WorldWideScience

Sample records for temperature distribution characteristic

  1. Emission characteristics and axial flame temperature distribution of producer gas fired premixed burner

    Energy Technology Data Exchange (ETDEWEB)

    Bhoi, P.R. [Department of Mechanical Engineering, L and T-Sargent and Lundy Limited, L and T Energy Centre, Near Chhani Jakat Naka, Baroda 390 002 (India); Channiwala, S.A. [Department of Mechanical Engineering, Sardar Vallabhbhai National Institute of Technology, Deemed University, Ichchhanath, Surat 395 007, Gujarat (India)

    2009-03-15

    This paper presents the emission characteristics and axial flame temperature distribution of producer gas fired premixed burner. The producer gas fired premixed burner of 150 kW capacity was tested on open core throat less down draft gasifier system in the present study. A stable and uniform flame was observed with this burner. An instrumented test set up was developed to evaluate the performance of the burner. The conventional bluff body having blockage ratio of 0.65 was used for flame stabilization. With respect to maximum flame temperature, minimum pressure drop and minimum emissions, a swirl angle of 60 seems to be optimal. The experimental results also showed that the NO{sub x} emissions are inversely proportional to swirl angle and CO emissions are independent of swirl angle. The minimum emission levels of CO and NO{sub x} are observed to be 0.167% and 384 ppm respectively at the swirl angle of 45-60 . The experimental results showed that the maximum axial flame temperature distribution was achieved at A/F ratio of 1.0. The adiabatic flame temperature of 1653 C was calculated theoretically at A/F ratio of 1.0. Experimental results are in tune with theoretical results. It was also concluded that the CO and UHC emissions decreases with increasing A/F ratio while NO{sub x} emissions decreases on either side of A/F ratio of 1.0. (author)

  2. Distributed temperature and distributed acoustic sensing for remote and harsh environments

    Science.gov (United States)

    Mondanos, Michael; Parker, Tom; Milne, Craig H.; Yeo, Jackson; Coleman, Thomas; Farhadiroushan, Mahmoud

    2015-05-01

    Advances in opto-electronics and associated signal processing have enabled the development of Distributed Acoustic and Temperature Sensors. Unlike systems relying on discrete optical sensors a distributed system does not rely upon manufactured sensors but utilises passive custom optical fibre cables resistant to harsh environments, including high temperature applications (600°C). The principle of distributed sensing is well known from the distributed temperature sensor (DTS) which uses the interaction of the source light with thermal vibrations (Raman scattering) to determine the temperature at all points along the fibre. Distributed Acoustic Sensing (DAS) uses a novel digital optical detection technique to precisely capture the true full acoustic field (amplitude, frequency and phase) over a wide dynamic range at every point simultaneously. A number of signal processing techniques have been developed to process a large array of acoustic signals to quantify the coherent temporal and spatial characteristics of the acoustic waves. Predominantly these systems have been developed for the oil and gas industry to assist reservoir engineers in optimising the well lifetime. Nowadays these systems find a wide variety of applications as integrity monitoring tools in process vessels, storage tanks and piping systems offering the operator tools to schedule maintenance programs and maximize service life.

  3. Inverter sizing of grid-connected photovoltaic systems in the light of local solar resource distribution characteristics and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Bruno [Fraunhofer-Institute for Solar Energy Systems ISE, Department of Electrical Energy Systems, Heidenhofstr. 2, 79110 Freiburg (Germany); Ruether, Ricardo [LABSOLAR-Laboratorio de Energia Solar, LabEEE-Laboratorio de Eficiencia Energetica em Edificacoes, Universidade Federal de Santa Catarina/UFSC, Caixa Postal 476, Florianopolis-SC 88040-900 (Brazil)

    2006-01-15

    Inverter sizing strategies for grid-connected photovoltaic (PV) systems often do not take into account site-dependent peculiarities of ambient temperature, inverter operating temperature and solar irradiation distribution characteristics. The operating temperature affects PV modules and inverters in different ways and PV systems will hardly ever have a DC output equal to or above their STC-rated nominal power. Inverters are usually sized with a nominal AC output power some 30% (sometimes even more) below the PV array nominal power. In this paper, we show that this practice might lead to considerable energy losses, especially in the case of PV technologies with high temperature coefficients of power operating at sites with cold climates and of PV technologies with low temperature coefficients of power operating at sites with warm climates and an energy distribution of sunlight shifted to higher irradiation levels. In energy markets where PV kWh are paid premium tariffs, like in Germany, energy yield optimization might result in a favorable payback of the extra capital invested in a larger inverter. This paper discusses how the time resolution of solar radiation data influences the correct sizing of PV plants. We demonstrate that using instant (10s) irradiation values instead of average hourly irradiation values leads to considerable differences in optimum inverter sizing. When calculating inverter yearly efficiency values using both, hourly averages and 1-min averages, we can show that with increased time resolution of solar irradiation data there are higher calculated losses due to inverter undersizing. This reveals that hourly averages hide important irradiation peaks that need to be considered. We performed these calculations for data sets from pyranometer readings from Freiburg (48{sup o}N, Germany) and Florianopolis (27{sup o}S, Brazil) to further show the peculiarities of the site-dependent distribution of irradiation levels and its effects on inverter sizing

  4. Effects of temperature distribution on boundary layer stability for a circular cone at Mach 10

    Science.gov (United States)

    Rigney, Jeffrey M.

    A CFD analysis was conducted on a circular cone at 3 degrees angle of attack at Mach 10 using US3D and STABL 3D to determine the effect of wall temperature on the stability characteristics that lead to laminar-to-turbulent transition. Wall temperature distributions were manipulated while all other flow inputs and geometric qualities were held constant. Laminar-to-turbulent transition was analyzed for isothermal and adiabatic wall conditions, a simulated short-duration wind tunnel case, and several hot-nose temperature distributions. For this study, stability characteristics include maximum N-factor growth and the corresponding frequency range, disturbance spatial amplification rate and the corresponding modal frequency, and stability neutral point location. STABL 3D analysis indicates that temperature distributions typical of those in short-duration hypersonic wind tunnels do not result in any significant difference on the stability characteristics, as compared to an isothermal wall boundary condition. Hypothetical distributions of much greater temperatures at and past the nose tip do show a trend of dampening of second-mode disturbances, most notably on the leeward ray. The most pronounced differences existed between the isothermal and adiabatic cases.

  5. Measurement of the temperature distribution inside the power cable using distributed temperature system

    Science.gov (United States)

    Jaros, Jakub; Liner, Andrej; Papes, Martin; Vasinek, Vladimir; Mach, Veleslav; Hruby, David; Kajnar, Tomas; Perecar, Frantisek

    2015-01-01

    Nowadays, the power cables are manufactured to fulfill the following condition - the highest allowable temperature of the cable during normal operation and the maximum allowable temperature at short circuit conditions cannot exceed the condition of the maximum allowable internal temperature. The distribution of the electric current through the conductor leads to the increase of the amplitude of electrons in the crystal lattice of the cables material. The consequence of this phenomenon is the increase of friction and the increase of collisions between particles inside the material, which causes the temperature increase of the carrying elements. The temperature increase is unwanted phenomena, because it is causing losses. In extreme cases, the long-term overload leads to the cable damaging or fire. This paper deals with the temperature distribution measurement inside the power cables using distributed temperature system. With cooperation with Kabex company, the tube containing optical fibers was installed into the center of power cables. These fibers, except telecommunications purposes, can be also used as sensors in measurements carrying out with distributed temperature system. These systems use the optical fiber as a sensor and allow the continual measurement of the temperature along the whole cable in real time with spatial resolution 1 m. DTS systems are successfully deployed in temperature measurement applications in industry areas yet. These areas include construction, drainage, hot water etc. Their advantages are low cost, resistance to electromagnetic radiation and the possibility of real time monitoring at the distance of 8 km. The location of the optical fiber in the center of the power cable allows the measurement of internal distribution of the temperature during overloading the cable. This measurement method can be also used for prediction of short-circuit and its exact location.

  6. Spatiotemporal distribution characteristics and attribution of extreme regional low temperature event

    International Nuclear Information System (INIS)

    Feng Tai-Chen; Zhang Ke-Quan; Wang Xiao-Juan; Zhang Wen-Yu; Su Hai-Jing; Gong Zhi-Qiang

    2015-01-01

    Based on an objective identification technique for regional low temperature event (OITRLTE), the daily minimum temperature in China has been detected from 1960 to 2013. During this period, there were 60 regional extreme low temperature events (ERLTEs), which are included in the 690 regional low temperature events (RLTEs). The 60 ERLTEs are analyzed in this paper. The results show that in the last 50 years, the intensity of the ERLTEs has become weak; the number of lasted days has decreased; and, the affected area has become small. However, that situation has changed in this century. In terms of spatial distribution, the high intensity regions are mainly in Northern China while the high frequency regions concentrate in Central and Eastern China. According to the affected area of each event, the 60 ERLTEs are classified into six types. The atmospheric circulation background fields which correspond to these types are also analyzed. The results show that, influenced by stronger blocking highs of Ural and Lake Baikal, as well as stronger southward polar vortex and East Asia major trough at 500-hPa geopotential height, cold air from high latitudes is guided to move southward and abnormal northerly winds at 850 hPa makes the cold air blow into China along diverse paths, thereby forming different types of regional extreme low temperatures in winter. (paper)

  7. Reconstruction of core inlet temperature distribution by cold leg temperature measurements

    International Nuclear Information System (INIS)

    Saarinen, S.; Antila, M.

    2010-01-01

    The reduced core of Loviisa NPP contains 33 thermocouple measurements measuring the core inlet temperature. Currently, these thermocouple measurements are not used in determining the inlet temperature distribution. The average of cold leg temperature measurements is used as inlet temperature for each fuel assembly. In practice, the inlet temperature distribution is not constant. Thus, using a constant inlet temperature distribution induces asymmetries in the measured core power distribution. Using a more realistic inlet temperature distribution would help us to reduce virtual asymmetries of the core power distribution and increase the thermal margins of the core. The thermocouples at the inlet cannot be used directly to measure the inlet temperature accurately because the calibration of the thermocouples that is done at hot zero power conditions is no longer valid at full power, when there is temperature change across the core region. This is due to the effect of neutron irradiation on the Seebeck coefficient of the thermocouple wires. Therefore, we investigate in this paper a method to determine the inlet temperature distribution based on the cold leg temperature measurements. With this method we rely on the assumption that although the core inlet thermocouple measurements do not measure the absolute temperature accurately they do measure temperature changes with sufficient accuracy particularly in big disturbances. During the yearly testing of steam generator safety valves we observe a large temperature increase up to 12 degrees in the cold leg temperature. The change in the temperature of one of the cold legs causes a local disturbance in the core inlet temperature distribution. Using the temperature changes observed in the inlet thermocouple measurements we are able to fit six core inlet temperature response functions, one for each cold leg. The value of a function at an assembly inlet is determined only by the corresponding cold leg temperature disturbance

  8. Statistical modeling of urban air temperature distributions under different synoptic conditions

    Science.gov (United States)

    Beck, Christoph; Breitner, Susanne; Cyrys, Josef; Hald, Cornelius; Hartz, Uwe; Jacobeit, Jucundus; Richter, Katja; Schneider, Alexandra; Wolf, Kathrin

    2015-04-01

    Within urban areas air temperature may vary distinctly between different locations. These intra-urban air temperature variations partly reach magnitudes that are relevant with respect to human thermal comfort. Therefore and furthermore taking into account potential interrelations with other health related environmental factors (e.g. air quality) it is important to estimate spatial patterns of intra-urban air temperature distributions that may be incorporated into urban planning processes. In this contribution we present an approach to estimate spatial temperature distributions in the urban area of Augsburg (Germany) by means of statistical modeling. At 36 locations in the urban area of Augsburg air temperatures are measured with high temporal resolution (4 min.) since December 2012. These 36 locations represent different typical urban land use characteristics in terms of varying percentage coverages of different land cover categories (e.g. impervious, built-up, vegetated). Percentage coverages of these land cover categories have been extracted from different sources (Open Street Map, European Urban Atlas, Urban Morphological Zones) for regular grids of varying size (50, 100, 200 meter horizonal resolution) for the urban area of Augsburg. It is well known from numerous studies that land use characteristics have a distinct influence on air temperature and as well other climatic variables at a certain location. Therefore air temperatures at the 36 locations are modeled utilizing land use characteristics (percentage coverages of land cover categories) as predictor variables in Stepwise Multiple Regression models and in Random Forest based model approaches. After model evaluation via cross-validation appropriate statistical models are applied to gridded land use data to derive spatial urban air temperature distributions. Varying models are tested and applied for different seasons and times of the day and also for different synoptic conditions (e.g. clear and calm

  9. Temperature Characteristics of Monolithically Integrated Wavelength-Selectable Light Sources

    International Nuclear Information System (INIS)

    Han Liang-Shun; Zhu Hong-Liang; Zhang Can; Ma Li; Liang Song; Wang Wei

    2013-01-01

    The temperature characteristics of monolithically integrated wavelength-selectable light sources are experimentally investigated. The wavelength-selectable light sources consist of four distributed feedback (DFB) lasers, a multimode interferometer coupler, and a semiconductor optical amplifier. The oscillating wavelength of the DFB laser could be modulated by adjusting the device operating temperature. A wavelength range covering over 8.0nm is obtained with stable single-mode operation by selecting the appropriate laser and chip temperature. The thermal crosstalk caused by the lateral heat spreading between lasers operating simultaneously is evaluated by oscillating-wavelength shift. The thermal crosstalk approximately decreases exponentially as the increasing distance between lasers

  10. Spatiotemporal distribution characteristics and attribution of extreme regional low temperature event

    Science.gov (United States)

    Feng, Tai-Chen; Zhang, Ke-Quan; Su, Hai-Jing; Wang, Xiao-Juan; Gong, Zhi-Qiang; Zhang, Wen-Yu

    2015-10-01

    Based on an objective identification technique for regional low temperature event (OITRLTE), the daily minimum temperature in China has been detected from 1960 to 2013. During this period, there were 60 regional extreme low temperature events (ERLTEs), which are included in the 690 regional low temperature events (RLTEs). The 60 ERLTEs are analyzed in this paper. The results show that in the last 50 years, the intensity of the ERLTEs has become weak; the number of lasted days has decreased; and, the affected area has become small. However, that situation has changed in this century. In terms of spatial distribution, the high intensity regions are mainly in Northern China while the high frequency regions concentrate in Central and Eastern China. According to the affected area of each event, the 60 ERLTEs are classified into six types. The atmospheric circulation background fields which correspond to these types are also analyzed. The results show that, influenced by stronger blocking highs of Ural and Lake Baikal, as well as stronger southward polar vortex and East Asia major trough at 500-hPa geopotential height, cold air from high latitudes is guided to move southward and abnormal northerly winds at 850 hPa makes the cold air blow into China along diverse paths, thereby forming different types of regional extreme low temperatures in winter. Project supported by the National Natural Science Foundation of China (Grant No. 41305075), the National Basic Research Program of China (Grant Nos. 2012CB955203 and 2012CB955902), and the Special Scientific Research on Public Welfare Industry, China (Grant No. GYHY201306049).

  11. Modelling of temperature distribution and pulsations in fast reactor units

    International Nuclear Information System (INIS)

    Ushakov, P.A.; Sorokin, A.P.

    1994-01-01

    Reasons for the occurrence of thermal stresses in reactor units have been analyzed. The main reasons for this analysis are: temperature non-uniformity at the output of reactor core and breeder and the ensuing temperature pulsation; temperature pulsations due to mixing of sodium jets of a different temperature; temperature nonuniformity and pulsations resulting from the part of loops (circuits) un-plug; temperature nonuniformity and fluctuations in transient and accidental shut down of reactor or transfer to cooling by natural circulation. The results of investigating the thermal hydraulic characteristics are obtained by modelling the processes mentioned above. Analysis carried out allows the main lines of investigation to be defined and conclusions can be drawn regarding the problem of temperature distribution and fluctuation in fast reactor units

  12. A study on plastic strain accumulation caused by traveling of temperature distribution synchronizing with temperature rise

    International Nuclear Information System (INIS)

    Okajima, Satoshi

    2016-01-01

    The prevention of excessive deformation by thermal ratcheting is important in the design of high-temperature components of fast breeder reactors (FBR). This includes evaluation methods for a new type of thermal ratcheting caused by an axial traveling of temperature distribution, which corresponds to moving-up of liquid sodium surface in startup phase. Long range traveling of the axial temperature distribution brings flat plastic deformation profile in wide range. Therefore, at the center of this range, residual stress that brings shakedown behavior does not accumulate. As a result, repeating of this temperature traveling brings continuous accumulation of the plastic strain, even if there is no primary stress. In contrast, in the case with short range traveling, residual stress is caused by constraint against elastic part, and finally it results in shakedown. Because of this mechanism, we supposed that limit for the shakedown behavior depends on distance from the elastic part (i.e. half length of region with plastic deformation). In this paper, we examined characteristics of the accumulation of the plastic strain caused by realistic heat transients, namely, traveling of temperature distribution synchronizing with temperature rise. This examination was based on finite element analyses using elastic-perfectly plastic material. As a result, we confirmed that the shakedown limit depends not on the traveling range of the temperature distribution but the plastic deformation range, which was predicted by the elastic analysis. In the actual application, we can control the plastic deformation range by changing rate of the moving-up of liquid sodium surface. (author)

  13. Airflow characteristics and pollution distribution around a thermal manikin - Impact of specific personal and indoor environmental factors

    DEFF Research Database (Denmark)

    Licina, Dusan; Tham, Kwok Wai; Melikov, Arsen Krikor

    2016-01-01

    , and ventilation flow considerably affected airflow characteristics and pollution distribution around the thermal manikin. Under the specific set of conditions studied, the most favorable airflow patterns in preventing the feet pollution from reaching the breathing zone was transverse flow from the front......This study presents a summary of experimental measurements on the airflow characteristics and pollution distribution around a non-breathing thermal manikin. The two objectives are: (1) to examine the extent to which personal (body posture, clothing insulation, table positioning) and environmental...... factors (room air temperature and ventilation flow) affect the airflow characteristic (velocity and temperature) around the thermal manikin and (2) to examine the pollution distribution within the convective boundary layer (CBL) around a thermal manikin and personal exposure to two types of airborne...

  14. Mathematical model of temperature field distribution in thin plates during polishing with a free abrasive

    Directory of Open Access Journals (Sweden)

    Avilov Alex

    2017-01-01

    Full Text Available The purpose of this paper is to estimate the dynamic characteristics of the heating process of thin plates during polishing with a free abrasive. A mathematical model of the temperature field distribution in space and time according to the plate thickness is based on Lagrange equation of the second kind in the thermodynamics of irreversible processes (variation principle Bio. The research results of thermo elasticity of thin plates (membranes will allow to correct the modes of polishing with a free abrasive to receive the exact reflecting surfaces of satellites reflector, to increase temperature stability and the ability of radio signal reflection, satellite precision guidance. Calculations of temperature fields in thin plates of different thicknesses (membranes is held in the Excel, a graphical characteristics of temperature fields in thin plates (membranes show non-linearity of temperature distribution according to the thickness of thin plates (membranes.

  15. Current-voltage temperature characteristics of Au/n-Ge (1 0 0) Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Chawanda, Albert, E-mail: albert.chawanda@up.ac.za [Midlands State University, Bag 9055 Gweru (Zimbabwe); University of Pretoria, 0002 Pretoria (South Africa); Mtangi, Wilbert; Auret, Francois D; Nel, Jacqueline [University of Pretoria, 0002 Pretoria (South Africa); Nyamhere, Cloud [Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Diale, Mmantsae [University of Pretoria, 0002 Pretoria (South Africa)

    2012-05-15

    The variation in electrical characteristics of Au/n-Ge (1 0 0) Schottky contacts have been systematically investigated as a function of temperature using current-voltage (I-V) measurements in the temperature range 140-300 K. The I-V characteristics of the diodes indicate very strong temperature dependence. While the ideality factor n decreases, the zero-bias Schottky barrier height (SBH) ({Phi}{sub B}) increases with the increasing temperature. The I-V characteristics are analyzed using the thermionic emission (TE) model and the assumption of a Gaussian distribution of the barrier heights due to barrier inhomogeneities at the metal-semiconductor interface. The zero-bias barrier height {Phi}{sub B} vs. 1/2 kT plot has been used to show the evidence of a Gaussian distribution of barrier heights and values of {Phi}{sub B}=0.615 eV and standard deviation {sigma}{sub s0}=0.0858 eV for the mean barrier height and zero-bias standard deviation have been obtained from this plot, respectively. The Richardson constant and the mean barrier height from the modified Richardson plot were obtained as 1.37 A cm{sup -2} K{sup -2} and 0.639 eV, respectively. This Richardson constant is much smaller than the reported of 50 A cm{sup -2} K{sup -2}. This may be due to greater inhomogeneities at the interface.

  16. Distribution of temperature coefficient density for muons in the atmosphere

    Directory of Open Access Journals (Sweden)

    Kuzmenko V.S.

    2017-12-01

    Full Text Available To date, several dozens of new muon detectors have been built. When studying cosmic-ray intensity variations with these detectors, located deep in the atmosphere, it is necessary to calculate all characteristics, including the distribution of temperature coefficient density for muons in the atmosphere, taking into account their specific geometry. For this purpose, we calculate the density of temperature coefficients of muon intensity in the atmosphere at various zenith angles of detection at sea level and at various depths underground for different absorption ranges of primary protons and pions in the atmosphere.

  17. Temperature distributions in 136 superficial radiothermotherapies

    International Nuclear Information System (INIS)

    Willich, N.; Duve, S.; Pfluger, T.; Bachmeier, K.

    1992-01-01

    Temperature distributions from 136 superficial radiothermotherapies in patients were analysed and three-dimensionally reconstructed. The calculation of mean values and standard deviations of the temperature measuring probes considering water bolus temperature, master probe temperature, site of the probes relatively to different applicator positions and site of the probes in the heated tissues yielded satisfactory temperature distributions for chest wall treatment in contrast to other regions of the body. Radiothermotherapy was statistically not superior to radiotherapy alone with respect to local tumor control. (authors)

  18. Airflow and Temperature Distribution in Rooms with Displacement Ventilation

    DEFF Research Database (Denmark)

    Jacobsen, T. V.

    This thesis deals with air flow and temperature distribution in a room ventilated by the displacement principle. The characteristic features of the ventilation system are treated in the whole room but main emphasis is laid on the analysis of the stratified flow region in front of the inlet device....... After a prefatory description of the background and the fundamentals of displacement ventilation the objectives of the current study are specified. The subsequent sections describe the measurements of velocity and temperature profiles carried out in a full scale test room. Based on experimental data...... of measured data is of crucial importance. Qualitatively satisfactory results do not ensure quantitative agreement....

  19. Trap density of states in n-channel organic transistors: variable temperature characteristics and band transport

    International Nuclear Information System (INIS)

    Cho, Joung-min; Akiyama, Yuto; Kakinuma, Tomoyuki; Mori, Takehiko

    2013-01-01

    We have investigated trap density of states (trap DOS) in n-channel organic field-effect transistors based on N,N ’-bis(cyclohexyl)naphthalene diimide (Cy-NDI) and dimethyldicyanoquinonediimine (DMDCNQI). A new method is proposed to extract trap DOS from the Arrhenius plot of the temperature-dependent transconductance. Double exponential trap DOS are observed, in which Cy-NDI has considerable deep states, by contrast, DMDCNQI has substantial tail states. In addition, numerical simulation of the transistor characteristics has been conducted by assuming an exponential trap distribution and the interface approximation. Temperature dependence of transfer characteristics are well reproduced only using several parameters, and the trap DOS obtained from the simulated characteristics are in good agreement with the assumed trap DOS, indicating that our analysis is self-consistent. Although the experimentally obtained Meyer-Neldel temperature is related to the trap distribution width, the simulation satisfies the Meyer-Neldel rule only very phenomenologically. The simulation also reveals that the subthreshold swing is not always a good indicator of the total trap amount, because it also largely depends on the trap distribution width. Finally, band transport is explored from the simulation having a small number of traps. A crossing point of the transfer curves and negative activation energy above a certain gate voltage are observed in the simulated characteristics, where the critical V G above which band transport is realized is determined by the sum of the trapped and free charge states below the conduction band edge

  20. Distributed temperature sensor testing in liquid sodium

    Energy Technology Data Exchange (ETDEWEB)

    Gerardi, Craig, E-mail: cgerardi@anl.gov; Bremer, Nathan; Lisowski, Darius; Lomperski, Stephen

    2017-02-15

    Highlights: • Distributed temperature sensors measured high-resolution liquid-sodium temperatures. • DTSs worked well up to 400 °C. • A single DTS simultaneously detected sodium level and temperature. - Abstract: Rayleigh-backscatter-based distributed fiber optic sensors were immersed in sodium to obtain high-resolution liquid-sodium temperature measurements. Distributed temperature sensors (DTSs) functioned well up to 400 °C in a liquid sodium environment. The DTSs measured sodium column temperature and the temperature of a complex geometrical pattern that leveraged the flexibility of fiber optics. A single Ø 360 μm OD sensor registered dozens of temperatures along a length of over one meter at 100 Hz. We also demonstrated the capability to use a single DTS to simultaneously detect thermal interfaces (e.g. sodium level) and measure temperature.

  1. Temperature distributions of a conductively heated filament

    International Nuclear Information System (INIS)

    Tamura, Koji; Ohba, Hironori; Shibata, Takemasa

    1999-07-01

    Temperature distributions of a heated filament were measured. A W-Re(5%) filament (0.25 mm in diameter, 24.7 mm in length) was conductively heated by currents between 5A and 7A with a DC power supply, and the surface of the filament was imaged with a charge coupled device (CCD) camera through a monochromatic filter. The spectral radiation intensity at the filament center region was almost uniform. Since the temperature distribution was also uniform and the energy loss by thermal conduction was negligible, temperature in this region was determined from the energy balance between applied power and radiation loss. Temperature distribution of the filament was determined based on the Planck's law of radiation from the spectral radiation intensity ratio of the filament surface using obtained temperature as a reference. It was found that temperature distribution of a filament was easily measured by this method. (author)

  2. Estimations of distribution and zoning for air temperature using satellite data over Liaoning province, China

    International Nuclear Information System (INIS)

    Wang, X.; Horiguchi, I.; Takeda, T.; Yazawa, M.; Liu, X.; Yang, Y.; Wang, Q.

    1999-01-01

    The distribution and zoning of air temperature over Liaoning Province, China were examined using the calculated values of air temperature derived from satellite data (GMS data) as well as from altitude data. The results are summarized as follows. At 02:00 LST the correlation coefficients for the air temperatures calculated from altitude compared with the observed air temperatures were the same as those of the air temperatures derived from GMS data. At 14:00 LST, however, the correlation coefficients for air temperatures calculated from altitude were less than those of the air temperatures derived from GMS data. This fact verifies that the distribution of air temperature in the day-time is affected by other factors than altitude. The distribution of air temperature in a cell of approximately 5'(latitude) x 7.5'(longitude) over Liaoning Province, china was estimated by using the regression equations between surface temperature derived from GMS and the observed air temperature. The distribution of air temperature was classified into 5 types, and the types are obtained at 14:00 LST are seasonal ones but the types at 02:00 LST are not related to season. Also, the regional classification for the air temperature was examined using this distribution of air temperature. This regional classification for the air temperature was similar to the published zoning of the agricultural climate. It became clear that the characteristic distribution of air temperature in a cell unit can be obtained by satellite data. And it is possible to define the zoning of air temperature for a cell unit by the accumulated analyses of satellite data over an extended period

  3. Unstable Temperature Distribution in Friction Stir Welding

    Directory of Open Access Journals (Sweden)

    Sadiq Aziz Hussein

    2014-01-01

    Full Text Available In the friction stir welding process, a nonuniform and high generated temperature is undesirable. Unstable temperature and distribution affect thermal and residual stresses along the welding line, thus necessitating mitigation. This paper presents a simple method to prevent significant temperature difference along the welding line and also to help nullifying some defect types associated with this welding, such as end-hole, initial unwelded line, and deformed areas. In the experimental investigation, a heat and force thermocouple and dynamometer were utilized while couple-field thermomechanical models were used to evaluate temperature and its distribution, plastic strain, and material displacement. The suggested method generated uniform temperature distributions. Measurement results are discussed, showing a good correlation with predictions.

  4. Flow-Field Characteristics of High-Temperature Annular Buoyant Jets and Their Development Laws Influenced by Ventilation System

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2013-01-01

    Full Text Available The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and velocity field characteristics with different pressures at the exhaust hood inlet. The results showed that when the ratio of outer diameter to inner diameter of the annulus was smaller than 5/2, the flow-field characteristics had significant difference compared to circular buoyant jets with the same outer diameter. For similar diameter ratios, reattachment in this paper occurred further downstream in contrast to previous study. Besides, the development laws of volumetric flow rate and cross-section diameter were given with different initial parameters. In addition, through analyzing air distribution characteristics under the coupling effect of high-temperature annular buoyant jets and ventilation system, it could be found that the position where maximum axial velocity occurred was changing gradually when the pressure at the exhaust hood inlet changed from 0 Pa to −5 Pa.

  5. Flow-field characteristics of high-temperature annular buoyant jets and their development laws influenced by ventilation system.

    Science.gov (United States)

    Wang, Yi; Huang, Yanqiu; Liu, Jiaping; Wang, Hai; Liu, Qiuhan

    2013-01-01

    The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and velocity field characteristics with different pressures at the exhaust hood inlet. The results showed that when the ratio of outer diameter to inner diameter of the annulus was smaller than 5/2, the flow-field characteristics had significant difference compared to circular buoyant jets with the same outer diameter. For similar diameter ratios, reattachment in this paper occurred further downstream in contrast to previous study. Besides, the development laws of volumetric flow rate and cross-section diameter were given with different initial parameters. In addition, through analyzing air distribution characteristics under the coupling effect of high-temperature annular buoyant jets and ventilation system, it could be found that the position where maximum axial velocity occurred was changing gradually when the pressure at the exhaust hood inlet changed from 0 Pa to -5 Pa.

  6. Research on the characteristics of temperature field of asphalt pavement in seasonal frozen region

    International Nuclear Information System (INIS)

    Qiao, Jiangang; Liu, Weizheng

    2014-01-01

    The characteristics of climate in seasonal frozen area are low temperature and a large range of temperature variation between day and night in winter. These characteristics often lead to problems of asphalt pavement, especially transverse cracks. To reduce the problems of asphalt pavement, it is necessary to examine the distribution of the temperature range of asphalt pavement. A three-dimensional finite element model was used, taking the SMA asphalt pavement as an example with solid70 and plane55 unit features of ANSYS software. It can obtain the relationship between temperature gradient and time and the relationship between temperature gradient and depth. In addition, a function relation model of stress and time was also established. It can provide a theoretical basis for the prevention and treatment of problems of asphalt pavement in seasonal frozen area. Moreover, it has an important significance for improving asphalt pavement design

  7. A Study of Land Surface Temperature Retrieval and Thermal Environment Distribution Based on Landsat-8 in Jinan City

    Science.gov (United States)

    Dong, Fang; Chen, Jian; Yang, Fan

    2018-01-01

    Based on the medium resolution Landsat 8 OLI/TIRS, the temperature distribution in four seasons of urban area in Jinan City was obtained by using atmospheric correction method for the retrieval of land surface temperature. Quantitative analysis of the spatio-temporal distribution characteristics, development trend of urban thermal environment, the seasonal variation and the relationship between surface temperature and normalized difference vegetation index (NDVI) was studied. The results show that the distribution of high temperature areas is concentrated in Jinan, and there is a tendency to expand from east to west, revealing a negative correlation between land surface temperature distribution and NDVI. So as to provide theoretical references and scientific basis of improving the ecological environment of Jinan City, strengthening scientific planning and making overall plan addressing climate change.

  8. Distributed temperature sensor testing in liquid sodium

    Energy Technology Data Exchange (ETDEWEB)

    Gerardi, Craig; Bremer, Nathan; Lisowski, Darius; Lomperski, Stephen

    2017-02-01

    Rayleigh-backscatter-based distributed fiber optic sensors were immersed in sodium to obtain high-resolution liquid-sodium temperature measurements. Distributed temperature sensors (DTSs) functioned well up to 400°C in a liquid sodium environment. The DTSs measured sodium column temperature and the temperature of a complex geometrical pattern that leveraged the flexibility of fiber optics. A single Ø 360 lm OD sensor registered dozens of temperatures along a length of over one meter at 100 Hz. We also demonstrated the capability to use a single DTS to simultaneously detect thermal interfaces (e.g. sodium level) and measure temperature.

  9. Temperature distribution in spouted bed and heat transfer

    International Nuclear Information System (INIS)

    Takeda, Hiroshi; Yamamoto, Yutaka

    1976-01-01

    Temperature distribution in spouted bed was measured by using brass and graphite spouted beds so as to investigate heat transfer characteristic of spouted bed applied to an apparatus of PyC coating. These spouted beds are batch type and are spouted by air or nitrogen gas of room temperature, and the outer wall of beds are heated by nichrome or graphite heater. Particles used for experiments are alumina spherical particles and the diameter is 0.80 -- 1.12 mm. Temperature condition is in the range of 400 -- 1,400 0 C. In the neighborhood of 400 0 C, the spouting condition is stable, while the spouting condition becomes unstable in the case of above 1,000 0 C. This is caused by abrupt temperature increase of spouting gas. It was found that heat transfer coefficient h sub(w) of our low temperature experiments was closer to the calculated from Malek et al.'s equation, h sub(p) of our experiments was several times greater than the calculated from Uemaki et al.'s equation. On the other hand, h sub(p) of high temperature experiments was compared with an experimental relation for convective heat transfer of fluidized bed, it was found that Nu sub(p) of our experiments was nearly equal to or greater than the calculated from the relation, this would be caused by radiant heat transfer. (auth.)

  10. Temperature Distribution of the Ionospheric Plasma at F Layer

    Directory of Open Access Journals (Sweden)

    Hwang-Jae Rhee

    1997-12-01

    Full Text Available Langmuir probe was housed in the sounding rocket to test the probe's performance and to find the environmental parameters at the F layer of the ionosphere. The gold plated cylindrical probe had a length of 14§¯ and a diameter of 0.096 §¯. The applied voltage to the probe consisted of 0.9 sec fixed positive bias followed by 0.1 sec of down/up sweep. This ensured that the probe swept through the probe's current-voltage characteristic at least once during 1 second quiescent periods enabling the electron temperature to be measured during the undisturbed times of the flight. The experimental results showed good agreement of the temperature distribution with IRI model at the lower F layer. In the upper layer, the experimental temperatures were 100-200K lower than the IRI model's because of the different geomagnetic conditions: averaged conditions were used in IRI model and specific conditions were reflected in the experiment.

  11. CFD investigating the effects of different operating conditions on the performance and the characteristics of a high-temperature PEMFC

    International Nuclear Information System (INIS)

    Su, A.; Ferng, Y.M.; Shih, J.C.

    2010-01-01

    The effects of different operating conditions on the performance and the characteristics of a high-temperature proton exchange membrane fuel cell (PEMFC) are investigated using a three-dimensional (3-D) computational fluid dynamics (CFD) fuel-cell model. This model consists of the thermal-hydraulic equations and the electrochemical equations. Different operating conditions studied in this paper include the inlet gas temperature, system pressure, and inlet gas flow rate, respectively. Corresponding experiments are also carried out to assess the accuracy of this CFD model. Under the different operating conditions, the PEMFC performance curves predicted by the model correspond well with the experimentally measured ones. The performance of PEMFC is improved as the increase in the inlet temperature, system pressure or flow rate, which is precisely captured by the CFD fuel cell model. In addition, the concentration polarization caused by the insufficient supply of fuel gas can be also simulated as the high-temperature PEMFC is operated at the higher current density. Based on the calculation results, the localized thermal-hydraulic characteristics within a PEMFC can be reasonably captured. These characteristics include the fuel gas distribution, temperature variation, liquid water saturation distribution, and membrane conductivity, etc.

  12. Distribution of barrier heights in Au/porous GaAs Schottky diodes from current-voltage-temperature measurements

    International Nuclear Information System (INIS)

    Harrabi, Z.; Jomni, S.; Beji, L.; Bouazizi, A.

    2010-01-01

    In this work, we have studied the electrical characteristics of the Au/porous GaAs/p-GaAs diodes as a function of temperature. The (I-V)-T characteristics are analysed on the basis of thermionic emission (TE). The temperature behaviour of the barrier height potential and the ideality factor demonstrate that the current transport is controlled by the thermionic emission mechanism (TE) with Gaussian distribution of the barrier height potential. The Gaussian distribution of barrier height potential is due to barrier inhomogeneity, which is suggested to be caused by the presence of the porous GaAs interfacial layer. The experimental (I-V)-T characteristics of the Au/porous GaAs/p-GaAs heterostructure demonstrate the presence of a two Gaussian distributions having a mean barrier height potential Φ b0 -bar of about 0.67 and 0.54 V and standard deviations σ s 2 of about 8.4x10 -3 and 4.2x10 -3 V, respectively. Using the obtained standard deviation, the obtained Richardson constant value is in accordance with the well documented value (79.2 A cm -2 K -2 ) of p-type GaAs and the mean barrier height Φ b0 -bar is closed to the band gap of GaAs. The obtained values prove that the I-V-T characteristics of Au/porous GaAs/p-GaAs heterostructure are governed by the TE mechanism theory with two Gaussian distributions of barrier heights.

  13. Temperature Distribution in a Displacement Ventilated Room

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    The vertical temperature gradient is normally given as a linear temperature distribution between a minimum temperature close to the floor and a maximum temperature close to the ceiling. The minimum temperature can either be a constant fraction of a load dependent difference or it can be connected...

  14. Effects of Transverse Power Distribution on Fuel Temperature

    International Nuclear Information System (INIS)

    Jo, Daeseong; Park, Jonghark; Seo, Chul Gyo; Chae, Heetaek

    2014-01-01

    In the present study, transverse power distributions with segments of 4 and 18 are evaluated. Based on the power distribution, the fuel temperatures are evaluated with a consideration of lateral heat conduction. In the present study, the effect of the transverse power distribution on the fuel temperature is investigated. The transverse power distributions with variation of fuel segment number are evaluated. The maximum power peaking with 12 segments is higher than that with 4 segments. Based on the calculation, 6-order polynomial is generated to express the transverse power distributions. The maximum power peaking factor increases with segments. The averaged power peaking is 2.10, and the maximum power peaking with 18 segments is 2.80. With the uniform power distribution, the maximum fuel temperature is found in the middle of the fuel. As the power near the side ends of the fuel increases, the maximum fuel temperature is found near the side ends. However, the maximum fuel temperature is not found where the maximum transverse power is. This is because the high power locally released from the edge of the fuel is laterally conducted to the cladding. As a result of the present study, it can be concluded that the effect of the high power peaking at the edge of the fuel on the fuel outer wall temperature is not significant

  15. Flow-Field Characteristics of High-Temperature Annular Buoyant Jets and Their Development Laws Influenced by Ventilation System

    OpenAIRE

    Wang, Yi; Huang, Yanqiu; Liu, Jiaping; Wang, Hai; Liu, Qiuhan

    2013-01-01

    The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and veloc...

  16. Effect of temperature oscillation on thermal characteristics of an aluminum thin film

    Science.gov (United States)

    Ali, H.; Yilbas, B. S.

    2014-12-01

    Energy transport in aluminum thin film is examined due to temperature disturbance at the film edge. Thermal separation of electron and lattice systems is considered in the analysis, and temperature variation in each sub-system is formulated. The transient analysis of frequency-dependent and frequency-independent phonon radiative transport incorporating electron-phonon coupling is carried out in the thin film. The dispersion relations of aluminum are used in the frequency-dependent analysis. Temperature at one edge of the film is oscillated at various frequencies, and temporal response of phonon intensity distribution in the film is predicted numerically using the discrete ordinate method. To assess the phonon transport characteristics, equivalent equilibrium temperature is introduced. It is found that equivalent equilibrium temperature in the electron and lattice sub-systems oscillates due to temperature oscillation at the film edge. The amplitude of temperature oscillation reduces as the distance along the film thickness increases toward the low-temperature edge of the film. Equivalent equilibrium temperature attains lower values for the frequency-dependent solution of the phonon transport equation than that corresponding to frequency-independent solution.

  17. Properties of magnetocaloric materials with a distribution of Curie temperatures

    DEFF Research Database (Denmark)

    Bahl, Christian Robert Haffenden; Bjørk, Rasmus; Smith, Anders

    2012-01-01

    The magnetocaloric properties of inhomogeneous ferromagnets that contain distributions of Curie temperatures are considered as a function of the width of such a distribution. Assuming a normal distribution of the Curie temperature, the average adiabatic temperature change, ΔTad, the isothermal...... of the distribution, explaining the observed mismatch of peak temperatures reported in experiments. Also, the field dependence of ΔTad and Δs is found to depend on the width of the distribution....

  18. Comparison of simulated and experimental results of temperature distribution in a closed two-phase thermosyphon cooling system

    Science.gov (United States)

    Shaanika, E.; Yamaguchi, K.; Miki, M.; Ida, T.; Izumi, M.; Murase, Y.; Oryu, T.; Yanamoto, T.

    2017-12-01

    Superconducting generators offer numerous advantages over conventional generators of the same rating. They are lighter, smaller and more efficient. Amongst a host of methods for cooling HTS machinery, thermosyphon-based cooling systems have been employed due to their high heat transfer rate and near-isothermal operating characteristics associated with them. To use them optimally, it is essential to study thermal characteristics of these cryogenic thermosyphons. To this end, a stand-alone neon thermosyphon cooling system with a topology resembling an HTS rotating machine was studied. Heat load tests were conducted on the neon thermosyphon cooling system by applying a series of heat loads to the evaporator at different filling ratios. The temperature at selected points of evaporator, adiabatic tube and condenser as well as total heat leak were measured. A further study involving a computer thermal model was conducted to gain further insight into the estimated temperature distribution of thermosyphon components and heat leak of the cooling system. The model employed boundary conditions from data of heat load tests. This work presents a comparison between estimated (by model) and experimental (measured) temperature distribution in a two-phase cryogenic thermosyphon cooling system. The simulation results of temperature distribution and heat leak compared generally well with experimental data.

  19. Experimentally and numerically investigating cell performance and localized characteristics for a high-temperature proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Su Ay; Ferng, Yuh Ming; Shih, Jah Ching

    2009-01-01

    This paper is to experimentally and numerically investigate the cell performance and the localized characteristics associated with a high-temperature proton exchange membrane fuel cell (PEMFC). Three experiments are carried out in order to study the performance of the PEMFC with different operating conditions and to validate the numerical simulation model. The model proposed herein is a three-dimensional (3-D) computational fluid dynamics (CFD) non-isothermal model that essentially consists of thermal-hydraulic equations and electrochemical model. The performance curves of the PEMFC predicted by the present model agree with the experimental measured data. In addition, both the experiments and the predictions precisely demonstrate the enhanced effects of inlet gas temperature and system pressure on the PEMFC performance. Based on the simulation results, the localized characteristics within a PEMFC can be reasonably captured. These parameters include the fuel gas distribution, liquid water saturation distribution, membrane conductivity distribution, temperature variation, and current density distribution etc. As the PEMFC is operated at the higher current density, the fuel gas would be insufficiently supplied to the catalyst layer, consequently causing the decline in the generation of power density. This phenomenon is so called mass transfer limitation, which can be precisely simulated by the present CFD model.

  20. Mercury distribution characteristics in primary manganese smelting plants

    International Nuclear Information System (INIS)

    Back, Seung-Ki; Sung, Jin-Ho; Moon, Young-Hoon; Kim, Young-Hee; Seok, Kwang-Seol; Song, Geum-Ju; Seo, Yong-Chil

    2017-01-01

    The mercury (Hg) distribution characteristics were investigated in three primary manganese smelting plants in Korea for the assessment of anthropogenic Hg released. Input and output materials were sampled from each process, and Hg concentrations in the samples were analyzed. Among the input materials, the most mercury was found in the manganese ore (83.1–99.7%) and mercury was mainly released through fly ash or off gas, depending on the condition of off gas cleaning system. As off gas temperature decreases, proportion and concentration of emitted gaseous elemental mercury (Hg 0 ) in off gas decreases. Based on mass balance study from these three plants and national manganese production data, the total amount of mercury released from those Korean plants was estimated to 644 kg/yr. About half of it was emitted into the air while the rest was released to waste as fly ash. With the results of this investigation, national inventory for Hg emission and release could be updated for the response to Minamata Convention on Mercury. - Graphical abstract: 1. Lack of data on mercury (Hg) distribution in manganese smelters. 2. Mass distribution of Hg released from 3 plants (as normalized values) were made as follows by measurements. 3. Information of distribution of Hg in Manganese smelters would be used for emission in to air and releases to other streams for the nation and globe in UNEP mercury report. - Highlights: • The mass balance study by on-site measurement from primary manganese smelting plants was made at first time in the world. • Hg distribution and main input and release pathways of Hg from primary manganese smelting plants could be found as the first time. • Gas temperature in bag filter affects Hg behavior and speciation changes in APCDs. • National inventory of Hg emssion has been updated with new data. - Mercury distribution in manganese smelting plant was investigated as the first measurements at commercial plants in the world. National Hg release

  1. The stresses and displacements in cylindrical shells subject to arbitrary temperature distribution

    International Nuclear Information System (INIS)

    Tabakman, H.D.; Lin, Y.J.

    1977-01-01

    The paper begins with a statement of a reciprocal theorem in thermoelasticity based on a generalization of Betti's Reciprocal Theorem. This is followed by application to the solution of a simply supported thin walled cylindrical shell subject to arbitrary three-dimensional temperature distribution T(x,y,z). The usefulness of the theorem resides in the fact that existing solutions in elasticity may be used to obtain solutions of thermoelastic problems. This characteristic is of great importance, particularly when the temperature distribution is arbitrary, as is often the case in practise, and cannot be expressed in functional form; thus rendering solution of the thermoelastic equations very difficult. With solutions of a wide range of problems in elasticity in existence, application of the thermoelastic theorem is the key to solution of a broad class of problems in thermoelasticity, problems that cannot be solved by the classic process. (Auth.)

  2. The dynamic characteristics of HTGR (High Temperature Gas Cooled Reactor) system, (2)

    International Nuclear Information System (INIS)

    Kudo, Kazuhiko; Ohta, Masao; Kawasaki, Hidenori

    1979-01-01

    The dynamic characteristics of a HTGR plant, which has two cooling loops, was investigated. The analytical model consists of the core with fuel sleeves, coolant channels and blocks, the upper and lower reflectors, the high and low temperature plenums, two double wall pipings, two intermediate heat exchangers and the secondary system. The key plant parameters for calculation were as follows: the core outlet gas temperature 1000 deg C, the reactor thermal output 50 MW, the flow rate of primary coolant gas 7.96 kg/sec-loop and the pressure of primary coolant gas 40 kg/cm 2 at the rated operating condition. The calculating parameters were fixed as follows: the time interval for core characteristic analysis 0.1 sec, the time interval for thermal characteristic analysis 5.0 sec, the number of division of fuel channels 130, and the number of division of an intermediate heat exchanger 200. The assumptions for making the model were evaluated especially for the power distribution in the core and the heat transmission coefficients in the core, the double wall piping and the intermediate heat exchangers. Concerning the analytical results, the self-control to the outer disturbance of reactivity and the plant dynamic behavior due to the change of flow rate of primary and secondary coolants, and the change of gas temperature of secondary coolant at the inlet of intermediate heat exchangers, are presented. (Nakai, Y.)

  3. Sapphire-fiber-based distributed high-temperature sensing system.

    Science.gov (United States)

    Liu, Bo; Yu, Zhihao; Hill, Cary; Cheng, Yujie; Homa, Daniel; Pickrell, Gary; Wang, Anbo

    2016-09-15

    We present, for the first time to our knowledge, a sapphire-fiber-based distributed high-temperature sensing system based on a Raman distributed sensing technique. High peak power laser pulses at 532 nm were coupled into the sapphire fiber to generate the Raman signal. The returned Raman Stokes and anti-Stokes signals were measured in the time domain to determine the temperature distribution along the fiber. The sensor was demonstrated from room temperature up to 1200°C in which the average standard deviation is about 3.7°C and a spatial resolution of about 14 cm was achieved.

  4. Analytical method for determining the channel-temperature distribution

    International Nuclear Information System (INIS)

    Kurbatov, I.M.

    1992-01-01

    The distribution of the predicted temperature over the volume or cross section of the active zone is important for thermal calculations of reactors taking into account random deviations. This requires a laborious calculation which includes the following steps: separation of the nominal temperature field, within the temperature range, into intervals, in each of which the temperature is set equal to its average value in the interval; determination of the number of channels whose temperature falls within each interval; construction of the channel-temperature distribution in each interval in accordance with the weighted error function; and summation of the number of channels with the same temperature over all intervals. This procedure can be greatly simplified with the help of methods which eliminate numerous variant calculations when the nominal temperature field is open-quotes refinedclose quotes up to the optimal field according to different criteria. In the present paper a universal analytical method is proposed for determining, by changing the coefficients in the channel-temperature distribution function, the form of this function that reflects all conditions of operation of the elements in the active zone. The problem is solved for the temperature of the coolant at the outlet from the reactor channels

  5. Evaluation of temperature distribution in a containment vessel during operation

    International Nuclear Information System (INIS)

    Utanohara, Yoichi; Murase, Michio; Yanagi, Chihiro; Masui, Akihiro; Inomata, Ryo; Kamiya, Yuji

    2012-01-01

    For safety analysis of the containment vessel (CV) in a nuclear power plant, the average temperature of the gas phase in the CV during operation is used as an initial condition. An actual CV, however, has a temperature distribution, which makes the estimation of the average temperature difficult. Numerical simulation seems to be useful for the average temperature estimation, but it has several difficulties such as predictions of temperature distribution in a large and closed space that has several compartments, and modeling the heat generating components and the convection-diffusion of heat by ventilation air-conditioning systems. The main purpose of this study was to simulate the temperature distribution and evaluate the average temperature in the CV of a three-loop pressurized water reactor (PWR) during the reactor operation. The simulation considered the heat generation of equipment, flow due to the ventilation and air conditioning systems, heat loss to the CV exterior, and the solar heat. The predicted temperature distribution was significantly affected by the flow. Particularly, openings, which became flow paths, affected the temperature distribution. The temperature increased with a rise in height within the CV and the flow field seemed to transform from forced convection to natural convection. The volume-averaged temperature was different between gas and solid (concrete, CV wall) phases as well as between heights. The total volume-averaged temperature of the CV was nearly equal to the average gas phase temperature. It was found to be easy to evaluate the effect of openings on the temperature distribution and estimate the average temperature in CV by numerical simulation. (author)

  6. Distribution characteristics of stock market liquidity

    Science.gov (United States)

    Luo, Jiawen; Chen, Langnan; Liu, Hao

    2013-12-01

    We examine the distribution characteristics of stock market liquidity by employing the generalized additive models for location, scale and shape (GAMLSS) model and three-minute frequency data from Chinese stock markets. We find that the BCPE distribution within the GAMLSS framework fits the distributions of stock market liquidity well with the diagnosis test. We also find that the stock market index exhibits a significant impact on the distributions of stock market liquidity. The stock market liquidity usually exhibits a positive skewness, but a normal distribution at a low level of stock market index and a high-peak and fat-tail shape at a high level of stock market index.

  7. Dual reference point temperature interrogating method for distributed temperature sensor

    International Nuclear Information System (INIS)

    Ma, Xin; Ju, Fang; Chang, Jun; Wang, Weijie; Wang, Zongliang

    2013-01-01

    A novel method based on dual temperature reference points is presented to interrogate the temperature in a distributed temperature sensing (DTS) system. This new method is suitable to overcome deficiencies due to the impact of DC offsets and the gain difference in the two signal channels of the sensing system during temperature interrogation. Moreover, this method can in most cases avoid the need to calibrate the gain and DC offsets in the receiver, data acquisition and conversion. An improved temperature interrogation formula is presented and the experimental results show that this method can efficiently estimate the channel amplification and system DC offset, thus improving the system accuracy. (letter)

  8. High temperature tensile properties and fracture characteristics of bimodal 12Cr-ODS steel

    International Nuclear Information System (INIS)

    Chauhan, Ankur; Litvinov, Dimitri; Aktaa, Jarir

    2016-01-01

    This article describes the tensile properties and fracture characteristics of a 12Cr oxide dispersion strengthened (ODS) ferritic steel with unique elongated bimodal grain size distribution. The tensile tests were carried out at four different temperatures, ranging from room temperature to 700 °C, at a nominal strain rate of 10"−"3 s"−"1. At room temperature the material exhibits a high tensile strength of 1294 MPa and high yield strength of 1200 MPa. At 700 °C, the material still exhibits relatively high tensile strength of 300 MPa. The total elongation-to-failure exceeds 18% over the whole temperature range and has a maximum value of 29% at 600 °C. This superior ductility is attributed to the material's bimodal grain size distribution. In comparison to other commercial, as well as experimental, ODS steels, the material shows an excellent compromise between strength and ductility. The fracture surface studies reveal a change in fracture behavior from a mixed mode fracture at room temperature to fully ductile fracture at 600 °C. At 700 °C, the fracture path changes from intragranular to intergranular fracture, which is associated with a reduced ductility. - Highlights: • The steel has a unique elongated bimodal grain size distribution. • The steel shows an excellent compromise between strength and ductility. • Superior ductility in comparison to other commercial and experimental ODS steels. • Fracture behavior changes from mixed mode fracture at room temperature to fully ductile fracture at 600 °C. • Fracture path changes from intragranular to intergranular fracture at 700 °C.

  9. Temperature and flow distribution in planar SOFC stacks

    Directory of Open Access Journals (Sweden)

    Monica Østenstad

    1995-07-01

    Full Text Available Simulation of a planar Solid Oxide Fuel Cell stack requires the solution of the mass balances of the chemical species, the energy balances, the charge balance and the channel flow equations in order to compute the species concentrations, the temperature distributions, the current density and the channel flows. The unit cell geometry can be taken into account by combining detailed modeling of a unit cell with a homogenized model of a whole stack. In this study the effect of the asymmetric temperature distribution on the channel flows in a conventional cross-flow design has been investigated. The bidirectional cross-flow design is introduced, for which we can show more directional temperature and flow distributions.

  10. Measuring brightness temperature distributions of plasma bunches

    International Nuclear Information System (INIS)

    Kirko, V.I.; Stadnichenko, I.A.

    1981-01-01

    The possibility of restoration of brightness temperature distribution along plasma jet on the base of a simple ultra high- speed photography and subsequent photometric treatment is shown. The developed technique has been applied for finding spectral radiation intensity and brightness temperature of plasma jets of a tubular gas-cumulative charge and explosive plasma compressor. The problem of shock wave front has been successfully solved and thus distribution of above parameters beginning from the region preceeding the shock wave has been obtained [ru

  11. Characteristic functions of scale mixtures of multivariate skew-normal distributions

    KAUST Repository

    Kim, Hyoung-Moon

    2011-08-01

    We obtain the characteristic function of scale mixtures of skew-normal distributions both in the univariate and multivariate cases. The derivation uses the simple stochastic relationship between skew-normal distributions and scale mixtures of skew-normal distributions. In particular, we describe the characteristic function of skew-normal, skew-t, and other related distributions. © 2011 Elsevier Inc.

  12. Temperature Diffusion Distribution of Electric Wire Deteriorated by Overcurrent

    Science.gov (United States)

    Choi, Chung-Seog; Kim, Hyang-Kon; Kim, Dong-Woo; Lee, Ki-Yeon

    This study presents thermal diffusion distribution of the electric wires when overcurrent is supplied to copper wires. And then, this study intends to provide a basis of knowledge for analyzing the causes of electric accidents through hybrid technology. In the thermal image distribution analysis of the electric wire to which fusing current was supplied, it was found that less heat was accumulated in the thin wires because of easier heat dispersion, while more heat was accumulated in the thicker wires. The 3-dimensional thermal image analysis showed that heat distribution was concentrated at the center of the wire and the inclination of heat distribution was steep in the thicker wires. When 81A was supplied to 1.6mm copper wire for 500 seconds, the surface temperature of wire was maximum 46.68°C and minimum 30.87°C. It revealed the initial characteristics of insulation deterioration that generates white smoke without external deformation. In the analysis with stereoscopic microscope, the surface turned dark brown and rough with the increase of fusing current. Also, it was known that exfoliation occurred when wire melted down with 2 times the fusing current. With the increase of current, we found the number of primary arms of the dendrite structure to be increased and those of the secondary and tertiary arms to be decreased. Also, when the overcurrent reached twice the fusing current, it was found that columnar composition, observed in the cross sectional structure of molten wire, appeared and formed regular directivity. As described above, we could present the burning pattern and change in characteristics of insulation and conductor quantitatively. And we could not only minimize the analysis error by combining the information but also present the scientific basis in the analysis of causes of electric accidents, mediation of disputes on product liability concerning the electric products.

  13. Improving the spectral measurement accuracy based on temperature distribution and spectra-temperature relationship

    Science.gov (United States)

    Li, Zhe; Feng, Jinchao; Liu, Pengyu; Sun, Zhonghua; Li, Gang; Jia, Kebin

    2018-05-01

    Temperature is usually considered as a fluctuation in near-infrared spectral measurement. Chemometric methods were extensively studied to correct the effect of temperature variations. However, temperature can be considered as a constructive parameter that provides detailed chemical information when systematically changed during the measurement. Our group has researched the relationship between temperature-induced spectral variation (TSVC) and normalized squared temperature. In this study, we focused on the influence of temperature distribution in calibration set. Multi-temperature calibration set selection (MTCS) method was proposed to improve the prediction accuracy by considering the temperature distribution of calibration samples. Furthermore, double-temperature calibration set selection (DTCS) method was proposed based on MTCS method and the relationship between TSVC and normalized squared temperature. We compare the prediction performance of PLS models based on random sampling method and proposed methods. The results from experimental studies showed that the prediction performance was improved by using proposed methods. Therefore, MTCS method and DTCS method will be the alternative methods to improve prediction accuracy in near-infrared spectral measurement.

  14. Ultra-sensitive quasi-distributed temperature sensor based on an apodized fiber Bragg grating.

    Science.gov (United States)

    Mohammed, Nazmi A; El Serafy, Hatem O

    2018-01-10

    This work targets a remarkable quasi-distributed temperature sensor based on an apodized fiber Bragg grating. To achieve this, the mathematical formula for a proposed apodization function is carried out and tested. Then, an optimization parametric process required to achieve the remarkable accuracy that is based on coupled mode theory (CMT) is done. A detailed investigation for the side lobe analysis, which is a primary judgment factor, especially in quasi-distributed configuration, is investigated. A comparison between elite selection of apodization profiles (extracted from related literatures) and the proposed modified-Nuttal profile is carried out covering reflectivity peak, full width half maximum (FWHM), and side lobe analysis. The optimization process concludes that the proposed modified-Nuttal profile with a length (L) of 15 mm and refractive index modulation amplitude (Δn) of 1.4×10 -4 is the optimum choice for single-stage and quasi-distributed temperature sensor networks. At previous values, the proposed profile achieves an acceptable reflectivity peak of 10 -0.426   dB, acceptable FWHM of 0.0808 nm, lowest side lobe maximum (SL max) of 7.037×10 -12   dB, lowest side lobe average (SL avg) of 3.883×10 -12   dB, and lowest side lobe suppression ratio (SLSR) of 1.875×10 -11   dB. These optimized characteristics lead to an accurate single-stage sensor with a temperature sensitivity of 0.0136 nm/°C. For the quasi-distributed scenario, a noteworthy total isolation of 91 dB is achieved without temperature, and an isolation of 4.83 dB is achieved while applying temperature of 110°C for a five-stage temperature-sensing network. Further investigation is made proving that consistency in choosing the apodization profile in the quasi-distributed network is mandatory. If the consistency condition is violated, the proposed profile still survives with a casualty of side lobe level rise of -73.2070  dB when adding uniform apodization and

  15. Visualizing Stress and Temperature Distribution During Elevated Temperature Deformation of IN-617 Using Nanomechanical Raman Spectroscopy

    Science.gov (United States)

    Zhang, Yang; Wang, Hao; Tomar, Vikas

    2018-04-01

    This work presents direct measurements of stress and temperature distribution during the mesoscale microstructural deformation of Inconel-617 (IN-617) during 3-point bending tests as a function of temperature. A novel nanomechanical Raman spectroscopy (NMRS)-based measurement platform was designed for simultaneous in situ temperature and stress mapping as a function of microstructure during deformation. The temperature distribution was found to be directly correlated to stress distribution for the analyzed microstructures. Stress concentration locations are shown to be directly related to higher heat conduction and result in microstructural hot spots with significant local temperature variation.

  16. The frequency characteristics of medium voltage distribution system impedances

    Directory of Open Access Journals (Sweden)

    Liviu Emil Petrean

    2009-10-01

    Full Text Available In this paper we present the frequency characteristics of impedances involved in the electrical equivalent circuit of a large medium voltage distribution system. These impedances influence harmonics distortions propagation occurring due to the nonsinusoidal loads. We analyse the case of a 10 kV large urban distribution system which supplies industrial, commercial and residential customers. The influence of various parameters of the distribution network on the frequency characteristics are presented, in order to assess the interaction of harmonic distortion and distribution system network.

  17. Influence of topography on landscape radiation temperature distribution

    International Nuclear Information System (INIS)

    Florinsky, I.V.; Kulagina, T.B.; Meshalkina, J.L.

    1994-01-01

    The evaluation of the influence of topography on landscape radiation temperature distribution is carried out by statistical processing of digital models of elevation, gradient, aspect, horizontal, vertical and mean land surface curvatures and the infrared thermal scene generated by the Thermovision 880 system. Significant linear correlation coefficients between the landscape radiation temperature and elevation, slope, aspect, vertical and mean landsurface curvatures are determined, being —0-57, 0 38, 0-26, 015, 013, respectively. The equation of the topography influence on the distribution of the landscape radiation temperature is defined. (author)

  18. Temperature Effect on Electrical Treeing and Partial Discharge Characteristics of Silicone Rubber-Based Nanocomposites

    Directory of Open Access Journals (Sweden)

    Mohd Hafizi Ahmad

    2015-01-01

    Full Text Available This study investigated electrical treeing and its associated phase-resolved partial discharge (PD activities in room-temperature, vulcanized silicone rubber/organomontmorillonite nanocomposite sample materials over a range of temperatures in order to assess the effect of temperature on different filler concentrations under AC voltage. The samples were prepared with three levels of nanofiller content: 0% by weight (wt, 1% by wt, and 3% by wt. The electrical treeing and PD activities of these samples were investigated at temperatures of 20°C, 40°C, and 60°C. The results show that the characteristics of the electrical tree changed with increasing temperature. The tree inception times decreased at 20°C due to space charge dynamics, and the tree growth time increased at 40°C due to the increase in the number of cross-link network structures caused by the vulcanization process. At 60°C, more enhanced and reinforced properties of the silicone rubber-based nanocomposite samples occurred. This led to an increase in electrical tree inception time and electrical tree growth time. However, the PD characteristics, particularly the mean phase angle of occurrence of the positive and negative discharge distributions, were insensitive to variations in temperature. This reflects an enhanced stability in the nanocomposite electrical properties compared with the base polymer.

  19. Inverse analysis of non-uniform temperature distributions using multispectral pyrometry

    Science.gov (United States)

    Fu, Tairan; Duan, Minghao; Tian, Jibin; Shi, Congling

    2016-05-01

    Optical diagnostics can be used to obtain sub-pixel temperature information in remote sensing. A multispectral pyrometry method was developed using multiple spectral radiation intensities to deduce the temperature area distribution in the measurement region. The method transforms a spot multispectral pyrometer with a fixed field of view into a pyrometer with enhanced spatial resolution that can give sub-pixel temperature information from a "one pixel" measurement region. A temperature area fraction function was defined to represent the spatial temperature distribution in the measurement region. The method is illustrated by simulations of a multispectral pyrometer with a spectral range of 8.0-13.0 μm measuring a non-isothermal region with a temperature range of 500-800 K in the spot pyrometer field of view. The inverse algorithm for the sub-pixel temperature distribution (temperature area fractions) in the "one pixel" verifies this multispectral pyrometry method. The results show that an improved Levenberg-Marquardt algorithm is effective for this ill-posed inverse problem with relative errors in the temperature area fractions of (-3%, 3%) for most of the temperatures. The analysis provides a valuable reference for the use of spot multispectral pyrometers for sub-pixel temperature distributions in remote sensing measurements.

  20. Temperature field downstream of an heated bundle mock-up results for different power distribution

    International Nuclear Information System (INIS)

    Girard, J.P.; Buravand, Y.

    1982-10-01

    The aim of these peculiar experiments performed on the ML4 loop in ISPRA is to evaluate the characteristics of the temperature field over a length of 20 to 30 dias downstream of a rod bundle for different temperatures profiles at the bundle outlet. The final purpose of this work will be to establish either directly or through models whether it is possible or not to detect subassembly failures using suitable of the subassembly outlet temperature signal. 15 hours of digital and analog recording were taped for five different power distributions in the bundle. The total power dissipation remained constant during the whole run. Two flow rates and seven axial location were investigated. It is shown that the different temperature profiles produce slight differences in the variance and skewness of the temperature signal measured along the axis of the pipe over 20 dias

  1. Experimental Study of Injection Characteristics of a Multi-hole port injector on various Fuel Injection pressures and Temperatures

    Directory of Open Access Journals (Sweden)

    Ommi F

    2013-04-01

    Full Text Available The structures of the port injector spray dominates the mixture preparation process and strongly affect the subsequent engine combustion characteristics over a wide range of operating conditions in port-injection gasoline engines. All these spray characteristics are determined by particular injector design and operating conditions. In this paper, an experimental study is made to characterize the breakup mechanism and spray characteristics of a injector with multi-disc nozzle (SAGEM,D2159MA. A comparison was made on injection characteristics of the multi-hole injectors and its effects on various fuel pressure and temperature. The distributions of the droplet size and velocity and volume flux were characterized using phase Doppler anemometry (PDA technique. Through this work, it was found that the injector produces a finer spray with a wide spray angle in higher fuel pressure and temperature.

  2. Experimental Study of Injection Characteristics of a Multi-hole port injector on various Fuel Injection pressures and Temperatures

    Science.gov (United States)

    Movahednejad, E.; Ommi, F.; Nekofar, K.

    2013-04-01

    The structures of the port injector spray dominates the mixture preparation process and strongly affect the subsequent engine combustion characteristics over a wide range of operating conditions in port-injection gasoline engines. All these spray characteristics are determined by particular injector design and operating conditions. In this paper, an experimental study is made to characterize the breakup mechanism and spray characteristics of a injector with multi-disc nozzle (SAGEM,D2159MA). A comparison was made on injection characteristics of the multi-hole injectors and its effects on various fuel pressure and temperature. The distributions of the droplet size and velocity and volume flux were characterized using phase Doppler anemometry (PDA) technique. Through this work, it was found that the injector produces a finer spray with a wide spray angle in higher fuel pressure and temperature.

  3. Time dependent temperature distribution in pulsed Ti:sapphire lasers

    Science.gov (United States)

    Buoncristiani, A. Martin; Byvik, Charles E.; Farrukh, Usamah O.

    1988-01-01

    An expression is derived for the time dependent temperature distribution in a finite solid state laser rod for an end-pumped beam of arbitrary shape. The specific case of end pumping by circular (constant) or Gaussian beam is described. The temperature profile for a single pump pulse and for repetitive pulse operation is discussed. The particular case of the temperature distribution in a pulsed titanium:sapphire rod is considered.

