Sample records for temperature field produced

  1. Low temperature superconductor and aligned high temperature superconductor magnetic dipole system and method for producing high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ramesh; Scanlan, Ronald; Ghosh, Arup K.; Weggel, Robert J.; Palmer, Robert; Anerella, Michael D.; Schmalzle, Jesse


    A dipole-magnet system and method for producing high-magnetic-fields, including an open-region located in a radially-central-region to allow particle-beam transport and other uses, low-temperature-superconducting-coils comprised of low-temperature-superconducting-wire located in radially-outward-regions to generate high magnetic-fields, high-temperature-superconducting-coils comprised of high-temperature-superconducting-tape located in radially-inward-regions to generate even higher magnetic-fields and to reduce erroneous fields, support-structures to support the coils against large Lorentz-forces, a liquid-helium-system to cool the coils, and electrical-contacts to allow electric-current into and out of the coils. The high-temperature-superconducting-tape may be comprised of bismuth-strontium-calcium-copper-oxide or rare-earth-metal, barium-copper-oxide (ReBCO) where the rare-earth-metal may be yttrium, samarium, neodymium, or gadolinium. Advantageously, alignment of the large-dimension of the rectangular-cross-section or curved-cross-section of the high-temperature-superconducting-tape with the high-magnetic-field minimizes unwanted erroneous magnetic fields. Alignment may be accomplished by proper positioning, tilting the high-temperature-superconducting-coils, forming the high-temperature-superconducting-coils into a curved-cross-section, placing nonconducting wedge-shaped-material between windings, placing nonconducting curved-and-wedge-shaped-material between windings, or by a combination of these techniques.

  2. Visualizing and measuring the temperature field produced by medical diagnostic ultrasound using thermography

    International Nuclear Information System (INIS)

    Vachutka, J; Grec, P; Mornstein, V; Caruana, C J


    The heating of tissues by diagnostic ultrasound can pose a significant hazard particularly in the imaging of the unborn child. The demonstration of the temperature field in tissue is therefore an important objective in the teaching of biomedical physics to healthcare professionals. The temperature field in a soft tissue model was made visible and measured using thermography. Temperature data from the images were used to investigate the dependence of temperature increase within the model on ultrasound exposure time and distance from the transducer. The experiment will be used within a multi-professional biomedical physics teaching laboratory for enhancing learning regarding the principles of thermography and the thermal effects of ultrasound to medical and healthcare students and also for demonstrating the quantitative use of thermographic imaging to students of biophysics, medical physics and medical technology

  3. Numerical analysis of the effect of non-uniformity of the magnetic field produced by a solenoid on temperature distribution during magnetic hyperthermia (United States)

    Tang, Yun-dong; Flesch, Rodolfo C. C.; Zhang, Cheng; Jin, Tao


    Magnetic hyperthermia ablates malignant cells by the heat produced by power dissipation of magnetic nanoparticles (MNPs) under an alternating magnetic field. Most of the works in literature consider a uniform magnetic field for solving numerical models to estimate the temperature field during a hyperthermia treatment, however this assumption is generally not true in real circumstances. This paper considers the magnetic field produced by a solenoid and analyzes its effects on the treatment temperature. To that end, a set of partial differential equations is numerically solved for a specific tumor model using the finite element method and the obtained results are analyzed to draw general conclusions. The magnetic field inside the solenoid is obtained by using Maxwell's theory, and the treatment temperature of the tumor model is determined by using Rosensweig's theory and Pennes bio-heat transfer equation. Simulation results demonstrate that the temperature field obtained using a solenoid model is similar to that obtained considering a uniform magnetic field if tumor is centered with respect to solenoid and if the physical characteristics of solenoid are properly defined based on tumor volume. As the distance of tumor from the solenoid center is increased, the effects of non-uniformity of magnetic field become more evident and the adoption of the proposed model is necessary to obtain accurate results.

  4. Correlation Models for Temperature Fields

    KAUST Repository

    North, Gerald R.


    This paper presents derivations of some analytical forms for spatial correlations of evolving random fields governed by a white-noise-driven damped diffusion equation that is the analog of autoregressive order 1 in time and autoregressive order 2 in space. The study considers the two-dimensional plane and the surface of a sphere, both of which have been studied before, but here time is introduced to the problem. Such models have a finite characteristic length (roughly the separation at which the autocorrelation falls to 1/e) and a relaxation time scale. In particular, the characteristic length of a particular temporal Fourier component of the field increases to a finite value as the frequency of the particular component decreases. Some near-analytical formulas are provided for the results. A potential application is to the correlation structure of surface temperature fields and to the estimation of large area averages, depending on how the original datastream is filtered into a distribution of Fourier frequencies (e.g., moving average, low pass, or narrow band). The form of the governing equation is just that of the simple energy balance climate models, which have a long history in climate studies. The physical motivation provided by the derivation from a climate model provides some heuristic appeal to the approach and suggests extensions of the work to nonuniform cases.

  5. Rotating superconductor magnet for producing rotating lobed magnetic field lines (United States)

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.


    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  6. Finite-temperature field theory

    International Nuclear Information System (INIS)

    Kapusta, J.I.; Landshoff, P.V.


    Particle number is not conserved in relativistic theories although both lepton and baryon number are. Therefore when discussing the thermodynamics of a quantum field theory one uses the grand canonical formalism. The entropy S is maximised, keeping fixed the ensemble averages E and N of energy and lepton number. Two lagrange multipliers are introduced. (author)

  7. Electromagnetic fields produced by simulated spacecraft discharges (United States)

    Nonevicz, J. E.; Adamo, R. C.; Beers, B. L.; Delmer, T. N.


    The initial phase of a broader, more complete program for the characterization of electrical breakdowns on spacecraft insulating materials is described which consisted of the development of a discharge simulator and characterization facility and the performance of a limited number of discharge measurements to verify the operation of the laboratory setup and to provide preliminary discharge transient field data. A preliminary model of the electromagnetic characteristics of the discharge was developed. It is based upon the "blow off" current model of discharges, with the underlying assumption of a propagating discharge. The laboratory test facility and discharge characterization instrumentation are discussed and the general results of the "quick look" tests are described on quartz solar reflectors aluminized Kapton and silver coated Teflon are described.

  8. Thermo field dynamics: a quantum field theory at finite temperature

    International Nuclear Information System (INIS)

    Mancini, F.; Marinaro, M.; Matsumoto, H.


    A brief review of the theory of thermo field dynamics (TFD) is presented. TFD is introduced and developed by Umezawa and his coworkers at finite temperature. The most significant concept in TFD is that of a thermal vacuum which satisfies some conditions denoted as thermal state conditions. The TFD permits to reformulate theories at finite temperature. There is no need in an additional principle to determine particle distributions at T ≠ 0. Temperature and other macroscopic parameters are introduced in the definition of the vacuum state. All operator formalisms used in quantum field theory at T=0 are preserved, although the field degrees of freedom are doubled. 8 refs

  9. Nonstationary temperature field in the fuel element

    International Nuclear Information System (INIS)

    Vehauc, A.; Spasojevic, D.


    Nonstationary temperature field in the fuel element was examined for spatial and time distribution of the specific power generated in the fuel element. Analytical method was developed for calculating the temperature variation in the fuel element of a nuclear reactor for a typical shape of the heat generation function. The method is based on series expansion of the temperature field by self functions and application of Laplace transformation in time coordinate. For numerical calculation of the temperature distribution a computer code was developed based on the proposed method and applied on the ZUSE-Z-23 computer [sr

  10. Mean field canonical treatments at finite temperature

    International Nuclear Information System (INIS)

    Rossignoli, R.


    A method is proposed to make mean field and higher order canonical treatments at finite temperature. Definite improvements are made over the usual Hartree-Fock thermal (great canonical) treatment. (Author). 10 refs., 3 figs

  11. General temperature field measurement by digital holography

    Czech Academy of Sciences Publication Activity Database

    Doleček, Roman; Psota, Pavel; Lédl, Vít; Vít, Tomáš; Václavík, Jan; Kopecký, V.


    Roč. 52, č. 1 (2013), A319-A325 ISSN 1559-128X Institutional support: RVO:61389021 Keywords : digital holography * temperature field measurement * tomography Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.649, year: 2013

  12. Estimation of complete temperature fields from measured temperatures

    International Nuclear Information System (INIS)

    Clegg, S.T.; Roemer, R.B.


    In hyperthermia treatments, it is desirable to be able to predict complete tissue temperature fields from sampled temperatures taken at a few locations. This is a difficult problem in hyperthermia treatments since the tissue blood perfusion is unknown. An initial attempt to do this automatically using unconstrained optimization techniques to minimize the differences between steady state temperatures measured during a treatment and temperatures (at the same locations) predicted from treatment simulations has been previously reported. A second technique using transient temperatures following a step decrease in power has been developed. This technique, which appears to be able to better predict complete temperature fields is presented and both it and the steady state technique are applied to data from both simulated and experimental hyperthermia treatments. The results of applying the two techniques are compared for one-dimensional situations. One particularly important problem which the transient technique can solve (and the steady state technique does not seem to be able to do as well) is that of predicting the complete temperature field in situations where the true maximum and/or minimum temperatures present are not measured by the available instrumentation

  13. Interaction between laser-produced plasma and guiding magnetic field

    International Nuclear Information System (INIS)

    Hasegawa, Jun; Takahashi, Kazumasa; Ikeda, Shunsuke; Nakajima, Mitsuo; Horioka, Kazuhiko


    Transportation properties of laser-produced plasma through a guiding magnetic field were examined. A drifting dense plasma produced by a KrF laser was injected into an axisymmetric magnetic field induced by permanent ring magnets. The plasma ion flux in the guiding magnetic field was measured by a Faraday cup at various distances from the laser target. Numerical analyses based on a collective focusing model were performed to simulate plasma particle trajectories and then compared with the experimental results. (author)

  14. Topics on field theories at finite temperature

    International Nuclear Information System (INIS)

    Eboli, O.J.P.


    The dynamics of a first order phase transition through the study of the decay rate of the false vacuum in the high temperature limit are analysed. An alternative approach to obtain the phase diagram of a field theory which is based on the study of the free energy of topological defects, is developed the behavior of coupling constants with the help of the Dyson-Schwinger equations at finite temperature, is evaluated. (author) [pt

  15. Stream temperature investigations: field and analytic methods (United States)

    Bartholow, J.M.


    This document provides guidance to the user of the U.S. Fish and Wildlife Service’s Stream Network Temperature Model (SNTEMP). Planning a temperature study is discussed in terms of understanding the management objectives and ensuring that the questions will be accurately answered with the modeling approach being used. A sensitivity analysis of SNTEMP is presented to illustrate which input variables are most important in predicting stream temperatures. This information helps prioritize data collection activities, highlights the need for quality control, focuses on which parameters can be estimated rather than measured, and offers a broader perspective on management options in terms of knowing where the biggest temperature response will be felt. All of the major input variables for stream geometry, meteorology, and hydrology are discussed in detail. Each variable is defined, with guidance given on how to measure it, what kind of equipment to use, where to obtain it from another agency, and how to calculate it if the data are in a form other than that required by SNTEMP. Examples are presented for the various forms in which water temperature, discharge, and meteorological data are commonly found. Ranges of values for certain input variables that are difficult to measure of estimate are given. Particular attention is given to those variables not commonly understood by field biologists likely to be involved in a stream temperature study. Pertinent literature is cited for each variable, with emphasis on how other people have treated particular problems and on results they have found.

  16. Proton radiography of magnetic field in laser produced plasma

    International Nuclear Information System (INIS)

    Le Pape, S.; Patel, P.; Chen, S.; Town, R.; Mackinnon, A.


    Electromagnetic fields generated by the interaction with plasmas of long-pulse laser beams relevant to inertial confinement fusion have been measure. A proton beam generated by the interaction of an ultra intense laser with a thin metallic foil is used to probe the B-fields. The proton beam then generated is temporally short (of the order of a ps), highly laminar and hence equivalent to a virtual point which makes it an ideal source for radiography. We have investigated, using face-on radiography, B fields at intensity around 10 14 W/cm 2 due to the non co-linearity of temperature and density gradients. (authors)

  17. Megagauss magnetic field profiles in laser produced plasmas

    International Nuclear Information System (INIS)

    Raven, A.; Willi, O.; Rumsby, P.T.


    Measurement of spatial profiles of self generated magnetic fields in Nd:laser produced plasmas have been made with high temporal and spatial resolution (30ps, 1.5 μm) by simultaneous Faraday rotation and interferometry using a Raman shifted second harmonic probe beam. (author)

  18. Quantum processes in a strong electromagnetic field producing pairs. 3

    International Nuclear Information System (INIS)

    Gitman, D.M.; Gavrilov, S.P.


    The Furry picture in quantum electrodynamics with an external field producing real pairs has been generalized. For the required generalization to be achieved all operators of a spinor field are expressed through functions of production and annihilation operators and formulated are the rules for reduction to a generalized normal form, i.e., to such a form in which all the production operators in each term are on the left from all the annihilation operators. The diagram technique for matrix elements of random processes has been considered

  19. Control of colloids with gravity, temperature gradients, and electric fields

    CERN Document Server

    Sullivan, M; Harrison, C; Austin, R H; Megens, M; Hollingsworth, A; Russel, W B; Cheng Zhen; Mason, T; Chaikin, P M


    We have used a variety of different applied fields to control the density, growth, and structure of colloidal crystals. Gravity exerts a body force proportional to the buoyant mass and in equilibrium produces a height-dependent concentration profile. A similar body force can be obtained with electric fields on charged particles (electrophoresis), a temperature gradient on all particles, or an electric field gradient on uncharged particles (dielectrophoresis). The last is particularly interesting since its magnitude and sign can be changed by tuning the applied frequency. We study these effects in bulk (making 'dielectrophoretic bottles' or traps), to control concentration profiles during nucleation and growth and near surfaces. We also study control of non-spherical and optically anisotropic particles with the light field from laser tweezers.

  20. Environmental contaminants in oil field produced waters discharged into wetlands

    International Nuclear Information System (INIS)

    Ramirez, P. Jr.


    The 866-acre Loch Katrine wetland complex in Park County, Wyoming provides habitat for many species of aquatic birds. The complex is sustained primarily by oil field produced waters. This study was designed to determine if constituents in oil field produced waters discharged into Custer Lake and to Loch Katrine pose a risk to aquatic birds inhabiting the wetlands. Trace elements, hydrocarbons and radium-226 concentrations were analyzed in water, sediment and biota collected from the complex during 1992. Arsenic, boron, radium-226 and zinc were elevated in some matrices. The presence of radium-226 in aquatic vegetation suggests that this radionuclide is available to aquatic birds. Oil and grease concentrations in water from the produced water discharge exceeded the maximum 10 mg/l permitted by the WDEQ (1990). Total aliphatic and aromatic hydrocarbon concentrations in sediments were highest at the produced water discharge, 6.376 μg/g, followed by Custer Lake, 1.104 μg/g. The higher levels of hydrocarbons found at Custer Lake, compared to Loch Katrine, may be explained by Custer Lake's closer proximity to the discharge. Benzo(a)pyrene was not detected in bile from gadwalls collected at Loch Katrine but was detected in bile from northern shovelers collected at Custer Lake. Benzo(a)pyrene concentrations in northern shoveler bile ranged from 500 to 960 ng/g (ppb) wet weight. The presence of benzo(a)pyrene in the shovelers indicates exposure to petroleum hydrocarbons

  1. Temperature field for radiative tomato peeling

    International Nuclear Information System (INIS)

    Cuccurullo, G; Giordano, L


    Nowadays peeling of tomatoes is performed by using steam or lye, which are expensive and polluting techniques, thus sustainable alternatives are searched for dry peeling and, among that, radiative heating seems to be a fairly promising method. This paper aims to speed up the prediction of surface temperatures useful for realizing dry-peeling, thus a 1D-analytical model for the unsteady temperature field in a rotating tomato exposed to a radiative heating source is presented. Since only short times are of interest for the problem at hand, the model involves a semi-infinite slab cooled by convective heat transfer while heated by a pulsating heat source. The model being linear, the solution is derived following the Laplace Transform method. A 3D finite element model of the rotating tomato is introduced as well in order to validate the analytical solution. A satisfactory agreement is attained. Therefore, two different ways to predict the onset of the peeling conditions are available which can be of help for proper design of peeling plants. Particular attention is paid to study surface temperature uniformity, that being a critical parameter for realizing an easy tomato peeling. (paper)

  2. Field-aligned electron flux oscillations that produce flickering aurora

    International Nuclear Information System (INIS)

    McFadden, J.P.; Carlson, C.W.; Boehm, M.H.; Hallinan, T.J.


    Measurements of energetic electrons that produce flickering aurora were made by a pair of sounding rockets launched during a slowly evolving auroral breakup. Both payloads passed through a broad inverted-V structure. A component of the electron distribution function was closely aligned with the magnetic field over a broad energy range that extended form low energies up to the inverted-V differential energy flux peak. High time resolution measurements of the field-aligned component showed the presence of order to magnitude coherent flux oscillations. Source altitudes between 4,000 and 8,000 km were derived from velocity dispersion of the flux oscillations. A ground-based TV camera recorded visual flickering in the vicinity of the payloads' auroral footprints during periods when flux oscillations were present. Measurements are compared with previous observations of electron flux oscillations, and possible sources for the field-aligned component are discussed

  3. Extracellular protectants produced by Clostridium perfringens cells at elevated temperatures. (United States)

    Heredia, N; Ybarra, P; Hernández, C; García, S


    The mechanisms of adaptation of Clostridium perfringens to high temperatures are not well understood. In this work, the involvement of extracellular compounds in protection to heat was determined. Cells were grown in fluid thioglycollate medium or chicken broth. When mid-log phase was reached, they were heat-shocked at 50 degrees C for 30 min. Then cultures were centrifuged and supernatants were transferred to nonshocked cells. Heat tolerance of these cells was performed at 55 degrees C. Viable cells were determined. In some cases, supernatants were heated at 65 degrees C or 100 degrees C or treated with trypsin. Supernatants were fractionated and PAGE was made of fractions showing heat-protective activity. When C. perfringens was exposed to a heat shock at 50 degrees C, extracellular factors were found in the culture supernatant that provided protection to cells not exposed to a heat shock. The extracellular factors were sensitive to heat and trypsin treatment suggesting a protein component. SDS-PAGE analysis of supernatant fractions from heat-treated cells revealed two induced proteins (56 and 125 kDa) that could be involved in heat tolerance. In this work, the presence and thermoprotective activity of extracellular factors produced by C. perfringens under a heat shock was demonstrated. The detection of thermoprotective extracellular factors of C. perfringens will aid in our understanding of the physiology of survival of C. perfringens in foods.

  4. Chemical composition of phenols from tars produced in semicoking of lignite from the near Moscow fields

    Energy Technology Data Exchange (ETDEWEB)

    Platonov, V.V.; Proskuryakov, V.A.; Manuel, A.; Nechaeva, E.A. [Lev Tolstoi State Pedagogical University, Tula (Russian Federation)


    The chemical composition of phenols from semicoking tar produced in low-temperature carbonization of lignite from the near-Moscow fields was studied by elemental, chemical functional, emission spectral, and structural-group analyses, cryoscopy, IR, UV and {sup 1}H, and {sup 13}C NMR spectroscopy, capillary gas chromatography, and gas chromatography-mass spectrometry. A scheme was developed for adsorption liquid chromatography of phenols.

  5. Modeling of the temperature field of the casting ladle lining (United States)

    Zabolotsky, A. V.


    We propose a method for calculating the temperature field of the casting ladle lining by a modified relaxation method. Given such initial data as the metal temperature in the ladle, the ambient temperature, and the lining structure, this method permits calculating the stationary temperature fields both inside the lining and on the surface of the ladle jacket. The model was tested by comparing experimentally measured temperature values on the surface of the ladle jacket with calculated temperatures. A satisfactory agreement between calculated and experimental temperature values of the ladle surface has been obtained.

  6. Field of Temperature Measurement by Virtual Instrumentation

    Directory of Open Access Journals (Sweden)

    Libor HARGAŠ


    Full Text Available This paper introduces about temperature determination for given dot of picture through image analysis. Heat transfer is the transition of thermal energy from a heated item to a cooler item. Main method of measurement of temperature in image is Pattern Matching, color scale detection and model detection. We can measure temperature dependency at time for selected point of thermo vision images. This measurement gives idea about the heat transfer at time dependences.

  7. Estimating Temperature Fields from MODIS Land Surface Temperature and Air Temperature Observations in a Sub-Arctic Alpine Environment

    Directory of Open Access Journals (Sweden)

    Scott N. Williamson


    Full Text Available Spatially continuous satellite infrared temperature measurements are essential for understanding the consequences and drivers of change, at local and regional scales, especially in northern and alpine environments dominated by a complex cryosphere where in situ observations are scarce. We describe two methods for producing daily temperature fields using MODIS “clear-sky” day-time Land Surface Temperatures (LST. The Interpolated Curve Mean Daily Surface Temperature (ICM method, interpolates single daytime Terra LST values to daily means using the coincident diurnal air temperature curves. The second method calculates daily mean LST from daily maximum and minimum LST (MMM values from MODIS Aqua and Terra. These ICM and MMM models were compared to daily mean air temperatures recorded between April and October at seven locations in southwest Yukon, Canada, covering characteristic alpine land cover types (tundra, barren, glacier at elevations between 1,408 m and 2,319 m. Both methods for producing mean daily surface temperatures have advantages and disadvantages. ICM signals are strongly correlated with air temperature (R2 = 0.72 to 0.86, but have relatively large variability (RMSE = 4.09 to 4.90 K, while MMM values had a stronger correlation to air temperature (R2 = 0.90 and smaller variability (RMSE = 2.67 K. Finally, when comparing 8-day LST averages, aggregated from the MMM method, to air temperature, we found a high correlation (R2 = 0.84 with less variability (RMSE = 1.54 K. Where the trend was less steep and the y-intercept increased by 1.6 °C compared to the daily correlations. This effect is likely a consequence of LST temperature averages being differentially affected by cloud cover over warm and cold surfaces. We conclude that satellite infrared skin temperature (e.g., MODIS LST, which is often aggregated into multi-day composites to mitigate data reductions caused by cloud cover, changes in its relationship to air temperature

  8. Wall deffects in field theories at finite temperature

    International Nuclear Information System (INIS)

    Bazeia Filho, D.


    We discuss the effect of restauration of simmetry in field theories at finite temperature and its relation with wall deffects which appear as consequence of the instability of the constant field configuration. (M.W.O.) [pt

  9. Tolman temperature gradients in a gravitational field


    Santiago, Jessica; Visser, Matt


    Tolman's relation for the temperature gradient in an equilibrium self-gravitating general relativistic fluid is broadly accepted within the general relativity community. However, the concept of temperature gradients in thermal equilibrium continues to cause confusion in other branches of physics, since it contradicts naive versions of the laws of classical thermodynamics. In this paper we discuss the crucial role of the universality of free fall, and how thermodynamics emphasises the great di...

  10. Non-uniform temperature gradients and thermal stresses produced ...

    Indian Academy of Sciences (India)

    The thermo-physical property variations of the workpiece are negligible. • The workpiece material is homogeneous and isotropic. • The heat flux per unit area is uniform along the azimuthal direction. • The temperature, T , depends on r, φ and t, (T = T (r, φ, t)). In the hollow sphere (inner radius, Ri,≤ r ≤ outer radius, Ro, and ...

  11. Non-uniform temperature gradients and thermal stresses produced ...

    Indian Academy of Sciences (India)

    Abstract. This work presents numerical analyses of transient temperature and thermally-induced stress distributions in a hollow steel sphere heated by a moving uniform heat source applied on a certain zenithal segment (the heated zenithal segment, H ) of its outer surface (the processed surface) under stagnant ambient.

  12. Storage of oil field-produced waters alters their chemical and microbiological characteristics. (United States)

    Hulecki, Jordan C; Foght, Julia M; Fedorak, Phillip M


    Many oil fields are in remote locations, and the time required for shipment of produced water samples for microbiological examination may be lengthy. No studies have reported on how storage of oil field waters can change their characteristics. Produced water samples from three Alberta oil fields were collected in sterile, industry-approved 4-l epoxy-lined steel cans, sealed with minimal headspace and stored under anoxic conditions for 14 days at either 4 degrees C or room temperature (ca. 21 degrees C). Storage resulted in significant changes in water chemistry, microbial number estimates and/or community response to amendment with nitrate. During room-temperature storage, activity and growth of sulfate-reducing bacteria (and, to a lesser extent, fermenters and methanogens) in the samples led to significant changes in sulfide, acetate and propionate concentrations as well as a significant increase in most probable number estimates, particularly of sulfate-reducing bacteria. Sulfide production during room-temperature storage was likely to be responsible for the altered response to nitrate amendment observed in microcosms containing sulfidogenic samples. Refrigerated storage suppressed sulfate reduction and growth of sulfate-reducing bacteria. However, declines in sulfide concentrations were observed in two of the three samples stored at 4 degrees C, suggesting abiotic losses of sulfide. In one of the samples stored at room temperature, nitrate amendment led to ammonification. These results demonstrate that storage of oil field water samples for 14 days, such as might occur because of lengthy transport times or delays before analysis in the laboratory, can affect microbial numbers and activity as well as water sample chemistry.

  13. Causality in finite temperature quantum field theory

    International Nuclear Information System (INIS)

    Paz, J.P.


    Some properties of various 'real time' formalisms are examined. The authors discuss conceptual (and sometimes very important) differences between the Niemi-Semmenoff method, the Closed Time Path formalism, and Thermo Field Dynamics. (author). 15 refs

  14. Effect of a background electric field on the Hagedorn temperature

    International Nuclear Information System (INIS)

    Ferrer, E.J.; Incera, V. de la; Fradkin, E.S.


    We compute the one-loop free energy of the open neutral string gas in a constant electromagnetic background. Starting from this result we show that the Hagedorn temperature of this hot string gas depends on the background electric field. The larger the electric field, the lower the Hagedorn temperature is. (author). 13 refs

  15. Dynamic reconstruction algorithm of temperature field based on Kalman filter (United States)

    Li, Yanqiu; Liu, Shi; Han, Ren


    Development of temperature reconstruction algorithm plays an important role in the application of temperature field measurement by acoustic tomography. A dynamic model of temperature field reconstruction by acoustic tomography is established. A dynamic reconstruction algorithm based on Kalman Filter (KF) is proposed considering both acoustic measurement and the dynamic evolution information. An objective function fusing space constrain with dynamic evolution information is designed. Simulation results of three temperature field distribution models show that the reconstruction quality of dynamic reconstruction method based on KF is better than those of static reconstruction methods.

  16. The electromagnetic force field, fluid flow field and temperature profiles in levitated metal droplets (United States)

    El-Kaddah, N.; Szekely, J.


    A mathematical representation was developed for the electromagnetic force field, the flow field, the temperature field (and for transport controlled kinetics), in a levitation melted metal droplet. The technique of mutual inductances was employed for the calculation of the electromagnetic force field, while the turbulent Navier - Stokes equations and the turbulent convective transport equations were used to represent the fluid flow field, the temperature field and the concentration field. The governing differential equations, written in spherical coordinates, were solved numerically. The computed results were in good agreement with measurements, regarding the lifting force, and the average temperature of the specimen and carburization rates, which were transport controlled.

  17. Factors Influencing Temperature Fields during Combustion Reactions (United States)


    nanothermite reaction. A review of the recent work in nanothermite temperature measurement techniques and advances is provided in Ref. [25]. Optical pyrometry...III : Coupling Pyrometer and IR Data For each nanothermite, the thermal image with the maxi- mum amount of radiance was identified. From each of...D. Frost, J. Levine, Optical Pyrometry of Fireballs of Metalized Explosives, Propellants Explos. Pyrotech. 2006, 31, 169. [10] M. Zachariah

  18. Supersymmetric field theories at finite temperature

    International Nuclear Information System (INIS)

    Dicus, D.A.; Tata, X.R.


    We show by explicit calculations to second and third order in perturbation theory, that finite temperature effects do not break the supersymmetry Ward-Takahashi identities of the Wess-Zumino model. Moreover, it is argued that this result is true to all orders in perturbation theory, and further, true for a wide class of supersymmetric theories. We point out, however, that these identities can be broken in the course of a phase transition that restores an originally broken internal symmetry

  19. Compton scattering at finite temperature: thermal field dynamics approach

    International Nuclear Information System (INIS)

    Juraev, F.I.


    Full text: Compton scattering is a classical problem of quantum electrodynamics and has been studied in its early beginnings. Perturbation theory and Feynman diagram technique enables comprehensive analysis of this problem on the basis of which famous Klein-Nishina formula is obtained [1, 2]. In this work this problem is extended to the case of finite temperature. Finite-temperature effects in Compton scattering is of practical importance for various processes in relativistic thermal plasmas in astrophysics. Recently Compton effect have been explored using closed-time path formalism with temperature corrections estimated [3]. It was found that the thermal cross section can be larger than that for zero-temperature by several orders of magnitude for the high temperature realistic in astrophysics [3]. In our work we use a main tool to account finite-temperature effects, a real-time finite-temperature quantum field theory, so-called thermofield dynamics [4, 5]. Thermofield dynamics is a canonical formalism to explore field-theoretical processes at finite temperature. It consists of two steps, doubling of Fock space and Bogolyubov transformations. Doubling leads to appearing additional degrees of freedom, called tilded operators which together with usual field operators create so-called thermal doublet. Bogolyubov transformations make field operators temperature-dependent. Using this formalism we treat Compton scattering at finite temperature via replacing in transition amplitude zero-temperature propagators by finite-temperature ones. As a result finite-temperature extension of the Klein-Nishina formula is obtained in which differential cross section is represented as a sum of zero-temperature cross section and finite-temperature correction. The obtained result could be useful in quantum electrodynamics of lasers and for relativistic thermal plasma processes in astrophysics where correct account of finite-temperature effects is important. (author)

  20. Temperature dependency of silicon structures for magnetic field gradient sensing (United States)

    Dabsch, Alexander; Rosenberg, Christoph; Stifter, Michael; Keplinger, Franz


    This work describes the temperature dependence of two sensors for magnetic field gradient sensors and demonstrates a structure to compensate for the drift of resonance frequency over a wide temperature range. The temperature effect of the sensing element is based on internal stresses induced by the thermal expansion of material, therefore FEM is used to determine the change of the eigenvalues of the sensing structure. The experimental setup utilizes a Helmholtz coil system to generate the magnetic field and to excite the MEMS structure with Lorentz forces. The MEMS structure is placed on a plate heated with resistors and cooled by a Peltier element to control the plate temperature. In the second part, we describe how one can exploit temperature sensitivity for temperature measurements and we show the opportunity to include the temperature effect to increase the sensitivity of single-crystal silicon made flux density gradient sensors.

  1. Low-temperature field evaporation of Nb3Sn compound

    International Nuclear Information System (INIS)

    Ksenofontov, V.A.; Kul'ko, V.B.; Kutsenko, P.A.


    Investigation results on field evaporation of superconducting Nb 3 Sn compound wth A15 lattice are presented. Compound evaporation is shown to proceed in two stages. Evaporation field and ionic composition of evaporating material are determined. It is found out that in strong electric fields compound surface represents niobium skeleton, wich does not form regular image. Comparison of ion-microscopic and calculated images formed by low-temperature field evaporation indicates to possibility of sample surface reconstruction after preferable tin evaporation

  2. Development of high temperature superconductors for magnetic field applications

    International Nuclear Information System (INIS)

    Larbalestier, D.C.


    The key requirement for magnetic field applications of high temperature superconductor (HTS) materials is to have conductors with high transport critical current density available for magnet builders. After 3 or 4 years of being without any such object, conductor makers have had recent success in producing simple conductor prototypes. These have permitted the construction of simple HTS magnets having self fields exceeding 1 tesla at 4K. Thus the scientific feasibility of making powerful HTS magnets has been demonstrated. Attention to the technological aspects of making HTS conductors for magnets with strong flux pinning and reduced superconducting granularity is now sensible and attractive. However, extrinsic defects such as filament sausaging, cracking, misaligned grains and other perturbations to long range current flow must be controlled at a low level if the benefit of intrinsic improvements to the critical current density is to be maintained in the conductor form. Due to the great complexity of HTS materials, there is sometimes confusion as to whether a given sample has an intrinsically or extrinsically limited critical current density. Systematic microstructure variation experiments and resistive transition analysis are shown to be particularly helpful in this phase of conductor development

  3. Miniature coils for producing pulsed inplane magnetic fields for nanospintronics

    Energy Technology Data Exchange (ETDEWEB)

    Pawliszak, Łukasz; Zgirski, Maciej [Institute of Physics, Polish Academy of Sciences, al.Lotnikow 32/46, PL 02-668 Warszawa (Poland); Tekielak, Maria [Faculty of Physics, University of Białystok, ul.Lipowa 41, PL 15-424 Białystok (Poland)


    Nanospintronic and related research often requires the application of quickly rising magnetic field pulses in the plane of the studied planar structure. We have designed and fabricated sub-millimeter-sized coils capable of delivering pulses of the magnetic field up to ∼500 Oe in the plane of the sample with the rise time of the order of 10 ns. The placement of the sample above the coil allows for easy access to its surface with manipulators or light beams for, e.g., Kerr microscopy. We use the fabricated coil to drive magnetic domain walls in 1 μm wide permalloy wires and measure magnetic domain wall velocity as a function of the applied magnetic field.

  4. Electrostatic fields and charged particle acceleration in laser produced plasmas

    International Nuclear Information System (INIS)

    Hora, H.


    Some new aspects pioneered recently by Alfven in the theory of cosmic plasmas, indicate the possibility of a new treatment of the action of electrostatic double layers in the periphery of an expanding laser produced plasma. The thermally produced electrostatic double layer which has been re-derived for a homogeneous plasma shows that a strong upshift of ion energies is possible, in agreement with experiments. The number of accelerated ions is many orders of magnitude smaller than observed at keV and MeV energies. The nonlinear force acceleration could explain the number and energy of the observed fast ions. It is shown, however, that electrostatic double layers can be generated which should produce super-fast ions. A derivation of the spread double layers in the case of inhomogeneous plasmas is presented. It is concluded that the hydrodynamically expected multi GeV heavy ions for 10 TW laser pulses should produce super-fast ions up to the TeV range. Further conclusions are drawn from the electrostatically measured upshifted (by 300 keV) DT fusion alphas from laser compressed plasma. An analysis of alpha spectra attempts to distinguish between different models of the stopping power in the plasmas. The analysis preliminarily arrives at a preference for the collective model. (author)

  5. Simulation of Temperature Field in HDPE Pipe Thermal Welding

    Directory of Open Access Journals (Sweden)

    LIU Li-jun


    Full Text Available For high density polyethylene pipe connection,welding technology is the key of the high density engineering plastic pressure pipe safety. And the temperature distribution in the welding process has a very important influence on the welding quality. Polyethylene pipe weld joints of one dimensional unsteady overall heat transfer model is established by MARC software and simulates temperature field and stress field distribution of the welding process,and the thermocouple temperature automatic acquisition system of welding temperature field changes were detected,and compared by simulation and experiment .The results show that,at the end of the heating,the temperature of the pipe does not reach the maximum,but reached the maximum at 300 s,which indicates that the latent heat of phase change in the process of pressure welding. In the process of pressure welding, the axial stress of the pipe is gradually changed from tensile stress to compressive stress.

  6. Effect of temperature field on solidification structure of pure Al under pulse magneto-oscillation

    Directory of Open Access Journals (Sweden)

    Li Bo


    Full Text Available This article discusses the effect of temperature field on the Pulse Magneto-Oscillation (PMO induced solidification refinement of pure aluminium to provide more information for the industrial application of the PMO solidification technology. The temperature field is altered mainly by applied variable cooling conditions and pulse parameters. Experimental results show that the refinement effect in the case of full sand mould applied is weakened with the decreasing of cooling rate, however, in the alternative case, the sand mould whose sand bottom was replaced by a graphite block is favorable to the survival of equiaxed nucleus. The refinement mechanism is discussed in terms of the relationship between temperature field and the formation process of solidified structure. The formation or survival of nucleus depends on both temperature field and Joule heat produced by PMO, both low pulse frequency and high pulse current were experimentally confirmed to be effective; and PMO was demonstrated high potential in industrial application.

  7. Effect of electric field (at different temperatures) on germination of ...

    African Journals Online (AJOL)

    Chickpea (Cicer arietinum) seeds were exposed to electric field from zero to 1300 V for 15 min at three different temperatures (13, 16 and 19°C). It was found that the exposure of chickpea seeds to the electric field caused a change in water uptake capacity (and its coefficient) as compared to control. A new theoretical model ...

  8. Identifying fecal matter contamination in produce fields using multispectral reflectance imaging under ambient solar illumination (United States)

    An imaging device to detect fecal contamination in fresh produce fields could allow the producer to avoid harvesting fecal-contaminated produce. E.coli O157:H7 outbreaks have been associated with fecal-contaminated leafy greens. In this study, in-field spectral profiles of bovine fecal matter, soil,...

  9. Probing High Temperature Superconductors with Magnetometry in Ultrahigh Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lu [Univ. of Michigan, Ann Arbor, MI (United States)


    The objective of this research is to investigate the high-field magnetic properties of high temperature superconductors, materials that conduct electricity without loss. A technique known as high-resolution torque magnetometry that was developed to directly measure the magnetization of high temperature superconductors. This technique was implemented using the 65 Tesla pulsed magnetic field facility that is part of the National High Magnetic Field Laboratory at Los Alamos National Laboratory. This research addressed unanswered questions about the interplay between magnetism and superconductivity, determine the electronic structure of high temperature superconductors, and shed light on the mechanism of high temperature superconductivity and on potential applications of these materials in areas such as energy generation and power transmission. Further applications of the technology resolve the novel physical phenomena such as correlated topological insulators, and spin liquid state in quantum magnets.

  10. Variability of surface temperature in agricultural fields of central California (United States)

    Hatfield, J. L.; Millard, J. P.; Goettelman, R. C.


    In an attempt to evaluate the relationship between hand-held infrared thermometers and aircraft thermal scanners in near-level terrain and to quantify the variability of surface temperatures within individual fields, ground-based and aircraft thermal sensor measurements were made along a 50-km transect on 3 May 1979 and a 20-km transect on 7 August 1980. These comparisons were made on fields near Davis, California. Agreement was within 1 C for fields covered with vegetation and 3.6 C for bare, dry fields. The variability within fields was larger for bare, dry fields than for vegetatively covered fields. In 1980, with improvements in the collection of ground truth data, the agreement was within 1 C for a variety of fields.

  11. Axial magnetic field produced by axially and radially magnetized permanent rings

    International Nuclear Information System (INIS)

    Peng, Q.L.; McMurry, S.M.; Coey, J.M.D.


    Axial magnetic fields produced by axially and radially magnetized permanent magnet rings were studied. First, the axial magnetic field produced by a current loop is introduced, from which the axial field generated by an infinitely thin solenoid and by an infinitely thin current disk can be derived. Then the axial fields produced by axially and by radially magnetized permanent magnet rings can be obtained. An analytic formula for the axial fields produced by two axially magnetized rings is given. A permanent magnet with a high axial gradient field is fabricated, the measured results agree with the theoretical calculation very well. As an example, the axial periodic field produced by an arrangement of alternating axially and radially magnetized rings has been discussed

  12. [Problems of hygienic standardization of electromagnetic fields produced by teletransmitting objects]. (United States)

    Karachev, I I


    Maximum allowable electromagnetic field levels produced by teletransmitting stations and differentiated by frequency have been described. The prospects of further studies on the improvement of hygienic standardization of electromagnetic fields have been set forth.

  13. Nanodiamond infiltration into porous silicon through etching of solid carbon produced at different graphitization temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, C. R. B., E-mail: [Instituto Nacional de Pesquisas Espaciais-INPE, Centro de Ciencias do Sistema Terrestre-CCST, Centro de Ciencias do Sistema Terrestre-CCST (Brazil); Baldan, M. R.; Beloto, A. F.; Ferreira, N. G. [CTE/INPE, Centro de Tecnologias Espaciais (Brazil)


    Nanocrystalline diamond (NCD) was grown on the porous silicon (PS) substrate using Reticulated Vitreous Carbon (RVC) as an additional solid carbon source. RVC was produced at different heat treatment temperatures of 1300, 1500, and 2000 Degree-Sign C, resulting in samples with different turbostratic carbon organizations. The PS substrate was produced by an electrochemical method. NCD film was obtained by the chemical vapor infiltration/deposition process where a RVC piece was positioned just below the PS substrate. The PS and NCD samples were characterized by Field Emission Gun-Scanning Electron Microscopy (FEG-SEM). NCD films presented faceted nanograins with uniform surface texture covering all the pores resulting in an apparent micro honeycomb structure. Raman's spectra showed the D and G bands, as well as, the typical two shoulders at 1,150 and 1,490 cm{sup -1} attributed to NCD. X-ray diffraction analyses showed the predominant (111) diamond orientation as well as the (220) and (311) peaks. The structural organization and the heteroatom presence on the RVC surface, analyzed from X-ray photoelectron spectroscopy, showed their significant influence on the NCD growth process. The hydrogen etching released, from RVC surface, associated to carbon and/or oxygen/nitrogen amounts led to different contributions for NCD growth.

  14. Measurement of critical temperature as a function of field (United States)

    McInturff, A. D.; Ishibashi, K.; Heard, G. D.

    The critical temperature has been measured for various magnet conductors as a function of the perpendicular applied magnetic field. The isothermal environment was provided by a variable temperature cryostat which fits into the bore of a 10 telsa solenoid. The temperature gradient across the sample volume was measured to be less than 25 millikelvins. The superconducting to normal state transition was measured resistively, using sample current densities from 0.01 to 2 A cm -2. The maximum applied magnetic field was 10 T and varied less than 0.5% in the sample volume. The critical transport current range of the samples measured from tens to thousands of amperes in the presence of a 10 T perpendicular magnetic field at 4.2 K.

  15. Stabilization of Rayleigh-Taylor instability due to the spontaneous magnetic field in laser produced plasma

    International Nuclear Information System (INIS)

    Ogasawara, Masatada; Takita, Masami.


    Spontaneous magnetic fields due to the temperature gradient nabla T 0 produced by a focussed laser beam on one point of a pellet are taken into account in deriving the dispersion relation of Rayleigh-Taylor instability. Growth rate γ decreases with time. Density fluctuation with wavelength shorter than 1.5(R/L sub(T)) x (n sub(s)/n 0 )sup(1/2) μm is remarkably stabilized, where R, L sub(T), n sub(s) and n 0 are the radius of a pellet, L sub(T)sup(-1) = + nabla T 0 /T 0 + , number densities of solid and the pellet. Validity condition of the theory is γt 0 >> 1 or in another form R >> L, where t 0 is the time of thermal expansion of a pellet and L -1 = + nabla n 0 /n 0 + . (author)

  16. High pressure low temperature hot pressing method for producing a zirconium carbide ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Cockeram, Brian V.


    A method for producing monolithic Zirconium Carbide (ZrC) is described. The method includes raising a pressure applied to a ZrC powder until a final pressure of greater than 40 MPa is reached; and raising a temperature of the ZrC powder until a final temperature of less than C. is reached.

  17. Investigation of NOx Reduction by Low Temperature Oxidation Using Ozone Produced by Dielectric Barrier Discharge

    DEFF Research Database (Denmark)

    Stamate, Eugen; Irimiea, Cornelia; Salewski, Mirko


    NOx reduction by low temperature oxidation using ozone produced by a dielectric barrier discharge generator is investigated for different process parameters in a 6m long reactor in serpentine arrangement using synthetic dry flue gas with NOx levels below 500 ppm, flows up to 50 slm and temperatures...

  18. [Morphology of cracks in enamel surface produced experimentally using high and low temperature]. (United States)

    Suárez Quintanilla, J; Segade, L A; González Bahillo, J


    A scanning electron microscope study was made to study the morphological changes in the human enamel surface produced by low and high temperatures. Cracked dental enamel was observed when the teeth were exposed at low and high temperatures. When the time of exposition was increased, there are more enamel cracks which may be considered as enamel fractures.

  19. Ultra-high temperature chirped fiber Bragg gratings produced by gradient stretching of viscoelastic silica. (United States)

    Gao, Shaorui; Canning, John; Cook, Kevin


    By applying a suitable quadratic temperature distribution at a temperature within the viscoelastic softening region for silica, a regenerated chirped grating with bandwidth of 9.8 nm is produced from a uniform grating using post strain-tuning under load. Simulated and experimental results are in good agreement.

  20. The external field dependence of the BCS critical temperature

    DEFF Research Database (Denmark)

    Frank, Rupert L.; Hainzl, Christian; Seiringer, Robert


    We consider the Bardeen-Cooper-Schrieffer free energy functional for particles interacting via a two-body potential on a microscopic scale and in the presence of weak external fields varying on a macroscopic scale. We study the influence of the external fields on the critical temperature. We show...... that in the limit where the ratio between the microscopic and macroscopic scale tends to zero, the next to leading order of the critical temperature is determined by the lowest eigenvalue of the linearization of the Ginzburg-Landau equation....

  1. Temperature and field dependent Mossbauer studies of the metallic inclusions in synthetic MDAS diamond grits

    DEFF Research Database (Denmark)

    Bharuth-Ram, K.; Hansen, Mikkel Fougt; Mørup, Steen


    at temperatures of 300 K and 80 K, in zero field and in an external field of 0.60 T, on the metallic inclusions in these grits. The Mossbauer spectra of the inclusions are rather complex, reflecting the contributions of several different magnetic phases. Our results show that the temperature variation......Mossbauer spectroscopy of the metallic inclusions in diamond grits produced in high-temperature high-pressure synthesis have revealed varying but interesting results. The MDAS(1) grits synthesized with Fe/Ni solvent-catalysts show Mossbauer spectra that vary with grit size, with the ferromagnetic...... of the Mossbauer spectra is not due to superparamagnetic relaxation of ferromagnetic inclusions but rather to magnetic ordering temperatures of the order of room temperature. Based on the spectral lineshapes and elemental analyses, we suggest the inclusions in the 63-75 mum grits contain iron mainly in Fe...

  2. Infrared-temperature variability in a large agricultural field (United States)

    Millard, J. P.; Goettelman, R. C.; Leroy, M. J.


    Dunnigan Agro-Meteorological Experiment airborne thermal scanner images of a large varying-terrain barley field are acquired and analyzed. Temperature variability that may occur within instantaneous fields of view (IFOV) is defined (coefficient of variation: standard deviation/mean temperature in degrees C), and the percentage of the area within various IFOV's within + or - 1, 2, 3, and 5 degrees of the mean is determined. With the exception of very rugged terrain, over 80% of the area within 4, 16, 65 and 258 ha cells was at temperatures within + or - 3 C of the mean cell temperature. Remote measurements of field temperature appeared to be slightly influenced by pixel size in the range 4 ha to 259 ha, and the area percentage within any pixel which contributes within + or - 1, 2, 3, and 5 degrees C of the mean, is nominally the same. In conclusion, no great advantage is found in utilizing a small IFOV instead of a large one for remote sensing of crop temperature.


    Directory of Open Access Journals (Sweden)

    S. S. Belimenko


    Full Text Available Purpose. Currently, one of the priorities of energy conservation is a cost savings for heating in commercial and residential buildings by the stored thermal energy during the night and its return in the daytime. Economic effect is achieved due to the difference in tariffs for the cost of electricity in the daytime and at night. One of the most common types of devices that allow accumulating and giving the resulting heat are solid heat accumulators. The main purpose of the work: 1 software development for the calculation of the temperature field of a flat solid heat accumulator, working due to the heat energy accumulation in the volume of thermal storage material without phase transition; 2 determination the temperature distribution in its volumes at convective heat transfer. Methodology. To achieve the study objectives a heat transfer theory and Laplace integral transform were used. On its base the problems of determining the temperature fields in the channels of heat accumulators, having different cross-sectional shapes were solved. Findings. Authors have developed the method of calculation and obtained solutions for the determination of temperature fields in channels of the solid heat accumulator in conditions of convective heat transfer. Temperature fields over length and thickness of channels were investigated. Experimental studies on physical models and industrial equipment were conducted. Originality. For the first time the technique of calculating the temperature field in the channels of different cross-section for the solid heat accumulator in the charging and discharging modes was proposed. The calculation results are confirmed by experimental research. Practical value. The proposed technique is used in the design of solid heat accumulators of different power as well as full-scale production of them was organized.

  4. Temperature rise produced by different light-curing units through dentin. (United States)

    Yazici, A Rüya; Müftü, Ali; Kugel, Gerard


    This study investigated the temperature rise caused by different light curing units and the temperature increase in dentin of different thicknesses. Dentin discs of 1.0 and 2.0 mm thicknesses were prepared from extracted human mandibular molars. Temperatures were recorded directly at the surface of the light guide tip, under dentin discs with different thicknesses, and through a sandwich composed of 2 mm thick cured composite and dentin using a K-type thermocouple. The curing units used were two quartz-tungsten-halogen lights (Spectrum and Elipar Trilight-ET) and a light-emitting diode (LED). The highest temperature rise was observed under a Mylar strip using ET standard mode. Under 1 and 2 mm thick dentin barriers, the lowest temperature rise was measured for the LED curing light. Significant differences in temperature rise existed among all curing units except between the Spectrum and ET exponential modes under a 1 mm thick dentin barrier with cured composite. Temperature rises were insignificant between the Spectrum and ET exponential modes and between two modes of Trilight when the same experimental setup was used under a 2 mm thick dentin barrier. For all curing units, temperature elevation through 2 mm of dentin was less than for 1 mm of dentin thickness. The ET standard mode produced the highest and the LED produced the lowest temperature rise for all tested conditions. The thickness of dentin and light-curing unit might affect temperature transmission.

  5. Real-time temperature field measurement based on acoustic tomography

    International Nuclear Information System (INIS)

    Bao, Yong; Jia, Jiabin; Polydorides, Nick


    Acoustic tomography can be used to measure the temperature field from the time-of-flight (TOF). In order to capture real-time temperature field changes and accurately yield quantitative temperature images, two improvements to the conventional acoustic tomography system are studied: simultaneous acoustic transmission and TOF collection along multiple ray paths, and an offline iteration reconstruction algorithm. During system operation, all the acoustic transceivers send modulated and filtered wideband Kasami sequences simultaneously to facilitate fast and accurate TOF measurements using cross-correlation detection. For image reconstruction, the iteration process is separated and executed offline beforehand to shorten computation time for online temperature field reconstruction. The feasibility and effectiveness of the developed methods are validated in the simulation study. The simulation results demonstrate that the proposed method can reduce the processing time per frame from 160 ms to 20 ms, while the reconstruction error remains less than 5%. Hence, the proposed method has great potential in the measurement of rapid temperature change with good temporal and spatial resolution. (paper)

  6. Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures. (United States)

    Ahmad, Mahtab; Lee, Sang Soo; Rajapaksha, Anushka Upamali; Vithanage, Meththika; Zhang, Ming; Cho, Ju Sik; Lee, Sung-Eun; Ok, Yong Sik


    In this study, pine needles were converted to biochar (BC) at different pyrolysis temperatures of 300, 500, and 700 °C to sorb trichloroethylene (TCE), and the changes in BC properties with each temperature were evaluated. Pyrolysis temperature showed a pronounced effect on BC properties. Decreases in molar H/C and O/C ratios resulted from removing O- and H-containing functional groups with increasing temperature, and produced high aromaticity and low polarity BCs. BCs produced at higher temperature showed greater TCE removal efficiency from water due to their high surface area, micro-porosity, and carbonized extent. The performance of various BCs for TCE removal was assessed by the Freundlich, Langmuir, Temkin, and Dubinin-Radushkevich adsorption models, among which the Temkin and Dubinin-Radushkevich models best described TCE adsorption onto various BCs, indicating prevailing sorption mechanism as pore-filling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Thermocouple based method of temperature and velocity field mapping

    Czech Academy of Sciences Publication Activity Database

    Gregor, J.; Jakubová, I.; Mendl, T.; Šenk, J.; Kopecký, Vladimír


    Roč. 52, supplement D (2002), s. 596-600 ISSN 0011-4626. [Symposium on Plasma Physics and Technology/20th./. Prague, 10.06.2002-13.06.2002] Institutional research plan: CEZ:AV0Z2043910 Keywords : determination of temperature, velocity field Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.311, year: 2002

  8. Temperature fields in a growing solar silicon crystal

    Directory of Open Access Journals (Sweden)

    Kondrik A. I.


    Full Text Available The optimal thermal terms for growing by Czochralski method Si single-crystals, suitable for making photoelectric energy converters, has been defined by the computer simulation method. Dependences of temperature fields character and crystallization front form on the diameter of the crystal, stage and speed of growing, and also on correlation between diameter and height of the crystal has been studied.

  9. Protein Profile of Mozzarella Cheese Produced with Treatment of Coagulation and Stretching Temperature Combination

    Directory of Open Access Journals (Sweden)

    Purwadi Purwadi


    Full Text Available A research used lime juice as acidifier in the making of Mozzarella cheese was aimed to learn the protein profile produced with treatment of coagulation stretching temperature combination. The method used in this research was factorial experiment of 4 x 4, the first factor was coagulation temperature (G : G1 = 30 oC, G2 = 35 oC, G3 = 40 oC, and G4 = 45 oC, and the second factor was stretching temperature (M : M1 = 70 oC, M2 = 75 oC, M3 = 80 oC, and M4 = 85oC. Combination of coagulation temperature 30 and 35oC with different stretching temperatures 70, 75, 80, and 85 oC, gave the same protein electroforegram, but the combination of coagulation temperature 30 and 35 oC and coagulation temperatur 40 and 45 oC with different stretching temperature gave different protein electroforegram. From this experiment, its could be concluded that the treatment of coagulation temperature 30 oC with stretching temperature 75 oC is the best treatment. Keywords: protein profile, Mozzarella cheese, coagulation temperature, stretching temperature

  10. Effect of temperature on optimization of ZrO2 nanofiber produced by electrospinning method

    International Nuclear Information System (INIS)

    Ahmadpourian, A.; Boochani, A.; Arman, A.; Solaymani, Sh.; Zahrabi, H.; Elahi, S.M.


    The aim of this study was to test a simple and inexpensive method of electrospinning in order to produce narrow diameter nanofibers for industrial applications. The zirconium oxide nanofiber is made by electrospinning on an aluminum plate. In this method, a high voltage is applied between the needle of a syringe and an aluminum plate. A viscous liquid is poured into the syringe and a jet is produced on the desired plate due to high voltage. The crystalline structure and morphology of the produced nanofibers were studied by XRD and SEM. Results showed that nanofibers with a smaller diameter were produced at higher annealing temperatures. (authors)

  11. Field emission behavior of carbon nanotube field emitters after high temperature thermal annealing

    Directory of Open Access Journals (Sweden)

    Yuning Sun


    Full Text Available The carbon nanotube (CNT field emitters have been fabricated by attaching a CNT film on a graphite rod using graphite adhesive material. The CNT field emitters showed much improved field emission properties due to increasing crystallinity and decreasing defects in CNTs after the high temperature thermal annealing at 900 °C in vacuum ambient. The CNT field emitters showed the low turn-on electric field of 1.15 V/μm, the low threshold electric field of 1.62 V/μm, and the high emission current of 5.9 mA which corresponds to a current density of 8.5 A/cm2. In addition, the CNT field emitters indicated the enhanced field emission properties due to the multi-stage effect when the length of the graphite rod increases. The CNT field emitter showed good field emission stability after the high temperature thermal annealing. The CNT field emitter revealed a focused electron beam spot without any focusing electrodes and also showed good field emission repeatability.

  12. Temperature rising characteristics of ammonium diurante in microwave fields

    International Nuclear Information System (INIS)

    Liu Bingguo; Peng JinHui; Huang Daifu; Zhang Libo; Hu Jinming; Zhuang Zebiao; Kong Dongcheng; Guo Shenghui; Li Chunxiang


    The temperature rising characteristics of ammonium diurante, triuranium octaoxide (U 3 O 8 ), and their mixture were investigated under microwave irradiation, aiming at exploring newly theoretical foundation for advanced metallurgical methods. The temperature rising curves showed that ammonium diurante had weak capability to absorb microwave energy, while triuranium octaoxide had the very strong absorption capability. The temperature of mixture containing 20% of U 3 O 8 could rise from room temperature to 1171 K within 280 s. The ability to absorb microwave energy for the mixture with different ratios increased with the increase in the amount of U 3 O 8 . These are in good agreement with the results of Maxwell-Garnett effective medium theory. It is feasible to calcine ammonium diurante by adding of small amounts of U 3 O 8 in microwave fields.

  13. Real-time measurement of materials properties at high temperatures by laser produced plasmas (United States)

    Kim, Yong W.


    Determination of elemental composition and thermophysical properties of materials at high temperatures, as visualized in the context of containerless materials processing in a microgravity environment, presents a variety of unusual requirements owing to the thermal hazards and interferences from electromagnetic control fields. In addition, such information is intended for process control applications and thus the measurements must be real time in nature. A new technique is described which was developed for real time, in-situ determination of the elemental composition of molten metallic alloys such as specialty steel. The technique is based on time-resolved spectroscopy of a laser produced plasma (LPP) plume resulting from the interaction of a giant laser pulse with a material target. The sensitivity and precision were demonstrated to be comparable to, or better than, the conventional methods of analysis which are applicable only to post-mortem specimens sampled from a molten metal pool. The LPP technique can be applied widely to other materials composition analysis applications. The LPP technique is extremely information rich and therefore provides opportunities for extracting other physical properties in addition to the materials composition. The case in point is that it is possible to determine thermophysical properties of the target materials at high temperatures by monitoring generation and transport of acoustic pulses as well as a number of other fluid-dynamic processes triggered by the LPP event. By manipulation of the scaling properties of the laser-matter interaction, many different kinds of flow events, ranging from shock waves to surface waves to flow induced instabilities, can be generated in a controllable manner. Time-resolved detection of these events can lead to such thermophysical quantities as volume and shear viscosities, thermal conductivity, specific heat, mass density, and others.

  14. Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field

    KAUST Repository

    Zhang, Senfu


    Magnetic skyrmions are topologically protected nanoscale spin textures exhibiting fascinating physical behaviors. Recent observations of room temperature skyrmions in sputtered multilayer films are an important step towards their use in ultra-low power devices. Such practical applications prefer skyrmions to be stable at zero magnetic fields and room temperature. Here, we report the creation of skyrmion lattices in Pt/Co/Ta multilayers by a scanning local field using magnetic force microscopy tips. We also show that those newly created skyrmion lattices are stable at both room temperature and zero fields. Lorentz transmission electron microscopy measurements reveal that the skyrmions in our films are of Néel-type. To gain a deeper understanding of the mechanism behind the creation of a skyrmion lattice by the scanning of local fields, we perform micromagnetic simulations and find the experimental results to be in agreement with our simulation data. This study opens another avenue for the creation of skyrmion lattices in thin films.

  15. Perturbative algebraic quantum field theory at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, Falk


    We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.

  16. Surface analyses of carbon fibers produced from polyacrylonitrile fibers at low carbonization temperatures (United States)

    Cagliostro, D. E.


    A process for producing carbon fibers from polyacrylonitrile at low carbonization temperatures was studied. The bulk and surface properties of fibers obtained after reaction with benzoic acid, air and carbonizing in nitrogen or a dilute acetylene atmosphere are discussed. All fiber products had different surface and internal compositions. Samples produced at temperatures up to 950 C and carbonized in nitrogen contained substantial quantities of nitrogen and oxygen at the surface. During carbonization, the surface nitrogen converted into two new forms, possibly nitrile and an azo or a new carbon-nitrogen bond. Samples carbonized in acetylene contained a carbon-rich surface stable to oxidation.

  17. The Temperature - Magnetic Field Relation in Observed and Simulated Sunspots (United States)

    Sobotka, Michal; Rezaei, Reza


    Observations of the relation between continuum intensity and magnetic field strength in sunspots have been made for nearly five decades. This work presents full-Stokes measurements of the full-split (g = 3) line Fe i 1564.85 nm with a spatial resolution of 0.5^'' obtained with the GREGOR Infrared Spectrograph in three large sunspots. The continuum intensity is corrected for instrumental scattered light, and the brightness temperature is calculated. Magnetic field strength and inclination are derived directly from the line split and the ratio of Stokes components. The continuum intensity (temperature) relations to the field strength are studied separately in the umbra, light bridges, and penumbra. The results are consistent with previous studies, and it was found that the scatter of values in the relations increases with increasing spatial resolution thanks to resolved fine structures. The observed relations show trends common for the umbra, light bridges, and the inner penumbra, while the outer penumbra has a weaker magnetic field than the inner penumbra at equal continuum intensities. This fact can be interpreted in terms of the interlocking comb magnetic structure of the penumbra. A comparison with data obtained from numerical simulations was made. The simulated data generally have a stronger magnetic field and a weaker continuum intensity than the observations, which may be explained by stray light and limited spatial resolution of the observations, and also by photometric inaccuracies of the simulations.

  18. Investigation of NOx Reduction by Low Temperature Oxidation Using Ozone Produced by Dielectric Barrier Discharge (United States)

    Stamate, Eugen; Irimiea, Cornelia; Salewski, Mirko


    NOx reduction by low temperature oxidation using ozone produced by a dielectric barrier discharge generator is investigated for different process parameters in a 6 m long reactor in serpentine arrangement using synthetic dry flue gas with NOx levels below 500 ppm, flows up to 50 slm and temperatures up to 80 °C. The role of different mixing schemes and the impact of a steep temperature gradient are also taken into consideration. The process chemistry is monitored by Fourier transform infrared spectroscopy, chemiluminescence and absorption spectroscopy. The kinetic mechanism during the mixing in a cross flow configuration is investigated using three-dimensional simulations.

  19. Temperature field downstream of an heated bundle mock-up results for different power distribution

    International Nuclear Information System (INIS)

    Girard, J.P.; Buravand, Y.


    The aim of these peculiar experiments performed on the ML4 loop in ISPRA is to evaluate the characteristics of the temperature field over a length of 20 to 30 dias downstream of a rod bundle for different temperatures profiles at the bundle outlet. The final purpose of this work will be to establish either directly or through models whether it is possible or not to detect subassembly failures using suitable of the subassembly outlet temperature signal. 15 hours of digital and analog recording were taped for five different power distributions in the bundle. The total power dissipation remained constant during the whole run. Two flow rates and seven axial location were investigated. It is shown that the different temperature profiles produce slight differences in the variance and skewness of the temperature signal measured along the axis of the pipe over 20 dias

  20. Imulation of temperature field in swirl pulverized coal boiler (United States)

    Lv, Wei; Wu, Weifeng; Chen, Chen; Chen, Weifeng; Qi, Guoli; Zhang, Songsong


    In order to achieve the goal of energy saving and emission reduction and energy efficient utilization, taking a 58MW swirl pulverized coal boiler as the research object, the three-dimensional model of the rotor is established. According to the principle of CFD, basic assumptions and boundary conditions are selected, the temperature field in the furnace of 6 kinds of working conditions is numerically solved, and the temperature distribution in the furnace is analyzed. The calculation results show that the temperature of the working condition 1 is in good agreement with the experimental data, and the error is less than 10%,the results provide a theoretical basis for the following calculation. Through the comparison of the results of the 6 conditions, it is found that the working condition 3 is the best operating condition of the pulverized coal boiler.


    Directory of Open Access Journals (Sweden)

    M. K. Pshembaev


    Full Text Available The heat fluxes impact on the road-dressing concrete surfacing under different regions climatic conditions of the construction and maintenance dramatically degrades their solidity, corroding-, shiftingand frost-resistance, and ultimately – the service durability. The source of deformation processes is the character of the gradient temperature fields in the road dressing materials developing with both protracted (static and short run (dynamic heat-and-mass impacts that forward destruction of the pavement surface layers being in contact with free air. In addition, pulsating hydrodynamic pressures appear in the pores of moisture-laden pavement as a result of the vehicular traffic that foster material structure disruption of the surface layers leading to irreversible deformation incipiency (cracks etc.. The authors report of developing a С++ computer program for temperature and gradient fields engineering evaluations of the road dressings made of materials with various surfacing and free-air thermophysical characteristics in line with boundary conditions of the 3rd kind for semi-bounded body. The paper presents the evaluation results in form of graphical curves of the temperature allocation along the surfacing thickness as function of its initial temperature and thermophysical characteristics of the concrete. 

  2. Simple method for highlighting the temperature distribution into a liquid sample heated by microwave power field

    International Nuclear Information System (INIS)

    Surducan, V.; Surducan, E.; Dadarlat, D.


