WorldWideScience

Sample records for temperature dependent dielectric

  1. Temperature-dependent dielectric function of nickel

    Science.gov (United States)

    Zollner, Stefan; Nathan Nunley, T.; Trujillo, Dennis P.; Pineda, Laura G.; Abdallah, Lina S.

    2017-11-01

    Confirming historical results by Ornstein and Koefoed (1938), the authors found an anomaly in the optical constants at 1.96 eV for bulk nickel near the Curie temperature through careful high-precision spectroscopic ellipsometry measurements from 80 to 800 K. The anomaly is only seen in sweeps with increasing temperature if the sample carries a net magnetization. In decreasing temperature sweeps or for unmagnetized samples, the anomaly is absent. The sign of the anomaly in the optical conductivity at 1.96 eV is in contrast to the sign of the anomaly in the electrical DC conductivity. The anomaly is rather large and therefore explained with changes in the on-diagonal Drude-Lorentz portion of the dielectric tensor. No sign of anisotropy (polar magneto-optical Kerr effect) is found in the data.

  2. Temperature dependent Dielectric studies of Poly(Ethylene Oxide)

    Science.gov (United States)

    Shiva Kumar, B. P.; Gurumurthy, T. M.; Praveen, D.

    2018-02-01

    Polymers are known to be better materials for dielectric applications. Various polymers with different molecular weights are being studied for dielectric applications. In the present paper, we report the dielectric measurements of Poly(Ethylene Oxide) {PEO} using Impedance spectroscopy studies. The dielectric studies of PEO were carried out on pellets as a function of temperature. It was found that the dielectric constant seems to be negligibly varying with increase in temperature at high frequencies, however, at low frequencies, dielectric constant varies increases with temperature. This may be due to the fact that with the thermal energy provided to the system, more and more dipoles participate and hence the net dielectric constant of the material is also higher at higher temperature. Also at very high frequencies, due to many non-responsive dipoles for fast switching of the applied signal, net dielectric constant of the material also does vary much with temperatures.

  3. Temperature dependence of the dielectric properties of rubber wood

    Science.gov (United States)

    Mohammed Firoz Kabir; Wan M. Daud; Kaida B. Khalid; Haji A.A. Sidek

    2001-01-01

    The effect of temperature on the dielectric properties of rubber wood was investigated in three anisotropic directions—longitudinal, radial, and tangential, and at different measurement frequencies. Low frequency measurements were conducted with a dielectric spectrometer, and high frequencies used microwave applied with open-ended coaxial probe sensors. Dielectric...

  4. Temperature Dependent Dielectric Behavior of Nanocrystalline Ca Ferrite

    Science.gov (United States)

    Samariya, Arvind; Pareek, S. P.; Sharma, P. K.; Prasad, Arun S.; Dhawan, M. S.; Dolia, S. N.; Sharma, K. B.

    Dielectric behaviour of Nanocrystalline CaFe2O4 ferrite synthesized by advanced sol- gel method has been investigated as a function of frequency at different temperatures. Rietveld profile refinement of the XRD pattern confirms formation of cubic spinel structure of the specimen.The dispersion in dielectric behavior of CaFe2O4ferrite sample has been observed in the temperature range of 100-250˚C as a function of frequency in the range 75 kHz to 10 MHz Both the real value of dielectric constant (ɛ‧) and the dielectric loss factor (tanδ) decrease with frequency. This decrease in the values of ɛ‧ and tanδ could be explained on the basis of available ferrous, i.e. Fe2+, ions on octahedral sites such that beyond a certain frequency of applied electric field the electronic exchange between the ferrous and ferric ions i.e. Fe2+↔Fe3+ cannot follow the applied alternating electric field.

  5. Temperature dependent dielectric properties and ion transportation in solid polymer electrolyte for lithium ion batteries

    Science.gov (United States)

    Sengwa, R. J.; Dhatarwal, Priyanka; Choudhary, Shobhna

    2016-05-01

    Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF4) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governed by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10-6 S cm-1 which suggests the suitability of the SPE film for rechargeable lithium batteries.

  6. Temperature-dependent dielectric properties in ITO/AF/Al device

    International Nuclear Information System (INIS)

    Choi, Hyun-Min; Kim, Won-Jong; Lee, Jong-Yong; Hong, Jin-Woong; Kim, Tae-Wan

    2010-01-01

    Temperature-dependent dielectric properties were studied in a device with a structure of ITO/amorphous fluoropolymer (AF)/Al. The AF was thermally deposited at a deposition rate of 0.1 A/s to a thickness of 20 nm under a pressure of 5 x 10 -6 Torr. From the dielectric properties of the device, an equivalent circuit for and the equivalent complex impedance Z eq of the device were obtained. The interfacial resistance was found to be approximately 38 Ω. As the temperature was increased, the radius of the Cole-Cole plot and β also increased for a constant applied voltage. However, as the applied voltage was increased, those values decreased at a constant temperature. These behaviors are thought to be due to an orientational polarization effect of the molecules inside the AF layer.

  7. Correlation between temperature dependent dielectric and DC resistivity of Cr substituted barium hexaferrite

    Science.gov (United States)

    Kumar, Sunil; Supriya, Sweety; Kar, Manoranjan

    2017-12-01

    The chromium substituted barium hexaferrite (BaFe12O19) crystallize to the hexagonal symmetry (P63/mmc space group), which has been studied by employing the XRD technique. The XRD analysis is supported by the Raman spectra and, microstructural analysis has been carried out by the FESEM (field emission scanning electron microscope) technique. Average particle size is found to be around 85 nm. Two peaks are observed in the temperature versus dielectric constant plots and, these two transition temperatures are identified as T d and T m. The temperature T d is due to dipole relaxation, whereas T m is assigned as dielectric phase transition. Both T d and T m increase with the increase in frequency. However, the former one (i.e. T d) increases more rapidly compare to that of later one (i.e. T m). Both the temperature (T d and T m) are also well identified in the temperature dependent DC resistivity. All the samples exhibit the negative temperature coefficient of resistance (NTCR) behavior, which reveals the semiconducting behavior of the material. The Mott VRH model could explain the DC electrical conductivity. Both dielectric constant and DC resistivity is well correlated with each other to explain the transport properties in Cr3+ substituted barium hexaferrite.

  8. Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures.

    Science.gov (United States)

    Rossmanna, Christian; Haemmerich, Dieter

    2014-01-01

    The application of supraphysiological temperatures (>40°C) to biological tissues causes changes at the molecular, cellular, and structural level, with corresponding changes in tissue function and in thermal, mechanical and dielectric tissue properties. This is particularly relevant for image-guided thermal treatments (e.g. hyperthermia and thermal ablation) delivering heat via focused ultrasound (FUS), radiofrequency (RF), microwave (MW), or laser energy; temperature induced changes in tissue properties are of relevance in relation to predicting tissue temperature profile, monitoring during treatment, and evaluation of treatment results. This paper presents a literature survey of temperature dependence of electrical (electrical conductivity, resistivity, permittivity) and thermal tissue properties (thermal conductivity, specific heat, diffusivity). Data of soft tissues (liver, prostate, muscle, kidney, uterus, collagen, myocardium and spleen) for temperatures between 5 to 90°C, and dielectric properties in the frequency range between 460 kHz and 3 GHz are reported. Furthermore, perfusion changes in tumors including carcinomas, sarcomas, rhabdomyosarcoma, adenocarcinoma and ependymoblastoma in response to hyperthmic temperatures up to 46°C are presented. Where appropriate, mathematical models to describe temperature dependence of properties are presented. The presented data is valuable for mathematical models that predict tissue temperature during thermal therapies (e.g. hyperthermia or thermal ablation), as well as for applications related to prediction and monitoring of temperature induced tissue changes.

  9. Temperature dependent dielectric relaxation and ac-conductivity of alkali niobate ceramics studied by impedance spectroscopy

    Science.gov (United States)

    Yadav, Abhinav; Mantry, Snigdha Paramita; Fahad, Mohd.; Sarun, P. M.

    2018-05-01

    Sodium niobate (NaNbO3) ceramics is prepared by conventional solid state reaction method at sintering temperature 1150 °C for 4 h. The structural information of the material has been investigated by X-ray diffraction (XRD) and Field emission scanning electron microscopy (FE-SEM). The XRD analysis of NaNbO3 ceramics shows an orthorhombic structure. The FE-SEM micrograph of NaNbO3 ceramics exhibit grains with grain sizes ranging between 1 μm to 5 μm. The surface coverage and average grain size of NaNbO3 ceramics are found to be 97.6 % and 2.5 μm, respectively. Frequency dependent electrical properties of NaNbO3 is investigated from room temperature to 500 °C in wide frequency range (100 Hz-5 MHz). Dielectric constant, ac-conductivity, impedance, modulus and Nyquist analysis are performed. The observed dielectric constant (1 kHz) at transition temperature (400 °C) are 975. From conductivity analysis, the estimated activation energy of NaNbO3 ceramics is 0.58 eV at 10 kHz. The result of Nyquist plot shows that the electrical behavior of NaNbO3 ceramics is contributed by grain and grain boundary responses. The impedance and modulus spectrum asserts that the negative temperature coefficient of resistance (NTCR) behavior and non-Debye type relaxation in NaNbO3.

  10. Frequency, moisture content, and temperature dependent dielectric properties of potato starch related to drying with radio-frequency/microwave energy.

    Science.gov (United States)

    Zhu, Zhuozhuo; Guo, Wenchuan

    2017-08-24

    To develop advanced drying methods using radio-frequency (RF) or microwave (MW) energy, dielectric properties of potato starch were determined using an open-ended coaxial-line probe and network analyzer at frequencies between 20 and 4,500 MHz, moisture contents between 15.1% and 43.1% wet basis (w.b.), and temperatures between 25 and 75 °C. The results showed that both dielectric constant (ε') and loss factor (ε″) were dependent on frequency, moisture content, and temperature. ε' decreased with increasing frequency at a given moisture content or temperature. At low moisture contents (≤25.4% w.b.) or low temperatures (≤45 °C), ε″ increased with increasing frequency. However, ε″ changed from decrease to increase with increasing frequency at high moisture contents or temperatures. At low temperatures (25-35 °C), both ε' and ε″ increased with increasing moisture content. At low moisture contents (15.1-19.5% w.b.), they increased with increasing temperature. The change trends of ε' and ε″ were different and dependent on temperature and moisture content at their high levels. The penetration depth (d p ) decreased with increasing frequency. RF treatments may provide potential large-scale industrial drying application for potato starch. This research offers useful information on dielectric properties of potato starch related to drying with electromagnetic energy.

  11. Microwave dielectric relaxation spectroscopy study of propylene glycol/ethanol binary mixtures: Temperature dependence

    Science.gov (United States)

    Vishwam, T.; Shihab, Suriya; Murthy, V. R. K.; Tiong, Ha Sie; Sreehari Sastry, S.

    2017-05-01

    Complex dielectric permittivity measurements of propylene glycol (PG) in ethanol at various mole fractions were measured by using open-ended coaxial probe technique at different temperatures in the frequency range 0.02 propylene glycol and ethanol and their binary system have been evaluated theoretically at gaseous state as well as alcoholic medium by using PCM and IEFPCM solvation models from the Hatree-Fock (HF) and Density Functional Theory (DFT-B3LYP) methods with 6-311G* and 6-311G** basis sets. The obtained results have been interpreted in terms of the short and long range ordering of the dipoles, Kirkwood correlation factor (geff), thermodynamic parameters, mean molecular polarizability (αM) and interaction in the mixture through hydrogen bonding. Dielectric relaxation study of propylene glycol in ethanol medium Determination of excess dielectric and thermodynamic parameters Comparison of experimental dipole moment with theoretical calculations Interpretation of the molecular interactions in the liquid through H-bonding Correlation between the evaluated dielectric parameters and theoretical results

  12. Temperature dependent dielectric and conductivity studies of polyvinyl alcohol-ZnO nanocomposite films by impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hemalatha, K. S.; Damle, R.; Rukmani, K., E-mail: rukmani9909@yahoo.co.in [Department of Physics, Bangalore University, Bangalore 560056 (India); Sriprakash, G. [Department of Physics, Maharani' s Science College for Women, Bangalore 560001 (India); Ambika Prasad, M. V. N. [Department of Physics, Gulbarga University, Gulbarga 585106 (India)

    2015-10-21

    Dielectric and conductivity behaviors of nano ZnO doped polyvinyl alcohol (PVA) composites for various concentrations of dopant were investigated using impedance spectroscopy for a wide range of temperatures (303 K–423 K) and frequencies (5 Hz–30 MHZ). The dielectric properties of host polymer matrix have been improved by the addition of nano ZnO and are found to be highly temperature dependent. Anomalous dielectric behavior was observed in the frequency range of 2.5 MHz–5 MHz. Increase in dielectric permittivity and dielectric loss was observed with respect to temperature. The Cole-Cole plot could be modeled by low resistance regions in a high resistance matrix and the lowest resistance was observed for the 10 mol. % films. The imaginary part of the electric modulus showed asymmetric peaks with the relaxation following Debye nature below and non-Debye nature above the peaks. The ac conductivity is found to obey Jonscher's power law, whereas the variation of dc conductivity with temperature was found to follow Arrhenius behavior. Two different activation energy values were obtained from Arrhenius plot indicating that two conduction mechanisms are involved in the composite films. Fitting the ac conductivity data to Jonscher's law indicates that large polaron assisted tunneling is the most likely conduction mechanism in the composites. Maximum conductivity is observed at 423 K for all the samples and it is optimum for 10 mol. % ZnO doped PVA composite film. Significant increase in dc and ac conductivities in these composite films makes them a potential candidate for application in electronic devices.

  13. Ab initio molecular dynamics study of temperature and pressure-dependent infrared dielectric functions of liquid methanol

    Directory of Open Access Journals (Sweden)

    C. C. Wang

    2017-03-01

    Full Text Available The temperature and pressure-dependent dielectric functions of liquids are of great importance to the thermal radiation transfer and the diagnosis and control of fuel combustion. In this work, we apply the state-of-the-art ab initio molecular dynamics (AIMD method to calculate the infrared dielectric functions of liquid methanol at 183–573 K and 0.1–160 MPa in the spectral range 10−4000 cm−1, and study the temperature and pressure effects on the dielectric functions. The AIMD approach is validated by the Infrared Variable Angle Spectroscopic Ellipsometry (IR-VASE experimental measurements at 298 K and 0.1 MPa, and the proposed IR-VASE method is verified by comparison with paper data of distilled water. The results of the AIMD approach agrees well with the experimental values of IR-VASE. The experimental and theoretical analyses indicate that the temperature and pressure exert a noticeable influence on the infrared dielectric functions of liquid methanol. As temperature increases, the average molecular dipole moment decreases. The amplitudes of dominant absorption peaks reduce to almost one half as temperature increases from 183 to 333 K at 0.1 MPa and from 273 to 573 K at 160 MPa. The absorption peaks below 1500 cm–1 show a redshift, while those centered around 3200 cm–1 show a blueshift. Moreover, larger average dipole moments are observed as pressure increases. The amplitudes of dominant absorption peaks increase to almost two times as pressure increases from 1 to 160 MPa at 373 K.

  14. Exploring the Room-Temperature Ferromagnetism and Temperature-Dependent Dielectric Properties of Sr/Ni-Doped LaFeO3 Nanoparticles Synthesized by Reverse Micelle Method

    Science.gov (United States)

    Naseem, Swaleha; Khan, Shakeel; Husain, Shahid; Khan, Wasi

    2018-03-01

    This paper reports the thermal, microstructural, dielectric and magnetic properties of La0.75Sr0.25Fe0.65Ni0.35O3 nanoparticles (NPs) synthesized via reverse micelle technique. The thermogravimetric analysis of as-prepared NPs confirmed a good thermal stability of the sample. Powder x-ray diffraction data analyzed with a Rietveld refinement technique revealed single-phase and orthorhombic distorted perovskite crystal structure of the NPs having Pbnm space group. The transmission electron microscopy images show the crystalline nature and formation of nanostructures with a fairly uniform distribution of particles throughout the sample. Temperature-dependent dielectric properties of the NPs in accordance with the Kramers-Kronig transformation (KKT) model, universal dielectric response model and jump relaxation model have been discussed. Electrode or interface polarization is likely the cause of the observed dielectric behavior. Due to grain boundaries and Schottky barriers of the metallic electrodes of semiconductors, the depletion region is observed, which gives rise to Maxwell-Wagner relaxation and hence high dielectric constants. Magnetic studies revealed the ferromagnetic nature of the prepared NPs upon Sr and Ni doping in LaFeO3 perovskite at room temperature. Therefore, these NPs could be a potential candidate as electrode material in solid oxide fuel cells.

  15. Identification of microscopic domain wall motion from temperature dependence of nonlinear dielectric response.

    Czech Academy of Sciences Publication Activity Database

    Mokrý, Pavel; Sluka, T.

    2017-01-01

    Roč. 110, č. 16 (2017), č. článku 162906. ISSN 0003-6951 R&D Projects: GA ČR(CZ) GA14-32228S Institutional support: RVO:61389021 Keywords : microscopic domain wall * electric fields * temperature dependence Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Electrical and electronic engineering Impact factor: 3.411, year: 2016 http://dx.doi.org/10.1063/1.4981874

  16. Effects of Ni3+ substitution on structural and temperature dependent dielectrical properties of NdFeO3

    International Nuclear Information System (INIS)

    Kaur, Pawanpreet; Pandit, Rabia; Sharma, K. K.; Kumar, Ravi

    2014-01-01

    The polycrystalline samples of NdFe 1−x Ni x O 3 (x=0.0, 0.2) were prepared by solid state reaction route, the single phase of powdered samples were ensured by Rietveld refinement of their X-ray diffraction (XRD) data. We have also studied the variation of dielectric constant (ε′), tangent loss (tan δ) and AC conductivity (σ ac ) as a function of frequency and temperature for both the compositions. It is noticed that both the increase in temperature and Ni 3+ ion substitution results in enhancement of dielectric constant, tangent loss and AC conductivity

  17. Comprehensive analysis of structure and temperature, frequency and concentration-dependent dielectric properties of lithium-substituted cobalt ferrites (Li x Co1- x Fe2O4)

    Science.gov (United States)

    Anjum, Safia; Nisa, Mehru; Sabah, Aneeqa; Rafique, M. S.; Zia, Rehana

    2017-08-01

    This paper has been dedicated to the synthesis and characterization of a series of lithium-substituted cobalt ferrites Li x Co1- x Fe2O4 ( x = 0, 0.2, 0.4, 0.6, 0.8, 1). These samples have been prepared using simple ball milling machine through powder metallurgy route. The structural analysis is carried out using X-ray diffractometer and their 3D vitalization is simulated using diamond software. The frequency and temperature-dependent dielectric properties of prepared samples have been measured using inductor capacitor resistor (LCR) meter. The structural analysis confirms that all the prepared samples have inverse cubic spinel structure. It is also revealed that the crystallite size and lattice parameter decrease with the increasing concentration of lithium (Li+1) ions, it is due to the smaller ionic radii of lithium ions. The comprehensive analysis of frequency, concentration and temperature-dependent dielectric properties of prepared samples is described in this paper. It is observed that the dielectric constant and tangent loss have decreased and conductivity increased as the frequency increases. It is also revealed that the dielectric constant, tangent loss and AC conductivity increase as the concentration of lithium increases due to its lower electronegativity value. Temperature plays a vital role in enhancing the dielectric constant, tangent loss and AC conductivity because the mobility of ions increases as the temperature increases.

  18. Dependence of Ozone Generation on Gas Temperature Distribution in AC Atmospheric Pressure Dielectric Barrier Discharge in Oxygen

    Science.gov (United States)

    Takahashi, Go; Akashi, Haruaki

    AC atmospheric pressure multi-filament dielectric barrier discharge in oxygen has been simulated using two dimensional fluid model. In the discharge, three kinds of streamers have been obtained. They are primary streamers, small scale streamers and secondary streamers. The primary streamers are main streamers in the discharge and the small scale streamers are formed after the ceasing of the primary streamers. And the secondary streamers are formed on the trace of the primary streamers. In these streamers, the primary and the small scale streamers are very effective to generate O(3P) oxygen atoms which are precursor of ozone. And the ozone is generated mainly in the vicinity of the dielectrics. In high gas temperature region, ozone generation decreases in general. However, increase of the O(3P) oxygen atom density in high gas temperature region compensates decrease of ozone generation rate coefficient. As a result, amount of ozone generation has not changed. But if the effect of gas temperature was neglected, amount of ozone generation increases 10%.

  19. a One Millikelvin Top-Loading Dilution Refrigerator and Demagnetization Cryostat, and, the Electric Field Dependence of the Dielectric Constant in Amorphous Materials at Ultra - Temperatures.

    Science.gov (United States)

    Tigner, Benjamin

    1994-01-01

    A novel top-loading cryostat has been constructed which allows experimental samples to be cooled from room temperature to under 100 mK in 6 hours without warming the cryostat's sample plate above 200 mK. The cryostat uses dilution refrigeration and adiabatic demagnetization to reach an ultimate base temperature of 1 mK, achievable after precooling the demagnetization stage for 42 hours. Unusual cryostat design features include a hydraulic thermal clamp mechanism, a multi-segment top-load rod, and beryllium -copper fingers used for contact precooling of the sample carrier. Non-linear behavior is observed in the AC dielectric response of amorphous SiO_2 and SiO_{rm x} (x ~ 2.2) at temperatures below 320 mK and frequencies between 100 Hz and 10 kHz. The present observations are immune to the suspected measurement imperfections which plagued qualitatively similar results reported by Frossati, Maynard, Rammal, and Thoulouze [1977 ]. Above a temperature-dependent field threshold, the dielectric constant is seen to increase approximately logarithmically with increasing AC electric field amplitude. Typical threshold fields at 100 mK and 1 kHz are 5 times 10^4 V/m for bulk SiO_2 and 5 times 10^3 V/m for SiO_{rm x}. Typical field dependencies above the threshold at these same temperatures and frequencies are.018%/field-decade in bulk SiO _2 and.35%/field-decade in SiO_ {rm x}. At high AC field amplitudes, the observed non-linearity weakens the usual power law frequency dependence of the temperature of the dielectric constant minimum, such that T_{rm min} ~ f ^alpha, where alpha varies from 1/3 for low fields to.16 for fields of 1.2 times 10^5 V/m in SiO_2, and.20 for fields of 1.5 times 10^5 V/m in SiO_{rm x} . The non-linear dielectric properties cannot be explained in terms of the calculations of Anthony and Anderson [1979]. A modified calculation is proposed, involving an ensemble of degenerate two-level systems, which predicts non-linear dielectric behavior whose

  20. Dependence of the oxidation properties of a dielectric barrier discharge in air on the plasma and gas temperatures

    International Nuclear Information System (INIS)

    Dhainaut, M.; Goldman, M.; Goldman, A.

    2002-01-01

    Investigations were carried out on atmospheric pressure dielectric barrier discharges, in a point-to-plane geometry energized with ac or pulsed high voltage power supplies of variable frequency (from 3.5 to 50 kHz). Electrical / chemical coupling processes on the one hand, and thermal / chemical coupling processes on the other hand were studied through ozone production. Correlations based on these properties were established, using emission spectroscopy measurements for the determination of the plasma gas temperature. The temperature in the active gas volume, i.e. the volume in which the ozone three body formation reaction takes place, was evaluated thanks to comparisons between experimental data and calculations based on a simple model for the ozone formation. (author)

  1. Temperature dependence of Brewster's angle.

    Science.gov (United States)

    Guo, Wei

    2018-01-01

    In this work, a dielectric at a finite temperature is modeled as an ensemble of identical atoms moving randomly around where they are trapped. Light reflection from the dielectric is then discussed in terms of atomic radiation. Specific calculation demonstrates that because of the atoms' thermal motion, Brewster's angle is, in principle, temperature-dependent, and the dependence is weak in the low-temperature limit. What is also found is that the Brewster's angle is nothing but a result of destructive superposition of electromagnetic radiation from the atoms.

  2. Effects of Ni{sup 3+} substitution on structural and temperature dependent dielectrical properties of NdFeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Pawanpreet, E-mail: merry2286@gmail.com; Pandit, Rabia, E-mail: merry2286@gmail.com; Sharma, K. K., E-mail: merry2286@gmail.com [Department of Physics, National Institute of Technology Hamirpur-177005, Himachal Pradesh (India); Kumar, Ravi [Beant College of Engineering and Technology Gurdaspur-143521, Punjab (India)

    2014-04-24

    The polycrystalline samples of NdFe{sub 1−x}Ni{sub x}O{sub 3} (x=0.0, 0.2) were prepared by solid state reaction route, the single phase of powdered samples were ensured by Rietveld refinement of their X-ray diffraction (XRD) data. We have also studied the variation of dielectric constant (ε′), tangent loss (tan δ) and AC conductivity (σ{sub ac}) as a function of frequency and temperature for both the compositions. It is noticed that both the increase in temperature and Ni{sup 3+} ion substitution results in enhancement of dielectric constant, tangent loss and AC conductivity.

  3. A dielectric approach to high temperature superconductivity

    International Nuclear Information System (INIS)

    Mahanty, J.; Das, M.P.

    1989-01-01

    The dielectric response of an electron-ion system to the presence of a pair of charges is investigated. From the nature of the dielectric function, it is shown that a strong attractive pair formation is possible depending on the dispersion of the ion branches. The latter brings a reduction to the sound velocity which is used as a criterion for the superconductivity. By solving the BCS equation with the above dielectric function, we obtain a reasonable value of T/sub c/. 17 refs., 1 fig

  4. Moderate temperature-dependent surface and volume resistivity and low-frequency dielectric constant measurements of pure and multi-walled carbon nanotube (MWCNT) doped polyvinyl alcohol thin films

    Science.gov (United States)

    Edwards, Matthew; Guggilla, Padmaja; Reedy, Angela; Ijaz, Quratulann; Janen, Afef; Uba, Samuel; Curley, Michael

    2017-08-01

    Previously, we have reported measurements of temperature-dependent surface resistivity of pure and multi-walled carbon nanotube (MWNCT) doped amorphous Polyvinyl Alcohol (PVA) thin films. In the temperature range from 22 °C to 40 °C with humidity-controlled environment, we found the surface resistivity to decrease initially, but to rise steadily as the temperature continued to increase. Moreover, electric surface current density (Js) was measured on the surface of pure and MWCNT doped PVA thin films. In this regard, the surface current density and electric field relationship follow Ohm's law at low electric fields. Unlike Ohmic conduction in metals where free electrons exist, selected captive electrons are freed or provided from impurities and dopants to become conduction electrons from increased thermal vibration of constituent atoms in amorphous thin films. Additionally, a mechanism exists that seemingly decreases the surface resistivity at higher temperatures, suggesting a blocking effect for conducting electrons. Volume resistivity measurements also follow Ohm's law at low voltages (low electric fields), and they continue to decrease as temperatures increase in this temperature range, differing from surface resistivity behavior. Moreover, we report measurements of dielectric constant and dielectric loss as a function of temperature and frequency. Both the dielectric constant and dielectric loss were observed to be highest for MWCNT doped PVA compared to pure PVA and commercial paper, and with frequency and temperature for all samples.

  5. Automated general temperature correction method for dielectric soil moisture sensors

    Science.gov (United States)

    Kapilaratne, R. G. C. Jeewantinie; Lu, Minjiao

    2017-08-01

    An effective temperature correction method for dielectric sensors is important to ensure the accuracy of soil water content (SWC) measurements of local to regional-scale soil moisture monitoring networks. These networks are extensively using highly temperature sensitive dielectric sensors due to their low cost, ease of use and less power consumption. Yet there is no general temperature correction method for dielectric sensors, instead sensor or site dependent correction algorithms are employed. Such methods become ineffective at soil moisture monitoring networks with different sensor setups and those that cover diverse climatic conditions and soil types. This study attempted to develop a general temperature correction method for dielectric sensors which can be commonly used regardless of the differences in sensor type, climatic conditions and soil type without rainfall data. In this work an automated general temperature correction method was developed by adopting previously developed temperature correction algorithms using time domain reflectometry (TDR) measurements to ThetaProbe ML2X, Stevens Hydra probe II and Decagon Devices EC-TM sensor measurements. The rainy day effects removal procedure from SWC data was automated by incorporating a statistical inference technique with temperature correction algorithms. The temperature correction method was evaluated using 34 stations from the International Soil Moisture Monitoring Network and another nine stations from a local soil moisture monitoring network in Mongolia. Soil moisture monitoring networks used in this study cover four major climates and six major soil types. Results indicated that the automated temperature correction algorithms developed in this study can eliminate temperature effects from dielectric sensor measurements successfully even without on-site rainfall data. Furthermore, it has been found that actual daily average of SWC has been changed due to temperature effects of dielectric sensors with a

  6. The flexoelectric effect associated size dependent pyroelectricity in solid dielectrics

    International Nuclear Information System (INIS)

    Bai, Gang; Liu, Zhiguo; Xie, Qiyun; Guo, Yanyan; Li, Wei; Yan, Xiaobing

    2015-01-01

    A phenomenological thermodynamic theory is used to investigate the effect of strain gradient on the pyroelectric effect in centrosymmetric dielectric solids. Direct pyroelectricity can exist as external mechanical stress is applied to non-pyroelectric dielectrics with shapes such as truncated pyramids, due to elastic strain gradient induced flexoelectric polarization. Effective pyroelectric coefficient was analyzed in truncated pyramids. It is found to be controlled by size, ambient temperature, stress, and aspect ratio and depends mainly on temperature sensitivity of flexoelectric coefficient (TSFC) and strain gradient of the truncated pyramids dielectric solids. These results show that the pyroelectric property of Ba 0.67 Sr 0.33 TiO 3 above T c similar to PZT and other lead-based ferroelectrics can be obtained. This feature might widely broaden the selection of materials for infrared detectors with preferable properties

  7. The flexoelectric effect associated size dependent pyroelectricity in solid dielectrics

    Science.gov (United States)

    Bai, Gang; Liu, Zhiguo; Xie, Qiyun; Guo, Yanyan; Li, Wei; Yan, Xiaobing

    2015-09-01

    A phenomenological thermodynamic theory is used to investigate the effect of strain gradient on the pyroelectric effect in centrosymmetric dielectric solids. Direct pyroelectricity can exist as external mechanical stress is applied to non-pyroelectric dielectrics with shapes such as truncated pyramids, due to elastic strain gradient induced flexoelectric polarization. Effective pyroelectric coefficient was analyzed in truncated pyramids. It is found to be controlled by size, ambient temperature, stress, and aspect ratio and depends mainly on temperature sensitivity of flexoelectric coefficient (TSFC) and strain gradient of the truncated pyramids dielectric solids. These results show that the pyroelectric property of Ba0.67Sr0.33TiO3 above Tc similar to PZT and other lead-based ferroelectrics can be obtained. This feature might widely broaden the selection of materials for infrared detectors with preferable properties.

  8. Effect of paramagnetic manganese ions doping on frequency and high temperature dependence dielectric response of layered Na1.9Li0.1Ti3O7 ceramics

    International Nuclear Information System (INIS)

    Pal, Dharmendra; Pandey, J.L.

    2010-01-01

    The manganese doped layered ceramic samples (Na 1.9 Li 0.1 )Ti 3 O 7 : XMn (0.01 ≤ X ≤ 0.1) have been prepared using high temperature solid state reaction. The room temperature electron paramagnetic resonance (EPR) investigations exhibit that at lower percentage of doping the substitution of manganese ions occur as Mn 3+ at Ti 4+ sites, whereas for higher percentage of doping Mn 2+ ions occupy the two different interlayer sodium/lithium sites. In both cases, the charge compensation mechanism should operate to maintain the overall charge neutrality of the lattice. The manganese doped derivatives of layered Na 1.9 Li 0. 1Ti 3 O 7 (SLT) ceramics have been investigated through frequency dependence dielectric spectroscopy in this work. The results indicate that the dielectric losses in these ceramics are the collective contribution of electric conduction, dipole orientation and space charge polarization. Smeared peaks in temperature dependence of permittivity plots suggest diffuse nature of high temperature ferroelectric phase transition. The light manganese doping in SLT enhances the dielectric constant. However, manganese doping decreases dielectric loss due to inhibition of domain wall motion, enhances electron-hopping conduction, and impedes the interlayer ionic conduction as well. Manganese doping also gives rise to contraction of interlayer space. (author)

  9. Dielectric relaxation in solid collagen over a wide temperature range

    International Nuclear Information System (INIS)

    Khan, Muhammad Abdullah; Rizvi, Tasneem Zahra; Janjua, Khalid Mehmood; Zaheer, Muhammad Yar

    2001-07-01

    Dielectric constant ε' and loss factor ε'' have been measured in bovine tendon collagen in the frequency range 30 Hz - 3 MHz and temperature range 30 deg. C to 200 deg. C. Frequency dependence curve of ε'' shows a low frequency strong α-dispersion attributed to phonon assisted proton hopping between localized sites and a weak high frequency. α 2 - dispersion attributed to reorientation of polar components of collagen molecules. Temperature dependence of the dielectric data show release of bound moisture as a three step process with discrete peaks at 50 deg. C, 90 deg. C and 125 deg. C. These peaks have been attributed to release of adsorbed surface water, water bound to exposed polar sites and strongly bound internal moisture respectively. A peak observed at 160 deg. C has been attributed to thermally induced helix-coil transition of collagen molecules. (author)

  10. Ellipsometric study of the temperature dependences of the dielectric function and the critical points of AlSb at temperatures from 300 to 803 K

    Energy Technology Data Exchange (ETDEWEB)

    Park, Han Gyeol; Kim, Tae Jung; Hwang, Soon Yong; Kim, Jun Young; Choi, Jun Ho; Kim, Young Dong [Kyung Hee University, Seoul (Korea, Republic of); Shin, Sang Hoon; Song, Jin Dong [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2014-08-15

    We report the complex pseudodielectric function <ε> = <ε{sub 1} > + i<ε{sub 2} > of an oxide-free AlSb film for energies from 0.7 to 5.0 eV and temperatures from 300 to 803 K. The 1.5-μm-thick film was grown on a (001) GaAs substrate by using molecular beam epitaxy. We maintained the film in an ultrahigh vacuum to prevent oxidation artifacts and used a rotating-compensator ellipsometer to obtain the optical properties. Critical-point (CP) energies were obtained by numerically calculating second energy derivatives of the data. Blue shifts of the CP energies and sharper structures were observed with decreasing temperature. The calculated CP energies were fit to a linear equation.

  11. New dielectric material for low temperature thermometry in high magnetic fields

    NARCIS (Netherlands)

    Maior, M.M.; Molnar, S.B.; Vysochanskii, Yu.M.; Gurzan, M.I.; Loosdrecht, P.H.M. van; Linden, P.J.E.M. van der; Kempen, H. van

    1993-01-01

    Dielectric experiments on the incommensurate solid solution (Pb0.45Sn0.55)2P2Se6 for T=1.2-200 K reveal a strong temperature dependence of the real part of the dielectric constant for T<45 K. The relative dielectric sensitivity d ln(ε’)/dT≈2-8 K-1 is found to be 2-3 times higher in comparison to

  12. Flexoelectric charge separation and size dependent piezoelectricity in dielectric solids

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Wenhui [Department of Physics, Shantou University, Shantou, Guangdong 515063 (China)

    2010-01-15

    Flexoelectric charge separation and the associated size dependent piezoelectricity are investigated in centrosymmetric dielectric solids. Direct piezoelectricity can exist as external mechanical stress is applied to non-piezoelectric dielectrics with shapes such as truncated pyramids, due to elastic strain gradient induced flexoelectric polarization. Effective piezoelectric coefficient is analyzed in truncated pyramids, which is strongly enhanced by size reduction and depends on flexoelectricity, elastic compliance, and aspect ratio of the non-piezoelectric dielectric solids. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  13. Influence of the temperature on the dielectric properties of epoxy resins

    OpenAIRE

    Dodd, S. J.; Chalashkanov, N. M.; Fothergill, J.; Dissado, L. A.

    2010-01-01

    Electrical degradation processes in epoxy resins, such as electrical treeing, were found to be dependent on the temperature at which the experiments were carried out. Therefore, it is of considerable research interest to study the influence of temperature on the dielectric properties of the polymers and to relate the effect of temperature on these properties to the possible electrical degradation mechanisms. In this work, the dielectric properties of two different epoxy resin systems have bee...

  14. The dielectric α relaxation at a temperature close to T sub(g)

    International Nuclear Information System (INIS)

    Gomez Ribelles, J.L.; Diaz Calleja, R.

    1985-01-01

    It is shown in this work how the dependence of the mean relaxation times of the dielectric α relaxation on temperature deviates from the Williams, Landel and Ferry model at a temperature close to T sub(g). In some cases, an Arrhenius-like relationship for this relaxation can be observed for temperatures below T sub(g)

  15. Communication: Modeling electrolyte mixtures with concentration dependent dielectric permittivity

    Science.gov (United States)

    Chen, Hsieh; Panagiotopoulos, Athanassios Z.

    2018-01-01

    We report a new implicit-solvent simulation model for electrolyte mixtures based on the concept of concentration dependent dielectric permittivity. A combining rule is found to predict the dielectric permittivity of electrolyte mixtures based on the experimentally measured dielectric permittivity for pure electrolytes as well as the mole fractions of the electrolytes in mixtures. Using grand canonical Monte Carlo simulations, we demonstrate that this approach allows us to accurately reproduce the mean ionic activity coefficients of NaCl in NaCl-CaCl2 mixtures at ionic strengths up to I = 3M. These results are important for thermodynamic studies of geologically relevant brines and physiological fluids.

  16. Modification of temperature dependence of dielectric properties by symmetry-controlled superlattice thin films of BaZrxTi1-xO3

    International Nuclear Information System (INIS)

    Kawahara, Toshio; Ohno, Takahiro; Doi, Atsuhiro; Tabata, Hitoshi; Kawai, Tomoji; Hino, Takanori

    2006-01-01

    Symmetry-controlled ferroelectric superlattice thin films of BaZr x Ti 1-x O 3 (BZT) were fabricated by a pulse laser deposition (PLD) technique. To reduce the strain effects, we used 5-layer systems of BZT with x=0, 0.25, 0.5, 0.75, and 1; we call these A, B, C, D, and E, respectively. We made two types of superlattice film, namely, ABCDE/ABCDE and ABCDE/EDCBA, where the total concentration of Zr was the same. The former exhibits symmetry breaking as in perovskite structures. In contrast, the latter has symmetry introduced by artificial structures. Superlattices show clear satellite peaks in XRD patterns and the structures are also confirmed by electron microscopy images. ABCDE/ABCDE films have larger relative permittivities than the ABCDE/EDCBA films. This property seems to be the symmetry effects in the superlattice structures. Both films have a weak temperature dependence near room temperature by the superlattice effects, which seems to be better for the application of the materials. (author)

  17. Induced lattice dielectric gauge theory at finite temperature

    International Nuclear Information System (INIS)

    Borisenko, O.A.; Petrov, V.K.; Zinovjev, G.M.

    1993-11-01

    Some properties of the lattice dielectric gauge theories (LDGT) at finite temperature are studied and discussed. We have found several essential points to be mentioned: 1) deconfinement phase transition at certain values of dielectric potential parameters takes place; 2) space-like Wilson loop obeys area law at any temperature; 3) a possibility to introduce gauge invariant mass for dielectric field leads to existence of magnetic charge and sources of gluon current screening; such properties could mean a lack of infrared problem in dielectric theories unlike pure Yang-Mills theories at T ≠ 0. We show how an effective theory for static modes of high-temperature lattice Willson QCD can appear to be LDGT performing a corresponding reduction and discuss the general properties of the effective model obtained. (author)

  18. Morphology-dependent space charge polarization and dielectric relaxation of CdO nanomorphotypes

    Directory of Open Access Journals (Sweden)

    Paulose Thomas

    2016-12-01

    Full Text Available A versatile approach signifying the morphology-dependent dielectric polarization and relaxation mechanisms of cadmium oxide (CdO nanosphere, nanoflakes and nanoparallelepiped morphotypes as a function of frequency and temperature is presented. Variation of dielectric property is observed due to the changes of space charge/interfacial polarization resulting from the variations of surface to volume ratio of nanomorphology. Accordingly, colossal dielectric constant value has been observed in CdO nanosphere having larger surface to volume ratio. The order of dielectric constant (dc values observed for the present nanomorphologies is: dc of sphere > dc of flakes > dc of parallelepiped resembles the order of surface to volume ratios of the present morphologies respectively. The experimental data of complex impedance values are numerically fitted using theoretical models which provide the information of role of grain resistance on dielectric polarization and Cole–Cole type mechanism of dielectric relaxation process. The activation energies for electron transport are found to be 0.087eV for spheres, 0.074eV for flakes and 0.067 for parallelepiped nanomorphotypes of CdO. The dielectric and impedance spectroscopic analysis of the present material opens up wide scope for morphology-dependent tuning of nanomaterials for electrical applications.

  19. High temperature dielectric studies of indium-substituted NiCuZn nanoferrites

    Science.gov (United States)

    Hashim, Mohd.; Raghasudha, M.; Shah, Jyoti; Shirsath, Sagar E.; Ravinder, D.; Kumar, Shalendra; Meena, Sher Singh; Bhatt, Pramod; Alimuddin; Kumar, Ravi; Kotnala, R. K.

    2018-01-01

    In this study, indium (In3+)-substituted NiCuZn nanostructured ceramic ferrites with a chemical composition of Ni0.5Cu0.25Zn0.25Fe2-xInxO4 (0.0 ≤ x ≤ 0.5) were prepared by chemical synthesis involving sol-gel chemistry. Single phased cubic spinel structure materials were prepared successfully according to X-ray diffraction and transmission electron microscopy analyses. The dielectric properties of the prepared ferrites were measured using an LCR HiTester at temperatures ranging from room temperature to 300 °C at different frequencies from 102 Hz to 5 × 106 Hz. The variations in the dielectric parameters ε‧ and (tanδ) with temperature demonstrated the frequency- and temperature-dependent characteristics due to electron hopping between the ions. The materials had low dielectric loss values in the high frequency range at all temperatures, which makes them suitable for high frequency microwave applications. A qualitative explanation is provided for the dependences of the dielectric constant and dielectric loss tangent on the frequency, temperature, and composition. Mӧssbauer spectroscopy was employed at room temperature to characterize the magnetic behavior.

  20. Insight into the dynamics of low temperature dielectric relaxation of ordinary perovskite ferroelectrics

    OpenAIRE

    Levit Valenzuela, Rafael; Ochoa Guerrero, Diego A.; Martínez García, Julio Cesar; García García, José Eduardo

    2017-01-01

    The temperature dependence of the dielectric response of ordinary ferroelectric materials exhibits a frequency-independent anomalous peak as a manifestation of the ferroelectric to paraelectric phase transition. A second anomaly in the permittivity has been reported in different ferroelectric perovskite-type systems at low temperatures, often at cryogenic temperatures. This anomaly manifests as a frequency-dependent local maximum, which exhibits similar characteristics to that observed in rel...

  1. Epitaxial growth of high dielectric constant lead-free relaxor ferroelectric for high-temperature operational film capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Kumaragurubaran, Somu [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044,Japan (Japan); Nagata, Takahiro, E-mail: NAGATA.Takahiro@nims.go.jp [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044,Japan (Japan); Tsunekawa, Yoshifumi; Takahashi, Kenichiro; Ri, Sung-Gi; Suzuki, Setsu [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044,Japan (Japan); Comet Inc., c/o National Institute for Materials Science, 1-1 Namiki, Tsukuba,Ibaraki 305-0044 (Japan); Chikyow, Toyohiro [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044,Japan (Japan)

    2015-10-01

    An epitaxial thin-film capacitor based on relaxor ferroelectric oxide, BaTiO{sub 3}–Bi(Mg{sub 2/3}Nb{sub 1/3})O{sub 3} (BT–BMN), has been realized on Nb:SrTiO{sub 3} substrates. A high dielectric constant exceeding 400 was attained on high-temperature annealed films at frequencies below 100 kHz. BT–BMN thin-film exhibited a broad dielectric constant variation against temperature and also the frequency dependent dielectric-constant-maximum temperature. Excellent dielectric constant stability below 10% was achieved in 75–400 °C temperature range with a low dielectric loss. This exemplifies BT–BMN as a dielectric for monolithically integrated capacitors that can function up to 400 °C, breaking the present 175 °C limit of bulky capacitors, in high-power high-temperature electronic devices. - Highlights: • We optimized epitaxial growth conditions of lead-free relaxor ferroelectrics. • (111) oriented BaTiO{sub 3}–Bi(Mg{sub 2/3}Nb{sub 1/3})O{sub 3} film was grown on Nb:SrTiO{sub 3} substrate epitaxially. • High-temperature annealed films showed high dielectric constant exceeding 400. • Dielectric constant stability below 10% was achieved in 75–400 °C temperature range.

  2. Dielectric determination of the glass transition temperature (T sub g)

    Science.gov (United States)

    Ries, Heidi R.

    1990-01-01

    The objective is to determine the glass transition temperature of a polymer using a dielectric dissipation technique. A peak in the dissipation factor versus temperature curve is expected near the glass transition temperature T sub g. It should be noted that the glass transition is gradual rather than abrupt, so that the glass transition temperature T sub g is not clearly identifiable. In this case, the glass transition temperature is defined to be the temperature at the intersection point of the tangent lines to the dissipation factor versus temperature curve above and below the transition region, as illustrated.

  3. Dielectric properties of some cadmium and mercury amino alcohol complexes at low temperatures

    Directory of Open Access Journals (Sweden)

    ALAA E. ALI

    2002-12-01

    Full Text Available The dielectric properties of some cadmium and mercury amino alcohol complexes were studied within the temperature range of 100–300 K at the frequencies of 100, 300 and 1000 kHz. The polarization mechanisms are suggested and the dependence of both e and tg d on both temperature and frequency are analyzed. The analysis of the data reveals semi-conducting features based mainly on the hopping mechanism.

  4. Calculation of the Spontaneous Polarization and the Dielectric Constant as a Function of Temperature for

    Directory of Open Access Journals (Sweden)

    Hamit Yurtseven

    2012-01-01

    Full Text Available The temperature dependence of the spontaneous polarization P is calculated in the ferroelectric phase of KH2PO4 (KDP at atmospheric pressure (TC = 122 K. Also, the dielectric constant ε is calculated at various temperatures in the paraelectric phase of KDP at atmospheric pressure. For this calculation of P and ε, by fitting the observed Raman frequencies of the soft mode, the microscopic parameters of the pure tunnelling model are obtained. In this model, the proton-lattice interaction is not considered and the collective proton mode is identified with the soft-mode response of the system. Our calculations show that the spontaneous polarization decreases continuously in the ferroelectric phase as approaching the transition temperature TC. Also, the dielectric constant decreases with increasing temperature and it diverges in the vicinity of the transition temperature (TC = 122 K for KDP according to the Curie-Weiss law.

  5. Temperature dependent dielectric and magnetic properties of GdFe{sub 1−x}Ni{sub x}O{sub 3} (0.0 ≤ x ≤ 0.3) orthoferrites

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Pawanpreet, E-mail: merry2286@gmail.com; Sharma, K. K., E-mail: kknitham@gmail.com; Pandit, Rabia [Department of Physics, National Institute of Technology, Himachal Pradesh, Hamirpur 177005 (India); Kumar, Ravi [Centre for Material Science and Engineering, National Institute of Technology, Himachal Pradesh, Hamirpur 177005 (India); Kotnala, R. K.; Shah, Jyoti [National Physical Laboratory, New Delhi 110012 (India)

    2014-06-14

    The polycrystalline samples of GdFe{sub 1−x}Ni{sub x}O{sub 3} (x = 0.0, 0.1, 0.2, 0.3) orthoferrites are synthesized via solid state reaction route. The Rietveld fitted X-ray diffraction patterns confirm the formation of orthorhombic phase with Pbnm space group for all the samples. The dielectric measurements reveal an enhancement in dielectric constant and tangent loss with increase in both temperature as well as Nickel (Ni) substitution. Dielectric studies are also in support with the induction of delocalized charge carriers in the GdFeO{sub 3} matrix with increasing Ni doping. Magnetization versus applied field study shows the non-saturating hysteresis curves suggesting the canted type antiferromagnetic behavior in the considered orthoferrites. Moreover, the observed magnetic behavior is complex and the doping affects the magnitude of magnetization differently at 300 K and 80 K. It has further been noticed that the incorporated Ni{sup 3+} ions enhances the symmetry of the magnetization curves. The as-prepared samples may find their applications in the decoupling capacitors.

  6. Peltier Effect Based Temperature Controlled System for Dielectric Spectroscopy

    Science.gov (United States)

    Mukda, T.; Jantaratana, P.

    2017-09-01

    The temperature control system was designed and built for application in dielectric spectroscopy. It is based on the dual-stage Peltier element that decreases electrical power and no cryogenic fluids are required. A proportional integral derivative controller was used to keep the temperature stability of the system. A Pt100 temperature sensor was used to measure temperature of the sample mounting stage. Effect of vacuum isolation and water-cooling on accuracy and stability of the system were also studied. With the incorporation of vacuum isolation and water-cooling at 18 °C, the temperature of the sample under test can be controlled in the range of -40 °C to 150 °C with temperature stability ± 0.025 °C.

  7. Dielectric Performance of a High Purity HTCC Alumina at High Temperatures - a Comparison Study with Other Polycrystalline Alumina

    Science.gov (United States)

    Chen, Liangyu

    2014-01-01

    A very high purity (99.99+%) high temperature co-fired ceramic (HTCC) alumina has recently become commercially available. The raw material of this HTCC alumina is very different from conventional HTCC alumina, and more importantly there is no glass additive in this alumina material for co-firing processing. Previously, selected HTCC and LTCC (low temperature co-fired ceramic) alumina materials were evaluated at high temperatures as dielectric and compared to a regularly sintered 96% polycrystalline alumina (96% Al2O3), where 96% alumina was used as the benchmark. A prototype packaging system based on regular 96% alumina with Au thickfilm metallization successfully facilitated long term testing of high temperature silicon carbide (SiC) electronic devices for over 10,000 hours at 500 C. In order to evaluate this new high purity HTCC alumina for possible high temperature packaging applications, the dielectric properties of this HTCC alumina substrate were measured and compared with those of 96% alumina and a previously tested LTCC alumina from room temperature to 550 C at frequencies of 120 Hz, 1 KHz, 10 KHz, 100 KHz, and 1 MHz. A parallel-plate capacitive device with dielectric of the HTCC alumina and precious metal electrodes were used for measurements of the dielectric constant and dielectric loss of the co-fired alumina material in the temperature and frequency ranges. The capacitance and AC parallel conductance of the capacitive device were directly measured by an AC impedance meter, and the dielectric constant and parallel AC conductivity of the dielectric were calculated from the capacitance and conductance measurement results. The temperature and frequency dependent dielectric constant, AC conductivity, and dissipation factor of the HTCC alumina substrate are presented and compared to those of 96% alumina and a selected LTCC alumina. Other technical advantages of this new co-fired material for possible high packaging applications are also discussed.