  4. Soil Temperature Variability in Complex Terrain measured using Distributed a Fiber-Optic Distributed Temperature Sensing

    Science.gov (United States)

    Seyfried, M. S.; Link, T. E.

    2013-12-01

    Soil temperature (Ts) exerts critical environmental controls on hydrologic and biogeochemical processes. Rates of carbon cycling, mineral weathering, infiltration and snow melt are all influenced by Ts. Although broadly reflective of the climate, Ts is sensitive to local variations in cover (vegetative, litter, snow), topography (slope, aspect, position), and soil properties (texture, water content), resulting in a spatially and temporally complex distribution of Ts across the landscape. Understanding and quantifying the processes controlled by Ts requires an understanding of that distribution. Relatively few spatially distributed field Ts data exist, partly because traditional Ts data are point measurements. A relatively new technology, fiber optic distributed temperature system (FO-DTS), has the potential to provide such data but has not been rigorously evaluated in the context of remote, long term field research. We installed FO-DTS in a small experimental watershed in the Reynolds Creek Experimental Watershed (RCEW) in the Owyhee Mountains of SW Idaho. The watershed is characterized by complex terrain and a seasonal snow cover. Our objectives are to: (i) evaluate the applicability of fiber optic DTS to remote field environments and (ii) to describe the spatial and temporal variability of soil temperature in complex terrain influenced by a variable snow cover. We installed fiber optic cable at a depth of 10 cm in contrasting snow accumulation and topographic environments and monitored temperature along 750 m with DTS. We found that the DTS can provide accurate Ts data (+/- .4°C) that resolves Ts changes of about 0.03°C at a spatial scale of 1 m with occasional calibration under conditions with an ambient temperature range of 50°C. We note that there are site-specific limitations related cable installation and destruction by local fauna. The FO-DTS provide unique insight into the spatial and temporal variability of Ts in a landscape. We found strong seasonal

  5. Sound characteristics of Terapon jorbua as a response to temperature changes

    Science.gov (United States)

    Amron; Jaya, I.; Hestirianoto, T.; Juterzenka, K. v.

    2017-10-01

    The change of water temperature has potential impact on the behavior of aquatic animal including fish which generated by their sound productivity and characteristics. This research aimed to study the response of sound productivity and characteristics of Terapon jorbua to temperature change. As a response to temperature increase, T. jorbua to have decreased the number of sound productivity. Two characteristic parameters of fish sound, i.e. intensity and frequency as were quadratic increased during the water temperature rises. In contrast, pulse duration was quadratic decreased.

  6. Characteristics of liquid product from the pyrolysis of waste plastic mixture at low and high temperatures: Influence of lapse time of reaction

    International Nuclear Information System (INIS)

    Lee, Kyong-Hwan; Shin, Dae-Hyun

    2007-01-01

    Pyrolysis of a waste plastic mixture (high-density polyethylene: low-density polyethylene: polypropylene: polystyrene = 3:2:3:1) into a liquid product was carried out in a stirred semi-batch reactor at low (350 deg. C) and high (400 deg. C) temperatures. The effect of lapse time of reaction in the reactor and also degradation temperature on the characteristics of the liquid product from pyrolysis of the mixture was investigated. Liquid products were described by cumulative amount distribution, paraffin, olefin, naphthene and aromatic (PONA) distribution and molecular weight distribution. Their characteristic was quite differed with a lapse time of reaction and also at a low and high degradation temperatures, because of the different physicochemical properties of the plastic types in the mixture. With increase of lapse time of reaction, the order for the main products in PONA components obtained at 350 deg. C was firstly aromatic products and then olefin products, while at 400 deg. C the order was firstly aromatic products, then olefin products and finally paraffin products. The experiments also showed from the molecular weight distribution of liquid PONA components that the paraffin and olefin products had a wide distribution by mainly random scission of polymer, but in the case of olefin products were produced by an end-chain scission mechanism as well as random scission mechanism, as evidenced by much more light olefin products. This phenomenon was evident at a higher degradation temperature. Also, both the light olefin and naphthene products with a molecular weight of around 120, as a main product, showed a similar trend as a function of lapse time, which had a maximum fraction at 343 min (at 350 deg. C) and 83 min (at 400 deg. C). Among PONA components, the highest concentrations of aromatic products were obtained with a molecular weight of around 100 at the fastest lapse time of reaction, regardless of degradation temperature. It was concluded that the

  7. Characteristics of liquid product from the pyrolysis of waste plastic mixture at low and high temperatures: influence of lapse time of reaction.

    Science.gov (United States)

    Lee, Kyong-Hwan; Shin, Dae-Hyun

    2007-01-01

    Pyrolysis of a waste plastic mixture (high-density polyethylene: low-density polyethylene: polypropylene: polystyrene = 3:2:3:1) into a liquid product was carried out in a stirred semi-batch reactor at low (350 degrees C) and high (400 degrees C) temperatures. The effect of lapse time of reaction in the reactor and also degradation temperature on the characteristics of the liquid product from pyrolysis of the mixture was investigated. Liquid products were described by cumulative amount distribution, paraffin, olefin, naphthene and aromatic (PONA) distribution and molecular weight distribution. Their characteristic was quite differed with a lapse time of reaction and also at a low and high degradation temperatures, because of the different physicochemical properties of the plastic types in the mixture. With increase of lapse time of reaction, the order for the main products in PONA components obtained at 350 degrees C was firstly aromatic products and then olefin products, while at 400 degrees C the order was firstly aromatic products, then olefin products and finally paraffin products. The experiments also showed from the molecular weight distribution of liquid PONA components that the paraffin and olefin products had a wide distribution by mainly random scission of polymer, but in the case of olefin products were produced by an end-chain scission mechanism as well as random scission mechanism, as evidenced by much more light olefin products. This phenomenon was evident at a higher degradation temperature. Also, both the light olefin and naphthene products with a molecular weight of around 120, as a main product, showed a similar trend as a function of lapse time, which had a maximum fraction at 343 min (at 350 degrees C) and 83 min (at 400 degrees C). Among PONA components, the highest concentrations of aromatic products were obtained with a molecular weight of around 100 at the fastest lapse time of reaction, regardless of degradation temperature. It was

  8. The temperature distribution in a gas core fission reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E.; Dam, H. van; Kuijper, J.C. (Interuniversitair Reactor Inst., Delft (Netherlands)); Kistemaker, J.; Boersma-Klein, W.; Vitalis, F. (FOM-Instituut voor Atoom-en Molecuulfysica, Amsterdam (Netherlands))

    1991-01-01

    A model is proposed for the heat transport in a nuclear reactor with gaseous fuel at high temperatures taking into account radiative and kinetic heat transfer. A derivation is given of the equation determining the temperature distribution in a gas core reactor and different numerical solution methods are discussed in detail. Results are presented of the temperature distribution. The influence of the kinetic heat transport and of dissociation of the gas molecules is shown. Also discussed is the importance of the temperature gradient at the reactor wall and its dependence on system parameters. (author).

  9. The temperature distribution in a gas core fission reactor

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.; Dam, H. van; Kuijper, J.C.; Kistemaker, J.; Boersma-Klein, W.; Vitalis, F.

    1991-01-01

    A model is proposed for the heat transport in a nuclear reactor with gaseous fuel at high temperatures taking into account radiative and kinetic heat transfer. A derivation is given of the equation determining the temperature distribution in a gas core reactor and different numerical solution methods are discussed in detail. Results are presented of the temperature distribution. The influence of the kinetic heat transport and of dissociation of the gas molecules is shown. Also discussed is the importance of the temperature gradient at the reactor wall and its dependence on system parameters. (author)

  10. DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

    Directory of Open Access Journals (Sweden)

    Davood Domairry Ganji

    2011-01-01

    Full Text Available In this paper, homotopy perturbation method has been used to evaluate the temperature distribution of annular fin with temperature-dependent thermal conductivity and to determine the temperature distribution within the fin. This method is useful and practical for solving the nonlinear heat transfer equation, which is associated with variable thermal conductivity condition. The homotopy perturbation method provides an approximate analytical solution in the form of an infinite power series. The annular fin heat transfer rate with temperature-dependent thermal conductivity has been obtained as a function of thermo-geometric fin parameter and the thermal conductivity parameter describing the variation of the thermal conductivity.

  11. Temperature distribution and thermal stress

    Indian Academy of Sciences (India)

    Abstract. Thermal effects of a double-end-pumped cubic Nd:YVO4 laser crystal are investigated in this paper. A detailed analysis of temperature distribution and thermal stress in cubic crystal with circular shape pumping is discussed. It has been shown that by considering the total input powers as constant, the ...

  12. Simultaneous measurement of current and temperature distributions in a proton exchange membrane fuel cell during cold start processes

    International Nuclear Information System (INIS)

    Jiao Kui; Alaefour, Ibrahim E.; Karimi, Gholamreza; Li Xianguo

    2011-01-01

    Cold start is critical to the commercialization of proton exchange membrane fuel cell (PEMFC) in automotive applications. Dynamic distributions of current and temperature in PEMFC during various cold start processes determine the cold start characteristics, and are required for the optimization of design and operational strategy. This study focuses on an investigation of the cold start characteristics of a PEMFC through the simultaneous measurements of current and temperature distributions. An analytical model for quick estimate of purging duration is also developed. During the failed cold start process, the highest current density is initially near the inlet region of the flow channels, then it moves downstream, reaching the outlet region eventually. Almost half of the cell current is produced in the inlet region before the cell current peaks, and the region around the middle of the cell has the best survivability. These two regions are therefore more important than other regions for successful cold start through design and operational strategy, such as reducing the ice formation and enhancing the heat generation in these two regions. The evolution of the overall current density distribution over time remains similar during the successful cold start process; the current density is the highest near the flow channel inlets and generally decreases along the flow direction. For both the failed and the successful cold start processes, the highest temperature is initially in the flow channel inlet region, and is then around the middle of the cell after the overall peak current density is reached. The ice melting and liquid formation during the successful cold start process have negligible influence on the general current and temperature distributions.

  13. Digital characteristics of CMOS devices at cryogenic temperatures

    International Nuclear Information System (INIS)

    Deen, M.J.

    1989-01-01

    This paper presents the results of measurements of the digital characteristics of CMOS devices as a function of temperature between 77 and 300 K and a supply voltage between 3 and 20 V. Using a fixed supply of 5 V, the low noise margin (NM L decreased from 2.54 to 2.11 V, but the high noise margin NM H ) increased from 2.18 to 2.40 V as the temperature was increased from 77 to 300 K. On lowering the temperature from 300 to 77 K, both V 1L and V 1H increased and the transition between these input logic voltages became more abrupt. These and other digital characteristics including noise immunity, V H - V L , and V 1H - V 1L all showed a smooth monotonic improvement as the temperature decreased. These results can be qualitatively explained as due to the increase in the absolute threshold voltages of the NMOS and PMOS transistors and to the decrease in the β N /β rho ratio as the temperature is lowered

  14. Explosion characteristics of synthesised biogas at various temperatures.

    Science.gov (United States)

    Dupont, L; Accorsi, A

    2006-08-25

    Biogas is considered as a valuable source of renewable energy. Indeed, it can be turned into useful energy (heat, electricity, fuel) and can contribute to reduce greenhouse gas emissions. Knowledge of its safety characteristics is a very important practical issue. Experimental investigation of synthesised biogas explosion characteristics was conducted in a 20-L sphere at various temperatures (30-70 degrees C) and at atmospheric pressure. The studied biogas was made of 50% methane (CH(4)) and 50% carbon dioxide (CO(2)). It was also saturated with humidity: this composition is frequently met in digesters during waste methanisation. There are two inert gases in biogas: water vapour and carbon dioxide. Its vapour water content rises along with temperature. The presence of these inert gases modifies considerably biogas characteristics compared to the ones of pure methane: explosion limits are lowered and beyond 70 degrees C, water vapour content is sufficient to inert the mixture. Furthermore, explosion violence (estimated with the maximum rate of pressure rise values, (dp/dt)(max)) is three times lower for biogas than for pure methane at ambient temperature.

  15. Explosion characteristics of synthesised biogas at various temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, L. [Institut National de l' Environnement Industriel et des Risques, Parc Technologique Alata, BP2, Verneuil-en-Halatte (France)]. E-mail: laurent.dupont@ineris.fr; Accorsi, A. [Institut National de l' Environnement Industriel et des Risques, Parc Technologique Alata, BP2, Verneuil-en-Halatte (France)]. E-mail: antoinette.accorsi@ineris.fr

    2006-08-25

    Biogas is considered as a valuable source of renewable energy. Indeed, it can be turned into useful energy (heat, electricity, fuel) and can contribute to reduce greenhouse gas emissions. Knowledge of its safety characteristics is a very important practical issue. Experimental investigation of synthesised biogas explosion characteristics was conducted in a 20-L sphere at various temperatures (30-70deg. C) and at atmospheric pressure. The studied biogas was made of 50% methane (CH{sub 4}) and 50% carbon dioxide (CO{sub 2}). It was also saturated with humidity: this composition is frequently met in digesters during waste methanisation. There are two inert gases in biogas: water vapour and carbon dioxide. Its vapour water content rises along with temperature. The presence of these inert gases modifies considerably biogas characteristics compared to the ones of pure methane: explosion limits are lowered and beyond 70deg. C, water vapour content is sufficient to inert the mixture. Furthermore, explosion violence (estimated with the maximum rate of pressure rise values (dp/dt){sub max}) is three times lower for biogas than for pure methane at ambient temperature.

  16. Explosion characteristics of synthesised biogas at various temperatures

    International Nuclear Information System (INIS)

    Dupont, L.; Accorsi, A.

    2006-01-01

    Biogas is considered as a valuable source of renewable energy. Indeed, it can be turned into useful energy (heat, electricity, fuel) and can contribute to reduce greenhouse gas emissions. Knowledge of its safety characteristics is a very important practical issue. Experimental investigation of synthesised biogas explosion characteristics was conducted in a 20-L sphere at various temperatures (30-70deg. C) and at atmospheric pressure. The studied biogas was made of 50% methane (CH 4 ) and 50% carbon dioxide (CO 2 ). It was also saturated with humidity: this composition is frequently met in digesters during waste methanisation. There are two inert gases in biogas: water vapour and carbon dioxide. Its vapour water content rises along with temperature. The presence of these inert gases modifies considerably biogas characteristics compared to the ones of pure methane: explosion limits are lowered and beyond 70deg. C, water vapour content is sufficient to inert the mixture. Furthermore, explosion violence (estimated with the maximum rate of pressure rise values (dp/dt) max ) is three times lower for biogas than for pure methane at ambient temperature

  17. Determination of gas temperature in the plasmatron channel according to the known distribution of electronic temperature

    Directory of Open Access Journals (Sweden)

    Gerasimov Alexander V.

    2013-01-01

    Full Text Available An analytical method to calculate the temperature distribution of heavy particles in the channel of the plasma torch on the known distribution of the electronic temperature has been proposed. The results can be useful for a number of model calculations in determining the most effective conditions of gas blowing through the plasma torch with the purpose of heating the heavy component. This approach allows us to understand full details about the heating of cold gas, inpouring the plasma, and to estimate correctly the distribution of the gas temperature inside the channel.

  18. Ion acoustic solitons in a plasma with two-temperature kappa-distributed electrons

    International Nuclear Information System (INIS)

    Baluku, T. K.; Hellberg, M. A.

    2012-01-01

    Existence domains and characteristics of ion acoustic solitons are studied in a two-temperature electron plasma with both electron components being kappa-distributed, as found in Saturn's magnetosphere. As is the case for double-Boltzmann electrons, solitons of both polarities can exist over restricted ranges of fractional hot electron density ratio for this plasma model. Low κ values, which indicate increased suprathermal particles in the tail of the distribution, yield a smaller domain in the parameter space of hot density fraction and normalized soliton velocity (f, M), over which both soliton polarities are supported for a given plasma composition (the coexistence region). For some density ratios that support coexistence, solitons occur even at the lowest (critical) Mach number (i.e., at the acoustic speed), as found recently for a number of other plasma models. Like Maxwellians, low-κ distributions also support positive potential double layers over a narrow range of low fractional cool electron density (<10%).

  19. Ion acoustic solitons in a plasma with two-temperature kappa-distributed electrons

    Energy Technology Data Exchange (ETDEWEB)

    Baluku, T. K.; Hellberg, M. A. [School of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000 (South Africa)

    2012-01-15

    Existence domains and characteristics of ion acoustic solitons are studied in a two-temperature electron plasma with both electron components being kappa-distributed, as found in Saturn's magnetosphere. As is the case for double-Boltzmann electrons, solitons of both polarities can exist over restricted ranges of fractional hot electron density ratio for this plasma model. Low {kappa} values, which indicate increased suprathermal particles in the tail of the distribution, yield a smaller domain in the parameter space of hot density fraction and normalized soliton velocity (f, M), over which both soliton polarities are supported for a given plasma composition (the coexistence region). For some density ratios that support coexistence, solitons occur even at the lowest (critical) Mach number (i.e., at the acoustic speed), as found recently for a number of other plasma models. Like Maxwellians, low-{kappa} distributions also support positive potential double layers over a narrow range of low fractional cool electron density (<10%).

  20. Temperature measurement distributed on a building by fiber optic BOTDA sensor

    International Nuclear Information System (INIS)

    Kwon, Il Bum; Kim, Chi Yeop; Choi, Man Yong; Lee, Seung Seok

    2002-01-01

    We have focused on the development of a fiber optic BOTDA (Brillouin Optical Time Domain Analysis) sensor system in order to measure temperature distributed on large structures. Also, we present a feasibility study of the fiber optic sensor to monitor the distributed temperature on a building construction. A fiber optic BOTDA sensor system, which has a capability of measuring the temperature distribution, attempted over several kilometers of long fiber paths. This simple fiber optic sensor system employs a laser diode and two electro-optic modulators. The optical fiber of the length of 1400 m was installed on the surfaces of the building. The change of the distributed temperature on the building construction was well measured by this fiber optic sensor. The temperature changed normally up to 4 degrees C through one day.

  1. Soil temperature variability in complex terrain measured using fiber-optic distributed temperature sensing

    Science.gov (United States)

    Soil temperature (Ts) exerts critical controls on hydrologic and biogeochemical processes but magnitude and nature of Ts variability in a landscape setting are rarely documented. Fiber optic distributed temperature sensing systems (FO-DTS) potentially measure Ts at high density over a large extent. ...

  2. Identifying (subsurface) anthropogenic heat sources that influence temperature in the drinking water distribution system

    Science.gov (United States)

    Agudelo-Vera, Claudia M.; Blokker, Mirjam; de Kater, Henk; Lafort, Rob

    2017-09-01

    The water temperature in the drinking water distribution system and at customers' taps approaches the surrounding soil temperature at a depth of 1 m. Water temperature is an important determinant of water quality. In the Netherlands drinking water is distributed without additional residual disinfectant and the temperature of drinking water at customers' taps is not allowed to exceed 25 °C. In recent decades, the urban (sub)surface has been getting more occupied by various types of infrastructures, and some of these can be heat sources. Only recently have the anthropogenic sources and their influence on the underground been studied on coarse spatial scales. Little is known about the urban shallow underground heat profile on small spatial scales, of the order of 10 m × 10 m. Routine water quality samples at the tap in urban areas have shown up locations - so-called hotspots - in the city, with relatively high soil temperatures - up to 7 °C warmer - compared to the soil temperatures in the surrounding rural areas. Yet the sources and the locations of these hotspots have not been identified. It is expected that with climate change during a warm summer the soil temperature in the hotspots can be above 25 °C. The objective of this paper is to find a method to identify heat sources and urban characteristics that locally influence the soil temperature. The proposed method combines mapping of urban anthropogenic heat sources, retrospective modelling of the soil temperature, analysis of water temperature measurements at the tap, and extensive soil temperature measurements. This approach provided insight into the typical range of the variation of the urban soil temperature, and it is a first step to identifying areas with potential underground heat stress towards thermal underground management in cities.

  3. Finite element analysis for temperature distributions in a cold forging

    International Nuclear Information System (INIS)

    Kim, Dong Bum; Lee, In Hwan; Cho, Hae Yong; Kim, Sung Wook; Song, In Chul; Jeon, Byung Cheol

    2013-01-01

    In this research, the finite element method is utilized to predict the temperature distributions in a cold-forging process for a cambolt. The cambolt is mainly used as a part of a suspension system of a vehicle. The cambolt has an off-centered lobe that manipulates the vertical position of the knuckle and wheel to a slight degree. The cambolt requires certain mechanical properties, such as strength and endurance limits. Moreover, temperature is also an important factor to realize mass production and improve efficiency. However, direct measurement of temperature in a forging process is infeasible with existing technology; therefore, there is a critical need for a new technique. Accordingly, in this study, a thermo-coupled finite element method is developed for predicting the temperature distribution. The rate of energy conversion to heat for the workpiece material is determined, and the temperature distribution is analyzed throughout the forging process for a cambolt. The temperatures associated with different punch speeds are also studied, as well as the relationships between load, temperature, and punch speed. Experimental verification of the technique is presented.

  4. Finite element analysis for temperature distributions in a cold forging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Bum; Lee, In Hwan; Cho, Hae Yong [Chungbuk National University, Cheongju (Korea, Republic of); Kim, Sung Wook [Yanbian National University, Yanbian (China); Song, In Chul; Jeon, Byung Cheol [Sunil dyfas, Jincheon (Korea, Republic of)

    2013-10-15

    In this research, the finite element method is utilized to predict the temperature distributions in a cold-forging process for a cambolt. The cambolt is mainly used as a part of a suspension system of a vehicle. The cambolt has an off-centered lobe that manipulates the vertical position of the knuckle and wheel to a slight degree. The cambolt requires certain mechanical properties, such as strength and endurance limits. Moreover, temperature is also an important factor to realize mass production and improve efficiency. However, direct measurement of temperature in a forging process is infeasible with existing technology; therefore, there is a critical need for a new technique. Accordingly, in this study, a thermo-coupled finite element method is developed for predicting the temperature distribution. The rate of energy conversion to heat for the workpiece material is determined, and the temperature distribution is analyzed throughout the forging process for a cambolt. The temperatures associated with different punch speeds are also studied, as well as the relationships between load, temperature, and punch speed. Experimental verification of the technique is presented.

  5. Technology Requirements and Development for Affordable High-Temperature Distributed Engine Controls

    Science.gov (United States)

    2012-06-04

    long lasting, high temperature modules is to use high temperature electronics on ceramic modules. The electronic components are “ brazed ” onto the...Copyright © 2012 by ISA Technology Requirements and Development for Affordable High - Temperature Distributed Engine Controls Alireza Behbahani 1...with regards to high temperature capability. The Government and Industry Distributed Engine Controls Working Group (DECWG) [5] has been established

  6. Effect of two-temperature electrons distribution on an electrostatic plasma sheath

    International Nuclear Information System (INIS)

    Ou, Jing; Xiang, Nong; Gan, Chunyun; Yang, Jinhong

    2013-01-01

    A magnetized collisionless plasma sheath containing two-temperature electrons is studied using a one-dimensional model in which the low-temperature electrons are described by Maxwellian distribution (MD) and high-temperature electrons are described by truncated Maxwellian distribution (TMD). Based on the ion wave approach, a modified sheath criterion including effect of TMD caused by high-temperature electrons energy above the sheath potential energy is established theoretically. The model is also used to investigate numerically the sheath structure and energy flux to the wall for plasmas parameters of an open divertor tokamak-like. Our results show that the profiles of the sheath potential, two-temperature electrons and ions densities, high-temperature electrons and ions velocities as well as the energy flux to the wall depend on the high-temperature electrons concentration, temperature, and velocity distribution function associated with sheath potential. In addition, the results obtained in the high-temperature electrons with TMD as well as with MD sheaths are compared for the different sheath potential

  7. Temperature distribution of thick thermoset composites

    Science.gov (United States)

    Guo, Zhan-Sheng; Du, Shanyi; Zhang, Boming

    2004-05-01

    The development of temperature distribution of thick polymeric matrix laminates during an autoclave vacuum bag process was measured and compared with numerically calculated results. The finite element formulation of the transient heat transfer problem was carried out for polymeric matrix composite materials from the heat transfer differential equations including internal heat generation produced by exothermic chemical reactions. Software based on the general finite element software package was developed for numerical simulation of the entire composite process. From the experimental and numerical results, it was found that the measured temperature profiles were in good agreement with the numerical ones, and conventional cure cycles recommended by prepreg manufacturers for thin laminates should be modified to prevent temperature overshoot.

  8. Temperature distribution and heat radiation of patterned surfaces at short wavelengths

    Science.gov (United States)

    Emig, Thorsten

    2017-05-01

    We analyze the equilibrium spatial distribution of surface temperatures of patterned surfaces. The surface is exposed to a constant external heat flux and has a fixed internal temperature that is coupled to the outside heat fluxes by finite heat conductivity across the surface. It is assumed that the temperatures are sufficiently high so that the thermal wavelength (a few microns at room temperature) is short compared to all geometric length scales of the surface patterns. Hence the radiosity method can be employed. A recursive multiple scattering method is developed that enables rapid convergence to equilibrium temperatures. While the temperature distributions show distinct dependence on the detailed surface shapes (cuboids and cylinder are studied), we demonstrate robust universal relations between the mean and the standard deviation of the temperature distributions and quantities that characterize overall geometric features of the surface shape.

  9. Application of the orthogonal collocation method to determination of temperature distribution in cylindrical conductors

    International Nuclear Information System (INIS)

    Fortini, Maria A.; Stamoulis, Michel N.; Ferreira, Angela F.M.; Pereira, Claubia; Costa, Antonella L.; Silva, Clarysson A.M.

    2008-01-01

    In this work, an analytical model for the determination of the temperature distribution in cylindrical heater components with characteristics of nuclear fuel rods, is presented. The heat conductor is characterized by an arbitrary number of solid walls and different types of materials, whose thermal properties are taken as function of temperature. The heat conduction fundamental equation is solved numerically with the method of weighted residuals (MWR) using a technique of orthogonal collocation. The results obtained with the proposed method are compared with the experimental data from tests performed in the TRIGA IPR-R1 research reactor localized at the CDTN/CNEN (Centro de Desenvolvimento da Tecnologia Nuclear/Comissao Nacional de Energia Nuclear) at Belo Horizonte in Brazil

  10. Survey on the characteristics of rock under low and high temperature

    International Nuclear Information System (INIS)

    Shin, Koich; Kitano, Koichi

    1987-01-01

    Rock caverns for Superconducting Magnetic Energy Storage (SMES), Radioactive Waste Disposal, or Liquified Natural Gas Storage will suffer extraordinary temperature. Therefore, authors have researched the rock characteristics under the low temperature conditions and the rock mass behavior when it is heated, by papers so far reported. As a result, rock characteristics such as strength, linear expansion coefficient, thermal conductivity etc. are found to be ready to change with temperature condition and the kind of rocks. Even an anisotropy of some kind appears under some conditions. So, when sitting those facilities before mentioned, rock characteristics under each temperature condition must be enough clarified for the purpose of the evaluation of rock cavern stability and especially, rock behavior when it is loaded dynamically under low temperature must be cleared from now on, for such studies have been few. (author)

  11. Experimental determination of neutron temperature distribution in reactor cell

    International Nuclear Information System (INIS)

    Bosevski, T.

    1965-12-01

    This paper describes theoretical preparation of the experiment for measuring neutron temperature distribution at the RB reactor by activation foils. Due to rather low neutron flux Cu and Lu foil were irradiated for 4 days. Special natural uranium fuel element was prepared to enable easy removal of foils after irradiation. Experimental device was placed in the reactor core at half height in order to measure directly the mean neutron density. Experimental data of neutron temperature distribution for square lattice pitch 16 cm are presented with mean values of neutron temperature in the moderator, in the fuel and on the fuel element surface

  12. Research on temperature characteristics of laser energy meter absorber irradiated by ms magnitude long pulse laser

    Science.gov (United States)

    Li, Nan; Qiao, Chunhong; Fan, Chengyu; Zhang, Jinghui; Yang, Gaochao

    2017-10-01

    The research on temperature characteristics for large-energy laser energy meter absorber is about continuous wave (CW) laser before. For the measuring requirements of millisecond magnitude long pulse laser energy, the temperature characteristics for absorber are numerically calculated and analyzed. In calculation, the temperature field distributions are described by heat conduction equations, and the metal cylinder cavity is used for absorber model. The results show that, the temperature of absorber inwall appears periodic oscillation with pulse structure, the oscillation period and amplitude respectively relate to the pulse repetition frequency and single pulse energy. With the wall deep increasing, the oscillation amplitude decreases rapidly. The temperature of absorber outerwall is without periodism, and rises gradually with time. The factors to affect the temperature rise of absorber are single pulse energy, pulse width and repetition frequency. When the laser irradiation stops, the temperature between absorber inwall and outerwall will reach agreement rapidly. After special technology processing to enhance the capacity of resisting laser damage for absorber inwall, the ms magnitude long pulse laser energy can be obtained with the method of measuring the temperature of absorber outerwall. Meanwhile, by optimization design of absorber structure, when the repetition frequency of ms magnitude pulse laser is less than 10Hz, the energy of every pulse for low repetition frequency pulse sequence can be measured. The work offers valuable references for the design of ms magnitude large-energy pulse laser energy meter.

  13. Characteristics of the Audit Processes for Distributed Informatics Systems

    Directory of Open Access Journals (Sweden)

    Marius POPA

    2009-01-01

    Full Text Available The paper contains issues regarding: main characteristics and examples of the distributed informatics systems and main difference categories among them, concepts, principles, techniques and fields for auditing the distributed informatics systems, concepts and classes of the standard term, characteristics of this one, examples of standards, guidelines, procedures and controls for auditing the distributed informatics systems. The distributed informatics systems are characterized by the following issues: development process, resources, implemented functionalities, architectures, system classes, particularities. The audit framework has two sides: the audit process and auditors. The audit process must be led in accordance with the standard specifications in the IT&C field. The auditors must meet the ethical principles and they must have a high-level of professional skills and competence in IT&C field.

  14. Temperature oscillations at critical temperature in two-phase flow

    International Nuclear Information System (INIS)

    Brevi, R.; Cumo, M.; Palmieri, A.; Pitimada, D.

    Some experiments on the temperature oscillations, or thermal cycling, which occur with steam-water flow in once-through cooling systems at the critical temperature zone, i.e., when dryout occurs, are described. A theoretical analysis is done on the characteristic frequency of the oscillations, and the parameters upon which the operating characteristics and the physical properties of the fluid depend. Finally, the temperature distribution in the critical zone is analyzed, examining the thermal transitions that occur due to the rapid variations in the coefficient of heat transfer

  15. Transient temperature distributions in geological media surrounding radioactive waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Beyerlein, S W; Sunderland, J E [Massachusetts Univ., Amherst (USA). Dept. of Mechanical Engineering

    1981-01-01

    Closed form analytical solutions are presented for the transient temperature distributions resulting from underground radioactive waste disposal. The thermal source term is represented by point or spherical sources whose strength decreases exponentially with time. The transient temperature distributions can be determined above the disposal horizon over a time interval of hundreds of years.

  16. The current–voltage and capacitance–voltage characteristics at high temperatures of Au Schottky contact to n-type GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Özerli, Halil; Karteri, İbrahim [Department of Materials Science And Engineering, Kahramanmaraş Sütçü İmam University, 46100 Kahramanmaraş (Turkey); Karataş, Şükrü, E-mail: skaratas@ksu.edu.tr [Department of Materials Science And Engineering, Kahramanmaraş Sütçü İmam University, 46100 Kahramanmaraş (Turkey); Department of Physics, Kahramanmaraş Sütçü İmam University, 46100 Kahramanmaraş (Turkey); Altindal, Şemsettin [Department of Physics, Gazi University, 06100 Ankara (Turkey)

    2014-05-01

    Highlights: • The electronic parameters of the diode under temperature were investigated. • The barrier heights have a Gaussian distribution. • Au/n-GaAs diode exhibits a rectification behavior. - Abstract: We have investigated the temperature-dependent current–voltage (I–V) and capacitance–voltage (C–V) characteristics of Au/n-GaAs Schottky barrier diodes (SBDs) in the temperature range of 280–415 K. The barrier height for the Au/n-type GaAs SBDs from the I–V and C–V characteristics have varied from 0.901 eV to 0.963 eV (I–V) and 1.234 eV to 0.967 eV (C–V), and the ideality factor (n) from 1.45 to 1.69 in the temperature range 280–415 K. The conventional Richardson plots are found to be linear in the temperature range measured. Both the ln(I{sub 0}/T{sup 2}) versus (kT){sup −1} and ln(I{sub 0}/T{sup 2}) versus (nkT){sup −1} plots gives a straight line corresponding to activation energies 0.773 eV and 0.870 eV, respectively. A Φ{sub b0} versus 1/T plot was drawn to obtain evidence of a Gaussian distribution of the BHs, and values of Φ{sup ¯}{sub b0} = 1.071 eV and σ{sub 0} = 0.094 V for the mean BH and zero-bias standard deviation have been obtained from this plot.

  17. The current–voltage and capacitance–voltage characteristics at high temperatures of Au Schottky contact to n-type GaAs

    International Nuclear Information System (INIS)

    Özerli, Halil; Karteri, İbrahim; Karataş, Şükrü; Altindal, Şemsettin

    2014-01-01

    Highlights: • The electronic parameters of the diode under temperature were investigated. • The barrier heights have a Gaussian distribution. • Au/n-GaAs diode exhibits a rectification behavior. - Abstract: We have investigated the temperature-dependent current–voltage (I–V) and capacitance–voltage (C–V) characteristics of Au/n-GaAs Schottky barrier diodes (SBDs) in the temperature range of 280–415 K. The barrier height for the Au/n-type GaAs SBDs from the I–V and C–V characteristics have varied from 0.901 eV to 0.963 eV (I–V) and 1.234 eV to 0.967 eV (C–V), and the ideality factor (n) from 1.45 to 1.69 in the temperature range 280–415 K. The conventional Richardson plots are found to be linear in the temperature range measured. Both the ln(I 0 /T 2 ) versus (kT) −1 and ln(I 0 /T 2 ) versus (nkT) −1 plots gives a straight line corresponding to activation energies 0.773 eV and 0.870 eV, respectively. A Φ b0 versus 1/T plot was drawn to obtain evidence of a Gaussian distribution of the BHs, and values of Φ ¯ b0 = 1.071 eV and σ 0 = 0.094 V for the mean BH and zero-bias standard deviation have been obtained from this plot

  18. CFD study of temperature distribution in full scale boiler adopting in-furnace coal blending

    International Nuclear Information System (INIS)

    Fadhil, S S A; Hasini, H; Shuaib, N H

    2013-01-01

    This paper describes the investigation of temperature characteristics of an in-furnace combustion using different coals in a 700 MW full scale boiler. Single mixture fraction approach is adopted for combustion model of both primary and secondary coals. The primary coal was based on the properties of Adaro which has been used as the design coal for the boiler under investigation. The secondary blend coal was selected based on sub-bituminous coal with higher calorific value. Both coals are simultaneously injected into the furnace at alternate coal burner elevations. The general prediction of the temperature contours at primary combustion zone shows identical pattern compared with conventional single coal combustion in similar furnace. Reasonable agreement was achieved by the prediction of the average temperature at furnace exit. The temperature distribution is at different furnace elevation is non-uniform with higher temperature predicted at circumferential 'ring-like' region at lower burner levels for both cases. The maximum flame temperature is higher at the elevation where coal of higher calorific value is injected. The temperature magnitude is within the accepTable limit and the variations does not differ much compared to the conventional single coal combustion.

  19. Temperature and pressure distributions in a 400 kW{sub t} fluidized bed straw gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Erguedenler, A.; Ghaly, A.E.; Hamdullahpur, F. [Technical Univ. of Nova Scotia, Halifax (Canada)

    1993-12-31

    The temperature and pressure distribution characteristics of a 400 kW (thermal) dual-distributor type fluidized bed straw gasifier were investigated. The effects of the bed height, equivalence ratio (actual air-fuel ratio:stoichiometric air-fuel ratio) and fluidization velocity on the temperature and pressure variations in the gasifier were studied. Generally, the bed temperature reached the steady state condition within 15--20 minutes. The average temperature of the dense bed ranged from 649{degrees}C to 875{degrees}C depending on the levels of operating parameters used. The bed temperature increased linearly with increases in the equivalence ratio, higher bed temperatures were observed with lower bed height and no clear trend for the bed temperature with respect to variations in fluidization velocity was observed. The bed height, equivalence ratio and fluidization velocity affected the pressure drop in the fluidized bed gasifier. Increasing the fluidization velocity and/or decreasing the equivalence ratio resulted in higher pressure drops in the dense bed and the freeboard regions whereas increasing the bed height increased the pressure drop only in the dense bed.

  20. Distributed fiber?optic temperature sensing for hydrologic systems

    NARCIS (Netherlands)

    Selker, J.S.; Thévenaz, L.; Huwald, H.; Mallet, A.; Luxemburg, W.M.J.; Van de Giesen, N.; Stejskal, M.; Zeman, J.; Westhoff, M.; Parlange, M.B.

    2006-01-01

    Instruments for distributed fiber-optic measurement of temperature are now available with temperature resolution of 0.01°C and spatial resolution of 1 m with temporal resolution of fractions of a minute along standard fiber-optic cables used for communication with lengths of up to 30,000 m. We

  1. Distributed fiber-optic temperature sensing for hydrologic systems

    NARCIS (Netherlands)

    Selker, John S.; Thévenaz, Luc; Huwald, Hendrik; Mallet, Alfred; Luxemburg, Wim; van de Giesen, Nick C.; Stejskal, Martin; Zeman, Josef; Westhoff, Martijn; Parlange, Marc B.

    2006-01-01

    Instruments for distributed fiber-optic measurement of temperature are now available with temperature resolution of 0.01°C and spatial resolution of 1 m with temporal resolution of fractions of a minute along standard fiber-optic cables used for communication with lengths of up to 30,000 m. We

  2. Evaluation of Fiber Bragg Grating and Distributed Optical Fiber Temperature Sensors

    International Nuclear Information System (INIS)

    McCary, Kelly Marie

    2017-01-01

    Fiber optic temperature sensors were evaluated in the High Temperature Test Lab (HTTL) to determine the accuracy of the measurements at various temperatures. A distributed temperature sensor was evaluated up to 550C and a fiber Bragg grating sensor was evaluated up to 750C. HTTL measurements indicate that there is a drift in fiber Bragg sensor over time of approximately -10C with higher accuracy at temperatures above 300C. The distributed sensor produced some bad data points at and above 500C but produced measurements with less than 2% error at increasing temperatures up to 400C

  3. Evaluation of Fiber Bragg Grating and Distributed Optical Fiber Temperature Sensors

    Energy Technology Data Exchange (ETDEWEB)

    McCary, Kelly Marie [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-04-01

    Fiber optic temperature sensors were evaluated in the High Temperature Test Lab (HTTL) to determine the accuracy of the measurements at various temperatures. A distributed temperature sensor was evaluated up to 550C and a fiber Bragg grating sensor was evaluated up to 750C. HTTL measurements indicate that there is a drift in fiber Bragg sensor over time of approximately -10C with higher accuracy at temperatures above 300C. The distributed sensor produced some bad data points at and above 500C but produced measurements with less than 2% error at increasing temperatures up to 400C

  4. Incubation Temperature during Fetal Development Influences Morphophysiological Characteristics and Preferred Ambient Temperature of Chicken Hatchlings.

    Directory of Open Access Journals (Sweden)

    Viviane de Souza Morita

    Full Text Available Skin and feather characteristics, which play a critical role in body temperature maintenance, can be affected by incubation circumstances, such as incubation temperature. However, no study to date has assessed the influence of incubation temperature during the fetal stage on morphometric characteristics and vascular development of the skin, feather characteristics, and their relationship to hormone levels and preferred temperature in later life in chickens. Broiler breeder eggs were exposed to low (36°C, control (37.5°C, or high (39°C temperatures (treatments LT, CK, and HT, respectively from day 13 of incubation onward, because it is known that the endocrine axes are already established at this time. During this period, eggshell temperature of HT eggs (38.8±0.33°C was higher than of LT (37.4±0.08°C and CK eggs (37.8 ±0.15°C. The difference between eggshell and incubator air temperature diminished with the increasing incubation temperature, and was approximately zero for HT. HT hatchlings had higher surface temperature on the head, neck, and back, and thinner and more vascularized skin than did CK and LT hatchlings. No differences were found among treatments for body weight, total feather weight, number and length of barbs, barbule length, and plasma T4 concentration. LT hatchlings showed lower plasma T3 and GH, as well as lower T3/T4 ratio and decreased vascularity in the neck, back, and thigh skin compared to CK hatchlings. On the other hand, HT hatchlings had decreased skin thickness and increased vascularity, and preferred a higher ambient temperature compared to CK and HT hatchlings. In addition, for all treatments, surface temperature on the head was higher than of the other body regions. We conclude that changes in skin thickness and vascularity, as well as changes in thyroid and growth hormone levels, are the result of embryonic strategies to cope with higher or lower than normal incubation temperatures. Additionally exposure to

  5. Noninvasive ultrasonic measurements of temperature distribution and heat fluxes in nuclear systems

    International Nuclear Information System (INIS)

    Jia, Yunlu; Skliar, Mikhail

    2015-01-01

    Measurements of temperature and heat fluxes through structural materials are important in many nuclear systems. One such example is dry storage casks (DSC) that are built to store highly radioactive materials, such as spent nuclear reactor fuel. The temperature inside casks must be maintained within allowable limits of the fuel assemblies and the DSC components because many degradation mechanisms are thermally controlled. In order to obtain direct, real-time measurements of temperature distribution without insertion of sensing elements into harsh environment of storage casks, we are developing noninvasive ultrasound (US) methods for measuring spatial distribution of temperature inside solid materials, such as concrete overpacks, steel casings, thimbles, and rods. The measured temperature distribution can then be used to obtain heat fluxes that provide calorimetric characterisation of the fuel decay, fuel distribution inside the cask, its integrity, and accounting of nuclear materials. The physical basis of the proposed approach is the temperature dependence of the speed of sound in solids. By measuring the time it takes an ultrasound signal to travel a known distance between a transducer and a receiver, the indication about the temperature distribution along the path of the ultrasound propagation may be obtained. However, when temperature along the path of US propagation is non-uniform, the overall time of flight of an ultrasound signal depends on the temperature distribution in a complex and unknown way. To overcome this difficulty, the central idea of our method is to create an US propagation path inside material of interest which incorporates partial ultrasound reflectors (back scatterers) at known locations and use the train of created multiple echoes to estimate the temperature distribution. In this paper, we discuss experimental validation of this approach, the achievable accuracy and spatial resolution of the measured temperature profile, and stress the

  6. [Airborne Fungal Aerosol Concentration and Distribution Characteristics in Air- Conditioned Wards].

    Science.gov (United States)

    Zhang, Hua-ling; Feng, He-hua; Fang, Zi-liang; Wang, Ben-dong; Li, Dan

    2015-04-01

    The effects of airborne fungus on human health in the hospital environment are related to not only their genera and concentrations, but also their particle sizes and distribution characteristics. Moreover, the mechanisms of aerosols with different particle sizes on human health are different. Fungal samples were obtained in medicine wards of Chongqing using a six-stage sampler. The airborne fungal concentrations, genera and size distributions of all the sampling wards were investigated and identified in detail. Results showed that airborne fungal concentrations were not correlated to the diseases or personnel density, but were related to seasons, temperature, and relative humidity. The size distribution rule had roughly the same for testing wards in winter and summer. The size distributions were not related with diseases and seasons, the percentage of airborne fungal concentrations increased gradually from stage I to stage III, and then decreased dramatically from stage V to stage VI, in general, the size of airborne fungi was a normal distribution. There was no markedly difference for median diameter of airborne fungi which was less 3.19 μm in these wards. There were similar dominant genera in all wards. They were Aspergillus spp, Penicillium spp and Alternaria spp. Therefore, attention should be paid to improve the filtration efficiency of particle size of 1.1-4.7 μm for air conditioning system of wards. It also should be targeted to choose appropriate antibacterial methods and equipment for daily hygiene and air conditioning system operation management.

  7. Mercury distribution characteristics in primary manganese smelting plants.

    Science.gov (United States)

    Back, Seung-Ki; Sung, Jin-Ho; Moon, Young-Hoon; Kim, Young-Hee; Seok, Kwang-Seol; Song, Geum-Ju; Seo, Yong-Chil

    2017-08-01

    The mercury (Hg) distribution characteristics were investigated in three primary manganese smelting plants in Korea for the assessment of anthropogenic Hg released. Input and output materials were sampled from each process, and Hg concentrations in the samples were analyzed. Among the input materials, the most mercury was found in the manganese ore (83.1-99.7%) and mercury was mainly released through fly ash or off gas, depending on the condition of off gas cleaning system. As off gas temperature decreases, proportion and concentration of emitted gaseous elemental mercury (Hg 0 ) in off gas decreases. Based on mass balance study from these three plants and national manganese production data, the total amount of mercury released from those Korean plants was estimated to 644 kg/yr. About half of it was emitted into the air while the rest was released to waste as fly ash. With the results of this investigation, national inventory for Hg emission and release could be updated for the response to Minamata Convention on Mercury. Copyright © 2017. Published by Elsevier Ltd.

  8. Temperature distribution study in flash-annealed amorphous ribbons

    International Nuclear Information System (INIS)

    Moron, C.; Garcia, A.; Carracedo, M.T.

    2003-01-01

    Negative magnetrostrictive amorphous ribbons have been locally current annealed with currents from 1 to 8 A and annealing times from 14 ms to 200 s. In order to obtain information about the sample temperature during flash or current annealing, a study of the temperature dispersion during annealing in amorphous ribbons was made. The local temperature variation was obtained by measuring the local intensity of the infrared emission of the sample with a CCD liquid nitrogen cooled camera. A distribution of local temperature has been found in spite of the small dimension of the sample

  9. Remote Sensing of Atlanta's Urban Sprawl and the Distribution of Land Cover and Surface Temperature

    Science.gov (United States)

    Laymon, Charles A.; Estes, Maurice G., Jr.; Quattrochi, Dale A.; Goodman, H. Michael (Technical Monitor)

    2001-01-01

    Between 1973 and 1992, an average of 20 ha of forest was lost each day to urban expansion of Atlanta, Georgia. Urban surfaces have very different thermal properties than natural surfaces-storing solar energy throughout the day and continuing to release it as sensible heat well after sunset. The resulting heat island effect serves as catalysts for chemical reactions from vehicular exhaust and industrialization leading to a deterioration in air quality. In this study, high spatial resolution multispectral remote sensing data has been used to characterize the type, thermal properties, and distribution of land surface materials throughout the Atlanta metropolitan area. Ten-meter data were acquired with the Advanced Thermal and Land Applications Sensor (ATLAS) on May 11 and 12, 1997. ATLAS is a 15-channel multispectral scanner that incorporates the Landsat TM bands with additional bands in the middle reflective infrared and thermal infrared range. The high spatial resolution permitted discrimination of discrete surface types (e.g., concrete, asphalt), individual structures (e.g., buildings, houses) and their associated thermal characteristics. There is a strong temperature contrast between vegetation and anthropomorphic features. Vegetation has a modal temperature at about 20 C, whereas asphalt shingles, pavement, and buildings have a modal temperature of about 39 C. Broad-leaf vegetation classes are indistinguishable on a thermal basis alone. There is slightly more variability (+/-5 C) among the urban surfaces. Grasses, mixed vegetation and mixed urban surfaces are intermediate in temperature and are characterized by broader temperature distributions with modes of about 29 C. Thermal maps serve as a basis for understanding the distribution of "hotspots", i.e., how landscape features and urban fabric contribute the most heat to the lower atmosphere.

  10. The effects of off-center pellets on the temperature distribution and the heat flux distribution of fuel rods in nuclear reactors

    International Nuclear Information System (INIS)

    Peng Muzhang; Xing Jianhua

    1986-01-01

    This paper analyzes the effects of off-center pellets on the steady state temperature distribution and heat flux distribution of fuel rods in the nuclear reactors, and derives the dimensionless temperature distribution relationships and the dimensionless heat flux distribution relationship from the fuel rods with off-center pellets. The calculated results show that the effects of off-center will result in not only deviations of the highest temperature placement in the fuel pellets, but also the circumferentially nonuniform distributions of the temperatures and heat fluxes of the fuel rod surfaces

  11. Experimental study of effect of magnetic field on anode temperature distribution in an ATON-type Hall thruster

    Science.gov (United States)

    Liu, Jinwen; Li, Hong; Mao, Wei; Ding, Yongjie; Wei, Liqiu; Li, Jianzhi; Yu, Daren; Wang, Xiaogang

    2018-05-01

    The energy deposition caused by the absorption of electrons by the anode is an important cause of power loss in a Hall thruster. The resulting anode heating is dangerous, as it can potentially reduce the thruster lifetime. In this study, by considering the ring shape of the anode of an ATON-type Hall thruster, the effects of the magnetic field strength and gradient on the anode ring temperature distribution are studied via experimental measurement. The results show that the temperature distribution is not affected by changes in the magnetic field strength and that the position of the peak temperature is essentially unchanged; however, the overall temperature does not change monotonically with the increase of the magnetic field strength and is positively correlated with the change in the discharge current. Moreover, as the magnetic field gradient increases, the position of the peak temperature gradually moves toward the channel exit and the temperature tends to decrease as a whole, regardless of the discharge current magnitude; in any case, the position of the peak temperature corresponds exactly to the intersection of the magnetic field cusp with the anode ring. Further theoretical analysis shows that the electrons, coming from the ionization region, travel along two characteristic paths to reach the anode under the guidance of the cusped magnetic field configuration. The change of the magnetic field strength or gradient changes the transfer of momentum and energy of the electrons in these two paths, which is the main reason for the changes in the temperature and distribution. This study is instructive for matching the design of the ring-shaped anode and the cusp magnetic field of an ATON-type Hall thruster.

  12. Low temperature oxidation and spontaneous combustion characteristics of upgraded low rank coal

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H.K.; Kim, S.D.; Yoo, J.H.; Chun, D.H.; Rhim, Y.J.; Lee, S.H. [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2013-07-01

    The low temperature oxidation and spontaneous combustion characteristics of dried coal produced from low rank coal using the upgraded brown coal (UBC) process were investigated. To this end, proximate properties, crossing-point temperature (CPT), and isothermal oxidation characteristics of the coal were analyzed. The isothermal oxidation characteristics were estimated by considering the formation rates of CO and CO{sub 2} at low temperatures. The upgraded low rank coal had higher heating values than the raw coal. It also had less susceptibility to low temperature oxidation and spontaneous combustion. This seemed to result from the coating of the asphalt on the surface of the coal, which suppressed the active functional groups from reacting with oxygen in the air. The increasing upgrading pressure negatively affected the low temperature oxidation and spontaneous combustion.

  13. Flux creep characteristics in high-temperature superconductors

    International Nuclear Information System (INIS)

    Zeldov, E.; Amer, N.M.; Koren, G.; Gupta, A.; McElfresh, M.W.; Gambino, R.J.

    1990-01-01

    We describe the voltage-current characteristics of YBa 2 Cu 3 O 7-δ epitaxial films within the flux creep model in a manner consistent with the resistive transition behavior. The magnitude of the activation energy, and its temperature and magnetic field dependences, are readily derived from the experimentally observed power law characteristics and show a (1-T/T c ) 3/2 type of behavior near T c . The activation energy is a nonlinear function of the current density and it enables the determination of the shape of the flux line potential well

  14. Research on infrared radiation characteristics of Pyromark1200 high-temperature coating

    Science.gov (United States)

    Song, Xuyao; Huan, Kewei; Dong, Wei; Wang, Jinghui; Zang, Yanzhe; Shi, Xiaoguang

    2014-11-01

    Pyromark 1200 (Tempil Co, USA), which is a type of high-temperature high-emissivity coating, is silicon-based with good thermal radiation performance. Its stably working condition is at the temperature range 589~922 K thus a wide range of applications in industrial, scientific research, aviation, aerospace and other fields. Infrared emissivity is one of the most important factors in infrared radiation characteristics. Data on infrared spectral emissivity of Pyromark 1200 is in shortage, as well as the reports on its infrared radiation characteristics affected by its spray painting process, microstructure and thermal process. The results of this research show that: (1) The coating film critical thickness on the metal base is 10μm according to comparison among different types of spray painting process, coating film thickness, microstructure, which would influence the infrared radiation characteristics of Pyromark 1200 coating. The infrared spectral emissivity will attenuate when the coating film thickness is lower or much higher than that. (2) Through measurements, the normal infrared radiation characteristics is analyzed within the range at the temperature range 573~873 K under normal atmospheric conditions, and the total infrared spectral emissivity of Pyromark 1200 coating is higher than 0.93 in the 3~14 μm wavelength range. (3) The result of 72-hour aging test at the temperature 673 K which studied the effect of thermal processes on the infrared radiation characteristics of the coating shows that the infrared spectral emissivity variation range is approximately 0.01 indicating that Pyromark 1200 coating is with good stability. Compared with Nextel Velvet Coating (N-V-C) which is widely used in optics field, Pyromark 1200 high-temperature coating has a higher applicable temperature and is more suitable for spraying on the material surface which is in long-term operation under high temperature work conditions and requires high infrared spectral emissivity.

  15. Temperature distribution around thin electroconductive layers created on composite textile substrates

    Directory of Open Access Journals (Sweden)

    Korzeniewska Ewa

    2018-03-01

    Full Text Available In this paper, the authors describe the distribution of temperatures around electroconductive pathways created by a physical vacuum deposition process on flexible textile substrates used in elastic electronics and textronics. Cordura material was chosen as the substrate. Silver with 99.99% purity was used as the deposited metal. This research was based on thermographic photographs of the produced samples. Analysis of the temperature field around the electroconductive layer was carried out using Image ThermaBase EU software. The analysis of the temperature distribution highlights the software’s usefulness in determining the homogeneity of the created metal layer. Higher local temperatures and non-uniform distributions at the same time can negatively influence the work of the textronic system.

  16. A realistic analysis of the phonon growth characteristics in a degenerate semiconductor using a simplified model of Fermi-Dirac distribution

    Science.gov (United States)

    Basu, A.; Das, B.; Middya, T. R.; Bhattacharya, D. P.

    2017-01-01

    The phonon growth characteristic in a degenerate semiconductor has been calculated under the condition of low temperature. If the lattice temperature is high, the energy of the intravalley acoustic phonon is negligibly small compared to the average thermal energy of the electrons. Hence one can traditionally assume the electron-phonon collisions to be elastic and approximate the Bose-Einstein (B.E.) distribution for the phonons by the simple equipartition law. However, in the present analysis at the low lattice temperatures, the interaction of the non equilibrium electrons with the acoustic phonons becomes inelastic and the simple equipartition law for the phonon distribution is not valid. Hence the analysis is made taking into account the inelastic collisions and the complete form of the B.E. distribution. The high-field distribution function of the carriers given by Fermi-Dirac (F.D.) function at the field dependent carrier temperature, has been approximated by a well tested model that apparently overcomes the intrinsic problem of correct evaluation of the integrals involving the product and powers of the Fermi function. Hence the results thus obtained are more reliable compared to the rough estimation that one may obtain from using the exact F.D. function, but taking recourse to some over simplified approximations.

  17. Analysis of temperature-dependant current–voltage characteristics and extraction of series resistance in Pd/ZnO Schottky barrier diodes

    Energy Technology Data Exchange (ETDEWEB)

    Mayimele, M A, E-mail: meehleketo@gmail.com; Rensburg, J P van. Janse; Auret, F D; Diale, M

    2016-01-01

    We report on the analysis of current voltage (I–V) measurements performed on Pd/ZnO Schottky barrier diodes (SBDs) in the 80–320 K temperature range. Assuming thermionic emission (TE) theory, the forward bias I–V characteristics were analysed to extract Pd/ZnO Schottky diode parameters. Comparing Cheung’s method in the extraction of the series resistance with Ohm’s law, it was observed that at lower temperatures (T<180 K) the series resistance decreased with increasing temperature, the absolute minimum was reached near 180 K and increases linearly with temperature at high temperatures (T>200 K). The barrier height and the ideality factor decreased and increased, respectively, with decrease in temperature, attributed to the existence of barrier height inhomogeneity. Such inhomogeneity was explained based on TE with the assumption of Gaussian distribution of barrier heights with a mean barrier height of 0.99 eV and a standard deviation of 0.02 eV. A mean barrier height of 0.11 eV and Richardson constant value of 37 A cm{sup −2} K{sup −2} were determined from the modified Richardson plot that considers the Gaussian distribution of barrier heights.

  18. Characterization of the inhomogeneous barrier distribution in a Pt/(100)β-Ga2O3 Schottky diode via its temperature-dependent electrical properties

    Science.gov (United States)

    Jian, Guangzhong; He, Qiming; Mu, Wenxiang; Fu, Bo; Dong, Hang; Qin, Yuan; Zhang, Ying; Xue, Huiwen; Long, Shibing; Jia, Zhitai; Lv, Hangbing; Liu, Qi; Tao, Xutang; Liu, Ming

    2018-01-01

    β-Ga2O3 is an ultra-wide bandgap semiconductor with applications in power electronic devices. Revealing the transport characteristics of β-Ga2O3 devices at various temperatures is important for improving device performance and reliability. In this study, we fabricated a Pt/β-Ga2O3 Schottky barrier diode with good performance characteristics, such as a low ON-resistance, high forward current, and a large rectification ratio. Its temperature-dependent current-voltage and capacitance-voltage characteristics were measured at various temperatures. The characteristic diode parameters were derived using thermionic emission theory. The ideality factor n was found to decrease from 2.57 to 1.16 while the zero-bias barrier height Φb0 increased from 0.47 V to 1.00 V when the temperature was increased from 125 K to 350 K. This was explained by the Gaussian distribution of barrier height inhomogeneity. The mean barrier height Φ ¯ b0 = 1.27 V and zero-bias standard deviation σ0 = 0.13 V were obtained. A modified Richardson plot gave a Richardson constant A* of 36.02 A.cm-2.K-2, which is close to the theoretical value of 41.11 A.cm-2.K-2. The differences between the barrier heights determined using the capacitance-voltage and current-voltage curves were also in line with the Gaussian distribution of barrier height inhomogeneity.

  19. Characterization of the inhomogeneous barrier distribution in a Pt/(100β-Ga2O3 Schottky diode via its temperature-dependent electrical properties

    Directory of Open Access Journals (Sweden)

    Guangzhong Jian

    2018-01-01

    Full Text Available β-Ga2O3 is an ultra-wide bandgap semiconductor with applications in power electronic devices. Revealing the transport characteristics of β-Ga2O3 devices at various temperatures is important for improving device performance and reliability. In this study, we fabricated a Pt/β-Ga2O3 Schottky barrier diode with good performance characteristics, such as a low ON-resistance, high forward current, and a large rectification ratio. Its temperature-dependent current–voltage and capacitance–voltage characteristics were measured at various temperatures. The characteristic diode parameters were derived using thermionic emission theory. The ideality factor n was found to decrease from 2.57 to 1.16 while the zero-bias barrier height Φb0 increased from 0.47 V to 1.00 V when the temperature was increased from 125 K to 350 K. This was explained by the Gaussian distribution of barrier height inhomogeneity. The mean barrier height Φ ¯ b0 = 1.27 V and zero-bias standard deviation σ0 = 0.13 V were obtained. A modified Richardson plot gave a Richardson constant A* of 36.02 A·cm−2·K−2, which is close to the theoretical value of 41.11 A·cm−2·K−2. The differences between the barrier heights determined using the capacitance–voltage and current–voltage curves were also in line with the Gaussian distribution of barrier height inhomogeneity.

  20. Low-Temperature Electrical Characteristics of Si-Based Device with New Tetrakis NiPc-SNS Active Layer

    Science.gov (United States)

    Yavuz, Arzu Büyükyağci; Carbas, Buket Bezgın; Sönmezoğlu, Savaş; Soylu, Murat

    2016-01-01

    A new tetrakis 4-(2,5-di-2-thiophen-2-yl-pyrrol-1-yl)-substituted nickel phthalocyanine (NiPc-SNS) has been synthesized. This synthesized NiPc-SNS thin film was deposited on p-type Si substrate using the spin coating method (SCM) to fabricate a NiPc-SNS/ p-Si heterojunction diode. The temperature-dependent electrical characteristics of the NiPc-SNS/ p-Si heterojunction with good rectifying behavior were investigated by current-voltage ( I- V) measurements between 50 K and 300 K. The results indicate that the ideality factor decreases while the barrier height increases with increasing temperature. The barrier inhomogeneity across the NiPc-SNS/ p-Si heterojunction reveals a Gaussian distribution at low temperatures. These results provide further evidence of the more complicated mechanisms occurring in this heterojunction. Based on these findings, NiPc-SNS/ p-Si junction diodes are feasible for use in low-temperature applications.

  1. Acoustic study of the characteristic temperature of metals

    International Nuclear Information System (INIS)

    Tekuchev, V.V.; Rygalov, L.N.; Ivanova, I.V.; Barashkov, B.I.

    2000-01-01

    The calculation of the Debye temperature for 64 metals, including Be, La, Mo, W, Os, Ni, Cd, In, Ta, U, Sc, Cs, Sr, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Dy, Ho, Er, Yb, Lu, Th is carried out. The data on polonium and promethium are obtained for the first time. The calculation is performed with application of ultrasound velocity value at the melting temperature of the given metal. The average derivation of the calculational data on the Debye temperature from the published ones equals 12%. It is noted, that application of the acoustic method for determination of the characteristic temperature makes it possible to solve the wide range of theoretical and applied problems [ru

  2. High-temperature Schottky diode characteristics of bulk ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Guer, Emre; Tuezemen, S; Kilic, Bayram; Coskun, C [Department of Physics, Faculty of Arts and Sciences, Atatuerk University, 25240 Erzurum (Turkey)

    2007-05-16

    Current-voltage (I-V) measurements of Ag/n-ZnO have been carried out at temperatures of 200-500 K in order to understand the temperature dependence of the diode characteristics. Forward-bias I-V analysis results in a Schottky barrier height of 0.82 eV and an ideality factor of 1.55 at room temperature. The barrier height of 0.74 eV and Richardson constant of 0.248 A K{sup -2} cm{sup -2} were also calculated from the Richardson plot, which shows nearly linear characteristics in the temperature range 240-440 K. From the nk{sub b}T/q versus k{sub b}T/q graph, where n is ideality factor, k{sub b} the Boltzmann constant, T the temperature and q the electronic charge we deduce that thermionic field emission (TFE) is dominant in the charge transport mechanism. At higher sample temperatures (>440 K), a trap-assisted tunnelling mechanism is proposed due to the existence of a deep donor situated at E{sub c}-0.62 eV with 3.3 x 10{sup -15} cm{sup 2} capture cross section observed by both deep-level transient spectroscopy (DLTS) and lnI{sub 0} versus 1/k{sub b}T plots. The ideality factor almost remains constant in the temperature range 240-400 K, which shows the stability of the Schottky contact in this temperature range.

  3. Velocity distribution of electrons in time-varying low-temperature plasmas: progress in theoretical procedures over the past 70 years

    Science.gov (United States)

    Makabe, Toshiaki

    2018-03-01

    A time-varying low-temperature plasma sustained by electrical powers with various kinds of fRequencies has played a key role in the historical development of new technologies, such as gas lasers, ozonizers, micro display panels, dry processing of materials, medical care, and so on, since World War II. Electrons in a time-modulated low-temperature plasma have a proper velocity spectrum, i.e. velocity distribution dependent on the microscopic quantum characteristics of the feed gas molecule and on the external field strength and the frequency. In order to solve and evaluate the time-varying velocity distribution, we have mostly two types of theoretical methods based on the classical and linear Boltzmann equations, namely, the expansion method using the orthogonal function and the procedure of non-expansional temporal evolution. Both methods have been developed discontinuously and progressively in synchronization with those technological developments. In this review, we will explore the historical development of the theoretical procedure to evaluate the electron velocity distribution in a time-varying low-temperature plasma over the past 70 years.

  4. Current-voltage characteristics of C70 solid near Meyer-Neldel temperature

    Science.gov (United States)

    Onishi, Koichi; Sezaimaru, Kouki; Nakashima, Fumihiro; Sun, Yong; Kirimoto, Kenta; Sakaino, Masamichi; Kanemitsu, Shigeru

    2017-06-01

    The current-voltage characteristics of the C70 solid with hexagonal closed-packed structures were measured in the temperature range of 250-450 K. The current-voltage characteristics can be described as a temporary expedient by a cubic polynomial of the voltage, i = a v 3 + b v 2 + c v + d . Moreover, the Meyer-Neldel temperature of the C70 solid was confirmed to be 310 K, at which a linear relationship between the current and voltage was observed. Also, at temperatures below the Meyer-Neldel temperature, the current increases with increasing voltage. On the other hand, at temperatures above the Meyer-Neldel temperature a negative differential conductivity effect was observed at high voltage side. The negative differential conductivity was related to the electric field and temperature effects on the mobility of charge carrier, which involve two variations in the carrier concentration and the activation energy for carrier hopping transport.

  5. The spatial distribution and evolution characteristics of North Atlantic cyclones

    Science.gov (United States)

    Dacre, H.; Gray, S.

    2009-09-01

    Mid-latitude cyclones play a large role in determining the day-to-day weather conditions in western Europe through their associated wind and precipitation patterns. Thus, their typical spatial and evolution characteristics are of great interest to meteorologists, insurance and risk management companies. In this study a feature tracking algorithm is applied to a cyclone database produced using the Hewson-method of cyclone identification, based on low-level gradients of wet-bulb potential temperature, to produce a climatology of mid-latitude cyclones. The aim of this work is to compare the cyclone track and density statistics found in this study with previous climatologies and to determine reasons for any differences. This method is found to compare well with other cyclone identification methods; the north Atlantic storm track is reproduced along with the major regions of genesis. Differences are attributed to cyclone lifetime and strength thresholds, dataset resolution and cyclone identification and tracking methods. Previous work on cyclone development has been largely limited to case studies as opposed to analysis of climatological data, and does not distinguish between the different stages of cyclone evolution. The cyclone database used in this study allows cyclone characteristics to be tracked throughout the cyclone lifecycle. This enables the evaluation of the characteristics of cyclone evolution for systems forming in different genesis regions and a calculation of the spatial distribution and evolution of these characteristics in composite cyclones. It was found that most of the cyclones that cross western Europe originate in the east Atlantic where the baroclinicity and sea surface temperature gradients are weak compared to the west Atlantic. East Atlantic cyclones also have higher low-level relative vorticity and lower mean sea level pressure at their genesis point than west Atlantic cyclones. This is consistent with the hypothesis that they are secondary

  6. Autonomous distributed temperature sensing for long-term heated applications in remote areas

    Directory of Open Access Journals (Sweden)

    A.-M. Kurth

    2013-02-01

    Full Text Available Distributed temperature sensing (DTS is a fiber-optical method enabling simultaneous temperature measurements over long distances. Electrical resistance heating of the metallic components of the fiber-optic cable provides information on the thermal characteristics of the cable's environment, providing valuable insight into processes occurring in the surrounding medium, such as groundwater–surface water interactions, dam stability or soil moisture. Until now, heated applications required direct handling of the DTS instrument by a researcher, rendering long-term investigations in remote areas impractical due to the often difficult and time-consuming access to the field site. Remote control and automation of the DTS instrument and heating processes, however, resolve the issue with difficult access. The data can also be remotely accessed and stored on a central database. The power supply can be grid independent, although significant infrastructure investment is required here due to high power consumption during heated applications. Solar energy must be sufficient even in worst case scenarios, e.g. during long periods of intense cloud cover, to prevent system failure due to energy shortage. In combination with storage batteries and a low heating frequency, e.g. once per day or once per week (depending on the season and the solar radiation on site, issues of high power consumption may be resolved. Safety regulations dictate adequate shielding and ground-fault protection, to safeguard animals and humans from electricity and laser sources. In this paper the autonomous DTS system is presented to allow research with heated applications of DTS in remote areas for long-term investigations of temperature distributions in the environment.