    Microwave induced heating is widely used in medical treatments, scientific and industrial applications. The temperature field inside a microwave heated sample is often inhomogenous, therefore multiple temperature sensors are required for an accurate result. Nowadays, non-contact (Infra Red thermography or microwave radiometry) or direct contact temperature measurement methods (expensive and sophisticated fiber optic temperature sensors transparent to microwave radiation) are mainly used. IR thermography gives only the surface temperature and can not be used for measuring temperature distributions in cross sections of a sample. In this paper we present a very simple experimental method for temperature distribution highlighting inside a cross section of a liquid sample, heated by a microwave radiation through a coaxial applicator. The method proposed is able to offer qualitative information about the heating distribution, using a temperature sensitive liquid crystal sheet. Inhomogeneities as smaller as 1°-2°C produced by the symmetry irregularities of the microwave applicator can be easily detected by visual inspection or by computer assisted color to temperature conversion. Therefore, the microwave applicator is tuned and verified with described method until the temperature inhomogeneities are solved

  3. The Advanced High-Temperature Reactor (AHTR) for Producing Hydrogen to Manufacture Liquid Fuels

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Peterson, P.F.; Ott, L.


    Conventional world oil production is expected to peak within a decade. Shortfalls in production of liquid fuels (gasoline, diesel, and jet fuel) from conventional oil sources are expected to be offset by increased production of fuels from heavy oils and tar sands that are primarily located in the Western Hemisphere (Canada, Venezuela, the United States, and Mexico). Simultaneously, there is a renewed interest in liquid fuels from biomass, such as alcohol; but, biomass production requires fertilizer. Massive quantities of hydrogen (H2) are required (1) to convert heavy oils and tar sands to liquid fuels and (2) to produce fertilizer for production of biomass that can be converted to liquid fuels. If these liquid fuels are to be used while simultaneously minimizing greenhouse emissions, nonfossil methods for the production of H2 are required. Nuclear energy can be used to produce H2. The most efficient methods to produce H2 from nuclear energy involve thermochemical cycles in which high-temperature heat (700 to 850 C) and water are converted to H2 and oxygen. The peak nuclear reactor fuel and coolant temperatures must be significantly higher than the chemical process temperatures to transport heat from the reactor core to an intermediate heat transfer loop and from the intermediate heat transfer loop to the chemical plant. The reactor temperatures required for H2 production are at the limits of practical engineering materials. A new high-temperature reactor concept is being developed for H2 and electricity production: the Advanced High-Temperature Reactor (AHTR). The fuel is a graphite-matrix, coated-particle fuel, the same type that is used in modular high-temperature gas-cooled reactors (MHTGRs). The coolant is a clean molten fluoride salt with a boiling point near 1400 C. The use of a liquid coolant, rather than helium, reduces peak reactor fuel and coolant temperatures 100 to 200 C relative to those of a MHTGR. Liquids are better heat transfer fluids than gases

  4. Torque density measurements on vortex fluids produced by symmetry-breaking rational magnetic fields. (United States)

    Solis, Kyle J; Martin, James E


    We have recently reported on the discovery that an infinite class of triaxial magnetic fields is capable of producing rotational flows in magnetic particle suspensions. These triaxial fields are created by applying a dc field orthogonally to a rational biaxial field, comprised of orthogonal components whose frequencies form a rational ratio. The vorticity axis can be parallel to any of the three field components and can be predicted by a careful consideration of the symmetry of the dynamic field. In this paper we not only test the field-symmetry predictions, but also quantify fluid vorticity as a function of the field parameters (strength, frequency ratio, phase angle and relative dc field strength) and particle shape. These measurements validate the symmetry predictions and demonstrate that rational fields are as effective as vortex fields for producing strong fluid mixing, yet have the advantage that small changes in the frequency of one of the field components can change the vorticity axis. This approach extends the possibilities for noncontact control of fluid flows and should be useful in areas such as microfluidics, and the manipulation and mixing of microdroplets.

  5. Exact Electromagnetic Fields Produced by a Finite Wire with Constant Current (United States)

    Jimenez, J. L.; Campos, I.; Aquino, N.


    We solve exactly the problem of calculating the electromagnetic fields produced by a finite wire with a constant current, by using two methods: retarded potentials and Jefimenko's formalism. One result in this particular case is that the usual Biot-Savart law of magnetostatics gives the correct magnetic field of the problem. We also show…

  6. Yield and nutrient composition of biochar produced from different feedstocks at varying pyrolytic temperatures

    International Nuclear Information System (INIS)

    Naeem, M.A.; Khalid, M.; Arshad, M.; Ahmad, R.


    Variation in pyrolytic temperatures and feedstocks affects the yield and nutrient composition of biochar. Selection of suitable feedstock and optimum pyrolytic temperature is crucial before using it for agricultural purposes. We compared biochars produced from two feedstocks (wheat straw and rice) at three temperatures (300, 400 and 500 degree C). Biochar yield decreased significantly (p<0.05) with increasing pyrolysis temperature, while ash contents were increased. The cation exchange capacity was significantly higher (119 cmolc kg/sup -1/) at temperature 400 degree C. The pH, electrical conductivity (EC) and carbon content of biochars increased significantly with increasing temperature and maximum pH (10.4) and EC (3.35 dS m/sup -1/) were observed in rice straw biochar (WSB) at 500 degree C and carbon content (662 g kg/sup -1/) in wheat straw biochar (RSB) at 500 degree C. Concentration of phosphorus (P) and potassium (K) increased significantly with increasing temperature, while of nitrogen (N) decreased. Overall, the maximum N (13.8 g kg/sup -1/at 300 degree C) and P (3.4 g kg/sup -1/at 500 degree C) concentrations were observed in WSB while, maximum K (48 g kg/sup -1/ at 500 degree C)in RSB. High pyrolysis temperature reduced AB-DTPA extractable nutrients (expect Mn). The highest AB-DTPA extractable nutrients such as P (113 mg kg/sup -1/) and Ca (1.07 g kg/sup -1/) were observed in WSB at 300 degree C while, K (18 g kg/sup -1/) and magnesium (Mg) (1.55 g kg/sup -1/) in RSB at 300 degree C. Selected feedstock and use of low pyrolysis temperature may produce nutrient-rich biochar, with high CEC and low pH and these could have positive effects on calcareous soils. (author)

  7. New blue pigment produced by Pantoea agglomerans and its production characteristics at various temperatures. (United States)

    Fujikawa, Hiroshi; Akimoto, Ryo


    A bacterium capable of producing a deep blue pigment was isolated from the environment and identified as Pantoea agglomerans. The pigment production characteristics of the bacterium under various conditions were studied. The optimal agar plate ingredients for pigment production by the bacterium were first studied: the optimal ingredients were 5 g/liter glucose, 10 g/liter tryptic soy broth, and 40 g/liter glycerol at pH 6.4. Bacterial cells grew on the agar plate during the incubation, while the pigment spread into the agar plate, meaning that it is water soluble. Pigment production was affected by the initial cell density. Namely, at higher initial cell densities ranging from 10(6.3) to 10(8.2) CFU/cm(2) on the agar plate, faster pigment production was observed, but no blue pigment was produced at a very high initial density of 10(9.1) CFU/cm(2). Thus, the cell population of 10(8.2) CFU/cm(2) was used for subsequent study. Although the bacterium was capable of growing at temperatures above and below 10°C, it could produce the pigment only at temperatures of ≥10°C. Moreover, the pigment production was faster at higher temperatures in the range of 10 to 20°C. Pigment production at various temperature patterns was well described by a new logistic model. These results suggested that the bacterium could be used in the development of a microbial temperature indicator for the low-temperature-storage management of foods and clinical materials. To our knowledge, there is no other P. agglomerans strain capable of producing a blue pigment and the pigment is a new one of microbial origin.

  8. Coaxial monitoring of temperature field in selective pulsed laser melting (United States)

    Liu, Che; Chen, Zhongyun; Cao, Hongzhong; Zhou, Jianhong


    Selective Laser Melting is a rapid manufacturing technology which produces complex parts layer by layer. The presence of thermal stress and thermal strain in the forming process often leads to defects in the formed parts. In order to detect fabricate errors and avoid failure which caused by thermal gradient in time. An infrared thermal imager and a high speed CCD camera were applied to build a coaxial optical system for real-time monitoring the temperature distribution and changing trend of laser affected zone in SLM forming process. Molten tracks were fabricated by SLM under different laser parameters such as frequency, pulse width. And the relationship between the laser parameters and the temperature distribution were all obtained and analyzed.

  9. Rice Cluster I, an Important Group of Archaea Producing Methane in Rice Fields (United States)

    Conrad, R.


    Rice fields are an important source for the greenhouse gas methane. Methane is a major degradation product of organic matter in the anoxic soil, is partially oxidized in the rhizosphere and is emitted into the atmosphere through the aerenchyma system of the plants. Anaerobic degradation of organic matter by fermenting bacteria eventually results in the production of acetate and hydrogen, the two major substrates for microbial methanogenesis. The community of methanogenic archaea consists of several major orders or families including hydrogen-utilizing Rice Cluster-I (RC-I). Environmental conditions affect the methanogenic degradation process and the community structure of the methanogenic archaea in soil and rhizosphere. For example, populations of acetoclastic Methanosaetaceae and Methanosarcinaceae are enhanced by low and high acetate concentrations, respectively. Stable isotope probing of 16S rRNA showed that RC-I methanogens are mainly active on rice roots and at low H2 concentrations. Growth and population size is largely consistent with energetic conditions. RC-I methanogens on roots seem to be responsible for methane production from plant photosynthates that account for a major part of the emitted methane. Populations of RC-I methanogens in rice field soil are also enhanced at elevated temperatures (40-50°C). Moderately thermophilic members of RC-I methanogens or other methanogenic families were found to be ubiquitously present in soils from rice fields and river marshes. The genome of a RC-I methanogen was completely sequenced out of an enrichment culture using a metagenome approach. Genes found are consistent with life in the rhizosphere and in temporarily drained, oxic soil. We found that the methanogenic community structure on the rice roots is mainly determined by the respective community structure of the soil, but is in addition affected by the rice cultivar. Rice microcosms in which soil and rice roots are mainly colonized by RC-I methanogens produce

  10. Temperature field in concrete when in contact with hot liquids

    International Nuclear Information System (INIS)

    Andrade Lima, F.R. de.


    In an HCDA (Hypothetical Core Disruptive Accident) it is postulated that liquid metal coolants and core materials come in contact with the retaining concrete structure. A mathematical model and an associated computer program was previously developed to describle the transient heat and mass transfer in the concrete. Implementations on the original program-USINT- are included to consider the variations of the thermal conductivity as a function of the temperature. Also a subroutine - PLOTTI - is incorporated to the program for the plotting of the results. The new program - USINTG - is used to calculate the temperature and pressure fields and the water released from concrete structures during a sodium leak simulation and with the concrete structures in contact with liquid sodium. No consideration about chemical reactions involving the sodium when in contact with concrete is considered. (Author) [pt

  11. Mathematics of thermal diffusion in an exponential temperature field (United States)

    Zhang, Yaqi; Bai, Wenyu; Diebold, Gerald J.


    The Ludwig-Soret effect, also known as thermal diffusion, refers to the separation of gas, liquid, or solid mixtures in a temperature gradient. The motion of the components of the mixture is governed by a nonlinear, partial differential equation for the density fractions. Here solutions to the nonlinear differential equation for a binary mixture are discussed for an externally imposed, exponential temperature field. The equation of motion for the separation without the effects of mass diffusion is reduced to a Hamiltonian pair from which spatial distributions of the components of the mixture are found. Analytical calculations with boundary effects included show shock formation. The results of numerical calculations of the equation of motion that include both thermal and mass diffusion are given.

  12. Stochastic analysis of temperature fields in frozen foundation soils (United States)

    Burkov, Pyotr; Konan, Eme Cesar; Burkov, Vladimir; Burkova, Svetlana; Kolesov, Aleks


    One of the most crucial issues of compressor stations engineering and construction is to provide foundation stability and robustness of such stations in permafrost conditions. To date, one of the most used protection methods for compressor stations in permafrost conditions is thermal stabilization of soil. This paper is focused on calculation of the temperature stabilizing foundation based on the mathematical model of stochastic analysis and the forecast of temperature field impacts. Thermotechnical calculations can be used to provide the best estimate of the standard values of strength and deformation parameters of permafrost soils subjected to shear stress and pile foot pressure. The best estimate will be useful for optimization of engineering solutions in terms of support and foundation structures.

  13. Method for producing ceramic composition having low friction coefficient at high operating temperatures (United States)

    Lankford, Jr., James


    A method for producing a stable ceramic composition having a surface with a low friction coefficient and high wear resistance at high operating temperatures. A first deposition of a thin film of a metal ion is made upon the surface of the ceramic composition and then a first ion implantation of at least a portion of the metal ion is made into the near surface region of the composition. The implantation mixes the metal ion and the ceramic composition to form a near surface composite. The near surface composite is then oxidized sufficiently at high oxidizing temperatures to form an oxide gradient layer in the surface of the ceramic composition.

  14. Electron temperature diagnostics in the RFX reversed field pinch experiment

    International Nuclear Information System (INIS)

    Bartiromo, R.; Carraro, L.; Marrelli, L.; Murari, A.; Pasqualotto, R.; Puiatti, M.E.; Scarin, P.; Valisa, M.; Franz, P.; Martin, P.; Zabeo, L.


    The paper presents an integrated approach to the problem of electron temperature diagnostics of the plasma in a reversed field pinch. Three different methods, sampling different portions of the electron distribution function, are adopted, namely Thomson scattering, soft X-ray spectroscopy by pulse-height analysis and filtered soft X-ray intensity ratio. A careful analysis of the different sources of systematic errors is performed and a novel statistical approach is adopted to mutually validate the three independent measurements. A satisfactory agreement is obtained over a large range of experimental conditions, indicating that in the plasma core the energy distribution function is well represented by a maxwellian. (author)

  15. Temperature-field phase diagram of extreme magnetoresistance. (United States)

    Fallah Tafti, Fazel; Gibson, Quinn; Kushwaha, Satya; Krizan, Jason W; Haldolaarachchige, Neel; Cava, Robert Joseph


    The recent discovery of extreme magnetoresistance (XMR) in LaSb introduced lanthanum monopnictides as a new platform to study this effect in the absence of broken inversion symmetry or protected linear band crossing. In this work, we report XMR in LaBi. Through a comparative study of magnetotransport effects in LaBi and LaSb, we construct a temperature-field phase diagram with triangular shape that illustrates how a magnetic field tunes the electronic behavior in these materials. We show that the triangular phase diagram can be generalized to other topological semimetals with different crystal structures and different chemical compositions. By comparing our experimental results to band structure calculations, we suggest that XMR in LaBi and LaSb originates from a combination of compensated electron-hole pockets and a particular orbital texture on the electron pocket. Such orbital texture is likely to be a generic feature of various topological semimetals, giving rise to their small residual resistivity at zero field and subject to strong scattering induced by a magnetic field.

  16. Electric field and temperature in a target induced by a plasma jet imaged using Mueller polarimetry (United States)

    Slikboer, Elmar; Sobota, Ana; Guaitella, Olivier; Garcia-Caurel, Enric


    Mueller polarimetry is used to investigate the behavior of an electro optic target (BSO crystal) under exposure of guided ionization waves produced by an atmospheric pressure plasma jet. For the first time, this optical technique is time resolved to obtain the complete Mueller matrix of the sample right before and after the impact of the discharges. By analyzing the induced birefringence, the spatial profiles and local values are obtained of both the electric field and temperature in the sample. Electric fields are generated due to deposited surface charges and a temperature profile is present, due to the heat transferred by the plasma jet. The study of electric field dynamics and local temperature increase at the target, due to the plasma jet is important for biomedical applications, as well as surface functionalization. This work shows how Mueller polarimetry can be used as a novel diagnostic to simultaneously acquire the spatial distribution and local values of both the electric field and temperature, by coupling the external source of anisotropy to the measured induced birefringence via the symmetry point group of the examined material.

  17. The Aluminum Based Composite Produced by Self Propagating High Temperature Synthesis

    Directory of Open Access Journals (Sweden)

    Agus PRAMONO


    Full Text Available Self-propagating high-temperature synthesis method can be used for producing aluminum and boron carbide based composites. The experimental composites were fabricated using cobalt and carbon as catalysts. The microstructure of the material was studied using Scanning Electron Microscopy and the mechanical properties were determined using micro-hardness testing. Al/B4C based composites with improved properties were obtained and the role of Co/C catalysts was studied.

  18. Microstructure Assessment of Metakaolin Based-Geopolymers Produced with Alternative Silica Sources Exposed to High Temperatures


    Villaquirán-Caicedo Mónica Alejandra; Rodríguez Erich David; Mejía-De Gutiérrez Ruby


    Ceramic materials more environment friendly and with similar or even better performance than traditional ones can be produced by alkali activation of natural minerals, wastes or industrial by-products. The present study assesses the effect of exposure at 600° and 1200°C of a MK-based geopolymers. Rice husk ash (RHA) and silica fume were modified chemically in order to obtain an alternative alkali activator. Exposure to elevated temperatures leads to dehydration of the reaction products and st...

  19. Increasing Gas Hydrate Formation Temperature for Desalination of High Salinity Produced Water with Secondary Guests

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jong-Ho; Seol, Yongkoo


    We suggest a new gas hydrate-based desalination process using water-immiscible hydrate formers; cyclopentane (CP) and cyclohexane (CH) as secondary hydrate guests to alleviate temperature requirements for hydrate formation. The hydrate formation reactions were carried out in an isobaric condition of 3.1 MPa to find the upper temperature limit of CO2 hydrate formation. Simulated produced water (8.95 wt % salinity) mixed with the hydrate formers shows an increased upper temperature limit from -2 °C for simple CO2 hydrate to 16 and 7 °C for double (CO2 + CP) and (CO2 + CH) hydrates, respectively. The resulting conversion rate to double hydrate turned out to be similar to that with simple CO2 hydrate at the upper temperature limit. Hydrate formation rates (Rf) for the double hydrates with CP and CH are shown to be 22 and 16 times higher, respectively, than that of the simple CO2 hydrate at the upper temperature limit. Such mild hydrate formation temperature and fast formation kinetics indicate increased energy efficiency of the double hydrate system for the desalination process. Dissociated water from the hydrates shows greater than 90% salt removal efficiency for the hydrates with the secondary guests, which is also improved from about 70% salt removal efficiency for the simple hydrates.

  20. Induction Heating of Nonmagnetic Cylindrical Billets by Rotation in Magnetic Field Produced by Static Permanent Magnets

    Czech Academy of Sciences Publication Activity Database

    Karban, P.; Mach, F.; Doležel, Ivo


    Roč. 86, č. 12 (2010), s. 53-56 ISSN 0033-2097 Grant - others:GA ČR(CZ) GAP102/10/0216 Program:GA Institutional research plan: CEZ:AV0Z20570509 Keywords : induction heating * magnetic field * temperature field Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.242, year: 2010

  1. Pretest Calculations of Temperature Changes for Field Thermal Conductivity Tests

    International Nuclear Information System (INIS)

    N.S. Brodsky


    A large volume fraction of the potential monitored geologic repository at Yucca Mountain may reside in the Tptpll (Tertiary, Paintbrush Group, Topopah Spring Tuff, crystal poor, lower lithophysal) lithostratigraphic unit. This unit is characterized by voids, or lithophysae, which range in size from centimeters to meters. A series of thermal conductivity field tests are planned in the Enhanced Characterization of the Repository Block (ECRB) Cross Drift. The objective of the pretest calculation described in this document is to predict changes in temperatures in the surrounding rock for these tests for a given heater power and a set of thermal transport properties. The calculation can be extended, as described in this document, to obtain thermal conductivity, thermal capacitance (density x heat capacity, J · m -3 · K -1 ), and thermal diffusivity from the field data. The work has been conducted under the ''Technical Work Plan For: Testing and Monitoring'' (BSC 2001). One of the outcomes of this analysis is to determine the initial output of the heater. This heater output must be sufficiently high that it will provide results in a reasonably short period of time (within several weeks or a month) and be sufficiently high that the heat increase is detectable by the instruments employed in the test. The test will be conducted in stages and heater output will be step increased as the test progresses. If the initial temperature is set too high, the experiment will not have as many steps and thus fewer thermal conductivity data points will result

  2. Graphene quantum dots produced by exfoliation of intercalated graphite nanoparticles and their application for temperature sensors (United States)

    Nguyen, Duy Khiem; Kim, TaeYoung


    Graphene quantum dots (GQDs) have received much attention as a new class of fluorescent materials due to their unique transport phenomena and broadband absorption. Here, we present a method to produce pristine blue-luminescent GQDs from graphite nanoparticles by the intercalation of graphite nanoparticles and subsequent exfoliation in liquids. The as-synthesized GQDs are composed of highly crystalline carbon rings and show uniform size distribution ranging from 3 to 4 nm with an average thickness of ∼1 nm. The GQDs exhibit an excitation-dependent blue photoluminescence with a quantum yield of 22.3%. Furthermore, the GQDs were explored as an active sensing material for temperature measurement. The GQD-based temperature sensors show high responsivity to temperature changes over the range 30-80 °C.

  3. Direct reduction of low grade nickel laterite ore to produce ferronickel using isothermal - temperature gradient (United States)

    Zulhan, Zulfiadi; Gibranata, Ian


    In this study, low grade nickel laterite ore was processed by means of isothermal-temperature gradient method to produce ferronickel nugget. The ore and coal as reductant were ground to obtain the grain size of less than 0.25 mm and 0.425 mm, respectively. Both ground laterite ore and coal were mixed, agglomerated in the form of cylindrical pellet by using press machine and then reduced at temperature of 1000°C to 1400°C in a muffle furnace. The experiments were conducted at three stages each at different temperature profile: the first stage was isothermal at 1000°C; the second stage was temperature gradient at certain heating rate from 1000 to 1400°C; and the third stage was isothermal at 1400°C. The heating rate during temperature gradient stage was varied: 6.67, 8.33 and 10°C/minute. No fluxes were added in these experiments. By addition of 10 wt% of coal into the laterite nikel ore, product of ferronickel nugget was formed with the size varies from 1-2 mm. However, by increasing the coal content, the size of ferronickel nugget was decreased to less than 0.2 mm. The observation of the samples during the heating stage showed that ferronickel nugget grew and separated from the gangue during temperature gradient stage as it achieved the temperature of 1380°C. Furthermore, the experiment results indicated that the recovery of ferronickel can be increased at lower heating rate during temperature gradient stage and longer holding time for final isothermal stage. The highest nickel recovery was obtained at a heating rate of 6.67°C/minute.

  4. Polarization operator in quantum electrodynamics with a pair-producing external field

    International Nuclear Information System (INIS)

    Barashev, V.P.; Shvartsman, Sh.M.; Shabad, A.E.


    Various radiative processes with one-photon initial state are treated in QED with pair-producing external field. It is shown that the probabilities of such processes are expressed in terms of two different polarization operators. For the case of a constant field the polarization operator which is expressed through the so-called causal Green electron function, is calculated. This operator has never been calculated previously. It enters the formula for probability of production of N arbitrary pairs by a photon

  5. Inflation-produced magnetic fields in RnF2 and IF2 models

    International Nuclear Information System (INIS)

    Campanelli, L.; Cea, P.; Fogli, G. L.; Tedesco, L.


    We reanalyze the production of seed magnetic fields during inflation in (R/m 2 ) n F μν F μν and IF μν F μν models, where n is a positive integer, R the Ricci scalar, m a mass parameter, and I∝η α a power-law function of the conformal time η, with α a positive real number. If m is the electron mass, the produced fields are uninterestingly small for all n. Taking m as a free parameter, we find that, for n≥2, the produced magnetic fields can be sufficiently strong in order to seed the dynamo mechanism and then to explain galactic magnetism. For α > or approx. 2, there is always a window in the parameters defining inflation such that the generated magnetic fields are astrophysically interesting. Moreover, if inflation is (almost) de Sitter and the produced fields almost scale invariant (α≅4), their intensity can be strong enough to directly explain the presence of microgauss galactic magnetic fields

  6. An efficient thermotolerant and halophilic biosurfactant-producing bacterium isolated from Dagang oil field for MEOR application (United States)

    Wu, Langping; Richnow, Hans; Yao, Jun; Jain, Anil


    Dagang Oil field (Petro China Company Limited) is one of the most productive oil fields in China. In this study, 34 biosurfactant-producing strains were isolated and cultured from petroleum reservoir of Dagang oil field, using haemolytic assay and the qualitative oil-displacement test. On the basis of 16S rDNA analysis, the isolates were closely related to the species in genus Pseudomonas, Staphylococcus and Bacillus. One of the isolates identified as Bacillus subtilis BS2 were selected for further study. This bacterium was able to produce a type of biosurfactant with excessive foam-forming properties at 37ºC as well as at higher temperature of 55ºC. The biosurfactant produced by the strain BS2 could reduce the surface tension of the culture broth from 70.87 mN/m to 28.97 mN/m after 8 days of incubation at 37ºC and to 36.15 mN/m after 20 days of incubation at 55ºC, respectively. The biosurfactant showed stability at high temperature (up to 120ºC), a wide range of pH (2 to 12) and salt concentrations (up to 12%) offering potential for biotechnology. Fourier transform infrared (FT-IR) spectrum of extracted biosurfactant tentatively characterized the produced biosurfactant as glycolipid derivative. Elemental analysis of the biosurfactant by energy dispersive X-ray spectroscopy (EDS) reveals that the biosurfactant was anionic in nature. 15 days of biodegradation of crude oil suggested a preferential usage of n-alkane upon microbial metabolism of BS2 as a carbon substrate and consequently also for the synthesis of biosurfactants. Core flood studies for oil release indicated 9.6% of additional oil recovery over water flooding at 37ºC and 7.2% of additional oil recovery at 55 ºC. Strain BS2 was characterized as an efficient biosurfactant-producing, thermotolerant and halophillic bacterium and has the potential for application for microbial enhanced oil recovery (MEOR) through water flooding in China's oil fields even in situ as adapted to reservoir chemistry and

  7. Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures

    International Nuclear Information System (INIS)

    Zheng, Hao; Wang, Zhenyu; Zhao, Jian; Herbert, Stephen; Xing, Baoshan


    Sorption of sulfonamides on biochars is poorly understood, thus sulfamethoxazole (SMX) sorption on biochars produced at 300–600 °C was determined as a function of pH and SMX concentration, as well as the inorganic fractions in the biochars. Neutral SMX molecules (SMX 0 ) were dominant for sorption at pH 1.0–6.0. Above pH 7.0, although biochars surfaces were negatively-charged, anionic SMX species sorption increased with pH and is regulated via charge-assisted H-bonds. SMX 0 sorption at pH 5.0 was nonlinear and adsorption-dominant for all the biochars via hydrophobic interaction, π–π electron donor–acceptor interaction and pore-filling. The removal of inorganic fraction reduced SMX sorption by low-temperature biochars (e.g., 300 °C), but enhanced the sorption by high-temperature biochars (e.g., 600 °C) due to the temperature-dependent inorganic fractions in the biochars. These observations are useful for producing designer biochars as engineered sorbents to reduce the bioavailability of antibiotics and/or predict the fate of sulfonamides in biochar-amended soils. -- Highlights: •Sulfamethoxazole (SMX) sorption on biochars at pH 5.0 was adsorption-dominant. •Removal of inorganic fractions in low-temperature biochars reduced SMX sorption. •Removal of inorganic fractions in high-temperature biochars enhanced SMX sorption. •Anionic SMX was adsorbed on negatively charged biochar via charge-assisted H-bond. -- Solution pH and biochar property control the sorption amount and mechanisms of antibiotic sulfamethoxazole

  8. Evaluation of the high temperature electrolysis of steam to produce hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Youngjoon; Park, Wonseok; Chang, Jonghwa; Park, Jongkuen [Korea Atomic Energy Research Institute, 150 Dukjin-dong, Yuseong-gu, Daejeon (Korea)


    A very high temperature gas-cooled reactor (VHTR) can be effectively used for hydrogen production through several CO{sub 2}-free alternative technologies, such as the Sulfur-Iodine (SI) cycle, the high temperature electrolysis of steam (HTES), and others. In our current study, the electrochemical thermodynamic properties and the overall thermal efficiency of the VHTR-assisted hydrogen production system by using the HTES technology have been calculated as a function of the operating temperature in the range of 600-1000 {sup circle} C. On the other hand, the effect of not only the gas turbine efficiency but also the recovery of waste heat for the overall hydrogen production thermal efficiency has also been evaluated. The thermal efficiency defined by a high heat value of the produced hydrogen (HHV) divided by the total energy of the heat and the electricity required to produce the hydrogen was adopted in our evaluation scheme. As a result, a maximized overall thermal efficiency of about 48% can be anticipated at 1000 {sup circle} C. Compared with a thermal efficiency of 27% by a conventional alkaline solution electrolysis at lower temperatures, a hydrogen production by the VHTR-assisted HTES can save on the required energy by about 2 times. The sensitivity of the operating temperature for the overall thermal efficiency defined by {delta}{eta}{sub {delta}} {sub T}/{eta}{sub T} is about 14.3% in the range of 600 to 1000 {sup circle} C. From the aspect of a conservative gas turbine efficiency and a reasonable recovery of the waste heat, an overall feasible efficiency of 46% is anticipated at 850 {sup circle} C. (author)

  9. Remark on the gravitational field produced by an infinite straight string

    International Nuclear Information System (INIS)

    Francisco, G.; Matsas, G.E.A.


    The results predicted by Newtonian gravity and general relativity are compared regarding the field produced by an infinite gauge string with constant density λ. A simple gedankenexperiment is suggested to stress the remarkable differences between these two theories. The existence of the usual Newtonian limit is discussed in this case

  10. Measurement of flow field in the pebble bed type high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Lee, Sa Ya; Lee, Jae Young


    In this study, flow field measurement of the Pebble Bed Reactor(PBR) for the High Temperature Gascooled Reactor(HTGR) was performed. Large number of pebbles in the core of PBR provides complicated flow channel. Due to the complicated geometries, numerical analysis has been intensively made rather than experimental observation. However, the justification of computational simulation by the experimental study is crucial to develop solid analysis of design method. In the present study, a wind tunnel installed with pebbles stacked was constructed and equipped with the Particle Image Velocimetry(PIV). We designed the system scaled up to realize the room temperature condition according to the similarity. The PIV observation gave us stagnation points, low speed region so that the suspected high temperature region can be identified. With the further supplementary experimental works, the present system may produce valuable data to justify the Computational Fluid Dynamics(CFD) simulation method

  11. Dense and Cellular Zirconia Produced by Gel Casting with Agar: Preparation and High Temperature Characterization

    Directory of Open Access Journals (Sweden)

    Jean-Marc Tulliani


    Full Text Available A modified gel-casting process was developed to produce both dense and highly porous (40% volume yttria tetragonal zirconia polycrystal (Y-TZP using agar, a natural polysaccharide, as gelling agent. A fugitive phase, made of commercial polyethylene spheres, was added to the ceramic suspension before gelling to produce cellular ceramic structures. The characterization of the microstructural features of both dense and cellular ceramics was carried out by FEG SEM analysis of cross-sections produced by focused ion beam. The mechanical properties of the components were characterized at room temperature by nanoindentation tests in continuous stiffness measurement mode, by investigating the direct effect of the presence of residual microporosity. The presence of a diffuse residual microporosity from incomplete gel deaeration resulted in a decay of the bending strength and of the elastic modulus. The mechanical behavior of both dense and cellular zirconia (in terms of elastic modulus, flexural strength, and deformation at rupture was investigated by performing four-point bending tests at the temperature of 1500°C.

  12. Study of extremely low frequency electromagnetic field (ELF EMF) radiation produced by consumer products

    International Nuclear Information System (INIS)

    Roha Tukimin; Ahmad Fazli Ahmad Sanusi; Rozaimah Abd Rahim; Mohd Yusof Mohd Ali; Mohamad Amirul Nizam Mohamad Thari


    Extremely low frequency electromagnetic field ( ELF EMF) radiation falls under category of non-ionising radiation (NIR).ELF EMF consists of electric and magnetic fields. Excessive exposure to ELF EMF radiation may cause biological and health effects to human beings such as behavioral changes, stochastic and as initiator of cancer. In daily life, the main source of extremely low frequency electromagnetic radiation are consumer products in our home and office. Due to its ability to cause hazard, a study of ELF EMF radiation produced by consumer product was conducted. For this preliminary study, sample of 20 types electrical appliances were selected. The measurement was covered electric and magnetic field strength produced by the sample. PMM model EHP50A were used for measurement and data analysis. The results were compared with the permissible limits recommended by International Commission of Non-Ionising Radiation Protection (ICNIRP) for members of public (1000 mGauss and 5000 V/m). The results showed that all tested sample produced magnetic and electric field but still under the permissible limit recommended by ICNIRP. Besides that we found that field strengths can be very high at closer distance to the sample. (Author)

  13. Self-interacting scalar fields at high-temperature

    Energy Technology Data Exchange (ETDEWEB)

    Deur, Alexandre [University of Virginia, Charlottesville, VA (United States)


    We study two self-interacting scalar field theories in their high-temperature limit using path integrals on a lattice. We first discuss the formalism and recover known potentials to validate the method. We then discuss how these theories can model, in the high-temperature limit, the strong interaction and General Relativity. For the strong interaction, the model recovers the known phenomenology of the nearly static regime of heavy quarkonia. The model also exposes a possible origin for the emergence of the confinement scale from the approximately conformal Lagrangian. Aside from such possible insights, the main purpose of addressing the strong interaction here - given that more sophisticated approaches already exist - is mostly to further verify the pertinence of the model in the more complex case of General Relativity for which non-perturbative methods are not as developed. The results have important implications on the nature of Dark Matter. In particular, non-perturbative effects naturally provide flat rotation curves for disk galaxies, without need for non-baryonic matter, and explain as well other observations involving Dark Matter such as cluster dynamics or the dark mass of elliptical galaxies. (orig.)

  14. Effects of firing temperature on the properties of ceramics produced from a clay tailings

    International Nuclear Information System (INIS)

    Oliveira, V.M.C.A.; Vidal, A.B.; Ribeiro, S.


    The aim of this study was to evaluate the properties of ceramics produced by the firing of a tailing from a clay mining of quartz sand for their application in construction, primarily in the floors and walls. The waste was pressed and the compacts were fired at 1000, 1100, 1200, 1300, 1400 and 1500°C. The results showed linear shrinkage (RL) and water absorption (AA) ranging from 0.5 to 6.5% and 16.4 to 0.5%, respectively. It was also decreased porosity and bulk density increased with increasing treatment temperature. In the analyzes of fracture was observed increase cohesion between particles and connections of the reduction in porosity with increasing firing temperature. The sample showed a better set of mechanical properties of the sample was fired at 1300°C, and present the best appearance. (author)

  15. The performance of a temperature cascaded cogeneration system producing steam, cooling and dehumidification

    KAUST Repository

    Myat, Aung


    This paper discusses the performance of a temperature-cascaded cogeneration plant (TCCP), equipped with an efficient waste heat recovery system. The TCCP, also called a cogeneration system, produces four types of useful energy-namely, (i) electricity, (ii) steam, (iii) cooling and (iv) dehumidification-by utilizing single fuel source. The TCCP comprises a Capstone C-30 micro-turbine that generates nominal capacity of 26 kW of electricity, a compact and efficient waste heat recovery system and a host of waste-heat-activated devices, namely (i) a steam generator, (ii) an absorption chiller, (iii) an adsorption chiller and (iv) a multi-bed desiccant dehumidifier. The performance analysis was conducted under different operation conditions such as different exhaust gas temperatures. It was observed that energy utilization factor could be as high as 70% while fuel energy saving ratio was found to be 28%. © 2013 Desalination Publications.

  16. The forms of alkalis in the biochar produced from crop residues at different temperatures. (United States)

    Yuan, Jin-Hua; Xu, Ren-Kou; Zhang, Hong


    The forms of alkalis of the biochars produced from the straws of canola, corn, soybean and peanut at different temperatures (300, 500 and 700°C) were studied by means of oxygen-limited pyrolysis. The alkalinity and pH of the biochars increased with increased pyrolysis temperature. The X-ray diffraction spectra and the content of carbonates of the biochars suggested that carbonates were the major alkaline components in the biochars generated at the high temperature; they were also responsible for the strong buffer plateau-regions on the acid-base titration curves at 500 and 700°C. The data of FTIR-PAS and zeta potentials indicated that the functional groups such as -COO(-) (-COOH) and -O(-) (-OH) contained by the biochars contributed greatly to the alkalinity of the biochar samples tested, especially for those generated at the lower temperature. These functional groups were also responsible for the negative charges of the biochars. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Comparison of Muscle Temperature Increases Produced by Moist Hot Pack and ThermoStim Probe. (United States)

    Ostrowski, Jennifer


    ThermoStim Probe (TSP) has recently joined the market as a superficial heating modality. While there is limited research into the intramuscular heating capability of superficial heating modalities in general (moist hot pack, paraffin, warm whirlpool), no previous research has examined intramuscular heating capability of TSP. Evaluate rate and magnitude of intramuscular heating via TSP as compared to hydrocollator moist hot pack (MHP); determine if TSP can increase tissue temperature 3-4°C (vigorous heating range). Repeated-measures counterbalanced study. Multi-site trial; two college/university research laboratories. 18 healthy college-aged participants (11 females, 7 males, age: 23.0±2.1, weight: 74.64±18.64kg, height: 168.42±9.66cm, subcutaneous adipose: 0.71±0.17cm) with calf subcutaneous adipose heated faster than TSP at minutes 12 (p=.017), 16 (p=.002), and 20 (p=.001). There was no significant correlation between subcutaneous adipose thickness and maximum temperature increase obtained with either MHP (r=-.033, p=.896) or TSP (r=-.080, p=.753). MHP increased intramuscular temperature significantly more than TSP, however neither modality was capable of producing a 3-4°C temperature increase associated with increased tissue extensibility.

  18. Multitracer Field Fluorometry: Accounting for Temperature and Turbidity Variability During Stream Tracer Tests (United States)

    Blaen, Phillip J.; Brekenfeld, Nicolai; Comer-Warner, Sophie; Krause, Stefan


    The use of multitracer field fluorometry is increasing in the hydrological sciences. However, obtaining high-quality fluorescence measurements is challenging given the variability in environmental conditions within stream ecosystems. Here, we conducted a series of stream tracer tests to examine the degree to which multitracer field fluorometry produces reliable estimates of tracer concentrations under realistic field conditions. Using frequently applied examples of conservative (Uranine) and reactive (Resazurin-Resorufin) fluorescent tracers, we show that in situ measurements of tracer breakthrough curves can deviate markedly from corresponding samples analyzed under laboratory conditions. To investigate the effects of key environmental variables on fluorescence measurements, we characterized the response of field fluorometer measurements to changes in temperature, turbidity, and tracer concentration. Results showed pronounced negative log-linear effects of temperature on fluorescence measurements for all tracers, with stronger effects observed typically at lower tracer concentrations. We also observed linear effects of turbidity on fluorescence measurements that varied predictably with tracer concentration. Based on our findings, we present methods to correct field fluorometer measurements for variation in these parameters. Our results show how changing environmental conditions can introduce substantial uncertainties in the analysis of fluorescent tracer breakthrough curves, and highlight the importance of accounting for these changes to prevent incorrect inferences being drawn regarding the physical and biogeochemical processes underpinning observed patterns.

  19. Room temperature diamond-like carbon coatings produced by low energy ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Markwitz, A., E-mail: [Department for Ion Beam Technologies, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Mohr, B.; Leveneur, J. [Department for Ion Beam Technologies, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand)


    Nanometre-smooth diamond-like carbon coatings (DLC) were produced at room temperature with ion implantation using 6 kV C{sub 3}H{sub y}{sup +} ion beams. Ion beam analysis measurements showed that the coatings contain no heavy Z impurities at the level of 100 ppm, have a homogeneous stoichiometry in depth and a hydrogen concentration of typically 25 at.%. High resolution TEM analysis showed high quality and atomically flat amorphous coatings on wafer silicon. Combined TEM and RBS analysis gave a coating density of 3.25 g cm{sup −3}. Raman spectroscopy was performed to probe for sp{sup 2}/sp{sup 3} bonds in the coatings. The results indicate that low energy ion implantation with 6 kV produces hydrogenated amorphous carbon coatings with a sp{sup 3} content of about 20%. Results highlight the opportunity of developing room temperature DLC coatings with ion beam technology for industrial applications.

  20. Effects of a static inhomogeneous magnetic field acting on a laser-produced carbon plasma plume

    Directory of Open Access Journals (Sweden)

    M. Favre


    Full Text Available We present time- and space-resolved observations of the dynamics of a laser-produced carbon plasma, propagating in a sub-Tesla inhomogeneous magnetic field, with both, axial and radial field gradients. An Nd:YAG laser pulse, 340 mJ, 3.5 ns, at 1.06 μm, with a fluence of 7 J/cm2, is used to generate the plasma from a solid graphite target, in vacuum. The magnetic field is produced using two coaxial sets of two NeFeB ring magnets, parallel to the laser target surface. The diagnostics include plasma imaging with 50 ns time resolution, spatially resolved optical emission spectroscopy and Faraday cup. Based on our observations, evidence of radial and axial plasma confinement due to magnetic field gradients is presented. Formation of C2 molecules, previously observed in the presence of a low pressure neutral gas background, and enhanced on-axis ion flux, are ascribed to finite Larmor radius effects and reduced radial transport due to the presence of the magnetic field.

  1. Air core poloidal magnetic field system for a toroidal plasma producing device

    International Nuclear Information System (INIS)

    Marcus, F.B.


    A poloidal magnetics system for a plasma producing device of toroidal configuration is provided that reduces both the total volt-seconds requirement and the magnitude of the field change at the toroidal field coils. The system utilizes an air core transformer wound between the toroidal field (TF) coils and the major axis outside the TF coils. Electric current in the primary windings of this transformer is distributed and the magnetic flux returned by air core windings wrapped outside the toroidal field coils. A shield winding that is closely coupled to the plasma carries a current equal and opposite to the plasma current. This winding provides the shielding function and in addition serves in a fashion similar to a driven conducting shell to provide the equilibrium vertical field for the plasma. The shield winding is in series with a power supply and a decoupling coil located outside the TF coil at the primary winding locations. The present invention requires much less energy than the usual air core transformer and is capable of substantially shielding the toroidal field coils from poloidal field flux

  2. Electron temperature control by an external magnetic field in solenoidal inductive discharge

    International Nuclear Information System (INIS)

    Lee, Min-Hyong; Ku, Ju-Hwan; Hwang, Kwang-Tae; Chung, Chin-Wook


    Electron temperature control is performed by controlling the external magnetic field strength in a solenoidal inductive discharge. As the magnetic field strength increases, the electron temperature of the plasma bulk decreases. The temperature at the discharge center falls from 3.1 to 1.5 eV when a 52 G dc magnetic field is applied. This decrease in the temperature is accompanied by a decrease in the plasma density. The change in temperature by the magnetic field is caused by both the electron confinement and the restriction of electron transport by the magnetic field in solenoidal inductive discharge.

  3. Energy relaxation in dense laser-produced two-temperature plasmas

    International Nuclear Information System (INIS)

    Schlanges, M.; Bornath, Th.; Vorberger, J.; Gericke, D.O.


    Complete text of publication follows. The creation of states with high energy density in the laboratory requires a large and fast energy input into matter like in dynamic experiments applying intense particle beams or lasers to heat and compress the material under investigation. Inevitably, highly nonequilibrium states are produced with the energy being pumped mainly into either the ion or the electron subsystem. Apart from the hydrodynamic response, temperature equilibration takes the longest of all relaxation processes and, thus, defines the minimum time delay between pump and probe pulses needed for equilibrium measurements. In the present contribution, general energy balance equations for multicomponent systems are derived on the basis of quantum kinetic theory. This approach allows for a consideration of correlations in both the internal energies and the energy transfer rates. We show how known expressions for the energy transfer rates, namely, the Fermi-Golden-Rule (FGR) and Coupled Modes (CM) rates, follow from the presented formalism. It is shown that these rates describe the transfer of total energy between the subsystems and the approximations made are highlighted. As the effects of coupled collective modes are still under discussion, we present results for the electron-ion energy transfer rates. Then the equilibration of all contributions of the total energy including the species temperatures is investigated for dense hydrogen and beryllium relevant for inertial confinement fusion as an example. We find deviations from an ideal temperature relaxation and demonstrate how correlations and collective modes affect the shape of the temperature curves, the relaxation time, and the final temperature. It turns out that the most important effect of coupled modes is not an increase in relaxation time but a different form of the time evolution of the electron and ion temperatures, while correlations mainly affect the final plasma temperature. Finally, a comparison

  4. Testing of Commercial Milk Production Technology Using A Combination of High Temperature Short Time and Pulsed Electric Field


    Hadi A; Widjanarko SB; Kusnadi J


    The development of milk processing technology has grown excessively, and it contains advantage and disadvantage. This study used mixed between PEF (Pulsed Electric Field) and High Temperature Short Time (HTST) to produce milk processed product which is effective and efficient in killing milk microorganism without changing its color, scent, and nutrient content of processed product, therefore producing commercial sterile milk product in accord with milk Indonesian National Standard (SNI). The ...

  5. Investigation of field temperature in moulds of foamed plaster

    Directory of Open Access Journals (Sweden)

    M. Pawlak


    Full Text Available Plaster moulds used in precision foundry are characterized by a very low permeability which, in the case of classic plaster moulds, equals to about 0,01÷0,02 m2/(MPa·s. One of the most effective methods for increasing the permeability is a foaming treatment. Another characteristic feature of plaster is its very good insulating power which has influence on the process of solidification and cooling of a cast and also on a knock-out property. This insulating power is a function of thermophysical properties of plaster which, in turn, depend mainly on the mineralogical composition of the mould material, its bulk density as well as on the temperature of the pouring alloy. In the case of a foamed plaster mould an increase of the degree of foaming increases its porosity which causes a change in its thermophysical properties, thereby increasing susceptibility of the mass to overheating. The susceptibility of the plaster layer surrounding the cast to overheating is favorable because it makes it easier to knock-out of the cast by immersing the hot mould in cold water. Thermal and phase tensions that are created during this process cause fast destruction of plaster. This paper describes our investigations aimed at the determination of the dependence of the mould temperature field on the time of the cast stay in the mould, as recorded in a process of an unsteady heat flow. The determined data were planned to be used for estimation of the technological properties of the plaster mould. The tests were carried out using the plaster α-Supraduro and Alkanol XC (foaming agent. The test mould had a diameter of Ø 120 mm with centrally situated mould cavity of Ø 30 mm. Plaster moulds with a degree of foaming 20; 32,5 and 45% and comparatively from non-foaming plaster were tested and their temperatures were measured at the distance x=2; 9; 21; 25;27; 30 mm from the mould cavity within 25 min. Analysis of the results leads to the conclusion, that the highest

  6. Sprites, lightning, cloudtop temperatures and mesospheric electric field (United States)

    São Sabbas, F.; Sentman, D.; Taylor, M.; Wescott, E.; Stenbaek-Nielsen, H.


    Sprites are one of the optical manifestations of electrical energy deposition in the mesosphere by lightning activity in the troposphere. Observations obtained from the Space Shuttle, and during ground and aircraft campaigns conducted in the U.S., Peru, Central America, Australia, Japan, Europe, Taiwan, and Brazil have confirmed the global aspect these phenomena. In order to better understand the mechanism and implications of energy deposition in the mesosphere, detailed studies of the characteristics of spatial and temporal relationship between sprites and lightning, and the characteristics of the generating meteorological system and of the surrounding atmosphere at the locations where sprites have been observed are necessary. The full problem includes consideration of both the source (lightning) characteristics, as well as the ambient medium where sprite ignition occurs. This paper summarizes results of a PhD thesis that examines (1) the observed relationships between the distribution of distance and time delays between the sprites and underlying causative lightning, (2) the correlations between sprites, lightning and cloudtop temperatures extracted from IR satellite images, and (3) the structure of electric fields in an inhomogeneous conductivity distribution at sprite initiation altitudes 75-85 km. The results suggest that conductivity inhomogeneities in the mesosphere may play an important role in determining the locations where sprite ignition occurs above a thunderstorm.

  7. Magnetic hyperfine field at a Cd impurity diluted in RCo{sub 2} at finite temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, A.L. de, E-mail: [Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Campus Nilópolis – RJ (Brazil); Chaves, C.M., E-mail: [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro (Brazil); Oliveira, N.A. de [Instituto de Física Armando Dias Tavares, Universidade do Estado do Rio de Janeiro, Rio de Janeiro (Brazil); Troper, A. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro (Brazil)


    The local magnetic moments and the magnetic hyperfine fields at an s–p Cd impurity diluted in inter-metallic Laves phase compounds RCo{sub 2} (R=Gd, Tb) at finite temperatures are calculated. For other rare earth elements (light or heavy) the pure compounds display a magnetic first order transition and are not describable by our formalism. The host has two coupled lattices (R and Co) both having itinerant d electrons but only the rare earth lattice has localized f electrons. They all contribute to the magnetization of the host and also to the local moment and to the magnetic hyperfine field at the impurity. The investigation of magnetic hyperfine field in these materials then provides valuable information on the d-itinerant electrons and also on the localized (4f) magnetic moments. For the d–d electronic interaction we use the Hubbard–Stratonovich identity thus allowing the employment of functional integral in the static saddle point approximation. Our model reproduces quite well the experimental data. - Highlights: • A functional integral method in the static limit, producing site disorder, is used. • The site disorder is treated with the coherent potential approximation (CPA) • A Friedel sum rule gives a self-consistency condition for the impurity energy. • The experimental curve of hyperfine fields×temperature is very well reproduced.

  8. Characterizing the variability in chemical composition of flowback and produced waters - results from lab and field studies (United States)

    Vieth-Hillebrand, Andrea; Wilke, Franziska D. H.; Schmid, Franziska E.; Zhu, Yaling; Lipińska, Olga; Konieczyńska, Monika


    The huge volumes and unknown composition of flowback and produced waters cause major public concerns about the environmental and social compatibility of hydraulic fracturing and the exploitation of gas from unconventional reservoirs. Flowback and produced waters contain not only residues of fracking additives but also chemical species that are dissolved from the target shales themselves. Shales are a heterogeneous mixture of minerals, organic matter, and formation water and little is actually understood about the fluid-rock interactions occurring during hydraulic fracturing of the shales and their effects on the chemical composition of flowback and produced water. To overcome this knowledge gap, interactions of different shales with different artificial stimulation fluids were studied in lab experiments under ambient and elevated temperature and pressure conditions. These lab experiments showed clearly that fluid-rock interactions change the chemical composition of the initial stimulation fluid and that geochemistry of the fractured shale is relevant for understanding flowback water composition. In addition, flowback water samples were taken after hydraulic fracturing of one horizontal well in Pomeranian region, Poland and investigated for their chemical composition. With this presentation, results from lab and field studies will be presented and compared to decipher possible controls on chemical compositions of flowback and produced water.

  9. Determining the field emitter temperature during laser irradiation in the pulsed laser atom probe

    International Nuclear Information System (INIS)

    Kellogg, G.L.


    Three methods are discussed for determining the field emitter temperature during laser irradiation in the recently developed Pulsed Laser Atom Probe. A procedure based on the reduction of the lattice evaporation field with increasing emitter temperature is found to be the most convenient and reliable method between 60 and 500 K. Calibration curves (plots of the evaporation field versus temperature) are presented for dc and pulsed field evaporation of W, Mo, and Rh. These results show directly the important influence of the evaporation rate on the temperature dependence of the evaporation field. The possibility of a temperature calibration based on the ionic charge state distribution of field evaporated lattice atoms is also discussed. The shift in the charge state distributions which occurs when the emitter temperature is increased and the applied field strength is decreased at a constant rate of evaporation is shown to be due to the changing field and not the changing temperature. Nevertheless, the emitter temperature can be deduced from the charge state distribution for a specified evaporation rate. Charge state distributions as a function of field strength and temperature are presented for the same three materials. Finally, a preliminary experiment is reported which shows that the emitter temperature can be determined from field ion microscope observations of single atom surface diffusion over low index crystal planes. This last calibration procedure is shown to be very useful at higher temperatures (>600 K) where the other two methods become unreliable

  10. Energetic consequences of field body temperatures in the green iguana

    NARCIS (Netherlands)

    Lichtenbelt, WDVM; Wesselingh, RA

    We investigated body temperatures of free-ranging green iguanas (Iguana iguana) on Curacao (Netherlands Antilles), and how metabolic costs and benefits of food processing affect body temperatures. Body temperatures of free-living iguanas were measured by radio telemetry. We also used a model, with

  11. Estimating relic magnetic fields from CMB temperature correlations

    CERN Document Server

    Giovannini, Massimo


    The temperature and polarization inhomogeneities of the Cosmic Microwave Background might bear the mark of pre-decoupling magnetism. The parameters of a putative magnetized background are hereby estimated from the observed temperature autocorrelation as well as from the measured temperature-polarization cross-correlation.

  12. Microstructure Assessment of Metakaolin Based-Geopolymers Produced with Alternative Silica Sources Exposed to High Temperatures

    Directory of Open Access Journals (Sweden)

    Villaquirán-Caicedo Mónica Alejandra


    Full Text Available Ceramic materials more environment friendly and with similar or even better performance than traditional ones can be produced by alkali activation of natural minerals, wastes or industrial by-products. The present study assesses the effect of exposure at 600° and 1200°C of a MK-based geopolymers. Rice husk ash (RHA and silica fume were modified chemically in order to obtain an alternative alkali activator. Exposure to elevated temperatures leads to dehydration of the reaction products and structural reorganization associated with the crystallization of the gel to leucite (KAlSi2O6 and kalsilite (KAlSiO4. The structural changes associated with the thermal treatment also promote a densification and reduction of porosity. The unreacted MK particles embedded into the geopolymeric gel lead to the formation of mullite (2Al2O3 × SiO2 after the thermal treatment at 1200°C.

  13. Observation, modeling, and temperature dependence of doubly peaked electric fields in irradiated silicon pixel sensors

    CERN Document Server

    Swartz, M.; Allkofer, Y.; Bortoletto, D.; Cremaldi, L.; Cucciarelli, S.; Dorokhov, A.; Hoermann, C.; Kim, D.; Konecki, M.; Kotlinski, D.; Prokofiev, Kirill; Regenfus, Christian; Rohe, T.; Sanders, D.A.; Son, S.; Speer, T.


    We show that doubly peaked electric fields are necessary to describe grazing-angle charge collection measurements of irradiated silicon pixel sensors. A model of irradiated silicon based upon two defect levels with opposite charge states and the trapping of charge carriers can be tuned to produce a good description of the measured charge collection profiles in the fluence range from 0.5x10^{14} Neq/cm^2 to 5.9x10^{14} Neq/cm^2. The model correctly predicts the variation in the profiles as the temperature is changed from -10C to -25C. The measured charge collection profiles are inconsistent with the linearly-varying electric fields predicted by the usual description based upon a uniform effective doping density. This observation calls into question the practice of using effective doping densities to characterize irradiated silicon.

  14. Zero field entanglement in dipolar coupling spin system at negative temperatures


    Furman, Gregory B.; Meerovich, Victor M.; Sokolovsky, Vladimir L.


    A dipolar coupled spin system can achieve internal thermodynamic equilibrium states at negative absolute temperature. We study analytically and numerically the temperature dependence of the concurrence in a dipolar coupled spin-1/2 system in both non-zero and zero fields and show that, at negative temperatures, entangled states can exist even in zero magnetic field.

  15. Selection of Psychrotolerant Microorganisms Producing Cold-Active Pectinases for Biotechnological Processes at Low Temperature

    Directory of Open Access Journals (Sweden)

    María S. Cabeza


    Full Text Available In winemaking, low temperatures are favourable for the production and retention of flavour and colour components, requiring the use of cold-active enzymes. For this reason, 'psychrotolerant' microorganisms have been isolated and selected based on their ability to produce pectinolytic enzymes with satisfactory activity at low temperatures. Different mature grape varieties with designation of origin were sampled from the region of San Rafael (Mendoza, Argentina, and pectinolytic bacterial, fungal and yeast strains were isolated. The pectinolytic activity was measured by cup-plate assay, quantification of released reducing sugars and viscosity reduction of pectin solution. Two bacteria (Bacillus sp. SC-G and SC-H and two yeast strains were selected for their good pectinase activity at low temperatures. Among them, the strain with the highest activity, Bacillus sp. SC-H, was selected. According to their 16S rRNA profiles, Bacillus sp. SC-G and SC-H can be classified as members of Bacillus subtilis. Among the assayed techniques, the rotary evaporation was found to be the most appropriate to obtain enzymatic extracts with highest activity. The optimal conditions for the enzymatic activity were 30 °C and pH=5.0 for the concentrated extract, and 45 °C and pH=6.0 for the filtered supernatant. The concentrated extract presented good activity at 3 °C, confirming that it was a cold-active enzyme. Natural extraction and enzymatic preparation were used to extract pigments and polyphenols from Malbec grapes. Better results were obtained for the enzymatic extract with regard to index, shade, CIELab coordinates, CIELab colour differences and polyphenols (measured using Folin-Ciocalteu.

  16. Interface interactions between insecticide carbofuran and tea waste biochars produced at different pyrolysis temperatures

    Directory of Open Access Journals (Sweden)

    S. S. Mayakaduwa


    Full Text Available Biochars showed a potential as adsorbents for organic contaminants, however, have not been tested for carbofuran, which has been detected frequently in water. This study provides evidences for the use of infused tea residue derived biochar for carbofuran removal. Biochars were produced at 300, 500 and 700 °C by slow pyrolysis and were characterized by proximate and ultimate analysis, FT-IR, SEM, BET and pore size distribution. Pyrolysis temperature showed a pronounced effect on biochar properties. The maximum carbofuran removal was achieved at pH 5. Freundlich and Temkin models best fit the equilibrium data. Biochars produced at 700 °C showed the highest sorption intensity. The adsorption process was likely to be a favorable chemisorption process with electrostatic interactions between carbofuran molecules and biochar surface. Acid-base interactions, electrophilic addition reactions and amide bond formations are the possible mechanisms of carbofuran adsorption. Overall, biochars prepared from tea waste can be utilized as effective adsorbents for removal of aqueous carbofuran.

  17. Automated disposal of produced water from a coalbed methane well field, a case history

    International Nuclear Information System (INIS)

    Luckianow, B.J.; Findley, M.L.; Paschal, W.T.


    This paper provides an overview of the automated disposal system for produced water designed and operated by Taurus Exploration, Inc. This presentation draws from Taurus' case study in the planning, design, construction, and operation of production water disposal facilities for the Mt. Olive well field, located in the Black Warrior Basin of Alabama. The common method for disposing of water produced from coalbed methane wells in the Warrior Basin is to discharge into a receiving stream. The limiting factor in the discharge method is the capability of the receiving stream to assimilate the chloride component of the water discharged. During the winter and spring, the major tributaries of the Black Warrior River are capable of assimilating far more production water than operations can generate. During the summer and fall months, however, these same tributaries can approach near zero flow, resulting in insufficient flow for dilution. During such periods pumping shut-down within the well field can be avoided by routing production waters into a storage facility. This paper discusses the automated production water disposal system on Big Sandy Creek designed and operated by Taurus. This system allows for continuous discharge to the receiving stream, thus taking full advantage of Big Sandy Creek's assimilative capacity, while allowing a provision for excess produced water storage and future stream discharge

  18. W/Cu composites produced by low temperature Pulse Plasma Sintering

    International Nuclear Information System (INIS)

    Rosinski, M.S.; Fortuna, E.; Michalski, A.J.; Kurzydlowski, K.J.


    The plasma facing components (PFCs) must withstand the thermal, mechanical and neutron loads under cyclic mode of operation and vacuum. Despite that PFCs of ITER and demonstration reactors must assure reliability and long in service lifetime. For that reason PFCs are designed to be made of beryllium, tungsten or carbon fibre composites armours and copper based heat sink material. Such design concepts can only be used if joining methods of these dissimilar materials are resolved. Several techniques have been developed for joining W and Cu e. g. casting of pure Cu onto W, high temperature brazing, direct diffusion bonding or CVDs of W onto Cu. The main problem in the development of such joints is the large difference in the coefficients of thermal expansion, CTE (alpha Cu > 4 alpha W) and elastic modula (ECu > 0.2 EW). These differences result in large stresses at the W/Cu interfaces during manufacturing and/or during operation, which may lead to cracking or delamination reducing lifetime of the components. Possible solution to this problem is the use of W-Cu composites (FGM). W-Cu composites are widely used for spark erosion electrodes, in heavy duty circuit breakers and as heat sinks of microelectronic devices. They are commonly produced by infiltration of a porous sintered tungsten by liquid copper. Other technological route is powder metallurgy. Coatings can be produced by low pressure plasma spraying. All these methods, however, are known to have some disadvantages. For infiltration there is a 30 wt.% limit of Cu content while for powder metallurgy and plasma spraying techniques porosity is of concern. In our work the W-Cu composites of different composition were produced by pulse plasma sintering (PPS). This new method utilizes pulsed high electric discharges to heat the powders under uniaxial load. The arc discharges clean surface of powder particles and intensify diffusion. The total sintering time is reduced to several minutes. In our investigations various

  19. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields (United States)

    Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei


    High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (Hc2) and critical temperature (Tc). The critical current (Ic) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new Ic measurement system that can carry out accurate Ic measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The Ic measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa2Cu3O7-x(YBCO) tapes Ic determination with different temperatures and magnetic fields.

  20. Origin of salinity in produced waters from the Palm Valley gas field, Northern Territory, Australia

    International Nuclear Information System (INIS)

    Andrew, Anita S.; Whitford, David J.; Berry, Martin D.; Barclay, Stuart A.; Giblin, Angela M.


    The chemical composition and evolution of produced waters associated with gas production in the Palm Valley gas field, Northern Territory, has important implications for issues such as gas reserve calculations, reservoir management and saline water disposal. The occurrence of saline formation water in the Palm Valley field has been the subject of considerable debate. There were no occurrences of mobile water early in the development of the field and only after gas production had reduced the reservoir pressure, was saline formation water produced. Initially this was in small quantities but has increased dramatically with time, particularly after the initiation of compression in November 1996. The produced waters range from highly saline (up to 300,000 mg/L TDS), with unusual enrichments in Ca, Ba and Sr, to low salinity fluids that may represent condensate waters. The Sr isotopic compositions of the waters ( 87 Sr/ 86 Sr = 0.7041-0.7172) are also variable but do not correlate closely with major and trace element abundances. Although the extreme salinity suggests possible involvement of evaporite deposits lower in the stratigraphic sequence, the Sr isotopic composition of the high salinity waters suggests a more complex evolutionary history. The formation waters are chemically and isotopically heterogeneous and are not well mixed. The high salinity brines have Sr isotopic compositions and other geochemical characteristics more consistent with long-term residence within the reservoir rocks than with present-day derivation from a more distal pool of brines associated with evaporites. If the high salinity brines entered the reservoir during the Devonian uplift and were displaced by the reservoir gas into a stagnant pool, which has remained near the reservoir for the last 300-400 Ma, then the size of the brine pool is limited. At a minimum, it might be equivalent to the volume displaced by the reservoired gas

  1. Magnetic properties of ZnFe2O4 nanoparticles produced by a low-temperature solid-state reaction method

    International Nuclear Information System (INIS)

    Li Fashen; Wang Haibo; Wang Li; Wang Jianbo


    ZnFe 2 O 4 nanoparticles with average grain size ranging from 40 to 60 nm behaving superparamagnetic at room temperature have been produced using a low-temperature solid-state reaction (LTSSR) method without ball-milling process. Abnormal magnetic properties such as S-shape hysteresis loops and non-zero magnetic moments were observed. ZnFe 2 O 4 nanoparticles were also synthesized using a NaOH coprecipitation method and a PVA sol-gel method to study the relationship between the preparation processes and the magnetic properties. Spin-glass behavior was observed in the low temperature solid-state reaction produced Zn ferrite in the zero-field cooled (ZFC) measurement. Our work proves that the various preparation methods will to some extent determine the properties of magnetic nanoparticles

  2. CO2-laser--produced plasma columns in a solenoidal magnetic field

    International Nuclear Information System (INIS)

    Offenberger, A.A.; Cervenan, M.R.; Smy, P.R.


    A 1-GW CO 2 laser pulse has been used to produce extended column breakdown of hydrogen at low pressure in a 20-cm-long solenoid. Magnetic fields of up to 110 kG were used to inhibit radial losses of the plasma column. A differential pumping scheme was devised to prevent formation of an opaque absorption wave travelling out of the solenoid back toward the focusing lens. Target burns give direct evidence for trapped laser beam propagation along the plasma column

  3. Analysis of the temperature field around salt diapirs

    DEFF Research Database (Denmark)

    Jensen, Peter Klint


    heat flux should be higher over 3D structures. On the other hand the areal extent of the temperature anomaly around the salt structures is less in the 3D case. Calculation examples indicate that low temperature geothermal energy exploitation of the formations around the top of a salt diapir can...

