealing process on the filament growth, especially on the filament growth direction, is discussed.

  1. Femtosecond Laser Filamentation for Atmospheric Sensing

    Directory of Open Access Journals (Sweden)

    Huai Liang Xu

    2010-12-01

    Full Text Available Powerful femtosecond laser pulses propagating in transparent materials result in the formation of self-guided structures called filaments. Such filamentation in air can be controlled to occur at a distance as far as a few kilometers, making it ideally suited for remote sensing of pollutants in the atmosphere. On the one hand, the high intensity inside the filaments can induce the fragmentation of all matters in the path of filaments, resulting in the emission of characteristic fluorescence spectra (fingerprints from the excited fragments, which can be used for the identification of various substances including chemical and biological species. On the other hand, along with the femtosecond laser filamentation, white-light supercontinuum emission in the infrared to UV range is generated, which can be used as an ideal light source for absorption Lidar. In this paper, we present an overview of recent progress concerning remote sensing of the atmosphere using femtosecond laser filamentation.

  2. FDTD analysis of human body-core temperature elevation due to RF far-field energy prescribed in the ICNIRP guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu [Department of Computer Science and Engineering, Nagoya Institute of Technology (Japan)

    2007-08-21

    This study investigated the relationship between the specific absorption rate and temperature elevation in an anatomically-based model named NORMAN for exposure to radio-frequency far fields in the ICNIRP guidelines (1998 Health Phys. 74 494-522). The finite-difference time-domain method is used for analyzing the electromagnetic absorption and temperature elevation in NORMAN. In order to consider the variability of human thermoregulation, parameters for sweating are derived and incorporated into a conventional sweating formula. First, we investigated the effect of blood temperature variation modeling on body-core temperature. The computational results show that the modeling of blood temperature variation was the dominant factor influencing the body-core temperature. This is because the temperature in the inner tissues is elevated via the circulation of blood whose temperature was elevated due to EM absorption. Even at different frequencies, the body-core temperature elevation at an identical whole-body average specific absorption rate (SAR) was almost the same, suggesting the effectiveness of the whole-body average SAR as a measure in the ICNIRP guidelines. Next, we discussed the effect of sweating on the temperature elevation and thermal time constant of blood. The variability of temperature elevation caused by the sweating rate was found to be 30%. The blood temperature elevation at the basic restriction in the ICNIRP guidelines of 0.4 W kg{sup -1} is 0.25 {sup 0}C even for a low sweating rate. The thermal time constant of blood temperature elevation was 23 min and 52 min for a man with a lower and a higher sweating rate, respectively, which is longer than the average time of the SAR in the ICNIRP guidelines. Thus, the whole-body average SAR required for blood temperature elevation of 1 {sup 0}C was 4.5 W kg{sup -1} in the model of a human with the lower sweating coefficients for 60 min exposure. From a comparison of this value with the basic restriction in the

  3. FDTD analysis of human body-core temperature elevation due to RF far-field energy prescribed in the ICNIRP guidelines

    International Nuclear Information System (INIS)

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu

    2007-01-01

    This study investigated the relationship between the specific absorption rate and temperature elevation in an anatomically-based model named NORMAN for exposure to radio-frequency far fields in the ICNIRP guidelines (1998 Health Phys. 74 494-522). The finite-difference time-domain method is used for analyzing the electromagnetic absorption and temperature elevation in NORMAN. In order to consider the variability of human thermoregulation, parameters for sweating are derived and incorporated into a conventional sweating formula. First, we investigated the effect of blood temperature variation modeling on body-core temperature. The computational results show that the modeling of blood temperature variation was the dominant factor influencing the body-core temperature. This is because the temperature in the inner tissues is elevated via the circulation of blood whose temperature was elevated due to EM absorption. Even at different frequencies, the body-core temperature elevation at an identical whole-body average specific absorption rate (SAR) was almost the same, suggesting the effectiveness of the whole-body average SAR as a measure in the ICNIRP guidelines. Next, we discussed the effect of sweating on the temperature elevation and thermal time constant of blood. The variability of temperature elevation caused by the sweating rate was found to be 30%. The blood temperature elevation at the basic restriction in the ICNIRP guidelines of 0.4 W kg -1 is 0.25 0 C even for a low sweating rate. The thermal time constant of blood temperature elevation was 23 min and 52 min for a man with a lower and a higher sweating rate, respectively, which is longer than the average time of the SAR in the ICNIRP guidelines. Thus, the whole-body average SAR required for blood temperature elevation of 1 0 C was 4.5 W kg -1 in the model of a human with the lower sweating coefficients for 60 min exposure. From a comparison of this value with the basic restriction in the ICNIRP guidelines of

  4. A model of filament-wound thin cylinders

    Science.gov (United States)

    Calius, Emilio P.; Springer, George S.

    1990-01-01

    A model was developed for simulating he manufacturing process of filament-wound cylinders made of a thermoset matrix composite. The model relates the process variables (winding speed, fiber tension, applied temperature) to the parameters characterizing the composite cylinder and the mandrel. The model is applicable to cylinders for which the diameter is large compared to the wall thickness. The model was implemented by a user-friendly computer code suitable for generating numerical results.

  5. Filament winding cylinders. III - Selection of the process variables

    Science.gov (United States)

    Lee, Soo-Yong; Springer, George S.

    1990-01-01

    By using the Lee-Springer filament winding model temperatures, degrees of cure, viscosities, stresses, strains, fiber tensions, fiber motions, and void diameters were calculated in graphite-epoxy composite cylinders during the winding and subsequent curing. The results demonstrate the type of information which can be generated by the model. It is shown, in reference to these results, how the model, and the corresponding WINDTHICK code, can be used to select the appropriate process variables.

  6. Effects of anthropogenic heat due to air-conditioning systems on an extreme high temperature event in Hong Kong

    Science.gov (United States)

    Wang, Y.; Li, Y.; Di Sabatino, S.; Martilli, A.; Chan, P. W.

    2018-03-01

    Anthropogenic heat flux is the heat generated by human activities in the urban canopy layer, which is considered the main contributor to the urban heat island (UHI). The UHI can in turn increase the use and energy consumption of air-conditioning systems. In this study, two effective methods for water-cooling air-conditioning systems in non-domestic areas, including the direct cooling system and central piped cooling towers (CPCTs), are physically based, parameterized, and implemented in a weather research and forecasting model at the city scale of Hong Kong. An extreme high temperature event (June 23-28, 2016) in the urban areas was examined, and we assessed the effects on the surface thermal environment, the interaction of sea-land breeze circulation and urban heat island circulation, boundary layer dynamics, and a possible reduction of energy consumption. The results showed that both water-cooled air-conditioning systems could reduce the 2 m air temperature by around 0.5 °C-0.8 °C during the daytime, and around 1.5 °C around 7:00-8:00 pm when the planetary boundary layer (PBL) height was confined to a few hundred meters. The CPCT contributed around 80%-90% latent heat flux and significantly increased the water vapor mixing ratio in the atmosphere by around 0.29 g kg-1 on average. The implementation of the two alternative air-conditioning systems could modify the heat and momentum of turbulence, which inhibited the evolution of the PBL height (a reduction of 100-150 m), reduced the vertical mixing, presented lower horizontal wind speed and buoyant production of turbulent kinetic energy, and reduced the strength of sea breeze and UHI circulation, which in turn affected the removal of air pollutants. Moreover, the two alternative air-conditioning systems could significantly reduce the energy consumption by around 30% during extreme high temperature events. The results of this study suggest potential UHI mitigation strategies and can be extended to

  7. REMIX: a computer program for temperature transients due to high pressure injection after interruption of natural circulation

    International Nuclear Information System (INIS)

    Iyer, K.; Nourbakhsh, H.P.; Theofanous, T.G.

    1986-05-01

    This report describes the features and use of several computer programs developed on the basis of the Regional Mixing Model (RMM). This model provides a phenomenologically-based analytical description of the stratified flow and temperature fields resulting from High Pressure Safety Injection (HPI) in the stagnated loops of a Pressurized Water Reactor (PWR). The basic program is called REMIX and is intended for thermally-induced stratification at low Froude number injections. The REMIX-S version is intended for solute-induced stratification with or without thermal effects as found in several experimental simulations. The NEWMIX program is a derivative of REMIX representing the limit of maximum possible mixing within the cold leg and is intended for high Froude number injections. The NEWMIX-S version accounts for solute effects. Listings of all programs and sample problem input and output files are included. 10 refs

  8. Assembly of Superparamagnetic Filaments in External Field.

    Science.gov (United States)

    Wei, Jiachen; Song, Fan; Dobnikar, Jure

    2016-09-13

    We present a theoretical and simulation study of anchored magneto-elastic filaments in external magnetic field. The filaments are composed of a mixture of superparamagnetic and nonmagnetic colloidal beads interlinked with elastic springs. We explore the steady-state structures of filaments with various composition and bending rigidity subject to external magnetic field parallel to the surface. The interplay of elastic and induced magnetic interactions results in a rich phase behavior with morphologies reminiscent of macromolecular folding: bent filaments, loops, sheets, helicoids, and other collapsed structures. Our results provide new insights into the design of hierarchically assembled supramolecular structures with controlled response to external stimuli.

  9. Evaluation of filamentous green algae as feedstocks for biofuel production.

    Science.gov (United States)

    Zhang, Wei; Zhao, Yonggang; Cui, Binjie; Wang, Hui; Liu, Tianzhong

    2016-11-01

    Compared with unicellular microalgae, filamentous algae have high resistance to grazer-predation and low-cost recovery in large-scale production. Green algae, as the most diverse group of algae, included numerous filamentous genera and species. In this study, records of filamentous genera and species in green algae were firstly censused and classified. Then, seven filamentous strains subordinated in different genera were cultivated in bubbled-column to investigate their growth rate and energy molecular (lipid and starch) capacity. Four strains including Stigeoclonium sp., Oedogonium nodulosum, Hormidium sp. and Zygnema extenue were screened out due to their robust growth. And they all could accumulate triacylglycerols and starch in their biomass, but with different capacity. After nitrogen starvation, Hormidium sp. and Oedogonium nodulosum respectively exhibited high capacity of lipid (45.38% in dry weight) and starch (46.19% in dry weight) accumulation, which could be of high potential as feedstocks for biodiesel and bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Subcutaneous implants of polypropylene filaments.

    Science.gov (United States)

    Liebert, T C; Chartoff, R P; Cosgrove, S L; McCuskey, R S

    1976-11-01

    Extruded filaments of unmodified polypropylene (PP) with and without antioxidant were implanted subcutaneously in hamsters in order to determine their rate of degradation. Specimens were removed periodically during a 5 month test period and analyzed by infrared spectroscopy and dynamic mechanical testing. The analyses show that degradation beigns to occur after only a few days. Although the reaction sequence is not known, several factors suggest that the in vivo degradation process is similar to autoxidation which occurs in air or oxygen. The infrared data indicate that the hydroxyl content of the implants increases at a rate of 0.061 mg/g polypropylene per day during the initiation phase of the reaction. An induction time of 108 days was extablished. Carbonyl bonds appear after an implantation time of 50--90 days and increase therafter. Mechanical tests indicate a decrease in the dynamic loss tangent, tan delta, during the first month of implantation for unmodified polypropylene. No change in the infrared spectra or tan delta was observed, however, for implants containing an antioxidant. Thus, it is apparent that polypropylene filaments implanted subcutaneously in hamsters degrade by an oxidation process which is retarded effectively by using an antioxidant. While the findings reported are specific to subcutaneous polypropylene implants, they suggest that degradation of other systems may involve similar processes. This notion suggests directions for further research on increasing the in vivo stability of synthetic polymers. Long-term effects of polymer implantation upon tissue were not studied in this work.

  11. Measurement of Material Functions in Extensional Flow Using the Filament Stretch Rheometer

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Nielsen, Jens Kromann; Laille, Philippe

    2007-01-01

    The measurement of material functions other than startup and steady viscosity is demonstrated using the Filament Stretching Rheometer. This includes startup of uniaxial elongational flow (potentially until steady state) followed by stress relaxation, large amplitude oscillatory elongational flow ...... imposed upon a constant strain rate uni axial elongation and startup of uniaxial elongational flow followed by biaxial squeezing. The used Filament Stretching Rheometer allows measurements on polymeric fluids (including polymeric melts) from room temperatures until 200°C....

  12. A Statistical Study of Solar Filament Eruptions

    Science.gov (United States)

    Schanche, Nicole; Aggarwal, Ashna; Reeves, Kathy; Kempton, Dustin James; Angryk, Rafal

    2016-05-01

    Solar filaments are cool, dark channels of partially-ionized plasma that lie above the chromosphere. Their structure follows the neutral line between local regions of opposite magnetic polarity. Previous research (e.g. Schmieder et al. 2013, McCauley et al. 2015) has shown a positive correlation (70-80%) between the occurrence of filament eruptions and coronal mass ejections (CME’s). In this study, we attempt to use properties of the filament in order to predict whether or not a given filament will erupt. This prediction would help to better predict the occurrence of an oncoming CME. To track the evolution of a filament over time, a spatio-temporal algorithm that groups separate filament instances from the Heliophysics Event Knowledgebase (HEK) into filament tracks was developed. Filament features from the HEK metadata, such as length, chirality, and tilt are then combined with other physical features, such as the overlying decay index for two sets of filaments tracks - those that erupt and those that remain bound. Using statistical methods such as the Kolmogrov-Smirnov test and a Random Forest Classifier, we determine the effectiveness of the combined features in prediction. We conclude that there is significant overlap between the properties of filaments that erupt and those that do not, leading to predictions only ~5-10% above chance. However, the changes in features, such as a change in the filament's length over time, were determined to have the highest predictive power. We discuss the possible physical connections with the change in these features."This project has been supported by funding from the Division of Advanced Cyberinfrastructure within the Directorate for Computer and Information Science and Engineering, the Division of Astronomical Sciences within the Directorate for Mathematical and Physical Sciences, and the Division of Atmospheric and Geospace Sciences within the Directorate for Geosciences, under NSF award #1443061.”

  13. Study on the Filament Yarns Spreading Techniques and Assessment Methods of the Electronic Fiberglass Fabric

    Science.gov (United States)

    Wang, Xi; Chen, Shouhui; Zheng, Tianyong; Ning, Xiangchun; Dai, Yifei

    2018-03-01

    The filament yarns spreading techniques of electronic fiberglass fabric were developed in the past few years in order to meet the requirements of the development of electronic industry. Copper clad laminate (CCL) requires that the warp and weft yarns of the fabric could be spread out of apart and formed flat. The penetration performance of resin could be improved due to the filament yarns spreading techniques of electronic fiberglass fabric, the same as peeling strength of CCL and drilling performance of printed circuit board (PCB). This paper shows the filament yarns spreading techniques of electronic fiberglass fabric from several aspects, such as methods and functions, also with the assessment methods of their effects.

  14. AC Loss Reduction in Filamentized YBCO Coated Conductors with Virtual Transverse Cross-cuts

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yifei [ORNL; Duckworth, Robert C [ORNL; Ha, Tam T [ORNL; List III, Frederick Alyious [ORNL; Gouge, Michael J [ORNL; Chen, Y [SuperPower Incorporated, Schenectady, New York; X, Xiong, [SuperPower Incorporated, Schenectady, New York; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York

    2011-01-01

    While the performance of YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO)-based coated conductors under dc currents has improved significantly in recent years, filamentization is being investigated as a technique to reduce ac loss so that the 2nd generation (2G) high temperature superconducting (HTS) wires can also be utilized in various ac power applications such as cables, transformers and fault current limiters. Experimental studies have shown that simply filamentizing the superconducting layer is not effective enough to reduce ac loss because of incomplete flux penetration in between the filaments as the length of the tape increases. To introduce flux penetration in between the filaments more uniformly and further reduce the ac loss, virtual transverse cross-cuts were made in superconducting filaments of the coated conductors fabricated using the metal organic chemical vapor deposition (MOCVD) method. The virtual transverse cross-cuts were formed by making cross-cuts (17 - 120 {micro}m wide) on the IBAD (ion beam assisted deposition)-MgO templates using laser scribing followed by depositing the superconducting layer ({approx} 0.6 {micro}m thick). AC losses were measured and compared for filamentized conductors with and without the cross-cuts under applied peak ac fields up to 100 mT. The results were analyzed to evaluate the efficacy of filament decoupling and the feasibility of using this method to achieve ac loss reduction.

  15. Computational model for calculating body-core temperature elevation in rabbits due to whole-body exposure at 2.45 GHz

    Science.gov (United States)

    Hirata, Akimasa; Sugiyama, Hironori; Kojima, Masami; Kawai, Hiroki; Yamashiro, Yoko; Fujiwara, Osamu; Watanabe, Soichi; Sasaki, Kazuyuki

    2008-06-01

    In the current international guidelines and standards with regard to human exposure to electromagnetic waves, the basic restriction is defined in terms of the whole-body average-specific absorption rate. The rationale for the guidelines is that the characteristic pattern of thermoregulatory response is observed for the whole-body average SAR above a certain level. However, the relationship between energy absorption and temperature elevation was not well quantified. In this study, we improved our thermal computation model for rabbits, which was developed for localized exposure on eye, in order to investigate the body-core temperature elevation due to whole-body exposure at 2.45 GHz. The effect of anesthesia on the body-core temperature elevation was also discussed in comparison with measured results. For the whole-body average SAR of 3.0 W kg-1, the body-core temperature in rabbits elevates with time, without becoming saturated. The administration of anesthesia suppressed body-core temperature elevation, which is attributed to the reduced basal metabolic rate.

  16. Theory of Semiflexible Filaments and Networks

    Directory of Open Access Journals (Sweden)

    Fanlong Meng

    2017-02-01

    Full Text Available We briefly review the recent developments in the theory of individual semiflexible filaments, and of a crosslinked network of such filaments, both permanent and transient. Starting from the free energy of an individual semiflexible chain, models on its force-extension relation and other mechanical properties such as Euler buckling are discussed. For a permanently crosslinked network of filaments, theories on how the network responds to deformation are provided, with a focus on continuum approaches. Characteristic features of filament networks, such as nonlinear stress-strain relation, negative normal stress, tensegrity, and marginal stability are discussed. In the new area of transient filament network, where the crosslinks can be dynamically broken and re-formed, we show some recent attempts for understanding the dynamics of the crosslinks, and the related rheological properties, such as stress relaxation, yield stress and plasticity.

  17. Epithelial Intermediate Filaments: Guardians against Microbial Infection?

    Directory of Open Access Journals (Sweden)

    Florian Geisler

    2016-06-01

    Full Text Available Intermediate filaments are abundant cytoskeletal components of epithelial tissues. They have been implicated in overall stress protection. A hitherto poorly investigated area of research is the function of intermediate filaments as a barrier to microbial infection. This review summarizes the accumulating knowledge about this interaction. It first emphasizes the unique spatial organization of the keratin intermediate filament cytoskeleton in different epithelial tissues to protect the organism against microbial insults. We then present examples of direct interaction between viral, bacterial, and parasitic proteins and the intermediate filament system and describe how this affects the microbe-host interaction by modulating the epithelial cytoskeleton, the progression of infection, and host response. These observations not only provide novel insights into the dynamics and function of intermediate filaments but also indicate future avenues to combat microbial infection.

  18. Coupling Current and Hysteresis Losses of Bi2212 Round Wires with Twisted Filaments

    CERN Document Server

    Yang, I; Young, EA; Falorio, I; Ballarino, A; Bottura, L; Miao, H; Huang, Y

    2015-01-01

    AC loss measurements have been carried out on Bi2212 round wires of different twist pitches. With systematical variation of sample temperature (5 K – 70 K) and ac field amplitude (≤0.2 T) as well as frequency (20 Hz – 2 kHz), this work shows (a) the full coupling of the non-twisted wire, (b) the uncoupling of sub-wires by twisting at moderate pitch up to 12 mm, (c) a relatively short time constant of milliseconds for the coupling current due to a high transverse resistivity, and (d) an effective (de)coupling diameter of 0.4mm about 1.6x of sub-wire bundles. The results suggest a promising potential for improving filament decoupling.

  19. Particles trajectories in magnetic filaments

    Energy Technology Data Exchange (ETDEWEB)

    Bret, A. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain)

    2015-07-15

    The motion of a particle in a spatially harmonic magnetic field is a basic problem involved, for example, in the mechanism of formation of a collisionless shock. In such settings, it is generally reasoned that particles entering a Weibel generated turbulence are trapped inside it, provided their Larmor radius in the peak field is smaller than the field coherence length. The goal of this work is to put this heuristic conclusion on firm ground by studying, both analytically and numerically, such motion. A toy model is analyzed, consisting of a relativistic particle entering a region of space occupied by a spatially harmonic field. The particle penetrates the magnetic structure in a direction aligned with the magnetic filaments. Although the conclusions are not trivial, the main result is confirmed.

  20. Kinetics of filamentous phage assembly

    Science.gov (United States)

    Ploss, Martin; Kuhn, Andreas

    2010-12-01

    Filamentous phages release their progeny particles by a secretory process without lysing the bacterial cell. By this process about 6 viral particles per min are secreted from each cell. We show here that when the major coat protein (gp8) is provided from a plasmid we observe a phage progeny production rate depending on the induction of gp8 by IPTG. We also show that a transfection of Escherichia coli lacking F-pili is observed using a mutant of M13 that carries an ampicillin resistance gene, and phage particles are secreted in the absence of an F-plasmid. Extruding phage was visualized by atomic force microscopy (AFM) and by transmission electron microscopy (TEM) using gold-labeled antibodies to the major coat protein.

  1. Filamentous Growth in Eremothecium Fungi

    DEFF Research Database (Denmark)

    Oskarsson, Therese

    , this thesis deals with some of the aspects of hyphal growth, which is an important virulence factor for pathogenic fungi infecting both humans and plants. Hyphal establishment through continuous polar growth is a complex process, requiring the careful coordination of a large subset of proteins involved...... in polarity establishment and maintenance, cytoskeleton dynamics and intracellular transport. The first part of this thesis addresses the A. gossypii Arf3 small GTPase and its GEF- and GAP regulators; Yel1 and Gts1, which has been implicated in polar growth in a wide range of organisms. We could demonstrate......-regulatory activity of AgGts1, the protein could have additional actin organizing properties. In the second and third part, this thesis addresses the use of A. gossypii and its relative E. cymbalariae as model organisms for filamentous growth. A series of assays analyzed the capability of Eremothecium genus fungi...

  2. Polar patterns of driven filaments.

    Science.gov (United States)

    Schaller, Volker; Weber, Christoph; Semmrich, Christine; Frey, Erwin; Bausch, Andreas R

    2010-09-02

    The emergence of collective motion exhibited by systems ranging from flocks of animals to self-propelled microorganisms to the cytoskeleton is a ubiquitous and fascinating self-organization phenomenon. Similarities between these systems, such as the inherent polarity of the constituents, a density-dependent transition to ordered phases or the existence of very large density fluctuations, suggest universal principles underlying pattern formation. This idea is followed by theoretical models at all levels of description: micro- or mesoscopic models directly map local forces and interactions using only a few, preferably simple, interaction rules, and more macroscopic approaches in the hydrodynamic limit rely on the systems' generic symmetries. All these models characteristically have a broad parameter space with a manifold of possible patterns, most of which have not yet been experimentally verified. The complexity of interactions and the limited parameter control of existing experimental systems are major obstacles to our understanding of the underlying ordering principles. Here we demonstrate the emergence of collective motion in a high-density motility assay that consists of highly concentrated actin filaments propelled by immobilized molecular motors in a planar geometry. Above a critical density, the filaments self-organize to form coherently moving structures with persistent density modulations, such as clusters, swirls and interconnected bands. These polar nematic structures are long lived and can span length scales orders of magnitudes larger than their constituents. Our experimental approach, which offers control of all relevant system parameters, complemented by agent-based simulations, allows backtracking of the assembly and disassembly pathways to the underlying local interactions. We identify weak and local alignment interactions to be essential for the observed formation of patterns and their dynamics. The presented minimal polar-pattern-forming system

  3. Actinomycetoma in arm disseminated to lung with grains of Nocardia brasiliensis with peripheral filaments.

    Science.gov (United States)

    Muñoz-Hernández, Bertha; Noyola, María Cecilia; Palma-Cortés, Gabriel; Rosete, Dora Patricia; Galván, Miguel Angel; Manjarrez, María Eugenia

    2009-07-01

    Actinomycetomas represent 97.8% of mycetomas in Mexico, where 86.6% are produced by Nocardia brasiliensis. We report a case of actinomycetoma in the arm by Nocardia brasiliensis disseminated to lung. Uncommon grains were observed which present outside peripheral filaments and also numerous filaments loosing the grains. These characteristics of the grains are due probably because for the long treatment with antibiotics of the patient. In situ antibiotic action against the microcolonies is discussed.

  4. Characterizing interstellar filaments as revealed by the Herschel Gould Belt survey: Insights into the initial conditions for star formation

    International Nuclear Information System (INIS)

    Arzoumanian, Doris

    2012-01-01

    This thesis aims to characterize the physical properties of interstellar filaments imaged in nearby molecular clouds with the Herschel Space Observatory as part of the Herschel Gould Belt survey. In order to get insight into the formation and evolution of interstellar filaments I analyzed, during my PhD work, a large sample of filaments detected in various nearby clouds. The observed density profiles of the filaments show a power law behavior at large radii and their dust temperature profiles show a drop towards the center. The filaments are characterized by a narrow distribution of de-convolved inner widths, centered around a typical value of ∼ 0.1 pc, while they span more than three orders of magnitude in central column density. This typical filament width corresponds to the sonic scale below which interstellar turbulence becomes subsonic in diffuse gas, which may suggest that the filaments form as a result of the dissipation of large-scale turbulence. While the turbulent fragmentation picture provides a plausible mechanism for forming interstellar filaments, the fact that pre-stellar cores tend to form in dense, gravitationally unstable filaments suggests that gravity is a major driver in the subsequent evolution of the dense supercritical filaments. The latter hypothesis is supported by molecular line observations with the IRAM 30 m telescope, which show an increase in the non-thermal velocity dispersion of supercritical filaments as a function of their central column density, suggesting that self gravitating filaments grow in mass per unit length by accretion of background material while at the same time fragmenting into star-forming cores. (author) [fr

  5. Filament Activation in Response to Magnetic Flux Emergence and Cancellation in Filament Channels

    Science.gov (United States)

    Li, Ting; Zhang, Jun; Ji, Haisheng

    2015-06-01

    We conducted a comparative analysis of two filaments that showed a quite different activation in response to the flux emergence within the filament channels. The observations from the Solar Dynamics Observatory (SDO) and Global Oscillation Network Group (GONG) were made to analyze the two filaments on 2013 August 17 - 20 (SOL2013-08-17) and September 29 (SOL2013-09-29). The first event showed that the main body of the filament was separated into two parts when an active region (AR) emerged with a maximum magnetic flux of about 6.4×1021 Mx underlying the filament. The close neighborhood and common direction of the bright threads in the filament and the open AR fan loops suggest a similar magnetic connectivity of these two flux systems. The equilibrium of the filament was not destroyed three days after the start of the emergence of the AR. To our knowledge, similar observations have never been reported before. In the second event, the emerging flux occurred nearby a barb of the filament with a maximum magnetic flux of 4.2×1020 Mx, about one order of magnitude lower than that of the first event. Two patches of parasitic polarity in the vicinity of the barb merged, then cancelled with nearby network fields. About 20 hours after the onset of the emergence, the filament erupted. Our findings imply that the location of emerging flux within the filament channel is probably crucial to filament evolution. If the flux emergence appears nearby the barbs, it is highly likely that the emerging flux and the filament magnetic fields will cancel, which may lead to the eruption of the filament. The comparison of the two events shows that the emergence of a small AR may still not be enough to disrupt the stability of a filament system, and the actual eruption only occurs after the flux cancellation sets in.

  6. Linear viscoelastic characterization from filament stretching rheometry

    DEFF Research Database (Denmark)

    Wingstrand, Sara Lindeblad; Alvarez, Nicolas J.; Hassager, Ole

    Traditionally, linear viscoelasticity is measured using small amplitude oscillatory shear flow. Due to experimental difficulties, shear flows are predominately confined to the linear and mildly nonlinear regime. On the other hand, extensional flows have proven more practical in measuring viscoela......Traditionally, linear viscoelasticity is measured using small amplitude oscillatory shear flow. Due to experimental difficulties, shear flows are predominately confined to the linear and mildly nonlinear regime. On the other hand, extensional flows have proven more practical in measuring...... viscoelasticity well into the nonlinear regime. Therefore at present, complete rheological characterization of a material requires two apparatuses: a shear and an extensional rheometer. This work is focused on developing a linear viscoelastic protocol for the filament stretching rheometer (FSR) in order...... to measure both linear and nonlinear dynamics on a single apparatus. With a software modification to the FSR motor control, we show that linear viscoelasticity can be measured via small amplitude squeeze flow (SASF). Squeeze flow is a combination of both shear and extensional flow applied by axially...

  7. Model planetary nebulae: the effect of shadowed filaments on low ionization potential ion radiation

    International Nuclear Information System (INIS)

    Katz, A.

    1977-01-01

    Previous homogeneous model planetary nebulae calculations No. 4 have yielded emission strengths for low ionization potential No. 4 ions which are considerably lower than those observed. Several attempts were to correct this problem by the inclusion of optically thin condensations, the use of energy flux distributions from stellar model calculations instead of blackbody spectrum stars, and the inclusion of dust in the nebulae. The effect that shadowed filaments have on the ionization and thermal structure of model nebulae and the resultant line strengths are considered. These radial filaments are shielded from the direct stellar ionizing radiation by optically thick condensations in the nebula. Theoretical observational evidence exists for the presence of condensations and filaments. Since the only source of ionizing photons in the shadowed filaments is due to diffuse photons produced by recombination, ions of lower ionization potential are expected to exist there in greater numbers than those found in the rest of the nebula. This leads to increased line strengths from these ions and increases their values to match the observational values. It is shown that these line strengths in the filaments increase by over one to two orders of magnitude relative to values found in homogeneous models. This results in an increase of approximately one order of magnitude for these lines when contributions from both components of the nebula are considered. The parameters that determine the exact value of the increase are the radial location of the filaments in the nebula and the fraction of the nebular volume occupied by the filaments

  8. Automatic Detect and Trace of Solar Filaments

    Science.gov (United States)

    Fang, Cheng; Chen, P. F.; Tang, Yu-hua; Hao, Qi; Guo, Yang

    We developed a series of methods to automatically detect and trace solar filaments in solar Hα images. The programs are able to not only recognize filaments and determine their properties, such as the position, the area and other relevant parameters, but also to trace the daily evolution of the filaments. For solar full disk Hα images, the method consists of three parts: first, preprocessing is applied to correct the original images; second, the Canny edge-detection method is used to detect the filaments; third, filament properties are recognized through the morphological operators. For each Hα filament and its barb features, we introduced the unweighted undirected graph concept and adopted Dijkstra shortest-path algorithm to recognize the filament spine; then, using polarity inversion line shift method for measuring the polarities in both sides of the filament to determine the filament axis chirality; finally, employing connected components labeling method to identify the barbs and calculating the angle between each barb and spine to indicate the barb chirality. Our algorithms are applied to the observations from varied observatories, including the Optical & Near Infrared Solar Eruption Tracer (ONSET) in Nanjing University, Mauna Loa Solar Observatory (MLSO) and Big Bear Solar Observatory (BBSO). The programs are demonstrated to be effective and efficient. We used our method to automatically process and analyze 3470 images obtained by MLSO from January 1998 to December 2009, and a butterfly diagram of filaments is obtained. It shows that the latitudinal migration of solar filaments has three trends in the Solar Cycle 23: The drift velocity was fast from 1998 to the solar maximum; after the solar maximum, it became relatively slow and after 2006, the migration became divergent, signifying the solar minimum. About 60% filaments with the latitudes larger than 50 degree migrate towards the Polar Regions with relatively high velocities, and the latitudinal migrating

  9. Projected Years Lost due to Disabilities (YLDs) for bacillary dysentery related to increased temperature in temperate and subtropical cities of China.

    Science.gov (United States)

    Zhang, Ying; Bi, Peng; Sun, Yuwei; Hiller, Janet E

    2012-02-01

    The impact of climate change on enteric infection has been a concern in recent years. This study aims to project disability burdens of bacillary dysentery (BD) associated with increasing temperature in different climatic zones in China. Years Lost due to Disabilities (YLDs) were used as the measure of burden of bacillary dysentery in this study. A temperate city in northern China and a subtropical city in southern China were selected as the study areas. The quantitative relationship between temperature and the number of cases in each city was base on the regression models developed in our previous studies. YLDs for bacillary dysentery in 2000 were used as the baseline data. Projection of YLDs for bacillary dysentery in 2020 and 2050 under future temperature scenarios were conducted. Demographic changes over the next 20 to 50 years in study cities were considered in the projections. Under the temperature scenarios alone, the YLDs for bacillary dysentery may increase by up to 80% by 2020 and 174% by 2050 in the temperate city and up to 75% increase in the YLDs by 2020 and a 147% increase by 2050 in the tropical city. Considering potential changes in both temperature and population size and structure, if other factors remain constant, compared with the YLDs observed in 2000, the YLDs for bacillary dysentery may double by 2020 and triple by 2050 in both the temperate and subtropical cities in China. The temperature-related health burden of enteric infection in China may greatly increase in the future if there is no effective intervention. Relevant public health strategies should be developed at an earlier stage to prevent and reduce the impact of infectious disease associated with climate change.

  10. In situ observations of crack formation in multi-filament Bi-2223 HTS tapes

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Horsewell, Andy; Skov-Hansen, P.

    2002-01-01

    High temperature superconducting tapes (BSCCO filaments embedded in Ag) were subjected to Uniaxial tension in an environmental scanning electron microscope, allowing in situ observation of cracking of the ceramic filaments. The first cracks were found to appear in the ceramic filaments at a strain...... around 0.15%, More cracks formed with increasing strain. The cracks covered the entire thickness of the filament. but did not Continue into the surrounding (ductile) Ag matrix. These 'tunnel cracks' appeared somewhat zigzag, indicating intergranular cracking mode. At low strains, crack blunting occurred...... at the ceramic/Ag interfaces of the tunnel cracks, At higher strain 'split cracks' formed at the tunnel cracks. The split cracks ran parallel with the ceramic/Ag interface just inside the ceramic layer....

  11. Small-angle reflectometry of milk protein (β -casein) at the air/serum interface and its conformational changes due to fat content and temperature

    International Nuclear Information System (INIS)

    Heidari, R.; White, J.W.

    2003-01-01

    Full text: The surface structure of dispersed emulsions play a key role in stability of the system. Proteins being one of the most important surface-active components in foods stabilise interfaces by self-interaction, resulting in a stiff visco-elastic adsorbed layer. These interactions are sensitive to disruptive effects of lipids. Previous kinetics studies by the group 1 using the X-ray reflectivity method to investigate the surface adsorption of milk proteins indicate that β -casein had a stronger affinity for the air-liquid interface compared to whey proteins. It has been shown that initially a dense protein layer, with the thickness of 20 Angstroms is formed then a second more diffuse layer with lower volume density of protein follows. Here we report the conformational changes (with particular emphasise on the β -casein tail) occurred at the air-milk serum interface due to the effects of milk fat content, temperature and the milk preparation technique (ie homogenisation vs microfluidisation). In the effect of fat content on the adsorption of protein into the interface the key conclusion is that at lower temperatures the surface composition remains unchanged. The compositional changes, however, become significant at room temperature indicating adsorption of less reflective-water-soluble components into the surface layer. Repulsive interactions between casein aggregates are also involved. Microfluidised samples having the advantage of smaller particle size prove to be more stable to fat or temperature effects compared to the corresponding homogenised milks

  12. Volumetric Heat Generation and Consequence Raise in Temperature Due to Absorption of Neutrons from Thermal up to 14.9 MeV Energies

    CERN Document Server

    Massoud, E

    2003-01-01

    In this work, the heat generation rate and the consequence rise in temperature due to absorption of all neutrons from thermal energies (E<0.025) up to 14.9 MeV in water, paraffin wax, ordinary concrete and heavy concrete and heavy concrete as some selected hydrogenous materials are investigated. The neutron flux distributions are calculated by both ANISN-code and three group method in which the fast neutrons are expressed by the removal cross section concept while the other two groups (epithermal and thermal) are treated by the diffusion equation. The heat generation can be calculated from the neutron macroscopic absorption of each material or mixture multiplied by the corresponding neutron fluxes. The rise in temperature is then calculated by using both of the heat generation and the thermal conductivity of the selected materials. Some results are compared with the available experimental and theoretical data and a good agreement is achieved.

  13. Filaments in simulations of molecular cloud formation

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, Gilberto C.; Vázquez-Semadeni, Enrique [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Campus Morelia Apartado Postal 3-72, 58090 Morelia, Michoacán (Mexico)

    2014-08-20

    We report on the filaments that develop self-consistently in a new numerical simulation of cloud formation by colliding flows. As in previous studies, the forming cloud begins to undergo gravitational collapse because it rapidly acquires a mass much larger than the average Jeans mass. Thus, the collapse soon becomes nearly pressureless, proceeding along its shortest dimension first. This naturally produces filaments in the cloud and clumps within the filaments. The filaments are not in equilibrium at any time, but instead are long-lived flow features through which the gas flows from the cloud to the clumps. The filaments are long-lived because they accrete from their environment while simultaneously accreting onto the clumps within them; they are essentially the locus where the flow changes from accreting in two dimensions to accreting in one dimension. Moreover, the clumps also exhibit a hierarchical nature: the gas in a filament flows onto a main, central clump but other, smaller-scale clumps form along the infalling gas. Correspondingly, the velocity along the filament exhibits a hierarchy of jumps at the locations of the clumps. Two prominent filaments in the simulation have lengths ∼15 pc and masses ∼600 M {sub ☉} above density n ∼ 10{sup 3} cm{sup –3} (∼2 × 10{sup 3} M {sub ☉} at n > 50 cm{sup –3}). The density profile exhibits a central flattened core of size ∼0.3 pc and an envelope that decays as r {sup –2.5} in reasonable agreement with observations. Accretion onto the filament reaches a maximum linear density rate of ∼30 M {sub ☉} Myr{sup –1} pc{sup –1}.

  14. The low-temperature inflection observed in neutron scattering measurements of proteins is due to methyl rotation: direct evidence using isotope labeling and molecular dynamics simulations.

    Science.gov (United States)

    Wood, Kathleen; Tobias, Douglas J; Kessler, Brigitte; Gabel, Frank; Oesterhelt, Dieter; Mulder, Frans A A; Zaccai, Giuseppe; Weik, Martin

    2010-04-14

    There is increasing interest in the contribution of methyl groups to the overall dynamics measured by neutron scattering experiments of proteins. In particular an inflection observed in atomic mean square displacements measured as a function of temperature on high resolution spectrometers (approximately 1 microeV) was explained by the onset of methyl group rotations. By specifically labeling a non-methyl-containing side-chain in a native protein system, the purple membrane, and performing neutron scattering measurements, we here provide direct experimental evidence that the observed inflection is indeed due to methyl group rotations. Molecular dynamics simulations reproduce the experimental data, and their analysis suggests that the apparent transition is due to methyl group rotation entering the finite instrumental resolution of the spectrometer. Methyl group correlation times measured by solid state NMR in the purple membrane, taken from previous work, support the interpretation.

  15. Fever of unknown origin (FUO) due to miliary BCG: The diagnostic importance of morning temperature spikes and highly elevated ferritin levels.

    Science.gov (United States)

    Cunha, Burke A; Apostolopoulou, Anna; Gian, John

    Fever of unknown origin (FUO) is defined as prolonged fever of >101 °F for at least 3 weeks that remains undiagnosed after a focused inpatient or outpatient workup. One of the most elusive FUO diagnoses is miliary tuberculosis (TB) which typically has few/no localizing signs/symptoms. Since the introduction of intravesicular Bacille Calmette-Guerin (BCG) treatment for bladder carcinoma, miliary BCG has only rarely been reported as a cause of FUO. As with miliary TB, there are few/no clues to suspect miliary BCG. We present an interesting case of FUO due to miliary BCG without any localizing signs, i.e., no lung, liver or prostate involvement. The only clues to the diagnosis of this FUO due to disseminated BCG were morning temperature spikes and otherwise unexplained highly elevated ferritin levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Current filamentation in high-current diodes

    International Nuclear Information System (INIS)

    Gordeev, A.V.; Kuksov, P.V.; Fanchenko, S.D.; Shuvaev, V.Y.

    1988-01-01

    Experimental data are reported on the filamentation of a high-current relativistic electron beam in the Kal'mar-1 relativistic-electron-beam source. A possible mechanism for this filamentation is studied theoretically. It is shown that the experimental results on the number of filaments into which the relativistic electron beam breaks up can be explained on the basis of an azimuthal nonuniformity of the current. This nonuniformity develops in the plasma near the cathode as the result of a Rayleigh--Taylor electron instability

  17. Membrane Buckling Induced by Curved Filaments

    Science.gov (United States)

    Lenz, Martin; Crow, Daniel J. G.; Joanny, Jean-François

    2009-07-01

    We present a novel buckling instability relevant to membrane budding in eukaryotic cells. In this mechanism, curved filaments bind to a lipid bilayer without changing its intrinsic curvature. As more and more filaments adsorb, newly added ones are more and more strained, which destabilizes the flat membrane. We perform a linear stability analysis of filament-dressed membranes and find that the buckling threshold is within reasonable in vivo parameter values. We account for the formation of long tubes previously observed in cells and in purified systems. We study strongly deformed dressed membranes and their bifurcation diagram numerically. Our mechanism could be validated by a simple experiment.

  18. Two-dimensional atomic hydrogen concentration maps in hot-filament diamond-deposition environment

    Science.gov (United States)

    Larjo, J.; Koivikko, H.; Lahtonen, K.; Hernberg, R.

    This paper reports the two-dimensional mapping of atomic hydrogen concentration with two-photon excited laser induced fluorescence in a multi-wire grid hot-filament chemical vapor deposition reactor. The measurements were made in a diamond film deposition environment under different filament temperatures and wire configurations. The measurement was calibrated with a titration reaction using NO2 as a titrant. The kinetic gas temperature in the reactor was measured from the Doppler broadening of the Lyman-β transition excited in the fluorescence. The filament temperature was found to have a significant effect on atomic hydrogen production and transfer to the substrate. The axial concentration distributions were compared to a one-dimensional kinetic gas-surface chemistry model with good agreement. The model produced a reasonable estimate for the bulk diamond film growth rate.