  8. Dielectric behavior of CaCu3Ti4O12: Poly Vinyl Chloride ceramic polymer composites at different temperature and frequencies

    Directory of Open Access Journals (Sweden)

    Ajay Pratap Singh

    2016-12-01

    Full Text Available In this study, the efforts have been made to obtain relatively high dielectric constant polymer-ceramic composite by incorporating the giant dielectric constant material, calcium copper titanate (CCTO in a PVC polymer matrix. We have prepared composites of CaCu3Ti4O12 (CCTO ceramic and Poly Vinyl Chloride (PVC polymer in various ratios (by volume in addition to pure CCTO. For this, CCTO was prepared by the conventional oxide route (solid-state reaction method. The structural, the microstructural and the dielectric properties of the composites were studied using X-ray diffraction, Scanning Electron Microscope, and impedance analyzer respectively. The study of dielectric constant and dielectric loss of the pure CCTO and the composites reveal that there is good range of dielectric constants and dielectric losses for the studied composites. The pure sample of CCTO exhibits giant dielectric constant at low frequency within the studied temperature range. As frequency increases, dielectric constant drastically decreases and approaching a constant value at 1 MHz. Above the intermediate temperature, the dielectric constant and dielectric loss for pure CCTO is more frequency dependent than its composites.

  9. Temperature dependence of the dielectric, piezoelectric, and elastic constants for Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 piezocrystals

    Science.gov (United States)

    Zhang, Shujun; Lee, Sung-Min; Kim, Dong-Ho; Lee, Ho-Yong; Shrout, Thomas R.

    2007-12-01

    Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 (PMN-PZT) ferroelectric single crystals were grown successfully using the solid state crystal growth method. The crystals were found to exhibit higher Curie temperatures TCs and ferroelectric phase transition temperatures TR-Ts when compared to the binary Pb(Mg1/3Nb2/3)O3-PbTiO3 system. Specifically the composition 0.4Pb(Mg1/3Nb2/3)O3-0.25PbZrO3-0.35PbTiO3 which lies close to the rhombohedral-tetragonal morphotropic phase boundary, was investigated. The full set of materials constants, including elastic (c and s), piezoelectric (d, g, e, and h), and dielectric permittivity (ɛ /ɛ0), were determined using the IEEE standards as a function of temperature ranging between 25 and 100°C. The electromechanical coupling factors k33 and k32 were found to be 93.3% and 93.5%, respectively, with corresponding piezoelectric coefficients d33 and d32 on the order of 1530 and -1440pC/N. Together with high phase transition temperatures (TC of 216°C and TR-T on the order of 144°C) and high coercive field EC ˜4.6kV /cm, make PMN-PZT single crystals promising candidates for high temperature actuator and transducer applications.

  10. High temperature dielectric properties of spent adsorbent with zinc sulfate by cavity perturbation technique

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Guo [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China); Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China); Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming, Yunnan 650093 (China); National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093 (China); Liu, Chenhui [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China); Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming, Yunnan 650093 (China); National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093 (China); Faculty of Chemistry and Environment, Yunnan Minzu University, Kunming, Yunnan 650093 (China); Zhang, Libo, E-mail: libozhang77@163.com [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China); Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China); Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming, Yunnan 650093 (China); National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093 (China); and others

    2017-05-15

    Highlights: • Cavity perturbation technique is employed to measure the dielectric properties. • Microwave absorption capability of ZnO is poor from 20 °C to 850 °C. • Dielectric properties of spent absorbent and zinc sulfate are influenced by temperature especially in high temperature stage. • Penetration depths and heating curve indicate spent adsorbent and ZnO·2ZnSO{sub 4}, ZnSO{sub 4} are excellent microwave absorber. • The pore structures of spent adsorbent are improved significantly by microwave-regeneration directly. - Abstract: Dielectric properties of spent adsorbent with zinc sulfate are investigated by cavity perturbation technique at 2450 MHz from 20 °C to approximately 1000 °C. Two weight loss stages are observed for spent adsorbent by thermogravimetric-differential scanning calorimeter (TG-DSC) analysis, and zinc sulfate is decomposed to ZnO·2ZnSO{sub 4} and ZnO at about 750 °C and 860 °C. Microwave absorption capability of ZnSO{sub 4} increases with increasing temperature and declines after ZnO generation on account of the poor dielectric properties. Dielectric properties of spent adsorbent are dependent on apparent density and noticed an interestingly linearly relationship at room temperature. The three parameters increase gently from 20 °C to 400 °C, but a sharp increase both in real part and imaginary part are found subsequently due to the volatiles release and regeneration of carbon. And material conductivity is improved, which contributes to the π-electron conduction appearance. Relationship between penetration depth and temperature further elaborate spent adsorbent is an excellent microwave absorber and the microwave absorption capability order of zinc compounds is ZnO·2ZnSO{sub 4}, ZnSO{sub 4} and ZnO. Heating characteristics suggest that heating rate is related with dielectric properties of materials. The pore structures of spent adsorbent are improved significantly and the surface is smoother after microwave-regeneration.

  11. Analysis of microwave heating of materials with temperature-dependent properties

    International Nuclear Information System (INIS)

    Ayappa, K.G.; Davis, H.T.; Davis, E.A.; Gordon, J.

    1991-01-01

    In this paper transient temperature profiles in multilayer slabs are predicted, by simultaneously solving Maxwell's equations with the heat conduction equation, using Galerkin-finite elements. It is assumed that the medium is homogeneous and has temperature-dependent dielectric and thermal properties. The method is illustrated with applications involving the heating of food and polymers with microwaves. The temperature dependence of dielectric properties affects the heating appreciably, as is shown by comparison with a constant property model

  12. Low temperature dielectric relaxation and charged defects in ferroelectric thin films

    Directory of Open Access Journals (Sweden)

    A. Artemenko

    2013-04-01

    Full Text Available We report a dielectric relaxation in BaTiO3-based ferroelectric thin films of different composition and with several growth modes: sputtering (with and without magnetron and sol-gel. The relaxation was observed at cryogenic temperatures (T < 100 K for frequencies from 100 Hz up to 10 MHz. This relaxation activation energy is always lower than 200 meV and is very similar to the relaxation that we reported in the parent bulk perovskites. Based on our Electron Paramagnetic Resonance (EPR investigation, we ascribe this dielectric relaxation to the hopping of electrons among Ti3+-V(O charged defects. Being dependent on the growth process and on the amount of oxygen vacancies, this relaxation can be a useful probe of defects in actual integrated capacitors with no need for specific shaping.

  13. Partial oxidation of methane in a temperature-controlled dielectric barrier discharge reactor

    KAUST Repository

    Zhang, Xuming

    2015-01-01

    We studied the relative importance of the reduced field intensity and the background reaction temperature in the partial oxidation of methane in a temperature-controlled dielectric barrier discharge reactor. We obtained important mechanistic insight from studying high-temperature and low-pressure conditions with similar reduced field intensities. In the tested range of background temperatures (297 < T < 773 K), we found that the conversion of methane and oxygen depended on both the electron-induced chemistry and the thermo-chemistry, whereas the chemical pathways to the products were overall controlled by the thermo-chemistry at a given temperature. We also found that the thermo-chemistry enhanced the plasma-assisted partial oxidation process. Our findings expand our understanding of the plasma-assisted partial oxidation process and may be helpful in the design of cost-effective plasma reformers. © 2014 The Combustion Institute.

  14. Simultaneous achievement of high dielectric constant and low temperature dependence of capacitance in (111-oriented BaTiO3-Bi(Mg0.5Ti0.5O3-BiFeO3 solid solution thin films

    Directory of Open Access Journals (Sweden)

    Junichi Kimura

    2016-01-01

    Full Text Available The temperature dependence of the capacitance of (111c-oriented (0.90–xBaTiO3-0.10Bi(Mg0.5Ti0.5O3-xBiFeO3 solid solution films is investigated. These films are prepared on (111cSrRuO3/(111Pt/TiO2/SiO2/(100Si substrates by the chemical solution deposition technique. All the films have perovskite structures and the crystal symmetry at room temperature varies with increasing x ratio, from pseudocubic when x = 0–0.30 to rhombohedral when x = 0.50–0.90. The pseudocubic phase shows a high relative dielectric constant (εr (ranging between 400 and 560 at room temperature and an operating frequency of 100 kHz and a low temperature dependence of capacitance up to 400°C, while maintaining a dielectric loss (tan δ value of less than 0.2 at 100 kHz. In contrast, εr for the rhombohedral phase increases monotonically with increasing temperature up to 250°C, and increasingly high tan δ values are recorded at higher temperatures. These results indicate that pseudocubic (0.90–xBaTiO3-0.10Bi(Mg0.5Ti0.5O3-xBiFeO3 solid solution films with (111 orientation are suitable candidates for high-temperature capacitor applications.

  15. Ac-conductivity and dielectric relaxations above glass transition temperature for parylene-C thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kahouli, A. [Joseph Fourier University (UJF), Grenoble Electrical Engineering Laboratory (G2ELab), Grenoble Cedex 9 (France); Laboratory for Materials, Organization and Properties (LabMOP), Tunis (Tunisia); Sylvestre, A. [Joseph Fourier University (UJF), Grenoble Electrical Engineering Laboratory (G2ELab), Grenoble Cedex 9 (France); Jomni, F.; Yangui, B. [Laboratory for Materials, Organization and Properties (LabMOP), Tunis (Tunisia); Legrand, J. [Varioptic SA, Lyon (France)

    2012-03-15

    45% semi-crystalline parylene-C (-H{sub 2}C-C{sub 6}H{sub 3}Cl-CH{sub 2}-){sub n} thin films (5.8 {mu}m) polymers have been investigated by broadband dielectric spectroscopy for temperatures above the glass transition (T{sub g} =90 C). Good insulating properties of parylene-C were obtained until operating temperatures as high as 200 C. Thus, low-frequency conductivities from 10 {sup -15} to 10 {sup -12} S/cm were obtained for temperatures varying from 90 to 185 C, respectively. This conductivity is at the origin of a significant increase in the dielectric constant at low frequency and at high temperature. As a consequence, Maxwell-Wagner-Sillars (MWS) polarization at the amorphous/crystalline interfaces is put in evidence with activation energy of 1.5 eV. Coupled TGA (Thermogravimetric analysis) and DTA (differential thermal analysis) revealed that the material is stable up to 400 C. This is particularly interesting to integrate this material for new applications as organic field effect transistors (OFETs). Electric conductivity measured at temperatures up to 200 C obeys to the well-known Jonscher law. The plateau observed in the low frequency part of this conductivity is temperature-dependent and follows Arrhenius behavior with activation energy of 0.97 eV (deep traps). (orig.)

  16. Analytical expression for high-frequency dielectric function of metals at moderate temperatures

    Science.gov (United States)

    Veysman, M. E.; Röpke, G.; Reinholz, H.

    2018-01-01

    Analytical expressions are derived for the dielectric function of metals at moderate temperatures, determined by electron–phonon interactions, taking a quantum statistical approach and linear response theory as a basis. The obtained formulas permit one to calculate an effective electron–phonon collision frequency and the dielectric function of two-temperature plasmas for arbitrary laser radiation frequencies. Different limiting cases are considered.

  17. Casimir free energy of dielectric films: classical limit, low-temperature behavior and control.

    Science.gov (United States)

    Klimchitskaya, G L; Mostepanenko, V M

    2017-07-12

    The Casimir free energy of dielectric films, both free-standing in vacuum and deposited on metallic or dielectric plates, is investigated. It is shown that the values of the free energy depend considerably on whether the calculation approach used neglects or takes into account the dc conductivity of film material. We demonstrate that there are material-dependent and universal classical limits in the former and latter cases, respectively. The analytic behavior of the Casimir free energy and entropy for a free-standing dielectric film at low temperature is found. According to our results, the Casimir entropy goes to zero when the temperature vanishes if the calculation approach with neglected dc conductivity of a film is employed. If the dc conductivity is taken into account, the Casimir entropy takes the positive value at zero temperature, depending on the parameters of a film, i.e. the Nernst heat theorem is violated. By considering the Casimir free energy of SiO 2 and Al 2 O 3 films deposited on a Au plate in the framework of two calculation approaches, we argue that physically correct values are obtained by disregarding the role of dc conductivity. A comparison with the well known results for the configuration of two parallel plates is made. Finally, we compute the Casimir free energy of SiO 2 , Al 2 O 3 and Ge films deposited on high-resistivity Si plates of different thicknesses and demonstrate that it can be positive, negative and equal to zero. The effect of illumination of a Si plate with laser light is considered. Possible applications of the obtained results to thin films used in microelectronics are discussed.

  18. Structural and frequency dependencies of a.c. and dielectric ...

    Indian Academy of Sciences (India)

    Abstract. In this work, heterojunction of InSb/InP was grown by liquid phase epitaxy (LPE). Surface morphology and crystalline structure of the heterojunction were characterized by scanning electron microscopy (SEM) and. X-ray diffraction (XRD). The frequency and temperature dependences of a.c. conductivity and ...

  19. Nanostructured dielectrics for high-temperature capacitors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Space operation places extra physical and structural demands on the power components, including capacitors. Nanostructured dielectrics offer the opportunity to...

  20. Temperature dependence of plastic scintillators

    Science.gov (United States)

    Peralta, L.

    2018-03-01

    Plastic scintillator detectors have been studied as dosimeters, since they provide a cost-effective alternative to conventional ionization chambers. Several articles have reported undesired response dependencies on beam energy and temperature, which provides the motivation to determine appropriate correction factors. In this work, we studied the light yield temperature dependency of four plastic scintillators, BCF-10, BCF-60, BC-404, RP-200A and two clear fibers, BCF-98 and SK-80. Measurements were made using a 50 kVp X-ray beam to produce the scintillation and/or radioluminescence signal. The 0 to 40 °C temperature range was scanned for each scintillator, and temperature coefficients were obtained.

  1. Temperature dependence of microwave and THz dielectric response in Srn.sub.+1./sub.TinO.sub.3./sub.n.sub.+1./sub. (n=1-4)

    Czech Academy of Sciences Publication Activity Database

    Noujni, Dmitri; Kamba, Stanislav; Pashkin, Alexej; Bovtun, Viktor; Petzelt, Jan; Axlesson, A. K.; McN Alford, N.; Wise, P. L.; Reaney, I. M.

    2004-01-01

    Roč. 62, - (2004), s. 199-203 ISSN 1058-4587 R&D Projects: GA AV ČR KSK1010104 Keywords : Ruddlesden. Popper * MW dielectric properties * infrared and THz spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.427, year: 2004

  2. High-Temperature Dielectric Properties of Aluminum Nitride Ceramic for Wireless Passive Sensing Applications.

    Science.gov (United States)

    Liu, Jun; Yuan, Yukun; Ren, Zhong; Tan, Qiulin; Xiong, Jijun

    2015-09-08

    The accurate characterization of the temperature-dependent permittivity of aluminum nitride (AlN) ceramic is quite critical to the application of wireless passive sensors for harsh environments. Since the change of the temperature-dependent permittivity will vary the ceramic-based capacitance, which can be converted into the change of the resonant frequency, an LC resonator, based on AlN ceramic, is prepared by the thick film technology. The dielectric properties of AlN ceramic are measured by the wireless coupling method, and discussed within the temperature range of 12 °C (room temperature) to 600 °C. The results show that the extracted relative permittivity of ceramic at room temperature is 2.3% higher than the nominal value of 9, and increases from 9.21 to 10.79, and the quality factor Q is decreased from 29.77 at room temperature to 3.61 at 600 °C within the temperature range.

  3. High-Temperature Dielectric Properties of Aluminum Nitride Ceramic for Wireless Passive Sensing Applications

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2015-09-01

    Full Text Available The accurate characterization of the temperature-dependent permittivity of aluminum nitride (AlN ceramic is quite critical to the application of wireless passive sensors for harsh environments. Since the change of the temperature-dependent permittivity will vary the ceramic-based capacitance, which can be converted into the change of the resonant frequency, an LC resonator, based on AlN ceramic, is prepared by the thick film technology. The dielectric properties of AlN ceramic are measured by the wireless coupling method, and discussed within the temperature range of 12 °C (room temperature to 600 °C. The results show that the extracted relative permittivity of ceramic at room temperature is 2.3% higher than the nominal value of 9, and increases from 9.21 to 10.79, and the quality factor Q is decreased from 29.77 at room temperature to 3.61 at 600 °C within the temperature range.

  4. Gas temperature measurement in CH4/CO2 dielectric-barrier discharges by optical emission spectroscopy

    Science.gov (United States)

    Luque, Jorge; Kraus, Martin; Wokaun, Alexander; Haffner, Ken; Kogelschatz, Ulrich; Eliasson, Baldur

    2003-04-01

    The gas temperatures were determined by optical emission in a dielectric-barrier discharge at atmospheric pressure. The feed gases were either pure CH4 to yield higher hydrocarbons or CH4/CO2 mixtures to yield synthesis gas (H2/CO). The monitored emission was from the CH radical A 2Δ-X 2Π electronic system and the gas temperature range characterized was from 300 to 600 K. The technique described in this article enables the measurement of the neutral gas temperature in the discharge that is not accessible via conventional methodology using thermocouples. A bimodal rotational population distribution in the CH A 2Δ v'=0 state was determined in the investigated gas mixtures of CO2/CH4 and in pure methane. Most of the rotational population was at temperatures from 300 to 600 K depending on experimental conditions, which are only slightly higher than the set temperature of the reactor. A small fraction of the emitting species was found to have a much higher rotational temperature of ˜4000 K for the pure methane gas and the mixture of CO2 and CH4. The low temperature rotational distribution correlated with changes in the ambient conditions and is used as a thermometer, while the high rotational temperature component and the vibrational temperature reflect the excess of energy during the CH radical formation by electron impact dissociative excitation of methane, and the extent of collisional relaxation before emission takes place.

  5. Dielectric Properties of Marsh Vegetation in a Frequency Range of 0.1-18 GHz Under Variation of Temperature and Moisture

    Science.gov (United States)

    Romanov, A. N.; Kochetkova, T. D.; Suslyaev, V. I.; Shcheglova, A. S.

    2017-09-01

    Dielectric characteristics of some species of marsh vegetation: lichen Cladonia stellaris (Opiz) Pouzar, moss Sphagnum, and a representative of Bryidae mosses - Dicranum polysetum are studied in the frequency range from 100 MHz to 18 GHz. At a frequency of 1.41 GHz, the influence of temperature in the range from -12 to +20°C on the behavior of dielectric characteristics of mosses, lichens, and peat is studied. The dependences of the dielectric characteristics of vegetation on the volumetric wetness are established.

  6. A room temperature cured low dielectric hyperbranched epoxy ...

    Indian Academy of Sciences (India)

    Hyperbranched epoxy; poly(amido-amine) dendrimer; curing agent; low dielectric constant; high performance. 1. Introduction. Epoxy resins have a broad range of applications includ- ing binder for coatings, high performance composites, adhesives, insulating materials, encapsulating and pack- aging materials for electronic ...

  7. Frequency-dependent dielectric contribution of flexoelectricity allowing control of state switching in helicoidal liquid crystals.

    Science.gov (United States)

    Outram, B I; Elston, S J

    2013-07-01

    The contribution of flexoelectric polarization to the dielectric susceptibility in helicoidal liquid crystals is formulated for the static equilibrium case, and further in the case of a time-varying field. A dispersion of the dielectric permittivity due to the frequency response of flexoelectric switching is described. The special case of a negative dielectric-anisotropy nematic material is considered and experimentally shown to agree with the analytical theory. It is further demonstrated how relaxation of the flexoelectric contribution to the dielectric tensor in this special case can be exploited to switch between states in cholesteric liquid crystal structures by altering the applied time-dependent field amplitude, if Δε-Δεε(0). Consequentially, a versatile mechanism for driving between states in liquid crystal systems has been demonstrated and its implications for technology are suggested, and include dual-mode, bistable, and transflective displays.

  8. Frequency-dependent dielectric contribution of flexoelectricity allowing control of state switching in helicoidal liquid crystals

    Science.gov (United States)

    Outram, B. I.; Elston, S. J.

    2013-07-01

    The contribution of flexoelectric polarization to the dielectric susceptibility in helicoidal liquid crystals is formulated for the static equilibrium case, and further in the case of a time-varying field. A dispersion of the dielectric permittivity due to the frequency response of flexoelectric switching is described. The special case of a negative dielectric-anisotropy nematic material is considered and experimentally shown to agree with the analytical theory. It is further demonstrated how relaxation of the flexoelectric contribution to the dielectric tensor in this special case can be exploited to switch between states in cholesteric liquid crystal structures by altering the applied time-dependent field amplitude, if Δɛ-Δɛɛ0. Consequentially, a versatile mechanism for driving between states in liquid crystal systems has been demonstrated and its implications for technology are suggested, and include dual-mode, bistable, and transflective displays.

  9. Study of dielectric liquids at room temperature for high energy x ray Tomography

    International Nuclear Information System (INIS)

    Lepert, S.

    1989-09-01

    The detection of X rays by means of a dielectric liquid detector system, at room temperature, is discussed. The physico-chemical properties of a dielectric liquid, the construction of a cleaning device and of two electrode configurations, and the utilization of different amplifier models are studied. The results allowed the analysis and characterization of the behavior of the dielectric liquid under X ray irradiation. Data obtained is confirmed by computerized simulation. The choice of Tetramethyl-germanium for the X ray tomography, applied in nondestructive analysis, is explained. The investigation of the system parameters allowed the setting of the basis of a prototype project for a multi-detector [fr

  10. Temperature-dependent and optimized thermal emission by spheres

    Science.gov (United States)

    Nguyen, K. L.; Merchiers, O.; Chapuis, P.-O.

    2018-03-01

    We investigate the temperature and size dependencies of thermal emission by homogeneous spheres as a function of their dielectric properties. Different power laws obtained in this work show that the emitted power can depart strongly from the usual fourth power of temperature given by Planck's law and from the square or the cube of the radius. We also show how to optimize the thermal emission by selecting permittivities leading to resonances, which allow for the so-called super-Planckian regime. These results will be useful as spheres, i.e. the simplest finite objects, are often considered as building blocks of more complex objects.

  11. Dielectric-dependent Density Functionals for Accurate Electronic Structure Calculations of Molecules and Solids

    Science.gov (United States)

    Skone, Jonathan; Govoni, Marco; Galli, Giulia

    Dielectric-dependent hybrid [DDH] functionals have recently been shown to yield highly accurate energy gaps and dielectric constants for a wide variety of solids, at a computational cost considerably less than standard GW calculations. The fraction of exact exchange included in the definition of DDH functionals depends (self-consistently) on the dielectric constant of the material. In the present talk we introduce a range-separated (RS) version of DDH functionals where short and long-range components are matched using material dependent, non-empirical parameters. Comparing with state of the art GW calculations and experiment, we show that such RS hybrids yield accurate electronic properties of both molecules and solids, including energy gaps, photoelectron spectra and absolute ionization potentials. This work was supported by NSF-CCI Grant Number NSF-CHE-0802907 and DOE-BES.

  12. Frequency dependence of dielectric characteristics of seawater ionic solution under static magnetic field

    Science.gov (United States)

    Guo, Shaoshuai; Peng, Yufeng; Han, Xueyun; Li, Jiangting

    2017-09-01

    In order to study the electromagnetic wave transmission characteristics in seawater under external physical effects, we present a study of seawater ionic solution and perform a theoretical basis of magnetic field on water molecules and ionic motion to investigate the variation of dielectric properties with frequency under static magnetic field (0.38 T). Seawater is a naturally multi-component electrolyte solution, the main ingredients in seawater are inorganic salts, such as NaCl, MgSO4, MgCl2, CaCl2, KCl, NaHCO3, etc. The dielectric properties of these electrolyte solutions with different salinity values (0.01-5%) were measured in frequencies ranging from 40 to 5 MHz at 12∘C. The results show that the dielectric constant decreases with increasing frequencies no matter with magnetic field or without it. Frequency dependence of the dielectric constant of NaCl solution increases under magnetic field at measure concentrations. In a solution of MgCl2 ṡ 6H2O, KCl and NaHCO3 are consistent with NaCl solution, while CaCl2 ṡ 2H2O solution is in contrast with it. We also find that dielectric loss plays a major role in complex permittivity. With the effect of magnetic field, the proportion of dielectric loss is reducing in complex permittivity. On this basis it was concluded that the magnetic field influences the orientation of dipoles and the variation is different in salt aqueous solution.

  13. Theoretical study of a screened Hartree-Fock exchange potential using position-dependent atomic dielectric constants.

    Science.gov (United States)

    Shimazaki, Tomomi; Nakajima, Takahito

    2015-02-21

    Dielectric-dependent screened Hartree-Fock (HF) exchange potential and Slater-formula have been reported, where the ratio of the HF exchange term mixed into potentials is inversely proportional to the dielectric constant of the target semiconductor. This study introduces a position-dependent dielectric constant method in which the dielectric constant is partitioned between the atoms in a semiconductor. These partitioned values differ depending on the electrostatic environment surrounding the atoms and lead to position-dependent atomic dielectric constants. These atomic dielectric constants provide atomic orbital-based matrix elements for the screened exchange potentials. Energy band structures of several semiconductors and insulators are also presented to validate this approach.

  14. Investigation of NOx Reduction by Low Temperature Oxidation Using Ozone Produced by Dielectric Barrier Discharge

    DEFF Research Database (Denmark)

    Stamate, Eugen; Irimiea, Cornelia; Salewski, Mirko

    2013-01-01

    NOx reduction by low temperature oxidation using ozone produced by a dielectric barrier discharge generator is investigated for different process parameters in a 6m long reactor in serpentine arrangement using synthetic dry flue gas with NOx levels below 500 ppm, flows up to 50 slm and temperatures...

  15. High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation

    KAUST Repository

    Zhang, Huifang

    2017-11-30

    Recently, metasurfaces made up of dielectric structures have drawn enormous attentions in the optical and infrared regimes due to their high efficiency and designing freedom in manipulating light propagation. Such advantages can also be introduced to terahertz frequencies where efficient functional devices are still lacking. Here, polarization-dependent all-silicon terahertz dielectric metasurfaces are proposed and experimentally demonstrated. The metasurfaces are composed of anisotropic rectangular-shaped silicon pillars on silicon substrate. Each metasurface holds dual different functions depending on the incident polarizations. Furthermore, to suppress the reflection loss and multireflection effect in practical applications, a high-performance polarization-independent antireflection silicon pillar array is also proposed, which can be patterned at the other side of the silicon substrate. Such all-silicon dielectric metasurfaces are easy to fabricate and can be very promising in developing next-generation efficient, compact, and low-cost terahertz functional devices.

  16. Calculation of the Dielectric Constant as a Function of Temperature Close to the Smectic A-Smectic B Transition in B5 Using the Mean Field Model

    Directory of Open Access Journals (Sweden)

    Hamit Yurtseven

    2012-01-01

    Full Text Available The temperature dependence of the static dielectric constant ( is calculated close to the smectic A-smectic B ( transition ( = 71.3°C for the liquid crystal compound B5. By expanding the free energy in terms of the order parameter in the mean field theory, the expression for the dielectric susceptibility (dielectric constant is derived and is fitted to the experimental data for which was obtained at the field strengths of 0 and 67 kV/cm from literature. Coefficients in the free energy expansion are determined from our fit for the transition of B5. Our results show that the observed behaviour of the dielectric constant close to the transition in B5 can be described satisfactorily by our mean field model.

  17. Electron-induced dry reforming of methane in a temperature-controlled dielectric barrier discharge reactor

    KAUST Repository

    Zhang, Xuming

    2013-09-23

    Dry reforming of methane has the potential to reduce the greenhouse gases methane and carbon dioxide and to generate hydrogen-rich syngas. In reforming methane, plasma-assisted reforming processes may have advantages over catalytic processes because they are free from coking and their response time for mobile applications is quick. Although plasma-assisted reforming techniques have seen recent developments, systematic studies that clarify the roles that electron-induced chemistry and thermo-chemistry play are needed for a full understanding of the mechanisms of plasma-assisted reformation. Here, we developed a temperature-controlled coaxial dielectric barrier discharge (DBD) apparatus to investigate the relative importance of electron-induced chemistry and thermo-chemistry in dry reforming of methane. In the tested background temperature range 297-773 K, electron-induced chemistry, as characterized by the physical properties of micro-discharges, was found to govern the conversions of CH4 and CO2, while thermo-chemistry influenced the product selectivities because they were found to depend on the background temperature. Comparisons with results from arc-jet reformation indicated that thermo-chemistry is an efficient conversion method. Our findings may improve designs of plasma-assisted reformers by using relatively hotter plasma sources. However, detailed chemical kinetic studies are needed. © 2013 IOP Publishing Ltd.

  18. Dielectric behavior and low temperature phase transition in NH4IO3

    Science.gov (United States)

    Abdel Kader, M. M.; El-Kabbany, F.; Naguib, H. M.; Gamal, W. M.

    2013-10-01

    The electrical properties namely ac conductivity σ(ω, T) and the complex dielectric permittivity (ε*) are measured at selected frequencies (5-100 kHz) as function of temperature (95 K < T < 280 K) for polycrystalline samples of NH4IO3. The ferroelectric hysteresis loops and the X-ray diffraction pattern are also measured. The analysis of the data indicates that the compound undergoes a structural phase transition at ∼103 K and the behavior of σ(ω, T) obeys the power law. The trend of the temperature dependence of the angular frequency exponent s (0 < s < 1) suggests that the quantum mechanical tunneling model is the most likely one that describes the conduction mechanism. The core results of the article are: (1) the low temperature ac electrical parameters are measured for NH4IO3; (2) the data indicate that the compound undergoes a structural phase transition at 103 K; (3) the originality of this transition has been confirmed by X-ray diffraction; (4) no evidence for the existence of a ferroelectric transition at 103 K as mentioned earlier; and (5) the quantum mechanical tunneling is proposed as the main mechanism of the electric conduction.

  19. Thickness-Dependent Dielectric Constant of Few-Layer In 2 Se 3 Nanoflakes

    KAUST Repository

    Wu, Di

    2015-11-17

    © 2015 American Chemical Society. The dielectric constant or relative permittivity (εr) of a dielectric material, which describes how the net electric field in the medium is reduced with respect to the external field, is a parameter of critical importance for charging and screening in electronic devices. Such a fundamental material property is intimately related to not only the polarizability of individual atoms but also the specific atomic arrangement in the crystal lattice. In this Letter, we present both experimental and theoretical investigations on the dielectric constant of few-layer In2Se3 nanoflakes grown on mica substrates by van der Waals epitaxy. A nondestructive microwave impedance microscope is employed to simultaneously quantify the number of layers and local electrical properties. The measured εr increases monotonically as a function of the thickness and saturates to the bulk value at around 6-8 quintuple layers. The same trend of layer-dependent dielectric constant is also revealed by first-principles calculations. Our results of the dielectric response, being ubiquitously applicable to layered 2D semiconductors, are expected to be significant for this vibrant research field.

  20. Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system

    International Nuclear Information System (INIS)

    Zhang, C; Man, B Y; Yang, C; Jiang, S Z; Liu, M; Chen, C S; Xu, S C; Sun, Z C; Gao, X G; Chen, X J

    2013-01-01

    Direct deposition of graphene on a dielectric substrate is demonstrated using a chemical vapor deposition system with a two-temperature reactor. The two-temperature reactor is utilized to offer sufficient, well-proportioned floating Cu atoms and to provide a temperature gradient for facile synthesis of graphene on dielectric surfaces. The evaporated Cu atoms catalyze the reaction in the presented method. C atoms and Cu atoms respectively act as the nuclei for forming graphene film in the low-temperature zone and the zones close to the high-temperature zones. A uniform and high-quality graphene film is formed in an atmosphere of sufficient and well-proportioned floating Cu atoms. Raman spectroscopy, scanning electron microscopy and atomic force microscopy confirm the presence of uniform and high-quality graphene. (paper)

  1. P{sup 2}IMS depth profile analysis of high temperature boron oxynitride dielectric films

    Energy Technology Data Exchange (ETDEWEB)

    Badi, N., E-mail: nbadi@uh.edu [Center for Advanced Materials (CAM), University of Houston, Houston, TX 77204-5004 (United States); Physics Department, University of Houston, Houston, TX 77204-5005 (United States); Vijayaraghavan, S. [Center for Advanced Materials (CAM), University of Houston, Houston, TX 77204-5004 (United States); Benqaoula, A. [Physics Department, University of Houston, Houston, TX 77204-5005 (United States); Tempez, A.; Tauziède, C.; Chapon, P. [Horiba Jobin Yvon, Longjumeau, F-91160 Paris (France)

    2014-02-15

    Existing silicon oxynitride (SiON) dielectric can only provide a very near term solution for the metal oxide semiconductor technology. The emerging high-k dielectric materials have a limited thermal stability and are prone to electrical behavior degradation which is associated with unwanted chemical reactions with silicon (Si). We investigated here applicability of amorphous boron oxynitride (BON) thin films as an emerging dielectric for high temperature capacitors. BON samples of thickness varying from 200 nm down to 10 nm were deposited in a high vacuum reactor using ion source assisted physical vapor deposition (PVD) technique. Plasma profiling ion mass spectrometry (P{sup 2}IMS) was utilized to specifically determine the interface quality and best capacitor performance as a function of growth temperatures of a graded sample with alternate layers of deposited titanium (Ti) and BON layers on Si. P{sup 2}IMS depth profiling of these layers were also performed to evaluate the stability of the dielectric layers and their efficacy against B dopant diffusion simulating processes occurring in activated polySi-based devices. For this purpose, BON layers were deposited on boron-isotope 10 (B{sup 10}) implanted Si substrates and subsequently annealed at high temperatures up to 1050 °C for about 10 s. Results comparing inter-diffusion of B{sup 10} intensities at the interfaces of BON–Si and SiON–Si samples suggest suitability of BON as barrier layers against boron diffusion at high temperature. Stable Ti/BON/Ti capacitor behavior was achieved at optimum growth temperature of 600 °C of the BON dielectric layer. Capacitance change with frequency (10 kHz to 2 MHz) and temperature up to 400 °C is about 1% and 10%, respectively.

  2. Structural and dielectric properties of cobaltacarborane composite polybenzimidazole membranes as solid polymer electrolytes at high temperature.

    Science.gov (United States)

    Fuentes, Isabel; Andrio, Andreu; García-Bernabé, Abel; Escorihuela, Jorge; Viñas, Clara; Teixidor, Francesc; Compañ, Vicente

    2018-03-29

    The conductivity of a series of composite membranes, based on polybenzimidazole (PBI) containing the metallacarborane salt M[Co(C2B9H11)2], M[COSANE] and tetraphenylborate, M[B(C6H5)4], M[TPB] both anions having the same number of atoms and the same negative charge, has been investigated. Different cations (M = H+, Li+ and Na+) have been studied and the composite membranes have been characterized by water uptake, swelling ratios, ATR FT-IR, thermogravimetric analysis and electrochemical impedance spectroscopy to explore the dielectric response and ion dynamics in composite membranes. Our results show that conductivity increases with increasing temperature and it is higher for H+ than for Li+ and Na+ for all temperatures under study. The mobility of Li+ is greater in [COSANE]- than in [TPB]- composite PBI@membranes while for Na+ it is the opposite. The temperature dependence of the conductivity of the composite was followed by a typical Arrhenius behaviour with two different regions: (1) between 20 and 100 °C, and (2) between 100 and 150 °C. Using the analysis of electrode polarization (EP) based on the Thrukhan theory we have calculated the ionic diffusion coefficients and the density of carriers. From the double logarithmic plot of the imaginary part of the conductivity (σ'') versus frequency in the entire range of temperatures studied we have determined for each sample at each temperature, the frequency values of the onset (fON) and full development of electrode polarization (fMAX), respectively, which permit us to calculate static permittivity.

  3. A new method for achieving enhanced dielectric response over a wide temperature range.

    Science.gov (United States)

    Maurya, Deepam; Sun, Fu-Chang; Alpay, S Pamir; Priya, Shashank

    2015-10-19

    We report a novel approach for achieving high dielectric response over a wide temperature range. In this approach, multilayer ceramic heterostructures with constituent compositions having strategically tuned Curie points (T(C)) were designed and integrated with varying electrical connectivity. Interestingly, these multilayer structures exhibited different dielectric behavior in series and parallel configuration due to variations in electrical boundary conditions resulting in the differences in the strength of the electrostatic coupling. The results are explained using nonlinear thermodynamic model taking into account electrostatic interlayer interaction. We believe that present work will have huge significance in design of high performance ceramic capacitors.

  4. High temperature dielectric relaxation anomaly of Y³⁺ and Mn²⁺ doped barium strontium titanate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Shiguang; Mao, Chaoliang, E-mail: maochaoliang@mail.sic.ac.cn, E-mail: xldong@mail.sic.ac.cn; Wang, Genshui; Yao, Chunhua; Cao, Fei; Dong, Xianlin, E-mail: maochaoliang@mail.sic.ac.cn, E-mail: xldong@mail.sic.ac.cn [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2014-10-14

    Relaxation like dielectric anomaly is observed in Y³⁺ and Mn²⁺ doped barium strontium titanate ceramics when the temperature is over 450 K. Apart from the conventional dielectric relaxation analysis method with Debye or modified Debye equations, which is hard to give exact temperature dependence of the relaxation process, dielectric response in the form of complex impedance, assisted with Cole-Cole impedance model corrected equivalent circuits, is adopted to solve this problem and chase the polarization mechanism in this paper. Through this method, an excellent description to temperature dependence of the dielectric relaxation anomaly and its dominated factors are achieved. Further analysis reveals that the exponential decay of the Cole distribution parameter n with temperature is confirmed to be induced by the microscopic lattice distortion due to ions doping and the interaction between the defects. At last, a clear sight to polarization mechanism containing both the intrinsic dipolar polarization and extrinsic distributed oxygen vacancies hopping response under different temperature is obtained.

  5. Time-dependent non-equilibrium dielectric response in QM/continuum approaches

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Feizhi; Lingerfelt, David B.; Li, Xiaosong, E-mail: benedetta.mennucci@unipi.it, E-mail: li@chem.washington.edu [Department of Chemistry, University of Washington, Seattle, Washington 98195 (United States); Mennucci, Benedetta, E-mail: benedetta.mennucci@unipi.it, E-mail: li@chem.washington.edu [Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, 56126 Pisa (Italy)

    2015-01-21

    The Polarizable Continuum Models (PCMs) are some of the most inexpensive yet successful methods for including the effects of solvation in quantum-mechanical calculations of molecular systems. However, when applied to the electronic excitation process, these methods are restricted to dichotomously assuming either that the solvent has completely equilibrated with the excited solute charge density (infinite-time limit), or that it retains the configuration that was in equilibrium with the solute prior to excitation (zero-time limit). This renders the traditional PCMs inappropriate for resolving time-dependent solvent effects on non-equilibrium solute electron dynamics like those implicated in the instants following photoexcitation of a solvated molecular species. To extend the existing methods to this non-equilibrium regime, we herein derive and apply a new formalism for a general time-dependent continuum embedding method designed to be propagated alongside the solute’s electronic degrees of freedom in the time domain. Given the frequency-dependent dielectric constant of the solvent, an equation of motion for the dielectric polarization is derived within the PCM framework and numerically integrated simultaneously with the time-dependent Hartree fock/density functional theory equations. Results for small molecular systems show the anticipated dipole quenching and electronic state dephasing/relaxation resulting from out-of-phase charge fluctuations in the dielectric and embedded quantum system.

  6. Temperature dependent electrical transport characteristics of BaTiO3 modified lithium borate glasses

    Directory of Open Access Journals (Sweden)

    Vanita Thakur

    2015-08-01

    Full Text Available The glass samples with composition (70B2O3-29Li2O-1Dy2O3-xBT; x = 0, 10 and 20 weight percent, have been prepared by conventional melt quench technique. The dielectric measurements as a function of temperature have been carried out on these samples in the frequency range 1 Hz-10 MHz. The dielectric relaxation characteristics of these samples have been studied by analyzing dielectric spectroscopy, dielectric loss, electric modulus formulation and electrical conductivity spectroscopy. It is found that the dielectric permittivity of the samples increases with an increase in the temperature and BT content. The frequency dependent ac conductivity has been analyzed using Jonscher’s universal power law whereas non exponential KWW function has been invoked to fit the experimental data of the imaginary part of the electric modulus. The values of the activation energy determined from the electric modulus and that from dc conductivity have been found to be quite close to each other suggesting that the same type of charge barriers are involved in the relaxation and the conduction mechanisms. The stretched exponent (β and the power exponent (n have been found to be temperature and composition dependent. The decrease in n with an increase in temperature further suggested that the ac conduction mechanism of the studied samples follows the correlated barrier hopping (CBH model.

  7. Dielectric properties measurement system at cryogenic temperatures and microwave frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Molla, J.; Ibarra, A.; Margineda, J.; Zamarro, J. M.; Hernandez, A.

    1994-07-01

    A system based on the resonant cavity method has been developed to measure the permittivity and loss tangent at 12-18 GHz over the temperature range 80 K to 300 K. Changes of permittivity as low as 0.01 % in the range 1 to 30, and 3 x 10{sup 6} for loss tangent values below 10{sup 2}, can be obtained without requiring temperature stability. The thermal expansion coefficient and resistivity factor of copper have been measured between 80 K and 300 K. Permittivity of sapphire and loss tangent of alumina of 99.9 % purity in the same temperature range are presented. (Author) 23 refs.

  8. Aging of Dielectric Properties below Tg

    DEFF Research Database (Denmark)

    Olsen, Niels Boye; Dyre, Jeppe; Christensen, Tage Emil

    The dielectric loss at 1Hz in TPP is studied during a temperature step from one equilibrium state to another. In the applied cryostate the temperature can be equilibrated on a timescale of 1 second. The aging time dependence of the dielectric loss is studied below Tg applying temperature steps...

  9. Development and characterization of high temperature, high energy density dielectric materials to establish routes towards power electronics capacitive devices

    Science.gov (United States)

    Shay, Dennis P.

    -doped composition. The Ca(Ti0.795Mn 0.005Zr0.2)O3 composition was selected for single layer, Pt buried electrode capacitor prototyping to evaluate high temperature electrical characteristics. Polarization-field (P--E) hysteresis measurements of CTZ showed a large increase in dielectric loss with increasing temperature, limiting the dielectric breakdown strength and recoverable energy density. When doped with Mn, CTZ + Mn showed a minimization of the temperature dependence of the breakdown strength, and maximum energy densities of 7.00 J/cm 3 at a Eb of 1.1 MV/cm at room temperature and 5.36 J/cm3 at Eb = 1.0 MV/cm at 300 °C were observed. Impedance spectroscopy of the CTZ and CTZ + Mn dielectrics showed that doping with Mn resulted in a decrease in ionic conductivity and a subsequent decrease in electronic conductivity. Basic characterization of Ca(Ti0.8Hf0.2)O 3 (CTH) and Ca(Ti0.795Mn0.005Hf0.2)O 3 (CTH + Mn) showed similar characteristics compared to the CTZ system. High temperature impedance spectroscopy of CTH and CTH + Mn showed similar behavior to the CTZ and CTZ + Mn systems, but with overall decreases in ionic and electronic conductivity. Coupled with thermally stimulated depolarization current measurements (TSDC), oxygen vacancy migration and space charge conduction are dominant and could be minimized with Mn doping. To gain further insight into how aliovalent Mn controls high temperature conduction in the CTH + Mn system, capacitors were quenched from the sintering temperature and an impedance study was performed. It was observed that ionic conductivity was quenched in due to oxygen vacancies compensating Mn 3+, and interfacial features were observed in impedance spectra due to double back-to-back Schottky barriers (depletion layers). As capacitors were re-oxidized, bulk resistivity increased while interfacial resistivity decreased. The hypothesis was supported by the application of dc bias during impedance measurements, which showed similar impedance behavior to the re

  10. Dielectric properties of KDP-type ferroelectric crystals in the ...

    Indian Academy of Sciences (India)

    renormalized soft mode frequency, Curie temperature, dielectric constant and dielectric loss are evaluated. ... temperature and electric field dependences of soft mode frequency, dielectric constant and loss have been ... its ability to generate second- and third-harmonics of higher power Nd:YAG and. Nd:glass lasers [2].

  11. A room temperature cured low dielectric hyperbranched epoxy ...

    Indian Academy of Sciences (India)

    Tomalia et al.5 Though curing kinetics of bisphenol-A based epoxy resin with 1st to 4th generations of den- dritic poly(amido-amine) with different amines were studied by DSC,6 but performance of the thermosets was not reported. Thus a detail and systematic study on curing at room temperature of a hyperbranched epoxy.

  12. 500 C Electronic Packaging and Dielectric Materials for High Temperature Applications

    Science.gov (United States)

    Chen, Liang-yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.

    2016-01-01

    High-temperature environment operable sensors and electronics are required for exploring the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high temperature electronics, and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by these high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed. High-temperature environment operable sensors and electronics are required for probing the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and eventual applications of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high electronics and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed.

  13. Characterization of frequency-dependent glass transition temperature by Vogel-Fulcher relationship

    International Nuclear Information System (INIS)

    Bai Yu; Jin Li

    2008-01-01

    The complex mechanical modulus of polymer and polymer based composite materials showed a frequency-dependent behaviour during glass transition relaxation, which was historically modelled by the Arrhenius equation. However, this might not be true in a broad frequency domain based on the experience from the frequency dependence of the complex dielectric permittivity, which resulted from the same glass transition relaxation as for the complex mechanical modulus. Considering a good correspondence between dielectric and mechanical relaxation during glass transition, the Vogel-Fulcher relationship, previously proposed for the frequency dependence of dielectric permittivity, is introduced for that of the mechanical modulus; and the corresponding static glass transition temperature (T f ) was first determined for polymer and polymer based composite materials. (fast track communication)

  14. Temperature dependence of elastic properties of paratellurite

    International Nuclear Information System (INIS)

    Silvestrova, I.M.; Pisarevskii, Y.V.; Senyushenkov, P.A.; Krupny, A.I.

    1987-01-01

    New data are presented on the temperature dependence of the elastic wave velocities, elastic stiffness constants, and thermal expansion of paratellurite. It is shown that the external pressure appreciably influences the elastic properties of TeO 2 , especially the temperature dependence of the elastic modulus connected with the crystal soft mode. (author)

  15. Dielectric and Microwave Absorption Properties of TiC-Al2O3/Silica Coatings at High Temperature

    Science.gov (United States)

    Wang, Yuan; Luo, Fa; Zhou, Wancheng; Zhu, Dongmei

    2017-08-01

    The dielectric property and microwave attenuation performance of a TiC micropowder-filled Al2O3/silica coating were studied. The permittivity of the coating increases gradually with increasing TiC content, which can be attributed to the enhancement of polarization ability and the increase of coating conductivity. Meanwhile, the high-temperature microwave attenuation property of the 30 wt.% TiC-loaded coating was investigated in the temperature range of 25-250°C. Both the real and imaginary parts of complex permittivity exhibit obvious temperature-dependent behavior and increase with the rise of temperature. In the studied temperature range, this coating exhibits an excellent microwave absorption property. A strong absorption peak with minimum RL of -55.2 dB is obtained at 11.8 GHz when the temperature reaches 150°C. Furthermore, the absorption bandwidth (RL ≤ -10 dB) exhibits a widening tendency with the increase of temperature. As the temperature rises from 25°C to 250°C, the effective bandwidth (RL ≤ -10 dB) expands from 2.2 GHz to 3.2 GHz. These results suggest that the TiC-Al2O3/silica coating could be a desirable candidate for microwave absorbtion in the measured frequency and temperature ranges.

  16. Investigation of NOx Reduction by Low Temperature Oxidation Using Ozone Produced by Dielectric Barrier Discharge

    Science.gov (United States)

    Stamate, Eugen; Irimiea, Cornelia; Salewski, Mirko

    2013-05-01

    NOx reduction by low temperature oxidation using ozone produced by a dielectric barrier discharge generator is investigated for different process parameters in a 6 m long reactor in serpentine arrangement using synthetic dry flue gas with NOx levels below 500 ppm, flows up to 50 slm and temperatures up to 80 °C. The role of different mixing schemes and the impact of a steep temperature gradient are also taken into consideration. The process chemistry is monitored by Fourier transform infrared spectroscopy, chemiluminescence and absorption spectroscopy. The kinetic mechanism during the mixing in a cross flow configuration is investigated using three-dimensional simulations.