  4. Large-Scale Flows and Magnetic Fields Produced by Rotating Convection in a Quasi-Geostrophic Model of Planetary Cores (United States)

    Guervilly, C.; Cardin, P.


    Convection is the main heat transport process in the liquid cores of planets. The convective flows are thought to be turbulent and constrained by rotation (corresponding to high Reynolds numbers Re and low Rossby numbers Ro). Under these conditions, and in the absence of magnetic fields, the convective flows can produce coherent Reynolds stresses that drive persistent large-scale zonal flows. The formation of large-scale flows has crucial implications for the thermal evolution of planets and the generation of large-scale magnetic fields. In this work, we explore this problem with numerical simulations using a quasi-geostrophic approximation to model convective and zonal flows at Re 104 and Ro 10-4 for Prandtl numbers relevant for liquid metals (Pr 0.1). The formation of intense multiple zonal jets strongly affects the convective heat transport, leading to the formation of a mean temperature staircase. We also study the generation of magnetic fields by the quasi-geostrophic flows at low magnetic Prandtl numbers.

  5. Field performance of transgenic sugarcane produced using Agrobacterium and biolistics methods. (United States)

    Joyce, Priya; Hermann, Scott; O'Connell, Anthony; Dinh, Quang; Shumbe, Leonard; Lakshmanan, Prakash


    Future genetic improvement of sugarcane depends, in part, on the ability to produce high-yielding transgenic cultivars with improved traits such as herbicide and insect resistance. Here, transgenic sugarcane plants generated by different transformation methods were assessed for field performance over 3 years. Agrobacterium-mediated (Agro) transgenic events (35) were produced using four different Agrobacterium tumefaciens strains, while biolistic (Biol) transgenic events (48) were produced using either minimal linearized DNA (LDNA) transgene cassettes with 5', 3' or blunt ends or whole circular plasmid (PDNA) vectors containing the same transgenes. A combined analysis showed a reduction in growth and cane yield in Biol, Agro as well as untransformed tissue culture (TC) events, compared with the parent clone (PC) Q117 (no transformation or tissue culture) in the plant, first ratoon and second ratoon crops. However, when individual events were analysed separately, yields of some transgenic events from both Agro and Biol were comparable to PC, suggesting that either transformation method can produce commercially suitable clones. Interestingly, a greater percentage of Biol transformants were similar to PC for growth and yield than Agro clones. Crop ratoonability and sugar yield components (Brix%, Pol%, and commercial cane sugar (CCS)) were unaffected by transformation or tissue culture. Transgene expression remained stable over different crop cycles and increased with plant maturity. Transgene copy number did not influence transgene expression, and both transformation methods produced low transgene copy number events. No consistent pattern of genetic changes was detected in the test population using three DNA fingerprinting techniques. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  6. High Temperature-Induced Expression of Rice α-Amylases in Developing Endosperm Produces Chalky Grains

    Directory of Open Access Journals (Sweden)

    Masaru Nakata


    Full Text Available Global warming impairs grain filling in rice and reduces starch accumulation in the endosperm, leading to chalky-appearing grains, which damages their market value. We found previously that high temperature-induced expression of starch-lytic α-amylases during ripening is crucial for grain chalkiness. Because the rice genome carries at least eight functional α-amylase genes, identification of the α-amylase(s that contribute most strongly to the production of chalky grains could accelerate efficient breeding. To identify α-amylase genes responsible for the production of chalky grains, we characterized the histological expression pattern of eight α-amylase genes and the influences of their overexpression on grain appearance and carbohydrate components through a series of experiments with transgenic rice plants. The promoter activity of most α-amylase genes was elevated to various extents at high temperature. Among them, the expression of Amy1A and Amy3C was induced in the internal, especially basal to dorsal, region of developing endosperm, whereas that of Amy3D was confined near the ventral aleurone. These regions coincided with the site of occurrence of chalkiness, which was in clear contrast to conventionally known expression patterns of the enzyme in the scutellum and aleurone during seed germination. Furthermore, overexpression of α-amylase genes, except for Amy3E, in developing endosperm produced various degrees of chalky grains without heat exposure, whereas that of Amy3E yielded normal translucent grains, as was the case in the vector control, even though Amy3E-overexpressing grains contained enhanced α-amylase activities. The weight of the chalky grains was decreased due to reduced amounts of starch, and microscopic observation of the chalky part of these grains revealed that their endosperm consisted of loosely packed round starch granules that had numerous pits on their surface, confirming the hydrolysis of the starch reserve by

  7. High Temperature-Induced Expression of Rice α-Amylases in Developing Endosperm Produces Chalky Grains. (United States)

    Nakata, Masaru; Fukamatsu, Yosuke; Miyashita, Tomomi; Hakata, Makoto; Kimura, Rieko; Nakata, Yuriko; Kuroda, Masaharu; Yamaguchi, Takeshi; Yamakawa, Hiromoto


    Global warming impairs grain filling in rice and reduces starch accumulation in the endosperm, leading to chalky-appearing grains, which damages their market value. We found previously that high temperature-induced expression of starch-lytic α-amylases during ripening is crucial for grain chalkiness. Because the rice genome carries at least eight functional α-amylase genes, identification of the α-amylase(s) that contribute most strongly to the production of chalky grains could accelerate efficient breeding. To identify α-amylase genes responsible for the production of chalky grains, we characterized the histological expression pattern of eight α-amylase genes and the influences of their overexpression on grain appearance and carbohydrate components through a series of experiments with transgenic rice plants. The promoter activity of most α - amylase genes was elevated to various extents at high temperature. Among them, the expression of Amy1A and Amy3C was induced in the internal, especially basal to dorsal, region of developing endosperm, whereas that of Amy3D was confined near the ventral aleurone. These regions coincided with the site of occurrence of chalkiness, which was in clear contrast to conventionally known expression patterns of the enzyme in the scutellum and aleurone during seed germination. Furthermore, overexpression of α-amylase genes, except for Amy3E , in developing endosperm produced various degrees of chalky grains without heat exposure, whereas that of Amy3E yielded normal translucent grains, as was the case in the vector control, even though Amy3E -overexpressing grains contained enhanced α-amylase activities. The weight of the chalky grains was decreased due to reduced amounts of starch, and microscopic observation of the chalky part of these grains revealed that their endosperm consisted of loosely packed round starch granules that had numerous pits on their surface, confirming the hydrolysis of the starch reserve by

  8. PlumpyField – Network of local producers of RUF (contributed paper)

    International Nuclear Information System (INIS)

    Belete, Hilina


    Full text: Expanding coverage for the 35 million children in the world suffering from Moderate Acute Malnutrition (MAM) will require sustainably scaling up regional procurement of lipid-based RUSF products. Momentum is now building to achieve this aim through ten local ready-to-use food (RUF) producers in the PlumpyField Network, which was established by the French company Nutriset in 2005. These independently-owned factories, located in Sub-Saharan Africa, Asia, and the Caribbean, currently produce one-third of the world’s RUF supply. Overcoming substantial obstacles, they have achieved the same high quality standards of producers in Europe and the U.S., with increasingly competitive pricing. Being part of a mutually supportive and interactive network of RUF producers from around the world provides unique learning and partnership opportunities, from sharing insights on peanut supply chain development, increasingly complex quality challenges, to pooled procurement. This network system has been instrumental to the success of local production for the members of the PlumpyField Network. Historically, local producers achieving economies of scale and reliable local and international supply chains (i.e. for peanuts, oil, sugar, milk etc.) takes several years, making the cost of locally-procured products more expensive in the short term. However, there are numerous positive outcomes and externalities that cannot be ignored, such as decreased lead times (especially crucial to reach children with acute malnutrition), lower shipping costs, economic development, and maturation of the food processing and microbiological laboratory sectors. UNICEF and WFP have become leaders in local and regional procurement as they continually optimize their strategies to best meet global needs. Local production is often an important stimulant of public-private partnerships, including procurement of RUF by local governments for government-run acute malnutrition programs, furthering

  9. Similarities and differences among fluid milk products: traditionally produced, extended shelf life and ultrahigh-temperature processed. (United States)

    Grabowski, N T; Ahlfeld, B; Brix, A; Hagemann, A; von Münchhausen, C; Klein, G


    Extended shelf life milk is a relatively new kind of fluid milk, generally manufactured by high-temperature treatment and/or micro-filtration. Being advertised as 'pasteurized milk with an extended shelf life', its flavour, compositional quality and labelling was questioned. Extended shelf life (high-temperature treatment), pasteurized ('traditionally produced') and ultrahigh-temperature milk were, therefore, compared at the beginning and end of shelf life. In triangle tests, panellists distinguished clearly between all products. High-temperature treatment milk's flavour was closer to ultrahigh-temperature and traditionally produced milk in the beginning and at the end of shelf life, respectively. Physicochemically and bacteriologically, all three types could be distinguished. Since 'extended shelf life' comprises many process varieties (each affecting flavour differently), consumer information and appropriate package labelling beyond 'long-lasting' is necessary, e.g. by mentioning the heat treatment applied.

  10. Effects of a Guide Field on the Larmor Electric Field and Upstream Electron Temperature Anisotropy in Collisionless Asymmetric Magnetic Reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Ek-In, Surapat; Ruffolo, David [Department of Physics, Faculty of Science, Mahidol University, Bangkok (Thailand); Malakit, Kittipat [Department of Physics, Faculty of Science and Techonology, Thammasat University, Pathum Thani (Thailand); Shay, Michael A. [Department of Physics and Astronomy, University of Delaware, Newark, DE (United States); Cassak, Paul A., E-mail: [Department of Physics and Astronomy, West Virginia University, Morgantown, WV (United States)


    We perform the first study of the properties of the Larmor electric field (LEF) in collisionless asymmetric magnetic reconnection in the presence of an out-of-plane (guide) magnetic field for different sets of representative upstream parameters at Earth’s dayside magnetopause with an ion temperature greater than the electron temperature (the ion-to-electron temperature ratio fixed at 2) using two-dimensional particle-in-cell simulations. We show that the LEF does persist in the presence of a guide field. We study how the LEF thickness and strength change as a function of guide field and the magnetospheric temperature and reconnecting magnetic field strength. We find that the thickness of the LEF structure decreases, while its magnitude increases when a guide field is added to the reconnecting magnetic field. The added guide field makes the Larmor radius smaller, so the scaling with the magnetospheric ion Larmor radius is similar to that reported for the case without a guide field. Note, however, that the physics causing the LEF is not well understood, so future work in other parameter regimes is needed to fully predict the LEF for arbitrary conditions. We also find that a previously reported upstream electron temperature anisotropy arises in the vicinity of the LEF region both with and without a guide field. We argue that the generation of the anisotropy is linked to the existence of the LEF. The LEF can be used in combination with the electron temperature anisotropy as a signature to effectively identify dayside reconnection sites in observations.

  11. Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression. (United States)

    Pall, Martin L


    Non-thermal microwave/lower frequency electromagnetic fields (EMFs) act via voltage-gated calcium channel (VGCC) activation. Calcium channel blockers block EMF effects and several types of additional evidence confirm this mechanism. Low intensity microwave EMFs have been proposed to produce neuropsychiatric effects, sometimes called microwave syndrome, and the focus of this review is whether these are indeed well documented and consistent with the known mechanism(s) of action of such EMFs. VGCCs occur in very high densities throughout the nervous system and have near universal roles in release of neurotransmitters and neuroendocrine hormones. Soviet and Western literature shows that much of the impact of non-thermal microwave exposures in experimental animals occurs in the brain and peripheral nervous system, such that nervous system histology and function show diverse and substantial changes. These may be generated through roles of VGCC activation, producing excessive neurotransmitter/neuroendocrine release as well as oxidative/nitrosative stress and other responses. Excessive VGCC activity has been shown from genetic polymorphism studies to have roles in producing neuropsychiatric changes in humans. Two U.S. government reports from the 1970s to 1980s provide evidence for many neuropsychiatric effects of non-thermal microwave EMFs, based on occupational exposure studies. 18 more recent epidemiological studies, provide substantial evidence that microwave EMFs from cell/mobile phone base stations, excessive cell/mobile phone usage and from wireless smart meters can each produce similar patterns of neuropsychiatric effects, with several of these studies showing clear dose-response relationships. Lesser evidence from 6 additional studies suggests that short wave, radio station, occupational and digital TV antenna exposures may produce similar neuropsychiatric effects. Among the more commonly reported changes are sleep disturbance/insomnia, headache, depression

  12. Corrosion Behavior of Carbon Steel in Synthetically Produced Oil Field Seawater

    Directory of Open Access Journals (Sweden)

    Subir Paul


    Full Text Available The life of offshore steel structure in the oil production units is decided by the huge corrosive degradation due to SO42-, S2−, and Cl−, which normally present in the oil field seawater. Variation in pH and temperature further adds to the rate of degradation on steel. Corrosion behavior of mild steel is investigated through polarization, EIS, XRD, and optical and SEM microscopy. The effect of all 3 species is huge material degradation with FeSx and FeCl3 and their complex as corrosion products. EIS data match the model of Randle circuit with Warburg resistance. Addition of more corrosion species decreases impedance and increases capacitance values of the Randle circuit at the interface. The attack is found to be at the grain boundary as well as grain body with very prominent sulphide corrosion crack.

  13. Method of producing exfoliated graphite composite compositions for fuel cell flow field plates

    Energy Technology Data Exchange (ETDEWEB)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z


    A method of producing an electrically conductive composite composition, which is particularly useful for fuel cell bipolar plate applications. The method comprises: (a) providing a supply of expandable graphite powder; (b) providing a supply of a non-expandable powder component comprising a binder or matrix material; (c) blending the expandable graphite with the non-expandable powder component to form a powder mixture wherein the non-expandable powder component is in the amount of between 3% and 60% by weight based on the total weight of the powder mixture; (d) exposing the powder mixture to a temperature sufficient for exfoliating the expandable graphite to obtain a compressible mixture comprising expanded graphite worms and the non-expandable component; (e) compressing the compressible mixture at a pressure within the range of from about 5 psi to about 50,000 psi in predetermined directions into predetermined forms of cohered graphite composite compact; and (f) treating the so-formed cohered graphite composite to activate the binder or matrix material thereby promoting adhesion within the compact to produce the desired composite composition. Preferably, the non-expandable powder component further comprises an isotropy-promoting agent such as non-expandable graphite particles. Further preferably, step (e) comprises compressing the mixture in at least two directions. The method leads to composite plates with exceptionally high thickness-direction electrical conductivity.

  14. Analysis of the temperature field around salt diapirs

    DEFF Research Database (Denmark)

    Jensen, Peter Klint


    heat flux should be higher over 3D structures. On the other hand the areal extent of the temperature anomaly around the salt structures is less in the 3D case. Calculation examples indicate that low temperature geothermal energy exploitation of the formations around the top of a salt diapir can...... be favoured by a reduced drilling depth of 30% compared with the diapir-free case. It is further concluded thatsurface heat flow measurements in profiles across the diapir may be used in distinguishing between salt and shale diapirs....

  15. Behaviour of laser-produced plasma in a uniform magnetic field

    International Nuclear Information System (INIS)

    Okada, Shigefumi; Sato, Kohnosuke; Sekiguchi, Tadashi.


    A column of a laser-produced plasma is successfully made in a uniform magnetic field. The radius of the column increases and then decreases (bouncing motion). On the surface of this plasma column, where the steep density gradient exists with the scale length shorter than the ion Larmor radius, an azimuthal modulation appears in the plasma luminosity. This is indicative of the flute-like instability with the azimuthal wave number; k sub(perpendicular) -- 4 x 10 3 B sup(0.8) (in the MKSA system of units). The dispersion equation based on the linearized Vlasov equation with the local approximation is derived and the occurrence of the lower-hybrid-drift instability is predicted. A fairly good agreement between the theory and experiments is seen. (author)

  16. Temperature dependence of critical magnetic fields for the Abelian Higgs model

    International Nuclear Information System (INIS)

    Magpantay, J.; Mukku, C.; Sayed, W.A.


    One loop temperature and external electromagnetic field effects on the Abelian Higgs model are studied using the momentum space heat kernel. We obtain expressions for the critical fields necessary for symmetry restoration at some finite temperature and display the critical B vs. T curve separating the broken and restored phases in the B-T plane. (author)

  17. Non-uniform Solar Temperature Field on Large Aperture, Fully ...

    Indian Academy of Sciences (India)

    In this study, a 110-m fully steerable radio telescope was used as an analysis platform and the integral parametric finite element model of the antenna structure was built in the ANSYS thermal analysis module. The boundary conditions of periodic air temperature, solar radiation, long-wave radiation shadows of the ...

  18. Non-uniform Solar Temperature Field on Large Aperture, Fully ...

    Indian Academy of Sciences (India)

    C. The solar cooker effect distribution in the time-history and rotation operation ranges represents a valuable reference for the design of the secondary reflector. In order to avoid loss of effectiveness or burn-out at extremely high temperatures and to ensure optimal structure performance, it is necessary to adopt materials that.

  19. Magnetic properties of Sm-Fe-N anisotropic magnets produced by magnetic-field-assisted spark plasma sintering

    International Nuclear Information System (INIS)

    Saito, Testuji


    Sm-Fe-N magnets were successfully produced at temperatures below 773 K by magnetic-field-assisted spark plasma sintering. The resultant magnets had high densities of 88.7-92.5%. Although partial decomposition of the Sm 2 Fe 17 N 3 phase was observed in the Sm-Fe-N magnets, the decomposition was significantly lowered by the addition of a small amount of Zn powder to the Sm-Fe-N powder. The resultant Sm-Fe-N magnets containing 5 wt.% Zn and 10 wt.% Zn exhibited higher coercivity than the Sm-Fe-N magnets. X-ray diffraction studies and magnetic measurements confirmed that the Sm-Fe-N magnets and those containing 5 wt.% Zn and 10 wt.% Zn were magnetically anisotropic. A high value of 158 kJ/m 3 was achieved for the maximum energy product when Sm-Fe-N powder containing 5 wt.% Zn was sintered at 723 K by magnetic-field-assisted spark plasma sintering.

  20. Field evaporation of the compound emitters at the various temperatures

    International Nuclear Information System (INIS)

    Golubev, O.L.


    Field evaporation process of the compounds emitters, which consist the elements with the various values of the ionization potentials I n has complicated nature. According to classical theory of a field evaporation of metals, the atoms with various I n must be evaporated at various evaporation fields F ev and the atoms with large I n must be accumulated on an emitter surface. But according to experiments a field evaporation of the compound emitters leads to an evaporation of the elements at the same value F ev , the atoms are evaporated as atomic or cluster ions and an accumulation of the atoms with large I n is not observed. The evaporation mechanism for the atomic ions may be explained as follows, an evaporation of the easy ionized elements leads to decrease of a binding energy of the hard ionized elements and to decrease their values of F ev . The explanation may be problematical for the more complicated mechanism of the cluster field evaporation. (authors)

  1. Measuring system for magnetic field and temperature with digital signal processing

    Directory of Open Access Journals (Sweden)

    Druzhinin A. A.


    Full Text Available The measuring system for the magnetic field and temperature using silicon whiskers p-type conductivity as a primary device has been developed. The developed system allows the measurement of the magnetic field and temperature in the temperature range 4,2—77 K, as well as to measure the temperature under the influence of magnetic fields in the range of 100—300 K. It is shown that this system is suitable for the conversion of small signals using a programmable gain amplifier and analog-to-digital converter with high resolution.

  2. Electric field and temperature effects in irradiated MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, M. A. G., E-mail:; Santos, R. B. B.; Leite, F. G.; Araújo, N. E.; Cirne, K. H.; Melo, M. A. A.; Rallo, A. [Centro Universitário da FEI, São Bernardo do Campo, S.P. (Brazil); Aguiar, Vitor A. P.; Aguirre, F.; Macchione, E. L. A.; Added, N.; Medina, N. H. [Instituto de Física da USP, São Paulo, S.P. (Brazil)


    Electronic devices exposed to ionizing radiation exhibit degradation on their electrical characteristics, which may compromise the functionality of the device. Understanding the physical phenomena responsible for radiation damage, which may be specific to a particular technology, it is of extreme importance to develop methods for testing and recovering the devices. The aim of this work is to check the influence of thermal annealing processes and electric field applied during irradiation of Metal Oxide Semiconductor Field Effect Transistors (MOSFET) in total ionizing dose experiments analyzing the changes in the electrical parameters in these devices.

  3. Effect of biochar produced at different pyrolysis temperature on the soil respiration of abandoned mine soil (United States)

    Kim, Yong Seong; Kim, Juhee; Hwang, Wonjae; Hyun, Seunghun


    Contaminated soils near an abandoned mine site included the high acidic mine tailing have received great interest due to potential risk to human health, because leachable elements in low pH continuously release from mine site soil with ground water and precipitation event. Biochar, which is the obtained pyrolysis process of biomass, is used as a soil amendments and carbon storage. Especially, many researchers report that the biochar application to soil show increasing soil pH, CEC, adsorption capacity of various elements, as well as, enhanced microbial activity. Therefore, biochar application to contaminated soil near abandoned mine site is expected to have a positive effects on management of these site and soils through the decreased leachability of contaminants. However, effects of biochar application to these site on the soil respiration, as a common measure of soil health, are poorly understood. The objective of this study is to evaluate the effects of biochar application to abandoned mine site soil on the microbial activity with soil respiration test. Biochar was obtained from giant Miscanthus in a slow pyrolysis process (heating rate of 10° C min-1 and N2 gas flow rate of 1.2 L min-1) at the temperature of 400° C (BC4) and 700° C (BC7), respectively. All biochar samples were prepared with grinding and sieving for particle size control (150~500μm). Soil sample was collected from abandoned mine site at Korea (36° 58'N, 128° 10'E). Main contaminants of this soil were As (12.5 g kg-1), Pb (7.3 g kg-1), and Zn (1.1 g kg-1). Biochars were applied (5% by dry weight) to the soil (final mixture weight were 800g), and then moisture contents were adjusted to 100% field capacity (-0.33 bar) in the respirometer with vacuum pump. CO2 efflux of each samples was continuously assessed using continuous aeration system (air flow rate 25 cc min-1) using air cylinder during 130hr (at 20° C and darkness condition). The CO2 emitted from the samples were carried to the

  4. Schwinger α-PARAMETRIC Representation of Finite Temperature Field Theories:. Renormalization (United States)

    Benhamou, M.; Kassou-Ou-Ali, A.

    We present the extension of the zero temperature Schwinger α-representation to the finite temperature scalar field theories. We give, in a compact form, the α-integrand of Feynman amplitudes of these theories. Using this representation, we analyze short-range divergences, and recover in a simple way the known result that the counterterms are temperature-independent.

  5. High temperature study of flexible silicon-on-insulator fin field-effect transistors

    KAUST Repository

    Diab, Amer El Hajj


    We report high temperature electrical transport characteristics of a flexible version of the semiconductor industry\\'s most advanced architecture: fin field-effect transistor on silicon-on-insulator with sub-20 nm fins and high-κ/metal gate stacks. Characterization from room to high temperature (150 °C) was completed to determine temperature dependence of drain current (Ids), gate leakage current (Igs), transconductance (gm), and extracted low-field mobility (μ0). Mobility degradation with temperature is mainly caused by phonon scattering. The other device characteristics show insignificant difference at high temperature which proves the suitability of inorganic flexible electronics with advanced device architecture.

  6. Low-temperature CVD synthesis of patterned core-shell VO2@ZnO nanotetrapods and enhanced temperature-dependent field-emission properties (United States)

    Yin, Haihong; Yu, Ke; Song, Changqing; Wang, Zhiliang; Zhu, Ziqiang


    VO2 nanostructures are attractive materials because of their reversible metal-insulator transition (MIT) and wide applications in devices. When they are used as field emitters, a new type of temperature-controlled field emission device can be fabricated. Vapor transport methods used to synthesize traditional VO2 nanostructures are energy-intensive, low yield, and produce simple morphology (quasi-1D) that exhibits substrate clamping; thus they are not suitable for field emission applications. To overcome these limitations, ZnO nanotetrapods were used as templates, and patterned core-shell VO2@ZnO nanotetrapods were successfully grown on an ITO/glass substrate via a low-temperature CVD synthesis. SEM, TEM, EDX, XPS analyses and X-ray diffraction revealed that the cores and shells of these nanotetrapods were single crystal wurtzite-type ZnO and polycrystalline VO2, respectively. The VO2@ZnO nanotetrapods show strongly MIT-related FE properties, the emission current density at low temperature is significantly enhanced in comparison with pure VO2 nanostructures, and the emission current density increased by about 20 times as the ambient temperature increased from 25 to 105 °C at a fixed field of 5 V μm-1. Although the VO2@ZnO nanotetrapods show a worse FE performance at low temperatures compared with pure ZnO nanotetrapods, the FE performance was substantially improved at high temperatures, which was attributed to the MIT-related band bending near the interface and the abrupt resistance change across the MIT.

  7. The Schwinger α-PARAMETRIC Representation of the Finite-Temperature Field Theory:. Renormalization II (United States)

    Benhamou, Mabrouk; Kassou-Ou-Ali, Ahmed

    We extend to finite-temperature field theories, involving charged scalar or nonvanishing spin particles, the α parametrization of field theories at zero temperature. This completes a previous work concerning the scalar theory. As there, a function θ, which contains all temperature dependence, appears in the α integrand. The function θ is an extension of the usual theta function. The implications of the α parametrization for the renormalization problem are discussed.

  8. Effects of Straight and Serpentine Flow Field Designs on Temperature Distribution in Proton Exchange Membrane (PEM Fuel Cell

    Directory of Open Access Journals (Sweden)

    Zaman Izzuddin


    Full Text Available Proton exchange membrane fuel cells or sometimes called as polymer electrolyte membrane (PEM fuel cells is a device for energy transformation in a changing process from one form of energy to another form of energy. It became as an alternative especially for future use in stationary and vehicular applications. PEM fuel cells provide high efficiency and power density with null emission, low operating temperature, quickly start and long life. One of the aspects that are crucial in optimizing the PEM fuel cells performance is a flow field geometry. In this paper, a simulation case of PEM fuel cells was simulated to determine effects of a straight and serpentine flow field on temperature distribution in PEM fuel cells. ANSYS Fluent software was used to simulate 3-dimensional models of single PEM fuel cells in order to determine the effects of changes in the geometry flow field on temperature distributions. Results showed that the serpentine flow field design produces a better temperature distribution along the membrane. The simulation result shows a good agreement with the experiment, thus boost a higher confidence in the results to determine the effectiveness of the flow field design in PEM fuel cells.

  9. An investigation of magnetic field effects on plume density and temperature profiles of an applied-field MPD thruster (United States)

    Bullock, S. Ray; Myers, R. M.


    Applied-field magnetoplasmadynamic (MPD) thruster performance is below levels required for primary propulsion missions. While MPD thruster performance has been found to increase with the magnitude of the applied-field strength, there is currently little understanding of the impact of applied-field shape on thruster performance. The results of a study in which a single applied-field thruster was operated using three solenoidal magnets with diameters of 12.7, 15.2, and 30.4-cm are presented. Thruster voltage and anode power deposition were measured for each applied field shape over a range of field strengths. Plume electron number density and temperature distributions were measured using a Langmuir probe in an effort to determine the effect of field shape on plume confinement by the diverging magnetic-field for each of the three magnetic field shapes. Results show that the dependence of the measured thruster characteristics on field shape were non-monotonic and that the field shape had a significant effect on the plume density and temperature profiles.

  10. Field Test of Boiler Primary Loop Temperature Controller

    Energy Technology Data Exchange (ETDEWEB)

    Glanville, P. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Rowley, P. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Schroeder, D. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Brand, L. [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States)


    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and, in some cases, return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential.

  11. Numerical Analysis of the Temperature Field in Luminaires

    Directory of Open Access Journals (Sweden)

    J. Murín


    Full Text Available This paper contains a calculation of the thermal field caused by electro-heat in lighting devices. After specifying the heat sources, a thermal analysis is make using the finite element method and the equivalent thermal scheme method. The calculated results have been verified experimentally.

  12. Increased temperature produces changes in the bioactive composition of tomato, depending on its developmental stage. (United States)

    Hernández, Virginia; Hellín, Pilar; Fenoll, Jose; Flores, Pilar


    The present study examines the effect of an increased day temperature on vitamin C and carotenoid concentrations in tomato, depending on the developmental stage of fruits when the stress is imposed. Plants were cultivated in a growth chamber initially at 24 °C, and the day temperature was increased to 32 °C when fruits belonging to six different fruit development stages could be differentiated. Vitamin C, phytoene, phytofluene, lycopene, γ-carotene, and violaxantin concentrations were significantly lower when a temperature of 32 °C was imposed during the advanced stages of fruit development compared to the levels observed in the control treatment. However, no effect or increased concentrations were observed when the temperature was increased in earlier stages, indicating the adaptation of the plant metabolism to high temperature. Finally, no effect on β-carotene concentration was observed, regardless of the fruit developmental stage when the temperature increase was applied.

  13. Measurement of the radial temperature distribution of the heated spot produced by a focused laser beam using an optical pyrometer. (United States)

    Hendricks, L J; Zobrist, S P


    A method is described for the evaluation of the Gaussian curve parameters needed for the description of the temperature distribution of the heated spot produced on a target substrate by a well-focused laser beam, using an optical pyrometer to read the weighted average temperatures from two distinct distances. The parameter so found gave a calculated distribution curve in excellent agreement with experimental determinations of that distribution.

  14. Temperature measurements of electrostatic shocks in laser-produced counter-streaming plasmas (United States)

    Morita, T.; Sakawa, Y.; Kuramitsu, Y.; Tanji, H.; Aoki, H.; Ide, T.; Shibata, S.; Onishi, N.; Gregory, C.; Diziere, A.; Waugh, J.; Woolsey, N.; Sano, Y.; Shiroshita, A.; Shigemori, K.; Ozaki, N.; Kimura, T.; Miyanishi, K.; Kodama, R.; Koenig, M.; Takabe, H.


    Collisionless shocks in counter-streaming plasmas, created by the high-power laser system Gekko XII HIPER, are investigated. The shock structure and density are measured by optical diagnostics such as shadowgraphy, interferometry, and streaked interferometry. The plasma density and temperature are estimated from self-emission measurements with visible light by streaked optical pyrometer and gated optical imager. Brightness temperatures are calculated considering the efficiency of the detectors, and electron temperatures are estimated.

  15. Estimation of VOC emissions from produced-water treatment ponds in Uintah Basin oil and gas field using modeling techniques (United States)

    Tran, H.; Mansfield, M. L.; Lyman, S. N.; O'Neil, T.; Jones, C. P.


    Emissions from produced-water treatment ponds are poorly characterized sources in oil and gas emission inventories that play a critical role in studying elevated winter ozone events in the Uintah Basin, Utah, U.S. Information gaps include un-quantified amounts and compositions of gases emitted from these facilities. The emitted gases are often known as volatile organic compounds (VOCs) which, beside nitrogen oxides (NOX), are major precursors for ozone formation in the near-surface layer. Field measurement campaigns using the flux-chamber technique have been performed to measure VOC emissions from a limited number of produced water ponds in the Uintah Basin of eastern Utah. Although the flux chamber provides accurate measurements at the point of sampling, it covers just a limited area of the ponds and is prone to altering environmental conditions (e.g., temperature, pressure). This fact raises the need to validate flux chamber measurements. In this study, we apply an inverse-dispersion modeling technique with evacuated canister sampling to validate the flux-chamber measurements. This modeling technique applies an initial and arbitrary emission rate to estimate pollutant concentrations at pre-defined receptors, and adjusts the emission rate until the estimated pollutant concentrations approximates measured concentrations at the receptors. The derived emission rates are then compared with flux-chamber measurements and differences are analyzed. Additionally, we investigate the applicability of the WATER9 wastewater emission model for the estimation of VOC emissions from produced-water ponds in the Uintah Basin. WATER9 estimates the emission of each gas based on properties of the gas, its concentration in the waste water, and the characteristics of the influent and treatment units. Results of VOC emission estimations using inverse-dispersion and WATER9 modeling techniques will be reported.

  16. The Temperature - Magnetic Field Relation in Observed and Simulated Sunspots

    Czech Academy of Sciences Publication Activity Database

    Sobotka, Michal; Rezaei, R.


    Roč. 292, č. 12 (2017), 188/1-188/12 ISSN 0038-0938 R&D Projects: GA ČR(CZ) GA14-04338S; GA MŠk(CZ) 7E13003 EU Projects: European Commission(XE) 312495 - SOLARNET Institutional support: RVO:67985815 Keywords : sunspots * magnetic fields * comparison Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 2.682, year: 2016

  17. Quantum electrodynamics at a finite temperature with an external field destroying the stability of the vacuum

    International Nuclear Information System (INIS)

    Gavrilov, S.P.; Gitman, D.M.; Fradkin, E.S.


    A generating functional for expectation values is found for QED at a finite temperature with an external field which destroys the stability of the vacuum. The equations for connected Green functions and the effective action for the mean field are written out. Their representation is obtained in the form of an integral over the proper time for the Green function taking into account temperature effects in a constant uniform field. By means of this representation the polarization operator for the mean field in an external constant uniform field has been calculated

  18. Quantum electrodynamics at finite temperatures in presence of an external field violating the vacuum stability

    International Nuclear Information System (INIS)

    Gavrilov, S.P.; Gitman, D.M.; Fradkin, E.S.


    A functional generating expectation values is obtained for QED at a finite temperature in presence of an external field violating the vacuum stability. Equations for connected Green's functions and the effective action for the mean field are derived. The Green function is obtained as an integral with respect of the proper time; the representation takes into account temperature effects in a constant homogeneous field. The polarization operator for the mean field in an external constant homogeneous field is calculated by means of the integral representation

  19. Modelling of the temperature field that accompanies friction stir welding

    Directory of Open Access Journals (Sweden)

    Nosal Przemysław


    Full Text Available The thermal modelling of the Friction Stir Welding process allows for better recognition and understanding of phenomena occurring during the joining process of different materials. It is of particular importance considering the possibilities of process technology parameters, optimization and the mechanical properties of the joint. This work demonstrates the numerical modelling of temperature distribution accompanying the process of friction stir welding. The axisymmetric problem described by Fourier’s type equation with internal heat source is considered. In order to solve the diffusive initial value problem a fully implicit scheme of the finite difference method is applied. The example under consideration deals with the friction stir welding of a plate (0.7 cm thick made of Al 6082-T6 by use of a tool made of tungsten alloy, whereas the material subjected to welding was TiC powder. Obtained results confirm both quantitatively and qualitatively experimental observations that the superior temperature corresponds to the zone where the pin joints the shoulder.

  20. Field Test of Boiler Primary Loop Temperature Controller

    Energy Technology Data Exchange (ETDEWEB)

    Glanville, P.; Rowley, P.; Schroeder, D.; Brand, L.


    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and in some cases return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential. PARR installed and monitored the performance of one type of ALM controller, the M2G from Greffen Systems, at multifamily sites in the city of Chicago and its suburb Cary, IL, both with existing OTR control. Results show that energy savings depend on the degree to which boilers are over-sized for their load, represented by cycling rates. Also savings vary over the heating season with cycling rates, with greater savings observed in shoulder months. Over the monitoring period, over-sized boilers at one site showed reductions in cycling and energy consumption in line with prior laboratory studies, while less over-sized boilers at another site showed muted savings.

  1. Strong room-temperature negative transconductance in an axial Si/Ge hetero-nanowire tunneling field-effect transistor (United States)

    Zhang, Peng; Le, Son T.; Hou, Xiaoxiao; Zaslavsky, A.; Perea, Daniel E.; Dayeh, Shadi A.; Picraux, S. T.


    We report on room-temperature negative transconductance (NTC) in axial Si/Ge hetero-nanowire tunneling field-effect transistors. The NTC produces a current peak-to-valley ratio >45, a high value for a Si-based device. We characterize the NTC over a range of gate VG and drain VD voltages, finding that NTC persists down to VD = -50 mV. The physical mechanism responsible for the NTC is the VG-induced depletion in the p-Ge section that eventually reduces the maximum electric field that triggers the tunneling ID, as confirmed via three-dimensional (3D) technology computer-aided design simulations.

  2. Some tests of flat plate photovoltaic module cell temperatures in simulated field conditions (United States)

    Griffith, J. S.; Rathod, M. S.; Paslaski, J.


    The nominal operating cell temperature (NOCT) of solar photovoltaic (PV) modules is an important characteristic. Typically, the power output of a PV module decreases 0.5% per deg C rise in cell temperature. Several tests were run with artificial sun and wind to study the parametric dependencies of cell temperature on wind speed and direction and ambient temperature. It was found that the cell temperature is extremely sensitive to wind speed, moderately so to wind direction and rather insensitive to ambient temperature. Several suggestions are made to obtain data more typical of field conditions.

  3. Modeling and Numerical Simulation of the Grinding Temperature Field with Nanoparticle Jet of MQL

    Directory of Open Access Journals (Sweden)

    C. H. Li


    Full Text Available In this research, the heat transfer model of surface grinding temperature field with nanoparticle jet flow of MQL as well as the proportionality coefficient model of energy input workpiece was established, respectively. The numerical simulation of surface grinding temperature field of three workpiece materials was conducted. The results present that, in the workpiece, the surface temperature was significantly higher than the subsurface temperature, presenting relatively large temperature gradient along the direction of workpiece thickness. The impact of the grinding depth on grinding temperature was significant. With the increase of the cut depth, peak values of the grinding temperature rocketed. Distribution rules of the temperature field of 2Cr13 in four cooling and lubrication approaches were the same. Based on the excellent heat transfer property of nanofluids, the output heat through the grinding medium acquired an increasingly high proportion, leading to the drop of the temperature in the grinding zone. For the same cooling and lubrication conditions, grinding temperature presented insignificant changes along the direction of grinding width. Yet, under different cooling conditions, the temperature variation was significant. MQL grinding conditions with additive nanoparticles demonstrated great impact on the weakening of temperature effect on the grinding zone.

  4. Electromagnetic fields produced by incubators influence heart rate variability in newborns. (United States)

    Bellieni, C V; Acampa, M; Maffei, M; Maffei, S; Perrone, S; Pinto, I; Stacchini, N; Buonocore, G


    Incubators are largely used to preserve preterm and sick babies from postnatal stressors, but their motors produce high electromagnetic fields (EMFs). Newborns are chronically exposed to these EMFs, but no studies about their effects on the fragile developing neonatal structure exist. To verify whether the exposure to incubator motor electric power may alter autonomous nervous system activity in newborns. Heart rate variability (HRV) of 43 newborns in incubators was studied. The study group comprised 27 newborns whose HRV was studied throughout three 5-minute periods: with incubator motor on, off, and on again, respectively. Mean HRV values obtained during each period were compared. The control group comprised 16 newborns with constantly unrecordable EMF and exposed to changes in background noise, similar to those provoked by the incubator motor. Mean (SD) total power and the high-frequency (HF) component of HRV increased significantly (from 87.1 (76.2) ms2 to 183.6 (168.5) ms2) and the mean low-frequency (LF)/HF ratio decreased significantly (from 2.0 (0.5) to 1.5 (0.6)) when the incubator motor was turned off. Basal values (HF = 107.1 (118.1) ms2 and LF/HF = 1.9 (0.6)) were restored when incubators were turned on again. The LF spectral component of HRV showed a statistically significant change only in the second phase of the experiment. Changes in background noise did not provoke any significant change in HRV. EMFs produced by incubators influence newborns' HRV, showing an influence on their autonomous nervous system. More research is needed to assess possible long-term consequences, since premature newborns may be exposed to these high EMFs for months.

  5. Effects of temperature on bacterial transport and destruction in bioretention media: field and laboratory evaluations. (United States)

    Zhang, Lan; Seagren, Eric A; Davis, Allen P; Karns, Jeffrey S


    Microbial activities are significantly influenced by temperature. This study investigated the effects of temperature on the capture and destruction of bacteria from urban stormwater runoff in bioretention media using 2-year field evaluations coupled with controlled laboratory column studies. Field data from two bioretention cells show that the concentration of indicator bacteria (fecal coliforms and Escherichia coli) was reduced during most storm events, and that the probability of meeting specific water quality criteria in the discharge was increased. Indicator bacteria concentration in the input flow typically increased with higher daily temperature. Although bacterial removal efficiency was independent of temperature in the field and laboratory, column tests showed that bacterial decay coefficients in conventional bioretention media (CBM) increase exponentially with elevated temperature. Increases in levels of protozoa and heterotrophic bacteria associated with increasing temperature appear to contribute to faster die-off of trapped E. coli in CBM via predation and competition.

  6. 2d Model Field Theories at Finite Temperature and Density


    Schoen, Verena; Thies, Michael


    In certain 1+1 dimensional field theoretic toy models, one can go all the way from microscopic quarks via the hadron spectrum to the properties of hot and dense baryonic matter in an essentially analytic way. This "miracle" is illustrated through case studies of two popular large N models, the Gross-Neveu and the 't Hooft model - caricatures of the Nambu-Jona-Lasinio model and real QCD, respectively. The main emphasis will be on aspects related to spontaneous symmetry breaking (discrete or co...

  7. Research on early-warning index of the spatial temperature field in concrete dams. (United States)

    Yang, Guang; Gu, Chongshi; Bao, Tengfei; Cui, Zhenming; Kan, Kan


    Warning indicators of the dam body's temperature are required for the real-time monitoring of the service conditions of concrete dams to ensure safety and normal operations. Warnings theories are traditionally targeted at a single point which have limitations, and the scientific warning theories on global behavior of the temperature field are non-existent. In this paper, first, in 3D space, the behavior of temperature field has regional dissimilarity. Through the Ward spatial clustering method, the temperature field was divided into regions. Second, the degree of order and degree of disorder of the temperature monitoring points were defined by the probability method. Third, the weight values of monitoring points of each regions were explored via projection pursuit. Forth, a temperature entropy expression that can describe degree of order of the spatial temperature field in concrete dams was established. Fifth, the early-warning index of temperature entropy was set up according to the calculated sequential value of temperature entropy. Finally, project cases verified the feasibility of the proposed theories. The early-warning index of temperature entropy is conducive to the improvement of early-warning ability and safety management levels during the operation of high concrete dams.


    International Nuclear Information System (INIS)

    Janse, A. M.; Low, B. C.


    In this paper, the third in a series of papers on topological changes of magnetic fields, we study how the dissipation of an initial current sheet (CS) in a closed three-dimensional (3D) field affects the field topology. The initial field is everywhere potential except at the location of the CS which is in macroscopic equilibrium under the condition of perfect conductivity. In the physical world of extremely high, but finite, conductivity, the CS dissipates and the field seeks a new equilibrium state in the form of an everywhere potential field since the initial field is everywhere untwisted. Our semi-analytical study indicates that the dissipation of the single initial CS must induce formation of additional CSs in extensive parts of the magnetic volume. The subsequent dissipation of these other sheets brings about topological changes by magnetic reconnection in order for the global field to become potential. In 2D fields, the magnetic reconnection due to the dissipation of a CS is limited to the magnetic vicinity of the dissipating sheet. Thus, the consequence of CS dissipation is physically and topologically quite different in 2D and 3D fields. A discussion of this result is given in general relation to the Parker theory of spontaneous CSs and heating in the solar corona and solar flares.

  9. Effect of temperature on growth and fatty acids profile of the biodiesel producing microalga Scenedesmus acutus

    Directory of Open Access Journals (Sweden)

    El-Sheekh, M.


    Full Text Available Description of the subject. The present study examined the effect of temperature (15, 20, 25, 30, 35 and 40 °C on biomass, esterified fatty acids content and fatty acid productivity of Scenedesmus acutus. Objectives. This work aimed to study the effect of variation in temperature on lipid productivity and fatty acid profiles of S. acutus as a feedstock for biodiesel production. Method. The alga was grown under different temperatures and its biomass, as well as fatty acid content and composition, were determined. Results. The maximum growth rate of S. acutus was achieved at 30 °C , but there was no significant difference in biomass productivity at 25 and 30 °C (0.41 and 0.42 g·l-1·d-1, respectively. The highest fatty acid content (104.1 mg·g-1 CDW was recorded at low temperature (15 °C and decreased with increasing temperature. As a result of high biomass production, fatty acids productivity showed the highest values (41.27 and 42.10 mg·l-1·d-1 at 25 and 30 °C, respectively. The proportion of saturated and mono-unsaturated fatty acids increased from 13.72 to 23.79% and from 11.13 to 33.10% of total fatty acids when the incubation temperature was raised from 15 to 40 °C, respectively. The increase of temperature from 15 to 40 °C decreased the poly-unsaturated fatty acids from 75.15% to 43.10% of total fatty acids, respectively. Conclusions. The present study concluded that incubation temperature was a critical parameter for quantitative and qualitative fatty acid compositions of S. acutus. In addition, the type and proportion of individual fatty acids, which interfere with biodiesel quality, can be modified using different incubation temperatures in order to meet the biodiesel international standards.

  10. Research of temperature field measurement using a flexible temperature sensor array for robot sensing skin (United States)

    Huang, Ying; Wu, Siyu; Li, Ruiqi; Yang, Qinghua; Zhang, Yugang; Liu, Caixia


    This paper presents a novel temperature sensor array by dispensing conductive composites on a flexible printed circuit board which is able to acquire the ambient temperature. The flexible temperature sensor array was fabricated by using carbon fiber-filled silicon rubber based composites on a flexible polyimide circuit board, which can both ensure their high flexibility. It found that CF with 12 wt% could be served as the best conductive filler for higher temperature sensitivity and better stability comparing with some other proportion for dynamic range from 30&° to 90°. The preparation of the temperature sensitive material has also been described in detail. Connecting the flexible sensor array with a data acquisition card and a personal computer (PC), some heat sources with different shapes were loaded on the sensor array; the detected results were shown in the interface by LabVIEW software. The measured temperature contours are in good agreement with the shapes and amplitudes of different heat sources. Furthermore, in consideration of the heat dissipation in the air, the relationship between the resistance and the distance of heat sources with sensor array was also detected to verify the accuracy of the sensor array, which is also a preparation for our future work. Experimental results demonstrate the effectiveness and accuracy of the developed flexible sensor array, and it can be used as humanoid artificial skin for sensation system of robots.

  11. Experimental study of temperature field at fast reactor subassembly exit under drastic changes of coolant temperature

    International Nuclear Information System (INIS)

    Zhukov, A.V.; Ivanov, E.Ph.; Kuznetsov, I.A.; Sorokin, A.P.; Ushakov, P.A.


    Failure conditions due to dangerous increasing in power or flow rate drop are the most hazardous in terms of the rise of thermal stresses. Initial rise in temperature may run to 100 C and more. Sodium temperature at the subassembly inlet is varied according to definite time constant which is equal to fuel pin time constant (about 2 sec), that is below the time constant for massive part of subassembly head (4-10 sec). Thus, variations in sodium temperature are, for subassembly head, almost momentary and bring about maximal thermal stresses. Experiments on transient temperature behavior in subassembly head under thermal impact conditions have been performed on the model. Magnitude of temperature has been measured in two cross sections by chromel-alumel thermocouples bond in the middle of the wall, at its outer surface and in the coolant flow for distance of 3 mm from the wall. To measure temperature difference between middle of the wall and its surface fast differential thermocouples chromel-sodium-potassium have been used

  12. Relationship of magnetic field strength and brightness of fine-structure elements in the solar temperature minimum region (United States)

    Cook, J. W.; Ewing, J. A.


    A quantitative relationship was determined between magnetic field strength (or magnetic flux) from photospheric magnetograph observations and the brightness temperature of solar fine-structure elements observed at 1600 A, where the predominant flux source is continuum emission from the solar temperature minimum region. A Kitt Peak magnetogram and spectroheliograph observations at 1600 A taken during a sounding rocket flight of the High Resolution Telescope and Spectrograph from December 11, 1987 were used. The statistical distributions of brightness temperature in the quiet sun at 1600 A, and absolute value of magnetic field strength in the same area were determined from these observations. Using a technique which obtains the best-fit relationship of a given functional form between these two histogram distributions, a quantitative relationship was determined between absolute value of magnetic field strength B and brightness temperature which is essentially linear from 10 to 150 G. An interpretation is suggested, in which a basal heating occurs generally, while brighter elements are produced in magnetic regions with temperature enhancements proportional to B.

  13. Analysis of non-stationary temperature field in reactor fuel element

    International Nuclear Information System (INIS)

    Vehauc, A.; Spasojevic, D.


    Starting from time and space distribution of power generation determined previously stationary analysis of fuel element, a method was developed for non-stationary conditions. It is based on development of temperature field by eigenfunctions and application of Laplace transformation for calculating transfer function of power variation in time and space distribution of temperature field in the fuel element. Dynamic behaviour of fuel element in non-stationary regime and frequency analysis of the transfer function was done. Transfer function of temperature field is given in the form of amplitude and frequency characteristics

  14. Integrated electronic transport and thermometry at milliKelvin temperatures and in strong magnetic fields. (United States)

    Samkharadze, N; Kumar, A; Manfra, M J; Pfeiffer, L N; West, K W; Csáthy, G A


    We fabricated a He-3 immersion cell for transport measurements of semiconductor nanostructures at ultra low temperatures and in strong magnetic fields. We have a new scheme of field-independent thermometry based on quartz tuning fork Helium-3 viscometry which monitors the local temperature of the sample's environment in real time. The operation and measurement circuitry of the quartz viscometer is described in detail. We provide evidence that the temperature of two-dimensional electron gas confined to a GaAs quantum well follows the temperature of the quartz viscometer down to 4 mK.

  15. Characterization of Line Nanopatterns on Positive Photoresist Produced by Scanning Near-Field Optical Microscope

    Directory of Open Access Journals (Sweden)

    Sadegh Mehdi Aghaei


    Full Text Available Line nanopatterns are produced on the positive photoresist by scanning near-field optical microscope (SNOM. A laser diode with a wavelength of 450 nm and a power of 250 mW as the light source and an aluminum coated nanoprobe with a 70 nm aperture at the tip apex have been employed. A neutral density filter has been used to control the exposure power of the photoresist. It is found that the changes induced by light in the photoresist can be detected by in situ shear force microscopy (ShFM, before the development of the photoresist. Scanning electron microscope (SEM images of the developed photoresist have been used to optimize the scanning speed and the power required for exposure, in order to minimize the final line width. It is shown that nanometric lines with a minimum width of 33 nm can be achieved with a scanning speed of 75 µm/s and a laser power of 113 mW. It is also revealed that the overexposure of the photoresist by continuous wave laser generated heat can be prevented by means of proper photoresist selection. In addition, the effects of multiple exposures of nanopatterns on their width and depth are investigated.

  16. Local geology determines responses of stream producers and fungal decomposers to nutrient enrichment: A field experiment. (United States)

    Mykrä, Heikki; Sarremejane, Romain; Laamanen, Tiina; Karjalainen, Satu Maaria; Markkola, Annamari; Lehtinen, Sirkku; Lehosmaa, Kaisa; Muotka, Timo


    We examined how short-term (19 days) nutrient enrichment influences stream fungal and diatom communities, and rates of leaf decomposition and algal biomass accrual. We conducted a field experiment using slow-releasing nutrient pellets to increase nitrate (NO 3 -N) and phosphate (PO 4 -P) concentrations in a riffle section of six naturally acidic (naturally low pH due to catchment geology) and six circumneutral streams. Nutrient enrichment increased microbial decomposition rate on average by 14%, but the effect was significant only in naturally acidic streams. Nutrient enrichment also decreased richness and increased compositional variability of fungal communities in naturally acidic streams. Algal biomass increased in both stream types, but algal growth was overall very low. Diatom richness increased in response to nutrient addition by, but only in circumneutral streams. Our results suggest that primary producers and decomposers are differentially affected by nutrient enrichment and that their responses to excess nutrients are context dependent, with a potentially stronger response of detrital processes and fungal communities in naturally acidic streams than in less selective environments.

  17. Dynamics expansion of laser produced plasma with different materials in magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rabia Qindeel; Noriah Bte Bidin; Yaacob Mat daud [Laser Technology Laboratory, Physics Department, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia)], E-mail:


    The dynamics expansion of the plasma generated by laser ablation of different materials has been investigated. The dynamics and confinement of laser generated plasma plumes are expanding across variable magnetic fields. A Q-switched neodymium-doped yttrium aluminum garnet laser with 1064 nm, 8 ns pulse width and 0.125 J laser energy was used to generate plasma that was allowed to expand across variable magnetic within 0.1 - 0.8 T. The expansions of laser-produced plasma of different materials are characterized by using constant laser power. CCD video camera was used to visualize and record the activities in the focal region. The plasma plume length, width and area were measured by using Matrox Inpector 2.1 and video Test 0.5 software. Spectrums of plasma beam from different materials are studied via spectrometer. The results show that the plasma generated by aluminum target is the largest than Brass and copper. The optical radiation from laser generated plasma beam spectrums are obtained in the range of UV to visible light.

  18. Effect of temperature, viscosity and surface tension on gelatine structures produced by modified 3D printer (United States)

    Kalkandelen, C.; Ozbek, B.; Ergul, N. M.; Akyol, S.; Moukbil, Y.; Oktar, F. N.; Ekren, N.; Kılıc, O.; Kılıc, B.; Gunduz, O.


    In the present study, gelatine scaffolds were manufactured by using modified 3D (3 Dimensional) printing machine and the effect of different parameters on scaffold structure were investigated. Such as; temperature, viscosity and surface tension of the gelatine solutions. The varying of gelatine solutions (1, 3, 5, 10, 15 and 20 wt.%) were prepared and characterized. It has been detected that, viscosity of those solutions were highly influenced by temperature and gelatine concentration. Specific CAD (Computer Assistant Design) model which has 67% porosity and original design were created via computer software. However, at high temperatures gelatine solutions caused like liquid but at the lower temperatures were observed the opposite behaviour. In addition to that, viscosity of 1,3,5 wt.% solutions were not enough to build a structure and 20 wt.% gelatine solution too hard to handle, because of the sudden viscosity changes with temperature. Even though, scaffold of the 20 wt.% gelatine solution printed hardly but it was observed the best printed solutions, which were 10 and 15 wt.% gelatine solutions. As a result, 3D printing of gelatine were found the values of the best temperature, viscosity, surface tension and gelatine concentration such as 25-35 °C, 36-163 cP, 46-59 mN/m and 15 wt.% gelatine concentration respectively.

  19. Research, Development, and Field Testing of Thermochemical Recuperation for High Temperature Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Kurek, Harry; Kozlov, Aleksandr


    potential performance of TCR. • Phase II: Conduct research and development to take the validated technology concept from Phase I to a developmental state for a Phase 3, prototype field test. • Phase III: Design, fabricate, and prototype field testing of the TCR unit close coupled to an existing high temperature reheat furnace at a steel company for evaluation under industrial conditions The project was initiated on September 30, 2008. The report of Phase I results and conclusions was issued on October 30, 2009. The findings were reviewed by the project partners and the collective recommendation was to proceed with Phase II. Upon the work-conclusion, the Phase II report was issued on March 5, 2012. The scope of work involved the physical testing of a laboratory scale Recuperative Reformer (RR) to validate predicted performances from the feasibility study in Phase I (26% fuel reduction). Although the testing was a successful validation (21% fuel reduction mode), a technical issue 5 arose, namely a Methane Reforming Rate (MRR) roll off or non-sustaining of the methane reforming rate. GTI’s preliminary conclusions were that mechanism(s) producing the methane reforming rate reduction were not entirely known or understood and the chemical kinetics that triggered the roll off mechanism and/or other mechanisms needed to be further evaluated. GTI developed a plan to uncover the reason(s) for not sustaining a satisfactory Methane Reforming Rate (MRR) of the laboratory scale recuperator reformer (RR). The extended testing program consisted primarily of four tasks based on expected outcomes at that time. The project partners reviewed the proposal and recommended the proposed work extension to proceed and suspension of Phase III pending further review of the results of this work identified as Task 2.5. Additional Temperature Threshold Testing was undertaken by GTI and simultaneously independent analysis was carried out by the University of California Davis. Upon completion of the

  20. Cloud microphysical characteristics versus temperature for three Canadian field projects

    Directory of Open Access Journals (Sweden)

    I. Gultepe


    Full Text Available The purpose of this study is to better understand how cloud microphysical characteristics such as liquid water content (LWC and droplet number concentration (Nd change with temperature (T. The in situ observations were collected during three research projects including: the Radiation, Aerosol, and Cloud Experiment (RACE which took place over the Bay of Fundy and Central Ontario during August 1995, the First International Regional Arctic Cloud Experiment (FIRE.ACE which took place in the Arctic Ocean during April 1998, and the Alliance Icing Research Study (AIRS which took place in the Ontario region during the winter of 1999–2000. The RACE, FIRE.ACE, and AIRS projects represent summer mid-latitude clouds, Arctic clouds, and mid-latitude winter clouds, respectively. A LWC threshold of 0.005 g m-3 was used for this study. Similar to other studies, LWC was observed to decrease with decreasing T. The LWC-T relationship was similar for all projects, although the range of T conditions for each project was substantially different, and the variability of LWC within each project was considerable. Nd also decreased with decreasing T, and a parameterization for Nd versus T is suggested that may be useful for modeling studies.Key words. Atmospheric composition and structure (cloud physics and chemistry – Meteorology and atmospheric dynamics (climatology; general circulation

  1. Analytical Methods for Temperature Field and Temperature Stress of Column Pier under Solar Radiation

    Directory of Open Access Journals (Sweden)

    Yin-hui Wang


    Full Text Available Based on the previous research work, a new idea is proposed for analyzing the impact of solar radiation on the substructure of bridges. Investigation is conducted in the thermodynamic phenomena and temperature stress of a dual-column pier. Research is led to the thermal conductivity of concrete structure and the values of the environmental parameters under solar radiation. An analytical code is written for the thermal analysis of the dual-column pier using the parametric modeling function of FE software, by means of which the temperature distribution of the bridge structure is computed under solar radiation. Using the thermal analytical results, the temperature stress of the dual-column pier is further calculated. The results tell that the temperature gradient distribution curve inside the concrete of the pier fits favorably the curve defined in the design specification and coincides quite well with real situation, which verifies the new idea proposed in this paper. Under the solar radiation which is a time-variable nonlinear temperature load to the bridge, the maximum principal stress is found at the corner of the pier with the sign of negative, which is believed to threaten the safety of the substructure of bridge and is necessary to arouse emphasis.

  2. Cryogenic system of controlled temperature for the study of neutron inelastic a magnetic field

    International Nuclear Information System (INIS)

    Demishev, A.G.; Suplin, V.Z.; Najmushin, E.A.; Gurtyak, A.A.; Sil'chenko, V.A; Pelikh, N.I.


    Developed, produced and successfully operated is the cryogenic system with control in the temperature range from 4.2 to 270 K for investigation of inelastic neutron scattering in magnetic field up to 2.3 T. It consists of a crystal with a built-in superconducting solenoid, current source and electron regulator of temperature. Cylindrical specimens with 10-40 mm diameter with working part height of 50 mm are placed in the operation chamber vertically. 4.2 K temperature is provided by filling up of operation chamber with liquid helium, and in the interval from 5 to 270 K - by gas blowing with heating at constant waste and is stabilized by two-circuit temperature regulator. Instability of the established value of temperature in the range of 5-70 K is not more than +-0.1 K and in the 70-270 K range - not more than +-0.2 K. Magnetic field is directed along the specimen axis, irradiation with a hotizontal beam of neutrons is carried out in span of angle up to 150 deg. Control system is stable in the whole range of temperatures without rebuilding of regulator coefficients. The crystal scheme and functional scheme of the regulator are presented [ru

  3. Silicon junctionless field effect transistors as room temperature terahertz detectors (United States)

    Marczewski, J.; Knap, W.; Tomaszewski, D.; Zaborowski, M.; Zagrajek, P.


    Terahertz (THz) radiation detection by junctionless metal-oxide-semiconductor field-effect transistors (JL MOSFETs) was studied and compared with THz detection using conventional MOSFETs. It has been shown that in contrast to the behavior of standard transistors, the junctionless devices have a significant responsivity also in the open channel (low resistance) state. The responsivity for a photolithographically defined JL FET was 70 V/W and the noise equivalent power 460 pW/√Hz. Working in the open channel state may be advantageous for THz wireless and imaging applications because of its low thermal noise and possible high operating speed or large bandwidth. It has been proven that the junctionless MOSFETs can also operate in a zero gate bias mode, which enables simplification of the THz array circuitry. Existing models of THz detection by MOSFETs were considered and it has been demonstrated that the process of detection by these junctionless devices cannot be explained within the framework of the commonly accepted models and therefore requires a new theoretical approach.

  4. Method of producing YBa2Cu3O6+x superconductors with high transition temperatures

    International Nuclear Information System (INIS)

    Rao, A.S.; Arora, O.P.; Aprigliano, L.F.


    This patent describes a method for making an improved ceramic superconductor. It comprises: mixing an oxide selected from the group consisting of Y 2 O 3 , Er 2 O 3 , Eu 2 O 3 , Yb 2 O 3 , Dy 2 O 3 and Ho 2 O 3 with barium carbonate and copper oxide powders in a ratio of about 50 grams in the case of Y 2 O 3 , 83 grams for Er 2 O 3 , 76 grams for Eu 2 O 3 , 86 grams of Ho 2 O 3 to about 70 grams of BaCO 3 to about 105 grams of CuO, ball milling the mixture with zironia balls for at least on hour; calcining the mixture at a temperature of 940 degree C + or -degree C with a heating sequence of 2 degree C per minute from room temperature to 200 degree C, maintaining the mixture at the 200 degree C temperature for a least about sixty minutes, heating the mixture at 3 degree C per minute until a temperature of 940 degree C + or -2 degree C is reached, maintaining the mixture at the 940 degree C + or -2 degree C for three hundred minutes, cooling the mixture to room temperature at a rate of 1 degree C per minute, adding silver oxide in powdered form to the mixture an amount of from about 1 to about 20 weight percent, ball milling the mixture containing silver oxide for at least one hour, compacting the mixture, sintering the mixture at 920 degree C + or -2 degree C by heating the mixture at 2 degree C per minute from room temperature 200 degree C, maintaining the temperature at 200 degree C for 60 minutes and then resuming the heating at 3 degree C per minute until a temperature of 920 degree C is reached, (l) maintaining the mixture at 920 degree C + or -2 degree C for three hundred minutes, and (m) cooling the mixture to room temperature at a rate of degree C per minute

  5. Ultrafast Electric Field Pulse Control of Giant Temperature Change in Ferroelectrics (United States)

    Qi, Y.; Liu, S.; Lindenberg, A. M.; Rappe, A. M.


    There is a surge of interest in developing environmentally friendly solid-state-based cooling technology. Here, we point out that a fast cooling rate (≈1011 K /s ) can be achieved by driving solid crystals to a high-temperature phase with a properly designed electric field pulse. Specifically, we predict that an ultrafast electric field pulse can cause a giant temperature decrease up to 32 K in PbTiO3 occurring on few picosecond time scales. We explain the underlying physics of this giant electric field pulse-induced temperature change with the concept of internal energy redistribution: the electric field does work on a ferroelectric crystal and redistributes its internal energy, and the way the kinetic energy is redistributed determines the temperature change and strongly depends on the electric field temporal profile. This concept is supported by our all-atom molecular dynamics simulations of PbTiO3 and BaTiO3 . Moreover, this internal energy redistribution concept can also be applied to understand electrocaloric effect. We further propose new strategies for inducing giant cooling effect with ultrafast electric field pulse. This Letter offers a general framework to understand electric-field-induced temperature change and highlights the opportunities of electric field engineering for controlled design of fast and efficient cooling technology.

  6. Mathematical model of temperature field distribution in thin plates during polishing with a free abrasive

    Directory of Open Access Journals (Sweden)

    Avilov Alex


    Full Text Available The purpose of this paper is to estimate the dynamic characteristics of the heating process of thin plates during polishing with a free abrasive. A mathematical model of the temperature field distribution in space and time according to the plate thickness is based on Lagrange equation of the second kind in the thermodynamics of irreversible processes (variation principle Bio. The research results of thermo elasticity of thin plates (membranes will allow to correct the modes of polishing with a free abrasive to receive the exact reflecting surfaces of satellites reflector, to increase temperature stability and the ability of radio signal reflection, satellite precision guidance. Calculations of temperature fields in thin plates of different thicknesses (membranes is held in the Excel, a graphical characteristics of temperature fields in thin plates (membranes show non-linearity of temperature distribution according to the thickness of thin plates (membranes.