  19. The splitted laser beam filamentation in interaction of laser and an exponential decay inhomogeneous underdense plasma

    International Nuclear Information System (INIS)

    Xia Xiongping; Yi Lin; Xu Bin; Lu Jianduo

    2011-01-01

    The splitted beam filamentation in interaction of laser and an exponential decay inhomogeneous underdense plasma is investigated. Based on Wentzel-Kramers-Brillouin (WKB) approximation and paraxial/nonparaxial ray theory, simulation results show that the steady beam width and single beam filamentation along the propagation distance in paraxial case is due to the influence of ponderomotive nonlinearity. In nonparaxial case, the influence of the off-axial of α 00 and α 02 (the departure of the beam from the Gaussian nature) and S 02 (the departure from the spherical nature) results in more complicated ponderomotive nonlinearity and changing of the channel density and refractive index, which led to the formation of two/three splitted beam filamentation and the self-distortion of beam width. In addition, influence of several parameters on two/three splitted beam filamentation is discussed.

  20. MAGNETOHYDRODYNAMIC WAVES IN A PARTIALLY IONIZED FILAMENT THREAD

    International Nuclear Information System (INIS)

    Soler, R.; Oliver, R.; Ballester, J. L.

    2009-01-01

    Oscillations and propagating waves are commonly seen in high-resolution observations of filament threads, i.e., the fine-structures of solar filaments/prominences. Since the temperature of prominences is typically of the order of 10 4 K, the prominence plasma is only partially ionized. In this paper, we study the effect of neutrals on the wave propagation in a filament thread modeled as a partially ionized homogeneous magnetic flux tube embedded in an homogeneous and fully ionized coronal plasma. Ohmic and ambipolar magnetic diffusion are considered in the basic resistive magnetohydrodynamic (MHD) equations. We numerically compute the eigenfrequencies of kink, slow, and Alfven linear MHD modes and obtain analytical approximations in some cases. We find that the existence of propagating modes is constrained by the presence of critical values of the longitudinal wavenumber. In particular, the lower and upper frequency cutoffs of kink and Alfven waves owe their existence to magnetic diffusion parallel and perpendicular to magnetic field lines, respectively. The slow mode only has a lower frequency cutoff, which is caused by perpendicular magnetic diffusion and is significantly affected by the ionization degree. In addition, ion-neutral collision is the most efficient damping mechanism for short wavelengths, while ohmic diffusion dominates in the long-wavelength regime.

  1. Relationships of physiologically equivalent temperature and hospital admissions due to I30-I51 other forms of heart disease in Germany in 2009-2011.

    Science.gov (United States)

    Shiue, Ivy; Perkins, David R; Bearman, Nick

    2016-04-01

    We aimed to understand relationships of the weather as biometeorological and hospital admissions due to other forms of heart disease by subtypes, which have been paid less attention, in a national setting in recent years. This is an ecological study. Ten percent of daily hospital admissions of the included hospitals (n = 1618) across Germany that were available between 1 January 2009 and 31 December 2011 (n = 5,235,600) were extracted from Statistisches Bundesamt, Germany. We identified I30-I51 other forms of heart disease by the International Classification of Diseases version 10 as the study outcomes. Daily weather data from 64 weather stations that have covered 13 German states, including air temperature, humidity, wind speed, cloud cover, radiation flux and vapour pressure, were obtained and generated into physiologically equivalent temperature (PET). Admissions due to other diseases of pericardium, nonrheumatic mitral valve disorders, nonrheumatic aortic valve disorders, cardiomyopathy, atrioventricular and left bundle-branch block, other conduction disorders, atrial fibrillation and flutter, and other cardiac arrhythmias peaked when PET was between 0 and 10 °C. Complications and ill-defined descriptions of heart disease admissions peaked at PET 0 °C. Cardiac arrest and heart failure admissions peaked when PET was between 0 and -10 °C while the rest did not vary significantly. A common drop of admissions was found when PET was above 10 °C. More medical resources could have been needed for heart health on days when PETs were public would seem to be imperative.

  2. The Apis mellifera Filamentous Virus Genome

    Directory of Open Access Journals (Sweden)

    Laurent Gauthier

    2015-07-01

    Full Text Available A complete reference genome of the Apis mellifera Filamentous virus (AmFV was determined using Illumina Hiseq sequencing. The AmFV genome is a double stranded DNA molecule of approximately 498,500 nucleotides with a GC content of 50.8%. It encompasses 247 non-overlapping open reading frames (ORFs, equally distributed on both strands, which cover 65% of the genome. While most of the ORFs lacked threshold sequence alignments to reference protein databases, twenty-eight were found to display significant homologies with proteins present in other large double stranded DNA viruses. Remarkably, 13 ORFs had strong similarity with typical baculovirus domains such as PIFs (per os infectivity factor genes: pif-1, pif-2, pif-3 and p74 and BRO (Baculovirus Repeated Open Reading Frame. The putative AmFV DNA polymerase is of type B, but is only distantly related to those of the baculoviruses. The ORFs encoding proteins involved in nucleotide metabolism had the highest percent identity to viral proteins in GenBank. Other notable features include the presence of several collagen-like, chitin-binding, kinesin and pacifastin domains. Due to the large size of the AmFV genome and the inconsistent affiliation with other large double stranded DNA virus families infecting invertebrates, AmFV may belong to a new virus family.

  3. Hyperthyreosis effects on the learning and glial intermediate filaments of rat brain

    Directory of Open Access Journals (Sweden)

    S. V. Kyrychenko

    2014-03-01

    Full Text Available The influence of hyperthyreosis on oxidative stress, state of glial intermediate filaments and memotry was investigated. Significant increasing of lipid peroxidation products into both hippocampus and cortex and change for the worse of memory was observed. Analysis of the behavioral reactions of rats in the test of passive avoidance conditioned reflex showed that the acquisition of skills of all groups of animals did not differ by time waiting period (latent period. Time saving memory test conditioned reflex of passive avoidance was excellent in the group of rats treated with thyroxine compared with controls. The change of polypeptide GFAP was observed in hippocampus and cortex. Both soluble and filamentous forms of GFAP increased in hippocampus of rat with hyperthyreosis. In filament fractions, increase in the intensity of 49 kDa polypeptide band was found. In the same fraction of insoluble cytoskeleton proteins degraded HFKB polypeptides with molecular weight in the region of 46–41 kDa appeared. Marked increase of degraded polypeptides was found in the soluble fraction of the brain stem. The intensity of the intact polypeptide (49 kDa, as well as in the filament fraction, significantly increased. It is possible that increasing concentrations of soluble subunits glial filaments may be due to dissociation of own filaments during the reorganization of cytoskeleton structures. Given the results of Western blotting for filament fraction, increased content of soluble intact 49 kDa polypeptide is primarily the result of increased expression of HFKB and only partly due to redistribution of existing filament structures. Calculation and analysis of indicators showed high correlation between the increase in content and peroxidation products of HFKB. These results indicate the important role of oxidative stress in the induction of astroglial reactive response under conditions of hyperthyroidism. This data shows the possibility of the glial cell

  4. Extending Counter-streaming Motion from an Active Region Filament to a Sunspot Light Bridge

    Science.gov (United States)

    Wang, Haimin; Liu, Rui; Li, Qin; Liu, Chang; Deng, Na; Xu, Yan; Jing, Ju; Wang, Yuming; Cao, Wenda

    2018-01-01

    We analyze high-resolution observations from the 1.6 m telescope at Big Bear Solar Observatory that cover an active region filament. Counter-streaming motions are clearly observed in the filament. The northern end of the counter-streaming motions extends to a light bridge, forming a spectacular circulation pattern around a sunspot, with clockwise motion in the blue wing and counterclockwise motion in the red wing, as observed in the Hα off-bands. The apparent speed of the flow is around 10–60 km s‑1 in the filament, decreasing to 5–20 km s‑1 in the light bridge. The most intriguing results are the magnetic structure and the counter-streaming motions in the light bridge. Similar to those in the filament, the magnetic fields show a dominant transverse component in the light bridge. However, the filament is located between opposed magnetic polarities, while the light bridge is between strong fields of the same polarity. We analyze the power of oscillations with the image sequences of constructed Dopplergrams, and find that the filament’s counter-streaming motion is due to physical mass motion along fibrils, while the light bridge’s counter-streaming motion is due to oscillation in the direction along the line-of-sight. The oscillation power peaks around 4 minutes. However, the section of the light bridge next to the filament also contains a component of the extension of the filament in combination with the oscillation, indicating that some strands of the filament are extended to and rooted in that part of the light bridge.

  5. On the motion of Newtonian and non-Newtonian liquid filaments: Stretching, beading, blistering, pinching

    Science.gov (United States)

    Smolka, Linda Beth

    The motion and stability of a liquid filament drawn out behind a falling drop is examined experimentally and mathematically for Newtonian and non-Newtonian fluids. We confirm experimentally that an exact solution for the interfacial motion of an infinite Newtonian filament captures the thinning of the filament in experiments with several fluids. We also show experimentally that a linear stability analysis of this solution correctly predicts whether the filament end-pinches or internally-pinches, creating either one or several satellite drops. We derive an exact solution for a purely extensional cylindrical filament of non-Newtonian fluid that satisfies both the Upper Convected Maxwell and Oldroyd-B constitutive laws. The resulting prediction of decreasing filament thickness agrees with our experimental measurements for dilute polymer solutions. In the limit t → infinity, the exact solution approaches that for a Newtonian fluid. In experiments with a polyelectrolyte polymer (xanthan gum) solution, the drop length sensitively depends on the ionic strength of the solvent environment due to charge screening effects. We also study the "beadon-string" phenomenon, in which a nascent disturbance grows to finite size along a filament. In experiments with an aqueous polymer solution the perturbation grows logarithmically, and may saturate in size to a nearly spherical shape. Numerical simulations of a simple 1-D model for the bead predicts the logarithmic growth, but fail to capture saturation. Finally, in experiments with surfactant solutions composed of wormlike micelles, with low concentrations, the drop pinches-off in one location along the filament, and the free filament ends contract toward the orifice or drop. For higher concentrations, this free filament does not fully retract, instead it retains some of its deformation. The drop may also stall in its downward motion, such that elasticity balances the weight of the drop. For still higher concentration surfactant

  6. Two-step solar filament eruptions

    Science.gov (United States)

    Filippov, B.

    2018-04-01

    Coronal mass ejections (CMEs) are closely related to eruptive filaments and usually are the continuation of the same eruptive process into the upper corona. There are failed filament eruptions when a filament decelerates and stops at some greater height in the corona. Sometimes the filament after several hours starts to rise again and develops into the successful eruption with a CME formation. We propose a simple model for the interpretation of such two-step eruptions in terms of equilibrium of a flux rope in a two-scale ambient magnetic field. The eruption is caused by a slow decrease of the holding magnetic field. The presence of two critical heights for the initiation of the flux-rope vertical instability allows the flux rope to stay after the first jump some time in a metastable equilibrium near the second critical height. If the decrease of the ambient field continues, the next eruption step follows.

  7. Morgellons disease: a filamentous borrelial dermatitis

    OpenAIRE

    Middelveen MJ; Stricker RB

    2016-01-01

    Marianne J Middelveen, Raphael B Stricker International Lyme and Associated Diseases Society, Bethesda, MD, USA Abstract: Morgellons disease (MD) is a dermopathy characterized by multicolored filaments that lie under, are embedded in, or project from skin. Although MD was initially considered to be a delusional disorder, recent studies have demonstrated that the dermopathy is associated with tickborne infection, that the filaments are composed of keratin and collagen, and that they resu...

  8. A Robust Actin Filaments Image Analysis Framework.

    Directory of Open Access Journals (Sweden)

    Mitchel Alioscha-Perez

    2016-08-01

    Full Text Available The cytoskeleton is a highly dynamical protein network that plays a central role in numerous cellular physiological processes, and is traditionally divided into three components according to its chemical composition, i.e. actin, tubulin and intermediate filament cytoskeletons. Understanding the cytoskeleton dynamics is of prime importance to unveil mechanisms involved in cell adaptation to any stress type. Fluorescence imaging of cytoskeleton structures allows analyzing the impact of mechanical stimulation in the cytoskeleton, but it also imposes additional challenges in the image processing stage, such as the presence of imaging-related artifacts and heavy blurring introduced by (high-throughput automated scans. However, although there exists a considerable number of image-based analytical tools to address the image processing and analysis, most of them are unfit to cope with the aforementioned challenges. Filamentous structures in images can be considered as a piecewise composition of quasi-straight segments (at least in some finer or coarser scale. Based on this observation, we propose a three-steps actin filaments extraction methodology: (i first the input image is decomposed into a 'cartoon' part corresponding to the filament structures in the image, and a noise/texture part, (ii on the 'cartoon' image, we apply a multi-scale line detector coupled with a (iii quasi-straight filaments merging algorithm for fiber extraction. The proposed robust actin filaments image analysis framework allows extracting individual filaments in the presence of noise, artifacts and heavy blurring. Moreover, it provides numerous parameters such as filaments orientation, position and length, useful for further analysis. Cell image decomposition is relatively under-exploited in biological images processing, and our study shows the benefits it provides when addressing such tasks. Experimental validation was conducted using publicly available datasets, and in

  9. Effect of starting materials and processing variables for the production of discontinuous filament Nb3Sn wire

    International Nuclear Information System (INIS)

    Upadhyay, P.L.; Dew-Hughes, D.

    1986-01-01

    Discontinuous multifilamentary wires of Nb 3 Sn have been prepared from compacted mixtures of 30 wt. %Nb in Cu, extruded, drawn, annealed, tin plated and reacted. Processing variables include starting materials, extrusion ratio and extrusion temperature. Continuous lengths of wire could be satisfactorily produced from compacts of either ultra-pure Nb (VPN about 95 kg mm -2 ) and Cu powder or from centrifugal arc-cast Nb spheroids (VPN about 120 kg mm -2 ) and tough pitch Cu powder. After a total area reduction of 10 4 : 1, the latter materials resulted in long, unbroken, highly regular filaments of Nb about 6μm in diameter. The high degree of perfection of these filaments is due in part to the uniformity of the initial spheroids, compared to the highly irregular hydride-dehydride Nb powder. However their greater hardness requires that the spheroids be coprocessed in a less-pure Cu matrix. Critical currents were measured on helical specimens involving more than 1m length of wire, in fields up to 15T at 4.2 K, after reaction for various times at different temperatures. Overall current densities of 3 X 10 8 Am -2 were obtained at 12T in the best samples. Further reductions are expected to produce material with improved current densities

  10. Can we determine the filament chirality by the filament footpoint location or the barb-bearing?

    Science.gov (United States)

    Hao, Qi; Guo, Yang; Fang, Cheng; Chen, Peng-Fei; Cao, Wen-Da

    2016-01-01

    We attempt to propose a method for automatically detecting the solar filament chirality and barb bearing. We first introduce the concept of an unweighted undirected graph and adopt the Dijkstra shortest path algorithm to recognize the filament spine. Then, we use the polarity inversion line (PIL) shift method for measuring the polarities on both sides of the filament, and employ the connected components labeling method to identify the barbs and calculate the angle between each barb and the spine to determine the bearing of the barbs, i.e., left or right. We test the automatic detection method with Hα filtergrams from the Big Bear Solar Observatory (BBSO) Hα archive and magnetograms observed with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Four filaments are automatically detected and illustrated to show the results. The barbs in different parts of a filament may have opposite bearings. The filaments in the southern hemisphere (northern hemisphere) mainly have left-bearing (right-bearing) barbs and positive (negative) magnetic helicity, respectively. The tested results demonstrate that our method is efficient and effective in detecting the bearing of filament barbs. It is demonstrated that the conventionally believed one-to-one correspondence between filament chirality and barb bearing is not valid. The correct detection of the filament axis chirality should be done by combining both imaging morphology and magnetic field observations.

  11. Can we determine the filament chirality by the filament footpoint location or the barb-bearing?

    International Nuclear Information System (INIS)

    Hao, Qi; Guo, Yang; Fang, Cheng; Chen, Peng-Fei; Cao, Wen-Da

    2016-01-01

    We attempt to propose a method for automatically detecting the solar filament chirality and barb bearing. We first introduce the concept of an unweighted undirected graph and adopt the Dijkstra shortest path algorithm to recognize the filament spine. Then, we use the polarity inversion line (PIL) shift method for measuring the polarities on both sides of the filament, and employ the connected components labeling method to identify the barbs and calculate the angle between each barb and the spine to determine the bearing of the barbs, i.e., left or right. We test the automatic detection method with Hα filtergrams from the Big Bear Solar Observatory (BBSO) Hα archive and magnetograms observed with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Four filaments are automatically detected and illustrated to show the results. The barbs in different parts of a filament may have opposite bearings. The filaments in the southern hemisphere (northern hemisphere) mainly have left-bearing (right-bearing) barbs and positive (negative) magnetic helicity, respectively. The tested results demonstrate that our method is efficient and effective in detecting the bearing of filament barbs. It is demonstrated that the conventionally believed one-to-one correspondence between filament chirality and barb bearing is not valid. The correct detection of the filament axis chirality should be done by combining both imaging morphology and magnetic field observations. (paper)

  12. temperature

    Directory of Open Access Journals (Sweden)

    G. Polt

    2015-10-01

    Full Text Available In-situ X-ray diffraction was applied to isotactic polypropylene with a high volume fraction of α-phase (α-iPP while it has been compressed at temperatures below and above its glass transition temperature Tg. The diffraction patterns were evaluated by the Multi-reflection X-ray Profile Analysis (MXPA method, revealing microstructural parameters such as the density of dislocations and the size of coherently scattering domains (CSD-size. A significant difference in the development of the dislocation density was found compared to compression at temperatures above Tg, pointing at a different plastic deformation mechanism at these temperatures. Based on the individual evolutions of the dislocation density and CSD-size observed as a function of compressive strain, suggestions for the deformation mechanisms occurring below and above Tg are made.

  13. Evidence for Mixed Helicity in Erupting Filaments

    Science.gov (United States)

    Muglach, K.; Wang, Y.-M.; Kliem, B.

    2009-09-01

    Erupting filaments are sometimes observed to undergo a rotation about the vertical direction as they rise. This rotation of the filament axis is generally interpreted as a conversion of twist into writhe in a kink-unstable magnetic flux rope. Consistent with this interpretation, the rotation is usually found to be clockwise (as viewed from above) if the post-eruption arcade has right-handed helicity, but counterclockwise if it has left-handed helicity. Here, we describe two non-active-region filament events recorded with the Extreme-Ultraviolet Imaging Telescope on the Solar and Heliospheric Observatory in which the sense of rotation appears to be opposite to that expected from the helicity of the post-event arcade. Based on these observations, we suggest that the rotation of the filament axis is, in general, determined by the net helicity of the erupting system, and that the axially aligned core of the filament can have the opposite helicity sign to the surrounding field. In most cases, the surrounding field provides the main contribution to the net helicity. In the events reported here, however, the helicity associated with the filament "barbs" is opposite in sign to and dominates that of the overlying arcade.

  14. Prokaryotic cytoskeletons: protein filaments organizing small cells.

    Science.gov (United States)

    Wagstaff, James; Löwe, Jan

    2018-04-01

    Most, if not all, bacterial and archaeal cells contain at least one protein filament system. Although these filament systems in some cases form structures that are very similar to eukaryotic cytoskeletons, the term 'prokaryotic cytoskeletons' is used to refer to many different kinds of protein filaments. Cytoskeletons achieve their functions through polymerization of protein monomers and the resulting ability to access length scales larger than the size of the monomer. Prokaryotic cytoskeletons are involved in many fundamental aspects of prokaryotic cell biology and have important roles in cell shape determination, cell division and nonchromosomal DNA segregation. Some of the filament-forming proteins have been classified into a small number of conserved protein families, for example, the almost ubiquitous tubulin and actin superfamilies. To understand what makes filaments special and how the cytoskeletons they form enable cells to perform essential functions, the structure and function of cytoskeletal molecules and their filaments have been investigated in diverse bacteria and archaea. In this Review, we bring these data together to highlight the diverse ways that linear protein polymers can be used to organize other molecules and structures in bacteria and archaea.

  15. Programmable Active Matter: Dynamics of active filaments on patterned surfaces

    Science.gov (United States)

    Yadav, Vikrant; Todd, Daniel; Milas, Peker; Ruijgrok, Paul; Bryant, Zev; Ross, Jennifer

    Interfaces are ubiquitous in biology. For a sub-cellular component moving inside the cell, any change in its local environment across an interface whether chemical concentration, density, or any other physical variables can produce novel dynamics. Recent advances in bioengineering allow us to control motor proteins' velocities when prompted by an optical trigger. Using an optical diaphragm and a gear-shifting myosin XI construct containing a photoactive LOV domain, we can spatially pattern light to create interfaces across which speed of a gliding actin filament can differ by as much as a factor of two. We observe that when a gliding actin filament crosses an interface that has a discontinuous velocity jump, it buckles and changes its angle of orientation due to the velocity mismatch. Our preliminary data suggests that for small angels of incidence, the angle of emergence increases linearly. If we increase the angle of incidence further we observe that the angle of emergence saturates. For some actin filaments approaching the interface near-tangentially we observe total internal reflection as they fail to crossover the boundary. We have modeled our system using Cytosim software package and find excellent agreement with experimental data.

  16. Growth and nitrate reduction of Beggiatoa filaments studied in enrichment cultures

    DEFF Research Database (Denmark)

    Kamp, Anja

    at the same point at which the tip of a forming loop of the filament had been observed before. As it is known that filament breakage is accomplished by the formation of a sacrificial cell, it was hypothesised that sacrificial cells interrupt the communication between two parts of one filament...... in oxygen-sulphide gradient tubes, and observed with a camera system. Growth mode, breakage, and movement directions of Beggiatoa filaments were documented via time-lapse video recording. The initial doubling time of cells was 15.7 ±1.3 h (mean ±SD; room temperature). Filaments grew up to an average length....... As a consequence, the two parts of one filament can move towards each other forming the tip of a loop at the sacrificial cell. The second part of this thesis focused on the physiology of Beggiatoa. The sulphur bacteria Beggiatoa can reach high biomass in many aquatic habitats, e.g. in and on freshwater and marine...

  17. Emissions of Ultrafine Particles and Volatile Organic Compounds from Commercially Available Desktop Three-Dimensional Printers with Multiple Filaments.

    Science.gov (United States)

    Azimi, Parham; Zhao, Dan; Pouzet, Claire; Crain, Neil E; Stephens, Brent

    2016-02-02

    Previous research has shown that desktop 3D printers can emit large numbers of ultrafine particles (UFPs, particles less than 100 nm) and some hazardous volatile organic compounds (VOCs) during printing, although very few filament and 3D printer combinations have been tested to date. Here we quantify emissions of UFPs and speciated VOCs from five commercially available filament extrusion desktop 3D printers utilizing up to nine different filaments by controlled experiments in a test chamber. Median estimates of time-varying UFP emission rates ranged from ∼10(8) to ∼10(11) min(-1) across all tested combinations, varying primarily by filament material and, to a lesser extent, bed temperature. The individual VOCs emitted in the largest quantities included caprolactam from nylon-based and imitation wood and brick filaments (ranging from ∼2 to ∼180 μg/min), styrene from acrylonitrile butadiene styrene (ABS) and high-impact polystyrene (HIPS) filaments (ranging from ∼10 to ∼110 μg/min), and lactide from polylactic acid (PLA) filaments (ranging from ∼4 to ∼5 μg/min). Results from a screening analysis of potential exposure to these products in a typical small office environment suggest caution should be used when operating many of the printer and filament combinations in poorly ventilated spaces or without the aid of combined gas and particle filtration systems.

  18. Electro-mechanical behaviors of composite superconducting strand with filament breakage

    International Nuclear Information System (INIS)

    Wang, Xu; Gao, Yuanwen; Zhou, Youhe

    2016-01-01

    Highlights: • The electromechanical behaviors of the superconducting (SC) strand are investigated. • A 3D FEM model for bending behaviors and electric properties of strand is developed. • The influence of breakage of filaments on the critical current of SC strand is calculated. • The impact of current transfer length on the electric properties of SC strand is discussed. - Abstract: The bending behaviors of superconducting strand with typical multi-filament twist configuration are investigated based on a three-dimensional finite element method (FEM) model, named as the Multi-filament twist model, of the strand. In this 3D FEM model, the impacts of initial thermal residual stress, filament-breakage and its evaluation are taken into accounts. The mechanical responses of the strand under bending load are studied with the factors taken into consideration one by one. The distribution of the damage of the filaments and its evolution and the movement of the neutral axis caused by it are studied and displayed in detail. Besides, taking the advantages of the Multi-filament twist model, the normalized critical current of the strand under bending load is also calculated based on the invariant temperature and field strain functions. In addition, the non-negligible influences of the pitch length of the filaments on both the mechanical behaviors and the normalized critical current are discussed. The stress-strain characteristics of the strand under tensile load and the normalized critical current of it under axial and bending loads resulting from the Multi-filament twist model show good agreement with the experimental data.

  19. Electro-mechanical behaviors of composite superconducting strand with filament breakage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Gao, Yuanwen, E-mail: ywgao@lzu.edu.cn [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Zhou, Youhe [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2016-10-15

    Highlights: • The electromechanical behaviors of the superconducting (SC) strand are investigated. • A 3D FEM model for bending behaviors and electric properties of strand is developed. • The influence of breakage of filaments on the critical current of SC strand is calculated. • The impact of current transfer length on the electric properties of SC strand is discussed. - Abstract: The bending behaviors of superconducting strand with typical multi-filament twist configuration are investigated based on a three-dimensional finite element method (FEM) model, named as the Multi-filament twist model, of the strand. In this 3D FEM model, the impacts of initial thermal residual stress, filament-breakage and its evaluation are taken into accounts. The mechanical responses of the strand under bending load are studied with the factors taken into consideration one by one. The distribution of the damage of the filaments and its evolution and the movement of the neutral axis caused by it are studied and displayed in detail. Besides, taking the advantages of the Multi-filament twist model, the normalized critical current of the strand under bending load is also calculated based on the invariant temperature and field strain functions. In addition, the non-negligible influences of the pitch length of the filaments on both the mechanical behaviors and the normalized critical current are discussed. The stress-strain characteristics of the strand under tensile load and the normalized critical current of it under axial and bending loads resulting from the Multi-filament twist model show good agreement with the experimental data.

  20. Turbulent cascade of Kelvin waves on vortex filaments

    International Nuclear Information System (INIS)

    Baggaley, Andrew W; Barenghi, Carlo F

    2011-01-01

    By numerically integrating in time the motion of vortex filaments, we study how the nonlinear interaction of Kelvin waves along vortices generates Kelvin waves of larger and larger wavenumbers (smaller and smaller wavelength). At sufficiently large wavenumbers the angular velocity of the vortices is large enough that kinetic energy is lost by sound emission. This turbulent cascade of Kelvin waves should explain why turbulence, generated in superfluid helium at very low temperature near absolute zero, quickly decays, despite the lack of any viscous dissipation.

  1. Simulating the formation of keratin filament networks by a piecewise-deterministic Markov process.

    Science.gov (United States)

    Beil, Michael; Lück, Sebastian; Fleischer, Frank; Portet, Stéphanie; Arendt, Wolfgang; Schmidt, Volker

    2009-02-21

    Keratin intermediate filament networks are part of the cytoskeleton in epithelial cells. They were found to regulate viscoelastic properties and motility of cancer cells. Due to unique biochemical properties of keratin polymers, the knowledge of the mechanisms controlling keratin network formation is incomplete. A combination of deterministic and stochastic modeling techniques can be a valuable source of information since they can describe known mechanisms of network evolution while reflecting the uncertainty with respect to a variety of molecular events. We applied the concept of piecewise-deterministic Markov processes to the modeling of keratin network formation with high spatiotemporal resolution. The deterministic component describes the diffusion-driven evolution of a pool of soluble keratin filament precursors fueling various network formation processes. Instants of network formation events are determined by a stochastic point process on the time axis. A probability distribution controlled by model parameters exercises control over the frequency of different mechanisms of network formation to be triggered. Locations of the network formation events are assigned dependent on the spatial distribution of the soluble pool of filament precursors. Based on this modeling approach, simulation studies revealed that the architecture of keratin networks mostly depends on the balance between filament elongation and branching processes. The spatial distribution of network mesh size, which strongly influences the mechanical characteristics of filament networks, is modulated by lateral annealing processes. This mechanism which is a specific feature of intermediate filament networks appears to be a major and fast regulator of cell mechanics.

  2. Magnetoresistance Behavior of Conducting Filaments in Resistive-Switching NiO with Different Resistance States.

    Science.gov (United States)

    Zhao, Diyang; Qiao, Shuang; Luo, Yuxiang; Chen, Aitian; Zhang, Pengfei; Zheng, Ping; Sun, Zhong; Guo, Minghua; Chiang, Fu-Kuo; Wu, Jian; Luo, Jianlin; Li, Jianqi; Kokado, Satoshi; Wang, Yayu; Zhao, Yonggang

    2017-03-29

    The resistive switching (RS) effect in various materials has attracted much attention due to its interesting physics and potential for applications. NiO is an important system and its RS effect has been generally explained by the formation/rupture of Ni-related conducting filaments. These filaments are unique since they are formed by an electroforming process, so it is interesting to explore their magnetoresistance (MR) behavior, which can also shed light on unsolved issues such as the nature of the filaments and their evolution in the RS process, and this behavior is also important for multifunctional devices. Here, we focus on MR behavior in NiO RS films with different resistance states. Rich and interesting MR behaviors have been observed, including the normal and anomalous anisotropic magnetoresistance and tunneling magnetoresistance, which provide new insights into the nature of the filaments and their evolution in the RS process. First-principles calculation reveals the essential role of oxygen migration into the filaments during the RESET process and can account for the experimental results. Our work provides a new avenue for exploration of the conducting filaments in resistive switching materials and is significant for understanding the mechanism of RS effect and multifunctional devices.

  3. A Non-Linear Force-Free Field Model for the Evolving Magnetic Structure of Solar Filaments

    Science.gov (United States)

    Mackay, Duncan H.; van Ballegooijen, A. A.

    2009-12-01

    In this paper the effect of a small magnetic element approaching the main body of a solar filament is considered through non-linear force-free field modeling. The filament is represented by a series of magnetic dips. Once the dips are calculated, a simple hydrostatic atmosphere model is applied to determine which structures have sufficient column mass depth to be visible in Hα. Two orientations of the bipole are considered, either parallel or anti-parallel to the overlying arcade. The magnetic polarity that lies closest to the filament is then advected towards the filament. Initially for both the dominant and minority polarity advected elements, right/left bearing barbs are produced for dextral/sinsitral filaments. The production of barbs due to dominant polarity elements is a new feature. In later stages the filament breaks into two dipped sections and takes a highly irregular, non-symmetrical form with multiple pillars. The two sections are connected by field lines with double dips even though the twist of the field is less than one turn. Reconnection is not found to play a key role in the break up of the filament. The non-linear force-free fields produce very different results to extrapolated linear-force free fields. For the cases considered here the linear force-free field does not produce the break up of the filament nor the production of barbs as a result of dominant polarity elements.

  4. GALAXIES IN FILAMENTS HAVE MORE SATELLITES: THE INFLUENCE OF THE COSMIC WEB ON THE SATELLITE LUMINOSITY FUNCTION IN THE SDSS

    International Nuclear Information System (INIS)

    Guo, Quan; Libeskind, N. I.; Tempel, E.

    2015-01-01

    We investigate whether the satellite luminosity function (LF) of primary galaxies identified in the Sloan Digital Sky Survey (SDSS) depends on whether the host galaxy is in a filament or not. Isolated primary galaxies are identified in the SDSS spectroscopic sample, and potential satellites (that are up to four magnitudes fainter than their hosts) are searched for in the much deeper photometric sample. Filaments are constructed from the galaxy distribution by the Bisous process. Isolated primary galaxies are divided into two subsamples: those in filaments and those not in filaments. We examine the stacked mean satellite LF of both the filament and nonfilament samples and find that, on average, the satellite LF of galaxies in filaments is significantly higher than those of galaxies not in filaments. The filamentary environment can increase the abundance of the brightest satellites (M sat. < M prim. + 2.0) by a factor of ∼2 compared with nonfilament isolated galaxies. This result is independent of the primary galaxy magnitude, although the satellite LF of galaxies in the faintest magnitude bin is too noisy to determine if such a dependence exists. Because our filaments are extracted from a spectroscopic flux-limited sample, we consider the possibility that the difference in satellite LF is due to a redshift, color, or environmental bias, finding these to be insufficient to explain our result. The dependence of the satellite LF on the cosmic web suggests that the filamentary environment may have a strong effect on the efficiency of galaxy formation

  5. 3D Evolution of a Filament Disappearance Event Observed by STEREO

    Science.gov (United States)

    Gosain, S.; Schmieder, B.; Venkatakrishnan, P.; Chandra, R.; Artzner, G.

    2009-10-01

    A filament disappearance event was observed on 22 May 2008 during our recent campaign JOP 178. The filament, situated in the Southern Hemisphere, showed sinistral chirality consistent with the hemispheric rule. The event was well observed by several observatories, in particular by THEMIS. One day, before the disappearance, Hα observations showed up- and down-flows in adjacent locations along the filament, which suggest plasma motions along twisted flux rope. THEMIS and GONG observations show shearing photospheric motions leading to magnetic flux canceling around barbs. STEREO A, B spacecraft with separation angle 52.4°, showed quite different views of this untwisting flux rope in He ii 304 Å images. Here, we reconstruct the three-dimensional geometry of the filament during its eruption phase using STEREO EUV He ii 304 Å images and find that the filament was highly inclined to the solar normal. The He ii 304 Å movies show individual threads, which oscillate and rise to an altitude of about 120 Mm with apparent velocities of about 100 km s-1 during the rapid evolution phase. Finally, as the flux rope expands into the corona, the filament disappears by becoming optically thin to undetectable levels. No CME was detected by STEREO, only a faint CME was recorded by LASCO at the beginning of the disappearance phase at 02:00 UT, which could be due to partial filament eruption. Further, STEREO Fe xii 195 Å images showed bright loops beneath the filament prior to the disappearance phase, suggesting magnetic reconnection below the flux rope.

  6. FLUX CANCELLATION AND THE EVOLUTION OF THE ERUPTIVE FILAMENT OF 2011 JUNE 7

    Energy Technology Data Exchange (ETDEWEB)

    Yardley, S. L.; Green, L. M.; Williams, D. R.; Van Driel-Gesztelyi, L.; Valori, G.; Dacie, S., E-mail: stephanie.yardley.13@ucl.ac.uk [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT (United Kingdom)

    2016-08-20

    We investigate whether flux cancellation is responsible for the formation of a very massive filament resulting in the spectacular eruption on 2011 June 7. We analyze and quantify the amount of flux cancellation that occurs in NOAA AR 11226 and its two neighboring active regions (ARs 11227 and 11233) using line-of-sight magnetograms from the Heliospheric Magnetic Imager. During a 3.6 day period building up to the eruption of the filament, 1.7 × 10{sup 21} Mx, 21% of AR 11226's maximum magnetic flux, was canceled along the polarity inversion line (PIL) where the filament formed. If the flux cancellation continued at the same rate up until the eruption then up to 2.8 × 10{sup 21} Mx (34% of the AR flux) may have been built into the magnetic configuration that contains the filament plasma. The large flux cancellation rate is due to an unusual motion of the positive-polarity sunspot, which splits, with the largest section moving rapidly toward the PIL. This motion compresses the negative polarity and leads to the formation of an orphan penumbra where one end of the filament is rooted. Dense plasma threads above the orphan penumbra build into the filament, extending its length, and presumably injecting material into it. We conclude that the exceptionally strong flux cancellation in AR 11226 played a significant role in the formation of its unusually massive filament. In addition, the presence and coherent evolution of bald patches in the vector magnetic field along the PIL suggest that the magnetic field configuration supporting the filament material is that of a flux rope.

  7. Transition of Femtosecond-Filament-Solid Interactions from Single to Multiple Filament Regime.

    Science.gov (United States)

    Skrodzki, P J; Burger, M; Jovanovic, I

    2017-10-06

    High-peak-power fs-laser filaments offer unique characteristics attractive to remote sensing via techniques such as remote laser-induced breakdown spectroscopy (R-LIBS). The dynamics of several ablation mechanisms following the interaction between a filament and a solid determines the emission strength and reproducibility of target plasma, which is of relevance for R-LIBS applications. We investigate the space- and time-resolved dynamics of ionic and atomic emission from copper as well as the surrounding atmosphere in order to understand limitations of fs-filament-ablation for standoff energy delivery. Furthermore, we probe the shock front produced from filament-target interaction using time-resolved shadowgraphy and infer laser-material coupling efficiencies for both single and multiple filament regimes through analysis of shock expansion with the Sedov model for point detonation. The results provide insight into plasma structure for the range of peak powers up to 30 times the critical power for filamentation P cr . Despite the stochastic nucleation of multiple filaments at peak-powers greater than 16 P cr , emission of ionic and neutral species increases with pump beam intensity, and short-lived nitrogen emission originating from the ambient is consistently observed. Ultimately, results suggest favorable scaling of emission intensity from target species on the laser pump energy, furthering the prospects for use of filament-solid interactions for remote sensing.

  8. Filamented plasmas in laser ablation of solids

    Science.gov (United States)

    Davies, J. R.; Fajardo, M.; Kozlová, M.; Mocek, T.; Polan, J.; Rus, B.

    2009-03-01

    We report results from laser-solid experiments at PALS using an x-ray laser probe with a pulse length of 0.1 ns and a wavelength of 21.2 nm. A laser with a pulse length of 0.3 ns, a peak intensity of up to 5 × 1013 W cm-2 and a wavelength of 1.3 µm was focused to a 0.15 mm wide line on 3 mm long zinc and 1 mm long iron targets and the probe was passed along the length of the plasma formed. The results show plasma 'hairs', or filaments, appearing only below the critical density, 0.1 ns before the peak of the laser pulse. The plasma around the critical density was clearly imaged and remained uniform. Magneto-hydrodynamic modelling indicates that this is caused by a magnetic field that diffuses from the critical surface, where it is generated, leading to a magnetic pressure comparable to the plasma pressure below the critical density. A dispersion relation is derived for density perturbations perpendicular to a temperature gradient in the presence of an existing magnetic field, which shows that such perturbations always grow, with the growth rate being the greatest for small wavelength perturbations and at low densities. These results indicate that the hair-like structures should be a typical feature of laser ablated plasmas below the critical density following significant plasma expansion, in agreement with numerous experimental results. The implications for x-ray lasers and fast ignition inertial confinement fusion are discussed.

  9. Optical performance of the SO/PHI full disk telescope due to temperature gradients effect on the heat rejection entrance window

    Science.gov (United States)

    Garranzo, D.; Núñez, A.; Zuluaga-Ramírez, P.; Barandiarán, J.; Fernández-Medina, A.; Belenguer, T.; Álvarez-Herrero, A.

    2017-11-01

    The Polarimetric Helioseismic Imager for Solar Orbiter (SO/PHI) is an instrument on board in the Solar Orbiter mission. The Full Disk Telescope (FDT) will have the capability of providing images of the solar disk in all orbital faces with an image quality diffraction-limited. The Heat Rejection Entrance Window (HREW) is the first optical element of the instrument. Its function is to protect the instrument by filtering most of the Solar Spectrum radiation. The HREW consists of two parallel-plane plates made from Suprasil and each surface has a coating with a different function: an UV shield coating, a low pass band filter coating, a high pass band filter coating and an IR shield coating, respectively. The temperature gradient on the HREW during the mission produces a distortion of the transmitted wave-front due to the dependence of the refractive index with the temperature (thermo-optic effect) mainly. The purpose of this work is to determine the capability of the PHI/FDT refocusing system to compensate this distortion. A thermal gradient profile has been considered for each surface of the plates and a thermal-elastic analysis has been done by Finite Element Analysis to determine the deformation of the optical elements. The Optical Path Difference (OPD) between the incident and transmitted wavefronts has been calculated as a function of the ray tracing and the thermo-optic effect on the optical properties of Suprasil (at the work wavelength of PHI) by means of mathematical algorithms based on the 3D Snell Law. The resultant wavefronts have been introduced in the optical design of the FDT to evaluate the performance degradation of the image at the scientific focal plane and to estimate the capability of the PHI refocusing system for maintaining the image quality diffraction-limited. The analysis has been carried out considering two different situations: thermal gradients due to on axis attitude of the instrument and thermal gradients due to 1° off pointing attitude

  10. Filamentous Influenza Virus Enters Cells via Macropinocytosis

    Science.gov (United States)

    Rossman, Jeremy S.; Leser, George P.

    2012-01-01

    Influenza virus is pleiomorphic, producing both spherical (100-nm-diameter) and filamentous (100-nm by 20-μm) virions. While the spherical virions are known to enter host cells through exploitation of clathrin-mediated endocytosis, the entry pathway for filamentous virions has not been determined, though the existence of an alternative, non-clathrin-, non-caveolin-mediated entry pathway for influenza virus has been known for many years. In this study, we confirm recent results showing that influenza virus utilizes macropinocytosis as an alternate entry pathway. Furthermore, we find that filamentous influenza viruses use macropinocytosis as the primary entry mechanism. Virions enter cells as intact filaments within macropinosomes and are trafficked to the acidic late-endosomal compartment. Low pH triggers a conformational change in the M2 ion channel protein, altering membrane curvature and leading to a fragmentation of the filamentous virions. This fragmentation may enable more-efficient fusion between the viral and endosomal membranes. PMID:22875971

  11. The self-assembly, elasticity, and dynamics of cardiac thin filaments.

    Science.gov (United States)

    Tassieri, M; Evans, R M L; Barbu-Tudoran, L; Trinick, J; Waigh, T A

    2008-03-15

    Solutions of intact cardiac thin filaments were examined with transmission electron microscopy, dynamic light scattering (DLS), and particle-tracking microrheology. The filaments self-assembled in solution with a bell-shaped distribution of contour lengths that contained a population of filaments of much greater length than the in vivo sarcomere size ( approximately 1 mum) due to a one-dimensional annealing process. Dynamic semiflexible modes were found in DLS measurements at fast timescales (12.5 ns-0.0001 s). The bending modulus of the fibers is found to be in the range 4.5-16 x 10(-27) Jm and is weakly dependent on calcium concentration (with Ca2+ > or = without Ca2+). Good quantitative agreement was found for the values of the fiber diameter calculated from transmission electron microscopy and from the initial decay of DLS correlation functions: 9.9 nm and 9.7 nm with and without Ca2+, respectively. In contrast, at slower timescales and high polymer concentrations, microrheology indicates that the cardiac filaments act as short rods in solution according to the predictions of the Doi-Edwards chopsticks model (viscosity, eta approximately c(3), where c is the polymer concentration). This differs from the semiflexible behavior of long synthetic actin filaments at comparable polymer concentrations and timescales (elastic shear modulus, G' approximately c(1.4), tightly entangled) and is due to the relative ratio of the contour lengths ( approximately 30). The scaling dependence of the elastic shear modulus on the frequency (omega) for cardiac thin filaments is G' approximately omega(3/4 +/- 0.03), which is thought to arise from flexural modes of the filaments.