  17. Non-temperature dependent resistor at low temperatures

    International Nuclear Information System (INIS)

    Sato, Akira; Iwasa, Akio

    2003-01-01

    We measured the temperature dependence of metal film chip resistors (SUSUMU Co., Ltd. RR1220 100 Ω, 1 kΩ, 10 kΩ and 1 MΩ) from 45 mK to 300 K. Although the temperature dependence of these resistors R was not monotonic, the changes in resistance (R(T)-R(T=300 K))/R(T=300 K) were ∼1% (except 1 MΩ). Therefore we can make a filter and a divider without taking the temperature dependence of the resistor into consideration. Below liquid helium temperature, the resistance of the chip resistor increases as log T with decreasing temperature. It is expected that the temperature dependence of log T is due to the Kondo effect

  18. Temperature Dependence of the Resonant Magnetoelectric Effect in Layered Heterostructures

    Directory of Open Access Journals (Sweden)

    Dmitrii A. Burdin

    2017-10-01

    Full Text Available The dependence of the resonant direct magnetoelectric effect on temperature is studied experimentally in planar composite structures. Samples of rectangular shapes with dimensions of 5 mm × 20 mm employed ferromagnetic layers of either an amorphous (metallic glass alloy or nickel with a thickness of 20–200 μm and piezoelectric layers of single crystalline langatate material or lead zirconate titanate piezoelectric ceramics with a thickness of 500 μm. The temperature of the samples was varied in a range between 120 and 390 K by blowing a gaseous nitrogen stream around them. It is shown that the effective characteristics of the magnetoelectric effect—such as the mechanical resonance frequency fr, the quality factor Q and the magnitude of the magnetoelectric coefficient αE at the resonance frequency—are contingent on temperature. The interrelations between the temperature changes of the characteristics of the magnetoelectric effect and the temperature variations of the following material parameters—Young’s modulus Y, the acoustic quality factor of individual layers, the dielectric constant ε, the piezoelectric modulus d of the piezoelectric layer as well as the piezomagnetic coefficients λ(n of the ferromagnetic layer—are established. The effect of temperature on the characteristics of the nonlinear magnetoelectric effect is observed for the first time. The results can be useful for designing magnetoelectric heterostructures with specified temperature characteristics, in particular, for the development of thermally stabilized magnetoelectric devices.

  19. Room-temperature-deposited dielectrics and superconductors for integrated photonics.

    Science.gov (United States)

    Shainline, Jeffrey M; Buckley, Sonia M; Nader, Nima; Gentry, Cale M; Cossel, Kevin C; Cleary, Justin W; Popović, Miloš; Newbury, Nathan R; Nam, Sae Woo; Mirin, Richard P

    2017-05-01

    We present an approach to fabrication and packaging of integrated photonic devices that utilizes waveguide and detector layers deposited at near-ambient temperature. All lithography is performed with a 365 nm i-line stepper, facilitating low cost and high scalability. We have shown low-loss SiN waveguides, high-Q ring resonators, critically coupled ring resonators, 50/50 beam splitters, Mach-Zehnder interferometers (MZIs) and a process-agnostic fiber packaging scheme. We have further explored the utility of this process for applications in nonlinear optics and quantum photonics. We demonstrate spectral tailoring and octave-spanning supercontinuum generation as well as the integration of superconducting nanowire single photon detectors with MZIs and channel-dropping filters. The packaging approach is suitable for operation up to 160 °C as well as below 1 K. The process is well suited for augmentation of existing foundry capabilities or as a stand-alone process.

  20. Low-Temperature Solution-Processed Gate Dielectrics for High-Performance Organic Thin Film Transistors

    Directory of Open Access Journals (Sweden)

    Jaekyun Kim

    2015-10-01

    Full Text Available A low-temperature solution-processed high-k gate dielectric layer for use in a high-performance solution-processed semiconducting polymer organic thin-film transistor (OTFT was demonstrated. Photochemical activation of sol-gel-derived AlOx films under 150 °C permitted the formation of a dense film with low leakage and relatively high dielectric-permittivity characteristics, which are almost comparable to the results yielded by the conventionally used vacuum deposition and high temperature annealing method. Octadecylphosphonic acid (ODPA self-assembled monolayer (SAM treatment of the AlOx was employed in order to realize high-performance (>0.4 cm2/Vs saturation mobility and low-operation-voltage (<5 V diketopyrrolopyrrole (DPP-based OTFTs on an ultra-thin polyimide film (3-μm thick. Thus, low-temperature photochemically-annealed solution-processed AlOx film with SAM layer is an attractive candidate as a dielectric-layer for use in high-performance organic TFTs operated at low voltages.

  1. A new temperature stable microwave dielectric ceramics: ZnTiNb{sub 2}O{sub 8} sintered at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Guo Mei [Department of Electronic Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Gong Shuping, E-mail: spgong@mail.hust.edu.cn [Department of Electronic Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Dou Gang; Zhou Dongxiang [Department of Electronic Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-05-19

    Highlights: > The sintering temperature of ZnTiNb{sub 2}O{sub 8}-xTiO{sub 2} ceramics with BCB was reduced to 950 deg. C. > The {tau}{sub f} was modified to 0 ppm/deg. C with reasonably good Q x f and {epsilon}{sub r}. > The {epsilon}{sub r} = 38.89, Q x f = 14,500 GHz and {tau}{sub f} = 0 ppm/deg. C were achieved. > It represented very promising candidates as LTCC dielectric materials. - Abstract: The phases, microstructure and microwave dielectric properties of ZnTiNb{sub 2}O{sub 8}-xTiO{sub 2} composite ceramics with different weight percentages of BaCu(B{sub 2}O{sub 5}) additive prepared by solid-state reaction method have been investigated using the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The results showed that the microwave dielectric properties were strongly dependent on densification, grain sizes and crystalline phases. The sintering temperature of ZnTiNb{sub 2}O{sub 8} ceramics was reduced from 1250 deg. C to 950 deg. C by doping BaCu(B{sub 2}O{sub 5}) additive and the temperature coefficient of resonant frequency ({tau}{sub f}) was adjusted from negative value of -52 ppm/deg. C to 0 ppm/deg. C by incorporating TiO{sub 2}. Addition of 2 wt% BaCu(B{sub 2}O{sub 5}) in ZnTiNb{sub 2}O{sub 8}-xTiO{sub 2} (x = 0.8) ceramics sintered at 950 deg. C showed excellent dielectric properties of {epsilon}{sub r} = 38.89, Q x f = 14,500 GHz (f = 4.715 GHz) and {tau}{sub f} = 0 ppm/deg. C, which represented very promising candidates as LTCC dielectrics for LTCC applications.

  2. Dielectric properties of polyethylene

    International Nuclear Information System (INIS)

    Darwish, S.; Riad, A.S.; El-Shabasy, M.

    2005-01-01

    The temperature dependence of dielectric properties in polyethylene was measured in the frequency range from 10 to 105 Hz. The frequency dependence of the complex impedance in the complex plane could be fitted by semicircles. The system could be represented by an equivalent circuit of a bulk resistance in series with parallel surface resistance-capacitance combination. The relaxation time, has been evaluated from experimental results. Results reveal that the temperature dependence, is a thermally activated process

  3. Temperature-dependent Transport Properties of Graphene

    Science.gov (United States)

    Zhong, Bochen; Singh, Amol; Uddin, Ahsan; Koley, Goutam; Webb, Richard

    2014-03-01

    Temperature-dependent transport properties of graphene synthesized by chemical vapor deposition (CVD) on a Cu thin sheet have been investigated. Raman spectra of our samples show good quality of the CVD graphene. We have measured the temperature dependence of conductivity, charge-carrier density and Hall mobility of graphene by patterning them into micrometer-sized Hall bars. Quantum Hall effect has been observed when the temperature is about 60 Kelvin, which is the evidence for single-layer graphene. Furthermore, the results of temperature dependence of Hall mobility indicate that impurity and defect scattering is the primary scattering mechanism at low temperature, while substrate surface polar phonon scattering is dominant at high temperature.

  4. Temperature dependence of radiation effects in polyethylene

    International Nuclear Information System (INIS)

    Wu, G; Katsumura, Y.; Kudoh, H.; Morita, Y.; Seguchi, T.

    2000-01-01

    Temperature dependence of crosslinking and gas evolution under γ-irradiation was studied for high-density and low-density polyethylene samples in the 30-360degC range. It was found that crosslinking was the predominant process up to 300degC and the gel point decreased with increasing temperature. At above 300degC, however, the gel fraction at a given dose decreased rapidly with temperature and the action of radiation turned to enhance polyethylene degradation. Yields of H 2 and hydrocarbon gases increased with temperature and the compositions of hydrocarbons were dose dependent. (author)

  5. Molding of plasmonic resonances in metallic nanostructures: Dependence of the non-linear electric permittivity on system size and temperature

    KAUST Repository

    Alabastri, A.

    2013-10-25

    In this paper, we review the principal theoretical models through which the dielectric function of metals can be described. Starting from the Drude assumptions for intraband transitions, we show how this model can be improved by including interband absorption and temperature effect in the damping coefficients. Electronic scattering processes are described and included in the dielectric function, showing their role in determining plasmon lifetime at resonance. Relationships among permittivity, electric conductivity and refractive index are examined. Finally, a temperature dependent permittivity model is presented and is employed to predict temperature and non-linear field intensity dependence on commonly used plasmonic geometries, such as nanospheres. 2013 by the authors; licensee MDPI, Basel, Switzerland.

  6. Polarization Dependence of Surface Enhanced Raman Scattering on a Single Dielectric Nanowire

    Directory of Open Access Journals (Sweden)

    Hua Qi

    2012-01-01

    Full Text Available Our measurements of surface enhanced Raman scattering (SERS on Ga2O3 dielectric nanowires (NWs core/silver composites indicate that the SERS enhancement is highly dependent on the polarization direction of the incident laser light. The polarization dependence of the SERS signal with respect to the direction of a single NW was studied by changing the incident light angle. Further investigations demonstrate that the SERS intensity is not only dependent on the direction and wavelength of the incident light, but also on the species of the SERS active molecule. The largest signals were observed on an NW when the incident 514.5 nm light was polarized perpendicular to the length of the NW, while the opposite phenomenon was observed at the wavelength of 785 nm. Our theoretical simulations of the polarization dependence at 514.5 nm and 785 nm are in good agreement with the experimental results.

  7. Room-temperature negative capacitance in a ferroelectric-dielectric superlattice heterostructure.

    Science.gov (United States)

    Gao, Weiwei; Khan, Asif; Marti, Xavi; Nelson, Chris; Serrao, Claudy; Ravichandran, Jayakanth; Ramesh, Ramamoorthy; Salahuddin, Sayeef

    2014-10-08

    We demonstrate room-temperature negative capacitance in a ferroelectric-dielectric superlattice heterostructure. In epitaxially grown superlattice of ferroelectric BSTO (Ba0.8Sr0.2TiO3) and dielectric LAO (LaAlO3), capacitance was found to be larger compared to the constituent LAO (dielectric) capacitance. This enhancement of capacitance in a series combination of two capacitors indicates that the ferroelectric was stabilized in a state of negative capacitance. Negative capacitance was observed for superlattices grown on three different substrates (SrTiO3 (001), DyScO3 (110), and GdScO3 (110)) covering a large range of substrate strain. This demonstrates the robustness of the effect as well as potential for controlling the negative capacitance effect using epitaxial strain. Room-temperature demonstration of negative capacitance is an important step toward lowering the subthreshold swing in a transistor below the intrinsic thermodynamic limit of 60 mV/decade and thereby improving energy efficiency.

  8. Relationship of Cure Temperature to Mechanical, Physical, and Dielectric Performance of PDMS Glass Composite for Electric Motor Insulation

    Science.gov (United States)

    Miller, Sandi G.; Becker, Kathleen; Williams, Tiffany S.; Scheiman, Daniel A.; McCorkle, Linda S.; Heimann, Paula J.; Ring, Andrew; Woodworth, Andrew

    2017-01-01

    Achieving NASAs aggressive fuel burn and emission reduction for N-plus-3 aircraft will require hybrid electric propulsion system in which electric motors driven by either power generated from turbine or energy storage system will power the fan for propulsion. Motors designed for hybrid electric aircraft are expected to operate at medium to high voltages over long durations in a high altitude service environment. Such conditions have driven research toward the development of wire insulation with improved mechanical strength, thermal stability and increased breakdown voltage. The silicone class of materials has been considered for electric wire insulation due to its inherent thermal stability, dielectric strength and mechanical integrity. This paper evaluates the dependence of these properties on the cure conditions of a polydimethyl-siloxane (PDMS) elastomer; where both cure temperature and base-to-catalyst ratio were varied. The PDMS elastomer was evaluated as a bulk material and an impregnation matrix within a lightweight glass veil support. The E-glass support was selected for mechanical stiffness and dielectric strength. This work has shown a correlation between cure conditions and material physical properties. Tensile strength increased with cure temperature whereas breakdown voltage tended to be independent of process variations. The results will be used to direct material formulation based on specific insulation requirements.

  9. Thickness Dependent Structural and Dielectric Properties of Calcium Copper Titanate Thin Films Produced by Spin-Coating Method for Microelectronic Devices

    Science.gov (United States)

    Thiruramanathan, P.; Sankar, S.; Marikani, A.; Madhavan, D.; Sharma, Sanjeev K.

    2017-07-01

    Calcium copper titanate (CaCu3Ti4O12, CCTO) thin films have been deposited on platinized silicon [(111)Pt/Ti/SiO2/Si] substrate through a sol-gel spin coating technique and annealed at 600-900°C with a variation of 100°C per sample for 3 h. The activation energy for crystalline growth, as well as optimal annealing temperature (900°C) of the CCTO crystallites was studied by x-ray diffraction analysis (XRD). Thickness dependent structural, morphological, and optical properties of CCTO thin films were observed. The field emission scanning electron microscopy (FE-SEM) verified that the CCTO thin films are uniform, fully covered, densely packed, and the particle size was found to be increased with film thickness. Meanwhile, quantitative analysis of dielectric properties (interfacial capacitance, dead layers, and bulk dielectric constant) of CCTO thin film with metal-insulator-metal (M-I-M) structures has been investigated systematically using a series capacitor model. Room temperature dielectric properties of all the samples exhibit dispersion at low frequencies, which can be explained based on Maxwell-Wagner two-layer models and Koop's theory. It was found that the 483 nm thick CCTO film represents a high dielectric constant ( ɛ r = 3334), low loss (tan δ = 3.54), capacitance ( C = 4951 nF), which might satisfy the requirements of embedded capacitor.

  10. Microstructure and Dielectric Properties of LPCVD/CVI-SiBCN Ceramics Annealed at Different Temperatures

    Directory of Open Access Journals (Sweden)

    Jianping Li

    2017-06-01

    Full Text Available SiBCN ceramics were introduced into porous Si3N4 ceramics via a low-pressure chemical vapor deposition and infiltration (LPCVD/CVI technique, and then the composite ceramics were heat-treated from 1400 °C to 1700 °C in a N2 atmosphere. The effects of annealing temperatures on microstructure, phase evolution, dielectric properties of SiBCN ceramics were investigated. The results revealed that α-Si3N4 and free carbon were separated below 1700 °C, and then SiC grains formed in the SiBCN ceramic matrix after annealing at 1700 °C through a phase-reaction between free carbon and α-Si3N4. The average dielectric loss of composites increased from 0 to 0.03 due to the formation of dispersive SiC grains and the increase of grain boundaries.

  11. The dielectric environment dependent exchange self-energy of the energy structure in graphene

    International Nuclear Information System (INIS)

    Yang, C.H.; Xu, W.

    2010-01-01

    We theoretically calculate the energy dispersion in the presence of the screened exchange self-energy in extrinsic monolayer graphene. It is found that the exchange self-energy enhances the renormalized Fermi velocity. With decreasing the dielectric constant, the screening effect and the electron correlation effect increase which induces the Fermi velocity increasing. The screened exchange energy has an energy shift at the Dirac points. The self-energy from the valance band carriers gives the main contribution to the effective energy. We also discuss the electron density dependence of the self-energy.

  12. Polarization-dependent diffraction in all-dielectric, twisted-band structures

    Energy Technology Data Exchange (ETDEWEB)

    Kardaś, Tomasz M.; Jagodnicka, Anna; Wasylczyk, Piotr, E-mail: pwasylcz@fuw.edu.pl [Photonic Nanostructure Facility, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa (Poland)

    2015-11-23

    We propose a concept for light polarization management: polarization-dependent diffraction in all-dielectric microstructures. Numerical simulations of light propagation show that with an appropriately configured array of twisted bands, such structures may exhibit zero birefringence and at the same time diffract two circular polarizations with different efficiencies. Non-birefringent structures as thin as 3 μm have a significant difference in diffraction efficiency for left- and right-hand circular polarizations. We identify the structural parameters of such twisted-band matrices for optimum performance as circular polarizers.

  13. The dielectric environment dependent exchange self-energy of the energy structure in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.H., E-mail: chyang@nuist.edu.c [Faculty of Maths and Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Xu, W. [Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2010-10-01

    We theoretically calculate the energy dispersion in the presence of the screened exchange self-energy in extrinsic monolayer graphene. It is found that the exchange self-energy enhances the renormalized Fermi velocity. With decreasing the dielectric constant, the screening effect and the electron correlation effect increase which induces the Fermi velocity increasing. The screened exchange energy has an energy shift at the Dirac points. The self-energy from the valance band carriers gives the main contribution to the effective energy. We also discuss the electron density dependence of the self-energy.

  14. Streamer discharge inception in a sub-breakdown electric field from a dielectric body with a frequency dependent dielectric permittivity

    NARCIS (Netherlands)

    A. A. Dubinova (Anna); C. Rutjes (Casper); U. M. Ebert (Ute)

    2015-01-01

    htmlabstractWe study positive streamer inception from the tip of an elongated ice particle. The dielectric permittivity of ice drops from 93 to 3 for electric fields changing on the millisecond timescale [1]. We demonstrate that this effect can be important on the nanosecond time scale of

  15. Flexible Ultrahigh-Temperature Polymer-Based Dielectrics with High Permittivity for Film Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Zejun Pu

    2017-11-01

    Full Text Available In this report, flexible cross-linked polyarylene ether nitrile/functionalized barium titanate(CPEN/F-BaTiO3 dielectrics films with high permittivitywere prepared and characterized. The effects of both the F-BaTiO3 and matrix curing on the mechanical, thermal and dielectric properties of the CPEN/F-BaTiO3 dielectric films were investigated in detail. Compared to pristine BaTiO3, the surface modified BaTiO3 particles effectively improved their dispersibility and interfacial adhesion in the polymer matrix. Moreover, the introduction of F-BaTiO3 particles enhanced dielectric properties of the composites, with a relatively high permittivity of 15.2 and a quite low loss tangent of 0.022 (1 kHz when particle contents of 40 wt % were utilized. In addition, the cyano (–CN groups of functional layer also can serve as potential sites for cross-linking with polyarylene ether nitrile terminated phthalonitrile (PEN-Ph matrix and make it transform from thermoplastic to thermosetting. Comparing with the pure PEN-ph film, the latter results indicated that the formation of cross-linked network in the polymer-based system resulted in increased tensile strength by ~67%, improved glass transition temperature (Tg by ~190 °C. More importantly, the CPEN/F-BaTiO3 composite films filled with 30 wt % F-BaTiO3 particles showed greater energy density by nearly 190% when compared to pure CPEN film. These findings enable broader applications of PEN-based composites in high-performance electronics and energy storage devices materials used at high temperature.

  16. Evaluation of temperature dependent neutron resonance integrals

    International Nuclear Information System (INIS)

    Menon, S.V.G.; Sahni, D.C.

    1975-01-01

    The Fourier transform method is extended for evaluating temperature dependent resonance integrals and Doppler coefficients. With the temperature dependent cross-sections, the slowing-down equation is transformed into a Fredholm integral equation of second kind. A method of solution is presented using the familiar Gauss-Hermite quadrature formulae. As a byproduct of the above technique, a fast and accurate method for computing the resonance integral J-function is given. (orig.) [de

  17. Transport and dielectric properties of double perovskite Pr2CoFeO6

    Science.gov (United States)

    Pal, Arkadeb; Singh, A.; Gangwar, V. K.; Chatterjee, Sandip

    2018-04-01

    The transport and dielectric measurements have been investigated for the polycrystalline double perovskite Pr2CoFeO6. In the temperature dependent resistivity measurement, we have observed semiconducting nature of the sample with activation energy 0.246 eV. In dielectric measurement as a function of temperature, a giant value of dielectric constant is observed at room temperature, the frequency dependence suggests a relaxor type dielectric relaxation.

  18. Investigation Of Temperature Dependent Characteristics Of ...

    African Journals Online (AJOL)

    The structure, magnetization and magnetostriction of Laves phase compound TbCo2 were investigated by temperature dependent high resolution neutron powder diffraction. The compound crystallizes in the cubic Laves phase C15 structure above its Curie temperature, TC and exhibits a rhombohedral distortion (space ...

  19. Temperature dependence of thermal conductivity of vanadium ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 23; Issue 5. Temperature dependence of thermal conductivity of vanadium substituted BPSCCO system between 10 and 150 K. A K Dhami T K ... Keywords. Thermal conductivity; high temperature superconductors; vanadium substitution; electron + phonon approach.

  20. Low temperature sintering and microwave dielectric properties of ZnTiNb2O8 ceramics with BaCu(B2O5) additions

    International Nuclear Information System (INIS)

    Zhou Dongxiang; Dou Gang; Guo Mei; Gong Shuping

    2011-01-01

    Highlights: → The sintering temperature of ZnTiNb 2 O 8 ceramics with BCB was reduced to 950 deg. C. → The properties were dependent on densification, grain sizes and crystalline phases. → The ε r 32.56, Q x f = 20,100 GHz (f = 5.128 GHz) and τ f = -64.87 ppm/deg. C were achieved. → It represented very promising candidates as LTCC dielectric materials. - Abstract: The phases, microstructure and microwave dielectric properties of ZnTiNb 2 O 8 ceramics with BaCu(B 2 O 5 ) additions prepared by solid-state reaction method have been investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The pure ZnTiNb 2 O 8 ceramic shows a high sintering temperature of about 1250 deg. C. However, it was found that the addition of BaCu(B 2 O 5 ) lowered the sintering temperature of ZnTiNb 2 O 8 ceramics from above 1250 deg. C to 950 deg. C due to the BCB liquid-phase. The results showed that the microwave dielectric properties were strongly dependent on densification, crystalline phases and grain size. Addition of 3 wt% BCB in ZnTiNb 2 O 8 ceramics sintered at 950 deg. C afforded excellent dielectric properties of ε r = 32.56, Q x f = 20,100 GHz (f = 5.128 GHz) and τ f = -64.87 ppm/deg. C. These represent very promising candidates for LTCC dielectric materials.

  1. Escherichia coli survival in waters: Temperature dependence

    Science.gov (United States)

    Knowing the survival rates of water-borne Escherichia coli is important in evaluating microbial contamination and making appropriate management decisions. E. coli survival rates are dependent on temperature, a dependency that is routinely expressed using an analogue of the Q10 mo...

  2. Experimental investigation on electromechanical deformation of dielectric elastomers under different temperatures

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2015-07-01

    Full Text Available Under an applied voltage, dielectric elastomers (DEs produce an actuation strain that is nonlinear, partly because of the material properties. In this study, an experimental characterization is conducted to evaluate how the ambient temperature and pre-stretch affected the actuation performance. For DEs with a pre-stretch of 2×2, an increase of temperature from −10°to 80°results in a variation in the actuation strain of more than 1700%. Low pre-stretched DEs are more susceptible to temperature change; while highly pre-stretched DEs are relatively insensitive to temperature, because in this case the energy conversion was dominated by mechanical stretching, rather than thermal conduction, during the actuation.

  3. Liquid-filled ionization chamber temperature dependence

    Energy Technology Data Exchange (ETDEWEB)

    Franco, L. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain)]. E-mail: luciaff@usc.es; Gomez, F. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Iglesias, A. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Pardo, J. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Pazos, A. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Pena, J. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain); Zapata, M. [Dpto. de Fisica de Particulas, Facultade de Fisica, Universidade de Santiago, Campus Sur S/N, 15782 Santiago de Compostela (Spain)

    2006-05-10

    Temperature and pressure corrections of the read-out signal of ionization chambers have a crucial importance in order to perform high-precision absolute dose measurements. In the present work the temperature and pressure dependences of a sealed liquid isooctane filled ionization chamber (previously developed by the authors) for radiotherapy applications have been studied. We have analyzed the thermal response of the liquid ionization chamber in a {approx}20 deg. C interval around room temperature. The temperature dependence of the signal can be considered linear, with a slope that depends on the chamber collection electric field. For example, a relative signal slope of 0.27x10{sup -2}K{sup -1} for an operation electric field of 1.67x10{sup 6}Vm{sup -1} has been measured in our detector. On the other hand, ambient pressure dependence has been found negligible, as expected for liquid-filled chambers. The thermal dependence of the liquid ionization chamber signal can be parametrized within the Onsager theory on initial recombination. Considering that changes with temperature of the detector response are due to variations in the free ion yield, a parametrization of this dependence has been obtained. There is a good agreement between the experimental data and the theoretical model from the Onsager framework.

  4. Low temperature fabrication of barium titanate hybrid films and their dielectric properties

    International Nuclear Information System (INIS)

    Kobayashi, Yoshio; Saito, Hirobumi; Kinoshita, Takafumi; Nagao, Daisuke; Konno, Mikio

    2011-01-01

    A method for incorporating BT nano-crystalline into barium titanate (BT) films is proposed for a low temperature fabrication of high dielectric constant films. BT nanoparticles were synthesized by hydrolysis of a BT complex alkoxide in 2-methoxyethanol (ME)/ethanol cosolvent. As the ME volume fraction in the cosolvent (ME fraction) increased from 0 to 100%, the particle and crystal sizes tended to increase from 13.4 to 30.2 nm and from 15.8 to 31.4 nm, respectively, and the particle dispersion in the solution became more improved. The BT particles were mixed with BT complex alkoxide dissolved in an ME/ethanol cosolvent for preparing a precursor solution that was then spin-coated on a Pt substrate and dried at 150 o C. The dielectric constant of the spin-coated BT hybrid film increased with an increase in the volume fraction of the BT particles in the film. The dissipation factor of the hybrid film tended to decrease with an increase in the ME fraction in the precursor solution. The hybrid film fabricated at a BT fraction of 30% and an ME fraction of 25% attained a dielectric constant as high as 94.5 with a surface roughness of 14.0 nm and a dissipation factor of 0.11.

  5. Dielectric and thermophysical properties of different beef meat blends over a temperature range of -18 to +10°C.

    Science.gov (United States)

    Farag, K W; Lyng, J G; Morgan, D J; Cronin, D A

    2008-08-01

    Dielectric and thermophysical properties of three different beef meat blends (lean, fat and 50:50 mixture) were evaluated over a range of temperatures from -18 to +10°C. In the region of thawing (-3 to -1°C), dielectric constant (ε') and dielectric loss factor (ε') values for radio frequency (RF) and microwave (MW) were significantly higher (Pthermal conductivity (k), specific heat (c) and thermal diffusivity (α) also showed significant changes (Pfood technologists in the context of rapid defrosting of meat products.

  6. Dielectric response and room temperature ferromagnetism in Cr doped anatase TiO2 nanoparticles

    Science.gov (United States)

    Naseem, Swaleha; Khan, Wasi; Khan, Shakeel; Husain, Shahid; Ahmad, Abid

    2018-02-01

    In the present work, nanocrystalline samples of Ti1-xCrxO2 (x = 0, 0.02, 0.04, 0.06 and 0.08) were synthesized in anatase phase through simple and cost effective acid modified sol gel method. The influence of Cr doping on thermal, microstructural, electrical and magnetic properties was investigated in TiO2 host matrix. The surface morphology has revealed less agglomeration and considerable reduction in particle size in case of Cr doped TiO2 as compared to undoped TiO2 nanoparticles (NPs). Energy dispersive x-ray spectroscopy (EDS), Raman and X-ray photoelectron spectroscopy (XPS) established high purity, appropriate stoichiometry and oxidation states of the compositions. The dielectric properties of the nanoparticles were altered by the doping concentration, applied frequency as well as temperature variation. The variation in dielectric constant (ε‧), dielectric loss (δ) and ac conductivity as a function of frequency and temperature at different doping concentration of Cr were interpreted in the light of Maxwell Wagner theory, space charge polarization mechanism and drift mobility of charge carriers. Both undoped and Cr doped TiO2 samples exhibit room temperature ferromagnetism (RTFM) that remarkably influenced by means of the Cr content. The significant enhancement in the magnetization was observed at 4% Cr doping. However, decrease in magnetization for higher doping signify antiferromagnetic interactions between Cr ions or superexchange mechanism. These results reveal that the oxygen vacancies play a crucial role to initiate the RTFM. Therefore, the present investigation suggests the potential applications of Cr doped TiO2 nanoparticles for spintronics application.

  7. Contrast inversion in electrostatic force microscopy imaging of trapped charges: tip-sample distance and dielectric constant dependence

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, C; AlegrIa, A; Colmenero, J [Departamento de Fisica de Materiales UPV/EHU, Facultad de Quimica, Apartado 1072, 20080 San Sebastian (Spain); Arinero, R [Institut d' Electronique du Sud (IES), UMR CNRS 5214, Universite Montpellier II, CC 082, Place E Bataillon, 34095 Montpellier Cedex (France); Saenz, J J, E-mail: riedel@ies.univ-montp2.fr [Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastian (Spain)

    2011-08-26

    We present a numerical and analytical study of the behavior of both electrostatic force and force gradient created by a charge trapped below the surface of a dielectric on an atomic force microscope tip as a function of the dielectric constant and tip-sample distance. As expected, the force decreases monotonously when the dielectric constant increases. However, a maximum in the dielectric constant dependence of the force gradient is found. This maximum occurs in the typical experimental parameters' range and depends on the tip-sample distance and the sample thickness. The analytical study permits us to understand the physical origin of this phenomenon and is in good agreement with the numerical simulation for small tip-sample distances. We also report a study exemplifying a possible contrast inversion in electrostatic force microscopy (EFM) signals while scanning, at different heights, two charges trapped in a sample having heterogeneous dielectric domains. In addition to this particular contrast inversion effect, this study can be considered as a way to gain insight into the mechanisms of EFM image formation as a function of the dielectric constant and tip-sample.

  8. A modified Poisson-Boltzmann surface excess calculation with a field dependent dielectric constant

    International Nuclear Information System (INIS)

    Gordillo, G.J.; Molina, F.V.; Posadas, D.

    1990-01-01

    The Unequal Radius Modified Gouy-Chapman (URMGC) was applied to mixtures of electrolytes. It was considered that the two anions, (1) and (2), have different radius, r 1 and r 2 , being r 2 smaller than r 1 . The dielectric constant was taken as a function of the electric field, using the theoretical Booth equation, or as a linear dependence varying between 6 and 78 when r 2 1 . The results show that the surface excess of anion 2 is much greater than the one predicted by Gouy-Chapman theory when the proportion of 2 increases in the mixture, while both the other anion and the cation show negative deviation. This effect is more evident in mixtures than in the case of single electrolytes, and has a maximum for a composition that depends on the chosen parameters for the model. (Author) [es

  9. The role of temperature on dielectric relaxation and conductivity mechanism of dark conglomerate liquid crystal phase

    International Nuclear Information System (INIS)

    Yildiz, Alptekin; Canli, Nimet Yilmaz; Özdemir, Zeynep Güven; Ocak, Hale; Eran, Belkız Bilgin; Okutan, Mustafa

    2016-01-01

    In this study, dielectric properties and ac conductivity mechanism of the bent-core liquid crystal 3′-{4-[4-(3,7-Dimethyloctyloxy)benzoyloxy]benzoyloxy}-4-{4- [4-[6-(1,1,3,3,5,5,5-heptamethyltrisiloxan-1yl)hex-1-yloxy]benzoyloxy] benzoyloxy}biphenyl (DBB) have been analyzed by impedance spectroscopy measurements at different temperatures. According to the polarizing microscopy results, DBB liquid crystal compound exhibits a dark conglomerate mesophase (DC [*] phase) which can be identified by the occurrence of a conglomerate of domains with opposite chirality. The chiral domains of this low-birefringent mesophase become more visible by rotating the polarizer. The variation of the real (ε′) and imaginary (ε″) parts of dielectric constant with angular frequency and Cole–Cole curves of DBB have been analyzed. The fitting results for dispersion curves at different temperatures revealed that DBB system exhibits nearly Debye-type relaxation except for 125 °C. Moreover, it has been determined that while the relaxation frequencies shift to higher frequencies as the temperature increases from 25 °C to 125 °C, the peak intensities remarkably decrease with increasing temperature. According to Cole–Cole plot and phase angle versus frequency curve, it has been determined that DBB LC may have a possibility of utilizing as a super-capacitor at room temperature. Furthermore, it has been found that the conductivity mechanism of the DBB alters from Correlated Barrier Hoping (CBH) model to Quantum Tunneling Model (QMT) with in increasing temperature at high frequency region. In terms of CBH model, optical band gaps at 25 °C and 75 °C temperatures have also been calculated. Finally, activation energies for some selected angular frequencies have also been calculated.

  10. The role of temperature on dielectric relaxation and conductivity mechanism of dark conglomerate liquid crystal phase

    Science.gov (United States)

    Yildiz, Alptekin; Canli, Nimet Yilmaz; Özdemir, Zeynep Güven; Ocak, Hale; Eran, Belkız Bilgin; Okutan, Mustafa

    2016-03-01

    In this study, dielectric properties and ac conductivity mechanism of the bent-core liquid crystal 3‧-{4-[4-(3,7-Dimethyloctyloxy)benzoyloxy]benzoyloxy}-4-{4-[4-[6-(1,1,3,3,5,5,5-heptamethyltrisiloxan-1yl)hex-1-yloxy]benzoyloxy]benzoyloxy}biphenyl (DBB) have been analyzed by impedance spectroscopy measurements at different temperatures. According to the polarizing microscopy results, DBB liquid crystal compound exhibits a dark conglomerate mesophase (DC[*] phase) which can be identified by the occurrence of a conglomerate of domains with opposite chirality. The chiral domains of this low-birefringent mesophase become more visible by rotating the polarizer. The variation of the real (ε‧) and imaginary (ε″) parts of dielectric constant with angular frequency and Cole-Cole curves of DBB have been analyzed. The fitting results for dispersion curves at different temperatures revealed that DBB system exhibits nearly Debye-type relaxation except for 125 °C. Moreover, it has been determined that while the relaxation frequencies shift to higher frequencies as the temperature increases from 25 °C to 125 °C, the peak intensities remarkably decrease with increasing temperature. According to Cole-Cole plot and phase angle versus frequency curve, it has been determined that DBB LC may have a possibility of utilizing as a super-capacitor at room temperature. Furthermore, it has been found that the conductivity mechanism of the DBB alters from Correlated Barrier Hoping (CBH) model to Quantum Tunneling Model (QMT) with in increasing temperature at high frequency region. In terms of CBH model, optical band gaps at 25 °C and 75 °C temperatures have also been calculated. Finally, activation energies for some selected angular frequencies have also been calculated.

  11. Room temperature synthesis of wurtzite phase nanostructured ZnS and accompanied enhancement in dielectric constant

    Science.gov (United States)

    Virpal, Kumar, J.; Singh, G.; Singh, M.; Sharma, S.; Singh, R. C.

    2017-04-01

    We report the room temperature synthesis of ZnS in the wurtzite phase by using ethylenediamine, which acts as a template as well as a capping agent. With the addition of ethylenediamine, structural transformation in ZnS from cubic to wurtzite phase is observed. This is accompanied by an increase in the real permittivity by an order of 2, and reduction in dielectric loss by a factor of 6 as compared to a sample without ethylenediamine. Thus, suggesting that ethylenediamine capped wurtzite ZnS is more suitable for miniaturied capactive devices.

  12. A Comparison of Dielectric Properties of Palm Oil with Mineral and Synthetic Types Insulating Liquid under Temperature Variation

    OpenAIRE

    Abdul Rajab; Aminuddin Sulaeman; Sudaryatno Sudirham; Suwarno

    2011-01-01

    Mineral oil is known to have a low biodegradability level and high susceptibility to the fire. These conditions motivate many researchers to look for alternative sources for insulating oil. One of the alternative liquid is palm oil. To verify the suitability of using palm oil as an insulating liquid, it is important to make dielectric properties comparison with the commonly used insulating liquid. This paper presents comparison of temperature effect on dielectric properties of palm...

  13. A Comparison of Dielectric Properties of Palm Oil with Mineral and Synthetic Types Insulating Liquid under Temperature Variation

    Directory of Open Access Journals (Sweden)

    Abdul Rajab

    2011-11-01

    Full Text Available Mineral oil is known to have a low biodegradability level and high susceptibility to the fire. These conditions motivate many researchers to look for alternative sources for insulating oil. One of the alternative liquid is palm oil. To verify the suitability of using palm oil as an insulating liquid, it is important to make dielectric properties comparison with the commonly used insulating liquid. This paper presents comparison of temperature effect on dielectric properties of palm oil with mineral type insulating liquid and silicone oil. The measured parameters were breakdown voltage, dissipation factor (tan δ, and dielectric constant. Breakdown voltage measurement was performed in accordance with IEC 156 standard, whereas, the dissipation factor and dielectric constant measurement were conducted based on IEC 60247 standard test methods. The results showed that variations of dielectric properties of palm oil to the temperature change, in general, have the same tendency with those of commonly used insulating liquids i.e. mineral oil and silicone oil. Breakdown voltages and dissipation factors of all tested oils were increased, while their dielectric constants were slightly decreased with the increase of temperature.

  14. Time-dependent electrophoresis of a dielectric spherical particle embedded in Brinkman medium

    Science.gov (United States)

    Saad, E. I.; Faltas, M. S.

    2018-04-01

    An expression for electrophoretic apparent velocity slip in the time-dependent flow of an electrolyte solution saturated in a charged porous medium within an electric double layer adjacent to a dielectric plate under the influence of a tangential uniform electric field is derived. The velocity slip is used as a boundary condition to solve the electrophoretic motion of an impermeable dielectric spherical particle embedded in an electrolyte solution saturated in porous medium under the unsteady Darcy-Brinkman model. Throughout the system, a uniform electric field is applied and maintains with constant strength. Two cases are considered, when the electric double layer enclosing the particle is thin, but finite and when of a particle with a thick double layer. Expressions for the electrophoretic mobility of the particle as functions of the relevant parameters are found. Our results indicate that the time scale for the growth of mobility is significant and small for high permeability. Generally, the effect of the relaxation time for starting electrophoresis is negligible, irrespective of the thickness of the double layer and permeability of the medium. The effects of the elapsed time, permeability, mass density and Debye length parameters on the fluid velocity, the electrophoretic mobility and the acceleration are shown graphically.

  15. Investigations of Low Temperature Time Dependent Cracking

    Energy Technology Data Exchange (ETDEWEB)

    Van der Sluys, W A; Robitz, E S; Young, B A; Bloom, J

    2002-09-30

    The objective of this project was to investigate metallurgical and mechanical phenomena associated with time dependent cracking of cold bent carbon steel piping at temperatures between 327 C and 360 C. Boiler piping failures have demonstrated that understanding the fundamental metallurgical and mechanical parameters controlling these failures is insufficient to eliminate it from the field. The results of the project consisted of the development of a testing methodology to reproduce low temperature time dependent cracking in laboratory specimens. This methodology was used to evaluate the cracking resistance of candidate heats in order to identify the factors that enhance cracking sensitivity. The resultant data was integrated into current available life prediction tools.

  16. Temperature dependences of hydrous species in feldspars

    Science.gov (United States)

    Liu, W. D.; Yang, Y.; Zhu, K. Y.; Xia, Q. K.

    2018-01-01

    Feldspars are abundant in the crust of the Earth. Multiple hydrogen species such as OH, H2O and NH4 + can occur in the structure of feldspars. Hydrogen species play a critical role in influencing some properties of the host feldspars and the crust, including mechanical strength, electrical property of the crust, and evolution of the crustal fluids. Knowledge of hydrous species in feldspars to date has been mostly derived from spectroscopic studies at ambient temperature. However, the speciation and sites of hydrous species at high temperatures may not be quenchable. Here, we investigated the temperature dependences of several typical hydrous components (e.g., type IIa OH, type IIb OH and type I H2O) in feldspars by measuring the in situ FTIR spectra at elevated temperatures up to 800 °C. We found that the hydrous species demonstrated different behaviors at elevated temperatures. With increasing temperature, type IIa OH redistributes on the various sites in the anorthoclase structure. Additionally, O-H vibration frequencies increase for types IIa and IIb OH, and they decrease for type I H2O with increasing temperature. In contrast to type I H2O which drastically dehydrates during the heating process, types IIa and IIb OH show negligible loss; however, the bulk integral absorption coefficients drastically decrease with increasing temperature. These results may have implications in understanding the properties of hydrous species and feldspars at non-ambient temperatures, not only under geologic conditions but also at cold planetary surface conditions.

  17. Temperature and angular momentum dependence of the ...

    Indian Academy of Sciences (India)

    Temperature and angular momentum dependence of the quadrupole deformation is studied in the middle of the sd-shell for 28Si and 27Si isotopes using the spherical shell model approach. The shell model calculations have been performed using the standard universal sd-shell (USD) interaction and the canonical ...

  18. Correlation between temperature-dependent permittivity dispersion ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 7. Correlation between temperature-dependent permittivity dispersion and depolarization behaviours in Zr4+-modified BiFeO3–BaTiO3 piezoelectric ceramics. Weidong Zeng Changrong Zhou Jianrong Xiao Jiafeng Ma. Volume 38 Issue 7 December 2015 pp ...

  19. The temperature dependence of the magnetoelastic characteristics ...

    Indian Academy of Sciences (India)

    1Industrial Research Institute for Automation and Measurements, Al. Jerozolimskie 202,. 02-486 Warszawa, Poland. 2Institute of Metrology and Measuring Systems, ... One of the most significant limitations in the practical, industrial application of amorphous alloys as cores of force sensors is the temperature dependence of ...

  20. Temperature and angular momentum dependence of the ...

    Indian Academy of Sciences (India)

    Abstract. Temperature and angular momentum dependence of the quadrupole deformation is studied in the middle of the sd-shell for 28Si and 27Si isotopes using the spherical shell model ... Department of Physics, University of Kashmir, Srinagar 190 006, India; Inter-University Accelerator Centre, New Delhi 110 067, India ...

  1. Femtosecond pulse-width dependent trapping and directional ejection dynamics of dielectric nanoparticles

    KAUST Repository

    Chiang, Weiyi

    2013-09-19

    We demonstrate that laser pulse duration, which determines its impulsive peak power, is an effective parameter to control the number of optically trapped dielectric nanoparticles, their ejections along the directions perpendicular to polarization vector, and their migration distances from the trapping site. This ability to controllably confine and eject the nanoparticle is explained by pulse width-dependent optical forces exerted on nanoparticles in the trapping site and ratio between the repulsive and attractive forces. We also show that the directional ejections occur only when the number of nanoparticles confined in the trapping site exceeds a definite threshold. We interpret our data by considering the formation of transient assembly of the optically confined nanoparticles, partial ejection of the assembly, and subsequent filling of the trapping site. The understanding of optical trapping and directional ejections by ultrashort laser pulses paves the way to optically controlled manipulation and sorting of nanoparticles. © 2013 American Chemical Society.

  2. Polarization-dependent Goos-Hänchen shift at a graded dielectric interface

    Science.gov (United States)

    Löffler, W.; van Exter, M. P.; 't Hooft, G. W.; Eliel, E. R.; Hermans, K.; Broer, D. J.; Woerdman, J. P.

    2010-09-01

    We examine the polarization differential Goos-Hänchen beam shift upon total internal reflection, for a graded-index dielectric interface. We find a generic scaling law where the magnitude of this shift depends solely on the product of wavelength and gradient steepness. The analytic results are extended using transmission matrix calculations in cases where the assumptions made to allow analytical treatment might become questionable. Two important cases in this category are: (i) incident angle close to the critical angle and (ii) gradients with an overall thickness of the order of a wavelength. We demonstrate this effect experimentally using a polymer-blend sample with a gradual refractive-index transition induced by diffusion.

  3. Characteristic dielectric behaviour of the wide temperature range twist grain boundary phases of unsymmetrical liquid crystal dimers

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, M B [Physics Department, University of Allahabad, Allahabad-211 002 (India); Dhar, R [Physics Department, University of Allahabad, Allahabad-211 002 (India); Achalkumar, A S [Centre for Liquid Crystal Research, Jalahalli, Bangalore-560 103 (India); Yelamaggad, C V [Centre for Liquid Crystal Research, Jalahalli, Bangalore-560 103 (India)

    2007-10-31

    The investigated optically active dimeric compound, 4-n-undecyloxy-4{sup '}-(cholesteryloxycarbonyl-1-butyloxy)chalcone, shows wide temperature ranges of two twist grain boundary (TGB) phases, TGBA and TGBC*. Comprehensive dielectric studies have been carried out for this compound in the frequency range 1 Hz-10 MHz for different conditions of molecular anchoring. This compound shows negative dielectric anisotropy ({delta}{epsilon}'={epsilon}{sub parallel}'-{epsilon}{sub perpendicul=} a{sub r}'<0). Various electrical parameters, namely the dielectric permittivity, dielectric anisotropy, DC conductivity and activation energy, have been determined for these TGB phases. Weak relaxation processes have been detected in the TGBA and TGBC* phases, presumably due to amplitude (soft mode) and phase (Goldstone mode) fluctuations.

  4. Temperature dependent coordinating self-assembly.

    Science.gov (United States)

    Wang, Yijie; Gao, Xuedong; Xiao, Yunlong; Zhao, Qiang; Yang, Jiang; Yan, Yun; Huang, Jianbin

    2015-04-14

    Self-assemblies dominated by coordination interaction are hardly responsive to thermal stimuli. We show that in case the coordinating mode changes with temperature, the resultant assemblies also exhibit temperature dependence. The self-assemblies are constructed with perylene tetracarboxylate and metal ions. Compounds containing a perylene skeleton often self-assemble into micro-belts, which is also true for the combination of perylene tetracarboxylate and metal ions. However, a unique pinecone structure was observed upon increasing the temperature of the coordinating system. The structural transition is triggered by the change of coordinating mode between the carboxylate group and the metal ion. At low temperature, intermolecular coordination occurs which favours the growth of the coordinating self-assembly along the long axis of the perylene. However, upon the elevation of temperature, the coordination is overwhelmed by intra-molecular mode. This is against the extension of the coordinating assembly due to the loss of connection between neighbouring perylenes. As a result, the pinecone structure is observed. We expect that the cases introduced in this work may inspire the design of structurally controllable temperature-dependent soft materials based on coordinating self-assembly.

  5. Effects of temperature, moisture, and metal salt content on dielectric properties of rice bran associated with radio frequency heating.

    Science.gov (United States)

    Ling, Bo; Liu, Xiaoli; Zhang, Lihui; Wang, Shaojin

    2018-03-13

    Dielectric heating including microwave (MW) and radio frequency (RF) energy has been regarded as alternative thermal treatments for food processing. To develop effective rice bran (RB) stabilization treatments based on RF and MW heating, dielectric properties (DPs) with dielectric constant (ε') and loss factor (ε″) of RB samples at frequencies (10-3000 MHz), temperatures (25-100 °C), moisture content (MC, 10.36-24.69% w.b.) and three metal salt levels (0.05-2.00%) were determined by an open-ended coaxial probe and impedance analyzer. Results indicated that both ε' and ε″ of RB samples increased with increasing temperature and MC. The increase rate was greater at higher temperature and moisture levels than at lower levels, especially at frequencies lower than 300 MHz. Cubic order models were developed to best fit the relationship between DPs of RB samples and temperature/MC at five frequencies with R 2 greater than 0.994. Both ε″ and RF heating rate of RB samples increased significantly with added NaCl (2%), KCl (1%) and Na 6 O 18 P 6 (2%). The obtained data are useful in developing computer models and simulating dielectric heating for RB stabilization and may also provide theoretical basis for synergistic stabilization of RB under combined dielectric heating with metal salts.

  6. Low-temperature phase transition in γ-glycine single crystal. Pyroelectric, piezoelectric, dielectric and elastic properties

    Energy Technology Data Exchange (ETDEWEB)

    Tylczyński, Zbigniew, E-mail: zbigtyl@amu.edu.pl [Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Busz, Piotr [Institute of Molecular Physics, Polish Academy of Science, Smoluchowskiego 17, 60-179 Poznań (Poland)

    2016-11-01

    Temperature changes in the pyroelectric, piezoelectric, elastic and dielectric properties of γ-glycine crystals were studied in the range 100 ÷ 385 K. The pyroelectric coefficient increases monotonically in this temperature range and its value at RT was compared with that of other crystals having glycine molecules. A big maximum in the d14 component of piezoelectric tensor compared by maximum in attenuation of the resonant face-shear mode were observed at 189 K. The components of the elastic stiffness tensor and other components of the piezoelectric tensor show anomalies at this temperature. The components of electromechanical coupling coefficient determined indicate that γ-glycine is a weak piezoelectric. The real and imaginary part of the dielectric constant measured in the direction perpendicular to the trigonal axis show the relaxation anomalies much before 198 K and the activation energies were calculated. These anomalies were interpreted as a result of changes in the NH{sub 3}{sup +} vibrations through electron-phonon coupling of the so called “dynamical transition”. The anomalies of dielectric constant ε*{sub 11} and piezoelectric tensor component d{sub 14} taking place at 335 K are associated with an increase in ac conductivity caused by charge transfer of protons. - Graphical abstract: Imaginary part of dielectric constant in [100] direction. - Highlights: • Piezoelectric, elastic and dielectric constants anomalies were discovered at 189 K. • These anomalies were interpreted as a result of so called “dynamical transition”. • Relaxational dielectric anomaly was explained by the dynamics of glycine molecules. • Pyroelectric coefficient of γ-glycine was determined in a wide temperature range. • Complex dielectric & piezoelectric anomalies at 335 K were caused by protons hopping.

  7. High temperature dielectric properties of (BxNyOz thin films deposited using ion source assisted physical vapor deposition

    Directory of Open Access Journals (Sweden)

    N. Badi

    2015-12-01

    Full Text Available The dielectric integrity has been one of the major obstacle in bringing out capacitor devices with suitable performance characteristics at high temperatures. In this paper, BxNyOz dielectric films for high temperature capacitors solutions are investigated. The films were grown on silicon substrate by using ion source assisted physical vapor deposition technique. The as-grown films were characterized by SEM, XRD, and XPS. The capacitor structures were fabricated using BxNyOz as a dielectric and titanium as metal electrodes. The elaborated devices were subjected to electrical and thermal characterization. They exhibited low electrical loss and very good stability when subjected to high temperature for a prolonged period of time.