  7. Measurement of temperature fields in specimens of quartz ceramic during surface ablation (United States)

    Frolov, G. A.; Pasichnyi, V. V.; Suzdal'Tsev, E. I.; Tsyganenko, V. S.


    The authors propose a method of mounting thermocouples and have obtained temperature fields within specimens of pure and doped quartz ceramic. The linearity of the dependenceΔ * = fleft( {sqrt tau } right) for deep isotherms has been proved experimentally.

  8. Temperature-Dependent Coercive Field Measured by a Quantum Dot Strain Gauge. (United States)

    Chen, Yan; Zhang, Yang; Keil, Robert; Zopf, Michael; Ding, Fei; Schmidt, Oliver G


    Coercive fields of piezoelectric materials can be strongly influenced by environmental temperature. We investigate this influence using a heterostructure consisting of a single crystal piezoelectric film and a quantum dots containing membrane. Applying electric field leads to a physical deformation of the piezoelectric film, thereby inducing strain in the quantum dots and thus modifying their optical properties. The wavelength of the quantum dot emission shows butterfly-like loops, from which the coercive fields are directly derived. The results suggest that coercive fields at cryogenic temperatures are strongly increased, yielding values several tens of times larger than those at room temperature. We adapt a theoretical model to fit the measured data with very high agreement. Our work provides an efficient framework for predicting the properties of ferroelectric materials and advocating their practical applications, especially at low temperatures.

  9. Sensitive element of multifunctional sensor for measuring temperature, strain and magnetic field induction

    Directory of Open Access Journals (Sweden)

    Druzhinin A. A.


    Full Text Available Sensitive element of multifunctional sensor for measuring temperature, strain and magnetic field induction has been developed based on the studies of electrical conductivity and magnetoresistance of silicon and germanium microcrystals in the temperature range 4.2—70 K, strain ±1.5*10–3 rel.un. and magnetic fields of 0—14 T. The feature of the sensitive element is the using of the p- and n-type conductivity germanium microcrystals as mechanical and magnetic field sensors, respectively, and the p-type silicon microcrystal — as temperature sensor. That allows providing the compensation of temperature influence on piezoresistance and on sensitivity to the magnetic field.

  10. Temperature Evaluation on Long-term Storage of Radioactive Waste Produced in the Process of Isotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Namgyun [Inha Technical College, Incheon (Korea, Republic of); Jo, Daeseong [Kyungpook Nat’l Univ., Daegu (Korea, Republic of)


    In the present study, temperature evaluations on long-term storage of radioactive waste produced in the process of isotope production were performed using two different methods. Three-dimensional analysis was carried out assuming a volumetric heat source, while two-dimensional studies were performed assuming a point source. The maximum temperature difference between the predictions of the volumetric and point source models was approximately 5°C. For the conceptual design level, a point source model may be suitable to obtain the overall temperature characteristics of different loading locations. For more detailed analysis, the model with the volumetric source may be applicable to optimize the loading pattern in order to obtain minimum temperatures.

  11. Characterization of biosurfactants produced by the oil-degrading bacterium Rhodococcus erythropolis S67 at low temperature. (United States)

    Luong, T M; Ponamoreva, O N; Nechaeva, I A; Petrikov, K V; Delegan, Ya A; Surin, A K; Linklater, D; Filonov, A E


    Production of trehalolipid biosurfactants by Rhodococcus erythropolis S67 depending on the growth temperature was studied. R. erythropolis S67 produced glycolipid biosurfactants such as 2,3,4-succinoyl-octanoyl-decanoyl-2'-decanoyl trehalose and 2,3,4-succinoyl-dioctanoyl-2'-decanoyl trehalose during the growth in n-hexadecane medium at 26 and 10 °C, despite the different aggregate state of the hydrophobic substrate at low temperature. The surface tension of culture medium was found being reduced from 72 to 27 and 45 mN m -1 , respectively. Production of trehalolipid biosurfactants by R. erythropolis S67 at low temperature could be useful for the biodegradation of petroleum hydrocarbons at low temperatures by enhancing the bioremediation performance in cold regions.



    V. V. Ivanov; A. N. Butenko; L. V. Karaseva


    Problem statement. To determine additional heat losses through window opening slopes, it is ne-cessary to calculate temperature fields of a wall in the zone of connection between window and building envelope. Two types of building envelopes are considered: solid brick wall and two-layer-wall of bricks and fiber foam concrete block interlayered with air.Results. The results obtained show the influence of a window on the temperature field of wall opening. Different types of wall structures are ...


    Directory of Open Access Journals (Sweden)

    Sergey V. Fedosov


    Full Text Available Applications of foam glass is currently quite wide. This material is applied directly to construction and other human activities. Recent years the attention of scientists aimed at modeling the thermal processes in the production of foamed glass. Appear works in which the developed mathematical model allows to predict the distribution of temperature fields in the foam glass material at various stages of heat treatment of the material. The emergence of these models reveals a number of promising directions in the improvement of technology of producing foamed glass. Within the phenomenological formulation of the problem it is necessary to consider three-dimensional temperature field in the charge of foam-glass and inside the metal mold for foaming. It is necessary to consider the nonstationarity of the process and dynamics of change in macrovisiontm values. It is also worth noting that in the conditions of heat treatment of charge materials occurs difficult the heat transfer. The distribution of temperature fields in the foam glass material is from near-surface regions of the charge to the center. The first objective of the study is to find and describe the distribution of temperature fields in the volume of the foam glass of the charge to reflect changes in microphysically parameters in foam glass batch due to the gradual formation of porosity of the material of the charge from the periphery to the center. The second task is to find conditions for the uniform formation of the pore volume of the material. The paper presents a boundaryvalue problem of heat transfer in foam glass material for the metal mold on the x coordinate. This illustration of temperature field distribution inside the metal mold for foaming.

  14. Effect of temperature on Acoustic Evaluation of standing trees and logs: Part 2: Field Investigation (United States)

    Shan Gao; Xiping Wang; Lihai Wang; R. Bruce Allison


    The objectives of this study were to investigate the effect of seasonal temperature changes on acoustic velocity measured on standing trees and green logs and to develop models for compensating temperature differences because acoustic measurements are performed in different climates and seasons. Field testing was conducted on 20 red pine (Pinus resinosa...

  15. On the possibility of multiplicity of temperature fields in a microwave ...

    African Journals Online (AJOL)

    We investigate a steady temperature dependent perfusion during a cancer therapy. We show how the choice of perfusion could lead to more than one temperature fields which could lead to an undesired result. Journal of the Nigerian Association of Mathematical Physics Vol. 10 2006: pp. 499-502.

  16. Effect of temperature on composition of the methanotrophic community in rice field and forest soil

    NARCIS (Netherlands)

    Mohanty, S.R.; Bodelier, P.L.E.; Conrad, R.


    Temperature change affects methane consumption in soil. However, there is no information on possible temperature control of methanotrophic bacterial populations. Therefore, we studied CH4 consumption and populations of methanotrophs in an upland forest soil and a rice field soil incubated at

  17. Influence of Non-uniform Temperature Field on Spectra of Fibre Bragg Grating

    International Nuclear Information System (INIS)

    Yan, Zhou; Xing-Fang, He; Xiao-Yong, Fang; Jie, Yuan; Li-Qun, Yin; Mao-Sheng, Cao


    We simulate the spectrum characteristics of fibre Bragg grating (FBG) with non-uniform temperature using the transmission matrix method, and the results are analysed. It is found that firstly the modulated coefficient of average refractive index is a very important parameter that influences the spectrum characteristic of the fibre Bragg grating, and secondly the spectrum curves are different in different temperature fields at the same parameter. Hence, we can determine the metrical temperature by analysing the spectrum of fibre Bragg grating

  18. Momentum and angular momentum of laser plasma produced by irradiation of the target located in a magnetic field in vacuum (United States)

    Tischenko, V. N.; Zakharov, Yu. P.; Berezutsky, A. G.; Boyarintsev, E. L.; Melekhov, A. V.; Ponomarenko, A. G.; Posukh, V. G.; Shaikhislamov, I. F.; Miroshnichenko, I. B.


    In experiments, the momentum and angular momentum of the slow magnetosonic and torsional Alfven waves produced by irradiating train of laser pulses of the target in a magnetic field in a vacuum or in a rarefied plasma with a magnetic field were investigated. At "resonance" of plasma bunches with background, a single Alfven wave and a single slow magnetosonic wave are formed. These waves transfer a momentum in a narrow tube of the magnetic field, angular momentum variation of the current, and the electric field.

  19. Temperature-dependent dynamic mechanical properties of magnetorheological elastomers under magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Benxiang, E-mail: [National Instrument Functional Materials Engineering Technology Research Center, Chongqing 400707 (China); Tang, Rui; Zhang, Dengyou; Yang, Bailian [National Instrument Functional Materials Engineering Technology Research Center, Chongqing 400707 (China); Yu, Miao; Liao, Changrong [College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)


    Both anisotropic and isotropic magnetorheological elastomer (MRE) samples were fabricated by using as-prepared polyurethane (PU) matrix and carbonyl iron particles. Temperature-dependent dynamic mechanical properties of MRE were investigated and analyzed. Due to the unique structural features of as-prepared matrix, temperature has a greater impact on the properties of as-prepared MRE, especially isotropic MRE. With increasing of temperature and magnetic field, MR effect of isotropic MRE can reach up to as high as 4176.5% at temperature of 80 °C, and the mechanism of the temperature-dependent in presence of magnetic field was discussed. These results indicated that MRE is a kind of temperature-dependent material, and can be cycled between MRE and MR plastomer (MRP) by varying temperature. - Highlights: • Both anisotropic and isotropic MRE were fabricated by using as-prepared matrix. • Temperature-dependent properties of MRE under magnetic field were investigated. • As-prepared MRE can transform MRE to MRP by adjusting temperature.

  20. Produced water silica removal treatment in PETROBRAS Fazenda Belem fields - Brazil; Tratamento da agua produzida do Campo de Fazenda Belem (PETROBRAS, UN/RNCE) para remocao de silica

    Energy Technology Data Exchange (ETDEWEB)

    Junior, Agenor J.; Sampaio, Alberto C.; Silva, Arnaldo F. da; Christiano, Fernando P.; Freire, Norma de O.; Pereira Junior, Oswaldo de A. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas


    Extracting oil from mature fields generates huge volumes of produced water whose pollutive character requires adequate treatment to minimize environmental impact. Nevertheless, produced water may be re-used, avoiding environmental contamination and helping in water resources preservation. According to future use, produced water receives specific treatment, intending to remove critical contaminants to the application involved. In the case o UN/RNCE's Fazenda Belem Field produced water is treated for steam generation Membrane Separation Processes are currently in test for this treatment. These processes are sensitive to high water hardness and silica concentrations. To avoid scaling, caustic soda is added in the water-oil separator outlet, precipitating calcium carbonate and magnesium hydroxide. This treatment, however, helps solubilizing silica. Coagulation-flocculation laboratory tests were run with poly aluminum chloride (PAC) and magnesium chloride at constant temperature (45 deg C) and pH adjusted to 9,5, attempting to simulate the water-oil separator outlet conditions. Laboratory analysis showed good silica removal results only in samples treated with PAC, suggesting its use in produced water for steam generation pre-treatment, avoiding silica-based scaling in membranes. (author)

  1. Voronoi-Tessellated Graphite Produced by Low-Temperature Catalytic Graphitization from Renewable Resources. (United States)

    Zhao, Leyi; Zhao, Xiuyun; Burke, Luke T; Bennett, J Craig; Dunlap, Richard A; Obrovac, Mark N


    A highly crystalline graphite powder was prepared from the low temperature (800-1000 °C) graphitization of renewable hard carbon precursors using a magnesium catalyst. The resulting graphite particles are composed of Voronoi-tessellated regions comprising irregular sheets; each Voronoi-tessellated region having a small "seed" particle located near their centroid on the surface. This suggests nucleated outward growth of graphitic carbon, which has not been previously observed. Each seed particle consists of a spheroidal graphite shell on the inside of which hexagonal graphite platelets are perpendicularly affixed. This results in a unique high surface area graphite with a high degree of graphitization that is made with renewable feedstocks at temperatures far below that conventionally used for artificial graphites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Temperature Dependence and Magnetic Field Dependence of Quantum Point Contacts in Si-Inversion Layers

    NARCIS (Netherlands)

    Wang, S.L.; Son, P.C. van; Wees, B.J. van; Klapwijk, T.M.


    The conductance of ballistic point contacts in high-mobility Si-inversion layers has been studied at several temperatures between 75 and 600 mK both without and in a magnetic field (up to 12T). When the width of constriction is varied in zero magnetic field, step-like features at multiples of 4e2/h



    Ruppert, W.


    Chemical Vapour Deposition (CVD) of hard coatings onto steels requires thorough controlling of dimensions and hardness. Dimensional and hardness problems depend on the metallurgical properties of the base and the heat treatments which are applied to the steel before and at the application of CVD. Some information on the control of the dimensions and the hardness of high-carbon high-chromium tool steels which have to be coated with hard compounds by CVD at high temperatures (HTCVD) was already...

  4. Isolation and Screening of Thermo-Stable Cellulase Enzyme Fungal Producer at Different Temperature

    International Nuclear Information System (INIS)

    Noor Ashiqin Jamroo; Noor Azrimi Umor; Kamsani


    Thermo stable cellulase from fungi has high potential for industrial application. In this study, wild -type of fungal were isolate from different sources such as hot spring water, sea water, soft wood, rice straw and cow dung. The isolates were characterized by cultural and morphological observation. Based on morphological characteristics, the genera of all fungal cultures were identified namely Aspergillus fumigatus. The screening for thermo stable cellulase were done using 2 % carboxymethyl cellulose and congo red as an indicator at temperature 30, 37, 45 and 50 degree Celsius respectively. Out of 26 fungal isolates, only eight isolates were selected for further screening and showed the abilities to secrete cellulases by forming distinct halo zones on selective agar plate. The maximum halo zone ranging from 32 mm to 35 mm were obtained after 72 hour incubation at 50 degree Celsius by H2, SW1 and C1 isolates. As contrary other isolates showed halo zone range from 22 mm to 29 mm at same temperature. All the isolates showed the abilities to secrete cellulase enzyme at other temperature but lower when compared to 50 degree Celsius referred to the halo zone obtained. The SW1 isolates showed highest cellulolytic index which was 2.93 measured at 37 degree Celsius and 2.67 at 50 degree Celsius respectively. (author)

  5. Integrated passive and wireless sensor for magnetic fields, temperature and humidity

    KAUST Repository

    Li, Bodong


    This paper presents a surface acoustic wave-based passive and wireless sensor that can measure magnetic field, temperature and humidity. A thin film giant magnetoimpedance sensor, a thermally sensitive LiNbO3 substrate and a humidity sensitive hydrogel are integrated together with a surface acoustic wave transducer to realize the multifunctional sensor. The device is characterized using a network analyzer under sequentially changing humidity, temperature and magnetic field conditions. The first hand results show the sensor response to all three sensing parameters with small temperature interference on the magnetic signals. © 2013 IEEE.

  6. A numerical simulation of soil temperature and moisture variations for a bare field (United States)

    Schieldge, J. P.; Kahle, A. B.; Alley, R. E.


    The diurnal variations of soil temperature and moisture content were simulated for a bare agricultural field in the San Joaquin Valley in California. The simulation pertained to the first 72 hours of drying, from saturation, of a sandy, clay loam soil. The results were compared with measurements of soil temperature and moisture content made at the field. Calculated and measured values of soil temperature trends agreed in general, but model results of moisture trends did not replicate observed diurnal effects evident at depths 4 centimeters or more below the surface.

  7. Installation for microwave investigations of high-temperature superconductivity in magnetic field

    CERN Document Server

    Akhvlediani, I G; Mamniashvili, G I; Chigvinadze, D G


    Paper describes advanced EPR-spectrometer RE 1306 designed to investigate into structure of magnetic flux in high-temperature superconductors (HTSC). To measure in low fields one uses power source generating current within 0-600 mA limits and 10-500 Gauss field. To ensure temperature studies of HTSC within up to approx 15 K range one used helium and nitrogen cold steam blowing through resonator of EPR-spectrometer. To stabilize specimen temperature prior to cold steams enter double tube one fixed one more heater

  8. Low Temperature Particle Filtration of Producer Gas with Low Tar Content

    DEFF Research Database (Denmark)

    Hindsgaul, Claus

    This report describes the tests of different techniques for removing the particulates from producer gas from the 100 kW two-stage down-draft gasifier at DTU1 . The goal of the tests was to identify and implement methods to remove soot particles from producer gas with low tar content. During...... the five days of gasifier operation, cartridge filters, bag filters were tested. Attempts to test an electrostatic precipitator failed. Cold gas cleaning systems using fiber filters (bag filters and filter cartridges at approx. 90°C) were successfully demonstrated with collection efficiencies between 96......-99%. A bag filter was successfully operated for 50 hours with automatic cleaning by back-flushes with N2....

  9. Modeling of Temperature Field Evolution During Multilayered Direct Laser Metal Deposition (United States)

    Zhang, DongYun; Feng, Zhe; Wang, ChengJie; Liu, Zhen; Dong, DongDong; Zhou, Yan; Wu, Rui


    It is of great importance to thoroughly explore the evolving temperature fields of direct laser metal deposition (abbreviated as LMD) in vertical thin wall manufacturing. It is helpful to control the temperature gradient, and even to adjust to forming microstructures and accumulation of residual stress. In this paper, a comprehensive three-dimensional transient model is developed for evolving temperature fields. The manufactured material is DS superalloy Rene80. The laser-powder interaction during the powder flowing process is simulated first, and its possible effect on the temperature field of the melting pool is analyzed. Then a 3D numerical simulation for the evolving temperature field is carried out based on considering transport phenomena during LMD such as the change in phase, powder injection and liquid flow. The applied deposition parameters are derived from experimental investigation with optimized vertical wall manufacturing. The simulated results explain why a balance between heat input and dissipation could form inside the vertical thin wall. These reconstruct the instability at an early phase of the building process without any temperature control unit and exhibit the influence of parameters such as laser power, deposition velocity and laser beam deposition pattern. The simulation results of temperature evolution are consistent with experimental investigation.

  10. Temperature- and field-induced structural transitions in magnetic colloidal clusters (United States)

    Hernández-Rojas, J.; Calvo, F.


    Magnetic colloidal clusters can form chain, ring, and more compact structures depending on their size. In the present investigation we examine the combined effects of temperature and external magnetic field on these configurations by means of extensive Monte Carlo simulations and a dedicated analysis based on inherent structures. Various thermodynamical, geometric, and magnetic properties are calculated and altogether provide evidence for possibly multiple structural transitions at low external magnetic field. Temperature effects are found to overcome the ordering effect of the external field, the melted stated being associated with low magnetization and a greater compactness. Tentative phase diagrams are proposed for selected sizes.

  11. Magnetic field and temperature dependence of the critical vortex velocity in type-II superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Grimaldi, G; Leo, A; Cirillo, C; Attanasio, C; Nigro, A; Pace, S [CNR-INFM Laboratorio Regionale SuperMat, Via Salvador Allende, I-84081 Baronissi (Italy)], E-mail:


    We study the vortex dynamics in the instability regime induced by high dissipative states well above the critical current in Nb superconducting strips. The magnetic field and temperature behavior of the critical vortex velocity corresponding to the observed dynamic instability is ascribed to intrinsic non-equilibrium phenomena. The Larkin-Ovchinnikov (LO) theory of electronic instability in high velocity vortex motion has been applied to interpret the temperature dependence of the critical vortex velocity. The magnetic field dependence of the vortex critical velocity shows new features in the low-field regime not predicted by LO.

  12. Comparison of velocity and temperature fields for two types of spacers in an annular channel

    Directory of Open Access Journals (Sweden)

    Lávička David


    Full Text Available The paper deals with measurement of flow field using a modern laser method (PIV in an annular channel of very small dimension - a fuel cell model. The velocity field was measured in several positions and plains around the spacer. The measurement was extended also to record temperatures by thermocouples soldered into stainless-steel tube wall. The measurement was focused on cooling process of the preheated fuel cell tube model, where the tube was very slowly flooded with water. Main result of the paper is comparison of two spacer's designs with respect to measured velocity and temperature fields.

  13. Effect of inhomogeneous temperature fields on acoustic streaming structures in resonators. (United States)

    Červenka, Milan; Bednařík, Michal


    Acoustic streaming in 2D rectangular resonant channels filled with a fluid with a spatial temperature distribution is studied within this work. An inertial force is assumed for driving the acoustic field; the temperature inhomogeneity is introduced by resonator walls with prescribed temperature distribution. The method of successive approximations is employed to derive linear equations for calculation of primary acoustic and time-averaged secondary fields including the streaming velocity. The model equations have a standard form which allows their numerical integration using a universal solver; in this case, COMSOL Multiphysics was employed. The numerical results show that fluid temperature variations in the direction perpendicular to the resonator axis influence strongly the streaming field if the ratio of the channel width and the viscous boundary layer thickness is big enough; the streaming in the Rayleigh vortices can be supported as well as opposed, which can ultimately lead to the appearance of additional vortices.

  14. Infrared-temperature variability in a large agricultural field. [Dunnigan, California (United States)

    Millard, J. P.; Goettelman, R. C.; Leroy, M. L. (Principal Investigator)


    The combined effect of water carved gullies, varying soil color, moisture state of the soil and crop, nonuniform phenology, and bare spots was measured for commercially grown barley planted on varying terrain. For all but the most rugged terrain, over 80% of the area within 4, 16, 65, and 259 ha cells was at temperatures within 3 C of the mean cell temperature. The result of using relatively small, 4 ha instantaneous field of views for remote sensing applications is that either the worst or the best of conditions is often observed. There appears to be no great advantage in utilizing a small instantaneous field of view instead of a large one for remote sensing of crop canopy temperatures. The two alternatives for design purposes are then either a very high spatial resolution, of the order of a meter or so, where the field is very accurately temperature mapped, or a low resolution, where the actual size seems to make little difference.

  15. Removal of the Pesticide Pymetrozine from Aqueous Solution by Biochar Produced from Brewer's Spent Grain at Different Pyrolytic Temperatures


    Xinguo Xi; Jinlong Yan; Guixiang Quan; Liqiang Cui


    Biochar (BC) produced from brewer's spent grain (BSG) via slow pyrolysis at 300, 400, 500, 600, and 700 °C was characterized and investigated as an adsorbent for the removal of the pesticide pymetrozine from aqueous solution. Batch BSG BCs adsorption experiments were carried out under various conditions (such as pH, pymetrozine concentration, and BC dosage) to adsorb the pymetrozine. The BSG BCs adsorption pymetrozine capacities were increased by 21.4% to 55.5% under pyrolysis temperatures of...

  16. Measurement of the fluctuating temperature field in a heated swirling jet with BOS tomography (United States)

    Lang, Henning M.; Oberleithner, Kilian; Paschereit, C. Oliver; Sieber, Moritz


    This work investigates the potential of background-oriented schlieren tomography (3D-BOS) for the temperature field reconstruction in a non-isothermal swirling jet undergoing vortex breakdown. The evaluation includes a quantitative comparison of the mean and phase-averaged temperature field with thermocouple and fast-response resistance thermometer as well as a qualitative comparison between the temperature field and the flow field obtained from particle image velocimetry (PIV). Compared to other temperature-measuring techniques, 3D-BOS enables non-invasive capturing of the entire three-dimensional temperature field. In contrast to previous 3D-BOS applications, the present investigation makes use of the special character of the flow, which provides a global instability that leads to a rotational symmetry of the jet. Additionally, the rotational motion of the jet is used to obtain a tomographic reconstruction from a single camera. The quality of 3D-BOS results with respect to the physical setup as well as the numerical procedure is analyzed and discussed. Furthermore, a new approach for the treatment of thin occluding objects in the field of view is presented.

  17. Dynamic chaos in the tunnelling ionization produced by a strong low-frequency electromagnetic field

    International Nuclear Information System (INIS)

    Krainov, V P


    Ionization of atoms by a strong low-frequency linearly polarized electromagnetic field (the photon energy is small compared to the atomic ionization potential) is considered under new conditions compared to the well known Keldysh approach. The field strength is supposed to be small in comparison to the atomic field strength. But the Coulomb interaction of an electron with atomic core is assumed to be of the same order of magnitude as the interaction between an electron and the external electromagnetic field. It was shown that then classical electron motion in the continuum becomes chaotic (this is so-called dynamic chaos). Using the averaging procedure of Chirikov about the chaotic variation of the phase of motion, the considered Newton problem is transformed into the problem of nonlinear electron diffusion over energy scale. In this work we derive the classical electron energy averaged over fast chaotic oscillations of an electron in the final continuum state which takes into account both the Coulomb field and electromagnetic field. This energy is used for analytic calculation of the ionization rate of the ground atomic state into the low lying continuum state based on the Landau–Dykhne approximation (with exponential accuracy). We found that the ionization rate depends significantly on the field frequency. When field frequency decreases, the well known tunnelling limit has been obtained, and then the ionization rate does not depend on the field frequency. (paper)

  18. Application of Abaqus to analysis of the temperature field in elements heated by moving heat sources

    Directory of Open Access Journals (Sweden)

    W. Piekarska


    Full Text Available Numerical analysis of thermal phenomena occurring during laser beam heating is presented in this paper. Numerical models of surface andvolumetric heat sources were presented and the influence of different laser beam heat source power distribution on temperature field wasanalyzed. Temperature field was obtained by a numerical solution the transient heat transfer equation with activity of inner heat sources using finite element method. Temperature distribution analysis in welded joint was performed in the ABAQUS/Standard solver. The DFLUXsubroutine was used for implementation of the movable welding heat source model. Temperature-depended thermophysical properties for steelwere assumed in computer simulations. Temperature distribution in laser beam surface heated and butt welded plates was numericallyestimated.

  19. Fragility of estimated spatial temperature patterns in climate field reconstructions of the Common Era (United States)

    Wang, J.; Emile-Geay, J.; Vaccaro, A.; Guillot, D.; Rajaratnam, B.


    updated multi-proxy network and produce a new 2000-year-long global temperature reconstruction. The network expands upon the existing M08 network by screening tree-ring proxies for the 'divergence problem' [D'Arrigo et al., 2008] and adds 58 non tree-ring proxies, of which 28 are located in the tropics and 11 are available within at least the past 1500 years. Overall, considerable differences are still evident among reconstructions using different CFR methods. Yet such differences are smaller using the updated proxy network compared with using the M08 network, consistent with pseudoproxy studies [Wang et al, 2013]. Our results collectively highlight the fragility of reconstructed patterns in the current state of proxy networks and CFR methods. We conclude that dynamical interpretations of such patterns are premature until these technical aspects are resolved. Reference: Wang, J., Emile-Geay, J., Guillot, D., Smerdon, J. E., and Rajaratnam, B.: Evaluating climate field reconstruction techniques using improved emulations of real-world conditions, Clim. Past Discuss., 9, 3015-3060, doi:10.5194/cpd-9-3015-2013, 2013.

  20. Surface morphology of polyethylene glycol films produced by matrix-assisted pulsed laser evaporation (MAPLE): Dependence on substrate temperature

    DEFF Research Database (Denmark)

    Rodrigo, K.; Czuba, P.; Toftmann, B.


    The dependence of the surface morphology on the substrate temperature during film deposition was investigated for polyethylene glycol (PEG) films by matrix-assisted pulsed laser evaporation (MAPLE). The surface structure was studied with a combined technique of optical imaging and AFM measurements....... There was a clear difference between the films produced below and above the melting point of PEG. For temperatures above the melting point, the polymer material was distributed non-uniformly over the substrate with growths areas, where cluster-like structures merge into large islands of micrometer size....... At these temperatures, the islands in the investigated growth areas cover most of the bottom layer which has a typical height of 50-150 nm. (c) 2005 Elsevier B.V. All rights reserved....

  1. Field and Temperature dependence of the Vortex Lattice Rotation in the Chiral phase of UPt3 with H ∥ c (United States)

    Avers, Keenan; Eskildsen, Morten; Halperin, William; Gannon, William; Gavilano, Jorge; Nagy, Gergely; Gasser, Urs; Dewhurst, Charles

    The unconventional, multi-phase, superconductor UPt3 is suspected to have one chiral superconducting phase. We have performed small angle neutron scattering (SANS) from the vortex lattice (VL) in UPt3 at the Paul Scherrer Institute, ILL, and Oak Ridge National Lab with the magnetic field parallel to the hexagonal c-axis. At low temperatures the diffraction pattern of the VL rotates away from a high symmetry direction producing two domains of different orientation. This rotation can be reduced or eliminated by increasing the temperature at constant field within the chiral state. We have found that there are two different rotated vortex states, one that is stable and one metastable, the former being realized by entering the chiral state by decreasing the magnitude of the applied field, and the latter generated starting from zero field. This rotation may be evidence of a non-singular, field history dependent, vortex core sturcture in UPt3. US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Awards DE-FG02-10ER46783 (University of Notre Dame; neutron scattering)and DE-FG02-05ER46248 (Northwestern; crystal growth, characterization).

  2. Leveraging a temperature-tunable, scale-like microstructure to produce multimodal, supersensitive sensors

    KAUST Repository

    Tai, Yanlong


    The microstructure of a flexible film plays an important role in its sensing capability. Here, we fabricate a temperature-dependent wrinkled single-walled carbon nanotube (SWCNT)/polydimethyl-siloxane (PDMS) film (WSPF) and a wrinkle-dependent scale-like SWCNT/PDMS film (SSPF) successfully, and address the formation and evolution mechanisms of each film. The low elastic modulus and high coefficient of thermal expansion of the PDMS layer combined with the excellent piezoresistive behavior of the SWCNT film motivated us to investigate how the scale-like microstructure of the SSPF could be used to design multimodal-sensing devices with outstanding capabilities. The results show that SSPFs present supersensitive performance in mechanical loading (an effective sensitivity of up to 740.7 kPa-1) and in temperature (a tunable thermal index of up to 29.9 × 103 K). These exceptional properties were demonstrated in practical applications in a programmable flexile pressure sensor, thermal/light monitor or switch, etc., and were further explained through the macroscopic and microscopic piezoresistive behaviors of scale-like SWCNT coatings.

  3. New Blue Pigment Produced by Pantoea agglomerans and Its Production Characteristics at Various Temperatures


    Fujikawa, Hiroshi; Akimoto, Ryo


    A bacterium capable of producing a deep blue pigment was isolated from the environment and identified as Pantoea agglomerans. The pigment production characteristics of the bacterium under various conditions were studied. The optimal agar plate ingredients for pigment production by the bacterium were first studied: the optimal ingredients were 5 g/liter glucose, 10 g/liter tryptic soy broth, and 40 g/liter glycerol at pH 6.4. Bacterial cells grew on the agar plate during the incubation, while ...

  4. Three-Dimensional MHD Simulation of FTEs Produced by Merging at an Isolated Point in a Sheared Magnetic Field Configuration (United States)

    Santos, J. C.; Sibeck, D. G.; Buchner, J.; Gonzalez, W. D.; Ferreira, J. L.


    We present predictions for the evolution of FTEs generated by localized bursts of reconnection on a planar magnetopause that separates a magnetosheath region of high densities and weak magnetic field from a magnetospheric region of low densities and strong magnetic field. The magnetic fields present a shear angle of 105 degrees. Reconnection forms a pair of FTEs each crossing the magnetopause in the field reversal region and bulging into the magnetosphere and magnetosheath. At their initial stage they can be characterized as flux tubes since the newly reconnected magnetic field lines are not twisted. Reconnection launches Alfvenic perturbations that propagate along the FTEs generating high-speed jets, which move the pair of FTEs in opposite directions. As the FTE moves, it displaces the ambient magnetic field and plasma producing bipolar magnetic field and plasma velocity signatures normal to the nominal magnetopause in the regions surrounding the FTE. The combination of the ambient plasma with the FTE flows generates a vortical velocity pattern around the reconnected field lines. During its evolution the FTE evolves to a flux rope configuration due to the twist of the magnetic field lines. The alfvenic perturbations propagate faster along the part of the FTE bulging into the magnetosphere than in the magnetosheath, and due to the differences between the plasma and magnetic field properties the perturbations have slightly different signatures in the two regions. As a consequence, the FTEs have different signatures depending on whether the satellite encounters the part bulging into the magnetosphere or into the magnetosheath.

  5. Crystalline alloys produced by mercury electrodeposition on Pt(1 1 1) electrode at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wu Hangliang [Department of Chemistry, National Central University, No. 300 Jungda Road, Jungli 32054, Taiwan (China); Yau Shuehlin [Department of Chemistry, National Central University, No. 300 Jungda Road, Jungli 32054, Taiwan (China)], E-mail:; Zei Mauscheng [Department of Physics, National Central University, No. 300 Jungda Road, Jungli 32054, Taiwan (China)


    In situ scanning tunneling microscopy (STM) and reflection high energy electron diffraction (RHEED) were used to characterize mercury film electrodeposited onto a Pt(1 1 1) electrode at room temperature. Depending on the amount of Hg deposit, two different growth modes were observed. At low Hg coverage, crystalline (0 0 0 1)Hg adlayer accompanied by 30 deg.-rotated (1 1 1)-Pt patches was found on Pt(1 1 1). Deposition of multilayer Hg resulted in layered PtHg{sub 2} and PtHg{sub 4} amalgams, which grew epitaxially by aligning their (2 0 1) and (11-bar0) planes, respectively, parallel to the Pt(1 1 1) substrate. The preference of these epitaxial relationships for the electrochemically formed Pt-Hg intermetallic compounds on Pt(1 1 1) could result from minimization of the surface energy.

  6. New Crystal-Growth Methods for Producing Lattice-Matched Substrates for High-Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Boatner, L.A.


    This effort addressed the technical problem of identifying and growing, on a commercial scale, suitable single-crystal substrates for the subsequent deposition of epitaxial thin films of high temperature semiconductors such as GaN/AlN. The lack of suitable lattice-matched substrate materials was one of the major problem areas in the development of semiconducting devices for use at elevated temperatures as well as practical opto-electronic devices based on Al- and GaN technology. Such lattice-matched substrates are necessary in order to reduce or eliminate high concentrations of defects and dislocations in GaN/AlN and related epitaxial thin films. This effort concentrated, in particular, on the growth of single crystals of ZnO for substrate applications and it built on previous ORNL experience in the chemical vapor transport growth of large single crystals of zinc oxide. This combined expertise in the substrate growth area was further complemented by the ability of G. Eres and his collaborators to deposit thin films of GaN on the subject substrates and the overall ORNL capability for characterizing the quality of such films. The research effort consisted of research on the growth of two candidate substrate materials in conjunction with concurrent research on the growth and characterization of GaN films, i.e. the effort combined bulk crystal growth capabilities in the area of substrate production at both ORNL and the industrial partner, Commercial Crystal Growth Laboratories (CCL), Naples, Florida, with the novel thin-film deposition techniques previously developed in the ORNL SSD.

  7. Associates and integrated producers: the hybrid face of the cooperatives enterprise In the field

    Directory of Open Access Journals (Sweden)

    Diane Belusso


    Full Text Available In this work, it is discussed the hybrid and contradictory featureof a cooperative enterprise. Aspects like the parallel relationbetween “free” and “integrated” producers, the participation ofits associates in the General meetings, among others will beboarded. It checks contracts kept between the cooperative andthe producers of chicken, the rights and duties of both parts andthe levels of dependence or independence between them.

  8. Solar cooker effect test and temperature field simulation of radio telescope subreflector

    International Nuclear Information System (INIS)

    Chen, Deshen; Wang, Huajie; Qian, Hongliang; Zhang, Gang; Shen, Shizhao


    Highlights: • Solar cooker effect test of a telescope subreflector is conducted for the first time. • The cause and temperature distribution regularities are analyzed contrastively. • Simulation methods are proposed using light beam segmentation and tracking methods. • The validity of simulation methods is evaluated using the test results. - Abstract: The solar cooker effect can cause a local high temperature of the subreflector and can directly affect the working performance of the radio telescope. To study the daily temperature field and solar cooker effect of a subreflector, experimental studies are carried out with a 3-m-diameter radio telescope model for the first time. Initially, the solar temperature distribution rules, especially the solar cooker effect, are summarized according to the field test results under the most unfavorable conditions. Then, a numerical simulation for the solar temperature field of the subreflector is studied by light beam segmentation and tracking methods. Finally, the validity of the simulation methods is evaluated using the test results. The experimental studies prove that the solar cooker effect really exists and should not be overlooked. In addition, simulation methods for the subreflector temperature field proposed in this paper are effective. The research methods and conclusions can provide valuable references for thermal design, monitoring and control of similar high-precision radio telescopes.

  9. General method for calculating polarization electric fields produced by auroral Cowling mechanism and application examples (United States)

    Vanhamäki, Heikki; Amm, Olaf; Fujii, Ryo; Yoshikawa, Aki; Ieda, Aki


    The Cowling mechanism is characterized by the generation of polarization space charges in the ionosphere in consequence of a partial or total blockage of FAC flowing between the ionosphere and the magnetosphere. Thus a secondary polarization electric field builds up in the ionosphere, which guarantees that the whole (primary + secondary) ionospheric current system is again in balance with the FAC. In the Earth's ionosphere the Cowling mechanism is long known to operate in the equatorial electrojet, and several studies indicate that it is important also in auroral current systems. We present a general method for calculate the secondary polarization electric field, when the ionospheric conductances, the primary (modeled) or the total (measured) electric field, and the Cowling efficiency are given. Here the Cowling efficiency is defined as the fraction of the divergent Hall current canceled by secondary Pedersen current. In contrast to previous studies, our approach is a general solution which is not limited to specific geometrical setups (like an auroral arc), and all parameters may have any kind of spatial dependence. The solution technique is based on spherical elementary current (vector) systems (SECS). This way, we avoid the need to specify explicit boundary conditions for the searched polarization electric field or its potential, which would be required if the problem was solved in a differential equation approach. Instead, we solve an algebraic matrix equation, for which the implicit boundary condition that the divergence of the polarization electric field vanishes outside our analysis area is sufficient. In order to illustrate the effect of Cowling mechanism on ionospheric current systems, we apply our method to two simple models of auroral electrodynamic situations: 1) a mesoscale strong conductance enhancement in the early morning sector within a relatively weak southward primary electric field, 2) a morning sector auroral arc with only a weak conductance

  10. An Investigation of Porous Structure of TiNi-Based SHS-Materials Produced at Different Initial Synthesis Temperatures (United States)

    Khodorenko, V. N.; Anikeev, S. G.; Kokorev, O. V.; Yasenchuk, Yu. F.; Gunther, V. É.


    An investigation of structural characteristics and behavior of TiNi-based pore-permeable materials manufactured by the methods of selfpropagating high-temperature synthesis (SHS) at the initial synthesis temperatures T = 400 and 600°C is performed. It is shown that depending on the temperature regime, the resulting structure and properties of the material can differ. It is found out that the SHS-material produced at the initial synthesis temperature T = 400°C possesses the largest number of micropores in the pore wall surface structure due to a high phase inhomogeneity of the alloy. The regime of structure optimization of the resulting materials is described and the main stages of formation of the pore wall microporous surfaces are revealed. It is demonstrated that after optimization of the surface structure of a TiNi-based fine-pore alloy by its chemical etching, the fraction of micropores measuring in size less than 50 nm increased from 59 to 68%, while the number of pores larger than 1 μm increased twofold from 11 to 22%. In addition, peculiar features of interaction between certain cell cultures with the surface of the SHS-material manufactured at different initial synthesis temperatures are revealed. It is found out that the dynamics of the cell material integration depends on the pore wall surface morphology and dimensions of macropores.

  11. Numerical Research on Magnetic Field, Temperature Field and Flow Field During Melting and Directionally Solidifying TiAl Alloys by Electromagnetic Cold Crucible (United States)

    Chen, Ruirun; Yang, Yaohua; Gong, Xue; Guo, Jingjie; Su, Yanqing; Ding, Hongsheng; Fu, Hengzhi


    The electromagnetic cold crucible (EMCC) technique is an effective method to melt and directionally solidify reactive and high-temperature materials without contamination. The temperature field and fluid flow induced by the electromagnetic field are very important for melting and controlling the microstructure. In this article, a 3D EMCC model for calculating the magnetic field in the charges (TiAl alloys) using the T-Ω finite element method was established and verified. Magnetic fields in the charge under different electrical parameters, positions and dimensions of the charge were calculated and analyzed. The calculated results show that the magnetic field concentrates in the skin layer, and the magnetic flux density ( B) increases with increasing of the frequency, charge diameter and current. The maximum B in the charge is affected by the position of the charge in EMCC ( h 1) and the charge height ( h 2), which emerges at the middle of coils ( h c) when the relationship of h c < h 1 + h 2 < h c + δ is satisfied. Lower frequency and smaller charge diameter can improve the uniformity of the magnetic field in the charge. Consequently, the induced uniform electromagnetic stirring weakens the turbulence and improves temperature uniformity in the vicinity of the solid/liquid (S/L) interface, which is beneficial to forming a planar S/L interface during directional solidification. Based on the above conclusions, the TiAlNb alloy was successfully melted with lower power consumption and directionally solidified by the square EMCC.

  12. Room-temperature deposition of diamond-like carbon field emitter on flexible substrates

    International Nuclear Information System (INIS)

    Chen, H.; Iliev, M.N.; Liu, J.R.; Ma, K.B.; Chu, W.-K.; Badi, N.; Bensaoula, A.; Svedberg, E.B.


    Room-temperature fabrication of diamond-like carbon electron field emitters on flexible polyimide substrate is reported. These thin film field emitters are made using an Ar gas cluster ion beam assisted C 6 vapor deposition method. The bond structure of the as-deposited diamond-like carbon film was studied using Raman spectroscopy. The field emission characteristics of the deposited films were also measured. Electron current densities over 15 mA/cm 2 have been recorded under an electrical field of about 65 V/μm. These diamond-like carbon field emitters are easy and inexpensive to fabricate. The results are promising for flexible field-emission fabrication without the need of complex patterning and tip shaping as compared to the Spindt-type field emitters

  13. Instrumental system for the quick relief of surface temperatures in fumaroles fields and steam heated soils (United States)

    Diliberto, Iole; Cappuzzo, Santo; Inguaggiato, Salvatore; Cosenza, Paolo


    We present an instrumental system to measure and to map the space variation of the surface temperature in volcanic fields. The system is called Pirogips, its essential components are a Pyrometer and a Global Position System but also other devices useful to obtain a good performance of the operating system have been included. In the framework of investigation to define and interpret volcanic scenarios, the long-term monitoring of gas geochemistry can improve the resolution of the scientific approaches by other specific disciplines. Indeed the fluid phase is released on a continuous mode from any natural system which produces energy in excess respect to its geological boundaries. This is the case of seismic or magmatic active areas where the long-term geochemical monitoring is able to highlight, and to follow in real time, changes in the rate of energy release and/or in the feeding sources of fluids, thus contributing to define the actual behaviour of the investigated systems (e.g. Paonita el al., 2013; 2002; Taran, 2011; Zettwood and Tazieff, 1973). The demand of pirogips starts from the personal experience in long term monitoring of gas geochemistry (e.g. Diliberto I.S, 2013; 2011; et al., 2002; Inguaggiato et al.,2012a, 2012b). Both space and time variation of surface temperature highlight change of energy and mass release from the deep active system, they reveal the upraise of deep and hot fluid and can be easily detected. Moreover a detailed map of surface temperature can be very useful for establishing a network of sampling points or installing a new site for geochemical monitoring. Water is commonly the main component of magmatic or hydrothermal fluid release and it can reach the ground surface in the form of steam, as in the high and low temperature fumaroles fields, or it can even condense just below the ground surface. In this second case the water disperses in pores or circulates in the permeable layers while the un-condensable gases reach the surface (e

  14. Field Validation of Toxicity Tests to Evaluate the Potential for Beneficial Use of Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Bidwell; Jonathan Fisher; Naomi Cooper


    This study investigated potential biological effects of produced water contamination derived from occasional surface overflow and possible subsurface intrusion at an oil production site along the shore of Skiatook Lake, Oklahoma. We monitored basic chemistry and acute toxicity to a suite of standard aquatic test species (fathead minnow-Pimephales promelas, Daphnia pulex, Daphnia magna, and Ceriodaphnia dubia) in produced water and in samples taken from shallow groundwater wells on the site. Toxicity identification evaluations and ion toxicity modeling were used to identify toxic constituents in the samples. Lake sediment at the oil production site and at a reference site were also analyzed for brine intrusion chemically and by testing sediment toxicity using the benthic invertebrates, Chironomus dilutus, and Hyallela azteca. Sediment quality was also assessed with in situ survival and growth studies with H. azteca and the Asian clam, Corbicula fluminea, and by benthic macroinvertebrate community sampling. The produced water was acutely toxic to the aquatic test organisms at concentrations ranging from 1% to 10% of the whole produced water sample. Toxicity identification evaluation and ion toxicity modeling indicated major ion salts and hydrocarbons were the primary mixture toxicants. The standardized test species used in the laboratory bioassays exhibited differences in sensitivity to these two general classes of contaminants, which underscores the importance of using multiple species when evaluating produced water toxicity. Toxicity of groundwater was greater in samples from wells near a produced water injection well and an evaporation pond. Principle component analyses (PCA) of chemical data derived from the groundwater wells indicated dilution by lake water and possible biogeochemical reactions as factors that ameliorated groundwater toxicity. Elevated concentrations of major ions were found in pore water from lake sediments, but toxicity from these ions was

  15. Using renewable ethanol and isopropanol for lipid transesterification in wet microalgae cells to produce biodiesel with low crystallization temperature

    International Nuclear Information System (INIS)

    Huang, Rui; Cheng, Jun; Qiu, Yi; Li, Tao; Zhou, Junhu; Cen, Kefa


    Highlights: • Ethanol and isopropanol were used for transesterification in wet microalgae cell. • Decreased droplet size and polarity of lipid were observed after transesterification. • Ethanol and isopropanol dosage needed for 95% FAAE yield were 75% of methanol dosage. • Crystallization temperature of crude biodiesel decreased from 2.08 °C to −3.15 °C. - Abstract: Renewable ethanol and isopropanol were employed for lipid transesterification in wet microalgae cells to produce biodiesel with low crystallization temperature and reduce the alcohol volume needed for biodiesel production. Decreased droplet size and lipid polarity were observed after transesterification with alcohol in microalgae cells. Such decrease was beneficial in extracting lipid from microalgae with apolar hexane. The effects of reaction temperature, reaction time, and alcohol volume on microwave-assisted transesterification with ethanol and isopropanol were investigated, and results were compared with those with methanol. Microwave-assisted transesterification with ethanol and isopropanol, which were more miscible with lipid in cells, resulted in higher fatty acid alkyl ester (FAAE) yields than that with methanol when the reaction temperature was lower than 90 °C. The ethanol and isopropanol volumes in the transesterification with 95% FAAE yield were only 75% of the methanol volume. The crystallization temperatures (0.19 °C and −3.15 °C) of biodiesels produced from wet microalgae through lipid transesterification in cells with ethanol and isopropanol were lower than that with methanol (2.08 °C), which was favorable for biodiesel flow in cold districts and winter.

  16. Angular dependence of Jc for YBCO coated conductors at low temperature and very high magnetic fields

    International Nuclear Information System (INIS)

    Xu, A; Jaroszynski, J J; Kametani, F; Chen, Z; Larbalestier, D C; Viouchkov, Y L; Chen, Y; Xie, Y; Selvamanickam, V


    We present very high field angle dependent critical current density (J c ) data for three recently obtained YBa 2 Cu 3 O 7-x (YBCO) coated conductors used in the construction of high field solenoids. We find that strongly correlated pins, such as BaZrO 3 (BZO) nanorods, while yielding strong c-axis peaks at 77 K, produce almost no measurable contribution at 4 K. Raising the field from c (θ) at low fields to a marked cusp-like behavior at high fields. Transmission electron micrographs show that all samples contain a high density of stacking faults which strengthen the plane correlated pinning parallel to the ab planes produced by the intrinsic ab-plane pinning of the Cu-O charge reservoir layers.

  17. A method for producing uniform dose distributions in the junction regions of large hinge angle electrol fields

    International Nuclear Information System (INIS)

    Zavgorodni, S.F.; Beckham, W.A.; Roos, D.E.


    The planning problems presented by abutting electron fields are well recognised. Junctioning electron fields with large hinge angle compounds the problems because of the creation of closely situated 'hot' and 'cold' spots. The technique involving a compensated superficial x-ray (SXR) field to treat the junction region between electron fields was developed and used in a particular clinical case (treatment of a squamous cell carcinoma of the forehead/scalp). The SXR beam parameters were chosen and the compensator was designed to make the SXR field complementary to the electron fields. Application of a compensated SXR field eliminated 'cold' spots in the junction region and minimised 'hot' spots to (110%). In the clinical case discusses the 'hot' spots due to the SXR field would not appear because of increased attenuation of the soft x-rays in bone. The technique proposed produces uniform dose distribution up to 3 cm deep and can be considered as an additional tool for dealing with electron fields junctioning problems. (author)

  18. Temperature sensitivity analysis of polarity controlled electrostatically doped tunnel field-effect transistor (United States)

    Nigam, Kaushal; Pandey, Sunil; Kondekar, P. N.; Sharma, Dheeraj


    The conventional tunnel field-effect transistors (TFETs) have shown potential to scale down in sub-22 nm regime due to its lower sub-threshold slope and robustness against short-channel effects (SCEs), however, sensitivity towards temperature variation is a major concern. Therefore, for the first time, we investigate temperature sensitivity analysis of a polarity controlled electrostatically doped tunnel field-effect transistor (ED-TFET). Different performance metrics and analog/RF figure-of-merits were considered and compared for both devices, and simulations were performed using Silvaco ATLAS device tool. We found that the variation in ON-state current in ED-TFET is almost temperature independent due to electrostatically doped mechanism, while, it increases in conventional TFET at higher temperature. Above room temperature, the variation in ION, IOFF, and SS sensitivity in ED-TFET are only 0.11%/K, 2.21%/K, and 0.63%/K, while, in conventional TFET the variations are 0.43%/K, 2.99%/K, and 0.71%/K, respectively. However, below room temperature, the variation in ED-TFET ION is 0.195%/K compared to 0.27%/K of conventional TFET. Moreover, it is analysed that the incomplete ionization effect in conventional TFET severely affects the drive current and the threshold voltage, while, ED-TFET remains unaffected. Hence, the proposed ED-TFET is less sensitive towards temperature variation and can be used for cryogenics as well as for high temperature applications.

  19. Defects produced by the work hardening of magnesium and cadmium at low temperatures

    International Nuclear Information System (INIS)

    Simon, Jean-Paul; Delaplace, Jean


    Simultaneous measurements of the mechanical properties and the electrical resistivity of cadmium and magnesium samples which have been work hardened at 77 deg. K enabled the defects produced and the recovery occurring during an annealing process, to be studied. The electrical resistivity measured at 77 deg. K increased linearly with the deformation for the degrees of work hardening considered (less than 7 per cent for Cd and less than 4 per cent for Mg). Three main stages occurred in the recovery of Cd: stage A between 77 deg. K and 180 deg. K due to annealing of point defects, stage B between 180 deg. K and 240 deg. K due to the rearrangement of the dislocations and stage C above 240 deg. K due to recrystallization. Measurements of electrical resistance were made when the sample was under stress and when the stress was removed. The resistivity of both Cd and Mg changed during the removal of the load. This phenomenon is ascribed to the shortening of the dislocation segments which are bowed under stress and straighten when the stress is removed. The orders of magnitude of the dislocation density and the loop lengths obtained from this model, are reasonable [fr

  20. Characterization of low-temperature properties of plant-produced rap mixtures in the Northeast (United States)

    Medeiros, Marcelo S., Junior

    The dissertation outlined herein results from a Federal Highway Administration sponsored project intended to investigate the impacts of high percentages of RAP material in the performance of pavements under cold climate conditions. It is comprised of two main sections that were incorporated into the body of this dissertation as Part I and Part II. In Part I a reduced testing framework for analysis of HMA mixes was proposed to replace the IDT creep compliance and strength testing by dynamic modulus and fatigue tests performed on an AMPT device. A continuum damage model that incorporates the nonlinear constitutive behavior of the HMA mixtures was also successfully implemented and validated. Mixtures with varying percentages of reclaimed material (RAP) ranging from 0 to 40% were used in this research effort in order to verify the applicability of the proposed methodology to RAP mixtures. Part II is concerned with evaluating the effects of various binder grades on the properties of plant-produced mixtures with various percentages of RAP. The effects of RAP on mechanical and rheological properties of mixtures and extracted binders were studied in order to identify some of the deficiencies in the current production methodologies. The results of this dissertation will help practitioners to identify optimal RAP usage from a material property perspective. It also establishes some guidelines and best practices for the use of higher RAP percentages in HMA.

  1. Transient temperature fields in functionally graded materials with different shapes under convective boundary conditions (United States)

    Zhao, J.; Ai, X.; Li, Y. Z.


    This paper presents analyses of the transient temperature fields in an infinite plate, an infinite solid cylinder and a solid sphere made of functionally graded materials (FGMs) under convective boundary conditions. The composition and the thermo-physical properties of the infinite FGM plate, the infinite FGM solid cylinder and the FGM solid sphere are of planar symmetric, axially symmetric and spherically symmetric distributions, respectively. The analytical formulae of the one-dimensional transient temperature fields for the three FGM solids are obtained respectively by using the separation-of-variables method and the variable substitution method. Numerical results reveal that the transient temperature fields of the FGM components exhibit similar shape effect to that of homogeneous components. The present work provides valuable basis for the investigation of the thermal shock resistance of FGMs with various shapes.

  2. Electron mobility in nonpolar liquids: the effect of molecular structure, temperature and electric field

    International Nuclear Information System (INIS)

    Schmidt, W.F.


    A survey is given on the mobility of excess electrons in liquid hydrocarbons and related compounds. It was found that the mobility is strongly influenced by the molecular structure of the liquid, by the temperature, and by the electric field strength. The mobility in hydrocarbons increases as the shape of the molecule approaches a sphere. The temperature coefficient is positive in most liquids over a limited temperature although exceptions have been observed in liquid methane. The field dependence of the mobility in high mobility liquids (>10 cm 2 V -1 s -1 ) showed a decrease of the mobility at higher field strengths while in low mobility liquids ( 2 V -1 s -1 ) it showed an increase. These results are discussed on the basis of the extended and the localized electron models. The predictions of these theories are compared with the experimental results and conclusions on the validity of the underlying assumptions are drawn. (author)

  3. Thermo field dynamics in the treatment of the nuclear pairing problem at finite temperature

    International Nuclear Information System (INIS)

    Civitarese, O.; DePaoli, A.L.


    The use of the thermo field dynamics, in dealing with the study of nuclear properties at finite temperature, is discussed for the case of a nuclear Hamiltonian which includes a single-particle term and a monopole pairing residual two-body interaction. The rules of the thermo fields dynamics are applied to double the Hilbert space, thus accounting for the thermal occupation of single-particle states, and to construct dual spaces, both for single-particle (BCS) and collective (RPA) degrees of freedom. It is shown that the rules of the thermo field dynamics yield to a temperature dependence of the equations describing quasiparticle and phonon excitations which is similar to the one found in the more conventional finite temperature Wick's theorem approach, namely: By dealing with thermal averages. (orig.)

  4. Fresnel-region fields and antenna noise-temperature calculations for advanced microwave sounding units (United States)

    Schmidt, R. F.


    A transition from the antenna noise temperature formulation for extended noise sources in the far-field or Fraunhofer-region of an antenna to one of the intermediate near field or Fresnel-region is discussed. The effort is directed toward microwave antenna simulations and high-speed digital computer analysis of radiometric sounding units used to obtain water vapor and temperature profiles of the atmosphere. Fresnel-region fields are compared at various distances from the aperture. The antenna noise temperature contribution of an annular noise source is computed in the Fresnel-region (D squared/16 lambda) for a 13.2 cm diameter offset-paraboloid aperture at 60 GHz. The time-average Poynting vector is used to effect the computation.

  5. Far-Field Testing Method of Spurious Emission Produced by HF RFID

    Directory of Open Access Journals (Sweden)

    Nikola Gvozdenovic


    Full Text Available We present measurements of spurious emission produced by high-frequency radio frequency identification (HF RFID using carrier frequency of 13.56 MHz. HF RFID tags produce unwanted emission due to rectification and more generally due to nonlinearity of analog front end. Depending on the conducting material of an HF RFID coil and surrounding dielectric material, the coil behaves as more or less good antenna on some harmonic frequencies. Exact characterization and analysis of unwanted emission is important from the security perspective as well as from the perspective of interference with other systems. Consequently we measured the harmonics produced in the integrated circuitry and characterized radiation properties of the antenna. Finally we present the measurements of the spurious emission performed in a Gigahertz Transverse Electromagnetic (GTEM cell.

  6. Three-dimensional magnetic field produced by an axisymmetric iron yoke

    International Nuclear Information System (INIS)

    Laslett, L.J.; Caspi, S.; Helm, M.; Brady, V.


    A computational procedure, in which separate analyses are performed for conductor and high permeability iron yoke, has been developed for calculating the three-dimensional magnetic field components. Whereas the field components of the isolated 3-D current array can be evaluated at all desired points through the use of a 3-D Biot-Savart law program, we have developed a method for calculating the supplemental field that will arise as a result of the presence of a surrounding high-permeability magnetic yoke with an axially-symmetric bore. We may speak of this supplemental field as an ''image field'' although we shall realize that is may be possible in general to attribute it only to a distinctly diffuse distribution of ''image current'' or magnetic moments. The boundary associated with the ''image field'' is such that at each point along the boundary of the high permeability iron the total scalar potential shall be constant, e.g. V i = -V d (where i=image and d=direct). When we describe both potentials as a series of ''harmonic components'' then the nature of the boundary condition is such that a de-coupling of one harmonic from another is preserved, and therefore it is also true that V i (n) = -V d (n) at the iron interface, where n is a harmonic number. When we solve the appropriate differential equations for these scalar potential functions throughout the iron-free region with the proper applied boundary condition for the scalar potential of each harmonic number, we achieve upon summation the appropriate field contribution of the surrounding high-permeability iron

  7. Electrical resistivity, Hall coefficient and electronic mobility in indium antimonide at different magnetic fields and temperatures

    International Nuclear Information System (INIS)

    Jee, Madan; Prasad, Vijay; Singh, Amita


    The electrical resistivity, Hall coefficient and electronic mobility of n-type and p-type crystals of indium antimonide have been measured from 25 degC-100 degC temperature range. It has been found by this measurement that indium antimonide is a compound semiconductor with a high mobility 10 6 cm 2 /V.S. The Hall coefficient R H was measured as a function of magnetic field strength H for a number of samples of both p and n-type using fields up to 12 kilo gauss. The Hall coefficient R h decreases with increasing magnetic fields as well as with increase in temperature of the sample. The electric field is more effective on samples with high mobilities and consequently the deviations from linearity are manifested at comparatively low values of the electric field. The measurement of R H in weak and strong magnetic fields makes it possible to determine the separate concentration of heavy and light holes. Measured values of Hall coefficient and electrical resistivity show that there is a little variation of ρ and R h with temperatures as well as with magnetic fields. (author). 12 refs., 5 tabs

  8. Study on the temperature field of large-sized sapphire single crystal furnace (United States)

    Zhai, J. P.; Jiang, J. W.; Liu, K. G.; Peng, X. B.; Jian, D. L.; Li, I. L.


    In this paper, the temperature field of large-sized (120kg, 200kg and 300kg grade) sapphire single crystal furnace was simulated. By keeping the crucible diameter ratio and the insulation system unchanged, the power consumption, axial and radial temperature gradient, solid-liquid surface shape, stress distribution and melt flow were studied. The simulation results showed that with the increase of the single crystal furnace size, the power consumption increased, the temperature field insulation effect became worse, the growth stress value increased and the stress concentration phenomenon occurred. To solve these problems, the middle and bottom insulation system should be enhanced during designing the large-sized sapphire single crystal furnace. The appropriate radial and axial temperature gradient was favorable to reduce the crystal stress and prevent the occurrence of cracking. Expanding the interface between the seed and crystal was propitious to avoid the stress accumulation phenomenon.

  9. Gamma radiation and temperature influence on the chemical effect produced by isomeric transition in the telluric acid

    International Nuclear Information System (INIS)

    Muriel G, M.


    When the gamma radiation due to the isomeric transition is internally converted an autoionization is produced. For atoms with a high atomic number this autoionization can be a large one and produce a fragmentation in a molecule. In the specific case of the solid state these fragments remain trapped in different places of the crystalline system. This can be considered as chemical change in the original molecule. These damages produced by the nuclear transformation can be measured by different methods: heating, gamma rays, pressure, etc. In this work the results of an experimental measurement of the behavior of the crystalline telluric acid molecule fragments under gamma radiation (0 to 20 Mrads) with controlled temperature of 2 0 C (-196 0 C to 50 0 C) it is presented. It was observed that the values of the mentioned behavior vary rapidly at first for relatively low doses and that for larger doses these values remained constant. Besides with a lower temperature these variation are progressively lower. (author)

  10. Turbulent amplification of magnetic fields in laboratory laser-produced shock waves

    International Nuclear Information System (INIS)

    Meinecke, J.; Doyle, H.W.; Bell, A.R.; Schekochihin, A.A.; Miniati, F.; Bingham, R.; Koenig, M.; Pelka, A.; Ravasio, A.; Yurchak, R.


    X-ray and radio observations of the supernova remnant Cassiopeia A reveal the presence of magnetic fields about 100 times stronger than those in the surrounding interstellar medium. Field coincident with the outer shock probably arises through a nonlinear feedback process involving cosmic rays. The origin of the large magnetic field in the interior of the remnant is less clear but it is presumably stretched and amplified by turbulent motions. Turbulence may be generated by hydrodynamic instability at the contact discontinuity between the supernova ejecta and the circumstellar gas. However, optical observations of Cassiopeia A indicate that the ejecta are interacting with a highly inhomogeneous, dense circumstellar cloud bank formed before the supernova explosion. Here we investigate the possibility that turbulent amplification is induced when the outer shock overtakes dense clumps in the ambient medium. We report laboratory experiments that indicate the magnetic field is amplified when the shock interacts with a plastic grid. We show that our experimental results can explain the observed synchrotron emission in the interior of the remnant. The experiment also provides a laboratory example of magnetic field amplification by turbulence in plasmas, a physical process thought to occur in many astrophysical phenomena. (authors)

  11. Pressure and temperature fields and water released by concrete submitted to high heat fluxes

    International Nuclear Information System (INIS)

    Andrade Lima, F.R. de


    Inovations are introduced in the original program USINT considering thermal conductivity variations with the temperature. A subroutine - PLOTTI - is incorporate to the program aiming to obtain a graphic for results. The new program - USINTG - is used for calculating the field of pressure and temperature and the water released from the concrete structure during a simulation of sodium leak. The theoretical results obtained with USINTG are in good agreement with the experimental results previously obtained. (E.G.) [pt

  12. On the calculation of finite-temperature effects in field theories

    International Nuclear Information System (INIS)

    Brandt, F.T.; Frenkel, J.; Taylor, J.C.


    We discuss an alternative method for computing finite-temperature effects in field theories, within the framework of the imaginary-time formalism. Our approach allows for a systematic calculation of the high temperature expansion in terms of Riemann Zeta functions. The imaginary-time result is analytically continued to the complex plane. We are able to obtain the real-time limit of the real and the imaginary parts of the Green functions. (author)

  13. SAGD pilot project, wells MFB-772 (producer) / MFB-773 (injector), U1,3 MFB-53 reservoir, Bare Field. Orinoco oil belt. Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Mago, R.; Franco, L.; Armas, F.; Vasquez, R.; Rodriguez, J.; Gil, E. [PDVSA EandP (Venezuela)


    In heavy oil and extra heavy oil fields, steam assisted gravity drainage is a thermal recovery method used to reduce oil viscosity and thus increase oil recovery. For SAGD to be successfully applied in deep reservoirs, drilling and completion of the producer and injector wells are critical. Petroleos de Venezuela SA (PDVSA) is currently assessing the feasibility of SAGD in the Orinoco oil belt in Venezuela and this paper aims at presenting the methodology used to ensure optimal drilling and completion of the project. This method was divided in several stages: planning, drilling and completion of the producer, injector and then of the observer wells and cold information capture. It was found that the use of magnetic guidance tools, injection pipe pre-insulated and pressure and temperature sensors helps optimize the drilling and completion process. A methodology was presented to standardize operational procedures in the drilling and completion of SAGD projects in the Orinoco oil belt.