  12. Effect of substrate roughness on growth of diamond by hot filament ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Polycrystalline diamond coatings are grown on Si (100) substrate by hot filament CVD technique. We investigate here the effect of substrate roughening on the substrate temperature and methane concentra- tion required to maintain high quality, high growth rate and faceted morphology of the diamond coatings. It.

  13. PCL/PLA Polymer Composite Filament Fabrication using Full Factorial Design (DOE) for Fused Deposition Modelling

    Science.gov (United States)

    Haq, R. H. A.; Khairilhijra, K. Rd.; Wahab, M. S.; Sa’ude, N.; Ibrahim, M.; Marwah, O. M. F.; Yusof, M. S.; Rahman, M. N. A.; Ariffin, A. M. T.; Hassan, M. F.; Yunos, M. Z.; Adzila, S.

    2017-10-01

    In this study, Polycaprolactone / Polylactice Acid (PCL/PLA) composite are used to fabricate filament wire with the specific diameter, which is in the range of 1.75 to 1.80 mm. Full factorial experimental design technique was used to study the main effects and the interaction effects between operational parameter which is (A) die temperature, (B) roller puller speed, (C) spindle speed and (D) inlet temperature. Besides that, there are two levels (-1 and +1) and the response are filament wire diameter. There are 16 numbers of runs and plus 8 centre points per blocks which makes the runs into 24 runs. From the experiment it shows that there are four factor that are significant effects on the filament wire diameter which is A, B, C and BC. The optimum parameter setting are also determined and there are 10 suggestions to achieve the target with different setting of parameter. The margin error for confirmation run is below than 15% when the parameter set at 6 Hz spindle speed, 4.99 rpm roller puller, 100.31 °C die temperature and 79.65 °C inlet temperature which can be noted that the confirmation run result is acceptable. The optimization parameter setting can use to continue in Fused Deposition Modelling (FDM). Filament wire from PCL/PLA are succesfully fabricated with acceptable diameter size and ready to be used for Fused Depotion Modelling process (FDM).

  14. Extensional viscosity for polymer melts measured in the filament stretching rheometer

    DEFF Research Database (Denmark)

    Bach, Anders; Rasmussen, Henrik K.; Hassager, Ole

    2003-01-01

    A new filament stretching rheometer has been constructed to measure the elongational viscosity of polymer melts at high temperatures. Two polymer melts, a LDPE and a LLDPE, were investigated with this rheometer. A constant elongational rate has been obtained by an iterative application of the Orr...

  15. Structure of Flexible Filamentous Plant Viruses

    Energy Technology Data Exchange (ETDEWEB)

    Kendall, Amy; McDonald, Michele; Bian, Wen; Bowles, Timothy; Baumgarten, Sarah C.; Shi, Jian; Stewart, Phoebe L.; Bullitt, Esther; Gore, David; Irving, Thomas C.; Havens, Wendy M.; Ghabrial, Said A.; Wall, Joseph S.; Stubbs, Gerald (IIT); (BU-M); (Vanderbilt); (Kentucky); (BNL)

    2008-10-23

    Flexible filamentous viruses make up a large fraction of the known plant viruses, but in comparison with those of other viruses, very little is known about their structures. We have used fiber diffraction, cryo-electron microscopy, and scanning transmission electron microscopy to determine the symmetry of a potyvirus, soybean mosaic virus; to confirm the symmetry of a potexvirus, potato virus X; and to determine the low-resolution structures of both viruses. We conclude that these viruses and, by implication, most or all flexible filamentous plant viruses share a common coat protein fold and helical symmetry, with slightly less than 9 subunits per helical turn.

  16. Effective Parameters on Increasing Filamentous Bacteria and Their Effects on Membrane Fouling in MBR

    Directory of Open Access Journals (Sweden)

    Hossein Hazrati

    2013-03-01

    Full Text Available Over 90 percent of the wastewater treatment plants in Iran use activated sludge process. Due to increase in organic loading rates, most of these plants do not have appropriate performance. For upgrading these systems and decreasing production of the excess sludge, a UASB reactor can be used as pretreatment for decreasing the organic loading prior to the activated sludge system. Also for improving the effluent quality, a membrane can be replaced for secondary sedimentation tank, i.e. changing activated sludge to membrane bioreactor. In this study, the effect of significant changes in feed composition, due to the introduction of UASB reactor; have been investigated on the population of filamentous bacteria, COD and TS removal efficiency and membrane fouling. The results showed that the population of filamentous bacteria increased rapidly from 5 to 100 Count/µL. However, this increase does not have considerable effect on membrane fouling. With increasing MLSS concentration, the number of filamentous bacteria increased from 100 to 400Count/µL. As a result, the trans membrane pressure was raised from 1.5 to 3kpa and overall membrane resistance was increased against the effluent flux. For reducing the filamentous bacteria, a dose of 20 g Cl2 /Kg MLSS was added in few intervals for two days. It was also found the number of filamentous bacteria decreased from 400 to 100 after 5 days without decreasing the other microorganisms’ population significantly. The trans membrane pressure was also retained without any further increase.

  17. Solar filament impact on 21 January 2005: Geospace consequences

    Science.gov (United States)

    Kozyra, J. U.; Liemohn, M. W.; Cattell, C.; De Zeeuw, D.; Escoubet, C. P.; Evans, D. S.; Fang, X.; Fok, M.-C.; Frey, H. U.; Gonzalez, W. D.; Hairston, M.; Heelis, R.; Lu, G.; Manchester, W. B.; Mende, S.; Paxton, L. J.; Rastaetter, L.; Ridley, A.; Sandanger, M.; Soraas, F.; Sotirelis, T.; Thomsen, M. W.; Tsurutani, B. T.; Verkhoglyadova, O.

    2014-07-01

    On 21 January 2005, a moderate magnetic storm produced a number of anomalous features, some seen more typically during superstorms. The aim of this study is to establish the differences in the space environment from what we expect (and normally observe) for a storm of this intensity, which make it behave in some ways like a superstorm. The storm was driven by one of the fastest interplanetary coronal mass ejections in solar cycle 23, containing a piece of the dense erupting solar filament material. The momentum of the massive solar filament caused it to push its way through the flux rope as the interplanetary coronal mass ejection decelerated moving toward 1 AU creating the appearance of an eroded flux rope (see companion paper by Manchester et al. (2014)) and, in this case, limiting the intensity of the resulting geomagnetic storm. On impact, the solar filament further disrupted the partial ring current shielding in existence at the time, creating a brief superfountain in the equatorial ionosphere—an unusual occurrence for a moderate storm. Within 1 h after impact, a cold dense plasma sheet (CDPS) formed out of the filament material. As the interplanetary magnetic field (IMF) rotated from obliquely to more purely northward, the magnetotail transformed from an open to a closed configuration and the CDPS evolved from warmer to cooler temperatures. Plasma sheet densities reached tens per cubic centimeter along the flanks—high enough to inflate the magnetotail in the simulation under northward IMF conditions despite the cool temperatures. Observational evidence for this stretching was provided by a corresponding expansion and intensification of both the auroral oval and ring current precipitation zones linked to magnetotail stretching by field line curvature scattering. Strong Joule heating in the cusps, a by-product of the CDPS formation process, contributed to an equatorward neutral wind surge that reached low latitudes within 1-2 h and intensified the

  18. On an Increase of Critical Current in High Temperature Superconductors Doped with $^{238}U$ Due to the Production of Nuclear Photofission Fragment Tracks

    CERN Document Server

    Goncharov, I N

    2001-01-01

    The effect of appreciable increasing J_c(B,T) in HTSC (especially at liquid nitrogen temperatures of 62-78 K and magnetic fields of above 0.5 T) due to the production of fast heavy ion tracks, including those of doped U nuclear fission fragments, is known. The tracks are additional effective pinning-centers. The results described in the literature have been obtained for {235}U doped HTSC after reactor thermal neutron irradiations. Disadvantages of such a method are analyzed in this paper, in particular in case of its use for current-carrying Bi-2223/Ag tape, because a very high radioactivity level slowly decreasing in time arises. The author has suggested to use {238}U nuclear photofission in over a giant resonance energy range (E_gamma ~10-20 MeV). The experimental results obtained after tape irradiation with gamma-quanta (E_gamma \\leq 24 MeV), including a time dependence of radioactivity level, are presented. Possibilities of practical realization of this method are discussed.

  19. Unsteady mixed convection of a micropolar fluid past a circular cylinder due to time-dependent free stream velocity and temperature

    Directory of Open Access Journals (Sweden)

    Nepal C. Roy

    2016-06-01

    Full Text Available Unsteady mixed convection boundary-layer flow of an electrically conducting micropolar fluid past a circular cylinder is investigated taking into account the effect of thermal radiation and heat generation or absorption. The reduced non-similar boundary-layer equations are solved using the finite difference method. It is found that the magnitude of the friction factor and the couple stress significantly increases due to the increase of the mixed convection parameter, the conduction-radiation parameter, the surface temperature parameter, the heat absorption parameter and the frequency parameter. However the magnitude of the heat transfer rate decreases with these parameters. The converse characteristics are observed for the Prandtl number. The magnitude of the couple stress and the heat transfer rate is seen to decrease whereas the magnitude of the skin factor increases with increasing the vortex viscosity parameter. The magnetic field parameter reduces the skin factor, couple stress and heat transfer rate. The amplitude of oscillation of the transient skin factor and couple stress gradually increases owing to an increase of $\\xi$. But the transient heat transfer rate is found to be oscillating with almost the same amplitude for any value of $\\xi$. The amplitude of oscillation of the transient skin factor and couple stress increases with an increase of $S$ and $\\xi$ while the amplitude of the transient heat transfer rate increases with increasing Pr and $S$.

  20. Influence of air pressure, humidity, solar radiation, temperature, and wind speed on ambulatory visits due to chronic obstructive pulmonary disease in Bavaria, Germany

    Science.gov (United States)

    Ferrari, Uta; Exner, Teresa; Wanka, Eva R.; Bergemann, Christoph; Meyer-Arnek, Julian; Hildenbrand, Beate; Tufman, Amanda; Heumann, Christian; Huber, Rudolf M.; Bittner, Michael; Fischer, Rainald

    2012-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the most important causes of morbidity and mortality in the world. The disease is often aggravated by periods of increased symptoms requiring medical attention. Among the possible triggers for these exacerbations, meteorological factors are under consideration. The objective of this study was to assess the influence of various meteorological factors on the health status of patients with COPD. For this purpose, the daily number of ambulatory care visits due to COPD was analysed in Bavaria, Germany, for the years 2006 and 2007. The meteorological factors were provided by the model at the European Centre for Medium Range Weather Forecast (ECMWF). For the multivariate analysis, a generalised linear model was used. In Bavaria, an increase of 1% of daily consultations (about 103 visits per day) was found to be associated with a change of 0.72 K temperature, 209.55 of log air surface pressure in Pa, and a decrease of 1% of daily consultations with 1,453,763 Ws m2 of solar radiation. There also seem to be regional differences between north and south Bavaria; for instance, the effect of wind speed and specific humidity with a lag of 1 day were only significant in the north. This study could contribute to a tool for the prevention of exacerbations. It also serves as a model for the further evaluation of the impact of meteorological factors on health, and could easily be applied to other diseases or other regions.

  1. Determination of Operation Condition and Product Dimension Accuracy Optimization of Filament Deposition Modelling on Layer Manufacturing Application

    Directory of Open Access Journals (Sweden)

    Slamet Widyanto

    2010-10-01

    Full Text Available Layer manufacturing process has proven as a process that can produce a high complexity mechanical part. Now, Improvement of LM methods continuously conduct that is aimed to increase precessions and efficiency of these processes. Pressure filament deposition modelling is a form of layer manufacturing process that is designed to produce a plastic part with controlling its semisolid phase. In this research, the equipment of filament depositor is designed and tested to make the product filament deposition. With operation condition observation, the optimal temperature and pressure of deposition process was determined. These experiments used PVC as crystalline material and  polypropylene as amorphous material. To optimize this process, the tensile strength and density test were conducted. The shape of tensile test specimens is based on ASTM 638 standard and made in 3 orientations deposition path, namely: in 0 degree, 45 degree and 90 degree from load force axis. To found the most accurate dimension, controlling the time delay, temperature of build part, feeding speed and variation deposition path was conducted. The results of experiments show that the filament deposition method can only be applied for amorphous material in which it has a semisolid phase. From the tensile strength test, the binding strength among filaments is 0.5 kg/mm2, 20% of the tensile strength of filament. And the density of a sample product, which used the filament diameter of 0.8 mm, is 0.7668 g/cm3. Accuracy of product dimension can be increased by: controlling time delay in location where the motion orientation of hopper filament is changed and controlling temperature of build part surface.

  2. Effects of filament size on critical current density in overpressure processed Bi-2212 round wire.

    Science.gov (United States)

    Jiang, Jianyi; Francis, Ashleigh; Alicea, Ryan; Matras, Maxime; Kametani, Fumitake; Trociewitz, Ulf P; Hellstrom, Eric E; Larbalestier, David C

    2017-06-01

    Bi 2 Sr 2 CaCu 2 O x (Bi-2212) conductor is the only high temperature superconductor manufactured as a round wire and is a very promising conductor for very high field applications. One of the key design parameters of Bi-2212 wire is its filament size, which has been previously reported to affect the critical current density ( J c ) and ac losses. Work with 1 bar heat treatment showed that the optimal filament diameter was about 15 μm but it was not well understood at that time that gas bubbles were the main current limiting mechanism. Here we investigated a recent Bi-2212 wire with a 121×18 filament architecture with varying wire diameter (1.0 to 1.5 mm) using 50 bar overpressure processing. This wire is part of a 1.2 km piece length of 1.0 mm diameter made by Oxford Superconducting Technology. We found that J c is independent of the filament size in the range from 9 to 14 μm, although the n value increased with increasing filament size. A new record J c (4.2 K, 15 T) of 4200 A/mm 2 and J E (4.2 K, 15 T) of 830 A/mm 2 were achieved.

  3. Nylon filament coated with paraffin for intraluminal permanent middle cerebral artery occlusion in rats.

    Science.gov (United States)

    Zuo, Xia-Lin; Wu, Ping; Ji, Ai-Min

    2012-06-21

    A variety of intraluminal nylon filament has been used in rat middle cerebral artery occlusion (MCAO) models. However the lesion extent and its reproducibility vary among laboratories. The properties of nylon filament play a part of reasons for these variations. In the present study, we used paraffin-coated nylon filament for rat MCAO model, tested the effects and advanced improvement for making the rat MCAO. Forty male Sprague-Dawley (SD) rats were randomized into two groups, MCAO with traditional uncoated nylon filament (uMCAO) and MCAO with paraffin-coated nylon filament (cMCAO), three rats as normal group and sham group respectively. Assessment included mortality rates, model success rates, neurological deficit evaluation, and infarct volume. The study showed two rats died in uMCAO group, no rat died in cMCAO group within the 12h. The model success rate of uMCAO was 100%, while the uMCAO group was 55% (n=20, two died within 12h, seven rats were excluded as the brain slices showed no TTC staining due to subarachanoid hemorrhage). Neurological evaluation demonstrated group cMCAO had more worse neurological outcomes than group uMCAO, and the difference was statistically signification (pparaffin-coated nylon filament intraluminal occlusion provide better occlusion of middle cerebral artery than the uncoated nylon filament, improve the consistent of model, and raise the success rate to reduce the number of experimental animals. These positive results are much encouraging and interesting. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. A CIRCULAR-RIBBON SOLAR FLARE FOLLOWING AN ASYMMETRIC FILAMENT ERUPTION

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang; Deng, Na; Lee, Jeongwoo; Wang, Haimin [Space Weather Research Laboratory, New Jersey Institute of Technology, University Heights, Newark, NJ 07102-1982 (United States); Liu, Rui [CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei 230026 (China); Pariat, Étienne [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universits, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, F-92190 Meudon (France); Wiegelmann, Thomas [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig Weg 3, D-37077 Göttingen (Germany); Liu, Yang [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305-4085 (United States); Kleint, Lucia, E-mail: chang.liu@njit.edu [University of Applied Sciences and Arts Northwestern Switzerland, Bahnhofstrasse 6, 5210 Windisch (Switzerland)

    2015-10-20

    The dynamic properties of flare ribbons and the often associated filament eruptions can provide crucial information on the flaring coronal magnetic field. This Letter analyzes the GOES-class X1.0 flare on 2014 March 29 (SOL2014-03-29T17:48), in which we found an asymmetric eruption of a sigmoidal filament and an ensuing circular flare ribbon. Initially both EUV images and a preflare nonlinear force-free field model show that the filament is embedded in magnetic fields with a fan-spine-like structure. In the first phase, which is defined by a weak but still increasing X-ray emission, the western portion of the sigmoidal filament arches upward and then remains quasi-static for about five minutes. The western fan-like and the outer spine-like fields display an ascending motion, and several associated ribbons begin to brighten. Also found is a bright EUV flow that streams down along the eastern fan-like field. In the second phase that includes the main peak of hard X-ray (HXR) emission, the filament erupts, leaving behind two major HXR sources formed around its central dip portion and a circular ribbon brightened sequentially. The expanding western fan-like field interacts intensively with the outer spine-like field, as clearly seen in running difference EUV images. We discuss these observations in favor of a scenario where the asymmetric eruption of the sigmoidal filament is initiated due to an MHD instability and further facilitated by reconnection at a quasi-null in corona; the latter is in turn enhanced by the filament eruption and subsequently produces the circular flare ribbon.

  5. The Origin of Solar Filament Plasma Inferred from In Situ Observations of Elemental Abundances

    Energy Technology Data Exchange (ETDEWEB)

    Song, H. Q.; Chen, Y.; Li, B. [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Li, L. P. [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Zhao, L. [Department of Climate and Space sciences and Engineering, University of Michigan, Ann Arbor, MI 48105 (United States); He, J. S.; Duan, D. [School of Earth and Space Sciences, Peking University, Beijing 100871 (China); Cheng, X. [School of Astronomy and Space Science, Nanjing University, Nanjing, Jiangsu 210093 (China); Zhang, J., E-mail: hqsong@sdu.edu.cn [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030 (United States)

    2017-02-10

    Solar filaments/prominences are one of the most common features in the corona, which may lead to energetic coronal mass ejections (CMEs) and flares when they erupt. Filaments are about 100 times cooler and denser than the coronal material, and physical understanding of their material origin remains controversial. Two types of scenarios have been proposed: one argues that the filament plasma is brought into the corona from photosphere or chromosphere through a siphon or evaporation/injection process, while the other suggests that the material condenses from the surrounding coronal plasma due to thermal instability. The elemental abundance analysis is a reasonable clue to constrain the models, as the siphon or evaporation/injection model would predict that the filament material abundances are close to the photospheric or chromospheric ones, while the condensation model should have coronal abundances. In this Letter, we analyze the elemental abundances of a magnetic cloud that contains the ejected filament material. The corresponding filament eruption occurred on 1998 April 29, accompanying an M6.8 class soft X-ray flare located at the heliographic coordinates S18E20 (NOAA 08210) and a fast halo CME with the linear velocity of 1374 km s{sup −1} near the Sun. We find that the abundance ratios of elements with low and high first ionization potential such as Fe/O, Mg/O, and Si/O are 0.150, 0.050, and 0.070, respectively, approaching their corresponding photospheric values 0.065, 0.081, and 0.066, which does not support the coronal origin of the filament plasma.

  6. Large-scale Motion of Solar Filaments

    Indian Academy of Sciences (India)

    tribpo

    Large-scale Motion of Solar Filaments. Pavel Ambrož, Astronomical Institute of the Acad. Sci. of the Czech Republic, CZ-25165. Ondrejov, The Czech Republic. e-mail: pambroz@asu.cas.cz. Alfred Schroll, Kanzelhöehe Solar Observatory of the University of Graz, A-9521 Treffen,. Austria. e-mail: schroll@solobskh.ac.at.

  7. Filamentous bacteria transport electrons over centimetre distances

    DEFF Research Database (Denmark)

    Pfeffer, Christian; Larsen, Steffen; Song, Jie

    2012-01-01

    across centimetre-wide zones. Here we present evidence that the native conductors are long, filamentous bacteria. They abounded in sediment zones with electric currents and along their length they contained strings with distinct properties in accordance with a function as electron transporters. Living...

  8. Modelling the morphology of filamentous microorganisms

    DEFF Research Database (Denmark)

    Nielsen, Jens Bredal

    1996-01-01

    The rapid development in image analysis techniques has made it possible to study the growth kinetics of filamentous microorganisms in more detail than previously, However, owing to the many different processes that influence the morphology it is important to apply mathematical models to extract...

  9. Filament stretching rheometry of polymer melts

    DEFF Research Database (Denmark)

    Hassager, Ole; Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz

    2005-01-01

    The Filament Stretching Rheometry (FSR) method developed by Sridhar, McKinley and coworkers for polymer solutions has been extended to be used also for polymer melts. The design of a melt-FSR will be described and differences to conventional melt elongational rheometers will be pointed out. Results...

  10. The exo-metabolome in filamentous fungi

    DEFF Research Database (Denmark)

    Thrane, Ulf; Andersen, Birgitte; Frisvad, Jens Christian

    2007-01-01

    Filamentous fungi are a diverse group of eukaryotic microorganisms that have a significant impact on human life as spoilers of food and feed by degradation and toxin production. They are also most useful as a source of bulk and fine chemicals and pharmaceuticals. This chapter focuses on the exo...

  11. Evolution of genetic systems in filamentous ascomycetes

    NARCIS (Netherlands)

    Nauta, M.J.

    1994-01-01

    A great variety of genetic systems exist in filamentous ascomycetes. The transmission of genetic material does not only occur by (sexual or asexual) reproduction, but it can also follow vegetative fusion of different strains. In this thesis the evolution of this variability is studied,

  12. Featured Image: A Filament Forms and Erupts

    Science.gov (United States)

    Kohler, Susanna

    2017-06-01

    This dynamic image of active region NOAA 12241 was captured by the Solar Dynamics Observatorys Atmospheric Imaging Assembly in December 2014. Observations of this region from a number of observatories and instruments recently presented by Jincheng Wang (University of Chinese Academy of Sciences) and collaborators reveal details about the formation and eruption of a long solar filament. Wang and collaborators show that the right part of the filament formed by magnetic reconnection between two bundles of magnetic field lines, while the left part formed as a result of shearing motion. When these two parts interacted, the filament erupted. You can read more about the teams results in the article linked below. Also, check out this awesome video of the filament formation and eruption, again by SDO/AIA:http://cdn.iopscience.com/images/0004-637X/839/2/128/Full/apjaa6bf3f1_video.mp4CitationJincheng Wang et al 2017 ApJ 839 128. doi:10.3847/1538-4357/aa6bf3

  13. Unraveling Intermediate Filaments : The super resolution solution

    NARCIS (Netherlands)

    Nahidiazar, L.

    2017-01-01

    Intermediate Filaments (IFs) carry out major functions in cells. Several diseases have been associated with malfunctioning IFs in the cells and among them are certain sub types of cancer. To determine the structure and organization of IFs, we have used Single Molecule Localization Microscopy (SMLM)

  14. Large-scale Motion of Solar Filaments

    Indian Academy of Sciences (India)

    tribpo

    The 'seeing' dependent contrast of the Hα pictures is the source of uncertainties during the measurements on ... Results of measurements and conclusions. Heliographic position of the filaments is measured on the full disc Hα pictures taken ... consecutive magnetic synoptic charts. Two arrays of corresponding velocities are ...

  15. Mapping the filaments in NGC 1275

    Science.gov (United States)

    Cobos, Aracely Susan; Rich, Jeffrey; Great Observatories All-sky LIRG Survey (GOALS)

    2018-01-01

    The giant elliptical brightest cluster galaxies (BCGs) at the centers of many massive clusters are often surrounded by drawn-out forms of gaseous material. It is believed that this gaseous material is gas condensing from the intracluster medium (ICM) in a “cooling flow,” and it can directly impact the growth of the BCG. The galaxy NGC 1275 is one of the closest giant elliptical BCGs and lies at the center of the Perseus cluster. NGC 1275 has large filaments that are thought to be associated with a cooling flow, but they may also be affected by its AGN. To investigate the relationship between the AGN and the cooling flow we have mapped the filaments around NGC 1275 with the Cosmic Web Imager, an image-slicing integral field spectrograph at Palomar Observatories. We employ standard emission-line ratio diagnostics to determine the source of ionizing radiation. We use our analysis to investigate whether the formation of the extended filaments is a result of gas from the ICM collapsing onto the galaxy as it cools or if it is possible that the filaments are a result of the cluster’s interaction with the outflow driven by the AGN.

  16. On viscoelastic instability in polymeric filaments

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole

    1999-01-01

    The 3D Lagrangian Integral Method is used to simulate the effects of surface tension on the viscoelastic end-plate instability, occuring in the rapid extension of some polymeric filaments between parallel plates. It is shovn that the surface tension delays the onset of the instability. Furthermore...

  17. Study of a filament with a circularly polarized beam at 3.8 cm

    International Nuclear Information System (INIS)

    Straka, R.M.; Papagiannis, M.D.; Kogut, J.A.

    1975-01-01

    Extensive observations of left and right circularly polarized emission were carried out with the 120 ft Haystack antenna, which at 3.8 cm has a HPBW of 4.4 minutes of arc. During a very quite period, September 22-26, 1974, two regions were observed in the southern hemisphere of the sun with brightness temperatures approximately 10% below the surrounding solar disk temperature. Hα photographs show that the main region was associated with a long filament. The separation between the center of the radio depression and the filament increased as the filament advanced toward the limb, with the depression finally disappearing when the filament was at a radial distance >0.8 R(Sun) from the center of the solar disk. These observations are in agreement with a filament model consisting of a thin, tall and exceedingly long sheet of enhanced density encaged in a large and equally long tunnel-like cavity of lower density. The electron density at the 3.8 cm emission level which occurs immediately below the transition zone was estimated to be lower inside the cavity than outside by a factor of 2. The origin of the other depression remains unclear because no relation to any Hα or magnetic feature could be found. A possible association with a coronal hole could not be established because no pertinent EUV or X-ray data were available. It would be of interest to investigate in future observations if a secondary depression is normally associated with the primary depression region over a long filament. (Auth.)

  18. Use of carbon filaments in place of carbon black as the current collector of a lithium cell with a thionyl chloride bromine chloride catholyte

    Science.gov (United States)

    Frysz, Christine A.; Shui, Xiaoping; Chung, D. D. L.

    Submicron carbon filaments (ADNH, Applied Sciences Inc.) used in place of carbon black as porous reduction electrodes (i.e., current collectors) in plate and jellyroll configurations in carbon limited lithium batteries with the BCX (bromine chloride in thionyl chloride) catholyte gave a specific capacity (at 2 V cut-off) of up to 8700 mAh/g of carbon, compared with a value of up to 2900 mAh/g of carbon for carbon black. The high specific capacity for the filament electrode is partly due to the filaments' processability into sheets as thin as 0.2 mm with good porosity, acceptable mechanical properties and without binder, and partly due to the high catholyte absorptivity and high rate of catholyte absorption of the filament electrode. Use of solvent-cleansed filaments in place of as-received filaments in making electrodes increased the packing density, thus decreasing capacity per g of carbon. The BCX catholyte acted as a cleanser anyway, due to the thionyl chloride in it. The specific capacity per cm 3 of carbon and that per unit density of carbon were also increased by using carbon filaments in place of carbon black, provided that the filament electrode was not pressed after forming by slurry filtration. Though no binder was needed for the filament plate electrode, it was needed for the filament jellyroll electrode. The Teflon™ binder increased the tensile strength and modulus, but decreased the catholyte absorption and rate of absorption. The filament electrode exhibited 405 less volume electrical resistivity than the carbon black electrode, both without a binder.

  19. Use of carbon filaments in place of carbon black as the current collector of a lithium cell with a thionyl chloride bromine chloride catholyte

    Energy Technology Data Exchange (ETDEWEB)

    Frysz, C.A. [Technology Div., Wilson Greatbatch Ltd., Clarence, NY (United States); Shui Xiaoping [Composite Materials Research Lab., State Univ. of New York, Buffalo, NY (United States); Chung, D.D.L. [Composite Materials Research Lab., State Univ. of New York, Buffalo, NY (United States)

    1996-01-01

    Submicron carbon filaments (ADNH, Applied Sciences Inc.) used in place of carbon black as porous reduction electrodes (i.e., current collectors) in plate and jellyroll configurations in carbon limited lithium batteries with the BCX (bromine chloride in thionyl chloride) catholyte gave a specific capacity (at 2 V cut-off) of up to 8700 mAh/g of carbon, compared with a value of up to 2900 mAh/g of carbon for carbon black. The high specific capacity for the filament electrode is partly due to the filaments` processability into sheets as thin as 0.2 mm with good porosity, acceptable mechanical properties and without binder, and partly due to the high catholyte absorptivity and high rate of catholyte absorption of the filament electrode. Use of solvent-cleansed filaments in place of as-received filaments in making electrodes increased the packing density, thus decreasing capacity per g of carbon. The BCX catholyte acted as a cleanser anyway, due to the thionyl chloride in it. The specific capacity per cm{sup 3} of carbon and that per unit density of carbon were also increased by using carbon filaments in place of carbon black, provided that the filament electrode was not pressed after forming by slurry filtration. Though no binder was needed for the filament plate electrode, it was needed for the filament jellyroll electrode. The Teflon{sup TM} binder increased the tensile strength and modulus, but decreased the catholyte absorption and rate of absorption. The filament electrode exhibited 40% less volume electrical resistivity than the carbon black electrode, both without a binder. (orig.)

  20. Harmful impact of filamentous algae (Spirogyra sp.) on juvenile crayfish

    OpenAIRE

    Ulikowski Dariusz; Chybowski Łucjan; Traczuk Piotr

    2015-01-01

    The aim of this study was to determine the impact of filamentous algae on the growth and survival of juvenile narrow-clawed crayfish, Astacus leptodactylus (Esch.), in rearing basins. Three stocking variants were used: A - basins with a layer of filamentous algae without imitation mineral substrate; B - basins with a layer of filamentous algae with imitation mineral substrate; C - basins without filamentous algae but with mineral substrate. The crayfish were reared from June 12 to October 10 ...

  1. Standing waves in a counter-rotating vortex filament pair

    Science.gov (United States)

    García-Azpeitia, Carlos

    2018-03-01

    The distance among two counter-rotating vortex filaments satisfies a beam-type of equation according to the model derived in [15]. This equation has an explicit solution where two straight filaments travel with constant speed at a constant distance. The boundary condition of the filaments is 2π-periodic. Using the distance of the filaments as bifurcating parameter, an infinite number of branches of periodic standing waves bifurcate from this initial configuration with constant rational frequency along each branch.

  2. Graphene-based filament material for thermal ionization

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shick, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Siegfried, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-19

    The use of graphene oxide materials for thermal ionization mass spectrometry analysis of plutonium and uranium has been investigated. Filament made from graphene oxide slurries have been 3-D printed. A method for attaching these filaments to commercial thermal ionization post assemblies has been devised. Resistive heating of the graphene based filaments under high vacuum showed stable operation in excess of 4 hours. Plutonium ion production has been observed in an initial set of filaments spiked with the Pu 128 Certified Reference Material.

  3. CLUSTER FORMATION TRIGGERED BY FILAMENT COLLISIONS IN SERPENS SOUTH

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Fumitaka; Kawabe, Ryohei; Shinnaga, Hiroko [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Sugitani, Koji [Graduate School of Natural Sciences, Nagoya City University, Mizuho-ku, Nagoya 467-8501 (Japan); Tanaka, Tomohiro; Kimura, Kimihiko; Tokuda, Kazuki; Kozu, Minato; Okada, Nozomi; Hasegawa, Yutaka; Ogawa, Hideo [Department of Physical Science, Osaka Prefecture University, Gakuen 1-1, Sakai, Osaka 599-8531 (Japan); Nishitani, Hiroyuki; Mizuno, Izumi [Nobeyama Radio Observatory, Minamimaki, Minamisaku, Nagano 384-1305 (Japan); Dobashi, Kazuhito; Shimoikura, Tomomi [Department of Astronomy and Earth Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501 (Japan); Shimajiri, Yoshito [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/Service d' Astrophysique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Yonekura, Yoshinori [Center for Astronomy, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan); Kameno, Seiji [Joint ALMA Observatory, Alonso de Crdova 3107 Vitacura, Santiago (Chile); Momose, Munetake [Institute of Astrophysics and Planetary Sciences, Ibaraki University, Bunkyo 2-1-1, Mito 310-8512 (Japan); Nakajima, Taku, E-mail: fumitaka.nakamura@nao.ac.jp [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); and others

    2014-08-20

    The Serpens South infrared dark cloud consists of several filamentary ridges, some of which fragment into dense clumps. On the basis of CCS (J{sub N} = 4{sub 3}-3{sub 2}), HC{sub 3}N (J = 5-4), N{sub 2}H{sup +} (J = 1-0), and SiO (J = 2-1, v = 0) observations, we investigated the kinematics and chemical evolution of these filamentary ridges. We find that CCS is extremely abundant along the main filament in the protocluster clump. We emphasize that Serpens South is the first cluster-forming region where extremely strong CCS emission is detected. The CCS-to-N{sub 2}H{sup +} abundance ratio is estimated to be about 0.5 toward the protocluster clump, whereas it is about 3 in the other parts of the main filament. We identify six dense ridges with different V {sub LSR}. These ridges appear to converge toward the protocluster clump, suggesting that the collisions of these ridges may have triggered cluster formation. The collisions presumably happened within a few × 10{sup 5} yr because CCS is abundant only for a short time. The short lifetime agrees with the fact that the number fraction of Class I objects, whose typical lifetime is 0.4 × 10{sup 5} yr, is extremely high, about 70% in the protocluster clump. In the northern part, two ridges appear to have partially collided, forming a V-shape clump. In addition, we detected strong bipolar SiO emission that is due to the molecular outflow blowing out of the protostellar clump, as well as extended weak SiO emission that may originate from the filament collisions.

  4. Numerical studies of third-harmonic generation in laser filament in air perturbed by plasma spot

    International Nuclear Information System (INIS)

    Feng Liubin; Lu Xin; Liu Xiaolong; Li Yutong; Chen Liming; Ma Jinglong; Dong Quanli; Wang Weimin; Xi Tingting; Sheng Zhengming; Zhang Jie; He Duanwei

    2012-01-01

    Third-harmonic emission from laser filament intercepted by plasma spot is studied by numerical simulations. Significant enhancement of the third-harmonic generation is obtained due to the disturbance of the additional plasma. The contribution of the pure plasma effect and the possible plasma-enhanced third-order susceptibility on the third-harmonic generation enhancement are compared. It is shown that the plasma induced cancellation of destructive interference [Y. Liu et al., Opt. Commun. 284, 4706 (2011)] of two-colored filament is the dominant mechanism of the enhancement of third-harmonic generation.

  5. A penny-shaped crack in a filament-reinforced matrix. I - The filament model. II - The crack problem

    Science.gov (United States)

    Erdogan, F.; Pacella, A. H.

    1974-01-01

    The study deals with the elastostatic problem of a penny-shaped crack in an elastic matrix which is reinforced by filaments or fibers perpendicular to the plane of the crack. An elastic filament model is first developed, followed by consideration of the application of the model to the penny-shaped crack problem in which the filaments of finite length are asymmetrically distributed around the crack. Since the primary interest is in the application of the results to studies relating to the fracture of fiber or filament-reinforced composites and reinforced concrete, the main emphasis of the study is on the evaluation of the stress intensity factor along the periphery of the crack, the stresses in the filaments or fibers, and the interface shear between the matrix and the filaments or fibers. Using the filament model developed, the elastostatic interaction problem between a penny-shaped crack and a slender inclusion or filament in an elastic matrix is formulated.

  6. On a Small-scale EUV Wave: The Driving Mechanism and the Associated Oscillating Filament

    Science.gov (United States)

    Shen, Yuandeng; Liu, Yu; Tian, Zhanjun; Qu, Zhining

    2017-12-01

    We present observations of a small-scale extreme-ultraviolet (EUV) wave that was associated with a mini-filament eruption and a GOES B1.9 micro-flare in the quiet-Sun region. The initiation of the event was due to the photospheric magnetic emergence and cancellation in the eruption source region, which first caused the ejection of a small plasma ejecta, then the ejecta impacted a nearby mini-filament and thereby led to the filament’s eruption and the associated flare. During the filament eruption, an EUV wave at a speed of 182{--}317 {km} {{{s}}}-1 was formed ahead of an expanding coronal loop, which propagated faster than the expanding loop and showed obvious deceleration and reflection during the propagation. In addition, the EUV wave further resulted in the transverse oscillation of a remote filament whose period and damping time are 15 and 60 minutes, respectively. Based on the observational results, we propose that the small-scale EUV wave should be a fast-mode magnetosonic wave that was driven by the expanding coronal loop. Moreover, with the application of filament seismology, it is estimated that the radial magnetic field strength is about 7 Gauss. The observations also suggest that small-scale EUV waves associated with miniature solar eruptions share similar driving mechanisms and observational characteristics with their large-scale counterparts.

  7. Comparison of chemical changes during photooxidation of polypropylene film and filament containing phthalocyanine pigment

    International Nuclear Information System (INIS)

    Ahmadi, Z.; Haghighat Kish, M.; Kotak, R.; Katbab, A. A.

    2008-01-01

    Photooxidation as an important process, which significantly affects the service life of the polypropylene products, has been the subject of much theoretical and experimental study. Pigments used often change the light stabilities of polypropylene. Out-door applications of pigmented polypropylene are now increasingly developed in products such as artificial grass. The aim of this work is to examine the effect of photo-oxidation on the structure of isotactic polypropylene (iPP) in film and filament forms, where phthalocyanine pigment is used. For production of films and filaments, iPP granules with MFI 25 g/10 min were used, with and without phthalocyanine pigment. Samples were exposed to xenon lamp for various time lengths. The extent of the changes in chemical and structural parameters was examined by differential scanning calorimetry, Fourier transform infrared spectroscopy and wide angle x-ray diffraction. The results show that carbonyl and hydroperoxide indices increase during the exposure to the radiation. The changes in melting points of the samples were not significant after irradiation process. The effects of phthalocyanine pigment in the photooxidation of film and filament were different. Crystalline fractions of the non-pigmented filament samples decreased during the irradiation time while increased in film samples. Build up of hydroperoxide and carbonyl group in filament was higher than in film samples; that could be due to the differences in structural parameters. Crystallinity variations during photooxidation are related to the nucleation effect of the pigment, chemical crystallization and phase transformation

  8. Comparison of Chemical Changes During Photooxidation of Polypropylene Film and Filament Containing Phthalocyanine Pigment

    Directory of Open Access Journals (Sweden)

    Z. Ahmadi

    2008-02-01

    Full Text Available Photooxidation as an important process, which significantly affects the service life of the polypropylene products, has been the subject of much theoretical and experimental study. Pigments used often change the light stabilities of polypropylene. Out-door applications of pigmented polypr-opylene are now increasingly developed in products such as artificial grass. The aim of this work is to examine the effect of photo-oxidation on the structure of isotactic polypropylene (iPP in film and filament forms, where phthalocyanine pigment is used. For production of films and filaments, iPP granules with MFI 25 g/10min were used, with and without phthalocyanine pigment. Samples were exposed to xenon lamp for various time lengths. The extent of the changes in chemical and structural parameters was examined by differential scanning calorimetry, Fourier transform infrared spectroscopy and wide angle x-ray diffraction. The results show that carbonyl and hydroperoxide indices increase during the exposure to the radiation. The changes in melting points of the samples were not significant after irradiation process. The effects of phthalocyanine pigment in the photooxidation of filmand filament were different. Crystalline fractions of the non-pigmented filament samples decreased during the irradiation time while increased in film samples. Build up of hydroperoxide and carbonyl group in filament was higher than in film samples; that could be due to the differences in structural parameters. Crystallinity variations during photooxidation are related to the nucleation effect of the pigment, chemical crystallization and phase transformation.

  9. Recycled Sm-Co bonded magnet filaments for 3D printing of magnets

    Science.gov (United States)

    Khazdozian, Helena A.; Manzano, J. Sebastián; Gandha, Kinjal; Slowing, Igor I.; Nlebedim, Ikenna C.

    2018-05-01

    Recycling of rare earth elements, such as Sm and Nd, is one technique towards mitigating long-term supply and cost concerns for materials and devices that depend on these elements. In this work recycled Sm-Co powder recovered from industrial grinding swarfs, or waste material from magnet processing, was investigated for use in preparation of filament for 3D printing of bonded magnets. Recycled Sm-Co powder recovered from swarfs was blended into polylactic acid (PLA). Up to 20 vol.% of the recycled Sm-Co in PLA was extruded at 160°C to produce a filament. It was demonstrated that no degradation of magnetic properties occurred due to the preparation or extrusion of the bonded magnet material. Good uniformity of the magnetic properties is exhibited throughout the filament, with the material first extruded being the exception. The material does exhibit some magnetic anisotropy, allowing for the possibility of the development of anisotropic filaments. This work provides a path forward for producing recycled magnetic filament for 3D printing of permanent magnets.

  10. Manipulation by multiple filamentation of subpicosecond TW KrF laser beam

    Science.gov (United States)

    Zvorykin, V. D.; Smetanin, I. V.; Ustinovskii, N. N.; Shutov, A. V.

    2018-05-01

    A self-focusing of TW-level subpicosecond UV KrF laser pulses in ambient air produces a few 100 randomly distributed filaments over 100-m propagation distance. A control of multiple filamentation process by a number of methods was demonstrated in the present work envisaging applications for a HV discharge guiding, remote excitation of an atmospheric air laser, MW radiation transfer by virtual plasma waveguide, as well as filamentation suppression to improve short pulse parameters in direct amplification scheme. Under the laser beam focusing, a multitude of filaments coalesced into a superfilament with highly increased intensity and plasma conductivity. A superradiant forward lasing was obtained in the superfilament around 1.07-µm wavelength of atmospheric nitrogen. A regular 2D array of a 100 superfilaments was configured over 20-m distance by Fresnel diffraction on periodic amplitude masks. Effective Kerr defocusing and a subsequent filaments suppression over 50-m distance was demonstrated in Xe due to 2-photon resonance of laser radiation with 6p state being accompanied by a narrow-angle coherent conical emission at 828-nm wavelength.