  7. Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins.

    Science.gov (United States)

    Mantzouki, Evanthia; Lürling, Miquel; Fastner, Jutta; de Senerpont Domis, Lisette; Wilk-Woźniak, Elżbieta; Koreivienė, Judita; Seelen, Laura; Teurlincx, Sven; Verstijnen, Yvon; Krztoń, Wojciech; Walusiak, Edward; Karosienė, Jūratė; Kasperovičienė, Jūratė; Savadova, Ksenija; Vitonytė, Irma; Cillero-Castro, Carmen; Budzyńska, Agnieszka; Goldyn, Ryszard; Kozak, Anna; Rosińska, Joanna; Szeląg-Wasielewska, Elżbieta; Domek, Piotr; Jakubowska-Krepska, Natalia; Kwasizur, Kinga; Messyasz, Beata; Pełechaty, Aleksandra; Pełechaty, Mariusz; Kokocinski, Mikolaj; García-Murcia, Ana; Real, Monserrat; Romans, Elvira; Noguero-Ribes, Jordi; Duque, David Parreño; Fernández-Morán, Elísabeth; Karakaya, Nusret; Häggqvist, Kerstin; Demir, Nilsun; Beklioğlu, Meryem; Filiz, Nur; Levi, Eti E.; Iskin, Uğur; Bezirci, Gizem; Tavşanoğlu, Ülkü Nihan; Özhan, Koray; Gkelis, Spyros; Panou, Manthos; Fakioglu, Özden; Avagianos, Christos; Kaloudis, Triantafyllos; Çelik, Kemal; Yilmaz, Mete; Marcé, Rafael; Catalán, Nuria; Bravo, Andrea G.; Buck, Moritz; Colom-Montero, William; Mustonen, Kristiina; Pierson, Don; Yang, Yang; Raposeiro, Pedro M.; Gonçalves, Vítor; Antoniou, Maria G.; Tsiarta, Nikoletta; McCarthy, Valerie; Perello, Victor C.; Feldmann, Tõnu; Laas, Alo; Panksep, Kristel; Tuvikene, Lea; Gagala, Ilona; Mankiewicz-Boczek, Joana; Yağcı, Meral Apaydın; Çınar, Şakir; Çapkın, Kadir; Yağcı, Abdulkadir; Cesur, Mehmet; Bilgin, Fuat; Bulut, Cafer; Uysal, Rahmi; Obertegger, Ulrike; Boscaini, Adriano; Flaim, Giovanna; Salmaso, Nico; Cerasino, Leonardo; Richardson, Jessica; Visser, Petra M.; Verspagen, Jolanda M. H.; Karan, Tünay; Soylu, Elif Neyran; Maraşlıoğlu, Faruk; Napiórkowska-Krzebietke, Agnieszka; Ochocka, Agnieszka; Pasztaleniec, Agnieszka; Antão-Geraldes, Ana M.; Vasconcelos, Vitor; Morais, João; Vale, Micaela; Köker, Latife; Akçaalan, Reyhan; Albay, Meriç; Špoljarić Maronić, Dubravka; Stević, Filip; Žuna Pfeiffer, Tanja; Fonvielle, Jeremy; Straile, Dietmar; Rothhaupt, Karl-Otto; Hansson, Lars-Anders; Urrutia-Cordero, Pablo; Bláha, Luděk; Geriš, Rodan; Fránková, Markéta; Koçer, Mehmet Ali Turan; Alp, Mehmet Tahir; Remec-Rekar, Spela; Elersek, Tina; Triantis, Theodoros; Zervou, Sevasti-Kiriaki; Hiskia, Anastasia; Haande, Sigrid; Skjelbred, Birger; Madrecka, Beata; Nemova, Hana; Drastichova, Iveta; Chomova, Lucia; Edwards, Christine; Sevindik, Tuğba Ongun; Tunca, Hatice; Önem, Burçin; Aleksovski, Boris; Krstić, Svetislav; Vucelić, Itana Bokan; Nawrocka, Lidia; Salmi, Pauliina; Machado-Vieira, Danielle; de Oliveira, Alinne Gurjão; Delgado-Martín, Jordi; García, David; Cereijo, Jose Luís; Gomà, Joan; Trapote, Mari Carmen; Vegas-Vilarrúbia, Teresa; Obrador, Biel; Grabowska, Magdalena; Karpowicz, Maciej; Chmura, Damian; Úbeda, Bárbara; Gálvez, José Ángel; Özen, Arda; Christoffersen, Kirsten Seestern; Warming, Trine Perlt; Kobos, Justyna; Mazur-Marzec, Hanna; Pérez-Martínez, Carmen; Ramos-Rodríguez, Eloísa; Arvola, Lauri; Alcaraz-Párraga, Pablo; Toporowska, Magdalena; Pawlik-Skowronska, Barbara; Niedźwiecki, Michał; Pęczuła, Wojciech; Leira, Manel; Hernández, Armand; Moreno-Ostos, Enrique; Blanco, José María; Rodríguez, Valeriano; Montes-Pérez, Jorge Juan; Palomino, Roberto L.; Rodríguez-Pérez, Estela; Carballeira, Rafael; Camacho, Antonio; Picazo, Antonio; Rochera, Carlos; Santamans, Anna C.; Ferriol, Carmen; Romo, Susana; Soria, Juan Miguel; Dunalska, Julita; Sieńska, Justyna; Szymański, Daniel; Kruk, Marek; Kostrzewska-Szlakowska, Iwona; Jasser, Iwona; Žutinić, Petar; Gligora Udovič, Marija; Plenković-Moraj, Anđelka; Frąk, Magdalena; Bańkowska-Sobczak, Agnieszka; Wasilewicz, Michał; Özkan, Korhan; Maliaka, Valentini; Kangro, Kersti; Grossart, Hans-Peter; Paerl, Hans W.; Carey, Cayelan C.; Ibelings, Bas W.

    2018-04-13

    Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.

  8. Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins

    Directory of Open Access Journals (Sweden)

    Evanthia Mantzouki

    2018-04-01

    Full Text Available Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins. Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a and cytotoxins (e.g., cylindrospermopsin due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.

  9. Remote Sensing of Atlanta's Urban Sprawl and the Distribution of Land Cover and Surface Temperatures

    Science.gov (United States)

    Laymon, Charles A.; Estes, Maurice G., Jr.; Quattrochi, Dale A.; Arnold, James E. (Technical Monitor)

    2001-01-01

    Between 1973 and 1992, an average of 20 ha of forest was lost each day to urban expansion of Atlanta, Georgia. Urban surfaces have very different thermal properties than natural surfaces-storing solar energy throughout the day and continuing to release it as sensible heat well after sunset. The resulting heat island effect serves as catalysts for chemical reactions from vehicular exhaust and industrialization leading to a deterioration in air quality. In this study, high spatial resolution multispectral remote sensing data has been used to characterize the type, thermal properties, and distribution of land surface materials throughout the Atlanta metropolitan area. Ten-meter data were acquired with the Advanced Thermal and Land Applications Sensor (ATLAS) on May 11 and 12, 1997. ATLAS is a 15-channel multispectral scanner that incorporates the Landsat TM bands with additional bands in the middle reflective infrared and thermal infrared range. The high spatial resolution permitted discrimination of discrete surface types (e.g., concrete, asphalt), individual structures (e.g., buildings, houses) and their associated thermal characteristics. There is a strong temperature contrast between vegetation and anthropomorphic features. Vegetation has a modal temperature at about 20 C, whereas asphalt shingles, pavement, and buildings have a modal temperature of about 39 C. Broad-leaf vegetation classes are indistinguishable on a thermal basis alone. There is slightly more variability (plus or minus 5 C) among the urban surfaces. Grasses, mixed vegetation and mixed urban surfaces are intermediate in temperature and are characterized by broader temperature distributions with modes of about 29 C. Thermal maps serve as a basis for understanding the distribution of "hotspots", i.e., how landscape features and urban fabric contribute the most heat to the lower atmosphere.

  10. Anisotropic Azimuthal Power and Temperature distribution on FuelRod. Impact on Hydride Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Motta, Arthur [Pennsylvania State Univ., State College, PA (United States); Ivanov, Kostadin [Pennsylvania State Univ., State College, PA (United States); Arramova, Maria [Pennsylvania State Univ., State College, PA (United States); Hales, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-29

    The degradation of the zirconium cladding may limit nuclear fuel performance. In the high temperature environment of a reactor, the zirconium in the cladding corrodes, releasing hydrogen in the process. Some of this hydrogen is absorbed by the cladding in a highly inhomogeneous manner. The distribution of the absorbed hydrogen is extremely sensitive to temperature and stress concentration gradients. The absorbed hydrogen tends to concentrate near lower temperatures. This hydrogen absorption and hydride formation can cause cladding failure. This project set out to improve the hydrogen distribution prediction capabilities of the BISON fuel performance code. The project was split into two primary sections, first was the use of a high fidelity multi-physics coupling to accurately predict temperature gradients as a function of r, θ , and z, and the second was to use experimental data to create an analytical hydrogen precipitation model. The Penn State version of thermal hydraulics code COBRA-TF (CTF) was successfully coupled to the DeCART neutronics code. This coupled system was verified by testing and validated by comparison to FRAPCON data. The hydrogen diffusion and precipitation experiments successfully calculated the heat of transport and precipitation rate constant values to be used within the hydrogen model in BISON. These values can only be determined experimentally. These values were successfully implemented in precipitation, diffusion and dissolution kernels that were implemented in the BISON code. The coupled output was fed into BISON models and the hydrogen and hydride distributions behaved as expected. Simulations were conducted in the radial, axial and azimuthal directions to showcase the full capabilities of the hydrogen model.

  11. NUMERICAL EVALUATION OF TEMPERATURE DISTRIBUTION IN THE ROLLING MILL ROLLS

    Directory of Open Access Journals (Sweden)

    José Claudino de Lira Júnior

    2013-06-01

    Full Text Available In hot rolling processes occur changes in the profile of the rolling mill rolls (expansion and contraction and constant wear due to mechanical stress and continuous thermal cycles of heating/cooling caused by contact rolled material- working roll and the cooling system by water jets in their surface, decreasing their lifetime. This paper presents a computational model to simulate the thermal performance of rolling mill rolls. The model was developed using the finite volume method for a transient two-dimensional system and allows calculating the temperature distribution of the rolling mill rolls under various conditions of service. Here it is investigated the influence of flow rate and temperature of the cooling water on the temperature distribution. The results show that the water temperature has greater influence than the water flow to control the surface temperature of the cylinders.

  12. Research on Harmonic Characteristics Influence for Distribution Network with Renewable Energy

    Directory of Open Access Journals (Sweden)

    Huang Wei

    2016-01-01

    Full Text Available In order to study the influence on harmonic characteristics of distribution network with renewable energy, a simplified model of distribution network is established to analyse theory while considering the influence of cable on the system capacitive current. Establishing an actual distribution network model by Digsilent to research the harmonic characteristics impact when photovoltaic power with PV incorporated the distribution network in a variety of different access , while using constant current source model as harmonic source model which often been used in engineering practices. The simulation results show that: optimizing the access location and dispersion of PV can decrease the waveform distortion levels in distribution network and a certain number of high-order harmonic will magnify by a specific grid structure, deteriorating the distribution network power quality.

  13. Characteristic functions of scale mixtures of multivariate skew-normal distributions

    KAUST Repository

    Kim, Hyoung-Moon; Genton, Marc G.

    2011-01-01

    We obtain the characteristic function of scale mixtures of skew-normal distributions both in the univariate and multivariate cases. The derivation uses the simple stochastic relationship between skew-normal distributions and scale mixtures of skew

  14. Structure and temperature distribution of a stagnation-point Diesel spray premixed flame

    International Nuclear Information System (INIS)

    Lin, J.-C.; Lin, Ta-Hui

    2005-01-01

    We experimentally examine the flow and flame characteristics of a stagnation point premixed flame influenced by Diesel sprays. In the experiment, distributions of drop size, drop axial velocity and its fluctuation as well as the gas phase temperature are measured by using the phase-doppler particle analyzer and a thin thermocouple. As might be expected, similar to the gasoline spray flame, the partially prevaporized Diesel spray flame is composed of a weak blue flame zone, indicating the burning of methane fuel, and a strongly luminous zone containing many bright yellow lines showing the passages of burning Diesel drops. It is found that the axial temperature profiles at various radial positions consist of an upstream preheat region, a maximum temperature downstream of the blue flame and a downstream region with a declined temperature curve because of the heat loss to the quartz plate. The SMD of the drops increases from the upstream preheat region to a maximum near the blue flame and then decreases in the downstream burning zone. Along the axial position, the drops are decelerated in front of the flame but accelerated when passing through the blue flame. It is also interesting to note that the radial distributions of SMD and number density of drops in the upstream region are mainly influenced by small drops flowing outward, since the upstream vaporization of Diesel drops is very limited; while those in the downstream region should be influenced by both small drops flowing outward and Diesel drops burning. From the experimental observations, there are impinging and bouncing of Diesel drops downstream of the spray flame near the quartz plate, resulting in a small amount of soot and carbon deposits on the wall. These interesting phenomena will be reported in the near future

  15. Whistler waves with electron temperature anisotropy and non-Maxwellian distribution functions

    Directory of Open Access Journals (Sweden)

    M. Usman Malik

    2018-05-01

    Full Text Available The previous works on whistler waves with electron temperature anisotropy narrated the dependence on plasma parameters, however, they did not explore the reasons behind the observed differences. A comparative analysis of the whistler waves with different electron distributions has not been made to date. This paper attempts to address both these issues in detail by making a detailed comparison of the dispersion relations and growth rates of whistler waves with electron temperature anisotropy for Maxwellian, Cairns, kappa and generalized (r, q distributions by varying the key plasma parameters for the problem under consideration. It has been found that the growth rate of whistler instability is maximum for flat-topped distribution whereas it is minimum for the Maxwellian distribution. This work not only summarizes and complements the previous work done on the whistler waves with electron temperature anisotropy but also provides a general framework to understand the linear propagation of whistler waves with electron temperature anisotropy that is applicable in all regions of space plasmas where the satellite missions have indicated their presence.

  16. Temperature distribution in the Temelin NPP primary circuit piping

    International Nuclear Information System (INIS)

    Blaha, V.; Maca, K.; Kodl, P.; Kroj, L.

    2004-01-01

    Temperature non-homogeneity in the VVER 1000 reactor primary piping hot legs was detected during the commissioning of Temelin units 1 and 2. A quantification of temperature differences was carried out and explanation of its causes was presented. Mathematical analysis of the effect was carried out using the PHOENICS 3.4 code, and the results were processed graphically by means of a post processor PHOTON and by means of a user program allowing statistic evaluation of temperature profiles at the core outlet and in the area of the temperature-measurement pits. The coolant temperatures in the core area increased gradually following the given radial and axial distribution of output from the inlet temperature of 288.1 degC to 315-331 degC at the core outlet. The temperature profile was balanced and in the IO piping in the area of temperature-measurement pits the difference of the maximum and minimum temperature value was approx. 1 degC according to the calculation. The temperature field shape is mainly determined by the radial distribution of the core output. The mean outlet temperature from the core weighted through mass flow is determined by the flow through the core and by the total output. The calculated temperature span at the core outlet in the range of 315 - 331 degC corresponded well with the measured values during the operation. The values were in the range of 310-333 degC, however, the in-core thermocouple inaccuracy should also be taken into consideration. On the other hand, the temperature span in the area of temperature-measurement pits was actually about 4 times higher than the calculated temperature (observed: 4 degC as against the calculated 1 degC). A good agreement was reached between the analysis results and the actual condition of the nuclear unit in the area of the core outlet. (P.A.)

  17. Characteristics of wetting temperature during spray cooling

    International Nuclear Information System (INIS)

    Mitsutake, Yuichi; Monde, Masanori; Hidaka, Shinichirou

    2006-01-01

    An experimental study has been done to elucidate the effects of mass flux and subcooling of liquid and thermal properties of solid on the wetting temperature during cooling of a hot block with spray. A water spray was impinged at one of the end surfaces of a cylindrical block initially heated at 400 or 500degC. The experimental condition was mass fluxes G=1-9 kg/m 2 s and degrees of subcooling ΔT sub =20, 50, 80 K. Three blocks of copper, brass and carbon steel were prepared. During spray cooling internal block temperature distribution and sputtering sound pressure level were recorded and the surface temperature and heat flux were evaluated with 2D inverse heat conducting analysis. Cooling process on cooling curves is divided into four regimes categorized by change in a flow situation and the sound level. The wetting temperature defined as the wall temperature at a minimum heat flux point was measured over an extensive experimental range. The wetting wall temperature was correlated well with the parameter of GΔT sub . The wetting wall temperature increases as GΔT sub increases and reaches a constant value depending on the material of the surface at higher region of GΔT sub . (author)

  18. Heat transfer and temperature distribution in fuel

    International Nuclear Information System (INIS)

    Katanic-Popovic, J.; Stevanovic, M.

    1966-01-01

    This paper describes methods and procedures for determining the integral, mean and effective heat conductivity and temperature distribution in fuel, with the experimental solutions for measuring these parameters. A procedure for measuring the integral conductivity by measuring the power generated in the fuel is given [sr

  19. Emission characteristics of uranium hexafluoride at high temperatures

    International Nuclear Information System (INIS)

    Krascella, N.L.

    1976-01-01

    An experimental study was conducted to ascertain the spectral characteristics of uranium hexafluoride (UF 6 ) and possible UF 6 thermal decomposition products as a function of temperature and pressure. Relative emission measurements were made for UF 6 /Argon mixtures heated in a plasma torch over a range of temperatures from 800 to about 3600 0 K over a wavelength range from 80 to 600 nm. Total pressures were varied from 1 to approximately 1.7 atm. Similarly absorption measurements were carried out in the visible region from 420 to 580 nm over a temperature range from about 1000 to 1800 0 K. Total pressure for these measurements was 1.0 atm

  20. Dual – Temperature Electron distribution in a Laboratory Plasma ...

    African Journals Online (AJOL)

    The dual-temperature distribution function is used to investigate theoretically the effect of a perturbation of Maxwell distribution function on density ratios in a laboratory plasma produced solely by collision. By assuming a foreknowledge of collision coefficients and cross-sections and an atomic model which sets at two ...

  1. Temperature distributions in trapezoidal built in storage solar water heaters with/without phase change materials

    International Nuclear Information System (INIS)

    Tarhan, Sefa; Sari, Ahmet; Yardim, M. Hakan

    2006-01-01

    Built in storage solar water heaters (BSSWHs) have been recognized for their more compact constructions and faster solar gain than conventional solar water heaters, however, their water temperatures quickly go down during the cooling period. A trapezoidal BSSWH without PCM storage unit was used as the control heater (reference) to investigate the effect of two differently configured PCM storage units on the temperature distributions in water tanks. In the first design, myristic acid was filled into the PCM storage tank, which also served as an absorbing plate. In the second design, lauric acid was filled into the PCM storage tank, which also served as a baffle plate. The water temperature changes were followed by five thermocouples placed evenly and longitudinally into each of the three BSSWHs. The effects of the PCMs on the water temperature distributions depended on the configuration of the PCM storage unit and the longitudinal position in the water tanks. The use of lauric acid lowered the values of the peak temperatures by 15% compared to the control heater at the upper portion of the water tanks because of the low melting temperature of lauric acid, but it did not have any consistent effect on the retention of the water temperatures during the cooling period. The ability of the myristic acid storage unit to retain the water temperatures got more remarkable, especially at the middle portion of the water tank. The myristic acid storage increased the dip temperatures by approximately 8.8% compared to the control heater. In conclusion, lauric acid storage can be used to stabilize the water temperature during the day time, while the myristic acid storage unit can be used as a thermal barrier against heat loss during the night time because of its relatively high melting temperature and low heat conduction coefficient in its solid phase. The experimental results have also indicated that the thermal characteristics of the PCM and the configuration of the PCM storage

  2. Influence of absorbed pump profile on the temperature distribution ...

    Indian Academy of Sciences (India)

    2017-01-20

    Jan 20, 2017 ... influence of profile width and super-Gaussian exponent of the profile on temperature distribution are investigated. Consequently, the profile width turns out to have a greater influence on the temperature compared to the type of the profile. Keywords. Side-pumped laser rod; pump cavity; absorbed pump ...

  3. Influence of temperature rise distribution in second harmonic generation crystal on intensity distributions of output second harmonic wave

    International Nuclear Information System (INIS)

    Li Wei; Feng Guoying; Li Gang; Huang Yu; Zhang Qiuhui

    2009-01-01

    Second-harmonic generation (SHG) of high-intensity laser with an SHG crystal for type I angle phase matching has been studied by the use of a split-step algorithm based on the fast Fourier transform and a fourth-order Runge-Kutta (R-K) integrator. The transverse walk-off effect, diffraction, the second-order and the third-order nonlinear effects have been taken into consideration. Influences of a temperature rise distribution of the SHG crystal on the refractive indices of ordinary wave and extraordinary wave have been discussed. The rules of phase mismatching quantity, intensity distribution of output beam and frequency conversion efficiency varying with the temperature rise distribution of the SHG crystal have been analyzed quantitatively. The calculated results indicate that in a high power frequency conversion system, the temperature rise distribution of SHG crystal would result in the phase mismatching of fundamental and harmonic waves, leading to the variation of intensity distribution of the output beam and the decrease of the conversion efficiency. (authors)

  4. The Consumers Characteristics Analysis of Low Temperature Home Delivery

    Directory of Open Access Journals (Sweden)

    Shu-Fang Lai

    2013-01-01

    Full Text Available Because of technological advancements and the popularity of the Internet, online shopping has become an important shopping channel for consumers. Because people increasingly eat out, more consumers shop online, and food products are collected from convenience stores, or frozen food home delivery services are used. This study used questionnaire surveys to analyze the consumption habits of residents who shop online for frozen foods in the urban areas of northern Taiwan (Taipei City and New Taipei City. We distributed and collected 548 questionnaires, of which 484 were valid. Descriptive statistics, a chi-square test, and logistics regression analysis were used to analyze consumer characteristics, as well as important influential factors. The research results indicated that most online shoppers were women, and the top 3 factors influencing their purchasing decisions were freshness, delivery convenience, and ordering convenience. Participants in the age group of 40-49 years old, living in the urban area of New Taipei City, without junior college education, and with less than 10,000 NTD monthly incomes, were less likely to purchase frozen foods using low-temperature logistics services.

  5. Current Distribution Characteristics of CFRP Panels

    Science.gov (United States)

    Yamamoto, Kazuo

    CFRP (Carbon Fiber Reinforced Plastic) is widely used in the structures of aircrafts, automobiles, wing turbines, and rockets because of its qualities of high mechanical strength, low weight, fatigue resistance, and dimensional stability. However, these structures are often at risk of being struck by lightning. When lightning strikes such structures and lightning current flows through the CFRP, it may be structurally damaged because of the impact of the lightning strike or ignitions between layers. If there are electronic systems near the CFRP, they may break down or malfunction because of the resulting electromagnetic disturbance. In fact, the generation mechanisms of these breakdowns and malfunctions depend on the current distribution in the CFRP. Hence, it is critical to clarify the current distribution in various kinds of CFRPs. In this study, two kinds of CFRP panels—one composed of quasi-isotropic lamination layers and the other composed of 0°/90° lamination layers of unidirectional CFRP prepregs—are used to investigate the dependence of current distribution on the nature of the lamination layers. The current distribution measurements and simulations for CFRP panels are compared with those for a same-sized aluminum plate. The knowledge of these current distribution characteristics would be very useful for designing the CFRP structures of aircrafts, automobiles, wing turbines, rockets, etc. in the future.

  6. Investigations on 3-dimensional temperature distribution in a FLATCON-type CPV module

    Science.gov (United States)

    Wiesenfarth, Maike; Gamisch, Sebastian; Kraus, Harald; Bett, Andreas W.

    2013-09-01

    The thermal flow in a FLATCON®-type CPV module is investigated theoretically and experimentally. For the simulation a model in the computational fluid dynamics (CFD) software SolidWorks Flow Simulation was established. In order to verify the simulation results the calculated and measured temperatures were compared assuming the same operating conditions (wind speed and direction, direct normal irradiance (DNI) and ambient temperature). Therefore, an experimental module was manufactured and equipped with temperature sensors at defined positions. In addition, the temperature distribution on the back plate of the module was displayed by infrared images. The simulated absolute temperature and the distribution compare well with an average deviation of only 3.3 K to the sensor measurements. Finally, the validated model was used to investigate the influence of the back plate material on the temperature distribution by replacing the glass material by aluminum. The simulation showed that it is important to consider heat dissipation by radiation when designing a CPV module.

  7. Estimation of temperature distribution in a reactor shield

    International Nuclear Information System (INIS)

    Agarwal, R.A.; Goverdhan, P.; Gupta, S.K.

    1989-01-01

    Shielding is provided in a nuclear reactor to absorb the radiations emanating from the core. The energy of these radiations appear in the form of heat. Concrete which is commonly used as a shielding material in nuclear power plants must be able to withstand the temperatures and temperature gradients appearing in the shield due to this heat. High temperatures lead to dehydration of the concrete and in turn reduce the shielding effectiveness of the material. Adequate cooling needs to be provided in these shields in order to limit the maximum temperature. This paper describes a method to estimate steady state and transient temperature distribution in reactor shields. The results due to loss of coolant in the coolant tubes have been studied and presented in the paper. (author). 5 figs

  8. Investigation of approximate models of experimental temperature characteristics of machines

    Science.gov (United States)

    Parfenov, I. V.; Polyakov, A. N.

    2018-05-01

    This work is devoted to the investigation of various approaches to the approximation of experimental data and the creation of simulation mathematical models of thermal processes in machines with the aim of finding ways to reduce the time of their field tests and reducing the temperature error of the treatments. The main methods of research which the authors used in this work are: the full-scale thermal testing of machines; realization of various approaches at approximation of experimental temperature characteristics of machine tools by polynomial models; analysis and evaluation of modelling results (model quality) of the temperature characteristics of machines and their derivatives up to the third order in time. As a result of the performed researches, rational methods, type, parameters and complexity of simulation mathematical models of thermal processes in machine tools are proposed.

  9. Pyrolysis characteristics and kinetics of low rank coals by distributed activation energy model

    International Nuclear Information System (INIS)

    Song, Huijuan; Liu, Guangrui; Wu, Jinhu

    2016-01-01

    Highlights: • Types of carbon in coal structure were investigated by curve-fitted "1"3C NMR spectra. • The work related pyrolysis characteristics and kinetics with coal structure. • Pyrolysis kinetics of low rank coals were studied by DAEM with Miura integral method. • DAEM could supply accurate extrapolations under relatively higher heating rates. - Abstract: The work was conducted to investigate pyrolysis characteristics and kinetics of low rank coals relating with coal structure by thermogravimetric analysis (TGA), the distributed activation energy model (DAEM) and solid-state "1"3C Nuclear Magnetic Resonance (NMR). Four low rank coals selected from different mines in China were studied in the paper. TGA was carried out with a non-isothermal temperature program in N_2 at the heating rate of 5, 10, 20 and 30 °C/min to estimate pyrolysis processes of coal samples. The results showed that corresponding characteristic temperatures and the maximum mass loss rates increased as heating rate increased. Pyrolysis kinetics parameters were investigated by the DAEM using Miura integral method. The DAEM was accurate verified by the good fit between the experimental and calculated curves of conversion degree x at the selected heating rates and relatively higher heating rates. The average activation energy was 331 kJ/mol (coal NM), 298 kJ/mol (coal NX), 302 kJ/mol (coal HLJ) and 196 kJ/mol (coal SD), respectively. The curve-fitting analysis of "1"3C NMR spectra was performed to characterize chemical structures of low rank coals. The results showed that various types of carbon functional groups with different relative contents existed in coal structure. The work indicated that pyrolysis characteristics and kinetics of low rank coals were closely associated with their chemical structures.

  10. Hydrochemical Characteristics and Evolution of Geothermal Fluids in the Chabu High-Temperature Geothermal System, Southern Tibet

    Directory of Open Access Journals (Sweden)

    X. Wang

    2018-01-01

    Full Text Available This study defines reasonable reservoir temperatures and cooling processes of subsurface geothermal fluids in the Chabu high-temperature geothermal system. This system lies in the south-central part of the Shenzha-Xietongmen hydrothermal active belt and develops an extensive sinter platform with various and intense hydrothermal manifestations. All the geothermal spring samples collected systematically from the sinter platform are divided into three groups by cluster analysis of major elements. Samples of group 1 and group 3 are distributed in the central part and northern periphery of the sinter platform, respectively, while samples of group 2 are scattered in the transitional zone between groups 1 and 3. The hydrochemical characteristics show that the geothermal waters of the research area have generally mixed with shallow cooler waters in reservoirs. The reasonable reservoir temperatures and the mixing processes of the subsurface geothermal fluids could be speculated by combining the hydrochemical characteristics of geothermal springs, calculated results of the chemical geothermometers, and silica-enthalpy mixing models. Contour maps are applied to measured emerging temperatures, mass flow rates, total dissolved solids of spring samples, and reasonable subsurface temperatures. They indicate that the major cooling processes of the subsurface geothermal fluids gradually transform from adiabatic boiling to conduction from the central part to the peripheral belt. The geothermal reservoir temperatures also show an increasing trend. The point with the highest reservoir temperature (256°C appears in the east-central part of the research area, which might be the main up-flow zone. The cooling processes of the subsurface geothermal fluids in the research area can be shown on an enthalpy-chloride plot. The deep parent fluid for the Chabu geothermal field has a Cl− concentration of 290 mg/L and an enthalpy of 1550 J/g (with a water temperature of

  11. X-ray characteristic temperature of Fe-Ni alloys with different crystal lattices

    International Nuclear Information System (INIS)

    Krasnikova, G.N.; Ushakov, A.I.; Kazakov, V.G.; Bochkarev, V.F.; Gorovoj, A.M.

    1978-01-01

    Investigated has been the temperature dependence of the thermal expansion coefficient and the characteristic Debye temperature of the ferronickel films, having a body-centered (cubic) and a face-centered (cubic) lattice. In case of the body-centered lattice films the tests have been staged in the 100-200 deg C range, and in case of the face c.entered lattice films - in the 20-300 deg C range. The study of temperature dependence of the thermal expansion coefficient has revealed that a non-linear growth of the thermal expansion coefficient occurs in α-phase samples when approaching the phase transition temperature. The phase transition in the Invar composition Fe-Ni films is conductive to a considerable variation of the Debye temperature. Approaching the phase transition temperature, the crystal lattice dynamic characteristics vary

  12. Distributed temperature sensors development using an stepped-helical ultrasonic waveguide

    Science.gov (United States)

    Periyannan, Suresh; Rajagopal, Prabhu; Balasubramaniam, Krishnan

    2018-04-01

    This paper presents the design and development of the distributed ultrasonic waveguide temperature sensors using some stepped-helical structures. Distributed sensing has several applications in various industries (oil, glass, steel) for measurement of physical parameters such as level, temperature, viscosity, etc. This waveguide incorporates a special notch or bend for obtaining ultrasonic wave reflections from the desired locations (Gage-lengths) where local measurements are desired. In this paper, a multi-location measurement wave-guide, with a measurement capability of 18 locations in a single wire, has been fabricated. The distribution of these sensors is both in the axial as well as radial directions using a stepped-helical spring configuration. Also, different high temperature materials have been chosen for the wave-guide. Both lower order axi-symmetric guided ultrasonic modes (L(0,1) and T(0,1)) were employed. These wave modes were generated/received (pulse-echo approach) using conventional longitudinal and shear transducers, respectively. Also, both the wave modes were simultaneously generated/received and compared using shear transducer for developing the distributed helical wave-guide sensors. The effect of dispersion of the wave modes due to curvature effects will also be discussed.

  13. Methods for Prediction of Temperature Distribution in Flashover Caused by Backdraft Fire

    Directory of Open Access Journals (Sweden)

    Guowei Zhang

    2014-01-01

    Full Text Available Accurately predicting temperature distribution in flashover fire is a key issue for evacuation and fire-fighting. Now many good flashover fire experiments have be conducted, but most of these experiments are proceeded in enclosure with fixed openings; researches on fire development and temperature distribution in flashover caused by backdraft fire did not receive enough attention. In order to study flashover phenomenon caused by backdraft fire, a full-scale fire experiment was conducted in one abandoned office building. Process of fire development and temperature distribution in room and corridor were separately recorded during the experiment. The experiment shows that fire development in enclosure is closely affected by the room ventilation. Unlike existing temperature curves which have only one temperature peak, temperature in flashover caused by backdraft may have more than one peak value and that there is a linear relationship between maximum peak temperature and distance away from fire compartment. Based on BFD curve and experimental data, mathematical models are proposed to predict temperature curve in flashover fire caused by backdraft at last. These conclusions and experiment data obtained in this paper could provide valuable reference to fire simulation, hazard assessment, and fire protection design.

  14. Fluid flow distribution optimization for minimizing the peak temperature of a tubular solar receiver

    International Nuclear Information System (INIS)

    Wei, Min; Fan, Yilin; Luo, Lingai; Flamant, Gilles

    2015-01-01

    High temperature solar receiver is a core component of solar thermal power plants. However, non-uniform solar irradiation on the receiver walls and flow maldistribution of heat transfer fluid inside the tubes may cause the excessive peak temperature, consequently leading to the reduced lifetime. This paper presents an original CFD (computational fluid dynamics)-based evolutionary algorithm to determine the optimal fluid distribution in a tubular solar receiver for the minimization of its peak temperature. A pressurized-air solar receiver comprising of 45 parallel tubes subjected to a Gaussian-shape net heat flux absorbed by the receiver is used for study. Two optimality criteria are used for the algorithm: identical outlet fluid temperatures and identical temperatures on the centerline of the heated surface. The influences of different filling materials and thermal contact resistances on the optimal fluid distribution and on the peak temperature reduction are also evaluated and discussed. Results show that the fluid distribution optimization using the algorithm could minimize the peak temperature of the receiver under the optimality criterion of identical temperatures on the centerline. Different shapes of optimal fluid distribution are determined for various filling materials. Cheap material with low thermal conductivity can also meet the peak temperature threshold through optimizing the fluid distribution. - Highlights: • A 3D pressurized-air solar receiver based on the tube-in-matrix concept is studied. • An original evolutionary algorithm is developed for fluid distribution optimization. • A new optimality criterion is proposed for minimizing the receiver peak temperature. • Different optimal fluid distributions are determined for various filling materials. • Filling material with high thermal conductivity is more favorable in practical use.

  15. Transport characteristics of Pd Schottky barrier diodes on epitaxial n-GaSb as determined from temperature dependent current–voltage measurements

    Energy Technology Data Exchange (ETDEWEB)

    Venter, A., E-mail: andre.venter@nmmu.ac.za [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Murape, D.M.; Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Auret, F.D. [Department of Physics, University of the Pretoria, Lynnwood Road, Pretoria 0002 (South Africa)

    2015-01-01

    The temperature dependent transport characteristics of Pd/n-GaSb:Te Schottky contacts with low and saturating reverse current are investigated by means of current–voltage measurements between 80 K and 320 K. The apparent barrier height and ideality factor increase with a decrease in temperature. Neither thermionic nor thermionic field emission can explain the low temperature characteristics of these diodes. Instead, evidence is presented for barrier inhomogeneity across the metal/semiconductor contact. A plot of the barrier height, ϕ{sub b} vs. 1/2kT revealed a double Gaussian distribution for the barrier height with ϕ{sub b,mean} assuming values of 0.59 eV ± 0.07 (80–140 K) and 0.25 eV ± 0.12 (140–320 K) respectively. - Highlights: • Transport characteristics of Pd/epitaxial n-GaSb:Te SBDs are studied by means of I-V-T measurements. • SBDs have remarkably low and saturating reverse current – of the lowest ever reported for GaSb. • Transport behaviour is explained by considering electronic states present on the GaSb surface. • Evidence is presented for barrier inhomogeneity across the metal-semiconductor contact.

  16. Transport characteristics of Pd Schottky barrier diodes on epitaxial n-GaSb as determined from temperature dependent current–voltage measurements

    International Nuclear Information System (INIS)

    Venter, A.; Murape, D.M.; Botha, J.R.; Auret, F.D.

    2015-01-01

    The temperature dependent transport characteristics of Pd/n-GaSb:Te Schottky contacts with low and saturating reverse current are investigated by means of current–voltage measurements between 80 K and 320 K. The apparent barrier height and ideality factor increase with a decrease in temperature. Neither thermionic nor thermionic field emission can explain the low temperature characteristics of these diodes. Instead, evidence is presented for barrier inhomogeneity across the metal/semiconductor contact. A plot of the barrier height, ϕ b vs. 1/2kT revealed a double Gaussian distribution for the barrier height with ϕ b,mean assuming values of 0.59 eV ± 0.07 (80–140 K) and 0.25 eV ± 0.12 (140–320 K) respectively. - Highlights: • Transport characteristics of Pd/epitaxial n-GaSb:Te SBDs are studied by means of I-V-T measurements. • SBDs have remarkably low and saturating reverse current – of the lowest ever reported for GaSb. • Transport behaviour is explained by considering electronic states present on the GaSb surface. • Evidence is presented for barrier inhomogeneity across the metal-semiconductor contact

  17. Characteristic length scale of input data in distributed models: implications for modeling grid size

    Science.gov (United States)

    Artan, G. A.; Neale, C. M. U.; Tarboton, D. G.

    2000-01-01

    The appropriate spatial scale for a distributed energy balance model was investigated by: (a) determining the scale of variability associated with the remotely sensed and GIS-generated model input data; and (b) examining the effects of input data spatial aggregation on model response. The semi-variogram and the characteristic length calculated from the spatial autocorrelation were used to determine the scale of variability of the remotely sensed and GIS-generated model input data. The data were collected from two hillsides at Upper Sheep Creek, a sub-basin of the Reynolds Creek Experimental Watershed, in southwest Idaho. The data were analyzed in terms of the semivariance and the integral of the autocorrelation. The minimum characteristic length associated with the variability of the data used in the analysis was 15 m. Simulated and observed radiometric surface temperature fields at different spatial resolutions were compared. The correlation between agreement simulated and observed fields sharply declined after a 10×10 m2 modeling grid size. A modeling grid size of about 10×10 m2 was deemed to be the best compromise to achieve: (a) reduction of computation time and the size of the support data; and (b) a reproduction of the observed radiometric surface temperature.

  18. Characteristic length scale of input data in distributed models: implications for modeling grain size

    Science.gov (United States)

    Artan, Guleid A.; Neale, C. M. U.; Tarboton, D. G.

    2000-01-01

    The appropriate spatial scale for a distributed energy balance model was investigated by: (a) determining the scale of variability associated with the remotely sensed and GIS-generated model input data; and (b) examining the effects of input data spatial aggregation on model response. The semi-variogram and the characteristic length calculated from the spatial autocorrelation were used to determine the scale of variability of the remotely sensed and GIS-generated model input data. The data were collected from two hillsides at Upper Sheep Creek, a sub-basin of the Reynolds Creek Experimental Watershed, in southwest Idaho. The data were analyzed in terms of the semivariance and the integral of the autocorrelation. The minimum characteristic length associated with the variability of the data used in the analysis was 15 m. Simulated and observed radiometric surface temperature fields at different spatial resolutions were compared. The correlation between agreement simulated and observed fields sharply declined after a 10×10 m2 modeling grid size. A modeling grid size of about 10×10 m2 was deemed to be the best compromise to achieve: (a) reduction of computation time and the size of the support data; and (b) a reproduction of the observed radiometric surface temperature.

  19. Temperature distribution in a cigarette oven during baking

    Directory of Open Access Journals (Sweden)

    Zhang Qing

    2015-01-01

    Full Text Available Baking treatment is one of the most important processes of cigarette production, which can significantly enhance quality of tobacco. Theoretical and numerical investigation on temperature distribution in a cigarette oven during baking was carried out. The finite volume method was used to simulate the flow field. The relationship between the uniformity of temperature field and impeller’s speed was given finally, which is helpful to optimize cigarette oven with better quality and less energy consumption.

  20. Measurement of temperature distributions in large pool fires with the use of directional flame thermometers

    International Nuclear Information System (INIS)

    Koski, Jorman A.

    2000-01-01

    Temperatures inside the flame zone of large regulatory pool fires measured during tests of radioactive materials packages vary widely with both time and position. Measurements made with several Directional Flame Thermometers, in which a thermocouple is attached to a thin metal sheet that quickly approaches flame temperatures, have been used to construct fire temperature distributions and cumulative probability distributions. As an aid to computer simulations of these large fires, these distributions are presented. The distributions are constructed by sorting fire temperature data into bins 10 C wide. A typical fire temperature distribution curve has a gradual increase starting at about 600 C, with the number of observations increasing to a peak near 1000 C, followed by an abrupt decrease in frequency, with no temperatures observed above 1200 C

  1. Simulation of Temperature Field Distribution for Cutting the Temperated Glass by Ultraviolet Laser

    Science.gov (United States)

    Yang, B. J.; He, Y. C.; Dai, F.; Lin, X. C.

    2017-03-01

    The finite element software ANSYS was adopted to simulate the temperature field distribution for laser cutting tempered glass, and the influence of different process parameters, including laser power, glass thickness and cutting speed, on temperature field distribution was studied in detail. The results show that the laser power has a greater influence on temperature field distribution than other paremeters, and when the laser power gets to 60W, the highest temperature reaches 749°C, which is higher than the glass softening temperature. It reflects the material near the laser spot is melted and the molten slag is removed by the high-energy water beam quickly. Finally, through the water guided laser cutting tempered glass experiment the FEM theoretical analysis was verified.

  2. Effect of seawater and high-temperature history on swelling characteristics of bentonite

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Nakamura, Kunihiko

    2005-01-01

    In the case of construction of repository for nuclear waste near the coastal area, the effect of seawater on swelling characteristics of bentonite as an engineering as an engineering barrier should be considered. Effects of high-temperature history on swelling characteristics of bentonite should also be considered because nuclear waste generates heat. Thus, in this study, swelling characteristics of bentonite on the conditions of high temperature history and seawater are investigated. The results of this study imply that : (1) Swelling strain of sodium bentonite or transformed sodium bentonite decrease as the salinity of water increases, whereas those of calcium bentonite are not affected by salinity of the water. (2) Quantitative evaluation method for swelling strain and swelling pressure of several kinds of bentonites under brine is proposed. (3) Using distilled water, swelling strain and swelling pressure of sodium bentonite with high-temperature history is less than those without high-temperature history. (author)

  3. Fermi-dirac and random carrier distributions in quantum dot lasers

    OpenAIRE

    Hutchings, M.; O'Driscoll, Ian; Smowton, P. M.; Blood, P.

    2014-01-01

    Using experimental gain and emission measurements as functions of temperature, a method is described to characterise the carrier distribution of radiative states in a quantum dot (QD) laser structure in terms of a temperature. This method is independent of the form of the inhomogeneous dot distribution. A thermal distribution at the lattice temperature is found between 200 and 300K. Below 200K the characteristic temperature exceeds the lattice temperature and the distribution becomes random b...

  4. Analytical solution of transient temperature in continuous wave end-pumped laser slab: Reduction of temperature distribution and time of thermal response

    Directory of Open Access Journals (Sweden)

    Shibib Khalid S.

    2017-01-01

    Full Text Available An analytical solution of transient 3-D heat equation based on integral transform method is derived. The result are compared with numerical solution, and good agreements are obtained. Minimization of response time and temperature distribution through a laser slab are tested. It is found that the increasing in the lateral convection heat transfer coefficient can significantly reduce the response time and the temperature distribution while no effect on response time is observed when changing pumping profile from Gaussian to top hat beam in spite of the latter reduce the temperature distribution, also it is found that dividing the pumping power between two slab ends might reduce the temperature distribution and it has no effect on thermal response time.

  5. Research on the novel FBG detection system for temperature and strain field distribution

    Science.gov (United States)

    Liu, Zhi-chao; Yang, Jin-hua

    2017-10-01

    In order to collect the information of temperature and strain field distribution information, the novel FBG detection system was designed. The system applied linear chirped FBG structure for large bandwidth. The structure of novel FBG cover was designed as a linear change in thickness, in order to have a different response at different locations. It can obtain the temperature and strain field distribution information by reflection spectrum simultaneously. The structure of novel FBG cover was designed, and its theoretical function is calculated. Its solution is derived for strain field distribution. By simulation analysis the change trend of temperature and strain field distribution were analyzed in the conditions of different strain strength and action position, the strain field distribution can be resolved. The FOB100 series equipment was used to test the temperature in experiment, and The JSM-A10 series equipment was used to test the strain field distribution in experiment. The average error of experimental results was better than 1.1% for temperature, and the average error of experimental results was better than 1.3% for strain. There were individual errors when the strain was small in test data. It is feasibility by theoretical analysis, simulation calculation and experiment, and it is very suitable for application practice.

  6. Prediction method for thermal ratcheting of a cylinder subjected to axially moving temperature distribution

    International Nuclear Information System (INIS)

    Wada, Hiroshi; Igari, Toshihide; Kitade, Shoji.

    1989-01-01

    A prediction method was proposed for plastic ratcheting of a cylinder, which was subjected to axially moving temperature distribution without primary stress. First, a mechanism of this ratcheting was proposed, which considered the movement of temperature distribution as a driving force of this phenomenon. Predictive equations of the ratcheting strain for two representative temperature distributions were proposed based on this mechanism by assuming the elastic-perfectly-plastic material behavior. Secondly, an elastic-plastic analysis was made on a cylinder subjected to the representative two temperature distributions. Analytical results coincided well with the predicted results, and the applicability of the proposed equations was confirmed. (author)

  7. Current-voltage-temperature characteristics of DNA origami

    Energy Technology Data Exchange (ETDEWEB)

    Bellido, Edson P; Bobadilla, Alfredo D; Rangel, Norma L; Seminario, Jorge M [Department of Chemical Engineering, Texas A and M University, College Station, TX 77843 (United States); Zhong Hong; Norton, Michael L [Department of Chemistry, Marshall University, Huntington, WV 25755 (United States); Sinitskii, Alexander [Department of Chemistry, Rice University, Houston, TX 77005 (United States)

    2009-04-29

    The temperature dependences of the current-voltage characteristics of a sample of triangular DNA origami deposited in a 100 nm gap between platinum electrodes are measured using a probe station. Below 240 K, the sample shows high impedance, similar to that of the substrate. Near room temperature the current shows exponential behavior with respect to the inverse of temperature. Sweep times of 1 s do not yield a steady state; however sweep times of 450 s for the bias voltage secure a steady state. The thermionic emission and hopping conduction models yield similar barriers of {approx}0.7 eV at low voltages. For high voltages, the hopping conduction mechanism yields a barrier of 0.9 eV and the thermionic emission yields 1.1 eV. The experimental data set suggests that the dominant conduction mechanism is hopping in the range 280-320 K. The results are consistent with theoretical and experimental estimates of the barrier for related molecules.

  8. Current-voltage-temperature characteristics of DNA origami

    International Nuclear Information System (INIS)

    Bellido, Edson P; Bobadilla, Alfredo D; Rangel, Norma L; Seminario, Jorge M; Zhong Hong; Norton, Michael L; Sinitskii, Alexander

    2009-01-01

    The temperature dependences of the current-voltage characteristics of a sample of triangular DNA origami deposited in a 100 nm gap between platinum electrodes are measured using a probe station. Below 240 K, the sample shows high impedance, similar to that of the substrate. Near room temperature the current shows exponential behavior with respect to the inverse of temperature. Sweep times of 1 s do not yield a steady state; however sweep times of 450 s for the bias voltage secure a steady state. The thermionic emission and hopping conduction models yield similar barriers of ∼0.7 eV at low voltages. For high voltages, the hopping conduction mechanism yields a barrier of 0.9 eV and the thermionic emission yields 1.1 eV. The experimental data set suggests that the dominant conduction mechanism is hopping in the range 280-320 K. The results are consistent with theoretical and experimental estimates of the barrier for related molecules.

  9. Effect of current distribution on the voltage-temperature characteristics: study of the NbTi PF-FSJS sample for ITER

    International Nuclear Information System (INIS)

    Zani, L.; Ciazynski, D.; Gislon, P.; Stepanov, B.; Huber, S.

    2004-01-01

    Various tests, either on full-size joint samples or on model coils confirmed that current distribution may play a crucial role in the electrical behaviour of CICC in operating conditions. In order to evaluate its influence, CEA developed a code (ENSIC) the main feature of which is a CICC electrical model including a discrete resistive network associated with superconducting lengths. Longitudinal and transverse resistances are also modeled, representing either joint or conductor. In our paper we will present the comparison of experimental results with ENSIC calculations for one International Thermonuclear Experimental Reactor (ITER) sample prototype relevant to poloidal field (PF) coils: the PF-full-size joint sample (PF-FSJS). In this purpose, the current distribution has been measured thanks to a segmented Rogowski coils system. Current distribution effects on the basic characteristics (T CS , n-value etc) of the cable compared to single strand will be discussed. This study aims at putting light on the global strand state in a conductor and is also useful to evaluate some intrinsic parameters hardly measurable (effective interpetal transverse contact resistance for example) allowing further application in coils

  10. Temperature Distribution within a Cold Cap during Nuclear Waste Vitrification.

    Science.gov (United States)

    Dixon, Derek R; Schweiger, Michael J; Riley, Brian J; Pokorny, Richard; Hrma, Pavel

    2015-07-21

    The kinetics of the feed-to-glass conversion affects the waste vitrification rate in an electric glass melter. The primary area of interest in this conversion process is the cold cap, a layer of reacting feed on top of the molten glass. The work presented here provides an experimental determination of the temperature distribution within the cold cap. Because direct measurement of the temperature field within the cold cap is impracticable, an indirect method was developed in which the textural features in a laboratory-made cold cap with a simulated high-level waste feed were mapped as a function of position using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. The temperature distribution within the cold cap was established by correlating microstructures of cold-cap regions with heat-treated feed samples of nearly identical structures at known temperatures. This temperature profile was compared with a mathematically simulated profile generated by a cold-cap model that has been developed to assess the rate of glass production in a melter.

  11. Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan

    Science.gov (United States)

    Khan, Najeebullah; Shahid, Shamsuddin; Ismail, Tarmizi bin; Wang, Xiao-Jun

    2018-06-01

    Pakistan is one of the most vulnerable countries of the world to temperature extremes due to its predominant arid climate and geographic location in the fast temperature rising zone. Spatial distribution of the trends in annual and seasonal temperatures and temperature extremes over Pakistan has been assessed in this study. The gauge-based gridded daily temperature data of Berkeley Earth Surface Temperature (BEST) having a spatial resolution of 1° × 1° was used for the assessment of trends over the period 1960-2013 using modified Mann-Kendall test (MMK), which can discriminate the multi-decadal oscillatory variations from secular trends. The results show an increase in the annual average of daily maximum and minimum temperatures in 92 and 99% area of Pakistan respectively at 95% level of confidence. The annual temperature is increasing faster in southern high-temperature region compared to other parts of the country. The minimum temperature is rising faster (0.17-0.37 °C/decade) compared to maximum temperature (0.17-0.29 °C/decade) and therefore declination of diurnal temperature range (DTR) (- 0.15 to - 0.08 °C/decade) in some regions. The annual numbers of both hot and cold days are increasing in whole Pakistan except in the northern sub-Himalayan region. Heat waves are on the rise, especially in the hot Sindh plains and the Southern coastal region, while the cold waves are becoming lesser in the northern cold region. Obtained results contradict with the findings of previous studies on temperature trends, which indicate the need for reassessment of climatic trends in Pakistan using the MMK test to understand the anthropogenic impacts of climate change.

  12. Temperature distribution due to the heat generation in nuclear reactor shielding

    International Nuclear Information System (INIS)

    Torres, L.M.R.

    1985-01-01

    A study is performed for calculating nuclear heating due to the interaction of neutrons and gamma-rays with matter. Modifications were implemented in the ANISN and DOT 3.5 codes, that solve the transport equation using the discrete ordinate method, in one two-dimensions respectively, to include nuclear heating calculations in these codes. In order to determine the temperature distribution, using the finite difference method, a numerical model was developed for solving the heat conduction equation in one-dimension, in plane, cylindrical and spherical geometries, and in two-dimensions, X-Y and R-Z geometries. Based on these models, computer programs were developed for calculating the temperature distribution. Tests and applications of the implemented modifications were performed in problems of nuclear heating and temperature distribution due to radiation energy deposition in fission and fusion reactor shields. (Author) [pt

  13. The electron density and temperature distributions predicted by bow shock models of Herbig-Haro objects

    International Nuclear Information System (INIS)

    Noriega-Crespo, A.; Bohm, K.H.; Raga, A.C.

    1990-01-01

    The observable spatial electron density and temperature distributions for series of simple bow shock models, which are of special interest in the study of Herbig-Haro (H-H) objects are computed. The spatial electron density and temperature distributions are derived from forbidden line ratios. It should be possible to use these results to recognize whether an observed electron density or temperature distribution can be attributed to a bow shock, as is the case in some Herbig-Haro objects. As an example, the empirical and predicted distributions for H-H 1 are compared. The predicted electron temperature distributions give the correct temperature range and they show very good diagnostic possibilities if the forbidden O III (4959 + 5007)/4363 wavelength ratio is used. 44 refs

  14. Intelligent Monitoring System with High Temperature Distributed Fiberoptic Sensor for Power Plant Combustion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Kwang Y. Lee; Stuart S. Yin; Andre Boehman

    2006-09-26

    The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, we have set up a dedicated high power, ultrafast laser system for fabricating in-fiber gratings in harsh environment optical fibers, successfully fabricated gratings in single crystal sapphire fibers by the high power laser system, and developed highly sensitive long period gratings (lpg) by electric arc. Under Task 2, relevant mathematical modeling studies of NOx formation in practical combustors have been completed. Studies show that in boiler systems with no swirl, the distributed temperature sensor may provide information sufficient to predict trends of NOx at the boiler exit. Under Task 3, we have investigated a mathematical approach to extrapolation of the temperature distribution within a power plant boiler facility, using a combination of a modified neural network architecture and semigroup theory. Given a set of empirical data with no analytic expression, we first developed an analytic description and then extended that model along a single axis.

  15. Effect of Pilot Injection Timings on the Combustion Temperature Distribution in a Single-Cylinder CI Engine Fueled with DME and ULSD

    Directory of Open Access Journals (Sweden)

    Jeon Joonho

    2016-01-01

    Full Text Available Many studies of DiMethyl Ether (DME as an alternative fuel in Compression-Ignition (CI engines have been performed. Although diverse DME engine research has been conducted, the investigation of combustion behavior and temperature distribution in the combustion engine has not progressed due to the fact that there is no sooting flame in DME combustion. In order to investigate the combustion characteristics in this study, the KIVA-3 V code was implemented to research various pilot injection strategies on a single-cylinder CI engines with DME and Ultra-Low-Sulfur Diesel (ULSD fuels. The combustion distribution results obtained from the numerical investigation were validated when compared with the measurement of flame temperature behaviors in the experimental approach. This study showed that long intervals between two injection timings enhanced pilot combustion by increasing the ambient pressure and temperature before the start of the main combustion. Different atomization properties between DME and ULSD fuels contributed to the formation of a fuel-air mixture at the nozzle tip and piston lip regions, separately, which strongly affected the temperature distribution of the two fuels. In addition, the pilot injection timing played a vital role in regard to ignition delay and peak combustion temperatures. Exhaust emissions, such as NOx and soot, are related to the local equivalence ratio and temperature in the combustion chamber, also illustrated by the contrary result on a Φ (equivalence ratio – T (temperature map.

  16. Experimental study on ratcheting of a cylinder subjected to axially moving temperature distribution

    International Nuclear Information System (INIS)

    Igari, T.; Yamauchi, M.; Wada, H.

    1989-01-01

    Development of a design of cylinder subjected to axially moving temperature distribution is very important in the design of the reactor vessel of fast breeder reactor containing high-temperature sodium. So far, however, a mechanism and a prediction method for this ratcheting have not been clarified. This paper proposes the ratcheting mechanism as well as the predictive equations of the ratcheting strain for the representative two temperature distributions. The proposed ratcheting mechanism was based on the hoop-membrane stress-strain behavior of the cylinder, and the movement of the temperature distribution was regarded as a driving force of this ratcheting. This paper describes the results of the experimental study on the proposed ratcheting mechanism and the predictive equations

  17. Studies on the translocation and distribution characteristics of carbon assimilates in blackberry

    International Nuclear Information System (INIS)

    Wang Shuyu; Liu Hongjia

    1990-08-01

    The translocation and distribution characteristics of carbon assimilates were studied with the method of 14 CO 2 feeding. The results indicated that there were different translocation and distribution characteristics of carbon assimilates among the upper, middle and lower leaves in a shoot during annual cycle. Taking away leaves, sun-shading and drought could raise the exporting ratio of carbon assimilates in the feeding leaves and could change the distributing model of the tree. Most of the carbon assimilates were translocated to basic born branch after sun-shading and drought

  18. Theoretical and Experimental Evaluation of the Temperature Distribution in a Dry Type Air Core Smoothing Reactor of HVDC Station

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2017-05-01

    Full Text Available The outdoor ultra-high voltage (UHV dry-type air-core smoothing reactors (DASR of High Voltage Direct Current systems are equipped with a rain cover and an acoustic enclosure. To study the convective heat transfer between the DASR and the surrounding air, this paper presents a coupled model of the temperature and fluid field based on the structural features and cooling manner. The resistive losses of encapsulations calculated by finite element method (FEM were used as heat sources in the thermal analysis. The steady fluid and thermal field of the 3-D reactor model were solved by the finite volume method (FVM, and the temperature distribution characteristics of the reactor were obtained. Subsequently, the axial and radial temperature distributions of encapsulation were investigated separately. Finally, an optical fiber temperature measurement scheme was used for an UHV DASR under natural convection conditions. Comparative analysis showed that the simulation results are in good agreement with the experimental data, which verifies the rationality and accuracy of the numerical calculation. These results can serve as a reference for the optimal design and maintenance of UHV DASRs.

  19. Experimental determination of neutron temperature distribution in reactor cell; Eksperimentalno odredjivanje raspodele neutronske temperature u celiji reaktorske resetke

    Energy Technology Data Exchange (ETDEWEB)

    Bosevski, T [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-12-15

    This paper describes theoretical preparation of the experiment for measuring neutron temperature distribution at the RB reactor by activation foils. Due to rather low neutron flux Cu and Lu foil were irradiated for 4 days. Special natural uranium fuel element was prepared to enable easy removal of foils after irradiation. Experimental device was placed in the reactor core at half height in order to measure directly the mean neutron density. Experimental data of neutron temperature distribution for square lattice pitch 16 cm are presented with mean values of neutron temperature in the moderator, in the fuel and on the fuel element surface.

  20. Analysis of the distribution of temperature fields in the braked railway wheel

    Directory of Open Access Journals (Sweden)

    Suchánek Andrej

    2018-01-01

    Full Text Available The article deals with detection of reduced stress in a braked railway wheel, based on thermal transient analysis on virtual models, which influence the characteristics of the railway wheels. Structural analysis was performed by means of the ANSYS Multiphysics program system package. Thermal transient analysis deals with detection of temperature fields which are a result of braking by brake block. The applied heat flux represents the heat generated by friction of brake block. It is applied to a quarter model of the wheel to speed up the calculation. This analysis simulates two braking processes with subsequent cooling. Distribution of the equivalent stress was detected in the railway wheel cross section, at selected points. The input parameters were taken from the thermal transient analysis. These equivalent stresses result from thermal load.

  1. Modelling characteristics of ferromagnetic cores with the influence of temperature

    International Nuclear Information System (INIS)

    Górecki, K; Rogalska, M; Zarȩbski, J; Detka, K

    2014-01-01

    The paper is devoted to modelling characteristics of ferromagnetic cores with the use of SPICE software. Some disadvantages of the selected literature models of such cores are discussed. A modified model of ferromagnetic cores taking into account the influence of temperature on the magnetizing characteristics and the core losses is proposed. The form of the elaborated model is presented and discussed. The correctness of this model is verified by comparing the calculated and the measured characteristics of the selected ferromagnetic cores.

  2. Analysis of temperature distribution in a heat conducting fiber with ...

    African Journals Online (AJOL)

    The temperature distribution in a heat conducting fiber is computed using the Galerkin Finite Element Method in the present study. The weak form of the governing differential equation is obtained and nodal temperatures for linear and quadratic interpolation functions for different mesh densities are calculated for Neumann ...

  3. Application of 'SPICE' to predict temperature distribution in heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Li, H M; Liu, Y; Damodaran, M [Nanyang Technological Univ., Singapore (SG). School of Mechanical and Production Engineering

    1991-11-01

    This article presents a new alternative approach to predict temperature distribution in heat pipes. In this method, temperature distribution in a heat pipe, modelled as an analogous electrical circuit, is predicted by applying SPICE, a general-purpose circuit simulation program. SPICE is used to simulate electrical circuit designs before the prototype is assembled. Useful predictions are obtained for heat pipes with and without adiabatic sections and for heat pipes with various evaporator and condenser lengths. Comparison of the predicted results with experiments demonstrates fairly good agreement. It is also shown how interdisciplinary developments could be used appropriately. (author).

  4. 3D DEM simulation and analysis of void fraction distribution in a pebble bed high temperature reactor

    International Nuclear Information System (INIS)

    Yang, Xingtuan; Gui, Nan; Tu, Jiyuan; Jiang, Shengyao

    2014-01-01

    Highlights: • We show a detailed analysis of void fraction (VF) in HTR-10 of China using DEM. • Radial distribution (RD) of VF is uniform in the core and oscillated near the wall. • Axial distribution (AD) is linearly varied along height due to effect of gravity. • Steady RD of VF in the conical base is Gaussian-like, larger than packing bed. • Joint linear and normal distribution of VF is analyzed and explained. - Abstract: The current work analyzes the radial and axial distributions of void fraction of a pebble bed high temperature reactor. A three-dimensional pebble bed corresponding to our test facility of pebble bed type gas-cooled high temperature reactor (HTR-10) in Tsinghua University is simulated via discrete element method, and the radial and axial void fraction profiles are calculated. It validates the oscillating characteristics of radial void fraction near the wall. Detailed calculations show the differences of void fraction profiles between the stationary packing bed and the dynamically discharging bed. Based on the vertically and circumferentially averaged radial distribution and horizontally averaged axial distribution of void fraction, a fully three-dimensional analytical distribution of void fraction throughout the bed is established. The results show the combined effects of gravity and void variation in the pebble bed caused by the pebble discharging. It indicates the linearly increased packing effect caused by gravity in the vertical (axial) direction and the normal distribution of void in the horizontal (radial) direction by pebble drainage. These two effects coexist in the conical base of the bed whereas only the former effect exists in the cylindrical volume of the bed

  5. Temperature distribution of a simplified rotor due to a uniform heat source

    Science.gov (United States)

    Welzenbach, Sarah; Fischer, Tim; Meier, Felix; Werner, Ewald; kyzy, Sonun Ulan; Munz, Oliver

    2018-03-01

    In gas turbines, high combustion efficiency as well as operational safety are required. Thus, labyrinth seal systems with honeycomb liners are commonly used. In the case of rubbing events in the seal system, the components can be damaged due to cyclic thermal and mechanical loads. Temperature differences occurring at labyrinth seal fins during rubbing events can be determined by considering a single heat source acting periodically on the surface of a rotating cylinder. Existing literature analysing the temperature distribution on rotating cylindrical bodies due to a stationary heat source is reviewed. The temperature distribution on the circumference of a simplified labyrinth seal fin is calculated using an available and easy to implement analytical approach. A finite element model of the simplified labyrinth seal fin is created and the numerical results are compared to the analytical results. The temperature distributions calculated by the analytical and the numerical approaches coincide for low sliding velocities, while there are discrepancies of the calculated maximum temperatures for higher sliding velocities. The use of the analytical approach allows the conservative estimation of the maximum temperatures arising in labyrinth seal fins during rubbing events. At the same time, high calculation costs can be avoided.

  6. Comparison of influence of ageing on low-temperature characteristics of asphalt mixtures

    Science.gov (United States)

    Vacková, Pavla; Valentin, Jan; Benešová, Lucie

    2017-09-01

    Ability of relaxation of asphalt mixtures and thus its resilience to climate change and traffic load is decreasing by influence of aging - in this case aging of bituminous binder. Binder exposed to climate and UV ages and becomes more fragile and susceptible to damage. The results of the research presented in this paper are aimed to finding a correlation between low-temperature properties of referential and aged asphalt mixture specimens and characteristics (not low-temperature) of bituminous binders. In this research there were used conventional road binders, commonly used modified binders and binders additionally modified in the laboratory. The low-temperature characteristics were determined by strength flexural test, commonly used in the Czech Republic for High Modulus Asphalt Mixtures (TP 151), and semi-cylindrical bending test (EN 12697-44). Both of the tests were extended by specimens exposed to artificial long-term aging (EN 12697-52) - storing at 85° C for 5 days. The results were compared with characteristics of binders for finding a suitable correlation between characteristics of binders and asphalt mixtures.

  7. Temperature distribution analysis of tissue water vaporization during microwave ablation: experiments and simulations.

    Science.gov (United States)

    Ai, Haiming; Wu, Shuicai; Gao, Hongjian; Zhao, Lei; Yang, Chunlan; Zeng, Yi

    2012-01-01

    The temperature distribution in the region near a microwave antenna is a critical factor that affects the entire temperature field during microwave ablation of tissue. It is challenging to predict this distribution precisely, because the temperature in the near-antenna region varies greatly. The effects of water vaporisation and subsequent tissue carbonisation in an ex vivo porcine liver were therefore studied experimentally and in simulations. The enthalpy and high-temperature specific absorption rate (SAR) of liver tissues were calculated and incorporated into the simulation process. The accuracy of predictions for near-field temperatures in our simulations has reached the level where the average maximum error is less than 5°C. In addition, a modified thermal model that accounts for water vaporisation and the change in the SAR distribution pattern is proposed and validated with experiment. The results from this study may be useful in the clinical practice of microwave ablation and can be applied to predict the temperature field in surgical planning.

  8. Current distribution characteristics of superconducting parallel circuits

    International Nuclear Information System (INIS)

    Mori, K.; Suzuki, Y.; Hara, N.; Kitamura, M.; Tominaka, T.

    1994-01-01

    In order to increase the current carrying capacity of the current path of the superconducting magnet system, the portion of parallel circuits such as insulated multi-strand cables or parallel persistent current switches (PCS) are made. In superconducting parallel circuits of an insulated multi-strand cable or a parallel persistent current switch (PCS), the current distribution during the current sweep, the persistent mode, and the quench process were investigated. In order to measure the current distribution, two methods were used. (1) Each strand was surrounded with a pure iron core with the air gap. In the air gap, a Hall probe was located. The accuracy of this method was deteriorated by the magnetic hysteresis of iron. (2) The Rogowski coil without iron was used for the current measurement of each path in a 4-parallel PCS. As a result, it was shown that the current distribution characteristics of a parallel PCS is very similar to that of an insulated multi-strand cable for the quench process

  9. A Simple Experiment to Determine the Characteristics of an NTC Thermistor for Low-Temperature Measurement Applications

    Science.gov (United States)

    Mawire, A.