  14. Some results from a temperature evaluation of a cotton field with infrared thermometer for agricultural use

    International Nuclear Information System (INIS)

    Ovcharova, A.; Kolev, N.; Nedkov, N.


    The aims of the present study were connected with evaluation of the basic soil properties, distribution of thermal, hydrological and electronic soil properties and criteria for minimization of the measurement points, obtained in the cotton non-irrigated field of the Institute of durum wheat and cotton near Chirpan. It were measured crop temperature of cotton field and soil surface temperature distribution during the main vegetative stages. Using the energy balance equation and soil water balance equation was calculated the intensity of evapotranspiration during the days of measurements

  15. Electric field and temperature measurement using ultra wide bandwidth pigtailed electro-optic probes. (United States)

    Bernier, Maxime; Gaborit, Gwenaël; Duvillaret, Lionel; Paupert, Alain; Lasserre, Jean-Louis


    We present pigtailed electro-optic probes that allow a simultaneous measurement of high frequency electric fields and temperature using a unique laser probe beam. This has been achieved by the development of a novel probe design associated with a fully automated servo-controlled optical bench, initially developed to stabilize the electric field sensor response. The developed electro-optic probes present a stable response in outdoors conditions over a time duration exceeding 1 h, a frequency bandwidth from kHz to tens of GHz with a sensitivity of 0.7 Vm(-1)Hz(-(1/2)), and a temperature accuracy of 40 mK.

  16. Temperature change of various ferrite particles with alternating magnetic field for hyperthermic application

    International Nuclear Information System (INIS)

    Kim, Dong-Hyun; Lee, Se-Ho; Kim, Kyoung-Nam; Kim, Kwang-Mahn; Shim, In-Bo; Lee, Yong-Keun


    Various ferrites (Fe-, Li-, Ni/Zn/Cu-, Co-, Co/Ni, Ba- and Sr-ferrites) were investigated with respect to their application for hyperthermia. Temperature changes under an alternating magnetic field were observed. The area of hysteresis loop was much larger in the Ba- and Sr-ferrites than for that of the Fe-, Ni/Zn/Cu-, Li-, Co- and Co/Ni-ferrites. Co-ferrite exhibited the most applicable temperature change ΔT=19.25K (29.62W/gs), in distilled water when the field was 110A/m

  17. Numerical investigation of temperature field in magnetic hyperthermia considering mass transfer and diffusion in interstitial tissue (United States)

    Tang, Yundong; Flesch, Rodolfo C. C.; Jin, Tao


    Magnetic nanoparticle (MNP) hyperthermia ablates malignant cells by heating the region of interest when MNPs are subjected to an external alternating magnetic field. The energy density to be dissipated into heat, and consequently the temperature profile during treatment, depends on the distribution of MNPs within the tumoral region. This paper uses numerical models to evaluate the temporal and spatial temperature distributions inside a tumor when intratumoral injection of MNPs is considered. To this end, the theories of mass transfer and diffusion in interstitial tissue are combined with Rosensweig’s theory and Pennes bio-heat transfer equation, and the finite element method is used for analyzing the temperature field under different scenarios. Simulation results demonstrate that the treatment temperature field strongly depends on factors, such as the injection method, particle size, injection concentration and injection dose. However, the maximal temperature reached during hyperthermia and the effective treatment area are difficult to control. In order to obtain better treatment effects, this paper investigates a solution that uses a kind of material with low Curie temperature and the results show that the effective treatment area of hyperthermia can be significantly improved using this type of MNP.

  18. Effects of the temperature and magnetic-field dependent coupling on the properties of QCD matter (United States)

    Yang, Li; Wen, Xin-Jian


    To reflect the asymptotic freedom in the thermal direction, a temperature-dependent coupling was proposed in the literature. We investigate its effect on QCD matter with and without strong magnetic fields. Compared with the fixed coupling constant, the running coupling leads to a drastic change in the dynamical quark mass, entropy density, sound velocity, and specific heat. The crossover transition of QCD matter at finite temperature is characterized by the pseudocritical temperature Tpc , which is generally determined by the peak of the derivative of the quark condensate with respect to the temperature d ϕ /d T , or equivalently, by the derivative of the quark dynamical mass d M /d T . In a strong magnetic field, the temperature- and magnetic-field-dependent coupling G (e B ,T ) was recently introduced to account for inverse magnetic catalysis. We propose an analytical relation between the two criteria d ϕ /d T and d M /d T and show a discrepancy between them in finding the pseudocritical temperature. The magnitude of the discrepancy depends on the behavior of d G /d T .

  19. Variations in geomagnetic field and temperature in Spain during the past millennium (United States)

    Nachasova, I. E.; Burakov, K. S.; Pilipenko, O. V.; Markov, G. P.


    The archaeomagnetic studies are conducted for the collection of coated ceramic samples from the Albarracin archaeological monument in Spain dated to the 10-20th centuries A.D. The pattern of variations in geomagnetic field intensity during this time interval is identified. The behavior of geomagnetic intensity is dominated by a decreasing trend (from ˜80 to 40 μT). The variation with a characteristic time of a few hundred years is the most striking one. Investigation of the material from this collection by the method of rehydroxylation provided the temperature estimates for this region of Spain for the time interval of pottery production. The temperature variations generally tend to increase, while the main trend in the variations of geomagnetic intensity is decreasing. The time series of temperature and intensity of the main magnetic field contain variations with close characteristic times shifted in time so that the changes in temperature go somewhat ahead of the changes in the geomagnetic field. It was previously suggested to improve the accuracy and resolution of the obtained variations in the past magnetic field using the method of archaeomagnetic dating of the material from archaeological monuments. The method was tested by dating the pottery kiln material from the El Molon monument, Spain, with the use of the virtual geomagnetic pole curve based on the past magnetic field in the East Europe. The method proved to be quite efficient and promising for dating the archaeological material from all over Europe.

  20. Analyses of residual iron in carbon nanotubes produced by camphor/ferrocene pyrolysis and purified by high temperature annealing

    Energy Technology Data Exchange (ETDEWEB)

    Antunes, E.F., E-mail: [Instituto Tecnologico de Aeronautica (ITA), Praca Marechal Eduardo Gomes, 50, CEP 12.228-900, Sao Jose dos Campos, SP (Brazil); Instituto Nacional de Pesquisas Espaciais (INPE), Av. dos Astronautas, 1758, CEP 12.227-010, Sao Jose dos Campos, SP (Brazil); Resende, V.G. de; Mengui, U.A. [Instituto Nacional de Pesquisas Espaciais (INPE), Av. dos Astronautas, 1758, CEP 12.227-010, Sao Jose dos Campos, SP (Brazil); Cunha, J.B.M. [Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Goncalves, 9500, CEP 91.501-970, Porto Alegre, RS (Brazil); Corat, E.J.; Massi, M. [Instituto Nacional de Pesquisas Espaciais (INPE), Av. dos Astronautas, 1758, CEP 12.227-010, Sao Jose dos Campos, SP (Brazil)


    A detailed analysis of iron-containing phases in multiwall carbon nanotube (MWCNT) powder was carried out. The MWCNTs were produced by camphor/ferrocene and purified by high temperature annealing in an oxygen-free atmosphere (N{sub 2} or VC). Thermogravimetric analysis, Moessbauer spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy enabled the evaluation of the residual iron in MWCNTs after purification. The VC treatments provided MWCNTs with a purity degree higher than 99%. Moreover, Raman spectroscopy revealed a significant improvement in graphitic ordering after thermal annealing. A brief description of the mechanism of iron removal was included. We highlight the mobility of iron atoms through graphitic sheets and the large contact angle of iron clusters formed on MWCNT surfaces at high temperatures.

  1. Influence of temperature on the fermentation of bambara groundnut (Vigna subterranea) to produce a dawadawa-type product. (United States)

    Amadi, E N; Barimalaa, I S; Omosigho, J


    Bambara groundnut (Vigna subterranea) was fermented to produce a dawadawa-type product using a starter culture of Bacillus licheniformis isolated from naturally fermenting bambara groundnut beans. Fermentation was carried out at 30 and 37 degrees C for four days and at 45 degrees C for two days. The pH of the substrate decreased after 24 hours and then rose at 30 and 37 degrees C but remained constant at 45 degrees C after the initial drop. Total titratable acidity of the fermenting beans mimicked the pH values. Proximate analyses for moisture, protein and fat of the cotyledons showed an increase in all three constituent at each of the three fermentation temperatures. At the end of fermentation, total available carbohydrate was 55%, 59% and 62% of the original value at 30, 37 and 45 degrees C, respectively. Fermentation of bambara groundnut at 45 degrees C for two days is recommended as the ideal fermentation temperature and time.

  2. Hysteresis-free high-temperature precise bimorph actuators produced by direct bonding of lithium niobate wafers

    Energy Technology Data Exchange (ETDEWEB)

    Shur, V. Ya.; Baturin, I. S.; Mingaliev, E. A.; Zorikhin, D. V.; Udalov, A. R.; Greshnyakov, E. D. [Ferroelectric Laboratory, Institute of Natural Sciences, Ural Federal University, 51 Lenin Ave., 620000 Ekaterinburg (Russian Federation)


    The current paper presents a piezoelectric bimorph actuator produced by direct bonding of lithium niobate wafers with the mirrored Y and Z axes. Direct bonding technology allowed to fabricate bidomain plate with precise positioning of ideally flat domain boundary. By optimizing the cutting angle (128° Y-cut), the piezoelectric constant became as large as 27.3 pC/N. Investigation of voltage dependence of bending displacement confirmed that bimorph actuator has excellent linearity and hysteresis-free. Decrease of the applied voltage down to mV range showed the perfect linearity up to the sub-nm deflection amplitude. The frequency and temperature dependences of electromechanical transmission coefficient in wide temperature range (from 300 to 900 K) were investigated.

  3. Stable and solid pellets of functionalized multi-walled carbon nanotubes produced under high pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Pâmela Andréa Mantey dos [Universidade Federal do Rio Grande do Sul, UFRGS, Programa de Pós-Graduação em Ciência dos Materiais (Brazil); Gallas, Marcia Russman [Universidade Federal do Rio Grande do Sul, UFRGS, Instituto de Física (Brazil); Radtke, Cláudio; Benvenutti, Edilson Valmir [Universidade Federal do Rio Grande do Sul, UFRGS, Instituto de Química (Brazil); Elias, Ana Laura [The Pennsylvania State University, Department of Physics and Center for 2-D and Layered Materials (United States); Rajukumar, Lakshmy Pulickal [The Pennsylvania State University, Department of Materials Science and Engineering (United States); Terrones, Humberto [Rensselaer Polytechnic Institute, Department of Physics, Applied Physics and Astronomy (United States); Endo, Morinobu [Shinshu University, Carbon Institute of Science and Technology (Japan); Terrones, Mauricio [The Pennsylvania State University, Department of Physics and Center for 2-D and Layered Materials (United States); Costa, Tania Maria Haas, E-mail:, E-mail: [Universidade Federal do Rio Grande do Sul, UFRGS, Programa de Pós-Graduação em Ciência dos Materiais (Brazil)


    High pressure/temperature was applied on samples of pristine multi-walled carbon nanotubes (MWCNT), functionalized nanotubes (f-MWCNT), and nanotubes doped with nitrogen (CN{sub x}MWNT). Cylindrical compact pellets of f-MWCNT with diameters of about 6 mm were obtained under pressure of 4.0 GPa at room temperature and at 400 °C, using graphite as pressure transmitting medium. The best pellet samples were produced using nitric and sulfuric acids for the functionalization of MWCNT. The effect of high pressure/temperature on CNT was investigated by several spectroscopy and characterization techniques, such as Raman spectroscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, N{sub 2} adsorption/desorption isotherms, and transmission electron microscopy. It was found that MWCNT maintain their main features in the compacted pellets, such as integrity, original morphology, and structure, demonstrating that high-pressure/temperature compaction can indeed be used to fabricate novel CNT self-supported materials. Additionally, the specific surface area and porosity are unchanged, which is important when using bulk CNT in adsorption processes. Raman analysis of the G’-band showed a shift to lower wavenumbers when f-MWCNT were processed under high pressure, suggesting that CNT are under tensile stress.

  4. New microscope produced by Lambda Praha Co. applicable to field studies of microorganisms

    Czech Academy of Sciences Publication Activity Database

    Žižka, Zdeněk


    Roč. 53, č. 5 (2008), s. 457-461 ISSN 0015-5632 Institutional research plan: CEZ:AV0Z50200510 Keywords : lambda * microscope * field studies Subject RIV: EE - Microbiology, Virology Impact factor: 1.172, year: 2008

  5. Series expansion of two-dimensional fields produced by iron-core magnets

    International Nuclear Information System (INIS)

    Satoh, Kotaro.


    This paper discusses the validity of a series expansion of two-dimensional magnetic fields with harmonic functions, and suggests that the series may not converge outside of the pole gap. It also points out that this difficulty may appear due to a slow convergence of the series near to the pole edge, even within the convergent area. (author)

  6. Turbulent Dynamo Amplification of Magnetic Fields in Laser-Produced Plasmas: Simulations and Experiments (United States)

    Tzeferacos, P.; Rigby, A.; Bott, A.; Bell, A.; Bingham, R.; Casner, A.; Cattaneo, F.; Churazov, E.; Forest, C.; Katz, J.; Koenig, M.; Li, C.-K.; Meinecke, J.; Petrasso, R.; Park, H.-S.; Remington, B.; Ross, J.; Ryutov, D.; Ryu, D.; Reville, B.; Miniati, F.; Schekochihin, A.; Froula, D.; Lamb, D.; Gregori, G.


    The universe is permeated by magnetic fields, with strengths ranging from a femtogauss in the voids between the filaments of galaxy clusters to several teragauss in black holes and neutron stars. The standard model for cosmological magnetic fields is the nonlinear amplification of seed fields via turbulent dynamo. We have conceived experiments to demonstrate and study the turbulent dynamo mechanism in the laboratory. Here, we describe the design of these experiments through large-scale 3D FLASH simulations on the Mira supercomputer at ANL, and the laser-driven experiments we conducted with the OMEGA laser at LLE. Our results indicate that turbulence is capable of rapidly amplifying seed fields to near equipartition with the turbulent fluid motions. This work was supported in part from the ERC (FP7/2007-2013, No. 256973 and 247039), and the U.S. DOE, Contract No. B591485 to LLNL, FWP 57789 to ANL, Grant No. DE-NA0002724 and DE-SC0016566 to the University of Chicago, and DE-AC02-06CH11357 to ANL.

  7. Field Validity of Heart Rate Variability Metrics Produced by QRSTool and CMetX (United States)

    Hibbert, Anita S.; Weinberg, Anna; Klonsky, E. David


    Interest in heart rate variability (HRV) metrics as markers of physiological and psychological health continues to grow beyond those with psychophysiological expertise, increasing the importance of developing suitable tools for researchers new to the field. Allen, Chambers, and Towers (2007) developed QRSTool and CMetX software as simple,…

  8. Anisotropic temperature dependence of the magnetic-field penetration in superconducting UPt3

    International Nuclear Information System (INIS)

    Broholm, C.; Aeppli, G.; Kleiman, R.N.; Harshman, D.R.; Bishop, D.J.; Bucher, E.; Williams, D.L.; Ansaldo, E.J.; Heffner, R.H.


    The anisotropy and temperature dependence of the magnetic-field penetration in superconducting UPt 3 have been measured by muon spin relaxation. The extrapolated zero-temperature values for the penetration depths parallel and perpendicular to the c axis are λ parallel =7070±30 A and λ perpendicular =7820±30 A, respectively. The temperature dependences of λ parallel and λ perpendicular are different and can both be accounted for by a superconducting gap function with a line of nodes in the basal plane and axial point nodes

  9. Numerical Analysis of Temperature Field in a Disc Brake at Different Cover Angle of the Pad

    Directory of Open Access Journals (Sweden)

    Grześ Piotr


    Full Text Available In the paper an influence of the cover angle of the pad on temperature fields of the components of the disc brake is studied. A three-dimensional finite element (FE model of the pad-disc system was developed at the condition of equal temperatures on the contacting surfaces. Calculations were carried out for a single braking process at constant deceleration assuming that the contact pressure corresponds with the cover angle of the pad so that the moment of friction is equal in each case analysed. Evolutions and distributions of temperature both for the contact surface of the pad and the disc were computed and shown.

  10. Structure of the radial electric field and toroidal/poloidal flow in high temperature toroidal plasma

    International Nuclear Information System (INIS)

    Ida, Katsumi


    The structure of the radial electric field and toroidal/poloidal flow is discussed for the high temperature plasma in toroidal systems, tokamak and Heliotron type magnetic configurations. The spontaneous toroidal and poloidal flows are observed in the plasma with improved confinement. The radial electric field is mainly determined by the poloidal flow, because the contribution of toroidal flow to the radial electric field is small. The jump of radial electric field and poloidal flow are commonly observed near the plasma edge in the so-called high confinement mode (H-mode) plasmas in tokamaks and electron root plasma in stellarators including Heliotrons. In general the toroidal flow is driven by the momentum input from neutral beam injected toroidally. There is toroidal flow not driven by neutral beam in the plasma and it will be more significant in the plasma with large electric field. The direction of these spontaneous toroidal flows depends on the symmetry of magnetic field. The spontaneous toroidal flow driven by the ion temperature gradient is in the direction to increase the negative radial electric field in tokamak. The direction of spontaneous toroidal flow in Heliotron plasmas is opposite to that in tokamak plasma because of the helicity of symmetry of the magnetic field configuration. (author)

  11. Simulation of the temperature field distribution in medium-voltage vacuum interrupter and experimental verification (United States)

    Sun, W.; Liu, H. L.; Cai, Y. G.; Li, Y. L.; Zhou, H. Y.; Zhou, Y.


    The temperature field distribution in the medium-voltage vacuum interrupter decides the thermal stability of it. In this paper, the simulation model of a kind of 12kV/3150A/40kA medium-voltage vacuum interrupter is constructed, and conductive bridge model is used. This paper simulates current contraction and Joule heating between contacts, and solves relevant problems using the function of the thermal-electrical coupling in the finite element software ANSYS. Steady-state temperature rise of vacuum interrupter at rated current and transient temperature rise of vacuum interrupter at short-time withstand current are calculated. Influence of the contact situation on vacuum interrupter temperature rise is analyzed. Steady-state temperature rise experiments for the interrupter are carried out, and experiment results verify the accuracy of simulation results. The results are useful in the designing and optimizing of medium-voltage vacuum interrupter.

  12. The Chamber for Studying Rice Response to Elevated Nighttime Temperature in Field

    Directory of Open Access Journals (Sweden)

    Song Chen


    Full Text Available An in situ temperature-controlled field chamber was developed for studying a large population of rice plant under different nighttime temperature treatments while maintaining conditions similar to those in the field during daytime. The system consists of a pipe hoop shed-type chamber with manually removable covers manipulated to provide a natural environment at daytime and a relatively stable and accurate temperature at night. Average air temperatures of 22.4 ± 0.3°C at setting of 22°C, 27.6 ± 0.4°C at 27°C, and 23.8 ± 0.7°C ambient conditions were maintained with the system. No significant horizontal and vertical differences in temperature were found and only slight changes in water temperatures were observed between the chambers and ambient conditions at 36 days after transplanting. A slight variation in CO2 concentration was observed at the end of the treatment during the day, but the 10-μmol CO2 mol−1 difference was too small to alter plant response. The present utilitarian system, which only utilizes an air conditioner/heater, is suitable for studying the effect of nighttime temperature on plant physiological responses with minimal perturbation of other environmental factors. At the same time, it will enable in situ screening of many rice genotypes.

  13. Sensing Properties of a Novel Temperature Sensor Based on Field Assisted Thermal Emission

    Directory of Open Access Journals (Sweden)

    Zhigang Pan


    Full Text Available The existing temperature sensors using carbon nanotubes (CNTs are limited by low sensitivity, complicated processes, or dependence on microscopy to observe the experimental results. Here we report the fabrication and successful testing of an ionization temperature sensor featuring non-self-sustaining discharge. The sharp tips of nanotubes generate high electric fields at relatively low voltages, lowering the work function of electrons emitted by CNTs, and thereby enabling the safe operation of such sensors. Due to the temperature effect on the electron emission of CNTs, the collecting current exhibited an exponential increase with temperature rising from 20 °C to 100 °C. Additionally, a higher temperature coefficient of 0.04 K−1 was obtained at 24 V voltage applied on the extracting electrode, higher than the values of other reported CNT-based temperature sensors. The triple-electrode ionization temperature sensor is easy to fabricate and converts the temperature change directly into an electrical signal. It shows a high temperature coefficient and good application potential.

  14. Sensing Properties of a Novel Temperature Sensor Based on Field Assisted Thermal Emission. (United States)

    Pan, Zhigang; Zhang, Yong; Cheng, Zhenzhen; Tong, Jiaming; Chen, Qiyu; Zhang, Jianpeng; Zhang, Jiaxiang; Li, Xin; Li, Yunjia


    The existing temperature sensors using carbon nanotubes (CNTs) are limited by low sensitivity, complicated processes, or dependence on microscopy to observe the experimental results. Here we report the fabrication and successful testing of an ionization temperature sensor featuring non-self-sustaining discharge. The sharp tips of nanotubes generate high electric fields at relatively low voltages, lowering the work function of electrons emitted by CNTs, and thereby enabling the safe operation of such sensors. Due to the temperature effect on the electron emission of CNTs, the collecting current exhibited an exponential increase with temperature rising from 20 °C to 100 °C. Additionally, a higher temperature coefficient of 0.04 K -1 was obtained at 24 V voltage applied on the extracting electrode, higher than the values of other reported CNT-based temperature sensors. The triple-electrode ionization temperature sensor is easy to fabricate and converts the temperature change directly into an electrical signal. It shows a high temperature coefficient and good application potential.

  15. Producing of pover GaAs structures of bipolar and field-effect transistor by CVD-method

    Directory of Open Access Journals (Sweden)

    Voronin V. A.


    Full Text Available Investigation results in technology of doping Sn and Bi of perfect GaAs structures preparation by the lowe-temperature isothermal chloride epitaxy method are presented. A complex problem has been solved to obtain planar layers of the n+–n–n0–p type bipolar transistors and planar layers of the i–n0–n–n+ type Schottky field-effect transistors. Heterogenetty in the thickness less than 3% and doping level less than 5% has been achieved. This allowed to get the discrete Schottky field-effect transistors with improved operation characteristics.

  16. The structure of temperature field in mesoscale eddies at the surface of the ocean in the Drake Passage. (United States)

    Gritsenko, Alexander; Tarakanov, Roman


    The study of mesoscale eddies of the Antarctic Circumpolar Current (ACC) were performed on the basis of satellite data on the Absolute Dynamic Topography (ADT) produced by Ssalto/Duacs and distributed by Aviso, with support from Cnes (, and data on the ocean surface temperature (SST) of the Australian Centre of Weather and Climate research CAWCR (The Centre for Australian Weather and Climate research), calculated in the framework of the GAMSSA project (Global Australian Multi-Sensor SST Analysis, .do?dsid = id-c80878d11f & varid = analysed_sst-id-c80878d11f & auto = true/). We developed an algorithm and implemented a program for detection and mapping of cyclonic and anticyclonic mesoscale (synoptic) eddies in the ADT field for arbitrary day of the 19-year series of satellite observations. Preliminary results of the parameters and spatial distribution of mesoscale eddies in the region of the Drake Passage were obtained. The main part of eddies with different signs is associated with meandering jets and fronts of the ACC. To study the structure of the eddy surface temperature the eddy contours in the ADT field were mapped in the field of satellite SST for the same dates as the ADT data. Isotherms in cyclones and anticyclones reveal asymmetrical distribution of temperature. In the eastern (usually front) part of the cyclonic eddy, where the water transfer is directed from the low latitudes (clockwise in the Southern Hemisphere) to the high latitudes, the temperature is higher, and in the west (usually rear) part, where the water transfer is directed from high to low latitudes, it is lower. At the same time, the isotherms in cyclonic eddies deflected up in the form of domes and oriented to the northern or north-eastern direction. In the anticyclones, on the contrary, the isotherms deflected down in the form of cups and oriented mainly to the south. It should be noted that many of natural processes

  17. Validation of a Previously Developed Geospatial Model That Predicts the Prevalence of Listeria monocytogenes in New York State Produce Fields. (United States)

    Weller, Daniel; Shiwakoti, Suvash; Bergholz, Peter; Grohn, Yrjo; Wiedmann, Martin; Strawn, Laura K


    Technological advancements, particularly in the field of geographic information systems (GIS), have made it possible to predict the likelihood of foodborne pathogen contamination in produce production environments using geospatial models. Yet, few studies have examined the validity and robustness of such models. This study was performed to test and refine the rules associated with a previously developed geospatial model that predicts the prevalence of Listeria monocytogenes in produce farms in New York State (NYS). Produce fields for each of four enrolled produce farms were categorized into areas of high or low predicted L. monocytogenes prevalence using rules based on a field's available water storage (AWS) and its proximity to water, impervious cover, and pastures. Drag swabs (n = 1,056) were collected from plots assigned to each risk category. Logistic regression, which tested the ability of each rule to accurately predict the prevalence of L. monocytogenes, validated the rules based on water and pasture. Samples collected near water (odds ratio [OR], 3.0) and pasture (OR, 2.9) showed a significantly increased likelihood of L. monocytogenes isolation compared to that for samples collected far from water and pasture. Generalized linear mixed models identified additional land cover factors associated with an increased likelihood of L. monocytogenes isolation, such as proximity to wetlands. These findings validated a subset of previously developed rules that predict L. monocytogenes prevalence in produce production environments. This suggests that GIS and geospatial models can be used to accurately predict L. monocytogenes prevalence on farms and can be used prospectively to minimize the risk of preharvest contamination of produce. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Sensitivity of cold acclimation to elevated autumn temperature in field-grown Pinus strobus seedlings

    Directory of Open Access Journals (Sweden)

    Christine Yao-Yun Chang


    Full Text Available Climate change will increase autumn air temperature, while photoperiod decrease will remain unaffected. We assessed the effect of increased autumn air temperature on timing and development of cold acclimation and freezing resistance in Eastern white pine (EWP, Pinus strobus under field conditions. For this purpose we simulated projected warmer temperatures for southern Ontario in a Temperature Free-Air-Controlled Enhancement (T-FACE experiment and exposed EWP seedlings to ambient (Control or elevated temperature (ET, +1.5°C/+3°C during day/night. Photosynthetic gas exchange, chlorophyll fluorescence, photoprotective pigments, leaf non-structural carbohydrates (NSC, and cold hardiness were assessed over two consecutive autumns. Nighttime temperature below 10°C and photoperiod below 12h initiated downregulation of assimilation in both treatments. When temperature further decreased to 0°C and photoperiod became shorter than 10h, downregulation of the light reactions and upregulation of photoprotective mechanisms occurred in both treatments. While ET seedlings did not delay the timing of the downregulation of assimilation, stomatal conductance in ET seedlings was decreased by 20-30% between August and early October. In both treatments leaf NSC composition changed considerably during autumn but differences between Control and ET seedlings were not significant. Similarly, development of freezing resistance was induced by exposure to low temperature during autumn, but the timing was not delayed in ET seedlings compared to Control seedlings. Our results indicate that EWP is most sensitive to temperature changes during October and November when downregulation of photosynthesis , enhancement of photoprotection, synthesis of cold-associated NSCs and development of freezing resistance occur. However, we also conclude that the timing of the development of freezing resistance in EWP seedlings is not affected by moderate temperature increases used in our

  19. Temperature dependence of the magnetic hyperfine field at an s–p impurity diluted in RNi{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, A.L. de, E-mail: [Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Campus Nilópolis, RJ (Brazil); Chaves, C.M., E-mail: [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, RJ (Brazil); Oliveira, N.A. de [Instituto de Física Armando Dias Tavares, Universidade do Estado do Rio de Janeiro, Rio de Janeiro (Brazil); Troper, A. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, RJ (Brazil)


    We study the formation of local magnetic moments and magnetic hyperfine fields at an s–p impurity diluted in intermetallic Laves phase compounds RNi{sub 2} (R=Nd, Sm, Gd, Tb, Dy) at finite temperatures. We start with a clean host and later the impurity is introduced. The host has two-coupled (R and Ni) sublattice Hubbard Hamiltonians but the Ni sublattice can be disregarded because its d band, being full, is magnetically ineffective. Also, the effect of the 4f electrons of R is represented by the polarization they produce on the d band. This leaves us with a lattice of effective rare earth R-ions with polarized electrons. For the dd electronic interaction we use the Hubbard–Stratonovich identity in a functional integral approach in the static saddle point approximation. - Highlights: • Functional integral method in the static limit, producing site disorder, is used. • The site disorder is treated with the Coherent Potential Approximation (CPA). • Non magnetic Ni generates an effective lattice with only a polarized R d band. • The effective R lattice differ from the pure R metal: Results and Discussions. • The experimental curve of hyperfine fields × temperature are very well reproduced.

  20. Assessment of Human Exposure to Magnetic Fields Produced by Domestic Appliances (invited paper)

    International Nuclear Information System (INIS)

    Preece, A.W.; Kaune, W.T.; Grainger, P.; Golding, J.


    A study of 50 homes and their appliances examined whether a detailed appliance-use questionnaire and survey would yield data comparable with direct personal monitoring. This was coupled with direct measurement of the appliances in use to determine the field at 50 cm and 1 m. The findings were that individual time-weighted average (TWA) exposures calculated from questionnaire and activity diaries in conjunction with the appliance magnetic field were unrelated to actual personal exposure measurement. It was concluded that questionnaires are of little or no value for TWA estimation. However, peak exposure and short-term temporal variability could be modelled in subjects spending at least 15 min per day within 1 m of an operating microwave cooker or conventional cooker. This method could be extended to other appliances. (author)

  1. Research on the influence of driving harmonic on electromagnetic field and temperature field of permanent magnet synchronous motor

    Directory of Open Access Journals (Sweden)

    Qiu Hongbo


    Full Text Available At present, the drivers with different control methods are used in most of permanent magnet synchronous motors (PMSM. A current outputted by a driver contains a large number of harmonics that will cause the PMSM torque ripple, winding heating and rotor temperature rise too large and so on. In this paper, in order to determine the influence of the current harmonics on the motor performance, different harmonic currents were injected into the motor armature. Firstly, in order to study the influence of the current harmonic on the motor magnetic field, a novel decoupling method of the motor magnetic field was proposed. On this basis, the difference of harmonic content in an air gap magnetic field was studied, and the influence of a harmonic current on the air gap flux density was obtained. Secondly, by comparing the fluctuation of the motor torque in the fundamental and different harmonic currents, the influence of harmonic on a motor torque ripple was determined. Then, the influence of different current harmonics on the eddy current loss of the motor was compared and analyzed, and the influence of the drive harmonic on the eddy current loss was obtained. Finally, by using a finite element method (FEM, the motor temperature distribution with different harmonics was obtained.

  2. Numerical simulation of the influence factors for rotary kiln in temperature field and stress field and the structure optimization

    Directory of Open Access Journals (Sweden)

    Gongfa Li


    Full Text Available With the development of metallurgical industry and the improvement of kiln technology, the processing properties of kiln equipment are being paid more attention. The rotary kiln is one of the most representatives of the furnace equipment; higher requirements of the rotary kiln are put forward in response to the call of the national energy saving and emission reduction. That is, the new designed equipment has the characteristics of the optimal energy consumption and stable performance. In order to analyze the energy consumption of the rotary kiln, it is necessary to study the heat transfer process of the rotary kilns. The three-dimensional numerical model of the rotary kiln is set up by using the finite element technology. After analyzing the data, it is found that different thicknesses of the kiln crust and different working conditions have certain influence on the rotary kiln’s temperature field and stress field. After analyzing the result of the simulation, the temperature of the rotary kiln’s outer wall has an approximate linear relationship with the thickness of the kiln crust. Changing the thickness of the kiln crust will not only alter the value of the maximum stress but also have influence on the position of maximum stress. The increase in the thickness of the kiln crust can reduce the extreme value of stress. When the wind speed of induce fan inside the kiln is larger, the temperature of each layer will be relatively high as well, and the temperature curve is softer, and the temperature variation is more stable. It has also been found that when the comprehensive coefficient of heat exchange outside the kiln surface is larger, the thermal stress created by the body of kiln is smaller. The phenomenon of excessive thermal stress can be improved by changing the outer surface ventilation conditions of the rotary kiln. In order to ensure that the high temperature of the kiln wall has no influence on working wheels, and make sure the

  3. Comparative High Field Magneto-transport Of Rare Earth Oxypnictides With Maximum Transition Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Balakirev, Fedor F [Los Alamos National Laboratory; Migliori, A [MPA-NHMFL; Riggs, S [NHMFL-FSU; Hunte, F [NHMFL-FSU; Gurevich, A [NHMFL-FSU; Larbalestier, D [NHMFL-FSU; Boebinger, G [NHMFL-FSU; Jaroszynski, J [NHMFL-FSU; Ren, Z [CHINA; Lu, W [CHINA; Yang, J [CHINA; Shen, X [CHINA; Dong, X [CHINA; Zhao, Z [CHINA; Jin, R [ORNL; Sefat, A [ORNL; Mcguire, M [ORNL; Sales, B [ORNL; Christen, D [ORNL; Mandrus, D [ORNL


    We compare magnetotransport of the three iron-arsenide-based compounds ReFeAsO (Re=La, Sm, Nd) in very high DC and pulsed magnetic fields up to 45 and 54 T, respectively. Each sample studied exhibits a superconducting transition temperature near the maximum reported to date for that particular compound. While high magnetic fields do not suppress the superconducting state appreciably, the resistivity, Hall coefficient, and critical magnetic fields, taken together, suggest that the phenomenology and superconducting parameters of the oxypnictide superconductors bridges the gap between MgB{sub 2} and YBCO.

  4. Experimental study of thermoacoustic effects on a single plate. Pt. 1. Temperature fields

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, M.; Herman, C. [Johns Hopkins Univ., Baltimore, MD (USA). Dept. of Mech. Eng.


    The thermal interaction between a heated solid plate and the acoustically driven working fluid was investigated by visualizing and quantifying the temperature fields in the neighbourhood of the solid plate. A combination of holographic interferometry and high-speed cinematography was applied in the measurements. A better knowledge of these temperature fields is essential to develop systematic design methodologies for heat exchangers in oscillatory flows. The difference between heat transfer in oscillatory flows with zero mean velocity and steady-state flows is demonstrated in the paper. Instead of heat transfer from a heated solid surface to the colder bulk fluid, the visualized temperature fields indicated that heat was transferred from the working fluid into the stack plate at the edge of the plate. In the experiments, the thermoacoustic effect was visualized through the temperature measurements. A novel evaluation procedure that accounts for the influence of the acoustic pressure variations on the refractive index was applied to accurately reconstruct the high-speed, two-dimensional oscillating temperature distributions. (orig.)

  5. A broadband microwave Corbino spectrometer at ³He temperatures and high magnetic fields. (United States)

    Liu, Wei; Pan, LiDong; Armitage, N P


    We present the technical details of a broadband microwave spectrometer for measuring the complex conductance of thin films covering the range from 50 MHz up to 16 GHz in the temperature range 300 mK-6 K and at applied magnetic fields up to 8 T. We measure the complex reflection from a sample terminating a coaxial transmission line and calibrate the signals with three standards with known reflection coefficients. Thermal isolation of the heat load from the inner conductor is accomplished by including a section of NbTi superconducting cable (transition temperature around 8-9 K) and hermetic seal glass bead adapters. This enables us to stabilize the base temperature of the sample stage at 300 mK. However, the inclusion of this superconducting cable complicates the calibration procedure. We document the effects of the superconducting cable on our calibration procedure and the effects of applied magnetic fields and how we control the temperature with great repeatability for each measurement. We have successfully extracted reliable data in this frequency, temperature, and field range for thin superconducting films and highly resistive graphene samples.

  6. Simulation of changes in temperature and pressure fields during high speed projectiles forming by explosion

    Directory of Open Access Journals (Sweden)

    Marković Miloš D.


    Full Text Available The Research in this paper considered the temperatures fields as the consequently influenced effects appeared by plastic deformation, in the explosively forming process aimed to design Explosively Formed Projectiles (henceforth EFP. As the special payloads of the missiles, used projectiles are packaged as the metal liners, joined with explosive charges, to design explosive propulsion effect. Their final form and velocity during shaping depend on distributed temperatures in explosively driven plastic deformation process. Developed simulation model consider forming process without metal cover of explosive charge, in aim to discover liner’s dynamical correlations of effective plastic strains and temperatures in the unconstrained detonation environment made by payload construction. The temperature fields of the liner’s copper material are considered in time, as the consequence of strain/stress displacements driven by explosion environmental thermodynamically fields of pressures and temperatures. Achieved final velocities and mass loses as the expected EFP performances are estimated regarding their dynamical shaping and thermal gradients behavior vs. effective plastic strains. Performances and parameters are presented vs. process time, numerically simulated by the Autodyne software package. [Projekat Ministarstva nauke Republike Srbije, br. III-47029

  7. A surface acoustic wave passive and wireless sensor for magnetic fields, temperature, and humidity

    KAUST Repository

    Li, Bodong


    In this paper, we report an integrated single-chip surface acoustic wave sensor with the capability of measuring magnetic field, temperature, and humidity. The sensor is fabricated using a thermally sensitive LiNbO3 substrate, a humidity sensitive hydrogel coating, and a magnetic field sensitive impedance load. The sensor response to individually and simultaneously changing magnetic field, temperature and humidity is characterized by connecting a network analyzer directly to the sensor. Analytical models for each measurand are derived and used to compensate noise due to cross sensitivities. The results show that all three measurands can be monitored in parallel with sensitivities of 75 ppm/°C, 0.13 dB/%R.H. (at 50%R.H.), 0.18 dB/Oe and resolutions of 0.1 °C, 0.4%R.H., 1 Oe for temperature, humidity and magnetic field, respectively. A passive wireless measurement is also conducted on a current line using, which shows the sensors capability to measure both temperature and current signals simultaneously.

  8. Ensuring validity of radiometric temperature measurements obtained in the field using infrared imagers

    CSIR Research Space (South Africa)

    Mudau, AE


    Full Text Available blackbody located 450 m away in the field. In this paper we present the temperatures measured on the blackbody using Jade infrared imager, namely medium wave infrared (MWIR) imager operating in the 3-5 micron, band and a Fluke 574 precision handheld infrared...

  9. Athletic field paint color impacts transpiration and canopy temperature in bermudagrass (United States)

    Athletic field paints have varying impacts on turfgrass health which have been linked to their ability to alter photosynthetically active radiation (PAR) and photosynthesis based on color. It was further hypothesized they may also alter transpiration and canopy temperature by disrupting gas exchange...

  10. Field tests reveal genetic variation for performance atlow temperatures in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Overgaard, Johannes; Sørensen, Jesper Givskov; Jensen, Louise Toft


    investigated a population of Drosophila melanogaster for performance at low temperature conditions in the field using release recapture assays and in the laboratory using standard cold resistance assays. The aim of the study was to get a better understanding of the nature and underlying mechanisms of the trait...

  11. Extension of PIV for measuring granular temperature field in dense fluidized beds.

    NARCIS (Netherlands)

    Dijkhuizen, W.; Bokkers, G.A.; Deen, N.G.; van Sint Annaland, M.; Kuipers, J.A.M.


    In this work a particle image velocimetry (PIV) technique has been extended to enable the simultaneous measurement of the instantaneous velocity and granular temperature fields. The PIV algorithm has been specifically optimized for dense granular systems and has been thoroughly tested with

  12. Topology Optimization of a High-Temperature Superconducting Field Winding of a Synchronous Machine

    DEFF Research Database (Denmark)

    Pozzi, Matias; Mijatovic, Nenad; Jensen, Bogi Bech


    This paper presents topology optimization (TO) of the high-temperature superconductor (HTS) field winding of an HTS synchronous machine. The TO problem is defined in order to find the minimum HTS material usage for a given HTS synchronous machine design. Optimization is performed using a modified...

  13. Scintillation camera for establishing the coordinates of a radiation stimuli produced by a radiation field

    International Nuclear Information System (INIS)

    Zioni, J.; Klein, Y.; Inbar, D.


    A scintillation camera has a planar scintillating crystal that produces light events whose spatial distribution corresponds to the spatial distribution of the radiation stimuli causing such events, and a plurality of photomultipliers having photocathodes for receiving light from the crystal through a planar face thereof. Computing circuitry coupled to the photomultipliers computes the projection of a light event in the crystal on a reference axis by forming an analytical function of the outputs of the photomultipliers according to the spatial location of the light event in the crystal

  14. 3-D particle-in-cell simulation of laser-produced plasma in axial magnetic field

    Czech Academy of Sciences Publication Activity Database

    Roy, Amitava; Endo, Akira; Mocek, Tomáš


    Roč. 44, č. 4 (2016), s. 574-581 ISSN 0093-3813 R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk EE2.3.20.0143 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 6(XE) CZ.1.07/2.3.00/20.0143 Institutional support: RVO:68378271 Keywords : laser-produced plasma (LPP) * magnetized plasma * particle-in-cell (PIC) simulation * plasma instability Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.052, year: 2016

  15. Dual origin of room temperature sub-terahertz photoresponse in graphene field effect transistors (United States)

    Bandurin, D. A.; Gayduchenko, I.; Cao, Y.; Moskotin, M.; Principi, A.; Grigorieva, I. V.; Goltsman, G.; Fedorov, G.; Svintsov, D.


    Graphene is considered as a promising platform for detectors of high-frequency radiation up to the terahertz (THz) range due to its superior electron mobility. Previously, it has been shown that graphene field effect transistors (FETs) exhibit room temperature broadband photoresponse to incoming THz radiation, thanks to the thermoelectric and/or plasma wave rectification. Both effects exhibit similar functional dependences on the gate voltage, and therefore, it was difficult to disentangle these contributions in previous studies. In this letter, we report on combined experimental and theoretical studies of sub-THz response in graphene field-effect transistors analyzed at different temperatures. This temperature-dependent study allowed us to reveal the role of the photo-thermoelectric effect, p-n junction rectification, and plasmonic rectification in the sub-THz photoresponse of graphene FETs.

  16. Finite temperature Casimir effect for a massless fractional Klein-Gordon field with fractional Neumann conditions

    International Nuclear Information System (INIS)

    Eab, C. H.; Lim, S. C.; Teo, L. P.


    This paper studies the Casimir effect due to fractional massless Klein-Gordon field confined to parallel plates. A new kind of boundary condition called fractional Neumann condition which involves vanishing fractional derivatives of the field is introduced. The fractional Neumann condition allows the interpolation of Dirichlet and Neumann conditions imposed on the two plates. There exists a transition value in the difference between the orders of the fractional Neumann conditions for which the Casimir force changes from attractive to repulsive. Low and high temperature limits of Casimir energy and pressure are obtained. For sufficiently high temperature, these quantities are dominated by terms independent of the boundary conditions. Finally, validity of the temperature inversion symmetry for various boundary conditions is discussed

  17. Ludwig-Soret effect in a linear temperature field: Theory and experiments for steady state distributions

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hyeyun [Department of Chemistry, Brown University, Providence, RI 02912 (United States); Gusev, Vitalyi E. [Universite du Maine, av. Messiaen, 72085 Le Mans Cedex 09 (France); Baek, Hyoungsu [Department of Applied Mathematics, Brown University, Providence, RI 02912 (United States); Wang, Yaqi [Department of Chemistry, Brown University, Providence, RI 02912 (United States); Diebold, Gerald J., E-mail: Gerald_Diebold@Brown.ed [Department of Chemistry, Brown University, Providence, RI 02912 (United States)


    The Ludwig-Soret effect, also known as thermal diffusion, describes the separation of mixtures in the presence of a temperature gradient. Here, a solution to the nonlinear differential equation that describes the motion of components of a binary mixture in a linear temperature field is given for long times, when the distribution of the components in space becomes time independent. A new experimental method based on the use of a scanning confocal microscope to monitor the spatial distribution of fluorescence from fluorescein labelled nanoparticles in water in a linear temperature field is described. - Highlights: We give a steady state solution to the Ludwig-Soret equation. We give a method of finding Soret parameters based on terminal spatial distributions. We introduce a new experimental method based on probing with a confocal microscope. The method is applied to studying fluorescent nanoparticles suspended in water.

  18. Direct Observation of Field and Temperature Induced Domain Replication in Dipolar Coupled Perpendicular Anisotropy Films

    Energy Technology Data Exchange (ETDEWEB)

    Hauet, T.; Gunther, C.M.; Pfau, B.; Eisebitt, S.; Fischer, P.; Rick, R. L.; Thiele, J.-U.; Hellwig, O.; Schabes, M.E.


    Dipolar interactions in a soft/Pd/hard [CoNi/Pd]{sub 30}/Pd/[Co/Pd]{sub 20} multilayer system, where a thick Pd layer between two ferromagnetic units prevents direct exchange coupling, are directly revealed by combining magnetometry and state-of-the-art layer resolving soft x-ray imaging techniques with sub-100-nm spatial resolution. The domains forming in the soft layer during external magnetic field reversal are found to match the domains previously trapped in the hard layer. The low Curie temperature of the soft layer allows varying its intrinsic parameters via temperature and thus studying the competition with dipolar fields due to the domains in the hard layer. Micromagnetic simulations elucidate the role of [CoNi/Pd] magnetization, exchange, and anisotropy in the duplication process. Finally, thermally driven domain replication in remanence during temperature cycling is demonstrated.

  19. Temperature and velocity measurement fields of fluids using a schlieren system. (United States)

    Martínez-González, Adrian; Guerrero-Viramontes, J A; Moreno-Hernández, David


    This paper proposes a combined method for two-dimensional temperature and velocity measurements in liquid and gas flow using a schlieren system. Temperature measurements are made by relating the intensity level of each pixel in a schlieren image to the corresponding knife-edge position measured at the exit focal plane of the schlieren system. The same schlieren images were also used to measure the velocity of the fluid flow. The measurement is made by using particle image velocimetry (PIV). The PIV software used in this work analyzes motion between consecutive schlieren frames to obtain velocity fields. The proposed technique was applied to measure the temperature and velocity fields in the natural convection of water provoked by a heated rectangular plate.

  20. CO2, Temperature, and Soil Moisture Interactions Affect NDVI and Reproductive Phenology in Old-Field Plant Communities (United States)

    Engel, C.; Weltzin, J.; Norby, R.


    Plant community composition and ecosystem function may be altered by global atmospheric and climate change, including increased atmospheric [CO2], temperature, and varying precipitation regimes. We are conducting an experiment at Oak Ridge National Laboratory (ORNL) utilizing open-top chambers to administer experimental treatments of elevated CO2 (+300 ppm), warming (+ 3 degrees Celsius), and varying soil moisture availability to experimental plant communities constructed of seven common old-field species, including C3 and C4 grasses, forbs, and legumes. During 2004 we monitored plant community phenology (NDVI) and plant reproductive phenology. Early in the year, NDVI was greater in wet treatment plots, and was unaffected by main effects of temperature or CO2. This result suggests that early in the season warming is insufficient to affect early canopy development. Differences in soil moisture sustained throughout the winter and into early spring may constitute an important control on early canopy greenup. Elevated CO2 alleviated detrimental effects of warming on NDVI, but only early in the season. As ambient temperatures increased, elevated temperatures negatively impacted NDVI only in the dry plots. Wetter conditions ameliorate the effects of warming on canopy greenness during the warmer seasons of the year. Warming increased rates of bolting, number of inflorescences, and time to reproductive maturity for Andropogon virginicus (a C4 bunchgrass). Solidago Canadensis (a C3 late-season forb) also produced flowers earlier in elevated temperatures. Conversely, none of the C3 grasses and forbs that bolt or flower in late spring or early summer responded to temperature or CO2. Results indicate that warming and drought may impact plant community phenology, and plant species reproductive phenology. Clearly community phenology is driven by complex interactions among temperature, water, and CO2 that change throughout the season. Our data stresses the importance of

  1. Numerical simulation of temperature field and thermal stress field in the new type of ladle with the nanometer adiabatic material

    Directory of Open Access Journals (Sweden)

    Gongfa Li


    Full Text Available With the development of metallurgical industry and the improvement of continuous casting technology, the processing properties of casting technology equipment are being paid more attention. Ladle is one of the most representatives of the furnace equipment; higher requirements of ladle are put forward in response to the call for national energy-saving and emission reduction. According to the requirements of actual operator and working condition, a lining structure of a new type of ladle with nanometer adiabatic material is put forward. Based on heat transfer theory and finite element technology, the three-dimensional finite element model of a new type of ladle is established. Temperature field and stress field of the new type of ladle with the nanometer adiabatic material in lining structure after baking are analyzed. The results indicate that the distributions of temperature and thermal stress level of working layer, permanent layer, and nanometer heat insulating layer are similar, and they are in the permissible stress and temperature range of each material for the new type of ladle. Especially heat preservation effect of nanometer adiabatic material is excellent. Furthermore, the maximum temperature of shell for the new type of ladle drops to 114°C than the traditional ladle, and the maximum stress of shell for the new type of ladle is lower than the traditional ladle, that is, 114 MPa. It can provide reliable theory for energy-saving and emission reduction of metallurgy industry, which also points out the right direction for the future development of the iron and steel industry.

  2. Electric field and temperature scaling of polarization reversal in silicon doped hafnium oxide ferroelectric thin films

    International Nuclear Information System (INIS)

    Zhou, Dayu; Guan, Yan; Vopson, Melvin M.; Xu, Jin; Liang, Hailong; Cao, Fei; Dong, Xianlin; Mueller, Johannes; Schenk, Tony; Schroeder, Uwe


    HfO 2 -based binary lead-free ferroelectrics show promising properties for non-volatile memory applications, providing that their polarization reversal behavior is fully understood. In this work, temperature-dependent polarization hysteresis measured over a wide applied field range has been investigated for Si-doped HfO 2 ferroelectric thin films. Our study indicates that in the low and medium electric field regimes (E < twofold coercive field, 2E c ), the reversal process is dominated by the thermal activation on domain wall motion and domain nucleation; while in the high-field regime (E > 2E c ), a non-equilibrium nucleation-limited-switching mechanism dominates the reversal process. The optimum field for ferroelectric random access memory (FeRAM) applications was determined to be around 2.0 MV/cm, which translates into a 2.0 V potential applied across the 10 nm thick films

  3. Cooling of ions trapped in potential wells produced by electromagnetic radiation fields

    International Nuclear Information System (INIS)

    Sobehart, J.R.


    The probability distributions for the ground state and the excited state of a two-level ion trapped in an harmonic potential well are studied. The ion is excited by electromagnetic radiation and relaxes back due to either spontaneous or stimulated emission. The photon statistics is considered Poissonian and the momentum transfer between the electromagnetic field and the ion is assumed discrete. The present results are closely related to the quantum treatment in the heavy particle limit as well as to those derived from previous semiclassical models. (Author) [es

  4. Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion (United States)

    Einecke, S.; Schulz, C.; Sick, V.


    A technique based on planar laser-induced fluorescence of 3-pentanone, for measurements of absolute concentration, temperature and fuel/air equivalence ratios in turbulent, high-pressure combustion systems such as an internal combustion engine is presented. Quasi-simultaneous excitation with 248 nm and 308 nm of 3-pentanone that is used as a fluorescence tracer doped to iso-octane, yields pairs of strongly temperature-dependent fluorescence images. Previous investigations have resulted in information on temperature and pressure dependence of absorption cross-sections and fluorescence quantum yields. Using these data the ratio of corresponding fluorescence images can be converted to temperature images. Instantaneous temperature distribution fields in the compression stroke and in the unburned end-gas of an SI engine were measured. The temperature fields obtained from the two-line technique are used to correct the original tracer-LIF images in order to evaluate quantitative fuel distributions in terms of number densities and fuel/air equivalence ratio.

  5. Simulation on Temperature Field of Radiofrequency Lesions System Based on Finite Element Method

    International Nuclear Information System (INIS)

    Xiao, D; Qian, Z; Li, W; Qian, L


    This paper mainly describes the way to get the volume model of damaged region according to the simulation on temperature field of radiofrequency ablation lesion system in curing Parkinson's disease based on finite element method. This volume model reflects, to some degree, the shape and size of the damaged tissue during the treatment with all tendencies in different time or core temperature. By using Pennes equation as heat conduction equation of radiofrequency ablation of biological tissue, the author obtains the temperature distribution field of biological tissue in the method of finite element for solving equations. In order to establish damage models at temperature points of 60 deg. C, 65 deg. C, 70 deg. C, 75 deg. C, 80 deg. C, 85 deg. C and 90 deg. C while the time points are 30s, 60s, 90s and 120s, Parkinson's disease model of nuclei is reduced to uniform, infinite model with RF pin at the origin. Theoretical simulations of these models are displayed, focusing on a variety of conditions about the effective lesion size on horizontal and vertical. The results show the binary complete quadratic non-linear joint temperature-time models of the maximum damage diameter and maximum height. The models can comprehensively reflect the degeneration of target tissue caused by radio frequency temperature and duration. This lay the foundation for accurately monitor of clinical RF treatment of Parkinson's disease in the future.

  6. Neutron scattering techniques for betaine calcium chloride dihydrate under applied external field (temperature, electric field and hydrostatic pressure)

    International Nuclear Information System (INIS)

    Hernandez, O.


    We have studied with neutron scattering techniques betaine calcium chloride dihydrate (BCCD), a dielectric aperiodic crystal which displays a Devil's staircase type phase diagram made up of several incommensurate and commensurate phases, having a range of stability very sensitive to temperature, electric field and hydrostatic pressure. We have measured a global hysteresis of δ(T) of about 2-3 K in the two incommensurate phases. A structural study of the modulated commensurate phases 1/4 and 1/5 allows us to evidence that the atomic modulation functions are anharmonic. The relevance of the modelization of the modulated structure by polar Ising pseudo-spins is then directly established. On the basis of group theory calculation in the four dimensional super-space, we interpret this anharmonic modulation as a soliton regime with respect to the lowest-temperature non modulated ferroelectric phase. The continuous character of the transition to the lowest-temperature non modulated phase and the diffuse scattering observed in this phase are accounted for the presence of ferroelectric domains separated by discommensurations. Furthermore, we have shown that X-rays induce in BCCD a strong variation with time of irradiation of the intensity of satellite peaks, and more specifically for third order ones. This is why the 'X-rays' structural model is found more harmonic than the 'neutron' one. Under electric field applied along the vector b axis, we confirm that commensurate phases with δ = even/odd are favoured and hence are polar along this direction. We have evidenced at 10 kV / cm two new higher order commensurate phases in the phase INC2, corroborating the idea of a 'complete' Devil's air-case phase diagram. A phenomenon of generalized coexistence of phases occurs above 5 kV / cm. We have characterized at high field phase transitions between 'coexisting' phases, which are distinguishable from classical lock-in transitions. Under hydrostatic pressure, our results contradict

  7. The effect of temperature and chitosan concentration during storage on the growth of chitosan nanoparticle produced by ionic gelation method (United States)

    Handani, Wenny Rinda; Sediawan, Wahyudi Budi; Tawfiequrrahman, Ahmad; Wiratni, Kusumastuti, Yuni


    The objective of this research was to get the mechanism of nano size chitosan particle growth during storage by observing the effect of temperature and initial concentration of chitosan. The products were analyzed using PSA to have the average of particle radius. Nanochitosan solution was prepared by ionic gelation method. This method is described as an electrostatic interaction between positively charged amine with negatively charged polyanion, such as tripolyphosphate (TPP). Chitosan was dissolved in 1% acetic acid and was stirred for 30 minutes. Tween 80 was added to avoid agglomeration. TPP was prepared by dissolving 0.336 g into distilled water. The nano size chitosan was obtained by mixing TPP and chitosan solution dropwise while stirring for 30 minutes. This step was done at 15°C and ambient temperature (about 30°C) and chitosan concentration 0.2%, 0.4% and 0.6%. The results show that temperature during ionic gelation process (15°C and 30°C) does not affect the initial size of the nanoparticles produced as well as the growth of the nanoparticles during storage. On the other hand, initial chitosan concentration strongly affects initial size of the nanoparticles produced and the growth of the nanoparticles during storage. The concentration of chitosan at 0.2%, 0.4%, 0.6% gave initial size of nanoparticle chitosan of 175.3 nm, 337.9 nm, 643.3 nm respectively. On the other hand, the growth mechanism of chitosan nanoparticle depended on its radius(R). At R500 nm, it is controlled by diffusion in the liquid film around the particles.

  8. Structure and properties of nitrided surface layer produced on NiTi shape memory alloy by low temperature plasma nitriding

    International Nuclear Information System (INIS)

    Czarnowska, Elżbieta; Borowski, Tomasz; Sowińska, Agnieszka; Lelątko, Józef; Oleksiak, Justyna; Kamiński, Janusz; Tarnowski, Michał; Wierzchoń, Tadeusz


    Highlights: • Low temperature plasma nitriding process of NiTi shape memory alloy is presented. • The possibility of treatment details of sophisticated shape. • TiN surface layer has diffusive character. • TiN surface layer increases corrosion resistance of NiTi alloy. • Produced TiN layer modify the biological properties of NiTi alloy. - Abstract: NiTi shape memory alloys are used for bone and cardiological implants. However, on account of the metallosis effect, i.e. the release of the alloy elements into surrounding tissues, they are subjected to various surface treatment processes in order to improve their corrosion resistance and biocompatibility without influencing the required shape memory properties. In this paper, the microstructure, topography and morphology of TiN surface layer on NiTi alloy, and corrosion resistance, both before and after nitriding in low-temperature plasma at 290 °C, are presented. Examinations with the use of the potentiodynamic and electrochemical impedance spectroscopy methods were carried out and show an increase of corrosion resistance in Ringer's solution after glow-discharge nitriding. This surface titanium nitride layer also improved the adhesion of platelets and the proliferation of osteoblasts, which was investigated in in vitro experiments with human cells. Experimental data revealed that nitriding NiTi shape memory alloy under low-temperature plasma improves its properties for bone implant applications

  9. Structure and properties of nitrided surface layer produced on NiTi shape memory alloy by low temperature plasma nitriding

    Energy Technology Data Exchange (ETDEWEB)

    Czarnowska, Elżbieta [Children' s Memorial Health Institute, Pathology Department, Al. Dzieci Polskich 20, 04-730 Warsaw (Poland); Borowski, Tomasz [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland); Sowińska, Agnieszka [Children' s Memorial Health Institute, Pathology Department, Al. Dzieci Polskich 20, 04-730 Warsaw (Poland); Lelątko, Józef [Silesia University, Faculty of Computer Science and Materials Science, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland); Oleksiak, Justyna; Kamiński, Janusz; Tarnowski, Michał [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland); Wierzchoń, Tadeusz, E-mail: [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland)


    Highlights: • Low temperature plasma nitriding process of NiTi shape memory alloy is presented. • The possibility of treatment details of sophisticated shape. • TiN surface layer has diffusive character. • TiN surface layer increases corrosion resistance of NiTi alloy. • Produced TiN layer modify the biological properties of NiTi alloy. - Abstract: NiTi shape memory alloys are used for bone and cardiological implants. However, on account of the metallosis effect, i.e. the release of the alloy elements into surrounding tissues, they are subjected to various surface treatment processes in order to improve their corrosion resistance and biocompatibility without influencing the required shape memory properties. In this paper, the microstructure, topography and morphology of TiN surface layer on NiTi alloy, and corrosion resistance, both before and after nitriding in low-temperature plasma at 290 °C, are presented. Examinations with the use of the potentiodynamic and electrochemical impedance spectroscopy methods were carried out and show an increase of corrosion resistance in Ringer's solution after glow-discharge nitriding. This surface titanium nitride layer also improved the adhesion of platelets and the proliferation of osteoblasts, which was investigated in in vitro experiments with human cells. Experimental data revealed that nitriding NiTi shape memory alloy under low-temperature plasma improves its properties for bone implant applications.

  10. Methods for Producing High-Performance Silicon Carbide Fibers, Architectural Preforms, and High-Temperature Composite Structures (United States)

    DiCarlo, James A. (Inventor); Yun, Hee-Mann (Inventor)


    Methods are disclosed for producing architectural preforms and high-temperature composite structures containing high-strength ceramic fibers with reduced preforming stresses within each fiber, with an in-situ grown coating on each fiber surface, with reduced boron within the bulk of each fiber, and with improved tensile creep and rupture resistance properties tier each fiber. The methods include the steps of preparing an original sample of a preform formed from a pre-selected high-strength silicon carbide ceramic fiber type, placing the original sample in a processing furnace under a pre-selected preforming stress state and thermally treating the sample in the processing furnace at a pre-selected processing temperature and hold time in a processing gas having a pre-selected composition, pressure, and flow rate. For the high-temperature composite structures, the method includes additional steps of depositing a thin interphase coating on the surface of each fiber and forming a ceramic or carbon-based matrix within the sample.

  11. Magnetic field induced polarization enhancement in monolayers of tungsten dichalcogenides: effects of temperature (United States)

    Smoleński, T.; Kazimierczuk, T.; Goryca, M.; Molas, M. R.; Nogajewski, K.; Faugeras, C.; Potemski, M.; Kossacki, P.


    Optical orientation of localized/bound excitons is shown to be effectively enhanced by the application of magnetic fields as low as 20 mT in monolayer WS2. At low temperatures, the evolution of the polarization degree of different emission lines of monolayer WS2 with increasing magnetic fields is analyzed and compared to similar results obtained on a WSe2 monolayer. We study the temperature dependence of this effect up to T=60 K for both materials, focusing on the dynamics of the valley pseudospin relaxation. A rate equation model is used to analyze our data and from the analysis of the width of the polarization dip in magnetic field we conclude that the competition between the dark exciton pseudospin relaxation and the decay of the dark exciton population into the localized states are rather different in these two materials which are representative of the two extreme cases for the ratio of relaxation rate and depolarization rate.

  12. Investigation of the exposure level of electromagnetic fields produced by mobile telephone base stations

    International Nuclear Information System (INIS)

    Abukassem, I.; Kharita, M. H.


    The aim of this work is to investigate the real values of microwave level distribution and propagation in the locality around samples of mobile phone base station, and to compare the results with the exposure restriction limits recommenced by the International Commission on Non Ionizing Radiation Protection (ICNIRP). Measurements were performed using special meters for microwaves; the first (Narda SRM-3000) is used for electromagnetic waves frequency spectrum scanning and the second (NARDA) emr 300) determine the level of electric and magnetic fields and the power density of these waves nearby any sort of transmitters. Samples of different kinds of mobile phone base station were chosen to cover important zones of Damascus, and the region around each base station was also scanned in the emission direction and according to accessibility into the studies positions. Results showed that the signal level in all measured points is lower than the ICNIRP restriction level, but for few points the detected microwave level has relatively important values. The signal level inside building situated partially in the emission direction of the base station transmitters decreases stepwise and walls reduce considerably the signal intensity. To realize these kind of field studies in the best way and obtain the maximum profits for all people, the properties and operating system of transmitters used in mobile phone base station must be known, and therefore, it is very important to achieve a transparent collaboration between research laboratory and mobile phone company. (author)

  13. Breeding L-arginine-producing strains by a novel mutagenesis method: Atmospheric and room temperature plasma (ARTP). (United States)

    Cheng, Gong; Xu, Jianzhong; Xia, Xiuhua; Guo, Yanfeng; Xu, Kai; Su, Cunsheng; Zhang, Weiguo


    A plasma jet, driven by an active helium atom supplied with an atmospheric and room temperature plasma (ARTP) biological breeding system, was used as a novel method to breed L-arginine high-yielding strains. A mutant with resistance to L-homoarginine and 8-azaguaine, ARG 3-15 (L-HA(r), 8-AG(r), L-His(-)), was screened after several rounds of screening. The L-arginine production of these mutants was more than that of the original strain, increased by 43.79% for ARG 3-15. Moreover, N-acetyl-L-glutamate synthase activity of these mutants was also increased. After a series of passages, the hereditary properties of these mutants were found to be stable. Interestingly, beet molasses was utilized in a co-feeding fermentation and benefited to increase the productivity by 5.88%. Moreover, the fermentation with 1.0 g/L betaine could produce 9.33% more L-arginine than without betaine. In fed-batch fermentation, C. glutamicum ARG 3-15 began to produce L-arginine at the initial of logarithmic phase, and continuously increased over 24 hr to a final titer of 45.36 ± 0.42 g/L. The L-arginine productivity was 0.571 g/L/hr and the conversion of glucose (α) was 32.4% after 96 hr. These results indicated that C. glutamicum ARG 3-15 is a promising industrial producer.