  8. Temperature dependence of the step free energy

    International Nuclear Information System (INIS)

    Zandvliet, H. J. W.; Gurlu, O.; Poelsema, Bene

    2001-01-01

    We have derived an expression for the step free energy that includes the usual thermally induced step meandering term and a vibrational entropy term related to the step edge atoms. The latter term results from the reduced local coordination of the step atoms with respect to the terrace atoms and was introduced recently by Frenken and Stoltze as well as by Bonzel and Emundts. Additionally, we have added third and fourth terms that deal with the vibrational entropy contribution of the thermally generated step and kink atoms. At elevated temperatures the two latter vibrational entropy terms are of the same order of magnitude. Incorporation of these vibrational entropy terms results in a faster decrease of the step free energy with increasing temperature than anticipated previously. This enhanced temperature dependence of the step free energy results in a lower thermal roughening temperature of the facet

  9. Low temperature dielectric relaxation of poly (L-lactic acid) (PLLA) by Thermally Stimulated Depolarization Current

    Science.gov (United States)

    Mishra Patidar, Manju; Jain, Deepti; Nath, R.; Ganesan, V.

    2016-10-01

    Poly (L-lactic acid) (PLLA) is a biodegradable and biocompatible polyester that can be produced by renewable resources, like corn. Being non-toxic to human body, PLLA is used in biomedical applications, like surgical sutures, bone fixation devices, or controlled drug delivery. Besides its application studies, very few experiments have been done to study its dielectric relaxation in the low temperature region. Keeping this in mind we have performed a low temperature thermally stimulated depolarization current (TSDC) studies over the temperature range of 80K-400K to understand the relaxation phenomena of PLLA. We could observe a multi modal broad relaxation of small but significant intensity at low temperatures while a sharp and high intense peak around glass transition temperature, Tg∼ 333K, of PLLA has appeared. The fine structure of the low temperature TSDC peak may be attributed to the spherulites formation of crystallite regions inter twinned with the polymer as seen in AFM and appear to be produced due to an isothermal crystallization process. XRD analysis also confirms the semicrystalline nature of the PLLA film.

  10. Dielectric analysis of depth dependent curing behavior of dental resin composites.

    Science.gov (United States)

    Steinhaus, Johannes; Moeginger, Bernhard; Grossgarten, Mandy; Rosentritt, Martin; Hausnerova, Berenika

    2014-06-01

    The aim of this study is to investigate depth dependent changes of polymerization process and kinetics of visible light-curing (VLC) dental composites in real-time. The measured quantity - "ion viscosity" determined by dielectric analysis (DEA) - provides the depth dependent reaction rate which is correlated to the light intensity available in the corresponding depths derived from light transmission measurements. The ion viscosity curves of two composites (VOCO Arabesk Top and Grandio) were determined during irradiation of 40s with a light-curing unit (LCU) in specimen depths of 0.5/0.75/1.0/1.25/1.5/1.75 and 2.0mm using a dielectric cure analyzer (NETZSCH DEA 231 with Mini IDEX sensors). The thickness dependent light transmission was measured by irradiation composite specimens of various thicknesses on top of a radiometer setup. The shape of the ion viscosity curves depends strongly on the specimen thickness above the sensor. All curves exhibit a range of linear time dependency of the ion viscosity after a certain initiation time. The determined initiation times, the slopes of the linear part of the curves, and the ion viscosities at the end of the irradiation differ significantly with depth within the specimen. The slopes of the ion viscosity curves as well as the light intensity values decrease with depth and fit to the Lambert-Beer law. The corresponding attenuation coefficients are determined for Arabesk Top OA2 to 1.39mm(-1) and 1.48mm(-1), respectively, and for Grandio OA2 with 1.17 and 1.39mm(-1), respectively. For thicknesses exceeding 1.5mm a change in polymerization behavior is observed as the ion viscosity increases subsequent to the linear range indicating some kind of reaction acceleration. The two VLC composites and different specimen thicknesses discriminate significantly in their ion viscosity evolution allowing for a precise characterization of the curing process even with respect to the polymerization mechanism. Copyright © 2014. Published by

  11. Dependence of the depth distribution of implanted silver ions on the temperature of irradiated glass

    CERN Document Server

    Stepanov, A L

    2001-01-01

    The peculiarities of the glass ion implantation by the silver ions in dependence on the substrate temperature within the interval of 20-100 deg C are studied. Modeling the profiles of the implanted ions distribution in depth with an account of the thermostimulated increase in the admixture diffusion mobility is carried out. It is shown, that increase in the substrate temperature leads to the diffusion wash-out of the introduced admixture ions distribution. The analysis of the modeling results indicates the necessity of strict control of the substrate temperature by the dielectrics implantation for obtaining the conditions for the metal nanoparticles synthesis

  12. Temperature dependence of giant dipole resonance width

    International Nuclear Information System (INIS)

    Vdovin, A.I.; Storozhenko, A.N.

    2005-01-01

    The quasiparticle-phonon nuclear model extended to finite temperature within the framework of the thermo field dynamics is applied to calculate a temperature dependence of the spreading width Γ d own of a giant dipole resonance. Numerical calculations are made for 12S n and 208 Pb nuclei. It is found that the width Γ d own increases with T. The reason of this effect is discussed as well as a relation of the present approach to other ones existing in the literature

  13. Temperature Effects on a-IGZO Thin Film Transistors Using HfO2 Gate Dielectric Material

    Directory of Open Access Journals (Sweden)

    Yu-Hsien Lin

    2014-01-01

    Full Text Available This study investigated the temperature effect on amorphous indium gallium zinc oxide (a-IGZO thin film transistors (TFTs using hafnium oxide (HfO2 gate dielectric material. HfO2 is an attractive candidate as a high-κ dielectric material for gate oxide because it has great potential to exhibit superior electrical properties with a high drive current. In the process of integrating the gate dielectric and IGZO thin film, postannealing treatment is an essential process for completing the chemical reaction of the IGZO thin film and enhancing the gate oxide quality to adjust the electrical characteristics of the TFTs. However, the hafnium atom diffused the IGZO thin film, causing interface roughness because of the stability of the HfO2 dielectric thin film during high-temperature annealing. In this study, the annealing temperature was optimized at 200°C for a HfO2 gate dielectric TFT exhibiting high mobility, a high ION/IOFF ratio, low IOFF current, and excellent subthreshold swing (SS.

  14. Completeness relations for the electromagnetic modes of a cylindrical fibre with a radially dependent dielectric and magnetic permittivity and conductivity

    NARCIS (Netherlands)

    Hoenders, B.J.

    1986-01-01

    We consider an infinitely long conducting cylinder whose dielectric and magnetic permittivity and conductivity are functions of the distance from a point inside the cylinder to its axis. It is shown that the r-dependent part of the set of electromagnetic modes associated with such a cylinder is

  15. Dielectrically-Loaded Cylindrical Resonator-Based Wireless Passive High-Temperature Sensor

    Directory of Open Access Journals (Sweden)

    Jijun Xiong

    2016-12-01

    Full Text Available The temperature sensor presented in this paper is based on a microwave dielectric resonator, which uses alumina ceramic as a substrate to survive in harsh environments. The resonant frequency of the resonator is determined by the relative permittivity of the alumina ceramic, which monotonically changes with temperature. A rectangular aperture etched on the surface of the resonator works as both an incentive and a coupling device. A broadband slot antenna fed by a coplanar waveguide is utilized as an interrogation antenna to wirelessly detect the sensor signal using a radio-frequency backscattering technique. Theoretical analysis, software simulation, and experiments verified the feasibility of this temperature-sensing system. The sensor was tested in a metal-enclosed environment, which severely interferes with the extraction of the sensor signal. Therefore, frequency-domain compensation was introduced to filter the background noise and improve the signal-to-noise ratio of the sensor signal. The extracted peak frequency was found to monotonically shift from 2.441 to 2.291 GHz when the temperature was varied from 27 to 800 °C, leading to an average absolute sensitivity of 0.19 MHz/°C.

  16. Temperature dependent electronic conduction in semiconductors

    International Nuclear Information System (INIS)

    Roberts, G.G.; Munn, R.W.

    1980-01-01

    This review describes the temperature dependence of bulk-controlled electronic currents in semiconductors. The scope of the article is wide in that it contrasts conduction mechanisms in inorganic and organic solids and also single crystal and disordered semiconductors. In many experimental situations it is the metal-semiconductor contact or the interface between two dissimilar semiconductors that governs the temperature dependence of the conductivity. However, in order to keep the length of the review within reasonable bounds, these topics have been largely avoided and emphasis is therefore placed on bulk-limited currents. A central feature of electronic conduction in semiconductors is the concentrations of mobile electrons and holes that contribute to the conductivity. Various statistical approaches may be used to calculate these densities which are normally strongly temperature dependent. Section 1 emphasizes the relationship between the position of the Fermi level, the distribution of quantum states, the total number of electrons available and the absolute temperature of the system. The inclusion of experimental data for several materials is designed to assist the experimentalist in his interpretation of activation energy curves. Sections 2 and 3 refer to electronic conduction in disordered solids and molecular crystals, respectively. In these cases alternative approaches to the conventional band theory approach must be considered. For example, the velocities of the charge carriers are usually substantially lower than those in conventional inorganic single crystal semiconductors, thus introducing the possibility of an activated mobility. Some general electronic properties of these materials are given in the introduction to each of these sections and these help to set the conduction mechanisms in context. (orig.)

  17. The influence of neutron-irradiation at low temperatures on the dielectric parameters of 3C-SiC

    International Nuclear Information System (INIS)

    Engelbrecht, J.A.A.; Deyzel, G.; Minnaar, E.G.; Goosen, W.E.; Rooyen, I.J. van

    2014-01-01

    3C-SiC wafers were irradiated with neutrons of various fluences and at low (200–400 °C) irradiation temperatures. Fourier transform infrared (FTIR) reflectance spectra were obtained for the samples, and the spectra used to extract the dielectric parameters for each specimen, using statistical curve-fitting procedures. Analysis of all data revealed trends in reflectance peak heights as well as in the dielectric parameters. The surface roughness of the irradiated samples was measured by atomic force spectroscopy (AFM) and certain trends could be ascribed to surface roughness.

  18. Structural, dielectric and electrical properties of Sm-modified Pb ...

    Indian Academy of Sciences (India)

    Unknown

    diffraction (XRD) analysis, detailed temperature and frequency dependence dielectric measurements on them. The a.c. conductivity has been investigated over a wide range of temperature and the activation energy (Ea.c.) has also been calculated. It is observed that (i) the dielectric permittivity (ε) and loss tangent (tan δ) are.

  19. Dielectric properties of dried vegetable powders and their temperature profile during radio frequency heating

    Science.gov (United States)

    Recently, Salmonella contamination was identified in low-moisture foods including dried vegetable powder. Radio Frequency (RF) dielectric heating is a potential alternative pasteurization method with short heating time. Dielectric properties of broccoli powder with 6.9, 9.1, 12.2, and 14.9%, w. b....

  20. Temperature dependence of microwave SQUID response

    International Nuclear Information System (INIS)

    Callegari, A.; Deaver, B.S. Jr.

    1977-01-01

    The response of a microwave SQUID using a Ta point contact has been measured at various temperatures giving a progression of operating conditions from the nonhysteretic to the hysteretic mode. The responses calculated by Soerensen and by Burhman and Jackel are in good qualitative agreement with the measurements. However, these theories do not appear to account for the response reported by Rachford, Wolf, Nisenoff, and Huang for thin-film bridges. We present a calculation that exhibits explicitly the dependence of the response on Ω=Phi 0 ν/I/sub c/R, where ν is the microwave frequeny, I/sub c/ and R are the critical current and resistance of the junction, and Phi 0 is the fluxoid quantum, and that agrees with their data and their interpretation of it in terms of a limiting time tau for the supercurrent response with tauproportionalΔ (T) -1 where Δ (T) is the BCS gap parameter

  1. Frequency Dependence of C-V Characteristics of MOS Capacitors Containing Nanosized High-κ Ta2O5 Dielectrics

    Directory of Open Access Journals (Sweden)

    Nenad Novkovski

    2017-01-01

    Full Text Available Capacitance of metal–insulator–Si structures containing high permittivity dielectric exhibits complicated behaviour when voltage and frequency dependencies are studied. From our study on metal (Al, Au, W–Ta2O5/SiO2–Si structures, we identify serial C-R measurement mode to be more convenient for use than the parallel one usually used in characterization of similar structures. Strong frequency dependence that is not due to real variations in the dielectric permittivity of the layers is observed. Very high capacitance at low frequencies is due to the leakage in Ta2O5 layer. We found that the above observation is mainly due to different leakage current mechanisms in the two different layers composing the stack. The effect is highly dependent on the applied voltage, since the leakage currents are strongly nonlinear functions of the electric field in the layers. Additionally, at low frequencies, transition currents influence the measured value of the capacitance. From the capacitance measurements several parameters are extracted, such as capacitance in accumulation, effective dielectric constant, and oxide charges. Extracting parameters of the studied structures by standard methods in the case of high-κ/interfacial layer stacks can lead to substantial errors. Some cases demonstrating these deficiencies of the methods are presented and solutions for obtaining better results are proposed.

  2. Phase dependent impedance and temperature dependent response of microwave SQUID

    International Nuclear Information System (INIS)

    Callegari, A.C.

    1978-01-01

    We report measurements of the microwave impedance of superconducting point contacts as a function of the quantum mechanical phase difference phi. They yield a conductance of the form G(phi) = G/sub o/(1+alpha cos phi) where alpha is a dimensionless parameter reflecting an interference between the Cooper pairs and the quasiparticles. Experimental results agree with a negative alpha approximately equal to -.5 which can be interpreted in terms of a phenomenological model that follows essentially the Time Dependent Landau Ginzburg theory (TDLG). In the second part we report measurements of the response of a microwave SQUID using a Ta point contact at various temperatures. They give a progression of operating conditions from the non-hysteretic to the hysteretic mode. The responses calculated by Soerensen and by Burhman and Jackel are in qualitative agreement with the measurements. We also present a theory based on a calculation of the reflection coefficient from the point contact. This theory reproduces the results of Bunhman and Jackel and Soerensen and is directly adaptable to our microwave geometry. In the last chapter we present a calculation that exhibits explicitly the dependence of the response on OMEGA = PHI/sub o/nu/I/sub X sub/R where nu is the microwave frequency, I/sub c/ and R the critical current and resistance of the junction and PHI/sub o/ fluxoid quantum, and that agrees with their data and their interpretation of it in terms of a limiting time tau for the supercurrent response with tau varies as DELTA(T)/sup -1/ where DELTA (T) is the BCS gap parameter

  3. Temperature-Dependent Phase Transitions in the Lead-Free Piezoceramics (1 – x – y)(Bi1/2Na1/2)TiO3–xBaTiO3–y(K0.5Na0.5)NbO3 Observed by in situ Transmission Electron Microscopy and Dielectric Measurements

    DEFF Research Database (Denmark)

    Kling, Jens; Jo, Wook; Dittmer, Robert

    2013-01-01

    Lead-free piezoelectric (1 – x – y)(Bi1/2Na1/2)TiO3–xBaTiO3–y(K0.5Na0.5)NbO3 (BNT–BT–KNN) ceramics were examined in situ under increasing temperature in the transmission electron microscope. Changing superstructure reflections indicate a transition from rhombohedral to tetragonal to cubic phase...... with broad coexistence regions. The additional evolution of the microstructure in combination with dielectric measurements leads to a model of two relaxor-type phase evolutions with temperature....

  4. Electrical, mechanical and temperature characterization of commercialy available LTCC dielectric materials

    Directory of Open Access Journals (Sweden)

    Radosavljević Goran

    2013-01-01

    Full Text Available Presented paper deals with mechanical, electrical and thermal properties of several commercially available materials that are widely used for fabrication of electronic components, sensor systems etc. In the LTCC (Low Temperature Co-fired Technology. Having complete and accurate information of material chemical composition, its electrical and mechanical properties are essential for successful design of various components and/or systems. In many cases, available technical documentation provided by the manufacturers contains less information than designers require for complete pre-design analysis of system behavior in real time environment. Three offently exploited commercialy available dielectric materials provided by Heraeus company (Heraeus CT700, Heraeus CT707 and Heraeus CT800 are investigated. Electrical, mechanical and thermal properties analyses have been conducted in order to determine some of the important material properties. A full chemical composition analysis was performed resulting in determination of materials' chemical composition, followed with determination of relative permittivity value, elasticity modulus and relative thermal coefficient value. [Projekat Ministarstva nauke Republike Srbije, br. III 45021

  5. A Dielectric-Filled Waveguide Antenna Element for 3D Imaging Radar in High Temperature and Excessive Dust Conditions

    Directory of Open Access Journals (Sweden)

    Ding Xu

    2016-08-01

    Full Text Available Three-dimensional information of the burden surface in high temperature and excessive dust industrial conditions has been previously hard to obtain. This paper presents a novel microstrip-fed dielectric-filled waveguide antenna element which is resistant to dust and high temperatures. A novel microstrip-to-dielectric-loaded waveguide transition was developed. A cylinder and cuboid composite structure was employed at the terminal of the antenna element, which improved the return loss performance and reduced the size. The proposed antenna element was easily integrated into a T-shape multiple-input multiple-output (MIMO imaging radar system and tested in both the laboratory environment and real blast furnace environment. The measurement results show that the proposed antenna element works very well in industrial 3D imaging radar.

  6. Temperature dependence of conductivity in high mobility MIS structures on a base of (001) silicon

    International Nuclear Information System (INIS)

    Vyrodov, E.A.; Dolgopolov, V.T.; Dorozhkin, C.I.; Zhitenev, N.B.

    1988-01-01

    Measurements of the temperature dependence of the conductivity of two-dimensional electrons in silicon MIS structures were carried out. It is shown that the observed dependence is well described by the equation σ(T) = σ(0)(1-Q(kT var-epsilon F )-P(kT/var-epsilon F )3/2 + O[(kT/var-epsilon F ) 2 ]). The variation of the coefficient Q with the density N S of the two-dimensional electrons is determined, and it is shown that the observed trend of the Q(s) curve is described by consideration of the temperature dependence of the dielectric function of a two-dimensional electron gas

  7. Temperature dependence of the magnetization of canted spin structures

    DEFF Research Database (Denmark)

    Jacobsen, Henrik; Lefmann, Kim; Brok, Erik

    2012-01-01

    Numerous studies of the low-temperature saturation magnetization of ferrimagnetic nanoparticles and diamagnetically substituted ferrites have shown an anomalous temperature dependence. It has been suggested that this is related to freezing of canted magnetic structures. We present models...... for the temperature dependence of the magnetization of a simple canted spin structure in which relaxation can take place at finite temperatures between spin configurations with different canting angles. We show that the saturation magnetization may either decrease or increase with decreasing temperature, depending...

  8. Temperature dependence of grain boundary free energy and elastic constants

    International Nuclear Information System (INIS)

    Foiles, Stephen M.

    2010-01-01

    This work explores the suggestion that the temperature dependence of the grain boundary free energy can be estimated from the temperature dependence of the elastic constants. The temperature-dependent elastic constants and free energy of a symmetric Σ79 tilt boundary are computed for an embedded atom method model of Ni. The grain boundary free energy scales with the product of the shear modulus times the lattice constant for temperatures up to about 0.75 the melting temperature.

  9. Effects of La{sub 2}O{sub 3}-doping and sintering temperature on the dielectric properties of BaSrTiO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hong Wei; Chang, Chun Rui [College of Science, North China University of Science and Technology, Hebei Province (China); Li, Yuan Liang [Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, North China University of Science and Technology, Hebei Province (China); Yan, Chun Liang [Analysis and Testing Center, North China University of Science and Technology, Hebei Province (China)

    2016-03-15

    Using BaCO{sub 3}, SrCO{sub 3} and TiO{sub 2}, et al as crude materials, La{sub 2}O{sub 3} as dopant, Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} (BST) Ceramics of perovskite structure were prepared by solid state reaction method. We investigated the effects of La{sub 2}O{sub 3} -doping and sintering temperature on the dielectric properties of BaSrTiO{sub 3} ceramics. The experiment results show that: The amount of La{sub 2}O{sub 3} can increase the dielectric constant of the sample, with the doping amount increasing, the dielectric constant increases. The sintering temperature has also significant impact on the dielectric properties. The dielectric constant of the sample reaches its highest point at 1280 °C. (author)

  10. Temperature dependent spin structures in Hexaferrite crystal

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Y.C. [Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan (China); Lin, J.G., E-mail: jglin@ntu.edu.tw [Center for Condensed Matter Sciences, National Taiwan University, Taipei 106, Taiwan (China); Chun, S.H.; Kim, K.H. [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2016-01-01

    In this work, the Hexaferrite Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}Fe{sub 12}O{sub 22} (BSZFO) is studied due to its interesting characteristics of long-wavelength spin structure. Ferromagnetic resonance (FMR) is used to probe the magnetic states of BSZFO single crystal and its temperature dependence behavior is analyzed by decomposing the multiple lines of FMR spectra into various phases. Distinguished phase transition is observed at 110 K for one line, which is assigned to the ferro(ferri)-magnetic transition from non-collinear to collinear spin state. - Highlights: • For the first time Ferromagnetic Resonance is used to probe the local magnetic structure of Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}Fe{sub 12}O{sub 22.} • The multiphases in the single crystal is identified, which provides important information toward its future application for the magnetoelectric devices.

  11. Structure dependent resistivity and dielectric characteristics of tantalum oxynitride thin films produced by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Cristea, D., E-mail: daniel.cristea@unitbv.ro [Department of Materials Science, Transilvania University, 500036 Brasov (Romania); Crisan, A. [Department of Materials Science, Transilvania University, 500036 Brasov (Romania); Cretu, N. [Electrical Engineering and Applied Physics Department, Transilvania University, 500036 Brasov (Romania); Borges, J. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710 - 057 Braga (Portugal); Instituto Pedro Nunes, Laboratório de Ensaios, Desgaste e Materiais, Rua Pedro Nunes, 3030-199 Coimbra (Portugal); SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Lopes, C.; Cunha, L. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710 - 057 Braga (Portugal); Ion, V.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, “Photonic Processing of Advanced Materials” Group, PO Box MG-16, RO 77125 Magurele-Bucharest (Romania); Barradas, N.P. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139,7, 2695-066 Bobadela LRS (Portugal); Alves, E. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139,7, 2695-066 Bobadela LRS (Portugal); Apreutesei, M. [MATEIS Laboratory-INSA de Lyon, 21 Avenue Jean Capelle, 69621 Villeurbanne cedex (France); Université de Lyon, Institut des Nanotechnologies de Lyon INL-UMR5270, CNRS, Ecole Centrale de Lyon, Ecully F-69134 (France); Munteanu, D. [Department of Materials Science, Transilvania University, 500036 Brasov (Romania)

    2015-11-01

    Highlights: • Tantalum oxynitride thin films have been deposited by magnetron sputtering, in various configurations. • The rising of the reactive gases mixture flow has the consequence of a gradual increase in the non-metallic content in the films, which results in a 10 orders of magnitude resistivity domain. • The higher resistivity films exhibit dielectric constants up to 41 and quality factors up to 70. - Abstract: The main purpose of this work is to present and to interpret the change of electrical properties of Ta{sub x}N{sub y}O{sub z} thin films, produced by DC reactive magnetron sputtering. Some parameters were varied during deposition: the flow of the reactive gases mixture (N{sub 2} and O{sub 2}, with a constant concentration ratio of 17:3); the substrate voltage bias (grounded, −50 V or −100 V) and the substrate (glass, (1 0 0) Si or high speed steel). The obtained films exhibit significant differences. The variation of the deposition parameters induces variations of the composition, microstructure and morphology. These differences cause variation of the electrical resistivity essentially correlated with the composition and structural changes. The gradual decrease of the Ta concentration in the films induces amorphization and causes a raise of the resistivity. The dielectric characteristics of some of the high resistance Ta{sub x}N{sub y}O{sub z} films were obtained in the samples with a capacitor-like design (deposited onto high speed steel, with gold pads deposited on the dielectric Ta{sub x}N{sub y}O{sub z} films). Some of these films exhibited dielectric constant values higher than those reported for other tantalum based dielectric films.

  12. On the frequency dependent negative dielectric constant behavior in Al/Co-doped (PVC+TCNQ)/p-Si structures

    Science.gov (United States)

    Yücedağ, I.; Kaya, A.; Altındal, Ş.

    2014-06-01

    The dielectric properties, electric modulus and ac electrical conductivity (σac) of Al/Co-doped (PVC+TCNQ)/p-Si structures have been investigated in the wide frequency and voltage range of 0.5 kHz-3 MHz and (-4 V)-(9 V), respectively, using the capacitance-voltage (C-V) and conductance-voltage (G/ω-V) measurements at room temperature. The real and imaginary parts of dielectric constant (ɛ‧, ɛ″), loss tangent (tan δ), σac and the real and imaginary parts of electric modulus (M‧, M″) were found strongly function of frequency and applied voltage especially at low frequencies. The ɛ‧-V plot shows an anomalous peak in the forward bias region due to the series resistance (Rs), surface states (Nss) and interfacial layer (PVC+TCNQ) effects for each frequency and then it goes to negative values known as negative dielectric constant (NDC) at low frequencies (f ≤ 70 kHz). Such observation of NDC is important result because it implies that an increment of bias voltage produces a decrease in the charge on the electrodes. The amount of negativity ɛ‧ value increases with decreasing frequency and this decrement in the NDC corresponds to the increment in the ɛ″.

  13. Temperature dependence of pulse-induced mechanoluminescence ...

    Indian Academy of Sciences (India)

    Unknown

    induced ML. It has been found that in the substances showing lumi- nescence at room temperature, the luminescence is quen- ched at some higher temperature. On the other hand, many substances which are not luminescent at room tem-.

  14. Temperature dependence of pulse-induced mechanoluminescence ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. In practice, the relative efficiencies of different crystals are often determined under identical con- ditions of temperature and excitation. If the temperature of a crystal is increased or decreased with respect to room temperature, luminescence efficiency may get increased or decreased according to the composition of.

  15. High temperature operation of far infrared (λ ≈20 µm) InAs/AlSb quantum cascade lasers with dielectric waveguide.

    Science.gov (United States)

    Bahriz, M; Lollia, G; Baranov, A N; Teissier, R

    2015-01-26

    We demonstrate the high temperature operation, up to 80°C, of quantum cascade lasers emitting at a wavelength of 20 µm. The lasers are based on the InAs/AlSb materials and take benefit of a low loss plasmon-enhanced dielectric waveguide. The waveguide consists of doped InAs cladding layers and low-doped InAs spacers. For 2.9-mm-long devices, the threshold current density is 4.3 kA/cm2 and the measured peak output power is 7 mW at room temperature. The cavity length dependence of the threshold currents also indicates that very large optical gain is achieved and effectively overcome the strong free carrier absorption.

  16. Synthesis and characterization of flexible and high-temperature resistant polyimide aerogel with ultra-low dielectric constant

    Directory of Open Access Journals (Sweden)

    X. M. Zhang

    2016-10-01

    Full Text Available A polyimide (PI aerogel with excellent combined thermal and dielectric properties was successfully prepared by the polycondensation of 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA, 5-amino-2-(4-aminophenylbenzoxazole (APBO and octa(amino-phenylsilsesquioxane (OAPS crosslinker, followed by a supercritical carbon dioxide (scCO2 drying treatment. The developed PI aerogel exhibited an ultra-low dielectric constant (k of 1.15 at a frequency of 2.75 GHz, a volume resistivity of 5.45·1014 Ω·cm, and a dielectric strength of 132 kV/cm. The flexible PI aerogel exhibited an openpore microstructure consisting of three-dimensional network with tangled nanofibers morphology with a porosity of 85.6% (volume ratio, an average pore diameter of 19.2 nm, and a Brunauer-Emmet-Teller (BET surface area of 428.6 m2/g. In addition, the PI aerogel showed excellent thermal stability with a glass transition temperature (Tg of 358.3 °C, a 5% weight loss temperature over 500 °C, and a residual weight ratio of 66.7% at 750 °C in nitrogen.

  17. Effect of nano-silica on dielectric properties and space charge behavior of epoxy resin under temperature gradient

    Science.gov (United States)

    Li, Yuanyuan; Tian, Muqin; Lei, Zhipeng; Zhang, Jianhua

    2018-03-01

    Epoxy resin (EP) nanodielectrics with the mass fraction of nano-silica (SiO2) between 0 and 5 wt% were manufactured. The influence of SiO2 content on the dielectric properties of EP nanodielectrics was studied. It is found that the dielectric properties are the best when the SiO2 content is 0.5 wt%. We further tested and analyzed the dielectric properties of pure EP and EP nanodielectrics with 0.5 wt% SiO2 at the temperature ranging from 40 to 200 °C. The results show that the complexity permittivity and space charge accumulation of the samples increase significantly at low frequency and the temperature above T g. The complexity permittivity and space charge accumulation of the nanocomposites with the loading of 0.5 wt%, however, are smaller than that of pure EP. These results indicate that the interface area between nano-silica and EP matrix suppresses the motions of molecular chains and the migration of charge carriers.

  18. Theoretical prediction of electrocaloric effect based on non-linear behaviors of dielectric permittivity under temperature and electric fields

    Directory of Open Access Journals (Sweden)

    Hongbo Liu

    2015-11-01

    Full Text Available The electrocaloric (EC effect has been paid great attentions recently for applications on cooling or electricity generation. However, the directly commercial measurement equipment for the effect is still unavailable. Here we report a novel method to predict EC effect by non-linear behaviors of dielectric permittivity under temperature and electric fields. According to the method, the analytical equations of EC temperature change ΔT are directly given for normal ferroelectrics and relaxor. The calculations have been performed on several materials and it is shown that the method is suitable for both inorganic and organic ferroelectrics, and relaxor.

  19. Dielectric properties of (K0.5Na0.5)NbO3-(Bi0.5Li0.5)ZrO3 lead-free ceramics as high-temperature ceramic capacitors

    Science.gov (United States)

    Yan, Tianxiang; Han, Feifei; Ren, Shaokai; Ma, Xing; Fang, Liang; Liu, Laijun; Kuang, Xiaojun; Elouadi, Brahim

    2018-04-01

    (1 - x)K0.5Na0.5NbO3- x(Bi0.5Li0.5)ZrO3 (labeled as (1 - x)KNN- xBLZ) lead-free ceramics were fabricated by a solid-state reaction method. A research was conducted on the effects of BLZ content on structure, dielectric properties and relaxation behavior of KNN ceramics. By combining the X-ray diffraction patterns with the temperature dependence of dielectric properties, an orthorhombic-tetragonal phase coexistence was identified for x = 0.03, a tetragonal phase was determined for x = 0.05, and a single rhombohedral structure occurred at x = 0.08. The 0.92KNN-0.08BLZ ceramic exhibits a high and stable permittivity ( 1317, ± 15% variation) from 55 to 445 °C and low dielectric loss (≤ 6%) from 120 to 400 °C, which is hugely attractive for high-temperature capacitors. Activation energies of both high-temperature dielectric relaxation and dc conductivity first increase and then decline with the increase of BLZ, which might be attributed to the lattice distortion and concentration of oxygen vacancies.

  20. Age dependence of dielectric properties of bovine brain and ocular tissues in the frequency range of 400 MHz to 18 GHz

    International Nuclear Information System (INIS)

    Schmid, Gernot; Ueberbacher, Richard

    2005-01-01

    In order to identify possible age-dependent dielectric properties of brain and eye tissues in the frequency range of 400 MHz to 18 GHz, measurements on bovine grey and white matter as well as on cornea, lens (cortical) and the vitreous body were performed using a commercially available open-ended coaxial probe and a computer-controlled vector network analyser. Freshly excised tissues of 52 animals of two age groups (42 adult animals, i.e. 16-24 month old and 10 young animals, i.e. 4-6 month old calves) were examined within 8 min (brain tissue) and 15 min (eye tissue), respectively, of the animals' death. Tissue temperatures for the measurements were 32 ± 1 0 C and 25 ± 1 0 C for brain and eye tissues, respectively. Statistical analysis of the measured data revealed significant differences in the dielectric properties of white matter and cortical lens tissue between the adult and the young group. In the case of white matter the mean values of conductivity and permittivity of young tissue were 15%-22% and 12%-15%, respectively, higher compared to the adult tissue in the considered frequency range. Similarly, young cortical lens tissue was 25%-76% higher in conductivity and 27%-39% higher in permittivity than adult cortical lens tissue

  1. Noise-driven diamagnetic susceptibility of impurity doped quantum dots: Role of anisotropy, position-dependent effective mass and position-dependent dielectric screening function

    Energy Technology Data Exchange (ETDEWEB)

    Bera, Aindrila [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India); Saha, Surajit [Department of Chemistry, Bishnupur Ramananda College, Bishnupur, Bankura 722122, West Bengal (India); Ganguly, Jayanta [Department of Chemistry, Brahmankhanda Basapara High School, Basapara, Birbhum 731215, West Bengal (India); Ghosh, Manas, E-mail: pcmg77@rediffmail.com [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India)

    2016-08-02

    Highlights: • Diamagnetic susceptibility (DMS) of doped quantum dot is studied. • The dot is subjected to Gaussian white noise. • Role of anisotropy, PDEM and PDDSF have been analyzed. • Noise amplifies and suppresses DMS depending on particular condition. • Findings bear significant technological importance. - Abstract: We explore Diamagnetic susceptibility (DMS) of impurity doped quantum dot (QD) in presence of Gaussian white noise introduced to the system additively and multiplicatively. In view of this profiles of DMS have been pursued with variations of geometrical anisotropy and dopant location. We have invoked position-dependent effective mass (PDEM) and position-dependent dielectric screening function (PDDSF) of the system. Presence of noise sometimes suppresses and sometimes amplifies DMS from that of noise-free condition and the extent of suppression/amplification depends on mode of application of noise. It is important to mention that the said suppression/amplification exhibits subtle dependence on use of PDEM, PDDSF and geometrical anisotropy. The study reveals that DMS, or more fundamentally, the effective confinement of LDSS, can be tuned by appropriate mingling of geometrical anisotropy/effective mass/dielectric constant of the system with noise and also on the pathway of application of latter.

  2. Inclusion of temperature dependent shell corrections in Landau ...

    Indian Academy of Sciences (India)

    Landau theory used for studying hot rotating nuclei usually uses zero temperature Strutinsky smoothed total energy for the temperature dependent shell corrections. This is replaced in this work by the temperature dependent Strutinsky smoothed free energy. Our results show that this replacement has only marginal effect for ...

  3. Finite-temperature Casimir effect in the presence of nonlinear dielectrics

    DEFF Research Database (Denmark)

    Kheirandish, Fardin; Amooghorban, Ehsan; Soltani, Morteza

    2011-01-01

    Starting from a Lagrangian, the electromagnetic field in the presence of a nonlinear dielectric medium is quantized using path-integral techniques, and correlation functions of different fields are calculated. The susceptibilities of the nonlinear medium are obtained, and their relations to coupl......Starting from a Lagrangian, the electromagnetic field in the presence of a nonlinear dielectric medium is quantized using path-integral techniques, and correlation functions of different fields are calculated. The susceptibilities of the nonlinear medium are obtained, and their relations...

  4. Low temperature sintering and microwave dielectric properties of ZnTiNb{sub 2}O{sub 8} ceramics with BaCu(B{sub 2}O{sub 5}) additions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Dongxiang; Dou Gang [Department of Electronic Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Guo Mei, E-mail: guomei521521@163.com [Department of Electronic Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Gong Shuping [Department of Electronic Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-11-01

    Highlights: {yields} The sintering temperature of ZnTiNb{sub 2}O{sub 8} ceramics with BCB was reduced to 950 deg. C. {yields} The properties were dependent on densification, grain sizes and crystalline phases. {yields} The {epsilon}{sub r} 32.56, Q x f = 20,100 GHz (f = 5.128 GHz) and {tau}{sub f} = -64.87 ppm/deg. C were achieved. {yields} It represented very promising candidates as LTCC dielectric materials. - Abstract: The phases, microstructure and microwave dielectric properties of ZnTiNb{sub 2}O{sub 8} ceramics with BaCu(B{sub 2}O{sub 5}) additions prepared by solid-state reaction method have been investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The pure ZnTiNb{sub 2}O{sub 8} ceramic shows a high sintering temperature of about 1250 deg. C. However, it was found that the addition of BaCu(B{sub 2}O{sub 5}) lowered the sintering temperature of ZnTiNb{sub 2}O{sub 8} ceramics from above 1250 deg. C to 950 deg. C due to the BCB liquid-phase. The results showed that the microwave dielectric properties were strongly dependent on densification, crystalline phases and grain size. Addition of 3 wt% BCB in ZnTiNb{sub 2}O{sub 8} ceramics sintered at 950 deg. C afforded excellent dielectric properties of {epsilon}{sub r} = 32.56, Q x f = 20,100 GHz (f = 5.128 GHz) and {tau}{sub f} = -64.87 ppm/deg. C. These represent very promising candidates for LTCC dielectric materials.

  5. Temperature dependence of phonons in pyrolitic graphite

    International Nuclear Information System (INIS)

    Brockhouse, B.N.; Shirane, G.

    1977-01-01

    Dispersion curves for longitudinal and transverse phonons propagating along and near the c-axis in pyrolitic graphite at temperatures between 4 0 K and 1500 0 C have been measured by neutron spectroscopy. The observed frequencies decrease markedly with increasing temperature (except for the transverse optical ''rippling'' modes in the hexagonal planes). The neutron groups show interesting asymmetrical broadening ascribed to interference between one phonon and many phonon processes

  6. Effect of gate dielectrics on the performance of p-type Cu2O TFTs processed at room temperature

    KAUST Repository

    Al-Jawhari, Hala A.

    2013-12-01

    Single-phase Cu2O films with p-type semiconducting properties were successfully deposited by reactive DC magnetron sputtering at room temperature followed by post annealing process at 200°C. Subsequently, such films were used to fabricate bottom gate p-channel Cu2O thin film transistors (TFTs). The effect of using high-κ SrTiO3 (STO) as a gate dielectric on the Cu2O TFT performance was investigated. The results were then compared to our baseline process which uses a 220 nm aluminum titanium oxide (ATO) dielectric deposited on a glass substrate coated with a 200 nm indium tin oxide (ITO) gate electrode. We found that with a 150 nm thick STO, the Cu2O TFTs exhibited a p-type behavior with a field-effect mobility of 0.54 cm2.V-1.s-1, an on/off ratio of around 44, threshold voltage equaling -0.62 V and a sub threshold swing of 1.64 V/dec. These values were obtained at a low operating voltage of -2V. The advantages of using STO as a gate dielectric relative to ATO are discussed. © (2014) Trans Tech Publications, Switzerland.

  7. Anisotropic dielectric response of lead zirconate crystals in the terahertz and infrared range at low temperature

    Czech Academy of Sciences Publication Activity Database

    Ostapchuk, Tetyana; Kadlec, Christelle; Kužel, Petr; Kroupa, Jan; Železný, Vladimír; Hlinka, Jiří; Petzelt, Jan; Dec, J.

    2014-01-01

    Roč. 87, 10-11 (2014), s. 1129-1137 ISSN 0141-1594 R&D Projects: GA ČR GA13-15110S Institutional support: RVO:68378271 Keywords : antiferroelectrics * infrared and terahertz spectroscopy * lead zirconate * phonons * complex dielectric permittivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.954, year: 2014

  8. Temperature dependence of sound velocity in yttrium ferrite

    International Nuclear Information System (INIS)

    L'vov, V.A.

    1979-01-01

    The effect of the phonon-magnon and phonon-phonon interoctions on the temperature dependence of the longitudinal sound velocity in yttrium ferrite is considered. It has been shown that at low temperatures four-particle phonon-magnon processes produce the basic contribution to renormalization of the sound velocity. At higher temperatures the temperature dependence of the sound velocity is mainly defined by phonon-phonon processes

  9. Parametric dependencies of JET electron temperature profiles

    Energy Technology Data Exchange (ETDEWEB)

    Schunke, B. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Imre, K.; Riedel, K. [New York Univ., NY (United States)

    1994-07-01

    The JET Ohmic, L-Mode and H-Mode electron temperature profiles obtained from the LIDAR Thomson Scattering Diagnostic are parameterized in terms of the normalized flux parameter and a set of the engineering parameters like plasma current, toroidal field, line averages electron density... It is shown that the electron temperature profiles fit a log-additive model well. It is intended to use the same model to predict the profile shape for D-T discharges in JET and in ITER. 2 refs., 5 figs.

  10. A Temperature-Dependent Hysteresis Model for Relaxor Ferroelectric Compounds

    National Research Council Canada - National Science Library

    Raye, Julie K; Smith, Ralph C

    2004-01-01

    This paper summarizes the development of a homogenized free energy model which characterizes the temperature-dependent hysteresis and constitutive nonlinearities inherent to relaxor ferroelectric materials...

  11. Low-temperature sintering and compatibility with silver electrode of Ba4MgTi11O27 microwave dielectric ceramic

    International Nuclear Information System (INIS)

    Chen, Xiuli; Zhou, Huanfu; Fang, Liang; Liu, Laijun; Li, Changda; Guo, Ruli; Wang, Hong

    2010-01-01

    Ba 4 MgTi 11 O 27 microwave dielectric ceramic was investigated using X-ray diffraction, scanning electron microscopy and dielectric measurement. The pure Ba 4 MgTi 11 O 27 ceramic shows a high sintering temperature (∼1275 o C) and good microwave dielectric properties as Q x f of 19,630 GHz, ε r of 36.1, τ f of 14.6 ppm/ o C. It was found that the addition of BaCu(B 2 O 5 ) (BCB) can effectively lower the sintering temperature from 1275 to 925 o C, and does not induce much degradation of the microwave dielectric properties. The BCB-doped Ba 4 MgTi 11 O 27 ceramics can be compatible with Ag electrode, which makes it a promising ceramic for LTCC technology application.

  12. Temperature dependence of the Casimir effect

    Energy Technology Data Exchange (ETDEWEB)

    Brevik, I [Department of Energy and Process Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Aarseth, J B [Department of Structural Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)

    2006-05-26

    In view of the increasing accuracy of Casimir experiments, there is a need for performing accurate theoretical calculations. Using accurate experimental data for the permittivities we present, via the Lifshitz formula applied to the standard Casimir setup with two parallel plates, accurate theoretical results in the case of the metals Au, Cu and Al. Both similar and dissimilar cases are considered. Concentrating in particular on the finite temperature effect, we show how the Casimir pressure varies with separation for three different temperatures, T = {l_brace}1, 300, 350{r_brace}K. The metal surfaces are taken to be perfectly plane. The experimental data for the permittivities generally yield results that are in a good agreement with those calculated from the Drude relation with finite relaxation frequency. We give the results in a tabular form, in order to facilitate the assessment of the temperature correction which is on the 1% level. We emphasize two points: (i) the most promising route for a definite experimental verification of the finite temperature correction appears to be to concentrate on the case of large separations (optimum around 2 {mu}m); and (ii) there is no conflict between the present kind of theory and the Nernst theorem in thermodynamics.

  13. The Temperature Dependence of Macroscopic Sliding Friction

    Science.gov (United States)

    Burton, J. C.; Taborek, P.; Rutledge, J. E.

    2006-03-01

    We present measurements of the static and kinetic coefficients of friction of gold-plated copper on gold-plated copper and sapphire on sapphire as a function of temperature from 10K to 400K. The measurements were done by sliding a block down a controllable incline plane and using high-speed video to extract the acceleration. The large size of our optical cryostat allowed linear motion of 7.5 cm over which to measure the acceleration. Surfaces were baked under high vacuum at 400K, and data was taken as they cooled. Preliminary results indicate that the coefficient of friction for gold plated copper surfaces change by 10 percent from room temperature to 10K.

  14. Change of MMP dependent on temperature

    DEFF Research Database (Denmark)

    Rudyk, Svetlana Nikolayevna; Søgaard, Erik Gydesen; Akwansa, Eugene

    2008-01-01

       The experiment was conducted with the purpose to investigate how Minimum Miscibility Pressure (MMP) changes at different temperatures. MMP was measured in a high pressure unit. An original oil saturated chalk core plug from the Danish oil field in North Sea was under investigation. The plug...... was divided into three samples. The pure carbon dioxide was injected into a chamber with the sample under pressure gradually increasing from 60 bars to 420 bars. CO2 was injected in a first sample at temperature 50oC , second at 60oC and third at 70oC. The amount of oil extracted was plotted against pressure....... The oil recovery/pressure correlation obtained showed that: -  oil recovery grows rather in steps, - MMP (the point B on the curve), above which the oil recovery increases insignificantly,  is equal for all the temperatures, - but the starting points (A on the graph) from which oil recovery starts growing...

  15. Low-temperature microwave and THz dielectric response in novel microwave ceramics

    Czech Academy of Sciences Publication Activity Database

    Kamba, Stanislav; Noujni, Dmitri; Pashkin, Alexej; Petzelt, Jan; Pullar, R. C.; Axelsson, A.-K.; McN Alford, N.

    2006-01-01

    Roč. 26, - (2006), s. 1845-1851 ISSN 0955-2219 R&D Projects: GA ČR(CZ) GA202/04/0993; GA AV ČR(CZ) IAA1010213; GA MŠk(CZ) OC 525.20 Institutional research plan: CEZ:AV0Z10100520 Keywords : dielectric properties * spectroscopy * perovskites * microwave ceramics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.576, year: 2006

  16. Temperature dependences of the electrooptical properties of rodlike nematic liquid crystals doped with hockey-stick-shaped liquid crystals

    Science.gov (United States)

    Yeo, Sunggu; Srivastava, Anoop Kumar; Lee, Hyojin; Lee, Ji-Hoon; Choi, E.-Joon

    2016-01-01

    We investigated the temperature dependences of the dielectric anisotropy, birefringence, order parameter, splay elastic constant, and rotational viscosity of rodlike nematic liquid crystals (RLCs) doped with hockey-stick-shaped liquid crystals (HLCs). Although the order parameter of the HLC-RLC mixtures was similar to that of the pure RLC, the dielectric anisotropy and the birefringence of the mixtures were decreased or increased depending on the structure of the HLC molecule. In addition, the activation energies of the mixtures were different, which implies that the intramolecular structure of the HLC molecule had more influence on the electrooptical properties of the HLC-RLC binary mixtures than the inter-molecular interaction between the HLC and the RLC molecules.

  17. Temperature dependent heterogeneous rotational correlation in lipids.

    Science.gov (United States)

    Dadashvand, Neda; Othon, Christina M

    2016-11-15

    Lipid structures exhibit complex and highly dynamic lateral structure; and changes in lipid density and fluidity are believed to play an essential role in membrane targeting and function. The dynamic structure of liquids on the molecular scale can exhibit complex transient density fluctuations. Here the lateral heterogeneity of lipid dynamics is explored in free standing lipid monolayers. As the temperature is lowered the probes exhibit increasingly broad and heterogeneous rotational correlation. This increase in heterogeneity appears to exhibit a critical onset, similar to those observed for glass forming fluids. We explore heterogeneous relaxation in in a single constituent lipid monolayer of 1, 2-dimyristoyl-sn-glycero-3-phosphocholine  by measuring the rotational diffusion of a fluorescent probe (1-palmitoyl-2-[1]-sn-glycero-3-phosphocholine), which is embedded in the lipid monolayer at low labeling density. Dynamic distributions are measured using wide-field time-resolved fluorescence anisotropy. The observed relaxation exhibits a narrow, liquid-like distribution at high temperatures (τ ∼ 2.4 ns), consistent with previous experimental measures (Dadashvand et al 2014 Struct. Dyn. 1 054701, Loura and Ramalho 2007 Biochim. Biophys. Acta 1768 467-478). However, as the temperature is quenched, the distribution broadens, and we observe the appearance of a long relaxation population (τ ∼ 16.5 ns). This supports the heterogeneity observed for lipids at high packing densities, and demonstrates that the nanoscale diffusion and reorganization in lipid structures can be significantly complex, even in the simplest amorphous architectures. Dynamical heterogeneity of this form can have a significant impact on the organization, permeability and energetics of lipid membrane structures.

  18. Microscopic properties of nanopore water from its time-dependent dielectric response

    International Nuclear Information System (INIS)

    Koefinger, Juergen; Dellago, Christoph

    2010-01-01

    We present a simple kinetic model for the orientational dynamics of a chain of hydrogen-bonded molecules due to the diffusion of orientational defects. We derive an event-driven algorithm which allows us to do kinetic simulations for chains from nanoscopic to macroscopic lengths, spanning huge orders of magnitude in time. Our simulations and analytical calculations show that nanopore water exhibits Debye behavior arising from the diffusive dynamics of orientational defects. For the limits of short and long chains we derive analytical expressions for the relaxation times which allow to extract the diffusion constant, the effective interaction, and the excitation energy of these defects from dielectric spectroscopy experiments. We also discuss the possibility to use such experiments to detect if the two possible kinds of orientational defects differ in excitation energy and diffusion constant.

  19. Temperature dependence of anuran distortion product otoacoustic emissions

    NARCIS (Netherlands)

    Meenderink, Sebastlaan W. F.; Van Dijk, Pim

    To study the possible involvement of energy dependent mechanisms in the transduction of sound within the anuran ear, distortion product otoacoustic emissions (DPOAEs) were recorded in the northern leopard frog over a range of body temperatures. The effect of body temperature depended on the stimulus

  20. Crossing regimes of temperature dependence in animal movement.

    Science.gov (United States)

    Gibert, Jean P; Chelini, Marie-Claire; Rosenthal, Malcolm F; DeLong, John P

    2016-05-01

    A pressing challenge in ecology is to understand the effects of changing global temperatures on food web structure and dynamics. The stability of these complex ecological networks largely depends on how predator-prey interactions may respond to temperature changes. Because predators and prey rely on their velocities to catch food or avoid being eaten, understanding how temperatures may affect animal movement is central to this quest. Despite our efforts, we still lack a mechanistic understanding of how the effect of temperature on metabolic processes scales up to animal movement and beyond. Here, we merge a biomechanical approach, the Metabolic Theory of Ecology and empirical data to show that animal movement displays multiple regimes of temperature dependence. We also show that crossing these regimes has important consequences for population dynamics and stability, which depend on the parameters controlling predator-prey interactions. We argue that this dependence upon interaction parameters may help explain why experimental work on the temperature dependence of interaction strengths has so far yielded conflicting results. More importantly, these changes in the temperature dependence of animal movement can have consequences that go well beyond ecological interactions and affect, for example, animal communication, mating, sensory detection, and any behavioral modality dependent on the movement of limbs. Finally, by not taking into account the changes in temperature dependence reported here we might not be able to properly forecast the impact of global warming on ecological processes and propose appropriate mitigation action when needed. © 2016 John Wiley & Sons Ltd.