    2012-01-01

    A simple low-cost experiment for undergraduate students to determine the characteristics of a negative temperature coefficient of resistance thermistor is presented. The experiment measures the resistance-temperature and voltage-temperature characteristics of the thermistor. Results of the resistance-temperature experiment are used to determine…

  10. Optimal distribution of temperature points in μSR measurement of local field

    International Nuclear Information System (INIS)

    Pełka, R.; Zieliński, P.M.; Konieczny, P.; Wasiutyński, T.

    2013-01-01

    Three possible distributions of temperature points in the μSR measurement of local field (order parameter) are discussed. The least square method is applied to estimate the scale of the deviations of the fitted parameters from the true values. It indicates that the distribution corresponding to a uniform section of the order parameter values (uniform-in-signal) incurs the smallest errors. The distribution constructed on the basis of the zeros of the Chebyshev polynomials yields comparable uncertainties, while the uniform-in-temperature distribution turns out to be least effective incurring considerably larger errors. These findings can be useful while planning an order parameter measurement in the μSR experiment

  11. A study on the temperature distribution in the hot leg pipe

    International Nuclear Information System (INIS)

    Choe, Yoon-Jae; Baik, Se-Jin; Jang, Ho-Cheol; Lee, Byung-Jin; Im, In-Young; Ro, Tae-Sun

    2003-01-01

    In the hot leg pipes of reactor coolant system of the Korean Standard Nuclear Power Plant (KSNP), a non-uniform distribution in temperature has been observed across the cross-section, which is attributed to the non-uniformity of power distribution in the reactor core usually having a peak in the center region, and to the colder coolant bypass flow through the reactor vessel outlet nozzle clearances. As a result, the arithmetic mean temperature of four Resistance Temperature Detectors (RTDs) installed in each hot leg - two in the upper region and two in the lower region around the pipe wall may not correctly represent the actual coolant bulk temperature. It is also believed that there is a skewness in the velocity profile in the hot leg pipe due to the sudden changes in the flow direction and area from the core to the hot leg pipe, through the reactor vessel outlet plenum. These temperature non-uniformity and velocity skewness affect the measurement of the plant parameter such as the reactor coolant flow rate which is calculated by using the bulk temperature of hot leg pipes. A computational analysis has been performed to simulate the temperature and velocity distributions and to evaluate the uncertainty of temperature correction offset in the hot leg pipe. A commercial CFD code, FLUENT, is used for this analysis. The analysis results are compared with the operational data of KSNP and the scaled-down model test data for System 80. From the comparisons, an uncertainty of correction offset is obtained to measure the bulk temperature of hot leg more accurately, which can be also applied to the operating plants, leading to the reduction of temperature measurement uncertainty. Since the uncertainty of temperature in the hot leg pipe is one of major parameters to calculate the uncertainty of the reactor coolant flow rate, the analysis results can contribute to the improvement of the plant performance and safety by reducing the uncertainty of temperature measurement

  12. Modelling of temperature distribution and temperature pulsations in elements of fast breeder reactor

    International Nuclear Information System (INIS)

    Sorokin, A.P.; Bogoslovskaia, G.P.; Ushakov, P.A.; Zhukov, A.V.; Ivanov, Eu.F.; Matjukhin, N.M.

    2004-01-01

    From thermophysical point of view, integrated configuration of liquid metal cooled reactor has some limitations. Large volume of mixing chamber causes a complex behavior of thermal hydraulic characteristics in such facilities. Also, this volume is responsible for large-scale eddies in the coolant, existence of stagnant areas and flow stratification, occurrence of temperature non-uniformity and pulsation of coolant and structure temperatures. Temperature non-uniformities and temperature pulsations depend heavily even on small variations in reactor core design. The paper presents some results on modeling of thermal hydraulic processes occurring in liquid metal cooled reactor. The behavior of following parameters are discussed: temperature non-uniformities at the core output and related temperature pulsations; temperature pulsations due to mixing of sodium jets at different temperatures; temperature pulsations arising if a part of loop (circuit) is shut off; temperature non-uniformities and pulsation at the core output and related temperature pulsation; temperature pulsations due to mixing of sodium jets at different temperatures; temperature pulsations arising if a part of loop (circuit) is shut off; temperature non-uniformities and pulsation of temperature during transients and during transition to natural convection cooling. Also, the issue of modeling of temperature behavior in compact arrangement of fast reactor fuel pins using water as modeling liquid is considered in the paper. One more discussion is concerned with experimental method of modeling of liquid metal mixing with the use of air. The method is based on freon tracer technique. The results of simulation of the thermal hydraulic processes mentioned above have been analyzed, that will allow the main lines of the study to be determined and conclusion to be drawn regarding the temperature behavior in fast reactor units. (author)

  13. Sensitivity of Distributions of Climate System Properties to Surface Temperature Datasets

    Science.gov (United States)

    Libardoni, A. G.; Forest, C. E.

    2011-12-01

    Predictions of climate change from models depend strongly on the representation of climate system properties emerging from the processes and feedbacks in the models. The quality of any model prediction can be evaluated by determining how well its output reproduces the observed climate system. With this evaluation, the reliability of climate projections derived from the model and provided for policy makers is assessed and quantified. In this study, surface temperature, upper-air temperature, and ocean heat content data are used to constrain the distributions of the parameters that define three climate system properties in the MIT Integrated Global Systems Model: climate sensitivity, the rate of ocean heat uptake into the deep ocean, and net anthropogenic aerosol forcing. In particular, we explore the sensitivity of the distributions to the surface temperature dataset used to estimate the likelihood of model output given the observed climate records. In total, five different reconstructions of past surface temperatures are used and the resulting parameter distribution functions differ from each other. Differences in estimates of climate sensitivity mode and mean are as great as 1 K between the datasets, with an overall range of 1.2 to 5.3 K using the 5-95 confidence intervals. Ocean effective diffusivity is poorly constrained regardless of which dataset is used. All distributions show broad distributions and only three show signs of a distribution mode. When a mode is present, they tend to be for low diffusivity values. Distributions for the net aerosol forcing show similar shapes and cluster into two groups that are shifted by approximately 0.1 watts per square meter. However, the overall spread of forcing values from the 5-95 confidence interval, -0.19 to -0.83 watts per square meter, is small compared to other uncertainties in climate forcings. Transient climate response estimates derived from these distributions range between 0.87 and 2.41 K. Similar to the

  14. Temperature rising characteristics of ammonium diurante in microwave fields

    International Nuclear Information System (INIS)

    Liu Bingguo; Peng JinHui; Huang Daifu; Zhang Libo; Hu Jinming; Zhuang Zebiao; Kong Dongcheng; Guo Shenghui; Li Chunxiang

    2010-01-01

    The temperature rising characteristics of ammonium diurante, triuranium octaoxide (U 3 O 8 ), and their mixture were investigated under microwave irradiation, aiming at exploring newly theoretical foundation for advanced metallurgical methods. The temperature rising curves showed that ammonium diurante had weak capability to absorb microwave energy, while triuranium octaoxide had the very strong absorption capability. The temperature of mixture containing 20% of U 3 O 8 could rise from room temperature to 1171 K within 280 s. The ability to absorb microwave energy for the mixture with different ratios increased with the increase in the amount of U 3 O 8 . These are in good agreement with the results of Maxwell-Garnett effective medium theory. It is feasible to calcine ammonium diurante by adding of small amounts of U 3 O 8 in microwave fields.

  15. Investigations for determining temperature, pressure and moisture distributions in concrete at high temperatures

    International Nuclear Information System (INIS)

    Weber, A.; Kamp, C.L.

    1987-01-01

    The paper gives a report on the test program. The main objective of the tests was the determination of the temperature and moisture fields decisive for the corrosion conditions, which are built up behind the liner in the range of the heated concrete. The determination of transport characteristics of the concrete are another objective. Small concrete specimens are used to determine the following data: Thermal conductivity, heat capacity, diffusion coefficient for liquid water, steam and air, steam sorption therms. The chemical shrinkage of the concrete as a function of moisture and temperature is being evaluated by means of tests and calculations. (orig./HP)

  16. The temperature dependence of the characteristics of crystalline-silicon-based heterojunction solar cells

    Science.gov (United States)

    Sachenko, A. V.; Kryuchenko, Yu. V.; Kostylyov, V. P.; Korkishko, R. M.; Sokolovskyi, I. O.; Abramov, A. S.; Abolmasov, S. N.; Andronikov, D. A.; Bobyl', A. V.; Panaiotti, I. E.; Terukov, E. I.; Titov, A. S.; Shvarts, M. Z.

    2016-03-01

    Temperature dependences of the photovoltaic characteristics of ( p)a-Si/( i)a-Si:H/( n)c-Si singlecrystalline- silicon based heterojunction-with-intrinsic-thin-layer (HIT) solar cells have been measured in a temperature range of 80-420 K. The open-circuit voltage ( V OC), fill factor ( FF) of the current-voltage ( I-U) characteristic, and maximum output power ( P max) reach limiting values in the interval of 200-250 K on the background of monotonic growth in the short-circuit current ( I SC) in a temperature range of 80-400 K. At temperatures below this interval, the V OC, FF, and P max values exhibit a decrease. It is theoretically justified that a decrease in the photovoltaic energy conversion characteristics of solar cells observed on heating from 250 to 400 K is related to exponential growth in the intrinsic conductivity. At temperatures below 200 K, the I-U curve shape exhibits a change that is accompanied by a drop in V OC. Possible factors that account for the decrease in V OC, FF, and P max are considered.

  17. Numerical analysis of temperature distribution due to basement radiogenic heat production, St. Lawrence Lowlands, eastern Canada

    Science.gov (United States)

    Liu, Hejuan; Giroux, Bernard; Harris, Lyal B.; Mansour, John

    2017-04-01

    Although eastern Canada is considered as having a low potential for high-temperature geothermal resources, the possibility for additional localized radioactive heat sources in Mesoproterozoic Grenvillian basement to parts of the Palaeozoic St. Lawrence Lowlands in Quebec, Canada, suggests that this potential should be reassessed. However, such a task remains hard to achieve due to scarcity of heat flow data and ambiguity about the nature of the basement. To get an appraisal, the impact of radiogenic heat production for different Grenville Province crystalline basement units on temperature distribution at depth was simulated using the Underworld Geothermal numerical modelling code. The region south of Trois-Rivières was selected as representative for the St. Lawrence Lowlands. An existing 3D geological model based on well log data, seismic profiles and surface geology was used to build a catalogue of plausible thermal models. Statistical analyses of radiogenic element (U, Th, K) concentrations from neighbouring outcropping Grenville domains indicate that the radiogenic heat production of rocks in the modelled region is in the range of 0.34-3.24 μW/m3, with variations in the range of 0.94-5.83 μW/m3 for the Portneuf-Mauricie (PM) Domain, 0.02-4.13 μW/m3 for the Shawinigan Domain (Morin Terrane), and 0.34-1.96 μW/m3 for the Parc des Laurentides (PDL) Domain. Various scenarios considering basement characteristics similar to the PM domain, Morin Terrane and PDL Domain were modelled. The results show that the temperature difference between the scenarios can be as much as 12 °C at a depth of 5 km. The results also show that the temperature distribution is strongly affected by both the concentration of radiogenic elements and the thermal conductivity of the basement rocks. The thermal conductivity in the basement affects the trend of temperature change between two different geological units, and the spatial extent of thermal anomalies. The validity of the results was

  18. The Effect of High Temperature Annealing on the Grain Characteristics of a Thin Chemical Vapor Deposition Silicon Carbide Layer.

    Energy Technology Data Exchange (ETDEWEB)

    Isabella J van Rooyen; Philippus M van Rooyen; Mary Lou Dunzik-Gougar

    2013-08-01

    The unique combination of thermo-mechanical and physiochemical properties of silicon carbide (SiC) provides interest and opportunity for its use in nuclear applications. One of the applications of SiC is as a very thin layer in the TRi-ISOtropic (TRISO) coated fuel particles for high temperature gas reactors (HTGRs). This SiC layer, produced by chemical vapor deposition (CVD), is designed to withstand the pressures of fission and transmutation product gases in a high temperature, radiation environment. Various researchers have demonstrated that macroscopic properties can be affected by changes in the distribution of grain boundary plane orientations and misorientations [1 - 3]. Additionally, various researchers have attributed the release behavior of Ag through the SiC layer as a grain boundary diffusion phenomenon [4 - 6]; further highlighting the importance of understanding the actual grain characteristics of the SiC layer. Both historic HTGR fission product release studies and recent experiments at Idaho National Laboratory (INL) [7] have shown that the release of Ag-110m is strongly temperature dependent. Although the maximum normal operating fuel temperature of a HTGR design is in the range of 1000-1250°C, the temperature may reach 1600°C under postulated accident conditions. The aim of this specific study is therefore to determine the magnitude of temperature dependence on SiC grain characteristics, expanding upon initial studies by Van Rooyen et al, [8; 9].

  19. Distribution characteristics of terrestrial heat flow density in Jiyang depression of Shengli Oilfield, East China

    Institute of Scientific and Technical Information of China (English)

    GONG; Yuling; WANG; Liangshu; LIU; Shaowen; LI; Cheng; HAN

    2004-01-01

    Based on the geo-temperature data of 13 systematically continuous temperature log curves and 700 testing oil boreholes in Jiyang depression, Shengli Oilfield, and the measured thermal conductivities of 47 rock samples, the terrestrial heat flow densities of 114 boreholes of Jiyang depression and its surrounding areas are determined, including 13 of those data derived from systemically continuous temperature logging. The results show that Jiyang depression has a relatively high background heat flow with an average value (65.8 ± 5.4) mW/m2. The lateral variation of heat flow in basin has negative correlation with basement depth. Moreover, heat flow of uplift areas with shallower basement is high, so are those of regions with volcanic rocks, and those of depression areas with deep basement are relatively low. The heat flow densities of different structural units of Jiyang depression can be summarized as follows: The average heat flow value of Zhanhua sag is (67.4 ± 5.3) mW/m2, higher than that of the whole basin, that of Dongying sag is (66.0 ± 6.1) mW/m2, and that of Chezhen sag is (65.1 ± 3.7) mW/m2. It is apparent that these latter two values are approximate to the average value of the whole Jiyang depression,while the average value of Huimin sag is (63.6±5.0) mW/m2, lower than that of the whole basin. In fact, the basement depth and the distribution framework of uplift and depression areas are all controlled by the process of lithosphere extension. In addition, the distribution of volcanic rocks in basin is also relatively close to this extension geodynamic process. In summary, the distribution characteristics of terrestrial heat flow of Jiyang depression is determined by the Cenozoic tectono-thermal events of this region.

  20. Temperature Distribution and Influence Mechanism on Large Reflector Antennas under Solar Radiation

    Science.gov (United States)

    Wang, C. S.; Yuan, S.; Liu, X.; Xu, Q.; Wang, M.; Zhu, M. B.; Chen, G. D.; Duan, Y. H.

    2017-10-01

    The solar impact on antenna must be lessened for the large reflector antenna operating at high frequencies to have great electromagnetic performances. Therefore, researching the temperature distribution and its influence on large reflector antenna is necessary. The variation of solar incidence angle is first calculated. Then the model is simulated by the I-DEAS software, with the temperature, thermal stress, and thermal distortion distribution through the day obtained. In view of the important influence of shadow on antenna structure, a newly proposed method makes a comprehensive description of the temperature distribution on the reflector and its influence through the day by dividing a day into three different periods. The sound discussions and beneficial summary serve as the scientific foundation for the engineers to compensate the thermal distortion and optimize the antenna structure.

  1. Realization of the Energy Saving of the Environmental Examination Device Temperature Control System in Consideration of Temperature Characteristics

    Science.gov (United States)

    Onogaki, Hitoshi; Yokoyama, Shuichi

    The temperature control of the environmental examination device has loss of the energy consumption to cool it while warming it. This paper proposed a tempareture control system method with energy saving for the enviromental examination device without using cooling in consideration of temperature characteristics.

  2. Experiment of ambient temperature distribution in ICF driver's target building

    International Nuclear Information System (INIS)

    Zhou Yi; He Jie; Yang Shujuan; Zhang Junwei; Zhou Hai; Feng Bin; Xie Na; Lin Donghui

    2009-01-01

    An experiment is designed to explore the ambient temperature distribution in an ICF driver's target building, Multi-channel PC-2WS temperature monitoring recorders and PTWD-2A precision temperature sensors are used to measure temperatures on the three vertical cross-sections in the building, and the collected data have been handled by MATLAB. The experiment and analysis show that the design of the heating ventilation and air conditioning (HVAC) system can maintain the temperature stability throughout the building. However, because of the impact of heat in the target chamber, larger local environmental temperature gradients appear near the marshalling yard, the staff region on the middle floor, and equipments on the lower floor which needs to be controlled. (authors)

  3. An Experimental Study on Axial Temperature Distribution of Combustion of Dewatered Poultry Sludge in Fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Abbas A.H.

    2016-01-01

    Full Text Available A laboratory scale bubbling fluidized bed combustor was designed and fabricated to study the combustion of dewatered poultry sludge at different operational parameters. This paper present a study on the influence of equivalent ratio, secondary to primary air ratio and the fuel feed rate on the temperature distribution along the combustor. The equivalent ratio has been changed between 0.8 to 1.4% under poultry sludge feed rate of 10 kg/h and from 0.8 to 1 under poultry sludge feed rate of 15 kg/h. The secondary to primary air ratio was varied from 0.1 to 0.5 at 0.65 m injection height and 1.25 equivalent ratio. The results showed that these factors had a significant influence on the combustion characteristics of poultry sludge. The temperature distribution along the combustor was found to be strongly dependent on the fuel feed rate and the equivalent ratio and it increased when these two factors increased. However, the secondary air ratio increased the temperature in the lower region of the combustor while no significant effect was observed at the upper region of the combustor. The results suggested that the poultry sludge can be used as a fuel with high thermal combustor efficiency.

  4. The influence of the engine load on value and temperature distribution in the valve seats of turbo diesel engine

    Directory of Open Access Journals (Sweden)

    Aleksander HORNIK

    2009-01-01

    Full Text Available In this paper was presented the numerical computations of the influence of engine load on value and temperature distribution of characteristic surfaces of the heat transfer of the valve seats in Turbo diesel engine at the beginning phase of its work. The computations were performed by means of a two-zone combustion model, the boundary of III kind conditions and the finite elements method (FEM by adaptation of the COSMOS/M program.

  5. Extreme Temperature Exceedances Change more Rapidly Under Future Warming in Regions of non-Gaussian Short Temperature Distribution Tails

    Science.gov (United States)

    Loikith, P. C.; Neelin, J. D.; Meyerson, J.

    2017-12-01

    Regions of shorter-than-Gaussian warm and cold side temperature distribution tails are shown to occur in spatially coherent patterns in the current climate. Under such conditions, warming may be manifested in more complex ways than if the underlying distribution were close to Gaussian. For example, under a uniform warm shift, the simplest prototype for future warming, a location with a short warm side tail would experience a greater increase in extreme warm exceedances compared to if the distribution were Gaussian. Similarly, for a location with a short cold side tail, a uniform warm shift would result in a rapid decrease in extreme cold exceedances. Both scenarios carry major societal and environmental implications including but not limited to negative impacts on human and ecosystem health, agriculture, and the economy. It is therefore important for climate models to be able to realistically reproduce short tails in simulations of historical climate in order to boost confidence in projections of future temperature extremes. Overall, climate models contributing to the fifth phase of the Coupled Model Intercomparison Project capture many of the principal observed regions of short tails. This suggests the underlying dynamics and physics occur on scales resolved by the models, and helps build confidence in model projections of extremes. Furthermore, most GCMs show more rapid changes in exceedances of extreme temperature thresholds in regions of short tails. Results therefore suggest that the shape of the tails of the underlying temperature distribution is an indicator of how rapidly a location will experience changes to extreme temperature occurrence under future warming.

  6. Fermi-dirac and random carrier distributions in quantum dot lasers

    International Nuclear Information System (INIS)

    Hutchings, M.; Smowton, P. M.; Blood, P.; O'Driscoll, I.

    2014-01-01

    Using experimental gain and emission measurements as functions of temperature, a method is described to characterise the carrier distribution of radiative states in a quantum dot (QD) laser structure in terms of a temperature. This method is independent of the form of the inhomogeneous dot distribution. A thermal distribution at the lattice temperature is found between 200 and 300 K. Below 200 K the characteristic temperature exceeds the lattice temperature and the distribution becomes random below about 60 K. This enables the temperature range for which Fermi-Dirac statistics are applicable in QD laser threshold calculations to be identified

  7. Conjugated heat transfer and temperature distributions in a gas turbine combustion liner under base-load operation

    International Nuclear Information System (INIS)

    Kim, Kyung Min; Yun, Nam Geon; Jeon, Yun Heung; Lee, Dong Hyun; Cho, Yung Hee

    2010-01-01

    Prediction of temperature distributions on hot components is important in development of a gas turbine combustion liner. The present study investigated conjugated heat transfer to obtain temperature distributions in a combustion liner with six combustion nozzles. 3D numerical simulations using FVM commercial codes, Fluent and CFX were performed to calculate combustion and heat transfer distributions. The temperature distributions in the combustor liner were calculated by conjugation of conduction and convection (heat transfer coefficients) obtained by combustion and cooling flow analysis. The wall temperature was the highest on the attachment points of the combustion gas from combustion nozzles, but the temperature gradient was high at the after shell section with low wall temperature

  8. The analytical investigation of temperature distribution in off-central ...

    Indian Academy of Sciences (India)

    central diode-pumped; diode-pumped; temperature distribution. ... In our model we consider a laser crystal of radius b and length L. Heat is deposited ..... [13] M Abramawitz and I A Stegun (eds), Handbook of mathematical function (Dover,.

  9. Temperature dependent transport characteristics of graphene/n-Si diodes

    International Nuclear Information System (INIS)

    Parui, S.; Ruiter, R.; Zomer, P. J.; Wojtaszek, M.; Wees, B. J. van; Banerjee, T.

    2014-01-01

    Realizing an optimal Schottky interface of graphene on Si is challenging, as the electrical transport strongly depends on the graphene quality and the fabrication processes. Such interfaces are of increasing research interest for integration in diverse electronic devices as they are thermally and chemically stable in all environments, unlike standard metal/semiconductor interfaces. We fabricate such interfaces with n-type Si at ambient conditions and find their electrical characteristics to be highly rectifying, with minimal reverse leakage current (<10 −10  A) and rectification of more than 10 6 . We extract Schottky barrier height of 0.69 eV for the exfoliated graphene and 0.83 eV for the CVD graphene devices at room temperature. The temperature dependent electrical characteristics suggest the influence of inhomogeneities at the graphene/n-Si interface. A quantitative analysis of the inhomogeneity in Schottky barrier heights is presented using the potential fluctuation model proposed by Werner and Güttler

  10. Temperature dependent electrical characteristics of Zn/ZnSe/n-GaAs/In structure

    Science.gov (United States)

    Sağlam, M.; Güzeldir, B.

    2016-04-01

    We have reported a study of the I-V characteristics of Zn/ZnSe/n-GaAs/In sandwich structure in a wide temperature range of 80-300 K by a step of 20 K, which are prepared by Successive Ionic Layer Adsorption and Reaction (SILAR) method. The main electrical parameters, such as ideality factor and zero-bias barrier height determined from the forward bias I-V characteristics were found strongly depend on temperature and when the increased, the n decreased with increasing temperature. The ideality factor and barrier height values as a function of the sample temperature have been attributed to the presence of the lateral inhomogeneities of the barrier height. Furthermore, the series resistance have been calculated from the I-V measurements as a function of temperature dependent.

  11. Leak detection for city gas pipelines based on instantaneous energy distribution characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Zhigang, Chen [Deijing University of Civil Engineering and Architecture, Beijing, (China)

    2010-07-01

    Many natural gas pipelines are used in our cities. The development of efficient leakage detection systems is fundamental for safety issues avoidance. This paper investigated a new solution to the leak detection problem in city gas pipelines based on instantaneous energy distribution. In a theoretical approach, the Hilbert-Huang transform (HHT) was used to provide the instantaneous energy distribution feature of an unstable pressure signal. The signal noise was eliminated thanks to the instantaneous energy contribution. A leakage detection model with instantaneous energy distribution (IED) was then established. The correlation coefficients of instantaneous energy distribution were through correlation analysis. It was found that in different pipeline states, the instantaneous energy distribution characteristics are different. A strong correlation of IED signal characteristics was found of the two ends of a city gas pipeline in the same operation. The test results demonstrated the reliability and validity of the method.

  12. Quantifying the Interactions Between Soil Thermal Characteristics, Soil Physical Properties, Hydro-geomorphological Conditions and Vegetation Distribution in an Arctic Watershed

    Science.gov (United States)

    Dafflon, B.; Leger, E.; Robert, Y.; Ulrich, C.; Peterson, J. E.; Soom, F.; Biraud, S.; Tran, A. P.; Hubbard, S. S.

    2017-12-01

    Improving understanding of Arctic ecosystem functioning and parameterization of process-rich hydro-biogeochemical models require advances in quantifying ecosystem properties, from the bedrock to the top of the canopy. In Arctic regions having significant subsurface heterogeneity, understanding the link between soil physical properties (incl. fraction of soil constituents, bedrock depth, permafrost characteristics), thermal behavior, hydrological conditions and landscape properties is particularly challenging yet is critical for predicting the storage and flux of carbon in a changing climate. This study takes place in Seward Peninsula Watersheds near Nome AK and Council AK, which are characterized by an elevation gradient, shallow bedrock, and discontinuous permafrost. To characterize permafrost distribution where the top of permafrost cannot be easily identified with a tile probe (due to rocky soil and/or large thaw layer thickness), we developed a novel technique using vertically resolved thermistor probes to directly sense the temperature regime at multiple depths and locations. These measurements complement electrical imaging, seismic refraction and point-scale data for identification of the various thermal behavior and soil characteristics. Also, we evaluate linkages between the soil physical-thermal properties and the surface properties (hydrological conditions, geomorphic characteristics and vegetation distribution) using UAV-based aerial imaging. Data integration and analysis is supported by numerical approaches that simulate hydrological and thermal processes. Overall, this study enables the identification of watershed structure and the links between various subsurface and landscape properties in representative Arctic watersheds. Results show very distinct trends in vertically resolved soil temperature profiles and strong lateral variations over tens of meters that are linked to zones with various hydrological conditions, soil properties and vegetation

  13. Seed dormancy responses to temperature relate to Nothofagus species distribution and determine temporal patterns of germination across altitudes in Patagonia.

    Science.gov (United States)

    Arana, María V; Gonzalez-Polo, Marina; Martinez-Meier, Alejandro; Gallo, Leonardo A; Benech-Arnold, Roberto L; Sánchez, Rodolfo A; Batlla, Diego

    2016-01-01

    Seeds integrate environmental cues that modulate their dormancy and germination. Although many mechanisms have been identified in laboratory experiments, their contribution to germination dynamics in existing communities and their involvement in defining species habitats remain elusive. By coupling mathematical models with ecological data we investigated the contribution of seed temperature responses to the dynamics of germination of three Nothofagus species that are sharply distributed across different altitudes in the Patagonian Andes. Seed responsiveness to temperature of the three Nothofagus species was linked to the thermal characteristics of their preferred ecological niche. In their natural distribution range, there was overlap in the timing of germination of the species, which was restricted to mid-spring. By contrast, outside their species distribution range, germination was temporally uncoupled with altitude. This phenomenon was described mathematically by the interplay between interspecific differences in seed population thermal parameters and the range in soil thermic environments across different altitudes. The observed interspecific variations in seed responsiveness to temperature and its environmental regulation, constitute a major determinant of the dynamics of Nothofagus germination across elevations. This phenomenon likely contributes to the maintenance of patterns of species abundance across altitude by placing germinated seeds in a favorable environment for plant growth. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  14. SULCUS TEMPERATURE DISTRIBUTIONS IN THE ABSENCE AND PRESENCE OF ORAL HYGIENE

    NARCIS (Netherlands)

    PERDOK, JF; LUKACOVIC, M; MAJETI, S; ARENDS, J; BUSSCHER, HJ

    In this study we investigated the possibility of using sulcus temperature measurements as an early indicator for the beginning of gingival inflammation. Sulcus temperature distributions over the arches appeared to obey a quadratic polynomial. With a test group of 10 volunteers, all dental students,

  15. Load forecasting method considering temperature effect for distribution network

    Directory of Open Access Journals (Sweden)

    Meng Xiao Fang

    2016-01-01

    Full Text Available To improve the accuracy of load forecasting, the temperature factor was introduced into the load forecasting in this paper. This paper analyzed the characteristics of power load variation, and researched the rule of the load with the temperature change. Based on the linear regression analysis, the mathematical model of load forecasting was presented with considering the temperature effect, and the steps of load forecasting were given. Used MATLAB, the temperature regression coefficient was calculated. Using the load forecasting model, the full-day load forecasting and time-sharing load forecasting were carried out. By comparing and analyzing the forecast error, the results showed that the error of time-sharing load forecasting method was small in this paper. The forecasting method is an effective method to improve the accuracy of load forecasting.

  16. Tomography for two-dimensional gas temperature distribution based on TDLAS

    Science.gov (United States)

    Luo, Can; Wang, Yunchu; Xing, Fei

    2018-03-01

    Based on tunable diode laser absorption spectroscopy (TDLAS), the tomography is used to reconstruct the combustion gas temperature distribution. The effects of number of rays, number of grids, and spacing of rays on the temperature reconstruction results for parallel ray are researched. The reconstruction quality is proportional to the ray number. The quality tends to be smoother when the ray number exceeds a certain value. The best quality is achieved when η is between 0.5 and 1. A virtual ray method combined with the reconstruction algorithms is tested. It is found that virtual ray method is effective to improve the accuracy of reconstruction results, compared with the original method. The linear interpolation method and cubic spline interpolation method, are used to improve the calculation accuracy of virtual ray absorption value. According to the calculation results, cubic spline interpolation is better. Moreover, the temperature distribution of a TBCC combustion chamber is used to validate those conclusions.

  17. Thermophysical Property Estimation by Transient Experiments: The Effect of a Biased Initial Temperature Distribution

    Directory of Open Access Journals (Sweden)

    Federico Scarpa

    2015-01-01

    Full Text Available The identification of thermophysical properties of materials in dynamic experiments can be conveniently performed by the inverse solution of the associated heat conduction problem (IHCP. The inverse technique demands the knowledge of the initial temperature distribution within the material. As only a limited number of temperature sensors (or no sensor at all are arranged inside the test specimen, the knowledge of the initial temperature distribution is affected by some uncertainty. This uncertainty, together with other possible sources of bias in the experimental procedure, will propagate in the estimation process and the accuracy of the reconstructed thermophysical property values could deteriorate. In this work the effect on the estimated thermophysical properties due to errors in the initial temperature distribution is investigated along with a practical method to quantify this effect. Furthermore, a technique for compensating this kind of bias is proposed. The method consists in including the initial temperature distribution among the unknown functions to be estimated. In this way the effect of the initial bias is removed and the accuracy of the identified thermophysical property values is highly improved.

  18. Numerical Simulation of Magnetic Field Effect on Cryocooler Regenerators: Temperature Distribution

    Directory of Open Access Journals (Sweden)

    Rajendra Kumar

    2017-01-01

    Full Text Available Regenerative types of cryogenic refrigerators (or cryocoolers employ magnetic intermetallic compounds of 3d and 4f elements to work well below 10 K. This paper presents the analysis of temperature distribution in regenerators of such cryocoolers under the influence of magnetic fields of 1 T, 3 T, and 4.3 T. Commercial code of finite element analysis (FEA package, ANSYS (APDL 14.5, is used to investigate the temperature distribution under above-mentioned fields. Er3Ni is selected as regenerator material and the criteria for its selection are discussed in detail. The cold end temperature is varied from 4.2 K to 10 K and hot end temperature is fixed at 20 K. The values obtained from FEA clearly show that the ineffectiveness of Er3Ni is at 8 K and 10 K at 3 T and 4.3 T.

  19. Combined distributed Raman and Bragg fiber temperature sensing using incoherent optical frequency domain reflectometry

    Directory of Open Access Journals (Sweden)

    M. Koeppel

    2018-02-01

    Full Text Available Optical temperature sensors offer unique features which make them indispensable for key industries such as the energy sector. However, commercially available systems are usually designed to perform either distributed or distinct hot spot temperature measurements since they are restricted to one measurement principle. We have combined two concepts, fiber Bragg grating (FBG temperature sensors and Raman-based distributed temperature sensing (DTS, to overcome these limitations. Using a technique called incoherent optical frequency domain reflectometry (IOFDR, it is possible to cascade several FBGs with the same Bragg wavelength in one fiber and simultaneously perform truly distributed Raman temperature measurements. In our lab we have achieved a standard deviation of 2.5 K or better at a spatial resolution in the order of 1 m with the Raman DTS. We have also carried out a field test in a high-voltage environment with strong magnetic fields where we performed simultaneous Raman and FBG temperature measurements using a single sensor fiber only.

  20. Simultaneous measurement of dynamic strain and temperature distribution using high birefringence PANDA fiber Bragg grating

    Science.gov (United States)

    Zhu, Mengshi; Murayama, Hideaki

    2017-04-01

    New approach in simultaneous measurement of dynamic strain and temperature has been done by using a high birefringence PANDA fiber Bragg grating sensor. By this technique, we have succeeded in discriminating dynamic strain and temperature distribution at the sampling rate of 800 Hz and the spatial resolution of 1 mm. The dynamic distribution of strain and temperature were measured with the deviation of 5mm spatially. In addition, we have designed an experimental setup by which we can apply quantitative dynamic strain and temperature distribution to the fiber under testing without bounding it to a specimen.

  1. Effect of body fat and gender on body temperature distribution.

    Science.gov (United States)

    Neves, Eduardo Borba; Salamunes, Ana Carla Chierighini; de Oliveira, Rafael Melo; Stadnik, Adriana Maria Wan

    2017-12-01

    It is well known that body composition can influence peripheral heat loss and skin temperature. That the distribution of body fat is affected by gender is well known; however, there is little information on how body composition and gender influences the measure of skin temperature. This study evaluated skin temperature distribution according to body fat percentage (BF%) and gender. A sample of 94 apparently healthy volunteers (47 women and 47 men) was assessed with Dual-Energy X-Ray Absorptiometry (DXA) and infrared thermography (mean, maximum and minimum temperatures - T Mean , T Max and T Min ). The sample was divided into groups, according to health risk classification, based on BF%, as proposed by the American College of Sports Medicine: Average (n = 58), Elevated (n = 16) or High (n = 20). Women had lower T Mean in most regions of interest (ROI). In both genders, group High had lower temperature values than Average and Elevated in the trunk, upper and lower limbs. In men, palms and posterior hands had a tendency (p temperature along with increased BF%. T Mean , T Max and T Min of trunk, upper and lower limbs were negatively correlated with BF% and the fat percentage of each segment (upper limbs, lower limbs and trunk). The highest correlations found in women were between posterior trunk and BF% (rho = -0.564, p temperature than men, which was related with higher BF%. Facial temperature seems not to be influenced by body fat. With the future collection of data on the relationship between BF% and skin temperature while taking into account factors such as body morphology, gender, and ethnicity, we conclude that measurement of BF may be reliably estimated with the use of thermal imaging technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Experimental research of kinetic and dynamic characteristics of temperature movements of machines

    Science.gov (United States)

    Parfenov, I. V.; Polyakov, A. N.

    2018-03-01

    Nowadays, the urgency of informational support of machines at different stages of their life cycle is increasing in the form of various experimental characteristics that determine the criteria for working capacity. The effectiveness of forming the base of experimental characteristics of machines is related directly to the duration of their field tests. In this research, the authors consider a new technique that allows reducing the duration of full-scale testing of machines by 30%. To this end, three new indicator coefficients were calculated in real time to determine the moments corresponding to the characteristic points. In the work, new terms for thermal characteristics of machine tools are introduced: kinetic and dynamic characteristics of the temperature movements of the machine. This allow taking into account not only the experimental values for the temperature displacements of the elements of the carrier system of the machine, but also their derivatives up to the third order, inclusively. The work is based on experimental data obtained in the course of full-scale thermal tests of a drilling-milling and boring CNC machine.

  3. Reactivity effect of spent fuel due to spatial distributions for coolant temperature and burnup

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, T.; Yamane, Y. [Nagoya Univ., Dept. of Nuclear Engineering, Nagoya, Aichi (Japan); Suyama, K. [OECD/NEA, Paris (France); Mochizuki, H. [Japan Research Institute, Ltd., Tokyo (Japan)

    2002-03-01

    We investigated the reactivity effect of spent fuel caused by the spatial distributions of coolant temperature and burnup by using the integrated burnup calculation code system SWAT. The reactivity effect which arises from taking account of the spatial coolant temperature distribution increases as the average burnup increases, and reaches the maximum value of 0.69%{delta}k/k at 50 GWd/tU when the burnup distribution is concurrently considered. When the burnup distribution is ignored, the reactivity effect decreases by approximately one-third. (author)

  4. Environmental effects of high temperature sodium of fatigue crack characteristics

    International Nuclear Information System (INIS)

    Abe, Hideaki; Takahashi, Kazuo; Ozawa, Kazumasa; Takahashi, Yukio

    2004-01-01

    In order to study fatigue crack growth characteristics in the components used in liquid sodium, fatigue tests were carried out at 550degC. This is near the system temperature used for sodium coolant in fast breeder reactors (FBRs). The factors influencing fatigue lifetime in sodium compared with that in air were investigated by observation of surface cracks in 316FR steel. Furthermore, the effects of sodium environment on fatigue were investigated based on examining the results of thermal striping tests, etc., obtained up to now. The results of the fatigue tests show that many micro cracks in the shearing direction were produced by the mid-lifetime, and micro cracks connected quickly after that. This is because an oxidation film was not formed, since sodium is of a reductive nature, and strain of the material surface tends to distribute equally. During crack progression there is no oxide formed on broken surfaces. Therefore re-combination between broken surfaces takes place, and crack progression rate falls. Furthermore, in non-propagating crack, the wedge effect by oxide between broken surfaces at the time of compression is small. Therefore, the crack closure angle is small, compression strain generated in the crack tip becomes large, and the crack cannot stop easily. As mentioned above, the main sodium influence on the fatigue characteristics are because of its reductive nature. In summary, in sodium environment, it is hard to form a crack and to get it to grow. Once started, however, it is hard to stop the crack in sodium compared with in the case of the air. (author)

  5. Preferred temperature and thermal breadth of birds wintering in peninsular Spain: the limited effect of temperature on species distribution

    Directory of Open Access Journals (Sweden)

    Luis M. Carrascal

    2016-07-01

    Full Text Available Background. The availability of environmental energy, as measured by temperature, is expected to limit the abundance and distribution of endotherms wintering at temperate latitudes. A prediction of this hypothesis is that birds should attain their highest abundances in warmer areas. However, there may be a spatial mismatch between species preferred habitats and species preferred temperatures, so some species might end-up wintering in sub-optimal thermal environments. Methods. We model the influence of minimum winter temperature on the relative abundance of 106 terrestrial bird species wintering in peninsular Spain, at 10 ×10 km2 resolution, using 95%-quantile regressions. We analyze general trends across species on the shape of the response curves, the environmental preferred temperature (at which the species abundance is maximized, the mean temperature in the area of distribution and the thermal breadth (area under the abundance-temperature curve. Results. Temperature explains a low proportion of variation in abundance. The most significant effect is on limiting the maximum potential abundance of species. Considering this upper-limit response, there is a large interspecific variability on the thermal preferences and specialization of species. Overall, there is a preponderance of positive relationships between species abundance and temperature; on average, species attain their maximum abundances in areas 1.9 °C warmer than the average temperature available in peninsular Spain. The mean temperature in the area of distribution is lower than the thermal preferences of the species. Discussion. Many species prefer the warmest areas to overwinter, which suggests that temperature imposes important restrictions to birds wintering in the Iberian Peninsula. However, one third of species overwinter in locations colder than their thermal preferences, probably reflecting the interaction between habitat and thermal requirements. There is a high inter

  6. Temperature Characteristics of Porous Portland Cement Concrete during the Hot Summer Session

    Directory of Open Access Journals (Sweden)

    Liqun Hu

    2017-01-01

    Full Text Available Pavement heats the near-surface air and affects the thermal comfort of the human body in hot summer. Because of a large amount of connected porosity of porous Portland cement concrete (PPCC, the thermal parameters of PPCC are much different from those of traditional Portland cement concrete (PCC. The temperature change characteristics of PPCC and the effects on surrounding environment are also different. A continuous 48-hour log of temperature of a PCC and five kinds of PPCC with different porosity were recorded in the open air in the hot summer. The air temperatures at different heights above concrete specimens were tested using self-made enclosed boxes to analyze the characteristics of near-surface air temperature. The output heat flux of different concrete specimens was calculated. The results show that the PPCC has higher temperature in the daytime and lower temperature in the nighttime and larger temperature gradient than the PCC. The air temperature above PPCC is lower than that of PCC after solar radiation going to zero at night. The total output heat flux of PPCC is slightly smaller in the daytime and significantly smaller at night than that of PCC. The results of tests and calculations indicate that PPCC contributes to the mitigation of heating effect of pavement on the near-surface air.

  7. Mapping climate change in European temperature distributions

    International Nuclear Information System (INIS)

    Stainforth, David A; Chapman, Sandra C; Watkins, Nicholas W

    2013-01-01

    Climate change poses challenges for decision makers across society, not just in preparing for the climate of the future but even when planning for the climate of the present day. When making climate sensitive decisions, policy makers and adaptation planners would benefit from information on local scales and for user-specific quantiles (e.g. the hottest/coldest 5% of days) and thresholds (e.g. days above 28 ° C), not just mean changes. Here, we translate observations of weather into observations of climate change, providing maps of the changing shape of climatic temperature distributions across Europe since 1950. The provision of such information from observations is valuable to support decisions designed to be robust in today’s climate, while also providing data against which climate forecasting methods can be judged and interpreted. The general statement that the hottest summer days are warming faster than the coolest is made decision relevant by exposing how the regions of greatest warming are quantile and threshold dependent. In a band from Northern France to Denmark, where the response is greatest, the hottest days in the temperature distribution have seen changes of at least 2 ° C, over four times the global mean change over the same period. In winter the coldest nights are warming fastest, particularly in Scandinavia. (letter)

  8. Temperature distribution determination of JPSR power reactor fuel element and cladding

    International Nuclear Information System (INIS)

    Sudarmono

    1996-01-01

    In order to utilize of fuel rod efficiency, a concept of JAERI passive Safety Reactor (JPSR) has been developed in Japan Atomic Energy Research Institute. In the JPSR design, UO 2 . are adopted as a fuel rod. The temperature distribution in the fuel rod and cladding in the hottest channel is a potential limiting design constraint of the JPSR. In the present determination, temperature distribution of the fuel rod and cladding for JPSR were PET:formed using COBRA-IV-I to evaluate the safety margin of the present JPSR design. In this method, the whole core was represented by the 1/4 sector and divided into 50 subchannels and 40 axial nodes. The temperature become maximum at the elevation of 1.922 and 2.196 m in the typical cell under operating condition. The maximum temperature in the center of the fuel rod surface of the fuel rod and cladding were 1620,4 o C, 722,8 o C, and 348,6 o C. The maximum results of temperature in the center of the fuel rod and cladding; were 2015,28 o C and 550 o C which were observed at 3.1 second in the typical cell

  9. Quantification Model for Estimating Temperature Field Distributions of Apple Fruit

    OpenAIRE

    Zhang , Min; Yang , Le; Zhao , Huizhong; Zhang , Leijie; Zhong , Zhiyou; Liu , Yanling; Chen , Jianhua

    2009-01-01

    International audience; A quantification model of transient heat conduction was provided to simulate apple fruit temperature distribution in the cooling process. The model was based on the energy variation of apple fruit of different points. It took into account, heat exchange of representative elemental volume, metabolism heat and external heat. The following conclusions could be obtained: first, the quantification model can satisfactorily describe the tendency of apple fruit temperature dis...

  10. Influence of absorbed pump profile on the temperature distribution ...

    Indian Academy of Sciences (India)

    Influence of absorbed pump profile on the temperature distribution within a diode side-pumped laser rod ... Department of Physics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran; Institute of Optics and Laser, Malek-ashtar University of Technology, Shahin Shahr, Postal Code: 83145/115, Iran; Department of ...

  11. Temperature field distribution of coal seam in heat injection

    OpenAIRE

    Zhang Zhizhen; Peng Weihong; Shang Xiaoji; Wang Kun; Li Heng; Ma Wenming

    2017-01-01

    In this article, we present a natural boundary element method (NBEM) to solve the steady heat flow problem with heat sources in a coal seam. The boundary integral equation is derived to obtain the temperature filed distribution of the coal seam under the different injecting conditions.

  12. Liquid level measurement on coolant pipeline using Raman distributed temperature sensor

    International Nuclear Information System (INIS)

    Kasinathan, M.; Sosamma, S.; Babu Rao, C.; Murali, N.; Jayakumar, T.

    2011-01-01

    Optical fibre based Raman Distributed Temperature Sensor (RDTS) has been widely used for temperature monitoring in oil pipe line, power cable and environmental monitoring. Recently it has gained importance in nuclear reactor owing to its advantages like continuous, distributed temperature monitoring and immunity from electromagnetic interference. It is important to monitor temperature based level measurement in sodium capacities and in coolant pipelines for Fast Breeder Reactor (FBR). This particular application is used for filling and draining sodium in storage tank of sodium circuits of Fast breeder reactor. There are different conventional methods to find out the sodium level in the storage tank of sodium cooled reactors. They are continuous level measurement and discontinuous level measurement. For continuous level measurement, mutual inductance type level probes are used. The disadvantage of using this method is it needs a temperature compensation circuit. For discontinuous level measurement, resistance type discontinuous level probe and mutual inductance type discontinuous level probe are used. In resistance type discontinuous level probe, each level needs a separate probe. To overcome these disadvantages, RDTS is used for level measurement based distributed temperature from optical fibre as sensor. The feasibility of using RDTS for measurement of temperature based level measurement sensor is studied using a specially designed test set-up and using hot water, instead of sodium. The test set-up consist of vertically erected Stainless Steel (SS) pipe of length 2m and diameter 10cm, with provision for filling and draining out the liquid. Bare graded index multimode fibre is laid straight along the length of the of the SS pipe. The SS pipe is filled with hot water at various levels. The hot water in the SS pipe is maintained at constant temperature by insulating the SS pipe. The temperature profile of the hot water at various levels is measured using RDTS. The

  13. In situ diagnostic of water distribution in thickness direction of MEA by neutron imaging. Focused on characteristics of water distribution in gas diffusion layer

    International Nuclear Information System (INIS)

    Tasaki, Yutaka; Ichikawa, Yasushi; Kobo, Norio; Shinohara, Kazuhiko; Boillat, Pierre; Kramer, Denis; Scherer, Gunther G.; Lehmann, Eberhard H.

    2008-01-01

    The mass transfer characteristics of gas diffusion layer (GDL) are closely related to cell performance in PEFC. In this study, In situ diagnostic of water distribution in thickness direction of MEA by Neutron Imaging has been carried out for three MEAs with different GDLs on cathode side as well as I-V characteristics. It was confirmed that this method is useful for analyzing water distribution in thickness direction of MEA. The relationship between I-V characteristics and liquid water distribution has been studied. (author)

  14. Effect of process parameters on temperature distribution in twin-electrode TIG coupling arc

    International Nuclear Information System (INIS)

    Zhang, Guangjun; Xiong, Jun; Gao, Hongming; Wu, Lin

    2012-01-01

    The twin-electrode TIG coupling arc is a new type of welding heat source, which is generated in a single welding torch that has two tungsten electrodes insulated from each other. This paper aims at determining the distribution of temperature for the coupling arc using the Fowler–Milne method under the assumption of local thermodynamic equilibrium. The influences of welding current, arc length, and distance between both electrode tips on temperature distribution of the coupling arc were analyzed. Based on the results, a better understanding of the twin-electrode TIG welding process was obtained. -- Highlights: ► Increasing arc current will increase the coupling arc temperature. ► Arc length seldom affects the peak temperature of the coupling arc. ► Increasing arc length will increase the extension of temperature near the anode. ► Increasing distance will decrease temperatures in the central part of the arc.

  15. Impact of vegetation growth on urban surface temperature distribution

    International Nuclear Information System (INIS)

    Buyadi, S N A; Mohd, W M N W; Misni, A

    2014-01-01

    Earlier studies have indicated that, the temperature distribution in the urban area is significantly warmer than its surrounding suburban areas. The process of urbanization has created urban heat island (UHI). As a city expands, trees are cut down to accommodate commercial development, industrial areas, roads, and suburban growth. Trees or green areas normally play a vital role in mitigating the UHI effects especially in regulating high temperature in saturated urban areas. This study attempts to assess the effects of vegetation growth on land surface temperature (LST) distribution in urban areas. An area within the City of Shah Alam, Selangor has been selected as the study area. Land use/land cover and LST maps of two different dates are generated from Landsat 5 TM images of the year 1991 and 2009. Only five major land cover classes are considered in this study. Mono-window algorithm is used to generate the LST maps. Landsat 5 TM images are also used to generate the NDVI maps. Results from this study have shown that there are significant land use changes within the study area. Although the conversion of green areas into residential and commercial areas significantly increase the LST, matured trees will help to mitigate the effects of UHI

  16. An investigation of characteristics of thermal stress caused by fluid temperature fluctuation at a T-junction pipe

    International Nuclear Information System (INIS)

    Miyoshi, Koji; Nakamura, Akira; Utanohara, Yoichi

    2014-01-01

    Thermal fatigue cracking may initiate at a T-junction pipe where high and low temperature fluids flow in from different directions and mix. Thermal stress is caused by a temperature gradient in a structure and by its variation. It is possible to obtain stress distributions if the temperature distributions at the pipe inner surface are obtained by experiments. The wall temperature distributions at a T-junction pipe were measured by experiments. The thermal stress distributions were calculated using the experimental data. The circumferential and axial stress fluctuations were larger than the radial stress fluctuation range. The stress fluctuation at the position of the maximum stress fluctuation had 10sec period. The distribution of the stress fluctuation was similar to that of the temperature fluctuation. The large stress fluctuations were caused by the time variation of the heating region by the hot jet flow. (author)

  17. Distributed utility technology cost, performance, and environmental characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Y; Adelman, S

    1995-06-01

    Distributed Utility (DU) is an emerging concept in which modular generation and storage technologies sited near customer loads in distribution systems and specifically targeted demand-side management programs are used to supplement conventional central station generation plants to meet customer energy service needs. Research has shown that implementation of the DU concept could provide substantial benefits to utilities. This report summarizes the cost, performance, and environmental and siting characteristics of existing and emerging modular generation and storage technologies that are applicable under the DU concept. It is intended to be a practical reference guide for utility planners and engineers seeking information on DU technology options. This work was funded by the Office of Utility Technologies of the US Department of Energy.

  18. Determining the temperature and density distribution from a Z-pinch radiation source

    International Nuclear Information System (INIS)

    Matuska, W.; Lee, H.

    1997-01-01

    High temperature radiation sources exceeding one hundred eV can be produced via z-pinches using currently available pulsed power. The usual approach to compare the z-pinch simulation and experimental data is to convert the radiation output at the source, whose temperature and density distributions are computed from the 2-D MHD code, into simulated data such as a spectrometer reading. This conversion process involves a radiation transfer calculation through the axially symmetric source, assuming local thermodynamic equilibrium (LTE), and folding the radiation that reaches the detector with the frequency-dependent response function. In this paper the authors propose a different approach by which they can determine the temperature and density distributions of the radiation source directly from the spatially resolved spectral data. This unfolding process is reliable and unambiguous for the ideal case where LTE holds and the source is axially symmetric. In reality, imperfect LTE and axial symmetry will introduce inaccuracies into the unfolded distributions. The authors use a parameter optimization routine to find the temperature and density distributions that best fit the data. They know from their past experience that the radiation source resulting from the implosion of a thin foil does not exhibit good axial symmetry. However, recent experiments carried out at Sandia National Laboratory using multiple wire arrays were very promising to achieve reasonably good symmetry. For these experiments the method will provide a valuable diagnostic tool

  19. Numerical investigation on turbulence mixing characteristics under thermal striping flows. Investigations on fluid temperature fluctuation phenomena in air and sodium

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Satoshi [Customer System Co. Ltd., Tokai, Ibaraki (Japan); Muramatsu, Toshiharu

    1999-05-01

    A three-dimensional thermal striping analysis was carried out using a direct numerical simulation code DINUS-3, for a coaxial jet configuration using air and sodium as a working fluid, within the framework of the EJCC thermo-hydraulic division. From the analysis, the following results have been obtained: (1) Calculated potential core length in air and sodium turbulence flows agreed with a theoretical value (5d - 7d ; d : diameter of jet nozzle) in the two-dimensional free jet theory. (2) Hydraulic characteristics in sodium flows as the potential core length can be estimated by the use of that of air flow characteristics. (3) Shorter thermally potential core length defined by spatial temperature distribution was evaluated in sodium flows, compared with that in air flows. This is due to the higher thermal conductivity of sodium. (4) Thermal characteristics in sodium flows as the thermally potential core length can not be evaluated, based on that air thermal characteristics. (author)

  20. Assessing the Adequacy of Probability Distributions for Estimating the Extreme Events of Air Temperature in Dabaa Region

    International Nuclear Information System (INIS)

    El-Shanshoury, Gh.I.

    2015-01-01

    Assessing the adequacy of probability distributions for estimating the extreme events of air temperature in Dabaa region is one of the pre-requisite s for any design purpose at Dabaa site which can be achieved by probability approach. In the present study, three extreme value distributions are considered and compared to estimate the extreme events of monthly and annual maximum and minimum temperature. These distributions include the Gumbel/Frechet distributions for estimating the extreme maximum values and Gumbel /Weibull distributions for estimating the extreme minimum values. Lieblein technique and Method of Moments are applied for estimating the distribution para meters. Subsequently, the required design values with a given return period of exceedance are obtained. Goodness-of-Fit tests involving Kolmogorov-Smirnov and Anderson-Darling are used for checking the adequacy of fitting the method/distribution for the estimation of maximum/minimum temperature. Mean Absolute Relative Deviation, Root Mean Square Error and Relative Mean Square Deviation are calculated, as the performance indicators, to judge which distribution and method of parameters estimation are the most appropriate one to estimate the extreme temperatures. The present study indicated that the Weibull distribution combined with Method of Moment estimators gives the highest fit, most reliable, accurate predictions for estimating the extreme monthly and annual minimum temperature. The Gumbel distribution combined with Method of Moment estimators showed the highest fit, accurate predictions for the estimation of the extreme monthly and annual maximum temperature except for July, August, October and November. The study shows that the combination of Frechet distribution with Method of Moment is the most accurate for estimating the extreme maximum temperature in July, August and November months while t he Gumbel distribution and Lieblein technique is the best for October

  1. Effects of Different Environment Temperatures on Some Motor Characteristics and Muscle Strength

    Science.gov (United States)

    Çakir, Ergün; Yüksek, Selami; Asma, Bülent; Arslanoglu, Erkal

    2016-01-01

    The aim of this study was determine the effects of different environment temperatures on motor characteristics and muscle strength. 15 athletes participated to study. Flexibility, vertical jump, hand grip-leg strength, 30m sprint, 20-meter shuttle run and coordination-agility tests were measured in five different environment temperatures. (22°C,…

  2. Asymmetric power device rating selection for even temperature distribution in NPC inverter

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede

    2017-01-01

    the power rating and lifetime of the NPC inverter are limited by the most stressed devices. In this paper, an asymmetric power device rating selection method for the NPC inverter is proposed in order to balance the lifetimes of the power devices. The thermal distribution of the power devices is analyzed......A major drawback of the NPC inverter is an unequal power loss distribution among the power devices which leads to unequal temperature stress among them. Therefore, certain power devices experience higher temperature stress, which is the main cause of power device module failure and thus both...... based on 30 kW NPC inverter as a case study. Analytical power loss and thermal impedance models depending on the chip size are derived. Finally, using these models, the junction temperatures of the power devices depending on the chip size is discussed and a proper chip size for an even temperature...

  3. Nonequilibrium Microscopic Distribution of Thermal Current in Particle Systems

    KAUST Repository

    Yukawa, Satoshi

    2009-02-15

    A nonequilibrium distribution function of microscopic thermal current is studied by a direct numerical simulation in a thermal conducting steady state of particle systems. Two characteristic temperatures of the thermal current are investigated on the basis of the distribution. It is confirmed that the temperature depends on the current direction; Parallel temperature to the heat-flux is higher than antiparallel one. The difference between the parallel temperature and the antiparallel one is proportional to a macroscopic temperature gradient. ©2009 The Physical Society of Japan.

  4. Nonequilibrium Microscopic Distribution of Thermal Current in Particle Systems

    KAUST Repository

    Yukawa, Satoshi; Shimada, Takashi; Ogushi, Fumiko; Ito, Nobuyasu

    2009-01-01

    A nonequilibrium distribution function of microscopic thermal current is studied by a direct numerical simulation in a thermal conducting steady state of particle systems. Two characteristic temperatures of the thermal current are investigated on the basis of the distribution. It is confirmed that the temperature depends on the current direction; Parallel temperature to the heat-flux is higher than antiparallel one. The difference between the parallel temperature and the antiparallel one is proportional to a macroscopic temperature gradient. ©2009 The Physical Society of Japan.

  5. Low temperature treatment affects concentration and distribution of chrysanthemum stunt viroid in Argyranthemum

    Directory of Open Access Journals (Sweden)

    Zhibo eZhang

    2016-03-01

    Full Text Available Chrysanthemum stunt viroid (CSVd can infect Argyranthemum and cause serious economic loss. Low temperature treatment combined with meristem culture has been applied to eradicate viroids from their hosts, but without success in eliminating CSVd from diseased Argyranthemum. The objectives of this work were to investigate 1 the effect of low temperature treatment combined with meristem culture on elimination of CSVd, 2 the effect of low temperature treatment on CSVd distribution pattern in shoot apical meristem (SAM, and 3 CSVd distribution in flowers and stems of two infected Argyranthemum cultivars. After treatment with low temperature combined with meristem tip culture, two CSVd-free plants were found in ‘Border Dark Red’, but none in ‘Yellow Empire’. With the help of in situ hybridization, we found that CSVd distribution patterns in the SAM showed no changes in diseased ‘Yellow Empire’ following 5oC treatment, compared with non-treated plants. However, the CSVd-free area in SAM was enlarged in diseased ‘Border Dark Red’ following prolonged 5oC treatment. Localization of CSVd in the flowers and stems of infected ‘Border Dark Red’ and ‘Yellow Empire’ indicated that seeds could not transmit CSVd in these two cultivars, and CSVd existed in phloem. Results obtained in the study contributed to better understanding of the distribution of CSVd in systemically infected plants and the combination of low temperature treatment and meristem tip culture for production of viroid-free plants.

  6. Current and field distribution in high temperature superconductors

    International Nuclear Information System (INIS)

    Johnston, M.D.

    1998-01-01

    The manufacture of wires from HTS materials containing copper-oxide planes is difficult because their physical and electrical properties are highly anisotropic. The electrical connectivity depends on the nearest-neighbour grain alignment and although a high degree of grain texture is achieved through processing, the tape microstructure is generally far from uniform, with weak links and porosity also complicating the picture. In order to optimise the processing, the microstructural features common to good tapes must be identified, requiring knowledge of the local properties. The preferential path taken by transport current is determined by the properties of the local microstructure and as such can be used to measure the variation in quality across the tape cross-section. By measuring the self-field profile generated by a current-carrying tape, it is possible to extract the associated current distribution. I have designed and built a Scanning Hall Probe Microscope to measure the normal field distribution above superconductor tapes carrying DC currents, operating at liquid nitrogen temperature and zero applied magnetic field. It has a spatial resolution of 50*50 μm and a field sensitivity of 5 μT, and can scan over a distance of 6 mm. The current extraction is performed by means of a deconvolution procedure based on Legendre functions. This allows a nondestructive, non-invasive method of evaluating the effects of the processing on the tapes - especially when correlated with transport and magnetisation measurement data. Conductors fabricated from Bi 2 Sr 2 Ca 2 Cu 3 O 10 , Bi 2 Sr 2 CaCu 2 O 8 and (Tl 0.78 Bi 0.22 )(Sr 0.8 Ba 0.2 ) 2 Ca 2 Cu 3 O x , have been investigated. I have confirmed the reports that in Bi-2223/Ag mono-core conductors produced by the oxide-powder-in-tube (OPIT) technique, the current flows predominantly at the edges of the tape, where the grains are long and well-aligned. This is in contrast to Bi-2212 ribbons, where the better microstructure

  7. Performance Improvement of Raman Distributed Temperature System by Using Noise Suppression

    Science.gov (United States)

    Li, Jian; Li, Yunting; Zhang, Mingjiang; Liu, Yi; Zhang, Jianzhong; Yan, Baoqiang; Wang, Dong; Jin, Baoquan

    2018-06-01

    In Raman distributed temperature system, the key factor for performance improvement is noise suppression, which seriously affects the sensing distance and temperature accuracy. Therefore, we propose and experimentally demonstrate dynamic noise difference algorithm and wavelet transform modulus maximum (WTMM) to de-noising Raman anti-Stokes signal. Experimental results show that the sensing distance can increase from 3 km to 11.5 km and the temperature accuracy increases to 1.58 °C at the sensing distance of 10.4 km.

  8. Operation characteristics of a multiple type MCFC

    Energy Technology Data Exchange (ETDEWEB)

    Kuroe, S.; Kamo, T. [Hitachi Research Lab., Hitachi, Ltd., Ibaraki-ken (Japan); Fujimura, H.; Kahara, T. [Hitachi, Ltd., Ibaraki-ken (Japan)

    1996-12-31

    Multiple type structure of MCFC of which the separator of the cell is divided by four element cells has been studied. For the stable operation of this type cell, the effect of gas flow rate and temperature distribution on the cell voltage should be clear. In order to clarify these characteristics, a small sized mimic model has been made and tested. The flow rate distribution for the four element cells were varied and cell voltage and temperature distribution were measured for each cell. The decrease in cell voltage and the increase in maximum temperature became remarkable when the apparent utilization factor for one element cell became over 100%. The calculated results agreed fairly good with test results.

  9. Summer temperature metrics for predicting brook trout (Salvelinus fontinalis) distribution in streams

    Science.gov (United States)

    Parrish, Donna; Butryn, Ryan S.; Rizzo, Donna M.

    2012-01-01

    We developed a methodology to predict brook trout (Salvelinus fontinalis) distribution using summer temperature metrics as predictor variables. Our analysis used long-term fish and hourly water temperature data from the Dog River, Vermont (USA). Commonly used metrics (e.g., mean, maximum, maximum 7-day maximum) tend to smooth the data so information on temperature variation is lost. Therefore, we developed a new set of metrics (called event metrics) to capture temperature variation by describing the frequency, area, duration, and magnitude of events that exceeded a user-defined temperature threshold. We used 16, 18, 20, and 22°C. We built linear discriminant models and tested and compared the event metrics against the commonly used metrics. Correct classification of the observations was 66% with event metrics and 87% with commonly used metrics. However, combined event and commonly used metrics correctly classified 92%. Of the four individual temperature thresholds, it was difficult to assess which threshold had the “best” accuracy. The 16°C threshold had slightly fewer misclassifications; however, the 20°C threshold had the fewest extreme misclassifications. Our method leveraged the volumes of existing long-term data and provided a simple, systematic, and adaptable framework for monitoring changes in fish distribution, specifically in the case of irregular, extreme temperature events.

  10. On Chaotic Behavior of Temperature Distribution in a Heat Exchanger

    Science.gov (United States)

    Bagyalakshmi, Morachan; Gangadharan, Saisundarakrishnan; Ganesh, Madhu

    The objective of this paper is to introduce the notion of fractional derivatives in the energy equations and to study the chaotic nature of the temperature distribution in a heat exchanger with variation of temperature dependent transport properties. The governing fractional partial differential equations are transformed to a set of recurrence relations using fractional differential transform method and solved using inverse transform. The approximate analytical solution obtained by the proposed method has good agreement with the existing results.

  11. Temperature distributions in boreholes of a vertical ground-coupled heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    Esen, Hikmet [Department of Mechanical Education, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey); Inalli, Mustafa [Department of Mechanical Engineering, Faculty of Engineering, Firat University, 23279 Elazig (Turkey); Esen, Yuksel [Department of Construction Education, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey)

    2009-12-15

    The objective of this study is to show the temperature distribution development in the borehole of the ground-coupled heat pump systems (GCHPs) with time. The time interval for the study is 48 h. The vertical GCHP system using R-22 as refrigerant has a three single U-tube ground heat exchanger (GHE) made of polyethylene pipe with a 40 mm outside diameter. The GHE was placed in a vertical borehole (VB) with 30 (VB1), 60 (VB2) and 90 (VB3) m depths and 150 mm diameters. The experimental results were obtained in cooling and heating seasons of 2006-2007. A two-dimensional finite element model (FEM) was developed to simulate temperature distribution development in the soil surrounding the GHEs of GCHPs operating in the cooling and the heating modes. The finite element modelling of the GCHP system was performed using the ANSYS code. The FEM incorporated pipes, the grout and the surrounding formation. From the cases studied, this approach appears to be the most promising for estimation the temperature distribution response of GHEs to thermal loading. (author)

  12. SUPERPOSITION OF STOCHASTIC PROCESSES AND THE RESULTING PARTICLE DISTRIBUTIONS

    International Nuclear Information System (INIS)

    Schwadron, N. A.; Dayeh, M. A.; Desai, M.; Fahr, H.; Jokipii, J. R.; Lee, M. A.

    2010-01-01

    Many observations of suprathermal and energetic particles in the solar wind and the inner heliosheath show that distribution functions scale approximately with the inverse of particle speed (v) to the fifth power. Although there are exceptions to this behavior, there is a growing need to understand why this type of distribution function appears so frequently. This paper develops the concept that a superposition of exponential and Gaussian distributions with different characteristic speeds and temperatures show power-law tails. The particular type of distribution function, f ∝ v -5 , appears in a number of different ways: (1) a series of Poisson-like processes where entropy is maximized with the rates of individual processes inversely proportional to the characteristic exponential speed, (2) a series of Gaussian distributions where the entropy is maximized with the rates of individual processes inversely proportional to temperature and the density of individual Gaussian distributions proportional to temperature, and (3) a series of different diffusively accelerated energetic particle spectra with individual spectra derived from observations (1997-2002) of a multiplicity of different shocks. Thus, we develop a proof-of-concept for the superposition of stochastic processes that give rise to power-law distribution functions.

  13. Remote Sensing of Energy Distribution Characteristics over the Tibet

    Science.gov (United States)

    Shi, J.; Husi, L.; Wang, T.

    2017-12-01

    The overall objective of our study is to quantify the spatiotemporal characteristics and changes of typical factors dominating water and energy cycles in the Tibet region. Especially, we focus on variables of clouds optical & microphysical parameters, surface shortwave and longwave radiation. Clouds play a key role in the Tibetan region's water and energy cycles. They seriously impact the precipitation, temperature and surface energy distribution. Considering that proper cloud products with relatively higher spatial and temporal sampling and with satisfactory accuracy are serious lacking in the Tibet region, except cloud optical thickness, cloud effective radius and liquid/ice water content, the cloud coverage dynamics at hourly scales also analyzed jointly based on measurements of Himawari-8, and MODIS. Surface radiation, as an important energy source in perturbating the Tibet's evapotranspiration, snow and glacier melting, is a controlling factor in energy balance in the Tibet region. All currently available radiation products in this area are not suitable for regional scale study of water and energy exchange and snow/glacier melting due to their coarse resolution and low accuracies because of cloud and topography. A strategy for deriving land surface upward and downward radiation by fusing optical and microwave remote sensing data is proposed. At the same time, the big topographic effect on the surface radiation are also modelled and analyzed over the Tibet region.