  14. The Significance of Acid Alteration in the Los Humeros High-Temperature Geothermal Field, Puebla, Mexico. (United States)

    Elders, W. A.; Izquierdo, G.


    The Los Humeros geothermal field is a high-enthalpy hydrothermal system with more than 40 drilled deep wells, mostly producing high steam fractions at > 300oC. However, although it has a large resource potential, low permeability and corrosive acid fluids have hampered development so that it currently has an installed electrical generating capacity of only 40 MWe. The widespread production of low pH fluids from the reservoir is inconsistent with the marked absence in the reservoir rocks of hydrothermal minerals typical of acid alteration. Instead the hydrothermal alteration observed is typical of that due to neutral to alkaline pH waters reacting with the volcanic rocks of the production zones. Thus it appears that since the reservoir has recently suffered a marked drop in fluid pressure and is in process of transitioning from being water-dominated to being vapor-dominated. However sparse examples of acid leaching are observed locally at depths of about 2 km in the form of bleached, intensely silicified zones, in low permeability and very hot (>350oC) parts of reservoir. Although these leached rocks retain their primary volcanic and pyroclastic textures, they are altered almost entirely to microcrystalline quartz, with some relict pseudomorphs of plagioclase phenocrysts and traces of earlier-formed hydrothermal chlorite and pyrite. These acid-altered zones are usually only some tens of meters thick and deeper rocks lack such silicification. The acid fluids responsible for their formation could either be magmatic volatiles, or could be formed during production (e.g. reaction of water and salts forming hydrogen chloride by hydrolysis at high temperatures). The very high boron content of the fluids produced by the Los Humeros wells suggests that their ultimate source is most likely magmatic gases. However, these acid gases did not react widely with the rocks. We suggest that the silicified zones are forming locally where colder descending waters are encountering

  15. Environmental temperature affects physiology and survival of nanosecond pulsed electric field-treated cells. (United States)

    Yin, Shengyong; Miao, Xudong; Zhang, Xueming; Chen, Xinhua; Wen, Hao


    Nanosecond pulsed electric field (nsPEF) is a novel non-thermal tumor ablation technique. However, how nsPEF affect cell physiology at different environmental temperature is still kept unknown. But this issue is of critical clinical practice relevance. This work aim to investigate how nsPEF treated cancer cells react to different environmental temperatures (0, 4, 25, and 37°C). Their cell viability, apoptosis, mitochondrial membrane potential, and reactive oxygen species (ROS) were examined. Lower temperature resulted in higher apoptosis rate, decreased mitochondria membrane potential, and increased ROS levels. Sucrose and N-acetylcysteine (NAC) pre-incubation inhibit ROS generation and increase cell survival, protecting nsPEF-treated cells from low temperature-caused cell death. This work provides an experimental basis for hypothermia and fluid transfusion during nsPEF ablation with anesthesia. © 2017 Wiley Periodicals, Inc.

  16. Space-time resolved measurements of spontaneous magnetic fields in laser-produced plasma

    Czech Academy of Sciences Publication Activity Database

    Pisarczyk, T.; Gus’kov, S.Yu.; Dudžák, Roman; Chodukowski, T.; Dostál, Jan; Demchenko, N. N.; Korneev, Ph.; Kalinowska, Z.; Kalal, M.; Renner, Oldřich; Šmíd, Michal; Borodziuk, S.; Krouský, Eduard; Ullschmied, Jiří; Hřebíček, Jan; Medřík, Tomáš; Golasowski, Jiří; Pfeifer, Miroslav; Skála, Jiří; Pisarczyk, P.


    Roč. 22, č. 10 (2015), č. článku 102706. ISSN 1070-664X R&D Projects: GA MŠk LM2010014; GA MŠk(CZ) LD14089; GA ČR GPP205/11/P712 Grant - others:FP7(XE) 284464 Program:FP7 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : space-time resolved spontaneous magnetic field (SMF) * Laser System Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (FZU-D) OBOR OECD: Fluids and plasma physics (including surface physics); Fluids and plasma physics (including surface physics) (FZU-D) Impact factor: 2.207, year: 2015

  17. Investigation of the exposure level of electromagnetic fields produced by mobile telephone base stations

    International Nuclear Information System (INIS)

    Abukassem, I.; Kharita, M.H.


    The electromagnetic field levels in the surrounding of different samples of mobile phone base station were investigated in order to cover residential zones of Damascus and her environs. Measurements were achieved according to the emission direction and to the studied positions environment. Results showed that the signal level in all measured points is lower than the International Commission on Non Ionizing Radiation Protection (ICNIRP) restriction level, but for few measurement points the detected microwave level has relatively important values. The signal level inside building situated partially in the emission direction of the base station transmitters decreases stepwise and walls reduce considerably the signal intensity. This study showed the importance of achieving a transparent collaboration between research laboratory and mobile phone companies in order to improve the protection level.(author)

  18. Magnetic fields produced by power lines do not affect growth, serum melatonin, leukocytes and fledging success in wild kestrels. (United States)

    Dell'Omo, Giacomo; Costantini, David; Lucini, Valeria; Antonucci, Giovanni; Nonno, Romolo; Polichetti, Alessandro


    Nesting on high voltage transmission line towers exposes birds to electric and magnetic fields for long periods. Nestlings are exposed from their development in ovo until fledging. This is a critical period for them because the quality of the developmental environment may affect their fitness at adulthood. We carried out a field study on Eurasian kestrels, Falco tinnunculus, to compare chicks from pairs nesting on high voltage power lines vs. those nesting in control sites in similar habitats. The magnetic field (MF) was measured in each nest-box and analysed in relation to growth curves, melatonin levels, leukocyte counts, and fledging success. None of the variables differed between exposed and control nestlings. Wing length (proxy of age) showed a negative covariation with serum melatonin concentration. Our findings suggest that exposure to MFs produced by high voltage power lines during the embryonic and post-hatching period (until fledging) does not have significant short-term physiological effects on kestrel nestlings.

  19. Static magnetic field effects on proteases with fibrinolytic activity produced by Mucor subtilissimus. (United States)

    Albuquerque, Wendell; Nascimento, Thiago; Brandão-Costa, Romero; Fernandes, Thiago; Porto, Ana


    The influence of a static magnetic field (SMF) on crude enzyme extracts with proteolytic activity is described and discussed. Proteolytic enzymes, which hydrolyze peptide bonds, and fibrinolytic enzymes, which dissolve fibrin clots, have industrial relevance, and applicability dependent on improvements of productivity and activity. We investigated whether a moderate SMF affects proteolysis in different in vitro tests: general proteolysis of azocasein substrate, and static and dynamic fibrinolytic processes (to compare fibrin gel configuration under exposure). Crude enzyme extracts, obtained from solid state fermentation of Mucor subtilissimus UCP (Universidade Católica de Pernambuco, Recife, Brazil) 1262, were used to carry out assays under slightly heterogeneous fields: a varied vertical SMF (for tests in Eppendorf tubes, from 0.100 to 0.170 T) and a varied horizontal SMF (for tests in Petri dishes, from 0.01 to 0.122 T), generated by two permanent magnets (NdFeB alloy). Results showed significant differences (P < 0.05) in static fibrinolysis assays after 24 h of exposure. The mean diameter of halos of fibrin degradation in the treated group increased by 21% compared to the control group; and the pixel number count of fibrin consumption (in a computational analysis of the area of each halo) enhanced by 30% with exposure. However, in dynamic fibrinolysis assays, no effects of SMF were observed. These results suggest a response of fibrin monomers to the SMF as a possible cause of the observed effects. Bioelectromagnetics. 38:109-120, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Diviner lunar radiometer gridded brightness temperatures from geodesic binning of modeled fields of view (United States)

    Sefton-Nash, E.; Williams, J.-P.; Greenhagen, B. T.; Aye, K.-M.; Paige, D. A.


    An approach is presented to efficiently produce high quality gridded data records from the large, global point-based dataset returned by the Diviner Lunar Radiometer Experiment aboard NASA's Lunar Reconnaissance Orbiter. The need to minimize data volume and processing time in production of science-ready map products is increasingly important with the growth in data volume of planetary datasets. Diviner makes on average >1400 observations per second of radiance that is reflected and emitted from the lunar surface, using 189 detectors divided into 9 spectral channels. Data management and processing bottlenecks are amplified by modeling every observation as a probability distribution function over the field of view, which can increase the required processing time by 2-3 orders of magnitude. Geometric corrections, such as projection of data points onto a digital elevation model, are numerically intensive and therefore it is desirable to perform them only once. Our approach reduces bottlenecks through parallel binning and efficient storage of a pre-processed database of observations. Database construction is via subdivision of a geodesic icosahedral grid, with a spatial resolution that can be tailored to suit the field of view of the observing instrument. Global geodesic grids with high spatial resolution are normally impractically memory intensive. We therefore demonstrate a minimum storage and highly parallel method to bin very large numbers of data points onto such a grid. A database of the pre-processed and binned points is then used for production of mapped data products that is significantly faster than if unprocessed points were used. We explore quality controls in the production of gridded data records by conditional interpolation, allowed only where data density is sufficient. The resultant effects on the spatial continuity and uncertainty in maps of lunar brightness temperatures is illustrated. We identify four binning regimes based on trades between the

  1. Temperature field in the hot-top during casting a new super-high strength Al-Zn-Mg-Cu alloy by low frequency electromagnetic process

    Directory of Open Access Journals (Sweden)

    Yubo ZUO


    Full Text Available The billets of a new super-high strength Al-Zn-Mg-Cu alloy in 200 mm diameter were produced by the processed of low frequency electromagnetic casting (LFEC and conventional direct chill(DCcasting, respectively. The effects of low frequency electromagnetic field on temperature field of the melt in the hot-top were investigated by temperature thermocouples into the casting during the processes. The results show that during LFEC process the temperature field in the melt applying the hot-top is very uniform, which is helpful to reduce the difference of thermal gradients between the surface and the center, and then to reduce the thermal stress and to eliminate casting crack.

  2. An investigation of methods for neutron dose measurement in high temperature irradiation fields

    Energy Technology Data Exchange (ETDEWEB)

    Kosako, Toshisou; Sugiura, Nobuyuki [Tokyo Univ. (Japan); Kudo, Kazuhiko [Kyushu Univ., Fukuoka (Japan)] [and others


    The Japan Atomic Energy Research Institute (JAERI) has been conducting the innovative basic research on high temperature since 1994, which is a series of high temperature irradiation studies using the High Temperature Engineering Test Reactor (HTTR). 'The Task Group for Evaluation of Irradiation Dose under High Temperature Radiation' was founded in the HTTR Utilization Research Committee, which is the promoting body of the innovative basic research. The present report is a summary of investigation which has been made by the Task Group on the present status and subjects of research and development of neutron detectors in high temperature irradiation fields, in view of contributing to high temperature irradiation research using the HTTR. Detectors investigated here in the domestic survey are the following five kinds of in-core detectors: 1) small fission counter, 2) small fission chamber, 3) self-powered detector, 4) activation detector, and 5) optical fiber. In addition, the research and development status in Russia has been investigated. The present report will also be useful as nuclear instrumentation of high temperature gas-cooled reactors. (author)

  3. Dynamic temperature fields under Mars landing sites and implications for supporting microbial life. (United States)

    Ulrich, Richard; Kral, Tim; Chevrier, Vincent; Pilgrim, Robert; Roe, Larry


    While average temperatures on Mars may be too low to support terrestrial life-forms or aqueous liquids, diurnal peak temperatures over most of the planet can be high enough to provide for both, down to a few centimeters beneath the surface for some fraction of the time. A thermal model was applied to the Viking 1, Viking 2, Pathfinder, Spirit, and Opportunity landing sites to demonstrate the dynamic temperature fields under the surface at these well-characterized locations. A benchmark temperature of 253 K was used as a lower limit for possible metabolic activity, which corresponds to the minimum found for specific terrestrial microorganisms. Aqueous solutions of salts known to exist on Mars can provide liquid solutions well below this temperature. Thermal modeling has shown that 253 K is reached beneath the surface at diurnal peak heating for at least some parts of the year at each of these landing sites. Within 40 degrees of the equator, 253 K beneath the surface should occur for at least some fraction of the year; and, within 20 degrees , it will be seen for most of the year. However, any life-form that requires this temperature to thrive must also endure daily excursions to far colder temperatures as well as periods of the year where 253 K is never reached at all.

  4. Basic Performance of Fibre Reinforced Asphalt Concrete with Reclaimed Asphalt Pavement Produced In Low Temperatures with Foamed Bitumen (United States)

    Chomicz-Kowalska, Anna; Iwański, Mateusz M.; Mrugała, Justyna


    During the reconstruction of road pavements, the reclaimed asphalt pavement (RAP), which is obtained through milling of the worn out existing asphalt, is commonly used for producing new base courses in cold recycling processes. Two of these techniques are most popular: one using mineral-cement-emulsion mixes and one utilizing mineral cement mixes with foamed bitumen. Additionally, some amounts of RAP can be incorporated into traditional hot mix asphalt. The demand for energy efficient and environmentally friendly solutions however, results in a need for development of new techniques that would result in cheaper and more reliable solutions with smaller carbon footprint. The reduction of processing temperatures with simultaneous incorporation of reclaimed material is the most efficient way of obtaining these objectives, but it often results in the overall decrease of bituminous mix quality. The paper presents the possibility of using RAP for producing asphalt concrete in warm mix asphalt (WMA) production process by the use of foamed bitumen modified with Fischer-Tropsch synthetic wax and polymer-basalt fibers. Additionally, a series of reference mixtures were produced to investigate the effects of the additives and of the warm process. The carried out analyses and tests shown that the experimental warm mix asphalt produced with RAP and foamed bitumen returned satisfactory performance. The introduction of synthetic F-T wax in the warm foam bitumen mixes resulted in a significantly improved compaction levels and moisture and frost resistance and the addition of polymer-basalt fibers has further improved the permanent deformation resistance of the mixes. All of the designed and tested mixes have fulfilled the requirements for binding course asphalt concrete with medium traffic loads.

  5. Seasonal variations of microbial community in a full scale oil field produced water treatment plant

    Directory of Open Access Journals (Sweden)

    Q. Xie


    Full Text Available This study investigated the microbial community in a full scale anaerobic baffled reactor and sequencing batch reactor system for oil-produced water treatment in summer and winter. The community structures of fungi and bacteria were analyzed through polymerase chain reaction–denaturing gradient gel electrophoresis and Illumina high-throughput sequencing, respectively. Chemical oxygen demand effluent concentration achieved lower than 50 mg/L level after the system in both summer and winter, however, chemical oxygen demand removal rates after anaerobic baffled reactor treatment system were significant higher in summer than that in winter, which conformed to the microbial community diversity. Saccharomycotina, Fusarium, and Aspergillus were detected in both anaerobic baffled reactor and sequencing batch reactor during summer and winter. The fungal communities in anaerobic baffled reactor and sequencing batch reactor were shaped by seasons and treatment units, while there was no correlation between abundance of fungi and chemical oxygen demand removal rates. Compared to summer, the total amount of the dominant hydrocarbon degrading bacteria decreased by 10.2% in anaerobic baffled reactor, resulting in only around 23% of chemical oxygen demand was removed in winter. Although microbial community significantly varied in the three parallel sulfide reducing bacteria, the performance of these bioreactors had no significant difference between summer and winter.

  6. Producing Light Oil from a Frozen Reservoir: Reservoir and Fluid Characterization of Umiat Field, National Petroleum Reserve, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Hanks, Catherine


    Umiat oil field is a light oil in a shallow, frozen reservoir in the Brooks Range foothills of northern Alaska with estimated oil-in-place of over 1 billion barrels. Umiat field was discovered in the 1940’s but was never considered viable because it is shallow, in the permafrost, and far from any transportation infrastructure. The advent of modern drilling and production techniques has made Umiat and similar fields in northern Alaska attractive exploration and production targets. Since 2008 UAF has been working with Renaissance Alaska Inc. and, more recently, Linc Energy, to develop a more robust reservoir model that can be combined with rock and fluid property data to simulate potential production techniques. This work will be used to by Linc Energy as they prepare to drill up to 5 horizontal wells during the 2012-2013 drilling season. This new work identified three potential reservoir horizons within the Cretaceous Nanushuk Formation: the Upper and Lower Grandstand sands, and the overlying Ninuluk sand, with the Lower Grandstand considered the primary target. Seals are provided by thick interlayered shales. Reserve estimates for the Lower Grandstand alone range from 739 million barrels to 2437 million barrels, with an average of 1527 million bbls. Reservoir simulations predict that cold gas injection from a wagon-wheel pattern of multilateral injectors and producers located on 5 drill sites on the crest of the structure will yield 12-15% recovery, with actual recovery depending upon the injection pressure used, the actual Kv/Kh encountered, and other geologic factors. Key to understanding the flow behavior of the Umiat reservoir is determining the permeability structure of the sands. Sandstones of the Cretaceous Nanushuk Formation consist of mixed shoreface and deltaic sandstones and mudstones. A core-based study of the sedimentary facies of these sands combined with outcrop observations identified six distinct facies associations with distinctive permeability

  7. Large low-field magnetoresistance of Fe3O4 nanocrystal at room temperature

    International Nuclear Information System (INIS)

    Mi, Shu; Liu, Rui; Li, Yuanyuan; Xie, Yong; Chen, Ziyu


    Superparamagnetic magnetite (Fe 3 O 4 ) nanoparticles with an average size of 6.5 nm and good monodispersion were synthesized and investigated by X-ray diffraction, Raman spectrometer, transmission electron microscopy and vibrating sample magnetometer. Corresponding low-field magnetoresistance (LFMR) was tested by physical property measurement system. A quite high LFMR has been observed at room temperature. For examples, at a field of 3000 Oe, the LFMR is −3.5%, and when the field increases to 6000 Oe, the LFMR is up to −5.1%. The electron spin polarization was estimated at 25%. This result is superior to the previous reports showing the LFMR of no more than 2% at room temperature. The conduction mechanism is proposed to be the tunneling of conduction electrons between adjacent grains considering that the monodisperse nanocrystals may supply more grain boundaries increasing the tunneling probability, and consequently enhancing the overall magnetoresistance. - Highlights: • Superparamagnetic Fe3O4 nanoparticles with small size were synthesized. • A quite high LFMR has been observed at room temperature. • The more grain boundaries increase the tunneling probability and enlarge the MR. • The fast response of the sample increase the MR at a low field.

  8. Characterisation of practical high temperature superconductors in pulsed magnetic fields and development of associated technology

    International Nuclear Information System (INIS)

    Saleh, P.M.


    Critical current measurements on state of the art practical high temperature superconductors are presented. Bi 2 Sr 2 CaCu 2 O silver-alloy matrix powder-in-tube and silver-alloy substrate dip-coated tapes, formed into various geometries, have been tested in pulsed magnetic fields of various pulse lengths. These measurements have been compared to tests performed in continuous magnetic fields. A distinct discrepancy between pulsed and continuous measurements has been observed in these silver-alloy, high temperature superconductor composites. The critical current measured in pulsed fields is depressed compared to those measured in continuous fields. Evidence is provided to strongly suggest that eddy current heating in the silver-alloy substrate/sheath of the conductor is responsible for this discrepancy. A model is presented to predict the temperature rise due to eddy current heating. This model shows good agreement with observations. In order to perform measurements on Bi 2 Sr 2 Ca 2 Cu 3 O silver-alloy matrix powder-in-tube conductor, a novel split pulsed magnet has been designed and constructed. This has allowed the first measurements of this kind to be performed on these materials, the results of which are presented in this thesis. The split magnet project itself is presented as a unique engineering project. The design models are compared to magnet test data. Suggestions for possible future improvements of the technique are presented, including a innovative design of a 100ms pulsed magnet solenoid. (author)

  9. Stress analysis in high-temperature superconductors under pulsed field magnetization (United States)

    Wu, Haowei; Yong, Huadong; Zhou, Youhe


    Bulk high-temperature superconductors (HTSs) have a high critical current density and can trap a large magnetic field. When bulk superconductors are magnetized by the pulsed field magnetization (PFM) technique, they are also subjected to a large electromagnetic stress, and the resulting thermal stress may cause cracking of the superconductor due to the brittle nature of the sample. In this paper, based on the H-formulation and the law of heat transfer, we can obtain the distributions of electromagnetic field and temperature, which are in qualitative agreement with experiment. After that, based on the dynamic equilibrium equations, the mechanical response of the bulk superconductor is determined. During the PFM process, the change in temperature has a dramatic effect on the radial and hoop stresses, and the maximum radial and hoop stress are 24.2 {{MPa}} and 22.6 {{MPa}}, respectively. The mechanical responses of a superconductor for different cases are also studied, such as the peak value of the applied field and the size of bulk superconductors. Finally, the stresses are also presented for different magnetization methods.

  10. Characterisation of practical high temperature superconductors in pulsed magnetic fields and development of associated technology

    CERN Document Server

    Saleh, P M


    including a innovative design of a 100ms pulsed magnet solenoid. Critical current measurements on state of the art practical high temperature superconductors are presented. Bi sub 2 Sr sub 2 CaCu sub 2 O silver-alloy matrix powder-in-tube and silver-alloy substrate dip-coated tapes, formed into various geometries, have been tested in pulsed magnetic fields of various pulse lengths. These measurements have been compared to tests performed in continuous magnetic fields. A distinct discrepancy between pulsed and continuous measurements has been observed in these silver-alloy, high temperature superconductor composites. The critical current measured in pulsed fields is depressed compared to those measured in continuous fields. Evidence is provided to strongly suggest that eddy current heating in the silver-alloy substrate/sheath of the conductor is responsible for this discrepancy. A model is presented to predict the temperature rise due to eddy current heating. This model shows good agreement with observations. ...

  11. Exploring field-of-view non-uniformities produced by a hand-held spectroradiometer

    Directory of Open Access Journals (Sweden)

    Tamir Caras


    Full Text Available The shape of a spectroradiometer’s field of view (FOV affects the way spectral measurements are acquired. Knowing this property is a prerequisite for the correct use of the spectrometer. If the substrate is heterogeneous, the ability to accurately know what is being measured depends on knowing the FOV location, shape, spectral and spatial sensitivity. The GER1500 is a hand-held spectrometer with a fixed lens light entry slit and has a laser guide that allows control over the target by positioning the entire unit. In the current study, the FOV of the GER1500 was mapped and analysed. The spectral and spatial non-uniformities of the FOV were examined and were found to be spectrally independent. The relationship between the FOV and the built-in laser guide was tested and found to have a linear displacement dependent on the distance to the target. This allows an accurate prediction of the actual FOV position. A correction method to improve the agreement between the expected and measured reflectance over heterogeneous targets was developed and validated. The methods described are applicable and may be of use with other hand-held spectroradiometers.

  12. Ionization Capabilities of Hydronium Ions and High Electric Fields Produced by Atmospheric Pressure Corona Discharge. (United States)

    Sato, Natsuhiko; Sekimoto, Kanako; Takayama, Mitsuo


    Atmospheric pressure corona discharge (APCD) was applied to the ionization of volatile organic compounds. The mass spectra of analytes having aromatic, phenolic, anilinic, basic and aliphatic in nature were obtained by using vapor supply and liquid smear supply methods. The vapor supply method mainly gave protonated analytes [A+H] + caused by proton transfer from hydronium ion H 3 O + , except for benzene, toluene and n -hexane that have lower proton affinity. The use of the liquid smear supply method resulted in the formation of molecular ion A ·+ and/or dehydride analyte [A-H] + , according to the nature of analytes used. The formation of A ·+ without fragment ions could be explained by the electron tunneling via high electric fields 10 8  V/m at the tip of the corona needle. The dehydride analytes [A-H] + observed in the mass spectra of n -hexane, di- and tributylamines may be explained by the hydride abstraction from the alkyl chains by the hydronium ion. The hydronium ion can play the two-roles for analytes, i.e. , the proton donor to form [A+H] + and the hydride acceptor to form [A-H] + .

  13. Temperature and cooling field dependent exchange coupling in [Cr/Gd]{sub 5} multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Z.W.; Chen, H.J.; Jiang, W.D.; Wang, J.F.; Yu, S.J. [Department of Physics, China Jiliang University, Hangzhou (China); Hou, Y.L.; Lu, B.; Ye, Q.L. [Department of Physics, Hangzhou Normal University, Hangzhou (China)


    Exchange coupling has been investigated in the [Cr/Gd]{sub 5} multilayers deposited at 25, 200, and 400 C, where the Neel temperature (T{sub N}) of antiferromagnetic Cr is slightly higher than the Curie temperature (T{sub C}) of ferromagnetic Gd. It was found that the exchange coupling existed not only at T{sub C} < T < T{sub N}, but also above the temperature (T{sub N}) of antiferromagnetic orderings with incommensurate spin-density wave structures transiting to paramagnetic state. These results can be discussed in terms of the crucial role played by the antiferromagnetic spins of Cr with commensurate spin-density wave structures in the vicinity of the Cr/Gd interfaces. Moreover, the exchange coupling of the multilayers grown at different temperatures exhibited different dependencies on the measuring temperature and the cooling field, respectively. Positive exchange bias was observed in the multilayers grown at 200 and 400 C. The interfacial roughness, grain size, and the antiferromagnetic orderings of Cr may be responsible for the anomalous exchange coupling of the multilayers. In addition, the competition between the exchange coupling at Cr/Gd interfaces and the external field-Cr surface magnetic coupling can explain the appearance of negative or positive exchange bias. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Temperature field simulation and phantom validation of a Two-armed Spiral Antenna for microwave thermotherapy. (United States)

    Du, Yongxing; Zhang, Lingze; Sang, Lulu; Wu, Daocheng


    In this paper, an Archimedean planar spiral antenna for the application of thermotherapy was designed. This type of antenna was chosen for its compact structure, flexible application and wide heating area. The temperature field generated by the use of this Two-armed Spiral Antenna in a muscle-equivalent phantom was simulated and subsequently validated by experimentation. First, the specific absorption rate (SAR) of the field was calculated using the Finite Element Method (FEM) by Ansoft's High Frequency Structure Simulation (HFSS). Then, the temperature elevation in the phantom was simulated by an explicit finite difference approximation of the bioheat equation (BHE). The temperature distribution was then validated by a phantom heating experiment. The results showed that this antenna had a good heating ability and a wide heating area. A comparison between the calculation and the measurement showed a fair agreement in the temperature elevation. The validated model could be applied for the analysis of electromagnetic-temperature distribution in phantoms during the process of antenna design or thermotherapy experimentation.

  15. Performance at high temperature of alkali-activated slag pastes produced with silica fume and rice husk ash based activators

    Directory of Open Access Journals (Sweden)

    Bernal, S. A.


    Full Text Available This study assessed the mechanical properties, and structural changes induced by high temperature exposure, of alkali-silicate activated slag cements produced with sodium silicates derived from silica fume (SF and rice husk ash (RHA. Similar reaction products were identified, independent of the type of silicate used, but with subtle differences in the composition of the C-S-H gels, leading to different strength losses after elevated temperature exposure. Cements produced with the alternative activators developed higher compressive strengths than those produced with commercial silicate. All samples retained strengths of more than 50 MPa after exposure to 600 °C, however, after exposure to 800 °C only the specimens produced with the RHA-based activator retained measurable strength. This study elucidated that silicate-activated slag binders, either activated with commercial silicate solutions or with sodium silicates based on SF or RHA, are stable up to 600 °C.Este estudio evaluó las propiedades mecánicas, y cambios estructurales inducidos por exposición a temperaturas elevadas, de cementos de escoria activada alcalinamente producidos con silicatos sódicos derivados de humo de sílice (SF y ceniza de cascarilla de arroz (RHA. Se identificaron productos de reacción similares, independiente del tipo de silicato utilizado, pero con diferencias menores en la composición de las geles C-S-H, lo cual indujo diferentes pérdidas de resistencia posterior a exposición a temperaturas elevadas. Los cementantes producidos con los activadores alternativos desarrollaron resistencias a la compresión más altas que aquellos producidos con silicato comercial. Todas las muestras retuvieron resistencias de más de 50 MPa posterior a la exposición a 600 °C, sin embargo, posterior a la exposición a 800 °C únicamente muestras producidas con activadores de RHA retuvieron resistencias medibles. Este estudio elucidó que cementantes de escoria activada con

  16. MAVEN Observations of the Effects of Crustal Magnetic Fields on Electron Density and Temperature in the Martian Dayside Ionosphere (United States)

    Flynn, Casey L.; Vogt, Marissa F.; Withers, Paul; Andersson, Laila; England, Scott; Liu, Guiping


    Mars lacks a global magnetic field but possesses concentrated regions of crustal magnetic field that influence the planet's interaction with the solar wind and the structure of the Martian ionosphere. In this study we survey 17 months of MAVEN Langmuir Probe and Waves dayside electron density and temperature measurements to study how these quantities are affected in regions with strong crustal magnetic fields. Above 200 km altitude, we find that regions of strong crustal magnetic fields feature cooler electron temperatures and enhanced electron densities compared to regions with little or no crustal magnetic field. Neutral densities and temperatures are not significantly affected. Closed field lines on which electrons can be trapped are more prevalent in strong crustal field regions than elsewhere. Trapped on closed field lines, electrons are protected against loss processes involving the solar wind. This would lead to longer plasma lifetimes, higher densities, and lower temperatures.

  17. Self propagating high temperature synthesis of metal oxides. Reactions in external magnetic fields

    CERN Document Server

    Aguas, M D


    The preparation of metal oxides by Self-Propagating High-Temperature Synthesis is reported. The reactions are started with a point source of ignition; typically a hot wire. A synthesis wave is observed moving out from the point source and reactions terminate in seconds. Products obtained can be classified into ferrites (magnetic applications) and stannates (gas sensing applications). Ferrites were synthesised under variable external magnetic fields. The synthesis wave is hotter in the presence of an external magnetic field for hard ferrite synthesis. For spinel ferrites the opposite was observed. Materials synthesised in the field show differences in their bulk magnetic properties (coercivity and saturation magnetisation), structures and microstructures. Combustion reactions in large fields revealed changes in unit cell volume (shrinkage was observed for hard ferrites while expansion was observed for spinel ferrites). SHS synthesised hard ferrites show two distinct components; one has large grain structure co...

  18. Enhanced field emission of ZnO nanoneedle arrays via solution etching at room temperature

    DEFF Research Database (Denmark)

    Ma, Huanming; Qin, Zhiwei; Wang, Zaide


    ZnO nanoneedle arrays (ZnO nns) were synthesized by a facile two-step solution-phase method based on the etching of pre-synthesized ZnO nanowire arrays (ZnO nws) with flat ends at room temperature. Field emission measurement results showed that the turn-on electronic fields of ZnO nns and nws wer...... 2.7 and 5.3 V μm−1 at a current density of 10 μA cm−2, and the field enhancement factors were 4939.3 for ZnO nns and 1423.6 for ZnO nws. The enhanced field emission properties in ZnO nns were ascribed to the sharp tip geometry....

  19. Temperature dependence of the electric field gradient in AgPd and AgPt alloys

    International Nuclear Information System (INIS)

    Krolas, K.


    The measurements of temperature dependence of the electric field gradient (EFG) on 111 Cd nuclei in AgPd and AgPt alloys were performed using the time dependent perturbed angular correlation method. The EFG caused by impurities distributed in further coordination shells decrease stronaer with increasing temperature than the EFG due to single impurity being the nearest neighbour of the probe atom. These results were explained assuming different modes of thermal vibrations of single impurity atoms and impurity complexes in silver host lattice. (author)

  20. Ion Temperature Measurements in the Tore Supra Scrape-Off Layer Using a Retarding Field Analyzer

    International Nuclear Information System (INIS)

    Kocan, M.; Gunn, J.P.; Pascal, J.Y.; Gauthier, E.


    The retarding field analyzer (RFA) is one of the only widely accepted diagnostics for measuring the ion temperature T i )in the tokamak scrape-off layer. An overview of the outstanding RFA performance over ten years of operation in Tore Supra tokamak is given and the validation of T i measurements is addressed. The RFA measurements in Tore Supra are found to be well reproducible. The ion-to-electron temperature ratio is higher than one at low-to-moderate ion-electron collisionality regime and converges to unity at high collisionality regime. (authors)

  1. Temperature dependent properties of InSb and InAs nanowire field-effect transistors (United States)

    Nilsson, Henrik A.; Caroff, Philippe; Thelander, Claes; Lind, Erik; Karlström, Olov; Wernersson, Lars-Erik


    We present temperature dependent electrical measurements on InSb and InAs nanowire field-effect transistors (FETs). The FETs are fabricated from InAs/InSb heterostructure nanowires, where one complete transistor is defined within each of the two segments. Both the InSb and the InAs FETs are n-type with good current saturation and low voltage operation. The off-current for the InSb FET shows a strong temperature dependence, which we attribute to a barrier lowering due to an increased band-to-band tunneling in the drain part of the channel.

  2. High radiogenic heat-producing Caenozoic granites: implications for the origin of Quman geothermal field in Taxkorgan, northwestern China (United States)

    Shuai, W.; Shihua, Q.


    As a new found geothermal field, Quman geothermal field (Taxkorgan, China) holds a wellhead temperature of 144 ° and a shallow buried depth of heat reservoir. The heat source of the geothermal field is thought to be the heat flow from the upper mantle, which is disputable with the average Pamir Moho depth of 70 km. The new geochemical data of Taxkorgan alkaline complex, which is located to the west of the geothermal field and is exposed for 60 km along the western side of the Taxkorgan Valley, shed a light on the origin of Quman geothermal field. Together with the lithological association, the geochemical results present that Taxkorgan alkaline complex are mainly composed of alkaline syenites and subalkaline granitoids. Based on the contents of Th, U and K of 25 rock samples, the average radioactive heat generation of the complex (9.08 μW/m3) is 2 times of the standard of high heat production granites (HHPGs) (5 μW/m3), and 4 times of the average upper continental crust (UCC) heat production (2.7 μW/m3). According to U-Pd dating of zircon in aegirine-augite syenite, the crystallization age of the complex is 11 Ma. The complex has incompatible element abundances higher than generally observed for the continental crust, therefore a mantle source should be considered. The results of apatite fission track ange and track length of the complex indicate a low uplift rate (0.11 mm/a) in 3 5 Ma and a high uplift rate (2 3 mm/a) since ca. 2Ma, which indicates a low exposed age of the complex. Therefore, combined with previous studies, we propose that radioactive heat production of the complex and afterheat of magma cooling are the heat source of Quman geothermal field. With a shallow buried heat source, the geothermal field is potential for EGS development.

  3. Room-temperature near-field reflection spectroscopy of single quantum wells

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Hvam, Jørn Marcher; Madsen, Steen


    . This technique suppresses efficiently the otherwise dominating far-field background and reduces topographic artifacts. We demonstrate its performance on a thin, strained near-surface CdS/ZnS single quantum well at room temperature. The optical structure of these topographically flat samples is due to Cd......We report on a novel optical near-field technique to measure the local polarizability of a topographically flat sample with a spatial resolution better than 100 nm. Using an uncoated fiber probe, we implement a cross-polarization detection of the optical signal at the fiber dither frequency...

  4. Effects of multiple-helicity fields on ion temperature gradient modes

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, T. [National Inst. for Fusion Science, Toki, Gifu (Japan); Sugama, H. [Graduate Univ. for Advanced Studies, Toki, Gigu (Japan)


    Effects of multiple-helicity magnetic fields on ion temperature gradient (ITG) modes in toroidal helical systems like the Large Helical Device (LHD) are studied by means of the linear gyrokinetic theory. Especially, dependence of the real frequency, growth rate, and the eigenfunction of the ITG mode on sideband-helicity fields added to the main helical component is investigated. Comparison between multiple-helicity effects on the ITG mode with those on the neoclassical ripple transport is presented, and optimization of the magnetic configuration for better plasma confinement is discussed. (author)

  5. Laboratory simulation of field aligned currents in an experiment on laser-produced plasma interacting with a magnetic dipole

    International Nuclear Information System (INIS)

    Shaikhislamov, I F; Antonov, V M; Zakharov, Yu P; Boyarintsev, E L; Melekhov, A V; Posukh, V G; Ponomarenko, A G


    In an experiment on a magnetic dipole interacting with a laser-produced plasma the generation of an intense field aligned current (FAC) system was observed for the first time in a laboratory. The detailed measurements of the total value and local current density, of the magnetic field at the poles and in the equatorial magnetopause, and particular features of electron motion in the current channels revealed its similarity to the Region-1 current system in the Earth magnetosphere. Such currents were found to exist only if they can close via conductive cover of the dipole. Comparison of conductive and dielectric cases revealed specific magnetic features produced by FAC and their connection with electric potential generated in the equatorial part of the magnetopause. To interpret the data we consider a model of electric potential generation in the boundary layer which agrees with experiment and with measurements of the Earth's transpolar potential in the absence of an interplanetary magnetic field as well. The results could be of importance for the investigation of Mercury as a magnetic disturbance due to FAC could be especially large because of the small size of the Hermean magnetosphere.

  6. Reversible and irreversible temperature-induced changes in exchange-biased planar Hall effect bridge (PHEB) magnetic field sensors

    DEFF Research Database (Denmark)

    Rizzi, G.; Lundtoft, N.C.; Østerberg, F.W.


    We investigate the changes of planar Hall effect bridge magnetic field sensors upon exposure to temperatures between 25° C and 90°C. From analyses of the sensor response vs. magnetic fields we extract the exchange bias field Hex, the uniaxial anisotropy field HK and the anisotropic magnetoresista...

  7. Deriving Deep Ocean Temperature Changes From the Ambient Acoustic Noise Field (United States)

    Sambell, K.; Evers, L. G.; Snellen, M.


    Passively deriving the deep ocean temperature is a challenge. However, knowledge about changes in the deep ocean temperature are important in relation to climate change. In-situ observations are are and satellite observations are hardly applicable. Low-frequency sound waves of a few hertz can penetrate the deep oceans over long distances. As their propagation is temperature dependent, these waves contain valuable information that can be used for temperature monitoring. In this study, the use of interferometry is demonstrated by applying this technique to ambient noise measured at two hydrophone arrays located near Robinson Crusoe Island in the South Pacific Ocean. The arrays are separated by 40 km and are located at a depth of 800 m. Both arrays consist of three hydrophones with an interstation distance of 2 km. It is shown that the acoustic velocity, and with this the temperature variation, can be derived from measured hydro-acoustic data. Furthermore, the findings are supported by ocean models that describe the propagation of sound between the hydrophone arrays. This study shows the potential of using the ambient noise field for temperature monitoring in the deep ocean.

  8. Temperature and microwave near field imaging by thermo-elastic optical indicator microscopy (United States)

    Lee, Hanju; Arakelyan, Shant; Friedman, Barry; Lee, Kiejin


    A high resolution imaging of the temperature and microwave near field can be a powerful tool for the non-destructive testing of materials and devices. However, it is presently a very challenging issue due to the lack of a practical measurement pathway. In this work, we propose and demonstrate experimentally a practical method resolving the issue by using a conventional CCD-based optical indicator microscope system. The present method utilizes the heat caused by an interaction between the material and an electromagnetic wave, and visualizes the heat source distribution from the measured photoelastic images. By using a slide glass coated by a metal thin film as the indicator, we obtain optically resolved temperature, electric, and magnetic microwave near field images selectively with a comparable sensitivity, response time, and bandwidth of existing methods. The present method provides a practical way to characterize the thermal and electromagnetic properties of materials and devices under various environments.

  9. Origin of temperature and field dependence of magnetic skyrmion size in ultrathin nanodots (United States)

    Tomasello, R.; Guslienko, K. Y.; Ricci, M.; Giordano, A.; Barker, J.; Carpentieri, M.; Chubykalo-Fesenko, O.; Finocchio, G.


    Understanding the physical properties of magnetic skyrmions is important for fundamental research with the aim to develop new spintronic device paradigms where both logic and memory can be integrated at the same level. Here, we show a universal model based on the micromagnetic formalism that can be used to study skyrmion stability as a function of magnetic field and temperature. We consider ultrathin, circular ferromagnetic magnetic dots. Our results show that magnetic skyrmions with a small radius—compared to the dot radius—are always metastable, while large radius skyrmions form a stable ground state. The change of energy profile determines the weak (strong) size dependence of the metastable (stable) skyrmion as a function of temperature and/or field.

  10. Low-magnetic field, room-temperature colossal magnetoresistance in manganite thin films (United States)

    Robson, Marcia Christine

    The manganese (Mn) based perovskite oxide materials (manganites), of the chemical form T1--xDxMnO3, display a large magnetic field induced decrease in their resistivity, termed colossal magnetoresistance. Typically, colossal magnetoresistance in the manganite samples is observed at low temperatures and high magnetic fields (>1 Tesla). However, an enhanced magnetoresistance at low magnetic fields and room temperature in these manganite samples would be technologically useful. In an effort to characterize this low magnetic field, room temperature magnetoresistance, the role of several different physical parameters has been explored in this thesis. These physical parameters include lattice mismatch strain, which originates from the epitaxial growth of single layer manganite thin films, the application of different radiation probes, such as microwave radiation, and the introduction of artificial grain boundaries in the form of interfaces in manganite multilayers. Lattice mismatch strain originates from the difference in the lattice constants of the manganite thin film and the crystalline substrate. The nature of the effect of the lattice mismatch strain on these transport properties for La0.7Ba0.3MnO3 thin films has been studied by varying the degree of lattice mismatch strain in the thin film. Variation of the lattice mismatch strain was achieved by varying the thickness of the manganite thin films, by annealing the manganite thin films in oxygen, and by buffering the manganite films with a lattice matched buffer layer. Each of these approaches relaxed the lattice mismatch strain, resulting in an increase of the low magnetic field, room temperature magnetoresistance. Microwave radiation probes determine the magnetic homogeneity of the manganite thin films and the effect of this magnetic homogeneity on the low magnetic field, room temperature magnetoresistance. La0.7Ba 0.3MnO3 thin films showed no gross magnetic homogeneitiese. The magnetic homogeneity increased in the

  11. Temperature Field Prediction for Determining the Residual Stresses Under Heat Treatment of Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    A. V. Livshits


    Full Text Available The article is devoted to non-stationary temperature field blanks from aluminum alloys during heat treatment. It consists of the introduction and two smaller paragraphs. In the introduction the author concerns the influence of residual stresses arising in the manufacturing process of details, on the strength of the whole aircraft construction and, consequently, on their technical and economic parameters, such as weight, reliability, efficiency, and cost. He also notes that the residual stresses appeared during the production of parts change their location, size and direction under the influence of the elastic deformations that occur during the exploitation of aircraft. Redistributed residual stresses may have a chaotic distribution that may cause overlap of these stresses on the stresses caused by the impact of workload of constructions and destruction or damage of aircraft components.The first paragraph is devoted to the existing methods and techniques for determining the residual stresses. The presented methods and techniques are analyzed to show the advantages and disadvantages of each of them. The conclusion is drawn that the method to determine the residual stresses is necessary, its cost is less than those of existing ones, and an error does not exceed 10%.In the second section, the author divides the problem of determining the residual stresses into two parts, and describes the solution methods of the first one. The first problem is to define the temperature field of the work piece. The author uses a Fourier equation with the definition of initial and boundary conditions to describe a mathematical model of the heat cycle of work piece cooling. He draws special attention here to the fact that it is complicated to determine the heat transfer coefficient, which characterizes the process of cooling the work piece during hardening because of its dependence on a number of factors, such as changing temperature-dependent material properties of

  12. Spatial Patterns and Temperature Predictions of Tuna Fatty Acids: Tracing Essential Nutrients and Changes in Primary Producers.

    Directory of Open Access Journals (Sweden)

    Heidi R Pethybridge

    Full Text Available Fatty acids are among the least understood nutrients in marine environments, despite their profile as key energy components of food webs and that they are essential to all life forms. Presented here is a novel approach to predict the spatial-temporal distributions of fatty acids in marine resources using generalized additive mixed models. Fatty acid tracers (FAT of key primary producers, nutritional condition indices and concentrations of two essential long-chain (≥C20 omega-3 fatty acids (EFA measured in muscle of albacore tuna, Thunnus alalunga, sampled in the south-west Pacific Ocean were response variables. Predictive variables were: location, time, sea surface temperature (SST and chlorophyll-a (Chla, and phytoplankton biomass at time of catch and curved fork length. The best model fit for all fatty acid parameters included fish length and SST. The first oceanographic contour maps of EFA and FAT (FATscapes were produced and demonstrated clear geographical gradients in the study region. Predicted changes in all fatty acid parameters reflected shifts in the size-structure of dominant primary producers. Model projections show that the supply and availability of EFA are likely to be negatively affected by increases in SST especially in temperate waters where a 12% reduction in both total fatty acid content and EFA proportions are predicted. Such changes will have large implications for the availability of energy and associated health benefits to high-order consumers. Results convey new concerns on impacts of projected climate change on fish-derived EFA in marine systems.

  13. Kiloampere, Variable-Temperature, Critical-Current Measurements of High-Field Superconductors. (United States)

    Goodrich, L F; Cheggour, N; Stauffer, T C; Filla, B J; Lu, X F


    K to those measured on the same specimen in flowing helium gas ("gas" or I c gas) at the same temperature. These comparisons indicate the temperature control is effective over the superconducting wire length between the voltage taps, and this condition is valid for all types of sample investigated, including Nb-Ti, Nb3Sn, and MgB2 wires. The liquid/gas comparisons are used to study the variable-temperature measurement protocol that was necessary to obtain the "correct" critical current, which was assumed to be the I c liq. We also calibrated the magnetoresistance effect of resistive thermometers for temperatures from 4 K to 35 K and magnetic fields from 0 T to 16 T. This calibration reduces systematic errors in the variable-temperature data, but it does not affect the liquid/gas comparison since the same thermometers are used in both cases.

  14. Visualization of the cavitation bubbles produced by a clinical shock wave field using a micropulse LED light (United States)

    Kang, Gwansuk; Huh, Jung Sik; Choi, Min Joo


    Extracorporeal shock wave therapy employs intense shock waves that produce cavitation bubbles understood to play an important role in therapeutic effects. This study considers shock-wave-induced cavitation bubbles, expected to be closely associated with treated therapeutic regions. A simple optical method was devised to visualize the cavitation bubbles under micropulse LED light illumination and to capture an afterimage of the bubbles for their entire lifetime from formation to collapse. The optical images of the cavitation bubbles produced by a clinical shock wave therapeutic device were shown to preserve the characteristics of the focusing shock wave field. The similarity of the characteristics may enable the cavitation cloud image to provide the intensity and location of shock wave irradiation for the clinical quality assurance of therapeutic devices. Further research that includes the dynamic effects in the static images of cavitation bubbles is suggested.

  15. Studies in the derivative expansion and finite temperature quantum field theory

    International Nuclear Information System (INIS)

    Karev, A.


    The real time formalism of the finite temperature quantum field theories is discussed. It is then applied to calculate the Witten index in supersymmetric quantum mechanics. The Witten index is an order parameter of supersymmetry breaking. The author calculation of the Witten index shows that supersymmetry is spontaneously broken at finite temperature, reinstating the conclusions of earlier studies. The derivative expansion is a useful technique for studying low energy effective theories. We use this method in two space-time dimensions and show how the solubility of certain theories arises in this approach. We further apply this technique to show the temperature independence of the Abelian chiral anomaly, particularly in the context of the Schwinger model

  16. CFD analysis of moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kansal, Anuj Kumar, E-mail: [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Joshi, Jyeshtharaj B., E-mail: [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Maheshwari, Naresh Kumar, E-mail: [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Vijayan, Pallippattu Krishnan, E-mail: [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)


    Highlights: • 3D CFD of vertical calandria vessel. • Spatial distribution of volumetric heat generation. • Effect of Archimedes number. • Non-dimensional analysis. - Abstract: Three dimensional computational fluid dynamics (CFD) analysis has been performed for the moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor under normal operating condition using OpenFOAM CFD code. OpenFOAM is validated by comparing the predicted results with the experimental data available in literature. CFD model includes the calandria vessel, calandria tubes, inlet header and outlet header. Analysis has been performed for the cases of uniform and spatial distribution of volumetric heat generation. Studies show that the maximum temperature in moderator is lower in the case of spatial distribution of heat generation as compared to that in the uniform heat generation in calandria. In addition, the effect of Archimedes number on maximum and average moderator temperature was investigated.

  17. A code for calculating force and temperature of a bitter plate type toroidal field coil system

    International Nuclear Information System (INIS)

    Christensen, U.


    To assist the design effort of the TF coils for CIT, a set of programs was developed to calculate the transient spatial distribution of the current density, the temperature and the forces in the TF coil conductor region. The TF coils are of the Bitter (disk) type design and therefore have negligible variation of current density in the toroidal direction. During the TF pulse, voltages are induced which cause the field and current to diffuse in the minor radial direction. This penetration, combined with the increase of resistance due to the temperature rise determines the distribution of the current. After the current distribution has been determined, the in-plane (TF-TF) and the out-of-plane (TF-PF) forces in the conductor are computed. The predicted currents and temperatures have been independently corroborated using the SPARK code which has been modified for this type of problem. 6 figs

  18. Simulation and experiment on transient temperature field of a magnetorheological clutch for vehicle application (United States)

    Wang, Daoming; Zi, Bin; Zeng, Yishan; Qian, Sen; Qian, Jun


    The unpredictable power fluctuation due to severe heating has been demonstrated to be a critical bottleneck technique restricting the application of magnetorheological (MR) clutches in vehicle industry. The aim of this study is to introduce a low-cost transient simulation approach for evaluating the heat build-up and dissipation of a liquid-cooled MR vehicle clutch. This paper firstly performs a detailed description of the developed MR clutch in terms of operation principle, material selection and configuration. Subsequently, transient temperature simulations are carried out under various conditions to reveal the distribution, variation and impact factors of the transient temperature field. Following these, an experimental setup is established for heating tests of the clutch prototype. Experimental results concerning the temperature variation of magnetorheological fluids and the maximum allowable transient slip power of the clutch prototype are presented, which in return verify the correctness and feasibility of the simulation.

  19. Current sheets with inhomogeneous plasma temperature: Effects of polarization electric field and 2D solutions

    International Nuclear Information System (INIS)

    Catapano, F.; Zimbardo, G.; Artemyev, A. V.; Vasko, I. Y.


    We develop current sheet models which allow to regulate the level of plasma temperature and density inhomogeneities across the sheet. These models generalize the classical Harris model via including two current-carrying plasma populations with different temperature and the background plasma not contributing to the current density. The parameters of these plasma populations allow regulating contributions of plasma density and temperature to the pressure balance. A brief comparison with spacecraft observations demonstrates the model applicability for describing the Earth magnetotail current sheet. We also develop a two dimensional (2D) generalization of the proposed model. The interesting effect found for 2D models is the nonmonotonous profile (along the current sheet) of the magnetic field component perpendicular to the current sheet. Possible applications of the model are discussed

  20. Temperature and field dependent Mossbauer studies of the metallic inclusions in synthetic MDAS diamond grits

    DEFF Research Database (Denmark)

    Bharuth-Ram, K.; Hansen, Mikkel Fougt; Mørup, Steen


    order observed in the larger grits collapsing as one went to smaller grit sizes. Two sets of De Beers MDAS diamond grits of US mesh size 400-500 (d=30-38 mum) and 200-230 (d=63-75 mum) were selected for temperature- and field-dependent investigations. Transmission Mossbauer measurements were made...... of the Mossbauer spectra is not due to superparamagnetic relaxation of ferromagnetic inclusions but rather to magnetic ordering temperatures of the order of room temperature. Based on the spectral lineshapes and elemental analyses, we suggest the inclusions in the 63-75 mum grits contain iron mainly in Fe......-Ni alloys with composition in the vicinity of 70 at.% Fe, and those in the 30-38 mum grits contain, in addition to Fe-Ni alloys, a phase with hyperfine parameters close to those of a Fe-Co alloy....

  1. Shape Design of Unsteady Forced Heat-convection Fields to Control Temperature Distribution History (United States)

    Katamine, Eiji; Okada, Naoya


    This paper presents a numerical solution to shape design of unsteady forced heat-convection fields to control temperature to a prescribed distribution. The square error integral between the actual temperature distributions and the prescribed temperature distributions on the prescribed sub-domains during the specified period of time is used as the objective functional. Shape gradient of the shape design problem is derived theoretically using the Lagrange multiplier method, adjoint variable method, and the formulae of the material derivative. Reshaping is carried out by the traction method proposed as an approach to solving shape optimization problems. Numerical analyses program for the shape design is developed based on FreeFem++, and the validity of proposed method is confirmed by results of 2D numerical analyses.

  2. Temperature-Dependent Polarization in Field-Effect Transport and Photovoltaic Measurements of Methylammonium Lead Iodide. (United States)

    Labram, John G; Fabini, Douglas H; Perry, Erin E; Lehner, Anna J; Wang, Hengbin; Glaudell, Anne M; Wu, Guang; Evans, Hayden; Buck, David; Cotta, Robert; Echegoyen, Luis; Wudl, Fred; Seshadri, Ram; Chabinyc, Michael L


    While recent improvements in the reported peak power conversion efficiency (PCE) of hybrid organic-inorganic perovskite solar cells have been truly astonishing, there are many fundamental questions about the electronic behavior of these materials. Here we have studied a set of electronic devices employing methylammonium lead iodide ((MA)PbI3) as the active material and conducted a series of temperature-dependent measurements. Field-effect transistor, capacitor, and photovoltaic cell measurements all reveal behavior consistent with substantial and strongly temperature-dependent polarization susceptibility in (MA)PbI3 at temporal and spatial scales that significantly impact functional behavior. The relative PCE of (MA)PbI3 photovoltaic cells is observed to reduce drastically with decreasing temperature, suggesting that such polarization effects could be a prerequisite for high-performance device operation.

  3. Research of the Border Mobility Influence on the Half-Space Temperature Field Under Heat Flux

    Directory of Open Access Journals (Sweden)

    P. A. Vlasov


    Full Text Available Among the problems of unsteady heat conduction, tasks that can be solved in analytical closedform hold a special place. This species can be used both for parametric optimization of thermal protection of structures and for testing of computational algorithms.The previous paper presented an analytical solution of the problem to find the half-space temperature field with the uniformly moving boundary, which was under the external heat flux of constant power. In this paper we consider a similar problem, but the law of the moving boundary is assumed to be arbitrary nondecreasing, and the power of the heat flux can vary over time.An analytical dependence of the problem solution on the temperature of a moving boundary was obtained by using the Fourier transformation in the spatial variable. To determine the temperature of moving boundary, Volterra integral equation of the second kind was drawn. The solution of this equation was numerically conducted using a specially developed computational algorithm.The obtained representation was used to research the most characteristic features of the process to form the temperature field in studied area when implementing the various laws of boundaries motion and different operating conditions for the external heat flux influence. Using computational experiments allowed us to find that the asymptotic nature of this dependence confirms the results obtained in previous work. It has been established that the nonlinear character of both the boundary motion law and the external heat flux power variation law mainly affect the specifics of the transition process.

  4. Renormalisation of a self-consistent scheme in quantum field theories at finite temperature

    International Nuclear Information System (INIS)

    Reinosa, Urko


    In this thesis, we study the renormalisation of a self-consistent technique in quantum field theory at finite temperature. The so-called two-particle-irreducible scheme is useful to deal with strongly interacting quantum systems where the fluctuations are however soft enough to distribute the main interactions among quasiparticle degrees of freedom. Numerous non-relativistic systems follow this quasiparticle picture but also relativistic ones such as the quark gluon plasma (high temperature phase of Quantum Chromodynamics). The success of such techniques stems essentially from the fact that these are non-perturbative methods. This is however the source of a certain number of difficulties in particular in the framework of quantum field theories since ultraviolet divergences have to be eliminated in a non-perturbative context. This thesis shows how to proceed with the renormalisation of this scheme in the case of a scalar theory with φ 4 interaction, at finite temperature. We also discuss the independence of the counterterms with respect to temperature, which is a crucial question when defining trustworthy physical quantities. (author) [fr

  5. Numerical evaluation of multipass welding temperature field in API 5L X80 steel welded joints

    Directory of Open Access Journals (Sweden)

    J Nóbrega


    Full Text Available Many are the metallurgical changes suffered by materials when subjected to welding thermal cycle, promoting a considerable influence on the welded structures thermo mechanical properties. In project phase, one alternative for evaluating the welding cycle variable, would be the employment of computational methods through simulation. So, this paper presents an evaluation of the temperature field in a multipass welding of API 5L X80 steel used for oil and gas transportation, using the ABAQUS ® software, based on Finite Elements Method (FEM. During the simulation complex phenomena are considerable including: Variation in physical and mechanical properties of materials as a function of temperature, welding speed and the different mechanisms of heat exchange with the environment (convection and radiation were used. These considerations allow a more robust mathematical modeling for the welding process. An analytical heat source proposed by Goldak, to model the heat input in order to characterize the multipass welding through the GTAW (Gas Tungsten Arc Welding process on root and the SMAW (Shielded Metal Arc Welding process for the filling passes were used. So, it was possible to evaluate the effect of each welding pass on the welded joint temperature field, through the temperature peaks and cooling rates values during the welding process.

  6. Utilization of solar energy in the photodegradation of gasoline in water and of oil-field-produced water. (United States)

    Moraes, José Ermírio F; Silva, Douglas N; Quina, Frank H; Chiavone-Filho, Osvaldo; Nascimento, Cláudio Augusto O


    The photo-Fenton process utilizes ferrous ions (Fe2+), hydrogen peroxide (H2O2), and ultraviolet (UV) irradiation as a source of hydroxyl radicals for the oxidation of organic matter present in aqueous effluents. The cost associated with the use of artificial irradiation sources has hindered industrial application of this process. In this work, the applicability of solar radiation for the photodegradation of raw gasoline in water has been studied. The photo-Fenton process was also applied to a real effluent, i.e., oil-field-produced water, and the experimental results demonstrate the feasibility of employing solar irradiation to degrade this complex saturated-hydrocarbon-containing system.

  7. S-matrix theory of two-electron momentum distribution produced by double ionization in intense laser fields. (United States)

    Becker, A; Faisal, F


    Recently observed momentum distribution of doubly charged recoil-ions of atoms produced by femtosecond infrared laser pulses is analyzed using the so-called intense-field many-body S-matrix theory. Observed characteristics of the momentum distributions, parallel and perpendicular to the polarization axis, are reproduced by the theory. It is shown that correlated energy-sharing between the two electrons in the intermediate state and their 'Volkov-dressing' in the final state, can explain the origin of these characteristics.

  8. Effect of self-generated magnetic field on the two-plasmon decay instability in a laser-produced plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Ahmed, M.


    In this paper we have made a theoretical investigation on the two-plasmon decay instability of laser radiation in the presence of the self-generated magnetic field at the quarter-critical density region in a laser-produced plasma. The Vlasov equation in terms of guiding centre coordinates has been employed to obtain the non-linear response of electrons in the plasma. The threshold power density of the incident laser radiation for the two-plasmon decay instability is always exceeded in currently employed power densities in laser-target experiments and above the threshold the growth rate of the instability is quite large. It is also noticed that the self-generated magnetic field enhances the threshold to a large extent, thus drastically reducing the growth rate of the instability. (author)

  9. Magnetic Field Gain in Vortex Pinning at Fractal Interfaces of Clusters of High-Temperature Superconductors (United States)

    Vasyutin, M. A.; Kuz'michev, N. D.; Shilkin, D. A.


    The effect of the fractality of the cluster interfaces in the normal phase of a copper-oxide high-temperature superconductor YBCO on the magnetic creep has been studied. The model of a magnetic field dependence of voltage induced by the flux creep for different transport currents has been suggested. The experimental dependences have been approximated using an exponent-hyperbolic function with a current parameter. The empiric magnetic field dependence of the fractal dimensionality of the interfaces of YBCO clusters has been registered. The magnitudes of the magnetic field intensity and fractal dimensionality at which the vortices start to penetrate the granules of the samples have been determined. The connective index of paths of the vortex quench at the percolation threshold has been calculated.

  10. Temperature dependence of electric field tunable ferromagnetic resonance lineshape in multiferroic heterostructure

    Directory of Open Access Journals (Sweden)

    Fenglong Wang


    Full Text Available Herein, we experimentally investigate the effect of temperature on the electric field tunable ferromagnetic resonance (FMR in a ferroelectric/ferromagnetic heterostructure, and demonstrate the tuning of abnormal change in FMR using the polarization of the ferroelectric layer above 200 K. The FMR was found to be almost unchanged under different electric field strength at 100 K owing to frozen polarization, which causes extremely weak magnetoelectric coupling. More interestingly, negative effective linewidth was observed when an electric field greater than 10 kV/cm was applied above 220 K. The simultaneous electrical control of magnetization and its damping via FMR based on linear magnetoelectric coupling are directly relevant to use of composite multiferroics for a wide range of devices.

  11. Motional Stark Effect measurements of the local magnetic field in high temperature fusion plasmas (United States)

    Wolf, R. C.; Bock, A.; Ford, O. P.; Reimer, R.; Burckhart, A.; Dinklage, A.; Hobirk, J.; Howard, J.; Reich, M.; Stober, J.


    The utilization of the Motional Stark Effect (MSE) experienced by the neutral hydrogen or deuterium injected into magnetically confined high temperature plasmas is a well established technique to infer the internal magnetic field distribution of fusion experiments. In their rest frame, the neutral atoms experience a Lorentz electric field, EL = v × B, which results in a characteristic line splitting and polarized line emission. The different properties of the Stark multiplet allow inferring, both the magnetic field strength and the orientation of the magnetic field vector. Besides recording the full MSE spectrum, several types of polarimeters have been developed to measure the polarization direction of the Stark line emission. To test physics models of the magnetic field distribution and dynamics, the accuracy requirements are quite demanding. In view of these requirements, the capabilities and issues of the different techniques are discussed, including the influence of the Zeeman Effect and the sensitivity to radial electric fields. A newly developed Imaging MSE system, which has been tested on the ASDEX Upgrade tokamak, is presented. The sensitivity allows to resolve sawtooth oscillations. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  12. Mixing of charged and neutral Bose condensates at nonzero temperature and magnetic field

    Directory of Open Access Journals (Sweden)

    Haber Alexander


    Full Text Available It is expected that in the interior of compact stars a proton superconductor coexists with and couples to a neutron superfluid. Starting from a field-theoretical model for two complex scalar fields – one of which is electrically charged – we derive a Ginzburg-Landau potential which includes entrainment between the two fluids and temperature effects from thermal excitations of the two scalar fields and the gauge field. The Ginzburg-Landau description is then used for an analysis of the phase structure in the presence of an external magnetic field. In particular, we study the effect of the superfluid on the flux tube phase by computing the various critical magnetic fields and deriving an approximation for the flux tube interaction. As a result, we point out differences to the naive expectations from an isolated superconductor, for instance the existence of a first-order flux tube onset, resulting in a more complicated phase structure in the region between type-I and type-II superconductivity.

  13. Influence of Magnetic Field on Electric Charge Transport in Holomiun Thin Films at Low Temperatures

    Directory of Open Access Journals (Sweden)

    Jan Dudas


    Full Text Available Holmium thin films were prepared by evaporation in ultrahigh vacuum (UHV and high precision electrical resistance measurements were performed on them as well as on holomium bulk sample in the wide temperature range from 4,2 K up to the room temperature. Electric charge transport is profoundly influenced by the magnetic structure at low temperatures and a "knee-like" resistance anomaly was observed near the transportation from paramagnetic state to basal-plane spiral structure in bulk with the Neel temperature TN=128,9 K and below ~ 122 K in thin Ho films in a thickness range from 98 nm to 215 nm. Unexpected resistance minimum at ~ 9 K and a slope´s charge of the R vs. T curve near ~ 170 K was observed in 215 nm thin film. Application of magnetic field parallel to the substrate and thin film plane for temperatures below ~ 150 K caused the decrease of resistence value with increasing magnetic flux density. Increasing suppression of the TN value up to ~ 5 K with increasing flux density value up to 5 T was observed in Ho films. 

  14. Non-uniform Solar Temperature Field on Large Aperture, Fully-Steerable Telescope Structure (United States)

    Liu, Yan


    In this study, a 110-m fully steerable radio telescope was used as an analysis platform and the integral parametric finite element model of the antenna structure was built in the ANSYS thermal analysis module. The boundary conditions of periodic air temperature, solar radiation, long-wave radiation shadows of the surrounding environment, etc. were computed at 30 min intervals under a cloudless sky on a summer day, i.e., worstcase climate conditions. The transient structural temperatures were then analyzed under a period of several days of sunshine with a rational initial structural temperature distribution until the whole set of structural temperatures converged to the results obtained the day before. The non-uniform temperature field distribution of the entire structure and the main reflector surface RMS were acquired according to changes in pitch and azimuth angle over the observation period. Variations in the solar cooker effect over time and spatial distributions in the secondary reflector were observed to elucidate the mechanism of the effect. The results presented here not only provide valuable realtime data for the design, construction, sensor arrangement and thermal deformation control of actuators but also provide a troubleshooting reference for existing actuators.