  11. Comparison of Envelope-Related Genes in Unicellular and Filamentous Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Yu Yang

    2007-01-01

    Full Text Available To elucidate the evolution of cyanobacterial envelopes and the relation between gene content and environmental adaptation, cell envelope structures and components of unicellular and filamentous cyanobacteria were analyzed in comparative genomics. Hundreds of envelope biogenesis genes were divided into 5 major groups and annotated according to their conserved domains and phylogenetic profiles. Compared to unicellular species, the gene numbers of filamentous cyanobacteria expanded due to genome enlargement effect, but only few gene families amplified disproportionately, such as those encoding waaG and glycosyl transferase 2. Comparison of envelope genes among various species suggested that the significant variance of certain cyanobacterial envelope biogenesis genes should be the response to their environmental adaptation, which might be also related to the emergence of filamentous shapes with some new functions.

  12. Interchange Reconnection Associated with a Confined Filament Eruption: Implications for the Source of Transient Cold-dense Plasma in Solar Winds

    International Nuclear Information System (INIS)

    Zheng, Ruisheng; Chen, Yao; Wang, Bing; Li, Gang; Xiang, Yongyuan

    2017-01-01

    The cold-dense plasma is occasionally detected in the solar wind with in situ data, but the source of the cold-dense plasma remains illusive. Interchange reconnections (IRs) between closed fields and nearby open fields are known to contribute to the formation of solar winds. We present a confined filament eruption associated with a puff-like coronal mass ejection (CME) on 2014 December 24. The filament underwent successive activations and finally erupted, due to continuous magnetic flux cancelations and emergences. The confined erupting filament showed a clear untwist motion, and most of the filament material fell back. During the eruption, some tiny blobs escaped from the confined filament body, along newly formed open field lines rooted around the south end of the filament, and some bright plasma flowed from the north end of the filament to remote sites at nearby open fields. The newly formed open field lines shifted southward with multiple branches. The puff-like CME also showed multiple bright fronts and a clear southward shift. All the results indicate an intermittent IR existed between closed fields of the confined erupting filament and nearby open fields, which released a portion of filament material (blobs) to form the puff-like CME. We suggest that the IR provides a possible source of cold-dense plasma in the solar wind.

  13. Interchange Reconnection Associated with a Confined Filament Eruption: Implications for the Source of Transient Cold-dense Plasma in Solar Winds

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruisheng; Chen, Yao; Wang, Bing [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, and Institute of Space Sciences, Shandong University, Weihai 264209 (China); Li, Gang [Department of Physics and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Xiang, Yongyuan, E-mail: ruishengzheng@sdu.edu.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216 (China)

    2017-05-01

    The cold-dense plasma is occasionally detected in the solar wind with in situ data, but the source of the cold-dense plasma remains illusive. Interchange reconnections (IRs) between closed fields and nearby open fields are known to contribute to the formation of solar winds. We present a confined filament eruption associated with a puff-like coronal mass ejection (CME) on 2014 December 24. The filament underwent successive activations and finally erupted, due to continuous magnetic flux cancelations and emergences. The confined erupting filament showed a clear untwist motion, and most of the filament material fell back. During the eruption, some tiny blobs escaped from the confined filament body, along newly formed open field lines rooted around the south end of the filament, and some bright plasma flowed from the north end of the filament to remote sites at nearby open fields. The newly formed open field lines shifted southward with multiple branches. The puff-like CME also showed multiple bright fronts and a clear southward shift. All the results indicate an intermittent IR existed between closed fields of the confined erupting filament and nearby open fields, which released a portion of filament material (blobs) to form the puff-like CME. We suggest that the IR provides a possible source of cold-dense plasma in the solar wind.

  14. Can riparian vegetation shade mitigate the expected rise in stream temperatures due to climate change during heat waves in a human-impacted pre-alpine river?

    Directory of Open Access Journals (Sweden)

    H. Trimmel

    2018-01-01

    Full Text Available Global warming has already affected European rivers and their aquatic biota, and climate models predict an increase of temperature in central Europe over all seasons. We simulated the influence of expected changes in heat wave intensity during the 21st century on water temperatures of a heavily impacted pre-alpine Austrian river and analysed future mitigating effects of riparian vegetation shade on radiant and turbulent energy fluxes using the deterministic Heat Source model. Modelled stream water temperature increased less than 1.5 °C within the first half of the century. Until 2100, a more significant increase of around 3 °C in minimum, maximum and mean stream temperatures was predicted for a 20-year return period heat event. The result showed clearly that in a highly altered river system riparian vegetation was not able to fully mitigate the predicted temperature rise caused by climate change but would be able to reduce water temperature by 1 to 2 °C. The removal of riparian vegetation amplified stream temperature increases. Maximum stream temperatures could increase by more than 4 °C even in annual heat events. Such a dramatic water temperature shift of some degrees, especially in summer, would indicate a total shift of aquatic biodiversity. The results demonstrate that effective river restoration and mitigation require re-establishing riparian vegetation and emphasize the importance of land–water interfaces and their ecological functioning in aquatic environments.

  15. Can riparian vegetation shade mitigate the expected rise in stream temperatures due to climate change during heat waves in a human-impacted pre-alpine river?

    Science.gov (United States)

    Trimmel, Heidelinde; Weihs, Philipp; Leidinger, David; Formayer, Herbert; Kalny, Gerda; Melcher, Andreas

    2018-01-01

    Global warming has already affected European rivers and their aquatic biota, and climate models predict an increase of temperature in central Europe over all seasons. We simulated the influence of expected changes in heat wave intensity during the 21st century on water temperatures of a heavily impacted pre-alpine Austrian river and analysed future mitigating effects of riparian vegetation shade on radiant and turbulent energy fluxes using the deterministic Heat Source model. Modelled stream water temperature increased less than 1.5 °C within the first half of the century. Until 2100, a more significant increase of around 3 °C in minimum, maximum and mean stream temperatures was predicted for a 20-year return period heat event. The result showed clearly that in a highly altered river system riparian vegetation was not able to fully mitigate the predicted temperature rise caused by climate change but would be able to reduce water temperature by 1 to 2 °C. The removal of riparian vegetation amplified stream temperature increases. Maximum stream temperatures could increase by more than 4 °C even in annual heat events. Such a dramatic water temperature shift of some degrees, especially in summer, would indicate a total shift of aquatic biodiversity. The results demonstrate that effective river restoration and mitigation require re-establishing riparian vegetation and emphasize the importance of land-water interfaces and their ecological functioning in aquatic environments.

  16. A semi-flexible model prediction for the polymerization force exerted by a living F-actin filament on a fixed wall

    Science.gov (United States)

    Pierleoni, Carlo; Ciccotti, Giovanni; Ryckaert, Jean-Paul

    2015-10-01

    We consider a single living semi-flexible filament with persistence length ℓp in chemical equilibrium with a solution of free monomers at fixed monomer chemical potential μ1 and fixed temperature T. While one end of the filament is chemically active with single monomer (de)polymerization steps, the other end is grafted normally to a rigid wall to mimic a rigid network from which the filament under consideration emerges. A second rigid wall, parallel to the grafting wall, is fixed at distance L chain model with step size d and persistence length ℓp, hitting a hard wall. Explicit properties require the computation of the mean force f ¯ i ( L ) exerted by the wall at L and associated potential f ¯ i ( L ) = - d W i ( L ) / d L on a filament of fixed size i. By original Monte-Carlo calculations for few filament lengths in a wide range of compression, we justify the use of the weak bending universal expressions of Gholami et al. [Phys. Rev. E 74, 041803 (2006)] over the whole non-escaping filament regime. For a filament of size i with contour length Lc = (i - 1) d, this universal form is rapidly growing from zero (non-compression state) to the buckling value f b ( L c , ℓ p ) = /π 2 k B T ℓ p 4 Lc 2 over a compression range much narrower than the size d of a monomer. Employing this universal form for living filaments, we find that the average force exerted by a living filament on a wall at distance L is in practice L independent and very close to the value of the stalling force Fs H = ( k B T / d ) ln ( ρ ˆ 1 ) predicted by Hill, this expression being strictly valid in the rigid filament limit. The average filament force results from the product of the cumulative size fraction x = x ( L , ℓ p , ρ ˆ 1 ) , where the filament is in contact with the wall, times the buckling force on a filament of size Lc ≈ L, namely, Fs H = x f b ( L ; ℓ p ) . The observed L independence of Fs H implies that x ∝ L-2 for given ( ℓ p , ρ ˆ 1 ) and x ∝ ln ρ ˆ 1

  17. Dark Matter and Synchrotron Emission from Galactic Center Radio Filaments

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Tim [Univ. of California, Santa Cruz, CA (United States); Hooper, Dan [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Yusef-Zadeh, Farhad [Northwestern Univ., Evanston, IL (United States)

    2011-11-10

    The inner degrees of the Galactic center contain a large population of filamentary structures observed at radio frequencies. These so-called non-thermal radio filaments (NRFs) trace magnetic field lines and have attracted significant interest due to their hard (S_v ~ -0.1 +/- 0.4) synchrotron emission spectra. The origin of these filaments remains poorly understood. We show that the electrons and positrons created through the annihilations of a relatively light (~5-10 GeV) dark matter particle with the cross section predicted for a simple thermal relic can provide a compelling match to the intensity, spectral shape, and flux variation of the NRFs. Furthermore, the characteristics of the dark matter particle necessary to explain the synchrotron emission from the NRFs is consistent with those required to explain the excess gamma-ray emission observed from the Galactic center by the Fermi-LAT, as well as the direct detection signals observed by CoGeNT and DAMA/LIBRA.

  18. Thin filaments at the Galactic Center: identification and proper motions

    Energy Technology Data Exchange (ETDEWEB)

    Muzic, K [I. Physikalishes Institut, Universitaet zu Koeln, Zuepicher Str. 77, 50937 Cologne (Germany); Eckart, A [I. Physikalishes Institut, Universitaet zu Koeln, Zuepicher Str. 77, 50937 Cologne (Germany); Schoedel, R [I. Physikalishes Institut, Universitaet zu Koeln, Zuepicher Str. 77, 50937 Cologne (Germany); Meyer, L [I. Physikalishes Institut, Universitaet zu Koeln, Zuepicher Str. 77, 50937 Cologne (Germany); Zensus, A [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, 53121 Bonn (Germany)

    2006-12-15

    L'-band (3.8 {mu}m) images of the Galactic Center show a large number of thin filaments in the mini-spiral, located close to the mini-cavity, along the inner edge of the northern arm and in the vicinity of some stars. We interpret them as shock fronts formed by the interaction of a central wind with the mini-spiral or, in some cases, extended dusty stellar envelopes. The observations have been carried out using the NACO adaptive optics system at the ESO VLT, in 5 subsequent epochs from 2002 to 2006. We present a proper motion study of the thin filaments observed in the central parsec around Sgr A*, obtained using the cross- correlation technique. Our interpretation is consistent with a collimated outfbw model from the central few arcseconds. Two possible mechanisms could produce the postulated outfbw: stellar winds originating from the high-mass-loosing He-star cluster as well as a wind from Sgr A* due to accretion from the surrounding disk of stars.

  19. SWAYING THREADS OF A SOLAR FILAMENT

    International Nuclear Information System (INIS)

    Lin, Y.; Engvold, O.; Langangen, Oe.; Rouppe van der Voort, L. H. M.; Soler, R.; Ballester, J. L.; Oliver, R.

    2009-01-01

    From recent high-resolution observations obtained with the Swedish 1 m Solar Telescope in La Palma, we detect swaying motions of individual filament threads in the plane of the sky. The oscillatory characters of these motions are comparable with oscillatory Doppler signals obtained from corresponding filament threads. Simultaneous recordings of motions in the line of sight and in the plane of the sky give information about the orientation of the oscillatory plane. These oscillations are interpreted in the context of the magnetohydrodynamic (MHD) theory. Kink MHD waves supported by the thread body are proposed as an explanation of the observed thread oscillations. On the basis of this interpretation and by means of seismological arguments, we give an estimation of the thread Alfven speed and magnetic field strength by means of seismological arguments.

  20. Helicity and Filament Channels? The Straight Twist!

    Science.gov (United States)

    Antiochos, Spiro K.

    2010-01-01

    One of the most important and most puzzling features of the coronal magnetic field is that it appears to have smooth magnetic structure with little evidence for non-potentiality except at special locations, photospheric polarity inversions lines where the non-potentiality is observed as a filament channel. This characteristic feature of the closed-field corona is highly unexpected given that photospheric motions continuously tangle its magnetic field. Although reconnection can eliminate some of the injected structure, it cannot destroy the helicity, which should build up to produce observable complexity. We propose that an inverse cascade process transports the injected helicity from the interior of closed flux regions to their boundaries, polarity inversion lines, creating filament channels. We describe how the helicity is injected and transported and calculate the relevant rates. We argue that one process, helicity transport, can explain both the observed lack and presence of structure in the coronal magnetic field.

  1. Morgellons disease: a filamentous borrelial dermatitis.

    Science.gov (United States)

    Middelveen, Marianne J; Stricker, Raphael B

    2016-01-01

    Morgellons disease (MD) is a dermopathy characterized by multicolored filaments that lie under, are embedded in, or project from skin. Although MD was initially considered to be a delusional disorder, recent studies have demonstrated that the dermopathy is associated with tickborne infection, that the filaments are composed of keratin and collagen, and that they result from proliferation of keratinocytes and fibroblasts in epithelial tissue. Culture, histopathological and molecular evidence of spirochetal infection associated with MD has been presented in several published studies using a variety of techniques. Spirochetes genetically identified as Borrelia burgdorferi sensu stricto predominate as the infective agent in most of the Morgellons skin specimens studied so far. Other species of Borrelia including Borrelia garinii , Borrelia miyamotoi , and Borrelia hermsii have also been detected in skin specimens taken from MD patients. The optimal treatment for MD remains to be determined.

  2. Statistical study of solar filaments since 1919

    Science.gov (United States)

    Aboudarham, Jean

    2016-04-01

    Science board of Paris Observatory funded the data capture of tables associated with Meudon synoptic maps of Solar activity, which were published for observations ranging from 1919 to 1992. The EU HELIO project developed automatic recognition codes, especially concerning filaments based on observations between 1996 en 2014 (and soon, up to now). We plan to fill the gap between the two catalogues in the short term. But it is already possible to study filaments behavior over quite long periods of time. We present here the first series of results obtained from this analysis which give some clue about the way Solar activity behaves in various parts of the cycle, and about the way if depends on the hemisphere where activity occurs. This information could then be correlated with events catalogues (e.g. flares, CMEs, …) in order to link those phenomena with concrete Solar activity.

  3. Actin organization and dynamics in filamentous fungi.

    Science.gov (United States)

    Berepiki, Adokiye; Lichius, Alexander; Read, Nick D

    2011-11-02

    Growth and morphogenesis of filamentous fungi is underpinned by dynamic reorganization and polarization of the actin cytoskeleton. Actin has crucial roles in exocytosis, endocytosis, organelle movement and cytokinesis in fungi, and these processes are coupled to the production of distinct higher-order structures (actin patches, cables and rings) that generate forces or serve as tracks for intracellular transport. New approaches for imaging actin in living cells are revealing important similarities and differences in actin architecture and organization within the fungal kingdom, and have yielded key insights into cell polarity, tip growth and long-distance intracellular transport. In this Review, we discuss the contribution that recent live-cell imaging and mutational studies have made to our understanding of the dynamics and regulation of actin in filamentous fungi.

  4. Laser filamentation mathematical methods and models

    CERN Document Server

    Lorin, Emmanuel; Moloney, Jerome

    2016-01-01

    This book is focused on the nonlinear theoretical and mathematical problems associated with ultrafast intense laser pulse propagation in gases and in particular, in air. With the aim of understanding the physics of filamentation in gases, solids, the atmosphere, and even biological tissue, specialists in nonlinear optics and filamentation from both physics and mathematics attempt to rigorously derive and analyze relevant non-perturbative models. Modern laser technology allows the generation of ultrafast (few cycle) laser pulses, with intensities exceeding the internal electric field in atoms and molecules (E=5x109 V/cm or intensity I = 3.5 x 1016 Watts/cm2 ). The interaction of such pulses with atoms and molecules leads to new, highly nonlinear nonperturbative regimes, where new physical phenomena, such as High Harmonic Generation (HHG), occur, and from which the shortest (attosecond - the natural time scale of the electron) pulses have been created. One of the major experimental discoveries in this nonlinear...

  5. Motility patterns of filamentous sulfur bacteria, Beggiatoa spp

    DEFF Research Database (Denmark)

    Dunker, Rita; Røy, Hans; Kamp, Anja

    2011-01-01

    The large sulfur bacteria, Beggiatoa spp., live on the oxidation of sulfide with oxygen or nitrate, but avoid high concentrations of both sulfide and oxygen. As gliding filaments, they rely on reversals in the gliding direction to find their preferred environment, the oxygen–sulfide interface. We...... observed the chemotactic patterns of single filaments in a transparent agar medium and scored their reversals and the glided distances between reversals. Filaments within the preferred microenvironment glided distances shorter than their own length between reversals that anchored them in their position...... as a microbial mat. Filaments in the oxic region above the mat or in the sulfidic, anoxic region below the mat glided distances longer than the filament length between reversals. This reversal behavior resulted in a diffusion-like spreading of the filaments. A numerical model of such gliding filaments...

  6. Laser induced white lighting of tungsten filament

    Science.gov (United States)

    Strek, W.; Tomala, R.; Lukaszewicz, M.

    2018-04-01

    The sustained bright white light emission of thin tungsten filament was induced under irradiation with focused beam of CW infrared laser diode. The broadband emission centered at 600 nm has demonstrated the threshold behavior on excitation power. Its intensity increased non-linearly with excitation power. The emission occurred only from the spot of focused beam of excitation laser diode. The white lighting was accompanied by efficient photocurrent flow and photoelectron emission which both increased non-linearly with laser irradiation power.

  7. Filamented plasmas in laser ablation of solids

    Czech Academy of Sciences Publication Activity Database

    Davies, J.R.; Fajardo, M.; Kozlová, Michaela; Mocek, Tomáš; Polan, Jiří; Rus, Bedřich

    2009-01-01

    Roč. 51, č. 3 (2009), 035013/1-035013/12 ISSN 0741-3335 EU Projects: European Commission(XE) 12843 - TUIXS Grant - others:FCT(PT) POCI/FIS/59563/2004 Institutional research plan: CEZ:AV0Z10100523 Keywords : magneto-hydrodynamic modelling * perturbation * filaments * x-ray * plasma Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.409, year: 2009

  8. Molecular biology of demosponge axial filaments and their roles in biosilicification.

    Science.gov (United States)

    Weaver, James C; Morse, Daniel E

    2003-11-01

    For hundreds of years, the skeletal elements of marine and freshwater sponges have intrigued investigators with a diverse array of remarkably complex morphologies. Early studies of demosponge monaxonal megascleres revealed the presence of a central organic axial filament running their entire length. Until recently, however, the precise function of these axial filaments was largely unknown. The spicules from the temperate Eastern Pacific demosponge, Tethya aurantia, comprise approximately 75% of the dry weight of this species, facilitating the large-scale isolation and purification of the biosilica-associated proteins. Silicateins, the most abundant proteins comprising the axial filaments of these spicules, prove to be members of a well-known superfamily of proteolytic and hydrolytic enzymes and can be easily collected after silica demineralization with hydrofluoric acid. Consistent with these findings, the intact filaments are more than simple, passive templates; in vitro, they actively catalyze and spatially direct the hydrolysis and polycondensation of silicon alkoxides to yield silica at neutral pH and low temperature. Catalytic activity also is exhibited by the monomeric subunits obtained by disaggregation of the protein filaments and those produced from recombinant DNA templates cloned in bacteria. These proteins also can be used to direct the polymerization of organosilicon polymers (silicones) from the corresponding organically functionalized silicon alkoxides. Based on these observations, the silicateins are currently being used as models for the design of biomimetic agents with unique catalytic and structure-directing properties. The presence of axial filaments in a diversity of spicule types and the evolutionary implications of these findings are also discussed. Copyright 2003 Wiley-Liss, Inc.

  9. Miniature Filament Eruptions and their Reconnections in X-Ray Jets: Evidence for a New Paradigm

    Science.gov (United States)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.

    2014-01-01

    We investigate the onset of approximately10 random X-ray jets observed by Hinode/XRT. Each jet was near the limb in a polar coronal hole, and showed a ``bright point'' in an edge of the base of the jet, as is typical for previously-observed X-ray jets. We examined SDO/AIA EUV images of each of the jets over multiple AIA channels, including 304 Ang, which detects chromospheric emissions, and 171, 193, and 211 Ang, which detect cooler-coronal emissions. We find the jets to result from eruptions of miniature (size less than approximately 10 arcsec) filaments from the bases of the jets. Much of the erupting-filament material forms a chromospheric-temperature jet. In the cool-coronal channels, often the filament appears in absorption and the jet in emission. The jet bright point forms at the location from which the miniature filament is ejected, analogous to the formation of a standard solar flare in the wake of the eruption of a typical larger-scale chromospheric filament. Thus these X-ray jets and their bright points are made by miniature filament eruptions. They are evidently produced the same way as an on-disk coronal jet we observed in Adams et al. (2014); that on-disk jet had no obvious emerging magnetic field in its base. We conclude that, for many jets, the standard idea of X-ray jets forming from reconnection between emerging flux and preexisting coronal field is incorrect. ACS and RLM were supported by funding from NASA/LWS, Hinode, and ISSI.

  10. The Magnetic Structure of Filament Barbs

    Science.gov (United States)

    Chae, Jongchul; Moon, Yong-Jae; Park, Young-Deuk

    2005-06-01

    There is a controversy about how features protruding laterally from filaments, called barbs, are magnetically structured. On 2004 August 3, we observed a filament that had well-developed barbs. The observations were performed using the 10 inch refractor of the Big Bear Solar Observatory. A fast camera was employed to capture images at five different wavelengths of the Hα line and successively record them on the basis of frame selection. The terminating points of the barbs were clearly discernable in the Hα images without any ambiguity. The comparison of the Hα images with the magnetograms taken by SOHO MDI revealed that the termination occurred above the minor polarity inversion line dividing the magnetic elements of the major polarity and those of the minor polarity. There is also evidence that the flux cancellation proceeded on the polarity inversion line. Our results together with similar other recent observations support the idea that filament barbs are cool matter suspended in local dips of magnetic field lines, formed by magnetic reconnection in the chromosphere.

  11. Tracer filamentation at an unstable ocean front

    Science.gov (United States)

    Feng, Yen Chia; Mahadevan, Amala; Thiffeault, Jean-Luc; Yecko, Philip

    2017-11-01

    A front, where two bodies of ocean water with different physical properties meet, can become unstable and lead to a flow with high strain rate and vorticity. Phytoplankton and other oceanic tracers are stirred into filaments by such flow fields, as can often be seen in satellite imagery. The stretching and folding of a tracer by a two-dimensional flow field has been well studied. In the ocean, however, the vertical shear of horizontal velocity is typically two orders of magnitude larger than the horizontal velocity gradient. Theoretical calculations show that vertical shear alters the way in which horizontal strain affects the tracer, resulting in thin, sloping structures in the tracer field. Using a non-hydrostatic ocean model of an unstable ocean front, we simulate tracer filamentation to identify the effect of vertical shear on the deformation of the tracer. In a complementary laboratory experiment, we generate a simple, vertically sheared strain flow and use dye and particle image velocimetry to quantify the filamentary structures in terms of the strain and shear. We identify how vertical shear alters the tracer filaments and infer how the evolution of tracers in the ocean will differ from the idealized two-dimensional paradigm. Support of NSF DMS-1418956 is acknowledged.

  12. Magnetization Modeling of Twisted Superconducting Filaments

    CERN Document Server

    Satiramatekul, T; Devred, Arnaud; Leroy, Daniel

    2007-01-01

    This paper presents a new Finite Element numerical method to analyze the coupling between twisted filaments in a superconducting multifilament composite wire. To avoid the large number of elements required by a 3D code, the proposed method makes use of the energy balance principle in a 2D code. The relationship between superconductor critical current density and local magnetic flux density is implemented in the program for the Bean and modified Kim models. The modeled wire is made up of six filaments twisted together and embedded in a lowresistivity matrix. Computations of magnetization cycle and of the electric field pattern have been performed for various twist pitch values in the case of a pure copper matrix. The results confirm that the maximum magnetization depends on the matrix conductivity, the superconductor critical current density, the applied field frequency, and the filament twist pitch. The simulations also lead to a practical criterion for wire design that can be used to assess whether or not th...

  13. Electron thermal transport in RTP: filaments, barriers and bifurcations

    International Nuclear Information System (INIS)

    Lopes Cardozo, N.J.; Hogeweij, G.M.D.; Baar, M. de; Barth, C.J.; Beurskens, M.N.A.; Donne, A.J.H.; Gelder, J.F.M. van; Groot, B. de; Karelse, F.A.; Kloe, J. de; Kruijt, O.G.; Lok, J.; Meiden, H.J. van der; Oomens, A.A.M.; Oyevaar, Th.; Pijper, R.J.; Polman, R.W.; Salzedas, F.; Schueller, F.C.; Westerhof, E.; De Luca, F.; Galli, P.; Gorini, G.; Jacchia, A.; Mantica, P.

    1997-01-01

    Experiments with strong localized electron cyclotron heating (ECH) in the RTP tokamak show that electron heat transport is governed by alternating layers of good and bad thermal conduction. For central deposition hot T e filaments are observed inside the q = 1 radius. Moving the ECH resonance from the centre to the edge of the plasma results in discrete steps of the central electron temperature. The transitions occur when the minimum q value crosses q = 1,2,5/2 or 3, and correspond to the loss of a transport barrier situated close to the rational q value. Close to the transitions a new type of sawtooth activity is observed, characterized by the formation of sharp off-axis maxima on the T e profile, which collapse abruptly. The formation of the off-axis maxima is attributed to heat deposition precisely 'on top of' a transport barrier. (author)

  14. Filament winding cylinders. II - Validation of the process model

    Science.gov (United States)

    Calius, Emilio P.; Lee, Soo-Yong; Springer, George S.

    1990-01-01

    Analytical and experimental studies were performed to validate the model developed by Lee and Springer for simulating the manufacturing process of filament wound composite cylinders. First, results calculated by the Lee-Springer model were compared to results of the Calius-Springer thin cylinder model. Second, temperatures and strains calculated by the Lee-Springer model were compared to data. The data used in these comparisons were generated during the course of this investigation with cylinders made of Hercules IM-6G/HBRF-55 and Fiberite T-300/976 graphite-epoxy tows. Good agreement was found between the calculated and measured stresses and strains, indicating that the model is a useful representation of the winding and curing processes.

  15. On the fragmentation of filaments in a molecular cloud simulation

    Science.gov (United States)

    Chira, R.-A.; Kainulainen, J.; Ibáñez-Mejía, J. C.; Henning, Th.; Mac Low, M.-M.

    2018-03-01

    Context. The fragmentation of filaments in molecular clouds has attracted a lot of attention recently as there seems to be a close relation between the evolution of filaments and star formation. The study of the fragmentation process has been motivated by simple analytical models. However, only a few comprehensive studies have analysed the evolution of filaments using numerical simulations where the filaments form self-consistently as part of large-scale molecular cloud evolution. Aim. We address the early evolution of parsec-scale filaments that form within individual clouds. In particular, we focus on three questions: How do the line masses of filaments evolve? How and when do the filaments fragment? How does the fragmentation relate to the line masses of the filaments? Methods: We examine three simulated molecular clouds formed in kiloparsec-scale numerical simulations performed with the FLASH adaptive mesh refinement magnetohydrodynamic code. The simulations model a self-gravitating, magnetised, stratified, supernova-driven interstellar medium, including photoelectric heating and radiative cooling. We follow the evolution of the clouds for 6 Myr from the time self-gravity starts to act. We identify filaments using the DisPerSe algorithm, and compare the results to other filament-finding algorithms. We determine the properties of the identified filaments and compare them with the predictions of analytic filament stability models. Results: The average line masses of the identified filaments, as well as the fraction of mass in filamentary structures, increases fairly continuously after the onset of self-gravity. The filaments show fragmentation starting relatively early: the first fragments appear when the line masses lie well below the critical line mass of Ostriker's isolated hydrostatic equilibrium solution ( 16 M⊙ pc-1), commonly used as a fragmentation criterion. The average line masses of filaments identified in three-dimensional volume density cubes

  16. Segmental equivalent temperature determined by means of a thermal manikin: A method for correcting errors due to incomplete contact of the body with a surface

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Janieas, N.R.D.J.; Silva, M.C.G.

    2004-01-01

    The segmental equivalent temperature determined by means of a thermal manikin is often correlated with the local thermal sensation of people and is used for indoor environment assessment. It is also used to assess performance of heated/cooled/ventilated car seats, etc. However, the body...... of the thermal manikins used at present is not as flexible as the human body and is divided into body segments with a surface area that differs from that of the human body in contact with a surface. The area of the segment in contact with a surface will depend on the shape and flexibility of the surface....... This will affect the accuracy in determination of the segmental equivalent temperature, and will result in incorrect assessment. This paper presents a method for correction of the segmental equivalent temperature for the above effects. Improvement in determination of the segmental equivalent temperature...

  17. Waning habitats due to climate change: the effects of changes in streamflow and temperature at the rear edge of the distribution of a cold-water fish

    Science.gov (United States)

    María Santiago, José; Muñoz-Mas, Rafael; Solana-Gutiérrez, Joaquín; García de Jalón, Diego; Alonso, Carlos; Martínez-Capel, Francisco; Pórtoles, Javier; Monjo, Robert; Ribalaygua, Jaime

    2017-08-01

    Climate changes affect aquatic ecosystems by altering temperatures and precipitation patterns, and the rear edges of the distributions of cold-water species are especially sensitive to these effects. The main goal of this study was to predict in detail how changes in air temperature and precipitation will affect streamflow, the thermal habitat of a cold-water fish (the brown trout, Salmo trutta), and the synergistic relationships among these variables at the rear edge of the natural distribution of brown trout. Thirty-one sites in 14 mountain rivers and streams were studied in central Spain. Models of streamflow were built for several of these sites using M5 model trees, and a non-linear regression method was used to estimate stream temperatures. Nine global climate models simulations for Representative Concentration Pathways RCP4.5 and RCP8.5 scenarios were downscaled to the local level. Significant reductions in streamflow were predicted to occur in all of the basins (max. -49 %) by the year 2099, and seasonal differences were noted between the basins. The stream temperature models showed relationships between the model parameters, geology and hydrologic responses. Temperature was sensitive to streamflow in one set of streams, and summer reductions in streamflow contributed to additional stream temperature increases (max. 3.6 °C), although the sites that are most dependent on deep aquifers will likely resist warming to a greater degree. The predicted increases in water temperatures were as high as 4.0 °C. Temperature and streamflow changes will cause a shift in the rear edge of the distribution of this species. However, geology will affect the extent of this shift. Approaches like the one used herein have proven to be useful in planning the prevention and mitigation of the negative effects of climate change by differentiating areas based on the risk level and viability of fish populations.

  18. CORONAL IMPLOSION AND PARTICLE ACCELERATION IN THE WAKE OF A FILAMENT ERUPTION

    International Nuclear Information System (INIS)

    Liu Rui; Wang Haimin

    2009-01-01

    We study the evolution of a group of TRACE 195 A coronal loops overlying a reverse S-shaped filament on 2001 June 15. These loops were initially pushed upward with the filament ascending and kinking slowly, but as soon as the filament rose explosively, they began to contract at a speed of ∼100 km s -1 , and sustained for at least 12 minutes, presumably due to the reduced magnetic pressure underneath with the filament escaping. Despite the contraction following the expansion, the loops of interest remained largely intact during the filament eruption, rather than formed via reconnection. These contracting loops naturally formed a shrinking trap, in which hot electrons of several keV, in an order of magnitude estimation, can be accelerated to nonthermal energies. A single hard X-ray (HXR) burst, with no corresponding rise in GOES soft X-ray (SXR) flux, was recorded by the Hard X-ray Telescope (HXT) on board Yohkoh, when the contracting loops expectedly approached the post-flare arcade originating from the filament eruption. HXT images reveal a coronal source distinctly above the top of the SXR arcade by ∼15''. The injecting electron population for the coronal source (thin target) is hardening by ∼1.5 powers relative to the footpoint emission (thick target), which is consistent with electron trapping in the weak diffusion limit. Although we cannot rule out additional reconnection, observational evidence suggests that the shrinking coronal trap may play a significant role in the observed nonthermal HXR emission during the flare decay phase.

  19. Morphology of Filamentous Fungi: Linking Cellular Biology to Process Engineering Using Aspergillus niger

    Science.gov (United States)

    Krull, Rainer; Cordes, Christiana; Horn, Harald; Kampen, Ingo; Kwade, Arno; Neu, Thomas R.; Nörtemann, Bernd

    In various biotechnological processes, filamentous fungi, e.g. Aspergillus niger, are widely applied for the production of high value-added products due to their secretion efficiency. There is, however, a tangled relationship between the morphology of these microorganisms, the transport phenomena and the related productivity. The morphological characteristics vary between freely dispersed mycelia and distinct pellets of aggregated biomass. Hence, advantages and disadvantages for mycel or pellet cultivation have to be balanced out carefully. Due to this inadequate understanding of morphogenesis of filamentous microorganisms, fungal morphology, along with reproducibility of inocula of the same quality, is often a bottleneck of productivity in industrial production. To obtain an optimisation of the production process it is of great importance to gain a better understanding of the molecular and cell biology of these microorganisms as well as the approaches in biochemical engineering and particle technique, in particular to characterise the interactions between the growth conditions, cell morphology, spore-hyphae-interactions and product formation. Advances in particle and image analysis techniques as well as micromechanical devices and their applications to fungal cultivations have made available quantitative morphological data on filamentous cells. This chapter provides the ambitious aspects of this line of action, focussing on the control and characterisation of the morphology, the transport gradients and the approaches to understand the metabolism of filamentous fungi. Based on these data, bottlenecks in the morphogenesis of A. niger within the complex production pathways from gene to product should be identified and this may improve the production yield.

  20. Interactions between multiple filaments and bacterial biofilms on the surface of an apple

    Science.gov (United States)

    He, CHENG; Maoyuan, XU; Shuhui, PAN; Xinpei, LU; Dawei, LIU

    2018-04-01

    In this paper, the interactions between two dielectric barrier discharge (DBD) filaments and three bacterial biofilms are simulated. The modeling of a DBD streamer is studied by means of 2D finite element calculation. The model is described by the proper governing equations of air DBD at atmospheric pressure and room temperature. The electric field in the computing domain and the self-consistent transportation of reactive species between a cathode and biofilms on the surface of an apple are realized by solving a Poisson equation and continuity equations. The electron temperature is solved by the electron energy conservation equation. The conductivity and permittivity of bacterial biofilms are considered, and the shapes of the bacterial biofilms are irregular in the uncertainty and randomness of colony growth. The distribution of the electrons suggests that two plasma channels divide into three plasma channels when the streamer are 1 mm from the biofilms. The toe-shapes of the biofilms and the simultaneous effect of two streamer heads result in a high electric field around the biofilms, therefore the stronger ionization facilitates the major part of two streamers combined into one streamer and three streamers arise. The distribution of the reactive oxygen species and the reactive nitrogen species captured by time fluences are non-uniform due to the toe-shaped bacterial biofilms. However, the plasma can intrude into the cavities in the adjacent biofilms due to the μm-scale mean free path. The two streamers case has a larger treatment area and realizes the simultaneous treatment of three biofilms compared with one streamer case.

  1. Evaluation of an Absorption Heat Pump to Mitigate Plant Capacity Reduction Due to Ambient Temperature Rise for an Air-Cooled Ammonia and Water Cycle: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bharathan, D.; Nix, G.

    2001-08-06

    Air-cooled geothermal plants suffer substantial decreases in generating capacity at increased ambient temperatures. As the ambient temperature rises by 50 F above a design value of 50 F, at low brine-resource temperatures, the decrease in generating capacity can be more than 50%. This decrease is caused primarily by increased condenser pressure. Using mixed-working fluids has recently drawn considerable attention for use in power cycles. Such cycles are more readily amenable to use of absorption ''heat pumps.'' For a system that uses ammonia and water as the mixed-working fluid, this paper evaluates using an absorption heat pump to reduce condenser backpressure. At high ambient temperatures, part of the turbine exhaust vapor is absorbed into a circulating mixed stream in an absorber in series with the main condenser. This steam is pumped up to a higher pressure and heated to strip the excess vapor, which is recondensed using an additional air-cooled condenser. The operating conditions are chosen to reconstitute this condensate back to the same concentration as drawn from the original system. We analyzed two power plants of nominal 1-megawatt capacity. The design resource temperatures were 250 F and 300 F. Ambient temperature was allowed to rise from a design value of 50 F to 100 F. The analyses indicate that using an absorption heat pump is feasible. For the 300 F resource, an increased brine flow of 30% resulted in a net power increase of 21%. For the 250 F resource, the increase was smaller. However, these results are highly plant- and equipment-specific because evaluations must be carried out at off-design conditions for the condenser. Such studies should be carried out for specific power plants that suffer most from increased ambient temperatures.

  2. Chirality of Intermediate Filaments and Magnetic Helicity of Active Regions

    Science.gov (United States)

    Lim, Eun-Kyung; Chae, J.

    2009-05-01

    Filaments that form either between or around active regions (ARs) are called intermediate filaments. Even though there have been many theoretical studies, the origin of the chirality of filaments is still unknown. We investigated how intermediate filaments are related to their associated ARs, especially from the point of view of magnetic helicity and the orientation of polarity inversion lines (PILs). The chirality of filaments has been determined based on the orientations of barbs observed in the full-disk Hα images taken at Big Bear Solar Observatory during the rising phase of solar cycle 23. The sign of magnetic helicity of ARs has been determined using S/inverse-S shaped sigmoids from Yohkoh SXT images. As a result, we have found a good correlation between the chirality of filaments and the magnetic helicity sign of ARs. Among 45 filaments, 42 filaments have shown the same sign as helicity sign of nearby ARs. It has been also confirmed that the role of both the orientation and the relative direction of PILs to ARs in determining the chirality of filaments is not significant, against a theoretical prediction. These results suggest that the chirality of intermediate filaments may originate from magnetic helicity of their associated ARs.

  3. Tropomyosin - master regulator of actin filament function in the cytoskeleton.

    Science.gov (United States)

    Gunning, Peter W; Hardeman, Edna C; Lappalainen, Pekka; Mulvihill, Daniel P

    2015-08-15

    Tropomyosin (Tpm) isoforms are the master regulators of the functions of individual actin filaments in fungi and metazoans. Tpms are coiled-coil parallel dimers that form a head-to-tail polymer along the length of actin filaments. Yeast only has two Tpm isoforms, whereas mammals have over 40. Each cytoskeletal actin filament contains a homopolymer of Tpm homodimers, resulting in a filament of uniform Tpm composition along its length. Evidence for this 'master regulator' role is based on four core sets of observation. First, spatially and functionally distinct actin filaments contain different Tpm isoforms, and recent data suggest that members of the formin family of actin filament nucleators can specify which Tpm isoform is added to the growing actin filament. Second, Tpms regulate whole-organism physiology in terms of morphogenesis, cell proliferation, vesicle trafficking, biomechanics, glucose metabolism and organ size in an isoform-specific manner. Third, Tpms achieve these functional outputs by regulating the interaction of actin filaments with myosin motors and actin-binding proteins in an isoform-specific manner. Last, the assembly of complex structures, such as stress fibers and podosomes involves the collaboration of multiple types of actin filament specified by their Tpm composition. This allows the cell to specify actin filament function in time and space by simply specifying their Tpm isoform composition. © 2015. Published by The Company of Biologists Ltd.

  4. Measuring Filament Orientation: A New Quantitative, Local Approach

    Energy Technology Data Exchange (ETDEWEB)

    Green, C.-E.; Cunningham, M. R.; Jones, P. A. [School of Physics, University of New South Wales, Sydney, NSW, 2052 (Australia); Dawson, J. R. [CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76, Epping, NSW 1710 (Australia); Novak, G. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Fissel, L. M. [National Radio Astronomy Observatory (NRAO), 520 Edgemont Road, Charlottesville, VA, 22903 (United States)

    2017-09-01

    The relative orientation between filamentary structures in molecular clouds and the ambient magnetic field provides insight into filament formation and stability. To calculate the relative orientation, a measurement of filament orientation is first required. We propose a new method to calculate the orientation of the one-pixel-wide filament skeleton that is output by filament identification algorithms such as filfinder. We derive the local filament orientation from the direction of the intensity gradient in the skeleton image using the Sobel filter and a few simple post-processing steps. We call this the “Sobel-gradient method.” The resulting filament orientation map can be compared quantitatively on a local scale with the magnetic field orientation map to then find the relative orientation of the filament with respect to the magnetic field at each point along the filament. It can also be used for constructing radial profiles for filament width fitting. The proposed method facilitates automation in analyses of filament skeletons, which is imperative in this era of “big data.”.

  5. Patterns of molecular motors that guide and sort filaments.

    Science.gov (United States)

    Rupp, Beat; Nédélec, François

    2012-11-21

    Molecular motors can be immobilized to transport filaments and loads that are attached to these filaments inside a nano-device. However, if motors are distributed uniformly over a flat surface, the motility is undirected, and the filaments move equally in all directions. For many applications it is important to control the direction in which the filaments move, and two strategies have been explored to achieve this: applying external forces and confining the filaments inside channels. In this article, we discuss a third strategy in which the topography of the sample remains flat, but the motors are distributed non-uniformly over the surface. Systems of filaments and patterned molecular motors were simulated using a stochastic engine that included Brownian motion and filament bending elasticity. Using an evolutionary algorithm, patterns were optimized for their capacity to precisely control the paths of the filaments. We identified patterns of motors that could either direct the filaments in a particular direction, or separate short and long filaments. These functionalities already exceed what has been achieved with confinement. The patterns are composed of one or two types of motors positioned in lines or along arcs and should be easy to manufacture. Finally, these patterns can be easily combined into larger designs, allowing one to precisely control the motion of microscopic objects inside a device.