  1. Dielectric relaxation in glassy Se75In25− xPbx alloys

    Indian Academy of Sciences (India)

    In this paper we report the effect of Pb incorporation in the dielectric properties of a-Se75In25 glassy alloy. The temperature and frequency dependence of the dielectric constants and the dielectric losses in glassy Se75In25−Pb ( = 0, 5, 10 and 15) alloys in the frequency range (1 kHz–5 MHz) and temperature range ...

  2. A temperature dependent slip factor based thermal model for friction ...

    Indian Academy of Sciences (India)

    This paper proposes a new slip factor based three-dimensional thermal model to predict the temperature distribution during friction stir welding of 304L stainless steel plates. The proposed model employs temperature and radius dependent heat source to study the thermal cycle, temperature distribution, power required, the ...

  3. A temperature dependent slip factor based thermal model for friction

    Indian Academy of Sciences (India)

    This paper proposes a new slip factor based three-dimensional thermal model to predict the temperature distribution during friction stir welding of 304L stainless steel plates. The proposed model employs temperature and radius dependent heat source to study the thermal cycle, temperature distribution, power required, the ...

  4. Temperature dependence of the magnetization of canted spin structures

    International Nuclear Information System (INIS)

    Jacobsen, Henrik; Lefmann, Kim; Brok, Erik; Frandsen, Cathrine; Mørup, Steen

    2012-01-01

    Numerous studies of the low-temperature saturation magnetization of ferrimagnetic nanoparticles and diamagnetically substituted ferrites have shown an anomalous temperature dependence. It has been suggested that this is related to freezing of canted magnetic structures. We present models for the temperature dependence of the magnetization of a simple canted spin structure in which relaxation can take place at finite temperatures between spin configurations with different canting angles. We show that the saturation magnetization may either decrease or increase with decreasing temperature, depending on the ratio of the exchange coupling constants. This is in agreement with experimental observations. - Highlights: ► The magnetization of a canted spin structure has been calculated. ► In some cases the magnetization shows an anomalous increase at low temperatures. ► In other cases the magnetization shows an anomalous decrease at low temperatures. ► The results are in accordance with many experimental observations.

  5. Outcome of temperature variation on sol-gel prepared CuO nanostructure properties (optical and dielectric)

    Energy Technology Data Exchange (ETDEWEB)

    Bibi, Maryam [Nano Synthesis Laboratory, Department of Physics, National University of Sciences and Technology, Islamabad (Pakistan); Javed, Qurat-ul-Ain, E-mail: quratulain@sns.nust.edu.pk [Nano Synthesis Laboratory, Department of Physics, National University of Sciences and Technology, Islamabad (Pakistan); Abbas, Hussain [Institute of Avionics & Aeronautics (IAA), Air University, Islamabad (Pakistan); Baqi, Sabah [Nano Synthesis Laboratory, Department of Physics, National University of Sciences and Technology, Islamabad (Pakistan)

    2017-05-01

    The optical and dielectric properties of Copper Oxide (CuO) have made it a fascinating material to be used in solar energy harvesting, gas sensing, optoelectronics and catalytical applications. Focusing on the cost-effectiveness of Sol-gel method, it is employed for nanostructured CuO production. Effect of changing temperature is observed on the formation mechanism of CuO and its properties. The temperature range of 300 °C–500 °C was used in annealing of samples to produce defect free CuO nanomaterial. Prepared material was investigated using phase characterization (X-ray diffraction ‘XRD’) technique, scanning electron microscopy (SEM), UV–Visible absorption spectroscopy and LCR meter. A structural change in prepared CuO was observed from cluster formation to Nano-fibrils by increase in annealing temperature. 11.99 nm–29.17 nm crystallites of CuO were attained by using Debye Scherer formula. A large band gap of 3.15 eV was achieved by increasing the annealing temperature upto 400 °C. For better solar energy harvest, wide band gapped CuO structures are proved to be functional and practical materials. The fabricated CuO nanostructures were found suitable to be used in devices for stabilizing circuit designs for sensitive appliances as well as micro electromechanical systems (mems). - Highlights: • CuO was synthesized by using sol gel method post growth annealing process. • XRD and SEM characterizations confirm the successful synthesis of CuO. • Change in morphology was observed with varying annealing temperature. • Improved optical and dielectric properties were observed.

  6. Effects of vacuum-ultraviolet irradiation on copper penetration into low-k dielectrics under bias-temperature stress

    Energy Technology Data Exchange (ETDEWEB)

    Guo, X.; Zheng, H.; Xue, P.; Shohet, J. L. [Plasma Processing and Technology Laboratory and Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); King, S. W. [Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States); Nishi, Y. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-01-05

    The effects of vacuum-ultraviolet (VUV) irradiation on copper penetration into non-porous low-k dielectrics under bias-temperature stress (BTS) were investigated. By employing x-ray photoelectron spectroscopy depth-profile measurements on both as-deposited and VUV-irradiated SiCOH/Cu stacks, it was found that under the same BTS conditions, the diffusion depth of Cu into the VUV-irradiated SiCOH is higher than that of as-deposited SiCOH. On the other hand, under the same temperature-annealing stress (TS) without electric bias, the Cu distribution profiles in the VUV-irradiated SiCOH were same with that for the as-deposited SiCOH. The experiments suggest that in as-deposited SiCOH, the diffused Cu exists primarily in the atomic state, while in VUV-irradiated SiCOH, the diffused Cu is oxidized by the hydroxyl ions (OH{sup −}) generated from VUV irradiation and exists in the ionic state. The mechanisms for metal diffusion and ion injection in VUV irradiated low-k dielectrics are discussed.

  7. Temperature dependence of three-body ion-molecule reactions

    International Nuclear Information System (INIS)

    Boehringer, H.; Arnold, F.

    1983-01-01

    The temperature dependence of the ion-molecule association reactions (i) N 2 + + N 2 + M → N 4 + + M (M=N 2 , He), (ii) O 2 + + O 2 + M → O 4 + + M (M=O 2 , He) and (iii) He + + 2He → He 2 + + He have been studied over an extended temperature range to temperatures as low as 30K with a recently constructed liquid helium-cooled ion drift tube. Over most of the temperature range the threebody reaction rate coefficients show an inverse temperature dependence proportional to Tsup(-n) with n in the range 0.6 to 2.9. This temperature dependence is quite consistent with current theories of ion molecule association. At low temperatures, however, a deviation from the Tsup(-n) dependence was observed for the association reactions (ii). For reactions (i) different temperature dependences were obtained for N 2 and He third bodies indicating an additional temperature dependence of the collisional stabilisation process. (Authors)

  8. Time dependence of magnetization of high temperature superconductors

    International Nuclear Information System (INIS)

    Larkin, A.I.; Geshkenbein, V.B.

    1988-10-01

    Magnetization of high T c superconductors logarithmically decreases with time. There is a maximum in the temperature dependence of the coefficient at this logarithm. If one assumes that there do exist two kinds of pinning centers, then this dependence can be described in the Anderson theory of thermal creeps of Abrikosov's vortices. The temperature dependence of the critical current is also discussed. (author). 23 refs

  9. Dielectric properties of Na1–xKxNbO3 in orthorhombic phase

    Indian Academy of Sciences (India)

    Unknown

    methyl alcohol. The mixture was calcined in a platinum crucible, in air, at 950°C for 1 h. The calcined materials were weighed to ensure complete carbonate removal. The calcined ... Observed frequency dependence of dielectric constant and dielectric loss ... Temperature dependence of loss tangent in NaNbO3, at different ...

  10. In situ electron beam irradiated rapid growth of bismuth nanoparticles in bismuth-based glass dielectrics at room temperature

    International Nuclear Information System (INIS)

    Singh, Shiv Prakash; Karmakar, Basudeb

    2011-01-01

    In this study, in situ control growth of bismuth nanoparticles (Bi 0 NPs) was demonstrated in bismuth-based glass dielectrics under an electron beam (EB) irradiation at room temperature. The effects of EB irradiation were investigated in situ using transmission electron microscopy (TEM), selected-area electron diffraction and high-resolution transmission electron microscopy. The EB irradiation for 2–8 min enhanced the construction of bismuth nanoparticles with a rhombohedral structure and diameter of 4–9 nm. The average particle size was found to increase with the irradiation time. Bismuth metal has a melting point of 271 °C and this low melting temperature makes easy the progress of energy induced structural changes during in situ TEM observations. This is a very useful technique in nano-patterning for integrated optics and other applications.

  11. Temperature dependence of the infrared optical constants of germanium films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dandan, E-mail: ldd6162@163.com; Liu, Huasong; Jiang, Chenghui; Leng, Jian; Zhang, Yanmin; Zhao, Zhihong; Zhuang, Kewen; Jiang, Yugang; Ji, Yiqin

    2015-10-01

    High-temperature transmittance spectrum of germanium films was obtained by a Fourier Transform infrared spectroscopy with a high-temperature accessory. The optical constants were determined by transmittance spectrum fitting with a Gaussian oscillator as the dispersion model. The analysis results showed that both the refractive index and extinction coefficient increased with the increasing temperature. The square of the refractive index increased linearly with the increasing temperature. The higher the temperature was, the faster the absorption coefficient increased. The germanium films were deposited on chemical vapor deposition ZnS substrates by ion-beam-assisted deposition. The region of temperature was between room temperature and 773 K, and the analysis spectrum was between 2000 nm and 5000 nm. - Highlights: • Temperature dependence of transmittance spectrum of Germanium films • Temperature properties of refractive index of Germanium films • Temperature properties of absorption coefficient of Germanium films.

  12. Temperature Dependence in Homogeneous and Heterogeneous Nucleation

    Energy Technology Data Exchange (ETDEWEB)

    McGraw R. L.; Winkler, P. M.; Wagner, P. E.

    2017-08-01

    Heterogeneous nucleation on stable (sub-2 nm) nuclei aids the formation of atmospheric cloud condensation nuclei (CCN) by circumventing or reducing vapor pressure barriers that would otherwise limit condensation and new particle growth. Aerosol and cloud formation depend largely on the interaction between a condensing liquid and the nucleating site. A new paper published this year reports the first direct experimental determination of contact angles as well as contact line curvature and other geometric properties of a spherical cap nucleus at nanometer scale using measurements from the Vienna Size Analyzing Nucleus Counter (SANC) (Winkler et al., 2016). For water nucleating heterogeneously on silver oxide nanoparticles we find contact angles around 15 degrees compared to around 90 degrees for the macroscopically measured equilibrium angle for water on bulk silver. The small microscopic contact angles can be attributed via the generalized Young equation to a negative line tension that becomes increasingly dominant with increasing curvature of the contact line. These results enable a consistent theoretical description of heterogeneous nucleation and provide firm insight to the wetting of nanosized objects.

  13. Thickness-dependent piezoelectric behaviour and dielectric properties of lanthanum modified BiFeO3 thin films

    Directory of Open Access Journals (Sweden)

    Glenda Biasotto

    2011-03-01

    Full Text Available Bi0.85La0.15FeO3 (BLFO thin films were deposited on Pt(111/Ti/SiO2 /Si substrates by the soft chemical method. Films with thicknesses ranging from 140 to 280 nm were grown on platinum coated silicon substrates at 500°C for 2 hours. The X-ray diffraction analysis of BLFO films evidenced a hexagonal structure over the entire thickness range investigated. The grain size of the film changes as the number of the layers increases, indicating thickness dependence. It is found that the piezoelectric response is strongly influenced by the film thickness. It is shown that the properties of BiFeO3 thin films, such as lattice parameter, dielectric permittivity, piezoeletric coefficient etc., are functions of misfit strains.

  14. Room temperature analysis of dielectric function of ZnO-based thin film on fused quartz substrate

    International Nuclear Information System (INIS)

    Kurniawan, Robi; Sutjahja, Inge M.; Winata, Toto; Rusydi, Andrivo; Darma, Yudi

    2015-01-01

    A set of sample consist of pure ZnO and Cu-doped ZnO film were grown on fused-quartz substrates using pulsed laser deposition (PLD) technique. Here, we report room temperature spectroscopic ellipsometry analysis (covering energy range of 0.5 to 6.3 eV) of pure ZnO film and Cu doped ZnO film at 8 in at. %. The thickness of pure ZnO and Cu-doped ZnO film using in this study is about 350 nm. To extract the dielectric function of ZnO thin film, multilayer modeling is performed which takes into account reflections at each interface through Fresnel coefficients. This method based on Drude-Lorentz models that connect with Kramers-Kronig relations. The best fitting of Ψ (amplitude ratio) and Δ (phase difference) taken by SE measurement are obtained reasonably well by mean the universal fitting of three different photon incident angles. The imaginary part of dielectric function (ε 2 ) show the broad peak at around 3.3 eV assigned as combination of optical band energy edge with excitonic states. The exitonic states could not be observed clearly in this stage. The evolution of extracted dielectric function is observable by introducing 8% Cu as indicated by decreasing of excitonic intensity. This result indicates the screening of excitonic state. This study will bring us to have a good undestanding for the role of Cu impurities for ZnO thin films

  15. Study of Cu-Al-Zn alloys hardness temperature dependence

    International Nuclear Information System (INIS)

    Kurmanova, D.T.; Skakov, M.K.; Melikhov, V.D.

    2001-01-01

    In the paper the results of studies for the Cu-Al-Zn ternary alloys hardness temperature dependence are presented. The method of 'hot hardness' has been used during study of the solid state phase transformations and under determination of the hot stability boundaries. Due to the samples brittleness a hardness temperature dependence definition is possible only from 350-400 deg. C. Sensitivity of the 'hot hardness' method is decreasing within high plasticity range, so the measurements have been carried out only up to 700-800 deg. C. It is shown, that the alloys hardness dependence character from temperature is close to exponential one within the certain structure modification existence domain

  16. Temperature dependent charge transport in poly(3-hexylthiophene) diodes

    Science.gov (United States)

    Rahaman, Abdulla Bin; Sarkar, Atri; Banerjee, Debamalya

    2018-04-01

    In this work, we present charge transport properties of poly(3-hexylthiophene) (P3HT) diodes under dark conditions. Temperature dependent current-voltage (J-V) characteristics shows that charge transport represents a transition from ohomic to trap limited current. The forward current density obeys a power law J˜Vm, m>2 represents the space charge limited current region in presence of traps within the band gap. Frequency dependent conductivity has been studied in a temperature range 150K-473K. The dc conductivity values show Arrhenius like behavior and it gives conductivity activation energy 223 meV. Temperature dependent conductivity indicates a thermodynamic transition of our system.

  17. Semiconductor-to-metallic flipping in a ZnFe2O4–graphene based smart nano-system: Temperature/microwave magneto-dielectric spectroscopy

    International Nuclear Information System (INIS)

    Ameer, Shahid; Gul, Iftikhar Hussain; Mahmood, Nasir; Mujahid, Muhammad

    2015-01-01

    Zn-(FeO 2 ) 2 –graphene smart nano-composites were synthesized using a novel modified solvothermal synthesis with different percentages of graphene. The structure of the nanocomposite was confirmed through X-ray diffraction, micro-Raman scattering spectroscopy, Ultraviolet–Visible spectroscopy, and Fourier transform infrared spectroscopy. The structural growth and morphological aspects were analyzed using scanning/transmission electron microscopy, revealing marvelous micro-structural features of the assembled nano-system resembling a maple leaf. To determine the composition, energy dispersive spectroscopy and X-ray photoelectron spectroscopy were used. Microwave magneto-dielectric spectroscopy revealed the improved dielectric properties of the nano-composite compared to those of the parent functional nanocrystals. Temperature gradient dielectric spectroscopy was used over the spectral range from 100 Hz to 5 MHz to reveal the phenomenological effect that the nanosystem flips from its usual semiconductor nature to a metallic nature with sensing temperature. Electrical conductivity and dielectric analysis indicated that the dielectric loss and the dielectric permittivity increased at room temperature. This extraordinary switching capability of the functionalized graphene nanosystem opens up a new dimension for engineering advanced and efficient smart composite materials. - Graphical abstract: Display Omitted - Highlights: • Zn-(FeO 2 ) 2 –graphene smart nano-composites were synthesized using a novel modified solvothermal synthesis. • The synthesized nano-system exhibits marvelous leaf like microstructure. • These nano-composites show improved magneto dielectric response. • This engineered smart nano-system shows phenomenological flipping from semiconductor like nature to metallic behavior

  18. Temperature dependence of the HNO3 UV absorption cross sections

    Science.gov (United States)

    Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.; Solomon, Susan

    1993-01-01

    The temperature dependence of the HNO3 absorption cross sections between 240 and 360 K over the wavelength range 195 to 350 nm has been measured using a diode array spectrometer. Absorption cross sections were determined using both (1) absolute pressure measurements at 298 K and (2) a dual absorption cell arrangement in which the absorption spectrum at various temperatures is measured relative to the room temperature absorption spectrum. The HNO3 absorption spectrum showed a temperature dependence which is weak at short wavelengths but stronger at longer wavelengths which are important for photolysis in the lower stratosphere. The 298 K absorption cross sections were found to be larger than the values currently recommended for atmospheric modeling (DeMore et al., 1992). Our absorption cross section data are critically compared with the previous measurements of both room temperature and temperature-dependent absorption cross sections. Temperature-dependent absorption cross sections of HNO3 are recommended for use in atmospheric modeling. These temperature dependent HNO3 absorption cross sections were used in a two-dimensional dynamical-photochemical model to demonstrate the effects of the revised absorption cross sections on loss rate of HNO3 and the abundance of NO2 in the stratosphere.

  19. Theory of temperature dependent photoemission spectrum of heavy fermion semiconductors

    International Nuclear Information System (INIS)

    Riseborough, P.S.

    1998-01-01

    The heavy fermion semiconductors are a class of strongly correlated materials, that at high temperatures show properties similar to those of heavy fermion materials, but at low temperatures show a cross-over into a semi-conducting state. The low temperature insulating state is characterized by an anomalously small energy gap, varying between 10 and 100 K. The smallness of the gap is attributed to the result of a many-body renormalization, and is temperature dependent. The temperature dependence of the electronic spectral density of states is calculated, using the Anderson lattice model at half filling. The spectrum is calculated to second order in 1/N, where N is the degeneracy of the 'f' orbitals, using a slave boson technique. The system is an indirect gap semi-conductor, with an extremely temperature dependent electronic spectral density A(k, ω). The indirect gap is subject to a temperature dependent many-body renormalization, and leads to a sharp temperature dependent structure in the angle resolved photo-emission spectrum at the indirect threshold. The theoretical predictions are compared with experimental observations on FeSi. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  20. Experimental Characterization of Dielectric Properties in Fluid Saturated Artificial Shales

    Directory of Open Access Journals (Sweden)

    Roman Beloborodov

    2017-01-01

    Full Text Available High dielectric contrast between water and hydrocarbons provides a useful method for distinguishing between producible layers of reservoir rocks and surrounding media. Dielectric response at high frequencies is related to the moisture content of rocks. Correlations between the dielectric permittivity and specific surface area can be used for the estimation of elastic and geomechanical properties of rocks. Knowledge of dielectric loss-factor and relaxation frequency in shales is critical for the design of techniques for effective hydrocarbon extraction and production from unconventional reservoirs. Although applicability of dielectric measurements is intriguing, the data interpretation is very challenging due to many factors influencing the dielectric response. For instance, dielectric permittivity is determined by mineralogical composition of solid fraction, volumetric content and composition of saturating fluid, rock microstructure and geometrical features of its solid components and pore space, temperature, and pressure. In this experimental study, we investigate the frequency dependent dielectric properties of artificial shale rocks prepared from silt-clay mixtures via mechanical compaction. Samples are prepared with various clay contents and pore fluids of different salinity and cation compositions. Measurements of dielectric properties are conducted in two orientations to investigate the dielectric anisotropy as the samples acquire strongly oriented microstructures during the compaction process.

  1. Temperature dependence of postmortem MR quantification for soft tissue discrimination

    International Nuclear Information System (INIS)

    Zech, Wolf-Dieter; Schwendener, Nicole; Jackowski, Christian; Persson, Anders; Warntjes, Marcel J.

    2015-01-01

    To investigate and correct the temperature dependence of postmortem MR quantification used for soft tissue characterization and differentiation in thoraco-abdominal organs. Thirty-five postmortem short axis cardiac 3-T MR examinations were quantified using a quantification sequence. Liver, spleen, left ventricular myocardium, pectoralis muscle and subcutaneous fat were analysed in cardiac short axis images to obtain mean T1, T2 and PD tissue values. The core body temperature was measured using a rectally inserted thermometer. The tissue-specific quantitative values were related to the body core temperature. Equations to correct for temperature differences were generated. In a 3D plot comprising the combined data of T1, T2 and PD, different organs/tissues could be well differentiated from each other. The quantitative values were influenced by the temperature. T1 in particular exhibited strong temperature dependence. The correction of quantitative values to a temperature of 37 C resulted in better tissue discrimination. Postmortem MR quantification is feasible for soft tissue discrimination and characterization of thoraco-abdominal organs. This provides a base for computer-aided diagnosis and detection of tissue lesions. The temperature dependence of the T1 values challenges postmortem MR quantification. Equations to correct for the temperature dependence are provided. (orig.)

  2. Poiseuille Flow of Fluid Whose Viscosity is Temperature Dependent ...

    African Journals Online (AJOL)

    We discuss a fluid flowing between two parallel plates. We assume a Poiseuille flow. Furthermore, we assume that the viscosity μ, depends on temperature T. We show that the velocity equation has two solutions. Graph features prominently in the presentation.

  3. Temperature-dependent gas transport and its correlation with kinetic ...

    Indian Academy of Sciences (India)

    dependent gas transport and its correlation with kinetic diameter in polymer nanocomposite membrane. N K ACHARYA ... For the first time, the permeability and selectivity for nanocomposite membrane are reported as a function of temperature.

  4. Energy based model for temperature dependent behavior of ferromagnetic materials

    International Nuclear Information System (INIS)

    Sah, Sanjay; Atulasimha, Jayasimha

    2017-01-01

    An energy based model for temperature dependent anhysteretic magnetization curves of ferromagnetic materials is proposed and benchmarked against experimental data. This is based on the calculation of macroscopic magnetic properties by performing an energy weighted average over all possible orientations of the magnetization vector. Most prior approaches that employ this method are unable to independently account for the effect of both inhomogeneity and temperature in performing the averaging necessary to model experimental data. Here we propose a way to account for both effects simultaneously and benchmark the model against experimental data from ~5 K to ~300 K for two different materials in both annealed (fewer inhomogeneities) and deformed (more inhomogeneities) samples. This demonstrates that this framework is well suited to simulate temperature dependent experimental magnetic behavior. - Highlights: • Energy based model for temperature dependent ferromagnetic behavior. • Simultaneously accounts for effect of temperature and inhomogeneities. • Benchmarked against experimental data from 5 K to 300 K.

  5. From nanodroplets to continuous films: how the morphology of polyelectrolyte multilayers depends on the dielectric permittivity and the surface charge of the supporting substrate

    NARCIS (Netherlands)

    Guillaume-Gentil, Orane; Zahn, Raphael; Lindhoud, Saskia; Graf, Norma; Voros, Janos; Zambelli, Tomaso

    2011-01-01

    Using atomic force microscopy, we investigated how the morphology of layer-by-layer deposited polyelectrolyte multilayers is influenced by the physical properties of the supporting substrate. The surface coverage of the assembly and its topography were found to be dependent on the dielectric

  6. Temperature-dependent thermal properties of spark plasma sintered alumina

    Directory of Open Access Journals (Sweden)

    Saheb Nouari

    2017-01-01

    Full Text Available In this work, we report temperature-dependent thermal properties of alumina powder and bulk alumina consolidated by spark plasma sintering method. The properties were measured between room temperature and 250ºC using a thermal constants analyzer. Alumina powder had very low thermal properties due to the presence of large pores and absence of bonding between its particles. Fully dense alumina with a relative density of 99.6 % was obtained at a sintering temperature of 1400°C and a holding time of 10 min. Thermal properties were found to mainly dependent on density. Thermal conductivity, thermal diffusivity, and specific heat of the fully dense alumina were 34.44 W/mK, 7.62 mm2s-1, and 1.22 J/gK, respectively, at room temperature. Thermal conductivity and thermal diffusivity decreased while specific heat increased with the increase in temperature from room temperature to 250ºC.

  7. Temperature dependence of the fundamental band gap parameters ...

    Indian Academy of Sciences (India)

    In this study, PL measurements, as a function of temperature, are anal- ysed using three different .... regime and a quadratic dependence in the low temperature regime both due to cumulative effects of lattice .... phonon coupling constant and θLO was fixed (calculated using linear interpolation between. ZnSe and CdSe) in ...

  8. Existence of a secondary flow for a temperature dependent viscous ...

    African Journals Online (AJOL)

    We model a viscous fluid flowing between parallel plates. The viscosity depends on temperature. We investigate the properties of the velocity and we show that the temperature and velocity fields have two solutions. The existence of two velocity solutions is new. This means that there exist secondary flows. Journal of the ...

  9. Temperature dependence of electromechanical properties of PLZT x ...

    Indian Academy of Sciences (India)

    Administrator

    temperature much lower than the ferroelectric to paraelectric phase transition of the material. The same behaviour is observed for the overtones also. However, the piezoelectric response of the overtones disappears at a lower temperature than the fundamental mode. The quantity, Δfps, depends on the electromechanical.

  10. Temperature Dependent FMR on CoCr Layers

    NARCIS (Netherlands)

    Reuvekamp, E.M.C.M.; Reuvekamp, E.M.C.M.; de Witte, A.M.; Aarnink, W.A.M.; Gerritsma, G.J.; Lodder, J.C.; Aarnink, W.A.M.; Rogalla, Horst

    1989-01-01

    Temperature dependent FMR measurements were performed on two series of rf sputtered films. The FMR measuring temperature could be varied between 77 and 300 K. There is indication of the existence of 2 CoCr phases in the film from ion-milled samples. The perpendicular anisotropy increased with both

  11. On the effect of temperature dependent thermal conductivity on ...

    African Journals Online (AJOL)

    We consider the effect of temperature dependent thermal conductivity on temperature rise in biologic tissues during microwave heating. The method of asymptotic expansion is used for finding solution. An appropriate matching procedure was used in our method. Our result reveals the possibility of multiple solutions and it ...

  12. Temperature dependence of dose rate laser simulation adequacy

    International Nuclear Information System (INIS)

    Skorobogatov, P.K.; Nikiforov, A.Y.; Demidov, A.A.

    1999-01-01

    2-D numerical modeling was carried out to analyze the temperature dependence of dose rate laser simulation adequacy in application to p-n junction ionising current. Experimental validation was performed using test structure in the temperature range of 0 to 100 deg.C. (authors)

  13. Pressure–temperature dependence of thermodynamic properties of ...

    Indian Academy of Sciences (India)

    Haleh Kangarlou and Arash Abdollahi properties of materials under high pressures and temperatures for microscopic under- standing as well as technological applications. In this paper, we report our theoretical study of both pressure and temperature dependences of the thermal properties of rutile within the Debye and ...

  14. Dielectric Relaxation in Glassy Se100 - x Sbx

    OpenAIRE

    CHOUDHARY, N.; KUMAR, A.

    2014-01-01

    Frequency and temperature dependence of dielectric constant \\varepsilon' and dielectric loss \\varepsilon'' are studied in glassy Se1-x Sbx (x = 0, 0.02, 0.04, 0.06, 0.08 and 0.10) in the frequency range from 1--10 kHz and in the temperature range 290 K to 360 K. The experimental results indicate that no dielectric dispersion exist in glassy Se in the operating range of frequencies. However, when Sb concentration increases in Se1-x Sbx (x = 0.02, 0.04, 0.06, ...

  15. Microscopic evolution of dielectric nanoparticles at different calcination temperatures synthesized via sol-gel auto-combustion

    International Nuclear Information System (INIS)

    Adil, Muhammad; Zaid, Hasnah Mohd; Chuan, Lee Kean; Latiff, Noor Rasyada Ahmad; Alta’ee, Ali F.

    2015-01-01

    Dielectric nano powder synthesis is carried by a simple and fast sol-gel auto-combustion method. The transformation of crystalline phases of as-synthesized nano powders is investigated through the detailed transmission electron microscopy (TEM), revealed the crystallographic alterations and morphological information even at lattice scale. From specific area electron diffraction (SAED) pattern, has specified the d-spacing and corresponding planes supported by the observed lattice fringes. The morphological characterization of nanoparticles is performed through field-emission scanning electron microscopy (FESEM), exhibiting the increment in particle size due to agglomeration with the increase in annealing temperature. Furthermore, EDX pattern has been used to verify the formation of nanoparticles by revealing the presence of required elements

  16. Microscopic evolution of dielectric nanoparticles at different calcination temperatures synthesized via sol-gel auto-combustion

    Energy Technology Data Exchange (ETDEWEB)

    Adil, Muhammad, E-mail: muhammadadil86@hotmail.com; Zaid, Hasnah Mohd, E-mail: hasnamz@petronas.com.my; Chuan, Lee Kean, E-mail: lee.kc@petronas.com.my; Latiff, Noor Rasyada Ahmad, E-mail: syasya.latiff@gmail.com [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Alta’ee, Ali F., E-mail: ali-mangi@petronas.com.my [Geoscience and Petroleum Engineering Department, Universiti Teknologi PETRONAS Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    Dielectric nano powder synthesis is carried by a simple and fast sol-gel auto-combustion method. The transformation of crystalline phases of as-synthesized nano powders is investigated through the detailed transmission electron microscopy (TEM), revealed the crystallographic alterations and morphological information even at lattice scale. From specific area electron diffraction (SAED) pattern, has specified the d-spacing and corresponding planes supported by the observed lattice fringes. The morphological characterization of nanoparticles is performed through field-emission scanning electron microscopy (FESEM), exhibiting the increment in particle size due to agglomeration with the increase in annealing temperature. Furthermore, EDX pattern has been used to verify the formation of nanoparticles by revealing the presence of required elements.

  17. Temperature and electric field stabilities of dielectric and insulating properties for c-axis-oriented CaBi4Ti4O15 films

    Science.gov (United States)

    Kimura, Junichi; Takuwa, Itaru; Matsushima, Masaaki; Yasui, Shintaro; Yamada, Tomoaki; Funakubo, Hiroshi

    2013-07-01

    Temperature and electric field dependencies of the dielectric and insulating properties of (001)-oriented epitaxial CaBi4Ti4O15 films grown on (100)cSrRuO3//(100)SrTiO3 substrates were investigated and compared with those of conventional (100)-oriented epitaxial (Ba0.3Sr0.7)TiO3 and SrTiO3 films. All films showed negative temperature dependency of the capacitance from 25 to 500 °C, and their changes were -18%, -83%, and -58% for CaBi4Ti4O15, (Ba0.3Sr0.7)TiO3, and SrTiO3 films, respectively. Smaller change of the capacitance against dc electric field was also observed for CaBi4Ti4O15 films. Moreover, the maximum leakage current density of CaBi4Ti4O15 films measured at ±100 kV/cm was below 10-3 A/cm2 up to 500 °C, which was smaller than those of (Ba0.3Sr0.7)TiO3 and SrTiO3 films. These results indicate that (001)-oriented CaBi4Ti4O15 films are a useful candidate as the capacitor material applicable for the high temperature use because of its high stability against temperature and an electric field as well as the good insulating characteristics.

  18. Temperature dependence of photonic crystals based on thermoresponsive magnetic fluids

    International Nuclear Information System (INIS)

    Pu Shengli; Bai Xuekun; Wang Lunwei

    2011-01-01

    The influence mechanisms of temperature on the band gap properties of the magnetic fluids based photonic crystals are elaborated. A method has been developed to obtain the temperature-dependent structure information (A sol /A) from the existing experimental data and then two critical parameters, i.e. the structure ratio (d/a) and the refractive index contrast (Δn) of the magnetic fluids photonic crystals are deduced for band diagram calculations. The temperature-dependent band gaps are gained for z-even and z-odd modes. Band diagram calculations display that the mid frequencies and positions of the existing forbidden bands are not very sensitive to the temperature, while the number of the forbidden bands at certain strengths of magnetic field may change with the temperature variation. The results presented in this work give a guideline for designing the potential photonic devices based on the temperature characteristics of the magnetic fluids based photonic crystals and are helpful for improving their quality. - Highlights: → Mechanisms of temperature dependence of magnetic fluids based photonic crystals are elaborated. → Properties of existing forbidden bands have relatively fine temperature stability. → Disappearance of existing forbidden band is found for some magnetic fields. → Emergence of new forbidden band with temperature is found for some magnetic fields.

  19. Laser polarization dependent and magnetically control of group velocity in a dielectric medium doped with nanodiamond nitrogen vacancy centers

    Energy Technology Data Exchange (ETDEWEB)

    Asadpour, Seyyed Hossein; Rahimpour Soleimani, H., E-mail: Rahimpour@guilan.ac.ir

    2014-03-01

    In this paper, group velocity control of Gaussian beam in a dielectric medium doped with nanodiamond nitrogen vacancy (NV) centers under optical excitation is discussed. The shape of transmitted and reflected pulses from dielectric can be tuned by changing the intensity of magnetic field and polarization of the control beam. The effect of intensity of control beam on group velocity is also investigated.

  20. Temperature dependency of silicon structures for magnetic field gradient sensing

    Science.gov (United States)

    Dabsch, Alexander; Rosenberg, Christoph; Stifter, Michael; Keplinger, Franz

    2018-02-01

    This work describes the temperature dependence of two sensors for magnetic field gradient sensors and demonstrates a structure to compensate for the drift of resonance frequency over a wide temperature range. The temperature effect of the sensing element is based on internal stresses induced by the thermal expansion of material, therefore FEM is used to determine the change of the eigenvalues of the sensing structure. The experimental setup utilizes a Helmholtz coil system to generate the magnetic field and to excite the MEMS structure with Lorentz forces. The MEMS structure is placed on a plate heated with resistors and cooled by a Peltier element to control the plate temperature. In the second part, we describe how one can exploit temperature sensitivity for temperature measurements and we show the opportunity to include the temperature effect to increase the sensitivity of single-crystal silicon made flux density gradient sensors.

  1. Temperature dependence of mobility in silicon (100) inversion layers at low temperatures

    International Nuclear Information System (INIS)

    Kawaguchi, Y.; Suzuki, T.; Kawaji, S.

    1982-01-01

    Electron mobility of Si(100) n-inversion layers in MOSFETs having μsub(peak) (4.2 K) = 4000.6500 and 12000 cm 2 /V x s has been measured at temperatures between 1 and 80 K. The carrier concentration dependence of the mobility extrapolated to T = O and the temperature dependent part of the scattering probability are investigated. (orig.)

  2. Low temperature sintering and microwave dielectric properties of Ba3Ti5Nb6O28 ceramics with BaCu(B2O5) additions

    International Nuclear Information System (INIS)

    Zhou Huanfu; Wang Hong; Chen Yuehua; Li Kecheng; Yao Xi

    2009-01-01

    The effects of BaCu(B 2 O 5 ) (BCB) additions on the sintering temperature and microwave dielectric properties of Ba 3 Ti 5 Nb 6 O 28 ceramic have been investigated using dilatometer, X-ray diffraction, scanning electron microscopy and dielectric measurement. The pure Ba 3 Ti 5 Nb 6 O 28 ceramic shows a high sintering temperature (∼1250 deg. C) and good microwave dielectric properties as Q x f of 11,400 GHz, ε r of 37.0, τ f of -8 ppm deg. C -1 . It was found that the addition of BCB to Ba 3 Ti 5 Nb 6 O 28 could lower the sintering temperature from 1250 to 925 deg. C. The reduced sintering temperature was attributed to the BCB liquid phase. The addition of BCB also enhanced the microwave dielectric properties to Q x f of 19,191 GHz, ε r of 38.2, τ f of 12 ppm deg. C -1

  3. Substrate bias voltage and deposition temperature dependence on ...

    Indian Academy of Sciences (India)

    Ti is known to act as protective sacrificial layer between metallic silver (Ag) and dielectric layers (SnO2) by prevent- ing the latter from oxidizing with dielectric layer (Godfroid et al 2003). Recently, thin layer of Ti is considered to be a good candidate for nuclear micro batteries due to higher tritium storage capacity (Lee et al ...

  4. Dielectric relaxation studies of binary mixture of β-picoline and methanol using time domain reflectometry at different temperatures

    Directory of Open Access Journals (Sweden)

    C. M. Trivedi

    2016-09-01

    Full Text Available Complex permittivity spectra of binary mixtures of varying concentrations of β-picoline and Methanol (MeOH have been obtained using time domain reflectometry (TDR technique over frequency range 10 MHz to 25 GHz at 283.15, 288.15, 293.15 and 298.15 K temperatures. The dielectric relaxation parameters namely static permittivity (ε0, high frequency limit permittivity (ε∞1 and the relaxation time (τ were determined by fitting complex permittivity data to the single Debye/Cole-Davidson model. Complex nonlinear least square (CNLS fitting procedure was carried out using LEVMW software. The excess permittivity (ε0E and the excess inverse relaxation time (1/τE which contain information regarding molecular structure and interaction between polar–polar liquids were also determined. From the experimental data, parameters such as effective Kirkwood correlation factor (geff, Bruggeman factor (fB and some thermo dynamical parameters have been calculated. Excess parameters were fitted to the Redlich–Kister polynomial equation. The values of static permittivity and relaxation time increase nonlinearly with increase in the mol–fraction of MeOH at all temperatures. The values of excess static permittivity (ε0E and the excess inverse relaxation time (1/τE are negative for the studied β-picoline — MeOH system at all temperatures.

  5. Dielectric properties of poly (1,4-phenylene ether-ether-sulfone)

    CERN Document Server

    Spasevska, H

    2002-01-01

    Dielectric properties of Poly (1,4-phenylene ether-ether-sulfone) are obtained from dielectric spectroscopy of the polymer pellet. The values of relative dielectric constant epsilon', dielectric losses epsilon sup , dielectric dissipation factor tan delta and complex impedance are obtained at temperature of 75 sup o C. The temperature dependence of these parameters is investigated for three frequencies (8x10 sup 4 Hz; 8x10 sup 5 Hz; 8x10 sup 6 Hz) of applied electric field. The specific conductivity sigma, which depends on temperature, is related to the ohmic resistance R, at temperature in the interval from 66 to 83 sup o C. Fitting the experimental data, the value of the activation energy U is obtained. (Original)

  6. Size-dependent theories of piezoelectricity: Comparisons and further developments for centrosymmetric dielectrics

    OpenAIRE

    Hadjesfandiari, Ali R.

    2014-01-01

    Here the recently developed size-dependent piezoelectricity and the strain gradient theory of flexoelectricity are compared. In the course of this investigation, the strain gradient theory of flexoelectricity is shown to violate fundamental rules of mathematics, continuum mechanics and electromagnetism. The major difficulties are associated with ill-posed boundary conditions, the missing angular (moment) equilibrium equation and the appearance of a non-physical extraneous vectorial electrosta...

  7. Temperature Dependence Viscosity and Density of Different Biodiesel Blends

    Directory of Open Access Journals (Sweden)

    Vojtěch Kumbár

    2015-01-01

    Full Text Available The main goal of this paper is to assess the effect of rapeseed oil methyl ester (RME concentration in diesel fuel on its viscosity and density behaviour. The density and dynamic viscosity were observed at various mixing ratios of RME and diesel fuel. All measurements were performed at constant temperature of 40 °C. Increasing ratio of RME in diesel fuel was reflected in increased density value and dynamic viscosity of the blend. In case of pure RME, pure diesel fuel, and a blend of both (B30, temperature dependence of dynamic viscosity and density was examined. Temperature range in the experiment was −10 °C to 80 °C. Considerable temperature dependence of dynamic viscosity and density was found and demonstrated for all three samples. This finding is in accordance with theoretical assumptions and reference data. Mathematical models were developed and tested. Temperature dependence of dynamic viscosity was modeled using a polynomial 3rd polynomial degree. Correlation coefficients R −0.796, −0.948, and −0.974 between measured and calculated values were found. Temperature dependence of density was modeled using a 2nd polynomial degree. Correlation coefficients R −0.994, −0.979, and −0.976 between measured and calculated values were acquired. The proposed models can be used for flow behaviour prediction of RME, diesel fuel, and their blends.

  8. Arrhenius temperature dependence of in vitro tissue plasminogen activator thrombolysis

    International Nuclear Information System (INIS)

    Shaw, George J; Dhamija, Ashima; Bavani, Nazli; Wagner, Kenneth R; Holland, Christy K

    2007-01-01

    Stroke is a devastating disease and a leading cause of death and disability. Currently, the only FDA approved therapy for acute ischemic stroke is the intravenous administration of the thrombolytic medication, recombinant tissue plasminogen activator (tPA). However, this treatment has many contraindications and can have dangerous side effects such as intra-cerebral hemorrhage. These treatment limitations have led to much interest in potential adjunctive therapies, such as therapeutic hypothermia (T ≤ 35 deg. C) and ultrasound enhanced thrombolysis. Such interest may lead to combining these therapies with tPA to treat stroke, however little is known about the effects of temperature on the thrombolytic efficacy of tPA. In this work, we measure the temperature dependence of the fractional clot mass loss Δm(T) resulting from tPA exposure in an in vitro human clot model. We find that the temperature dependence is well described by an Arrhenius temperature dependence with an effective activation energy E eff of 42.0 ± 0.9 kJ mole -1 . E eff approximates the activation energy of the plasminogen-to-plasmin reaction of 48.9 kJ mole -1 . A model to explain this temperature dependence is proposed. These results will be useful in predicting the effects of temperature in future lytic therapies

  9. Temperature dependence of the elastocaloric effect in natural rubber

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhongjian, E-mail: zhongjian.xie521@gmail.com; Sebald, Gael; Guyomar, Daniel

    2017-07-12

    The temperature dependence of the elastocaloric (eC) effect in natural rubber (NR) has been studied. This material exhibits a large eC effect over a broad temperature range from 0 °C to 49 °C. The maximum adiabatic temperature change (ΔT) occurred at 10 °C and the behavior could be predicted by the temperature dependence of the strain-induced crystallization (SIC) and the temperature-induced crystallization (TIC). The eC performance of NR was then compared with that of shape memory alloys (SMAs). This study contributes to the SIC research of NR and also broadens the application of elastomers. - Highlights: • A large elastocaloric effect over a broad temperature range was found in natural rubber (NR). • The caloric performance of NR was compared with that of shape memory alloys. • The temperature dependence of the elastocaloric effect in NR can be prediced by the theory of strain-induced crystallization.

  10. Temperature requirements for initiation of RNA-dependent RNA polymerization

    International Nuclear Information System (INIS)

    Yang Hongyan; Gottlieb, Paul; Wei Hui; Bamford, Dennis H.; Makeyev, Eugene V.

    2003-01-01

    To continue the molecular characterization of RNA-dependent RNA polymerases of dsRNA bacteriophages (Cystoviridae), we purified and biochemically characterized the wild-type (wt) and a temperature-sensitive (ts) point mutant of the polymerase subunit (Pol) from bacteriophage phi12. Interestingly, initiation by both wt and the ts phi12 Pol was notably more sensitive to increased temperatures than the elongation step, the absolute value of the nonpermissive temperature being lower for the ts enzyme. Experiments with the Pol subunit of related cystovirus phi6 revealed a similar differential sensitivity of the initiation and elongation steps. This is consistent with the previous result showing that de novo initiation by RdRp from dengue virus is inhibited at elevated temperatures, whereas the elongation phase is relatively thermostable. Overall, these data suggest that de novo RNA-dependent RNA synthesis in many viral systems includes a specialized thermolabile state of the RdRp initiation complex

  11. Temperature-dependent absorption cross sections for hydrogen peroxide vapor

    Science.gov (United States)

    Nicovich, J. M.; Wine, P. H.

    1988-01-01

    Relative absorption cross sections for hydrogen peroxide vapor were measured over the temperature ranges 285-381 K for lambda = 230 nm-295 nm and 300-381 K for lambda = 193 nm-350 nm. The well established 298 K cross sections at 202.6 and 228.8 nm were used as an absolute calibration. A significant temperature dependence was observed at the important tropospheric photolysis wavelengths lambda over 300 nm. Measured cross sections were extrapolated to lower temperatures, using a simple model which attributes the observed temperature dependence to enhanced absorption by molecules possessing one quantum of O-O stretch vibrational excitation. Upper tropospheric photodissociation rates calculated using the extrapolated cross sections are about 25 percent lower than those calculated using currently recommended 298 K cross sections.

  12. Temperature dependence of 1H chemical shifts in proteins

    International Nuclear Information System (INIS)

    Baxter, Nicola J.; Williamson, Michael P.

    1997-01-01

    Temperature coefficients have been measured by 2D NMR methods for the amide and CαH proton chemical shifts in two globular proteins, bovine pancreatic trypsin inhibitor and hen egg-white lysozyme.The temperature-dependent changes in chemical shift are generally linear up to about 15 deg. below the global denaturation temperature, and the derived coefficients span a range of roughly -16 to +2 ppb/K for amide protons and -4 to +3 ppb/K for CαH. The temperature coefficients can be rationalized by the assumption that heating causes increases in thermal motion in the protein. Precise calculations of temperature coefficients derived from protein coordinates are not possible,since chemical shifts are sensitive to small changes in atomic coordinates.Amide temperature coefficients correlate well with the location of hydrogen bonds as determined by crystallography. It is concluded that a combined use of both temperature coefficients and exchange rates produces a far more reliable indicator of hydrogen bonding than either alone. If an amide proton exchanges slowly and has a temperature coefficient more positive than-4.5 ppb/K, it is hydrogen bonded, while if it exchanges rapidly and has a temperature coefficient more negative than -4.5 ppb/K, it is not hydrogen bonded. The previously observed unreliability of temperature coefficients as measures of hydrogen bonding in peptides may arise from losses of peptide secondary structure on heating

  13. Study on Temperature Characteristics of Frequency -domain Dielectric Spectrum of Capacitive Oil-paper Insulation Bushing Based on Extended Debye Model

    Science.gov (United States)

    Xu, X. W.; Pan, G.; Wang, K.; Liu, W. D.

    2017-07-01

    In order to study the influence of temperature on the frequency domain spectroscopy (FDS) of the oil-paper insulation system, the 72.5kV bushing test model was fabricated according to the actual size, and the FDS of the bushing was tested at different temperatures. According to the test curves of the dielectric constant at different temperatures, the influence of temperature on FDS is analysed, and then the extended Debye equivalent circuit model is used to fit the FDS test curves at different temperatures. The characteristic parameters that could be used to characterize the temperature characteristics are extracted, and the relationship between the characteristic parameters and the temperature is established. The results show that dielectric constant tend to move in the high frequency with the increase of temperature. The parameters of the equivalent circuit model are sensitive to the temperature, the insulation resistance Rg and the maximum time constant branch parameter R1 show the exponential function with the temperature, the minimum time constant branch parameter R3 and the temperature show a power function relationship, so the variation of characteristic parameters can be applied to evaluate the influence of temperature on the FDS of the oil-paper insulation bushing.

  14. High-temperature service and time dependent failure

    Energy Technology Data Exchange (ETDEWEB)

    Swindeman, R.W.; Asada, Y.; Chang, S.J.; Todd, J.A. (eds.)

    1993-01-01

    Separate abstracts were prepared for the technical papers presented at the American Society of Mechanical Engineers 1993 Pressure Vessels and Piping Conference on July 25--29 in Denver, Colorado. This volume contains twelve papers related to materials and design methods for high temperatures, eight papers related to time dependent failure evaluation and prevention in pressure vessels and piping, and five papers related to constitutive equations in high temperature design.

  15. Temperature dependence of acceptor-hole recombination in germanium

    International Nuclear Information System (INIS)

    Darken, L.S.; Jellison, G.E. Jr.

    1989-01-01

    The recombination kinetics of several centers (Zn - , Cu - , B - , CuH - 2 , CuH - x , Zn = , Cu = , and CuH = x ) in high-purity Ge have been measured as a function of temperature from 8 to 160 K by transient capacitance techniques and are significantly faster than expected from cascade theory. The cascade theory also gives the wrong temperature dependence, and the wrong z dependence. Instead, the data are generally fit by the expression N v /4pτ c congruent kT/h (p and τ c are, respectively, the free-hole concentration in the sample and the experimental mean capture time for a center)

  16. Depth Dependent Relationships between Temperature and Ocean Heterotrophic Prokaryotic Production

    OpenAIRE

    Lønborg, Christian; Cuevas, L. Antonio; Reinthaler, Thomas; Herndl, Gerhard J.; Gasol, Josep M.; Morán, Xosé Anxelu G.; Bates, Nicholas R.; Álvarez-Salgado, Xosé A.

    2016-01-01

    Marine prokaryotes play a key role in cycling of organic matter and nutrients in the ocean. Using a unique dataset (>14,500 samples), we applied a space-for-time substitution analysis to assess the temperature dependence of prokaryotic heterotrophic production (PHP) in epi- (0–200 m), meso- (201–1000 m) and bathypelagic waters (1001–4000 m) of the global ocean. Here, we show that the temperature dependence of PHP is fundamentally different between these major oceanic depth layers, with an est...

  17. Extraction of temperature dependent interfacial resistance of thermoelectric modules

    DEFF Research Database (Denmark)

    Chen, Min

    2011-01-01

    This article discusses an approach for extracting the temperature dependency of the electrical interfacial resistance associated with thermoelectric devices. The method combines a traditional module-level test rig and a nonlinear numerical model of thermoelectricity to minimize measurement errors...... on the interfacial resistance. The extracted results represent useful data to investigating the characteristics of thermoelectric module resistance and comparing performance of various modules.......This article discusses an approach for extracting the temperature dependency of the electrical interfacial resistance associated with thermoelectric devices. The method combines a traditional module-level test rig and a nonlinear numerical model of thermoelectricity to minimize measurement errors...

  18. Structural, dielectric and AC conductivity study of Sb2O3 thin film ...

    Indian Academy of Sciences (India)

    52

    However, to date, no reports have appeared on impedance spectroscopy, modulus behavior, electrical conductivity, dielectric relaxation and dielectric properties of crystalline Sb2O3 thin films. This paper deals for the first time with the frequency and temperature dependence of AC conductivity and complex electric modulus ...