  14. Influence of snow cover distribution on soil temperature and nutrient dynamics in alpine pedoenvironments

    Directory of Open Access Journals (Sweden)

    Ermanno Zanini

    Full Text Available In Alpine sites snow is present on the ground from six to eight months per year in relation to elevation and exposure. Water is therefore immobilized into the solid state for the greater part of the winter season and released to the ground in a short period during spring snowmelt. In these areas, snow distribution exercises a fundamental role in influencing soil temperature and nutrient dynamics, in particular of nitrogen, with great consequences on plant nutrition. The dormant vegetation period, the low temperatures and the persistent snow cover suggest that soil biological activity is only concentrated during summer. As a matter of fact, soils covered with a consistent snow cover are isolated from the air temperature and can not freeze during winter. A snowpack of sufficient thickness, accumulated early in winter, insulates the ground from the surrounding atmosphere maintaining soil temperature closed to 0 °C during the whole winter season. The elevation of the snow line and the shorter permanence of snow on the ground, as a result of global warming (IPCC, 1996, 2001, might reduce the insulation effect of the snowpack, exposing soils of the mountain belt to lower temperatures and to a greater frequency of freeze/thaw cycles, which might alter organic matter dynamics and soil nutrient availability. Such thermal stresses may determine the lysis of microbial cells and the consequent increase of nitrogen and carbon mineralization by the survived microorganisms. Moreover, the freeze/thaw cycles can determine the exposure of exchange surfaces not available before, with release of organic matter of non-microbial origin, which may become available to surviving microorganisms for respiration. The reduced or absent microbial immobilization may cause the accumulation of remarkable amounts of inorganic nitrogen in soil, potentially leachable during spring snowmelt, when plants have not still started the growing season. Changes of snow distribution in

  15. Temperature dependence of working characteristics of piezoelectric sensors based on polyvinylidene fluoride

    Directory of Open Access Journals (Sweden)

    Revenyuk T. A.

    2011-04-01

    Full Text Available It has been found that the piezoelectric sensors produced on the basis of electrified films of polyvinylidene fluoride (PVDF work reliably in the temperature range from –20°C to +80°C. At the operating temperature of 80°C d33 piezocoefficient decreases by 2% during two years that is permissible. At higher temperatures irreversible reduction of the piezocoefficient was observed. The lowest temperature of the working range is close to the glass transition temperature of the amorphous phase of PVDF. Annealing of the films at 80°C ensures stabile characteristics of the sensors within a few years.

  16. Global Distributions of Temperature Variances At Different Stratospheric Altitudes From Gps/met Data

    Science.gov (United States)

    Gavrilov, N. M.; Karpova, N. V.; Jacobi, Ch.

    The GPS/MET measurements at altitudes 5 - 35 km are used to obtain global distribu- tions of small-scale temperature variances at different stratospheric altitudes. Individ- ual temperature profiles are smoothed using second order polynomial approximations in 5 - 7 km thick layers centered at 10, 20 and 30 km. Temperature inclinations from the averaged values and their variances obtained for each profile are averaged for each month of year during the GPS/MET experiment. Global distributions of temperature variances have inhomogeneous structure. Locations and latitude distributions of the maxima and minima of the variances depend on altitudes and season. One of the rea- sons for the small-scale temperature perturbations in the stratosphere could be internal gravity waves (IGWs). Some assumptions are made about peculiarities of IGW gener- ation and propagation in the tropo-stratosphere based on the results of GPS/MET data analysis.

  17. Influence of temperature on the spectral characteristics of semiconductor lasers in the visible range

    Science.gov (United States)

    Adamov, A. A.; Baranov, M. S.; Khramov, V. N.

    2018-04-01

    The results of studies on the effect of temperature on the output spectral characteristics of continuous semiconductor lasers of the visible range are presented. The paper presents the results of studying the spectral-optical radiation parameters of semiconductor lasers, their coherence lengths, and the dependence of the position of the spectral peak of the wavelength on temperature. This is necessary for the selection of the most optimal laser in order to use it for medical ophthalmologic diagnosis. The experiment was carried out using semiconductor laser modules based on a laser diode. The spectra were recorded by using a two-channel automated spectral complex based on the MDR-23 monochromator. Spectral dependences on the temperature of semiconductor lasers are obtained, in the range from 300 to 370 K. The possibility of determining the internal damage to the stabilization of laser modules without opening the case is shown, but only with the use of their spectral characteristics. The obtained data allow taking into account temperature characteristics and further optimization of parameters of such lasers when used in medical practice, in particular, in ophthalmologic diagnostics.

  18. Fuel temperature characteristics of the 37-element and CANFLEX fuel bundle

    International Nuclear Information System (INIS)

    Bae, Jun Ho; Rho, Gyu Hong; Park, Joo Hwan

    2009-10-01

    This report describes the fuel temperature characteristics of CANFLEX fuel bundles and 37-element fuel bundles for a different burnup of fuel. The program was consisted for seeking the fuel temperature of fuel bundles of CANFLEX fuel bundles and 37-element fuel bundles by using the method in NUCIRC. Fuel temperature has an increasing pattern with the burnup of fuel for CANFLEX fuel bundles and 37-element fuel bundles. For all the case of burnup, the fuel temperature of CANFLEX fuel bundles has a lower value than that of 37-element fuel bundles. Especially, for the high power channel, the CANFLEX fuel bundles show a lower fuel temperature as much as about 75 degree, and the core averaged fuel temperature has a lower fuel temperature of about 50 degree than that of 37-element fuel bundles. The lower fuel temperature of CANFLEX fuel bundles is expected to enhance the safety by reducing the fuel temperature coefficient. Finally, for each burnup of CANFLEX fuel bundles and 37-element fuel bundles, the equation was present for predicting the fuel temperature of a bundle in terms of a coolant temperature and bundle power

  19. Sensory characteristics of meat cooked for prolonged times at low temperature

    DEFF Research Database (Denmark)

    Christensen, Line Bach; Gunvig, Annemarie; Tørngren, Mari Ann

    2012-01-01

    species, and cooking loss increased with increasing temperature. A done appearance was developed with increasing heating time at 58 °C in pork and beef, while in chicken the done appearance was only affected by temperature. Flavor attributes were less affected by the LTLT treatment for all species......The present study evaluated the sensory characteristics of low temperature long time (LTLT) treated Semitendinosus from pork and beef and Pectoralis profundus from chicken. Semitendinosus and Pectoralis profundus muscles were heat treated at 53°C and 58°C for Tc + 6 h, Tc + 17 h, and Tc + 30 h...... (only Semitendinosus from pork and beef). Tc was the time for the samples to equalize with the temperature in the water bath. Tenderness increased with increasing heating temperature and time in pork and beef, but not in chicken. Juiciness decreased with increasing heating temperature and time in all...

  20. Temperature-dependent residual shear strength characteristics of smectite-rich landslide soils

    Science.gov (United States)

    Shibasaki, Tatsuya; Matsuura, Sumio; Okamoto, Takashi

    2015-04-01

    behaviors were also recognized during cooling-event tests. Shear stress fluctuations, which were obtained by 1 Hz data sampling, showed that shear behavior characteristically changed in response to temperature conditions. Stick-slip behavior prevailed under room temperature conditions, whereas shear behavior gradually changed into stable sliding behavior as temperature decreased. SEM (Scanning Electric Microscope) observation on shear surfaces indicated that silt- and sand-size asperities in the vicinity of the shear surface influence the occurrence of stick-slip behavior. It is also characteristically noted that rod-shaped smectitic clays, here called "roll", developed on shear surfaces and are arrayed densely perpendicular to the shearing direction in a micrometer scale. We assume that these rolls are probably rotating slowly within shear zone and acting as a lubricant which affects the temperature-dependent frictional properties of the shearing plane. These experimental results show that residual strength characteristics of smectite-rich soils are sensitive to temperature conditions. Our findings imply that if slip surface soils contain a high fraction of smectite, a decrease in ground temperature can lead to lowered shear resistance of the slip surface and triggering of slow landslide movement.

  1. Temperature and shear rate characteristics of electrorheological gel applied to a clutch

    International Nuclear Information System (INIS)

    Koyanagi, K; Takata, Y; Motoyoshi, T; Oshima, T; Kakinuma, Y; Anzai, H; Sakurai, K

    2013-01-01

    This investigation reports the physical characteristics of electrorheological (ER) gels, which are a type of functional material having controlled surface friction. We previously developed slip clutches using ER gels sandwiched between electrodes, and verified their responses and controllability. We newly report the temperature and shear rate characteristics of ER gel in this study because the input and output electrodes of the clutch continuously slip past each other. While the temperature of ER gels increased when energized, the shear stress hardly changed. Instead, wearing and adaptation to the electrode affect the property. The shear rate hardly affected the shear stress in the high-shear-rate region. Conversely, the shear stress depended on the shear rate in the lower region.

  2. Current, voltage and temperature distribution modeling of light-emitting diodes based on electrical and thermal circuit analysis

    International Nuclear Information System (INIS)

    Yun, J; Shim, J-I; Shin, D-S

    2013-01-01

    We demonstrate a modeling method based on the three-dimensional electrical and thermal circuit analysis to extract current, voltage and temperature distributions of light-emitting diodes (LEDs). In our model, the electrical circuit analysis is performed first to extract the current and voltage distributions in the LED. Utilizing the result obtained from the electrical circuit analysis as distributed heat sources, the thermal circuit is set up by using the duality between Fourier's law and Ohm's law. From the analysis of the thermal circuit, the temperature distribution at each epitaxial film is successfully obtained. Comparisons of experimental and simulation results are made by employing an InGaN/GaN multiple-quantum-well blue LED. Validity of the electrical circuit analysis is confirmed by comparing the light distribution at the surface. Since the temperature distribution at each epitaxial film cannot be obtained experimentally, the apparent temperature distribution is compared at the surface of the LED chip. Also, experimentally obtained average junction temperature is compared with the value calculated from the modeling, yielding a very good agreement. The analysis method based on the circuit modeling has an advantage of taking distributed heat sources as inputs, which is essential for high-power devices with significant self-heating. (paper)

  3. Study on effects of mixing vane grids on coolant temperature distribution by subchannel analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mao, H.; Yang, B.W.; Han, B. [Xi' an Jiaotong Univ., Shaanxi (China). Science and Technology Center for Advanced Nuclear Fuel Research

    2016-07-15

    Mixing vane grids (MVG) have great influence on coolant temperature field in the rod bundle. The MVG could enhance convective heat transfer between the fuel rod wall and the coolant, and promote inter-subchannel mixing at the same time. For the influence of the MVG on convective heat transfer enhancement, many experiments have been done and several correlations have been developed based on the experimental data. However, inter-subchannel mixing promotion caused by the MVG is not well estimated in subchannel analysis because the information of mixing vanes is totally missing in most subchannel codes. This paper analyzes the influence of mixing vanes on coolant temperature distribution using the improved MVG model in subchannel analysis. The coolant temperature distributions with the MVG are analyzed, and the results show that mixing vanes lead to a more uniform temperature distribution. The performances of split vane grids under different power conditions are evaluated. The results are compared with those of spacer grids without mixing vanes and some conclusions are obtained.

  4. Study on effects of mixing vane grids on coolant temperature distribution by subchannel analysis

    International Nuclear Information System (INIS)

    Mao, H.; Yang, B.W.; Han, B.

    2016-01-01

    Mixing vane grids (MVG) have great influence on coolant temperature field in the rod bundle. The MVG could enhance convective heat transfer between the fuel rod wall and the coolant, and promote inter-subchannel mixing at the same time. For the influence of the MVG on convective heat transfer enhancement, many experiments have been done and several correlations have been developed based on the experimental data. However, inter-subchannel mixing promotion caused by the MVG is not well estimated in subchannel analysis because the information of mixing vanes is totally missing in most subchannel codes. This paper analyzes the influence of mixing vanes on coolant temperature distribution using the improved MVG model in subchannel analysis. The coolant temperature distributions with the MVG are analyzed, and the results show that mixing vanes lead to a more uniform temperature distribution. The performances of split vane grids under different power conditions are evaluated. The results are compared with those of spacer grids without mixing vanes and some conclusions are obtained.

  5. Hybrid shared/distributed parallelism for 3D characteristics transport solvers

    International Nuclear Information System (INIS)

    Dahmani, M.; Roy, R.

    2005-01-01

    In this paper, we will present a new hybrid parallel model for solving large-scale 3-dimensional neutron transport problems used in nuclear reactor simulations. Large heterogeneous reactor problems, like the ones that occurs when simulating Candu cores, have remained computationally intensive and impractical for routine applications on single-node or even vector computers. Based on the characteristics method, this new model is designed to solve the transport equation after distributing the calculation load on a network of shared memory multi-processors. The tracks are either generated on the fly at each characteristics sweep or stored in sequential files. The load balancing is taken into account by estimating the calculation load of tracks and by distributing batches of uniform load on each node of the network. Moreover, the communication overhead can be predicted after benchmarking the latency and bandwidth using appropriate network test suite. These models are useful for predicting the performance of the parallel applications and to analyze the scalability of the parallel systems. (authors)

  6. Temperature distribution in a uniformly moving medium

    International Nuclear Information System (INIS)

    Mitchell, Joseph D; Petrov, Nikola P

    2009-01-01

    We apply several physical ideas to determine the steady temperature distribution in a medium moving with uniform velocity between two infinite parallel plates. We compute it in the coordinate frame moving with the medium by integration over the 'past' to account for the influence of an infinite set of instantaneous point sources of heat in past moments as seen by an observer moving with the medium. The boundary heat flux is simulated by appropriately distributed point heat sources on the inner side of an adiabatically insulating boundary. We make an extensive use of the Green functions with an emphasis on their physical meaning. The methodology used in this paper is of great pedagogical value as it offers an opportunity for students to see the connection between powerful mathematical techniques and their physical interpretation in an intuitively clear physical problem. We suggest several problems and a challenging project that can be easily incorporated in undergraduate or graduate courses

  7. Calculation of the fuel temperature coefficient of reactivity considering non-uniform radial temperature distribution in the fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Pazirandeh, Ali [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Science and Research Branch; Hooshyar Mobaraki, Almas

    2017-07-15

    The safe operation of a reactor is based on feedback models. In this paper we attempted to discuss the influence of a non-uniform radial temperature distribution on the fuel rod temperature coefficient of reactivity. The paper demonstrates that the neutron properties of a reactor core is based on effective temperature of the fuel to obtain the correct fuel temperature feedback. The value of volume-averaged temperature being used in the calculations of neutron physics with feedbacks would result in underestimating the probable event. In the calculation it is necessary to use the effective temperature of the fuel in order to provide correct accounting of the fuel temperature feedback. Fuel temperature changes in different zones of the core and consequently reactivity coefficient change are an important parameter for analysis of transient conditions. The restricting factor that compensates the inserted reactivity is the temperature reactivity coefficient and effective delayed neutron fraction.

  8. Juvenile Penaeid Shrimp Density, Spatial Distribution and Size ...

    African Journals Online (AJOL)

    The effects of habitat characteristics (mangrove creek, sandflat, mudflat and seagrass meadow) water salinity, temperature, and depth on the density, spatial distribution and size distribution of juveniles of five commercially important penaied shrimp species (Metapenaus monoceros, M. stebbingi, Fenneropenaeus indicus, ...

  9. The effect of wall temperature distribution on streaks in compressible turbulent boundary layer

    Science.gov (United States)

    Zhang, Zhao; Tao, Yang; Xiong, Neng; Qian, Fengxue

    2018-05-01

    The thermal boundary condition at wall is very important for the compressible flow due to the coupling of the energy equation, and a lot of research works about it were carried out in past decades. In most of these works, the wall was assumed as adiabatic or uniform isothermal surface; the flow over a thermal wall with some special temperature distribution was seldom studied. Lagha studied the effect of uniform isothermal wall on the streaks, and pointed out that higher the wall temperature is, the longer the streak (POF, 2011, 23, 015106). So, we designed streamwise stripes of wall temperature distribution on the compressible turbulent boundary layer at Mach 3.0 to learn the effect on the streaks by means of direct numerical simulation in this paper. The mean wall temperature is equal to the adiabatic case approximately, and the width of the temperature stripes is in the same order as the width of the streaks. The streak patterns in near-wall region with different temperature stripes are shown in the paper. Moreover, we find that there is a reduction of friction velocity with the wall temperature stripes when compared with the adiabatic case.

  10. Simulating the temperature noise in fast reactor fuel assemblies

    International Nuclear Information System (INIS)

    Kebadze, B.V.; Pykhtina, T.V.; Tarasko, M.Z.

    1987-01-01

    Characteristics of temperature noise at various modes of coolant flow in fast reactor fuel assemblies (FA) and for different points of sensor installation are investigated. Stationary mode of coolant flow and mode with a partial overlapping of FA through cross section, resulting in local temperature increase and sodium boiling, are considered. Numerical simulation permits to evaluate time characteristicsof temperature noise and to formulate requirements for dynamic characteristics of the sensors, and also to clarify the dependence of coolant distribution parameters on the sensor location and peculiarities of stationary temperature profile

  11. Simple method for highlighting the temperature distribution into a liquid sample heated by microwave power field

    International Nuclear Information System (INIS)

    Surducan, V.; Surducan, E.; Dadarlat, D.

    2013-01-01

    Microwave induced heating is widely used in medical treatments, scientific and industrial applications. The temperature field inside a microwave heated sample is often inhomogenous, therefore multiple temperature sensors are required for an accurate result. Nowadays, non-contact (Infra Red thermography or microwave radiometry) or direct contact temperature measurement methods (expensive and sophisticated fiber optic temperature sensors transparent to microwave radiation) are mainly used. IR thermography gives only the surface temperature and can not be used for measuring temperature distributions in cross sections of a sample. In this paper we present a very simple experimental method for temperature distribution highlighting inside a cross section of a liquid sample, heated by a microwave radiation through a coaxial applicator. The method proposed is able to offer qualitative information about the heating distribution, using a temperature sensitive liquid crystal sheet. Inhomogeneities as smaller as 1°-2°C produced by the symmetry irregularities of the microwave applicator can be easily detected by visual inspection or by computer assisted color to temperature conversion. Therefore, the microwave applicator is tuned and verified with described method until the temperature inhomogeneities are solved

  12. Influence of patient mispositioning on SAR distribution and simulated temperature in regional deep hyperthermia

    Science.gov (United States)

    Aklan, Bassim; Gierse, Pia; Hartmann, Josefin; Ott, Oliver J.; Fietkau, Rainer; Bert, Christoph

    2017-06-01

    Patient positioning plays an important role in regional deep hyperthermia to obtain a successful hyperthermia treatment. In this study, the influence of possible patient mispositioning was systematically assessed on specific absorption rate (SAR) and temperature distribution. With a finite difference time domain approach, the SAR and temperature distributions were predicted for six patients at 312 positions. Patient displacements and rotations as well as the combination of both were considered inside the Sigma-Eye applicator. Position sensitivity is assessed for hyperthermia treatment planning -guided steering, which relies on model-based optimization of the SAR and temperature distribution. The evaluation of the patient mispositioning was done with and without optimization. The evaluation without optimization was made by creating a treatment plan for the patient reference position in the center of the applicator and applied for all other positions, while the evaluation with optimization was based on creating an individual plan for each position. The parameter T90 was used for the temperature evaluation, which was defined as the temperature that covers 90% of the gross tumor volume (GTV). Furthermore, the hotspot tumor quotient (HTQ) was used as a goal function to assess the quality of the SAR and temperature distribution. The T90 was shown considerably dependent on the position within the applicator. Without optimization, the T90 was clearly decreased below 40 °C by patient shifts and the combination of shifts and rotations. However, the application of optimization for each positon led to an increase of T90 in the GTV. Position inaccuracies of less than 1 cm in the X-and Y-directions and 2 cm in the Z-direction, resulted in an increase of HTQ of less than 5%, which does not significantly affect the SAR and temperature distribution. Current positioning precision is sufficient in the X (right-left)-direction, but position accuracy is required in the Y-and Z-directions.

  13. Blocking temperature distribution in implanted Co-Ni nanoparticles obtained by magneto-optical measurements

    Energy Technology Data Exchange (ETDEWEB)

    D' Orazio, F.; Lucari, F. E-mail: franco.lucari@aquila.infn.it; Melchiorri, M.; Julian Fernandez, C. de; Mattei, G.; Mazzoldi, P.; Sangregorio, C.; Gatteschi, D.; Fiorani, D

    2003-05-01

    Three samples of Co-Ni alloy nanoparticles with different compositions were prepared by sequential ion implantation in silica slides. Transmission electron microscopy (TEM) showed the presence of spherical nanoparticles dispersed in the matrix. Magneto-optical Kerr effect analysis identified two magnetic components attributed to superparamagnetic particles in unblocked and blocked states, respectively. Magnetic field loops were measured as a function of temperature. Blocking temperature distributions were obtained; and their comparison with the size distributions derived from TEM provided the average magnetic anisotropy of the particles.

  14. Blocking temperature distribution in implanted Co-Ni nanoparticles obtained by magneto-optical measurements

    International Nuclear Information System (INIS)

    D'Orazio, F.; Lucari, F.; Melchiorri, M.; Julian Fernandez, C. de; Mattei, G.; Mazzoldi, P.; Sangregorio, C.; Gatteschi, D.; Fiorani, D.

    2003-01-01

    Three samples of Co-Ni alloy nanoparticles with different compositions were prepared by sequential ion implantation in silica slides. Transmission electron microscopy (TEM) showed the presence of spherical nanoparticles dispersed in the matrix. Magneto-optical Kerr effect analysis identified two magnetic components attributed to superparamagnetic particles in unblocked and blocked states, respectively. Magnetic field loops were measured as a function of temperature. Blocking temperature distributions were obtained; and their comparison with the size distributions derived from TEM provided the average magnetic anisotropy of the particles

  15. High-Temperature Characteristics of an InAsSb/AlAsSb n+Bn Detector

    Science.gov (United States)

    Ting, David Z.; Soibel, Alexander; Höglund, Linda; Hill, Cory J.; Keo, Sam A.; Fisher, Anita; Gunapala, Sarath D.

    2016-09-01

    The high-temperature characteristics of a mid-wavelength infrared (MWIR) detector based on the Maimon-Wicks InAsSb/AlAsSb nBn architecture was analyzed. The dark current characteristics are examined in reference to recent minority carrier lifetime results. The difference between the responsivity and absorption quantum efficiency (QE) at shorter wavelengths is clarified in terms of preferential absorption of higher-energy photons in the top contact layer, which cannot provide reverse-bias photo-response due to the AlAsSb electron blocking layer and strong recombination. Although the QE does not degrade when the operating temperature increases to 325 K, the turn-on bias becomes larger at higher temperatures. This behavior was originally attributed to the change in the valence band alignment between the absorber and top contact layers caused by the shift in Fermi level with temperature. In this work, we demonstrated the inadequacy of the original description, and offer a more likely explanation based on temperature-dependent band-bending effects.

  16. Effects of the Environment Temperature on the Characteristic of Parallax Ping Ultrasonic Sensor

    Directory of Open Access Journals (Sweden)

    Tony Stănescu

    2014-12-01

    Full Text Available This paper presents some characteristics of the Parallax PING ultrasonic sensor and the way the environmental temperature affects them. The used sensor functions at 40 KHz. There is also presented the experimental test setup and the authors’ conclusions on the functioning of the sensor at various temperatures.

  17. Effects of drive current rise-time and initial load density distribution on Z-pinch characteristics

    Institute of Scientific and Technical Information of China (English)

    Duan Yao-Yong; Guo Yong-Hui; Wang Wen-Sheng; Qiu Ai-Ci

    2005-01-01

    A two-dimensional, three-temperature radiation magneto-hydrodynamics model is applied to the investigation of evolutional trends in x-ray radiation power, energy, peak plasma temperature and density as functions of drive current rise-time and initial load density distribution by using the typical experimental parameters of tungsten wire-array Z-pinch on the Qiangguang-Ⅰ generator. The numerical results show that as the drive current rise-time is shortened, x-ray radiation peak power, energy, peak plasma density and peak ion temperature increase approximately linearly, but among them the x-ray radiation peak power increases more quickly. As the initial plasma density distribution in the radial direction becomes gradually flattened, the peak radiation power and the peak ion-temperature almost exponentially increase, while the radiation energy and the peak plasma density change only a little. The main effect of shortening drive current rise-time is to enhance compression of plasma, and the effect of flattening initial load density distribution in the radial direction is to raise the plasma temperature. Both of the approaches elevate the x-ray peak radiation power.

  18. Influence of current and temperature on discharge characteristics of electrochemical nickel−cadmium system

    Directory of Open Access Journals (Sweden)

    Todorović Andreja

    2010-01-01

    Full Text Available The paper elaborates determination of characteristic values in the discharging process of non-hermetic nickel-cadmium galvanic battery with nominal voltage Un = 60 V and nominal capacity qn = C5 = 190 Ah and its dependence from current and temperature. Study has been performed with the set of experimental metering of voltages, electromotive force, current from discharge time range and electromotive force in steady state regime before and after battery charging. Electromotive force characteristics are obtained by using the Nernst’s equation, while the least square method was used to determine the average values of internal electrical resistivity, power losses and efficiency level. These results were used in the approximate exponential functions to determine the range dependence of the efficiency level from the internal electrical resistance of discharge current in reliance from the temperature range. Obtained results show that, in accordance to the given voltage variation of 10% Un, this type of battery holds maximal full load current of one hour capacity at the temperature of 25°C and maximal full load current of two hours capacity at the temperature of −30°C. The methodology used in the case study covers determination of the electromotive force in time range based on the metered results of values during complete battery fullness and emptiness with prior determination of equilibrium constants of galvanic battery reaction through method suggested by the author of this paper. Further process, using the electromotive force values obtained through the aforementioned process, the metered current, and approximate polynomial function of the nominal discharge voltage characteristic determines range of battery internal electric resistance from time, followed by the selection of discharge cases with average values for: voltage, electromotive force, internal electrical resistance, available and utilized power, power losses, and battery efficiency

  19. The nucleon-nucleon correlations and the integral characteristics of the potential distributions in nuclei

    International Nuclear Information System (INIS)

    Knyaz'kov, O.M.; Kukhtina, I.N.

    1989-01-01

    The integral characteristics of the potential distribution in nuclei, namely the volume integrals, moments and mean square radii are studied in the framework of the semimicroscopic approach to the interaction of low energy nucleons with nuclei on the base of the exchange nucleon-nucleon correlations and the density dependence of effective forces. The ratio of the normalized multipole moments of potential and matter distributions is investigated. The energy dependence of the integral characteristics is analyzed. 15 refs.; 2 tabs

  20. DETERMINATION ANALYSIS OF TEMPERATURE REGIMES, FUNCTIONAL CHARACTERISTICS AND SLIDING CURVES OF A HYDRODYNAMIC CLUTCH

    Directory of Open Access Journals (Sweden)

    Božidar V Krstić

    2010-01-01

    Full Text Available Analysis of output quality of power transmitters is possible in position when characteristics are determined earlier. This is the reason why we focused on determination of these characteristics for a concrete power hydro-transmitter. This means that the investigation task primarily consisted of determination of functional characteristics, defining of the sliding curves and temperature regimes of a concrete hydrodynamic clutch. Results of velocity and pressure field investigations in the working space of this clutch, obtained by use of the same test setup, are the basis for determination and analysis of the functional characteristics, sliding curves and temperature regimes. In this work we also analyzed function of the hydrodynamic transmitter in assembly with an internal combustion engine, as well as a process of acceleration and deceleration of a vehicle with this assembly in it.

  1. Influence of convective cooling on a disc brake temperature distribution during repetitive braking

    International Nuclear Information System (INIS)

    Adamowicz, Adam; Grzes, Piotr

    2011-01-01

    The purpose of this study is to evaluate an impact of convective mode of heat transfer on the thermal behaviour of a disc brake system during repetitive braking process with the constant velocity using fully three-dimensional finite element model. The transient thermal analysis to determine the temperature distributions on the contact surface of a disc brake is performed. The issue of non-uniform frictional heating effects of mutual slipping of a disc over fixed pads is tested using FE models with the several possible to occur in automotive application heat transfer coefficients. To have a possibility of comparison of the temperature distributions of a disc during cyclic brake application, the energy transformed during time of every analyzed case of braking process and the subsequent release periods was equal. The time-stepping procedure is employed to develop moving heat source as the boundary heat flux acting interchangeably with the convective cooling terms. The difficulties accounted for the accurate simulation of heating during spin of the rotor is omitted by the use of the code, which enable shaping curves responsible for the thermal flux entering the disc at subsequent moments of time. The resulting evolution of temperature on the friction surface reveals a wide range of variations, distinguishing periods of heating and cooling states. It has been established, that during single braking the convective cooling has insignificant influence on the temperature distributions of a disc brake, consequently is not able to prevent overheat problem. However the brake release period after the braking operation, when the velocity of the vehicle remains on the same level, results in considerable decrease of temperature. - Highlights: → Convection does not allow to lower temperature of disc during single braking process. → Maximal temperature of disc decreases with number of brake applications. → Temperature at the end of braking increases with number of brake

  2. Temperature distribution induced by electron beam in a closed cavity

    International Nuclear Information System (INIS)

    Molhem, A.G.; Soulayman, S.Sh.

    2004-01-01

    In order to investigate heat transfer phenomena induced by EB in a closed cavity an experimental arrangement, which allows generating and focusing an electron beam in to closed cavity within 1 mm in diameter and measuring temperature all over any perpendicular section to the EB, is used for this purpose. Experimental data show that the radial distribution of current density and temperature is normal with pressure and location dependent parameters. Moreover, there is two distinguishable regions in the EB: one is central while the other surrounds the first one. (orig.)

  3. Dynamics and characteristics of soil temperature and moisture of active layer in central Tibetan Plateau

    Science.gov (United States)

    Zhao, L.; Hu, G.; Wu, X.; Tian, L.

    2017-12-01

    Research on the hydrothermal properties of active layer during the thawing and freezing processes was considered as a key question to revealing the heat and moisture exchanges between permafrost and atmosphere. The characteristics of freezing and thawing processes at Tanggula (TGL) site in permafrost regions on the Tibetan Plateau, the results revealed that the depth of daily soil temperature transmission was about 40 cm shallower during thawing period than that during the freezing period. Soil warming process at the depth above 140 cm was slower than the cooling process, whereas they were close below 140 cm depth. Moreover, the hydro-thermal properties differed significantly among different stages. Precipitation caused an obviously increase in soil moisture at 0-20 cm depth. The vertical distribution of soil moisture could be divided into two main zones: less than 12% in the freeze state and greater than 12% in the thaw state. In addition, coupling of moisture and heat during the freezing and thawing processes also showed that soil temperature decreased faster than soil moisture during the freezing process. At the freezing stage, soil moisture exhibited an exponential relationship with the absolute soil temperature. Energy consumed for water-ice conversion during the freezing process was 149.83 MJ/m2 and 141.22 MJ/m2 in 2011 and 2012, respectively, which was estimated by the soil moisture variation.

  4. Effect of process parameters on temperature distribution in twin-electrode TIG coupling arc

    Science.gov (United States)

    Zhang, Guangjun; Xiong, Jun; Gao, Hongming; Wu, Lin

    2012-10-01

    The twin-electrode TIG coupling arc is a new type of welding heat source, which is generated in a single welding torch that has two tungsten electrodes insulated from each other. This paper aims at determining the distribution of temperature for the coupling arc using the Fowler-Milne method under the assumption of local thermodynamic equilibrium. The influences of welding current, arc length, and distance between both electrode tips on temperature distribution of the coupling arc were analyzed. Based on the results, a better understanding of the twin-electrode TIG welding process was obtained.

  5. Fiber optic distributed temperature sensing for fire source localization

    Science.gov (United States)

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Sigrist, Markus W.; Li, Jun; Dong, Fengzhong

    2017-08-01

    A method for localizing a fire source based on a distributed temperature sensor system is proposed. Two sections of optical fibers were placed orthogonally to each other as the sensing elements. A tray of alcohol was lit to act as a fire outbreak in a cabinet with an uneven ceiling to simulate a real scene of fire. Experiments were carried out to demonstrate the feasibility of the method. Rather large fluctuations and systematic errors with respect to predicting the exact room coordinates of the fire source caused by the uneven ceiling were observed. Two mathematical methods (smoothing recorded temperature curves and finding temperature peak positions) to improve the prediction accuracy are presented, and the experimental results indicate that the fluctuation ranges and systematic errors are significantly reduced. The proposed scheme is simple and appears reliable enough to locate a fire source in large spaces.

  6. Assessment of antibiotic susceptibilities, genotypic characteristics ...

    African Journals Online (AJOL)

    Jane

    2011-09-28

    Sep 28, 2011 ... Staphylococcus aureus and Salmonella Typhimurium ... This study was designed to evaluate the antibiotic susceptibilities, genotypic characteristics and ..... Distribution of reference and virulence genes among antibiotic-sensitive S. aureus (SAS), .... environmental factors such as temperature, water activity,.

  7. Temperature distribution in target tumor tissue and photothermal tissue destruction during laser immunotherapy

    Science.gov (United States)

    Doughty, Austin; Hasanjee, Aamr; Pettitt, Alex; Silk, Kegan; Liu, Hong; Chen, Wei R.; Zhou, Feifan

    2016-03-01

    Laser Immunotherapy is a novel cancer treatment modality that has seen much success in treating many different types of cancer, both in animal studies and in clinical trials. The treatment consists of the synergistic interaction between photothermal laser irradiation and the local injection of an immunoadjuvant. As a result of the therapy, the host immune system launches a systemic antitumor response. The photothermal effect induced by the laser irradiation has multiple effects at different temperature elevations which are all required for optimal response. Therefore, determining the temperature distribution in the target tumor during the laser irradiation in laser immunotherapy is crucial to facilitate the treatment of cancers. To investigate the temperature distribution in the target tumor, female Wistar Furth rats were injected with metastatic mammary tumor cells and, upon sufficient tumor growth, underwent laser irradiation and were monitored using thermocouples connected to locally-inserted needle probes and infrared thermography. From the study, we determined that the maximum central tumor temperature was higher for tumors of less volume. Additionally, we determined that the temperature near the edge of the tumor as measured with a thermocouple had a strong correlation with the maximum temperature value in the infrared camera measurement.

  8. Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins

    OpenAIRE

    Mantzouki, Evanthia; Lürling, Miquel; Fastner, Jutta; de Senerpont Domis, Lisette; Wilk-Woźniak, Elżbieta; Koreivienė, Judita; Seelen, Laura; Teurlincx, Sven; Verstijnen, Yvon; Krztoń, Wojciech; Walusiak, Edward; Karosienė, Jūratė; Kasperovičienė, Jūratė; Savadova, Ksenija; Vitonytė, Irma

    2018-01-01

    Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and li...

  9. Temperature effects explain continental scale distribution of cyanobacterial toxins

    OpenAIRE

    Mantzouki, Evanthia; Lürling, Miquel; Fastner, Jutta; de Senerpont Domis, Lisette; Wilk-Woźniak, Elżbieta; Koreivienė, Judita; Seelen, Laura; Teurlincx, Sven; Verstijnen, Yvon; Krztoń, Wojciech; Walusiak, Edward; Karosienė, Jūratė; Kasperovičienė, Jūratė; Savadova, Ksenija; Vitonytė, Irma

    2018-01-01

    Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and li...

  10. Experimental study on the combustion characteristics of liquid fuel in the straight tubes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fei; Li, JunWei; Zhou, ZhaoQiu; Zhang, Xin; Wang, NingFei [Beijing Institute of Technology, Beijing (China). School of Aerospace Engineering

    2013-07-01

    This study investigates combustion characteristics of liquid hydrocarbon fuel (n-heptane, c7h16) under different operating conditions. In the paper we designed a burner consisting of a stainless steel capillary which is used to dump the fuel and a larger stainless steel tube (or quartz tube) used as a combustion chamber. The inner diameter (ID) of the capillary is 0.24 mm, the inner and external diameter of the larger tube is 4 and 6 mm, respectively. According to the experimental results, the combustion process reaches a stable status after about 100 s. Wall temperature distribution and combustion products are analyzed under conditions with different equivalence ratios, gas flow velocities and materials. As equivalence ratio (ER) whose range is in 0.56-1.08 increases, the wall temperature declines, and wall temperature gradient increases slightly. The range of gas flow velocity is in 0.6-1 m/s, the overall trend of wall temperature distribution is the second point from left boundary as a line, the wall temperature distribution of the four points in the right side increases with the flow velocity increasing, but the left point is rapidly declining. When the burner made of stainless steel, the wall temperature distribution varies slightly due to the larger thermal conductivity of stainless steel than that of quartz, which makes the heat transfer in stainless steel faster and the temperature distribution is more uniform. The thermodynamic calculation software is also used to study the compositions of combustion products. In a word, this structure of the burner shows poor combustion characteristics, we should change the structure and the experimental conditions to achieve better combustion characteristics in the future.

  11. Fragility of chalcogenide glass in relation to characteristic temperature T0/Tg

    Science.gov (United States)

    Shaker, A. M.; Shanker Rao, T.; Lilly Shanker Rao, T.; Venkataraman, K.

    2018-03-01

    The present study reports the mutual relationship between the fragility index m and the characteristic temperature T0/Tg. The fragility of the chalcogenide amorphous glass of Ge10Se50Te40 is calculated by utilizing glass transition temperature (Tg) measured by DSC (Differential Scanning Calorimetry) at different heating rates (β) in the range 5 to 20 K/min. Vogel-Fulcher-Tammann (VFT) equation is fitted to the data of Tg. In addition to the VFT method, three other methods are also used to evaluate m. The fragility index m of the Ge10Se50Te40 system showed the trend of decrease with increasing heating rate but remained stable around 22 for the heating rate 10 K/min. The value of m for the glass is near the lower limit (m ≈ 16) this indicates the alloy is a strong glass forming material in accordance of Angell’s interpretation of fragility. The calculated values of characteristic temperature T0/Tg is very close to 1 which also indicates that clearly the system is most fragile.

  12. Joint distribution of temperature and precipitation in the Mediterranean, using the Copula method

    Science.gov (United States)

    Lazoglou, Georgia; Anagnostopoulou, Christina

    2018-03-01

    This study analyses the temperature and precipitation dependence among stations in the Mediterranean. The first station group is located in the eastern Mediterranean (EM) and includes two stations, Athens and Thessaloniki, while the western (WM) one includes Malaga and Barcelona. The data was organized in two time periods, the hot-dry period and the cold-wet one, composed of 5 months, respectively. The analysis is based on a new statistical technique in climatology: the Copula method. Firstly, the calculation of the Kendall tau correlation index showed that temperatures among stations are dependant during both time periods whereas precipitation presents dependency only between the stations located in EM or WM and only during the cold-wet period. Accordingly, the marginal distributions were calculated for each studied station, as they are further used by the copula method. Finally, several copula families, both Archimedean and Elliptical, were tested in order to choose the most appropriate one to model the relation of the studied data sets. Consequently, this study achieves to model the dependence of the main climate parameters (temperature and precipitation) with the Copula method. The Frank copula was identified as the best family to describe the joint distribution of temperature, for the majority of station groups. For precipitation, the best copula families are BB1 and Survival Gumbel. Using the probability distribution diagrams, the probability of a combination of temperature and precipitation values between stations is estimated.

  13. Distribution Analysis of the Local Critical Temperature and Current Density in YBCO Coated Conductors using Low-temperature Scanning Laser and Hall Probe Microscopy

    International Nuclear Information System (INIS)

    Park, S. K.; Cho, B. R.; Park, H. Y.; Ri, H. C.

    2011-01-01

    Distribution of the local critical temperature and current density in YBCO coated conductors were analyzed using Low-temperature Scanning Laser and Hall Probe Microscopy (LTSLHPM). We prepared YBCO coated conductors of various bridge types to study the spatial distribution of the critical temperature and the current density in single and multi bridges. LTSLHPM system was modified for detailed linescan or two-dimensional scan both scanning laser and scanning Hall probe method simultaneously. We analyzed the local critical temperature of single and multi bridges from series of several linescans of scanning laser microscopy. We also investigated local current density and hysteresis curve of single bridge from experimental results of scanning Hall probe microscopy.

  14. Gravity distribution characteristics and their relationship with the distribution of earthquakes and tectonic units in the North–South seismic belt, China

    Directory of Open Access Journals (Sweden)

    Guiju Wu

    2015-05-01

    Full Text Available The North–South Seismic Belt (NSSB is a Chinese tectonic boundary with a very complex structure, showing a sharp change in several geophysical field characteristics. To study these characteristics and their relationship with the distribution of earthquakes and faults in the study area, we first analyze the spatial gravity anomaly to achieve the Bouguer gravity anomaly (EGM2008 BGA and the regional gravity survey Bouguer gravity anomaly. Next, we ascertain the Moho depth and crustal thickness of the study area using interface inversion with the control points derived from the seismic and magnetotelluric sounding profiles achieved in recent years. In this paper, we summarize the relief, trend, Moho gradient, and crustal nature, in addition to their relationship with the distribution of earthquakes and faults in the study area. The findings show that earthquakes with magnitudes greater than Ms7.0 are mainly distributed in the Moho Bouguer anomaly variation belt and faults. The results of the study are important for future research on tectonic characteristics, geological and geophysical surveys, and seismicity patterns.

  15. Fiber Bragg Grating Array as a Quasi Distributed Temperature Sensor for Furnace Boiler Applications

    Science.gov (United States)

    Reddy, P. Saidi; Prasad, R. L. N. Sai; Sengupta, D.; Shankar, M. Sai; Srimannarayana, K.; Kishore, P.; Rao, P. Vengal

    2011-10-01

    This paper presents the experimental work on distributed temperature sensing making use of Fiber Bragg grating (FBG) array sensor for possible applications in the monitoring of temperature profile in high temperature boilers. A special sensor has been designed for this purpose which consists of four FBGs (of wavelengths λB1 = 1547.28 nm, λB2 = 1555.72 nm, λB3 = 1550.84 nm, λB4 = 1545.92 nm) written in hydrogen loaded fiber in line with a spacing of 15 cm between them. All the FBGs are encapsulated inside a stainless steel tube for avoiding micro cracks using rigid probe technique. The spatial distribution of temperature profile inside a prototype boiler has been measured experimentally both in horizontal and vertical directions employing the above sensor and the results are presented.

  16. Temperature Distribution Simulation of a Polymer Bearing Basing on the Real Tribological Tests

    Directory of Open Access Journals (Sweden)

    Artur Król

    2015-09-01

    Full Text Available Polymer bearings are widely used due to dry-lubrication mechanism, low weight, corrosion resistance and free maintenance. They are applied in different tribological pairs, i.e. household appliances, mechatronics systems, medical devices, food machines and many more. However their use is limited by high coefficient of thermal expansion and softening at elevated temperature, especially when working outside recommended pv factors. The modification of bearing design to achieve better characteristics at more demanding conditions, requires full understanding of mechanical and thermal phenomena of bearing work. The first step was to observe a thermal behavior of polymer bearing under real test conditions (50, 100, 150 rpm and 350 and 700N until constant values were achieved, i.e. temperature and moment of friction. Subsequently collected data were used in a design of temperature distribution model. Thermal simulations of the polymer bearing were done using commercial software package ANSYS Fluent, which is based on finite volume method. All calculations were performed for 3D geometrical model that included polymer bearing, its housing, shaft and some volume of the surrounding air. The heat generation caused by friction forces was implemented by volumetric heat source. All three main heat transfer mechanism (conduction, convection and radiation were included in heat transfer calculations and the air flow around the bearing and adjacent parts was directly solved. The unknown parameters of the numerical model were adjusted by comparison of the results from computer calculations with the measured temperature rise. In the presented work the calculations were limited to steady state conditions only, but the model may be also used in transient analysis.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7342

  17. Extreme temperature events affecting the electricity distribution system of the metropolitan area of Buenos Aires (1971–2013)

    International Nuclear Information System (INIS)

    Santágata, Daniela M.; Castesana, Paula; Rössler, Cristina E.; Gómez, Darío R.

    2017-01-01

    We studied the role of cold waves and heat waves on major power outages in the metropolitan area of Buenos Aires. Impacts of events occurring in the tails of distributions were assessed estimating deviations of minimum temperature, maximum temperature and hourly electricity consumption with respect to statistically derived thresholds and using three sets of data: temperature observations (1911–2013); major power outages reported in a disaster database (1971–2013) and hourly electricity consumption (2006–2013). These deviations (exceedances) proved to be adequate indicators of the stress posed by extreme temperature events to the electricity distribution system leading to major blackouts. Based on these indicators, we found that the electricity distribution system was under similar stress during cold waves or heat waves, but it was much more vulnerable to heat waves (three blackouts under cold waves against 20 under heat waves between 2006 and 2013). For heat waves, the results of a binomial regression logistic model provided an adequate description of the probability of disastrous supply interruptions in terms of exceedances in extreme temperatures and electricity consumption stress. This approach may be of use for other cities wishing to evaluate the effects of extreme temperature events on the electricity distribution infrastructure. - Highlights: • The linkage between extreme temperatures and disastrous power outages is analyzed. • Exceedance in extreme temperature and electricity consumption are stress indicators. • Extreme temperatures pose moderate to extreme impacts to electricity distribution. • Electricity distribution is more vulnerable to heat waves than cold waves.

  18. Analysis of the temperature and stress distributions in ceramic window materials subjected to microwave heating

    International Nuclear Information System (INIS)

    Ferber, M.K.; Kimrey, H.D.; Becher, P.F.

    1983-07-01

    The temperature and stress and distributions generated in ceramic materials currently employed in microwave gyrotron tube windows were determined for a variety of operating conditions. Both edge- and face-cooled windows of either polycrystalline BeO or polycrystalline Al 2 O 3 were considered. The actual analysis involved three steps. First, a computer program was used to determine the electric field distribution within the window at a given power level and frequency (TE 02 wave propagation assumed). This program was capable of describing both the radial and axial dependence of the electric field. The effects of multiple internal reflections at the various dielectric interfaces were also accounted for. Secondly, the field distribution was used to derive an expression for the heat generated per unit volume per unit time within the window due to dieletric losses. A generalized heat conduction computer code was then used to compute the temperature distribution based on the heat generation function. Third, the stresses were determined from the temperature profiles using analytical expression or a finite-element computer program. Steady-state temperature and stress profiles were computed for the face-cooled and edge-cooled windows

  19. Numerical Simulation and Experimental Study on Temperature Distribution of Self-Lubricating Packing Rings in Reciprocating Compressors

    Directory of Open Access Journals (Sweden)

    Jia Xiaohan

    2016-01-01

    Full Text Available The nonuniform abrasion failure and high-temperature thermal failure of packing rings have a significant influence on compressor reliability, particularly that of oil-free compressors. In this study, a test rig was constructed to measure the dynamic temperature of packing rings under different operational conditions in an oil-free reciprocating compressor. The dynamic axial and radial temperature distributions of the packing rings were obtained using an innovative internal temperature testing device that kept the thermocouples and packing box relatively static during compressor operation. A three-dimensional heat transfer model was also developed to analyze the temperature distribution of the packing boxes, piston rod, and cylinder during such operation. Good agreement was observed between the simulation results and experimental data, which showed an average relative error of less than 2.35%. The results indicate that the pressure ratio exerts a significant effect on the axial temperature distribution and determines which packing ring reaches the maximum temperature. They also show the average temperature to rise with an increase in the rotational speed and to fall with an improvement in the external cooling conditions. Finally, the material of the packing rings was found to affect the temperature gradient from their inner to outer surface.

  20. Spatially Resolved Temperature and Water Vapor Concentration Distributions in Supersonic Combustion Facilities by TDLAT

    Science.gov (United States)

    Busa, K. M.; McDaniel J. C.; Diskin, G. S.; DePiro, M. J.; Capriotti, D. P.; Gaffney, R. L.

    2012-01-01

    Detailed knowledge of the internal structure of high-enthalpy flows can provide valuable insight to the performance of scramjet combustors. Tunable Diode Laser Absorption Spectroscopy (TDLAS) is often employed to measure temperature and species concentration. However, TDLAS is a path-integrated line-of-sight (LOS) measurement, and thus does not produce spatially resolved distributions. Tunable Diode Laser Absorption Tomography (TDLAT) is a non-intrusive measurement technique for determining two-dimensional spatially resolved distributions of temperature and species concentration in high enthalpy flows. TDLAT combines TDLAS with tomographic image reconstruction. More than 2500 separate line-of-sight TDLAS measurements are analyzed in order to produce highly resolved temperature and species concentration distributions. Measurements have been collected at the University of Virginia's Supersonic Combustion Facility (UVaSCF) as well as at the NASA Langley Direct-Connect Supersonic Combustion Test Facility (DCSCTF). Due to the UVaSCF s unique electrical heating and ability for vitiate addition, measurements collected at the UVaSCF are presented as a calibration of the technique. Measurements collected at the DCSCTF required significant modifications to system hardware and software designs due to its larger measurement area and shorter test duration. Tomographic temperature and water vapor concentration distributions are presented from experimentation on the UVaSCF operating at a high temperature non-reacting case for water vitiation level of 12%. Initial LOS measurements from the NASA Langley DCSCTF operating at an equivalence ratio of 0.5 are also presented. Results show the capability of TDLAT to adapt to several experimental setups and test parameters.

  1. Brillouin suppression in a fiber optical parametric amplifier by combining temperature distribution and phase modulation

    DEFF Research Database (Denmark)

    Lorenzen, Michael Rodas; Noordegraaf, Danny; Nielsen, Carsten Vandel

    2008-01-01

    We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation.......We demonstrate an increased gain in optical parametric amplier through suppression of stimulated Brillouin scattering by applying a temperature distribution along the fiber resulting in a reduction of the required phase modulation....

  2. Distribution characteristics of radon and its progeny in blind roadway with forced ventilation

    International Nuclear Information System (INIS)

    Ye Yongjun; Zhou Xinghuo; Li Xiangyang; Zhong Yongming; Liu Dong; Ding Dexin

    2012-01-01

    The blind roadway is not only the important workplaces, but also is important site of radon and its progeny generating and gathering, it is an important guiding significance for ventilation protection design to study distribution characteristics of radon and its progeny in blind roadway. Therefore, at first, the paper expounded the mathematical relationship between radon activity concentration with alpha potential concentration of radon progeny. Then, analyzed the sources of radon and its progeny, and established mathematical calculation model of Distribution characteristics of radon and its progeny in blind roadway with forced ventilation, respectively. Finally, using mathematical calculation models to analyze the influence law of multiple factors. (authors)

  3. Temperature effects on gametophyte life-history traits and geographic distribution of two cryptic kelp species.

    Directory of Open Access Journals (Sweden)

    L Valeria Oppliger

    Full Text Available A major determinant of the geographic distribution of a species is expected to be its physiological response to changing abiotic variables over its range. The range of a species often corresponds to the geographic extent of temperature regimes the organism can physiologically tolerate. Many species have very distinct life history stages that may exhibit different responses to environmental factors. In this study we emphasized the critical role of the haploid microscopic stage (gametophyte of the life cycle to explain the difference of edge distribution of two related kelp species. Lessonia nigrescens was recently identified as two cryptic species occurring in parapatry along the Chilean coast: one located north and the other south of a biogeographic boundary at latitude 29-30°S. Six life history traits from microscopic stages were identified and estimated under five treatments of temperature in eight locations distributed along the Chilean coast in order to (1 estimate the role of temperature in the present distribution of the two cryptic L. nigrescens species, (2 compare marginal populations to central populations of the two cryptic species. In addition, we created a periodic matrix model to estimate the population growth rate (λ at the five temperature treatments. Differential tolerance to temperature was demonstrated between the two species, with the gametophytes of the Northern species being more tolerant to higher temperatures than gametophytes from the south. Second, the two species exhibited different life history strategies with a shorter haploid phase in the Northern species contrasted with considerable vegetative growth in the Southern species haploid stage. These results provide strong ecological evidence for the differentiation process of the two cryptic species and show local adaptation of the life cycle at the range limits of the distribution. Ecological and evolutionary implications of these findings are discussed.

  4. Dynamic response characteristics of the high-temperature superconducting maglev system under lateral eccentric distance

    Science.gov (United States)

    Wang, Bo; Zheng, Jun; Si, Shuaishuai; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang

    2016-07-01

    Off-centre operation of high-temperature superconducting (HTS) maglev systems caused by inevitable conditions such as the misregistration of vehicle, crosswind and curve negotiation, may change the distribution of the trapped flux in the HTS bulks and the magnetic interaction between HTS bulks and the PMG. It impacts on the performance of HTS maglev, and more seriously makes the maglev vehicle overturned. Therefore, understanding the performance of the HTS maglev in off-center operation is very important. In this paper, the dynamic response characteristics of a cryostat with twenty-four onboard YBaCuO superconductor bulks were experimentally investigated at different eccentric distances under loads before the initial FC process. Parameters such as vibration accelerations, displacement, natural frequency and dynamic stiffness were acquired and analyzed via the B&K vibration analyzer and laser displacement sensors. Results suggest that the natural frequency and dynamic stiffness of the maglev vehicle would be obviously reduced with the eccentric distance, posing negative effects on the stability of HTS maglev.

  5. Impact of spectral irradiance distribution and temperature on the outdoor performance of concentrator photovoltaic system

    Science.gov (United States)

    Husna, Husyira Al; Shibata, Naoki; Sawano, Naoki; Ueno, Seiya; Ota, Yasuyuki; Minemoto, Takashi; Araki, Kenji; Nishioka, Kensuke

    2013-09-01

    Multi-junction solar cell is designed to have considerable effect towards the solar spectrum distribution so that the maximum solar radiation could be absorbed hence, enhancing the energy conversion efficiency of the cell. Due to its application in CPV system, the system's characteristics are more sensitive to environmental factor in comparison to flat-plate PV system which commonly equipped with Si-based solar cell. In this paper, the impact of environmental factors i.e. average photon energy (APE) and temperature of solar cell (Tcell) towards the performance of the tracking type CPV system were discussed. A year data period of direct spectral irradiance, cell temperature, and power output which recorded from November 2010 to October 2011 at a CPV system power generator plant located at Miyazaki, Japan was used in this study. The result showed that most frequent condition during operation was at APE = 1.87±0.005eV, Tcell = 65±2.5°C with performance ratio of 83.9%. Furthermore, an equivalent circuit simulation of a CPV subsystem in module unit was conducted in order to investigate the influence of environmental factors towards the performance of the module.

  6. Characteristic relation for the mass and energy distribution of the nuclear fission products

    International Nuclear Information System (INIS)

    Alexandru, G.

    1977-01-01

    The dispersion relation for nuclear fission is written in the two part fragmentation approach which allows to obtain the characteristic relation for the mass and energy distribution of the nuclear fission products. One explains the resonance approximation in the mass distribution of the fission products taking into account the high order resonances too. (author)

  7. Transport characteristics of n-ZnO/p-Si heterojunction as determined from temperature dependent current–voltage measurements

    Energy Technology Data Exchange (ETDEWEB)

    Djiokap, S.R. Tankio, E-mail: stive.tankiodjiokap@nmmu.ac.za; Urgessa, Z.N.; Mbulanga, C.M.; Venter, A.; Botha, J.R.

    2016-01-01

    Zinc oxide (ZnO) nanorods have been synthesized by a two-step chemical bath deposition process on silicon substrates having different dopant densities and orientations. Scanning electron microscopy and X-ray diffraction analysis reveal that the orientation of the Si substrate does not affect the orientation, distribution or crystallinity of the nanostructures. The electrical properties of the ZnO/Si heterojunction are also investigated by current–voltage (I–V) measurements. The ideality factor is found to be 2.6 at 295 K, indicating that complex current transport mechanisms are at play. Temperature dependent I–V characteristics have been used to determine the dominant transport mechanism. The experimental results suggest that in the low bias region the current is dominated by a trap assisted multi-step tunneling process.

  8. Optical fiber sensors-based temperature distribution measurement in ex vivo radiofrequency ablation with submillimeter resolution.

    Science.gov (United States)

    Macchi, Edoardo Gino; Tosi, Daniele; Braschi, Giovanni; Gallati, Mario; Cigada, Alfredo; Busca, Giorgio; Lewis, Elfed

    2014-01-01

    Radiofrequency thermal ablation (RFTA) induces a high-temperature field in a biological tissue having steep spatial (up to 6°C∕mm) and temporal (up to 1°C∕s) gradients. Applied in cancer care, RFTA produces a localized heating, cytotoxic for tumor cells, and is able to treat tumors with sizes up to 3 to 5 cm in diameter. The online measurement of temperature distribution at the RFTA point of care has been previously carried out with miniature thermocouples and optical fiber sensors, which exhibit problems of size, alteration of RFTA pattern, hysteresis, and sensor density worse than 1 sensor∕cm. In this work, we apply a distributed temperature sensor (DTS) with a submillimeter spatial resolution for the monitoring of RFTA in porcine liver tissue. The DTS demodulates the chaotic Rayleigh backscattering pattern with an interferometric setup to obtain the real-time temperature distribution. A measurement chamber has been set up with the fiber crossing the tissue along different diameters. Several experiments have been carried out measuring the space-time evolution of temperature during RFTA. The present work showcases the temperature monitoring in RFTA with an unprecedented spatial resolution and is exportable to in vivo measurement; the acquired data can be particularly useful for the validation of RFTA computational models.

  9. A heat conduction simulator to estimate lung temperature distribution during percutaneous transthoracic cryoablation for lung cancer

    International Nuclear Information System (INIS)

    Futami, Hikaru; Arai, Tsunenori; Yashiro, Hideki; Nakatsuka, Seishi; Kuribayashi, Sachio; Izumi, Youtaro; Tsukada, Norimasa; Kawamura, Masafumi

    2006-01-01

    To develop an evaluation method for the curative field when using X-ray CT imaging during percutaneous transthoracic cryoablation for lung cancer, we constructed a finite-element heat conduction simulator to estimate temperature distribution in the lung during cryo-treatment. We calculated temperature distribution using a simple two-dimensional finite element model, although the actual temperature distribution spreads in three dimensions. Temperature time-histories were measured within 10 minutes using experimental ex vivo and in vivo lung cryoablation conditions. We adjusted specific heat and thermal conductivity in the heat conduction calculation and compared them with measured temperature time-histories ex vivo. Adjusted lung specific heat was 3.7 J/ (g·deg C) for unfrozen lung and 1.8 J/ (g·deg C) for frozen lung. Adjusted lung thermal conductivity in our finite element model fitted proportionally to the exponential function of lung density. We considered the heat input by blood flow circulation and metabolic heat when we calculated the temperature time-histories during in vivo cryoablation of the lung. We assumed that the blood flow varies in inverse proportion to the change in blood viscosity up to the maximum blood flow predicted from cardiac output. Metabolic heat was set as heat generation in the calculation. The measured temperature time-histories of in vivo cryoablation were then estimated with an accuracy of ±3 deg C when calculated based on this assumption. Therefore, we successfully constructed a two-dimensional heat conduction simulator that is capable of estimating temperature distribution in the lung at the time of first freezing during cryoablation. (author)

  10. Assessment of detection limits of fiber-optic distributed temperature sensing for detection of illicit connections

    NARCIS (Netherlands)

    Nienhuis, J.; De Haan, C.; Langeveld, J.G.; Klootwijk, M.; Clemens, F.H.L.R.

    2012-01-01

    Distributed Temperature Sensing (DTS) with fiber-optic cables is a powerful tool to detect illicit connections in storm sewer systems. High frequency temperature measurements along the in-sewer cable create a detailed representation of temperature anomalies due to illicit discharges. The detection

  11. A Study on Temperature Distribution in the Hot Leg Pipes considering the Variation of Flow Rate in RCS

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyuksu; Yi, Kunwoo; Choe, Yoonjae; Jang, Hocheol; Yune, Seokjeong; Park, Seongchan [KEPCO Engineering and Construction, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, a computational analysis is performed to predict the deviation in the temperature distribution in the hot leg pipe according to the flow rate variation in RCS. In the hot leg pipes of Reactor Coolant System (RCS) of APR1400, four Resistance Temperature Detectors (RTDs), to obtain the average hot leg temperature, are installed at each hot leg pipe (two in the upper region and the other two in the lower region around the wall of the hot leg pipe). There is a deviation in temperature distribution in the hot leg pipe due to the sudden changes in the flow direction and area from the reactor core exit to the hot leg pipe. The non-uniform temperature distribution in the hot leg pipe can affect the measurement of the plant parameters such as the reactor power and the reactor coolant flow rate. The following conclusions are reached 1) The non-uniform temperature distribution in the core exit is sustained to some extent through the entire region of hot leg pipe. 2) The temperature ranges having a uniform pattern are 45 - 120° and 240 - 315°. The sensor positions of RTDs are located in this interval (45 - 120° and 240 - 315°) and this sensor positions of RTDs show the appropriate temperature measurement. Also, the temperature distribution shows the similar pattern without reference to the flow rate variation in RCS.

  12. Investigation on the Factors Affecting the Temperature in Urban Distribution Substations and an Energy-Saving Cooling Strategy

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2011-02-01

    Full Text Available The different locations of the equipment in urban distribution substations (DSSs and the location of inlet holes and outlet holes usually result in different ventilation effect, which means the power consumed by any ventilating devices present is different. In this paper the temperature field distribution in an urban distribution substation with different locations of the equipment in the substation was calculated first, then factors influencing the temperature field distribution were investigated, and the influence of the different factors was analyzed. When the distance between the apparatus and walls exceeds 3 m, the change of the temperature in the DSS is very small. Therefore considering the floor area of the DSS, 3 m is the best value of the distance between the apparatus. With the change of the environment temperature or the velocity of the ventilation fans, the maximum temperature in the DSS or apparatus will change. Hence an energy saving ventilation strategy is proposed in the paper, and an intelligent cooling control system is developed, which can modify the velocity of the ventilation fans according to the environment temperature, and thus realize energy savings.

  13. Effects of conductive fillers on temperature distribution of asphalt pavements

    International Nuclear Information System (INIS)

    Chen Mingyu; Wu Shaopeng; Zhang Yuan; Wang Hong

    2010-01-01

    The sun provides a cheap and abundant source of clean and renewable energy. Solar cells have been used to capture this energy and generate electricity. A more useful form of the solar cell would be asphalt pavements, which get heated up by solar radiation. Graphite powders are utilized as thermal conductive fillers to make an asphalt collector conductive so as to improve the efficiency of the asphalt collector. Accounting for the important application conditions and evaluating the effects of the heat conductive materials and the solar energy absorbability of the conductive asphalt collector, a finite element model has been developed to predict temperature distributions in the conductive asphalt solar collector. In this study, an experimental validation exercise was conducted using the measured data taken from full-depth asphalt slabs. Validation results showed that the model can satisfactorily predict the temperature distributions in asphalt concrete slabs. The optimal depth is 25-50 mm for placing pipes that serve as the heat exchanger. Meanwhile, the effect of the surroundings on the solar energy potential of the asphalt collector was noticeable.

  14. Analysis of temperature and stress distribution of superheater tubes after attemperation or sootblower activation

    International Nuclear Information System (INIS)

    Madejski, Paweł; Taler, Dawid

    2013-01-01

    Highlights: • The CFD simulation was used to calculate 3D steam and tube wall temperature distributions in the platen superheater. • The CFD results can be used in design of superheaters made of tubes with complex cross-section. • The CFD analysis enables the proper selection of the steel grade. • The transient temperature and stress distributions were calculated using Finite Volume Method. • The detailed analysis prevents superheater tubes from excessive stresses during sootblower or attemperator activation. - Abstract: Superheaters are characterized by high metal temperatures due to higher steam temperature and low heat transfer coefficients on the tube inner surfaces. Superheaters have especially difficult operating conditions, particularly during attemperator and sootblower activations, when temperature and steam flow rate as well as tube wall temperature change with time. A detailed thermo-mechanical analysis of the superheater tubes makes it possible to identify the cause of premature high-temperature failures and aids greatly in the changes in tubing arrangement and improving start-up technology. This paper presents a thermal and strength analysis of a tube “double omega”, used in the steam superheaters in CFB boilers

  15. Effect of spacer grid mixing vanes on coolant outlet temperature distribution

    Energy Technology Data Exchange (ETDEWEB)

    Raemae, Tommi; Lahtinen, Tuukka; Brandt, Tellervo; Toppila, Timo [Fortum Power and Heat, Fortum (Finland). Nuclear Competence Center

    2012-08-15

    In Loviisa VVER-440-type NPP the coolant outlet temperature of the hot subchannel is constantly monitored during the operation. According to the authority requirement the maximum subchannel outlet temperature must not exceed the saturation temperature. Coolant temperature distribution inside the fuel assembly is affected by the efficiency of the coolant mixing. In order to enhance the coolant mixing the fuel manufacturer is introducing the additional mixing vanes on the fuel bundle spacer grids. In the paper the effect of the different mixing vane modifications is studied with computational fluid dynamics (CFD) simulation. Goal of the modelling is to find vane modifications with which sufficient mixing is reached with acceptable increase in the spacer grid pressure loss. The results of the studies are discussed in the paper. (orig.)

  16. Kapton charging characteristics: Effects of material thickness and electron-energy distribution

    Science.gov (United States)

    Williamson, W. S.; Dulgeroff, C. R.; Hymann, J.; Viswanathan, R.

    1985-01-01

    Charging characteristics of polyimide (Kapton) of varying thicknesses under irradiation by a very-low-curent-density electron beam, with the back surface of the sample grounded are reported. These charging characteristics are in good agreement with a simple analytical model which predicts that in thin samples at low current density, sample surface potential is limited by conduction leakage through the bulk material. The charging of Kapton in a low-current-density electron beam in which the beam energy was modulated to simulate Maxwellian and biMaxwellian distribution functions is measured.

  17. Experimental investigation of transient temperature characteristic in high power fiber laser cutting of a thick steel plate

    Science.gov (United States)

    Phi Long, Nguyen; Matsunaga, Yukihiro; Hanari, Toshihide; Yamada, Tomonori; Muramatsu, Toshiharu

    2016-10-01

    Experiment of temperature measurement was performed to investigate the transient temperature characteristics of molten metal during laser cutting. The aim of this study was to establish a method for measuring the surface temperature variation near the molten pool correlated with changes in cutting parameters. The relationship between temperature inside the kerf cut and characteristic of the cut surface was investigated by using thermography and thermocouples. Results show strong correlations between the transient temperatures and the thermal image for different cutting conditions. In addition, two-color thermometer has been used to obtain radiation intensity emitted from the irradiating zone as a function of operating conditions. Experiments have shown that one can detect the cutting quality by characterization of the surface temperature during laser cutting process.

  18. Seasonal distribution of active systemic lupus erythematosus and its correlation with meteorological factors

    Directory of Open Access Journals (Sweden)

    Zhang Hua-Li

    2011-01-01

    Full Text Available OBJECTIVE: To explore the characteristics of seasonal distribution of active systemic lupus erythematosus (SLE and the influences of meteorological factors including temperature and humidity on active systemic lupus erythematosus. METHODS: The characteristics of seasonal distribution of active SLE and its correlation with meteorological factors were retrospectively analyzed in 640 patients living in the city of Zhanjiang, China and had active SLE between January 1997 and December 2006. RESULTS: In winter, when there are weaker ultraviolet (UV rays, the ratio of patients with active SLE to total inpatients was 3.89 %o, which is significantly higher than in other seasons with stronger UV rays, including 2.17 %o in spring, 1.87 0 in summer and 2.12 0 in autumn. The number of patients with active SLE had significant negative correlation with mean temperature and was not significantly related to mean humidity. CONCLUSION: Active SLE has the characteristics of seasonal distribution and is associated with temperature. The mechanism remains to be further studied.