  6. Transient simulation of coolant peak temperature due to prolonged fan and/or water pump operation after the vehicle is keyed-off

    Science.gov (United States)

    Pang, Suh Chyn; Masjuki, Haji Hassan; Kalam, Md. Abul; Hazrat, Md. Ali

    2014-01-01

    Automotive designers should design a robust engine cooling system which works well in both normal and severe driving conditions. When vehicles are keyed-off suddenly after some distance of hill-climbing driving, the coolant temperature tends to increase drastically. This is because heat soak in the engine could not be transferred away in a timely manner, as both the water pump and cooling fan stop working after the vehicle is keyed-off. In this research, we aimed to visualize the coolant temperature trend over time before and after the vehicles were keyed-off. In order to prevent coolant temperature from exceeding its boiling point and jeopardizing engine life, a numerical model was further tested with prolonged fan and/or water pump operation after keying-off. One dimensional thermal-fluid simulation was exploited to model the vehicle's cooling system. The behaviour of engine heat, air flow, and coolant flow over time were varied to observe the corresponding transient coolant temperatures. The robustness of this model was proven by validation with industry field test data. The numerical results provided sensible insights into the proposed solution. In short, prolonging fan operation for 500 s and prolonging both fan and water pump operation for 300 s could reduce coolant peak temperature efficiently. The physical implementation plan and benefits yielded from implementation of the electrical fan and electrical water pump are discussed.

  7. Catarrhal proventriculitis associated with a filamentous organism in pet birds.

    Science.gov (United States)

    Tsai, S S; Park, J H; Hirai, K; Itakura, C

    1992-12-01

    Catarrhal proventriculitis due to infection by an unidentified organism was diagnosed in 79 of 534 pet birds examined histologically. It was more prevalent in domestic birds (70 cases) than in imported ones (9 cases). A high incidence of the disease was encountered in budgerigars (Melopsittacus undulatus) and it was occasionally found in finches (Poephila gouldiae gouldiae), parakeets (Psittacula Krameri manillensis), Amazona parrots (Amazona aestiva aestiva) and cockatiels (Nymphicus hollandicus). The agent was a large filamentous rod, and was stained positively with Gram, GMS and PAS methods. Histologically, it induced a mild to moderate exudative or proliferative inflammation in the proventriculus. All the cases had an erosion in the gizzard. Ultrastructurally, the organism had a eukaryotic nucleus and three cell-wall layers. Concurrent infections were very common, including adenoviruses (37 cases), giardiasis (31 cases), candidiasis (13 cases), papovaviruses (11 cases) and knemidocoptic mites (11 cases).

  8. High affinity and temperature sensitivity of blood oxygen binding in Pangasianodon hypophthalmus due to lack of chloride-hemoglobin allosteric interaction

    DEFF Research Database (Denmark)

    Damsgaard, Christian; Phuong, Le My; Huong, Do Thi Thanh

    2015-01-01

    , such as high temperature, affect O2 transport in air-breathing fishes, this study assessed the effects of temperature on O2 binding of blood and Hb in the economically important air-breathing fish Pangasianodon hypophthalmus. To determine blood O2 binding properties, blood was drawn from resting cannulated...... fishes and O2 binding curves made at 25°C and 35°C. To determine the allosteric regulation and thermodynamics of Hb O2 binding, Hb was purified, and O2 equilibria were recorded at five temperatures in the absence and presence of ATP and Cl-. Whole blood had a high O2 affinity (O2 tension at half...

  9. Increase in Rubisco activity and gene expression due to elevated temperature partially counteracts ultraviolet radiation-induced photoinhibition in the marine diatom Thalassiosira weissflogii

    NARCIS (Netherlands)

    Walter Helbling, E.; Buma, Anita G. J.; Boelen, Peter; van der Strate, Han J.; Fiorda Giordanino, M. Valeria; Villafane, Virginia E.

    We performed outdoor experiments to evaluate the effect of temperature on photoinhibition properties in the cosmopolitan diatom Thalassiosira weissflogii. Cultures were exposed to solar radiation with or without ultraviolet radiation (UVR, 280-400 nm), UV-A (320-400 nm), and UV-B (280-320 nm) at

  10. The Low-Temperature Inflection Observed in Neutron Scattering Measurements of Proteins Is Due to Methyl Rotation : Direct Evidence Using Isotope Labeling and Molecular Dynamics Simulations

    NARCIS (Netherlands)

    Wood, Kathleen; Tobias, Douglas J.; Kessler, Brigitte; Gabel, Frank; Oesterhelt, Dieter; Mulder, Frans A. A.; Zaccai, Giuseppe; Weik, Martin

    2010-01-01

    There is increasing interest in the contribution of methyl groups to the overall dynamics measured by neutron scattering experiments of proteins. In particular an inflection observed in atomic mean square displacements measured as a function of temperature on high resolution spectrometers (similar

  11. Due diligence

    International Nuclear Information System (INIS)

    Sanghera, G.S.

    1999-01-01

    The Occupational Health and Safety (OHS) Act requires that every employer shall ensure the health and safety of workers in the workplace. Issues regarding the practices at workplaces and how they should reflect the standards of due diligence were discussed. Due diligence was described as being the need for employers to identify hazards in the workplace and to take active steps to prevent workers from potentially dangerous incidents. The paper discussed various aspects of due diligence including policy, training, procedures, measurement and enforcement. The consequences of contravening the OHS Act were also described

  12. Induction and cultivation of cloned filaments of Polysiphonia urceolata (Rhodomelaceae, Rhodophyta)

    Science.gov (United States)

    Wang, Jinxia; Shao, Kuishuang; Cheng, Bin; Lu, Qinqin; Zhou, Baicheng

    2011-11-01

    A filamentous clone of Polysiphonia urceolata was regenerated from segments cut from the fronds of gametophytes. Unlike wild thalli with short virgate branchlets, the clone was filamentous with few branches. Many transparent trichoblasts arose from pericentral cells during the induction culture, but these were seldom observed during normal growth. The trichoblasts were uniseriate, often colorless, and formed lobed rhizoids rapidly when they came into contact with solid substrates. In addition to morphological characteristics, the photosynthetic properties and growth conditions of the clone differed from those of the mother plant. Cross-gradient light and temperature culture experiments revealed that the most favorable conditions for culture of the filamentous clone were 22°C and 95-120 μE/(m2·s) light intensity. The photosynthetic light saturation value for filaments was approx. 100 μE/(m2·s), which is far lower than that of wild thalli. These results could be used to develop techniques for mass cultures of P. urceolata in photobioreactors for production of seed stock or bioactive products.

  13. Filaments Production and Fused Deposition Modelling of ABS/Carbon Nanotubes Composites

    Directory of Open Access Journals (Sweden)

    Sithiprumnea Dul

    2018-01-01

    Full Text Available Composite acrylonitrile–butadiene–styrene (ABS/carbon nanotubes (CNT filaments at 1, 2, 4, 6 and 8 wt %, suitable for fused deposition modelling (FDM were obtained by using a completely solvent-free process based on direct melt compounding and extrusion. The optimal CNT content in the filaments for FDM was found to be 6 wt %; for this composite, a detailed investigation of the thermal, mechanical and electrical properties was performed. Presence of CNT in ABS filaments and 3D-printed parts resulted in a significant enhancement of the tensile modulus and strength, accompanied by a reduction of the elongation at break. As documented by dynamic mechanical thermal analysis, the stiffening effect of CNTs in ABS is particularly pronounced at high temperatures. Besides, the presence of CNT in 3D-printed parts accounts for better creep and thermal dimensional stabilities of 3D-printed parts, accompanied by a reduction of the coefficient of thermal expansion. 3D-printed nanocomposite samples with 6 wt % of CNT exhibited a good electrical conductivity, even if lower than pristine composite filaments.

  14. Filaments Production and Fused Deposition Modelling of ABS/Carbon Nanotubes Composites.

    Science.gov (United States)

    Dul, Sithiprumnea; Fambri, Luca; Pegoretti, Alessandro

    2018-01-18

    Composite acrylonitrile-butadiene-styrene (ABS)/carbon nanotubes (CNT) filaments at 1, 2, 4, 6 and 8 wt %, suitable for fused deposition modelling (FDM) were obtained by using a completely solvent-free process based on direct melt compounding and extrusion. The optimal CNT content in the filaments for FDM was found to be 6 wt %; for this composite, a detailed investigation of the thermal, mechanical and electrical properties was performed. Presence of CNT in ABS filaments and 3D-printed parts resulted in a significant enhancement of the tensile modulus and strength, accompanied by a reduction of the elongation at break. As documented by dynamic mechanical thermal analysis, the stiffening effect of CNTs in ABS is particularly pronounced at high temperatures. Besides, the presence of CNT in 3D-printed parts accounts for better creep and thermal dimensional stabilities of 3D-printed parts, accompanied by a reduction of the coefficient of thermal expansion). 3D-printed nanocomposite samples with 6 wt % of CNT exhibited a good electrical conductivity, even if lower than pristine composite filaments.

  15. Filament Eruptions, Jets, and Space Weather

    Science.gov (United States)

    Moore, Ronald; Sterling, Alphonse; Robe, Nick; Falconer, David; Cirtain, Jonathan

    2013-01-01

    Previously, from chromospheric H alpha and coronal X-ray movies of the Sun's polar coronal holes, it was found that nearly all coronal jets (greater than 90%) are one or the other of two roughly equally common different kinds, different in how they erupt: standard jets and blowout jets (Yamauchi et al 2004, Apl, 605, 5ll: Moore et all 2010, Apj, 720, 757). Here, from inspection of SDO/AIA He II 304 A movies of 54 polar x-ray jets observed in Hinode/XRT movies, we report, as Moore et al (2010) anticipated, that (1) most standard x-ray jets (greater than 80%) show no ejected plasma that is cool enough (T is less than or approximately 10(exp 5K) to be seen in the He II 304 A movies; (2) nearly all blownout X-ray jets (greater than 90%) show obvious ejection of such cool plasma; (3) whereas when cool plasma is ejected in standard X-ray jets, it shows no lateral expansion, the cool plasma ejected in blowout X-ray jets shows strong lateral expansion; and (4) in many blowout X-ray jets, the cool plasma ejection displays the erupting-magnetic-rope form of clasic filament eruptions and is thereby seen to be a miniature filament eruption. The XRT movies also showed most blowout X-ray jets to be larger and brighter, and hence to apparently have more energy, than most standard X-ray jets. These observations (1) confirm the dichotomy of coronal jets, (2) agree with the Shibata model for standard jets, and (3) support the conclusion of Moore et al (2010) that in blowout jets the magnetic-arch base of the jet erupts in the manner of the much larger magnetic arcades in which the core field, the field rooted along the arcade's polarity inversion line, is sheared and twisted (sigmoid), often carries a cool-plasma filament, and erupts to blowout the arcade, producing a CME. From Hinode/SOT Ca II movies of the polar limb, Sterling et al (2010, ApJ, 714, L1) found that chromospheric Type-II spicules show a dichotomy of eruption dynamics similar to that found here for the cool

  16. Melting and freezing in a finite slab due to a linearly decreasing free-stream temperature of a convective boundary condition

    Directory of Open Access Journals (Sweden)

    Roday Anand P.

    2009-01-01

    Full Text Available One-dimensional melting and freezing problem in a finite slab with time-dependent convective boundary condition is solved using the heat-balance integral method. The temperature, T4 1(t, is applied at the left face and decreases linearly with time while the other face of the slab is imposed with a constant convective boundary condition where T4 2 is held at a fixed temperature. In this study, the initial condition of the solid is subcooled (initial temperature is below the melting point. The temperature, T4 1(t at time t = 0 is so chosen such that convective heating takes place and eventually the slab begins to melt (i. e., T4 1(0 > Tf > T4 2. The transient heat conduction problem, until the phase-change starts, is also solved using the heat-balance integral method. Once phase-change process starts, the solid-liquid interface is found to proceed to the right. As time continues, and T4,1(t decreases with time, the phase-change front slows, stops, and may even reverse direction. Hence this problem features sequential melting and freezing of the slab with partial penetration of the solid-liquid front before reversal of the phase-change process. The effect of varying the Biot number at the right face of the slab is investigated to determine its impact on the growth/recession of the solid-liquid interface. Temperature profiles in solid and liquid regions for the different cases are reported in detail. One of the results for Biot number, Bi2=1.5 are also compared with those obtained by having a constant value of T4 1(t.

  17. Effect of an electric field on air filament decay at the trail of an intense femtosecond laser pulse.

    Science.gov (United States)

    Bodrov, Sergey; Aleksandrov, Nickolay; Tsarev, Maxim; Murzanev, Alexey; Kochetov, Igor; Stepanov, Andrey

    2013-05-01

    Air plasma density decay in a filament produced by an intense femtosecond laser pulse in an external electric field was investigated experimentally and theoretically. It was demonstrated by means of the terahertz scattering technique that the rate of plasma decay decreases with increasing electric field. At the electric field of 7 kV/cm the lifetime of plasma with the density above 10(16) cm(-3) was prolonged from 0.5 ns to 1 ns. Numerical simulation of electron density decay and electron temperature evolution was performed, taking into consideration dissociative and three-body electron-ion recombination as well as formation of complex positive ions. The simulation showed that under the electric field the electron temperature evolves nonmonotonically and passes through a minimum due to varying contribution of electron-ion collisions to electron heating in the field. The rate of three-body electron recombination with O(2)(+) ions of 2×10(-19)(300/T(e))(9/2) cm(6)/s was found from the experimental measurements at electron temperatures in the 0.25-0.4 eV range and electron densities in the 10(15)-10(17) cm(-3) range.

  18. The THMIS-MTR observation of a active region filament

    Science.gov (United States)

    Zong, W. G.; Tang, Y. H.; Fang, C.

    We present some THMIS-MTR observations of a active region filament on September 4, 2002. The full stokes parameters of the filament were obtained in Hα, CaII 8542 and FeI 6302. By use of the data with high spatial resolution(0.44" per pixel), we probed the fine structure of the filament and gave out the parameters at the barbs' endpoints, including intensity, velocity and longitudinal magnetic field. Comparing the quiescent filament which we have discussed before, we find that: 1)The velocities of the barbs' endpoints are much bigger in the active region filament, the values are more than one thousand meters per second. 2)The barbs' endpoints terminate at the low logitudinal magnetic field in the active region filament, too.

  19. A filament supported by different magnetic field configurations

    Science.gov (United States)

    Guo, Y.; Schmieder, B.; Démoulin, P.; Wiegelmann, T.; Aulanier, G.; Török, T.; Bommier, V.

    2011-08-01

    A nonlinear force-free magnetic field extrapolation of vector magnetogram data obtained by THEMIS/MTR on 2005 May 27 suggests the simultaneous existence of different magnetic configurations within one active region filament: one part of the filament is supported by field line dips within a flux rope, while the other part is located in dips within an arcade structure. Although the axial field chirality (dextral) and the magnetic helicity (negative) are the same along the whole filament, the chiralities of the filament barbs at different sections are opposite, i.e., right-bearing in the flux rope part and left-bearing in the arcade part. This argues against past suggestions that different barb chiralities imply different signs of helicity of the underlying magnetic field. This new finding about the chirality of filaments will be useful to associate eruptive filaments and magnetic cloud using the helicity parameter in the Space Weather Science.

  20. Entropic potential field formed for a linear-motor protein near a filament: Statistical-mechanical analyses using simple models

    Science.gov (United States)

    Amano, Ken-ichi; Yoshidome, Takashi; Iwaki, Mitsuhiro; Suzuki, Makoto; Kinoshita, Masahiro

    2010-07-01

    We report a new progress in elucidating the mechanism of the unidirectional movement of a linear-motor protein (e.g., myosin) along a filament (e.g., F-actin). The basic concept emphasized here is that a potential field is entropically formed for the protein on the filament immersed in solvent due to the effect of the translational displacement of solvent molecules. The entropic potential field is strongly dependent on geometric features of the protein and the filament, their overall shapes as well as details of the polyatomic structures. The features and the corresponding field are judiciously adjusted by the binding of adenosine triphosphate (ATP) to the protein, hydrolysis of ATP into adenosine diphosphate (ADP)+Pi, and release of Pi and ADP. As the first step, we propose the following physical picture: The potential field formed along the filament for the protein without the binding of ATP or ADP+Pi to it is largely different from that for the protein with the binding, and the directed movement is realized by repeated switches from one of the fields to the other. To illustrate the picture, we analyze the spatial distribution of the entropic potential between a large solute and a large body using the three-dimensional integral equation theory. The solute is modeled as a large hard sphere. Two model filaments are considered as the body: model 1 is a set of one-dimensionally connected large hard spheres and model 2 is a double helical structure formed by two sets of connected large hard spheres. The solute and the filament are immersed in small hard spheres forming the solvent. The major findings are as follows. The solute is strongly confined within a narrow space in contact with the filament. Within the space there are locations with sharply deep local potential minima along the filament, and the distance between two adjacent locations is equal to the diameter of the large spheres constituting the filament. The potential minima form a ringlike domain in model 1

  1. Reduced filamentation in high power semiconductor lasers

    DEFF Research Database (Denmark)

    Skovgaard, Peter M. W.; McInerney, John; O'Brien, Peter

    1999-01-01

    High brightness semiconductor lasers have applications in fields ranging from material processing to medicine. The main difficulty associated with high brightness is that high optical power densities cause damage to the laser facet and thus require large apertures. This, in turn, results in spatio......-temporal instabilities such as filamentation which degrades spatial coherence and brightness. We first evaluate performance of existing designs with a “top-hat” shaped transverse current density profile. The unstable nature of highly excited semiconductor material results in a run-away process where small modulations...

  2. Low temperature vibrational spectroscopy. II. Evidence for order–disorder phase transitions due to weak C–H···Cl hydrogen bonding in tetramethylammonium hexachloroplatinate (IV), -tellurate (IV), and -stannate (IV) and the related perdeuterated compounds

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    1978-01-01

    The low frequency infrared and Raman spectra of normal and per-deuterated ((CH3)4N)2[MCl6] (M=Pt, Te, or Sn) have been measured at temperatures down to ~100 K and evidence for phase transitions was found. The spectra have been carefully assigned and it was shown that bands due to forbidden methyl...

  3. Multiple filamentation generated by focusing femtosecond laser with axicon.

    Science.gov (United States)

    Sun, Xiaodong; Gao, Hui; Zeng, Bin; Xu, Shengqi; Liu, Weiwei; Cheng, Ya; Xu, Zhizhan; Mu, Guoguang

    2012-03-01

    Multiple filamentation has been observed when focusing a femtosecond laser pulse into a methanol solution with an axicon. It is found that multiple long filaments are located on the central spot and ring structures of the quasi-Bessel beam created by the axicon. Since the quasi-Bessel profile is determined by the axicon properties, the axicon has been suggested as a simple optics to control multiple filaments. © 2012 Optical Society of America

  4. Observations of the Growth of an Active Region Filament

    Science.gov (United States)

    Yang, Bo

    2017-04-01

    We present observations of the growth of an active region filament caused by magnetic interactions among the filament and its adjacent superpenumbral filament (SF) and dark thread-like structures (T). Multistep reconnections are identified during the whole growing process. Magnetic flux convergence and cancellation occurring at the positive footpoint region of the filament is the first step reconnection, which resulted in the filament bifurcating into two sets of intertwined threads. One set anchored in situ, while the other set moved toward and interacted with the SF and part of T. This indicates the second step reconnection, which gave rise to the disappearance of the SF and the formation of a long thread-like structure that connects the far ends of the filament and T. The long thread-like structure further interacted with the T and then separated into two parts, representing the third step reconnection. Finally, another similar long thread-like structure, which intertwined with the fixed filament threads, appeared. Hαobservations show that this twisted structure is a longer sinistral filament. Based on the observed photospheric vector magnetograms, we performed a non-linear force-free field extrapolation to reconstruct the magnetic fields above the photosphere and found that the coronal magnetic field lines associated with the filament consists of two twisted flux ropes winding around each other. These results suggest that magnetic interactions among filaments and their adjacent SFs and T could lead to the growth of the filaments, and the filament is probably supported in a flux rope.

  5. Dynamic Regulation of Sarcomeric Actin Filaments in Striated Muscle

    OpenAIRE

    Ono, Shoichiro

    2010-01-01

    In striated muscle, the actin cytoskeleton is differentiated into myofibrils. Actin and myosin filaments are organized in sarcomeres and specialized for producing contractile forces. Regular arrangement of actin filaments with uniform length and polarity is critical for the contractile function. However, the mechanisms of assembly and maintenance of sarcomeric actin filaments in striated muscle are not completely understood. Live imaging of actin in striated muscle has revealed that actin sub...

  6. Projected Temperature-Related Years of Life Lost From Stroke Due To Global Warming in a Temperate Climate City, Asia: Disease Burden Caused by Future Climate Change.

    Science.gov (United States)

    Li, Guoxing; Guo, Qun; Liu, Yang; Li, Yixue; Pan, Xiaochuan

    2018-04-01

    Global warming has attracted worldwide attention. Numerous studies have indicated that stroke is associated with temperature; however, few studies are available on the projections of the burden of stroke attributable to future climate change. We aimed to investigate the future trends of stroke years of life lost (YLL) associated with global warming. We collected death records to examine YLL in Tianjin, China, from 2006 to 2011. We fitted a standard time-series Poisson regression model after controlling for trends, day of the week, relative humidity, and air pollution. We estimated temperature-YLL associations with a distributed lag nonlinear model. These models were then applied to the local climate projections to estimate temperature-related YLL in the 2050s and 2070s. We projected temperature-related YLL from stroke in Tianjin under 19 global-scale climate models and 3 different greenhouse gas emission scenarios. The results showed a slight decrease in YLL with percent decreases of 0.85%, 0.97%, and 1.02% in the 2050s and 0.94%, 1.02%, and 0.91% in the 2070s for the 3 scenarios, respectively. The increases in heat-related annual YLL and the decreases in cold-related YLL under the high emission scenario were the strongest. The monthly analysis showed that the most significant increase occurred in the summer months, particularly in August, with percent changes >150% in the 2050s and up to 300% in the 2070s. Future changes in climate are likely to lead to an increase in heat-related YLL, and this increase will not be offset by adaptation under both medium emission and high emission scenarios. Health protections from hot weather will become increasingly necessary, and measures to reduce cold effects will also remain important. © 2018 American Heart Association, Inc.

  7. Modeling Vertical Plasma Flows in Solar Filament Barbs

    Science.gov (United States)

    Litvinenko, Y.

    2003-12-01

    Speeds of observed flows in quiescent solar filaments are typically much less than the local Alfvén speed. This is why the flows in filament barbs can be modeled by perturbing a local magnetostatic solution describing the balance between the Lorentz force, gravity, and gas pressure in a barb. Similarly, large-scale filament flows can be treated as adiabatically slow deformations of a force-free magnetic equilibrium that describes the global structure of a filament. This approach reconciles current theoretical models with the puzzling observational result that some of the flows appear to be neither aligned with the magnetic field nor controlled by gravity.

  8. Filament shape versus coronal potential magnetic field structure

    Science.gov (United States)

    Filippov, B.

    2016-01-01

    Solar filament shape in projection on disc depends on the structure of the coronal magnetic field. We calculate the position of polarity inversion lines (PILs) of coronal potential magnetic field at different heights above the photosphere, which compose the magnetic neutral surface, and compare with them the distribution of the filament material in Hα chromospheric images. We found that the most of the filament material is enclosed between two PILs, one at a lower height close to the chromosphere and one at a higher level, which can be considered as a height of the filament spine. Observations of the same filament on the limb by the Solar Terrestrial Relations Observatory spacecraft confirm that the height of the spine is really very close to the value obtained from the PIL and filament border matching. Such matching can be used for filament height estimations in on-disc observations. Filament barbs are housed within protruding sections of the low-level PIL. On the base of simple model, we show that the similarity of the neutral surfaces in potential and non-potential fields with the same sub-photospheric sources is the reason for the found tendency for the filament material to gather near the potential-field neutral surface.

  9. Statistical Study of the Magnetic Field Orientation in Solar Filaments

    Science.gov (United States)

    Hanaoka, Yoichiro; Sakurai, Takashi

    2017-12-01

    We have carried out a statistical study of the average orientation of the magnetic field in solar filaments with respect to their axes for more than 400 samples, based on data taken with daily full-Sun, full-Stokes spectropolarimetric observations using the He I 1083.0 nm line. The major part of the samples are the filaments in the quiet areas, but those in the active areas are included as well. The average orientation of the magnetic field in filaments shows a systematic property depending on the hemisphere; the direction of the magnetic field in filaments in the northern (southern) hemisphere mostly deviates clockwise (counterclockwise) from their axes, which run along the magnetic polarity inversion line. The deviation angles of the magnetic field from the axes are concentrated between 10° and 30°. This hemispheric pattern is consistent with that revealed for chirality of filament barbs, filament channels, and for other solar features found to possess chirality. For some filaments, it was confirmed that their magnetic field direction is locally parallel to their structure seen in Hα images. Our results for the first time confirmed this hemispheric pattern with the direct observation of the magnetic field in filaments. Interestingly, the filaments which show the opposite magnetic field deviation to the hemispheric pattern, are in many cases found above the polarity inversion line whose ambient photospheric magnetic field has the polarity alignment being opposite to that of active regions following the Hale–Nicholson law.

  10. Spatial evolution of laser filaments in turbulent air

    Science.gov (United States)

    Zeng, Tao; Zhu, Shiping; Zhou, Shengling; He, Yan

    2018-04-01

    In this study, the spatial evolution properties of laser filament clusters in turbulent air were evaluated using numerical simulations. Various statistical parameters were calculated, such as the percolation probability, filling factor, and average cluster size. The results indicate that turbulence-induced multi-filamentation can be described as a new phase transition universality class. In addition, during this process, the relationship between the average cluster size and filling factor could be fit by a power function. Our results are valuable for applications involving filamentation that can be influenced by the geometrical features of multiple filaments.

  11. Numerical simulation of laser filamentation in underdense plasma

    International Nuclear Information System (INIS)

    Yu Lichun; Chen Zhihua; Tu Qinfen

    2000-01-01

    Developing process of filamentation and effect of characteristic parameters in underdense plasma have been studied using numerical simulation method. Production and development of two-dimensional cylinder filamentation instability were presented clearly. The results indicate incidence laser intensity and plasma background density are important factors affecting convergent intensity. At the same time, it was showed that different laser wavelength or different electron background density could affect filamentation process. The results are consistent with theory and experiments of alien reports. It can provide reference for restraining filamentation

  12. The Bipolar Filaments Formed by Herpes Simplex Virus Type 1 SSB/Recombination Protein (ICP8) Suggest a Mechanism for DNA Annealing

    Energy Technology Data Exchange (ETDEWEB)

    Makhov, A.M.; Simon, M.; Sen, A.; Yu, X.; Griffith, J. D.; Egelman, E. H.

    2009-02-20

    Herpes simplex virus type 1 encodes a multifunctional protein, ICP8, which serves both as a single-strand binding protein and as a recombinase, catalyzing reactions involved in replication and recombination of the viral genome. In the presence of divalent ions and at low temperature, previous electron microscopic studies showed that ICP8 will form long left-handed helical filaments. Here, electron microscopic image reconstruction reveals that the filaments are bipolar, with an asymmetric unit containing two subunits of ICP8 that constitute a symmetrical dimer. This organization of the filament has been confirmed using scanning transmission electron microscopy. The pitch of the filaments is {approx} 250 {angstrom}, with {approx} 6.2 dimers per turn. Docking of a crystal structure of ICP8 into the reconstructed filament shows that the C-terminal domain of ICP8, attached to the body of the subunit by a flexible linker containing {approx} 10 residues, is packed into a pocket in the body of a neighboring subunit in the crystal in a similar manner as in the filament. However, the interactions between the large N-terminal domains are quite different in the filament from that observed in the crystal. A previously proposed model for ICP8 binding single-stranded DNA (ssDNA), based upon the crystal structure, leads to a model for a continuous strand of ssDNA near the filament axis. The bipolar nature of the ICP8 filaments means that a second strand of ssDNA would be running through this filament in the opposite orientation, and this provides a potential mechanism for how ICP8 anneals complementary ssDNA into double-stranded DNA, where each strand runs in opposite directions.

  13. Filament-producing mutants of influenza A/Puerto Rico/8/1934 (H1N1 virus have higher neuraminidase activities than the spherical wild-type.

    Directory of Open Access Journals (Sweden)

    Jill Seladi-Schulman

    Full Text Available Influenza virus exhibits two morphologies - spherical and filamentous. Strains that have been grown extensively in laboratory substrates are comprised predominantly of spherical virions while clinical or low passage isolates produce a mixture of spheres and filamentous virions of varying lengths. The filamentous morphology can be lost upon continued passage in embryonated chicken eggs, a common laboratory substrate for influenza viruses. The fact that the filamentous morphology is maintained in nature but lost in favor of a spherical morphology in ovo suggests that filaments confer a selective advantage within the infected host that is not necessary for growth in laboratory substrates. Indeed, we have recently shown that filament-producing variant viruses are selected upon passage of the spherical laboratory strain A/Puerto Rico/8/1934 (H1N1 [PR8] in guinea pigs. Toward determining the nature of the selective advantage conferred by filaments, we sought to identify functional differences between spherical and filamentous particles. We compared the wild-type PR8 virus to two previously characterized recombinant PR8 viruses in which single point mutations within M1 confer a filamentous morphology. Our results indicate that these filamentous PR8 mutants have higher neuraminidase activities than the spherical PR8 virus. Conversely, no differences were observed in HAU:PFU or HAU:RNA ratios, binding avidity, sensitivity to immune serum in hemagglutination inhibition assays, or virion stability at elevated temperatures. Based on these results, we propose that the pleomorphic nature of influenza virus particles is important for the optimization of neuraminidase functions in vivo.

  14. Drug delivery vectors based on filamentous bacteriophages and phage-mimetic nanoparticles.

    Science.gov (United States)

    Ju, Zhigang; Sun, Wei

    2017-11-01

    With the development of nanomedicine, a mass of nanocarriers have been exploited and utilized for targeted drug delivery, including liposomes, polymers, nanoparticles, viruses, and stem cells. Due to huge surface bearing capacity and flexible genetic engineering property, filamentous bacteriophage and phage-mimetic nanoparticles are attracting more and more attentions. As a rod-like bio-nanofiber without tropism to mammalian cells, filamentous phage can be easily loaded with drugs and directly delivered to the lesion location. In particular, chemical drugs can be conjugated on phage surface by chemical modification, and gene drugs can also be inserted into the genome of phage by recombinant DNA technology. Meanwhile, specific peptides/proteins displayed on the phage surface are able to conjugate with nanoparticles which will endow them specific-targeting and huge drug-loading capacity. Additionally, phage peptides/proteins can directly self-assemble into phage-mimetic nanoparticles which may be applied for self-navigating drug delivery nanovehicles. In this review, we summarize the production of phage particles, the identification of targeting peptides, and the recent applications of filamentous bacteriophages as well as their protein/peptide for targeting drug delivery in vitro and in vivo. The improvement of our understanding of filamentous bacteriophage and phage-mimetic nanoparticles will supply new tools for biotechnological approaches.

  15. Filament Breakage Monitoring in Fused Deposition Modeling Using Acoustic Emission Technique

    Directory of Open Access Journals (Sweden)

    Zhensheng Yang

    2018-03-01

    Full Text Available Polymers are being used in a wide range of Additive Manufacturing (AM applications and have been shown to have tremendous potential for producing complex, individually customized parts. In order to improve part quality, it is essential to identify and monitor the process malfunctions of polymer-based AM. The present work endeavored to develop an alternative method for filament breakage identification in the Fused Deposition Modeling (FDM AM process. The Acoustic Emission (AE technique was applied due to the fact that it had the capability of detecting bursting and weak signals, especially from complex background noises. The mechanism of filament breakage was depicted thoroughly. The relationship between the process parameters and critical feed rate was obtained. In addition, the framework of filament breakage detection based on the instantaneous skewness and relative similarity of the AE raw waveform was illustrated. Afterwards, we conducted several filament breakage tests to validate their feasibility and effectiveness. Results revealed that the breakage could be successfully identified. Achievements of the present work could be further used to develop a comprehensive in situ FDM monitoring system with moderate cost.

  16. Intermittent Divertor Filaments in the National Spherical Torus Experiment and Their Relation to Midplane Blobs

    International Nuclear Information System (INIS)

    Maqueda, R.J.; Stotler, D.P.

    2010-01-01

    While intermittent filamentary structures, also known as blobs, are routinely seen in the low-field-side scrape-off layer of the National Spherical Torus Experiment (NSTX) (Ono et al 2000 Nucl. Fusion 40 557), fine structured filaments are also seen on the lower divertor target plates of NSTX. These filaments, not associated with edge localized modes, correspond to the interaction of the turbulent blobs seen near the midplane with the divertor plasma facing components. The fluctuation level of the neutral lithium light observed at the divertor, and the skewness and kurtosis of its probability distribution function, is similar to that of midplane blobs seen in D α ; e.g. increasing with increasing radii outside the outer strike point (OSP) (separatrix). In addition, their toroidal and radial movement agrees with the typical movement of midplane blobs. Furthermore, with the appropriate magnetic topology, i.e. mapping between the portion of the target plates being observed into the field of view of the midplane gas puff imaging diagnostic, very good correlation is observed between the blobs and the divertor filaments. The correlation between divertor plate filaments and midplane blobs is lost close to the OSP. This latter observation is consistent with the existence of 'magnetic shear disconnection' due to the lower X-point, as proposed by Cohen and Ryutov (1997 Nucl. Fusion 37 621).

  17. Additive Manufacturing of Multifunctional Components Using High Density Carbon Nanotube Yarn Filaments

    Science.gov (United States)

    Gardner, John M.; Sauti, Godfrey; Kim, Jae-Woo; Cano, Roberto J.; Wincheski, Russell A.; Stelter, Christopher J.; Grimsley, Brian W.; Working, Dennis C.; Siochi, Emilie J.

    2016-01-01

    Additive manufacturing allows for design freedom and part complexity not currently attainable using traditional manufacturing technologies. Fused Filament Fabrication (FFF), for example, can yield novel component geometries and functionalities because the method provides a high level of control over material placement and processing conditions. This is achievable by extrusion of a preprocessed filament feedstock material along a predetermined path. However if fabrication of a multifunctional part relies only on conventional filament materials, it will require a different material for each unique functionality printed into the part. Carbon nanotubes (CNTs) are an attractive material for many applications due to their high specific strength as well as good electrical and thermal conductivity. The presence of this set of properties in a single material presents an opportunity to use one material to achieve multifunctionality in an additively manufactured part. This paper describes a recently developed method for processing continuous CNT yarn filaments into three-dimensional articles, and summarizes the mechanical, electrical, and sensing performance of the components fabricated in this way.

  18. Actin filaments growing against an elastic membrane: Effect of membrane tension

    Science.gov (United States)

    Sadhu, Raj Kumar; Chatterjee, Sakuntala

    2018-03-01

    We study the force generation by a set of parallel actin filaments growing against an elastic membrane. The elastic membrane tries to stay flat and any deformation from this flat state, either caused by thermal fluctuations or due to protrusive polymerization force exerted by the filaments, costs energy. We study two lattice models to describe the membrane dynamics. In one case, the energy cost is assumed to be proportional to the absolute magnitude of the height gradient (gradient model) and in the other case it is proportional to the square of the height gradient (Gaussian model). For the gradient model we find that the membrane velocity is a nonmonotonic function of the elastic constant μ and reaches a peak at μ =μ* . For μ state and the membrane energy keeps increasing with time. For the Gaussian model, the system always reaches a steady state and the membrane velocity decreases monotonically with the elastic constant ν for all nonzero values of ν . Multiple filaments give rise to protrusions at different regions of the membrane and the elasticity of the membrane induces an effective attraction between the two protrusions in the Gaussian model which causes the protrusions to merge and a single wide protrusion is present in the system. In both the models, the relative time scale between the membrane and filament dynamics plays an important role in deciding whether the shape of elasticity-velocity curve is concave or convex. Our numerical simulations agree reasonably well with our analytical calculations.

  19. Electromechanical vortex filaments during cardiac fibrillation

    Science.gov (United States)

    Christoph, J.; Chebbok, M.; Richter, C.; Schröder-Schetelig, J.; Bittihn, P.; Stein, S.; Uzelac, I.; Fenton, F. H.; Hasenfuß, G.; Gilmour, R. F., Jr.; Luther, S.

    2018-03-01

    The self-organized dynamics of vortex-like rotating waves, which are also known as scroll waves, are the basis of the formation of complex spatiotemporal patterns in many excitable chemical and biological systems. In the heart, filament-like phase singularities that are associated with three-dimensional scroll waves are considered to be the organizing centres of life-threatening cardiac arrhythmias. The mechanisms that underlie the onset, maintenance and control of electromechanical turbulence in the heart are inherently three-dimensional phenomena. However, it has not previously been possible to visualize the three-dimensional spatiotemporal dynamics of scroll waves inside cardiac tissues. Here we show that three-dimensional mechanical scroll waves and filament-like phase singularities can be observed deep inside the contracting heart wall using high-resolution four-dimensional ultrasound-based strain imaging. We found that mechanical phase singularities co-exist with electrical phase singularities during cardiac fibrillation. We investigated the dynamics of electrical and mechanical phase singularities by simultaneously measuring the membrane potential, intracellular calcium concentration and mechanical contractions of the heart. We show that cardiac fibrillation can be characterized using the three-dimensional spatiotemporal dynamics of mechanical phase singularities, which arise inside the fibrillating contracting ventricular wall. We demonstrate that electrical and mechanical phase singularities show complex interactions and we characterize their dynamics in terms of trajectories, topological charge and lifetime. We anticipate that our findings will provide novel perspectives for non-invasive diagnostic imaging and therapeutic applications.

  20. Morgellons disease: a filamentous borrelial dermatitis

    Directory of Open Access Journals (Sweden)

    Middelveen MJ

    2016-10-01

    Full Text Available Marianne J Middelveen, Raphael B Stricker International Lyme and Associated Diseases Society, Bethesda, MD, USA Abstract: Morgellons disease (MD is a dermopathy characterized by multicolored filaments that lie under, are embedded in, or project from skin. Although MD was initially considered to be a delusional disorder, recent studies have demonstrated that the dermopathy is associated with tickborne infection, that the filaments are composed of keratin and collagen, and that they result from proliferation of keratinocytes and fibroblasts in epithelial tissue. Culture, histopathological and molecular evidence of spirochetal infection associated with MD has been presented in several published studies using a variety of techniques. Spirochetes genetically identified as Borrelia burgdorferi sensu stricto predominate as the infective agent in most of the Morgellons skin specimens studied so far. Other species of Borrelia including Borrelia garinii, Borrelia miyamotoi, and Borrelia hermsii have also been detected in skin specimens taken from MD patients. The optimal treatment for MD remains to be determined. Keywords: Morgellons disease, dermatitis, Lyme disease, Borrelia burgdorferi, spirochetes

  1. Intermediate filament mechanics in vitro and in the cell: From coiled coils to filaments, fibers and networks

    OpenAIRE

    Köster, Sarah; Weitz, David; Goldman, Robert D.; Aebi, Ueli; Herrmann, Harald

    2015-01-01

    Intermediate filament proteins form filaments, fibers and networks both in the cytoplasm and the nucleus of metazoan cells. Their general structural building plan accommodates highly varying amino acid sequences to yield extended dimeric α-helical coiled coils of highly conserved design. These “rod” particles are the basic building blocks of intrinsically flexible, filamentous structures that are able to resist high mechanical stresses, i.e. bending and stretching to a considerable degree, bo...

  2. Experimental determination of local temperature field variations due to spacer grids in the cladding tubes of a rod cluster flowed through by sodium

    International Nuclear Information System (INIS)

    Moeller, R.; Tschoeke, H.

    1978-01-01

    If spacer grids are used to keep the fuel rods in their places - as in the fuel elements of the SNR series, exact tests are necessary to find out whether and to what extent temperature peaks near the supporting points affect cladding tube design. To clarify this special problem, experimental investigations have been carried out for the first time in a rod cluster model of the SNR-300 fuel element cross-flowed with sodium. The investigations and findings so far are reported on. (orig./RW) [de

  3. Computational studies on scattering of radio frequency waves by density filaments in fusion plasmas

    Science.gov (United States)

    Ioannidis, Zisis C.; Ram, Abhay K.; Hizanidis, Kyriakos; Tigelis, Ioannis G.

    2017-10-01

    In modern magnetic fusion devices, such as tokamaks and stellarators, radio frequency (RF) waves are commonly used for plasma heating and current profile control, as well as for certain diagnostics. The frequencies of the RF waves range from ion cyclotron frequency to the electron cyclotron frequency. The RF waves are launched from structures, like waveguides and current straps, placed near the wall in a very low density, tenuous plasma region of a fusion device. The RF electromagnetic fields have to propagate through this scrape-off layer before coupling power to the core of the plasma. The scrape-off layer is characterized by turbulent plasmas fluctuations and by blobs and filaments. The variations in the edge density due to these fluctuations and filaments can affect the propagation characteristics of the RF waves—changes in density leading to regions with differing plasma permittivity. Analytical full-wave theories have shown that scattering by blobs and filaments can alter the RF power flow into the core of the plasma in a variety of ways, such as through reflection, refraction, diffraction, and shadowing [see, for example, Ram and Hizanidis, Phys. Plasmas 23, 022504 (2016), and references therein]. There are changes in the wave vectors and the distribution of power-scattering leading to coupling of the incident RF wave to other plasma waves, side-scattering, surface waves, and fragmentation of the Poynting flux in the direction towards the core. However, these theoretical models are somewhat idealized. In particular, it is assumed that there is step-function discontinuity in the density between the plasma inside the filament and the background plasma. In this paper, results from numerical simulations of RF scattering by filaments using a commercial full-wave code are described. The filaments are taken to be cylindrical with the axis of the cylinder aligned along the direction of the ambient magnetic field. The plasma inside and outside the filament is

  4. FILAMENTOUS FUNGI ON GRAPES IN CENTRAL SLOVAK WINE REGION

    Directory of Open Access Journals (Sweden)

    Ľubomír Rybárik

    2014-02-01

    Full Text Available The concern about filamentous fungi in the vineyards has traditionally been linked to spoilage of grapes due to fungal growth. The aims of this study were to monitor the mycobiota in Central Slovak wine region. The Central Slovak wine region is divided into seven different subregions. In this work we had ten grape samples from seven various wine growing subregions and eight different villages. Five of these samples were from white grape berries and five were from red grape berries. The sample nr. 7 was without chemical protection (interspecific variety and three samples (nr. 8, 9, 10 were from bio-production. In the samples were determined exogenous contamination (direct platting method and endogenous contamination (surface-disinfected grapes. The exogenous mycobiota was determined by the method that each sample of 50 grape berries without visible damage was direct plated on to a DRBC agar medium. In exogenous contamination was detected 17 different genera Alternaria, Arthrinium, Aspergillus, Bipolaris, Botrytis, Cladosporium, Cunninghamella, Epicoccum, Fusarium, Geotrichum, Chaetomium, Mucor, Penicillium, Phoma, Rhizopus, Sordaria, Trichoderma and group Mycelia sterilia in which we included all colony of filamentous fungi that after incubation did not create fruiting bodies necessary for identification to genera level. By the endogenous contamination was each sample of 50 grape berries was surface-disinfected with sodium hypochlorite solution (1% for 1 min, rinsed in sterile distilled water three times and plated onto a DRBC (Dichloran Rose Bengal Chloramphenicol medium, Merck, Germany. The plates were incubated at 25±1 ºC for 7 days in the dark. By the endogenous plating method was identified 15 different genera from all ten samples Alternaria, Arthrinium, Aspergillus, Botrytis, Cladosporium, Epicoccum, Fusarium, Geotrichum, Gelasinospora, Chaetomium, Mucor, Penicillium, Phoma, Rhizopus, Trichoderma and Mycelia sterilia.