  15. Ambient-temperature incubation for the field detection of Escherichia coli in drinking water. (United States)

    Brown, J; Stauber, C; Murphy, J L; Khan, A; Mu, T; Elliott, M; Sobsey, M D


     Escherichia coli is the pre-eminent microbiological indicator used to assess safety of drinking water globally. The cost and equipment requirements for processing samples by standard methods may limit the scale of water quality testing in technologically less developed countries and other resource-limited settings, however. We evaluate here the use of ambient-temperature incubation in detection of E. coli in drinking water samples as a potential cost-saving and convenience measure with applications in regions with high (>25°C) mean ambient temperatures.   This study includes data from three separate water quality assessments: two in Cambodia and one in the Dominican Republic. Field samples of household drinking water were processed in duplicate by membrane filtration (Cambodia), Petrifilm™ (Cambodia) or Colilert® (Dominican Republic) on selective media at both standard incubation temperature (35–37°C) and ambient temperature, using up to three dilutions and three replicates at each dilution. Matched sample sets were well correlated with 80% of samples (n = 1037) within risk-based microbial count strata (E. coli CFU 100 ml−1 counts of 1000), and a pooled coefficient of variation of 17% (95% CI 15–20%) for paired sample sets across all methods.   These results suggest that ambient-temperature incubation of E. coli in at least some settings may yield sufficiently robust data for water safety monitoring where laboratory or incubator access is limited.

  16. Impact of the Static and Radiofrequency Magnetic Fields Produced by a 7T MR Imager on Metallic Dental Materials. (United States)

    Oriso, Kenta; Kobayashi, Takuya; Sasaki, Makoto; Uwano, Ikuko; Kihara, Hidemichi; Kondo, Hisatomo


    We examined safety issues related to the presence of various metallic dental materials in magnetic resonance (MR) imaging at 7 tesla. A 7T MR imaging scanner was used to examine 18 kinds of materials, including 8 metals used in dental restorations, 6 osseointegrated dental implants, 2 abutments for dental implants, and 2 magnetic attachment keepers. We assessed translational attraction forces between the static magnetic field and materials via deflection angles read on a tailor-made instrument and compared with those at 3T. Heating effects from radiofrequency during image acquisitions using 6 different sequences were examined by measuring associated temperature changes in agarose-gel phantoms with a fiber-optic thermometer. Deflection angles of the metallic dental materials were significantly larger at 7T than 3T. Among full metal crowns (FMCs), deflection angles were 18.0° for cobalt-chromium (Co-Cr) alloys, 13.5° for nickel-chromium (Ni-Cr) alloys, and 0° for other materials. Deflection angles of the dental implants and abutments were minimal, ranging from 5.0 to 6.5°, whereas the magnetic attachment keepers were strongly attracted to the field, having deflection angles of 90° or more. Increases in temperature of the FMCs were significant but less than 1°C in every sequence. The dental implant of 50-mm length showed significant but mild temperature increases (up to 1.5°C) when compared with other dental implants and abutments, particularly on sequences with high specific absorption rate values. Although most metallic dental materials showed no apparent translational attraction or heating at 7T, substantial attraction forces on the magnetic attachment keepers suggested potential risks to patients and research participants undergoing MR imaging examinations.

  17. High night temperatures during grain number determination reduce wheat and barley grain yield: a field study. (United States)

    García, Guillermo A; Dreccer, M Fernanda; Miralles, Daniel J; Serrago, Román A


    Warm nights are a widespread predicted feature of climate change. This study investigated the impact of high night temperatures during the critical period for grain yield determination in wheat and barley crops under field conditions, assessing the effects on development, growth and partitioning crop-level processes driving grain number per unit area (GN). Experiments combined: (i) two contrasting radiation and temperature environments: late sowing in 2011 and early sowing in 2013, (ii) two well-adapted crops with similar phenology: bread wheat and two-row malting barley and (iii) two temperature regimes: ambient and high night temperatures. The night temperature increase (ca. 3.9 °C in both crops and growing seasons) was achieved using purpose-built heating chambers placed on the crop at 19:000 hours and removed at 7:00 hours every day from the third detectable stem node to 10 days post-flowering. Across growing seasons and crops, the average minimum temperature during the critical period ranged from 11.2 to 17.2 °C. Wheat and barley grain yield were similarly reduced under warm nights (ca. 7% °C(-1) ), due to GN reductions (ca. 6% °C(-1) ) linked to a lower number of spikes per m(2) . An accelerated development under high night temperatures led to a shorter critical period duration, reducing solar radiation capture with negative consequences for biomass production, GN and therefore, grain yield. The information generated could be used as a starting point to design management and/or breeding strategies to improve crop adaptation facing climate change. © 2015 John Wiley & Sons Ltd.

  18. Radial focusing and energy compression of a laser-produced proton beam by a synchronous rf field

    Directory of Open Access Journals (Sweden)

    Masahiro Ikegami


    Full Text Available The dynamics of a MeV laser-produced proton beam affected by a radio frequency (rf electric field has been studied. The proton beam was emitted normal to the rear surface of a thin polyimide target irradiated with an ultrashort pulsed laser with a power density of 4×10^{18}  W/cm^{2}. The energy spread was compressed to less than 11% at the full width at half maximum (FWHM by an rf field. Focusing and defocusing effects of the transverse direction were also observed. These effects were analyzed and reproduced by Monte Carlo simulations. The simulation results show that the transversely focused protons had a broad continuous spectrum, while the peaks in the proton spectrum were defocused. Based on this new information, we propose that elimination of the continuous energy component of laser-produced protons is possible by utilizing a focal length difference between the continuous spectral protons and the protons included in the spectral peak.

  19. Temperature measurement of wick stabilized micro diffusion flame under the influence of magnetic field using digital holographic interferometry (United States)

    Agarwal, Shilpi; Kumar, Varun; Shakher, Chandra


    This paper presents the effect of magnetic field (upward decreasing, uniform and upward increasing) on wick stabilized micro diffusion flame by using digital holographic interferometry (DHI). The investigations reveal that under the influence of upward decreasing and uniform magnetic field temperature inside the micro flame increases in comparison to temperature inside micro flame without magnetic field. This is in contrary to normal diffusion flame, where uniform magnetic field has a little or no effect on the temperature. DHI is inherently more accurate more precise and is having better spatial resolution. DHI is ideally suited to study micro flame.


    Directory of Open Access Journals (Sweden)

    S. G. Tikhomirov


    Full Text Available In the article discussed the mathematical formulation and numerical algorithm for solving the problem of calculating the temperature field in the process vulcanizing of the product, whose the thermal characteristics are depended on the temperature. As a mathematical model considered the system of differential equations of heat conduction, taking into account the change in the coefficients of thermal conductivity and heat density in multilayer product of the temperature. The system of equations is solved for a given initial distribution of temperature and for a given (time-dependent temperatures on the border of the product to the press-mold and to the diaphragm. On the border of the contacts of adjacent layers are given the condition of continuity of temperature and heat flux. Change of the thermal conductivity from the time is approximated by linear functions. The activation energy of the vulcanization process is determined on the basis of experimental data obtained in the control test samples using a reometer. Considering the function representing the corresponding integrals of the thermal conductivity, the original system of differential equations is transformed to an equivalent system of differential equations convenient for constructing numerical algorithms for solving the problem. The resulting system of partial differential equations derived using the method of finite-difference approximation is replaced by a system of algebraic equations. Solution of the system of algebraic equations is carried out under the scheme explicit difference approximation. In the article calculated the temperature field for the tire at given initial and boundary conditions. Stability and accuracy of the numerical algorithm for solving the problem is demonstrated by the calculations performed with different sampling step along the time and space coordinates. Assessment of the degree of completion of the process is carried out by calculated equivalent time for

  1. The Energy-Momentum Tensor at Finite Temperature in Arbitrary Curved Space-Times : Particles and Fields


    Naohito, NAKAZAWA; Research Institute for Theoretical Physics Hiroshima University


    We formulate a field-theoretical method at finite temperature to calculate a thermal energy-momentum tensor in arbitrary curved space-times using a momentum-space representation of the thermal Green's function in terms of Riemann normal coordinates. In particular, the thermal energy-momentum tensor for a massive scalar field is calculated by the high-temperature expansion. A locally observed temperature is obtained by requiring the conservation law of the thermal energy-momentum tensor.

  2. Quasi-Stationary Temperature Field of Two-Layer Half-Space with Moving Boundary

    Directory of Open Access Journals (Sweden)

    P. A. Vlasov


    Full Text Available Due to intensive introduction of mathematical modeling methods into engineering practice, analytical methods for solving problems of heat conduction theory along with computational methods become increasingly important. Despite the well-known limitations of the analytical method applicability, this trend is caused by many reasons. In particular, solutions of the appropriate problems presented in analytically closed form can be used to test the new efficient computational algorithms, to carry out a parametric study of the temperature field of the analyzed system and to explore specific features of its formation, to formulate and solve optimization problems. In addition, these solutions allow us to explore the possibility for simplifying mathematical model with retaining its adequacy to the studied process.The main goal of the conducted research is to provide an analytically closed-form solution to the problem of finding the quasi-stationary temperature field of the system, which is simulated by isotropic half-space with isotropic coating of constant thickness. The outer boundary of this system is exposed to the Gaussian-type heat flux and uniformly moves in parallel with itself.A two-dimensional mathematical model that takes into account the axial symmetry of the studied process has been used. After the transition to a moving coordinate system rigidly associated with a moving boundary the Hankel integral transform of zero order (with respect to the radial variable and the Laplace transform (with respect to the temporal variable were used. Next, the image of the Hankel transform for the stationary temperature field of the system with respect to the moving coordinate system was found using a limit theorem of operational calculus. This allowed representing the required quasi-stationary field in the form of an improper integral of the first kind, which depends on the parameters. This result obtained can be used to conduct a parametric study and solve

  3. Isolation of Listeria monocytogenes in a salami producing plant in Piedmont: use of pulsed field gel electrophoresis to trace contaminations

    Directory of Open Access Journals (Sweden)

    Annalisa Costa


    Full Text Available The ability of Listeria monocytogenes to survive in different environments and establish persistent contaminations is an important issue for food producers. This study aimed to assess the environmental contamination level in an Italian salami producing plant and to identify possible sources of contamination using pulsed field gel electrophoresis (PFGE on L. monocytogenes isolates obtained from environmental (n=54 and meat samples (n=9 collected over 9 months. Detection of L. monocytogenes was performed using the UNI EN ISO 11290-1 procedure and every isolate was characterised with PFGE, using AscI and ApaI restriction enzymes. The environmental detection frequencies were constant both in the first (22% and the second (27% visit, thus suggesting the presence of strains adapted to the processing plant. Equipments can represent a reservoir of L. monocytogenes from which it can spread into the whole producing plant. The reservoir was documented by PFGE results which showed several persistent strains. Moreover, PFGE proved the cross-contamination between surfaces and semiprocessed products like pastes, which furthermore have been contaminated by L. monocytogenes in 100% of samples in the first two visits and in 33% in the last visit. This study gave evidence that detection methods and PFGE characterisation can be effective tools to detect possible sources and routes of contamination.

  4. CosmoTransitions: Computing cosmological phase transition temperatures and bubble profiles with multiple fields (United States)

    Wainwright, Carroll L.


    I present a numerical package (CosmoTransitions) for analyzing finite-temperature cosmological phase transitions driven by single or multiple scalar fields. The package analyzes the different vacua of a theory to determine their critical temperatures (where the vacuum energy levels are degenerate), their supercooling temperatures, and the bubble wall profiles which separate the phases and describe their tunneling dynamics. I introduce a new method of path deformation to find the profiles of both thin- and thick-walled bubbles. CosmoTransitions is freely available for public use.Program summaryProgram Title: CosmoTransitionsCatalogue identifier: AEML_v1_0Program summary URL: obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, of lines in distributed program, including test data, etc.: 8775No. of bytes in distributed program, including test data, etc.: 621096Distribution format: tar.gzProgramming language: Python.Computer: Developed on a 2009 MacBook Pro. No computer-specific optimization was performed.Operating system: Designed and tested on Mac OS X 10.6.8. Compatible with any OS with Python installed.RAM: Approximately 50 MB, mostly for loading plotting packages.Classification: 1.9, 11.1.External routines: SciPy, NumPy, matplotLibNature of problem: I describe a program to analyze early-Universe finite-temperature phase transitions with multiple scalar fields. The goal is to analyze the phase structure of an input theory, determine the amount of supercooling at each phase transition, and find the bubble-wall profiles of the nucleated bubbles that drive the transitions.Solution method: To find the bubble-wall profile, the program assumes that tunneling happens along a fixed path in field space. This reduces the equations of motion to one dimension, which can then be solved using the overshoot

  5. A simple temperature domain two-source model for estimating agricultural field surface energy fluxes from Landsat images (United States)

    Yao, Yunjun; Liang, Shunlin; Yu, Jian; Chen, Jiquan; Liu, Shaomin; Lin, Yi; Fisher, Joshua B.; McVicar, Tim R.; Cheng, Jie; Jia, Kun; Zhang, Xiaotong; Xie, Xianhong; Jiang, Bo; Sun, Liang


    A simple and robust satellite-based method for estimating agricultural field to regional surface energy fluxes at a high spatial resolution is important for many applications. We developed a simple temperature domain two-source energy balance (TD-TSEB) model within a hybrid two-source model scheme by coupling "layer" and "patch" models to estimate surface heat fluxes from Landsat thematic mapper/Enhanced Thematic Mapper Plus (TM/ETM+) imagery. For estimating latent heat flux (LE) of full soil, we proposed a temperature domain residual of the energy balance equation based on a simplified framework of total aerodynamic resistances, which provides a key link between thermal satellite temperature and subsurface moisture status. Additionally, we used a modified Priestley-Taylor model for estimating LE of full vegetation. The proposed method was applied to TM/ETM+ imagery and was validated using the ground-measured data at five crop eddy-covariance tower sites in China. The results show that TD-TSEB yielded root-mean-square-error values between 24.9 (8.9) and 78.2 (21.4) W/m2 and squared correlation coefficient (R2) values between 0.60 (0.51) and 0.97 (0.90), for the estimated instantaneous (daily) surface net radiation, soil, latent, and sensible heat fluxes at all five sites. The TD-TSEB model shows good accuracy for partitioning LE into soil (LEsoil) and canopy (LEcanopy) components with an average bias of 11.1% for the estimated LEsoil/LE ratio at the Daman site. Importantly, the TD-TSEB model produced comparable accuracy but requires fewer forcing data (i.e., no wind speed and roughness length are needed) when compared with two other widely used surface energy balance models. Sensitivity analyses demonstrated that this accurate operational model provides an alternative method for mapping field surface heat fluxes with satisfactory performance.

  6. Temperature field distribution from cooling of a magma chamber in La Primavera Caldera, Jalisco, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Verma, S.P. [Laboratorio de Energia Solar, Temixco, UNAM (Mexico); Rodriguez-Gonzalez, U. [Facultad de Ciencias de la Tierra, Linares, UANL (Mexico)


    The temperature field distribution in La Primavera geothermal area, Jalisco, located in the western part of the Mexican Volcanic Belt (MVB), has been simulated from cooling of a shallow magma chamber (assumed as the primary heat source) during the entire volcanic history of the caldera. Similar to the other two geothermal fields of the MVB (Los Humeros and Los Azufres), it is considered that the evolution of the magma chamber is controlled by the processes of fractional crystallization as well as magma recharge. Besides these processes, heat contribution is also taken into account from decay of natural radioactive elements, U, Th, and K, present in all geological materials. In some models presented in this work, convection in the geothermal reservoir is simulated by assigning higher values of thermal conductivities (up to 20 times the rock conductivities) to respective geologic units. The heat transfer equation has been solved by a finite element implicit method. The results of temperature simulations from the magma chamber are compared with undisturbed formation temperatures in three drill wells. (author)

  7. Characterisation of the IRSN CANEL/T400 facility producing realistic neutron fields for calibration and test purposes

    International Nuclear Information System (INIS)

    Gressier, V.; Lacoste, V.; Lebreton, L.; Muller, H.; Pelcot, G.; Bakali, M.; Fernandez, F.; Tomas, M.; Roberts, N. J.; Thomas, D. J.; Reginatto, M.; Wiegel, B.; Wittstock, J.


    The new CANEL/T400 facility has been set-up at the Inst. for Radiological Protection and Nuclear Safety (IRSN) to produce a realistic neutron field. The accurate characterisation of this neutron field is mandatory since this facility will be used as a reference neutron source. For this reason an international measuring campaign, involving four laboratories with extensive expertise in neutron metrology and spectrometry, was organised through a concerted EUROMET project. Measurements were performed with Bonner sphere (BS) systems to determine the energy distribution of the emitted neutrons over the whole energy range (from thermal energy up to a few MeV). Additional measurements were performed with proton recoil detectors to provide detailed information in the energy region above 90 keV. The results obtained by the four laboratories are in agreement with each other and are compared with a calculation performed with the MCNP4C Monte-Carlo code. As a conclusion of this exercise, a reliable characterisation of the CANEL/T400 neutron field is obtained. (authors)

  8. The temperature dependence of the hyperfine fields of nickel, copper and zinc in nickel near the Curie temperature

    International Nuclear Information System (INIS)

    Zeitz, W.D.


    Hyperfine field investigations were made to determine the critical exponent β in Nickel metals as in pure 63 NiNi system as in two systems 66 CuNi and 67 ZnNi. The experimental method was the time-differential observation of the perturbed angular correlation of gammas after a nuclear reaction. The isomeric states 63 Ni: 5/2 - for 87.2 keV, tau = 2.49 μs, g = 0.301; 66 Cu: 6 - for 1154.1 keV, tau = 860 ns, g = 0.1733; 67 Zn: 9/2 + for 605 keV, tau = 480 ns, g = 0.243 were excited in (d,p), ( 3 He,p) and (α,n) nuclear reactions on the isotope rich 62 Ni and 64 Ni. A new developed fast electron beam heating cared for a sufficient temperature stability in the range up to 1 0 below the Curie point. (orig./WL) [de

  9. Field measurements of temperature profile for floatovoltaic dryer in the tropics (United States)

    Osman, F. A.; Ya'acob, M. E.; Iskandar, A. Noor


    Most of the equator region in a tropical climate zone experiences hot and humid weather but sometimes heavy rain and thunderstorms which occur stochastically in monsoon season. Sunlight which is the energy source can be harvested approximately 8 hours (on average basis) daily throughout the year which leads to the promotion of Solar PV technologies. This works projects the field performance for a new Floatovoltaic Dryer prototype with flexible PV roofing structures covering the top of the dryer system. The field measurements are collected on the lake of Engineering Faculty, UPM supported with 4-parameter weather station. Temperature profile with RH measurements inside the Floatovoltaic Dryer compartments as compared to direct-sun drying mechanism are the main contributions of this work and it projects more than 12 W of convection heat energy could be harvested by using the clean system. The field measurements imply various points of thermocouple and humidity sensor throughout the experiment. Temperature and humidity will be the main elements recorded to analyze the differences under monocrystalline PV panel as compared to natural drying.

  10. Probing α -RuCl3 Beyond Magnetic Order: Effects of Temperature and Magnetic Field (United States)

    Winter, Stephen M.; Riedl, Kira; Kaib, David; Coldea, Radu; Valentí, Roser


    Recent studies have brought α -RuCl3 to the forefront of experimental searches for materials realizing Kitaev spin-liquid physics. This material exhibits strongly anisotropic exchange interactions afforded by the spin-orbit coupling of the 4 d Ru centers. We investigate the dynamical response at finite temperature and magnetic field for a realistic model of the magnetic interactions in α -RuCl3 . These regimes are thought to host unconventional paramagnetic states that emerge from the suppression of magnetic order. Using exact diagonalization calculations of the quantum model complemented by semiclassical analysis, we find a very rich evolution of the spin dynamics as the applied field suppresses the zigzag order and stabilizes a quantum paramagnetic state that is adiabatically connected to the fully polarized state at high fields. At finite temperature, we observe large redistributions of spectral weight that can be attributed to the anisotropic frustration of the model. These results are compared to recent experiments and provide a road map for further studies of these regimes.

  11. Influence of the temperature-dependent viscosity on convective flow in the radial force field. (United States)

    Travnikov, Vadim; Zaussinger, Florian; Beltrame, Philippe; Egbers, Christoph


    The numerical investigation of convective flows in the radial force field caused by an oscillating electric field between spherical surfaces has been performed. A temperature difference (T_{1}>T_{2}) as well as a radial force field triggers a fluid flow similar to the Rayleigh-Bénard convection. The onset of convective flow has been studied by means of the linear stability analysis as a function of the radius ratio η=R_{1}/R_{2}. The influence of the temperature-dependent viscosity has been investigated in detail. We found that a varying viscosity contrast β=ν(T_{2})/ν(T_{1}) between β=1 (constant viscosity) and β=50 decreases the critical Rayleigh number by a factor of 6. Additionally, we perform a bifurcation analysis based on numerical simulations which have been calculated using a modified pseudospectral code. Numerical results have been compared with the GeoFlow experiment which is located on the International Space Station (ISS). Nonturbulent three-dimensional structures are found in the numerically predicted parameter regime. Furthermore, we observed multiple stable solutions in both experiments and numerical simulations, respectively.

  12. Effect of temperature and magnetic field on disorder in semiconductor structures

    Energy Technology Data Exchange (ETDEWEB)

    Agrinskaya, N. V., E-mail:; Kozub, V. I. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)


    We present the results of consistent theoretical analysis of various factors that may lead to influence of temperature and external magnetic field on disorder in semiconductor structures. Main attention is paid to quantum well (QW) structures in which only QWs or both QW and barriers are doped (the doping level is assumed to be close to the value corresponding to the metal–insulator transition). The above factors include (i) ionization of localized states to the region of delocalized states above the mobility edge, which is presumed to exist in the impurity band; (ii) the coexistence in the upper and lower Hubbard bands (upon doping of QWs as well as barriers); in this case, in particular, the external magnetic field determines the relative contribution of the upper Hubbard band due to spin correlations at doubly filled sites; and (iii) the contribution of the exchange interaction at pairs of sites, in which the external magnetic field can affect the relation between ferromagnetic and antiferromagnetic configurations. All these factors, which affect the structure and degree of disorder, lead to specific features in the temperature dependence of resistivity and determine specific features of the magnetoresistance. Our conclusions are compared with available experimental data.

  13. Temperature and velocity field of coolant at inlet to WWER-440 core - evaluation of experimental data

    International Nuclear Information System (INIS)

    Jirous, F.; Klik, F.; Janeba, B.; Daliba, J.; Delis, J.


    Experimentally determined were coolant temperature and velocity fields at the inlet of the WWER-440 reactor core. The accuracy estimate is presented of temperature measurements and the relation is given for determining the resulting measurement error. An estimate is also made of the accuracy of solution of the system of equations for determining coefficients B kn using the method of the least square fit. Coefficients B kn represent the relative contribution of the mass flow of the k-th fuel assembly from the n-th loop and allow the calculation of coolant temperatures at the inlet of the k-th fuel assembly, when coolant temperatures in loops at reactor inlet are known. A comparison is made of the results of measurements on a hydrodynamic model of a WWER-440 reactor with results of measurements made at unit 4 of the Dukovany nuclear power plant. Full agreement was found for 32 model measurements and 6 reactor measurements. It may be assumed that the results of other model measurements obtained for other operating variants will also apply for an actual reactor. Their applicability may, however, only be confirmed by repeating the experiment on other WWER-440 reactors. (Z.M.). 5 figs., 7 refs

  14. The effect of magnetic field and high temperature on the properties of blanket ceramics

    International Nuclear Information System (INIS)

    Kizane, Gunta; Tiliks, Juris; Vitins, Aigars; Kolodinska, Elina


    This study had the following task: 1) To estimate the magnetic field (MF, 7-9 T) effect on the formation of radiation-induced defects and products of radiolysis of ceramic breeder materials (Li 4 SiO 4 , Li 2 TiO 3 ). 2) To estimate the MF effect on the parameters of tritium release from the ceramics under conditions if high-temperature radiolysis. 3) To test the MF effect for the Li 4 SiO 4 pebbles irradiated under the real condition (HFR Petten-EXOTIC-8). The MF facilitates the location of tritium in the matrix of ceramics at the irradiation at temperature below 900 K, forming additional (20 - 25 %) radiation induced defects as tritium scavenging centers. No MF effect of this kind takes place at the higher temperature. At present, there is now information about the MF effect on the formation of colloid lithium and other radiolysis. The MF decreases the parameters of tritium release, increasing the diffusion path of charged tritium particles in the grain volume of the ceramic. This is proportional to the MF intensity and the grain size of ceramics. Irradiation at a high temperature facilitates the grain growth of the ceramics enhancing the retarding effect of the MF on the tritium release. (Y. Tanaka)

  15. Temperature Dependence of Electrical Characteristics of Carbon Nanotube Field-Effect Transistors: A Quantum Simulation Study

    Directory of Open Access Journals (Sweden)

    Ali Naderi


    Full Text Available By developing a two-dimensional (2D full quantum simulation, the attributes of carbon nanotube field-effect transistors (CNTFETs in different temperatures have been comprehensively investigated. Simulations have been performed by employing the self-consistent solution of 2D Poisson-Schrödinger equations within the nonequilibrium Green's function (NEGF formalism. Principal characteristics of CNTFETs such as current capability, drain conductance, transconductance, and subthreshold swing (SS have been investigated. Simulation results present that as temperature raises from 250 to 500 K, the drain conductance and on-current of the CNTFET improved; meanwhile the on-/off-current ratio deteriorated due to faster growth in off-current. Also the effects of temperature on short channel effects (SCEs such as drain-induced barrier lowering (DIBL and threshold voltage roll-off have been studied. Results show that the subthreshold swing and DIBL parameters are almost linearly correlated, so the degradation of these parameters has the same origin and can be perfectly influenced by the temperature.

  16. Impact of Brake Pad Structure on Temperature and Stress Fields of Brake Disc

    Directory of Open Access Journals (Sweden)

    Guoshun Wang


    Full Text Available Utilizing ABAQUS finite element software, the study established the relationship between a brake pad structure and distributions of temperature and thermal stress on brake disc. By introducing radial structure factor and circular structure factor concepts, the research characterized the effect of friction block radial and circumferential arrangement on temperature field of the brake disc. A method was proposed for improving heat flow distribution of the brake disc through optimizing the position of the friction block of the brake pad. Structure optimization was conducted on brake pads composed of 5 or 7 circular friction blocks. The result shows that, with the same overall contact area of friction pair, an appropriate brake pad structure can make the friction energy distribute evenly and therefore lowers peak temperature and stress of the brake disc. Compared with a brake pad of 7 friction blocks, an optimized brake pad of 5 friction blocks lowered the peak temperature of the corresponding brake disc by 4.9% and reduced the highest stress by 10.7%.

  17. Beyond mean-field properties of binary dipolar Bose mixtures at low temperatures (United States)

    Pastukhov, Volodymyr


    We rigorously analyze the low-temperature properties of homogeneous three-dimensional two-component Bose mixture with dipole-dipole interaction. For such a system the effective hydrodynamic action that governs the behavior of low-energy excitations is derived. The infrared structure of the exact single-particle Green's functions is obtained in terms of macroscopic parameters, namely the inverse compressibility and the superfluid density matrices. Within the one-loop approximation we calculate some of the most relevant observable quantities and give the beyond mean-field stability condition for the binary dipolar Bose gas in the dilute limit. A brief variational derivation of the coupled equations that describe macroscopic hydrodynamics of the system in the external nonuniform potential at zero temperature is presented.

  18. Martensitic transition near room temperature and the temperature- and magnetic-field-induced multifunctional properties of Ni49CuMn34In16 alloy (United States)

    Sharma, V. K.; Chattopadhyay, M. K.; Khandelwal, A.; Roy, S. B.


    A near room-temperature martensitic transition is observed in the ferromagnetic austenite state of Ni50Mn34In16 alloy with 2% Cu substitution at the Ni site. Application of magnetic field in the martensite state induces a reverse martensitic transition in this alloy. dc magnetization, magnetoresistance and strain measurements in this alloy reveal that associated with this martensitic transition there exist a large magnetocaloric effect, a large magnetoresitance and a magnetic-field temperature-induced strain. This NiMnIn alloy system thus is an example of an emerging class of magnetic materials whose physical properties can be tuned by suitable chemical substitutions, to achieve magnetic-field and temperature-induced multifunctional properties at and around room temperature

  19. Quasi-direct numerical simulation of a pebble bed configuration, Part-II: Temperature field analysis

    International Nuclear Information System (INIS)

    Shams, A.; Roelofs, F.; Komen, E.M.J.; Baglietto, E.


    Highlights: ► Quasi direct numerical simulations (q-DNSs) of a pebble bed configuration have been performed. ► This q-DNS database may serve as a reference for the validation of different turbulence modeling approaches. ► A wide range of qualitative and quantitative data throughout the computational domain has been generated. ► Results for mean, RMS of temperature and respective turbulent heat fluxes are extensively reported in this paper. -- Abstract: Good prediction of the flow and heat transfer phenomena in the pebble bed core of a high temperature reactor (HTR) is a challenge for available turbulence models, which still require to be validated. While experimental data are generally desirable in this validation process, due to the complex geometric configuration and measurement difficulties, a very limited amount of data is currently available. On the other hand, direct numerical simulation (DNS) is considered an accurate simulation technique, which may serve as an alternative for validating turbulence models. In the framework of the present study, quasi-direct numerical simulation (q-DNS) of a single face cubic centered pebble bed is performed, which will serve as a reference for the validation of different turbulence modeling approaches in order to perform calculations for a randomly arranged pebble bed. These simulations were performed at a Reynolds number of 3088, based on pebble diameter, with a porosity level of 0.42. Results related to flow field (mean, RMS and covariance of velocity) have been presented in Part-I, whereas, in the present article, we focus our attention to the analysis of the temperature field. A wide range of qualitative and quantitative data for the thermal field (mean, RMS and turbulent heat flux) has been generated

  20. Stress- and Magnetic Field-Induced Martensitic Transformation at Cryogenic Temperatures in Fe-Mn-Al-Ni Shape Memory Alloys (United States)

    Xia, Ji; Xu, Xiao; Miyake, Atsushi; Kimura, Yuta; Omori, Toshihiro; Tokunaga, Masashi; Kainuma, Ryosuke


    Stress-induced and magnetic-field-induced martensitic transformation behaviors at low temperatures were investigated for Fe-Mn-Al-Ni alloys. The magnetic-field-induced reverse martensitic transformation was directly observed by in situ optical microscopy. Magnetization measurements under pulsed magnetic fields up to 50 T were carried out at temperatures between 4.2 and 125 K on a single-crystal sample; full magnetic-field-induced reverse martensitic transformation was confirmed at all tested temperatures. Compression tests from 10 to 100 K were conducted on a single-crystal sample; full shape recovery was obtained at all tested temperatures. It was found that the temperature dependence of both the critical stress and critical magnetic field is small and that the transformation hysteresis is less sensitive to temperature even at cryogenic temperatures. The temperature dependence of entropy change during martensitic transformation up to 100 K was then derived using the Clausius-Clapeyron relation with critical stresses and magnetic fields.

  1. Sterilization of liquid foods by pulsed electric fields-an innovative ultra-high temperature process. (United States)

    Reineke, Kai; Schottroff, Felix; Meneses, Nicolas; Knorr, Dietrich


    The intention of this study was to investigate the inactivation of endospores by a combined thermal and pulsed electric field (PEF) treatment. Therefore, self-cultivated spores of Bacillus subtilis and commercial Geobacillus stearothermophilus spores with certified heat resistance were utilized. Spores of both strains were suspended in saline water (5.3 mS cm(-1)), skim milk (0.3% fat; 5.3 mS cm(-1)) and fresh prepared carrot juice (7.73 mS cm(-1)). The combination of moderate preheating (70-90°C) and an insulated PEF-chamber, combined with a holding tube (65 cm) and a heat exchanger for cooling, enabled a rapid heat up to 105-140°C (measured above the PEF chamber) within 92.2-368.9 μs. To compare the PEF process with a pure thermal inactivation, each spore suspension was heat treated in thin glass capillaries and D-values from 90 to 130°C and its corresponding z-values were calculated. For a comparison of the inactivation data, F-values for the temperature fields of both processes were calculated by using computational fluid dynamics (CFD). A preheating of saline water to 70°C with a flow rate of 5 l h(-1), a frequency of 150 Hz and an energy input of 226.5 kJ kg(-1), resulted in a measured outlet temperature of 117°C and a 4.67 log10 inactivation of B. subtilis. The thermal process with identical F-value caused only a 3.71 log10 inactivation. This synergism of moderate preheating and PEF was even more pronounced for G. stearothermophilus spores in saline water. A preheating to 95°C and an energy input of 144 kJ kg(-1) resulted in an outlet temperature of 126°C and a 3.28 log10 inactivation, whereas nearly no inactivation (0.2 log10) was achieved during the thermal treatment. Hence, the PEF technology was evaluated as an alternative ultra-high temperature process. However, for an industrial scale application of this process for sterilization, optimization of the treatment chamber design is needed to reduce the occurring inhomogeneous temperature fields.

  2. Temperature Fields in Soft Tissue during LPUS Treatment: Numerical Prediction and Experiment Results

    International Nuclear Information System (INIS)

    Kujawska, Tamara; Wojcik, Janusz; Nowicki, Andrzej


    Recent research has shown that beneficial therapeutic effects in soft tissues can be induced by the low power ultrasound (LPUS). For example, increasing of cells immunity to stress (among others thermal stress) can be obtained through the enhanced heat shock proteins (Hsp) expression induced by the low intensity ultrasound. The possibility to control the Hsp expression enhancement in soft tissues in vivo stimulated by ultrasound can be the potential new therapeutic approach to the neurodegenerative diseases which utilizes the known feature of cells to increase their immunity to stresses through the Hsp expression enhancement. The controlling of the Hsp expression enhancement by adjusting of exposure level to ultrasound energy would allow to evaluate and optimize the ultrasound-mediated treatment efficiency. Ultrasonic regimes are controlled by adjusting the pulsed ultrasound waves intensity, frequency, duration, duty cycle and exposure time. Our objective was to develop the numerical model capable of predicting in space and time temperature fields induced by a circular focused transducer generating tone bursts in multilayer nonlinear attenuating media and to compare the numerically calculated results with the experimental data in vitro. The acoustic pressure field in multilayer biological media was calculated using our original numerical solver. For prediction of temperature fields the Pennes' bio-heat transfer equation was employed. Temperature field measurements in vitro were carried out in a fresh rat liver using the 15 mm diameter, 25 mm focal length and 2 MHz central frequency transducer generating tone bursts with the spatial peak temporal average acoustic intensity varied between 0.325 and 1.95 W/cm 2 , duration varied from 20 to 500 cycles at the same 20% duty cycle and the exposure time varied up to 20 minutes. The measurement data were compared with numerical simulation results obtained under experimental boundary conditions. Good agreement between the

  3. Rapid high temperature field test method for evaluation of geothermal calcite scale inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, R.G.


    A test method is described which allows the rapid field testing of calcite scale inhibitors in high- temperature geothermal brines. Five commercial formulations, chosen on the basis of laboratory screening tests, were tested in brines with low total dissolved solids at ca 500 F. Four were found to be effective; of these, 2 were found to be capable of removing recently deposited scale. One chemical was tested in the full-flow brine line for 6 wks. It was shown to stop a severe surface scaling problem at the well's control valve, thus proving the viability of the rapid test method. (12 refs.)

  4. Determination of Ground Heat Exchangers Temperature Field in Geothermal Heat Pumps (United States)

    Zhurmilova, I.; Shtym, A.


    For the heating and cooling supply of buildings and constructions geothermal heat pumps using low-potential ground energy are applied by means of ground exchangers. The process of heat transfer in a system of ground exchangers is a phenomenon of complex heat transfer. The paper presents a mathematical modeling of heat exchange processes, the temperature fields are built which are necessary for the determination of the ground array that ensures an adequate supply of low potential energy excluding the freezing of soil around the pipes in the ground heat exchangers and guaranteeing a reliable operation of geothermal heat pumps.

  5. Correspondence between imaginary-time and real-time finite-temperature field theory

    International Nuclear Information System (INIS)

    Kobes, R.


    It is known that one-particle-irreducible graphs found using the imaginary-time formalism of finite-temperature field theory differ in general with those of the real-time formalism. Here it is shown that within the real-time formalism one can consider a sum of graphs, motivated by causality arguments, which at least in a number of simple examples agree with the corresponding analytically continued imaginary-time result. The occurrence of multiple statistical factors in this sum of graphs is discussed

  6. Herbivore Larval Development at Low Springtime Temperatures: The Importance of Short Periods of Heating in the Field

    Directory of Open Access Journals (Sweden)

    Esther Müller


    Full Text Available Temperature has been shown to play an important role in the life cycles of insects. Early season feeders in Palaearctic regions profit by the high nutritional quality of their host plants early in the year, but face the problem of having to develop at low average springtime temperatures. This study examines the influence of short periods of heating in the field on larval development and on mortality with the model system Galeruca tanaceti L. (Coleoptera: Chrysomelidae, an early season feeder, that hatches at low springtime temperatures. Field and laboratory experiments under different constant and variable temperature regimes were performed. While in the field, the average daily temperature was close to the lower developmental threshold of the species of 10.9°C; maximum temperatures of above 30°C were sometimes reached. Larvae developed significantly faster, and pupae were heavier, in the field and in an assay with short periods of heating than at the same average temperature under constant conditions in the laboratory. We conclude that larvae profit substantially from short periods of heating and temperature variation in the field and that intervals of high temperature enable insect survival and exploitation of nutrient-rich food resources at early times in the season.

  7. Numerical Simulation for Thermal Shock Resistance of Ultra-High Temperature Ceramics Considering the Effects of Initial Stress Field

    Directory of Open Access Journals (Sweden)

    Weiguo Li


    Full Text Available Taking the hafnium diboride ceramic as an example, the effects of heating rate, cooling rate, thermal shock initial temperature, and external constraint on the thermal shock resistance (TSR of ultra-high temperature ceramics (UHTCs were studied through numerical simulation in this paper. The results show that the external constraint has an approximately linear influence on the critical rupture temperature difference of UHTCs. The external constraint prepares a compressive stress field in the structure because of the predefined temperature field, and this compressive stress field relieves the tension stress in the structure when it is cooled down and then it improves the TSR of UHTCs. As the thermal shock initial temperature, a danger heating rate (or cooling rate exists where the critical temperature difference is the lowest.

  8. Optimization of electric field distribution by free carrier injection in silicon detectors operated at low temperatures

    CERN Document Server

    Eremin, V V; Verbitskaya, E


    This study presents the results on the modeling of the electric field distribution, which is controlled by injection and trapping of non- equilibrium carriers, in Si detectors irradiated by high neutron fluences. Analytical calculation of the electric field distribution in detectors irradiated by neutron fluences of H-10**1**4 to 5-10**1**5 cm**-**2 has been performed, which shows possibility of full depletion voltage reduction at low operational temperatures with hole injection. All calculations are focused on the improvement of charge collection efficiency and prediction for detector behavior in LHC experiments. Comparison of the results of calculations to the experimental data published earlier shows a good qualitative agreement. 10 Refs.

  9. Graphene field-effect transistors as room-temperature terahertz detectors (United States)

    Vicarelli, L.; Vitiello, M. S.; Coquillat, D.; Lombardo, A.; Ferrari, A. C.; Knap, W.; Polini, M.; Pellegrini, V.; Tredicucci, A.


    The unique optoelectronic properties of graphene make it an ideal platform for a variety of photonic applications, including fast photodetectors, transparent electrodes in displays and photovoltaic modules, optical modulators, plasmonic devices, microcavities, and ultra-fast lasers. Owing to its high carrier mobility, gapless spectrum and frequency-independent absorption, graphene is a very promising material for the development of detectors and modulators operating in the terahertz region of the electromagnetic spectrum (wavelengths in the hundreds of micrometres), still severely lacking in terms of solid-state devices. Here we demonstrate terahertz detectors based on antenna-coupled graphene field-effect transistors. These exploit the nonlinear response to the oscillating radiation field at the gate electrode, with contributions of thermoelectric and photoconductive origin. We demonstrate room temperature operation at 0.3 THz, showing that our devices can already be used in realistic settings, enabling large-area, fast imaging of macroscopic samples.

  10. Distributions of temperature and stress fields on penetration assembly during multi-pass welding

    International Nuclear Information System (INIS)

    Li Hong; Li Li


    Welding is a fundamental manufacturing technique used to join metal components. They cause errors during the assembly of the structure and reduce the strength of the structure. Based on an elastic-plastic-model, a three-dimensional finite element numerical simulation of a stainless steel penetration assembly during multi-pass welding with girth welds is carried out in this paper. And then the transient temperature field and the real-time dynamic stresses field of the structure are obtained. The heat source is modeled as a moving heat flux along girth welds following a double ellipsoid distribution. The 'birth and death' element method is applied to simulate the gradual growth of welding pass metal. The way of predicting the residual stresses in this paper can prepare an error-minimizing guide at design stage and can be used in accuracy management.

  11. Three-dimensionality of field-induced magnetism in a high-temperature superconductor

    DEFF Research Database (Denmark)

    Lake, B.; Lefmann, K.; Christensen, N.B.


    Many physical properties of high-temperature superconductors are two-dimensional phenomena derived from their square-planar CuO(2) building blocks. This is especially true of the magnetism from the copper ions. As mobile charge carriers enter the CuO(2) layers, the antiferromagnetism of the parent...... insulators, where each copper spin is antiparallel to its nearest neighbours(1), evolves into a fluctuating state where the spins show tendencies towards magnetic order of a longer periodicity. For certain charge-carrier densities, quantum fluctuations are sufficiently suppressed to yield static long......-period order(2-6), and external magnetic fields also induce such order(7-12). Here we show that, in contrast to the chemically controlled order in superconducting samples, the field-induced order in these same samples is actually three-dimensional, implying significant magnetic linkage between the CuO(2...

  12. Near-Field Thermal Radiation for Solar Thermophotovoltaics and High Temperature Thermal Logic and Memory Applications (United States)

    Elzouka, Mahmoud

    This dissertation investigates Near-Field Thermal Radiation (NFTR) applied to MEMS-based concentrated solar thermophotovoltaics (STPV) energy conversion and thermal memory and logics. NFTR is the exchange of thermal radiation energy at nano/microscale; when separation between the hot and cold objects is less than dominant radiation wavelength (˜1 mum). NFTR is particularly of interest to the above applications due to its high rate of energy transfer, exceeding the blackbody limit by orders of magnitude, and its strong dependence on separation gap size, surface nano/microstructure and material properties. Concentrated STPV system converts solar radiation to electricity using heat as an intermediary through a thermally coupled absorber/emitter, which causes STPV to have one of the highest solar-to-electricity conversion efficiency limits (85.4%). Modeling of a near-field concentrated STPV microsystem is carried out to investigate the use of STPV based solid-state energy conversion as high power density MEMS power generator. Numerical results for In 0.18Ga0.82Sb PV cell illuminated with tungsten emitter showed significant enhancement in energy transfer, resulting in output power densities as high as 60 W/cm2; 30 times higher than the equivalent far-field power density. On thermal computing, this dissertation demonstrates near-field heat transfer enabled high temperature NanoThermoMechanical memory and logics. Unlike electronics, NanoThermoMechanical memory and logic devices use heat instead of electricity to record and process data; hence they can operate in harsh environments where electronics typically fail. NanoThermoMechanical devices achieve memory and thermal rectification functions through the coupling of near-field thermal radiation and thermal expansion in microstructures, resulting in nonlinear heat transfer between two temperature terminals. Numerical modeling of a conceptual NanoThermoMechanical is carried out; results include the dynamic response under

  13. The onset of dissipation in high-temperature superconductors: Self-field experiments (United States)

    Talantsev, E. F.; Strickland, N. M.; Wimbush, S. C.; Crump, W. P.


    The transport critical current, Ic, is usually defined in terms of a threshold electric field criterion, Ec, with the convention Ec = 1 μV/cm chosen somewhat arbitrarily to provide "reasonably small" electric power dissipation in practical devices. Thus Ic is not fundamentally determined. However, recently it has been shown that the self-field critical current of thin-film superconductors is indeed a fundamental property governed only by the London penetration depth of the material. Here we reconsider the definition of the critical current and resolve this apparent contradiction. We measure the field distribution across the width of both first-generation and second-generation high-temperature superconducting tapes as the transport current is increased from zero to Ic. We identify a threshold current, Ic,surfB, at which the local surface magnetic flux density, Bsurf, abruptly crosses over from a non-linear to a linear dependence on the transport current, as measured at any point on the superconductor surface. This results from the current distribution across the tape width transitioning from non-uniform to uniform. This coincides with the onset of dissipation and immediately precedes the appearance of a measureable electric field. In the present examples Ic,surfB is 12-15% lower than an Ic determined by the Ec criterion. We propose the transition of Bsurf(I) from non-linear to linear as a more fundamental criterion for determining transport critical currents.

  14. In situ correction of field errors induced by temperature gradient in cryogenic undulators

    Directory of Open Access Journals (Sweden)

    Takashi Tanaka


    Full Text Available A new technique of undulator field correction for cryogenic permanent magnet undulators (CPMUs is proposed to correct the phase error induced by temperature gradient. This technique takes advantage of two important instruments: one is the in-vacuum self-aligned field analyzer with laser instrumentation system to precisely measure the distribution of the magnetic field generated by the permanent magnet arrays placed in vacuum, and the other is the differential adjuster to correct the local variation of the magnet gap. The details of the two instruments are described together with the method of how to analyze the field measurement data and deduce the gap variation along the undulator axis. The correction technique was applied to the CPMU with a length of 1.7 m and a magnetic period of 14 mm. It was found that the phase error induced during the cooling process was attributable to local gap variations of around 30  μm, which were then corrected by the differential adjuster.

  15. Improved isolation of archeomagnetic signals by combined low temperature and alternating field demagnetization (United States)

    Borradaile, Graham J.; Lagroix, France; Trimble, Dale


    Conventional alternating field (AF) demagnetization of the magnetite-bearing claystone foundations of a Saxon or late medieval lime kiln in Lincolnshire, England fail to isolate stable characteristic remanences, or remanences compatible with possible contemporary geomagnetic field orientations. Consolidation of the material prevented thermal demagnetization. When low temperature demagnetization (LTD) precedes AF demagnetization, however, the vector plots show a stable characteristic (primary) component. Magnetic anisotropy measurements show that the LTD did not significantly disturb the mineral fabric of the claystone, that the mineral fabric did not deflect the palaeofield, and that AF demagnetization did not induce a field-impressed anisotropy during the experiments. Anisotropy of low-field magnetic susceptibility (AMS) is affected by all minerals, and therefore the anisotropy of the magnetite was isolated by measuring anisotropy of anhysteretic remanence (AARM); this is of more relevance in evaluating the potential for palaeofield deflection. Thus, we conclude that LTD preceding AF demagnetization is responsible for improving the isolation of a characteristic remanence, which then favours a late medieval age for the kiln foundation.

  16. Analysis of flow fields, temperatures and ruthenium transport in the test facility

    International Nuclear Information System (INIS)

    Kaerkelae, T.; Pyykoenen, J.; Auvinen, A.; Jokiniemi, J.


    Ruthenium transport experiments were conducted at VTT during years 2002- 2006. Experiments gave information about ruthenium behaviour in air ingress accident conditions. This study complements those experiments with an analysis of the flows and thermal fields in the test system. Temperature profiles were measured at the walls of the experimental facility. Computational fluid dynamics (CFD) simulations used the measured profiles and provided predictions of flows and temperatures inside the furnace. Ruthenium transport was also modelled with CFD. Thermal characterisation of the reactor demonstrated that buoyancy has a significant role during the cooling after the furnace. A hypothesis of the dominant role of RuO2 and RuO3 condensation on reactor walls gave simulation results that are in accordance with radiotracer measurements of deposition in experiments conducted with furnace at 1500K. Actually, RuO3 does not condensate, but it thermal decomposes to RuO2. This does not seem to have effect on result. Particle formation around the furnace exit could be detected from the comparison of modelling results with the measured profiles. In several other experiments ruthenium behaviour is dominated by other issues. These are related to the complex ruthenium chemistry that includes various surface reactions. Thermal equilibrium indicates significant gaseous RuO4 concentration around 1300 K. It seems that seed particles decreased the catalytic decomposition activity of RuO4 to RuO2 around this temperature pushing the gas concentration towards the equilibrium, and further give rise to gaseous RuO4 transport to low temperatures. At higher temperature increasing mass flow rate of RuO2 particles is likely to catalyse (decomposition) reaction of RuO4 to RuO2. (au)

  17. Numerical and experimental determination of surface temperature and moisture evolution in a field soil (United States)

    Akinyemi, Olukayode D.; Mendes, Nathan


    Knowledge about the dynamics of soil moisture and heat, especially at the surface, provides important insights into the physical processes governing their interactions with the atmosphere, thereby improving the understanding of patterns of climate dynamics. In this context the paper presents the numerical and field experimental results of temperature and moisture evolution, which were measured on the surface of a sandy soil at Abeokuta, south-western Nigeria. An unconditionally stable numerical method was used, which linearizes the vapour concentration driving-potential term giving the moisture exchanged at the boundaries in terms of temperature and moisture content, and simultaneously solves the governing equations for each time step. The model avoids stability problems and limitations to low moisture contents and the usual assumption of constant thermal conductivity. Instantaneous temperature measurements were made at the surface using a thermocouple, while the gravimetric method was employed to determine the volumetric water contents at some specific hours of the experimental period. The observed experimental data compared fairly well with the predicted values, with both having correlation coefficients greater than 0.9 and consequently following a common diurnal trend. The sensitivity of the model was very high to the choice of simulation parameters, especially grid size refinement and time step. While the model underestimated the soil moisture content at 6 a.m. and 10 p.m., the measured temperatures were however overestimated. When compared to moisture content, average errors for temperature were low resulting in a minimal absolute difference in amplitude of 0.81 °C.

  18. Respiratory alkalosis and primary hypocapnia in Labrador Retrievers participating in field trials in high-ambient-temperature conditions. (United States)

    Steiss, Janet E; Wright, James C


    To determine whether Labrador Retrievers participating in field trials develop respiratory alkalosis and hypocapnia primarily in conditions of high ambient temperatures. 16 Labrador Retrievers. At each of 5 field trials, 5 to 10 dogs were monitored during a test (retrieval of birds over a variable distance on land [1,076 to 2,200 m]; 36 assessments); ambient temperatures ranged from 2.2 degrees to 29.4 degrees C. For each dog, rectal temperature was measured and a venous blood sample was collected in a heparinized syringe within 5 minutes of test completion. Blood samples were analyzed on site for Hct; pH; sodium, potassium, ionized calcium, glucose, lactate, bicarbonate, and total CO2 concentrations; and values of PvO2 and PvCO2. Scatterplots of each variable versus ambient temperature were reviewed. Regression analysis was used to evaluate the effect of ambient temperature ( 21 degrees C) on each variable. Compared with findings at ambient temperatures 21 degrees C; rectal temperature did not differ. Two dogs developed signs of heat stress in 1 test at an ambient temperature of 29 degrees C; their rectal temperatures were higher and PvCO2 values were lower than findings in other dogs. When running distances frequently encountered at field trials, healthy Labrador Retrievers developed hyperthermia regardless of ambient temperature. Dogs developed respiratory alkalosis and hypocapnia at ambient temperatures > 21 degrees C.

  19. Artificial reproduction of magnetic fields produced by a natural geomagnetic storm increases systolic blood pressure in rats (United States)

    Martínez-Bretón, J. L.; Mendoza, B.; Miranda-Anaya, M.; Durán, P.; Flores-Chávez, P. L.


    The incidence of geomagnetic storms may be associated with changes in circulatory physiology. The way in which the natural variations of the geomagnetic field due to solar activity affects the blood pressure are poorly understood and require further study in controlled experimental designs in animal models. In the present study, we tested whether the systolic arterial pressure (AP) in adult rats is affected by simulated magnetic fields resembling the natural changes of a geomagnetic storm. We exposed adult rats to a linear magnetic profile that simulates the average changes associated to some well-known geomagnetic storm phases: the sudden commencement and principal phase. Magnetic stimulus was provided by a coil inductor and regulated by a microcontroller. The experiments were conducted in the electromagnetically isolated environment of a semi-anechoic chamber. After exposure, AP was determined with a non-invasive method through the pulse on the rat's tail. Animals were used as their own control. Our results indicate that there was no statistically significant effect in AP when the artificial profile was applied, neither in the sudden commencement nor in the principal phases. However, during the experimental period, a natural geomagnetic storm occurred, and we did observe statistically significant AP increase during the sudden commencement phase. Furthermore, when this storm phase was artificially replicated with a non-linear profile, we noticed a 7 to 9 % increase of the rats' AP in relation to a reference value. We suggested that the changes in the geomagnetic field associated with a geomagnetic storm in its first day could produce a measurable and reproducible physiological response in AP.

  20. On the mixing model for calculating the temperature fields in nuclear reactor fuel assemblies

    International Nuclear Information System (INIS)

    Mikhin, V.I.; Zhukov, A.V.


    One of the alternatives of the mixing model applied for calculating temperature fields in nuclear reactor fuel assemblies,including the fuel assemblies with nonequilibrium energy-release in fuel element cross section, is consistently described. The equations for both constant and variable values of coolant density and heat capacity are obtained. The mixing model is based on a set of mass, heat and longitudinal momentum balance equations. This set is closed by the ratios connecting the unknown values for gaps between fuel elements with the averaged values for neighbouring channels. The ratios to close momentum and heat balance equations, explaining, in particular, the nonequivalent heat and mass, momentum and mass transfer coefficients, are suggested. The balance equations with variable coolant density and heat capacity are reduced to the form coinciding with those of the similar equations with constant values of these parameters. Application of one of the main ratios of the mixing model relating the coolant transverse overflow in the gaps between fuel elements to the averaged coolant rates (flow rates) in the neighbouring channels is mainly limited by the coolant stabilized flow in the fuel assemblies with regular symmetrical arrangement of elements. Mass transfer coefficients for these elements are experimentally determined. The ratio in the paper is also applicable for calculation of fuel assembly temperature fields with a small relative shift of elements

  1. Evaluation of mineral-aqueous chemical equilibria of felsic reservoirs with low-medium temperature: A comparative study in Yangbajing geothermal field and Guangdong geothermal fields (United States)

    Li, Jiexiang; Sagoe, Gideon; Yang, Guang; Lu, Guoping


    Classical geothermometers are useful tools for estimating reservoir temperatures of geothermal systems. However, their application to low-medium temperature reservoirs is limited because large variations of temperatures calculated by different classical geothermometers are usually observed. In order to help choose the most appropriate classical geothermometer for calculating the temperatures of low-medium temperature reservoirs, this study evaluated the mineral-aqueous equilibria of typical low-medium temperature felsic reservoirs in the Yangbajing geothermal field and Guangdong geothermal fields. The findings of this study support that reservoirs in the Guangdong geothermal fields have no direct magma influence. Also, natural reservoirs may represent the intermediate steady state before reaching full equilibrium, which rarely occurs. For the low-medium temperature geothermal systems without the influence of magma, even with seawater intrusion, the process of minerals reaching mineral-aqueous equilibrium is sequential: chlorite and chalcedony are the first, then followed by K-feldspar, kaolinite and K-mica. Chlorite may reach equilibrium at varying activity values, and the equilibrium between K-feldspar and kaolinite or K-feldspar and K-mica can fix the contents of K and Al in the solutions. Although the SiO2 and Al attain equilibrium state, albite and laumontite remain unsaturated and thus may affect low-medium temperature calculations. In this study, the chalcedony geothermometer was found to be the most suitable geothermometer for low-medium temperature reservoirs. The results of K-Mg geothermometer may be useful to complement that of the chalcedony geothermometer in low-medium temperature reservoir systems. Na-K geothermometer will give unreliable results at low-medium temperatures; and Na-K-Ca will also be unsuitable to calculate reservoir temperatures lower than 180 °C, probably caused by the chemical imbalance of laumontite.

  2. Modelling high Arctic deep permafrost temperature sensitivity in Northeast Greenland based on experimental and field observations (United States)

    Rasmussen, Laura Helene; Zhang, Wenxin; Hollesen, Jørgen; Cable, Stefanie; Hvidtfeldt Christiansen, Hanne; Jansson, Per-Erik; Elberling, Bo


    Permafrost affected areas in Greenland are expected to experience a marked temperature increase within decades. Most studies have considered near-surface permafrost sensitivity, whereas permafrost temperatures below the depths of zero annual amplitude is less studied despite being closely related to changes in near-surface conditions, such as changes in active layer thermal properties, soil moisture and snow depth. In this study, we measured the sensitivity of thermal conductivity (TC) to gravimetric water content (GWC) in frozen and thawed permafrost sediments from fine-sandy and gravelly deltaic and fine-sandy alluvial deposits in the Zackenberg valley, NE Greenland. We further calibrated a coupled heat and water transfer model, the "CoupModel", for one central delta sediment site with average snow depth and further forced it with meteorology from a nearby delta sediment site with a topographic snow accumulation. With the calibrated model, we simulated deep permafrost thermal dynamics in four 20-year scenarios with changes in surface temperature and active layer (AL) soil moisture: a) 3 °C warming and AL water table at 0.5 m depth; b) 3 °C warming and AL water table at 0.1 m depth; c) 6 °C warming and AL water table at 0.5 m depth and d) 6 °C warming and AL water table at 0.1 m depth. Our results indicate that frozen sediments have higher TC than thawed sediments. All sediments show a positive linear relation between TC and soil moisture when frozen, and a logarithmic one when thawed. Gravelly delta sediments were highly sensitive, but never reached above 12 % GWC, indicating a field effect of water retention capacity. Alluvial sediments are less sensitive to soil moisture than deltaic (fine and coarse) sediments, indicating the importance of unfrozen water in frozen sediment. The deltaic site with snow accumulation had 1 °C higher mean annual ground temperature than the average snow depth site. Permafrost temperature at the depth of 18 m increased with 1

  3. The evolution of the temperature field during cavity collapse in liquid nitromethane. Part I: inert case (United States)

    Michael, L.; Nikiforakis, N.


    This work is concerned with the effect of cavity collapse in non-ideal explosives as a means of controlling their sensitivity. The main objective is to understand the origin of localised temperature peaks (hot spots) which play a leading order role at the early stages of ignition. To this end, we perform two- and three-dimensional numerical simulations of shock-induced single gas-cavity collapse in liquid nitromethane. Ignition is the result of a complex interplay between fluid dynamics and exothermic chemical reaction. In order to understand the relative contribution between these two processes, we consider in this first part of the work the evolution of the physical system in the absence of chemical reactions. We employ a multi-phase mathematical formulation which can account for the large density difference across the gas-liquid material interface without generating spurious temperature peaks. The mathematical and physical models are validated against experimental, analytic, and numerical data. Previous inert studies have identified the impact of the upwind (relative to the direction of the incident shock wave) side of the cavity wall to the downwind one as the main reason for the generation of a hot spot outside of the cavity, something which is also observed in this work. However, it is also apparent that the topology of the temperature field is more complex than previously thought and additional hot spot locations exist, which arise from the generation of Mach stems rather than jet impact. To explain the generation mechanisms and topology of the hot spots, we carefully follow the complex wave patterns generated in the collapse process and identify specifically the temperature elevation or reduction generated by each wave. This enables tracking each hot spot back to its origins. It is shown that the highest hot spot temperatures can be more than twice the post-incident shock temperature of the neat material and can thus lead to ignition. By comparing two

  4. Temperature and magnetic field dependence of the Yosida-Kondo resonance for a single magnetic atom adsorbed on a surface

    International Nuclear Information System (INIS)

    Dino, Wilson Agerico; Kasai, Hideaki; Rodulfo, Emmanuel Tapas; Nishi, Mayuko


    Manifestations of the Kondo effect on an atomic length scale on and around a magnetic atom adsorbed on a nonmagnetic surface differ depending on the spectroscopic mode of operation of the scanning tunneling microscope. Two prominent signatures of the Kondo effect that can be observed at surfaces are the development of a sharp resonance (Yosida-Kondo resonance) at the Fermi level, which broadens with increasing temperature, and the splitting of this sharp resonance upon application of an external magnetic field. Until recently, observing the temperature and magnetic field dependence has been a challenge, because the experimental conditions strongly depend on the system's critical temperature, the so-called Kondo temperature T K . In order to clearly observe the temperature dependence, one needs to choose a system with a large T K . One can thus perform the experiments at temperatures T K . However, because the applied external magnetic field necessary to observe the magnetic field dependence scales with T K , one needs to choose a system with a very small T K . This in turn means that one should perform the experiments at very low temperatures, e.g., in the mK range. Here we discuss the temperature and magnetic field dependence of the Yosida-Kondo resonance for a single magnetic atom on a metal surface, in relation to recent experimental developments

  5. The Simulation of Temperature Field Based on 3D Modeling and Its Comparison versus Measured Temperature Distribution of Daqing Oilfield, NE China (United States)

    Shi, Y.; Jiang, G.; Hu, S.


    Daqing, as the largest oil field of China with more than 50 years of exploration and production history for oil and gas, its geothermal energy utilization was started in 2000, with a main focus on district heating and direct use. In our ongoing study, data from multiple sources are collected, including BHT, DST, steady state temperature measurements in deep wells and thermophysical properties of formations. Based on these measurements, an elaborate investigation of the temperature field of Daqing Oilfield is made. Moreover, through exploration for oil and gas, subsurface geometry, depth, thickness and properties of the stratigraphic layers have been extensively delineated by well logs and seismic profiles. A 3D model of the study area is developed incorporating the information of structure, stratigraphy, basal heat flow, and petrophysical and thermophysical properties of strata. Based on the model, a simulation of the temperature field of Daqing Oilfield is generated. A purely conductive regime is presumed, as demonstrated by measured temperature log in deep wells. Wells W1, W2 and SK2 are used as key wells for model calibration. Among them, SK2, as part of the International Continental Deep Drilling Program, has a designed depth of 6400m, the steady state temperature measurement in the borehole has reached the depth of 4000m. The results of temperature distribution generated from simulation and investigation are compared, in order to evaluate the potential of applying the method to other sedimentary basins with limited borehole temperature measurements but available structural, stratigraphic and thermal regime information.

  6. Field significance of performance measures in the context of regional climate model evaluation. Part 1: temperature (United States)

    Ivanov, Martin; Warrach-Sagi, Kirsten; Wulfmeyer, Volker


    A new approach for rigorous spatial analysis of the downscaling performance of regional climate model (RCM) simulations is introduced. It is based on a multiple comparison of the local tests at the grid cells and is also known as "field" or "global" significance. New performance measures for estimating the added value of downscaled data relative to the large-scale forcing fields are developed. The methodology is exemplarily applied to a standard EURO-CORDEX hindcast simulation with the Weather Research and Forecasting (WRF) model coupled with the land surface model NOAH at 0.11 ∘ grid resolution. Monthly temperature climatology for the 1990-2009 period is analysed for Germany for winter and summer in comparison with high-resolution gridded observations from the German Weather Service. The field significance test controls the proportion of falsely rejected local tests in a meaningful way and is robust to spatial dependence. Hence, the spatial patterns of the statistically significant local tests are also meaningful. We interpret them from a process-oriented perspective. In winter and in most regions in summer, the downscaled distributions are statistically indistinguishable from the observed ones. A systematic cold summer bias occurs in deep river valleys due to overestimated elevations, in coastal areas due probably to enhanced sea breeze circulation, and over large lakes due to the interpolation of water temperatures. Urban areas in concave topography forms have a warm summer bias due to the strong heat islands, not reflected in the observations. WRF-NOAH generates appropriate fine-scale features in the monthly temperature field over regions of complex topography, but over spatially homogeneous areas even small biases can lead to significant deteriorations relative to the driving reanalysis. As the added value of global climate model (GCM)-driven simulations cannot be smaller than this perfect-boundary estimate, this work demonstrates in a rigorous manner the

  7. Estimation of deepwater temperature and hydrogeochemistry of springs in the Takab geothermal field, West Azerbaijan, Iran. (United States)

    Sharifi, Reza; Moore, Farid; Mohammadi, Zargham; Keshavarzi, Behnam


    Chemical analyses of water samples from 19 hot and cold springs are used to characterize Takab geothermal field, west of Iran. The springs are divided into two main groups based on temperature, host rock, total dissolved solids (TDS), and major and minor elements. TDS, electrical conductivity (EC), Cl(-), and SO4 (2-) concentrations of hot springs are all higher than in cold springs. Higher TDS in hot springs probably reflect longer circulation and residence time. The high Si, B, and Sr contents in thermal waters are probably the result of extended water-rock interaction and reflect flow paths and residence time. Binary, ternary, and Giggenbach diagrams were used to understand the deeper mixing conditions and locations of springs in the model system. It is believed that the springs are heated either by mixing of deep geothermal fluid with cold groundwater or low conductive heat flow. Mixing ratios are evaluated using Cl, Na, and B concentrations and a mass balance approach. Calculated quartz and chalcedony geothermometer give lower reservoir temperatures than cation geothermometers. The silica-enthalpy mixing model predicts a subsurface reservoir temperature between 62 and 90 °C. The δ(18)O and δD (δ(2)H) are used to trace and determine the origin and movement of water. Both hot and cold waters plot close to the local meteoric line, indicating local meteoric origin.