  19. Investigations of the temperature distribution in proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Jung, Chi-Young; Shim, Hyo-Sub; Koo, Sang-Man; Lee, Sang-Hwan; Yi, Sung-Chul

    2012-01-01

    A two-dimensional, non-isothermal model of a proton exchange membrane fuel cell was implemented to elucidate heat balance through the membrane electrode assembly (MEA). To take local utilization of platinum catalyst into account, the model was presented by considering the formation of agglomerated catalyst structure in the electrodes. To estimate energy balance through the MEA, various modes of heat generation and depletion by reversible/irreversible heat release, ohmic heating and phase change of water were included in the present model. In addition, dual-pathway kinetics, that is a combination of Heyrovsky–Volmer and Tafel–Volmer kinetics, were employed to precisely describe the hydrogen oxidation reaction. The proposed model was validated with experimental cell polarization, resulting in excellent fit. The temperature distribution inside the MEA was analyzed by the model. Consequently, a thorough investigation was made of the relation between membrane thickness and the temperature distribution inside the MEA.

  20. Energy distribution extraction of negative charges responsible for positive bias temperature instability

    International Nuclear Information System (INIS)

    Ren Shang-Qing; Yang Hong; Wang Wen-Wu; Tang Bo; Tang Zhao-Yun; Wang Xiao-Lei; Xu Hao; Luo Wei-Chun; Zhao Chao; Yan Jiang; Chen Da-Peng; Ye Tian-Chun

    2015-01-01

    A new method is proposed to extract the energy distribution of negative charges, which results from electron trapping by traps in the gate stack of nMOSFET during positive bias temperature instability (PBTI) stress based on the recovery measurement. In our case, the extracted energy distribution of negative charges shows an obvious dependence on energy, and the energy level of the largest energy density of negative charges is 0.01 eV above the conduction band of silicon. The charge energy distribution below that energy level shows strong dependence on the stress voltage. (paper)

  1. [Study on Hollow Brick Wall's Surface Temperature with Infrared Thermal Imaging Method].

    Science.gov (United States)

    Tang, Ming-fang; Yin, Yi-hua

    2015-05-01

    To address the characteristic of uneven surface temperature of hollow brick wall, the present research adopts soft wares of both ThermaCAM P20 and ThermaCAM Reporter to test the application of infrared thermal image technique in measuring surface temperature of hollow brick wall, and further analyzes the thermal characteristics of hollow brick wall, and building material's impact on surface temperature distribution including hollow brick, masonry mortar, and so on. The research selects the construction site of a three-story-high residential, carries out the heat transfer experiment, and further examines the exterior wall constructed by 3 different hollow bricks including sintering shale hollow brick, masonry mortar and brick masonry. Infrared thermal image maps are collected, including 3 kinds of sintering shale hollow brick walls under indoor heating in winter; and temperature data of wall surface, and uniformity and frequency distribution are also collected for comparative analysis between 2 hollow bricks and 2 kinds of mortar masonry. The results show that improving heat preservation of hollow brick aid masonry mortar can effectively improve inner wall surface temperature and indoor thermal environment; non-uniformity of surface temperature decreases from 0. 6 to 0. 4 °C , and surface temperature frequency distribution changes from the asymmetric distribution into a normal distribution under the condition that energy-saving sintering shale hollow brick wall is constructed by thermal mortar replacing cement mortar masonry; frequency of average temperature increases as uniformity of surface temperature increases. This research provides a certain basis for promotion and optimization of hollow brick wall's thermal function.

  2. Plant distribution and stand characteristics in brackish marshes: Unravelling the roles of abiotic factors and interspecific competition

    Science.gov (United States)

    Carus, Jana; Heuner, Maike; Paul, Maike; Schröder, Boris

    2017-09-01

    Due to increasing pressure on estuarine marshes from sea level rise and river training, there is a growing need to understand how species-environment relationships influence the zonation and growth of tidal marsh vegetation. In the present study, we investigated the distribution and stand characteristics of the two key brackish marsh species Bolboschoenus maritimus and Phragmites australis in the Elbe estuary together with several abiotic habitat factors. We then tested the effect of these habitat factors on plant growth and zonation with generalised linear models (GLMs). Our study provides detailed information on the importance of single habitat factors and their interactions for controlling the distribution patterns and stand characteristics of two key marsh species. Our results suggest that flow velocity is the main factor influencing species distribution and stand characteristics and together with soil-water salinity even affects the inundation tolerance of the two specie investigated here. Additionally, inundation height and duration as well as interspecific competition helped explain the distribution patterns and stand characteristics. By identifying the drivers of marsh zonation and stand characteristics and quantifying their effects, this study provides useful information for evaluating a future contribution of tidal marsh vegetation to ecosystem-based shore protection.

  3. Computational scheme for transient temperature distribution in PWR vessel wall

    International Nuclear Information System (INIS)

    Dedovic, S.; Ristic, P.

    1980-01-01

    Computer code TEMPNES is a part of joint effort made in Gosa Industries in achieving the technique for structural analysis of heavy pressure vessels. Transient heat conduction problems analysis is based on finite element discretization of structures non-linear transient matrix formulation and time integration scheme as developed by Wilson (step-by-step procedure). Convection boundary conditions and the effect of heat generation due to radioactive radiation are both considered. The computation of transient temperature distributions in reactor vessel wall when the water temperature suddenly drops as a consequence of reactor cooling pump failure is presented. The vessel is treated as as axisymmetric body of revolution. The program has two finite time element options a) fixed predetermined increment and; b) an automatically optimized time increment for each step dependent on the rate of change of the nodal temperatures. (author)

  4. Effects of fire temperature on the physical and chemical characteristics of the ash from two plots of Cork oak (Quercus Suber)

    Science.gov (United States)

    Ubeda, X.; Pereira, P.; Outeiro, L.; Martin, D.A.

    2009-01-01

    Cork oak, (Quercus suber) is widely distributed in the Mediterranean region, an area subject to frequent fires. The ash produced by burning can have impacts on the soil status and water resources that can differ according to the temperature reached during fire and the characteristics of the litter, defined as the dead organic matter accumulated on the soil surface prior to the fire. The aim of this work is to determine the physical and chemical characteristics of ash produced in laboratory experiments to approximate conditions typical of fires in this region. The litter of Quercus suber collected from two different plots on the Iberian Peninsula, Mas Bassets (Catalonia) and Albufeira (Portugal), was combusted at different temperatures for 2h. We measured Mass Loss (ML per cent), ash colour and CaCO3 content, pH, Electrical Conductivity (EC) and the major cations (Ca2+, Mg2+, K+ and Na+) released from ash slurries created by mixing ash with deionized water. The results showed that ML per cent is higher at all temperatures in Albufeira samples compared to Mas Bassets samples, except at 550??C, and the rate of loss increases faster with temperature than the Mas Bassets samples. At 150??C the ash colour is yellowish, becoming reddish at 200- 250??C and black at 300??C. Above 400??C the ash is grey/white. This thermal degradation is mostly observed in Albufeira litter. The formation of CaCO3 was identified at a lower temperature in Albufeira litter. At temperatures fire. Low intensity prescribed fire can be a useful tool to land management in these sites, due to the reduced effects of fire temperatures on the physical and chemical properties of surface litter, and can reduce the risk of high temperature wildland fires by reducing fuel loadings. From the perspective of water resources, lower fire temperatures produce fewer impacts on the chemistry of overland flow and there is less probability that the soil surface will be eroded. Copyright ?? 2009 John Wiley & Sons, Ltd.

  5. A study of the high-temperature signal characteristics in the thermoluminescence of porcelain

    International Nuclear Information System (INIS)

    Yin Gongming

    2001-01-01

    The thermoluminescence pre-dose technique for dating ancient porcelain was developed in many laboratories. This technique was the only method which could directly determine the age of old porcelain. But the thermoluminescence high-temperature signal (over 200 degree C) had not been studied. The authors conduced a preliminary study of the characteristic of thermoluminescence high-temperature signal, such as the TL natural glow curve, and the glow curves after beta or alpha irradiation. Most of the 32 ancient porcelains had thermoluminescence high temperature signal, and only one peak in their TL glow curve was found

  6. Remarks to the hot channel power characteristics

    International Nuclear Information System (INIS)

    Tinka, I.; Tinkova, E.

    2002-01-01

    In connection with methodological improvements of safety analyses, some effects of detail power distributions, that should be taken into account for the hot channel characteristics determination, have been studied. This determination concerns the whole channel power (power of the fuel rod) and its axial (along the channel) and radial (across the fuel pellet radius) distribution. The total power of the channel is studied from the point of possible restrictions for different numbers of main cooling loops in operation. For radial power distribution the effect of burnup has been studied and for axial distribution the effect of the control rod vicinity (its coupler part) has been evaluated. The DNBR and fuel temperatures have been the key safety parameters influenced by these hot channel characteristics and have been evaluated in this study (Authors)

  7. Distribution of temperature and moisture content fields in a rectangular beet pulp particle during convection drying

    Directory of Open Access Journals (Sweden)

    A. N. Ostrikov

    2018-01-01

    Full Text Available The mathematical model describing distribution of fields of temperatures and moisture contents in a particle of a squared beet press at convective drying is given. As the initial equations the differential equations of material and thermal balances in which transfer of warmth and weight is caused by phase transformations have been accepted. The algorithm of the numerical solution of a non-stationary regional problem of heat conductivity with variable heat and mass transfer coefficients of the dried-up product, boundary and entry conditions and also phase transition with mobile limit of the section of phases is developed for the solution of mathematical model. At the same time the initial system of the equations is given to a dimensionless look. For the solution of a problem of non-stationary heat conductivity the zone method of calculation of temperature fields when drying a beet press is used. Process of drying broke into some time intervals. Within each interval geometrical form of a particle, its density, heatphysical and mass-exchanged characteristics; initial distribution of temperature and moisture content on particle volume and also density of a mass and thermal stream with the evaporated moisture are constant. The zone method of the solution of a problem of the non-stationary three-dimensional equation of heat conductivity for a parallelepiped taking into account internal sources of warmth has been checked on experimental data of stationary drying of a beet press with use of basic data. For realization of a zone method dependences of change of the linear size of a particle of a beet press on spatial coordinate x and its moisture content in the course of drying are received. At constant values of moisture content and the sizes of the party of the dried-up particle on each step the method of a machine experiment has found the current values of coefficient of phase transformation on condition of the maximum rapprochement of settlement and

  8. [Characteristics and its forming mechanism on grain size distribution of suspended matter at Changjiang Estuary].

    Science.gov (United States)

    Pang, Chong-guang; Yu, Wei; Yang, Yang

    2010-03-01

    In July of 2008, under the natural condition of sea water, the Laser in-situ scattering and transmissometry (LISST-100X Type C) was used to measure grain size distribution spectrum and volume concentration of total suspended matter in the sea water, including flocs at different layers of 24 sampling stations at Changjiang Estuary and its adjacent sea. The characteristics and its forming mechanism on grain size distribution of total suspended matter were analyzed based on the observation data of LISST-100X Type C, and combining with the temperature, salinity and turbidity of sea water, simultaneously observed by Alec AAQ1183. The observation data showed that the average median grain size of total suspended matter was about 4.69 phi in the whole measured sea area, and the characteristics of grain size distribution was relatively poor sorted, wide kurtosis, and basically symmetrical. The conclusion could be drawn that vertically average volume concentration decreased with the distance from the coastline, while median grain size had an increase trend with the distance, for example, at 31.0 degrees N section, the depth-average median grain size had been increased from 11 microm up to 60 microm. With the increasing of distance from the coast, the concentration of fine suspended sediment reduced distinctly, nevertheless some relatively big organic matter or big flocs appeared in quantity, so its grain size would rise. The observation data indicated that the effective density was ranged from 246 kg/m3 to 1334 kg/m, with average was 613 kg/m3. When the concentration of total suspended matter was relatively high, median grain size of total suspended matter increased with the water depth, while effective density decreased with the depth, because of the faster settling velocity and less effective density of large flocs that of small flocs. As for station 37 and 44, their correlation coefficients between effective density and median grain size were larger than 0.9.

  9. The influence of the engine speed on the temperature distribution in the piston of the turbocharged diesel engine

    Directory of Open Access Journals (Sweden)

    Aleksander HORNIK

    2011-01-01

    Full Text Available This article presented the numeric computations of non-stationary heat flow in the form of distribution of temperature fields on characteristic surfaces of the piston for two different rotational speeds for the same engine load during 60 seconds during in which the engine worked. The object of research was a turbocharged Diesel engine with a direct fuel injection to the combustion chamber and the engine cubic capacity that is 2390 [cm3] and power rating, which is 85 [kW]. The numeric computations were carried out by the use of the finite element method (FEM with the help of COSMOS/M software and the use of the two – zone combustion model.

  10. Determination of transient temperature distribution inside a wellbore considering drill string assembly and casing program

    International Nuclear Information System (INIS)

    Yang, Mou; Zhao, Xiangyang; Meng, Yingfeng; Li, Gao; Zhang, Lin; Xu, Haiming; Tang, Daqian

    2017-01-01

    Highlights: • The different wellbore conditions of heat transfer models were developed. • Drill string assembly and casing programs impact on down-hole temperatures. • The thermal performance in circulation and shut-in stages were deeply investigated. • Full-scale model coincided with the measured field data preferably. - Abstract: Heat exchange efficiency between each region of the wellbore and formation systems is influenced by the high thermal conductivity of the drill string and casing, which further affects temperature distribution of the wellbore. Based on the energy conservation principle, the Modified Raymond, Simplified and Full-scale models were developed, which were solved by the fully implicit finite difference method. The results indicated that wellbore and formation temperatures were significantly influenced at the connection points between the drill collar and drill pipe, as well as the casing shoe. Apart from the near surface, little change was observed in temperature distribution in the cement section. In the open-hole section, the temperature rapidly decreased in the circulation stage and gradually increased in the shut-in stage. Most important, the simulated result from the full-scale model coincided with the measured field data better than the other numerical models. These findings not only confirm the effect of the drill string assembly and casing programs on the wellbore and formation temperature distribution, but also contribute to resource exploration, drilling safety and reduced drilling costs.

  11. CRISTE - a subcomputer code for axial distribution, transient, of temperatures in a reactor channel of PWR

    International Nuclear Information System (INIS)

    Silva Neto, A.J. da; Roberty, N.C.; Carmo, E.G.D. do.

    1983-12-01

    The subroutine CRISTE was developed to calculate the temperature distribution for transients in a PWR coolant. The Crank-Nicholson approximation was used for the temporal discretization and a semi-analytical spatial solution was obtained. The temperature in the cladding was simulated by a routine adapted from the permanent distribution, and was used in on iterative method, following CRISTE subroutine. (E.G.) [pt

  12. Technical note: using Distributed Temperature Sensing for Bowen ratio evaporation measurements

    NARCIS (Netherlands)

    Schilperoort, B.; Coenders, Miriam; Luxemburg, W.M.J.; Jimenez Rodriguez, C.D.; Cisneros Vaca2, C.; Savenije, Hubert

    2017-01-01

    Rapid improvements in the precision and spatial resolution of Distributed Temperature Sensing (DTS) technology now allows its use in hydrological and atmospheric sciences. Introduced by Euser [Hydrol. Earth Syst. Sci., 18, 2021–2032 (2014)] is the use of DTS for measuring the Bowen ratio (BR-DTS),

  13. Temperature control characteristics analysis of lead-cooled fast reactor with natural circulation

    International Nuclear Information System (INIS)

    Yang, Minghan; Song, Yong; Wang, Jianye; Xu, Peng; Zhang, Guangyu

    2016-01-01

    Highlights: • The LFR temperature control system are analyzed with frequency domain method. • The temperature control compensator is designed according to the frequency analysis. • Dynamic simulation is performed by SIMULINK and RELAP5-HD. - Abstract: Lead-cooled Fast Reactor (LFR) with natural circulation in primary system is among the highlights in advance nuclear reactor research, due to its great superiority in reactor safety and reliability. In this work, a transfer function matrix describing coolant temperature dynamic process, obtained by Laplace transform of the one-dimensional system dynamic model is developed in order to investigate the temperature control characteristics of LFR. Based on the transfer function matrix, a close-loop coolant temperature control system without compensator is built. The frequency domain analysis indicates that the stability and steady-state of the temperature control system needs to be improved. Accordingly, a temperature compensator based on Proportion–Integration and feed-forward is designed. The dynamic simulation of the whole system with the temperature compensator for core power step change is performed with SIMULINK and RELAP5-HD. The result shows that the temperature compensator can provide superior coolant temperature control capabilities in LFR with natural circulation due to the efficiency of the frequency domain analysis method.

  14. Nanosensors as Reservoir Engineering Tools to Map Insitu Temperature Distributions in Geothermal Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Morgan Ames

    2011-06-15

    The feasibility of using nanosensors to measure temperature distribution and predict thermal breakthrough in geothermal reservoirs is addressed in this report. Four candidate sensors were identified: melting tin-bismuth alloy nanoparticles, silica nanoparticles with covalently-attached dye, hollow silica nanoparticles with encapsulated dye and impermeable melting shells, and dye-polymer composite time-temperature indicators. Four main challenges associated with the successful implementation of temperature nanosensors were identified: nanoparticle mobility in porous and fractured media, the collection and detection of nanoparticles at the production well, engineering temperature sensing mechanisms that are both detectable and irreversible, and inferring the spatial geolocation of temperature measurements in order to map temperature distribution. Initial experiments were carried out to investigate each of these challenges. It was demonstrated in a slim-tube injection experiment that it is possible to transport silica nanoparticles over large distances through porous media. The feasibility of magnetic collection of nanoparticles from produced fluid was evaluated experimentally, and it was estimated that 3% of the injected nanoparticles were recovered in a prototype magnetic collection device. An analysis technique was tailored to nanosensors with a dye-release mechanism to estimate temperature measurement geolocation by analyzing the return curve of the released dye. This technique was used in a hypothetical example problem, and good estimates of geolocation were achieved. Tin-bismuth alloy nanoparticles were synthesized using a sonochemical method, and a bench heating experiment was performed using these nanoparticles. Particle growth due to melting was observed, indicating that tin-bismuth nanoparticles have potential as temperature nanosensors

  15. Temperature distribution model for the semiconductor dew point detector

    Science.gov (United States)

    Weremczuk, Jerzy; Gniazdowski, Z.; Jachowicz, Ryszard; Lysko, Jan M.

    2001-08-01

    The simulation results of temperature distribution in the new type silicon dew point detector are presented in this paper. Calculations were done with use of the SMACEF simulation program. Fabricated structures, apart from the impedance detector used to the dew point detection, contained the resistive four terminal thermometer and two heaters. Two detector structures, the first one located on the silicon membrane and the second one placed on the bulk materials were compared in this paper.

  16. Non-iterative method to calculate the periodical distribution of temperature in reactors with thermal regeneration

    International Nuclear Information System (INIS)

    Sanchez de Alsina, O.L.; Scaricabarozzi, R.A.

    1982-01-01

    A matrix non-iterative method to calculate the periodical distribution in reactors with thermal regeneration is presented. In case of exothermic reaction, a source term will be included. A computer code was developed to calculate the final temperature distribution in solids and in the outlet temperatures of the gases. The results obtained from ethane oxidation calculation in air, using the Dietrich kinetic data are presented. This method is more advantageous than iterative methods. (E.G.) [pt

  17. Wave Characteristics of Temperature Inversion Process of Nighttime Radiation,

    Science.gov (United States)

    1983-12-09

    CHARACTERISTICS OF TEMPERATURE INVERSION PROCESS OF NIGHTTIME RADIATION By: Zhou Mingyu and Zhang ¥i English pages: 8 Source: Kexue Tongbao, 1982, pp. 156...lJournal of Meteorology], 39 (1981), 1:70-81. 3. Drazin, P. G., J. Fluid. Mech., 4 (1958), 214-224. 4. Zhou Mingyu et al., QIXIANG XUEBAO, 38 (1980), 3: 250...258. 5. Emnanuel, C. B., B-L. Meteor., 5(1973), N(1/2)8 19-27. 6. Zhou Mingyu et al., J. Acoust. Soc., A. m., 68 (1980), 1: 303-308. 8 I iI

  18. Temperature distribution in graphite during annealing in air cooled reactors

    International Nuclear Information System (INIS)

    Oliveira Avila, C.R. de.

    1989-01-01

    A model for the evaluation temperature distributions in graphite during annealing operation in graphite. Moderated an-cooled reactors, is presented. One single channel and one dimension for air and graphite were considered. A numerical method based on finite control volumes was used for partioning the mathematical equations. The problem solution involves the use of unsteady equations of mass, momentum and energy conservation for air, and energy conservation for graphite. The source term was considered as stored energy release during annealing for describing energy conservation in the graphite. The coupling of energy conservation equations in air and graphite is performed by the heat transfer term betwen air and graphite. The results agree with experimental data. A sensitivity analysis shown that the termal conductivity of graphite and the maximum inlet channel temperature have great effect on the maximum temperature reached in graphite during the annealing. (author)

  19. Temperature dependent I-V characteristics of an Au/n-GaAs Schottky diode analyzed using Tung’s model

    Science.gov (United States)

    Korucu, Demet; Turut, Abdulmecit; Efeoglu, Hasan

    2013-04-01

    The current-voltage (I-V) characteristics of Au/n-GaAs contacts prepared with photolithography technique have been measured in the temperature range of 80-320 K. The ideality factor and barrier height (BH) values have remained almost unchanged between 1.04 and 1.10 and at a value of about 0.79 eV at temperatures above 200 K, respectively. Therefore, the ideality factor values near unity say that the experimental I-V data are almost independent of the sample temperature, that is, contacts have shown excellent Schottky diode behavior above 200 K. An abnormal decrease in the experimental BH Φb and an increase in the ideality factor with a decrease in temperature have been observed below 200 K. This behavior has been attributed to the barrier inhomogeneity by assuming a Gaussian distribution of nanometer-sized patches with low BH at the metal-semiconductor interface. The barrier inhomogeneity assumption is also confirmed by the linear relationship between the BH and the ideality factor. According to Tung’s barrier inhomogeneity model, it has been seen that the value of σT=7.41×10-5 cm2/3 V1/3from ideality factor versus (kT)-1 curve is in close agreement with σT=7.95×10-5 cm2/3 V1/3 value from the Φeff versus (2kT)-1 curve in the range of 80-200 K. The modified Richardson ln(J0/T2)-(qσT)2(Vb/η)2/3/[2(kT)2] versus (kT)-1 plot, from Tung’s Model, has given a Richardson constant value of 8.47 A cm-2 K-2which is in very close agreement with the known value of 8.16 A cm-2 K-2 for n-type GaAs; considering the effective patch area which is significantly lower than the entire geometric area of the Schottky contact, in temperature range of 80-200 K. Thus, it has been concluded that the use of Tung’s lateral inhomogeneity model is more appropriate to interpret the temperature-dependent I-V characteristics in the Schottky contacts.

  20. Application of infrared thermography for temperature distributions in fluid-saturated porous media

    DEFF Research Database (Denmark)

    Imran, Muhammad; Nick, Hamid; Schotting, Ruud J.

    2016-01-01

    is achieved with a combination of invasive sensors which are inserted into the medium and non-invasive thermal sensors in which sensors are not inserted to measure temperatures but it works through the detection of infrared radiation emitted from the surface. Thermocouples of relatively thin diameter are used......Infrared thermography has increasingly gained importance because of environmental and technological advancements of this method and is applied in a variety of disciplines related to non-isothermal flow. However, it has not been used so far for quantitative thermal analysis in saturated porous media....... This article suggests infrared thermographic approach to obtain the entire surface temperature distribution(s) in water-saturated porous media. For this purpose, infrared thermal analysis is applied with in situ calibration for a better understanding of the heat transfer processes in porous media. Calibration...

  1. Development and application of a species sensitivity distribution for temperature-induced mortality in the aquatic environment

    NARCIS (Netherlands)

    Vries, de P.; Tamis, J.E.; Murk, A.J.; Smit, M.G.D.

    2008-01-01

    Current European legislation has static water quality objectives for temperature effects, based on the most sensitive species. In the present study a species sensitivity distribution (SSD) for elevated temperatures is developed on the basis of temperature sensitivity data (mortality) of 50 aquatic

  2. Effect of extraction temperature on characteristics of chicken legskin gelatin

    Science.gov (United States)

    Sompie, M.; Triasih, A.

    2018-01-01

    Gelatin is a denaturalized protein that is derived from collagen by acidic or alkaline hydrolysis and is an important functional biopolymer that has a very broad application in many industrial fields. Its functional properties depend on processing conditions as well as the raw material. The objective of the research was to study effect of extraction temperature on characteristics of native chicken legskin gelatin. This study used Completely Randomized Design (CRD) with four treatments (T1 = 500C, T2 = 550C, T3 = 600C, T4 = 650C) and five replications. Statistical analysis were carried out by one Anova and the mean difference was tested using Duncan’s Multiple Range Test. The result of research indicated that, extraction temperature had significant effect (Pchicken legskin gelatin, but it had no significant effect (P>0.05) on water content. It was concluded that the use of extraction temperature 600C was (yields 13.75, gel strength 78.75 g bloom, viscosity 6.52 cP, protein content 84.23% and water content 6.20%).

  3. Gas Permeation Characteristics across Nano-Porous Inorganic Membranes

    Directory of Open Access Journals (Sweden)

    M.R Othman, H. Mukhtar

    2012-10-01

    Full Text Available An overview of parameters affecting gas permeation in inorganic membranes is presented. These factors include membrane physical characteristics, operational parameters and gas molecular characteristics. The membrane physical characteristics include membrane materials and surface area, porosity, pore size and pore size distribution and membrane morphology. The operational parameters include feed flow rate and concentration, stage cut, temperature and pressure. The gas molecular characteristics include gas molecular weight, diameter, critical temperature, critical pressure, Lennard-Jones parameters and diffusion volumes. The current techniques of material characterization may require complementary method in describing microscopic heterogeneity of the porous ceramic media. The method to be incorporated in the future will be to apply a stochastic model and/or fractal dimension. Keywords: Inorganic membrane, surface adsorption, Knudsen diffusion, Micro-porous membrane, permeation, gas separation.

  4. The Assessment Of High Temperature Reactor Fuel (Characteristics Of HTTR Fuel)

    International Nuclear Information System (INIS)

    Dewita, Erlan; Tuka, Veronica; Gunandjar

    1996-01-01

    HTTR is one of the reactor type with Helium coolant and outlet coolant temperature of 950 o C. One possibility of HTTR application is the coo generation of steam in high temperature and electric power for supply energy to industry in the future. Considering to the high operating temperature of HTTR, therefore it is needed the reactor fuel which have good mechanical, chemical and physical stability to the high temperature, and stable to the influence of fission fragment and neutron during irradiation. This assessment of the HTTR fuel characteristic based on the experiment data to find information of HTTR operation feasibility. Result of the assessment indicated that fission gas release at burn-up of 3.6 % FIMA which was the same as the maximum burn up in the HTTR design was fairly lower than the maximum release estimated in the design (5 x 10 - 4), which is R/B from the fuel fabricated by the prismatic block fuel method would be low (between 10 - 9 dan 10 - 8)

  5. Analysis of the device characteristics of AlGaN/GaN HEMTs over a wide temperature range

    International Nuclear Information System (INIS)

    Zhao, M.; Liu, X.Y.; Zheng, Y.K.; Li, Yankui; Ouyang, Sihua

    2013-01-01

    Highlights: ► We report the behavior of the current–voltage characteristics of AlGaN/GaN HEMT in the temperature range of 223–398 K. ► The origin of the leakage current and the current transport behaviors are reported. ► There is a linear relationship between the barrier height and the ideality factor, which is attributed to barrier height in homogeneities. -- Abstract: In this study, we investigate the behavior of the current–voltage (I–V) characteristics of AlGaN/GaN HEMT in the temperature range of 223–398 K. Temperature dependent device characteristics and the current transport mechanism are reported. It is observed that the Schottky barrier height Φ increases and the ideality factor n decreases with temperature. There is a linear relationship between the barrier height and the ideality factor, which is attributed to barrier height inhomogeneities of AlGaN/GaN HEMT. The estimated values of the series resistances (R s ) are in the range of 144.2 Ω at 223 K to 74.3 Ω at 398 K. The Φ, n, R s , G m and Schottky leakage current values are seen to be strongly temperature dependent

  6. Accelerated life testing and temperature dependence of device characteristics in GaAs CHFET devices

    Science.gov (United States)

    Gallegos, M.; Leon, R.; Vu, D. T.; Okuno, J.; Johnson, A. S.

    2002-01-01

    Accelerated life testing of GaAs complementary heterojunction field effect transistors (CHFET) was carried out. Temperature dependence of single and synchronous rectifier CHFET device characteristics were also obtained.

  7. Assessment of extreme value distributions for maximum temperature in the Mediterranean area

    Science.gov (United States)

    Beck, Alexander; Hertig, Elke; Jacobeit, Jucundus

    2015-04-01

    Extreme maximum temperatures highly affect the natural as well as the societal environment Heat stress has great effects on flora, fauna and humans and culminates in heat related morbidity and mortality. Agriculture and different industries are severely affected by extreme air temperatures. Even more under climate change conditions, it is necessary to detect potential hazards which arise from changes in the distributional parameters of extreme values, and this is especially relevant for the Mediterranean region which is characterized as a climate change hot spot. Therefore statistical approaches are developed to estimate these parameters with a focus on non-stationarities emerging in the relationship between regional climate variables and their large-scale predictors like sea level pressure, geopotential heights, atmospheric temperatures and relative humidity. Gridded maximum temperature data from the daily E-OBS dataset (Haylock et al., 2008) with a spatial resolution of 0.25° x 0.25° from January 1950 until December 2012 are the predictands for the present analyses. A s-mode principal component analysis (PCA) has been performed in order to reduce data dimension and to retain different regions of similar maximum temperature variability. The grid box with the highest PC-loading represents the corresponding principal component. A central part of the analyses is the model development for temperature extremes under the use of extreme value statistics. A combined model is derived consisting of a Generalized Pareto Distribution (GPD) model and a quantile regression (QR) model which determines the GPD location parameters. The QR model as well as the scale parameters of the GPD model are conditioned by various large-scale predictor variables. In order to account for potential non-stationarities in the predictors-temperature relationships, a special calibration and validation scheme is applied, respectively. Haylock, M. R., N. Hofstra, A. M. G. Klein Tank, E. J. Klok, P

  8. What Limits the Distribution of Liriomyza huidobrensis and Its Congener Liriomyza sativae in Their Native Niche: When Temperature and Competition Affect Species' Distribution Range in Guatemala.

    Science.gov (United States)

    Rodríguez-Castañeda, G; MacVean, C; Cardona, C; Hof, A R

    2017-07-01

    Factors limiting distribution range for most species are generally unknown regardless of whether they are native or invasive. We studied factors that could enable or restrict the distribution of two cosmopolitan invasive leafminer fly species, Liriomyza huidobrensis (Blanchard) and Liriomyza sativae (Blanchard) in their native niche. In order to test which ecological and environmental factors affect leafminer distribution we conducted thermal tolerance assays, sampled along elevation gradients and modeled species distribution. Findings from the field and rearing chambers showed a physiological restriction due to high temperatures for L. huidobrensis at 28-29 °C, above which adult emergence is compromised. We also found that maximum temperatures below 22 °C, typical of tropical highlands, favored L. huidobrensis. L. sativae was found across a wider temperature range (i.e., from 21 to 36 °C) in Guatemala. Our finding of a physiological threshold in temperature for L. huidobrensis may enable us to predict its invasive risk when combined with the environmental conditions at horticultural ports of entry and the global agricultural landscape. Further, it strengthens our predictions on shifts in distribution of the leafminer fly under future climate. We also found a temperature mediated competitive exclusion interaction between the two herbivore species, where L. sativae occurred at temperatures < 22 °C only in the absence of L. huidobrensis. We show that parasitoids had a negative effect on the leafminer flies, which varied with host plant. Finally, we show the importance of taking a multiaspect approach when investigating what limits distribution and invasiveness of a species. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  9. Simultaneous reconstruction of temperature distribution and radiative properties in participating media using a hybrid LSQR-PSO algorithm

    Science.gov (United States)

    Niu, Chun-Yang; Qi, Hong; Huang, Xing; Ruan, Li-Ming; Wang, Wei; Tan, He-Ping

    2015-11-01

    A hybrid least-square QR decomposition (LSQR)-particle swarm optimization (LSQR-PSO) algorithm was developed to estimate the three-dimensional (3D) temperature distributions and absorption coefficients simultaneously. The outgoing radiative intensities at the boundary surface of the absorbing media were simulated by the line-of-sight (LOS) method, which served as the input for the inverse analysis. The retrieval results showed that the 3D temperature distributions of the participating media with known radiative properties could be retrieved accurately using the LSQR algorithm, even with noisy data. For the participating media with unknown radiative properties, the 3D temperature distributions and absorption coefficients could be retrieved accurately using the LSQR-PSO algorithm even with measurement errors. It was also found that the temperature field could be estimated more accurately than the absorption coefficients. In order to gain insight into the effects on the accuracy of temperature distribution reconstruction, the selection of the detection direction and the angle between two detection directions was also analyzed. Project supported by the Major National Scientific Instruments and Equipment Development Special Foundation of China (Grant No. 51327803), the National Natural Science Foundation of China (Grant No. 51476043), and the Fund of Tianjin Key Laboratory of Civil Aircraft Airworthiness and Maintenance in Civil Aviation University of China.

  10. American pika in a low-elevation lava landscape: expanding the known distribution of a temperature-sensitive species.

    Science.gov (United States)

    Shinderman, Matt

    2015-09-01

    In 2010, the American pika (Ochotona princeps fenisex) was denied federal protection based on limited evidence of persistence in low-elevation environments. Studies in nonalpine areas have been limited to relatively few environments, and it is unclear whether patterns observed elsewhere (e.g., Bodie, CA) represent other nonalpine habitats. This study was designed to establish pika presence in a new location, determine distribution within the surveyed area, and evaluate influences of elevation, vegetation, lava complexity, and distance to habitat edge on pika site occupancy. In 2011 and 2012, we conducted surveys for American pika on four distinct subalpine lava flows of Newberry National Volcanic Monument, Oregon, USA. Field surveys were conducted at predetermined locations within lava flows via silent observation and active searching for pika sign. Site habitat characteristics were included as predictors of occupancy in multinomial regression models. Above and belowground temperatures were recorded at a subsample of pika detection sites. Pika were detected in 26% (2011) and 19% (2012) of survey plots. Seventy-four pika were detected outside survey plot boundaries. Lava complexity was the strongest predictor of pika occurrence, where pika were up to seven times more likely to occur in the most complicated lava formations. Pika were two times more likely to occur with increasing elevation, although they were found at all elevations in the study area. This study expands the known distribution of the species and provides additional evidence for persistence in nonalpine habitats. Results partially support the predictive occupancy model developed for pika at Craters of the Moon National Monument, another lava environment. Characteristics of the lava environment clearly influence pika site occupancy, but habitat variables reported as important in other studies were inconclusive here. Further work is needed to gain a better understanding of the species' current

  11. Time temperature indicators as devices intelligent packaging

    Directory of Open Access Journals (Sweden)

    Adriana Pavelková

    2013-01-01

    Full Text Available Food packaging is an important part of food production. Temperature is a one of crucial factor which affecting the quality and safety of food products during distribution, transport and storage. The one way of control of food quality and safety is the application of new packaging systems, which also include the intelligent or smart packaging. Intelligent packaging is a packaging system using different indicators for monitoring the conditions of production, but in particular the conditions during transport and storage. Among these indicators include the time-temperature indicators to monitor changes in temperature, which is exposed the product and to inform consumers about the potential risks associated with consumption of these products. Time temperature indicators are devices that show an irreversible change in a physical characteristic, usually color or shape, in response to temperature history. Some are designed to monitor the evolution of temperature with time along the distribution chain and others are designed to be used in the consumer packages.

  12. A code for obtaining temperature distribution by finite element method

    International Nuclear Information System (INIS)

    Bloch, M.

    1984-01-01

    The ELEFIB Fortran language computer code using finite element method for calculating temperature distribution of linear and two dimensional problems, in permanent region or in the transient phase of heat transfer, is presented. The formulation of equations uses the Galerkin method. Some examples are shown and the results are compared with other papers. The comparative evaluation shows that the elaborated code gives good values. (M.C.K.) [pt

  13. Distributed remote temperature monitoring system for INDUS-2 vacuum chambers

    International Nuclear Information System (INIS)

    Bhange, N.J.; Gothwal, P.; Fatnani, P.; Shukla, S.K.

    2011-01-01

    Indus-2, a 2.5 GeV Synchrotron Radiation Source (SRS) at Indore has a large vacuum system. The vacuum envelope of Indus-2 ring comprises of 16 dipole chambers as vital parts. Each chamber has 4 photon absorbers and three beam line ports blanked with end flanges. Temperature monitoring of critical vacuum components during operation of Indus-2 ring is an important requirement. The paper discusses a distributed, 160 channel remote temperature monitoring system developed and deployed for this purpose using microcontroller based, modular Temperature Monitoring Units (TMU). The cabling has been extensively minimized using RS485 system and keeping trip relay contacts of all units in series. For ensuring proper signal conditioning of thermocouple outputs (K-type) and successful operation over RS485 bus, many precautions were taken considering the close proximity to the storage ring. We also discuss the software for vacuum chamber temperature monitoring and safety system. The software developed using LabVIEW, has important features like modularity, client-server architecture, local and global database logging, alarms and trips, event and error logging, provision of various important configurations, communications handling etc. (author)

  14. Analysis of Statistical Distributions Used for Modeling Reliability and Failure Rate of Temperature Alarm Circuit

    International Nuclear Information System (INIS)

    EI-Shanshoury, G.I.

    2011-01-01

    Several statistical distributions are used to model various reliability and maintainability parameters. The applied distribution depends on the' nature of the data being analyzed. The presented paper deals with analysis of some statistical distributions used in reliability to reach the best fit of distribution analysis. The calculations rely on circuit quantity parameters obtained by using Relex 2009 computer program. The statistical analysis of ten different distributions indicated that Weibull distribution gives the best fit distribution for modeling the reliability of the data set of Temperature Alarm Circuit (TAC). However, the Exponential distribution is found to be the best fit distribution for modeling the failure rate

  15. A Review of Hybrid Fiber-Optic Distributed Simultaneous Vibration and Temperature Sensing Technology and Its Geophysical Applications

    Directory of Open Access Journals (Sweden)

    Khalid Miah

    2017-11-01

    Full Text Available Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS and distributed temperature sensing (DTS systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications.

  16. A Review of Hybrid Fiber-Optic Distributed Simultaneous Vibration and Temperature Sensing Technology and Its Geophysical Applications.

    Science.gov (United States)

    Miah, Khalid; Potter, David K

    2017-11-01

    Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS) and distributed temperature sensing (DTS) systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR) for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications.

  17. Evaporation and Ignition Characteristics of Water Emulsified Diesel under Conventional and Low Temperature Combustion Conditions

    Directory of Open Access Journals (Sweden)

    Zhaowen Wang

    2017-07-01

    Full Text Available The combination of emulsified diesel and low temperature combustion (LTC technology has great potential in reducing engine emissions. A visualization study on the spray and combustion characteristics of water emulsified diesel was conducted experimentally in a constant volume chamber under conventional and LTC conditions. The effects of ambient temperature on the evaporation, ignition and combustion characteristics of water emulsified diesel were studied under cold, evaporating and combustion conditions. Experimental results showed that the ambient temperature had little effect on the spray structures, in terms of the liquid core length, the spray shape and the spray area. However, higher ambient temperature slightly reduced the Sauter Mean Diameter (SMD of the spray droplets. The auto-ignition delay time increased significantly with the decrease of the ambient temperature. The ignition process always occurred at the entrainment region near the front periphery of the liquid core. This entrainment region was evolved from the early injected fuel droplets which were heated and mixed by the continuous entrainment until the local temperature and equivalence ratio reached the ignition condition. The maximum value of integrated natural flame luminosity (INFL reduced by 60% when the ambient temperature dropped from 1000 to 800 K, indicating a significant decrease of the soot emissions could be achieved by LTC combustion mode than the conventional diesel engines.

  18. Study of thermohydraulic characteristics of upgraded feedwater collector in PGV-440 steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Tarankov, G.A.; Trunov, N.B.; Titov, V.F. [OKB Gidropress (Russian Federation); Urbansky, V.V. [Rovno NPP (Ukraine); Lenkei, I.; Notarosh, M. [Paks NPP (Hungary)

    1995-12-31

    Reconstruction of feedwater distribution collector was performed at unit 1 of Rowno NPP. Main results of measurements of temperatures in water volume, reparation characteristics and impurities distribution are presented. Analysis of tests results and design criteria is given. (orig.).

  19. Study of thermohydraulic characteristics of upgraded feedwater collector in PGV-440 steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Tarankov, G A; Trunov, N B; Titov, V F [OKB Gidropress (Russian Federation); Urbansky, V V [Rovno NPP (Ukraine); Lenkei, I; Notarosh, M [Paks NPP (Hungary)

    1996-12-31

    Reconstruction of feedwater distribution collector was performed at unit 1 of Rowno NPP. Main results of measurements of temperatures in water volume, reparation characteristics and impurities distribution are presented. Analysis of tests results and design criteria is given. (orig.).

  20. Mechanical Properties Distribution within Polypropylene Injection Molded Samples: Effect of Mold Temperature under Uneven Thermal Conditions

    Directory of Open Access Journals (Sweden)

    Sara Liparoti

    2017-11-01

    Full Text Available The quality of the polymer parts produced by injection molding is strongly affected by the processing conditions. Uncontrolled deviations from the proper process parameters could significantly affect both internal structure and final material properties. In this work, to mimic an uneven temperature field, a strong asymmetric heating is applied during the production of injection-molded polypropylene samples. The morphology of the samples is characterized by optical and atomic force microscopy (AFM, whereas the distribution of mechanical modulus at different scales is obtained by Indentation and HarmoniX AFM tests. Results clearly show that the temperature differences between the two mold surfaces significantly affect the morphology distributions of the molded parts. This is due to both the uneven temperature field evolutions and to the asymmetric flow field. The final mechanical property distributions are determined by competition between the local molecular stretch and the local structuring achieved during solidification. The cooling rate changes affect internal structures in terms of relaxation/reorganization levels and give rise to an asymmetric distribution of mechanical properties.

  1. Characteristics of Flameless Combustion in 3D Highly Porous Reactors under Diesel Injection Conditions

    Directory of Open Access Journals (Sweden)

    M. Weclas

    2013-01-01

    Full Text Available The heat release process in a free volume combustion chamber and in porous reactors has been analyzed under Diesel engine-like conditions. The process has been investigated in a wide range of initial pressures and temperatures simulating engine conditions at the moment when fuel injection starts. The resulting pressure history in both porous reactors and in free volumes significantly depends on the initial pressure and temperature. At lower initial temperatures, the process in porous reactors is accelerated. Combustion in a porous reactor is characterized by heat accumulation in the solid phase of the porous structure and results in reduced pressure peaks and lowered combustion temperature. This depends on reactor heat capacity, pore density, specific surface area, pore structure, and heat transport properties. Characteristic modes of a heat release process in a two-dimensional field of initial pressure and temperature have been selected. There are three characteristic regions represented by a single- and multistep oxidation process (with two or three slopes in the reaction curve and characteristic delay time distribution has been selected in five characteristic ranges. There is a clear qualitative similarity of characteristic modes of the heat release process in a free volume and in porous reactors. A quantitative influence of porous reactor features (heat capacity, pore density, pore structure, specific surface area, and fuel distribution in the reactor volume has been clearly indicated.

  2. Monitoring system for accuracy and reliability characteristics of standard temperature measurements in WWER-440 reactors

    International Nuclear Information System (INIS)

    Stanc, S.; Repa, M.

    2001-01-01

    Description of a monitoring system for accuracy and reliability characteristics of standard temperature measurements in WWER-440 reactors and benefits obtained from its use are shown in the presentation. As standard reactor temperature measurement, coolant temperature measurement at fuel assembly outlets and in loops, entered into the In-Reactor Control System , are considered. Such systems have been implemented at two V-230 reactors and are under implementation at other four V-213 reactors. (Authors)

  3. Theoretical study on the inverse modeling of deep body temperature measurement

    International Nuclear Information System (INIS)

    Huang, Ming; Chen, Wenxi

    2012-01-01

    We evaluated the theoretical aspects of monitoring the deep body temperature distribution with the inverse modeling method. A two-dimensional model was built based on anatomical structure to simulate the human abdomen. By integrating biophysical and physiological information, the deep body temperature distribution was estimated from cutaneous surface temperature measurements using an inverse quasilinear method. Simulations were conducted with and without the heat effect of blood perfusion in the muscle and skin layers. The results of the simulations showed consistently that the noise characteristics and arrangement of the temperature sensors were the major factors affecting the accuracy of the inverse solution. With temperature sensors of 0.05 °C systematic error and an optimized 16-sensor arrangement, the inverse method could estimate the deep body temperature distribution with an average absolute error of less than 0.20 °C. The results of this theoretical study suggest that it is possible to reconstruct the deep body temperature distribution with the inverse method and that this approach merits further investigation. (paper)

  4. Cold starting characteristics analysis of hydraulic free piston engine

    International Nuclear Information System (INIS)

    Zhang, Shuanlu; Zhao, Zhenfeng; Zhao, Changlu; Zhang, Fujun; Wang, Shan

    2017-01-01

    The cold start characteristic of hydraulic free piston diesel engine may affect its stable operation. Therefore the specific cold start characteristics, such as BDC or TDC positions, pressure in-cylinder, heat release rate, should be investigated in detail. These parameters fluctuate in some regularity in the cod start process. With the development of the free piston engine prototype and the establishment of test bench, the results are obtained. For the dynamic results, the fluctuation range of TDC and BDC positions is 8 mm and decreases with time. The thermodynamic results show that the combustion process is not stable and the pressure in-cylinder fluctuates largely in the cold start process. In addition, the combustion is rapid and knock happens inevitably. In order to investigate the reasons, a CFD model is established for temperature analysis in-cylinder and heat transfer conditions. It is found that higher start wall temperature will lead to more uniform temperature distribution. The delay period may decreases and heat release will move forward. This reason is analyzed by thermodynamic derivation based on the first law of thermodynamics. Finally, the improvement suggestions of cold start strategy are proposed. - Highlights: • The cold start behaviors of HFPE are investigated in detail. • CFD method is used for simulating temperature distribution in start process. • Thermodynamic derivation uncovers the compression temperature distribution. • The improvement suggestions of cold start strategy are proposed.

  5. TUZ, Resonance Integrals in Unresolved Region, Various Temperature, From Porter-Thomas Distribution

    International Nuclear Information System (INIS)

    Kuncir, G.F.

    1969-01-01

    1 - Nature of physical problem solved: TUZ computes resonance integrals for a wide variety of temperatures, compositions, and geometries for the unresolved resonances. 2 - Method of solution: The resonances are considered to be defined by an average over the Porter-Thomas distribution of neutron widths

  6. Thermal characteristics of shape-stabilized phase change material wallboard with periodical outside temperature waves

    International Nuclear Information System (INIS)

    Zhou, Guobing; Yang, Yongping; Wang, Xin; Cheng, Jinming

    2010-01-01

    Thermal characteristics of shape-stabilized phase change material (SSPCM) wallboard with sinusoidal temperature wave on the outer surface were investigated numerically and compared with traditional building materials such as brick, foam concrete and expanded polystyrene (EPS). One-dimensional enthalpy equation under convective boundary conditions was solved using fully implicit finite-difference scheme. The simulation results showed that the SSPCM wallboard presents distinct characteristics from other ordinary building materials. Phase transition keeping time of inner surface and decrement factor were applied to analyze the effects of PCM thermophysical properties (melting temperature, heat of fusion, phase transition zone and thermal conductivity), inner surface convective heat transfer coefficient and thickness of SSPCM wallboard. It was found that melting temperature is one important factor which influences both the phase transition keeping time and the decrement factor; for a certain outside temperature wave, there exist critical values of latent heat of fusion and thickness of SSPCM above which the phase transition keeping time or the decrement factor are scarcely influenced; thermal conductivity of PCM and inner surface convective coefficient have little effect on the phase transition keeping time but significantly influence the decrement factor; and the phase transition zone leads to small fluctuations of the original flat segment of inner surface temperature line. The results aim to be useful for the selection of SSPCMs and their applications in passive solar buildings.

  7. DETERMINATION OF THE TEMPERATURE DISTRIBUTION THE PERFORATED FINS UNDER

    Directory of Open Access Journals (Sweden)

    Aziz7 M. Mhamuad

    2015-02-01

    Full Text Available This work treats the problem of heat transfer for perforated fins under natural convection. The temperature distribution is examined for an array of rectangular fins (15 fins with uniform cross-sectional area (100x270 mm embedded with various vertical body perforations that extend through the fin thickness. The patterns of perforations include 18 circular perforations (holes. Experiments were carried out in an experimental facility that was specifically design and constructed for this purpose. The heat transfer rate and the coefficient of heat transfer increases with perforation diameter increased. 

  8. Cooling of Gas Turbines. 6; Computed Temperature Distribution Through Cross Section of Water-Cooled Turbine Blade

    Science.gov (United States)

    Livingood, John N. B.; Sams, Eldon W.

    1947-01-01

    A theoretical analysis of the cross-sectional temperature distribution of a water-cooled turbine blade was made using the relaxation method to solve the differential equation derived from the analysis. The analysis was applied to specific turbine blade and the studies icluded investigations of the accuracy of simple methods to determine the temperature distribution along the mean line of the rear part of the blade, of the possible effect of varying the perimetric distribution of the hot gas-to -metal heat transfer coefficient, and of the effect of changing the thermal conductivity of the blade metal for a constant cross sectional area blade with two quarter inch diameter coolant passages.

  9. Lunar cryptomaria: Physical characteristics, distribution, and implications for ancient volcanism

    Science.gov (United States)

    Whitten, Jennifer L.; Head, James W.

    2015-02-01

    Cryptomaria, lunar volcanic deposits obscured by crater and basin impact ejecta, can provide important information about the thermal and volcanic history of the Moon. The timing of cryptomare deposition has implications for the duration and flux of mare basalt volcanism. In addition, knowing the distribution of cryptomaria can provide information about mantle convection and lunar magma ocean solidification. Here we use multiple datasets (e.g., M3, LOLA, LROC, Diviner) to undertake a global analysis to identify the general characteristics (e.g., topography, surface roughness, rock abundance, albedo, etc.) of lunar light plains in order to better distinguish between ancient volcanic deposits (cryptomaria) and impact basin and crater ejecta deposits. We find 20 discrete regions of cryptomaria, covering approximately 2% of the Moon, which increase the total area covered by mare volcanism to 18% of the lunar surface. Comparisons of light plains deposits indicate that the two deposit types (volcanic and impact-produced) are best distinguished by mineralogic data. On the basis of cryptomaria locations, the distribution of mare volcanism does not appear to have changed in the time prior to its exposed mare basalt distribution. There are several hypotheses explaining the distribution of mare basalts, which include the influence of crustal thickness, mantle convection patterns, asymmetric distribution of source regions, KREEP distribution, and the influence of a proposed Procellarum impact basin. The paucity of farside mare basalts means that multiple factors, such as crustal thickness variations and mantle convection, are likely to play a role in mare basalt emplacement.

  10. MEASURING NEBULAR TEMPERATURES: THE EFFECT OF NEW COLLISION STRENGTHS WITH EQUILIBRIUM AND {kappa}-DISTRIBUTED ELECTRON ENERGIES

    Energy Technology Data Exchange (ETDEWEB)

    Nicholls, David C.; Dopita, Michael A.; Sutherland, Ralph S.; Kewley, Lisa J. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Rd., Weston ACT 2611 (Australia); Palay, Ethan, E-mail: david@mso.anu.edu.au [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States)

    2013-08-15

    In this paper we develop tools for observers to use when analyzing nebular spectra for temperatures and metallicities, with two goals: to present a new, simple method to calculate equilibrium electron temperatures for collisionally excited line flux ratios, using the latest atomic data; and to adapt current methods to include the effects of possible non-equilibrium ''{kappa}'' electron energy distributions. Adopting recent collision strength data for [O III], [S III], [O II], [S II], and [N II], we find that existing methods based on older atomic data seriously overestimate the electron temperatures, even when considering purely Maxwellian statistics. If {kappa} distributions exist in H II regions and planetary nebulae as they do in solar system plasmas, it is important to investigate the observational consequences. This paper continues our previous work on the {kappa} distribution. We present simple formulaic methods that allow observers to (1) measure equilibrium electron temperatures and atomic abundances using the latest atomic data, and (2) to apply simple corrections to existing equilibrium analysis techniques to allow for possible non-equilibrium effects. These tools should lead to better consistency in temperature and abundance measurements, and a clearer understanding of the physics of H II regions and planetary nebulae.

  11. Resistive switching characteristics of interfacial phase-change memory at elevated temperature

    Science.gov (United States)

    Mitrofanov, Kirill V.; Saito, Yuta; Miyata, Noriyuki; Fons, Paul; Kolobov, Alexander V.; Tominaga, Junji

    2018-04-01

    Interfacial phase-change memory (iPCM) devices were fabricated using W and TiN for the bottom and top contacts, respectively, and the effect of operation temperature on the resistive switching was examined over the range between room temperature and 200 °C. It was found that the high-resistance (RESET) state in an iPCM device drops sharply at around 150 °C to a low-resistance (SET) state, which differs by ˜400 Ω from the SET state obtained by electric-field-induced switching. The iPCM device SET state resistance recovered during the cooling process and remained at nearly the same value for the RESET state. These resistance characteristics greatly differ from those of the conventional Ge-Sb-Te (GST) alloy phase-change memory device, underscoring the fundamentally different switching nature of iPCM devices. From the thermal stability measurements of iPCM devices, their optimal temperature operation was concluded to be less than 100 °C.

  12. Thermocouple and infrared sensor-based measurement of temperature distribution in metal cutting.

    Science.gov (United States)

    Kus, Abdil; Isik, Yahya; Cakir, M Cemal; Coşkun, Salih; Özdemir, Kadir

    2015-01-12

    In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR) pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining.

  13. Effects of sintering time and temperature to the characteristics of FeCrAl powder compacts formed at elevated temperature

    Science.gov (United States)

    Rahman, M. M.; Rahman, H. Y.; Awang, M. A. A.; Sopyan, I.

    2018-01-01

    This paper presents the outcomes of an experimental investigation on the effect of sintering schedule, i.e., holding time and temperature to the final properties of FeCrAl powder compacts prepared through uniaxial die compaction process at above room temperature. The feedstock was prepared by mechanically mixing iron powder ASC 100.29 with chromium (22 wt%) and aluminium (11 wt%) for 30 min at room temperature. A cylindrical shape die was filled with the powder mass and heated for one hour for uniform heating of the die assembly together with the powder mass. Once the temperature reached to the setup temperature, i.e., 150°C, the powder mass was formed by applying an axial pressure of 425 MPa simultaneously from upward and downward directions. The as-pressed green compacts were then cooled to room temperature and subsequently sintered in argon gas fired furnace at a rate of 5°C/min for three different holding times, i.e., 30, 60, and 90 min at three different sintering temperatures, i.e., 800, 900, and 1000°C. The sintered samples were characterized for their density, electrical resistivity, bending strength, and microstructure. The results revealed that the sample sintered at 1000°C for 90 min achieved the better characteristics.

  14. Modelling of electric characteristics of 150-watt peak solar panel using Boltzmann sigmoid function under various temperature and irradiance

    Science.gov (United States)

    Sapteka, A. A. N. G.; Narottama, A. A. N. M.; Winarta, A.; Amerta Yasa, K.; Priambodo, P. S.; Putra, N.

    2018-01-01

    Solar energy utilized with solar panel is a renewable energy that needs to be studied further. The site nearest to the equator, it is not surprising, receives the highest solar energy. In this paper, a modelling of electrical characteristics of 150-Watt peak solar panels using Boltzmann sigmoid function under various temperature and irradiance is reported. Current, voltage, temperature and irradiance data in Denpasar, a city located at just south of equator, was collected. Solar power meter is used to measure irradiance level, meanwhile digital thermometer is used to measure temperature of front and back panels. Short circuit current and open circuit voltage data was also collected at different temperature and irradiance level. Statistically, the electrical characteristics of 150-Watt peak solar panel can be modelled using Boltzmann sigmoid function with good fit. Therefore, it can be concluded that Boltzmann sigmoid function might be used to determine current and voltage characteristics of 150-Watt peak solar panel under various temperature and irradiance.

  15. Dependence on liquid temperature and purity of light emission characteristics in single cavitation bubble luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Barbaglia, Mario O; Bonetto, Fabian J [Consejo Nacional de Investigaciones Cientificas y Tecnicas and Instituto Balseiro, Centro Atomico Bariloche, Av. Bustillo 9500, CP8400, Rio Negro (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, Instituto Balseiro, and Comision Nacional de Energia Atomica, Laboratorio de Cavitacion y Biotecnologia, Centro Atomico Bariloche, Av. Bustillo 9500, CP8400, Rio Negro (Argentina)

    2004-02-15

    We produced single bubbles in water using a visible pulsed laser and studied the characteristics of the light emitted during the bubble collapse time as a function of the water temperature for different water purity values. The water temperature ranged from freezing point (0 deg. C) to near boiling. We measured the luminescence pulse for the mentioned temperature range at various purity values. We also obtained the average bubble lifetime and the average luminescence pulse emitted as a function of water temperature. The main conclusion was that the luminescence can be modified by the water quality and by the water temperature. Maximum luminescence was obtained near the water freezing point.

  16. Dependence on liquid temperature and purity of light emission characteristics in single cavitation bubble luminescence

    International Nuclear Information System (INIS)

    Barbaglia, Mario O.; Bonetto, Fabian J.

    2004-01-01

    We produced single bubbles in water using a visible pulsed laser and studied the characteristics of the light emitted during the bubble collapse time as a function of the water temperature for different water purity values. The water temperature ranged from freezing point (0 deg. C) to near boiling. We measured the luminescence pulse for the mentioned temperature range at various purity values. We also obtained the average bubble lifetime and the average luminescence pulse emitted as a function of water temperature. The main conclusion was that the luminescence can be modified by the water quality and by the water temperature. Maximum luminescence was obtained near the water freezing point

  17. Atmospheric pressure chemical vapor deposition (APCVD) grown bi-layer graphene transistor characteristics at high temperature

    KAUST Repository

    Qaisi, Ramy M.; Smith, Casey; Hussain, Muhammad Mustafa

    2014-01-01

    We report the characteristics of atmospheric chemical vapor deposition grown bilayer graphene transistors fabricated on ultra-scaled (10 nm) high-κ dielectric aluminum oxide (Al2O3) at elevated temperatures. We observed that the drive current increased by >400% as temperature increased from room temperature to 250 °C. Low gate leakage was maintained for prolonged exposure at 100 °C but increased significantly at temperatures >200 °C. These results provide important insights for considering chemical vapor deposition graphene on aluminum oxide for high temperature applications where low power and high frequency operation are required. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Atmospheric pressure chemical vapor deposition (APCVD) grown bi-layer graphene transistor characteristics at high temperature

    KAUST Repository

    Qaisi, Ramy M.

    2014-05-15

    We report the characteristics of atmospheric chemical vapor deposition grown bilayer graphene transistors fabricated on ultra-scaled (10 nm) high-κ dielectric aluminum oxide (Al2O3) at elevated temperatures. We observed that the drive current increased by >400% as temperature increased from room temperature to 250 °C. Low gate leakage was maintained for prolonged exposure at 100 °C but increased significantly at temperatures >200 °C. These results provide important insights for considering chemical vapor deposition graphene on aluminum oxide for high temperature applications where low power and high frequency operation are required. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The maximum temperature of a thermodynamic cycle effect on weight-dimensional characteristics of the NPP energy blocks with air cooling

    International Nuclear Information System (INIS)

    Bezborodov, Yu.A.; Bubnov, V.P.; Nesterenko, V.B.

    1982-01-01

    The cycle maximum temperature effect on the properties of individual apparatuses and total NPP energy blocks characteristics has been investigated. Air, nitrogen, helium and chemically reacting system N 2 O 4 +2NO+O 2 have been considered as coolants. The conducted investigations have shown that maximum temperature of thermodynamical cycle affects considerably both the weight-dimensional characteristics of individual elements of NPP and total characteristics of NPP energy block. Energy blocks of NPP with air cooling wherein dissociating nitrogen tetroxide is used as working body, have better indexes on the majority of characteristics in comparison with blocks with air, nitrogen and helium cooling. If technical restrictions are to be taken into account (thermal resistance of metals, coolant decomposition under high temperatures, etc.) then dissociating nitrogen tetroxide should be recommended as working body and maximum cycle temperature in the range from 500 up to 600 deg C

  20. Modelling transient temperature distribution for injecting hot water through a well to an aquifer thermal energy storage system

    Science.gov (United States)

    Yang, Shaw-Yang; Yeh, Hund-Der; Li, Kuang-Yi

    2010-10-01

    Heat storage systems are usually used to store waste heat and solar energy. In this study, a mathematical model is developed to predict both the steady-state and transient temperature distributions of an aquifer thermal energy storage (ATES) system after hot water is injected through a well into a confined aquifer. The ATES has a confined aquifer bounded by aquicludes with different thermomechanical properties and geothermal gradients along the depth. Consider that the heat is transferred by conduction and forced convection within the aquifer and by conduction within the aquicludes. The dimensionless semi-analytical solutions of temperature distributions of the ATES system are developed using Laplace and Fourier transforms and their corresponding time-domain results are evaluated numerically by the modified Crump method. The steady-state solution is obtained from the transient solution through the final-value theorem. The effect of the heat transfer coefficient on aquiclude temperature distribution is appreciable only near the outer boundaries of the aquicludes. The present solutions are useful for estimating the temperature distribution of heat injection and the aquifer thermal capacity of ATES systems.

  1. Role of growth temperature on the frequency response characteristics of pentacene-based organic devices

    International Nuclear Information System (INIS)

    Shao, Yayun; Zhang, Yang; He, Wenqiang; Wu, Sujuan; Zeng, Min; Zhang, Zhang; Gao, Xingsen; Lu, Xubing; Liu, J-M; Liu, Chuan; Minari, Takeo

    2015-01-01

    The ac frequency response characteristics (FRC) of organic thin film transistors and metal-insulator semiconductor diodes were highly improved by controlling the morphology and electrical characteristics of semiconducting pentacene films. The devices with films grown at 50 °C show much higher cutoff frequency and better frequency stability of flat-band voltage, as compared to those with films grown at other temperatures below or above. The improvement mainly originates from the maximum field effect carrier mobility of 0.78 cm 2 V −1 s −1 and a small metal/organic contact resistance (R c ) obtained in the optimum thin film transistors. Our results indicate growth temperature precisely tunes the film microstructure and metal/semiconductor interface, which together determine the FRC of pentacene-based organic devices. (paper)

  2. Frictional characteristics of stainless steel 440C lubricated with water at pressurized high temperature

    International Nuclear Information System (INIS)

    Kim, E. H.; Lee, J. S.; Kim, J. H.; Kim, J. I.

    2001-01-01

    The fatigue life of stainless steel bearings is one of the most critical factors to determine the performance of the driving system. Because the bearings which are installed on the driving mechanism in the nuclear reactor are operated at high temperature and high pressure and especially lubricated with water with low viscosity, the friction and wear characteristics of the bearing material should be investigated thoroughly. In many control element drive mechanisms in the nuclear reactor the support bearings are made of the stainless steel and the sliding bearing ceramic material mainly. This study is focused on the characteristics of support bearing which may be used in the SMART. The ball bearings are made of standardized 440C stainless steel, and it supports thrust load including the weight of the driving system and external force. The friction and wear characteristics of this material operating under severe lubrication condition are not well known yet, however it will be changed with respect to temperature and boundary pressure. In this paper the friction characteristics are investigated experimentally using the reciprocating tribometer which can simulate the SMART operating conditions. Highly purified water is used as lubricant, and the water is warmed up and pressurized. Friction forces on the reciprocating specimens are measured insitu strain gages

  3. One-dimensional time-dependent conduction states and temperature distribution along a normal zone during a quench

    International Nuclear Information System (INIS)

    Lopez, G.

    1991-01-01

    The quench simulations of a superconducting (s.c.) magnet requires some assumptions about the evolution of the normal zone and its temperature profile. The axial evolution of the normal zone is considered through the longitudinal quench velocity. However, the transversal quench propagation may be considered through the transversal quench velocity or with the turn-to-turn time delay quench propagation. The temperature distribution has been assumed adiabatic-like or cosine-like in two different computer programs. Although both profiles are different, they bring about more or less the same qualitative quench results differing only in about 8%. Unfortunately, there are not experimental data for the temperature profile along the conductor in a quench event to have a realistic comparison. Little attention has received the temperature profile, mainly because it is not so critical parameter in the quench analysis. Nonetheless, a confident quench analysis requires that the temperature distribution along the normal zone be taken into account with good approximation. In this paper, an analytical study is made about the temperature profile

  4. Determination of temperature distributions in fast reactor core coolants

    International Nuclear Information System (INIS)

    Tillman, M.

    1975-04-01

    An analytical method of determination of a temperature distribution in the coolant medium in a fuel assembly of a liquid-metal-fast-breeder-reactor (LMFBR) is presented. The temperature field obtained is applied for a constant velocity (slug flow) fluid flowing, parallel to the fuel pins of a square and hexagonal array assembly. The coolant subchannels contain irregular boundaries. The geometry of the channel due to the rod adjacent to the wall (edge rod) differs from the geometry of the other channels. The governing energy equation is solved analytically, assuming series solutions for the Poisson and diffusion equations, and the total solution is superposed by the two. The boundary conditions are specified by symmetry considerations, assembly wall insulation and a continuity of the temperature field and heat fluxes. The initial condition is arbitrary. The method satisfies the boundary conditions on the irregular boundaries and the initial condition by a least squares technique. Computed results are presented for various geometrical forms, with ratio of rod pitch-to-diameter typical for LMFBR cores. These results are applicable for various fast-reactors, and thus the influence of the transient solution (which solves the diffusion equation) on the total depends on the core parameters. (author)

  5. Analysis of the electrical characteristics of Zn/ZnSe/n-Si/Au-Sb structure fabricated using SILAR method as a function of temperature

    Energy Technology Data Exchange (ETDEWEB)

    Guezeldir, B. [Department of Physics, Faculty of Sciences, University of Atatuerk, 25240 Erzurum (Turkey); Saglam, M., E-mail: msaglam@atauni.edu.t [Department of Physics, Faculty of Sciences, University of Atatuerk, 25240 Erzurum (Turkey); Ates, A. [Department of Physics, Faculty of Sciences, University of Atatuerk, 25240 Erzurum (Turkey)

    2010-09-10

    The Successive Ionic Layer Adsorption and Reaction (SILAR) method has been used to deposit ZnSe thin film onto Si substrate to obtain the Zn/ZnSe/n-Si/Au-Sb sandwich structure. The X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM) methods are used to investigate the structural and morphological properties of films. The XRD and SEM studies reveal that the films are covered well on Si substrate and have good polycrystalline structure and crystalline levels. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics of this structure have been investigated as a function of the temperature (80-300 K) with 20 K steps. The ideality factor (n) and zero-bias barrier height ({Phi}{sub b0}) value which obtained from I-V curves were found to be strongly temperature dependent. While {Phi}{sub b0} increases with increasing temperature, n decreases. This behavior of the {Phi}{sub b0} and n can be attributed to barrier inhomogeneities at the metal-semiconductor (M-S) interface. The temperature dependence of the I-V characteristics of the Zn/ZnSe/n-Si/Au-Sb structure can reveal the existence of a double Gaussian distribution. The mean barrier height and the Richardson constant values are obtained as 0.925 eV and 1.140 eV, 130 A/cm{sup 2} K{sup 2} and 127 A/cm{sup 2} K{sup 2}, from the modified Richardson plot, respectively. Furthermore, the barrier height and carrier concentration are calculated from reverse bias C{sup -2}-V measurements at 200 kHz frequency as a function of the temperature.