  19. Temperature dependence of the Brewer global UV measurements

    Science.gov (United States)

    Fountoulakis, Ilias; Redondas, Alberto; Lakkala, Kaisa; Berjon, Alberto; Bais, Alkiviadis F.; Doppler, Lionel; Feister, Uwe; Heikkila, Anu; Karppinen, Tomi; Karhu, Juha M.; Koskela, Tapani; Garane, Katerina; Fragkos, Konstantinos; Savastiouk, Volodya

    2017-11-01

    Spectral measurements of global UV irradiance recorded by Brewer spectrophotometers can be significantly affected by instrument-specific optical and mechanical features. Thus, proper corrections are needed in order to reduce the associated uncertainties to within acceptable levels. The present study aims to contribute to the reduction of uncertainties originating from changes in the Brewer internal temperature, which affect the performance of the optical and electronic parts, and subsequently the response of the instrument. Until now, measurements of the irradiance from various types of lamps at different temperatures have been used to characterize the instruments' temperature dependence. The use of 50 W lamps was found to induce errors in the characterization due to changes in the transmissivity of the Teflon diffuser as it warms up by the heat of the lamp. In contrast, the use of 200 or 1000 W lamps is considered more appropriate because they are positioned at longer distances from the diffuser so that warming is negligible. Temperature gradients inside the instrument can cause mechanical stresses which can affect the instrument's optical characteristics. Therefore, during the temperature-dependence characterization procedure warming or cooling must be slow enough to minimize these effects. In this study, results of the temperature characterization of eight different Brewer spectrophotometers operating in Greece, Finland, Germany and Spain are presented. It was found that the instruments' response changes differently in different temperature regions due to different responses of the diffusers' transmittance. The temperature correction factors derived for the Brewer spectrophotometers operating at Thessaloniki, Greece, and Sodankylä, Finland, were evaluated and were found to remove the temperature dependence of the instruments' sensitivity.

  20. Electron density and temperature in an atmospheric-pressure helium diffuse dielectric barrier discharge from kHz to MHz

    Science.gov (United States)

    Boisvert, J.-S.; Stafford, L.; Naudé, N.; Margot, J.; Massines, F.

    2018-03-01

    Diffuse dielectric barrier discharges are generated over a very wide range of frequencies. According to the targeted frequency, the glow, Townsend-like, hybrid, Ω and RF-α modes are sustained. In this paper, the electrical characterization of the discharge cell together with an electrical model are used to estimate the electron density from current and voltage measurements for excitation frequencies ranging from 50 kHz to 15 MHz. The electron density is found to vary from 1014 to 1017 m-3 over this frequency range. In addition, a collisional-radiative model coupled with optical emission spectroscopy is used to evaluate the electron temperature (assuming Maxwellian electron energy distribution function) in the same conditions. The time and space-averaged electron temperature is found to be about 0.3 eV in both the low-frequency and high-frequency ranges. However, in the medium-frequency range, it reaches almost twice this value as the discharge is in the hybrid mode. The hybrid mode is similar to the atmospheric-pressure glow discharge usually observed in helium DBDs at low frequency with the major difference being that the plasma is continuously sustained and is characterized by a higher power density.

  1. Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Koban, Ina; Welk, Alexander; Meisel, Peter; Holtfreter, Birte; Kocher, Thomas [Unit of Periodontology, Dental School, University of Greifswald, Rotgerberstr. 8, 17475 Greifswald (Germany); Matthes, Rutger; Huebner, Nils-Olaf; Kramer, Axel [Institute for Hygiene and Environmental Medicine, University of Greifswald, Walther-Rathenau-Str. 49 a, 17487 Greifswald (Germany); Sietmann, Rabea [Institute of Microbiology, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald (Germany); Kindel, Eckhard; Weltmann, Klaus-Dieter, E-mail: ina.koban@uni-greifswald.d [Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)

    2010-07-15

    Because of some disadvantages of chemical disinfection in dental practice (especially denture cleaning), we investigated the effects of physical methods on Candida albicans biofilms. For this purpose, the antifungal efficacy of three different low-temperature plasma devices (an atmospheric pressure plasma jet and two different dielectric barrier discharges (DBDs)) on Candida albicans biofilms grown on titanium discs in vitro was investigated. As positive treatment controls, we used 0.1% chlorhexidine digluconate (CHX) and 0.6% sodium hypochlorite (NaOCl). The corresponding gas streams without plasma ignition served as negative treatment controls. The efficacy of the plasma treatment was determined evaluating the number of colony-forming units (CFU) recovered from titanium discs. The plasma treatment reduced the CFU significantly compared to chemical disinfectants. While 10 min CHX or NaOCl exposure led to a CFU log{sub 10} reduction factor of 1.5, the log{sub 10} reduction factor of DBD plasma was up to 5. In conclusion, the use of low-temperature plasma is a promising physical alternative to chemical antiseptics for dental practice.

  2. Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet

    International Nuclear Information System (INIS)

    Koban, Ina; Welk, Alexander; Meisel, Peter; Holtfreter, Birte; Kocher, Thomas; Matthes, Rutger; Huebner, Nils-Olaf; Kramer, Axel; Sietmann, Rabea; Kindel, Eckhard; Weltmann, Klaus-Dieter

    2010-01-01

    Because of some disadvantages of chemical disinfection in dental practice (especially denture cleaning), we investigated the effects of physical methods on Candida albicans biofilms. For this purpose, the antifungal efficacy of three different low-temperature plasma devices (an atmospheric pressure plasma jet and two different dielectric barrier discharges (DBDs)) on Candida albicans biofilms grown on titanium discs in vitro was investigated. As positive treatment controls, we used 0.1% chlorhexidine digluconate (CHX) and 0.6% sodium hypochlorite (NaOCl). The corresponding gas streams without plasma ignition served as negative treatment controls. The efficacy of the plasma treatment was determined evaluating the number of colony-forming units (CFU) recovered from titanium discs. The plasma treatment reduced the CFU significantly compared to chemical disinfectants. While 10 min CHX or NaOCl exposure led to a CFU log 10 reduction factor of 1.5, the log 10 reduction factor of DBD plasma was up to 5. In conclusion, the use of low-temperature plasma is a promising physical alternative to chemical antiseptics for dental practice.

  3. Low temperature microwave-assisted pyrolysis of wood sawdust for phenolic rich compounds: Kinetics and dielectric properties analysis.

    Science.gov (United States)

    Luo, Hu; Bao, Liwei; Kong, Lingzhao; Sun, Yuhan

    2017-08-01

    Microwave-assisted pyrolysis of wood sawdust for phenolic rich compounds was carried out between 400 and 550°C in a batch reactor. An efficient preparation of liquid products was observed at 500°C with a yield of 58.50%, which was similar to conventional fast pyrolysis. The highest concentration of phenolic compounds in liquid product reached up to 78.7% (area) in which the alkoxy phenols contributed 81.8% at 500°C. Microwave thermogravimetric analysis using KAS method was used firstly to investigate the low-temperature pyrolytic behaviors and activation energy. The results indicated that effective pyrolytic range was 250-400°C and average activation energy was 42.78kJ/mol, which were 50-100°C and 50-100kJ/mol lower than conventional pyrolysis, respectively. Analysis on dielectric properties of pyrolytic products confirmed that accelerated pyrolysis and low temperature were attributed to the formation of instantaneous "hot spots". Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Structural Studies of dielectric HDPE+ZrO2 polymer nanocomposites: filler concentration dependences

    Science.gov (United States)

    Nabiyev, A. A.; Islamov, A. Kh; Maharramov, A. M.; Nuriyev, M. A.; Ismayilova, R. S.; Doroshkevic, A. S.; Pawlukojc, A.; Turchenko, V. A.; Olejniczak, A.; Rulev, M. İ.; Almasan, V.; Kuklin, A. I.

    2018-03-01

    Structural properties of HDPE+ZrO2 polymer nanocomposites thin films of 80-100μm thicknesses were investigated using SANS, XRD, Laser Raman and FTIR spectroscopy. The mass fraction of the filler was 1, 3, 10, and 20%. Results of XRD analysis showed that ZrO2 powder was crystallized both in monoclinic and in cubic phase under normal conditions. The percentages of monoclinic and cubic phase were found to be 99.8% and 0.2%, respectively. It was found that ZrO2 nanoparticles did not affect the main crystal and chemical structure of HDPE, but the degree of crystallinity of the polymer decreases with increasing concentration of zirconium oxide. SANS experiments showed that at ambient conditions ZrO2 nanoparticles mainly distributed like mono-particles in the polymer matrix at all concentrations of filler.The structure of HDPE+ZrO2 does not changes up to 132°C at 1-3% of filler, excepting changing of the polymer structure at temperatures upper 82°C. At high concentrations of filler 10-20% the aggregation of ZrO2 nanoparticles occurs, forming domains of 2.5μm. The results of Raman and FTIR spectroscopy did not show additional specific chemical bonds between the filler and the polymer matrix. New peaks formation was not observed. These results suggest that core-shell structure does not exist in the polymer nanocomposite system.

  5. DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

    Directory of Open Access Journals (Sweden)

    Davood Domairry Ganji

    2011-01-01

    Full Text Available In this paper, homotopy perturbation method has been used to evaluate the temperature distribution of annular fin with temperature-dependent thermal conductivity and to determine the temperature distribution within the fin. This method is useful and practical for solving the nonlinear heat transfer equation, which is associated with variable thermal conductivity condition. The homotopy perturbation method provides an approximate analytical solution in the form of an infinite power series. The annular fin heat transfer rate with temperature-dependent thermal conductivity has been obtained as a function of thermo-geometric fin parameter and the thermal conductivity parameter describing the variation of the thermal conductivity.

  6. A Model of Temperature-Dependent Young's Modulus for Ultrahigh Temperature Ceramics

    Directory of Open Access Journals (Sweden)

    Weiguo Li

    2011-01-01

    Full Text Available Based on the different sensitivities of material properties to temperature between ultrahigh temperature ceramics (UHTCs and traditional ceramics, the original empirical formula of temperature-dependent Young's modulus of ceramic materials is unable to describe the temperature dependence of Young's modulus of UHTCs which are used as thermal protection materials. In this paper, a characterization applied to Young's modulus of UHTC materials under high temperature which is revised from the original empirical formula is established. The applicable temperature range of the characterization extends to the higher temperature zone. This study will provide a basis for the characterization for strength and fracture toughness of UHTC materials and provide theoretical bases and technical reserves for the UHTC materials' design and application in the field of spacecraft.

  7. Temperature Dependence of GaN HEMT Small Signal Parameters

    OpenAIRE

    Ali M. Darwish; Amr A. Ibrahim; H. Alfred Hung

    2011-01-01

    This study presents the temperature dependence of small signal parameters of GaN/SiC HEMTs across the 0–150°C range. The changes with temperature for transconductance ( m ), output impedance ( d s and d s ), feedback capacitance ( d g ), input capacitance ( g s ), and gate resistance ( g ) are measured. The variations with temperature are established for m , d s , d s , d g , g s , and g in the GaN technology. This information is useful for MMIC designs....

  8. Measurement of Temperature Dependent Apparent Specific Heat Capacity in Electrosurgery.

    Science.gov (United States)

    Karaki, Wafaa; Akyildiz, Ali; Borca Tasciuc, Diana-Andra; De, Suvranu

    2016-01-01

    This paper reports on the measurement of temperature dependent apparent specific heat of ex-vivo porcine liver tissue during radiofrequency alternating current heating for a large temperature range. The difference between spatial and temporal evolution of experimental temperature, obtained during electrosurgical heating by infrared thermometry, and predictions based on finite element modeling was minimized to obtain the apparent specific heat. The model was based on transient heat transfer with internal heat generation considering heat storage along with conduction. Such measurements are important to develop computational models for real time simulation of electrosurgical procedures.

  9. Temperature dependence of non-Debye disorder in doped manganites

    International Nuclear Information System (INIS)

    Meneghini, C.; Cimino, R.; Pascarelli, S.; Mobilio, S.; Raghu, C.; Sarma, D.D.

    1997-01-01

    Ca-doped manganite La 1-x Ca x MnO 3 samples with x=0.2 and 0.4 were investigated by extended x-ray absorption fine structure (EXAFS) as a function of temperature and preparation method. The samples exhibit characteristic resistivity change across the metal-insulator (MI) transition temperature whose shape and position depend on Ca-doping concentration and sample thermal treatment. EXAFS results evidenced an increase of nonthermal disorder at the MI transition temperature which is significantly correlated with the resistivity behavior. copyright 1997 The American Physical Society

  10. Temperature dependence of electronic transport property in ferroelectric polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X.L.; Wang, J.L., E-mail: jlwang@mail.sitp.ac.cn; Tian, B.B.; Liu, B.L.; Zou, Y.H.; Wang, X.D.; Sun, S.; Sun, J.L., E-mail: jlsun@mail.sitp.ac.cn; Meng, X.J.; Chu, J.H.

    2014-10-15

    Highlights: • The ferroelectric polymer was fabricated by Langmuir–Blodgett method. • The electrons as the dominant injected carrier were conformed in the ferroelectric polymer films. • The leakage current conduction mechanisms in ferroelectric polymer were investigated. - Abstract: The leakage current mechanism of ferroelectric copolymer of polyvinylidene fluoride with trifluoroethylene prepared by Langmuir–Blodgett was investigated in the temperature range from 100 K to 350 K. The electron as the dominant injected carrier was observed in the ferroelectric copolymer films. The transport mechanisms in copolymer strongly depend on the temperature and applied voltage. From 100 K to 200 K, Schottky emission dominates the conduction. With temperature increasing, the Frenkel–Poole emission instead of the Schottky emission to conduct the carrier transport. When the temperature gets to 260 K, the leakage current becomes independent of temperature, and the space charge limited current conduction was observed.

  11. A New Vogel-Like Law: Ionic Conductivity, Dielectric Relaxation and Viscosity Near the Glass Transition

    National Research Council Canada - National Science Library

    Bendler, John

    2001-01-01

    A model, based on defect diffusion, is developed that describes temperature and pressure dependence of dielectric relaxation, ionic conductivity and viscosity of glass-forming liquids near the glass...

  12. Turbulent thermal boundary layers with temperature-dependent viscosity

    International Nuclear Information System (INIS)

    Lee, Jin; Jung, Seo Yoon; Sung, Hyung Jin; Zaki, Tamer A.

    2014-01-01

    Highlights: • Turbulent thermal boundary layers with temperature-dependent viscosity are simulated. • Effect of temperature-dependent viscosity on the statistics of the scalar field. • An identity for the Stanton number is derived and analyzed. • Effect of temperature-dependent viscosity on the statistics of scalar transfer rate. • Modification of turbulent flow field leads to an enhanced scalar transfer rate. - Abstract: Direct numerical simulations (DNS) of turbulent boundary layers (TBLs) over isothermally heated walls were performed, and the influence of the wall-heating on the thermal boundary layers was investigated. The DNS adopt an empirical relation for the temperature-dependent viscosity of water. The Prandtl number therefore changes with temperature, while the Péclet number is constant. Two wall temperatures (T w = 70 °C and 99 °C) were considered relative to T ∞ = 30 °C, and a reference simulation of TBL with constant viscosity was also performed for comparison. In the variable viscosity flow, the mean and variance of the scalar, when normalized by the friction temperature deficit, decrease relative to the constant viscosity flow. A relation for the mean scalar which takes into account the variable viscosity is proposed. Appropriate scalings for the scalar fluctuations and the scalar flux are also introduced, and are shown to be applicable for both variable and constant viscosity flows. Due to the modification of the near-wall turbulence, the Stanton number and the Reynolds analogy factor are augmented by 10% and 44%, respectively, in the variable viscosity flow. An identity for the Stanton number is derived and shows that the mean wall-normal velocity and wall-normal scalar flux cause the increase in the heat transfer coefficient. Finally, the augmented near-wall velocity fluctuations lead to an increase of the wall-normal scalar flux, which contributes favorably to the enhanced heat transfer at the wall

  13. Influence of the gas mixture radio on the correlations between the excimer XeCl emission and the sealed gas temperature in dielectric barrier discharge lamps

    CERN Document Server

    Xu Jin Zhou; Ren Zhao Xing

    2002-01-01

    For dielectric barrier discharge lamps filled with various gas mixture ratios, the correlations between the excimer XeCl emission and the sealed gas temperature have been founded, and a qualitative explication is presented. For gas mixture with chlorine larger than 3%, the emission intensity increases with the sealed gas temperature, while with chlorine about 2%, the emission intensity decreases with the increasing in the gas temperature, and could be improved by cooling water. However, if chlorine is less than 1.5%, the discharge appears to be a mixture mode with filaments distributed in a diffused glow-like discharge, and the UV emission is independent on the gas temperature

  14. Features of dielectric response in PMN-PT ferroelectric ceramics

    International Nuclear Information System (INIS)

    Guerra, J D S; Araujo, E B; Guarany, C A; Reis, R N; Lima, E C

    2008-01-01

    In this paper, electrical and structural properties were reported for pyrochlore free (1 - x)[Pb(Mg 1/3 Nb 2/3 )O 3 ] - xPbTiO 3 (PMN-PT) (with 35 mol% PbTiO 3 ) ceramics obtained from fine powders. Dielectric studies were focused on the investigation of the complex dielectric permittivity (ε' - iε'') as a function of frequency and temperature. The effects of the dc applied electric field on dielectric response were also investigated. Results revealed a field dependence dielectric anomaly in the dielectric permittivity curves (ε(T)) in the low dc electric field region, which in turn prevails in the whole analysed frequency interval. To the best of our knowledge, these properties for the PMN-PT ceramic system have not been reported before as in this work. The results were analysed within the framework of the current models found in the literature.

  15. Thickness-dependent dielectric breakdown and nanopore creation on sub-10-nm-thick SiN membranes in KCl aqueous solution

    Science.gov (United States)

    Yanagi, Itaru; Fujisaki, Koji; Hamamura, Hirotaka; Takeda, Kenichi

    Recently, dielectric breakdown of solid-state membranes in solution has come to be known as a powerful method for fabricating nanopore sensors. This method has enabled stable fabrication of nanopores down to sub-2 nm in diameter, which can be used to detect the sizes and structures of small molecules. Until now, the behavior of dielectric breakdown for nanopore creation in SiN membranes with thicknesses of less than 10 nm has not been studied, while thinner nanopore membranes are preferable for nanopore sensors in terms of spatial resolution. In the present study, the thickness dependence of the dielectric breakdown of sub-10-nm-thick SiN membranes in solution was investigated using a method developed herein called gradually increased voltage pulse injection. The increment in leakage current through the membrane at the breakdown was found to become smaller with a decrease in the thickness of the membrane, which resulted in the creation of smaller nanopores. In addition, the electric field for dielectric breakdown drastically decreased when the thickness of the membrane was less than 5 nm. These breakdown behaviors are quite similar to those observed in gate insulators of metal-oxide-semiconductor (MOS) devices.

  16. Temperature dependent damping studies of Ni–Mn–Ga polymer ...

    Indian Academy of Sciences (India)

    Administrator

    Bull. Mater. Sci., Vol. 34, No. 4, July 2011, pp. 739–743. © Indian Academy of Sciences. 739. Temperature dependent damping studies of Ni–Mn–Ga polymer composites ... martensite transformation (Ullakko et al 1996; Mullner and Ullakko 1998 ... on twin boundaries (Kokorin et al 1996; Segui et al 2004;. Vijay Kumar ...

  17. Temperature dependence of electromechanical properties of PLZT x ...

    Indian Academy of Sciences (India)

    Administrator

    behaviour is observed for the overtones also. However, the piezoelectric response of the overtones disappears at a lower temperature than the fundamental mode. The quantity, Δfps, depends on the electromechanical coupling coefficient as well as geometry of the piezo- ceramic material (Jaffe et al 1971). The behaviour of ...

  18. Temperature dependence studies on the electro-oxidation of ...

    Indian Academy of Sciences (India)

    Cyclic voltammetry; electrochemical impedance spectroscopy; activation energy; fuel cell; alcohol. Abstract. Temperature dependence on the electro-oxidation of methanol, ethanol and 1-propanol in 0.5 M H2SO4 were investigated with Pt and PtRu electrodes. Tafel slope and apparent activation energy were evaluated ...

  19. Temperature dependence of nitrogen solubility in iron base multicomponent melts

    International Nuclear Information System (INIS)

    Sokolov, V.M.; Koval'chuk, L.A.

    1986-01-01

    Method for calculating temperature dependence of nitrogen solubility in iron base multicomponent melts is suggested. Application areas of existing methods were determined and advantages of the new method for calculating nitrogen solubility in multicomponent-doped iron melts (Fe-Ni-Cr-Mo, Fe-Ni-Cr-Mn, Fe-Mo-V) at 1773-2073 K are shown

  20. Anomalous temperature dependence of excitation transfer between quantum dots

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Menšík, Miroslav

    2015-01-01

    Roč. 7, č. 4 (2015), 325-330 ISSN 2164-6627 R&D Projects: GA MŠk(CZ) LD14011; GA MŠk LH12236; GA MŠk LH12186 Institutional support: RVO:68378271 ; RVO:61389013 Keywords : excitation transfer * quantum dots * temperature dependence * electron-phonon interaction Subject RIV: BM - Solid Matter Physics ; Magnetism

  1. Temperature-dependent viscosity effects on free convection flow ...

    African Journals Online (AJOL)

    Temperature-dependent viscosity effects on free convection flow over a vertical moving cylinder with constant axial velocity under consideration of radial ... Prandtl number, viscosity-variation parameter, thermal conductivity-variation parameter and magnetic parameter on free convection flow and heat transfer is discussed.

  2. Electronically induced nuclear transitions - temperature dependence and Rabi oscillations

    CERN Document Server

    Niez, J J

    2002-01-01

    This paper deals with a nucleus electromagnetically coupled with the bound states of its electronic surroundings. It describes the temperature dependence of its dynamics and the onset of potential Rabi oscillations by means of a Master Equation. The latter is generalized in order to account for possible strong resonances. Throughout the paper the approximation schemes are discussed and tested. (authors)

  3. Temperature Dependence of the Stability of Ion Pair Interactions ...

    Indian Academy of Sciences (India)

    The current study employs free energy calculations to elucidate the thermodynamics of the formation of salt bridge interactions and the temperature dependence, using acetate and methylguanidium ions as model systems. Three different orientations of the methylguanidinium approaching the carboxylate group have been ...

  4. A temperature dependent slip factor based thermal model for friction ...

    Indian Academy of Sciences (India)

    the tool shoulder and pin to predict the thermal history of aluminium alloy was developed by. Rajamanickam et al .... where σy is the temperature dependent yield stress of the workpiece material as shown in table 2. ... greater than the material yield shear stress, hence the material accelerates to a velocity less than the tool ...

  5. Time- and temperature-dependent failures of a bonded joint

    Energy Technology Data Exchange (ETDEWEB)

    Sihn, Sangwook; Miyano, Yasushi; Tsai, S.W. [Stanford Univ., Palo Alto, CA (United States)

    1997-07-01

    Time and temperature dependent properties of a tubular lap bonded joint are reported. The joint bonds a cast iron rod and a composite pipe together with an epoxy type of an adhesive material containing chopped glass fiber. A new fabrication method is proposed.

  6. Temperature-dependent imaging of living cells by AFM

    International Nuclear Information System (INIS)

    Espenel, Cedric; Giocondi, Marie-Cecile; Seantier, Bastien; Dosset, Patrice; Milhiet, Pierre-Emmanuel; Le Grimellec, Christian

    2008-01-01

    Characterization of lateral organization of plasma membranes is a prerequisite to the understanding of membrane structure-function relationships in living cells. Lipid-lipid and lipid-protein interactions are responsible for the existence of various membrane microdomains involved in cell signalization and in numerous pathologies. Developing approaches for characterizing microdomains associate identification tools like recognition imaging with high-resolution topographical imaging. Membrane properties are markedly dependent on temperature. However, mesoscopic scale topographical information of cell surface in a temperature range covering most of cell biology experimentation is still lacking. In this work we have examined the possibility of imaging the temperature-dependent behavior of eukaryotic cells by atomic force microscopy (AFM). Our results establish that the surface of living CV1 kidney cells can be imaged by AFM, between 5 and 37 deg. C, both in contact and tapping modes. These first temperature-dependent data show that large cell structures appeared essentially stable at a microscopic scale. On the other hand, as shown by contact mode AFM, the surface was highly dynamic at a mesoscopic scale, with marked changes in apparent topography, friction, and deflection signals. When keeping the scanning conditions constant, a progressive loss in the image contrast was however observed, using tapping mode, on decreasing the temperature

  7. Temperature dependence of APD-based PET scanners

    International Nuclear Information System (INIS)

    Keereman, Vincent; Van Holen, Roel; Vandenberghe, Stefaan; Vanhove, Christian

    2013-01-01

    Purpose: Solid state detectors such as avalanche photodiodes (APDs) are increasingly being used in PET detectors. One of the disadvantages of APDs is the strong decrease of their gain factor with increasing ambient temperature. The light yield of most scintillation crystals also decreases when ambient temperature is increased. Both effects lead to considerable temperature dependence of the performance of APD-based PET scanners. In this paper, the authors propose a model for this dependence and the performance of the LabPET8 APD-based small animal PET scanner is evaluated at different temperatures.Methods: The model proposes that the effect of increasing temperature on the energy histogram of an APD-based PET scanner is a compression of the histogram along the energy axis. The energy histogram of the LabPET system was acquired at 21 °C and 25 °C to verify the validity of this model. Using the proposed model, the effect of temperature on system sensitivity was simulated for different detector temperature coefficients and temperatures. Subsequently, the effect of short term and long term temperature changes on the peak sensitivity of the LabPET system was measured. The axial sensitivity profile was measured at 21 °C and 24 °C following the NEMA NU 4-2008 standard. System spatial resolution was also evaluated. Furthermore, scatter fraction, count losses and random coincidences were evaluated at different temperatures. Image quality was also investigated.Results: As predicted by the model, the photopeak energy at 25 °C is lower than at 21 °C with a shift of approximately 6% per °C. Simulations showed that this results in an approximately linear decrease of sensitivity when temperature is increased from 21 °C to 24 °C and energy thresholds are constant. Experimental evaluation of the peak sensitivity at different temperatures showed a strong linear correlation for short term (2.32 kcps/MBq/°C = 12%/°C, R = −0.95) and long term (1.92 kcps/MBq/°C = 10%/

  8. Temperature dependence on the electrical properties of Ba(Ti{sub 0.90}Zr{sub 0.10})O{sub 3}:2V ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Moura, F. [Laboratorio Interdisciplinar em Ceramica (LIEC), Departamento de Fisico-Quimica, Instituto de Quimica, UNESP, CEP 14800-900, Araraquara, SP (Brazil); Simoes, A.Z., E-mail: alezipo@yahoo.com [Universidade Federal de Itajuba-Unifei - Campus Itabira, Rua Sao Paulo 377, Bairro: Amazonas, CEP 35900-37, Itabira, MG (Brazil); Paskocimas, C.A.; Zaghete, M.A.; Varela, J.A.; Longo, E. [Laboratorio Interdisciplinar em Ceramica (LIEC), Departamento de Fisico-Quimica, Instituto de Quimica, UNESP, CEP 14800-900, Araraquara, SP (Brazil)

    2010-10-01

    Barium zirconium titanate ferroelectric ceramics modified with vanadium Ba(Ti{sub 0.90}Zr{sub 0.10}V{sub 0.02})O{sub 3} (BZT:2V) were prepared from powders synthesized using the mixed oxide method. The effect of temperature on the structural and electrical properties of BZT:2V ceramics was investigated. X-ray diffraction data evidenced no secondary phases. As temperature decreases, the maximum dielectric permittivity decreased. The fine-grained sample showed a 'relaxor-like' ferroelectric behavior. The dielectric permittivity reaches a maximum value ({epsilon}{sub m} {approx} 16,000 at 1 kHz) for the BZT:2V ceramics sintered at 1623 K for 4 h. Remnant polarization (P{sub r}) and coercive field were also temperature dependent.

  9. Ferromagnetism and temperature-dependent electronic structure in metallic films

    International Nuclear Information System (INIS)

    Herrmann, T.

    1999-01-01

    In this work the influence of the reduced translational symmetry on the magnetic properties of thin itinerant-electron films and surfaces is investigated within the strongly correlated Hubbard model. Firstly, the possibility of spontaneous ferromagnetism in the Hubbard model is discussed for the case of systems with full translational symmetry. Different approximation schemes for the solution of the many-body problem of the Hubbard model are introduced and discussed in detail. It is found that it is vital for a reasonable description of spontaneous ferromagnetism to be consistent with exact results concerning the general shape of the single-electron spectral density in the limit of strong Coulomb interaction between the electrons. The temperature dependence of the ferromagnetic solutions is discussed in detail by use of the magnetization curves as well as the spin-dependent quasi particle spectrum. For the investigation of thin films and surfaces the approximation schemes for the bulk system have to be generalized to deal with the reduced translational symmetry. The magnetic behavior of thin Hubbard films is investigated by use of the layer dependent magnetization as a function of temperature as well as the thickness of the film. The Curie-temperature is calculated as a function of the film thickness. Further, the magnetic stability at the surface is discussed in detail. Here it is found that for strong Coulomb interaction the magnetic stability at finite temperatures is reduced at the surface compared to the inner layers. This observation clearly contradicts the well-known Stoner picture of band magnetism and can be explained in terms of general arguments which are based on exact results in the limit of strong Coulomb interaction. The magnetic behavior of the Hubbard films can be analyzed in detail by inspecting the local quasi particle density of states as well as the wave vector dependent spectral density. The electronic structure is found to be strongly spin

  10. Temperature dependence of magnetoresistance in lanthanum manganite ceramics

    International Nuclear Information System (INIS)

    Gubkin, M.K.; Zalesskii, A.V.; Perekalina, T.M.

    1996-01-01

    Magnetoresistivity in the La0.9Na0.1Mn0.9(V,Co)0.1O3 and LaMnO3+δ ceramics was studied. The temperature dependence of magnetoresistance in these specimens was found to differ qualitatively from that in the La0.9Na0.1MnO3 single crystal (the magnetoresistance value remains rather high throughout the measurement range below the Curie temperature), with the maximum values being about the same (20-40% in the field of 20 kOe). Previously published data on magnetization, high frequency magnetic susceptibility, and local fields at the 139La nuclei of the specimens with similar properties attest to their magnetic inhomogeneity. The computation of the conductivity of the nonuniformly ordered lanthanum manganite was performed according to the mean field theory. The calculation results allow one to interpret qualitatively various types of experimental temperature dependences of magnetoresistance

  11. Temperature dependence effect of viscosity on ultrathin lubricant film melting

    Directory of Open Access Journals (Sweden)

    A.V.Khomenko

    2006-01-01

    Full Text Available We study the melting of an ultrathin lubricant film under friction between atomically flat surfaces at temperature dependencies of viscosity described by Vogel-Fulcher relationship and by power expression, which are observed experimentally. It is shown that the critical temperature exists in both cases the exceeding of which leads to the melting of lubricant and, as a result, the sliding mode of friction sets in. The values of characteristic parameters of lubricant are defined, which are needed for friction reduction. In the systems, where the Vogel-Fulcher dependence is fulfilled, it is possible to choose the parameters at which the melting of lubricant takes place even at zero temperature of friction surfaces. The deformational defect of the shear modulus is taken into account in describing the lubricant melting according to the mechanism of the first-order transition.

  12. Experimental determination of the temperature dependence of metallic work functions at low temperatures. Progress report

    International Nuclear Information System (INIS)

    Pipes, P.B.

    1977-01-01

    Progress made under ERDA Contract No. EY-76-S-02-2314.002 is described. Efforts to gain theoretical insight into the temperature dependence of the contact potential of Nb near the superconducting transition have only been qualitatively successful. Preliminary measurements of adsorbed 4 He gas on the temperature dependence of the contact potentials of metals were performed and compared with a previously developed theory

  13. Room-temperature negative capacitance in a ferroelectric-dielectric superlattice heterostructure

    Czech Academy of Sciences Publication Activity Database

    Gao, W.; Khan, A.; Martí, Xavier; Nelson, C.; Serrao, C.; Ravichandran, J.; Ramesh, R.; Salahuddin, S.

    2014-01-01

    Roč. 14, č. 10 (2014), s. 5814-5819 ISSN 1530-6984 Institutional support: RVO:68378271 Keywords : room-temperature negative capacitance * ferroelectrics * superlattice * epitaxial strain Subject RIV: BE - Theoretical Physics Impact factor: 13.592, year: 2014

  14. Temperature dependence of carbon isotope fractionation in CAM plants

    International Nuclear Information System (INIS)

    Deleens, E.; Treichel, I.; O'Leary, M.H.

    1985-01-01

    The carbon isotope fractionation associated with nocturnal malic acid synthesis in Kalanchoë daigremontiana and Bryophyllum tubiflorum was calculated from the isotopic composition of carbon-4 of malic acid, after appropriate corrections. In the lowest temperature treatment (17 degrees C nights, 23 degrees C days), the isotope fractionation for both plants is -4 per thousand (that is, malate is enriched in (13)C relative to the atmosphere). For K. daigremontiana, the isotope fractionation decreases with increasing temperature, becoming approximately 0 per thousand at 27 degrees C/33 degrees C. Detailed analysis of temperature effects on the isotope fractionation indicates that stomatal aperture decreases with increasing temperature and carboxylation capacity increases. For B. tubiflorum, the temperature dependence of the isotope fractionation is smaller and is principally attributed to the normal temperature dependences of the rates of diffusion and carboxylation steps. The small change in the isotopic composition of remaining malic acid in both species which is observed during deacidification indicates that malate release, rather than decarboxylation, is rate limiting in the deacidification process

  15. Temperature dependence of carbon isotope fractionation in CAM plants

    Energy Technology Data Exchange (ETDEWEB)

    Deleens, E.; Treichel, I.; O' Leary, M.H.

    1985-09-01

    The carbon isotope fractionation associated with nocturnal malic acid synthesis in Kalanchoe daigremontiana and Bryophyllum tubiflorum was calculated from the isotopic composition of carbon-4 of malic acid, after appropriate corrections. In the lowest temperature treatment (17/sup 0/C nights, 23/sup 0/C days), the isotope fractionation for both plants is -4% per thousand (that is, malate is enriched in /sup 13/C relative to the atmosphere). For K. daigremontiana, the isotope fractionation decreases with increasing temperature, becoming approximately 0% per thousand at 27/sup 0/C/33/sup 0/C. Detailed analysis of temperature effects on the isotope fractionation indicates that stomatal aperture decreases with increasing temperature and carboxylation capacity increases. For B. tubiflorum, the temperature dependence of the isotope fractionation is smaller and is principally attributed to the normal temperature dependences of the rates of diffusion and carboxylation steps. The small change in the isotopic composition of remaining malic acid in both species which is observed during deacidification indicates that malate release, rather than decarboxylation, is rate limiting in the deacidification process. 28 references, 1 figure, 4 tables.

  16. Stationary Light Waves in Anizotropy and Nonolinear Plane Media, whose Dielectric Tensor's Principal Values Arbitrarily Depend upon Intensity Case of Scattering

    CERN Document Server

    Ochirbat, G

    2000-01-01

    A plane medium, whose dielectric tensor's principal values arbitrarily depend upon intensity, is considered. The problems of the TM and TE waves, within the problem of light scattering, are reduced to quadrature. A question of integrability of the full system of Maxwell equations is discussed. A closed equation has been obtained for an auxiliary variable for a nonlinearity of Kerr type. A scheme for integrating the full system of Maxwell equations by solving the equation over the auxiliary variable is suggested.

  17. Sensitive Dependence of Gibbs Measures at Low Temperatures

    Science.gov (United States)

    Coronel, Daniel; Rivera-Letelier, Juan

    2015-09-01

    The Gibbs measures of an interaction can behave chaotically as the temperature drops to zero. We observe that for some classical lattice systems there are interactions exhibiting a related phenomenon of sensitive dependence of Gibbs measures: An arbitrarily small perturbation of the interaction can produce significant changes in the low-temperature behavior of its Gibbs measures. For some one-dimensional XY models we exhibit sensitive dependence of Gibbs measures for a (nearest-neighbor) interaction given by a smooth function, and for perturbations that are small in the smooth category. We also exhibit sensitive dependence of Gibbs measures for an interaction on a classical lattice system with finite-state space. This interaction decreases exponentially as a function of the distance between sites; it is given by a Lipschitz continuous potential in the configuration space. The perturbations are small in the Lipschitz topology. As a by-product we solve some problems stated by Chazottes and Hochman.

  18. On the Temperature Dependence of Enzyme-Catalyzed Rates.

    Science.gov (United States)

    Arcus, Vickery L; Prentice, Erica J; Hobbs, Joanne K; Mulholland, Adrian J; Van der Kamp, Marc W; Pudney, Christopher R; Parker, Emily J; Schipper, Louis A

    2016-03-29

    One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems.

  19. Modeling of Dielectric Heating within Lyophilization Process

    Directory of Open Access Journals (Sweden)

    Jan Kyncl

    2014-01-01

    Full Text Available A process of lyophilization of paper books is modeled. The process of drying is controlled by a dielectric heating system. From the physical viewpoint, the task represents a 2D coupled problem described by two partial differential equations for the electric and temperature fields. The material parameters are supposed to be temperature-dependent functions. The continuous mathematical model is solved numerically. The methodology is illustrated with some examples whose results are discussed.

  20. Temperature-dependent liquid metal flowrate control device

    International Nuclear Information System (INIS)

    Carlson, R.D.

    1978-01-01

    A temperature-dependent liquid metal flowrate control device includes a magnet and a ferromagnetic member defining therebetween a flow path for liquid metal, the ferromagnetic member being formed of a material having a curie temperature at which a change in the flow rate of the liquid metal is desired. According to the preferred embodiment the magnet is a cylindrical rod magnet axially disposed within a cylindrical member formed of a curie material and having iron pole pieces at the ends. A cylindrical iron shunt and a thin wall stainless steel barrier are disposed in the annulus between magnet and curie material. Below the curie temperature flow between steel barrier and curie material is impeded and above the curie temperature flow impedance is reduced

  1. Temperature-dependent liquid metal flowrate control device

    Science.gov (United States)

    Carlson, Roger D.

    1978-01-01

    A temperature-dependent liquid metal flowrate control device includes a magnet and a ferromagnetic member defining therebetween a flow path for liquid metal, the ferromagnetic member being formed of a material having a curie temperature at which a change in the flow rate of the liquid metal is desired. According to the preferred embodiment the magnet is a cylindrical rod magnet axially disposed within a cylindrical member formed of a curie material and having iron pole pieces at the ends. A cylindrical iron shunt and a thin wall stainless steel barrier are disposed in the annulus between magnet and curie material. Below the curie temperature flow between steel barrier and curie material is impeded and above the curie temperature flow impedance is reduced.

  2. Temperature dependence of contact resistance at metal/MWNT interface

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Eui; Moon, Kyoung-Seok; Sohn, Yoonchul, E-mail: yoonchul.son@samsung.com [Materials Research Center, Samsung Advanced Institute of Technology, Samsung Electronics, Suwon 443-803 (Korea, Republic of)

    2016-07-11

    Although contact resistance of carbon nanotube (CNT) is one of the most important factors for practical application of electronic devices, a study regarding temperature dependence on contact resistance of CNTs with metal electrodes has not been found. Here, we report an investigation of contact resistance at multiwalled nanotube (MWNT)/Ag interface as a function of temperature, using MWNT/polydimethylsiloxane (PDMS) composite. Electrical resistance of MWNT/PDMS composite revealed negative temperature coefficient (NTC). Excluding the contact resistance with Ag electrode, the NTC effect became less pronounced, showing lower intrinsic resistivity with the activation energy of 0.019 eV. Activation energy of the contact resistance of MWNT/Ag interface was determined to be 0.04 eV, two times larger than that of MWNT-MWNT network. The increase in the thermal fluctuation assisted electron tunneling is attributed to conductivity enhancement at both MWNT/MWNT and MWNT/Ag interfaces with increasing temperature.

  3. Tailoring order–disorder temperature and microwave dielectric properties of Ba[(Co0.6Zn0.41/3Nb2/3]O3 ceramics

    Directory of Open Access Journals (Sweden)

    Tu Lai Sun

    2016-03-01

    Full Text Available The order–disorder temperature (To–d of Ba[(Co0.6Zn0.41/3Nb2/3]O3 ceramics was determined via X-ray diffraction, Raman spectroscopy and differential thermal analysis, respectively. To–d was determined to be between 1425 and 1450 °C by a quenching method. The endothermic peak in the DTA curve shows the order–disorder transition. B2O3 was applied to tune the densification temperature (Ts and tailor the microwave dielectric properties. The ordering degree and unloaded quality factor (Qf are improved when Ts is reduced to 1400 °C at B2O3 content of 0.25 mol%. Ts is further decreased and the ordering degree and Qf are decreased when B2O3 content is increased to 0.5 mol%. The dielectric constant (εr and temperature coefficient of resonant frequency (τf decrease slightly with increasing B2O3 content. The optimum microwave dielectric properties (i.e., εr = 34.0, Qf = 50,400 GHz, τf = 5.5 × 10−6/°C are obtained for the Ba[(Co0.6Zn0.41/3Nb2/3]O3-0.25 mol% B2O3 ceramics sintered at a lower temperature.

  4. A nanoscale temperature-dependent heterogeneous nucleation theory

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Y. Y. [Nanosurface Science and Engineering Research Institute, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060 Guangdong (China); Yang, G. W., E-mail: stsygw@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou, 510275 Guangdong (China)

    2015-06-14

    Classical nucleation theory relies on the hypothetical equilibrium of the whole nucleation system, and neglects the thermal fluctuations of the surface; this is because the high entropic gains of the (thermodynamically extensive) surface would lead to multiple stable states. In fact, at the nanometer scale, the entropic gains of the surface are high enough to destroy the stability of the thermal equilibrium during nucleation, comparing with the whole system. We developed a temperature-dependent nucleation theory to elucidate the heterogeneous nucleation process, by considering the thermal fluctuations based on classical nucleation theory. It was found that the temperature not only affected the phase transformation, but also influenced the surface energy of the nuclei. With changes in the Gibbs free energy barrier, nucleation behaviors, such as the nucleation rate and the critical radius of the nuclei, showed temperature-dependent characteristics that were different from those predicted by classical nucleation theory. The temperature-dependent surface energy density of a nucleus was deduced based on our theoretical model. The agreement between the theoretical and experimental results suggested that the developed nucleation theory has the potential to contribute to the understanding and design of heterogeneous nucleation at the nanoscale.

  5. Depth Dependent Relationships between Temperature and Ocean Heterotrophic Prokaryotic Production

    KAUST Repository

    Lønborg, Christian

    2016-06-07

    Marine prokaryotes play a key role in cycling of organic matter and nutrients in the ocean. Using a unique dataset (>14,500 samples), we applied a space-for-time substitution analysis to assess the temperature dependence of prokaryotic heterotrophic production (PHP) in epi- (0-200 m), meso- (201-1000 m) and bathypelagic waters (1001-4000 m) of the global ocean. Here, we show that the temperature dependence of PHP is fundamentally different between these major oceanic depth layers, with an estimated ecosystem-level activation energy (E) of 36 ± 7 kJ mol for the epipelagic, 72 ± 15 kJ mol for the mesopelagic and 274 ± 65 kJ mol for the bathypelagic realm. We suggest that the increasing temperature dependence with depth is related to the parallel vertical gradient in the proportion of recalcitrant organic compounds. These Ea predict an increased PHP of about 5, 12, and 55% in the epi-, meso-, and bathypelagic ocean, respectively, in response to a water temperature increase by 1°C. Hence, there is indication that a major thus far underestimated feedback mechanism exists between future bathypelagic ocean warming and heterotrophic prokaryotic activity.

  6. Sample holder for studying temperature dependent particle guiding

    International Nuclear Information System (INIS)

    Bereczky, R.J.; Toekesi, K.; Kowarik, G.; Aumayr, F.

    2011-01-01

    Complete text of publication follows. The so called guiding effect is a complex process involving the interplay of a large number of charged particles with a solid. Although many research groups joined this field and carried out various experiments with insulator capillaries many details of the interactions are still unknown. We investigated the temperature dependence of the guiding since it opens new possibilities both for a fundamental understanding of the guiding phenomenon and for applications. For the temperature dependent guiding experiments a completely new heatable sample holder was designed. We developed and built such a heatable sample holder to make accurate and reproducible studies of the temperature dependence of the ion guiding effect possible. The target holder (for an exploded view see Fig. 1) consists of two main parts, the front and the back plates. The two plates of the sample holder, which function as an oven, are made of copper. These parts surround the capillary in order to guarantee a uniform temperature along the whole tube. The temperature of the copper parts is monitored by a K-Type thermocouple. Stainless steel coaxial heaters surrounding the oven are used for heating. The heating power up to a few watts is regulated by a PID controller. Cooling of the capillary is achieved by a copper feed-through connected to a liquid nitrogen bath outside the UHV chamber. This solution allows us to change the temperature of the sample from -30 deg C up to 90 deg C. Our experiments with this newly developed temperature regulated capillary holder show that the glass temperature (i.e. conductivity) can be used to control the guiding properties of the glass capillary and adjust the conditions from guiding at room temperature to simple geometrical transmission at elevated temperatures. This holds the promise to investigate the effect of conductivity on particle transport (build-up and removal of charge patches) through capillaries in more details

  7. SHUTTER-LESS TEMPERATURE-DEPENDENT CORRECTION FOR UNCOOLED THERMAL CAMERA UNDER FAST CHANGING FPA TEMPERATURE

    Directory of Open Access Journals (Sweden)

    D. Lin

    2017-05-01

    Full Text Available Conventional temperature-dependant correction methods for uncooled cameras are not so valid for images under the condition of fast changing FPA temperature as usual, therefore, a shutter-less temperature-dependant correction method is proposed here to compensate for these errors and stabilize camera's response only related to the object surface temperature. Firstly, sequential images are divided into the following three categories according to the changing speed of FPA temperature: stable (0°C/min, relatively stable (<0.5°C/min, unstable (>0.5°C/min. Then all of the images are projected into the same level using a second order polynomial relation between FPA temperatures and gray values from stable images. Next, a third order polynomial relation between temporal differences of FPA temperatures and the above corrected images is implemented to eliminate the deviation caused by fast changing FPA temperature. Finally, radiometric calibration is applied to convert image gray values into object temperature values. Experiment results show that our method is more effective for fast changing FPA temperature data than FLIR GEV.

  8. Temperature-dependent electrorheological effect and its description with respect to dielectric spectra

    Czech Academy of Sciences Publication Activity Database

    Plachý, T.; Sedlačík, M.; Pavlínek, V.; Stejskal, Jaroslav; Pedro Graça, M.; Cadillon Costa, L.

    2016-01-01

    Roč. 27, č. 7 (2016), s. 880-886 ISSN 1045-389X. [International Conference on Electrorheological Fluids and Magnetorheological Suspensions /14./ - ERMR2014. Granada, 07.07.2014-11.07.2014] R&D Projects: GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : electrorheology * aniline oligomers * carbonization Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.255, year: 2016

  9. Gas diffusion and temperature dependence of bubble nucleation during irradiation

    DEFF Research Database (Denmark)

    Foreman, A. J. E.; Singh, Bachu Narain

    1986-01-01

    The continuous production of gases at relatively high rates under fusion irradiation conditions may enhance the nucleation of cavities. This can cause dimensional changes and could induce embrittlement arising from gas accumulation on grain boundaries. Computer calculations have been made...... of the diatomic nucleation of helium bubbles, assuming helium to diffuse substitutionally, with radiation-enhanced diffusion at lower temperatures. The calculated temperature dependence of the bubble density shows excellent agreement with that observed in 600 MeV proton irradiations, including a reduction...

  10. Temperature-dependent Photodegradation in UV-resonance Raman Spectroscopy.

    Science.gov (United States)

    Yoshino, Hikaru; Saito, Yuika; Kumamoto, Yasuaki; Taguchi, Atushi; Verma, Prabhat; Kawata, Satoshi

    2015-01-01

    Temperature-dependent photodegradation during UV-resonance Raman spectroscopy was investigated. Photodegradation was quantitatively probed by monitoring the temporal evolution of UV-resonance Raman spectra obtained from bacteriochlorophyll (BChl) showing, resonance effect at a 355-nm excitation wavelength. At 80 K, the molecular photodecomposition rate was 5-times lower than that at room temperature. The decomposition rates of BChl were analyzed by the Arrhenius formula, indicating that the mechanism of photodegradation includes a thermal process having an activation energy of 1.4 kJ/mol.

  11. Gas diffusion and temperature dependence of bubble nucleation during irradiation

    DEFF Research Database (Denmark)

    Foreman, A. J. E.; Singh, Bachu Narain

    1986-01-01

    of the diatomic nucleation of helium bubbles, assuming helium to diffuse substitutionally, with radiation-enhanced diffusion at lower temperatures. The calculated temperature dependence of the bubble density shows excellent agreement with that observed in 600 MeV proton irradiations, including a reduction...... in activation energy below Tm/2. The coalescence of diatomic nuclei due to Brownian motion markedly improves the agreement and also provides a well-defined terminal density. Bubble nucleation by this mechanism is sufficiently fast to inhibit any appreciable initial loss of gas to grain boundaries during...

  12. Low temperature magnetization and anomalous high temperature dielectric behaviour of (1-x) YMnO3/xZnFe2O4 composites

    Science.gov (United States)

    Kumar, Virendra; Gaur, Anurag

    2018-04-01

    We synthesized YMnO3 and ZnFe2O4 composites, (1-x)YMnO3/x(ZnFe2O4) with x = 0, 0.05, 0.10, and 0.15 by high temperature sintering. X-ray diffraction (XRD) patterns indicate the successful formation of composites. Weak ferromagnetism is manifested below Néel temperature (TN) for pristine YMnO3, according to (M-H) study performed at 10 K. For (1-x)YMnO3/xZnFe2O4 (x = 0.05, 0.10, 0.15) a thin coercivity is observed in all compositions, due to short range magnetic ordering at low temperature after the insertion of ZnFe2O4. For pristine YMnO3 explicit divarication between FC-ZFC curves is observed, with crimps observed in both FC and ZFC curves at 75 K, which is the TN of YMnO3. For 1-x(YMnO3)/x ZnFe2O4 composites (x = 0.05, 0.10, 0.15) crimps are perceived only in ZFC curves at slightly varying values of 39.8, 42.32 and 45.63 K respectively. Anomalous peaks are observed in high temperature dielectric curves above 400 K for 1-x(YMnO3)/xZnFe2O4 (x = 0, 0.05, 0.10, 0.15) composites due to Maxwell-Wagner relaxation effect.