  8. Temperature dependence of magnetic anisotropy and magnetostriction: Beyond the mean-field theory

    International Nuclear Information System (INIS)

    Millev, Y.; Faehnle, M.


    The first nonvanishing magnetic anisotropy coefficient is calculated as a function of temperature for any spin quantum number and all temperatures below the Curie temperature for the case of face-centred cubic symmetry within the random-phase approximation (RPA). A detailed and instructive comparison between the mean-field and the RPA predictions is carried out. The RPA magnetization curves are also given for the first time for spins S>1/2. Most of the theoretical considerations are quite general as regard lattice type and even decoupling scheme and can thus be applied straightforwardly to other cases of interest. The progress reported here has been attained with the help of a new simplified and improved parametric approach and of a recent calculation of the average occupation number of magnons within the RPA. In particular, the new approach makes unnecessary the solving of integral equations so that the proposed procedure is especially simple and practically versatile in applications to any particular anisotropic material. (author). Refs, 6 figs

  9. Cooling profiles of laser induced temperature fields for superconducting vanadium nitrate products (United States)

    Emetere, Moses Eterigho


    The flexibility of vanadium nitrate makes it a good constituent for emerging superconductors. Its thermal instability engenders a disordered structure when doped by insulating constituents. The physics of the heat source i.e. the probe laser was theoretical derived to avoid deficiency of the superconducting material at low laser energy density. The mathematical experimentation was accomplished by queering the energy balance and heat conductivity of the individual constituents of the reagent. In-depth analysis of the layered distribution of laser induced temperature fields was carried out by cooling the compound via the forced convective cooling technique to about 150 °C. The material was gradual heated via the laser probe to its superconducting state. The structural defect which explained different state of the thermal outcomes were explained and proven to correspond with experimental outcomes. The temperature distribution under the irradiating laser intensity (0.45 W) shows an effective decay rate probability density function which is peculiar to the concept of photoluminescence. The dynamics of the electronic structure of thermally-excited superconducting materials is hinged on the complementary stoichiometry signatures, thermal properties amongst others. The maximum possible critical temperatures of the inter-layer were calculated to be about 206 K.

  10. Versatile variable temperature and magnetic field scanning probe microscope for advanced material research (United States)

    Jung, Jin-Oh; Choi, Seokhwan; Lee, Yeonghoon; Kim, Jinwoo; Son, Donghyeon; Lee, Jhinhwan


    We have built a variable temperature scanning probe microscope (SPM) that covers 4.6 K-180 K and up to 7 T whose SPM head fits in a 52 mm bore magnet. It features a temperature-controlled sample stage thermally well isolated from the SPM body in good thermal contact with the liquid helium bath. It has a 7-sample-holder storage carousel at liquid helium temperature for systematic studies using multiple samples and field emission targets intended for spin-polarized spectroscopic-imaging scanning tunneling microscopy (STM) study on samples with various compositions and doping conditions. The system is equipped with a UHV sample preparation chamber and mounted on a two-stage vibration isolation system made of a heavy concrete block and a granite table on pneumatic vibration isolators. A quartz resonator (qPlus)-based non-contact atomic force microscope (AFM) sensor is used for simultaneous STM/AFM operation for research on samples with highly insulating properties such as strongly underdoped cuprates and strongly correlated electron systems.

  11. Random-field Ising model: Insight from zero-temperature simulations

    Directory of Open Access Journals (Sweden)

    P.E. Theodorakis


    Full Text Available We enlighten some critical aspects of the three-dimensional (d=3 random-field Ising model (RFIM from simulations performed at zero temperature. We consider two different, in terms of the field distribution, versions of model, namely a Gaussian RFIM and an equal-weight trimodal RFIM. By implementing a computational approach that maps the ground-state of the system to the maximum-flow optimization problem of a network, we employ the most up-to-date version of the push-relabel algorithm and simulate large ensembles of disorder realizations of both models for a broad range of random-field values and systems sizes V=LxLxL, where L denotes linear lattice size and Lmax=156. Using as finite-size measures the sample-to-sample fluctuations of various quantities of physical and technical origin, and the primitive operations of the push-relabel algorithm, we propose, for both types of distributions, estimates of the critical field hmax and the critical exponent ν of the correlation length, the latter clearly suggesting that both models share the same universality class. Additional simulations of the Gaussian RFIM at the best-known value of the critical field provide the magnetic exponent ratio β/ν with high accuracy and clear out the controversial issue of the critical exponent α of the specific heat. Finally, we discuss the infinite-limit size extrapolation of energy- and order-parameter-based noise to signal ratios related to the self-averaging properties of the model, as well as the critical slowing down aspects of the algorithm.

  12. Potential of energy harvesting in barium titanate based laminates from room temperature to cryogenic/high temperatures: measurements and linking phase field and finite element simulations (United States)

    Narita, Fumio; Fox, Marina; Mori, Kotaro; Takeuchi, Hiroki; Kobayashi, Takuya; Omote, Kenji


    This paper studies the energy harvesting characteristics of piezoelectric laminates consisting of barium titanate (BaTiO3) and copper (Cu) from room temperature to cryogenic/high temperatures both experimentally and numerically. First, the output voltages of the piezoelectric BaTiO3/Cu laminates were measured from room temperature to a cryogenic temperature (77 K). The output power was evaluated for various values of load resistance. The results showed that the maximum output power density is approximately 2240 nW cm‑3. The output voltages of the BaTiO3/Cu laminates were also measured from room temperature to a higher temperature (333 K). To discuss the output voltages of the BaTiO3/Cu laminates due to temperature changes, phase field and finite element simulations were combined. A phase field model for grain growth was used to generate grain structures. The phase field model was then employed for BaTiO3 polycrystals, coupled with the time-dependent Ginzburg–Landau theory and the oxygen vacancies diffusion, to calculate the temperature-dependent piezoelectric coefficient and permittivity. Using these properties, the output voltages of the BaTiO3/Cu laminates from room temperature to both 77 K and 333 K were analyzed by three dimensional finite element methods, and the results are presented for several grain sizes and oxygen vacancy densities. It was found that electricity in the BaTiO3 ceramic layer is generated not only through the piezoelectric effect caused by a thermally induced bending stress but also by the temperature dependence of the BaTiO3 piezoelectric coefficient and permittivity.

  13. Optimization of a near-field thermophotovoltaic system operating at low temperature and large vacuum gap (United States)

    Lim, Mikyung; Song, Jaeman; Kim, Jihoon; Lee, Seung S.; Lee, Ikjin; Lee, Bong Jae


    The present work successfully achieves a strong enhancement in performance of a near-field thermophotovoltaic (TPV) system operating at low temperature and large-vacuum-gap width by introducing a hyperbolic-metamaterial (HMM) emitter, multilayered graphene, and an Au-backside reflector. Design variables for the HMM emitter and the multilayered-graphene-covered TPV cell are optimized for maximizing the power output of the near-field TPV system with the genetic algorithm. The near-field TPV system with the optimized configuration results in 24.2 times of enhancement in power output compared with that of the system with a bulk emitter and a bare TPV cell. Through the analysis of the radiative heat transfer together with surface-plasmon-polariton (SPP) dispersion curves, it is found that coupling of SPPs generated from both the HMM emitter and the multilayered-graphene-covered TPV cell plays a key role in a substantial increase in the heat transfer even at a 200-nm vacuum gap. Further, the backside reflector at the bottom of the TPV cell significantly increases not only the conversion efficiency, but also the power output by generating additional polariton modes which can be readily coupled with the existing SPPs of the HMM emitter and the multilayered-graphene-covered TPV cell.

  14. Comparison of higher irradiance and black panel temperature UV backsheet exposures to field performance (United States)

    Felder, Thomas C.; Gambogi, William J.; Phillips, Nancy; MacMaster, Steven W.; Yu, Bao-Ling; Trout, T. John


    The need for faster PV qualification tests that more accurately match field observations is leading to tests with higher acceleration levels, and validating the new tests through comparison to field data is an important step. We have tested and compared a wide panel of backsheets according to a proposed new backsheet UV exposure qualification standard from the International Electrotechnical Commission (IEC). Weathering Technical Standard IEC 62788-7-2 specifies higher irradiance and higher black panel temperature UV Xenon exposures. We tested PVF, PVDF, PET, PA and FEVEbased backsheets in glass laminates and simple backsheet coupons in UV exposure condition A3 (0.8W/sqmnm@340nm and 90° C BPT) We find mild yellowing with no mechanical loss in the original lower intensity ASTM G155 0.55 W/sqm-nm 70C BPT exposure condition. The new A3 exposures creates mechanical loss in sensitive backsheets, with no effect on known durable backsheets. Results from the new exposure are closer to field mechanical loss data.

  15. Numerical analysis of air-flow and temperature field in a passenger car compartment (United States)

    Kamar, Haslinda Mohamed; Kamsah, Nazri; Mohammad Nor, Ahmad Miski


    This paper presents a numerical study on the temperature field inside a passenger's compartment of a Proton Wira saloon car using computational fluid dynamics (CFD) method. The main goal is to investigate the effects of different glazing types applied onto the front and rear windscreens of the car on the distribution of air-temperature inside the passenger compartment in the steady-state conditions. The air-flow condition in the passenger's compartment is also investigated. Fluent CFD software was used to develop a three-dimensional symmetrical model of the passenger's compartment. Simplified representations of the driver and one rear passenger were incorporated into the CFD model of the passenger's compartment. Two types of glazing were considered namely clear insulated laminated tint (CIL) with a shading coefficient of 0.78 and green insulated laminate tint (GIL) with a shading coefficient of 0.5. Results of the CFD analysis were compared with those obtained when the windscreens are made up of clear glass having a shading coefficient of 0.86. Results of the CFD analysis show that for a given glazing material, the temperature of the air around the driver is slightly lower than the air around the rear passenger. Also, the use of GIL glazing material on both the front and rear windscreens significantly reduces the air temperature inside the passenger's compartment of the car. This contributes to a better thermal comfort condition to the occupants. Swirling air flow condition occurs in the passenger compartment. The air-flow intensity and velocity are higher along the side wall of the passenger's compartment compared to that along the middle section of the compartment. It was also found that the use of glazing materials on both the front and rear windscreen has no significant effects on the air-flow condition inside the passenger's compartment of the car.

  16. Temperature dataloggers as stove use monitors (SUMs): Field methods and signal analysis (United States)

    Ruiz-Mercado, Ilse; Canuz, Eduardo; Smith, Kirk R.


    We report the field methodology of a 32-month monitoring study with temperature dataloggers as Stove Use Monitors (SUMs) to quantify usage of biomass cookstoves in 80 households of rural Guatemala. The SUMs were deployed in two stoves types: a well-operating chimney cookstove and the traditional open-cookfire. We recorded a total of 31,112 days from all chimney cookstoves, with a 10% data loss rate. To count meals and determine daily use of the stoves we implemented a peak selection algorithm based on the instantaneous derivatives and the statistical long-term behavior of the stove and ambient temperature signals. Positive peaks with onset and decay slopes exceeding predefined thresholds were identified as “fueling events”, the minimum unit of stove use. Adjacent fueling events detected within a fixed-time window were clustered in single “cooking events” or “meals”. The observed means of the population usage were: 89.4% days in use from all cookstoves and days monitored, 2.44 meals per day and 2.98 fueling events. We found that at this study site a single temperature threshold from the annual distribution of daily ambient temperatures was sufficient to differentiate days of use with 0.97 sensitivity and 0.95 specificity compared to the peak selection algorithm. With adequate placement, standardized data collection protocols and careful data management the SUMs can provide objective stove-use data with resolution, accuracy and level of detail not possible before. The SUMs enable unobtrusive monitoring of stove-use behavior and its systematic evaluation with stove performance parameters of air pollution, fuel consumption and climate-altering emissions. PMID:25225456

  17. The evolution of the temperature field during cavity collapse in liquid nitromethane. Part II: reactive case (United States)

    Michael, L.; Nikiforakis, N.


    two- and three-dimensional simulations to examine the change in topology, temperatures, and reactive strength of the hot spots by the third dimension. It is apparent that belated ignition times can be avoided by the use of three-dimensional simulations. The effect of the chemical reactions on the topology and strength of the hot spots in the timescales considered is also studied, in a comparison between inert and reactive simulations where maximum temperature fields and their growth rates are examined.

  18. Flickering characteristics and temperature field of premixed methane/air flame under the influence of co-flow

    International Nuclear Information System (INIS)

    Fujisawa, Nobuyuki; Abe, Takao; Yamagata, Takayuki; Tomidokoro, Hirofumi


    Highlights: • Flickering characteristics and temperature field of premixed methane/air flame are studied in co-flow. • The temperature is measured by improved flame reaction technique by correcting the number density of metal atoms. • The temperature calibration is conducted by sodium D-line reversal method. • The oscillation amplitude of flame decreases and the frequency increases with co-flow velocity. • The oscillation amplitude increases with equivalence ratio. - Abstract: The flickering characteristics and the temperature field of an axisymmetric premixed methane/air flame under the influence of co-flow are studied experimentally using the image analysis and the flame reaction technique. The premixed flame is visualized by the alkali metal solution of sodium (Na) for characterizing the flickering characteristics. The temperature measurement of the flame is carried out using the flame reaction technique combined with the relationship between the local intensity of the flame and the temperature from the sodium D-line reversal method, and the influence of the number density distribution of Na on the measured temperature field is corrected by the measurement integrated analysis of the flame with the iterative procedure. This technique is validated by the local temperature measurement in the steady flame under the influence of co-flow using the thermocouple calibrated by the sodium D-line reversal method. The flame visualization and temperature measurement in the flickering flame of the premixed methane/air flame indicates that the flame contour and the temperature field oscillate periodically with the flickering frequency due to the Kelvin–Helmholtz instability of the flame. The oscillation amplitude decreases and the frequency increases gradually with the co-flow velocity increases similar to the observation in the diffusion flame in literature, while the oscillation amplitude grows with the equivalence ratio increases. These changes in the flickering

  19. Temperature field due to time-dependent heat sources in a large rectangular grid - Derivation of analytical solution

    Energy Technology Data Exchange (ETDEWEB)

    Claesson, J.; Probert, T. [Lund Univ. (Sweden). Dept. of Building Physics and Mathematical Physics


    The temperature field in rock due to a large rectangular grid of heat releasing canisters containing nuclear waste is studied. The solution is by superposition divided into different parts. There is a global temperature field due to the large rectangular canister area, while a local field accounts for the remaining heat source problem. The global field is reduced to a single integral. The local field is also solved analytically using solutions for a finite line heat source and for an infinite grid of point sources. The local solution is reduced to three parts, each of which depends on two spatial coordinates only. The temperatures at the envelope of a canister are given by a single thermal resistance, which is given by an explicit formula. The results are illustrated by a few numerical examples dealing with the KBS-3 concept for storage of nuclear waste. 8 refs.

  20. Conductance of partially disordered graphene: crossover from temperature-dependent to field-dependent variable-range hopping

    International Nuclear Information System (INIS)

    Cheah, C Y; Jaurigue, L C; Kaiser, A B; Gómez-Navarro, C


    We report an analysis of low-temperature measurements of the conductance of partially disordered reduced graphene oxide, finding that the data follow a simple crossover scenario. At room temperature, the conductance is dominated by two-dimensional (2D) electric field-assisted, thermally driven (Pollak–Riess) variable-range hopping (VRH) through highly disordered regions. However, at lower temperatures T, we find a smooth crossover to follow the exp(−E 0 /E) 1/3 field-driven (Shklovskii) 2D VRH conductance behaviour when the electric field E exceeds a specific crossover value E C (T) 2D =(E a E 0 1/3 /3) 3/4 determined by the scale factors E 0 and E a for the high-field and intermediate-field regimes respectively. Our crossover scenario also accounts well for experimental data reported by other authors for three-dimensional disordered carbon networks, suggesting wide applicability. (paper)

  1. Non-uniform temperature field measurement and simulation of a radio telescope’s main reflector under solar radiation

    International Nuclear Information System (INIS)

    Chen, Deshen; Qian, Hongliang; Wang, Huajie; Zhang, Gang; Fan, Feng; Shen, Shizhao


    Highlights: • Solar non-uniform temperature field test of a telescope’s reflector is conducted initially. • Time-varying distribution regularities are analyzed contrastively. • Simulation methods are proposed involving environmental factors and self-shadowing. • Refined discrimination method for the shadow distribution is put forward. • Validity of simulation methods is evaluated with the experimental data. - Abstract: To improve the ability of deep-space exploration, many astronomers around the world are actively engaged in the construction of large-aperture and high-precision radio telescopes. The temperature effect is one of three main factors affecting the reflector accuracy of radio telescopes. To study the daily non-uniform temperature field of the main reflector, experimental studies are first carried out with a 3-m-aperture radio telescope model. According to the test results for 16 working conditions, the distribution rule and time-varying regularity of the daily temperature field are summarized initially. Next, theoretical methods for the temperature field of the main reflector are studied considering multiple environmental parameters and self-shadows. Finally, the validity of the theoretical methods is evaluated with test results. The experimental study demonstrates that the non-uniform temperature distribution of the main reflector truly exists and should not be overlooked, and that the theoretical methods for the reflector temperature field proposed in this paper are effective. The research methods and conclusions can provide valuable references for thermal design, monitoring and control of similar high-precision radio telescopes.

  2. Temperature and Magnetic Field Driven Modifications in the I-V Features of Gold-DNA-Gold Structure

    Directory of Open Access Journals (Sweden)

    Nadia Mahmoudi Khatir


    Full Text Available The fabrication of Metal-DNA-Metal (MDM structure-based high sensitivity sensors from DNA micro-and nanoarray strands is a key issue in their development. The tunable semiconducting response of DNA in the presence of external electromagnetic and thermal fields is a gift for molecular electronics. The impact of temperatures (25–55 °C and magnetic fields (0–1200 mT on the current-voltage (I-V features of Au-DNA-Au (GDG structures with an optimum gap of 10 μm is reported. The I-V characteristics acquired in the presence and absence of magnetic fields demonstrated the semiconducting diode nature of DNA in GDG structures with high temperature sensitivity. The saturation current in the absence of magnetic field was found to increase sharply with the increase of temperature up to 45 °C and decrease rapidly thereafter. This increase was attributed to the temperature-assisted conversion of double bonds into single bond in DNA structures. Furthermore, the potential barrier height and Richardson constant for all the structures increased steadily with the increase of external magnetic field irrespective of temperature variations. Our observation on magnetic field and temperature sensitivity of I-V response in GDG sandwiches may contribute towards the development of DNA-based magnetic sensors.

  3. Sterilization of liquid foods by pulsed electric fields – an innovative ultra-high temperature process

    Directory of Open Access Journals (Sweden)

    Kai eReineke


    Full Text Available The intention of this study was to investigate the inactivation of endospores by a combined thermal and pulsed electric field (PEF treatment. Therefore, self-cultivated spores of Bacillus subtilis and commercial Geobacillus stearothermophilus spores with certified heat resistance were utilized. Spores of both strains were suspended in saline water (5.3 mS cm-1, skim milk (0.3% fat; 5.3 mS cm-1 and fresh prepared carrot juice (7.73 mS cm-1. The combination of moderate preheating (70-90 °C and an insulated PEF-chamber, combined with a holding tube (65 cm and a heat exchanger for cooling, enabled a rapid heat up to 105-140 °C (measured above the PEF chamber within 92.2-368.9 µs. To compare the PEF process with a pure thermal inactivation, each spore suspension was heat treated in thin glass capillaries and D-values from 90 to 130°C and its corresponding z-values were calculated. For a comparison of the inactivation data, F-values for the temperature fields of both processes were calculated by using Comsol Multiphysics combined with a Matlab routine.A preheating of saline water to 70 °C with a flow rate of 5 l h-1, a frequency of 150 Hz and an energy input of 226.5 kJ kg-1, resulted in a measured outlet temperature of 117 °C and a 4.67 log10 inactivation of Bacillus subtilis. The thermal process with identical F-value caused only a 3.71 log10 inactivation. This synergism of moderate preheating and PEF was even more pronounced for Geobacillus stearothermophilus spores in saline water. A preheating to 95 °C and an energy input of 144 kJ kg-1 resulted in an outlet temperature of 126 °C and a 3.28 log10 inactivation, whereas nearly no inactivation (0.2 log10 was achieved during the thermal treatment.Hence, the PEF technology was evaluated as an alternative ultra-high temperature process. However, for an industrial scale application of this process for sterilization, optimization of the treatment chamber design is needed to reduce the occurring

  4. Numerical simulation of temperature field, microstructure evolution and mechanical properties of HSS during hot stamping

    International Nuclear Information System (INIS)

    Shi, Dongyong; Liu, Wenquan; Ying, Liang; Hu, Ping; Shen, Guozhe


    The hot stamping of boron steels is widely used to produce ultra high strength automobile components without any spring back. The ultra high strength of final products is attributed to the fully martensitic microstructure that is obtained through the simultaneous forming and quenching of the hot blanks after austenization. In the present study, a mathematical model incorporating both heat transfer and the transformation of austenite is presented. A FORTRAN program based on finite element technique has been developed which permits the temperature distribution and microstructure evolution of high strength steel during hot stamping process. Two empirical diffusion-dependent transformation models under isothermal conditions were employed respectively, and the prediction capability on mechanical properties of the models were compared with the hot stamping experiment of an automobile B-pillar part


    Energy Technology Data Exchange (ETDEWEB)

    James A. Sorensen; John Boysen; Deidre Boysen; Tim Larson


    The freeze-thaw/evaporation (FTE{reg_sign}) process treats oil and gas produced water so that the water can be beneficially used. The FTE{reg_sign} process is the coupling of evaporation and freeze-crystallization, and in climates where subfreezing temperatures seasonally occur, this coupling improves process economics compared to evaporation alone. An added benefit of the process is that water of a quality suited for a variety of beneficial uses is produced. The evolution, from concept to successful commercial deployment, of the FTE{reg_sign} process for the treatment of natural gas produced water has now been completed. In this document, the histories of two individual commercial deployments of the FTE{reg_sign} process are discussed. In Wyoming, as in many other states, the permitting and regulation of oil and gas produced water disposal and/or treatment facilities depend upon the legal relationship between owners of the facility and the owners of wells from which the water is produced. An ''owner-operated'' facility is regulated by the Wyoming Oil and Gas Conservation Commission (WOGCC) and is defined as an entity which only processes water which comes from the wells in fields of which they have an equity interest. However, if a facility processes water from wells in which the owners of the facility have no equity interest, the facility is considered a ''commercial'' facility and is permitted and regulated by the Wyoming Department of Environmental Quality. For this reason, of the two commercial FTE{reg_sign} process deployments discussed in this document, one is related to an ''owner-operated'' facility, and the other relates to a ''commercial'' facility. Case 1 summarizes the permitting, design, construction, operation, and performance of the FTE{reg_sign} process at an ''owner-operated'' facility located in the Jonah Field of southwestern Wyoming. This

  6. The effect of different pyrolysis temperatures on the speciation and availability in soil of P in biochar produced from the solid fraction of manure

    DEFF Research Database (Denmark)

    Bruun, Sander; Harmer, Sarah L; Bekiaris, Georgios


    Biochar application to agricultural land has been proposed as a means for improving phosphorus (P) availability in soil. The purpose of the current study was to understand how pyrolysis temperature affects P speciation in biochar and how this affects availability of P in the amended soil. Biochar...... was produced at different temperatures from digestate solids. The primary species of P in digestate solids were simple calcium phosphates. However, a high co-occurrence of magnesium (Mg) and P, indicated that struvite or other magnesium phosphates may also be important species. At low temperatures, pyrolysis...

  7. Material processing of convection-driven flow field and temperature distribution under oblique gravity (United States)

    Hung, R. J.


    A set of mathematical formulation is adopted to study vapor deposition from source materials driven by heat transfer process under normal and oblique directions of gravitational acceleration with extremely low pressure environment of 10(exp -2) mm Hg. A series of time animation of the initiation and development of flow and temperature profiles during the course of vapor deposition has been obtained through the numerical computation. Computations show that the process of vapor deposition has been accomplished by the transfer of vapor through a fairly complicated flow pattern of recirculation under normal direction gravitational acceleration. It is obvious that there is no way to produce a homogeneous thin crystalline films with fine grains under such a complicated flow pattern of recirculation with a non-uniform temperature distribution under normal direction gravitational acceleration. There is no vapor deposition due to a stably stratified medium without convection for reverse normal direction gravitational acceleration. Vapor deposition under oblique direction gravitational acceleration introduces a reduced gravitational acceleration in vertical direction which is favorable to produce a homogeneous thin crystalline films. However, oblique direction gravitational acceleration also induces an unfavorable gravitational acceleration along horizontal direction which is responsible to initiate a complicated flow pattern of recirculation. In other words, it is necessary to carry out vapor deposition under a reduced gravity in the future space shuttle experiments with extremely low pressure environment to process vapor deposition with a homogeneous crystalline films with fine grains. Fluid mechanics simulation can be used as a tool to suggest most optimistic way of experiment with best setup to achieve the goal of processing best nonlinear optical materials.

  8. A non-intrusive method for temperature measurements in flames produced by milligram-sized solid samples (United States)

    Frances, Colleen Elizabeth

    Fires are responsible for the loss of thousands of lives and billions of dollars in property damage each year in the United States. Flame retardants can assist in the prevention of fires through mechanisms which either prevent or greatly inhibit flame spread and development. In this study samples of both brominated and non-brominated polystyrene were tested in the Milligram-scale Flaming Calorimeter and images captured with two DSL-R cameras were analyzed to determine flame temperatures through use of a non-intrusive method. Based on the flame temperature measurement results, a better understanding of the gas phase mechanisms of flame retardants may result, as temperature is an important diagnostic in the study of fire and combustion. Measurements taken at 70% of the total flame height resulted in average maximum temperatures of about 1656 K for polystyrene and about 1614 K for brominated polystyrene, suggesting that the polymer flame retardant may reduce flame temperatures.

  9. Calculations on the development in space and time of the temperature field around a repository of medium and high active wastes in a salt formation

    International Nuclear Information System (INIS)

    Delisle, G.


    The concept of nuclear waste disposal of th of the Federal Republic of Germany calls for the burial of the wastes within a salt formation. A small portion of the wastes will generate heat after the disposal procedure. A temperature rise within the salt formation, in space and time limited, will be the consequence. The temperature change at any point in the near or far field of the disporal area can be calculated with the aid of numerical models. The thermal parameters representative for the bulk material of the Zechstein formation in NW-Germany, on which the calculations are based, will be discussed in detail. The interrelation between the concentration of heat producing wastes in the disposal field and the maximum average temperature in the salt formation will be treated. By defining numerical models, which are based on assumed shapes of a salt dome and a disposal area, the temperature development in the near and far field of a nuclear repository are shown. (orig.) [de

  10. FDTD analysis of temperature elevation in the lens of human and rabbit models due to near-field and far-field exposures at 2.45 GHz

    International Nuclear Information System (INIS)

    Oizumi, T.; Laakso, I.; Hirata, A.; Fujiwara, O.; Watanabe, S.; Taki, M.; Kojima, M.; Sasaki, H.; Sasaki, K.


    The eye is said to be one of the most sensitive organs to microwave heating. According to previous studies, the possibility of microwave-induced cataract formation has been experimentally investigated in rabbit and monkey eyes, but not for the human eye due to ethical reasons. In the present study, the temperature elevation in the lens, the skin around the eye and the core temperature of numerical human and rabbit models for far-field and near-field exposures at 2.45 GHz are investigated. The temperature elevations in the human and rabbit models were compared with the threshold temperatures for inducing cataracts, thermal pain in the skin and reversible health effects such as heat exhaustion or heat stroke. For plane-wave exposure, the core temperature elevation is shown to be essential both in the human and in the rabbit models as suggested in the international guidelines and standards. For localised exposure of the human eye, the temperature elevation of the skin was essential, and the lens temperature did not reach its threshold for thermal pain. On the other hand, the lens temperature elevation was found to be dominant for the rabbit eye. (authors)

  11. Development and application of an empirical formula for the high temperature behavior of ferroelectric ceramics switched by electric field at room temperature

    Directory of Open Access Journals (Sweden)

    Dae Won Ji


    Full Text Available The strain changes during temperature rise of a poled lead titanate zirconate rectangular parallelepiped switched by electric field at room temperature are obtained by integrating thermal expansion coefficients that are measured using an invar-specimen. By estimating and analyzing pyroelectric and thermal expansion coefficients, first-order differential equations are constructed for polarization and strain changes during temperature increase. The solutions to the differential equations are found and used to calculate the high temperature behavior of the materials. It is shown that the predictions are well compared with measured responses. Finally, the developed formulae are applied to calculate strain butterfly loops from a polarization hysteresis loop at a high temperature.

  12. A high temperature superconductor tape RF receiver coil for a low field magnetic resonance imaging system

    International Nuclear Information System (INIS)

    Cheng, M C; Yan, B P; Lee, K H; Ma, Q Y; Yang, E S


    High temperature superconductor (HTS) thin films have been applied in making a low loss RF receiver coil for improving magnetic resonance imaging image quality. However, the application of these coils is severely limited by their limited field of view (FOV). Stringent fabrication environment requirements and high cost are further limitations. In this paper, we propose a simpler method for designing and fabricating HTS coils. Using industrial silver alloy sheathed Bi (2-x) Pb x Sr 2 Ca 2 Cu 3 O 10 (Bi-2223) HTS tapes, a five-inch single-turn HTS solenoid coil has been developed, and human wrist images have been acquired with this coil. The HTS tape coil has demonstrated an enhanced FOV over a six-inch YBCO thin film surface coil at 77 K with comparable signal-to-noise ratio

  13. Unsaturated zone moisture and vapor movement induced by temperature variations in asphalt barrier field lysimeters

    International Nuclear Information System (INIS)

    Holford, D.J.; Fayer, M.J.


    Protective barriers are being considered for use at the Hanford Site to enhance the isolation of radioactive wastes from water, plant, and animal intrusion. Lysimeters were constructed to evaluate the performance of asphalt barrier formulations under natural environmental conditions. These lysimeters were constructed of 1.7-m lengths of PVC pipe that have a diameter of 30 cm. The lysimeters were filled with layers of gravel, coarse sand, and asphalt. The sand and gravel placed under the asphalt barrier were wet when installed. TOUGH was used to conduct simulations to assess the effect of temperature variations on moisture and vapor movement beneath the asphalt layer in field test lysimeters. All variables in TOUGH were converted to double precision so that simulations could be run on a Sun-4 UNIX workstation. A radially symmetric grid was used to simulate the lysimeter. 8 refs., 9 figs

  14. Unusual angular and temperature dependence of the upper critical field in UPt/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Shivaram, B.S.; Rosenbaum, T.F.; Hinks, D.G.


    We report measurements of the upper critical field, H/sub c2/, inclined at various angles with respect to the c-axis in the heavy fermion superconductor UPt/sub 3/. The angular anisotropy observed near T/sub c/ = 0.53K cannot be explained quantitatively by presently available theoretical expressions which consider either isotropic or anisotropic pairing. In addition, we find that the anisotropy apparently disappears at T /approximately/200 mK, only to reemerge at lower temperatures with an opposite sense. We have also studied H/sub c2/ in the basal lane of this hexagonal crystal and find no angular dependence within the limits of our measurements. 15 refs., 4 figs., 1 tab.

  15. Study of Temperature Fields at Sprinkled Smooth and Sandblasted Tube Bundle

    Directory of Open Access Journals (Sweden)

    Kracík Petr


    Full Text Available The paper focuses on the influence of sprinkled tube surface on distribution of temperature fields, i.e. the heat transfer coefficient on the tubes surface. Two types of tubes have been tested, a smooth one and a sandblasted one in particular. A tube bundle comprises of thirteen copper tubes divided into two rows and it is located in a low pressure chamber where vacuum is generated using an exhauster via ejector. The liquid tested was water at an absolute pressure in a chamber in between 97 kPa up to 10 kPa and a thermal gradient 55 to 30 °C. The flow of the falling film liquid ranged between zero and 17 litres per minute.

  16. Characterization of Nivalenol-Producing Fusarium culmorum Isolates Obtained from the Air at a Rice Paddy Field in Korea

    Directory of Open Access Journals (Sweden)

    Da-Woon Kim


    Full Text Available Together with the Fusarium graminearum species complex, F. culmorum is a major member of the causal agents of Fusarium head blight on cereals such as wheat, barley and corn. It causes significant yield and quality losses and results in the contamination of grain with mycotoxins that are harmful to humans and animals. In Korea, F. culmorum is listed as a quarantine fungal species since it has yet to be found in the country. In this paper, we report that two isolates (J1 and J2 of F. culmorum were collected from the air at a rice paddy field in Korea. Species identification was confirmed by phylogenetic analysis using multi-locus sequence data derived from five genes encoding translation elongation factor, histone H3, phosphate permease, a reductase, and an ammonia ligase and by morphological comparison with reference strains. Both diagnostic PCR and chemical analysis confirmed that these F. culmorum isolates had the capacity to produce nivalenol, the trichothecene mycotoxin, in rice substrate. In addition, both isolates were pathogenic on wheat heads and corn stalks. This is the first report on the occurrence of F. culmorum in Korea.

  17. Methodology for high-throughput field phenotyping of canopy temperature using airborne thermography

    Directory of Open Access Journals (Sweden)

    David Matthew Deery


    Full Text Available Lower canopy temperature (CT, resulting from increased stomatal conductance, has been associated with increased yield in wheat. Historically, CT has been measured with hand-held infrared thermometers. Using the hand-held CT method on large field trials is problematic, mostly because measurements are confounded by temporal weather changes during the time requiredto measure all plots. The hand-held CT method is laborious and yet the resulting heritability low, thereby reducing confidence in selection in large scale breeding endeavours.We have developed a reliable and scalable crop phenotyping method for assessing CT in large field experiments. The method involves airborne thermography from a manned helicopter using a radiometrically-calibrated thermal camera. Thermal image data is acquired from large experiments in the order of seconds, thereby enabling simultaneous measurement of CT on potentially 1,000s of plots. Effects of temporal weather variation when phenotyping large experiments using hand-held infrared thermometers are therefore reduced. The method is designed for cost-effective and large-scale use by the non-technical user and includes custom-developed software for data processing to obtain CT data on a single-plot basis for analysis.Broad-sense heritability was routinely greater than 0.50, and as high as 0.79, for airborne thermography CT measured near anthesis on a wheat experiment comprising 768 plots of size 2 x 6 m. Image analysis based on the frequency distribution of temperature pixels to remove the possible influence of background soil did not improve broad-sense heritability. Total imageacquisition and processing time was ca. 25 min and required only one person (excluding the helicopter pilot. The results indicate the potential to phenotype CT on large populations in genetics studies or for selection within a plant breeding program.


    Directory of Open Access Journals (Sweden)

    V. N. Vasilenko


    Full Text Available Summary. Improvement of the theory and methods of calculation of extrusion equipment is a problem whose solution provides the optimal design of its components in order to obtain the desired product quality. As the quality of the extrudate , extrusion machine performance is largely determined by the mode of pre matrix zone worm , article considers the mathematical model of the extrusion process for this particular zone of the extruder. Using co-extrusion will greatly expand the range of multicomponent products , balanced chemical composition and with programmable features. In their manufacture the inner layer is formed from fatvitamin fillings and an outer shell - of the extrusion obtained cereal-based . To ensure the stability of the co-extrusion process forming head channels must be designed so that the pressure generated therein is sufficient to distribute the material and the residence time therein of the extrudate is minimized. Solution of this problem requires an accurate description of the flow of materials in the form of channels . This article contains a mathematical description of the process of co-extrusion feed mixtures in the channel matrix of the extruder. The analytical determination of the distribution of temperature fields in fat-vitamin stuffing. A method for selecting the diameter of the dispensing nozzle to the desired value of the ratio of volumetric flow rates of the extrudate and fillings is proposed. The analysis of the flow of heat-labile non-Newtonian fluids in channels extruder with allowance for dissipative phenomena and nonisothermal is conducted. Analytical determination of the distribution of temperature fields in fat-vitamine filling extrudates was conducted for the sites from the pump outlet to the extruder housing ,in the pre matrix zone and co-extrusion head shape . The resulting mathematical model can be easily adapted to other areas of the extruder.

  19. Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214

    International Nuclear Information System (INIS)

    Yung Moo Huh


    Thermodynamics has been studied systematically for the high temperature cuprate superconductor La 2-x Sr x CuO 4-δ , La-214, in the entire superconductive region from strongly underdoped to strongly overdoped regimes. Magnetization studies with H(parallel)c have been made in order to investigate the changes in free energy of the system as the number of carriers is reduced. Above the superconducting transition temperature, the normal-state magnetization exhibits a two-dimensional Heisenberg antiferromagnetic behavior. Below T c , magnetization data are thermodynamically reversible over large portions of the H-T plane, so the free energy is well defined in these regions. As the Sr concentration is varied over the wide range from 0.060 (strongly underdoped) to 0.234 (strongly overdoped), the free energy change goes through a maximum at the optimum doped in a manner similar to the T c0 vs. x curve. The density of states, N(0), remains nearly constant in the overdoped and optimum doped regimes, taking a broad maximum around x = 0.188, and then drops abruptly towards zero in the underdoped regime. The La 2-x Sr x CuO 4 (La-214) system displays the fluctuating vortex behavior with the characteristic of either 2D or 3D fluctuations as indicated by clearly identifiable crossing points T* close to T c . The dimensional character of the fluctuations depends on both applied magnetic fields and the density of charge carriers. The dimensional crossover from 2D to 3D occurs in the strongly underdoped regime when the c-axis coherence distance ζ c becomes comparable to the spacing between adjacent CuO 2 layers s at sufficiently high magnetic fields near H c2

  20. Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214

    International Nuclear Information System (INIS)

    Finnemore, Douglas K.


    Thermodynamics has been studied systematically for the high temperature cuprate superconductor La 2-x Sr x CuO 4-δ , La-214, in the entire superconductive region from strongly underdoped to strongly overdoped regimes. Magnetization studies with H (parallel) c have been made in order to investigate the changes in free energy of the system as the number of carriers is reduced. Above the superconducting transition temperature, the normal-state magnetization exhibits a two-dimensional Heisenberg antiferromagnetic behavior. Below T c , magnetization data are thermodynamically reversible over large portions of the H-T plane, so the free energy is well defined in these regions. As the Sr concentration is varied over the wide range from 0.060 (strongly underdoped) to 0.234 (strongly overdoped), the free energy change goes through a maximum at the optimum doped in a manner similar to the T c0 vs. x curve. The density of states, N(0), remains nearly constant in the overdoped and optimum doped regimes, taking a broad maximum around x = 0.188, and then drops abruptly towards zero in the underdoped regime. The La 2-x Sr x CuO 4 (La-214) system displays the fluctuating vortex behavior with the characteristic of either 2D or 3D fluctuations as indicated by clearly identifiable crossing points T* close to T c . The dimensional character of the fluctuations depends on both applied magnetic fields and the density of charge carriers. The dimensional crossover from 2D to 3D occurs in the strongly underdoped regime when the c-axis coherence distance ξ c becomes comparable to the spacing between adjacent CuO 2 layers s at sufficiently high magnetic field near H c2

  1. Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214

    Energy Technology Data Exchange (ETDEWEB)

    Finnemore, Douglas K. [Iowa State Univ., Ames, IA (United States)


    Thermodynamics has been studied systematically for the high temperature cuprate superconductor La2-xSrxCuO4-δ, La-214, in the entire superconductive region from strongly underdoped to strongly overdoped regimes. Magnetization studies with H $\\parallel$ c have been made in order to investigate the changes in free energy of the system as the number of carriers is reduced. Above the superconducting transition temperature, the normal-state magnetization exhibits a two-dimensional Heisenberg antiferromagnetic behavior. Below Tc, magnetization data are thermodynamically reversible over large portions of the H-T plane, so the free energy is well defined in these regions. As the Sr concentration is varied over the wide range from 0.060 (strongly underdoped) to 0.234 (strongly overdoped), the free energy change goes through a maximum at the optimum doped in a manner similar to the Tc0 vs. x curve. The density of states, N(0), remains nearly constant in the overdoped and optimum doped regimes, taking a broad maximum around x = 0.188, and then drops abruptly towards zero in the underdoped regime. The La2-xSrxCuO4 (La-214) system displays the fluctuating vortex behavior with the characteristic of either 2D or 3D fluctuations as indicated by clearly identifiable crossing points T* close to Tc. The dimensional character of the fluctuations depends on both applied magnetic fields and the density of charge carriers. The dimensional crossover from 2D to 3D occurs in the strongly underdoped regime when the c-axis coherence distance ξc becomes comparable to the spacing between adjacent CuO2 layers s at sufficiently high magnetic field near Hc2.

  2. Methodology for High-Throughput Field Phenotyping of Canopy Temperature Using Airborne Thermography (United States)

    Deery, David M.; Rebetzke, Greg J.; Jimenez-Berni, Jose A.; James, Richard A.; Condon, Anthony G.; Bovill, William D.; Hutchinson, Paul; Scarrow, Jamie; Davy, Robert; Furbank, Robert T.


    Lower canopy temperature (CT), resulting from increased stomatal conductance, has been associated with increased yield in wheat. Historically, CT has been measured with hand-held infrared thermometers. Using the hand-held CT method on large field trials is problematic, mostly because measurements are confounded by temporal weather changes during the time required to measure all plots. The hand-held CT method is laborious and yet the resulting heritability low, thereby reducing confidence in selection in large scale breeding endeavors. We have developed a reliable and scalable crop phenotyping method for assessing CT in large field experiments. The method involves airborne thermography from a manned helicopter using a radiometrically-calibrated thermal camera. Thermal image data is acquired from large experiments in the order of seconds, thereby enabling simultaneous measurement of CT on potentially 1000s of plots. Effects of temporal weather variation when phenotyping large experiments using hand-held infrared thermometers are therefore reduced. The method is designed for cost-effective and large-scale use by the non-technical user and includes custom-developed software for data processing to obtain CT data on a single-plot basis for analysis. Broad-sense heritability was routinely >0.50, and as high as 0.79, for airborne thermography CT measured near anthesis on a wheat experiment comprising 768 plots of size 2 × 6 m. Image analysis based on the frequency distribution of temperature pixels to remove the possible influence of background soil did not improve broad-sense heritability. Total image acquisition and processing time was ca. 25 min and required only one person (excluding the helicopter pilot). The results indicate the potential to phenotype CT on large populations in genetics studies or for selection within a plant breeding program. PMID:27999580

  3. Comparison between two methods to evaluate temperature changes produced by composite light curing units and polymerization techniques. (United States)

    Loureiro, F H F; Consani, S; Guiraldo, R D; Consani, R L X; Berger, S B; Carvalho, R V; Correr-Sobrinho, L; Sinhoreti, M A C


    This study evaluated the temperature change into the pulp chamber during the light curing of composite resin by direct (bovine tooth) and indirect (matrix) methods. Direct method: fifty standardized cavities (2x2x2 mm) were prepared in bovine incisors, which were randomly assigned to evaluation of the temperature changes in the pulp chamber. Indirect method: temperature changes were evaluated through a dentine slice of 1.0 mm thickness in a elastomer cubic mold (2x2x2 mm). Filtek Z250 composite resin (3M/ESPE) was photo-activated using three light curing units: quartz-tungsten-halogen (QTH) by continuous, soft-start or intermittent light modulations; light emitting diode (LED); and plasma arc-curing (PAC). Ten groups (N.=10) were established according to technique evaluation and photo-activation methods. All experiments were carried out in a controlled environment (37 °C and 50 ± 10% relative humidity). The temperature changes were recorded using a digital thermometer attached to a type-K thermocouple in contact with the dentin slice (indirect method) or in contact with the axial wall (dentin) of pulp chamber (direct method). The results were submitted to ANOVA and Tukey's test (α=0.05). Temperature changes were statistically higher for the matrix indirect method (2.56 ºC) than bovine teeth direct method (1.17ºC). The change temperature was statistically higher for the PAC (1.77 ºC) when compared to other photo-activation modes in bovine teeth direct method. The two methods of temperature evaluation were different, however indirect method detected the higher temperature increase. Higher energy density arising from the light curing units and polymerization techniques promoted higher temperature increase.

  4. Calculation of Distribution Dynamics of Inhomogeneous Temperature Field in Range of Fuel Elements by Using FreeFem++ (United States)

    Amosova, E. V.; Shishkin, A. V.


    This article introduces the result of studying the heat exchange in the fuel element of the nuclear reactor fuel magazine. Fuel assemblies are completed as a bundle of cylindrical fuel elements located at the tops of a regular triangle. Uneven distribution of fuel rods in a nuclear reactor’s core forms the inhomogeneity of temperature fields. This article describes the developed method for heat exchange calculation with the account for impact of an inhomogeneous temperature field on the thermal-physical properties of materials and unsteady effects. The acquired calculation results are used for evaluating the tolerable temperature levels in protective case materials.

  5. Numerical simulation of temperature field in K9 glass irradiated by ultraviolet pulse laser (United States)

    Wang, Xi; Fang, Xiaodong


    The optical component of photoelectric system was easy to be damaged by irradiation of high power pulse laser, so the effect of high power pulse laser irradiation on K9 glass was researched. A thermodynamic model of K9 glass irradiated by ultraviolet pulse laser was established using the finite element software ANSYS. The article analyzed some key problems in simulation process of ultraviolet pulse laser damage of K9 glass based on ANSYS from the finite element models foundation, meshing, loading of pulse laser, setting initial conditions and boundary conditions and setting the thermal physical parameters of material. The finite element method (FEM) model was established and a numerical analysis was performed to calculate temperature field in K9 glass irradiated by ultraviolet pulse laser. The simulation results showed that the temperature of irradiation area exceeded the melting point of K9 glass, while the incident laser energy was low. The thermal damage dominated in the damage mechanism of K9 glass, the melting phenomenon should be much more distinct.

  6. Analysis of temperature field in the Banderas Bay Region between June 2009 to June 2012 (United States)

    Carrillo-Gonzalez, F. M.; Cornejo-Lopez, V. M.; Morales-Hernández, J. C.


    We present the spatial and temporary analysis of temperature fields monitored hourly and monthly throughout the year in the Banderas Bay region between the period June 2009 to June 2011. The study area is the atmospheric basin of Banderas Bay, between of Puerto Vallarta Jal. and Puerto Vallarta New Nay., in 20.66381 N,-105.20574W. The data used was obtained from the Atmospheric Monitoring Network in the Banderas Bay region, which comprises of at least 10 automatic weather stations distributed heterogeneously throughout the study area, which provide data on major meteorological variables at 10 minute intervals. It has been observed that the behavior throughout the year of major weather variables are determined by local processes (valley and breeze circulation) primarily and macro-scale phenomena (presence of the North Pacific anticyclone and trade winds). Greater thermal amplitude in the mountain regions of the River Ameca Valley, compared to coastal zones, with the latter influenced by the sea surface temperature. We registered small heat islands in urbane areas, which gives background information for future studies on pollution, health, prevention of natural disasters etc.

  7. Fall field crickets did not acclimate to simulated seasonal changes in temperature. (United States)

    Niehaus, Amanda C; Wilson, Robbie S; Storm, Jonathan J; Angilletta, Michael J


    In nature, many organisms alter their developmental trajectory in response to environmental variation. However, studies of thermal acclimation have historically involved stable, unrealistic thermal treatments. In our study, we incorporated ecologically relevant treatments to examine the effects of environmental stochasticity on the thermal acclimation of the fall field cricket (Gryllus pennsylvanicus). We raised crickets for 5 weeks at either a constant temperature (25°C) or at one of three thermal regimes mimicking a seasonal decline in temperature (from 25 to 12°C). The latter three treatments differed in their level of thermal stochasticity: crickets experienced either no diel cycle, a predictable diel cycle, or an unpredictable diel cycle. Following these treatments, we measured several traits considered relevant to survival or reproduction, including growth rate, jumping velocity, feeding rate, metabolic rate, and cold tolerance. Contrary to our predictions, the acclimatory responses of crickets were unrelated to the magnitude or type of thermal variation. Furthermore, acclimation of performance was not ubiquitous among traits. We recommend additional studies of acclimation in fluctuating environments to assess the generality of these findings.

  8. Response of perennial woody plants to seed treatment by electromagnetic field and low-temperature plasma. (United States)

    Mildaziene, Vida; Pauzaite, Giedre; Malakauskiene, Asta; Zukiene, Rasa; Nauciene, Zita; Filatova, Irina; Azharonok, Viktor; Lyushkevich, Veronika


    Radiofrequency (5.28 MHz) electromagnetic radiation and low-temperature plasma were applied as short-term (2-15 min) seed treatments to two perennial woody plant species, including Smirnov's rhododendron (Rhododendron smirnowii Trautv.) and black mulberry (Morus nigra L.). Potential effects were evaluated using germination indices and morphometry. The results suggest that treatment with electromagnetic field stimulated germination of freshly harvested R. smirnowii seeds (increased germination percentage up to 70%), but reduced germination of fresh M. nigra seeds (by 24%). Treatment with low-temperature plasma negatively affected germination for R. smirnowii, and positively for M. nigra. The treatment-induced changes in germination depended on seed dormancy state. Longer-term observations revealed that the effects persisted for more than a year; however, even negative effects on germination came out as positive effects on plant morphometric traits over time. Treatments characterized as distressful based on changes in germination and seedling length increased growth of R. smirnowii after 13 months. Specific changes included stem and root branching, as well as increased leaf count and surface area. These findings imply that longer-term patterns of response to seed stressors may be complex, and therefore, commonly used stressor-effects estimates, such as germination rate or seedling morphology, may be insufficient for qualifying stress response. Bioelectromagnetics. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Temperature field measurement research in high-speed diesel engine using laser induced fluorescence technology (United States)

    Liu, Yongfeng; Zhang, You-tong; Gou, Chenhua; Tian, Hongsen


    Temperature laser- induced- fluorescence (LIF) 2-D imaging measurements using a new multi-spectral detection strategy are reported for high pressure flames in high-speed diesel engine. Schematic of the experimental set-up is outlined and the experimental data on the diesel engine is summarized. Experiment injection system is a third generation Bosch high-pressure common rail featuring a maximum pressure of 160 MPa. The injector is equipped with a six-hole nozzle, where each hole has a diameter of 0.124 mm. and slightly offset (by 1.0 mm) to the center of the cylinder axis to allow a better cooling of the narrow bridge between the exhaust valves. The measurement system includes a blower, which supplied the intake flow rate, and a prototype single-valve direct injection diesel engine head modified to lay down the swirled-type injector. 14-bit digital CCD cameras are employed to achieve a greater level of accuracy in comparison to the results of previous measurements. The temperature field spatial distributions in the cylinder for different crank angle degrees are carried out in a single direct-injection diesel engine.

  10. 2D temperature field measurement in a direct-injection engine using LIF technology (United States)

    Liu, Yongfeng; Tian, Hongsen; Yang, Jianwei; Sun, Jianmin; Zhu, Aihua


    A new multi-spectral detection strategy for temperature laser- induced- fluorescence (LIF) 2-D imaging measurements is reported for high pressure flames in high-speed diesel engine. Schematic of the experimental set-up is outlined and the experimental data on the diesel engine is summarized. Experiment injection system is a third generation Bosch high-pressure common rail featuring a maximum pressure of 160MPa. The injector is equipped with a six-hole nozzle, where each hole has a diameter of 0.124 mm. and slightly offset to the center of the cylinder axis to allow a better cooling of the narrow bridge between the exhaust valves. The measurement system includes a blower, which supplied the intake flow rate, and a prototype single-valve direct injection diesel engine head modified to lay down the swirled-type injector. 14-bit digital CCD cameras are employed to achieve a greater level of accuracy in comparison to the results of previous measurements. The temperature field spatial distributions in the cylinder for different crank angle degrees are carried out in a single direct-injection diesel engine.

  11. Improved instrumentation for intensity-, wavelength-, temperature-, and magnetic field-resolved photoconductivity spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cottingham, Patrick, E-mail: [Department of Chemistry, University of Southern California, 3620 McClintock Avenue, Los Angeles, CA 90089 (United States); Morey, Jennifer R. [Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 (United States); Institute for Quantum Matter, Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 (United States); Lemire, Amanda [SPF Technologies, 390 Medford St., Somerville, MA 02145 (United States); Lemire, Penny [Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 (United States); McQueen, Tyrel M. [Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 (United States); Institute for Quantum Matter, Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 (United States); Department of Materials Science and Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 (United States)


    We report instrumentation for photovoltage and photocurrent spectroscopy over a larger continuous range of wavelengths, temperatures, and applied magnetic fields than other instruments described in the literature: 350 nm≤λ≤1700 nm, 1.8 K≤T≤300 K, and B≤9 T. This instrument uses a modulated monochromated incoherent light source with total power<30 μW in combination with an LED in order to probe selected regions of non-linear responses while maintaining low temperatures and avoiding thermal artifacts. The instrument may also be used to measure a related property, the photomagnetoresistance. We demonstrate the importance of normalizing measured responses for variations in light power and describe a rigorous process for performing these normalizations. We discuss several circuits suited to measuring different types of samples and provide analysis for converting measured values into physically relevant properties. Uniform approaches to measurement of these photoproperties are essential for reliable quantitative comparisons between emerging new materials with energy applications. - Highlights: • A novel instrument for measuring photoconductivity and photocurrents of materials and devices. • Continuous parameter space: 350 nm≤λ≤1700, 1.8 K≤T≤300 K, and B≤9 T. • Methodology for treating non-linear responses and variable lamp intensity. • Mathematical detail for extracting properties of materials from measured values is provided.

  12. Modeling of thermoelectric module operation in inhomogeneous transient temperature field using finite element method

    Directory of Open Access Journals (Sweden)

    Nikolić Radovan H.


    Full Text Available This paper is the result of research and operation modeling of the new systems for cooling of cutting tools based on thermoelectric module. A copper inlay with thermoelectric module on the back side was added to a standard turning tool for metal processing. For modeling and simulating the operation of thermoelectric module, finite element method was used as a method for successful solving the problems of inhomogeneous transient temperature field on the cutting tip of lathe knives. Developed mathematical model is implemented in the software package PAK-T through which numerical results are obtained. Experimental research was done in different conditions of thermoelectric module operation. Cooling of the hot module side was done by a heat exchanger based on fluid using automatic temperature regulator. After the calculation is done, numerical results are in good agreement with experimental. It can be concluded that developed mathematical model can be used successfully for modeling of cooling of cutting tools. [Projekat Ministarstva nauke Republike Srbije, br. TR32036


    Directory of Open Access Journals (Sweden)

    Andreev Vladimir Igorevich


    Full Text Available The authors consider the central symmetric problem of the theory of elasticity of inhomogeneous bodies for thick-walled spheres exposed to the external pressure in a stationary temperature field. The essence of the inverse problem lies in the identification of such dependence of the elastic modulus on the radius whereby the stress state of the sphere is the same as the pre-set one. Maximal stresses in thick-walled shells exposed to internal or external pressures occur in the proximity to the internal contour. Thus, destruction in this area is initiated upon the achievement of the limit state, while the rest of the shell is underused. The essence of the problem solved in the paper is the following. The problems are solved using the simultaneous exposure to forces and temperature loads.The two theories of strength are considered at once: a maximum normal stress theory and a maximum shear stress theory. It is proven that according to the first theory maximum stresses in an inhomogeneous shell are 1.35 times smaller than those in the homogeneous shell. The stress reduction rate equals to 2.5, if the maximum shear stress theory is employed. Thus, the introduction of artificial inhomogeneity leads to the optimization of shells by reducing their thickness or increasing loads.

  14. Relative fragmentation in ternary systems within the temperature-dependent relativistic mean-field approach (United States)

    Kannan, M. T. Senthil; Kumar, Bharat; Balasubramaniam, M.; Agrawal, B. K.; Patra, S. K.


    For the first time, we apply the temperature-dependent relativistic mean-field (TRMF) model to study the ternary fragmentation of heavy nuclei using the level density approach. The relative fragmentation probability of a particular fragment is obtained by evaluating the convolution integrals that employ the excitation energy and the level density parameter for a given temperature calculated within the TRMF formalism. To illustrate, we have considered the ternary fragmentations in 252Cf, 242Pu, and 236U with a fixed third fragment A3=48Ca , 20O, and 16O, respectively. The relative fragmentation probabilities are studied for the temperatures T =1 , 2, and 3 MeV. For the comparison, the relative fragmentation probabilities are also calculated from the single-particle energies of the finite range droplet model (FRDM). In general, the larger phase space for the ternary fragmentation is observed indicating that such fragmentations are most probable ones. For T =2 and 3 MeV, Sn +Ni +Ca is the most probable combination for the nucleus 252Cf. However, for the nuclei 242Pu and 236U, the maximum fragmentation probabilities at T =2 MeV differ from those at T =3 MeV. For T =3 MeV, the closed shell (Z =8 ) light-mass fragment with its corresponding partners has larger scission point probabilities. But, at T =2 MeV, Si, P, and S are favorable fragments with the corresponding partners. It is noticed that the symmetric binary fragmentation along with the fixed third fragment for 242Pu and 236U is also favored at T =1 MeV.

  15. Full Scale Field Trial of the Low Temperature Mercury Capture Process

    Energy Technology Data Exchange (ETDEWEB)

    Locke, James [CONSOL Energy Inc., South Park, PA (United States); Winschel, Richard [CONSOL Energy Inc., South Park, PA (United States)


    CONSOL Energy Inc., with partial funding from the Department of Energy (DOE) National Energy Technology Laboratory, designed a full-scale installation for a field trial of the Low-Temperature Mercury Control (LTMC) process, which has the ability to reduce mercury emissions from coal-fired power plants by over 90 percent, by cooling flue gas temperatures to approximately 230°F and absorbing the mercury on the native carbon in the fly ash, as was recently demonstrated by CONSOL R&D on a slip-stream pilot plant at the Allegheny Energy Mitchell Station with partial support by DOE. LTMC has the potential to remove over 90 percent of the flue gas mercury at a cost at least an order of magnitude lower (on a $/lb mercury removed basis) than activated carbon injection. The technology is suitable for retrofitting to existing and new plants, and, although it is best suited to bituminous coal-fired plants, it may have some applicability to the full range of coal types. Installation plans were altered and moved from the original project host site, PPL Martins Creek plant, to a second host site at Allegheny Energy's R. Paul Smith plant, before installation actually occurred at the Jamestown (New York) Board of Public Utilities (BPU) Samuel A. Carlson (Carlson) Municipal Generating Station Unit 12, where the LTMC system was operated on a limited basis. At Carlson, over 60% mercury removal was demonstrated by cooling the flue gas to 220-230°F at the ESP inlet via humidification. The host unit ESP operation was unaffected by the humidification and performed satisfactorily at low temperature conditions.

  16. Temperature-field measurements of a premixed butane/air circular impinging-flame using reference-beam interferometry

    International Nuclear Information System (INIS)

    Qi, J.A.; Leung, C.W.; Wong, W.O.; Probert, S.D.


    Reference-beam interferometry (RBI) was applied to study the axisymmetric temperature fields of a small-scale, low Reynolds-number, low-pressure and fuel-rich premixed butane/air circular-flame jet, when it was impinging vertically upwards onto a horizontal copper plate. By maintaining a Reynolds number, Re, of 500 and an equivalence ratio, φ, of 1.8, interferograms of the impinging-flame jet were obtained for various nozzle-to-plate-distances. Temperature fields of the flame were then determined using the inverse Abel transformation from the obtained interferograms. Temperatures at several locations were measured experimentally with a T-type thermocouple: they were used as a reference to help in the determination as well as the validation. In the present study, a non-contact method has been successfully developed to measure the temperature fields of a circular impinging gas-fired flame jet

  17. Temperature dependent piezoelectric response and strain-electric-field hysteresis of rare-earth modified bismuth ferrite ceramics

    DEFF Research Database (Denmark)

    Walker, Julian; Ursic, Hana; Bencan, Andreja


    The rare-earth (RE)-modified bismuth ferrite (BiFeO3 or BFO) family of ferroelectrics have uncomplicated lead-free chemistries and simple perovskite structures. Due to the high Curie transition temperature of the parent BiFeO3 perovskite (similar to 830 °C), they are promising piezoelectric...... materials for use at elevated temperatures. However, the influence of the specific RE species on the electromechanical behavior at high temperatures and above the coercive electric-field is not widely reported. Here, structural analysis over multiple length scales using X-ray diffraction, transmission......, there are qualitative differences in the field-induced strain and electric current behavior as a function of electric-field cycling and the materials exhibit an electrical-history dependent behavior. Bi0.91Dy0.09FeO3 possesses an improved d33 stability as a function of temperature relative to the parent BFO perovskite...

  18. Field and temperature scaling of the critical current density in commercial REBCO coated conductors

    CERN Document Server

    Senatore, Carmine; Bonura, Marco; Kulich, Miloslav; Mondonico, Giorgio


    Scaling relations describing the electromagnetic behaviour of coated conductors (CCs) greatly simplify the design of REBCO-based devices. The performance of REBCO CCs is strongly influenced by fabrication route, conductor architecture and materials, and these parameters vary from one manufacturer to the others. In the present work we have examined the critical surface for the current density, Jc(T,B,θ ), of coated conductors from six different manufacturers: American Superconductor Co. (US), Bruker HTS GmbH (Germany), Fujikura Ltd. (Japan), SuNAM Co. Ltd. (Korea), SuperOx ZAO (Russia) and SuperPower Inc. (US). Electrical transport and magnetic measurements were performed at temperatures between 4.2 K and 77 K and in magnetic field up to 19 T. Experiments were conducted at three different orientations of the field with respect to the crystallographic c-axis of the REBCO layer, θ = 0deg , 45deg and 90deg , in order to probe the angular anisotropy of Jc. In spite of the large variability of CCs performance, ...

  19. Reversible and irreversible temperature-induced changes in exchange-biased planar Hall effect bridge (PHEB) magnetic field sensors

    DEFF Research Database (Denmark)

    Rizzi, G.; Lundtoft, N.C.; Østerberg, F.W.


    We investigate the changes of planar Hall effect bridge magnetic field sensors upon exposure to temperatures between 25° C and 90°C. From analyses of the sensor response vs. magnetic fields we extract the exchange bias field Hex, the uniaxial anisotropy field HK and the anisotropic...... magnetoresistance (AMR) of the exchange biased thin film at a given temperature and by comparing measurements carried out at elevated temperatures T with measurements carried out at 25° C after exposure to T, we can separate the reversible from the irreversible changes of the sensor. The results are not only...... relevant for sensor applications but also demonstrate the method as a useful tool for characterizing exchange-biased thin films....

  20. Effect of polarization Coulomb field scattering on low temperature electron mobility in strained AlGaN/AlN/GaN heterostructure field-effect transistors (United States)

    Liu, Yan; Lin, Zhao-Jun; Yang, Ming; Luan, Chong-Biao; Wang, Yu-Tang; Lv, Yuan-Jie; Feng, Zhi-Hong


    The electron mobility of the AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) with the ratio of the gate length to the drain-to-source distance being less than 1/2 has been studied in the temperature range 100 ˜ 300 K. The measured electron mobility at each testing temperature is obtained by using the capacitance-voltage (C-V) and current-voltage (I-V) characteristics measured at the corresponding temperature, and the theoretically calculated temperature-dependent electron mobility is determined by Matthiessen’s law, which includes five kinds of important scattering mechanisms. For the prepared sample, the measured electron mobility with respect to the two-dimensional electron gas (2DEG) density was observed to increase to a peak point first and then decrease at each testing temperature. By comparing the measured electron mobility with the theoretically calculated value, the changing trend of the electron mobility at each testing temperature was found to be mainly determined by polarization Coulomb field (PCF) scattering. Particularly at lower temperature, PCF scattering plays a more significant role in the changing trend of the electron mobility.