  6. MATERIAL DEPENDENCE OF TEMPERATURE DISTRIBUTION IN MULTI-LAYER MULTI-METAL COOKWARE

    Directory of Open Access Journals (Sweden)

    MOHAMMADREZA SEDIGH

    2017-09-01

    Full Text Available Laminated structure is becoming more popular in cookware markets; however, there seems to be a lack of enough scientific studies to evaluate its pros and cons, and to show that how it functions. A numerical model using a finite element method with temperature-dependent material properties has been performed to investigate material and layer dependence of temperature distribution in multi-layer multi-metal plate exposed to irregular heating. Behavior of two parameters including mean temperature value and uniformity on the inner surface of plate under variations of thermal properties and geometrical conditions have been studied. The results indicate that conductive metals used as first layer in bi-layer plates have better thermal performance than those used in the second layer. In addition, since cookware manufacturers increasingly prefer to use all-clad aluminium plate, recently, this structure is analysed in the present study as well. The results show all-clad copper and aluminum plate possesses lower temperature gradient compared with single layer aluminum and all-clad aluminum core plates.

  7. Numerical study of some operating characteristics for argon induction plasmas

    International Nuclear Information System (INIS)

    Ebihara, K.

    1978-01-01

    Some operating characteristics of argon induction plasmas at atmospheric pressure were obtained numerically by using magnetohydrodynamic equations. From these characteristics we can estimate the general dependency of plasma temperatures on operating conditions for induction plasmas. Calculated relationships between the sustaining electric field strength at the plasma surface and the electric power input show the existence of a minimum value of the field strength, the reason for which is revealed by detailed investigation of the calculated radial temperature distributions. Further, it was found that the minimum increases almost linearly with increasing frequency. In addition, characteristics of the Poynting vector and heat conduction loss at the plasma surface were obtained. Some characteristics obtained here give practical information on the electromagnetic field which is necessary to maintain the steady plasmas

  8. Fracture Characteristics of C/SiC Composites for Rocket Nozzle at Elevated Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Dong Hyun; Lee, Jeong Won; Kim, Jae Hoon [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Sihn, Ihn Cheol; Lim, Byung Joo [Dai-Yang Industries Co., Daejeon (Korea, Republic of)

    2016-11-15

    In a solid propulsion system, the rocket nozzle is exposed to high temperature combustion gas. Hence, choosing an appropriate material that could demonstrate adequate performance at high temperature is important. As advanced materials, carbon/silicon carbide composites (C/SiC) have been studied with the aim of using them for the rocket nozzle throat. However, when compared with typical structural materials, C/SiC composites are relatively weak in terms of both strength and toughness, owing to their quasi-brittle behavior and oxidation at high temperatures. Therefore, it is important to evaluate the thermal and mechanical properties of this material before using it in this application. This study presents an experimental method to investigate the fracture behavior of C/SiC composite material manufactured using liquid silicon infiltration (LSI) method at elevated temperatures. In particular, the effects of major parameters, such as temperature, loading, oxidation conditions, and fiber direction on strength and fracture characteristics were investigated. Fractography analysis of the fractured specimens was performed using an SEM.

  9. Research on suitable heating conditions during local PWHT. Pt. 1. Influence of heating conditions on temperature distribution

    International Nuclear Information System (INIS)

    Tanaka, Jinkichi; Horii, Yukihiko; Sato, Masanobu; Murakawa, Hidekazu; Wang Jianhua

    1999-01-01

    To improve weld joint properties a heat treatment so called post weld heat treatment (PWHT) is often implemented for steel weldment. Generally, the PWHT is conducted in a furnace at a factory. But in site welds such as the girth joint of pipe, a local PWHT is applied using electric heater and so on. In the local PWHT steep temperature gradient occurs depending on the heating condition and it leads to rise of the thermal stress in addition to the welding residual stress. However, heating condition is not always defined the same in some standards. Therefore, suitable heat conditions for the local PWHT were studied supposing the power plant and so on experimentally and theoretically. Temperature distribution and thermal strains under different heating conditions were measured during the local PWHT using carbon steel pipes of 340 mm in diameter and 53 mm in wall thickness. The temperature gradient, thermal strain were also analyzed using Finite Element Method (FEM) as axis-symmetric model. Further, the influences of pipe size and heat transfer coefficient on the temperature distribution were analyzed and suitable heating source widths for various pipe sizes were proposed from the viewpoint of temperature distribution. (orig.)

  10. Flow characteristics of a pilot-scale high temperature, short time pasteurizer.

    Science.gov (United States)

    Tomasula, P M; Kozempel, M F

    2004-09-01

    In this study, we present a method for determining the fastest moving particle (FMP) and residence time distribution (RTD) in a pilot-scale high temperature, short time (HTST) pasteurizer to ensure that laboratory or pilot-scale HTST apparatus meets the Pasteurized Milk Ordinance standards for pasteurization of milk and can be used for obtaining thermal inactivation data. The overall dimensions of the plate in the pasteurizer were 75 x 115 mm, with a thickness of 0.5 mm and effective diameter of 3.0 mm. The pasteurizer was equipped with nominal 21.5- and 52.2-s hold tubes, and flow capacity was variable from 0 to 20 L/h. Tracer studies were used to determine FMP times and RTD data to establish flow characteristics. Using brine milk as tracer, the FMP time for the short holding section was 18.6 s and for the long holding section was 36 s at 72 degrees C, compared with the nominal times of 21.5 and 52.2 s, respectively. The RTD study indicates that the short hold section was 45% back mixed and 55% plug flow for whole milk at 72 degrees C. The long hold section was 91% plug and 9% back mixed for whole milk at 72 degrees C. This study demonstrates that continuous laboratory and pilot-scale pasteurizers may be used to study inactivation of microorganisms only if the flow conditions in the holding tube are established for comparison with commercial HTST systems.

  11. Stretched exponential distributions in nature and economy: ``fat tails'' with characteristic scales

    Science.gov (United States)

    Laherrère, J.; Sornette, D.

    1998-04-01

    To account quantitatively for many reported "natural" fat tail distributions in Nature and Economy, we propose the stretched exponential family as a complement to the often used power law distributions. It has many advantages, among which to be economical with only two adjustable parameters with clear physical interpretation. Furthermore, it derives from a simple and generic mechanism in terms of multiplicative processes. We show that stretched exponentials describe very well the distributions of radio and light emissions from galaxies, of US GOM OCS oilfield reserve sizes, of World, US and French agglomeration sizes, of country population sizes, of daily Forex US-Mark and Franc-Mark price variations, of Vostok (near the south pole) temperature variations over the last 400 000 years, of the Raup-Sepkoski's kill curve and of citations of the most cited physicists in the world. We also discuss its potential for the distribution of earthquake sizes and fault displacements. We suggest physical interpretations of the parameters and provide a short toolkit of the statistical properties of the stretched exponentials. We also provide a comparison with other distributions, such as the shifted linear fractal, the log-normal and the recently introduced parabolic fractal distributions.

  12. Climatological characteristics of raindrop size distributions within a topographically complex area

    Science.gov (United States)

    Suh, S.-H.; You, C.-H.; Lee, D.-I.

    2015-04-01

    Raindrop size distribution (DSD) characteristics within the complex area of Busan, Korea (35.12° N, 129.10° E) were studied using a Precipitation Occurrence Sensor System (POSS) disdrometer over a four-year period from 24 February 2001 to 24 December 2004. Average DSD parameters in Busan, a mid-latitude site, were compared with corresponding parameters recorded in the high-latitude site of Järvenpää, Finland. Mean values of median drop diameter (D0) and the shape parameter (μ) in Busan are smaller than those in Järvenpää, whereas the mean normalized intercept parameter (Nw) and rainfall rate (R) are higher in Busan. To analyze the climatological DSD characteristics in more detail, the entire period of recorded rainfall was divided into 10 categories with different temporal and spatial scales. When only convective rainfall was considered, mean Dm and Nw values for all these categories converged around a maritime cluster, except for rainfall associated with typhoons. The convective rainfall of a typhoon showed much smaller Dm and larger Nw compared with the other rainfall categories. In terms of diurnal DSD variability, we observe maritime (continental) precipitation during the daytime (DT) (nighttime, NT), which likely results from sea (land) breeze identified through wind direction analysis. These features also appeared in the seasonal diurnal distribution. The DT and NT Probability Density Function (PDF) during the summer was similar to the PDF of the entire study period. However, the DT and NT PDF during the winter season displayed an inverse distribution due to seasonal differences in wind direction.

  13. Fundamental harmonic electron cyclotron emission for hot, loss-cone type distributions

    International Nuclear Information System (INIS)

    Bornatici, M.; Ruffina, U.; Westerhof, E.

    1988-01-01

    Electron cyclotron emission (ECE) is an important diagnostic tool for the study of hot plasmas. ECE can be used not only to measure the electron temperature but also to obtain information about non-thermal characteristics of the electron distribution function. One such a nonthermal characteristic is a loss-cone anisotropy. Loss-cone anisotropy can give rise to unstable growth of electro-magnetic waves around the harmonics of the electron cyclotron resonance and to increased emissivity of electron cyclotron waves. In case of high electron temperatures, also the dispersion properties of the extraordinary (X-) mode arond the fundamental electron cyclotron resonance are changed due to loss-cone anisotropy. The consequences of these dispersion properties for the emissivity of the fundamental harmonic X-mode are analyzed for perpendicular propagation. The emissivity, is calculated for two types of distribution functions having a loss-cone anisotropy. These distribution functions are a relativistic Dory-Guest-Harris type distribution function and modified relativistic Maxwellian distribution having a loss-cone with rounded edges (author). 9 refs.; 2 figs

  14. Effect of temperature on the morphological characteristics of Botrytis cinerea and its correlated with the genetic variability

    Directory of Open Access Journals (Sweden)

    Jorge G Fernández

    2014-07-01

    Full Text Available Objective: To study the effect of temperature on the morphological characteristics of Botrytis cinerea (B. cinerea and its correlated with the genetic variability. B. cinerea is a plant-pathogenic fungus that produces the disease known as grey mould in a wide variety of agriculturally important hosts in many countries. Methods: Six strains from different host collected have been isolated and characterized by several methods as mycelial growth, fungicide resistance, pathogenicity and the effects of the temperature. Also was analyzed by PCR and distinguished by the presence or absence of transposable elements. Results: Results showed that clear morphological differences exist between strains at the temperature of 4, 12 and 28 °C. All strains analyzed molecularly were classified as Group II (transposa-type. Demonstrating a negative correlation between mycelial growth and other characteristics as the fungicide resistance and pathogenicity. Lastly, it is difficult to establish relationships phenotypic and genotypic between strains of B. cinerea. Conclusions: The results indicated that the mycelial growth, resistance at fungicide and pathogenicity are independent of the characteristics molecular, however, are dependent of a factor such as temperature.

  15. Characteristic test of initial HTTR core

    International Nuclear Information System (INIS)

    Nojiri, Naoki; Shimakawa, Satoshi; Fujimoto, Nozomu; Goto, Minoru

    2004-01-01

    This paper describes the results of core physics test in start-up and power-up of the HTTR. The tests were conducted in order to ensure performance and safety of the high temperature gas cooled reactor, and was carried out to measure the critical approach, the excess reactivity, the shutdown margin, the control rod worth, the reactivity coefficient, the neutron flux distribution and the power distribution. The expected core performance and the required reactor safety characteristics were verified from the results of measurements and calculations

  16. Soil temperature distribution around a U-tube heat exchanger in a multi-function ground source heat pump system

    International Nuclear Information System (INIS)

    Li Shuhong; Yang Weihua; Zhang Xiaosong

    2009-01-01

    The imbalance of heat extracted from the earth by the underground heat exchangers in winter and ejected into it in summer is expected to affect the long term performance of conventional ground source heat pump (GSHP) in territories with a cold winter and a warm summer such as the middle and downstream areas of the Yangtze River in China. This paper presents a new multi-function ground source heat pump (MFGSHP) system which supplies hot water as well as space cooling/heating to mitigate the soil imbalance of the extracted and ejected heat by a ground source heat pump system. The heat transfer characteristic is studied and the soil temperature around the underground heat exchangers are simulated under a typical climatic condition of the Yangtze River. A three-dimensional model was constructed with the commercial computational fluid dynamics software FLUENT based on the inner heat source theory. Temperature distribution and variation trend of a tube cluster of the underground heat exchanger are simulated for the long term performance. The results show that the soil temperature around the underground tube keeps increasing due to the surplus heat ejected into the earth in summer, which deteriorates the system performance and may lead to the eventual system deterioration. The simulation shows that MFGSHP can effectively alleviate the temperature rise by balancing the heat ejected to/extracted from underground by the conventional ground source heat pump system. The new system also improves the energy efficiency.

  17. An axial heat transfer analytical model for capillary-pumped loop vapor line temperature distributions

    International Nuclear Information System (INIS)

    Lin, H.-W.; Lin, W.-K.

    2007-01-01

    This paper aims to study the capillary-pumped loop (CPL) vapor line temperature distributions. A simple axial heat transfer method is developed to predict the vapor line temperature from evaporator outlet to condenser inlet. CPL is a high efficiency two-phase heat transfer device. Since it does not need any other mechanical force such as pump, furthermore, it might be used to do the thermal management of high power electronic component such as spacecraft, notebook and computer servers. It is a cyclic circulation pumped by capillary force, and this force is generated from the fine porous structure in evaporator. A novel semi-arc porous evaporator to CPL in 1U server is designed on the ground with a horizontal position and scale down the whole device to the miniature size. From the experimental results, the CPL could remove heat 90 W in steady-state and keep the heat source temperature about 70 deg. C. Finally, a good agreement between the simulation and experimental values has been achieved. Comparing with experiment and simulation results, the deviation values of the distributions of the condenser inlet temperature are less than 8%

  18. Effects of exhaust temperature on helicopter infrared signature

    International Nuclear Information System (INIS)

    Cheng-xiong, Pan; Jing-zhou, Zhang; Yong, Shan

    2013-01-01

    The effects of exhaust temperature on infrared signature (in 3–5 μm band) for a helicopter equipped with integrative infrared suppressor were numerically investigated. The internal flow of exhaust gas and the external downwash flow, as well as the mixing between exhaust gas and downwash were simulated by CFD software to determine the temperature distributions on the helicopter skin and in the exhaust plume. Based on the skin and plume temperature distributions, a forward–backward ray-tracing method was used to calculate the infrared radiation intensity from the helicopter with a narrow-band model. The results show that for a helicopter with its integrative infrared suppressor embedded inside its rear airframe, the exhaust temperature has significant influence on the plume radiation characteristics, while the helicopter skin radiation intensity has little impact. When the exhaust temperature is raised from 900 K to 1200 K, the plume radiation intensity in 3–5 μm band is increased by about 100%, while the skin radiation intensity is increased by only about 5%. In general, the effects of exhaust temperature on helicopter infrared radiation intensity are mainly concentrated on plume, especially obvious for a lower skin emissivity case. -- Highlights: ► The effect of exhaust temperature on infrared signature for a helicopter is numerically investigated. ► The impact of exhaust temperature on helicopter skin temperature is revealed. ► The impact of exhaust temperature on plume radiation characteristics is revealed. ► The impact of exhaust temperature on helicopter skin radiation is revealed. ► The impact of exhaust temperature on helicopter's total infrared radiation intensity is revealed

  19. Thermocouple and Infrared Sensor-Based Measurement of Temperature Distribution in Metal Cutting

    Directory of Open Access Journals (Sweden)

    Abdil Kus

    2015-01-01

    Full Text Available In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining.

  20. Thermocouple and Infrared Sensor-Based Measurement of Temperature Distribution in Metal Cutting

    Science.gov (United States)

    Kus, Abdil; Isik, Yahya; Cakir, M. Cemal; Coşkun, Salih; Özdemir, Kadir

    2015-01-01

    In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR) pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining. PMID:25587976

  1. Low temperature transient response and electroluminescence characteristics of OLEDs based on Alq3

    Science.gov (United States)

    Yuan, Chao; Guan, Min; Zhang, Yang; Li, Yiyang; Liu, Shuangjie; Zeng, Yiping

    2017-08-01

    In this work, the organic light-emitting diodes (OLEDs) based on Alq3 are fabricated. In order to make clear the transport mechanism of carriers in organic light-emitting devices at low temperature, detailed electroluminescence transient response and the current-voltage-luminescence (I-V-L) characteristics under different temperatures in those OLEDs are investigated. It founds that the acceleration of brightness increases with increasing temperature is maximum when the temperature is 200 K and it is mainly affected by the electron transport layer (Alq3). The MoO3 injection layer and the electroluminescent layer have great influence on the delay time when the temperature is 200 K. Once the temperature is greater than 250 K, the delay time is mainly affected by the MoO3 injection layer. On the contrary, the fall time is mainly affected by the electroluminescent material. The Vf is the average growth rate of fall time when the temperature increases 1 K which represents the accumulation rate of carriers. The difference between Vf caused by the MoO3 injection layer is 0.52 us/K and caused by the electroluminescent material Ir(ppy)3 is 0.73 us/K.

  2. On bounds for the characteristic functions of some degenerate multidimensional distributions

    International Nuclear Information System (INIS)

    Shervashidze, T.

    2002-12-01

    We discuss an application of an inequality for the modulus of the characteristic function of a system of monomials in random variables to the convergence of the density of the corresponding system of the sample mixed moments. We also consider the behavior of constants in the inequality for the characteristic function of a trigonometric analogue of the above-mentioned system when the random variables are independent and uniformly distributed. Both inequalities were derived earlier by the author from a multidimensional analogue of Vinogradov's inequality for a trigonometric integral. As a byproduct the lower bound for the spectrum of A k A k ' is obtained, where A k is the matrix of coefficients of the first k+1 Chebyshev polynomials of first kind. (author)

  3. Vertical Distribution of Temperature in Transitional Season II and West Monsoon in Western Pacific

    Science.gov (United States)

    Pranoto, Hikari A. H.; Kunarso; Soeyanto, Endro

    2018-02-01

    Western Pacific is the water mass intersection from both the Northern Pacific and Southern Pacific ocean. The Western Pacific ocean is warm pool area which formed by several warm surface currents. As a warm pool area and also the water mass intersection, western Pacific ocean becomes an interesting study area. The object of this study is to describe the temperature vertical distribution by mooring buoy and temporally in transitional season II (September - November 2014) and west monsoon (December 2014 - February 2015) in Western Pacific. Vertical temperature and wind speed data that was used in this study was recorded by INA-TRITON mooring instrument and obtained from Laboratory of Marine Survey, BPPT. Supporting data of this study was wind vector data from ECMWF to observe the relation between temperature distribution and monsoon. The quantitative approach was used in this study by processing temperature and wind data from INA-TRITON and interpreted graphically. In the area of study, it was found that in transitional season II the range of sea surface temperature to 500-meter depth was about 8.29 - 29.90 °C while in west monsoon was 8.12 - 29.45 °C. According to the research result, the sea SST of western Pacific ocean was related to monsoonal change with SST and wind speed correlation coefficient was 0.78. While the deep layer temperature was affected by water mass flow which passes through the western Pacific Ocean.

  4. CONTEMPT, LWR Containment Pressure and Temperature Distribution in LOCA

    International Nuclear Information System (INIS)

    Hargroves, D.W.; Metcalfe, L.J.; Cheng, Teh-Chin; Wheat, L.L.; Mings, W.J.

    1991-01-01

    1 - Description of problem or function: CONTEMPT-LT was developed to predict the long-term behavior of water-cooled nuclear reactor containment systems subjected to postulated loss-of-coolant accident (LOCA) conditions. CONTEMPT-LT calculates the time variation of compartment pressures, temperatures, mass and energy inventories, heat structure temperature distributions, and energy exchange with adjacent compartments. The program is capable of describing the effects of leakage on containment response. Models are provided for fan cooler and cooling spray engineered safety systems. One to four compartments can be modeled, and any compartment except the reactor system may have both a liquid pool region and an air-vapor atmosphere region above the pool. Each region is assumed to have a uniform temperature, but the temperatures of the two regions may be different. The user determines the compartments to be used, specifies input mass and energy additions, defines heat structure and leakage systems, and prescribes the time advancement and output control. CONTEMPT-LT/28-H (NESC0433/08) includes also models for hydrogen combustion. 2 - Method of solution: The initial conditions of the containment atmosphere are calculated from input values, and the initial temperature distributions through the containment structures are determined from the steady-state solution of the heat conduction equations. A time advancement proceeds as follows. The input water and energy rates are evaluated at the midpoint of a time interval and added to the containment system. Pressure suppression, spray system effects, and fan cooler effects are calculated using conditions at the beginning of a time-step. Leakage and heat losses or gains, extrapolated from the last time-step, are added to the containment system. Containment volume pressure and temperature are estimated by solving the mass, volume, and energy balance equations. Using these results as boundary conditions, the heat conduction equations

  5. Effects of uneven temperature of IGBT and diode on switching characteristics of bridge legs in MW-level power converters

    DEFF Research Database (Denmark)

    Luo, Haoze; Iannuzzo, Francesco; Blaabjerg, Frede

    2016-01-01

    profile, the junction temperatures of inspected IGBT and related commutation diode are controlled independently using off-line test platform. In consideration of the structural layout, parasitic parameter effects and independent junction temperature control, a high-power switching characteristics platform...... was built. High power compact IGBT modules with 1.7kV rating and 3.6kA current rating are used for the experimental evaluation and platform feasibility. The quantitative analyses of uneven temperature effects on the switching characteristics are investigated and experimentally validated....

  6. An analysis of the temperature distribution in the pipe bending using high frequency induction heating

    International Nuclear Information System (INIS)

    Fukue, Hisayoshi; Mochizuki, Yoji; Nakamura, Harushige; Kobo, Hiroshi; Nitta, Tetsuo; Kawakami, Kiyoshi

    1986-01-01

    A pipe bending apparatus has recently been developed by applying high frequency induction heating. However, the smaller the radius of pipe bending, the greater becomes the reduction in wall thickness and the ovality of the pipe form. This makes it impossible to manufacture pipe bending which will meet the nuclear pipe design code. In order to solve this problem it is crucial to obtain a temperature distributions in a pipe which is moving. It is calculated by giving the following boundary conditions : distribution of the heat generation rate, and that of heat transfer of cooling water. In the process of analyzing these distributions, the following results were obtained. (1) The distribution of the heat generation rate is determined by the sink of energy flux of Poynting vectors. The coil efficiency thus calculated was sixty percent. This figure accords with the test data. (2) The distribution of heat transfer coefficient of cooling water is mainly determined by the rate of liquid film heat transfer, but departure from nucleate boiling and dryout has to be taken into consideration. (3) TRUMP CODE is modified so that the temperature distribution in moving pipes can be calculated by taking the boundary conditions into account. The calculated results were in accordance with the test data. (author)

  7. Inhomogeneous barrier height effect on the current–voltage characteristics of an Au/n-InP Schottky diode

    International Nuclear Information System (INIS)

    Zeghdar, Kamal; Dehimi, Lakhdar; Saadoune, Achour; Sengouga, Nouredine

    2015-01-01

    We report the current–voltage (I–V) characteristics of the Schottky diode (Au/n-InP) as a function of temperature. The SILVACO-TCAD numerical simulator is used to calculate the I–V characteristic in the temperature range of 280–400 K. This is to study the effect of temperature on the I–V curves and assess the main parameters that characterize the Schottky diode such as the ideality factor, the height of the barrier and the series resistance. The I–V characteristics are analyzed on the basis of standard thermionic emission (TE) theory and the inhomogeneous barrier heights (BHs) assuming a Gaussian distribution. It is shown that the ideality factor decreases while the barrier height increases with increasing temperature, on the basis of TE theory. Furthermore, the homogeneous BH value of approximately 0.524 eV for the device has been obtained from the linear relationship between the temperature-dependent experimentally effective BHs and ideality factors. The modified Richardson plot, according to the inhomogeneity of the BHs, has a good linearity over the temperature range. The evaluated Richardson constant A * was 10.32 A·cm −2 ·K −2 , which is close to the theoretical value of 9.4 A·cm −2 ·K −2 for n-InP. The temperature dependence of the I–V characteristics of the Au/n-InP Schottky diode have been successfully explained on the basis of the thermionic emission (TE) mechanism with a Gaussian distribution of the Schottky barrier heights (SBHs). Simulated I–V characteristics are in good agreement with the measurements [Korucu D, Mammadov T S. J Optoelectronics Advanced Materials, 2012, 14: 41]. The barrier height obtained using Gaussian Schottky barrier distribution is 0.52 eV, which is about half the band gap of InP. (paper)

  8. Inhomogeneous barrier height effect on the current-voltage characteristics of an Au/n-InP Schottky diode

    Science.gov (United States)

    Zeghdar, Kamal; Dehimi, Lakhdar; Saadoune, Achour; Sengouga, Nouredine

    2015-12-01

    We report the current-voltage (I-V) characteristics of the Schottky diode (Au/n-InP) as a function of temperature. The SILVACO-TCAD numerical simulator is used to calculate the I-V characteristic in the temperature range of 280-400 K. This is to study the effect of temperature on the I-V curves and assess the main parameters that characterize the Schottky diode such as the ideality factor, the height of the barrier and the series resistance. The I-V characteristics are analyzed on the basis of standard thermionic emission (TE) theory and the inhomogeneous barrier heights (BHs) assuming a Gaussian distribution. It is shown that the ideality factor decreases while the barrier height increases with increasing temperature, on the basis of TE theory. Furthermore, the homogeneous BH value of approximately 0.524 eV for the device has been obtained from the linear relationship between the temperature-dependent experimentally effective BHs and ideality factors. The modified Richardson plot, according to the inhomogeneity of the BHs, has a good linearity over the temperature range. The evaluated Richardson constant A* was 10.32 A·cm-2·K-2, which is close to the theoretical value of 9.4 A·cm-2·K-2 for n-InP. The temperature dependence of the I-V characteristics of the Au/n-InP Schottky diode have been successfully explained on the basis of the thermionic emission (TE) mechanism with a Gaussian distribution of the Schottky barrier heights (SBHs). Simulated I-V characteristics are in good agreement with the measurements [Korucu D, Mammadov T S. J Optoelectronics Advanced Materials, 2012, 14: 41]. The barrier height obtained using Gaussian Schottky barrier distribution is 0.52 eV, which is about half the band gap of InP.

  9. Study on heat and mass transfer characteristics of humid air-flow in a fin bundle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Hwi [Air-Conditioner Research Laboratory, LG Electronics, Seoul 153-082 (Korea); Koyama, Shigeru; Kuwahara, Ken [Department of Energy and Environmental Engineering, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Kwon, Jeong-Tae [Department of Mechanical Engineering, Hoseo University, Asan, Chungnam 336-795 (Korea); Park, Byung-Duck [School of Mechanical and Automotive Engineering, Kyungpook National University, Sangju, Gyeongbuk 742-711 (Korea)

    2010-11-15

    This paper deals with the heat and mass transfer characteristics of humid air-flow under frosting conditions. A slit fin bundle was used for the simulation of fins of a heat exchanger. The effects of the cooling block temperature, air humidity and air velocity on the frosting characteristics were experimentally investigated. The frosted mass was affected considerably by the cooling block temperature and air humidity. However, the effect of air velocity on it was not so large. The pressure drop was affected remarkably by all experimental parameters in this study. Local heat flux distribution and frost thickness distribution on each fin were predicted from the measured fin temperatures and the mass and energy conservation equations on the frost surface and inside the frost layer. (author)

  10. Multi-objective analysis of impacts of distributed generation placement on the operational characteristics of networks for distribution system planning

    Energy Technology Data Exchange (ETDEWEB)

    Barin, Alexandre; Pozzatti, Luis F.; Canha, Luciane N.; Abaide, Alzenira R. [Federal University of Santa Maria - UFSM, Post-graduation Program of Electric Engineering - PPGEE, Center of Studies of Energy and Environment - CEEMA, Santa Maria, RS (Brazil); Machado, Ricardo Q. [University of Sao Paulo - USP, Sao Carlos, SP (Brazil); Arend, Gustavo [State Electric Energy Company - CEEE-D, Division of Distribution, Porto Alegre, RS (Brazil)

    2010-12-15

    Recent advances in energy technology generation and new directions in electricity regulation have made distributed generation (DG) more widespread, with consequent significant impacts on the operational characteristics of distribution networks. For this reason, new methods for identifying such impacts are needed, together with research and development of new tools and resources to maintain and facilitate continued expansion towards DG. This paper presents a study aimed at determining appropriate DG sites for distribution systems. The main considerations which determine DG sites are also presented, together with an account of the advantages gained from correct DG placement. The paper intends to define some quantitative and qualitative parameters evaluated by Digsilent registered, GARP3 registered and DSA-GD software. A multi-objective approach based on the Bellman-Zadeh algorithm and fuzzy logic is used to determine appropriate DG sites. The study also aims to find acceptable DG locations both for distribution system feeders, as well as for nodes inside a given feeder. (author)

  11. Prediction of vertical distribution and ambient development temperature of Baltic cod, Gadus morhua L., eggs

    DEFF Research Database (Denmark)

    Wieland, Kai; Jarre, Astrid

    1997-01-01

    An artificial neural network (ANN) model was established to predict the vertical distribution of Baltic cod eggs. Data from vertical distribution sampling in the Bornholm Basin over the period 1986-1995 were used to train and test the network, while data sets from sampling in 1996 were used...... for validation. The model explained 82% of the variance between observed and predicted relative frequencies of occurrence of the eggs in relation to salinity, temperature and oxygen concentration; The ANN fitted all observations satisfactorily except for one sampling date, where an exceptional hydrographic...... situation was observed. Mean ambient temperatures, calculated from the predicted vertical distributions of the eggs and used for the computation of egg developmental times, were overestimated by 0.05 degrees C on average. This corresponds to an error in prediction of egg developmental time of less than 1%...

  12. EISCAT measurements of ion temperatures which indicate non-isotropic ion velocity distributions

    International Nuclear Information System (INIS)

    Perraut, S.; Brekke, A.; Hubert, D.

    1984-01-01

    Substantial increases of the ion temperature can be observed at high latitudes as a consequence of strong convection electric fields. We have measured, with EISCAT, three independent components of the ion velocity vector and temperature in the same scattering volume, at about 300 km. During periods of strong variations in ion velocity (consequently of the E-field), the ion temperatures derived at the 3 sites are different. This difference, which appears to be systematic for the two experiments studied, can be interpreted in terms of different ion temperature perpendicular and parallel to the magnetic field, i.e. Tsub(i perpendicular) greater than Tsub(i parallel). Assuming that a bi-Maxwellian distribution is present for convection electric field strengths as large as 50 mV m -1 , one obtains an anisotropy factor of approximately 1.5. It also appears that resonant charge exchange is the dominant collision process. During the evening sector events studied, the electron density was decreasing, whereas the electron temperature was generally increasing. Such events are strongly related to variations in the magnetic H component detected on the ground. (author)

  13. Micro-macro model for prediction of local temperature distribution in heterogeneous and two-phase media

    Directory of Open Access Journals (Sweden)

    Furmański Piotr

    2014-09-01

    Full Text Available Heat flow in heterogeneous media with complex microstructure follows tortuous path and therefore determination of temperature distribution in them is a challenging task. Two-scales, micro-macro model of heat conduction with phase change in such media was considered in the paper. A relation between temperature distribution on the microscopic level, i.e., on the level of details of microstructure, and the temperature distribution on the macroscopic level, i.e., on the level where the properties were homogenized and treated as effective, was derived. The expansion applied to this relation allowed to obtain its more simplified, approximate form corresponding to separation of micro- and macro-scales. Then the validity of this model was checked by performing calculations for 2D microstructure of a composite made of two constituents. The range of application of the proposed micro-macro model was considered in transient states of heat conduction both for the case when the phase change in the material is present and when it is absent. Variation of the effective thermal conductivity with time was considered and a criterion was found for which application of the considered model is justified.

  14. Study of the magnetic field distribution in high-temperature superconductors using muon-spin-rotation

    International Nuclear Information System (INIS)

    Zimmermann, P.R.

    1994-01-01

    Detailed and systematic μ + SR experiments have been performed in order to (i) investigate the temperature dependence of the magnetic penetration depth in various cuprate high-T c superconductors and (ii) study the vortex structures and dynamics in the highly anisotropic Bi 2 Sr 2 CaCu 2 O 8 . The μ + SR method and its application to superconductivity has been discussed. The positive muon is a microscopic probe of the local magnetic field in the bulk of a sample. The μ + SR technique can therefore measure the magnetic field distribution p(B) which is determined by the flux structure in the superconductor. The second moment (ΔB 2 ) of p(B) is closely related to the magnetic penetration depth λ, a fundamental parameter of superconductivity. It has been shown that in high-quality sintered samples a good estimate of the in-plane penetration depth λ ab can be given in terms of the muon-depolarization rate σ. Since the penetration depth is related to the superconducting order parameter, the temperature dependence of the penetration depth is a potential probe of the pairing state. Systematic measurements of the temperature dependence of σ have been performed in sintered samples of high quality in various members of the Y123 family, Pb and Y doped Tl1212 family, and also in Y124 and Bi2212. It is found that the extracted temperature behaviour of λ ab -2 is characteristic of each compound. This can be interpreted as a varying coupling strength in these systems. In well oxygenated Y123, λ ab -2 (T) is well described by the two-fluid model indicating strong coupling. The rest of the cuprates investigated show a λ ab -2 (T) which points to weaker coupling, with λ ab -2 (T) of highly oxygen deficient Y123 being similar to the weak-coupling BCS prediction. In the Y123 family the decreasing coupling strength with decreasing oxygen content is related to the increasing anisotropy. Comparison with theoretical predictions of λ ab -2 (T) revealed that the observed

  15. High-temperature microstructural characteristics of a novel biomedical titanium alloy

    International Nuclear Information System (INIS)

    Chang, Ming-Chih; Luo, Chin-Wan; Huang, Mao-Suan; Ou, Keng-Liang; Lin, Li-Hsiang; Cheng, Hsin-Chung

    2010-01-01

    In this study, the high-temperature microstructural characteristics of the Ti-5Al-1Sn-1Fe-1Cr (Ti-5111) alloy were determined by optical microscopy, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectrometry. During solution treatment between 800 and 1000 o C, the phase transformation sequence of the alloy was found to be (α + β) → (α + α' + β) → (α + α' + α'' + residual β) → (α' + β). The residual β phase subsequently transforms to the α'' phase during quenching. The driving force for this transformation is the cooling rate. The martensite starting point (Ms) and β transus temperature of the Ti-5111 alloy are nearly 860 and 960 o C, respectively. These values are lower than those of the Ti-6Al-4V alloy. Moreover, it is believed that the concentration of Al in α' martensite plays a crucial role in the formation of the twin-type martensite.

  16. Distributed fiber-optic temperature sensing: recent improvements and Nagra's applications in the Mont Terri URL

    International Nuclear Information System (INIS)

    Vogt, Tobias; Mueller, Herwig R.; Vietor, Tim; Frieg, Bernd

    2012-01-01

    Document available in extended abstract form only. Full text of publication follows: The application of fiber-optic sensors in large experiments in underground rock laboratories (URL) and for monitoring of pilot repositories offers several advantages in contrast to conventional sensors. By means of optical fibers distributed temperature and deformation measurements can be performed without electric or mechanical components at the measurement location reducing the risk of corrosion and sensor failure. As fiber-optic strain sensors are to some extend still in a prototype stage, we focus here on Raman spectra distributed fiber-optic temperature sensing (DTS). In DTS a fiber-optic cable, which is the temperature sensor, is connected to a light reading unit that sends laser-pulses into the fiber. The backscattered light is detected with high temporal resolution. From the two-way-light-travel-time the location of backscattering is determined. For the temperature information the amplitude ratio of the Stokes and anti-Stokes signals is analyzed. The Stokes and anti- Stokes signals are the result of the Raman effect. The ratio of these signals provides a quantity that depends only on the temperature of the fiber at the location of backscatter. With commercial DTS setups it is possible to measure the temperature distribution along several kilometer long cables with a temperature resolution of 0.01 C and a spatial resolution of 1 m. Recent developments in DTS focus on better temperature precision and resolution. This advancement can be achieved by experiment-specific calibration techniques and sensor-layout as well as improved instruments. To realize high spatial resolution (cm range) wrapped fiber-optic cables can be applied. Another promising approach to monitor moisture along a fiber-optic cable installed in unconsolidated material are heatable cables. We will present a selection of the most recent advancements which may improve temperature monitoring in natural and

  17. Studies on the temperature distribution of steel plates with different paints under solar radiation

    International Nuclear Information System (INIS)

    Liu, Hongbo; Chen, Zhihua; Chen, Binbin; Xiao, Xiao; Wang, Xiaodun

    2014-01-01

    Thermal effects on steel structures exposed to solar radiation are significant and complicated. Furthermore, the solar radiation absorption coefficient of steel surface with different paintings is the main factor affecting the non-uniform temperature of spatial structures under solar radiation. In this paper, nearly two hundreds steel specimens with different paintings were designed and measured to obtain their solar radiation absorption coefficients using spectrophotometer. Based on the test results, the effect of surface color, painting type, painting thickness on the solar radiation absorption coefficient was analyzed. The actual temperatures under solar radiation for all specimens were also measured in summer not only to verify the absorption coefficient but also provide insight for the temperature distribution of steel structures with different paintings. A numerical simulation and simplified formula were also conducted and verified by test, in order to study the temperature distribution of steel plates with different paints under solar radiation. The results have given an important reference in the future research of thermal effect of steel structures exposed to solar radiation. - Highlights: • Solar radiation absorptions for steel with different paintings were measured. • The temperatures of all specimens under solar radiation were measured. • The effect of color, thickness and painting type on solar absorption was analyzed. • A numerical analysis was conducted and verified by test data. • A simplified formula was deduced and verified by test data

  18. Phase distribution and microstructural changes of self-compacting cement paste at elevated temperature

    International Nuclear Information System (INIS)

    Ye, G.; Liu, X.; De Schutter, G.; Taerwe, L.; Vandevelde, P.

    2007-01-01

    Self-compacting concrete, as a new smart building material with various advanced properties, has been used for a wide range of structures and infrastructures. However little investigation have been reported on the properties of Self-compacting when it is exposed to elevated temperatures. Previous experiments on fire test have shown the differences between high performance concrete and traditional concrete at elevated temperature. This difference is largely depending on the microstructural properties of concrete matrix, i.e. the cement paste, especially on the porosity, pore size distribution and the connectivity of pores in cement pastes. In this contribution, the investigations are focused on the cement paste. The phase distribution and microstructural changes of self-compacting cement paste at elevated temperatures are examined by mercury intrusion porosimetry and scanning electron microscopy. The chemical decomposition of self-compacting cement paste at different temperatures is determined by thermogravimetric analysis. The experimental results of self-compacting cement paste are compared with those of high performance cement paste and traditional cement paste. It was found that self-compacting cement paste shows a higher change of the total porosity in comparison with high performance cement paste. When the temperature is higher than 700 deg. C, a dramatic loss of mass was observed in the self-compacting cement paste samples with addition of limestone filler. This implies that the SCC made by this type of self-compacting cement paste will probably show larger damage once exposed to fire. Investigation has shown that 0.5 kg/m 3 of Polypropylene fibers in the self-compacting cement paste can avoid the damage efficiently

  19. Atomic density effects on temperature characteristics and thermal transport at grain boundaries through a proper bin size selection

    Energy Technology Data Exchange (ETDEWEB)

    Vo, Truong Quoc; Kim, BoHung, E-mail: muratbarisik@iyte.edu.tr, E-mail: bohungk@ulsan.ac.kr [School of Mechanical Engineering, University of Ulsan, Daehak-ro 93, Namgu, Ulsan 680-749 (Korea, Republic of); Barisik, Murat, E-mail: muratbarisik@iyte.edu.tr, E-mail: bohungk@ulsan.ac.kr [Department of Mechanical Engineering, Izmir Institute of Technology, Urla, Izmir 35430 (Turkey)

    2016-05-21

    This study focuses on the proper characterization of temperature profiles across grain boundaries (GBs) in order to calculate the correct interfacial thermal resistance (ITR) and reveal the influence of GB geometries onto thermal transport. The solid-solid interfaces resulting from the orientation difference between the (001), (011), and (111) copper surfaces were investigated. Temperature discontinuities were observed at the boundary of grains due to the phonon mismatch, phonon backscattering, and atomic forces between dissimilar structures at the GBs. We observed that the temperature decreases gradually in the GB area rather than a sharp drop at the interface. As a result, three distinct temperature gradients developed at the GB which were different than the one observed in the bulk solid. This behavior extends a couple molecular diameters into both sides of the interface where we defined a thickness at GB based on the measured temperature profiles for characterization. Results showed dependence on the selection of the bin size used to average the temperature data from the molecular dynamics system. The bin size on the order of the crystal layer spacing was found to present an accurate temperature profile through the GB. We further calculated the GB thickness of various cases by using potential energy (PE) distributions which showed agreement with direct measurements from the temperature profile and validated the proper binning. The variation of grain crystal orientation developed different molecular densities which were characterized by the average atomic surface density (ASD) definition. Our results revealed that the ASD is the primary factor affecting the structural disorders and heat transfer at the solid-solid interfaces. Using a system in which the planes are highly close-packed can enhance the probability of interactions and the degree of overlap between vibrational density of states (VDOS) of atoms forming at interfaces, leading to a reduced ITR. Thus, an

  20. By-pass flows and temperature distribution in a hot gas duct internally insulated by carbon stone

    International Nuclear Information System (INIS)

    Konuk, A.A.

    1979-01-01

    A mathematical model has been developed to calculate by-pass flows and temperature distribution in a hot gas duct internally insulated by carbon stone rings. The equations of conservation of mass and momentum are solved for a piping system to obtain axial and radial by-pass velocities. The energy equation is solved next by a marching method to obtain the radial temperature distribution along the duct. The results, although qualitative due to simplifications in the model, are useful to study the effects of duct geometry on its performance. (Author) [pt

  1. Temperature dependent electrical characteristics of an organic-inorganic heterojunction obtained from a novel organometal Mn complex

    International Nuclear Information System (INIS)

    Ocak, Y.S.; Ebeoglu, M.A.; Topal, G.; Kilicoglu, T.

    2010-01-01

    This study includes synthesizing a Mn hexaamide (MnHA) organometal compound (C 27 H 21 N 9 O 6 MnCl 2 ).(1/2H 2 O), fabrication of MnHA/n-Si organic-inorganic heterojunction and analysis of conduction mechanism of the device over the room temperature. After synthesizing the molecule, the structure of the compound was determined using spectroscopic methods. The Sn/MnHA/n-Si structure was constructed by forming a thin MnHA layer on n-Si inorganic semiconductor and evaporating Sn metal on organic complex. The structure has shown good rectifying behavior and obeys the thermionic emission theory. The current-voltage (I-V) characteristics of the diode have been measured at temperatures ranging from 300 to 380 K at 10 K intervals to determine the temperature dependent electrical characteristics of the device.

  2. Slide-away distributions and relevant collective modes in high-temperature plasmas

    International Nuclear Information System (INIS)

    Coppi, B.; Pegoraro, F.; Pozzoli, R.; Rewoldt, G.

    1976-01-01

    The evolution of the electron distribution function, when an electric field that is not too small in comparison with the critical electron runaway field is applied along the confining magnetic field of a high temperature plasma, is analysed. In the regimes considered, a finite fraction of the electron population has magnetically trapped orbits, and is not appreciably affected by the applied electric field, while the distribution of circulating electrons tends to ''slide away'' as a whole. Then the Spitzer-Haerm model for the current-carrying electron distribution is inadequate, and the role that collective modes, in particular current-driven microinstabilities, and collisions can play in producing a stationary electron distribution is analysed. Modes at the ion plasma frequency, ωsub(pi), that are driven by the positive slope of the current-carrying electron distribution, can be excited, when the average electron drift velocity is a finite fraction of the electron thermal velocity, and transfer transverse energy to the main body of the electron distribution. These features are consistent with the experimental observations performed on the Alcator device. Modes at the ''reduced'' electron plasma frequency (ksub(parallel)/k)ωsub(pe) can also be excited both in connection with the modes at wsub(pi) and independently. Modes at the electron gyrofrequency Ωsub(e) associated with the loss-cone feature that the electron distribution tends to develop are considered, among others, as a factor for the strongly enhanced electron cyclotron emission experimentally observed in regimes where non-thermal electron distributions have been realized. (author)

  3. Industrial Qualification Process for Optical Fibers Distributed Strain and Temperature Sensing in Nuclear Waste Repositories

    Directory of Open Access Journals (Sweden)

    S. Delepine-Lesoille

    2012-01-01

    Full Text Available Temperature and strain monitoring will be implemented in the envisioned French geological repository for high- and intermediate-level long-lived nuclear wastes. Raman and Brillouin scatterings in optical fibers are efficient industrial methods to provide distributed temperature and strain measurements. Gamma radiation and hydrogen release from nuclear wastes can however affect the measurements. An industrial qualification process is successfully proposed and implemented. Induced measurement uncertainties and their physical origins are quantified. The optical fiber composition influence is assessed. Based on radiation-hard fibers and carbon-primary coatings, we showed that the proposed system can provide accurate temperature and strain measurements up to 0.5 MGy and 100% hydrogen concentration in the atmosphere, over 200 m distance range. The selected system was successfully implemented in the Andra underground laboratory, in one-to-one scale mockup of future cells, into concrete liners. We demonstrated the efficiency of simultaneous Raman and Brillouin scattering measurements to provide both strain and temperature distributed measurements. We showed that 1.3 μm working wavelength is in favor of hazardous environment monitoring.

  4. A study on the core characteristics of the fact breed reactor

    International Nuclear Information System (INIS)

    Cho, M.; Ryu, K.G.; Soh, D.S.; Kim, Y.C.; Lee, K.W.; Kim, Y.I.; Lim, J.C.; Oh, K.B.

    1983-01-01

    In order to investigate equilibrium core characteristics of a large LMFBR, nuclear-thermal hydraulic and safety-related characteristics are considered for the equilbrium core of Super-Phenix 1. Using the nuclear computational system for a large LMFBR (KAERI-26G cross section library/1DX/2DB), bias factor of the effective multiplication factor, refueling pattern and enrichments of refueled fuel assemblies are determined. Nuclear characteristics such as criticality, power distribution, and breeding gain are also obtained for the initial core to the equilibrium core. Based on the assembly power distribution of the equilibrium core, coolant flow distributions are determined with the use of THI3D code. Temperature fields within the core assemblies and pressure drop across the core assemblies are also analyzed. In addition, the subchannel analysis of the hottest assembly under the steady state is performed with COBRA-IV-I code. Finally, transient behaviors of reactivity, power, and temperature due to the loss of flow accident without scram are considered and the boiling initiation time of coolant in the fuel assembly is determined for the equilibrium core with SACO code. (Author)

  5. Crystalline-like temperature dependence of the electrical characteristics in amorphous Indium-Gallium-Zinc-Oxide thin film transistors

    Science.gov (United States)

    Estrada, M.; Hernandez-Barrios, Y.; Cerdeira, A.; Ávila-Herrera, F.; Tinoco, J.; Moldovan, O.; Lime, F.; Iñiguez, B.

    2017-09-01

    A crystalline-like temperature dependence of the electrical characteristics of amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) thin film transistors (TFTs) is reported, in which the drain current reduces as the temperature is increased. This behavior appears for values of drain and gate voltages above which a change in the predominant conduction mechanism occurs. After studying the possible conduction mechanisms, it was determined that, for gate and drain voltages below these values, hopping is the predominant mechanism with the current increasing with temperature, while for values above, the predominant conduction mechanism becomes percolation in the conduction band or band conduction and IDS reduces as the temperature increases. It was determined that this behavior appears, when the effect of trapping is reduced, either by varying the density of states, their characteristic energy or both. Simulations were used to further confirm the causes of the observed behavior.

  6. Late Quaternary glacier sensitivity to temperature and precipitation distribution in the Southern Alps of New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Ann V. Rowan; Simon H. Brocklehurst; David M. Schultz; Mitchell A. Plummer; Leif S. Anderson; Neil F. Glasser

    2014-05-01

    Glaciers respond to climate variations and leave geomorphic evidence that represents an important terrestrial paleoclimate record. However, the accuracy of paleoclimate reconstructions from glacial geology is limited by the challenge of representing mountain meteorology in numerical models. Precipitation is usually treated in a simple manner and yet represents difficult-to-characterize variables such as amount, distribution, and phase. Furthermore, precipitation distributions during a glacial probably differed from present-day interglacial patterns. We applied two models to investigate glacier sensitivity to temperature and precipitation in the eastern Southern Alps of New Zealand. A 2-D model was used to quantify variations in the length of the reconstructed glaciers resulting from plausible precipitation distributions compared to variations in length resulting from change in mean annual air temperature and precipitation amount. A 1-D model was used to quantify variations in length resulting from interannual climate variability. Assuming that present-day interglacial values represent precipitation distributions during the last glacial, a range of plausible present-day precipitation distributions resulted in uncertainty in the Last Glacial Maximum length of the Pukaki Glacier of 17.1?km (24%) and the Rakaia Glacier of 9.3?km (25%), corresponding to a 0.5°C difference in temperature. Smaller changes in glacier length resulted from a 50% decrease in precipitation amount from present-day values (-14% and -18%) and from a 50% increase in precipitation amount (5% and 9%). Our results demonstrate that precipitation distribution can produce considerable variation in simulated glacier extents and that reconstructions of paleoglaciers should include this uncertainty.

  7. Plasma Temperature Determination of Hydrogen Containing High-Frequency Electrode less Lamps by Intensity Distribution Measurements of Hydrogen Molecular Band

    International Nuclear Information System (INIS)

    Gavare, Z.; Revalde, G.; Skudra, A.

    2011-01-01

    The goal of the present work was the investigation of the possibility to use intensity distribution of the Q-branch lines of the hydrogen Fulcher-a diagonal band (d3η u- a3Σg + electronic transition; Q-branch with ν=ν=2) to determine the temperature of hydrogen containing high-frequency electrode less lamps (HFEDLs). The values of the rotational temperatures have been obtained from the relative intensity distributions for hydrogen-helium and hydrogen-argon HFEDLs depending on the applied current. The results have been compared with the method of temperature derivation from Doppler profiles of He 667.8 nm and Ar 772.4 nm lines. The results of both methods are in good agreement, showing that the method of gas temperature determination from the intensity distribution in the hydrogen Fulcher-a (2-2)Q band can be used for the hydrogen containing HFEDLs. It was observed that the admixture of 10% hydrogen in the argon HFEDLs significantly reduces the gas temperature

  8. Manufacture of electron beam irradiation vessel and its characteristics

    International Nuclear Information System (INIS)

    Kanazawa, Takao; Haruyama, Yasuyuki; Yotsumoto, Keiichi

    1992-05-01

    Electron beam irradiation vessel, which is used for the irradiation of samples under an inert or a vacuum atmosphere, is made by considering the temperature control during or after irradiation. The vessel was composed of the temperature controlable samples supporting plate, beam slit with water cooling plate and the insert of thermosensor. The four samples supporting plate was produced with the materials made up of aluminium, stainless steel (SUS304), and copper. The stainless steel supporting plate has a heater inside the cooling pipes for the high temperature treatment of samples without exposure to atmosphere after the irradiation. In this report, the temperature distribution and dose characteristics such as dose distribution and effects of backscattered electron were studied by using several supporting plate and the comparison of the experimental results with the simulated results was also carried out. (author)

  9. Assessment of distribution characteristics of polymetallic nodules and their implications on deep-sea mining

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.

    This chapter looks at the distribution characteristics of nodules and associated seafloor features so as to provide this information to the industry for designing a suitable mining system. Further, it also looks at different scenarios emerging from...

  10. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots.

    Science.gov (United States)

    Reich, Peter B; Luo, Yunjian; Bradford, John B; Poorter, Hendrik; Perry, Charles H; Oleksyn, Jacek

    2014-09-23

    Whether the fraction of total forest biomass distributed in roots, stems, or leaves varies systematically across geographic gradients remains unknown despite its importance for understanding forest ecology and modeling global carbon cycles. It has been hypothesized that plants should maintain proportionally more biomass in the organ that acquires the most limiting resource. Accordingly, we hypothesize greater biomass distribution in roots and less in stems and foliage in increasingly arid climates and in colder environments at high latitudes. Such a strategy would increase uptake of soil water in dry conditions and of soil nutrients in cold soils, where they are at low supply and are less mobile. We use a large global biomass dataset (>6,200 forests from 61 countries, across a 40 °C gradient in mean annual temperature) to address these questions. Climate metrics involving temperature were better predictors of biomass partitioning than those involving moisture availability, because, surprisingly, fractional distribution of biomass to roots or foliage was unrelated to aridity. In contrast, in increasingly cold climates, the proportion of total forest biomass in roots was greater and in foliage was smaller for both angiosperm and gymnosperm forests. These findings support hypotheses about adaptive strategies of forest trees to temperature and provide biogeographically explicit relationships to improve ecosystem and earth system models. They also will allow, for the first time to our knowledge, representations of root carbon pools that consider biogeographic differences, which are useful for quantifying whole-ecosystem carbon stocks and cycles and for assessing the impact of climate change on forest carbon dynamics.

  11. Radial Distribution Functions of Strongly Coupled Two-Temperature Plasmas

    Science.gov (United States)

    Shaffer, Nathaniel R.; Tiwari, Sanat Kumar; Baalrud, Scott D.

    2017-10-01

    We present tests of three theoretical models for the radial distribution functions (RDFs) in two-temperature strongly coupled plasmas. RDFs are useful in extending plasma thermodynamics and kinetic theory to strong coupling, but they are usually known only for thermal equilibrium or for approximate one-component model plasmas. Accurate two-component modeling is necessary to understand the impact of strong coupling on inter-species transport, e.g., ambipolar diffusion and electron-ion temperature relaxation. We demonstrate that the Seuferling-Vogel-Toeppfer (SVT) extension of the hypernetted chain equations not only gives accurate RDFs (as compared with classical molecular dynamics simulations), but also has a simple connection with the Yukawa OCP model. This connection gives a practical means to recover the structure of the electron background from knowledge of the ion-ion RDF alone. Using the model RDFs in Effective Potential Theory, we report the first predictions of inter-species transport coefficients of strongly coupled plasmas far from equilibrium. This work is supported by NSF Grant No. PHY-1453736, AFSOR Award No. FA9550-16-1-0221, and used XSEDE computational resources.

  12. Dopaminergic neurons encode a distributed, asymmetric representation of temperature in Drosophila.

    Science.gov (United States)

    Tomchik, Seth M

    2013-01-30

    Dopaminergic circuits modulate a wide variety of innate and learned behaviors in animals, including olfactory associative learning, arousal, and temperature-preference behavior. It is not known whether distinct or overlapping sets of dopaminergic neurons modulate these behaviors. Here, I have functionally characterized the dopaminergic circuits innervating the Drosophila mushroom body with in vivo calcium imaging and conditional silencing of genetically defined subsets of neurons. Distinct subsets of PPL1 dopaminergic neurons innervating the vertical lobes of the mushroom body responded to decreases in temperature, but not increases, with rapidly adapting bursts of activity. PAM neurons innervating the horizontal lobes did not respond to temperature shifts. Ablation of the antennae and maxillary palps reduced, but did not eliminate, the responses. Genetic silencing of dopaminergic neurons innervating the vertical mushroom body lobes substantially reduced behavioral cold avoidance, but silencing smaller subsets of these neurons had no effect. These data demonstrate that overlapping dopaminergic circuits encode a broadly distributed, asymmetric representation of temperature that overlays regions implicated previously in learning, memory, and forgetting. Thus, diverse behaviors engage overlapping sets of dopaminergic neurons that encode multimodal stimuli and innervate a single anatomical target, the mushroom body.

  13. Study of temperature distribution of pipes heated by moving rectangular gauss distribution heat source. Development of pipe outer surface irradiated laser stress improvement process (L-SIP)

    International Nuclear Information System (INIS)

    Ohta, Takahiro; Kamo, Kazuhiko; Asada, Seiji; Terasaki, Toshio

    2009-01-01

    The new process called L-SIP (outer surface irradiated Laser Stress Improvement Process) is developed to improve the tensile residual stress of the inner surface near the butt welded joints of pipes in the compression stress. The temperature gradient occurs in the thickness of pipes in heating the outer surface rapidly by laser beam. By the thermal expansion difference between the inner surface and the outer surface, the compression stress occurs near the inner surface of pipes. In this paper, the theoretical equation for the temperature distributions of pipes heated by moving rectangular Gauss distribution heat source on the outer surface is derived. The temperature histories of pipes calculated by theoretical equation agree well with FEM analysis results. According to the theoretical equation, the controlling parameters of temperature distributions and histories are q/2a y , vh, a x /h and a y /h, where q is total heat input, a y is heat source length in the axial direction, a x is Gaussian radius of heat source in the hoop direction, ν is moving velocity, and h is thickness of the pipe. The essential variables for L-SIP, which are defined on the basis of the measured temperature histories on the outer surface of the pipe, are Tmax, F 0 =kτ 0 /h 2 , vh, W Q and L Q , where Tmax is maximum temperature on the monitor point of the outer surface, k is thermal diffusivity coefficient, τ 0 is the temperature rise time from 100degC to maximum temperature on the monitor point of the outer surface, W Q is τ 0 x ν, and L Q is the uniform temperature length in the axial direction. It is verified that the essential variables for L-SIP match the controlling parameters by the theoretical equation. (author)

  14. Effect of growth temperature on photoluminescence and piezoelectric characteristics of ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Water, Walter [Institute of Electro-Optical and Materials Science, National Formosa University, Yunlin 632, Taiwan (China); Fang, T.-H. [Institute of Electro-Optical and Materials Science, National Formosa University, Yunlin 632, Taiwan (China); Institute of Mechanical and Electromechanical Engineering, National Formosa University, Yunlin 632, Taiwan (China)], E-mail: fang.tehua@msa.hinet.net; Ji, L.-W.; Lee, C.-C. [Institute of Electro-Optical and Materials Science, National Formosa University, Yunlin 632, Taiwan (China)

    2009-02-25

    ZnO nanowire arrays were synthesized on Au-coated silicon (1 0 0) substrates by using vapour-liquid-solid process in this work. The effect of growth temperatures on the crystal structure and the surface morphology of ZnO nanowires were investigated by X-ray diffraction and scanning electron microscope. The absorption and optical characteristics of the nanowires were examined by Ultraviolet/Visible spectroscopy, and photoluminescence, respectively. The photoluminescence results exhibited ZnO nanowires had an ultraviolet and blue emission at 383 and 492 nm. Then a nanogenerator with ZnO nanowire arrays was fabricated and demonstrated Schottky-like current-voltage characteristics.

  15. Characteristics of confining ohm-heated plasma in TRIAM-IM

    International Nuclear Information System (INIS)

    Hatae, Takaki; Yamagajyo, Takashi; Kawasaki, Shoji; Jotaki, Eriko; Fujita, Takaaki; Nakamura, Kazuo; Nakamura, Yukio; Ito, Satoshi

    1994-01-01

    In the initial experiment after the increase of the power of ohm heating power source for the superconducting strong magnetic field tokamak, TRIAM-IM, the measurement of the electron temperature distribution, ion temperature distribution and beam average electron density of ohm-heated plasma was carried out. By analyzing the experimental results, the dependence of the accumulated energy obtained from the temperature distribution and the time of energy confinement of beam average electron density became clear. Especially the time of energy confinement increased in proportion to the increase of beam average electron density when it is 6.5 x 10 12 /m 2 , and it was found that the time of energy confinement conforms to the Neo-Alcator proportional law. Moreover, by solving the heat transport equation for ions, the radial distribution of thermal diffusion coefficient for ions was calculated, and compared with that obtained by the new classic theory. As the result, it was found that the TRIAM-IM has ion confinement characteristics equivalent to those of other medium tokamaks. The experiment of producing ohm-heated plasma, the fitting of electron temperature and ion temperature, the density dependence of temperature, accumulated energy and the time of energy confinement, the time of energy confinement and the Neo-Alcator proportional law, the energy balance of ions and so on are reported. (K.I.)

  16. Spatial temperature distribution in human hairy and glabrous skin after infrared CO2 laser radiation

    Directory of Open Access Journals (Sweden)

    Arendt-Nielsen Lars

    2010-11-01

    Full Text Available Abstract Background CO2 lasers have been used for several decades as an experimental non-touching pain stimulator. The laser energy is absorbed by the water content in the most superficial layers of the skin. The deeper located nociceptors are activated by passive conduction of heat from superficial to deeper skin layers. Methods In the current study, a 2D axial finite element model was developed and validated to describe the spatial temperature distribution in the skin after infrared CO2 laser stimulation. The geometry of the model was based on high resolution ultrasound scans. The simulations were compared to the subjective pain intensity ratings from 16 subjects and to the surface skin temperature distributions measured by an infrared camera. Results The stimulations were sensed significantly slower and less intense in glabrous skin than they were in hairy skin (MANOVA, p 0.90, p 2 (5 W, 0.12 s, d1/e2 = 11.4 mm only two reported pain to glabrous skin stimulation using the same stimulus intensity. The temperature at the epidermal-dermal junction (depth 50 μm in hairy and depth 133 μm in glabrous skin was estimated to 46°C for hairy skin stimulation and 39°C for glabrous skin stimulation. Conclusions As compared to previous one dimensional heat distribution models, the current two dimensional model provides new possibilities for detailed studies regarding CO2 laser stimulation intensity, temperature levels and nociceptor activation.

  17. Phonon emission in a degenerate semiconductor at low lattice temperatures

    International Nuclear Information System (INIS)

    Midday, S.; Nag, S.; Bhattacharya, D.P.

    2015-01-01

    The characteristics of phonon growth in a degenerate semiconductor at low lattice temperatures have been studied for inelastic interaction of non-equilibrium electrons with the intravalley acoustic phonons. The energy of the phonon and the full form of the phonon distribution are taken into account. The results reveal significant changes in the growth characteristics compared to the same for a non-degenerate material

  18. Research of Spectrometric and Exploitation Characteristics of BGO-PMP-165 Scintiblock in Temperature Interval from +25 to -140$^{o}$C

    CERN Document Server

    Ainbund, M R; Gundorin, N A; Matveev, D V; Serov, D G

    2001-01-01

    Photomultipliers based on microchannel plates are used for fast systems which form time marks of physical setups as well as in special technical areas. It is not uncommon when they substitute traditional dynode system photomultipliers. The possibility of compatible work of the PMP-165 photomultiplier with BGO crystal which were cooled down to temperature necessary for appropriate functioning of a semiconductor Ge detector with taking into account of temperature dependencies of own PMP characteristics is investigated during experiment. Cooling down of the system from room temperature down to v140^{o}C during 8 hours is done. Lower limit of temperature which allows PMP to function properly is registered. Changes of spectrometric characteristics caused by temperature are studied.

  19. Effect of Temperature and Electric Field on the Damping and Stiffness Characteristics of ER Fluid Short Squeeze Film Dampers

    Directory of Open Access Journals (Sweden)

    H. P. Jagadish

    2013-01-01

    Full Text Available Squeeze film dampers are novel rotor dynamic devices used to alleviate small amplitude, large force vibrations and are used in conjunction with antifriction bearings in aircraft jet engine bearings to provide external damping as these possess very little inherent damping. Electrorheological (ER fluids are controllable fluids in which the rheological properties of the fluid, particularly viscosity, can be controlled in accordance with the requirements of the rotor dynamic system by controlling the intensity of the applied electric field and this property can be utilized in squeeze film dampers, to provide variable stiffness and damping at a particular excitation frequency. The paper investigates the effect of temperature and electric field on the apparent viscosity and dynamic (stiffness and damping characteristics of ER fluid (suspension of diatomite in transformer oil using the available literature. These characteristics increase with the field as the viscosity increases with the field. However, these characteristics decrease with increase in temperature and shear strain rate as the viscosity of the fluid decreases with temperature and shear strain rate. The temperature is an important parameter as the aircraft jet engine rotors are located in a zone of high temperature gradients and the damper fluid is susceptible to large variations in temperature.

  20. Length-dependent thermoelectric characteristics of silicon nanowires on plastics in a relatively low temperature regime in ambient air

    International Nuclear Information System (INIS)

    Choi, Jinyong; Cho, Kyoungah; Kim, Sangsig

    2013-01-01

    We report on the thermoelectric characteristics of p-type silicon nanowires (NWs) on plastics in the relatively low temperature regime below 47 ° C, and for temperature differences of less than 10 K in ambient air. Thermal profile images are utilized to directly determine the temperature difference in the NWs generated by Joule heating in air. The Seebeck coefficient of the NWs increases from 294 to 414 μV K −1 as the NW length varies from 40 to 280 μm. For a temperature difference of 7 K, the maximal Seebeck voltage can be estimated to be 2.7 mV for NWs with a length of 280 μm. In contrast, the output power is maximized for NWs length of 240 μm. The maximized output power obtained experimentally in this study is 2.1 pW at a temperature difference of 6 K. The thermoelectric characteristics are analyzed and discussed. (paper)

  1. Numerical examination of temperature control in helium-cooled high flux test module of IFMIF

    International Nuclear Information System (INIS)

    Ebara, Shinji; Yokomine, Takehiko; Shimizu, Akihiko

    2007-01-01

    For long term irradiation of the International Fusion Materials Irradiation Facility (IFMIF), test specimens are needed to retain constant temperature to avoid change of its irradiation characteristics. The constant temperatures control is one of the most challenging issues for the IFMIF test facilities. We have proposed a new concept of test module which is capable of precisely measuring temperature, keeping uniform temperature with enhanced cooling performance. In the system according to the new design, cooling performances and temperature distributions of specimens were examined numerically under diverse conditions. Some transient behaviors corresponding to the prescribed temperature control mode were perseveringly simulated. It was confirmed that the thermal characteristics of the new design satisfied the severe requirement of IFMIF

  2. Simulation of temperature distribution in cylindrical and prismatic lithium ion secondary batteries

    International Nuclear Information System (INIS)

    Inui, Y.; Kobayashi, Y.; Watanabe, Y.; Watase, Y.; Kitamura, Y.

    2007-01-01

    The authors develop two-dimensional and three-dimensional simulation codes of the transient response of the temperature distribution in the lithium ion secondary battery during a discharge cycle. At first, a two-dimensional simulation code for a cylindrical battery is developed, and the simulation results for a commercially available small size battery are compared with the corresponding experimental results. The simulation results of the transient temperature and voltage variations coincide very well with the experimental results. The simulation result of the temperature difference between the center of the battery body and the center of the battery side is also in reasonable agreement with the experimental result. Next, the authors develop a three-dimensional simulation code and perform numerical simulations for three large size prismatic batteries with the same capacity and different cross sectional shapes. It is made clear that selecting the battery with the laminated cross section has a remarkable effect on the suppression of the temperature rise in comparison with the battery with square cross section, whereas the effect of the lamination on the suppression of the temperature unevenness is unexpectedly small. These results indicate the accuracy and usefulness of the developed simulation codes

  3. Distributions of the ion temperature, ion pressure, and electron density over the current sheet surface

    International Nuclear Information System (INIS)

    Kyrie, N. P.; Markov, V. S.; Frank, A. G.; Vasilkov, D. G.; Voronova, E. V.