  13. Dielectric properties of CdS nanoparticles synthesized by soft ...

    Indian Academy of Sciences (India)

    a distribution of relaxation times. The scaling behaviour of dielectric loss spectra sug- gests that the relaxation describes the same mechanism at various temperatures. The frequency-dependent electrical data are analysed in the framework of conductivity and modulus formalisms. The frequency-dependent conductivity ...

  14. Tiny optical fiber temperature sensor based on temperature-dependent refractive index of zinc telluride film

    Science.gov (United States)

    Bian, Qiang; Song, Zhangqi; Song, Dongyu; Zhang, Xueliang; Li, Bingsheng; Yu, Yang; Chen, Yuzhong

    2018-03-01

    The temperature-dependent refractive index of zinc telluride film can be used to develop a tiny, low cost and film-coated optical fiber temperature sensor. Pulse reference-based compensation technique is used to largely reduce the background noise which makes it possible to detect the minor reflectivity change of the film in different temperatures. The temperature sensitivity is 0.0034dB/° and the background noise is measured to be 0.0005dB, so the resolution can achieve 0.2°.

  15. Study of nuclear level density parameter and its temperature dependence

    International Nuclear Information System (INIS)

    Nasrabadi, M. N.; Behkami, A. N.

    2000-01-01

    The nuclear level density ρ is the basic ingredient required for theoretical studies of nuclear reaction and structure. It describes the statistical nuclear properties and is expressed as a function of various constants of motion such as number of particles, excitation energy and angular momentum. In this work the energy and spin dependence of nuclear level density will be presented and discussed. In addition the level density parameter α will be extracted from this level density information, and its temperature and mass dependence will be obtained

  16. On the Temperature Dependence of the UNIQUAC/UNIFAC Models

    DEFF Research Database (Denmark)

    Skjold-Jørgensen, Steen; Rasmussen, Peter; Fredenslund, Aage

    1980-01-01

    of the simultaneous correlation. The temperature dependent parameters have, however, little physical meaning and very odd results are frequently obtained when the interaction parameters obtained from excess enthalpy information alone are used for the prediction of vapor-liquid equilibria. The UNIQUAC/UNIFAC models...... are modified in this work by the introduction of a general temperature dependence of the coordination number. The modified UNIQUAC/UNIFAC models are especially suited for the representation of mixtures containing non-associating components. The modified models contain the same number of interaction parameters...... parameters based on excess enthalpy data, and the prediction of excess enthalpy information from only one isothermal set of vapor-liquid equilibrium data is qualitatively acceptable. A parameter table for the modified UNIFAC model is given for the five main groups: CH2, C = C, ACH, ACCH2 and CH2O....

  17. Temperature dependence of carrier capture by defects in gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Wampler, William R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Modine, Normand A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    This report examines the temperature dependence of the capture rate of carriers by defects in gallium arsenide and compares two previously published theoretical treatments of this based on multi phonon emission (MPE). The objective is to reduce uncertainty in atomistic simulations of gain degradation in III-V HBTs from neutron irradiation. A major source of uncertainty in those simulations is poor knowledge of carrier capture rates, whose values can differ by several orders of magnitude between various defect types. Most of this variation is due to different dependence on temperature, which is closely related to the relaxation of the defect structure that occurs as a result of the change in charge state of the defect. The uncertainty in capture rate can therefore be greatly reduced by better knowledge of the defect relaxation.

  18. Temperature dependence of magnetic anisotropies in ultra-thin films

    CERN Document Server

    Hucht, A

    1999-01-01

    shown that in contrast to other works the temperature driven spin reorientation transition in the monolayer is discontinuous also in the simulations, whereas in general it is continuous for the bilayer. Consequently the molecular field theory and the Monte Carlo simulations agree qualitatively. Exemplary for thicker films the influence of an external magnetic field is investigated in the bilayer, furthermore the effective anisotropies K sub n (T) of the phenomenological Landau theory are calculated numerically for the microscopic model. Analytic expressions for the dependence of the anisotropies K sub n (T) on the parameters of the model are obtained by the means of perturbation theory, which lead to a deeper understanding of the spin reorientation transition. Accordingly to this the origin for the spin reorientation transition lies in the differing temperature dependence of the dipolar and spin-orbit parts of the K sub n (T). Additionally the magnetization in the surface of the film decreases more rapidly wi...

  19. Temperature dependence of muonium reaction rates in the gas phase

    International Nuclear Information System (INIS)

    Fleming, D.G.; Garner, D.M.; Mikula, R.J.; British Columbia Univ., Vancouver

    1981-01-01

    A study of the temperature dependence of reaction rates has long been an important tool in establishing reaction pathways in chemical reactions. This is particularly true for the reactions of muonium (in comparison with those of hydrogen) since a measurement of the activation energy for chemical reaction is sensitive to both the height and the position of the potential barrier in the reaction plane. For collision controlled reactions, on the other hand, the reaction rate is expected to exhibit a weak T 1 sup(/) 2 dependence characteristic of the mean collision velocity. These concepts are discussed and their effects illustrated in a comparison of the chemical and spin exchange reaction rates of muonium and hydrogen in the temperature range approx.300-approx.500 K. (orig.)

  20. Temperature Dependence of Lattice Dynamics of Lithium 7

    DEFF Research Database (Denmark)

    Beg, M. M.; Nielsen, Mourits

    1976-01-01

    parameter is found to be 3.490 ± 0.003 Å at 110 K and 3.537 ± 0.003 Å at 424 K. The elastic constants obtained at 293 K from the model parameters are (1011 dyn/cm2) C11=1.73±0.10, C12=1.31±0.20, and C44=0.84±0.060. The temperature dependence of elastic constants is also determined....... 10% smaller than those at 100 K. Temperature dependences of selected phonons have been studied from 110 K to near the melting point. The energy shifts and phonon linewidths have been evaluated at 293, 383, and 424 K by comparing the widths and energies to those measured at 110 K. The lattice...

  1. On the urban heat island effect dependence on temperature trends

    International Nuclear Information System (INIS)

    Camilloni, I.; Barros, V.

    1997-01-01

    For US, Argentine and Australian cities, yearly mean urban to rural temperature differences (ΔT u-r ) and rural temperatures (T r ) are negatively correlated in almost every case, suggesting that urban heat island intensity depends, among other parameters on the temperature itself. This negative correlation is related to the fact that interannual variability of temperature is generally lower in urban environments than in rural areas. This seems to hold true at low frequencies leading to opposite trends in the two variables. Hence, urban stations are prone to have lower trends in absolute value than rural ones. Therefore, regional data sets including records from urban locations, in addition to urban growth bias may have a second type of urban bias associated with temperature trends. A bulk estimate of this second urban bias trend for the contiguous United States during 1901-1984 indicates that it could be of the same order as the urban growth bias and of opposite sign. If these results could be extended to global data, it could be expected that the spurious influence of urban growth on global temperature trends during warming periods will be offset by the diminishing of the urban heat island intensity. 36 refs., 7 figs., 2 tabs

  2. Temperature-Dependent Conformations of Model Viscosity Index Improvers

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Uma Shantini; Cosimbescu, Lelia; Martini, Ashlie

    2015-05-01

    Lubricants are comprised of base oils and additives where additives are chemicals that are deliberately added to the oil to enhance properties and inhibit degradation of the base oils. Viscosity index (VI) improvers are an important class of additives that reduce the decline of fluid viscosity with temperature [1], enabling optimum lubricant performance over a wider range of operating temperatures. These additives are typically high molecular weight polymers, such as, but not limited to, polyisobutylenes, olefin copolymer, and polyalkylmethacrylates, that are added in concentrations of 2-5% (w/w). Appropriate polymers, when dissolved in base oil, expand from a coiled to an uncoiled state with increasing temperature [2]. The ability of VI additives to increase their molar volume and improve the temperature-viscosity dependence of lubricants suggests there is a strong relationship between molecular structure and additive functionality [3]. In this work, we aim to quantify the changes in polymer size with temperature for four polyisobutylene (PIB) based molecular structures at the nano-scale using molecular simulation tools. As expected, the results show that the polymers adopt more conformations at higher temperatures, and there is a clear indication that the expandability of a polymer is strongly influenced by molecular structure.

  3. Temperature dependent kinematic viscosity of different types of engine oils

    Directory of Open Access Journals (Sweden)

    Libor Severa

    2009-01-01

    Full Text Available The objective of this study is to measure how the viscosity of engine oil changes with temperature. Six different commercially distributed engine oils (primarily intended for motorcycle engines of 10W–40 viscosity grade have been evaluated. Four of the oils were of synthetic type, two of semi–synthetic type. All oils have been assumed to be Newtonian fluids, thus flow curves have not been determined. Oils have been cooled to below zero temperatures and under controlled temperature regulation, kinematic viscosity (mm2 / s have been measured in the range of −5 °C and +115 °C. Anton Paar digital viscometer with concentric cylinders geometry has been used. In accordance with expected behavior, kinematic viscosity of all oils was decreasing with increasing temperature. Viscosity was found to be independent on oil’s density. Temperature dependence has been modeled using se­ve­ral mathematical models – Vogel equation, Arrhenius equation, polynomial, and Gaussian equation. The best match between experimental and computed data has been achieved for Gaussian equation (R2 = 0.9993. Knowledge of viscosity behavior of an engine oil as a function of its temperature is of great importance, especially when considering running efficiency and performance of combustion engines. Proposed models can be used for description and prediction of rheological behavior of engine oils.

  4. Temperature dependence studies on the electro-oxidation of ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Temperature dependence on the electro-oxidation of methanol, ethanol and 1-propanol in. 0⋅5 M H2SO4 were investigated with Pt and PtRu electrodes. Tafel slope and apparent activation energy were evaluated from the cyclic voltammetric data in the low potential region (0⋅3–0⋅5 V vs SHE). The. CV results ...

  5. Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co{sub 3}O{sub 4}-PVA/p-Si structures

    Energy Technology Data Exchange (ETDEWEB)

    Bilkan, Çiğdem, E-mail: cigdembilkan@gmail.com [Department of Physics, Faculty of Sciences, The University of Çankırı Karatekin, 18100 Çankırı (Turkey); Azizian-Kalandaragh, Yashar [Department of Physics, Faculty of Science, The University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Altındal, Şemsettin [Department of Physics, Faculty of Sciences, The University of Gazi, 06500 Ankara (Turkey); Shokrani-Havigh, Roya [Department of Physics, Faculty of Science, The University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of)

    2016-11-01

    In this research a simple microwave-assisted method have been used for preparation of cobalt oxide nanostructures. The as-prepared sample has been investigated by UV–vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM). On the other hand, frequency and voltage dependence of both the real and imaginary parts of dielectric constants (ε′, ε″) and electric modulus (M′ and M″), loss tangent (tanδ), and ac electrical conductivity (σ{sub ac}) values of Al/Co{sub 3}O{sub 4}-PVA/p-Si structures were obtained in the wide range of frequency and voltage using capacitance (C) and conductance (G/ω) data at room temperature. The values of ε′, ε″ and tanδ were found to decrease with increasing frequency almost for each applied bias voltage, but the changes in these parameters become more effective in the depletion region at low frequencies due to the charges at surface states and their relaxation time and polarization effect. While the value of σ is almost constant at low frequency, increases almost as exponentially at high frequency which are corresponding to σ{sub dc} and σ{sub ac}, respectively. The M′ and M″ have low values at low frequencies region and then an increase with frequency due to short-range mobility of charge carriers. While the value of M′ increase with increasing frequency, the value of M″ shows two peak and the peaks positions shifts to higher frequency with increasing applied voltage due to the decrease of the polarization and N{sub ss} effects with increasing frequency.

  6. Density of biogas digestate depending on temperature and composition.

    Science.gov (United States)

    Gerber, Mandy; Schneider, Nico

    2015-09-01

    Density is one of the most important physical properties of biogas digestate to ensure an optimal dimensioning and a precise design of biogas plant components like stirring devices, pumps and heat exchangers. In this study the density of biogas digestates with different compositions was measured using pycnometers at ambient pressure in a temperature range from 293.15 to 313.15K. The biogas digestates were taken from semi-continuous experiments, in which the marine microalga Nannochloropsis salina, corn silage and a mixture of both were used as feedstocks. The results show an increase of density with increasing total solid content and a decrease with increasing temperature. Three equations to calculate the density of biogas digestate were set up depending on temperature as well as on the total solid content, organic composition and elemental composition, respectively. All correlations show a relative deviation below 1% compared to experimental data. Copyright © 2015. Published by Elsevier Ltd.

  7. Temperature-dependent particle-number projected moment of inertia

    International Nuclear Information System (INIS)

    Allal, N. H.; Fellah, M.; Benhamouda, N.; Oudih, M. R.

    2008-01-01

    Expressions of the parallel and perpendicular temperature-dependent particle-number projected nuclear moment of inertia have been established by means of a discrete projection method. They generalize that of the FTBCS method and are well adapted to numerical computation. The effects of particle-number fluctuations have been numerically studied for some even-even actinide nuclei by using the single-particle energies and eigenstates of a deformed Woods-Saxon mean field. It has been shown that the parallel moment of inertia is practically not modified by the use of the projection method. In contrast, the discrepancy between the projected and FTBCS perpendicular moment of inertia values may reach 5%. Moreover, the particle-number fluctuation effects vary not only as a function of the temperature but also as a function of the deformation for a given temperature. This is not the case for the system energy

  8. Heat experiment design to estimate temperature dependent thermal properties

    International Nuclear Information System (INIS)

    Romanovski, M

    2008-01-01

    Experimental conditions are studied to optimize transient experiments for estimating temperature dependent thermal conductivity and volumetric heat capacity. A mathematical model of a specimen is the one-dimensional heat equation with boundary conditions of the second kind. Thermal properties are assumed to vary nonlinearly with temperature. Experimental conditions refer to the thermal loading scheme, sampling times and sensor location. A numerical model of experimental configurations is studied to elicit the optimal conditions. The numerical solution of the design problem is formulated on a regularization scheme with a stabilizer minimization without a regularization parameter. An explicit design criterion is used to reveal the optimal sensor location, heating duration and flux magnitude. Results obtained indicate that even the strongly nonlinear experimental design problem admits the aggregation of its solution and has a strictly defined optimal measurement scheme. Additional region of temperature measurements with allowable identification error is revealed.

  9. Magnetoresistance of a Low-k Dielectric

    Science.gov (United States)

    McGowan, Brian Thomas

    Low-k dielectrics have been incorporated into advanced computer chip technologies as a part of the continuous effort to improve computer chip performance. One drawback associated with the implementation of low-k dielectrics is the large leakage current which conducts through the material, relative to silica. Another drawback is that the breakdown voltage of low-k dielectrics is low, relative to silica [1]. This low breakdown voltage makes accurate reliability assessment of the failure mode time dependent dielectric breakdown (TDDB) in low-k dielectrics critical for the successful implementation of these materials. The accuracy with which one can assess this reliability is currently a topic of debate. These material drawbacks have motivated the present work which aims both to contribute to the understanding of electronic conduction mechanisms in low-k dielectrics, and to improve the ability to experimentally characterize changes which occur within the material prior to TDDB failure. What follows is a study of the influence of an applied magnetic field on the conductivity of a low-k dielectric, or in other words, a study of the material's magnetoresistance. This study shows that low-k dielectrics used as intra-level dielectrics exhibit a relatively large negative magnetoresistance effect (˜2%) at room temperature and with modest applied magnetic fields (˜100 Oe). The magnetoresistance is attributed to the spin dependence of trapping electrons from the conduction band into localized electronic sites. Mixing of two-electron spin states via interactions between electron spins and the the spins of hydrogen nuclei is suppressed by an applied magnetic field. As a result, the rate of trapping is reduced, and the conductivity of the material increases. This study further demonstrates that the magnitude of the magnetoresistance changes as a function of time subjected to electrical bias and temperature stress. The rate that the magnetoresistance changes correlates to the

  10. Temperature Dependent Cyclic Deformation Mechanisms in Haynes 188 Superalloy

    Science.gov (United States)

    Rao, K. Bhanu Sankara; Castelli, Michael G.; Allen, Gorden P.; Ellis, John R.

    1995-01-01

    The cyclic deformation behavior of a wrought cobalt-base superalloy, Haynes 188, has been investigated over a range of temperatures between 25 and 1000 C under isothermal and in-phase thermomechanical fatigue (TMF) conditions. Constant mechanical strain rates (epsilon-dot) of 10(exp -3)/s and 10(exp -4)/s were examined with a fully reversed strain range of 0.8%. Particular attention was given to the effects of dynamic strain aging (DSA) on the stress-strain response and low cycle fatigue life. A correlation between cyclic deformation behavior and microstructural substructure was made through detailed transmission electron microscopy. Although DSA was found to occur over a wide temperature range between approximately 300 and 750 C the microstructural characteristics and the deformation mechanisms responsible for DSA varied considerably and were dependent upon temperature. In general, the operation of DSA processes led to a maximum of the cyclic stress amplitude at 650 C and was accompanied by pronounced planar slip, relatively high dislocation density, and the generation of stacking faults. DSA was evidenced through a combination of phenomena, including serrated yielding, an inverse dependence of the maximum cyclic hardening with epsilon-dot, and an instantaneous inverse epsilon-dot sensitivity verified by specialized epsilon-dot -change tests. The TMF cyclic hardening behavior of the alloy appeared to be dictated by the substructural changes occuring at the maximum temperature in the TMF cycle.

  11. Temperature-dependent transport properties of FeRh

    Science.gov (United States)

    Mankovsky, S.; Polesya, S.; Chadova, K.; Ebert, H.; Staunton, J. B.; Gruenbaum, T.; Schoen, M. A. W.; Back, C. H.; Chen, X. Z.; Song, C.

    2017-04-01

    The finite-temperature transport properties of FeRh compounds are investigated by first-principles density-functional-theory-based calculations. The focus is on the behavior of the longitudinal resistivity with rising temperature, which exhibits an abrupt decrease at the metamagnetic transition point, T =Tm , between ferro- and antiferromagnetic phases. A detailed electronic structure investigation for T ≥0 K explains this feature and demonstrates the important role of (i) the difference of the electronic structure at the Fermi level between the two magnetically ordered states and (ii) the different degree of thermally induced magnetic disorder in the vicinity of Tm, giving different contributions to the resistivity. To support these conclusions, we also describe the temperature dependence of the spin-orbit-induced anomalous Hall resistivity and Gilbert damping parameter. For the various response quantities considered, the impact of thermal lattice vibrations and spin fluctuations on their temperature dependence is investigated in detail. Comparison with corresponding experimental data shows, in general, very good agreement.

  12. On the Dielectric Study of Se80- x Te20Pb x ( x = 0, 1 and 2) Glasses

    Science.gov (United States)

    Thakur, Anjali; Patial, Balbir Singh; Thakur, Nagesh

    2017-03-01

    In the present paper, the dielectric parameters such as the dielectric constant ɛ'( ω), dielectric loss ɛ″( ω) and alternating current (ac) conductivity have been investigated for bulk amorphous chalcogenide Se80- x Te20Pb x ( x = 0, 1 and 2) glasses in the frequency range 10 Hz to 500 kHz and within the temperature range from 300 K to 320 K. Dielectric constant ɛ'( ω) and dielectric loss ɛ″( ω) are found to be highly frequency ( ω) and temperature dependent, and this behavior is interpreted on the basis of Guintini's theory of dielectric dispersion. The ac conductivity ( σ ac) is found to be temperature independent and obey the power law ω s , where s ac conductivity are also discussed and reported here.

  13. Temperature dependent conformation studies of Calmodulin Protein using Molecular Dynamics

    Science.gov (United States)

    Aneja, Sahil; Bhartiya, Vivek Kumar; Negi, Sunita

    2016-10-01

    Calmodulin (CaM) protein plays a very crucial role in the calcium signaling inside the eukaryotic cell structure [1, 2]. It can also bind to other proteins/targets and facilitate various activities inside the cell [3, 4]. Temperature dependent conformation changes in the CaM protein are studied with extensive molecular dynamics simulations. The quantitative comparison of simulation data with various forms of experimental results probing different aspects of the folding process can facilitate robust assessment of the accuracy of the calculations. It can also provide a detailed structural interpretation for the experimental observations as well as physical interpretation for theory behind different aspects of the experiment. Earlier these kinds of studies have been performed experimentally using fluorescence measurements as in [5]. The calcium bound form of CaM is observed to undergo a reversible conformation change in the range 295-301 K at calcium ion concentration 150 mM. The transition temperature was observed to depend on the calcium ion concentration of the protein. Leap-dynamics approach was used earlier to study the temperature dependent conformation change of CaM [6]. At 290 K, both the N- and C-lobes were stable, at 325 K, the C-lobe unfolds whereas at 360 both the lobes unfold [6]. In this work, we perform molecular dynamics simulations of 100 ns each for the temperatures 325 K and 375 K on the apo form of CaM, 3CLN and 1CFD. A remarkable dependence of the temperature is observed on the overall dynamics of both the forms of the protein as reported in our earlier study [7, 8]. 1CFD shows a much flexible linker as compared to 3CLN whereas the overall dynamics of the lobes mainly N-lobe is observed to be more in later case. Salt bridge formation between the residues 2 (ASP) and 148 (LYS) leads to a more compact form of 1CFD at 325 K. The unfolding of the protein is observed to increase with the increase in the temperature similar to the earlier reported

  14. Polymer/metal multi-layers structured composites: A route to high dielectric constant and suppressed dielectric loss

    Science.gov (United States)

    Feng, Yu; Li, Meng-Lu; Li, Wei-Li; Zhang, Tian-Dong; Zhao, Yu; Fei, Wei-Dong

    2018-01-01

    In order to obtain polymer-based composites with a high dielectric constant and suppressed dielectric loss, polyvinylidene fluoride (PVDF)/silver (Ag) multi-layer structured composites were fabricated via vacuum evaporation and hot-press methods. The dielectric constant of the PVDF/Ag(5/4) composite (including five PVDF layers and four Ag layers) is up to 31, and dielectric loss can be suppressed below 0.02 (smaller than that of pure PVDF) at 1 kHz. The enhanced interfacial polarization in multi-layer structured composites is determined via temperature dependence of electrical modulus, which is regarded as the origin of dielectric constant enhancement. The suppressed dielectric loss at low frequency is attributed to the difficulty in the formation of a percolation conductive network in this multi-layer system. This promising multi-layer strategy could be generalized to a variety of polymers to develop polymer-based composites with a high dielectric constant and low dielectric loss.

  15. Dielectric Constant Measurements of Solid 4He

    Science.gov (United States)

    Yin, L.; Xia, J. S.; Huan, C.; Sullivan, N. S.; Chan, M. H. W.

    2011-03-01

    Careful measurements of the dielectric properties of solid 4He have been carried out down to 35 mK, considerably lower than the temperature range of previous studies. The sample was prepared from high purity gas with 3He concentrations of the order of 200 ppb and were formed by the blocked capillary method. The molar volume of the sample was 20.30 cm3. The dielectric constant of the samples was found to be independent of temperature down to 120 mK before showing a continuous increase with decreasing temperature and saturating below 50 mK. The total increase in ɛ is 2 parts in 10-5. The temperature dependence of ɛ mimics the increase in the resonant frequency found in the torsional oscillator studies and also the increase found in the shear modulus measurements.

  16. Temperature dependence of the inverted regime electron transfer kinetics of betaine-30 and the role of molecular modes

    Science.gov (United States)

    Akesson, Eva; Johnson, Alan E.; Walker, Gilbert C.; Levinger, Nancy E.; Dubruil, Thomas P.

    1992-05-01

    The inverted regime photoinduced electron transfer kinetics of betaine-30 have been investigated over a broad temperature range, revealing very little temperature dependence. For example, for betaine-30 in a polystyrene film, the electron transfer rate constant, k(sub ET) changes by less than a factor of 3 from T = 293 K to T = 34 K. The results are in striking contrast to predictions of contemporary electron transfer theories which employ classical nuclear modes to accept some or all of the energy of the electron transfer event. The comparison of theory and experiment for the betaines demonstrates that a full quantum mechanical theory is necessary to accurately describe the electron transfer kinetics of the betaines in environments with slow dielectric relaxation. The conclusions drawn for the betaines may also apply to other molecular examples of inverted regime electron transfer in slowly relaxing environments.

  17. Nb-Doped 0.8BaTiO3-0.2Bi(Mg0.5Ti0.5O3 Ceramics with Stable Dielectric Properties at High Temperature

    Directory of Open Access Journals (Sweden)

    Feng Si

    2017-06-01

    Full Text Available Nb-doped 0.8BaTiO3-0.2Bi(Mg0.5Ti0.5O3 ceramics were prepared by conventional solid-state method. The dielectric properties and the structural properties were investigated. When Nb2O5 is doped into 0.8BT-0.2BMT system, a small amount of Ba4Ti12O27 secondary phase is formed. The lattice parameters gradually increase with the Nb2O5 doping. It is found that the temperature-capacitance characteristics greatly depend on Nb2O5 content. With the addition of 3.0 mol% Nb2O5, a 0.8BT-0.2BMT ceramic sample could satisfy the EIA X9R specification. This material is promising for high-temperature MLCC application.

  18. The Temperature Condition of the Plate with Temperature-Dependent Thermal Conductivity and Energy Release

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2016-01-01

    Full Text Available The temperature state of a solid body, in addition to the conditions of its heat exchange with the environment, can greatly depend on the heat release (or heat absorption processes within the body volume. Among the possible causes of these processes should be noted such as a power release in the fuel elements of nuclear reactors, exothermic or endothermic chemical reactions in the solid body material, which respectively involve heat release or absorbtion, heat transfer of a part of the electric power in the current-carrying conductors (so-called Joule’s heat or the energy radiation penetrating into the body of a semitransparent material, etc. The volume power release characterizes an intensity of these processes.The extensive list of references to the theory of heat conductivity of solids offers solutions to problems to determine a stationary (steady over time and non-stationary temperature state of the solids (as a rule, of the canonical form, which act as the sources of volume power release. Thus, in general case, a possibility for changing power release according to the body volume and in solving the nonstationary problems also a possible dependence of this value on the time are taken into consideration.However, in real conditions the volume power release often also depends on the local temperature, and such dependence can be nonlinear. For example, with chemical reactions the intensity of heat release or absorption is in proportion to their rate, which, in turn, is sensitive to the temperature value, and a dependence on the temperature is exponential. A further factor that in such cases makes the analysis of the solid temperature state complicated, is dependence on the temperature and the thermal conductivity of this body material, especially when temperature distribution therein  is significantly non-uniform. Taking into account the influence of these factors requires the mathematical modeling methods, which allow us to build an adequate

  19. Dielectric Behavior of Low Microwave Loss Unit Cell for All Dielectric Metamaterial

    Directory of Open Access Journals (Sweden)

    Tianhuan Luo

    2015-01-01

    Full Text Available With a deep study of the metamaterial, its unit cells have been widely extended from metals to dielectrics. The dielectric based unit cells attract much attention because of the advantage of easy preparation, tunability, and higher frequency response, and so forth. Using the conventional solid state method, we prepared a kind of incipient ferroelectrics (calcium titanate, CaTiO3 with higher microwave permittivity and lower loss, which can be successfully used to construct metamaterials. The temperature and frequency dependence of dielectric constant are also measured under different sintering temperatures. The dielectric spectra showed a slight permittivity decrease with the increase of temperature and exhibited a loss of 0.0005, combined with a higher microwave dielectric constant of ~167 and quality factor Q of 2049. Therefore, CaTiO3 is a kind of versatile and potential metamaterial unit cell. The permittivity of CaTiO3 at higher microwave frequency was also examined in the rectangular waveguide and we got the permittivity of 165, creating a new method to test permittivity at higher microwave frequency.

  20. Determination of temperature dependency of material parameters for lead-free alkali niobate piezoceramics by the inverse method

    Directory of Open Access Journals (Sweden)

    K. Ogo

    2016-06-01

    Full Text Available Sodium potassium niobate (NKN piezoceramics have been paid much attention as lead-free piezoelectric materials in high temperature devices because of their high Curie temperature. The temperature dependency of their material parameters, however, has not been determined in detail up to now. For this purpose, we exploit the so-called Inverse Method denoting a simulation-based characterization approach. Compared with other characterization methods, the Inverse Method requires only one sample shape of the piezoceramic material and has further decisive advantages. The identification of material parameters showed that NKN is mechanically softer in shear direction compared with lead zirconate titanate (PZT at room temperature. The temperature dependency of the material parameters of NKN was evaluated in the temperature range from 30 °C to 150 °C. As a result, we figured out that dielectric constants and piezoelectric constants show a monotonous and isotropic increment with increasing temperature. On the other hand, elastic stiffness constant c 44 E of NKN significantly decreased in contrast to other elastic stiffness constants. It could be revealed that the decrement of c 44 E is associated with an orthorhombic-tetragonal phase transition. Furthermore, ratio of elastic compliance constants s 44 E / s 33 E exhibited similar temperature dependent behavior to the ratio of piezoelectric constants d15/d33. It is suspected that mechanical softness in shear direction is one origin of the large piezoelectric shear mode of NKN. Our results show that NKN are suitable for high temperature devices, and that the Inverse Method should be a helpful approach to characterize material parameters under their practical operating conditions for NKN.

  1. Structure and temperature dependent electrical properties of lead-free Bi0.5Na0.5TiO3- SrZrO3 ceramics

    Science.gov (United States)

    Maqbool, Adnan; Rahman, Jamil ur; Hussain, Ali; Park, Jong Kyu; Gone Park, Tae; Song, Jae Sung; Kim, Myong Ho

    2014-06-01

    Lead-free SrZrO3-modified Bi0.5Na0.5TiO3 (BNT-SZ) ceramics were fabricated by a conventional solid state reaction method. X-ray diffraction analysis reveals a pure perovskite phase without any traces of secondary phases. Scanning electron microscopy images depicts dense grain morphology. The temperature dependences of the dielectric behavior was measured in the temperature range of 50-500 °C at 100 kHz. With the increase in SZ content, the dielectric constant (ɛr) constantly decreased and the maximum dielectric constant temperature (Tm) shifted towards lower temperatures. In addition to this, ferroelectric hysteresis loops indicated a disruption of ferroelectric order and increase in the relaxor character of BNT ceramics with increase in SZ concentration. A maximum values of remnant polarization (32 μC/cm2) and piezoelectric constant (100 pC/N) were observed at SZ5 and SZ4, respectively.

  2. Temperature dependent dynamic susceptibility calculations for itinerant ferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, J. F.

    1980-10-01

    Inelastic neutron scattering experiments have revealed a variety of interesting and unusual phenomena associated with the spin dynamics of the 3-d transition metal ferromagnets nickel and iron. An extensive series of calculations based on the itinerant electron formalism has demonstrated that the itinerant model does provide an excellent quantitative as well as qualitative description of the measured spin dynamics of both nickel and iron at low temperatures. Recent angular photo emission experiments have indicated that there is a rather strong temperature dependence of the electronic spin-splitting which, from relatively crude arguments, appears to be inconsistent with neutron scattering results. In order to investigate this point and also the origin of spin-wave renormalization, a series of calculations of the dynamic susceptibility of nickel and iron has been undertaken. The results of these calculations indicate that a discrepancy exists between the interpretations of neutron and photoemission experimental results regarding the temperature dependence of the spin-splitting of the electronic energy bands.

  3. Temperature-dependent photoluminescence from CdS/Si nanoheterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yue Li; Li, Yong; Ji, Peng Fei; Zhou, Feng Qun; Sun, Xiao Jun; Yuan, Shu Qing; Wan, Ming Li [Pingdingshan University, Department of Physics, Solar New Energy Research Center, Pingdingshan (China); Ling, Hong [North China University of Water Resources and Electric Power, Department of Mathematics and Information Science, Zhengzhou (China)

    2016-12-15

    CdS/Si nanoheterojunctions have been fabricated by growing nanocrystal CdS (nc-CdS) on the silicon nanoporous pillar array (Si-NPA) through using a chemical bath deposition method. The nanoheterojunctions have been constructed by three layers: the upper layer being a nc-CdS thin films, the intermediate layer being the interface region including nc-CdS and nanocrystal silicon (nc-Si), and the bottom layer being nc-Si layer grown on sc-Si substrate. The room temperature and temperature-dependent photoluminescence (PL) have been measured and analyzed to provide some useful information of defect states. Utilizing the Gauss-Newton fitting method, five emission peaks from the temperature-dependent PL spectra can be determined. From the high energy to low energy, these five peaks are ascribed to the some luminescence centers which are formed by the oxygen-related deficiency centers in the silicon oxide layer of Si-NPA, the band gap emission of nc-CdS, the transition from the interstitial cadmium (I{sub Cd}) to the valence band, the recombination from I{sub Cd} to cadmium vacancies (V{sub Cd}), and from sulfur vacancies (V{sub s}) to the valence band, respectively. Understanding of the defect states in the CdS/Si nanoheterojunctions is very meaningful for the performance of devices based on CdS/Si nanoheterojunctions. (orig.)

  4. Temperature-dependent magnetic EXAFS investigation of Gd

    CERN Document Server

    Wende, H; Poulopoulos, P N; Rogalev, A; Goulon, J; Schlagel, D L; Lograsso, T A; Baberschke, K

    2001-01-01

    Magnetic EXAFS (MEXAFS) is the helicity-dependent counterpart of the well-established EXAFS technique. By means of MEXAFS it is possible not only to analyze the local magnetic structure but also to learn about magnetic fluctuations. Here we present the MEXAFS of a Gd single crystal at the L sub 3 sub , sub 2 -edges in the temperature range of 10-250 K. For the first time MEXAFS was probed over a large range in reduced temperature of 0.04<=T/T sub C<=0.85 with T sub C =293 K. We show that the vibrational damping described by means of a Debye temperature of theta sub D =160 K must be taken into account for the spin-dependent MEXAFS before analyzing magnetic fluctuations. For a detailed analysis of the MEXAFS and the EXAFS, the experimental data are compared to ab initio calculations. This enables us to separate the individual single- from the multiple-scattering contributions. The MEXAFS data have been recorded at the ID 12A beamline of the European Synchrotron Radiation Facility (ESRF). To ensure that th...

  5. Thermal Experimental Analysis for Dielectric Characterization of High Density Polyethylene Nanocomposites

    Directory of Open Access Journals (Sweden)

    Ahmed Thabet Mohamed

    2016-01-01

    Full Text Available The importance of nanoparticles in controlling physical properties of polymeric nanocomposite materials leads us to study effects of these nanoparticles on electric and dielectric properties of polymers in industry In this research, the dielectric behaviour of High-Density Polyethylene (HDPE nanocomposites materials that filled with nanoparticles of clay or fumed silica has been investigated at various frequencies (10 Hz-1 kHz and temperatures (20-60°C. Dielectric spectroscopy has been used to characterize ionic conduction, then, the effects of nanoparticles concentration on the dielectric losses and capacitive charge of the new nanocomposites can be stated. Capacitive charge and loss tangent in high density polyethylene nanocomposites are measured by dielectric spectroscopy. Different dielectric behaviour has been observed depending on type and concentration of nanoparticles under variant thermal conditions.

  6. Study on temperature-dependent carrier transport for bilayer graphene

    Science.gov (United States)

    Liu, Yali; Li, Weilong; Qi, Mei; Li, Xiaojun; Zhou, Yixuan; Ren, Zhaoyu

    2015-05-01

    In order to investigate the temperature-dependent carrier transport property of the bilayer graphene, graphene films were synthesized on Cu foils by a home-built chemical vapor deposition (CVD) with C2H2. Samples regularity, transmittance (T) and layer number were analyzed by transmission electron microscope (TEM) images, transmittance spectra and Raman spectra. Van Der Pauw method was used for resistivity measurements and Hall measurements at different temperatures. The results indicated that the sheet resistance (Rs), carrier density (n), and mobility (μ) were 1096.20 Ω/sq, 0.75×1012 cm-2, and 7579.66 cm2 V-1 s-1 at room temperature, respectively. When the temperature increased from 0 °C to 240 °C, carrier density (n) increased from 0.66×1012 cm-2 to 1.55×1012 cm-2, sheet resistance (Rs) decreased from 1215.55 Ω/sq to 560.77 Ω/sq, and mobility (μ) oscillated around a constant value 7773.99 cm2 V-1 s-1. The decrease of the sheet resistance (Rs) indicated that the conductive capability of the bilayer graphene film increased with the temperature. The significant cause of the increase of carrier density (n) was the thermal activation of carriers from defects and unconscious doping states. Because the main influence on the carrier mobility (μ) was the lattice defect scattering and a small amount of impurity scattering, the carrier mobility (μ) was temperature-independent for the bilayer graphene.

  7. Dielectric properties of PLZT-x/65/35 (2≤x≤13 under mechanical stress, electric field and temperature loading

    Directory of Open Access Journals (Sweden)

    K. Pytel

    2013-01-01

    Full Text Available We investigated the effect of uniaxial pressure (0÷1000 bars applied parallely to the ac electric field on dielectric properties of PLZT-x/65/35 (2≤x≤13 ceramics. There was revealed a significant effect of the external stress on these properties. The application of uniaxial pressure leads to the change of the peak intensity of the electric permittivity (ϵ, of the frequency dispersion as well as of the dielectric hysteresis. The peak intensity ϵ becomes diffused/sharpened and shifts to a higher/lower temperatures with increasing the pressure. It was concluded that the application of uniaxial pressure induces similar effects as increasing the Ti ion concentration in PZT system. We interpreted our results based on the domain switching processes under the action of combined electromechanical loading.

  8. Effect of BaCu(B2O5) additive on the sintering temperature and microwave dielectric properties of BaTi4O9 ceramics

    International Nuclear Information System (INIS)

    Lim, Jong-Bong; Kim, Min-Han; Kim, Jae-Chul; Nahm, Sahn; Paik, Jong-Hoo; Kim, Jong-Hee

    2006-01-01

    BaCu(B 2 O 5 ) (BCB) additive was used to decrease the sintering temperature of the BaTi 4 O 9 ceramics. The amount of Ba 4 Ti 13 O 30 second phase increased with the addition of BCB, whereas that of the BaTi 4 O 9 phase decreased. The bulk density and dielectric constant (ε γ ) considerably increased with the addition of BCB. An increase in the Q-value was also observed for the BaTi 4 O 9 ceramics with a small amount of BCB. Good microwave dielectric properties with values of ε γ =32, Q x f 10800 GHz and τ f =32 ppm/degC were obtained in the BaTi 4 O 9 ceramics with 12.0 mol% of BCB sintered at 875degC for 2h. (author)

  9. Temperature dependencies of Henry's law constants for different plant sesquiterpenes.

    Science.gov (United States)

    Copolovici, Lucian; Niinemets, Ülo

    2015-11-01

    Sesquiterpenes are plant-produced hydrocarbons with important ecological functions in plant-to-plant and plant-to-insect communication, but due to their high reactivity they can also play a significant role in atmospheric chemistry. So far, there is little information of gas/liquid phase partition coefficients (Henry's law constants) and their temperature dependencies for sesquiterpenes, but this information is needed for quantitative simulation of the release of sesquiterpenes from plants and modeling atmospheric reactions in different phases. In this study, we estimated Henry's law constants (Hpc) and their temperature responses for 12 key plant sesquiterpenes with varying structure (aliphatic, mono-, bi- and tricyclic sesquiterpenes). At 25 °C, Henry's law constants varied 1.4-fold among different sesquiterpenes, and the values were within the range previously observed for monocyclic monoterpenes. Hpc of sesquiterpenes exhibited a high rate of increase, on average ca. 1.5-fold with a 10 °C increase in temperature (Q10). The values of Q10 varied 1.2-fold among different sesquiterpenes. Overall, these data demonstrate moderately high variation in Hpc values and Hpc temperature responses among different sesquiterpenes. We argue that these variations can importantly alter the emission kinetics of sesquiterpenes from plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Temperature-dependent chemical changes of metallic fuel

    Energy Technology Data Exchange (ETDEWEB)

    Youn, Young Sang; Lee, Jeong Mook; KimJong Hwan; Song, Hoon; Kim, Jong Yun [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    We observed the temperature-dependent variations of UZr alloy using surface analysis techniques such as X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffraction (XRD), and scanning electron microscope (SEM) equipped with energy-dispersive Xray spectroscope (EDS). In this work, we exhibited the results of XPS, Raman, XRD, and SEM-EDS for U-10wt%Zr alloy at room temperature, 610 and 1130 .deg. C. In SEM-EDS data, we observed that uranium and zirconium elements uniformly exist. After the annealing of U-10Zr sample at 1130 .deg. C, the formation of zirconium carbide is verified through Raman spectroscopy and XRD results. Additionally, the change of valence state for uranium element is also confirmed by XPS analysis.

  11. Temperature-dependent potential in cluster-decay process

    International Nuclear Information System (INIS)

    Gharaei, R.; Zanganeh, V.

    2016-01-01

    Role of the thermal effects of the parent nucleus in the Coulomb barrier and the half-life of 28 cluster-decays is systematically analyzed within the framework of the proximity formalism, namely proximity potential 2010. The WKB approximation is used to determine the penetration probability of the emitted cluster. It is shown that the height and width of the Coulomb barrier in the temperature-dependent proximity potential are less than its temperature-independent version. Moreover, this investigation reveals that the calculated values of half-life for selected cluster-decays are in better agreement with the experimental data when the mentioned effects are imposed on the proximity approach. A discussion is also presented about the predictions of the present thermal approach for cluster-decay half-lives of the super-heavy-elements.

  12. Temperature dependence of magnetoresistance in copper single crystals

    Science.gov (United States)

    Bian, Q.; Niewczas, M.

    2018-03-01

    Transverse magnetoresistance of copper single crystals has been measured in the orientation of open-orbit from 2 K to 20 K for fields up to 9 T. The experimental Kohler's plots display deviation between individual curves below 16 K and overlap in the range of 16 K-20 K. The violation of the Kohler's rule below 16 K indicates that the magnetotransport can not be described by the classical theory of electron transport on spherical Fermi surface with a single relaxation time. A theoretical model incorporating two energy bands, spherical and cylindrical, with different relaxation times has been developed to describe the magnetoresistance data. The calculations show that the electron-phonon scattering rates at belly and neck regions of the Fermi surface have different temperature dependencies, and in general, they do not follow T3 law. The ratio of the relaxation times in belly and neck regions decreases parabolically with temperature as A - CT2 , with A and C being constants.

  13. Temperature Dependent Variations of Phonon Interactions in Nanocrystalline Cerium Oxide

    Directory of Open Access Journals (Sweden)

    Sugandha Dogra Pandey

    2015-01-01

    Full Text Available The temperature dependent anharmonic behavior of the phonon modes of nanocrystalline CeO2 was investigated in the temperature range of 80–440 K. The anharmonic constants have been derived from the shift in phonon modes fitted to account for the anharmonic contributions as well as the thermal expansion contribution using the high pressure parameters derived from our own high pressure experimental data reported previously. The total anharmonicity has also been estimated from the true anharmonicity as well as quasiharmonic component. In the line-width variation analysis, the cubic anharmonic term was found to dominate the quartic term. Finally, the phonon lifetime also reflected the trend so observed.

  14. The low threshold voltage n-type silicon transistors based on a polymer/silica nanocomposite gate dielectric: The effect of annealing temperatures on their operation

    Science.gov (United States)

    Hashemi, Adeleh; Bahari, Ali; Ghasemi, Shahram

    2017-09-01

    In this work, povidone/silica nanocomposite dielectric layers were deposited on the n-type Si (100) substrates for application in n-type silicon field-effect transistors (FET). Thermogravimetric analysis (TGA) indicated that strong chemical interactions between polymer and silica nanoparticles were created. In order to examine the effect of annealing temperatures on chemical interactions and nanostructure properties, annealing process was done at 423-513 K. Atomic force microscopy (AFM) images show the very smooth surfaces with very low surface roughness (0.038-0.088 nm). The Si2p and C1s core level photoemission spectra were deconvoluted to the chemical environments of Si and C atoms respectively. The obtained results of deconvoluted X-ray photoelectron spectroscopy (XPS) spectra revealed a high percentage of silanol hydrogen bonds in the sample which was not annealed. These bonds were inversed to stronger covalence bonds (siloxan bonds) at annealing temperature of 423 K. By further addition of temperature, siloxan bonds were shifted to lower binding energy of about 1 eV and their intensity were abated at annealing temperature of 513 K. The electrical characteristics were extracted from current-Voltage (I-V) and capacitance-voltage (C-V) measurements in metal-insulator-semiconductor (MIS) structure. The all n-type Si transistors showed very low threshold voltages (-0.24 to 1 V). The formation of the strongest cross-linking at nanostructure of dielectric film annealed at 423 K caused resulted in an un-trapped path for the transport of charge carriers yielding the lowest threshold voltage (0.08 V) and the highest electron mobility (45.01 cm2/V s) for its FET. By increasing the annealing temperature (473 and 513 K) on the nanocomposite dielectric films, the values of the average surface roughness, the capacitance and the FET threshold voltage increased and the value of FET electron field-effect mobility decreased.

  15. Low-temperature fabrication of sputtered high-k HfO2 gate dielectric for flexible a-IGZO thin film transistors

    Science.gov (United States)

    Yao, Rihui; Zheng, Zeke; Xiong, Mei; Zhang, Xiaochen; Li, Xiaoqing; Ning, Honglong; Fang, Zhiqiang; Xie, Weiguang; Lu, Xubing; Peng, Junbiao

    2018-03-01

    In this work, low temperature fabrication of a sputtered high-k HfO2 gate dielectric for flexible a-IGZO thin film transistors (TFTs) on polyimide substrates was investigated. The effects of Ar-pressure during the sputtering process and then especially the post-annealing treatments at low temperature (≤200 °C) for HfO2 on reducing the density of defects in the bulk and on the surface were systematically studied. X-ray reflectivity, UV-vis and X-ray photoelectron spectroscopy, and micro-wave photoconductivity decay measurements were carried out and indicated that the high quality of optimized HfO2 film and its high dielectric properties contributed to the low concentration of structural defects and shallow localized defects such as oxygen vacancies. As a result, the well-structured HfO2 gate dielectric exhibited a high density of 9.7 g/cm3, a high dielectric constant of 28.5, a wide optical bandgap of 4.75 eV, and relatively low leakage current. The corresponding flexible a-IGZO TFT on polyimide exhibited an optimal device performance with a saturation mobility of 10.3 cm2 V-1 s-1, an Ion/Ioff ratio of 4.3 × 107, a SS value of 0.28 V dec-1, and a threshold voltage (Vth) of 1.1 V, as well as favorable stability under NBS/PBS gate bias and bending stress.

  16. Temperature and concentration dependent viscosity and gelation temperature of ABA triblock copolymer solutions

    NARCIS (Netherlands)

    Mijnlieff, P.F.; Visscher, K.; Mijnlieff, P.F.; Visscher, K.

    1991-01-01

    In solutions of ABA-triblock copolymers in a poor solvent for A thermoreversible gelation can occur. A three-dimensional dynamic network may form and, given the polymer and the solvent, its structure will depend on temperature and polymer mass fraction. The zero-shear rate viscosity of solutions of

  17. Hysteresis and Temperature Dependency of Moisture Sorption – New Measurements

    DEFF Research Database (Denmark)

    Rode, Carsten; Hansen, Kurt Kielsgaard

    2011-01-01

    for combined heat and moisture transport in materials. There is a need for further elaboration of the importance of these issues, and it is the intent of this paper to contribute to such elaboration. The paper seeks to contribute to the knowledge base about such sorption characteristic by presenting some new...... measurements of hysteresis and temperature dependency of the moisture sorption characteristics of three different porous building materials: aerated concrete, cement paste and spruce. Scanning curves are measured for all three materials where periods with adsorption and desorption interrupt each other...

  18. Temperature-dependent absorption coefficient of the fourth sound in bulk liquid 4He near absolute zero temperature

    International Nuclear Information System (INIS)

    Jun, Chul Won; Um, C. I.

    2000-01-01

    The temperature-dependent absorption coefficient of the fourth sound is evaluated explicitly near absolute zero temperature via the temperature-dependent anomalous excitation spectrum in bulk liquid helium. The coefficient increases with decreasing temperature, and the main contribution is due to the thermal conductivity

  19. Time and Temperature Dependence of Viscoelastic Stress Relaxation in Gold and Gold Alloy Thin Films

    Science.gov (United States)

    Mongkolsuttirat, Kittisun

    Radio frequency (RF) switches based on capacitive MicroElectroMechanical System (MEMS) devices have been proposed as replacements for traditional solid-state field effect transistor (FET) devices. However, one of the limitations of the existing capacitive switch designs is long-term reliability. Failure is generally attributed to electrical charging in the capacitor's dielectric layer that creates an attractive electrostatic force between a moving upper capacitor plate (a metal membrane) and the dielectric. This acts as an attractive stiction force between them that may cause the switch to stay permanently in the closed state. The force that is responsible for opening the switch is the elastic restoring force due to stress in the film membrane. If the restoring force decreases over time due to stress relaxation, the tendency for stiction failure behavior will increase. Au films have been shown to exhibit stress relaxation even at room temperature. The stress relaxation observed is a type of viscoelastic behavior that is more significant in thin metal films than in bulk materials. Metal films with a high relaxation resistance would have a lower probability of device failure due to stress relaxation. It has been shown that solid solution and oxide dispersion can strengthen a material without unacceptable decreases in electrical conductivity. In this study, the viscoelastic behavior of Au, AuV solid solution and AuV2O5 dispersion created by DC magnetron sputtering are investigated using the gas pressure bulge testing technique in the temperature range from 20 to 80°C. The effectiveness of the two strengthening approaches is compared with the pure Au in terms of relaxation modulus and 3 hour modulus decay. The time dependent relaxation curves can be fitted very well with a four-term Prony series model. From the temperature dependence of the terms of the series, activation energies have been deduced to identify the possible dominant relaxation mechanism. The measured

  20. Temperature dependence of the two photon absorption in indium arsenide

    International Nuclear Information System (INIS)

    Berryman, K.W.; Rella, C.W.