  5. Production of filamentous carbon and H{sub 2} by solarthermal catalytic cracking of CH{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, V.; Kuvshinov, G. [Boreskov Inst. of Catalysis (Russian Federation); Reller, A. [Hamburg Univ., Hamburg (Germany); Steinfeld, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The catalytic thermal decomposition of methane has been experimentally studied using high-temperature solar process heat. Nickel catalyst particles, fluidized in methane, were directly irradiated at the PSI solar furnace. Carbon deposition consisted of randomly interlaced filaments that grew as fibers and hollow nanotubes (of approx. 30 nm diameter) originating at each catalytic particle. (author) 4 figs., 7 refs.

  6. THE FAST FILAMENT ERUPTION LEADING TO THE X-FLARE ON 2014 MARCH 29

    Energy Technology Data Exchange (ETDEWEB)

    Kleint, Lucia; Battaglia, Marina; Krucker, Säm [University of Applied Sciences and Arts Northwestern Switzerland, Bahnhofstrasse 6, 5210 Windisch (Switzerland); Reardon, Kevin [National Solar Observatory, Sacramento Peak, P.O. Box 62, Sunspot, NM 88349 (United States); Dalda, Alberto Sainz [Stanford-Lockheed Institute for Space Research, Stanford University, HEPL, 466 Via Ortega, Stanford, CA 94305 (United States); Young, Peter R. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States)

    2015-06-10

    We investigate the sequence of events leading to the solar X1 flare SOL2014-03-29T17:48. Because of the unprecedented joint observations of an X-flare with the ground-based Dunn Solar Telescope and the spacecraft IRIS, Hinode, RHESSI, STEREO, and the Solar Dynamics Observatory, we can sample many solar layers from the photosphere to the corona. A filament eruption was observed above a region of previous flux emergence, which possibly led to a change in magnetic field configuration, causing the X-flare. This was concluded from the timing and location of the hard X-ray emission, which started to increase slightly less than a minute after the filament accelerated. The filament showed Doppler velocities of ∼2–5 km s{sup −1} at chromospheric temperatures for at least one hour before the flare occurred, mostly blueshifts, but also redshifts near its footpoints. Fifteen minutes before the flare, its chromospheric Doppler shifts increased to ∼6–10 km s{sup −1} and plasma heating could be observed before it lifted off with at least 600 km s{sup −1} as seen in IRIS data. Compared to previous studies, this acceleration (∼3–5 km s{sup −2}) is very fast, while the velocities are in the common range for coronal mass ejections. An interesting feature was a low-lying twisted second filament near the erupting filament, which did not seem to participate in the eruption. After the flare ribbons started on each of the second filament’s sides, it seems to have untangled and vanished during the flare. These observations are some of the highest resolution data of an X-class flare to date and reveal some small-scale features yet to be explained.

  7. Evaluation of mirror full adder circuit reliability performance due to negative bias temperature instability (NBTI) effects based on different defect mechanisms

    Science.gov (United States)

    Shaari, I. B.; Zainudin, M. F.; Saini, M. S. A.; Hussin, H.; Halim, A. K.

    2017-09-01

    Negative bias temperature instability (NBTI) is an aging effect that can cause the threshold voltage to be shifted hence reduce the drain current. This will subsequently leads to main aging effect in sub-micron CMOS circuits. The NBTI defect mechanisms consist of interface trap generation and hole trapping effect. The main objective of this work was to study the impact of NBTI effect on the circuit performance based on different defect mechanisms. The percentage of how the performance affected in terms of delay by different defect mechanisms will be evaluated based on mirror full adder circuit. To study the reliability issues on circuit, model cards based on 45nm, 65nm and 90nm Predictive Technology Model (PTM) have been used along with the MOSRA model. The impact of NBTI on this circuit were evaluated based on the performance of the circuit which is the propagation delay. To understand the effect of different defect mechanism, analysis at the device level was conducted where the threshold voltage shift of the p-MOSFETs were evaluated. It is shown that the delay degradation will increase with the increasing of the temperature.

  8. Temperature dependence of bromine activation due to reaction of bromide with ozone in a proxy for organic aerosols and its importance for chemistry in surface snow.

    Science.gov (United States)

    Edebeli, Jacinta; Ammann, Markus; Gilgen, Anina; Trachsel, Jürg; Avak, Sven; Eichler, Anja; Schneebeli, Martin; Bartels-Rausch, Thorsten

    2017-04-01

    Tropospheric ozone depletion events (ODEs) via halogen activation are observed in both cold and warm climates [1-3]. Very recently, it was suggested that this multiphase halogen activation chemistry dominates in the tropical and subtropical upper troposphere [4]. These occurrences beg the question of temperature dependence of halogen activation in sea-salt aerosol, which are often mixtures of sea-salt and organic molecules [3, 5]. With the application of flow-tubes, the aim of this study is to investigate the temperature dependence of bromine activation via ozone interaction in a bromide containing film as a proxy for mixed organic - sea-salt aersol. Citric acid is used in this study as a hygroscopically characterized matrix and a proxy for oxidized organics, which is of relevance to atmospheric chemistry. Here, we present reactive ozone uptake measured between 258 and 289 K. The data show high reproducibility. With available knowledge, we have reproduced the measured uptake with modelled bulk uptake while accounting for temperature dependence of the substrate's properties as diffusivity, viscosity, and gas solubility. This work is part of a cross-disciplinary project with the aim to investigate the impact of metamorphism on impurity location in aging snow and its consequences for chemical reactivity. Metamorphism drastically shapes the structure and physical properties of snow, which has impacts on heat transfer, albedo, and avalanche formation. Such changes can be driven by water vapour fluxes in dry metamorphism with a mass turnover of as much as 60% per day - much greater than previously thought [6]. The consequences for atmospheric science are a current question of research [7]. Here, we show first results of a joint experiment to probe the re-distribution of impurities during snow metamorphism in artificial snow combined with an investigation of the samples structural changes. Future work is planned with the goal to investigate to which extend the observed re

  9. Quantifying the impact of an upwelling filament on the physical-chemical-biological interactions off SW Iberia

    Science.gov (United States)

    Cravo, A.; Sanchez, R.; Monteiro, C.; Cardeira, S.; Madureira, M.; Rita, F.; Relvas, P.

    2017-12-01

    Upwelling filaments are mesoscale structures of cold water that stretch seaward in a tongue-like shape with origin in the coastal upwelling zone. Filaments off the Iberian Peninsula are recurrent, showing similarities with those in the Californian coast. The Cape São Vicente, the SW tip of the Iberian Peninsula, is the root of recurrent filaments observed in the satellite imagery during the upwelling season. However, the understanding of its physical and chemical impact on the biological productivity is rather limited. There, a relatively small filament ( 80 km long) was investigated through remote sensing and in situ multidisciplinary observations during an upwelling favourable wind relaxation event, but just after an intense upwelling period. A total of 42 CTD+Rosette casts up to 400 m depth were distributed on an almost regular grid of 15 km mean spacing guided by guided by satellite SST imagery transmitted to the ship in near-real time. The parameters sampled during the sea campaign included: velocity field sampled along the ship track through a hull-mounted 38 kHz RDI ADCP, meteorological variables, temperature, salinity, chlorophyll a, dissolved oxygen, nitrate, phosphate, silicate, cadmium, lead and zinc. The extent of the impact of the filament was evaluated by quantifying the cross-shelf transports of several properties. The amounts conveyed by the filament were much stronger than those expected by the wind-driven Ekman mechanism, showing that it represents an efficient feature for the exchange of water, dissolved and particulate matter from the productive shelf towards the oligotrophic offshore region. Considering the periods of strong upwelling events and the extent of their duration along the year, the amounts of exported matter will certainly enhance the biological productivity of these waters, including its fisheries. These filament data contribute to better understand the physical-chemical-biological interactions of this regional ecosystem.

  10. Use of submicron carbon filaments in place of carbon black as a porous reduction electrode in lithium batteries with a catholyte comprising bromine chloride in thionyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Frysz, C.A. [Wilson Greatbatch, Ltd., Clarence, NY (United States); Shui, X.; Chung, D.D.L. [State Univ. of New York, Buffalo, NY (United States). Composite Materials Research Lab.

    1995-12-31

    Submicron carbon filaments used in place of carbon black as porous reduction electrodes in carbon limited lithium batteries in plate and jellyroll configurations with the BCX (bromine chloride in thionyl chloride) catholyte gave a specific capacity (at 2 V cut-off) of up to 8,700 mAh/g carbon, compared to a value of up to 2,900 mAh/g carbon for carbon black. The high specific capacity per g carbon (demonstrating superior carbon efficiency) for the filament electrode is partly due to the filaments` processability into sheets as thin as 0.2 mm with good porosity and without a binder, and partly due to the high catholyte absorptivity and high rate of catholyte absorption of the filament electrode.

  11. Application of digital holography to filament size analysis

    NARCIS (Netherlands)

    Semin, N.V.; Poelma, C.; Drost, S.; Westerweel, J.

    2010-01-01

    The potential of in-line digital holography to locate and measure the size and position of filaments, i.e. thin wire-like objects, distributed throughout a thick volume has been investigated. In this paper two approaches are introduced to study filaments of varying diameter. (1) It is shown

  12. Fossil evidence for spin alignment of SDSS galaxies in filaments

    NARCIS (Netherlands)

    Jones, Bernard J.T.; Weygaert, Rien van de; Arag´on-Calvo, Miguel A.

    2010-01-01

    We search for and find fossil evidence that the distribution of the spin axes of galaxies in cosmic web filaments relative to their host filaments are not randomly distributed. This would indicate that the action of large scale tidal torques effected the alignments of galaxies located in cosmic

  13. Method for simultaneously coating a plurality of filaments

    Science.gov (United States)

    Miller, P.A.; Pochan, P.D.; Siegal, M.P.; Dominguez, F.

    1995-07-11

    Methods and apparatuses are disclosed for coating materials, and the products and compositions produced thereby. Substances, such as diamond or diamond-like carbon, are deposited onto materials, such as a filament or a plurality of filaments simultaneously, using one or more cylindrical, inductively coupled, resonator plasma reactors. 3 figs.

  14. Cellulase activity of filamentous fungi induced by rice husk | Oliveros ...

    African Journals Online (AJOL)

    Cellulase activity of filamentous fungi induced by rice husk. DF Oliveros, N Guarnizo, EM Perea, WM Arango. Abstract. The objective of this study was to determine the potential of different filamentous fungi to degrade cellulose in rice husk pre-treated with steam explosion or alkaline hydrolysis. A preliminary test performed ...

  15. Design and Optimization of Filament Wound Composite Pressure Vessels

    NARCIS (Netherlands)

    Zu, L.

    2012-01-01

    One of the most important issues for the design of filament-wound pressure vessels reflects on the determination of the most efficient meridian profiles and related fiber architectures, leading to optimal structural performance. To better understand the design and optimization of filament-wound

  16. THE APPARATUS FOR ALIGNMENT OF THE PHOTOMETRIC LAMP FILAMENT

    Directory of Open Access Journals (Sweden)

    V. A. Dlugunovich

    2015-01-01

    Full Text Available During photometric measurements involving the use of photometric lamps it is necessary that the filament of lamp takes a strictly predetermined position with respect to the photodetector and the optical axis of the photometric setup. The errors in positioning of alignment filament with respect to the optical axis of the measuring system lead to increase the uncertainty of measurement of the photometric characteristics of the light sources. A typical method for alignment of filament of photometric lamps is based on the use a diopter tubes (telescopes. Using this method, the mounting of filament to the required position is carried out by successive approximations, which requires special concentration and a lot of time. The aim of this work is to develop an apparatus for alignment which allows simultaneous alignment of the filament of lamps in two mutually perpendicular planes. The method and apparatus for alignment of the photometric lamp filament during measurements of the photometric characteristics of light sources based on two digital video cameras is described in this paper. The apparatus allows to simultaneously displaying the image of lamps filament on the computer screen in two mutually perpendicular planes. The apparatus eliminates a large number of functional units requiring elementwise alignment and reduces the time required to carry out the alignment. The apparatus also provides the imaging of lamps filament with opaque coated on the bulb. The apparatus is used at the National standard of light intensity and illuminance units of the Republic of Belarus. 

  17. Type I ELM filament heat fluxes on the KSTAR main chamber wall

    Directory of Open Access Journals (Sweden)

    M.-K. Bae

    2017-08-01

    Full Text Available Heat loads deposited on the first wall by mitigated Type I ELMs are expected to be the dominant contributor to the total thermal plasma wall load of the International Thermonuclear Experimental Reactor (ITER, particularly in the upper main chamber regions during the baseline H-mode magnetic equilibrium, due to the fast radial convective heat propagation of ELM filaments before complete loss to the divertor. Specific Type I ELMing H-mode discharges have been performed with a lower single null magnetic geometry, where the outboard separatrix position is slowly (∼7s scanned over a radial distance of 7cm, reducing the wall probe–separatrix distance to a minimum of ∼9cm, and allowing the ELM filament heat loss to the wall to be analyzed as a function of radial propagation distance. A fast reciprocating probe (FRP head is separately held at fixed position toroidally close and 4.7cm radially in front of the wall probe. This FRP monitors the ELM ion fluxes, allowing an average filament radial propagation speed, found to be independent of ELM energy, of 80–100ms−1 to be extracted. Radial dependence of the peak filament wall parallel heat flux is observed to be exponential, with the decay length of λq, ELM ∼25 ± 4mm and with the heat flux of q∥, ELM= 0.05MWm−2 at the wall, corresponding to q∥ ∼ 7.5MWm−2 at the second separatrix. Along with the measured radial propagation speed and the calculated radial profile of the magnetic connection lengths across the SOL, these data could be utilized to analyze filament energy loss model for the future machines.

  18. Radial motion of isolated blobs and ELM filaments in SOL plasmas

    International Nuclear Information System (INIS)

    Garcia, O.E.; Naulin, V.; Nielsen, A.H.; Rasmussen, J.J.; Fundamenski, W.; Bian, N.H.

    2007-01-01

    Radial convection of localized plasma filaments is apparently what dominates the cross-field transport of particles and heat through the scrape-off layer of magnetically confined plasmas. Here we present a theoretical investigation of the motion of such field-aligned structures based on electrostatic interchange dynamics. A two-field interchange model is studied by means of numerical simulations on a bi-periodic domain perpendicular to the magnetic field. The simulations are initialized with a blob-like structure on top of a uniform background plasma with no flow. It is demonstrated that such plasma filaments develop dipolar vorticity and electrostatic potential fields, resulting in rapid radial acceleration and formation of a steep front and a trailing wake. While the dynamical evolution strongly depends on the amount of collisional diffusion and viscosity, the structure travels a radial distance many times its initial size in all parameter regimes in the absence of parallel motions. For small collisional dissipation the structure is unstable to fragmentation by secondary instabilities, resulting in complex waveforms from single-point recordings even for an isolated structure. The plasma filament eventually decelerates due to dispersion by the convective flows. When sheath dissipation is included in the simulations, the radial velocity of isolated filaments is found to be significantly reduced. The results are discussed in the context of convective transport in scrape-off layer plasmas, comprising both blob-like structures in low confinement modes and edge localized mode filaments in unstable high confinement regimes. The favorable comparison with experimental measurements strongly indicates that electrostatic interchange motions is the salient mechanism underlying cross-field transport at the boundary of magnetically con ed plasmas. (author)

  19. Automated image analysis for quantification of filamentous bacteria

    DEFF Research Database (Denmark)

    Fredborg, M.; Rosenvinge, F. S.; Spillum, E.

    2015-01-01

    Background: Antibiotics of the beta-lactam group are able to alter the shape of the bacterial cell wall, e.g. filamentation or a spheroplast formation. Early determination of antimicrobial susceptibility may be complicated by filamentation of bacteria as this can be falsely interpreted as growth...... displaying different resistant profiles and differences in filamentation kinetics were used to study a novel image analysis algorithm to quantify length of bacteria and bacterial filamentation. A total of 12 beta-lactam antibiotics or beta-lactam-beta-lactamase inhibitor combinations were analyzed...... in systems relying on colorimetry or turbidometry (such as Vitek-2, Phoenix, MicroScan WalkAway). The objective was to examine an automated image analysis algorithm for quantification of filamentous bacteria using the 3D digital microscopy imaging system, oCelloScope. Results: Three E. coli strains...

  20. Methods for genetic transformation of filamentous fungi.

    Science.gov (United States)

    Li, Dandan; Tang, Yu; Lin, Jun; Cai, Weiwen

    2017-10-03

    Filamentous fungi have been of great interest because of their excellent ability as cell factories to manufacture useful products for human beings. The development of genetic transformation techniques is a precondition that enables scientists to target and modify genes efficiently and may reveal the function of target genes. The method to deliver foreign nucleic acid into cells is the sticking point for fungal genome modification. Up to date, there are some general methods of genetic transformation for fungi, including protoplast-mediated transformation, Agrobacterium-mediated transformation, electroporation, biolistic method and shock-wave-mediated transformation. This article reviews basic protocols and principles of these transformation methods, as well as their advantages and disadvantages.

  1. Engineering of filamentous bacteriophage for protein sensing

    Science.gov (United States)

    Brasino, Michael

    Methods of high throughput, sensitive and cost effective quantification of proteins enables personalized medicine by allowing healthcare professionals to better monitor patient condition and response to treatment. My doctoral research has attempted to advance these methods through the use of filamentous bacteriophage (phage). These bacterial viruses are particularly amenable to both genetic and chemical engineering and can be produced efficiently in large amounts. Here, I discuss several strategies for modifying phage for use in protein sensing assays. These include the expression of bio-orthogonal conjugation handles on the phage coat, the incorporation of specific recognition sequences within the phage genome, and the creation of antibody-phage conjugates via a photo-crosslinking non-canonical amino acid. The physical and chemical characterization of these engineered phage and the results of their use in modified protein sensing assays will be presented.

  2. Filament wound data base development, revision 1

    Science.gov (United States)

    Sharp, R. Scott; Braddock, William F.

    1985-01-01

    The objective was to update the present Space Shuttle Solid Rocket Booster (SRB) baseline reentry aerodynamic data base and to develop a new reentry data base for the filament wound case SRB along with individual protuberance increments. Lockheed's procedures for performing these tasks are discussed. Free fall of the SRBs after separation from the Space Shuttle Launch Vehicle is completely uncontrolled. However, the SRBs must decelerate to a velocity and attitude that is suitable for parachute deployment. To determine the SRB reentry trajectory parameters, including the rate of deceleration and attitude history during free-fall, engineers at Marshall Space Flight Center are using a six-degree-of-freedom computer program to predict dynamic behavior. Static stability aerodynamic coefficients are part of the information required for input into this computer program. Lockheed analyzed the existing reentry aerodynamic data tape (Data Tape 5) for the current steel case SRB. This analysis resulted in the development of Data Tape 7.

  3. Anti-parallel filament flows and bright dots observed in the EUV with Hi-C

    Science.gov (United States)

    Alexander, C. E.; Regnier, S.; Walsh, R. W.; Winebarger, A. R.; Cirtain, J. W.

    2013-12-01

    The Hi-C instrument imaged the million degree corona at the highest spatial and temporal resolution to date. The instrument imaged a complicated active region which contained several interesting features. Scientists at UCLan in the UK, in collaboration with other members of the Hi-C science team, studied two of these festures: anti-parallel filament flows and bright EUV dots. Plasma flows within prominences/filaments have been observed for many years and hold valuable clues concerning the mass and energy balance within these structures. Evidence of ';counter-steaming' flows has previously been inferred from these cool plasma observations but now, for the first time, these flows have been directly imaged along fundamental filament threads within the million degree corona (at 193 Å). We present observations of an active region filament observed with Hi-C that exhibits anti-parallel flows along adjacent filament threads. The ultra-high spatial and temporal resolution of Hi-C allow the anti-parallel flow velocities to be measured (70 - 80 km/s) and gives an indication of the resolvable thickness of the individual strands (0.8' × 0.1'). The temperature distribution of the plasma flows was estimated to be log T(K) = 5.45 × 0.10 using EM loci analysis. Short-lived, small brightenings sparkling at the edge of the active region, calle EUV Bright Dots (EBDs) were also investigated. EBDs have a characteristic duration of 25 s with a characteristic length of 680 km. These brightenings are not fully resolved by the SDO/AIA instrument at the same wavelength, but can however be identified with respect to the Hi-C location of the EBDs. In addition, EBDs are seen in other chromospheric/coronal channels of SDO/AIA suggesting a temperature between 0.5 and 1.5 MK. Based on a potential field extrapolation from an SDO/HMI magnetogram, the EBDs appear at the footpoints of large-scale trans-equatorial coronal loops. The Hi-C observations provide the first evidence of small-scale EUV

  4. HIERARCHICAL FRAGMENTATION OF THE ORION MOLECULAR FILAMENTS

    International Nuclear Information System (INIS)

    Takahashi, Satoko; Ho, Paul T. P.; Su, Yu-Nung; Teixeira, Paula S.; Zapata, Luis A.

    2013-01-01

    We present a high angular resolution map of the 850 μm continuum emission of the Orion Molecular Cloud-3 (OMC 3) obtained with the Submillimeter Array (SMA); the map is a mosaic of 85 pointings covering an approximate area of 6.'5 × 2.'0 (0.88 × 0.27 pc). We detect 12 spatially resolved continuum sources, each with an H 2 mass between 0.3-5.7 M ☉ and a projected source size between 1400-8200 AU. All the detected sources are on the filamentary main ridge (n H 2 ≥10 6 cm –3 ), and analysis based on the Jeans theorem suggests that they are most likely gravitationally unstable. Comparison of multi-wavelength data sets indicates that of the continuum sources, 6/12 (50%) are associated with molecular outflows, 8/12 (67%) are associated with infrared sources, and 3/12 (25%) are associated with ionized jets. The evolutionary status of these sources ranges from prestellar cores to protostar phase, confirming that OMC-3 is an active region with ongoing embedded star formation. We detect quasi-periodical separations between the OMC-3 sources of ≈17''/0.035 pc. This spatial distribution is part of a large hierarchical structure that also includes fragmentation scales of giant molecular cloud (≈35 pc), large-scale clumps (≈1.3 pc), and small-scale clumps (≈0.3 pc), suggesting that hierarchical fragmentation operates within the Orion A molecular cloud. The fragmentation spacings are roughly consistent with the thermal fragmentation length in large-scale clumps, while for small-scale cores it is smaller than the local fragmentation length. These smaller spacings observed with the SMA can be explained by either a helical magnetic field, cloud rotation, or/and global filament collapse. Finally, possible evidence for sequential fragmentation is suggested in the northern part of the OMC-3 filament.

  5. RADIATION SPECTRAL SYNTHESIS OF RELATIVISTIC FILAMENTATION

    International Nuclear Information System (INIS)

    Frederiksen, Jacob Trier; Haugboelle, Troels; Medvedev, Mikhail V.; Nordlund, Ake

    2010-01-01

    Radiation from many astrophysical sources, e.g., gamma-ray bursts and active galactic nuclei, is believed to arise from relativistically shocked collisionless plasmas. Such sources often exhibit highly transient spectra evolving rapidly compared with source lifetimes. Radiation emitted from these sources is typically associated with nonlinear plasma physics, complex field topologies, and non-thermal particle distributions. In such circumstances, a standard synchrotron paradigm may fail to produce accurate conclusions regarding the underlying physics. Simulating spectral emission and spectral evolution numerically in various relativistic shock scenarios is then the only viable method to determine the detailed physical origin of the emitted spectra. In this Letter, we present synthetic radiation spectra representing the early stage development of the filamentation (streaming) instability of an initially unmagnetized plasma, which is relevant for both collisionless shock formation and reconnection dynamics in relativistic astrophysical outflows as well as for laboratory astrophysics experiments. Results were obtained using a highly efficient in situ diagnostics method, based on detailed particle-in-cell modeling of collisionless plasmas. The synthetic spectra obtained here are compared with those predicted by a semi-analytical model for jitter radiation from the filamentation instability, the latter including self-consistent generated field topologies and particle distributions obtained from the simulations reported upon here. Spectra exhibit dependence on the presence-or the absence-of an inert plasma constituent, when comparing baryonic plasmas (i.e., containing protons) with pair plasmas. The results also illustrate that considerable care should be taken when using lower-dimensional models to obtain information about the astrophysical phenomena generating observed spectra.

  6. Effects of temperature dependent conductivity and absorptive/generative heat transfer on MHD three dimensional flow of Williamson fluid due to bidirectional non-linear stretching surface

    Science.gov (United States)

    Bilal, S.; Khalil-ur-Rehman; Malik, M. Y.; Hussain, Arif; Khan, Mair

    Present work is communicated to identify characteristics of magnetohydrodynamic (MHD) three dimensional boundary layer flow of Williamson fluid confined by a bidirectional stretched surface. Conductivity of working fluid is assumed to be temperature dependent. Generative/absorptive heat transfer is also taken into account. Mathematical model is formulated in the form of partial expressions and then transmuted into ordinary differential equations with the help of newfangled set of similarity transformations. The resulting non-linear differential system of equations is solved numerically with the aid of Runge-Kutta algorithm supported by shooting method. Flow features are exemplified quantitatively through graphs. Scintillating results for friction factor and convective heat transfer are computed and scrutinized tabularly. Furthermore, the accuracy of present results is tested with existing literature and we found an excellent agreement. It is inferred that velocity along x-direction mounts whereas along y-direction depreciates for incrementing values of stretching ratio parameter. Moreover, it is also elucidated that non-linearity index tends to decrement the velocity and thermal distributions of fluid flow.

  7. Effects of temperature dependent conductivity and absorptive/generative heat transfer on MHD three dimensional flow of Williamson fluid due to bidirectional non-linear stretching surface

    Directory of Open Access Journals (Sweden)

    S. Bilal

    Full Text Available Present work is communicated to identify characteristics of magnetohydrodynamic (MHD three dimensional boundary layer flow of Williamson fluid confined by a bidirectional stretched surface. Conductivity of working fluid is assumed to be temperature dependent. Generative/absorptive heat transfer is also taken into account. Mathematical model is formulated in the form of partial expressions and then transmuted into ordinary differential equations with the help of newfangled set of similarity transformations. The resulting non-linear differential system of equations is solved numerically with the aid of Runge-Kutta algorithm supported by shooting method. Flow features are exemplified quantitatively through graphs. Scintillating results for friction factor and convective heat transfer are computed and scrutinized tabularly. Furthermore, the accuracy of present results is tested with existing literature and we found an excellent agreement. It is inferred that velocity along x-direction mounts whereas along y-direction depreciates for incrementing values of stretching ratio parameter. Moreover, it is also elucidated that non-linearity index tends to decrement the velocity and thermal distributions of fluid flow. Keywords: MHD flow, Williamson fluid, Variable thermal conductivity, Heat absorption/generation, Bidirectional non-linear stretching

  8. Development of the ultrasonic fatigue testing machine due to study on giga-cycle fatigue at elevated temperature. 2001 annual report. Document on collaborative study

    International Nuclear Information System (INIS)

    Hattori, Shuji; Itoh, Takamoto

    2002-03-01

    An ultrasonic fatigue testing machine was developed to obtain the giga-cycle fatigue life at elevated temperature for safety and reliability of structural components in the faster breeder reactor (FBR). This testing machine consists of an amplifier, booster, horn and the equipments such as a system controller and data acquisition. The test specimen is attached at the end of the horn. The electric power generated in the amplifier is transformed into the mechanical vibration in the converter and is magnified in the booster and horn. The vibration was enough to fatigue the specimen. Since the test frequency is set at a resonant frequency, the shape and dimensions of specimen were designed so as to vibrate itself resonantly. However, the maximum amplitudes of stress and strain in the specimen can be calculated easily by measuring the amplitude of displacement at the end of the specimen. The developed ultrasonic fatigue testing machine enables to carry out the fatigue tests at 20 kHz so that it can perform the giga-cycle fatigue test within a very short time as compared with the regular fatigue testing machines such as a hydraulic fatigue testing machine. By clarifying the material strength characteristics in giga-cycle region, the life evaluation, design and examination of components will be more suitable than ever. This study will contribute to improve the safety and reliability of components in FBR. In this technical report, the specification and characteristics of the testing machine were described along with the several experimental results. (author)

  9. Low temperature caused modifications in the arrangement of cell wall pectins due to changes of osmotic potential of cells of maize leaves (Zea mays L.).

    Science.gov (United States)

    Bilska-Kos, Anna; Solecka, Danuta; Dziewulska, Aleksandra; Ochodzki, Piotr; Jończyk, Maciej; Bilski, Henryk; Sowiński, Paweł

    2017-03-01

    The cell wall emerged as one of the important structures in plant stress responses. To investigate the effect of cold on the cell wall properties, the content and localization of pectins and pectin methylesterase (PME) activity, were studied in two maize inbred lines characterized by different sensitivity to cold. Low temperature (14/12 °C) caused a reduction of pectin content and PME activity in leaves of chilling-sensitive maize line, especially after prolonged treatment (28 h and 7 days). Furthermore, immunocytohistological studies, using JIM5 and JIM7 antibodies, revealed a decrease of labeling of both low- and high-methylesterified pectins in this maize line. The osmotic potential, quantified by means of incipient plasmolysis was lower in several types of cells of chilling-sensitive maize line which was correlated with the accumulation of sucrose. These studies present new finding on the effect of cold stress on the cell wall properties in conjunction with changes in the osmotic potential of maize leaf cells.

  10. Using a short-pulse diffraction-limited laser beam to probe filamentation of a random phase plate smoothed beam.

    Science.gov (United States)

    Kline, J L; Montgomery, D S; Flippo, K A; Johnson, R P; Rose, H A; Shimada, T; Williams, E A

    2008-10-01

    A short pulse (few picoseconds) laser probe provides high temporal resolution measurements to elucidate details of fast dynamic phenomena not observable with typical longer laser pulse probes and gated diagnostics. Such a short pulse laser probe (SPLP) has been used to measure filamentation of a random phase plate (RPP) smoothed laser beam in a gas-jet plasma. The plasma index of refraction due to driven density and temperature fluctuations by the RPP beam perturbs the phase front of a SPLP propagating at a 90 degree angle with respect to the RPP interaction beam. The density and temperature fluctuations are quasistatic on the time scale of the SPLP (approximately 2 ps). The transmitted near-field intensity distribution from the SPLP provides a measure of the phase front perturbation. At low plasma densities, the transmitted intensity pattern is asymmetric with striations across the entire probe beam in the direction of the RPP smoothed beam. As the plasma density increases, the striations break up into smaller sizes along the direction of the RPP beam propagation. The breakup of the intensity pattern is consistent with self-focusing of the RPP smoothed interaction beam. Simulations of the experiment using the wave propagation code, PF3D, are in qualitative agreement demonstrating that the asymmetric striations can be attributed to the RPP driven density fluctuations. Quantification of the beam breakup measured by the transmitted SPLP could lead to a new method for measuring self-focusing of lasers in underdense plasmas.

  11. Bundling of elastic filaments induced by hydrodynamic interactions

    Science.gov (United States)

    Man, Yi; Page, William; Poole, Robert J.; Lauga, Eric

    2017-12-01

    Peritrichous bacteria swim in viscous fluids by rotating multiple helical flagellar filaments. As the bacterium swims forward, all its flagella rotate in synchrony behind the cell in a tight helical bundle. When the bacterium changes its direction, the flagellar filaments unbundle and randomly reorient the cell for a short period of time before returning to their bundled state and resuming swimming. This rapid bundling and unbundling is, at its heart, a mechanical process whereby hydrodynamic interactions balance with elasticity to determine the time-varying deformation of the filaments. Inspired by this biophysical problem, we present in this paper what is perhaps the simplest model of bundling whereby two or more straight elastic filaments immersed in a viscous fluid rotate about their centerline, inducing rotational flows which tend to bend the filaments around each other. We derive an integrodifferential equation governing the shape of the filaments resulting from mechanical balance in a viscous fluid at low Reynolds number. We show that such equation may be evaluated asymptotically analytically in the long-wavelength limit, leading to a local partial differential equation governed by a single dimensionless bundling number. A numerical study of the dynamics predicted by the model reveals the presence of two configuration instabilities with increasing bundling numbers: first to a crossing state where filaments touch at one point and then to a bundled state where filaments wrap along each other in a helical fashion. We also consider the case of multiple filaments and the unbundling dynamics. We next provide an intuitive physical model for the crossing instability and show that it may be used to predict analytically its threshold and adapted to address the transition to a bundling state. We then use a macroscale experimental implementation of the two-filament configuration in order to validate our theoretical predictions and obtain excellent agreement. This long

  12. Filamentous carbon particles for cleaning oil spills and method of production

    Science.gov (United States)

    Muradov, Nazim

    2010-04-06

    A compact hydrogen generator is coupled to or integrated with a fuel cell for portable power applications. Hydrogen is produced via thermocatalytic decomposition (cracking, pyrolysis) of hydrocarbon fuels in oxidant-free environment. The apparatus can utilize a variety of hydrocarbon fuels, including natural gas, propane, gasoline, kerosene, diesel fuel, crude oil (including sulfurous fuels). The hydrogen-rich gas produced is free of carbon oxides or other reactive impurities, so it could be directly fed to any type of a fuel cell. The catalysts for hydrogen production in the apparatus are carbon-based or metal-based materials and doped, if necessary, with a sulfur-capturing agent. Additionally disclosed are two novel processes for the production of two types of carbon filaments, and a novel filamentous carbon product. The hydrogen generator can be conveniently integrated with high temperature fuel cells to produce an efficient and self-contained source of electrical power.

  13. Filament Winding of Co-Extruded Polypropylene Tapes for Fully Recyclable All-Polypropylene Composite Products

    Science.gov (United States)

    Cabrera, N. O.; Alcock, B.; Klompen, E. T. J.; Peijs, T.

    2008-01-01

    The creation of high-strength co-extruded polypropylene (PP) tapes allows the production of recyclable “all-polypropylene” (all-PP) composite products, with a large temperature processing window and a high fibre volume fraction. Available technologies for all-PP composites are mostly based on manufacturing processes such as thermoforming of pre-consolidated sheets. The objective of this research is to assess the potential of filament winding as a manufacturing process for all-PP composites made directly from co-extruded tapes or woven fabric. Filament wound pipes or rings were tested either by the split-disk method or a hydrostatic pressure test in order to determine the hoop properties, while an optical strain mapping system was used to measure the deformation of the pipe surfaces.

  14. NONLINEAR FORCE-FREE FIELD EXTRAPOLATION OF A CORONAL MAGNETIC FLUX ROPE SUPPORTING A LARGE-SCALE SOLAR FILAMENT FROM A PHOTOSPHERIC VECTOR MAGNETOGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Chaowei; Wu, S. T.; Hu, Qiang [Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Feng, Xueshang, E-mail: cwjiang@spaceweather.ac.cn, E-mail: wus@uah.edu, E-mail: qh0001@uah.edu, E-mail: fengx@spaceweather.ac.cn [SIGMA Weather Group, State Key Laboratory for Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-05-10

    Solar filaments are commonly thought to be supported in magnetic dips, in particular, in those of magnetic flux ropes (FRs). In this Letter, based on the observed photospheric vector magnetogram, we implement a nonlinear force-free field (NLFFF) extrapolation of a coronal magnetic FR that supports a large-scale intermediate filament between an active region and a weak polarity region. This result is a first, in the sense that current NLFFF extrapolations including the presence of FRs are limited to relatively small-scale filaments that are close to sunspots and along main polarity inversion lines (PILs) with strong transverse field and magnetic shear, and the existence of an FR is usually predictable. In contrast, the present filament lies along the weak-field region (photospheric field strength ≲ 100 G), where the PIL is very fragmented due to small parasitic polarities on both sides of the PIL and the transverse field has a low signal-to-noise ratio. Thus, extrapolating a large-scale FR in such a case represents a far more difficult challenge. We demonstrate that our CESE-MHD-NLFFF code is sufficient for the challenge. The numerically reproduced magnetic dips of the extrapolated FR match observations of the filament and its barbs very well, which strongly supports the FR-dip model for filaments. The filament is stably sustained because the FR is weakly twisted and strongly confined by the overlying closed arcades.

  15. Calculations on the current density and the voltage-current relation under a.c. conditions of filaments

    NARCIS (Netherlands)

    Hartmann, R.A.; Dijkstra, D.; van Beckum, F.P.H.; van de Klundert, L.J.M.

    1989-01-01

    Technical applications of multifilamentary wires indicate that filaments are used in complex magnetic fields (a combination of non-parallel a.c./d.c. transverse and rotating fields) carrying an a.c./d.c. transport current of various frequency. Furthermore, due to technical manufacturing processes

  16. Seeking sunlight: rapid phototactic motility of filamentous mat-forming cyanobacteria optimize photosynthesis and enhance carbon burial in Lake Huron’s submerged sinkholes

    Directory of Open Access Journals (Sweden)

    Bopaiah A Biddanda

    2015-09-01

    Full Text Available We studied the motility of filamentous mat-forming cyanobacteria consisting primarily of Oscillatoria-like cells growing under low-light, low-oxygen and high-sulfur conditions in Lake Huron’s submerged sinkholes using in situ observations, in vitro measurements and time-lapse microscopy. Gliding movement of the cyanobacterial trichomes (100-10,000 µm long filaments, composed of cells ~10 µm wide and ~3 µm tall revealed individual as well as group-coordinated motility. When placed in a petri dish and dispersed in ground water from the sinkhole, filaments re-aggregated into defined colonies within minutes, then dispersed again. Speed of individual filaments increased with temperature from ~50 µm minute-1 or ~15 body lengths minute-1 at 10°C to ~215 µm minute-1 or ~70 body lengths minute-1 at 35°C – rates that are rapid relative to non-flagellated/ciliated microbes. Filaments exhibited precise and coordinated positive phototaxis towards pinpoints of light and congregated under the light of foil cutouts. Such light-responsive clusters showed an increase in photosynthetic yield – suggesting phototactic motility aids in light acquisition as well as photosynthesis. Once light source was removed, filaments slowly spread out evenly and re-aggregated, demonstrating coordinated movement through inter-filament communication regardless of light. Pebbles and pieces of broken shells placed upon intact mat were quickly covered by vertically motile filaments within hours and became fully buried in the anoxic sediments over 3-4 diurnal cycles – likely facilitating the preservation of falling debris. Coordinated horizontal and vertical filament motility optimize mat cohesion and dynamics, photosynthetic efficiency and sedimentary carbon burial in modern-day sinkhole habitats that resemble the shallow seas in Earth’s early history. Analogous cyanobacterial motility may have played a key role in the oxygenation of the planet by optimizing

  17. Harmful impact of filamentous algae (Spirogyra sp. on juvenile crayfish

    Directory of Open Access Journals (Sweden)

    Ulikowski Dariusz

    2015-12-01

    Full Text Available The aim of this study was to determine the impact of filamentous algae on the growth and survival of juvenile narrow-clawed crayfish, Astacus leptodactylus (Esch., in rearing basins. Three stocking variants were used: A - basins with a layer of filamentous algae without imitation mineral substrate; B - basins with a layer of filamentous algae with imitation mineral substrate; C - basins without filamentous algae but with mineral substrate. The crayfish were reared from June 12 to October 10 under natural thermal conditions and fed a commercial feed. The results indicated that the presence of the filamentous algae did not have a statistically significant impact on the growth of the juvenile crayfish (P > 0.05. The presence of the filamentous algae had a strong negative impact on juvenile crayfish survival and stock biomass (P < 0.05. The layer of gravel and small stones that imitated the mineral substrate of natural aquatic basins somewhat neutralized the disadvantageous impact the filamentous algae had on the crayfish.

  18. The evolution of compositionally and functionally distinct actin filaments.

    Science.gov (United States)

    Gunning, Peter W; Ghoshdastider, Umesh; Whitaker, Shane; Popp, David; Robinson, Robert C

    2015-06-01

    The actin filament is astonishingly well conserved across a diverse set of eukaryotic species. It has essentially remained unchanged in the billion years that separate yeast, Arabidopsis and man. In contrast, bacterial actin-like proteins have diverged to the extreme, and many of them are not readily identified from sequence-based homology searches. Here, we present phylogenetic analyses that point to an evolutionary drive to diversify actin filament composition across kingdoms. Bacteria use a one-filament-one-function system to create distinct filament systems within a single cell. In contrast, eukaryotic actin is a universal force provider in a wide range of processes. In plants, there has been an expansion of the number of closely related actin genes, whereas in fungi and metazoa diversification in tropomyosins has increased the compositional variety in actin filament systems. Both mechanisms dictate the subset of actin-binding proteins that interact with each filament type, leading to specialization in function. In this Hypothesis, we thus propose that different mechanisms were selected in bacteria, plants and metazoa, which achieved actin filament compositional variation leading to the expansion of their functional diversity. © 2015. Published by The Company of Biologists Ltd.

  19. Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids.

    Science.gov (United States)

    Dey, Indranuj; Jana, Kamalesh; Fedorov, Vladimir Yu; Koulouklidis, Anastasios D; Mondal, Angana; Shaikh, Moniruzzaman; Sarkar, Deep; Lad, Amit D; Tzortzakis, Stelios; Couairon, Arnaud; Kumar, G Ravindra

    2017-10-30

    Generation and application of energetic, broadband terahertz pulses (bandwidth ~0.1-50 THz) is an active and contemporary area of research. The main thrust is toward the development of efficient sources with minimum complexities-a true table-top setup. In this work, we demonstrate the generation of terahertz radiation via ultrashort pulse induced filamentation in liquids-a counterintuitive observation due to their large absorption coefficient in the terahertz regime. The generated terahertz energy is more than an order of magnitude higher than that obtained from the two-color filamentation of air (the most standard table-top technique). Such high terahertz energies would generate electric fields of the order of MV cm -1 , which opens the doors for various nonlinear terahertz spectroscopic applications. The counterintuitive phenomenon has been explained via the solution of nonlinear pulse propagation equation in the liquid medium.