    2016-01-01

    The distributions of the ion temperature, ion pressure, and electron density over the width (the major transverse dimension) of the current sheet have been studied for the first time. The current sheets were formed in discharges in argon and helium in 2D and 3D magnetic configurations. It is found that the temperature of argon ions in both 2D and 3D magnetic configurations is almost uniform over the sheet width and that argon ions are accelerated by the Ampère force. In contrast, the distributions of the electron density and the temperature of helium ions are found to be substantially nonuniform. As a result, in the 2D magnetic configuration, the ion pressure gradient across the sheet width makes a significant contribution (comparable with the Ampère force) to the acceleration of helium ions, whereas in the 3D magnetic configuration, the Ampère force is counterbalanced by the pressure gradient.

  4. Distributions of the ion temperature, ion pressure, and electron density over the current sheet surface

    Energy Technology Data Exchange (ETDEWEB)

    Kyrie, N. P., E-mail: kyrie@fpl.gpi.ru; Markov, V. S., E-mail: natalya.kyrie@yandex.ru; Frank, A. G.; Vasilkov, D. G.; Voronova, E. V. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2016-06-15

    The distributions of the ion temperature, ion pressure, and electron density over the width (the major transverse dimension) of the current sheet have been studied for the first time. The current sheets were formed in discharges in argon and helium in 2D and 3D magnetic configurations. It is found that the temperature of argon ions in both 2D and 3D magnetic configurations is almost uniform over the sheet width and that argon ions are accelerated by the Ampère force. In contrast, the distributions of the electron density and the temperature of helium ions are found to be substantially nonuniform. As a result, in the 2D magnetic configuration, the ion pressure gradient across the sheet width makes a significant contribution (comparable with the Ampère force) to the acceleration of helium ions, whereas in the 3D magnetic configuration, the Ampère force is counterbalanced by the pressure gradient.

  5. The three-dimensional distributions of tangential velocity and total- temperature in vortex tubes

    DEFF Research Database (Denmark)

    Linderstrøm-Lang, C.U.

    1971-01-01

    The axial and radial gradients of the tangential velocity distribution are calculated from prescribed secondary flow functions on the basis of a zero-order approximation to the momentum equations developed by Lewellen. It is shown that secondary flow functions may be devised which meet pertinent...... physical requirements and which at the same time lead to realistic tangential velocity gradients. The total-temperature distribution in both the axial and radial directions is calculated from such secondary flow functions and corresponding tangential velocity results on the basis of an approximate...

  6. The influence of annealing temperature on ReRAM characteristics of metal/NiO/metal structure

    International Nuclear Information System (INIS)

    Kondo, H; Kaji, H; Fujii, T; Hamada, K; Arita, M; Takahashi, Y

    2010-01-01

    The resistive switching of NiO sandwiched between Pt bottom and top electrodes are formed by thermal oxidation at the temperature from 300 deg. C to 800 deg. C. The ReRAM characteristics are investigated from the view point of practical applications. The stable and uniform formation of NiO films are revealed by XPS analysis and the chemical compositions of NiO are almost independent of oxidation temperatures. However, the forming voltages of the film prepared at higher oxidation temperature are scattered and reach to high values. This fact indicates that the forming process occurs at the weak spot, and the density of the weak spot is low in the film formed at higher temperature. As a result, the NiO prepared at lower temperature shows stable and lower forming voltages.

  7. Detecting Non-Gaussian and Lognormal Characteristics of Temperature and Water Vapor Mixing Ratio

    Science.gov (United States)

    Kliewer, A.; Fletcher, S. J.; Jones, A. S.; Forsythe, J. M.

    2017-12-01

    Many operational data assimilation and retrieval systems assume that the errors and variables come from a Gaussian distribution. This study builds upon previous results that shows that positive definite variables, specifically water vapor mixing ratio and temperature, can follow a non-Gaussian distribution and moreover a lognormal distribution. Previously, statistical testing procedures which included the Jarque-Bera test, the Shapiro-Wilk test, the Chi-squared goodness-of-fit test, and a composite test which incorporated the results of the former tests were employed to determine locations and time spans where atmospheric variables assume a non-Gaussian distribution. These tests are now investigated in a "sliding window" fashion in order to extend the testing procedure to near real-time. The analyzed 1-degree resolution data comes from the National Oceanic and Atmospheric Administration (NOAA) Global Forecast System (GFS) six hour forecast from the 0Z analysis. These results indicate the necessity of a Data Assimilation (DA) system to be able to properly use the lognormally-distributed variables in an appropriate Bayesian analysis that does not assume the variables are Gaussian.

  8. Temperature-dependent electrical characteristics and carrier transport mechanism of p-Cu2ZnSnS4/n-GaN heterojunctions

    Science.gov (United States)

    Niteesh Reddy, Varra; Reddy, M. Siva Pratap; Gunasekhar, K. R.; Lee, Jung-Hee

    2018-04-01

    This work explores the temperature-dependent electrical characteristics and carrier transport mechanism of Au/p-Cu2ZnSnS4/n-type GaN heterojunction (HJ) diodes with a CZTS interlayer. The electrical characteristics were examined by current-voltage-temperature, turn-on voltage-temperature and series resistance-temperature in the high-temperature range of 300-420 K. It is observed that an exponential decrease in the series resistance ( R S) and increase in the ideality factor ( n) and barrier height ( ϕ b) with increase in temperature. The thermal coefficient ( K j) is determined to be - 1.3 mV K-1 at ≥ 300 K. The effective ϕ b is determined to be 1.21 eV. This obtained barrier height is consistent with the theoretical one. The characteristic temperature ( T 0) resulting from the Cheung's functions [d V/d(ln I) vs. I and H( I) vs. I], is seen that there is good agreement between the T 0 values from both Cheung's functions. The relevant carrier transport mechanisms of Au/p-CZTS/n-type GaN HJ are explained based on the thermally decreased energy band gap of n-type GaN layers, thermally activated deep donors and increased further activated shallow donors.

  9. Applying Fibre-Optic Distributed Temperature Sensing to Near-surface Temperature Dynamics of Broadacre Cereals During Radiant Frost Events.

    Science.gov (United States)

    Stutsel, B.; Callow, J. N.

    2017-12-01

    Radiant frost events, particularly those during the reproductive stage of winter cereal growth, cost growers millions of dollars in lost yield. Whilst synoptic drivers of frost and factors influencing temperature variation at the landscape scale are relatively well understood, there is a lack of knowledge surrounding small-scale temperature dynamics within paddocks and plot trials. Other work has also suggested a potential significant temperature gradient (several degrees) vertically from ground to canopy, but this is poorly constrained experimentally. Subtle changes in temperature are important as frost damage generally occurs in a very narrow temperature range (-2 to -5°C). Once a variety's damage threshold is reached, a 1°C difference in minimum temperature can increase damage from 10 to 90%. This study applies Distributed Temperature Sensing (DTS) using fibre optics to understand how minimum temperature evolves during a radiant frost. DTS assesses the difference in attenuation of Raman scattering of a light pulse travelling along a fibre optic cable to measure temperature. A bend insensitive multimode fibre was deployed in a double ended duplex configuration as a "fence" run through four times of sowing at a trial site in the Western Australian Wheatbelt. The fibre optic fence was 160m long and 800mm tall with the fibre optic cable spaced 100mm apart vertically, and calibrated in ambient water ( 10 to 15oC) and a chilled glycol ( -8 to-10 oC) baths. The temperature measurements had a spatial resolution of 0.65m and temporal resolution of 60s, providing 2,215 measurements every minute. The results of this study inform our understanding of the subtle temperature changes from the soil to canopy, providing new insight into how to place traditional temperature loggers to monitor frost damage. It also addresses questions of within-trial temperature variability, and provides an example of how novel techniques such as DTS can be used to improve the way temperature

  10. Computer program MCAP-TOSS calculates steady-state fluid dynamics of coolant in parallel channels and temperature distribution in surrounding heat-generating solid

    Science.gov (United States)

    Lee, A. Y.

    1967-01-01

    Computer program calculates the steady state fluid distribution, temperature rise, and pressure drop of a coolant, the material temperature distribution of a heat generating solid, and the heat flux distributions at the fluid-solid interfaces. It performs the necessary iterations automatically within the computer, in one machine run.

  11. Distribution, Microfabric, and Geochemical Characteristics of Siliceous Rocks in Central Orogenic Belt, China: Implications for a Hydrothermal Sedimentation Model

    Directory of Open Access Journals (Sweden)

    Hongzhong Li

    2014-01-01

    Full Text Available Marine siliceous rocks are widely distributed in the central orogenic belt (COB of China and have a close connection to the geological evolution and metallogenesis. They display periodic distributions from Mesoproterozoic to Jurassic with positive peaks in the Mesoproterozoic, Cambrian—Ordovician, and Carboniferous—Permian and their deposition is enhanced by the tensional geological settings. The compressional regimes during the Jinning, Caledonian, Hercynian, Indosinian, and Yanshanian orogenies resulted in sudden descent in their distribution. The siliceous rocks of the Bafangshan-Erlihe ore deposit include authigenic quartz, syn-depositional metal sulphides, and scattered carbonate minerals. Their SiO2 content (71.08–95.30%, Ba (42.45–503.0 ppm, and ΣREE (3.28–19.75 ppm suggest a hydrothermal sedimentation origin. As evidenced by the Al/(Al + Fe + Mn, Sc/Th, (La/YbN, and (La/CeN ratios and δCe values, the studied siliceous rocks were deposited in a marginal sea basin of a limited ocean. We suggest that the Bafangshan-Erlihe area experienced high- and low-temperature stages of hydrothermal activities. The hydrothermal sediments of the former stage include metal sulphides and silica, while the latter was mainly composed of silica. Despite the hydrothermal sedimentation of the siliceous rocks, minor terrigenous input, magmatism, and biological activity partly contributed to geochemical features deviating from the typical hydrothermal characteristics.

  12. The characteristics of surface oxidation and corrosion resistance of nitrogen implanted zircaloy-4

    International Nuclear Information System (INIS)

    Tang, G.; Choi, B.H.; Kim, W.; Jung, K.S.; Kwon, H.S.; Lee, S.J.; Lee, J.H.; Song, T.Y.; Shon, D.H.; Han, J.G.

    1997-01-01

    This work is concerned with the development and application of ion implantation techniques for improving the corrosion resistance of zircaloy-4. The corrosion resistance in nitrogen implanted zircaloy-4 under a 120 keV nitrogen ion beam at an ion dose of 3 x 10 17 cm -2 depends on the implantation temperature. The characteristics of surface oxidation and corrosion resistance were analyzed with the change of implantation temperature. It is shown that as implantation temperature rises from 100 to 724 C, the colour of specimen surface changes from its original colour to light yellow at 100 C, golden at 175 C, pink at 300 C, blue at 440 C and dark blue at 550 C. As the implantation temperature goes above 640 C, the colour of surface changes to light black, and the surface becomes a little rough. The corrosion resistance of zircaloy-4 implanted with nitrogen is sensitive to the implantation temperature. The pitting potential of specimens increases from 176 to 900 mV (SCE) as the implantation temperature increases from 100 to 300 C, and decreases from 900 to 90 mV(SCE) as the implantation temperature increases from 300 to 640 C. The microstructure, the distribution of oxygen, nitrogen and carbon elements, the oxide grain size and the feature of the precipitation in the implanted surface were investigated by optical microscope, TEM, EDS, XRD and AES. The experimental results reveal that the ZrO 2 is distributed mainly on the outer surface. The ZrN is distributed under the ZrO 2 layer. The characteristics of the distribution of ZrO 2 and ZrN in the nitrogen-implanted zircaloy-4 is influenced by the implantation temperature of the sample, and in turn the corrosion resistance is influenced. (orig.)

  13. Characteristics of petroleum contaminants and their distribution in Lake Taihu, China.

    Science.gov (United States)

    Guo, Jixiang; Fang, Jia; Cao, Jingjing

    2012-08-31

    Taihu Lake is a typical plain eutrophic shallow lake. With rapidly economic development of the lake area, the petroleum products and oil wastewater produced in various processes have been inevitably discharged into Taihu Lake. As the major fresh water resource in the economically developed region of Yangtze River Delta, the water quality and environmental condition of Taihu Lake have the direct bearing on the natural environment and sustainable development of economy in this region. For this reason we carried out the study to explore the composition, distribution characteristics and sources of petroleum contaminants in Taihu Lake. The aim of this study was to provide the basis for standard management and pollution control of the Taihu Lake environment. The result showed that water samples from near industrial locations were of relatively higher petroleum contaminants concentrations. The oil pollutants concentrations in different areas of Lake Taihu ranged from 0.106 mg/L to 1.168 mg/L, and the sequence of total contents distribution characteristics of petroleum pollutants from high to low in different regions of Taihu Lake was: "Dapu", "Xiaomeikou", "Zhushan Bay", "Lake center", "Qidu". The results showed that total concentrations of n-alkanes and PAHs ranged from 0.045 to 0.281 mg/L and from 0.011 to 0.034 mg/L respectively. In the same region, the concentrations of hydrocarbon pollutants in the surface and bottom of the lake were higher than that in the middle. This paper reached a conclusion that the petroleum contaminants in Taihu Lake mainly derived from petroleum pollution caused by human activities as indicated by OEP, bimodal distribution, CPI, Pr/Ph ratio, the LMW/HMW ratio and other evaluation indices for sources of n-alkanes and polycyclic aromatic hydrocarbons (PAHs).

  14. Use of thermography to monitor sole haemorrhages and temperature distribution over the claws of dairy cattle.

    Science.gov (United States)

    Wilhelm, K; Wilhelm, J; Fürll, M

    2015-02-07

    Subclinical laminitis, an early pathological event in the development of many claw diseases, is an important factor in the welfare and economics of high-producing dairy cows. However, the aetiology and pathogenesis of this complex claw disease are not well understood. The present study investigated to what extent thermographic examination of claws is able to give information about corium inflammation, and whether the technique may be used as a diagnostic tool for early detection of subclinical laminitis. Moreover, the temperature distribution over the individual main claws was investigated to obtain further knowledge about pressure distribution on the claws. For this purpose the claws of 123 cows were evaluated in the first week after calving as well as after the second month of lactation for presence of sole haemorrhages (a sign of subclinical laminitis). Furthermore, the ground contact area was analysed by thermography. Sole haemorrhages were significantly increased by the second month of lactation. Thermography showed clear differences between the claws of the front limbs and hindlimbs, as well as between lateral and medial claws. Although the distribution of sole haemorrhages was consistent with the pattern of the temperature distribution over the main claws, no clear correlation was found between the claw temperature after calving and the visible laminitis-like changes (sole haemorrhages) eight weeks later. British Veterinary Association.

  15. High-Resolution Dynamical Downscaling Ensemble Projections of Future Extreme Temperature Distributions for the United States

    Science.gov (United States)

    Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.; Kotamarthi, V. Rao

    2017-12-01

    The aim of this study is to examine projections of extreme temperatures over the continental United States (CONUS) for the 21st century using an ensemble of high spatial resolution dynamically downscaled model simulations with different boundary conditions. The downscaling uses the Weather Research and Forecast model at a spatial resolution of 12 km along with outputs from three different Coupled Model Intercomparison Project Phase 5 global climate models that provide boundary conditions under two different future greenhouse gas (GHG) concentration trajectories. The results from two decadal-length time slices (2045-2054 and 2085-2094) are compared with a historical decade (1995-2004). Probability density functions of daily maximum/minimum temperatures are analyzed over seven climatologically cohesive regions of the CONUS. The impacts of different boundary conditions as well as future GHG concentrations on extreme events such as heat waves and days with temperature higher than 95°F are also investigated. The results show that the intensity of extreme warm temperature in future summer is significantly increased, while the frequency of extreme cold temperature in future winter decreases. The distribution of summer daily maximum temperature experiences a significant warm-side shift and increased variability, while the distribution of winter daily minimum temperature is projected to have a less significant warm-side shift with decreased variability. Using "business-as-usual" scenario, 5-day heat waves are projected to occur at least 5-10 times per year in most CONUS and ≥95°F days will increase by 1-2 months by the end of the century.

  16. Pressure drop and heat transfer characteristics of a high-temperature printed circuit heat exchanger

    International Nuclear Information System (INIS)

    Chen, Minghui; Sun, Xiaodong; Christensen, Richard N.; Skavdahl, Isaac; Utgikar, Vivek; Sabharwall, Piyush

    2016-01-01

    Highlights: • Pressure drop and heat transfer characteristics of a high-temperature printed circuit heat exchanger have been obtained. • Comparisons of experimental data and available correlations have been performed. • New Fanning friction factor and heat transfer correlations for the test PCHE are developed. - Abstract: Printed circuit heat exchanger (PCHE) is one of the leading intermediate heat exchanger (IHX) candidates to be employed in the very-high-temperature gas-cooled reactors (VHTRs) due to its capability for high-temperature, high-pressure applications. In the current study, a reduced-scale zigzag-channel PCHE was fabricated using Alloy 617 plates for the heat exchanger core and Alloy 800H pipes for the headers. The pressure drop and heat transfer characteristics of the PCHE were investigated experimentally in a high-temperature helium test facility (HTHF) at The Ohio State University. The PCHE helium inlet temperatures and pressures were varied up to 464 °C/2.7 MPa for the cold side and 802 °C/2.7 MPa for the hot side, respectively, while the maximum helium mass flow rates on both sides of the PCHE reached 39 kg/h. The corresponding maximum channel Reynolds number was approximately 3558, covering the laminar flow and laminar-to-turbulent flow transition regimes. New pressure drop and heat transfer correlations for the current zigzag channels with rounded bends were developed based on the experimental data. Comparisons between the experimental data and the results obtained from the available PCHE and straight circular pipe correlations were conducted. Compared to the heat transfer performance in straight circular pipes, the zigzag channels provided little advantage in the laminar flow regime but significant advantage near the transition flow regime.

  17. Frictional characteristics of silicon graphite lubricated with water at high pressure and high temperature

    International Nuclear Information System (INIS)

    Lee, Jae Seon; Kim, Eun Hyun; Park, Jin Seok; Kim, Jong In

    2001-01-01

    Experimental frictional and wear characteristics of silicon graphite materials is studied in this paper. Those specimens are lubricated with high temperature and highly pressurized water to simulate the same operating condition for the journal bearing and the thrust bearing on the main coolant pump bearing in the newly developing nuclear reactor named SMART(System-integrated Modular Advanced ReacTor). Operating condition of the bearings is realized by the tribometer and the autoclave. Friction coefficient and wear loss are analyzed to choose the best silicon graphite material. Pin on plate test specimens are used and coned disk springs are used to control the applied force on the specimens. Wear loss and wear width are measured by a precision balance and a micrometer. The friction force is measured by the strain gauge which can be used under high temperature and high pressure. Three kinds of silicon graphite materials are examined and compared with each other, and each material shows similar but different results on frictional and wear characteristics

  18. Determination of Temperature Rise and Temperature Differentials of CEMII/B-V Cement for 20MPa Mass Concrete using Adiabatic Temperature Rise Data

    Science.gov (United States)

    Chee Siang, GO

    2017-07-01

    Experimental test was carried out to determine the temperature rise characteristics of Portland-Fly-Ash Cement (CEM II/B-V, 42.5N) of Blaine fineness 418.6m2/kg and 444.6m2/kg respectively for 20MPa mass concrete under adiabatic condition. The estimation on adiabatic temperature rise by way of CIRIA C660 method (Construction Industry Research & Information Information) was adopted to verify and validate the hot-box test results by simulating the heat generation curve of the concrete under semi-adiabatic condition. Test result found that Portland fly-ash cement has exhibited decrease in the peak value of temperature rise and maximum temperature rise rate. The result showed that the temperature development and distribution profile, which is directly contributed from the heat of hydration of cement with time, is affected by the insulation, initial placing temperature, geometry and size of concrete mass. The mock up data showing the measured temperature differential is significantly lower than the technical specifications 20°C temperature differential requirement and the 27.7°C limiting temperature differential for granite aggregate concrete as stipulated in BS8110-2: 1985. The concrete strength test result revealed that the 28 days cubes compressive strength was above the stipulated 20MPa characteristic strength at 90 days. The test demonstrated that with proper concrete mix design, the use of Portland flyash cement, combination of chilled water and flake ice, and good insulation is effective in reducing peak temperature rise, temperature differential, and lower adiabatic temperature rise for mass concrete pours. As far as the determined adiabatic temperature rise result was concern, the established result could be inferred for in-situ thermal properties of 20MPa mass concrete application, as the result could be repeatable on account of similar type of constituent materials and concrete mix design adopted for permanent works at project site.

  19. Temperature Inversions and Permafrost Distribution in a Mountain Valley: Preliminary Results From Wolf Creek, Yukon Territory, Canada

    Science.gov (United States)

    Lewkowicz, A. G.; Smith, K. M.

    2004-12-01

    The BTS (Basal Temperature of Snow) method to predict permafrost probability in mountain basins uses elevation as an easily available and spatially distributed independent variable. The elevation coefficient in the BTS regression model is, in effect, a substitute for ground temperature lapse rates. Previous work in Wolf Creek (60° 8'N 135° W), a mountain basin near Whitehorse, has shown that the model breaks down in a mid-elevation valley (1250 m asl) where actual permafrost probability is roughly twice that predicted by the model (60% vs. 20-30%). The existence of a double tree-line at the site suggested that air temperature inversions might be the cause of this inaccuracy (Lewkowicz and Ednie, 2004). This paper reports on a first year (08/2003-08/2004) of hourly air and ground temperature data collected along an altitudinal transect within the valley in upper Wolf Creek. Measurements were made at sites located 4, 8, 22, 82 and 162 m above the valley floor. Air temperature inversions between the lowest and highest measurement points occurred 42% of the time and in all months, but were most frequent and intense in winter (>60% of December and January) and least frequent in September (snow cover. In many cases, however, air temperature inversions are not duplicated in the ground temperature record. Nevertheless, the annual altitudinal ground temperature gradient is much lower than would be expected from a standard atmospheric lapse rate, suggesting that the inversions do have an important impact on permafrost distribution at this site. More generally, therefore, it appears probable that any reduction in inversion frequency resulting from a more vigorous atmospheric circulation in the context of future climate change, would have a significant effect on permafrost distribution in mountain basins.

  20. Comparison of Exposure Controls, Item Pool Characteristics, and Population Distributions for CAT Using the Partial Credit Model

    Science.gov (United States)

    Lee, HwaYoung; Dodd, Barbara G.

    2012-01-01

    This study investigated item exposure control procedures under various combinations of item pool characteristics and ability distributions in computerized adaptive testing based on the partial credit model. Three variables were manipulated: item pool characteristics (120 items for each of easy, medium, and hard item pools), two ability…

  1. Study of current-voltage characteristics in PbTe(Ga) alloys at low temperatures

    International Nuclear Information System (INIS)

    Akimov, B.A.; Albul, A.V.; Bogdanov, E.V.

    1992-01-01

    Results of determining current-voltage characteristics in PbTe(Ga) monocrystals of n- and p-types of conductivity in strong electric fields E ≤ 2 x 10 3 V/Cm at 4.2-77 K are presented. It was established that at helium and nitrogen temperatures, the current-voltage characteristics of PbTe(Ga) alloys, high-ohmic state of which was realized in helium, differed qualitatively from ones, typical for unalloyed PbTe. The superlinear dependence, observed in the fields, beginning from E ≥ 1 V/cm, is explained in the framework of concepts of strong electric field effect on conductivity of impurity states

  2. A review on the thermal hydraulic characteristics of the air-cooled ...

    Indian Academy of Sciences (India)

    drop characteristics of the plate- finned-tube heat exchangers. ... It is well known that the temperature distribution on the fin surface is not ... The system ...... voltage. The maximum heat transfer was obtained for a. Reynolds number of 100 at.

  3. The angular distributions of sputtered indium atoms at different temperature

    International Nuclear Information System (INIS)

    Zhang Jiping; Wang Zhenxia; Tao Zhenlan; Pan Jisheng

    1993-01-01

    The effect of temperature and surface topography on the angular distribution of indium atoms was studied under bombardment by 2T KeV Ar + ions at normal incidence. Experiments were carried out on two samples, A and B, at 25 o C and 70 o C respectively. The function Y(θ) = a cosθ + b cos n θ, where θ is the sputtering angle, was found to fit the experimental data. The term (a cos θ) corresponds to the cosine distribution predicted by random collision cascade theory, and the term (b cos n θ) is dependent on factors such as the surface topography. For sample A, a∼b, whereas for sample B a< b. The surface of A consisted of flat and pebble like regions of almost equal area while the surface of B was more cratered. An explanation of the fitting values of a,b and n is given in terms of the shielding effects of the different structures. (UK)

  4. Fluorescence characteristics of the fuel tracers triethylamine and trimethylamine for the investigation of fuel distribution in internal combustion engines.

    Science.gov (United States)

    Lind, Susanne; Aßmann, Simon; Zigan, Lars; Will, Stefan

    2016-03-01

    Laser-induced fluorescence based on fuel tracers like amines is a suitable measurement technique for mixing studies in internal combustion (IC) engines. Triethylamine has often been used in gasoline IC engines; however, no detailed fluorescence characterization for excitation at 263 or 266 nm is available. Trimethylamine (TMA) exhibits high potential as a gaseous fuel tracer but little information about TMA fluorescence is currently available. A picosecond laser source combined with a streak camera equipped with a spectrograph was used to determine the spectral fluorescence emission and fluorescence decay time of both tracers. The tracers were investigated at various temperatures and pressures in a calibration cell with nitrogen as bath gas. The results provide an in-depth understanding of the fluorescence characteristics of both tracers and allow assessment of their application to the investigation of fuel distribution in IC engines.

  5. A nodal model to predict vertical temperature distribution in a room with floor heating and displacement ventilation

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Olesen, Bjarne W.; Fang, Lei

    2013-01-01

    In this paper, the development of a nodal model that predicts vertical temperature distribution in a typical office room with floor heating and displacement ventilation (FHDV) is described. The vertical air flow distribution is first determined according to the principle of displacement ventilati...

  6. Use of Distributed Temperature Sensing Technology to Characterize Fire Behavior

    Directory of Open Access Journals (Sweden)

    Douglas Cram

    2016-10-01

    Full Text Available We evaluated the potential of a fiber optic cable connected to distributed temperature sensing (DTS technology to withstand wildland fire conditions and quantify fire behavior parameters. We used a custom-made ‘fire cable’ consisting of three optical fibers coated with three different materials—acrylate, copper and polyimide. The 150-m cable was deployed in grasslands and burned in three prescribed fires. The DTS system recorded fire cable output every three seconds and integrated temperatures every 50.6 cm. Results indicated the fire cable was physically capable of withstanding repeated rugged use. Fiber coating materials withstood temperatures up to 422 °C. Changes in fiber attenuation following fire were near zero (−0.81 to 0.12 dB/km indicating essentially no change in light gain or loss as a function of distance or fire intensity over the length of the fire cable. Results indicated fire cable and DTS technology have potential to quantify fire environment parameters such as heat duration and rate of spread but additional experimentation and analysis are required to determine efficacy and response times. This study adds understanding of DTS and fire cable technology as a potential new method for characterizing fire behavior parameters at greater temporal and spatial scales.

  7. A Bayesian approach to infer the radial distribution of temperature and anisotropy in the transition zone from seismic data

    Science.gov (United States)

    Drilleau, M.; Beucler, E.; Mocquet, A.; Verhoeven, O.; Moebs, G.; Burgos, G.; Montagner, J.

    2013-12-01

    Mineralogical transformations and matter transfers within the Earth's mantle make the 350-1000 km depth range (considered here as the mantle transition zone) highly heterogeneous and anisotropic. Most of the 3-D global tomographic models are anchored on small perturbations from 1-D models such as PREM, and are secondly interpreted in terms of temperature and composition distributions. However, the degree of heterogeneity in the transition zone can be strong enough so that the concept of a 1-D reference seismic model may be addressed. To avoid the use of any seismic reference model, we developed a Markov chain Monte Carlo algorithm to directly interpret surface wave dispersion curves in terms of temperature and radial anisotropy distributions, considering a given composition of the mantle. These interpretations are based on laboratory measurements of elastic moduli and Birch-Murnaghan equation of state. An originality of the algorithm is its ability to explore both smoothly varying models and first-order discontinuities, using C1-Bézier curves, which interpolate the randomly chosen values for depth, temperature and radial anisotropy. This parameterization is able to generate a self-adapting parameter space exploration while reducing the computing time. Using a Bayesian exploration, the probability distributions on temperature and anisotropy are governed by uncertainties on the data set. The method was successfully applied to both synthetic data and real dispersion curves. Surface wave measurements along the Vanuatu- California path suggest a strong anisotropy above 400 km depth which decreases below, and a monotonous temperature distribution between 350 and 1000 km depth. On the contrary, a negative shear wave anisotropy of about 2 % is found at the top of the transition zone below Eurasia. Considering compositions ranging from piclogite to pyrolite, the overall temperature profile and temperature gradient are higher for the continental path than for the oceanic

  8. Land surface temperature distribution and development for green open space in Medan city using imagery-based satellite Landsat 8

    Science.gov (United States)

    Sulistiyono, N.; Basyuni, M.; Slamet, B.

    2018-03-01

    Green open space (GOS) is one of the requirements where a city is comfortable to stay. GOS might reduce land surface temperature (LST) and air pollution. Medan is one of the biggest towns in Indonesia that experienced rapid development. However, the early development tends to neglect the GOS existence for the city. The objective of the study is to determine the distribution of land surface temperature and the relationship between the normalized difference vegetation index (NDVI) and the priority of GOS development in Medan City using imagery-based satellite Landsat 8. The method approached to correlate the distribution of land surface temperature derived from the value of digital number band 10 with the NDVI which was from the ratio of groups five and four on satellite images of Landsat 8. The results showed that the distribution of land surface temperature in the Medan City in 2016 ranged 20.57 - 33.83 °C. The relationship between the distribution of LST distribution with NDVI was reversed with a negative correlation of -0.543 (sig 0,000). The direction of GOS in Medan City is therefore developed on the allocation of LST and divided into three priority classes namely first priority class had 5,119.71 ha, the second priority consisted of 16,935.76 ha, and third priority of 6,118.50 ha.

  9. Temperature Assessment of Heating Stage for a Thermoforming Equipment

    International Nuclear Information System (INIS)

    Mohd Ghazali, F.A.; Ab Rahim, M.F.; Jaafar, A.A.; Ahmad, M.N.

    2016-01-01

    Thermoforming is a well-known manufacturing process in the productions of various plastic household and industrial solutions. The heating of a plastic sheet allows the plastic to soften and within its forming window temperature the sheet can replicate a required shape when pressed against a mould. Hence, the heating process is an important thermoforming stage that determine uniformity of the material distribution. This article proposed an experimental approach to investigate the thermal characteristics of the heating section of a low cost thermoforming equipment designed for teaching and research purposes. The temperatures of air and a model of a stretched heated plastic sheet were measured and analysed. The experimental data indicates that the spatial temperatures distribution was not localised and the temperature history of the infrared heating agrees well with those given by fast response thermocouples. The findings suggest that the spatial uniformity of temperature can be reasonably evaluated by using the proposed method. (paper)

  10. JOYO MK-II core characteristics database

    International Nuclear Information System (INIS)

    Tabuchi, Shiro; Aoyama, Takafumi; Nagasaki, Hideaki; Kato, Yuichi

    1998-12-01

    The experimental fast reactor JOYO served as the MK-II irradiation bed core for testing fuel and material for FBR development for 15 years from 1982 to 1997. During the MK-II operation, extensive data were accumulated from the core characteristics tests conducted in thirty-one duty operations and thirteen special test operations. These core management data and core characteristics data were compiled into a database. The code system MAGI has been developed and used for core management of JOYO MK-II, and the core characteristics and the irradiation test conditions were calculated using MAGI on the basis of three dimensional diffusion theory with seven neutron energy groups. The core management data include extensive data, which were recorded on CD-ROM for user convenience. The data are specifications and configurations of the core, and for about 300 driver fuel subassemblies and about 60 uninstrumented irradiation subassemblies are core composition before and after irradiation, neutron flux, neutron fluences, fuel and control rod burn-up, and temperature and power distributions. MK-II core characteristics and test conditions were stored in the database for post analysis. Core characteristics data include excess reactivities, control rod worths, and reactivity coefficients, e.g., temperature, power and burn-up. Test conditions include both measured and calculated data for irradiation conditions. (author)

  11. Investigation on the ignition, thermal acceleration and characteristic temperatures of coal char combustion

    International Nuclear Information System (INIS)

    Zhang, Bin; Fu, Peifang; Liu, Yang; Yue, Fang; Chen, Jing; Zhou, Huaichun; Zheng, Chuguang

    2017-01-01

    Highlights: • A new thermal model and measuring method for the ignition temperature are proposed. • Ignition occurs in a region but not a point with ambient conditions changing. • Ignition region is measured from the minimum to maximum ignition temperature. • T_i_g_,_m_a_x of coal char in TG-DSC is in line with the ignition temperature of EFR. - Abstract: Through using a new thermal analysis model and a method of coal/char combustion, the minimum ignition temperature and minimum ignition heat of three different ranks of pulverized coal char were measured by simultaneous Thermogravimetry and Differential Scanning Calorimetry (TG-DSC) experiments. The results show that the ignition of coal char occurs in the range between the minimum ignition temperature and the inflection-point temperature. The thermal acceleration and its gradient G_T increase with increasing heating rate and decrease with increasing coal char rank. The higher the G_T of the coal char, the more easily the ignition occurs and more rapidly the burning and burnout occur. The data show that the G_T of coal char of SLH lignite is 1.6 times more than that of coal char of ZCY bituminous and JWY anthracite in ignition zone, and 3.4 times in burning zone. The characteristic temperatures increase with increasing temperature of prepared char, heating rate and char rank. Moreover, the T_i_g_,_m_a_x calculated in DSC experiment is approximately in line with the ignition temperature obtained in the entrained flow reactor, which demonstrates the feasibility of the proposed theory.

  12. High-temperature performance of MoS{sub 2} thin-film transistors: Direct current and pulse current-voltage characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C.; Samnakay, R.; Balandin, A. A., E-mail: balandin@ee.ucr.edu [Nano-Device Laboratory (NDL), Department of Electrical Engineering, Bourns College of Engineering, University of California—Riverside, Riverside, California 92521 (United States); Phonon Optimized Engineered Materials (POEM) Center, Materials Science and Engineering Program, University of California—Riverside, Riverside, California 92521 (United States); Rumyantsev, S. L. [Department of Electrical, Computer, and Systems Engineering, Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Shur, M. S. [Department of Electrical, Computer, and Systems Engineering, Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-02-14

    We report on fabrication of MoS{sub 2} thin-film transistors (TFTs) and experimental investigations of their high-temperature current-voltage characteristics. The measurements show that MoS{sub 2} devices remain functional to temperatures of at least as high as 500 K. The temperature increase results in decreased threshold voltage and mobility. The comparison of the direct current (DC) and pulse measurements shows that the direct current sub-linear and super-linear output characteristics of MoS{sub 2} thin-films devices result from the Joule heating and the interplay of the threshold voltage and mobility temperature dependences. At temperatures above 450 K, a kink in the drain current occurs at zero gate voltage irrespective of the threshold voltage value. This intriguing phenomenon, referred to as a “memory step,” was attributed to the slow relaxation processes in thin films similar to those in graphene and electron glasses. The fabricated MoS{sub 2} thin-film transistors demonstrated stable operation after two months of aging. The obtained results suggest new applications for MoS{sub 2} thin-film transistors in extreme-temperature electronics and sensors.

  13. Inverse heat transfer analysis of a functionally graded fin to estimate time-dependent base heat flux and temperature distributions

    International Nuclear Information System (INIS)

    Lee, Haw-Long; Chang, Win-Jin; Chen, Wen-Lih; Yang, Yu-Ching

    2012-01-01

    Highlights: ► Time-dependent base heat flux of a functionally graded fin is inversely estimated. ► An inverse algorithm based on the conjugate gradient method and the discrepancy principle is applied. ► The distributions of temperature in the fin are determined as well. ► The influence of measurement error and measurement location upon the precision of the estimated results is also investigated. - Abstract: In this study, an inverse algorithm based on the conjugate gradient method and the discrepancy principle is applied to estimate the unknown time-dependent base heat flux of a functionally graded fin from the knowledge of temperature measurements taken within the fin. Subsequently, the distributions of temperature in the fin can be determined as well. It is assumed that no prior information is available on the functional form of the unknown base heat flux; hence the procedure is classified as the function estimation in inverse calculation. The temperature data obtained from the direct problem are used to simulate the temperature measurements. The influence of measurement errors and measurement location upon the precision of the estimated results is also investigated. Results show that an excellent estimation on the time-dependent base heat flux and temperature distributions can be obtained for the test case considered in this study.

  14. Study of temperature dependence and angular distribution of poly(9,9-dioctylfluorene) polymer films deposited by matrix-assisted pulsed laser evaporation (MAPLE)

    International Nuclear Information System (INIS)

    Caricato, A.P.; Anni, M.; Manera, M.G.; Martino, M.; Rella, R.; Romano, F.; Tunno, T.; Valerini, D.

    2009-01-01

    Poly(9,9-dioctylfluorene) (PFO) polymer films were deposited by matrix-assisted pulsed laser evaporation (MAPLE) technique. The polymer was diluted (0.5 wt%) in tetrahydrofuran and, once cooled to liquid nitrogen temperature, it was irradiated with a KrF excimer laser. 10,000 laser pulses were used to deposit PFO films on Si substrates at different temperatures (-16, 30, 50 and 70 deg. C). One PFO film was deposited with 16,000 laser pulses at a substrate temperature of 50 deg. C. The morphology, optical and structural properties of the films were investigated by SEM, AFM, PL and FTIR spectroscopy. SEM inspection showed different characteristic features on the film surface, like deflated balloons, droplets and entangled polymer filaments. The roughness of the films was, at least partially, controlled by substrate heating, which however had the effect to reduce the deposition rate. The increase of the laser pulse number modified the target composition and increased the surface roughness. The angular distribution of the material ejected from the target confirmed the forward ejection of the target material. PFO films presented negligible modification of the chemical structure respect to the bulk material.

  15. Research on axial total pressure distributions of sonic steam jet in subcooled water

    International Nuclear Information System (INIS)

    Wu Xinzhuang; Li Wenjun; Yan Junjie

    2012-01-01

    The axial total pressure distributions of sonic steam jet in subcooled water were experimentally investigated for three different nozzle diameters (6.0 mm, 8.0 mm and 10.0 mm). The inlet steam pressure, and pool subcooling subcooled water temperature were in the range of 0.2-0.6 MPa and 420-860 ℃, respectively. The effect of steam pressure, subcooling water temperature and nozzle size on the axial pressure distributions were obtained, and also the characteristics of the maximum pressure and its position were studied. The results indicated that the characteristics of the maximum pressure were influenced by the nozzle size for low steam pressure, but the influence could be ignored for high steam pressure. Moreover, a correlation was given to correlate the position of the maximum pressure based on steam pressure and subcooling water temperature, and the discrepancies of predictions and experiments are within ±15%. (authors)

  16. Temperature effect of irradiated target surface on distribution of nanoparticles formed by implantation

    CERN Document Server

    Stepanov, A L; Popok, V N

    2001-01-01

    The composition layers, containing the metal nanoparticles, synthesized thorough implantation of the Ag sup + ions with the energy of 60 keV and the dose of 3 x 10 sup 1 sup 6 ion/cm sup 2 into the sodium-calcium silicate glass by the ion current of 3 mu A/cm sup 2 and the sublayer temperature of 35 deg C are studied. The obtained implantation results are analyzed in dependence on the temperature effects, developing for the glass samples of various thickness. The data on the silver distribution, the metal nanoparticles formation and growth by depth are obtained from the optical reflection spectra. It is demonstrated that minor changes in the surface temperature of the irradiated glass sublayer lead to noticeable diversities in the regularities of the nanoparticles formation in the sample volume

  17. Detection of leaks in steam lines by distributed fibre-optic temperature sensing (DTS)

    Energy Technology Data Exchange (ETDEWEB)

    Craik, N G [Maritime Nuclear, Fredericton, N.B. (Canada)

    1997-12-31

    This paper describes an instrumentation system concept which should be capable of early detection of a leak-before-break in main steam lines. Distributed fibre-optic Temperature Sensing (DTS) systems have been used in commercial application for a few years now, but in other industries and applications. DTS uses very long fibre optical cable both as a temperature sensor and as a means of bringing the information back from the sensor to the terminal equipment. The entire length of the fibre is sensitive to temperature and each resolvable section of fibre is equivalent to a point sensor. This commercially available DTS system could be adapted to indicate leaks in steam lines. The fibre-optic cable could either be run either just underneath the aluminium sheathing covering the installation over a steam line, or between the two layers of insulation. This would detect an increase in the temperature of the insulation due to a steam leak. 1 ref., 4 figs.

  18. Detection of leaks in steam lines by distributed fibre-optic temperature sensing (DTS)

    International Nuclear Information System (INIS)

    Craik, N.G.

    1996-01-01

    This paper describes an instrumentation system concept which should be capable of early detection of a leak-before-break in main steam lines. Distributed fibre-optic Temperature Sensing (DTS) systems have been used in commercial application for a few years now, but in other industries and applications. DTS uses very long fibre optical cable both as a temperature sensor and as a means of bringing the information back from the sensor to the terminal equipment. The entire length of the fibre is sensitive to temperature and each resolvable section of fibre is equivalent to a point sensor. This commercially available DTS system could be adapted to indicate leaks in steam lines. The fibre-optic cable could either be run either just underneath the aluminium sheathing covering the installation over a steam line, or between the two layers of insulation. This would detect an increase in the temperature of the insulation due to a steam leak. 1 ref., 4 figs

  19. Smoothing effect of the thermal interface material on the temperature distribution in a stepwise varying width microchannel cooling device

    Science.gov (United States)

    Riera, Sara; Barrau, Jérôme; Rosell, Joan I.; Fréchette, Luc G.; Omri, Mohamed; Vilarrubí, Montse; Laguna, Gerard

    2017-09-01

    The impact of the thermal interface material (TIM) layer on the performance of a stepwise varying width microchannel cooling device is analysed. A numerical model shows that the TIM layer, besides its well known negative impact on the temperature, also generates a smoothing effect on the temperature distribution. In this study, an analytical model is used to define a nondimensional parameter, called Smoothing Resistance ratio, as the quotient between the origin of the temperature non uniformities and the TIM thermal resistance that flatten the temperature distribution. The relationship between the temperature uniformity of the cooled device, expressed through the temperature standard deviation, and the Smoothing Resistance ratio is shown to be linear. These results lead to the definition of a new design procedure for this kind of cooling device, which aims to reduce the Smoothing Resistance ratio. Two solutions are identified and their drawbacks are analysed.

  20. Capacity Decline and Characteristics Changes of Lithium-ion Cells with Large Capacity during Trickle Charge at High Temperature

    Science.gov (United States)

    Matsushima, Toshio

    Large-scale 40-Ah Li-ion cells have been developed for use in industrial applications. To contribute to techniques for ascertaining the state of these cells and detecting deterioration during actual use, we produce a cell whose capacity is reduced by trickle charging at high temperature, and we determine the relationship between the cell's properties such as its capacity and charging/discharging characteristics when the capacity is reduced. When the capacity of a Li-ion cell is reduced, the discharge voltage also decreases. We show that the residual capacity is well correlated to the discharge voltage and to the duration of continuous discharge before reaching a fixed end-voltage. We also show that the constant-current constant-voltage charging characteristics are maintained even when the capacity is degraded, and that the constant-current charging time and discharge voltage are closely related to the residual capacity. We confirm that the reaction coefficient of the capacity degradation formula can be calculated from the capacity change characteristics at multiple temperatures, and that an 8°C change in temperature causes the lifetime to decrease by half.

  1. Temperature responses of tropical to warm temperate Cladophora species in relation to their distribution in the North Atlantic Ocean

    Science.gov (United States)

    Cambridge, M. L.; Breeman, A. M.; Kraak, S.; van den Hoek, C.

    1987-09-01

    The relationship between distribution boundaries and temperature responses of some North Atlantic Cladophora species (Chlorophyta) was experimentally examined under various regimes of temperature, light and daylength. Experimentally determined critical temperature intervals, in which survival, growth or reproduction was limited, were compared with annual temperature regimes (monthly means and extremes) at sites inside and outside distribution boundaries. The species tested belonged to two phytogeographic groups: (1) the tropical West Atlantic group ( C. submarina: isolate from Curaçao) and (2) the amphiatlantic tropical to warm temperate group ( C. prolifera: isolate from Corsica; C. coelothrix: isolates from Brittany and Curaçao; and C. laetevirens: isolates from deep and shallow water in Corsica and from Brittany). In accordance with distribution from tropical to warm temperate regions, each of the species grew well between 20 30°C and reproduction and growth were limited at and below 15°C. The upper survival limit in long days was <35°C in all species but high or maximum growth rates occurred at 30°C. C. prolifera, restricted to the tropical margins, had the most limited survival at 35°C. Experimental evidence suggests that C. submarina is restricted to the Caribbean and excluded from the more northerly American mainland and Gulf of Mexico coasts by sporadic low winter temperatures in the nearshore waters, when cold northerly weather penetrates far south every few years. Experimental evidence suggests that C. prolifera, C. coelothrix and C. laetevirens are restricted to their northern European boundaries by summer temperatures too low for sufficient growth and/or reproduction. Their progressively more northerly located boundaries were accounted for by differences in growth rates over the critical 10 15°C interval. C. prolifera and C. coelothrix are excluded or restricted in distribution on North Sea coasts by lethal winter temperatures, again differences

  2. Distribution, abundance and trail characteristics of acorn worms at Australian continental margins

    Science.gov (United States)

    Anderson, T. J.; Przeslawski, R.; Tran, M.

    2011-04-01

    Acorn worms (Enteropneusta), which were previously thought to be a missing link in understanding the evolution of chordates, are an unusual and potentially important component of many deep-sea benthic environments, particularly for nutrient cycling. Very little is known about their distribution, abundance, or behaviour in deep-sea environments around the world, and almost nothing is known about their distribution within Australian waters. In this study, we take advantage of two large-scale deep-sea mapping surveys along the eastern (northern Lord Howe Rise) and western continental margins of Australia to quantify the distribution, abundance and trail-forming behaviour of this highly unusual taxon. This is the first study to quantify the abundance and trail behaviour of acorn worms within Australian waters and provides the first evidence of strong depth-related distributions. Acorn worm densities and trail activity were concentrated between transect-averaged depths of 1600 and 3000 m in both eastern and western continental margins. The shallow limit of their depth distribution was 1600 m. The deeper limit was less well-defined, as individuals were found in small numbers below 3000 down to 4225 m. This distributional pattern may reflect a preference for these depths, possibly due to higher availability of nutrients, rather than a physiological constraint to greater depths. Sediment characteristics alone were poor predictors of acorn worm densities and trail activity. High densities of acorn worms and trails were associated with sandy-mud sediments, but similar sediment characteristics in either shallower or deeper areas did not support similar densities of acorn worms or trails. Trail shapes varied between eastern and western margins, with proportionally more meandering trails recorded in the east, while spiral and meandering trails were both common in the west. Trail shape varied by depth, with spiral-shaped trails dominant in areas of high acorn worm densities

  3. Plasma Temperature Determination of Hydrogen Containing High-Frequency Electrodeless Lamps by Intensity Distribution Measurements of Hydrogen Molecular Band

    OpenAIRE

    Gavare, Zanda; Revalde, Gita; Skudra, Atis

    2010-01-01

    The goal of the present work was the investigation of the possibility to use intensity distribution of the Q-branch lines of the hydrogen Fulcher-α diagonal band (d3Πu−→a3∑g+ electronic transition; Q-branch with v=v′=2) to determine the temperature of hydrogen containing high-frequency electrodeless lamps (HFEDLs). The values of the rotational temperatures have been obtained from the relative intensity distributions for hydrogen-helium and hydrogen-argon HFEDLs depending on the applied curren...

  4. Ultra-High Temperature Distributed Wireless Sensors

    Energy Technology Data Exchange (ETDEWEB)

    May, Russell; Rumpf, Raymond; Coggin, John; Davis, Williams; Yang, Taeyoung; O' Donnell, Alan; Bresnahan, Peter

    2013-03-31

    Research was conducted towards the development of a passive wireless sensor for measurement of temperature in coal gasifiers and coal-fired boiler plants. Approaches investigated included metamaterial sensors based on guided mode resonance filters, and temperature-sensitive antennas that modulate the frequency of incident radio waves as they are re-radiated by the antenna. In the guided mode resonant filter metamaterial approach, temperature is encoded as changes in the sharpness of the filter response, which changes with temperature because the dielectric loss of the guided mode resonance filter is temperature-dependent. In the mechanically modulated antenna approach, the resonant frequency of a vibrating cantilever beam attached to the antenna changes with temperature. The vibration of the beam perturbs the electrical impedance of the antenna, so that incident radio waves are phase modulated at a frequency equal to the resonant frequency of the vibrating beam. Since the beam resonant frequency depends on temperature, a Doppler radar can be used to remotely measure the temperature of the antenna. Laboratory testing of the guided mode resonance filter failed to produce the spectral response predicted by simulations. It was concluded that the spectral response was dominated by spectral reflections of radio waves incident on the filter. Laboratory testing of the mechanically modulated antenna demonstrated that the device frequency shifted incident radio waves, and that the frequency of the re-radiated waves varied linearly with temperature. Radio wave propagation tests in the convection pass of a small research boiler plant identified a spectral window between 10 and 13 GHz for low loss propagation of radio waves in the interior of the boiler.

  5. Raman distributed sensor system for temperature monitoring and leak detection in sodium circuits of FBR

    Energy Technology Data Exchange (ETDEWEB)

    Pandian, C.; Kasinathan, M.; Sosamma, S.; Babu Rao, C.; Jayakumar, T.; Murali, N.; Paunikar, V.; Kumar, S.; Rajan, K. K.; Raj, B. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2009-07-01

    Leak detection in coolant loops of nuclear reactors is critical for the safety and performance of the reactors. The feasibility of using Raman distributed temperature sensor (RDTS) has been studied on a 30 m test loop. Temperature in sodium circuits of fast Breeder Reactor (FBR) exceeds 550 C degrees, gold coated fiber is chosen as sensor fibers. Leak is simulated through an artificial micro fissure integrated in the test loop with provision for controlled leak rate. The results are discussed in the paper. The temperature response of RDTS is compared to the conventional thermocouple and their performance was found comparable. The feasibility of detecting the temperature differential of a controlled leak with RDTS is demonstrated

  6. Influence of distribution characteristics and associated seabed features on exploitation of cobalt-rich manganese deposits

    Digital Repository Service at National Institute of Oceanography (India)

    Yamazaki, T.; Sharma, R.; Tsurusaki, K.

    Method of exploitation, selection of mine site and desing of mining system of cobalt-rich manganese deposits on seamounts would be greatly influenced by the distribution characteristics as well as the associated seabed features, wuch as the seabed...

  7. The temperature dependence of atomic incorporation characteristics in growing GaInNAs films

    International Nuclear Information System (INIS)

    Li, Jingling; Gao, Fangliang; Wen, Lei; Zhou, Shizhong; Zhang, Shuguang; Li, Guoqiang

    2015-01-01

    We have systematically studied the temperature dependence of incorporation characteristics of nitrogen (N) and indium (In) in growing GaInNAs films. With the implementation of Monte-Carlo simulation, the low N adsorption energy (−0.10 eV) is demonstrated. To understand the atomic incorporation mechanism, temperature dependence of interactions between Group-III and V elements are subsequently discussed. We find that the In incorporation behaviors rather than that of N are more sensitive to the T g , which can be experimentally verified by exploring the compositional modulation and structural changes of the GaInNAs films by means of high-resolution X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscope, and secondary ion mass spectroscopy

  8. Spatial temperature distribution in human hairy and glabrous skin after infrared CO2 laser radiation

    Science.gov (United States)

    2010-01-01

    Background CO2 lasers have been used for several decades as an experimental non-touching pain stimulator. The laser energy is absorbed by the water content in the most superficial layers of the skin. The deeper located nociceptors are activated by passive conduction of heat from superficial to deeper skin layers. Methods In the current study, a 2D axial finite element model was developed and validated to describe the spatial temperature distribution in the skin after infrared CO2 laser stimulation. The geometry of the model was based on high resolution ultrasound scans. The simulations were compared to the subjective pain intensity ratings from 16 subjects and to the surface skin temperature distributions measured by an infrared camera. Results The stimulations were sensed significantly slower and less intense in glabrous skin than they were in hairy skin (MANOVA, p 0.90, p < 0.001). Of the 16 subjects tested; eight subjects reported pricking pain in the hairy skin following a stimulus of 0.6 J/cm2 (5 W, 0.12 s, d1/e2 = 11.4 mm) only two reported pain to glabrous skin stimulation using the same stimulus intensity. The temperature at the epidermal-dermal junction (depth 50 μm in hairy and depth 133 μm in glabrous skin) was estimated to 46°C for hairy skin stimulation and 39°C for glabrous skin stimulation. Conclusions As compared to previous one dimensional heat distribution models, the current two dimensional model provides new possibilities for detailed studies regarding CO2 laser stimulation intensity, temperature levels and nociceptor activation. PMID:21059226

  9. Distribution law of temperature changes during methane adsorption and desorption in coal using infrared thermography technology

    Science.gov (United States)

    Zhao, Dong; Chen, Hao; An, Jiangfei; Zhou, Dong; Feng, Zengchao

    2018-05-01

    Gas adsorption and desorption is a thermodynamic process that takes place within coal as temperature changes and that is related to methane (CH4) storage. As infrared thermographic technology has been applied in this context to measure surface temperature changes, the aim of this research was to further elucidate the distribution law underlying this process as well as the thermal effects induced by heat adsorption and desorption in coal. Specimens of two different coal ranks were used in this study, and the surface temperature changes seen in the latter were detected. A contour line map was then drawn on the basis of initial results enabling a distribution law of temperature changes for samples. The results show that different regions of coal sample surfaces exhibit different heating rates during the adsorption process, but they all depends on gas storage capacity to a certain extent. It proposes a correlation coefficient that expresses the relationship between temperature change and gas adsorption capacity that could also be used to evaluate the feasibility of coalbed CH4 extraction in the field. And finally, this study is deduced a method to reveal the actual adsorption capacity of coal or CH4 reservoirs in in situ coal seams.

  10. Measuring artificial recharge with fiber optic distributed temperature sensing.

    Science.gov (United States)

    Becker, Matthew W; Bauer, Brian; Hutchinson, Adam

    2013-01-01

    Heat was used as a tracer to measure infiltration rates from a recharge basin. The propagation of diurnal oscillation of surface water temperature into the basin bed was monitored along a transect using Fiber Optic Distributed Temperature Sensing (FODTS). The propagation rate was related to downward specific discharge using standard theory of heat advection and dispersion in saturated porous media. An estimate of the temporal variation of heat propagation was achieved using a wavelet transform to find the phase lag between the surface temperature diurnal oscillation and the correlated oscillation at 0.33 and 0.98 m below the bed surface. The wavelet results compared well to a constant velocity model of thermal advection and dispersion during periods of relatively constant discharge rates. The apparent dispersion of heat was found to be due primarily to hydrodynamic mechanisms rather than thermal diffusion. Specific discharge estimates using the FODTS technique also compared well to water balance estimates over a four month period, although there were occasional deviations that have yet to be adequately explained. The FODTS technique is superior to water balance in that it produces estimates of infiltration rate every meter along the cable transect, every half hour. These high resolution measurements highlighted areas of low infiltration and demonstrated the degradation of basin efficiency due to source waters of high suspended solids. FODTS monitoring promises to be a useful tool for diagnosing basin performance in an era of increasing groundwater demand. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.

  11. THE EFFECTS OF GRAIN SIZE AND TEMPERATURE DISTRIBUTIONS ON THE FORMATION OF INTERSTELLAR ICE MANTLES

    Energy Technology Data Exchange (ETDEWEB)

    Pauly, Tyler; Garrod, Robin T., E-mail: tap74@cornell.edu [Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14853-6801 (United States)

    2016-02-01

    Computational models of interstellar gas-grain chemistry have historically adopted a single dust-grain size of 0.1 micron, assumed to be representative of the size distribution present in the interstellar medium. Here, we investigate the effects of a broad grain-size distribution on the chemistry of dust-grain surfaces and the subsequent build-up of molecular ices on the grains, using a three-phase gas-grain chemical model of a quiescent dark cloud. We include an explicit treatment of the grain temperatures, governed both by the visual extinction of the cloud and the size of each individual grain-size population. We find that the temperature difference plays a significant role in determining the total bulk ice composition across the grain-size distribution, while the effects of geometrical differences between size populations appear marginal. We also consider collapse from a diffuse to a dark cloud, allowing dust temperatures to fall. Under the initial diffuse conditions, small grains are too warm to promote grain-mantle build-up, with most ices forming on the mid-sized grains. As collapse proceeds, the more abundant, smallest grains cool and become the dominant ice carriers; the large population of small grains means that this ice is distributed across many grains, with perhaps no more than 40 monolayers of ice each (versus several hundred assuming a single grain size). This effect may be important for the subsequent processing and desorption of the ice during the hot-core phase of star formation, exposing a significant proportion of the ice to the gas phase, increasing the importance of ice-surface chemistry and surface–gas interactions.

  12. The Effects of Grain Size and Temperature Distributions on the Formation of Interstellar Ice Mantles

    Science.gov (United States)

    Pauly, Tyler; Garrod, Robin T.

    2016-02-01

    Computational models of interstellar gas-grain chemistry have historically adopted a single dust-grain size of 0.1 micron, assumed to be representative of the size distribution present in the interstellar medium. Here, we investigate the effects of a broad grain-size distribution on the chemistry of dust-grain surfaces and the subsequent build-up of molecular ices on the grains, using a three-phase gas-grain chemical model of a quiescent dark cloud. We include an explicit treatment of the grain temperatures, governed both by the visual extinction of the cloud and the size of each individual grain-size population. We find that the temperature difference plays a significant role in determining the total bulk ice composition across the grain-size distribution, while the effects of geometrical differences between size populations appear marginal. We also consider collapse from a diffuse to a dark cloud, allowing dust temperatures to fall. Under the initial diffuse conditions, small grains are too warm to promote grain-mantle build-up, with most ices forming on the mid-sized grains. As collapse proceeds, the more abundant, smallest grains cool and become the dominant ice carriers; the large population of small grains means that this ice is distributed across many grains, with perhaps no more than 40 monolayers of ice each (versus several hundred assuming a single grain size). This effect may be important for the subsequent processing and desorption of the ice during the hot-core phase of star formation, exposing a significant proportion of the ice to the gas phase, increasing the importance of ice-surface chemistry and surface-gas interactions.

  13. Influence of radiative heat and mass transfer mechanism in system “water droplet-high-temperature gases” on integral characteristics of liquid evaporation

    Directory of Open Access Journals (Sweden)

    Glushkov Dmitrii O.

    2015-01-01

    Full Text Available Physical and mathematical (system of differential equations in private derivatives models of heat and mass transfer were developed to investigate the evaporation processes of water droplets and emulsions on its base moving in high-temperature (more than 1000 K gas flow. The model takes into account a conductive and radiative heat transfer in water droplet and also a convective, conductive and radiative heat exchange with high-temperature gas area. Water vapors characteristic temperature and concentration in small wall-adjacent area and trace of the droplet, numerical values of evaporation velocities at different surface temperature, the characteristic time of complete droplet evaporation were determined. Experiments for confidence estimation of calculated integral characteristics of processes under investigation - mass liquid evaporation velocities were conducted with use of cross-correlation recording video equipment. Their satisfactory fit (deviations of experimental and theoretical velocities were less than 15% was obtained. The influence of radiative heat and mass transfer mechanism on characteristics of endothermal phase transformations in a wide temperature variation range was established by comparison of obtained results of numerical simulation with known theoretical data for “diffusion” mechanisms of water droplets and other liquids evaporation in gas.

  14. Influence of the spectral distribution of light on the characteristics of photovoltaic panel. Comparison between simulation and experimental

    Science.gov (United States)

    Chadel, Meriem; Bouzaki, Mohammed Moustafa; Chadel, Asma; Petit, Pierre; Sawicki, Jean-Paul; Aillerie, Michel; Benyoucef, Boumediene

    2017-02-01

    We present and analyze experimental results obtained with a laboratory setup based on a hardware and smart instrumentation for the complete study of performance of PV panels using for illumination an artificial radiation source (Halogen lamps). Associated to an accurate analysis, this global experimental procedure allows the determination of effective performance under standard conditions thanks to a simulation process originally developed under Matlab software environment. The uniformity of the irradiated surface was checked by simulation of the light field. We studied the response of standard commercial photovoltaic panels under enlightenment measured by a spectrometer with different spectra for two sources, halogen lamps and sunlight. Then, we bring a special attention to the influence of the spectral distribution of light on the characteristics of photovoltaic panel, that we have performed as a function of temperature and for different illuminations with dedicated measurements and studies of the open circuit voltage and short-circuit current.

  15. Distribution of excess temperature from the Vienna Generating Station on the Nanticoke River. Technical report 90

    International Nuclear Information System (INIS)

    Carter, H.H.; Regier, R.J.

    1975-06-01

    Temperature and dye tracer data, collected in the Nanticoke River in the vicinity of the Delmarva Power and Light Company Vienna fossil-fuel power plant between 12 and 26 April 1974 were analyzed and interpreted in terms of the distribution of excess temperature as a function of tidal phase. Cooling water flows and plant recirculation were also determined. (U.S.)

  16. Influence of sintering temperature on the characteristics of a-alumina filtration tubes

    International Nuclear Information System (INIS)

    Zarina Abdul Wahid; Rafindde Ramli; Andanastuti Muchtar; Abd Wahab Mohammad

    2005-01-01

    The emerging technology of ceramic membrane filters has created a lot of impact on the materials development and separation industries. Ceramic membrane filters have been used in many separation industry applications particularly in food, dairy, beverages, biotechnology, pharmaceutical and waste treatment industries. This is due to the fact that ceramics are inert and durable and can withstand high temperatures as well as extreme chemical conditions. They also have favourable mechanical properties and lower fouling rates. In this study, ceramic filtration tubes having dimensions of 10 mm outer diameter, 6 mm inner diameter and 880 mm long were prepared from a-alumina using the extrusion technique. The effects of sintering temperature on the pore size, microstructure and porosity of the alumina tube were investigated. The optimum sintering temperature was determined based on the performance of the tubes with regards to porosity, pore size and microstructure. The alumina tubes were sintered at six different temperatures i.e. 1250 degree C, 1300 degree C, 1350 degree C, 1400 degree C, 1450 degree C and 1500 degree C. The porous structures of the alumina tubes were studied using Scanning Electron Microscope (SEM) whereas a Mercury Porosimeter was used to determine the porosity and pore size distribution. (Author)

  17. Transient Temperature Distribution in a Reactor Core with Cylindrical Fuel Rods and Compressible Coolant

    Energy Technology Data Exchange (ETDEWEB)

    Vollmer, H

    1968-04-15

    Applying linearization and Laplace transformation the transient temperature distribution and weighted temperatures in fuel, canning and coolant are calculated analytically in two-dimensional cylindrical geometry for constant material properties in fuel and canning. The model to be presented includes previous models as special cases and has the following novel features: compressibility of the coolant is accounted for. The material properties of the coolant are variable. All quantities determining the temperature field are taken into account. It is shown that the solution for fuel and canning temperature may be given by the aid of 4 basic transfer functions depending on only two variables. These functions are calculated for all relevant rod geometries and material constants. The integrals involved in transfer functions determining coolant temperatures are solved for the most part generally by application of coordinate and Laplace transformation. The model was originally developed for use in steam cooled fast reactor analysis where the coolant temperature rise and compressibility are considerable. It may be applied to other fast or thermal systems after suitable simplifications.

  18. Dependence of equilibrium properties of channeled particles on transverse quasi temperature

    International Nuclear Information System (INIS)

    Kashlev, Yu.A.

    2006-01-01

    Quasi-equilibrium and kinetic characteristics of channeled particles are investigated by methods of nonequilibrium statistical thermodynamics. The equilibrium equation of the transverse energy of fast particles and the equilibrium equation of the transverse momentum of particles are derived. It is shown that equilibrium equations solution permits to obtain the expression for the transverse quasi-temperature of the channeled particle subsystem. The quasi-equilibrium angular distribution of particles after transmission through a thin monocrystal and the angular distribution at backscattering are studied. The evaluated data of the transverse quasi-temperature are presented for the case of iodine ion channeling through silver crystals [ru

  19. Finite Element Modelling of a Pattern of Temperature Distribution during Travelling Heat Source from Oxyacetylene Flame

    Directory of Open Access Journals (Sweden)

    Alkali Adam Umar

    2014-07-01

    Full Text Available A 3D Finite element model was developed to analyse the conduction temperature distribution on type 304 stainless steel workpiece. An experimental heating-only test was conducted using the input parameters from FEM model which predicted the temperature field on the 304 stainless steel work pieces. Similar temperature pattern was noticed for both the FEM model as well as the experimental. Conduction was observed to be the dominant heat transfer mode. Maximum temperatures were observed to occur at the regions of contact between flame heat and the work pieces. Maximum temperature attained during the two investigated runs was 355°C. Even so austenite crystal morphology was retained on the preheated workpiece.

  20. Studying the Association between Green Space Characteristics and Land Surface Temperature for Sustainable Urban Environments: An Analysis of Beijing and Islamabad

    Directory of Open Access Journals (Sweden)

    Shahid Naeem

    2018-01-01

    Full Text Available Increasing trends of urbanization lead to vegetation degradation in big cities and affect the urban thermal environment. This study investigated (1 the cooling effect of urban green space spatial patterns on Land Surface Temperature (LST; (2 how the surrounding environment influences the green space cool islands (GCI, and vice versa. The study was conducted in two Asian capitals: Beijing, China and Islamabad, Pakistan by utilizing Gaofen-1 (GF-1 and Landsat-8 satellite imagery. Pearson’s correlation and normalized mutual information (NMI were applied to investigate the relationship between green space characteristics and LST. Landscape metrics of green spaces including Percentage of Landscape (PLAND, Patch Density (PD, Edge Density (ED, and Landscape Shape Index (LSI were selected to calculate the spatial patterns of green spaces, whereas GCI indicators were defined by Green Space Range (GR, Temperature Difference (TD, and Temperature Gradient (TG. The results indicate that both vegetation composition and configuration influence LST distributions; however, vegetation composition appeared to have a slightly greater effect. The cooling effect can be produced more effectively by increasing green space percentage, planting trees in large patches with equal distribution, and avoiding complex-shaped green spaces. The GCI principle indicates that LST can be decreased by increasing the green space area, increasing the water body fraction, or by decreasing the fraction of impervious surfaces. GCI can also be strengthened by decreasing the fraction of impervious surfaces and increasing the fraction of water body or vegetation in the surrounding environment. The cooling effect of vegetation and water could be explained based on their thermal properties. Beijing has already enacted the green-wedge initiative to increase the vegetation canopy. While designing the future urban layout of Islamabad, the construction of artificial lakes within the urban green