  20. A study of short wave instability on vortex filaments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong Yun [Univ. of California, Berkeley, CA (United States)

    1996-12-01

    The numerical stability and accuracy of the vortex method are studied. The effect of the ordinary differential equations (ODE) solver and of the time step on the numerical stability is analyzed. Various ODE solvers are compared and a best performer is chosen. A new constraint on the time step based on numerical stability is proposed and verified in numerical simulations. It is shown through numerical examples that empirical rules for selecting the spatial discretization obtained in simple test problems may not be extended to more general problems. The thin tube vortex filament method is applied to the problem of Widnall's instability on vortex rings. Numerical results different from previous calculations are presented and the source of the discrepancies is explained. The long time behavior of the unstable mode on thin vortex rings is simulated and analyzed. The short wave instability on vortex filaments is investigated both theoretically and numerically. It is shown that the short wave instability always occurs on co-rotating vortex filaments of fixed core structure. Furthermore when they are close to each other, vortex filaments produce short wave unstable modes which lead to wild stretching and folding. However, when the inter-filament distance is large in comparison with the core size of the filaments, unstable modes are bounded by a small fraction of the core size and the vortex filaments do not create hairpins nor wild stretching. These findings may explain the smooth behavior of the superfluid vortices. The formation of hairpin structures on numerical vortex filaments is investigated. It is shown that the formation of hairpin structures is independent of the ODE solver, of the time step and of other numerical parameters. The hairpin structures are primarily caused by short wave instability on co-rotating vortex filaments.

  1. HIERARCHICAL FRAGMENTATION OF THE ORION MOLECULAR FILAMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Satoko; Ho, Paul T. P.; Su, Yu-Nung [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Teixeira, Paula S. [Institut fuer Astrophysik, Universitaet Wien, Tuerkenschanzstrasse 17, A-1180, Wien (Austria); Zapata, Luis A., E-mail: satoko_t@asiaa.sinica.edu.tw [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Morelia, Michoacan 58090 (Mexico)

    2013-01-20

    We present a high angular resolution map of the 850 {mu}m continuum emission of the Orion Molecular Cloud-3 (OMC 3) obtained with the Submillimeter Array (SMA); the map is a mosaic of 85 pointings covering an approximate area of 6.'5 Multiplication-Sign 2.'0 (0.88 Multiplication-Sign 0.27 pc). We detect 12 spatially resolved continuum sources, each with an H{sub 2} mass between 0.3-5.7 M {sub Sun} and a projected source size between 1400-8200 AU. All the detected sources are on the filamentary main ridge (n{sub H{sub 2}}{>=}10{sup 6} cm{sup -3}), and analysis based on the Jeans theorem suggests that they are most likely gravitationally unstable. Comparison of multi-wavelength data sets indicates that of the continuum sources, 6/12 (50%) are associated with molecular outflows, 8/12 (67%) are associated with infrared sources, and 3/12 (25%) are associated with ionized jets. The evolutionary status of these sources ranges from prestellar cores to protostar phase, confirming that OMC-3 is an active region with ongoing embedded star formation. We detect quasi-periodical separations between the OMC-3 sources of Almost-Equal-To 17''/0.035 pc. This spatial distribution is part of a large hierarchical structure that also includes fragmentation scales of giant molecular cloud ( Almost-Equal-To 35 pc), large-scale clumps ( Almost-Equal-To 1.3 pc), and small-scale clumps ( Almost-Equal-To 0.3 pc), suggesting that hierarchical fragmentation operates within the Orion A molecular cloud. The fragmentation spacings are roughly consistent with the thermal fragmentation length in large-scale clumps, while for small-scale cores it is smaller than the local fragmentation length. These smaller spacings observed with the SMA can be explained by either a helical magnetic field, cloud rotation, or/and global filament collapse. Finally, possible evidence for sequential fragmentation is suggested in the northern part of the OMC-3 filament.

  2. Failure and nonfailure of fluid filaments in extension

    DEFF Research Database (Denmark)

    Hassager, Ole; Kolte, Mette Irene; Renardy, Michael

    1998-01-01

    The phenomenon of ductile failure of Newtonian and viscoelastic fluid filaments without surface tension is studied by a 2D finite element method and by ID non-linear analysis. The viscoelastic fluids are described by single integral constitutive equations. The main conclusions are: (1) Newtonian...... fluid filaments do not exhibit ductile failure without surface tension; (2) some viscoelastic fluids form stable filaments while other fluids exhibit ductile failure as a result of an elastic instability; (3) for large Deborah numbers, the Considere condition may be used to predict the Hencky strain...

  3. Diagnostic accuracy of morphologic identification of filamentous fungi in paraffin embedded tissue sections: Correlation of histological and culture diagnosis

    Directory of Open Access Journals (Sweden)

    Sundaram Challa

    2014-01-01

    Full Text Available Aims and Objectives: The aim was to investigate the correlation between histological and culture diagnosis of filamentous fungi. Materials and Methods: Tissue sections from biopsy samples stained with Hematoxylin and Eosin and special stains from samples of chronic invasive/noninvasive sinusitis and intracranial space occupying lesions during 2005-2011 diagnosed to have infection due to filamentous fungi were reviewed. The histopathology and culture diagnoses were analyzed for correlation and discrepancy. Results: There were 125 samples positive for filamentous fungi on biopsy. Of these 76 (60.8% were submitted for culture and fungi grew in 30 (39.97% samples. There was a positive correlation between histological and culture diagnosis in 25 (83.33% samples that included Aspergillus species (16/19, Zygomycetes species (8/10 and dematiaceous fungi (1/1. The negative yield of fungi was more in Zygomycetes species (20/30 when compared to Aspergillus species (25/44. There was a discrepancy in diagnosis in 5/30 (16.67% samples which included probable dual infection in two, and dematiaceous fungi being interpreted as Aspergillus species in three samples. Conclusion: Histopathology plays a major role in the diagnosis of infection due to filamentous fungi, especially when cultures are not submitted or negative. The discrepancy between histological and culture diagnosis was either due to dematiaceous fungi being interpreted as Aspergillus species or probable dual infection.

  4. Ambipolar diffusion regulated collapse of filaments threaded by perpendicular magnetic fields

    Science.gov (United States)

    Burge, C. A.; Van Loo, S.; Falle, S. A. E. G.; Hartquist, T. W.

    2016-11-01

    the collapse is governed by magnetically-regulated ambipolar diffusion. The gas collapses at velocities much lower than the sound speed. For X ≲ 10-8, the gas is weakly coupled to the magnetic field and the magnetic support is removed by gravitationally-dominated ambipolar diffusion. Here, neutrals and ions only collide sporadically, that is the ambipolar diffusion length scale is larger than the Jeans length, and the gas can attain high collapse velocities. When decaying turbulence is included, additional support is provided to the filament. This slows down the collapse of the filament even in the absence of a magnetic field. When a magnetic field is present, the collapse rate increases by a ratio smaller than for the non-magnetic case. This is because of a speed-up of the ambipolar diffusion due to larger magnetic field gradients generated by the turbulence and because the ambipolar diffusion aids the dissipation of turbulence below the ambipolar diffusion length scale. The highest increase in the rate is observed for the lowest ionisation coefficient and the highest turbulent intensity.

  5. Sphaerotilus natans, a neutrophilic iron-related filamentous bacterium : mechanisms of uranium scavenging

    International Nuclear Information System (INIS)

    Seder-Colomina, Marina

    2014-01-01

    Heavy metals and radionuclides are present in some ecosystems worldwide due to natural contaminations or anthropogenic activities. The use of microorganisms to restore those polluted ecosystems, a process known as bioremediation, is of increasing interest, especially under near-neutral pH conditions. Iron minerals encrusting neutrophilic iron-related bacteria, especially Bacterio-genic Iron Oxides (BIOS), have a poorly crystalline structure, which in addition to their large surface area and reactivity make them excellent scavengers for inorganic pollutants. In this PhD work we studied the different mechanisms of uranium scavenging by the neutrophilic bacterium Sphaerotilus natans, chosen as a model bacterium for iron-related sheath-forming filamentous microorganisms. S. natans can grow as single cells and filaments. The latter were used to investigate U(VI) bio-sorption and U(VI) sorption onto BIOS. In addition, uranium sorption onto the abiotic analogues of such iron minerals was assessed. In order to use S. natans filaments for U(VI) scavenging, it was necessary to identify factors inducing S. natans filamentation. The influence of oxygen was ascertained by using molecular biology techniques and our results revealed that while saturated oxygen conditions resulted in single cell growth, a moderate oxygen depletion to ∼ 3 mg O 2 .L -1 led to the desired filamentous growth of S. natans. BIOS attached to S. natans filaments as well as the abiotic analogues were analysed by XAS at Fe K-edge. Both materials were identified as amorphous iron(III) phosphates with a small component of Fe(II), with a high reactivity towards scavenging of inorganic pollutants. In addition, EXAFS at the U LIII-edge revealed a common structure for the O shells, while those for P, Fe and C were different for each sorbent. An integrated approach combining experimental techniques and speciation calculations made it possible to describe U(VI) adsorption isotherms by using a surface complexation

  6. Ultrasound pretreatment of filamentous algal biomass for enhanced biogas production.

    Science.gov (United States)

    Lee, Kwanyong; Chantrasakdakul, Phrompol; Kim, Daegi; Kong, Mingeun; Park, Ki Young

    2014-06-01

    The filamentous alga Hydrodictyon reticulatum harvested from a bench-scale wastewater treatment pond was used to evaluate biogas production after ultrasound pretreatment. The effects of ultrasound pretreatment at a range of 10-5000 J/mL were tested with harvested H. reticulatum. Cell disruption by ultrasound was successful and showed a higher degree of disintegration at a higher applied energy. The range of 10-5000 J/mL ultrasound was able to disintegrated H. reticulatum and the soluble COD was increased from 250 mg/L to 1000 mg/L at 2500 J/mL. The disintegrated algal biomass was digested for biogas production in batch experiments. Both cumulative gas generation and volatile solids reduction data were obtained during the digestion. Cell disintegration due to ultrasound pretreatment increased the specific biogas production and degradation rates. Using the ultrasound approach, the specific methane production at a dose of 40 J/mL increased up to 384 mL/g-VS fed that was 2.3 times higher than the untreated sample. For disintegrated samples, the volatile solids reduction was greater with increased energy input, and the degradation increased slightly to 67% at a dose of 50 J/mL. The results also indicate that disintegration of the algal cells is the essential step for efficient anaerobic digestion of algal biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. The filamentous fungal pellet-relationship between morphology and productivity.

    Science.gov (United States)

    Veiter, Lukas; Rajamanickam, Vignesh; Herwig, Christoph

    2018-04-01

    Filamentous fungi are used for the production of a multitude of highly relevant biotechnological products like citric acid and penicillin. In submerged culture, fungi can either grow in dispersed form or as spherical pellets consisting of aggregated hyphal structures. Pellet morphology, process control and productivity are highly interlinked. On the one hand, process control in a bioreactor usually demands for compact and small pellets due to rheological issues. On the other hand, optimal productivity might be associated with less dense and larger morphology. Over the years, several publications have dealt with aforementioned relations within the confines of specific organisms and products. However, contributions which evaluate such interlinkages across several fungal species are scarce. For this purpose, we are looking into methods to manipulate fungal pellet morphology in relation to individual species and products. This review attempts to address (i) how variability of pellet morphology can be assessed and (ii) how morphology is linked to productivity. Firstly, the mechanism of pellet formation is outlined. Subsequently, the description and analysis of morphological variations are discussed to finally establish interlinkages between productivity, performance and morphology across different fungal species.

  8. Multi-purposable filaments of HPMC for 3D printing of medications with tailored drug release and timed-absorption.

    Science.gov (United States)

    Kadry, Hossam; Al-Hilal, Taslim A; Keshavarz, Ali; Alam, Farzana; Xu, Changxue; Joy, Abraham; Ahsan, Fakhrul

    2018-04-20

    Three-dimensional printing (3DP), though developed for nonmedical applications and once regarded as futuristic only, has recently been deployed for the fabrication of pharmaceutical products. However, the existing feeding materials (inks and filaments) that are used for printing drug products have various shortcomings, including the lack of biocompatibility, inadequate extrudability and printability, poor drug loading, and instability. Here, we have sought to develop a filament using a single pharmaceutical polymer, with no additives, which can be multi-purposed and manipulated by computational design for the preparation of tablets with desired release and absorption patterns. As such, we have used hydroxypropyl-methylcellulose (HPMC) and diltiazem, a model drug, to prepare both drug-free and drug-impregnated filaments, and investigated their thermal and crystalline properties, studied the cytotoxicity of the filaments, designed and printed tablets with various infill densities and patterns. By alternating the drug-free and drug-impregnated filaments, we fabricated various types of tablets, studied the drug release profiles, and assessed oral absorption in rats. Both diltiazem and HPMC were stable at extrusion and printing temperatures, and the drug loading was 10% (w/w). The infill density, as well as infill patterns, influenced the drug release profile, and thus, when the infill density was increased to 100%, the percentage of drug released dramatically declined. Tablets with alternating drug-free and drug-loaded layers showed delayed and intermittent drug release, depending on when the drug-loaded layers encountered the dissolution media. Importantly, the oral absorption patterns accurately reproduced the drug release profiles and showed immediate, extended, delayed and episodic absorption of the drug from the rat gastrointestinal tract (GIT). Overall, we have demonstrated here that filaments for 3D printers can be prepared from a pharmaceutical polymer with no

  9. Electric Current Filamentation at a Non-potential Magnetic Null-point Due to Pressure Perturbation

    Czech Academy of Sciences Publication Activity Database

    Jelínek, P.; Karlický, Marian; Murawski, K.

    2015-01-01

    Roč. 812, č. 2 (2015), 105/1-105/9 ISSN 0004-637X R&D Projects: GA ČR GAP209/12/0103 Grant - others:EC(XE) 606862 Program:FP7 Institutional support: RVO:67985815 Keywords : magnetohydrodynamics * numerical methods * Sun corona Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.909, year: 2015

  10. Screening of epoxy systems for high performance filament winding applications

    Science.gov (United States)

    Chiao, T. T.; Jessop, E. S.; Penn, L.

    1975-01-01

    Several promising epoxy systems for high performance filament winding applications are described. Viscosities, gel times, and cast resin tensile behavior are given, as well as heat deflection under load and water absorption measurements.

  11. Biofilms from a Brazilian water distribution system include filamentous fungi.

    Science.gov (United States)

    Siqueira, V M; Oliveira, H M B; Santos, C; Paterson, R R M; Gusmão, N B; Lima, N

    2013-03-01

    Filamentous fungi in drinking water can block water pipes, can cause organoleptic biodeterioration, and are a source of pathogens. There are increasing reports of the involvement of the organisms in biofilms. This present study describes a sampling device that can be inserted directly into pipes within water distribution systems, allowing biofilm formation in situ. Calcofluor White M2R staining and fluorescent in situ hybridization with morphological analyses using epifluorescent microscopy were used to analyse biofilms for filamentous fungi, permitting direct observation of the fungi. DAPI (4',6-diamidino-2-phenylindole) was applied to detect bacteria. Filamentous fungi were detected in biofilms after 6 months on coupons exposed to raw water, decanted water and at the entrance of the water distribution system. Algae, yeast, and bacteria were also observed. The role of filamentous fungi requires further investigations.

  12. Biological nitrogen and phosphorus removal by filamentous bacteria ...

    African Journals Online (AJOL)

    Keywords: activated sludge, denitrification, glycogen accumulating organisms, filamentous bacteria, phosphorus removal. Introduction. Biological nutrient removal (BNR) has gained attention over chemical nutrient removal because of the high cost of the chemi- cal process and the large sludge volumes produced.

  13. Method for preparing metallated filament-wound structures

    Science.gov (United States)

    Peterson, George R.

    1979-01-01

    Metallated graphite filament-wound structures are prepared by coating a continuous multi-filament carbon yarn with a metal carbide, impregnating the carbide coated yarn with a polymerizable carbon precursor, winding the resulting filament about a mandrel, partially curing the impregnation in air, subjecting the wound composite to heat and pressure to cure the carbon precursor, and thereafter heating the composite in a sizing die at a pressure loading of at least 1000 psi for graphitizing the carbonaceous material in the composite. The carbide in the composite coalesces into rod-like shapes which are disposed in an end-to-end relationship parallel with the filaments to provide resistance to erosion in abrasive laden atmospheres.

  14. Positrusion Filament Recycling System for ISS, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Positrusion ISS Recycler enables recycling of scrap and waste plastics into high-quality filament for 3D printers to enable sustainable in-situ manufacturing on...

  15. Impact of Submesoscale Processes on Dynamics of Phytoplankton Filaments

    Science.gov (United States)

    2015-02-12

    RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 29-04-2015 Journal Article Impact of submesoscale processes on dynamics of phytoplankton ...in contrast to the earlier summer time, when the ASC mixes phytoplankton much deeper to the area below of the euphotic depth, and chlorophyll a...filaments are 3 -4 times weaker. coastal processes; upwelling, submesoscale processes, phytoplankton filaments Unclassified Unclassified Unclassified UU 13 Igor Shulman (228) 688-5646 Reset

  16. 3D printing conditions determination for feedstock used in fused filament fabrication (FFF of 17-4PH stainless steel parts

    Directory of Open Access Journals (Sweden)

    J. Gonzalez-Gutierez

    2018-01-01

    Full Text Available Fused filament fabrication combined with debinding and sintering could be an economical process for 3D printing of metal parts. In this study, compounding, filament making and FFF processing of a feedstock material containing 55 vol. % of 17-4PH stainless steel powder and a multicomponent binder system are presented. For the FFF process, processing windows of the most significant parameters, such as range of extrusion temperatures (210 to 260 °C, flow rate multipliers (150 to 200 %, and 3D printing speed multipliers (60 to 100 % were determined for a constant printing bed temperature of 60 °C.

  17. The architecture and fine structure of gill filaments in the brown ...

    African Journals Online (AJOL)

    Special attention was paid to filament architecture, ennervation of filaments, number and type of cells populating filament epithelia and variations in epithelial cell morphology and cilia ultrastructure. Filament shape was maintained by thickened chi-tln and strategically placed smooth myocytes. The epithelium was populated ...

  18. Unconventional actin conformations localize on intermediate filaments in mitosis

    International Nuclear Information System (INIS)

    Hubert, Thomas; Vandekerckhove, Joel; Gettemans, Jan

    2011-01-01

    Research highlights: → Unconventional actin conformations colocalize with vimentin on a cage-like structure in metaphase HEK 293T cells. → These conformations are detected with the anti-actin antibodies 1C7 ('lower dimer') and 2G2 ('nuclear actin'), but not C4 (monomeric actin). → Mitotic unconventional actin cables are independent of filamentous actin or microtubules. → Unconventional actin colocalizes with vimentin on a nocodazole-induced perinuclear dense mass of cables. -- Abstract: Different structural conformations of actin have been identified in cells and shown to reside in distinct subcellular locations of cells. In this report, we describe the localization of actin on a cage-like structure in metaphase HEK 293T cells. Actin was detected with the anti-actin antibodies 1C7 and 2G2, but not with the anti-actin antibody C4. Actin contained in this structure is independent of microtubules and actin filaments, and colocalizes with vimentin. Taking advantage of intermediate filament collapse into a perinuclear dense mass of cables when microtubules are depolymerized, we were able to relocalize actin to such structures. We hypothesize that phosphorylation of intermediate filaments at mitosis entry triggers the recruitment of different actin conformations to mitotic intermediate filaments. Storage and partition of the nuclear actin and antiparallel 'lower dimer' actin conformations between daughter cells possibly contribute to gene transcription and transient actin filament dynamics at G1 entry.

  19. Treadmilling of actin filaments via Brownian dynamics simulations

    Science.gov (United States)

    Guo, Kunkun; Shillcock, Julian; Lipowsky, Reinhard

    2010-10-01

    Actin polymerization is coupled to the hydrolysis of adenosine triphosphate (ATP) into adenosine diphosphate (ADP) and inorganic phosphate (Pi). Therefore, each protomer within an actin filament can attain three different nucleotide states corresponding to bound ATP, ADP/Pi, and ADP. These protomer states form spatial patterns on the growing (or shrinking) filaments. Using Brownian dynamics simulations, the growth behavior of long filaments is studied, together with the associated protomer patterns, as a function of ATP-actin monomer concentration, CT, within the surrounding solution. For concentrations close to the critical concentration CT=CT,cr, the filaments undergo treadmilling, i.e., they grow at the barbed and shrink at the pointed end, which leads to directed translational motion of the whole filament. The corresponding nonequilibrium states are characterized by several global fluxes and by spatial density and flux profiles along the filaments. We focus on a certain set of transition rates as deduced from in vitro experiments and find that the associated treadmilling (or turnover) rate is about 0.08 monomers per second.

  20. The Weak Lensing Masses of Filaments between Luminous Red Galaxies

    Science.gov (United States)

    Epps, Seth D.; Hudson, Michael J.

    2017-07-01

    In the standard model of non-linear structure formation, a cosmic web of dark-matter-dominated filaments connects dark matter haloes. In this paper, we stack the weak lensing signal of an ensemble of filaments between groups and clusters of galaxies. Specifically, we detect the weak lensing signal, using CFHTLenS galaxy ellipticities, from stacked filaments between Sloan Digital Sky Survey (SDSS)-III/Baryon Oscillation Spectroscopic Survey luminous red galaxies (LRGs). As a control, we compare the physical LRG pairs with projected LRG pairs that are more widely separated in redshift space. We detect the excess filament mass density in the projected pairs at the 5σ level, finding a mass of (1.6 ± 0.3) × 1013 M⊙ for a stacked filament region 7.1 h-1 Mpc long and 2.5 h-1 Mpc wide. This filament signal is compared with a model based on the three-point galaxy-galaxy-convergence correlation function, as developed in Clampitt et al., yielding reasonable agreement.

  1. Design and optimize of 3-axis filament winding machine

    Science.gov (United States)

    Quanjin, Ma; Rejab, M. R. M.; Idris, M. S.; Bachtiar, B.; Siregar, J. P.; Harith, M. N.

    2017-10-01

    Filament winding technique is developed as the primary process for composite cylindrical structures fabrication at low cost. Fibres are wound on a rotating mandrel by a filament winding machine where resin impregnated fibres pass through a pay-out eye. This paper aims to develop and optimize a 3-axis, lightweight, practical, efficient, portable filament winding machine to satisfy the customer demand, which can fabricate pipes and round shape cylinders with resins. There are 3 main units on the 3-axis filament winding machine, which are the rotary unit, the delivery unit and control system unit. Comparison with previous existing filament winding machines in the factory, it has 3 degrees of freedom and can fabricate more complex shape specimens based on the mandrel shape and particular control system. The machine has been designed and fabricated on 3 axes movements with control system. The x-axis is for movement of the carriage, the y-axis is the rotation of mandrel and the z-axis is the movement of the pay-out eye. Cylindrical specimens with different dimensions and winding angles were produced. 3-axis automated filament winding machine has been successfully designed with simple control system.

  2. The electric toothbrush: analysis of filaments under stereomicroscope.

    Science.gov (United States)

    Checchi, L; Farina, E; Felice, P; Montevecchi, M

    2004-08-01

    The use of manual and electric toothbrushes has a fundamental role in primary prevention in oral hygiene. However, aggressive use of the toothbrush, especially those with non-rounded filaments, can result in lesions in both soft and hard oral tissue. Without doubt, the electric toothbrush is a useful aid for the patient, and it is therefore interesting to evaluate not only its effectiveness in plaque removal, but also the relationship between morphology of filaments and incidence of muco-gingival pathologies. The aim of this research was to evaluate various forms of bristles of electric toothbrushes under a stereomicroscope vision. Brushes tested included two samples of toothbrushes from six different types. Tufts from the same position on the toothbrush head were removed and examined under stereomicroscope. In this study the percentage of rounded filaments that is considered acceptable and non-traumatic was evaluated according to the Silverstone and Featherstone classification. Morphological analysis of electric toothbrush filaments revealed a low percentage of rounded filaments. In only four of 12 electric toothbrushes tested there were more than 50% of the filaments rounded in appearance.

  3. Effect of Filament Fineness on Composite Yarn Residual Torque

    Directory of Open Access Journals (Sweden)

    Sarıoğlu Esin

    2018-03-01

    Full Text Available Yarn residual torque or twist liveliness occurs when the twist is imparted to spin the fibers during yarn formation. It causes yarn snarling, which is an undesirable property and can lead the problems for further processes such as weaving and knitting. It affects the spirality of knitted fabrics and skewness of woven fabrics. Generally, yarn residual torque depends on yarn twist, yarn linear density, and fiber properties used. Composite yarns are widely produced to exploit two yarns with different properties such on optimum way at the same time and these yarns can be produced by wrapping sheath fibers around filament core fiber with a certain twist. In this study, the effect of filament fineness used as core component of composite yarn on residual torque was analyzed. Thus, the false twist textured polyester filament yarns with different filament fineness were used to produce composite yarns with different yarn count. The variance analysis was performed to determine the significance of twist liveliness of filament yarns and yarn count on yarn twist liveliness. Results showed that there is a statistically significant differences at significance level of α=0.05 between filament fineness and yarn residual torque of composite yarns.

  4. Malaria parasites form filamentous cell-to-cell connections during reproduction in the mosquito midgut.

    Science.gov (United States)

    Rupp, Ingrid; Sologub, Ludmilla; Williamson, Kim C; Scheuermayer, Matthias; Reininger, Luc; Doerig, Christian; Eksi, Saliha; Kombila, Davy U; Frank, Matthias; Pradel, Gabriele

    2011-04-01

    Physical contact is important for the interaction between animal cells, but it can represent a major challenge for protists like malaria parasites. Recently, novel filamentous cell-cell contacts have been identified in different types of eukaryotic cells and termed nanotubes due to their morphological appearance. Nanotubes represent small dynamic membranous extensions that consist of F-actin and are considered an ancient feature evolved by eukaryotic cells to establish contact for communication. We here describe similar tubular structures in the malaria pathogen Plasmodium falciparum, which emerge from the surfaces of the forming gametes upon gametocyte activation in the mosquito midgut. The filaments can exhibit a length of > 100 μm and contain the F-actin isoform actin 2. They actively form within a few minutes after gametocyte activation and persist until the zygote transforms into the ookinete. The filaments originate from the parasite plasma membrane, are close ended and express adhesion proteins on their surfaces that are typically found in gametes, like Pfs230, Pfs48/45 or Pfs25, but not the zygote surface protein Pfs28. We show that these tubular structures represent long-distance cell-to-cell connections between sexual stage parasites and demonstrate that they meet the characteristics of nanotubes. We propose that malaria parasites utilize these adhesive "nanotubes" in order to facilitate intercellular contact between gametes during reproduction in the mosquito midgut.

  5. Self-assembly of designed supramolecular magnetic filaments of different shapes

    Energy Technology Data Exchange (ETDEWEB)

    Novak, E.V. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Rozhkov, D.A., E-mail: d.a.rozhkov@gmail.com [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Sanchez, P.A. [University of Vienna, Sensengasse 8, Vienna (Austria); Kantorovich, S.S. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); University of Vienna, Sensengasse 8, Vienna (Austria)

    2017-06-01

    In the present work we study via molecular dynamics simulations filaments of ring and linear shape. Filaments are made of magnetic nanoparticles, possessing a point dipole in their centres. Particles in filaments are crosslinked in a particular way, so that the deviation of the neighbouring dipoles from the head-to-tail orientation is penalised by the bond. We show how the conformation of a single chain and ring filament changes on cooling for different lengths. We also study filament pairs, by fixing filaments at a certain distance and analysing the impact of inter-filament interaction on the equilibrium configurations. Our study opens a perspective to investigate the dispersions of filaments, both theoretically and numerically, by using effective potentials. - Highlights: • Single filament study. • Magnetic particles crosslinked in chains and rings. • Magnetic filament interactions.

  6. Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z.P.; Xu, J.W.; Ren, Z.F.; Wang, J.H. [Materials Synthesis Laboratory, Departments of Physics and Chemistry, and Center for Advanced Photonic and Electronic Materials (CAPEM), State University of New York at Buffalo, Buffalo, New York 14260 (United States); Siegal, M.P.; Provencio, P.N. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1421 (United States)

    1998-12-01

    Highly oriented, multiwalled carbon nanotubes were grown on polished polycrystalline and single crystal nickel substrates by plasma enhanced hot filament chemical vapor deposition at temperatures below 666 {degree}C. The carbon nanotubes range from 10 to 500 nm in diameter and 0.1 to 50 {mu}m in length depending on growth conditions. Acetylene is used as the carbon source for the growth of the carbon nanotubes and ammonia is used for dilution gas and catalysis. The plasma intensity, acetylene to ammonia gas ratio, and their flow rates, etc. affect the diameters and uniformity of the carbon nanotubes. {copyright} {ital 1998 American Institute of Physics.}

  7. Giant quiescent solar filament observed with high-resolution spectroscopy

    Science.gov (United States)

    Kuckein, C.; Verma, M.; Denker, C.

    2016-05-01

    Aims: An extremely large filament was studied in various layers of the solar atmosphere. The inferred physical parameters and the morphological aspects are compared with smaller quiescent filaments. Methods: A giant quiet-Sun filament was observed with the high-resolution Echelle spectrograph at the Vacuum Tower Telescope at Observatorio del Teide, Tenerife, Spain, on 2011 November 15. A mosaic of spectra (ten maps of 100″ × 182″) was recorded simultaneously in the chromospheric absorption lines Hα and Na I D2. Physical parameters of the filament plasma were derived using cloud model (CM) inversions and line core fits. The spectra were complemented with full-disk filtergrams (He I λ10830 Å, Hα, and Ca II K) of the Chromospheric Telescope (ChroTel) and full-disk magnetograms of the Helioseismic and Magnetic Imager (HMI). Results: The filament had extremely large linear dimensions (~817 arcsec), which corresponds to about 658 Mm along a great circle on the solar surface. A total amount of 175119 Hα contrast profiles were inverted using the CM approach. The inferred mean line-of-sight (LOS) velocity, Doppler width, and source function were similar to previous works of smaller quiescent filaments. However, the derived optical thickness was higher. LOS velocity trends inferred from the Hα line core fits were in accord but weaker than those obtained with CM inversions. Signatures of counter-streaming flows were detected in the filament. The largest brightening conglomerates in the line core of Na I D2 coincided well with small-scale magnetic fields as seen by HMI. Mixed magnetic polarities were detected close to the ends of barbs. The computation of photospheric horizontal flows based on HMI magnetograms revealed flow kernels with a size of 5-8 Mm and velocities of 0.30-0.45 km s-1 at the ends of the filament. Conclusions: The physical properties of extremely large filaments are similar to their smaller counterparts, except for the optical thickness, which in

  8. A comparative biodiversity study of the associated fauna of perennial fucoids and filamentous algae

    Science.gov (United States)

    Råberg, Sonja; Kautsky, Lena

    2007-06-01

    Anthropogenic activities worldwide have contributed to vegetation changes in many coastal areas, changes that may in turn affect faunal and algal assemblages in the involved ecosystems. In the northernmost part of the Baltic Sea the salinity is extremely low (3-4) and the only structurally complex alga present is Fucus radicans. Since in this area F. radicans is living at its salinity tolerance limit, it is potentially very sensitive to environmental changes. Any change in salinity could thus alter the overall algal community, changing it to one dominated solely by filamentous algae. To determine the importance of F. radicans to the associated faunal community, we examined differences between the 2 main vegetation types present, i.e., F. radicans and filamentous algae, in the Kronören marine reserve in the northernmost part of the Baltic Sea. A similar study was conducted in the Askö area in the northern Baltic Proper, where the more-investigated Fucus vesiculosus is the only large fucoid present. The biomass of associated fauna was significantly higher in both the F. radicans and F. vesiculosus than in the filamentous algal vegetation at some, but not all, sites. The F. radicans community also displayed a greater diversity of associated fauna in 3 of 5 investigated Kronören sites, whereas no difference in diversity was detected between F. vesiculosus and the filamentous algal vegetations in the Askö sites. Furthermore, the F. radicans community displayed a different faunal community, being the only investigated algal community with a faunal community dominated by K-strategy species, according to abundance-biomass comparison curves. This pattern may be due to the low epiphytic load on these Fucus plants. In contrast, the F. vesiculosus community, as well as the algal communities with no Fucus in both areas, had high biomasses of filamentous algae and an invertebrate fauna dominated by Chironomidae, occurring in great abundance but only with a low biomass

  9. Large-amplitude Longitudinal Oscillations in a Solar Filament

    Science.gov (United States)

    Zhang, Q. M.; Li, T.; Zheng, R. S.; Su, Y. N.; Ji, H. S.

    2017-06-01

    In this paper, we report our multiwavelength observations of the large-amplitude longitudinal oscillations of a filament observed on 2015 May 3. Located next to active region 12335, the sigmoidal filament was observed by the ground-based Hα telescopes from the Global Oscillation Network Group and by the Atmospheric Imaging Assembly instrument on board the Solar Dynamics Observatory. The filament oscillations were most probably triggered by the magnetic reconnection in the filament channel, which is characterized by the bidirectional flows, brightenings in EUV and soft X-ray, and magnetic cancellation in the photosphere. The directions of oscillations have angles of 4°-36° with respect to the filament axis. The whole filament did not oscillate in phase as a rigid body. Meanwhile, the oscillation periods (3100-4400 s) have a spatial dependence, implying that the curvature radii (R) of the magnetic dips are different at different positions. The values of R are estimated to be 69.4-133.9 Mm, and the minimum transverse magnetic field of the dips is estimated to be 15 G. The amplitudes of S5-S8 grew with time, while the amplitudes of S9-S14 damped with time. The oscillation amplitudes range from a few to ten Mm, and the maximum velocity can reach 30 km s-1. Interestingly, the filament experienced mass drainage southward at a speed of ˜27 km s-1. The oscillations continued after the mass drainage and lasted for more than 11 hr. After the mass drainage, the oscillation phases did not change much. The periods of S5-S8 decreased, while the periods of S9-S14 increased. The amplitudes of S5-S8 damped with time, while the amplitudes of S9-S14 grew. Most of the damping (growing) ratios are between -9 and 14. We offer a schematic cartoon to explain the complex behaviors of oscillations by introducing thread-thread interaction.

  10. Closely spaced fine filament multifilamentary NbTi strands

    International Nuclear Information System (INIS)

    Gregory, E.; Liu, H.; Seuntjens, J.M.

    1994-01-01

    A series of papers showing the advantages of close spacing and matrix alloying for the development of high J c , fine filament, NbTi materials which have low electrical coupling have appeared in the last seven years. In order to achieve the highest J c 's, it has been shown that close spacing has many advantages. This, however, leads to proximity coupling which has to be overcome by the addition of alloying elements to the matrix between the filaments. Of the three alloying materials normally used for this purpose, Ni, Si, and Mn, the most effective is Mn, which operates by a spin flip scattering mechanism whereas Ni and Si produce decoupling by less effective resistive scattering. Ni and Si, however, harden the matrix more than does the small amount of Mn, [0.5wt%], which has been used in most of the past work on the reduction of proximity coupling. This hardening allows the filaments to be separated to a greater extent than is possible in the case of a pure copper matrix without a significant increase in filament sausaging and a resultant J c decrease. Silicon also has one additional advantage over the other alloying elements in that it reduces the formation of compounds on the surface of the filaments, thus it may obviate the necessity for a Nb barrier layer and thus allow an even greater increase in J c . In this paper the authors explore further some of the effects of the addition of manganese and/or silicon to the matrix between the filaments in an effort to optimize properties at the smaller filament sizes

  11. The importance of connections between the cell wall integrity pathway and the unfolded protein response in filamentous fungi.

    Science.gov (United States)

    Malavazi, Iran; Goldman, Gustavo Henrique; Brown, Neil Andrew

    2014-11-01

    In the external environment, or within a host organism, filamentous fungi experience sudden changes in nutrient availability, osmolality, pH, temperature and the exposure to toxic compounds. The fungal cell wall represents the first line of defense, while also performing essential roles in morphology, development and virulence. A polarized secretion system is paramount for cell wall biosynthesis, filamentous growth, nutrient acquisition and interactions with the environment. The unique ability of filamentous fungi to secrete has resulted in their industrial adoption as fungal cell factories. Protein maturation and secretion commences in the endoplasmic reticulum (ER). The unfolded protein response (UPR) maintains ER functionality during exposure to secretion and cell wall stress. UPR, therefore, influences secretion and cell wall homeostasis, which in turn impacts upon numerous fungal traits important to pathogenesis and biotechnology. Subsequently, this review describes the relevance of the cell wall and UPR systems to filamentous fungal pathogens or industrial microbes and then highlights interconnections between the two systems. Ultimately, the possible biotechnological applications of an enhanced understanding of such regulatory systems in combating fungal disease, or the removal of natural bottlenecks in protein secretion in an industrial setting, are discussed. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Study of tungsten filament aging in hot-wire chemical vapor deposition with silacyclobutane as a source gas and the H2 etching effect

    Science.gov (United States)

    Tong, Ling; Sveen, Chris E.; Shi, Yujun

    2008-06-01

    The tungsten filament aging when using silacyclobutane (SCB) as a source gas in a hot-wire chemical vapor deposition reactor was systematically studied by the characterization of surface morphology using scanning electron microscopy and the chemical composition analysis of the filament surfaces using Auger electron spectroscopy. It is shown that filament aging involves the formation of silicides and under more severe conditions, a pure silicon deposit. At low pressures of SCB samples, e.g., 0.06 and 0.03Torr, only Si3W5 alloy was formed. Silicon-rich silicide, Si2W, was found when using a higher pressure of SCB at 0.12Torr. At the high SCB pressure of 0.12Torr and low temperatures, pure silicon was deposited on the W filament surface. It is also demonstrated that H2 can etch the aged filament at high temperatures above 1900°C. The etching products detected by the 10.5eV vacuum ultraviolet laser single photon ionization/time-of-flight mass spectrometer include SiH4, SiCHx (x =2-5), and SiC2Hy (y =4-7).

  13. Magnetic Fields in the Massive Dense Cores of the DR21 Filament: Weakly Magnetized Cores in a Strongly Magnetized Filament

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Tao-Chung; Lai, Shih-Ping [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Zhang, Qizhou; Girart, Josep M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138 (United States); Qiu, Keping [School of Astronomy and Space Science, Nanjing University, 163 Xianlin Avenue, Nanjing 210023 (China); Liu, Hauyu B., E-mail: chingtaochung@gmail.com [European Southern Observatory (ESO), Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany)

    2017-04-01

    We present Submillimeter Array 880 μ m dust polarization observations of six massive dense cores in the DR21 filament. The dust polarization shows complex magnetic field structures in the massive dense cores with sizes of 0.1 pc, in contrast to the ordered magnetic fields of the parsec-scale filament. The major axes of the massive dense cores appear to be aligned either parallel or perpendicular to the magnetic fields of the filament, indicating that the parsec-scale magnetic fields play an important role in the formation of the massive dense cores. However, the correlation between the major axes of the cores and the magnetic fields of the cores is less significant, suggesting that during the core formation, the magnetic fields below 0.1 pc scales become less important than the magnetic fields above 0.1 pc scales in supporting a core against gravity. Our analysis of the angular dispersion functions of the observed polarization segments yields a plane-of-sky magnetic field strength of 0.4–1.7 mG for the massive dense cores. We estimate the kinematic, magnetic, and gravitational virial parameters of the filament and the cores. The virial parameters show that the gravitational energy in the filament dominates magnetic and kinematic energies, while the kinematic energy dominates in the cores. Our work suggests that although magnetic fields may play an important role in a collapsing filament, the kinematics arising from gravitational collapse must become more important than magnetic fields during the evolution from filaments to massive dense cores.

  14. A comparison study of a solar active-region eruptive filament and a neighboring non-eruptive filament

    International Nuclear Information System (INIS)

    Jiang, Chao-Wei; Feng, Xue-Shang; Wu, Shi-Tsan; Hu, Qiang

    2016-01-01

    Solar active region (AR) 11283 is a very magnetically complex region and it has produced many eruptions. However, there exists a non-eruptive filament in the plage region just next to an eruptive one in the AR, which gives us an opportunity to perform a comparison analysis of these two filaments. The coronal magnetic field extrapolated using our CESE–MHD–NLFFF code reveals that two magnetic flux ropes (MFRs) exist in the same extrapolation box supporting these two filaments, respectively. Analysis of the magnetic field shows that the eruptive MFR contains a bald-patch separatrix surface (BPSS) cospatial very well with a pre-eruptive EUV sigmoid, which is consistent with the BPSS model for coronal sigmoids. The magnetic dips of the non-eruptive MFRs match Hα observation of the non-eruptive filament strikingly well, which strongly supports the MFR-dip model for filaments. Compared with the non-eruptive MFR/filament (with a length of about 200 Mm), the eruptive MFR/filament is much smaller (with a length of about 20 Mm), but it contains most of the magnetic free energy in the extrapolation box and holds a much higher free energy density than the non-eruptive one. Both the MFRs are weakly twisted and cannot trigger kink instability. The AR eruptive MFR is unstable because its axis reaches above a critical height for torus instability, at which the overlying closed arcades can no longer confine the MFR stably. On the contrary, the quiescent MFR is very firmly held by its overlying field, as its axis apex is far below the torus-instability threshold height. Overall, this comparison investigation supports that an MFR can exist prior to eruption and the ideal MHD instability can trigger an MFR eruption. (paper)

  15. A comparison study of a solar active-region eruptive filament and a neighboring non-eruptive filament

    Science.gov (United States)

    Jiang, Chao-Wei; Wu, Shi-Tsan; Feng, Xue-Shang; Hu, Qiang

    2016-01-01

    Solar active region (AR) 11283 is a very magnetically complex region and it has produced many eruptions. However, there exists a non-eruptive filament in the plage region just next to an eruptive one in the AR, which gives us an opportunity to perform a comparison analysis of these two filaments. The coronal magnetic field extrapolated using our CESE-MHD-NLFFF code reveals that two magnetic flux ropes (MFRs) exist in the same extrapolation box supporting these two filaments, respectively. Analysis of the magnetic field shows that the eruptive MFR contains a bald-patch separatrix surface (BPSS) cospatial very well with a pre-eruptive EUV sigmoid, which is consistent with the BPSS model for coronal sigmoids. The magnetic dips of the non-eruptive MFRs match Hα observation of the non-eruptive filament strikingly well, which strongly supports the MFR-dip model for filaments. Compared with the non-eruptive MFR/filament (with a length of about 200 Mm), the eruptive MFR/filament is much smaller (with a length of about 20 Mm), but it contains most of the magnetic free energy in the extrapolation box and holds a much higher free energy density than the non-eruptive one. Both the MFRs are weakly twisted and cannot trigger kink instability. The AR eruptive MFR is unstable because its axis reaches above a critical height for torus instability, at which the overlying closed arcades can no longer confine the MFR stably. On the contrary, the quiescent MFR is very firmly held by its overlying field, as its axis apex is far below the torus-instability threshold height. Overall, this comparison investigation supports that an MFR can exist prior to eruption and the ideal MHD instability can trigger an MFR eruption.

  16. Rapid Formation and Disappearance of a Filament Barb

    Science.gov (United States)

    Joshi, Anand D.; Srivastava, Nandita; Mathew, Shibu K.; Martin, Sara F.

    2013-11-01

    We present observations of an activated quiescent filament obtained in Hα from the high-resolution Dutch Open Telescope (DOT) on 20 August 2010. The filament developed a barb in 10 min, which disappeared within the next 35 min. A data set from the DOT spanning 2 h was used to analyse this event. Line-of-sight velocity maps were constructed from the Doppler images, which reveal flows in filament spine during this period. Photospheric magnetograms were used from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) to determine the changes in magnetic flux in the region surrounding the barb location. The analysis shows flows in the filament spine towards the barb location preceding its formation, and flows in the barb towards the spine during its disappearance. Magnetograms reveal patches of minority polarity flux close to the end of the barb at its greatest elongation. The flows in the spine and barbs are along numerous threads that compose these typical filament structures. The flows are consistent with field-aligned threads and demonstrate that the replacement time of the mass in barbs, and by inference, in the spine is very rapid.

  17. High-Resolution Observations of a Filament showing Activated Barb

    Science.gov (United States)

    Joshi, Anand; Martin, Sara F.; Mathew, Shibu; Srivastava, Nandita

    2012-07-01

    Analysis of a filament showing an activated barb using observations from the Dutch Open Telescope (DOT) on 2010 August 20 are presented. The DOT takes Doppler images in Hα, among other wavelengths, in a region about 110 × 110 arcsec^{2} in area, at a cadence of 30~seconds. The offline image restoration technique of speckle reconstruction is applied to obtain diffraction limited images. The filament developed a new barb in 10~minutes, which disappeared within the next 35~minutes. Such a rapid formation and disappearance of a filament barb is unusual, and has not been reported earlier. Line-of-sight velocity maps were constructed from the Doppler images of the target filament. We observe flows in the filament spine towards the barb location prior to its formation, and flows in the barb towards the spine during its disappearance. Photospheric magnetograms from Heliospheric Magnetic Imager on board the Solar Dynamics Observatory, at a cadence of 45~seconds, were used to determine the changes in magnetic flux in the region surrounding the barb location. The variation of magnetic flux in this duration supports the view that barbs are rooted in minor magnetic polarity. Our analysis shows that barbs can be short-lived and formation and disappearance of the barb was associated with cancellation of magnetic flux.

  18. Morphological indictors of the chirality of solar filaments

    Science.gov (United States)

    Filippov, B. P.

    2017-10-01

    There is no doubt that the structural features of filaments reflect properties of their magnetic fields, such as chirality and helicity. However, the interpretation of some morphological features can lead to incorrect conclusions when the observing time is limited and the spatial resolution is insufficiently high. In spite of the relative constancy of their overall shapes, filaments are dynamical formations with inhomogeneities moving along the threads making them up. Therefore, it is possible to observe material concentrated not only in magnetic traps, but also along curved arcs. Difficulties often arise in determining the chirality of filaments with anomalous "barbs"; i.e., those whose jagged side is located on the opposite side of the axis compared to most ("normal") filaments. A simple model is used to show that anomalous barbs can exist in an ordinary magnetic flux rope, with the threads of its fine structure oriented nearly perpendicular to its length. A careful analysis of images with the maximum available spatial resolution and with information about temporal dynamics, together with comparisons with observations in various spectral lines, can enable a correct determination of the chirality of filaments.

  19. Ack kinase regulates CTP synthase filaments during Drosophila oogenesis.

    Science.gov (United States)

    Strochlic, Todd I; Stavrides, Kevin P; Thomas, Sam V; Nicolas, Emmanuelle; O'Reilly, Alana M; Peterson, Jeffrey R

    2014-11-01

    The enzyme CTP synthase (CTPS) dynamically assembles into macromolecular filaments in bacteria, yeast, Drosophila, and mammalian cells, but the role of this morphological reorganization in regulating CTPS activity is controversial. During Drosophila oogenesis, CTPS filaments are transiently apparent in ovarian germline cells during a period of intense genomic endoreplication and stockpiling of ribosomal RNA. Here, we demonstrate that CTPS filaments are catalytically active and that their assembly is regulated by the non-receptor tyrosine kinase DAck, the Drosophila homologue of mammalian Ack1 (activated cdc42-associated kinase 1), which we find also localizes to CTPS filaments. Egg chambers from flies deficient in DAck or lacking DAck catalytic activity exhibit disrupted CTPS filament architecture and morphological defects that correlate with reduced fertility. Furthermore, ovaries from these flies exhibit reduced levels of total RNA, suggesting that DAck may regulate CTP synthase activity. These findings highlight an unexpected function for DAck and provide insight into a novel pathway for the developmental control of an essential metabolic pathway governing nucleotide biosynthesis. © 2014 The Authors.

  20. Self-induced dipole force and filamentation instability of a matter wave

    DEFF Research Database (Denmark)

    Saffman, M.

    1998-01-01

    The interaction of copropagating electromagnetic and matter waves is described with a set of coupled higher-order nonlinear Schrodinger equations. Optical self-focusing modulates an initially planar wave leading to the generation of dipole forces on the atoms. Atomic channeling due to the dipole...... forces leads, in the nonlinear regime, to filamentation of the atomic beam. Instability growth rates are calculated for atomic beams with both low and high phase space densities. In one transverse dimension an exact solution is found that describes a coupled optical and atomic soliton....

  1. Anisotropic Magnetoresistance of Nano-conductive Filament in Co/HfO2/Pt Resistive Switching Memory.

    Science.gov (United States)

    Li, Leilei; Liu, Yang; Teng, Jiao; Long, Shibing; Guo, Qixun; Zhang, Meiyun; Wu, Yu; Yu, Guanghua; Liu, Qi; Lv, Hangbing; Liu, Ming

    2017-12-01

    Conductive bridge random access memory (CBRAM) has been extensively studied as a next-generation non-volatile memory. The conductive filament (CF) shows rich physical effects such as conductance quantization and magnetic effect. But so far, the study of filaments is not very sufficient. In this work, Co/HfO 2 /Pt CBRAM device with magnetic CF was designed and fabricated. By electrical manipulation with a partial-RESET method, we controlled the size of ferromagnetic metal filament. The resistance-temperature characteristics of the ON-state after various partial-RESET behaviors have been studied. Using two kinds of magnetic measurement methods, we measured the anisotropic magnetoresistance (AMR) of the CF at different temperatures to reflect the magnetic structure characteristics. By rotating the direction of the magnetic field and by sweeping the magnitude, we obtained the spatial direction as well as the easy-axis of the CF. The results indicate that the easy-axis of the CF is along the direction perpendicular to the top electrode plane. The maximum magnetoresistance was found to appear when the angle between the direction of magnetic field and that of the electric current in the CF is about 30°, and this angle varies slightly with temperature, indicating that the current is tilted.

  2. Filamentous hydrous ferric oxide biosignatures in a pipeline carrying acid mine drainage at Iron Mountain Mine, California

    Science.gov (United States)

    Williams, Amy J.; Alpers, Charles N.; Sumner, Dawn Y.; Campbell, Kate M.

    2017-01-01

    A pipeline carrying acidic mine effluent at Iron Mountain, CA, developed Fe(III)-rich precipitate caused by oxidation of Fe(II)aq. The native microbial community in the pipe included filamentous microbes. The pipe scale consisted of microbial filaments, and schwertmannite (ferric oxyhydroxysulfate, FOHS) mineral spheres and filaments. FOHS filaments contained central lumina with diameters similar to those of microbial filaments. FOHS filament geometry, the geochemical environment, and the presence of filamentous microbes suggest that FOHS filaments are mineralized microbial filaments. This formation of textural biosignatures provides the basis for a conceptual model for the development and preservation of biosignatures in other environments.

  3. The formation and disappearance of filament barbs observed by SDO

    Science.gov (United States)

    Li, Leping; Zhang, Jun

    2014-01-01

    Employing six-day (August 16-21, 2010) SDO/AIA observations, we systematically investigate the formation and disappearance of 58 barbs of a northern (~N60) polar crown filament. Three different ways of barb formation are discovered, including (1) the convergence of surrounding moving materials (55.2%), (2) the flows of materials from the filament (37.9%), and (3) the material injections from neighboring brightening regions (6.9%). We also find three different types of barb disappearance, involving: (i) the bi-lateral movements (44.8%), and (ii) the outflowing (27.6%) of barb material resulting in the barb disappearance, as well as (iii) the barb disappearance associated with neighboring brightenings (27.6%). We propose that barbs exchange materials with the filament, surrounding atmosphere, and nearby brightening regions, causing the barb formation and disappearance.

  4. Trivalent Cation Induced Bundle Formation of Filamentous fd Phages.

    Science.gov (United States)

    Korkmaz Zirpel, Nuriye; Park, Eun Jin

    2015-09-01

    Bacteriophages are filamentous polyelectrolyte viral rods infecting only bacteria. In this study, we investigate the bundle formation of fd phages with trivalent cations having different ionic radii (Al(3+) , La(3+) and Y(3+) ) at various phage and counterion concentrations, and at varying bundling times. Aggregated phage bundles were detected at relatively low trivalent counterion concentrations (1 mM). Although 10 mM and 100 mM Y(3+) and La(3+) treatments formed larger and more intertwined phage bundles, Al(3+) and Fe(3+) treatments lead to the formation of networking filaments. Energy dispersive X-ray spectroscopy (EDX) analyses confirmed the presence of C, N and O peaks on densely packed phage bundles. Immunofluorescence labelling and ELISA analyses with anti-p8 antibodies showed the presence of phage filaments after bundling. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Vortex Filaments in Grids for Scalable, Fine Smoke Simulation.

    Science.gov (United States)

    Meng, Zhang; Weixin, Si; Yinling, Qian; Hanqiu, Sun; Jing, Qin; Heng, Pheng-Ann

    2015-01-01

    Vortex modeling can produce attractive visual effects of dynamic fluids, which are widely applicable for dynamic media, computer games, special effects, and virtual reality systems. However, it is challenging to effectively simulate intensive and fine detailed fluids such as smoke with fast increasing vortex filaments and smoke particles. The authors propose a novel vortex filaments in grids scheme in which the uniform grids dynamically bridge the vortex filaments and smoke particles for scalable, fine smoke simulation with macroscopic vortex structures. Using the vortex model, their approach supports the trade-off between simulation speed and scale of details. After computing the whole velocity, external control can be easily exerted on the embedded grid to guide the vortex-based smoke motion. The experimental results demonstrate the efficiency of using the proposed scheme for a visually plausible smoke simulation with macroscopic vortex structures.

  6. Filamentation instability of large-amplitude Alfven waves

    International Nuclear Information System (INIS)

    Kuo, S.P.; Whang, M.H.; Lee, M.C.

    1988-01-01

    An instability that leads to the filamentation of large-amplitude Alfven waves and gives rise to purely growing density and magnetic field fluctuations is studied. The dispersion relation of the instability is derived, from which the threshold conditions and the growth rates of the instability are analyzed quantitatively for applications to the solar wind plasma. We have examined their dependence on the filamentation spectrum, the plasma β, and the pump frequency and intensity for both right-hand and left-hand circularly polarized Alfven waves. The excitation of filamentation instability for certain cases of interest is discussed and compared with that of the parametric decay and modulation instability. The relevance of the proposed instability with some observations is discussed. copyright American Geophysical Union 1988

  7. Effect of filament supports on emissive probe measurements

    International Nuclear Information System (INIS)

    Wang, X.; Howes, C. T.; Horányi, M.; Robertson, S.

    2013-01-01

    We have constructed an emissive probe with a thin tungsten filament spot-welded across two nickel wires insulated with ceramic paint. We show that the ceramic supports covering the nickel wires have a large effect on the potential measurements in low-density plasmas. It is found that the potential measured by the emissive probe is more negative than the potential derived from a Langmuir probe current-voltage (I-V) characteristic curve when the plasma density is so low that the emitting filament remains immersed in the sheaths of the ceramic supports. The length of the filament L needs to be larger than about 2 Debye lengths (L > 2λ De ) in order to avoid the influence of the ceramic supports and to achieve reliable plasma potential measurements using emissive probes.

  8. Filaments Data Since 1919: A Basis for Statistics

    Science.gov (United States)

    Aboudarham, J.; Renié, C.

    2016-04-01

    From 1919 to 2002, Paris-Meudon Observatory published synoptic maps of the Solar activity. Together with maps, tables were provided, containing some information concerning at least filaments. The board of Paris Observatory funded a data capture program concerning the 680 000 basic informations available in those tables. On the other hand, in the frame of the FP7 European project HELIO, a Heliophysics Feature Catalogue (HFC) has been developed, which contains also filaments data from 1996 up to now. We now pool all these data in order to give access to a filaments database for nearly a century of observations. This allows to make statistical studies of those Solar features, and try to correlate them with other information such as sunspot number. We present here the data available for this long period of time.

  9. Filament Discharge Phenomena in Fingerprint Acquisition by Dielectric Barrier Discharge

    International Nuclear Information System (INIS)

    Weng Ming; Xu Weijun; Liu Qiang

    2007-01-01

    In this paper, the dielectric barrier discharge fingerprint acquisition technique is introduced. The filament discharge phenomena were observed in the process of fingerprint acquisition. The filament discharge reduced the quality of fingerprint images. Obviously, it was necessary to eliminate streamer discharges in order to get good fingerprint images. The streamer discharge was considered to be the cause of the filament discharge in the experiment. The relationship between the critical electric field and the discharge gap was calculated with the Raether's model of streamer discharge. The calculated results and our experiment proved that it would be difficult for the streamer discharge to occur when the discharge gap was narrow. With a narrow discharge gap, the discharge was homogeneous, and the fingerprint images were clear and large in area. The images obtained in the experiment are very suitable for fingerprint identification as they contain more information

  10. Dynamically generated patterns in dense suspensions of active filaments

    Science.gov (United States)

    Prathyusha, K. R.; Henkes, Silke; Sknepnek, Rastko

    2018-02-01

    We use Langevin dynamics simulations to study dynamical behavior of a dense planar layer of active semiflexible filaments. Using the strength of active force and the thermal persistence length as parameters, we map a detailed phase diagram and identify several nonequilibrium phases in this system. In addition to a slowly flowing melt phase, we observe that, for sufficiently high activity, collective flow accompanied by signatures of local polar and nematic order appears in the system. This state is also characterized by strong density fluctuations. Furthermore, we identify an activity-driven crossover from this state of coherently flowing bundles of filaments to a phase with no global flow, formed by individual filaments coiled into rotating spirals. This suggests a mechanism where the system responds to activity by changing the shape of active agents, an effect with no analog in systems of active particles without internal degrees of freedom.

  11. XUV laser-plasma source based on solid Ar filament.

    Science.gov (United States)

    Peth, Christian; Kalinin, Anton; Barkusky, Frank; Mann, Klaus; Toennies, J Peter; Rusin, Lev Yu

    2007-10-01

    We present a laser driven soft x-ray source based on a novel solid argon filament. The continuously flowing micron-sized filament (diameter approximately 56 microm, flow speed approximately 5 mms) was used as a laser target in order to generate a plasma source of high brightness in the "water window" (2.2-4.4 nm) spectral range. The emission properties of the source were characterized in detail with respect to crucial parameters such as positional and energy stability using an extreme ultraviolet (XUV) sensitive pinhole camera and an XUV spectrometer. The results are compared with an argon plasma based on a gas puff target operated under the same experimental conditions showing an increase of the brilliance by a factor of 84. By changing the capillary geometry from a constant diameter to a convergent shape the flow speed of the filament was significantly increased up to 250 mms, facilitating the operation at higher repetition rates.

  12. On the association of magnetic clouds with disappearing filaments

    International Nuclear Information System (INIS)

    Wilson, R.M.; Hildner, E.

    1986-01-01

    We present evidence that an interplanetary magnetic cloud preceding an interaction region, observed at earth January 24, 1974, is associated with the eruptive filament or disparition brusque (DB) near central meridian on January 18. The DB also was associated with a long-decay soft X ray transient (LDE) and a long-duration gradual-rise-and-fall (GRF) radio burst. To assess whether magnetic clouds are generally associated with DBs, we present results from statistical testing of the relation of 33 magnetic clouds (and 33 control samples without magnetic clouds) to disappearing filaments near central meridian (approx. 99% confidence. There is a suggestion that clouds following shocks, probably launched at times of solar flares, are not as strongly associated with disappearing filaments as are clouds launched less violently

  13. Self-Structured Conductive Filament Nanoheater for Chalcogenide Phase Transition.

    Science.gov (United States)

    You, Byoung Kuk; Byun, Myunghwan; Kim, Seungjun; Lee, Keon Jae

    2015-06-23

    Ge2Sb2Te5-based phase-change memories (PCMs), which undergo fast and reversible switching between amorphous and crystalline structural transformation, are being utilized for nonvolatile data storage. However, a critical obstacle is the high programming current of the PCM cell, resulting from the limited pattern size of the optical lithography-based heater. Here, we suggest a facile and scalable strategy of utilizing self-structured conductive filament (CF) nanoheaters for Joule heating of chalcogenide materials. This CF nanoheater can replace the lithographical-patterned conventional resistor-type heater. The sub-10 nm contact area between the CF and the phase-change material achieves significant reduction of the reset current. In particular, the PCM cell with a single Ni filament nanoheater can be operated at an ultralow writing current of 20 μA. Finally, phase-transition behaviors through filament-type nanoheaters were directly observed by using transmission electron microscopy.

  14. Fast Shape Evolution of Laser Filaments in the Wake of Femtosecond Driving Pulse

    Science.gov (United States)

    Romanov, Dmitri; Levis, Robert

    2013-05-01

    A theoretical model is developed for subnanosecond evolution of highly nonequilibrium, inhomogeneous free-electron gas in a laser filament/microfilament wake channel. The evolution is driven by two interrelated mechanisms: (i) impact ionization of residual neutral atoms inside the channel and on its surface, and (ii) thermal conduction in the electron gas. The simulation results for the cases of weak and moderate initial ionization show crucial importance of incorporating the spread effects, especially as regards the electron temperature. The calculated evolution patterns determine the transient optical and electronic properties of filament wake channels. Accordingly, we propose tracing the wake channel evolution via linear and nonlinear light-scattering experiments. The evolving shape of the electron density distribution can be extracted from longitudinal and/or transverse Fraunhofer diffraction patterns. Complementarily, the evolving temperature distribution may be deduced either from angular-resolved four-wave-mixing experiments or from the spatial-spectral patterns of giant Rabi sidebands. Medium-specific estimates are made for atmospheric-pressure argon gas. In molecular-gas cases, the model can be straightforwardly augmented to incorporate the processes of dissociative recombination and vibrational excitations. Support from the Air Force Office of Scientific Research, Grant No. N00014-10-0293, is gratefully acknowledged.

  15. Cultural characteristics of chromium resistant filamentous cyanobacteria isolated from local environment in Pakistan

    International Nuclear Information System (INIS)

    Hameed, A.; Hasnain, S.

    2005-01-01

    Many filamentous cyanobacteria were isolated from different places: fields, ponds, polluted water and soils from Muredkey and Kasur tanneries area, near Lahore, Pakistan. Different media like BG 11 medium, Bold Basal medium, Chu's number 10 medium, Gorham's medium and modified SAG medium, in standard forms and with slight variations of ingredients, different pH, temperature and light regimes were checked for the optimum growth of isolates. The isolation procedure was repeated with different concentrations of chromium to select the resistant strains, These selected strains grew on chromium of range 100-200 micro gml/sup -1/ in BG 11 medium. Cyanobacteria were maintained in solid and in liquid media with/without shaking. Cyanobacterial strains were collected from natural habitats that were accompanied by a diversified group of organisms including bacteria, protozoan and rotifers etc. In order to eliminate these agents termed as contaminants, we used several methods including phenol treatment, use of antibiotic and careful manual picking of filamentous cyanobacteria. Resistance of these strains against different heavy metal (ZnSO/sub 4/, MnSO/sub 4/, NiSO/sub 4/, CoCl/sub 2/, Pb (NO/sub 3/)/sub 3/, CuSO/sub 4/, HgCl/sub 2/, AgNO/sub 3/ and CdCl/sub 2/) and antibiotics (erythromycin, streptomycin, kanamycin, chloramphenicol and neomycin) was evolved. Optimum temperature was 35 deg. C with pH 9 for the reduction of Cr (VI) in to Cr (III) in majority. (author)

  16. [Clinical significance of positive sputum culture for filamentous fungi].

    Science.gov (United States)

    Shi, Xiao-Chun; Liu, Zheng-Yin; Xu, Ying-Chun; Wang, Ai-Xia

    2010-01-26

    To investigate the clinical significance of positive sputum culture for filamentous fungi. The medical data of 140 patients positive for filamentous fungi in sputum culture at Peking Union Medical College Hospital were reviewed retrospectively. Based on the diagnostic criteria by European Organization for Research and Treatment of Cancer/Mycoses Study Group, invasive pulmonary fungal infection (IPFI) was diagnosed. The clinical characteristics of cases with and without IPFI were analyzed respectively. Among all 140 cases positive for filamentous fungi in sputum culture, only 22 cases could be diagnosed as IPFI. Two of 22 IPFI cases were confirmed by post-operative pathology, 1 case was confirmed by positive blood culture for filamentous fungi and the remaining 19 cases were diagnosed clinically according to the nature of hosts, characteristics of pulmonary infections and microbiological evidence (positive sputum culture for filamentous fungi, 2 - 5 times for each case). Most of etiological fungi in IPFI patients belonged to Aspergillus. And the identity of isolated fungal strain was mostly one strain for each patient. In IPFI group, patients who had been treated with broad-spectrum antibiotics (100%), steroids (13, 59.1%) or immunosuppressant (7, 31.8%) or who had pulmonary X-ray imaging changes (100%), primary diseases (21, 95.5%), hypoalbuminemia (18, 81.8%) or hemoptysis (10, 45.5%), were significantly more than those in non-IPFI group (66.9%, 34.7%, 18.6%, 79.7%, 72.0%, 45.8% and 4.2% respectively; P significance of positive sputum culture for filamentous fungi are associated with the times of positive culture, the number and species of isolated fungal strains. Meanwhile it is important to determine whether there is IPFI according to the nature and clinical characteristics of patients.

  17. Monitoring and troubleshooting of non-filamentous settling and dewatering problems in an industrial activated sludge treatment plant

    DEFF Research Database (Denmark)

    Kjellerup, B. V.; Keiding, Kristian; Nielsen, Per Halkjær

    2001-01-01

    A large industrial activated sludge wastewater treatment plant had temporary problems with settling and dewatering of the sludge. Microscopical investigations revealed that the poor settling properties were not due to presence of filamentous bacteria, but poor floc properties. In order to charact......A large industrial activated sludge wastewater treatment plant had temporary problems with settling and dewatering of the sludge. Microscopical investigations revealed that the poor settling properties were not due to presence of filamentous bacteria, but poor floc properties. In order...... dewaterability. The monitoring program revealed that a deterioration of the floc strength and the settling properties in the process tanks was closely connected to downstream dewatering problems and poor effluent quality. Particularly severe problems were observed a few weeks after the production at the factory...... at this industrial plant. The described strategy can be useful in general to find and solve many solid/liquid separation problems in activated sludge wastewater treatment plants....

  18. Thermal diffusivity measurement in thin metallic filaments using the mirage method with multiple probe beams and a digital camera

    Science.gov (United States)

    Vargas, E.; Cifuentes, A.; Alvarado, S.; Cabrera, H.; Delgado, O.; Calderón, A.; Marín, E.

    2018-02-01

    Photothermal beam deflection is a well-established technique for measuring thermal diffusivity. In this technique, a pump laser beam generates temperature variations on the surface of the sample to be studied. These variations transfer heat to the surrounding medium, which may be air or any other fluid. The medium in turn experiences a change in the refractive index, which will be proportional to the temperature field on the sample surface when the distance to this surface is small. A probe laser beam will suffer a deflection due to the refractive index periodical changes, which is usually monitored by means of a quadrant photodetector or a similar device aided by lock-in amplification. A linear relationship that arises in this technique is that given by the phase lag of the thermal wave as a function of the distance to a punctual heat source when unidimensional heat diffusion can be guaranteed. This relationship is useful in the calculation of the sample's thermal diffusivity, which can be obtained straightforwardly by the so-called slope method, if the pump beam modulation frequency is well-known. The measurement procedure requires the experimenter to displace the probe beam at a given distance from the heat source, measure the phase lag at that offset, and repeat this for as many points as desired. This process can be quite lengthy in dependence of the number points. In this paper, we propose a detection scheme, which overcomes this limitation and simplifies the experimental setup using a digital camera that substitutes all detection hardware utilizing motion detection techniques and software digital signal lock-in post-processing. In this work, the method is demonstrated using thin metallic filaments as samples.

  19. Dual-frequency terahertz emission from splitting filaments induced by lens tilting in air

    International Nuclear Information System (INIS)

    Zhang, Zhelin; Chen, Yanping; Yang, Liu; Yuan, Xiaohui; Liu, Feng; Chen, Min; Xu, Jianqiu; Zhang, Jie; Sheng, Zhengming

    2014-01-01

    Dual-frequency terahertz radiation from air-plasma filaments produced with two-color lasers in air has been demonstrated experimentally. When a focusing lens is tilted for a few degrees, it is shown that the laser filament evolves from a single one to two sub-filaments. Two independent terahertz sources emitted from the sub-filaments with different frequencies and polarizations are identified, where the frequency of terahertz waves from the trailing sub-filament is higher than that from the leading sub-filament.

  20. Development and manufacture of ultra-fine NbTi filament wires at ALSTHOM

    International Nuclear Information System (INIS)

    Hoang, G.K.; Laumond, Y.; Sabrie, J.L.; Dubots, P.

    1986-01-01

    Ultra-fine NbTi filament wires have been developed and manufactured by ALSTHOM. It is now possible to produce industrial copper -copper-nickel matrix wires with 0.6 mu m NbTi filaments for use in 50 / 60 Hz machines. Smaller filaments with diameters down to 0.08 mu m have been obtained with 254 100 filament wire samples. Studies are now being carried out on copper matrix conductors to reduce the filament diameter. The first results show that it is possible to obtain submicron filaments even in copper matrix wires

  1. Filamentous bacteriophage fd as an antigen delivery system in vaccination.

    Science.gov (United States)

    Prisco, Antonella; De Berardinis, Piergiuseppe

    2012-01-01

    Peptides displayed on the surface of filamentous bacteriophage fd are able to induce humoral as well as cell-mediated immune responses, which makes phage particles an attractive antigen delivery system to design new vaccines. The immune response induced by phage-displayed peptides can be enhanced by targeting phage particles to the professional antigen presenting cells, utilizing a single-chain antibody fragment that binds dendritic cell receptor DEC-205. Here, we review recent advances in the use of filamentous phage fd as a platform for peptide vaccines, with a special focus on the use of phage fd as an antigen delivery platform for peptide vaccines in Alzheimer's Disease and cancer.

  2. Strength analysis of filament-wound composite tubes

    Directory of Open Access Journals (Sweden)

    Vasović Ivana

    2010-01-01

    Full Text Available The subject of this work is focused on strength analysis of filament-wound composite tubes made of E glass/polyester under internal pressure. The primary attention of this investigation is to develop a reliable computation procedure for stress, displacement and initial failure analysis of layered composite tubes. For that purpose we have combined the finite element method (FEM with corresponding initial failure criterions. In addition, finite element analyses using commercial code, MSC/NASTRAN, were performed to predict the behavior of filament wound structures. Computation results are compared with experiments. Good agreement between computation and experimental results are obtained.

  3. Process for making silver metal filaments

    Science.gov (United States)

    Bamberger, Carlos E.

    1997-01-01

    A process for making silver metal particles from silver salt particles having the same morphology. Precursor silver salt particles selected from the group consisting of silver acetate and silver sulfide having a selected morphology are contained in a reactor vessel having means for supporting the particles in an air suspension to prevent the agglomeration of the particles. Air is flowed through the reactor vessel at a flow rate sufficient to suspend the particles in the reactor vessel. The suspended precursor silver salt particles are heated to a processing temperature and at a heating rate below which the physical deterioration of the suspended precursor silver salt particles takes place. The suspended precursor silver salt particles are maintained at the processing temperature for a period of time sufficient to convert the particles into silver metal particles having the same morphology as the precursor silver salt particles.

  4. A Challenging Solar Eruptive Event of 18 November 2003 and the Causes of the 20 November Geomagnetic Superstorm. I. Unusual History of an Eruptive Filament

    Science.gov (United States)

    Grechnev, V. V.; Uralov, A. M.; Slemzin, V. A.; Chertok, I. M.; Filippov, B. P.; Rudenko, G. V.; Temmer, M.

    2014-01-01

    This is the first of four companion papers, which comprehensively analyze a complex eruptive event of 18 November 2003 in active region (AR) 10501 and the causes of the largest Solar Cycle 23 geomagnetic storm on 20 November 2003. Analysis of a complete data set, not considered before, reveals a chain of eruptions to which hard X-ray and microwave bursts responded. A filament in AR 10501 was not a passive part of a larger flux rope, as usually considered. The filament erupted and gave origin to a coronal mass ejection (CME). The chain of events was as follows: i) a presumable eruption at 07:29 UT accompanied by a not reported M1.2 class flare probably associated with the onset of a first southeastern CME (CME1), which most likely is not responsible for the superstorm; ii) a confined eruption (without a CME) at 07:41 UT (M3.2 flare) that destabilized the large filament; iii) the filament acceleration around 07:56 UT; iv) the bifurcation of the eruptive filament that transformed into a large "cloud"; v) an M3.9 flare in AR 10501 associated to this transformation. The transformation of the filament could be due to the interaction of the eruptive filament with the magnetic field in the neighborhood of a null point, located at a height of about 100 Mm above the complex formed by ARs 10501, 10503, and their environment. The CORONAS-F/SPIRIT telescope observed the cloud in 304 Å as a large Y-shaped darkening, which moved from the bifurcation region across the solar disk to the limb. The masses and kinematics of the cloud and the filament were similar. Remnants of the filament were not clearly observed in the second southwestern CME (CME2), previously regarded as a source of the 20 November geomagnetic storm. These facts do not support a simple scenario, in which the interplanetary magnetic cloud is considered as a flux rope formed from a structure initially associated with the pre-eruption filament in AR 10501. Observations suggest a possible additional eruption above

  5. Deinococcus radiodurans RecA nucleoprotein filaments characterized at the single-molecule level with optical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Pobegalov, Georgii, E-mail: george.pobegalov@nanobio.spbstu.ru [Peter the Great St.Petersburg Polytechnic University, Saint-Petersburg 195251 (Russian Federation); Cherevatenko, Galina; Alekseev, Aleksandr; Sabantsev, Anton; Kovaleva, Oksana; Vedyaykin, Alexey; Morozova, Natalia [Peter the Great St.Petersburg Polytechnic University, Saint-Petersburg 195251 (Russian Federation); Baitin, Dmitrii [Peter the Great St.Petersburg Polytechnic University, Saint-Petersburg 195251 (Russian Federation); Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina 188300 (Russian Federation); Khodorkovskii, Mikhail [Peter the Great St.Petersburg Polytechnic University, Saint-Petersburg 195251 (Russian Federation)

    2015-10-23

    Deinococcus radiodurans can survive extreme doses of ionizing radiation due to the very efficient DNA repair mechanisms that are able to cope even with hundreds of double-strand breaks. RecA, the critical protein of homologous recombination in bacteria, is one of the key components of the DNA-repair system. Repair of double-strand breaks requires RecA binding to DNA and assembly of the RecA nucleoprotein helical filaments. The Escherichia coli RecA protein (EcRecA) and its interactions with DNA have been extensively studied using various approaches including single-molecule techniques, while the D. radiodurans RecA (DrRecA) remains much less characterized. However, DrRecA shows some remarkable differences from E. coli homolog. Here we combine microfluidics and single-molecule DNA manipulation with optical tweezers to follow the binding of DrRecA to long double-stranded DNA molecules and probe the mechanical properties of DrRecA nucleoprotein filaments at physiological pH. Our data provide a direct comparison of DrRecA and EcRecA binding to double-stranded DNA under identical conditions. We report a significantly faster filaments assembly as well as lower values of persistence length and contour length for DrRecA nucleoprotein filaments compared to EcRecA. Our results support the existing model of DrRecA forming more frequent and less continuous filaments relative to those of EcRecA. - Highlights: • We investigate Deinococcus radiodurans RecA interactions with long double-stranded DNA at the single-molecule level. • At physiological pH D. radiodurans RecA forms nucleoprotein filaments significantly faster relative to Escherichia coli RecA. • D. radiodurans RecA-dsDNA nucleoprotein filaments are more flexible and slightly shorter compared to those of E. coli RecA.

  6. Warm-hot baryons comprise 5-10 per cent of filaments in the cosmic web.

    Science.gov (United States)

    Eckert, Dominique; Jauzac, Mathilde; Shan, HuanYuan; Kneib, Jean-Paul; Erben, Thomas; Israel, Holger; Jullo, Eric; Klein, Matthias; Massey, Richard; Richard, Johan; Tchernin, Céline

    2015-12-03

    Observations of the cosmic microwave background indicate that baryons account for 5 per cent of the Universe's total energy content. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two. Cosmological simulations indicate that the missing baryons have not condensed into virialized haloes, but reside throughout the filaments of the cosmic web (where matter density is larger than average) as a low-density plasma at temperatures of 10(5)-10(7) kelvin, known as the warm-hot intergalactic medium. There have been previous claims of the detection of warm-hot baryons along the line of sight to distant blazars and of hot gas between interacting clusters. These observations were, however, unable to trace the large-scale filamentary structure, or to estimate the total amount of warm-hot baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of gas at 10(7) kelvin associated with the galaxy cluster Abell 2744. Previous observations of this cluster were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we find hot gas structures that are coherent over scales of 8 megaparsecs. The filaments coincide with over-densities of galaxies and dark matter, with 5-10 per cent of their mass in baryonic gas. This gas has been heated up by the cluster's gravitational pull and is now feeding its core. Our findings strengthen evidence for a picture of the Universe in which a large fraction of the missing baryons reside in the filaments of the cosmic web.

  7. Modelling the Peak Elongation of Nylon6 and Fe Powder Based Composite Wire for FDM Feedstock Filament

    Science.gov (United States)

    Garg, Harish Kumar; Singh, Rupinder

    2017-10-01

    In the present work, to increase the application domain of fused deposition modelling (FDM) process, Nylon6-Fe powder based composite wire has been prepared as feed stock filament. Further for smooth functioning of feed stock filament without any change in the hardware and software of the commercial FDM setup, the mechanical properties of the newly prepared composite wire must be comparable/at par to the existing material i.e. ABS, P-430. So, keeping this in consideration; an effort has been made to model the peak elongation of in house developed feedstock filament comprising of Nylon6 and Fe powder (prepared on single screw extrusion process) for commercial FDM setup. The input parameters of single screw extruder (namely: barrel temperature, temperature of the die, speed of the screw, speed of the winding machine) and rheological property of material (melt flow index) has been modelled with peak elongation as the output by using response surface methodology. For validation of model the result of peak elongation obtained from the model equation the comparison was made with the results of actual experimentation which shows the variation of ±1 % only.

  8. Filamentation of ultrashort laser pulses of different wavelengths in ...

    Indian Academy of Sciences (India)

    2017-01-17

    Jan 17, 2017 ... Hence, many researchers choose a noble gas such as argon as the propagating medium [21–25]. In this paper, we adopt incident laser pulses hav- ing three different wavelengths to study the filament in argon. The content is organized as follows: Section 2 introduces the nonlinear Schrödinger equation for.

  9. Monetary value of the impacts of filamentous green algae on ...

    African Journals Online (AJOL)

    This paper presents estimates of the monetary value of the impact of eutrophication (algae) on commercial agriculture in two different catchments in South Africa. A production function approach is applied to estimate the monetary value of the impact of filamentous green algae on commercial agriculture in the Dwars River, ...

  10. Motility patterns of filamentous sulfur bacteria, Beggiatoa spp

    DEFF Research Database (Denmark)

    Dunker, Rita; Røy, Hans; Kamp, Anja

    2011-01-01

    The large sulfur bacteria, Beggiatoa spp., live on the oxidation of sulfide with oxygen or nitrate, but avoid high concentrations of both sulfide and oxygen. As gliding filaments, they rely on reversals in the gliding direction to find their preferred environment, the oxygen–sulfide interface.We ...... Beggiatoa accumulate high nitrate concentrations in internal vacuoles as an alternative electron acceptor to oxygen....

  11. The physiology of the filamentous bacterium Microthrix parvicella

    NARCIS (Netherlands)

    Slijkhuis, H.

    1983-01-01

    A study has been made of the physiology of Microthrix parvicella. This filamentous bacterium often causes poor settleability of activated sludge in oxidation ditches supplied with domestic sewage. The organism was found to utilize only long chain fatty acids (preferably in

  12. Filament identification and dominance of Eikelboom Type 0092 in ...

    African Journals Online (AJOL)

    In order of prevalence, the five most common dominant filament species in 96 activated sludge samples were: Eikelboom Type 0092, Eikelboom Type 1851, nocardioforms, Microthrix parvicella and Eikelboom Type 021N. In order to compile a statistically significant database, it is recommended that an extensive nationwide ...

  13. A model of filamentous cyanobacteria leading to reticulate pattern formation

    NARCIS (Netherlands)

    Tamulonis, C.; Kaandorp, J.

    2014-01-01

    The filamentous cyanobacterium, Pseudanabaena, has been shown to produce reticulate patterns that are thought to be the result of its gliding motility. Similar fossilized structures found in the geological record constitute some of the earliest signs of life on Earth. It is difficult to tie these

  14. Sensitivity of RF-driven Plasma Filaments to Trace Gases

    Science.gov (United States)

    Burin, M. J.; Czarnocki, C. J.; Czarnocki, K.; Zweben, S. J.; Zwicker, A.

    2011-10-01

    Filamentary structures have been observed in many types of plasma discharges in both natural (e.g. lightning) and industrial systems (e.g. dielectric barrier discharges). Recent progress has been made in characterizing these structures, though various aspects of their essential physics remain unclear. A common example of this phenomenon can be found within a toy plasma globe (or plasma ball), wherein a primarily neon gas mixture near atmospheric pressure clearly and aesthetically displays filamentation. Recent work has provided the first characterization of these plasma globe filaments [Campanell et al., Physics of Plasmas 2010], where it was noticed that discharges of pure gases tend not to produce filaments. We have extended this initial work to investigate in greater detail the dependence of trace gases on filamentation within a primarily Neon discharge. Our preliminary results using a custom globe apparatus will be presented, along with some discussion of voltage dependencies. Newly supported by the NSF/DOE Partnership in Basic Plasma Science and Engineering.

  15. Organic acid production in Aspergillus niger and other filamentous fungi

    NARCIS (Netherlands)

    Odoni, Dorett I.

    2017-01-01

    The aim of the thesis was to increase the understanding of organic acid production in Aspergillus niger and other filamentous fungi, with the ultimate purpose to improve A. niger as biotechnological production host. In Chapter 1, the use of microbial cell-factories for the

  16. Propulsion by passive filaments and active flagella near boundaries

    Science.gov (United States)

    Evans, Arthur A.; Lauga, Eric

    2010-10-01

    Confinement and wall effects are known to affect the kinematics and propulsive characteristics of swimming microorganisms. When a solid body is dragged through a viscous fluid at constant velocity, the presence of a wall increases fluid drag, and thus the net force required to maintain speed has to increase. In contrast, recent optical trapping experiments have revealed that the propulsive force generated by human spermatozoa is decreased by the presence of boundaries. Here, we use a series of simple models to analytically elucidate the propulsive effects of a solid boundary on passively actuated filaments and model flagella. For passive flexible filaments actuated periodically at one end, the presence of the wall is shown to increase the propulsive forces generated by the filaments in the case of displacement-driven actuation, while it decreases the force in the case of force-driven actuation. In the case of active filaments as models for eukaryotic flagella, we demonstrate that the manner in which a solid wall affects propulsion cannot be known a priori, but is instead a nontrivial function of the flagellum frequency, wavelength, its material characteristics, the manner in which the molecular motors self-organize to produce oscillations (prescribed activity model or self-organized axonemal beating model), and the boundary conditions applied experimentally to the tethered flagellum. In particular, we show that in some cases, the increase in fluid friction induced by the wall can lead to a change in the waveform expressed by the flagella, which results in a decrease in their propulsive force.

  17. Tesla coil discharges guided by femtosecond laser filaments in air

    OpenAIRE

    Brelet, Yohann; Houard, Aurélien; Arantchouk, Leonid; Forestier, Benjamin; Liu, Yi; Prade, Bernard; Carbonnel, Jérôme; André, Yves-Bernard; Mysyrowicz, André

    2012-01-01

    International audience; A Tesla coil generator was designed to produce high voltage pulses oscillating at 100 kHz synchronisable with a nanosecond temporal jitter. Using this compact high voltage generator, we demonstrate reproducible meter long discharges in air at a repetition rate of 1 Hz. Triggering and guiding of the discharges are performed in air by femtosecond laser filaments.

  18. Filamentous phage associated with recent pandemic strains of Vibrio parahaemolyticus.

    OpenAIRE

    Iida, T.; Hattori, A.; Tagomori, K.; Nasu, H.; Naim, R.; Honda, T.

    2001-01-01

    A group of pandemic strains of Vibrio parahaemolyticus has recently appeared in Asia and North America. We demonstrate that a filamentous phage is specifically associated with the pandemic V. parahaemolyticus strains. An open reading frame unique to the phage is a useful genetic marker to identify these strains.

  19. Calorie restriction in the filamentous fungus Podospora anserina

    NARCIS (Netherlands)

    van Diepeningen, Anne D; Slakhorst, S Marijke; Koopmanschap, A Bertha; Ikink, Gerjon J; Debets, Alfons J M; Hoekstra, Rolf F

    Calorie restriction (CR) is a regimen of reduced food intake that, although the underlying mechanism is unknown, in many organisms leads to life span extension. Podospora anserina is one of the few known ageing filamentous fungi and the ageing process and concomitant degeneration of mitochondria

  20. Spin alignment of dark matter haloes in filaments and walls

    NARCIS (Netherlands)

    Aragón-Calvo, M. A.; Weygaert, R. van de; Jones, B. J. T.; Hulst, T. van der

    2006-01-01

    Abstract: The MMF technique is used to segment the cosmic web as seen in a cosmological N-body simulation into wall-like and filament-like structures. We find that the spins and shapes of dark matter haloes are significantly correlated with each other and with the orientation of their host