    1995-01-01

    Nonlinear optical processes in semiconductors have long been a source of interesting physics. Two photon absorption (TPA) is one such process, in which two photons provide the energy for the creation of an electron-hole pair. Researchers at other FEL centers have studied room temperature TPA in InSb, InAs, and HgCdTe. Working at the Stanford Picosecond FEL Center, we have extended and refined this work by measuring the temperature dependence of the TPA coefficient in InAs over the range from 80 to 350 K at four wavelengths: 4.5, 5.06, 6.01, and 6.3 microns. The measurements validate the functional dependence of recent band structure calculations with enough precision to discriminate parabolic from non-parabolic models, and to begin to observe smaller effects, such as contributions due to the split-off band. These experiments therefore serve as a strong independent test of the Kane band theory, as well as providing a starting point for detailed observations of other nonlinear absorption mechanisms

  1. Temperature-dependent infrared reflectivity studies of multiferroic ...

    Indian Academy of Sciences (India)

    Abstract. We have measured near normal incidence far-infrared (FIR) reflectivity spec- tra of a single crystal of TbMnO3 from 10 K to 300 K in the spectral range of 50 cm−1–700 cm−1. Fifteen transverse optic (TO) and longitudinal optic (LO) modes are identified in the imaginary part of the dielectric function ε2(ω) and energy ...

  2. Brittle Creep of Tournemire Shale: Orientation, Temperature and Pressure Dependences

    Science.gov (United States)

    Geng, Zhi; Bonnelye, Audrey; Dick, Pierre; David, Christian; Chen, Mian; Schubnel, Alexandre

    2017-04-01

    Time and temperature dependent rock deformation has both scientific and socio-economic implications for natural hazards, the oil and gas industry and nuclear waste disposal. During the past decades, most studies on brittle creep have focused on igneous rocks and porous sedimentary rocks. To our knowledge, only few studies have been carried out on the brittle creep behavior of shale. Here, we conducted a series of creep experiments on shale specimens coming from the French Institute for Nuclear Safety (IRSN) underground research laboratory located in Tournemire, France. Conventional tri-axial experiments were carried under two different temperatures (26˚ C, 75˚ C) and confining pressures (10 MPa, 80 MPa), for three orientations (σ1 along, perpendicular and 45˚ to bedding). Following the methodology developed by Heap et al. [2008], differential stress was first increased to ˜ 60% of the short term peak strength (10-7/s, Bonnelye et al. 2016), and then in steps of 5 to 10 MPa every 24 hours until brittle failure was achieved. In these long-term experiments (approximately 10 days), stress and strains were recorded continuously, while ultrasonic acoustic velocities were recorded every 1˜15 minutes, enabling us to monitor the evolution of elastic wave speed anisotropy. Temporal evolution of anisotropy was illustrated by inverting acoustic velocities to Thomsen parameters. Finally, samples were investigated post-mortem using scanning electron microscopy. Our results seem to contradict our traditional understanding of loading rate dependent brittle failure. Indeed, the brittle creep failure stress of our Tournemire shale samples was systematically observed ˜50% higher than its short-term peak strength, with larger final axial strain accumulated. At higher temperatures, the creep failure strength of our samples was slightly reduced and deformation was characterized with faster 'steady-state' creep axial strain rates at each steps, and larger final axial strain

  3. Temperature dependence of thermal conductivity of biological tissues.

    Science.gov (United States)

    Bhattacharya, A; Mahajan, R L

    2003-08-01

    In this paper, we present our experimental results on the determination of the thermal conductivity of biological tissues using a transient technique based on the principles of the cylindrical hot-wire method. A novel, 1.45 mm diameter, 50 mm long hot-wire probe was deployed. Initial measurements were made on sponge, gelatin and Styrofoam insulation to test the accuracy of the probe. Subsequent experiments conducted on sheep collagen in the range of 25 degrees C thermal conductivity to be a linear function of temperature. Further, these changes in the thermal conductivity were found to be reversible. However, when the tissue was heated beyond 55 degrees C, irreversible changes in thermal conductivity were observed. Similar experiments were also conducted for determining the thermal conductivity of cow liver. In this case, the irreversible effects were found to set in much later at around 90 degrees C. Below this temperature, in the range of 25 degrees C thermal conductivity, as for sheep collagen, varied linearly with temperature. In the second part of our study, in vivo measurements were taken on the different organs of a living pig. Comparison with reported values for dead tissues shows the thermal conductivities of living organs to be higher, indicating thereby the dominant role played by blood perfusion in enhancing the net heat transfer in living tissues. The degree of enhancement is different in different organs and shows a direct dependence on the blood flow rate.

  4. Temperature dependence of ion irradiation induced amorphization of zirconolite

    International Nuclear Information System (INIS)

    Smith, K. L.; Blackford, M. G.; Lumpkin, G. R.; Zaluzec, N. J.

    1999-01-01

    Zirconolite is one of the major host phases for actinides in various wasteforms for immobilizing high level radioactive waste (HLW). Over time, zirconolite's crystalline matrix is damaged by α-particles and energetic recoil nuclei recoil resulting from α-decay events. The cumulative damage caused by these particles results in amorphization. Data from natural zirconolites suggest that radiation damage anneals over geologic time and is dependant on the thermal history of the material. Proposed HLW containment strategies rely on both a suitable wasteform and geologic isolation. Depending on the waste loading, depth of burial, and the repository-specific geothermal gradient, burial could result in a wasteform being exposed to temperatures of between 100--450 C. Consequently, it is important to assess the effect of temperature on radiation damage in synthetic zirconolite. Zirconolite containing wasteforms are likely to be hot pressed at or below 1,473 K (1,200 C) and/or sintered at or below 1,623 K (1,350 C). Zirconolite fabricated at temperatures below 1,523 K (1,250 C) contains many stacking faults. As there have been various attempts to link radiation resistance to structure, the authors decided it was also pertinent to assess the role of stacking faults in radiation resistance. In this study, they simulate α-decay damage in two zirconolite samples by irradiating them with 1.5 MeV Kr + ions using the High Voltage Electron Microscope-Tandem User Facility (HTUF) at Argonne National Laboratory (ANL) and measure the critical dose for amorphization (D c ) at several temperatures between 20 and 773 K. One of the samples has a high degree of crystallographic perfection, the other contains many stacking faults on the unit cell scale. Previous authors proposed a model for estimating the activation energy of self annealing in zirconolite and for predicting the critical dose for amorphization at any temperature. The authors discuss their results and earlier published data in

  5. Preliminary study of subsurface temperature estimation by analyzing temperature dependent geo-electromagnetic conductivity models

    Science.gov (United States)

    Lee, S. K.; Lee, Y.; Lee, C.

    2016-12-01

    Estimation of deep temperature is significant procedure for exploration, development and sustainable use of geothermal resources in the geothermal area. For estimating subsurface temperature, there have been suggested many techniques for indirect geothermometers, such as mineral geothermometer, hydrochemical geothermometer, isotropic geothermometer, electromagnetic (EM) geothermometer and so forth. In this study, we have tested the feasibility of EM geothermometer using integrated frameworks of geothermal and geo-electromagnetic models. For this purpose, we have developed geothermal temperature model together with EM model based on common earth model, which satisfies all observed geoscientific data set including surface geology, structural geology, well log data, and geophysical data. We develop a series of plugin modules for integration of geo-electromagnetic modeling and inversion algorithms on a common geological modeling platform. The subsurface temperature with time are modeled by solving heat transfer equations using finite element method (FEM). The temperature dependent conductivity model are obtained by the temperature-conductivity relations to perform geo-electromagnetic modeling, such as magnetotelluric to analyze temperature model from EM data.

  6. Influence of hydration on protein dynamics: combining dielectric and neutron scattering spectroscopy data.

    Science.gov (United States)

    Khodadadi, S; Pawlus, S; Sokolov, A P

    2008-11-13

    Combining dielectric spectroscopy and neutron scattering data for hydrated lysozyme powders, we were able to identify several relaxation processes and follow protein dynamics at different hydration levels over a broad frequency and temperature range. We ascribe the main dielectric process to protein's structural relaxation coupled to hydration water and the slowest dielectric process to a larger scale protein's motions. Both relaxations exhibit a smooth, slightly super-Arrhenius temperature dependence between 300 and 180 K. The temperature dependence of the slowest process follows the main dielectric relaxation, emphasizing that the same friction mechanism might control both processes. No signs of a proposed sharp fragile-to-strong crossover at T approximately 220 K are observed in temperature dependences of these processes. Both processes show strong dependence on hydration: the main dielectric process slows down by six orders with a decrease in hydration from h approximately 0.37 (grams of water per grams of protein) to h approximately 0.05. The slowest process shows even stronger dependence on hydration. The third (fastest) dielectric relaxation process has been detected only in samples with high hydration ( h approximately 0.3 and higher). We ascribe it to a secondary relaxation of hydration water. The mechanism of the protein dynamic transition and a general picture of the protein dynamics are discussed.

  7. Effect of CuO addition on the sintering temperature and microwave dielectric properties of CaSiO3–Al2O3 ceramics

    Directory of Open Access Journals (Sweden)

    Denghao Li

    2014-06-01

    Full Text Available CuO-doped CaSiO3–1 wt% Al2O3 ceramics were synthesized via a traditional solid-state reaction method, and their sintering behavior, microstructure and microwave dielectric properties were investigated. The results showed that appropriate CuO addition could accelerate the sintering process and assist the densification of CaSiO3–1 wt% Al2O3 ceramics, which could effectively lower the densification temperature from 1250 °C to 1050 °C. However, the addition of CuO undermined the microwave dielectric properties. The optimal amount of CuO addition was found to be 0.8 wt%, and the derived CaSiO3–Al2O3 ceramic sintered at 1100 °C presented good microwave dielectric properties of εr=7.27, Q×f=16,850 GHz and τf=−39.53 ppm/°C, which is much better than those of pure CaSiO3 ceramic sintered at 1340 oC (Q×f=13,109 GHz. The chemical compatibility of the above ceramic with 30 Pd/70 Ag during the cofiring process has also been investigated, and the result showed that there was no chemical reaction between palladium–silver alloys and ceramics.

  8. Solubility Temperature Dependence Predicted from 2D Structure

    Directory of Open Access Journals (Sweden)

    Alex Avdeef

    2015-12-01

    Full Text Available The objective of the study was to find a computational procedure to normalize solubility data determined at various temperatures (e.g., 10 – 50 oC to values at a “reference” temperature (e.g., 25 °C. A simple procedure was devised to predict enthalpies of solution, ΔHsol, from which the temperature dependence of intrinsic (uncharged form solubility, log S0, could be calculated. As dependent variables, values of ΔHsol at 25 °C were subjected to multiple linear regression (MLR analysis, using melting points (mp and Abraham solvation descriptors. Also, the enthalpy data were subjected to random forest regression (RFR and recursive partition tree (RPT analyses. A total of 626 molecules were examined, drawing on 2040 published solubility values measured at various temperatures, along with 77 direct calori    metric measurements. The three different prediction methods (RFR, RPT, MLR all indicated that the estimated standard deviations in the enthalpy data are 11-15 kJ mol-1, which is concordant with the 10 kJ mol-1 propagation error estimated from solubility measurements (assuming 0.05 log S errors, and consistent with the 7 kJ mol-1 average reproducibility in enthalpy values from interlaboratory replicates. According to the MLR model, higher values of mp, H‑bond acidity, polarizability/dipolarity, and dispersion forces relate to more positive (endothermic enthalpy values. However, molecules that are large and have high H-bond basicity are likely to possess negative (exothermic enthalpies of solution. With log S0 values normalized to 25 oC, it was shown that the interlaboratory average standard deviations in solubility measurement are reduced to 0.06 ‑ 0.17 log unit, with higher errors for the least-soluble druglike molecules. Such improvements in data mining are expected to contribute to more reliable in silico prediction models of solubility for use in drug discovery.

  9. Frequency-dependent transition from homogeneous to constricted shape in surface dielectric barrier discharge and its impact on biological target

    Science.gov (United States)

    Lazukin, A. V.; Serdukov, Y. A.; Pinchuk, M. E.; Stepanova, O. M.; Krivov, S. A.; Grabelnykh, O. I.

    2018-01-01

    The results of an experimental research of influence the surface dielectric discharge products excited by alternating sinusoidal voltage with RMS of 3.5 kV across the barrier of aluminum nitride with frequency of 50 Hz–100 kHz on a germination of soft winter wheat (Triticum aestivum L.) are presented. The stimulation effect on seedling morphological characteristics (sprout length and total length of roots) was observed but its reproducibility with combining the same processing conditions and subsequent germination is insignificant.

  10. Dependence of optical phase modulation on anchoring strength of dielectric shield wall surfaces in small liquid crystal pixels

    Science.gov (United States)

    Isomae, Yoshitomo; Shibata, Yosei; Ishinabe, Takahiro; Fujikake, Hideo

    2018-03-01

    We demonstrated that the uniform phase modulation in a pixel can be realized by optimizing the anchoring strength on the walls and the wall width in the dielectric shield wall structure, which is the needed pixel structure for realizing a 1-µm-pitch optical phase modulator. The anchoring force degrades the uniformity of the phase modulation in ON-state pixels, but it also keeps liquid crystals from rotating against the leakage of an electric field. We clarified that the optimal wall width and anchoring strength are 250 nm and less than 10‑4 J/m2, respectively.

  11. Dielectric Metamaterials

    Science.gov (United States)

    2015-05-29

    Final Report  29 May 2015 Dielectric Metamaterials SRI Project P21340 ONR Contract N00014-12-1-0722 Prepared by: Srini Krishnamurthy...2 2. Theory of Metamaterials ....................................................................................................... 2 2.1...accurately assess the impact of various forms of disorder on metamaterials (MMs) (both dielectric and metal inclusions); and (5) identify designs

  12. The Temperature Condition of the Plate with Temperature-Dependent Thermal Conductivity and Energy Release

    OpenAIRE

    V. S. Zarubin; A. V. Kotovich; G. N. Kuvyrkin

    2016-01-01

    The temperature state of a solid body, in addition to the conditions of its heat exchange with the environment, can greatly depend on the heat release (or heat absorption) processes within the body volume. Among the possible causes of these processes should be noted such as a power release in the fuel elements of nuclear reactors, exothermic or endothermic chemical reactions in the solid body material, which respectively involve heat release or absorbtion, heat transfer of a part of the elect...

  13. Temperature dependent measurement of internal damping of austenitic stainless steels

    Directory of Open Access Journals (Sweden)

    Oravcová Monika

    2018-01-01

    Full Text Available This article is aimed on the analysis of the internal damping changes of austenitic stainless steels AISI 304, AISI 316L and AISI 316Ti depending from temperature. In experimental measurements only resonance method was used which is based on continuous excitation of oscillations of the specimens and the whole apparatus vibrates at the frequency near to the resonance. Microplastic processes and dissipation of energy within the metals are evaluated and investigated by internal damping measurements. Damping capacity of materials is closely tied to the presence of defects including second phase particles and voids. By measuring the energy dissipation in the material, we can determine the elastic characteristics, Youngs modulus, the level of stress relaxation and many other.

  14. Fatigue and creep at variable temperature. Time dependence forecasting

    International Nuclear Information System (INIS)

    Felsen, M.F.; Mottot, M.; Petrequin, P.

    1984-03-01

    Structure materials for nuclear reactors undergo different types of mechanical and thermal stresses for period reaching 300 000 hours. Rapid change of temperature, stress, frequency can occurs in case of accident. Determination of mechanical properties (elongation, creep, fatigue...) of materials for structure dimensioning requires extrapolation of fatigue and creep tests. The comparison of results obtained on steel 316 shows that for creep forecastings agreement is good between the different methods but it is not the case for creep fatigue. For creep in variable conditions, agreement between experiments and calculus is good only in some cases. For fatigue test with samples previously tested for creep, or vice versa, results depend upon the damage evaluation [fr

  15. Temperature Dependence of the Viscosity of Isotropic Liquids

    Science.gov (United States)

    Jadzyn, J.; Czechowski, G.; Lech, T.

    1999-04-01

    Temperature dependence of the shear viscosity measured for isotropic liquids belonging to the three homologous series: 4-(trans-4'-n-alkylcyclohexyl) isothiocyanatobenzenes (Cn H2n+1 CyHx Ph NCS; nCHBT, n=0-12), n-alkylcyanobiphenyls (CnH2n+1 Ph Ph CN; nCB, n=2-12) and 1,n-alkanediols (HO(CH2)nOH; 1,nAD, n=2-10) were analysed with the use of Arrhenius equation and its two modifications: Vogel--Fulcher and proposed in this paper. The extrapolation of the isothermal viscosity of 1,n-alkanediols (n=2-10) to n=1 leads to an interesting conclusion concerning the expected viscosity of methanediol, HOCH2OH, the compound strongly unstable in a pure state.

  16. Annealing Temperature Dependent Structural and Magnetic Properties of Ni-Cu-Zn Nanoferrites

    Science.gov (United States)

    Rao, P. Venkata Srinivasa; Anjaneyulu, T.; Reddy, M. Rami

    2018-03-01

    The effect of annealing temperature on the structural and the magnetic properties of Ni0.5Cu0.25Zn0.25Fe2O4 (Ni-Cu-Zn) nanoferrites synthesized using an oxalic-based precursor method was investigated in detail. A single phase of the Ni-Cu-Zn ferrite was observed from X-ray diffraction (XRD) data. From the XRD analysis, the grain size was found to increase with increasing annealing temperature from 500 to 800 °C whereas the lattice constant was found to decrease. The scanning electron microscope (SEM) analysis showed nanosize grains in the prepared samples. The magnetization analysis showed that the saturation magnetization ( M s ) increased with increasing annealing temperature due to the increasing grain size whereas the coercivity ( H c ) and the remanence magnetization ( M r ) showed decreasing behaviors. The Curie temperature ( T C ) was measured for all samples. As the grain size increased the Curie temperature was also observed to increase. For these samples, the Curie temperatures lies between 426 K to 504 K. The dielectric constant ( ɛ') was observed to be higher for these samples. The dielectric loss tangent increase slowly with increasing frequency till a particular frequency, after that it slowly decreased. Therefore the annealing temperature was observed to have a significant effect on the structural, magnetic and electrical properties of synthesized Ni-Cu-Zn ferrite.

  17. Temperature dependence of the deformation behavior of 316 stainless steel after low temperature neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pawel-Robertson, J.E.; Rowcliffe, A.F.; Grossbeck, M.L. [Oak Ridge National Lab., TN (United States)] [and others

    1996-10-01

    The effects of low temperature neutron irradiation on the tensile behavior of 316 stainless steel have been investigated. A single heat of solution annealed 316 was irradiated to 7 and 18 dpa at 60, 200, 330, and 400{degrees}C. The tensile properties as a function of dose and as a function of temperature were examined. Large changes in yield strength, deformation mode, strain to necking, and strain hardening capacity were seen in this irradiation experiment. The magnitudes of the changes are dependent on both irradiation temperature and neutron dose. Irradiation can more than triple the yield strength over the unirradiated value and decrease the strain to necking (STN) to less than 0.5% under certain conditions. A maximum increase in yield strength and a minimum in the STN occur after irradiation at 330{degrees}C but the failure mode remains ductile.

  18. Dielectric properties of KDP-type ferroelectric crystals in the ...

    Indian Academy of Sciences (India)

    Considering external electric field as well as third- and fourth-order phonon anharmonic interaction terms in the pseudospin-lattice coupled mode (PLCM) model Hamiltonian for KDP-type ferroelectrics, expressions for field-dependent shift, width, renormalized soft mode frequency, Curie temperature, dielectric constant and ...

  19. THE TEMPERATURE DEPENDENCE OF SOLAR ACTIVE REGION OUTFLOWS

    International Nuclear Information System (INIS)

    Warren, Harry P.; Ugarte-Urra, Ignacio; Young, Peter R.; Stenborg, Guillermo

    2011-01-01

    Spectroscopic observations with the EUV Imaging Spectrometer (EIS) on Hinode have revealed large areas of high-speed outflows at the periphery of many solar active regions. These outflows are of interest because they may connect to the heliosphere and contribute to the solar wind. In this paper, we use slit rasters from EIS in combination with narrowband slot imaging to study the temperature dependence and morphology of an outflow region and show that it is more complicated than previously thought. Outflows are observed primarily in emission lines from Fe XI to Fe XV. Observations at lower temperatures (Si VII), in contrast, show bright fan-like structures that are dominated by inflows. These data also indicate that the morphology of the outflows and the fans is different, outflows are observed in regions where there is no emission in Si VII. This suggests that the fans, which are often associated with outflows in studies involving imaging data, are not directly related to the active region outflows.

  20. Model for temperature-dependent magnetization of nanocrystalline materials

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Q.; Niewczas, M. [Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S4M1 (Canada)

    2015-01-07

    A magnetization model of nanocrystalline materials incorporating intragrain anisotropies, intergrain interactions, and texture effects has been extended to include the thermal fluctuations. The method relies on the stochastic Landau–Lifshitz–Gilbert theory of magnetization dynamics and permits to study the magnetic properties of nanocrystalline materials at arbitrary temperature below the Currie temperature. The model has been used to determine the intergrain exchange constant and grain boundary anisotropy constant of nanocrystalline Ni at 100 K and 298 K. It is found that the thermal fluctuations suppress the strength of the intergrain exchange coupling and also reduce the grain boundary anisotropy. In comparison with its value at 2 K, the interparticle exchange constant decreases by 16% and 42% and the grain boundary anisotropy constant decreases by 28% and 40% at 100 K and 298 K, respectively. An application of the model to study the grain size-dependent magnetization indicates that when the thermal activation energy is comparable to the free energy of grains, the decrease in the grain size leads to the decrease in the magnetic permeability and saturation magnetization. The mechanism by which the grain size influences the magnetic properties of nc–Ni is discussed.

  1. Temperature dependence of magnetic anisotropy: An ab initio approach

    Science.gov (United States)

    Staunton, J. B.; Szunyogh, L.; Buruzs, A.; Gyorffy, B. L.; Ostanin, S.; Udvardi, L.

    2006-10-01

    We present a first-principles theory of the variation of magnetic anisotropy, K , with temperature, T , in metallic ferromagnets. It is based on relativistic electronic structure theory and calculation of magnetic torque. Thermally induced local moment magnetic fluctuations are described within the relativistic generalization of the disordered local moment theory from which the T dependence of the magnetization, m , is found. We apply the theory to a uniaxial magnetic material with tetragonal crystal symmetry, L10 -ordered FePd, and find its uniaxial K consistent with a magnetic easy axis perpendicular to the Fe/Pd layers for all m and proportional to m2 for a broad range of values of m . This is the same trend that we have previously found in L10 -ordered FePt and which agrees with experiment. We also study a magnetically soft cubic magnet, the Fe50Pt50 solid solution, and find that its small magnetic anisotropy constant K1 rapidly diminishes from 8μeV to zero. K1 evolves from being proportional to m7 at low T to m4 near the Curie temperature. The accounts of both the tetragonal and cubic itinerant electron magnets differ from those extracted from single ion anisotropy models and instead receive clear interpretations in terms of two ion anisotropic exchange.

  2. Fish introductions reveal the temperature dependence of species interactions.

    Science.gov (United States)

    Hein, Catherine L; Öhlund, Gunnar; Englund, Göran

    2014-01-22

    A major area of current research is to understand how climate change will impact species interactions and ultimately biodiversity. A variety of environmental conditions are rapidly changing owing to climate warming, and these conditions often affect both the strength and outcome of species interactions. We used fish distributions and replicated fish introductions to investigate environmental conditions influencing the coexistence of two fishes in Swedish lakes: brown trout (Salmo trutta) and pike (Esox lucius). A logistic regression model of brown trout and pike coexistence showed that these species coexist in large lakes (more than 4.5 km(2)), but not in small, warm lakes (annual air temperature more than 0.9-1.5°C). We then explored how climate change will alter coexistence by substituting climate scenarios for 2091-2100 into our model. The model predicts that brown trout will be extirpated from approximately half of the lakes where they presently coexist with pike and from nearly all 9100 lakes where pike are predicted to invade. Context dependency was critical for understanding pike-brown trout interactions, and, given the widespread occurrence of context-dependent species interactions, this aspect will probably be critical for accurately predicting climate impacts on biodiversity.

  3. Critical behavior of the dielectric constant in asymmetric fluids.

    Science.gov (United States)

    Bertrand, C E; Sengers, J V; Anisimov, M A

    2011-12-08

    By applying a thermodynamic theory that incorporates the concept of complete scaling, we derive the asymptotic temperature dependence of the critical behavior of the dielectric constant above the critical temperature along the critical isochore and below the critical temperature along the coexistence curve. The amplitudes of the singular terms in the temperature expansions are related to the changes of the critical temperature and the critical chemical potential upon the introduction of an electric field. The results of the thermodynamic theory are then compared with the critical behavior implied by the classical Clausius-Mossotti approximation. The Clausius-Mossotti approximation fails to account for any singular temperature dependence of the dielectric constant above the critical temperature. Below the critical temperature it produces an apparent asymmetric critical behavior with singular terms similar to those implied by the thermodynamic theory, but with significantly different coefficients. We conclude that the Clausius-Mossotti approximation only can account for the observed asymptotic critical behavior of the dielectric constant when the dependence of the critical temperature on the electric field is negligibly small. © 2011 American Chemical Society

  4. Temperature-Dependent Henry's Law Constants of Atmospheric Amines.

    Science.gov (United States)

    Leng, Chunbo; Kish, J Duncan; Roberts, Jason E; Dwebi, Iman; Chon, Nara; Liu, Yong

    2015-08-20

    There has been growing interest in understanding atmospheric amines in the gas phase and their mass transfer to the aqueous phase because of their potential roles in cloud chemistry, secondary organic aerosol formation, and the fate of atmospheric organics. Temperature-dependent Henry's law constants (KH) of atmospheric amines, a key parameter in atmospheric chemical transport models to account for mass transfer, are mostly unavailable. In this work, we investigated gas-liquid equilibria of five prevalent atmospheric amines, namely 1-propylamine, di-n-propylamine, trimethylamine, allylamine, and 4-methylmorpholine using bubble column technique. We reported effective KH, intrinsic KH, and gas phase diffusion coefficients of these species over a range of temperatures relevant to the lower atmosphere for the first time. The measured KH at 298 K and enthalpy of solution for 1-propylamine, di-n-propylamine, trimethylamine, allylamine, and 4-methylmorpholine are 61.4 ± 4.9 mol L(-1) atm(-1) and -49.0 ± 4.8 kJ mol(-1); 14.5 ± 1.2 mol L(-1) atm(-1) and -72.5 ± 6.8 kJ mol(-1); 8.9 ± 0.7 mol L(-1) atm(-1) and -49.6 ± 4.7 kJ mol(-1); 103.5 ± 10.4 mol L(-1) atm(-1) and -42.7 ± 4.3 kJ mol(-1); and 952.2 ± 114.3 mol L(-1) atm(-1) and -82.7 ± 9.7 kJ mol(-1), respectively. In addition, we evaluated amines' characteristic times to achieve gas-liquid equilibrium for partitioning between gas and aqueous phases. Results show gas-liquid equilibrium can be rapidly established at natural cloud droplets surface, but the characteristic times may be extended substantially at lower temperatures and pHs. Moreover, our findings imply that atmospheric amines are more likely to exist in cloud droplets, and ambient temperature, water content, and pH of aerosols play important roles in their partitioning.

  5. Dependence of the brittle ductile transition on strain-rate-dependent critical homologous temperature

    Science.gov (United States)

    Davis, Paul M.

    2017-05-01

    Earthquakes mainly occur in crust or mantle that is below a critical temperature for the tectonic strain-rate, \\dot{e}_t, such that stress builds up to the breaking point before it can relax due to creep. Then long-range stress correlation gives rise to power law seismicity including large events. The limiting temperature depends on pressure, which is taken into account by finding a critical homologous temperature THc = T/TM above which earthquakes are rarely observed (where T, TM are temperature and average melting temperature of constituent minerals). We find that THc for ocean plates is ∼0.55. For California earthquakes, it is also close to 0.55. The uppermost mantle layer of oceanic plates of thickness ∼50 km is composed of harzburgite and depleted peridotite from which basalt has been removed to form ocean crust. Thus it has a higher melting temperature than the peridotite of the surrounding mantle, or the lower halves of plates. Thicknesses of seismicity in deep subduction zones, determined from 2-D polynomial fits to a relocated catalogue, are ∼50 km, which suggests that the earthquake channel is confined to this layer. We construct models to find homologous temperatures in slabs, and find that seismicity thicknesses are also, on average, confined to TH ≤ 0.55 ± 0.05. The associated rheology is compared with that obtained from flexure models of ocean lithosphere. The brittle-ductile transition occurs where viscosity drops from high values in the cold cores of slabs to values of 1022-1023 Pa s, that is, where creep strain-rates become comparable to tectonic rates. The cut-off for deep earthquakes is not sharp. However they appear unlikely to occur if homologous temperature is high TH > 0.55. Exceptions to the rule are anomalously deep earthquakes such as those beneath the Iceland and the Hawaiian hotspots, and the Newport Inglewood Fault. These are smaller events with short-range stress correlation, and can be explained if strain-rates are two to

  6. Temperature dependence of microwave oscillations in magnetic tunnel junctions with a perpendicularly magnetized free layer

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Peng; Feng, Jiafeng, E-mail: hxwei@iphy.ac.cn, E-mail: jiafengfeng@iphy.ac.cn; Wei, Hongxiang, E-mail: hxwei@iphy.ac.cn, E-mail: jiafengfeng@iphy.ac.cn; Han, Xiufeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Fang, Bin; Zhang, Baoshun; Zeng, Zhongming [Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Ruoshui Road 398, Suzhou 215123 (China)

    2015-01-05

    We experimentally study the temperature dependence of the spin-transfer-torque-induced microwave oscillations in MgO-based magnetic tunnel junction nanopillars with a perpendicularly magnetized free layer. We demonstrate that the oscillation frequency increases rapidly with decreasing temperature, which is mainly ascribed to the temperature dependence of both the saturation magnetization and the perpendicular magnetic anisotropy. We also find that a strong temperature dependence of the output power while a nonmonotonic temperature dependence of spectral linewidth are maintained for a constant dc bias in measured temperature range. Possible mechanisms leading to the different dependences of oscillation frequency, output power, and linewidth are discussed.

  7. Temperature dependence of the thermal conductivity in chiral carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mensah, N.G. [Department of Mathematics, University of Cape Coast, Cape Coast (Ghana); Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Nkrumah, G. [Department of Physics, University of Ghana, Legon, Accra (Ghana) and Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)]. E-mail: geon@ug.edu.gh; Mensah, S.Y. [Department of Physics, Laser and Fibre Optics Centre, University of Cape Coast, Cape Coast (Ghana); Allotey, F.K.A. [Institute of Mathematical Sciences, Accra (Ghana)

    2004-08-30

    The thermal conductivity of a chiral carbon nanotube (CCNT) is calculated using a tractable analytical approach. This is based on solving the Boltzmann kinetic equation with energy dispersion relation obtained in the tight binding approximation. The results obtained are numerically analysed. Unusually high electron thermal conductivity {chi}{sub ez} is observed along the tubular axis. The dependence of {chi}{sub ez} against temperature T was plotted for varying {delta}{sub z} and a given {delta}{sub s} ({delta}{sub z} and {delta}{sub s} are the overlapping integrals (exchange energy) for the jumps along the tubular axis and the base helix, respectively). It is noted that {chi}{sub ez} shows a peaking behaviour before falling off at higher temperature. As {delta}{sub z} varies from 0.010 eV to 0.048 eV for a given {delta}{sub s}=0.0150 eV, the peak values of {chi}{sub ez} shift from 40000 W/m K at 100 K to 55000 W/m K at about 300 K. Interestingly our results at 104 K which is 41000 W/m K and occurred at {delta}{sub z}=0.023 eV compares very well with that reported for a 99.9% isotopically enriched {sup 12}C diamond crystal. Another interesting result obtained is the fact that the circumferential electron thermal conductivity {chi}{sub ec} appears to be very small. The ratio of {chi}{sub ez} to {chi}{sub ec} is of the order of 2.

  8. Wide-range temperature dependences of Brillouin scattering properties in polymer optical fiber

    Science.gov (United States)

    Minakawa, Kazunari; Hayashi, Neisei; Shinohara, Yuri; Tahara, Masaki; Hosoda, Hideki; Mizuno, Yosuke; Nakamura, Kentaro

    2014-04-01

    We investigate the temperature dependences of the Brillouin scattering properties in a perfluorinated graded-index (PFGI-) polymer optical fiber (POF) in a wide temperature range from -160 to 125 °C. The temperature dependences of the Brillouin frequency shift, linewidth, and Stokes power are almost linear at lower temperature down to -160 °C while they show nonlinear dependences at higher temperature. These behaviors appear to originate from the partial glass transition of the polymer material.

  9. The Electrical Breakdown of Thin Dielectric Elastomers

    DEFF Research Database (Denmark)

    Zakaria, Shamsul Bin; Morshuis, Peter H. F.; Yahia, Benslimane Mohamed

    2014-01-01

    . In this study, we model the electrothermal breakdown in thin PDMS based dielectric elastomers in order to evaluate the thermal mechanisms behind the electrical failures. The objective is to predict the operation range of PDMS based dielectric elastomers with respect to the temperature at given electric field....... We performed numerical analysis with a quasi-steady state approximation to predict thermal runaway of dielectric elastomer films. We also studied experimentally the effect of temperature on dielectric properties of different PDMS dielectric elastomers. Different films with different percentages...

  10. Room temperature plasma oxidation: A new process for preparation of ultrathin layers of silicon oxide, and high dielectric constant materials

    International Nuclear Information System (INIS)

    Tinoco, J.C.; Estrada, M.; Baez, H.; Cerdeira, A.

    2006-01-01

    In this paper we present basic features and oxidation law of the room temperature plasma oxidation (RTPO), as a new process for preparation of less than 2 nm thick layers of SiO 2 , and high-k layers of TiO 2 . We show that oxidation rate follows a potential law dependence on oxidation time. The proportionality constant is function of pressure, plasma power, reagent gas and plasma density, while the exponent depends only on the reactive gas. These parameters are related to the physical phenomena occurring inside the plasma, during oxidation. Metal-Oxide-Semiconductor (MOS) capacitors fabricated with these layers are characterized by capacitance-voltage, current-voltage and current-voltage-temperature measurements. Less than 2.5 nm SiO 2 layers with surface roughness similar to thermal oxide films, surface state density below 3 x 10 11 cm -2 and current density in the expected range for each corresponding thickness, were obtained by RTPO in a parallel-plate reactor, at 180 mW/cm 2 and pressure range between 9.33 and 66.5 Pa (0.07 and 0.5 Torr) using O 2 and N 2 O as reactive gases. MOS capacitors with TiO 2 layers formed by RTPO of sputtered Ti layers are also characterized. Finally, MOS capacitors with stacked layers of TiO 2 over SiO 2 , both layers obtained by RTPO, were prepared and evaluated to determine the feasibility of the use of TiO 2 as a candidate for next technology nodes

  11. Temperature dependence of 1.55 μm VCSELs

    Science.gov (United States)

    Masum, J.; Balkan, N.; Adams, M. J.

    1998-08-01

    The temperature for minimum threshold carrier concentration in 1.55 μm VCSELs can be significantly lower than that at which the peak gain matches the cavity resonance. A simple model is implemented to investigate the magnitude of this temperature difference and to aid the design of VCSELs for room temperature operation.

  12. Dependence of image flickering of negative dielectric anisotropy liquid crystal on the flexoelectric coefficient ratio and the interdigitated electrode structure

    International Nuclear Information System (INIS)

    Lee, Hyojin; Kim, Hyungmin; Kim, Jongyoon; Lee, Ji-Hoon

    2016-01-01

    We experimentally measured the splay (e s ) and the bend flexoelectric coefficients (e b ) of liquid crystal (LC) mixtures with negative dielectric anisotropy and investigated their effect on the image flicker of the LC mixtures driven with a low frequency electric field. Using the experimentally measured e s and e b , we simulated the transmittance (TR) response with the continuum model. First, we confirmed that the TR simulation results were approximated to the experimental data with only small variation. Second, we varied the simulation parameters of e s , e b , the separation (S), and the width (W) of the interdigitated electrodes and tried to find the optimum condition showing the least image flicker. Given W  =  3.0 μm and e b   =  5.7 pC m −1 , it was found that the image flicker could be minimized when the e s /e b value was about 2.4 and the S/W ratio was about 1.5. Because the e s /e b value of the rod-like LC material is generally less than 1, it is desirable to design an interdigitated electrode structure to minimize the image flicker effect. (paper)

  13. Dielectric properties of Na1–xKxNbO3 in orthorhombic phase

    Indian Academy of Sciences (India)

    Unknown

    σ = ε0ωK tan δ, where ε0 is the permittivity of free space, tan δ the loss tangent, and ω = 2πf, f the applied frequency. 5. Results and discussion. Observed frequency dependence of dielectric constant and dielectric loss, at room temperature, for different x values in Na1–xKxNbO3 samples has been shown in fig- ures 3 and 4, ...

  14. Preparation of barium titanate nanoparticle sphere arrays and their dielectric properties.

    Science.gov (United States)

    Wada, Satoshi; Yazawa, Aki; Hoshina, Takuya; Kameshima, Yoshikazu; Kakemoto, Hirofumi; Tsurumi, Takaaki; Kuroiwa, Yoshihiro

    2008-09-01

    Barium titanate (BaTiO(3)) nanoparticles from 27 to 192 nm were prepared by the 2-step thermal decomposition method from barium titanyl oxalate nanoparticles. These particles were dispersed well into 1-propanol, and dense BaTiO(3); nanoparticle sphere arrays without stress-field were prepared by the meniscus method. Temperature dependence of dielectric properties was successfully measured using these dense nanoparticle sphere arrays, and size effect on dielectric properties was discussed.

  15. Polymer-dielectric molecular interactions in defect-free poly(3-hexylthiophene): dependence and consequences of regioregularity on transistor charge transport properties

    Science.gov (United States)

    Nawaz, Ali; Cruz-Cruz, Isidro; Rego, Jessica S.; Koehler, Marlus; Gopinathan, Sreelekha P.; Kumar, Anil; Hümmelgen, Ivo A.

    2017-08-01

    We investigate the molecular interaction of poly(3-hexylthiophene-2,5-diyl) (P3HT) molecules with polar functional groups of the dielectric surface, and its dependence on the regioregularity of P3HT. With this aim, we consider thickness-dependent molecular order of 100% regioregular defect-free P3HT (DF-P3HT) and 93% regioregular P3HT (LT-P3HT), deposited on top of cross-linked poly(vinyl alcohol) (cr-PVA) substrates. Intimate contact of P3HT molecules and cr-PVA surface defects affects the molecular order of P3HT differently, depending on the regioregularity. Consequently, these molecular order changes on the charge transport properties of organic field-effect transistors (OFETs) are investigated using four thicknesses (20, 40, 80 and 120 nm) of P3HT. As compared to other thicknesses, μ sat for 20 nm DF-P3HT OFETs shows further improvement, while the opposite occurs for 20 nm LT-P3HT OFETs. Depending on the regioregularity (and thus the chain orientation), P3HT molecules exhibit a difference in dipole moments. Consequently, the interaction of edge-on or face-on P3HT molecules with cr-PVA surface dipoles has different contributions towards the electrostatic energetic disorder at cr-PVA/P3HT interface. This subtle difference of behavior helps one to understand the huge spread of characteristics of P3HT based transistors found in literature.

  16. Temperature evolution of the dielectric response function of Pb(Fe0.95Sc0.05)2/3W1/3O3 relaxor ceramics in a wide frequency range

    Science.gov (United States)

    Komandin, G. A.; Porodinkov, O. E.; Bush, A. A.; Koroleva, A. F.; Spektor, I. E.; Chuchupal, S. V.; Seregin, D. S.; Iskhakova, L. D.

    2017-12-01

    Electrodynamic properties of Pb(Fe0.95Sc0.05)2/3W1/3O3 solid solution belonging to A(B'B'')O3 perovskite structural family have been investigated by broadband dielectric spectroscopy in a wave-number range of (4 × 10-9-4 × 103) cm-1 and a temperature range of 100-600 K. The influence of low-frequency relaxations on the vibrational spectrum is determined within the four-parameter factorized dispersion model. Anomalies in the behavior of the dielectric response function are found near the temperature-diffuse maximum of permittivity.

  17. Incipient ferroelectric to a possible ferroelectric transition in Te4+ doped calcium copper titanate (CaCu3Ti4O12 ceramics at low temperature as evidenced by Raman and dielectric spectroscopy

    Directory of Open Access Journals (Sweden)

    Nabadyuti Barman

    2017-03-01

    Full Text Available Partial replacement of Ti4+ by Te4+ ions in calcium copper titanate lattice improved its dielectric behaviour mostly due to cubic-to-tetragonal structural transformation and associated distortion in TiO6 octahedra. The relative permittivity values (23–30 x 103 of Te4+ doped ceramics is more than thrice that of un-doped ceramics (8 x 103 at 1 kHz. A decreasing trend in relative permittivity with increasing temperature (50–300 K is observed for all the samples. Barrett’s formula, as a signature of incipient ferroelectricity, is invoked to rationalize the relative permittivity variation as a function of temperature. A systematic investigation supported by temperature dependent Raman studies reveal a possible ferroelectric transition in Te4+ doped ceramic samples below 120 K. The possible ferroelectric transition is attributed to the interactions between quasi-local vibrations associated with the micro-clusters comprising TiO6 and TeO6 structural units and indirect dipole-dipole interactions of off-center B–cations (Ti4+ and Te4+ in double perovskite lattice.

  18. Fracture strength of the particulate-reinforced ultra-high temperature ceramics based on a temperature dependent fracture toughness model

    Science.gov (United States)

    Wang, Ruzhuan; Li, Weiguo; Ji, Baohua; Fang, Daining

    2017-10-01

    The particulate-reinforced ultra-high temperature ceramics (pUHTCs) have been particularly developed for fabricating the leading edge and nose cap of hypersonic vehicles. They have drawn intensive attention of scientific community for their superior fracture strength at high temperatures. However, there is no proper model for predicting the fracture strength of the ceramic composites and its dependency on temperature. In order to account for the effect of temperature on the fracture strength, we proposed a concept called energy storage capacity, by which we derived a new model for depicting the temperature dependent fracture toughness of the composites. This model gives a quantitative relationship between the fracture toughness and temperature. Based on this temperature dependent fracture toughness model and Griffith criterion, we developed a new fracture strength model for predicting the temperature dependent fracture strength of pUHTCs at different temperatures. The model takes into account the effects of temperature, flaw size and residual stress without any fitting parameters. The predictions of the fracture strength of pUHTCs in argon or air agreed well with the experimental measurements. Additionally, our model offers a mechanism of monitoring the strength of materials at different temperatures by testing the change of flaw size. This study provides a quantitative tool for design, evaluation and monitoring of the fracture properties of pUHTCs at high temperatures.

  19. Dielectric properties of gadolinium molybdate in low- and infralow frequency electric fields

    International Nuclear Information System (INIS)

    Galiyarova, N.M.; Gorin, S.V.; Dontsova, L.I.; Shil'nikov, A.V.; Shuvalov, L.A.; AN SSSR, Moscow

    1992-01-01

    Temperature dependences of complex dielectric permittivity of gadolinium molybdate (GMO) in low- (LF) and infralow-frequency (ILF) electric fields with 0.1 V·cm -1 amplitude within 0.25-10 4 Hz frequency range are studied. Substantial effect of the crystal prehistory on LF and ILF dielectric properties and domain structure state is revealed. An anomalous reduction of complex dielectric permittivity accompanied by the occurrence of the Debye LF-dispersion of permittivity is detected under the sample cooling from a nonpolar phase

  20. Effect of Dielectric Properties of a Solvent-Water Mixture Used in Microwave-Assisted Extraction of Antioxidants from Potato Peels

    Directory of Open Access Journals (Sweden)

    Ashutosh Singh

    2014-02-01

    Full Text Available The dielectric properties of a methanol-water mixture were measured at different temperatures from 20 to 80 °C at two frequencies 915 MHz and 2450 MHz. These frequencies are most commonly used on industrial and domestic scales respectively. In this study, the dielectric properties of a methanol-water mixture were found to be dependent on temperature, solvent concentration, and presence of plant matrix. Linear and quadratic equations were developed to establish the dependency between factors. At 2450 MHz, the dielectric constant of methanol-water mixtures was significantly affected by concentration of methanol rather than by temperature, whereas the dielectric loss factor was significantly affected by temperature rather than by methanol concentration. Introduction of potato peel led to an increase in the effect of temperature on the dielectric properties of the methanol fractions. At 915 MHz, both the dielectric properties were significantly affected by the increase in temperature and solvent concentration, while the presence of potato peel had no significant effect on the dielectric properties. Statistical analysis of the dissipation factor at 915 and 2450 MHz revealed that both temperature and solvent concentration had a significant effect on it, whereas introduction of potato peels at 915 MHz reduced the effect of temperature as compared to 2450 MHz. The total phenolic yield of the microwave-assisted extraction process was significantly affected by the solvent concentration, the dissipation factor of the methanol-water mixture and the extraction time.

  1. Temperature dependence of electrical properties of mixture of exogenous neurotransmitters dopamine and epinephrine

    Science.gov (United States)

    Patki, Mugdha; Patil, Vidya

    2016-05-01

    Neurotransmitters are chemical messengers that support the communication between the neurons. In vitro study of exogenous neurotransmitters Dopamine and Epinephrine and their mixture, carried out to learn about their electrical properties being dielectric constant and conductivity amongst others. Dielectric constant and conductivity of the selected neurotransmitters are found to increase with temperature. As a result, the time constant of the system increases with temperature. This change leads to increase in the time taken by the synapse to transport the action potential. The correlation between physical properties of exogenous neurotransmitters and psychological and physiological behaviour of human being may be understood with the help of current study. The response time of Epinephrine is in microseconds whereas response time of Dopamine is in milliseconds. The response time for both the neurotransmitters and their mixture is found to be increasing with temperature indicating the symptoms such as depression, apathy, chronic fatigue and low physical energy with no desire to exercise the body, which are observed during the fever.

  2. Temperature-dependent phenotypic variation of Campylobacter jejuni lipooligosaccharides

    LENUS (Irish Health Repository)

    Semchenko, Evgeny A

    2010-11-30

    Abstract Background Campylobacter jejuni is a major bacterial cause of food-borne enteritis, and its lipooligosaccharide (LOS) plays an initiating role in the development of the autoimmune neuropathy, Guillain-Barré syndrome, by induction of anti-neural cross-reactive antibodies through ganglioside molecular mimicry. Results Herein we describe the existence and heterogeneity of multiple LOS forms in C. jejuni strains of human and chicken origin grown at 37°C and 42°C, respectively, as determined on sodium dodecyl sulphate-polyacrylamide electrophoresis gels with carbohydrate-specific silver staining and blotting with anti-ganglioside ligands, and confirmed by nuclear magnetic resonance (NMR) spectroscopy. The C. jejuni NCTC 11168 original isolate (11168-O) was compared to its genome-sequenced variant (11168-GS), and both were found to have a lower-Mr LOS form, which was different in size and structure to the previously characterized higher-Mr form bearing GM1 mimicry. The lower-Mr form production was found to be dependent on the growth temperature as the production of this form increased from ~5%, observed at 37°C to ~35% at 42°C. The structure of the lower-Mr form contained a β-D-Gal-(1→3)-β-D-GalNAc disaccharide moiety which is consistent with the termini of the GM1, asialo-GM1, GD1, GT1 and GQ1 gangliosides, however, it did not display GM1 mimicry as assessed in blotting studies but was shown in NMR to resemble asialo-GM1. The production of multiple LOS forms and lack of GM1 mimicry was not a result of phase variation in the genes tested of NCTC 11168 and was also observed in most of the human and chicken isolates of C. jejuni tested. Conclusion The presence of differing amounts of LOS forms at 37 and 42°C, and the variety of forms observed in different strains, indicate that LOS form variation may play a role in an adaptive mechanism or a stress response of the bacterium during the colonization of different hosts.

  3. Temperature-dependent rate models of vascular cambium cell mortality

    Science.gov (United States)

    Matthew B. Dickinson; Edward A. Johnson

    2004-01-01

    We use two rate-process models to describe cell mortality at elevated temperatures as a means of understanding vascular cambium cell death during surface fires. In the models, cell death is caused by irreversible damage to cellular molecules that occurs at rates that increase exponentially with temperature. The models differ in whether cells show cumulative effects of...

  4. Temperature dependence of electromechanical properties of PLZT x ...

    Indian Academy of Sciences (India)

    ... broad peak at a temperature higher than mt. The voltage constant 31 decreases and the planar coupling coefficient p remains constant up to half of the mt and then falls sharply with . Half of the mt can, therefore, be used for specifying the working temperature limit of the piezoceramics for the device applications.

  5. Temperature dependence studies on the electro-oxidation of ...

    Indian Academy of Sciences (India)

    Administrator

    These values increased with the increasing of temperature. The results from two techniques were well agreed that the electro-oxidation of methanol was improved by raising the temperature and ruthenium modification. Keywords. Cyclic voltammetry; electrochemical impedance spectroscopy; activation energy; fuel cell;.

  6. Substrate bias voltage and deposition temperature dependence on ...

    Indian Academy of Sciences (India)

    ... on Si (100) substrate. Deposition at higher substrate temperature causes the film to react with Si forming silicides at the film/Si substrate interface. Ti film undergoes a microstructural transition from hexagonal plate-like to round-shaped grains as the substrate temperature was raised from 300 to 50 °C during film deposition ...

  7. Inclusion of temperature dependent shell corrections in Landau ...

    Indian Academy of Sciences (India)

    nium isotopes [7]. However, it is possible to evaluate shell corrections at finite temperatures more accurately [8,9] i.e. ÆF = (E T S) (E TS). In this paper we will focus on the method which we use to evaluate the shell corrections at finite temperature and the consequences of incorporating this method in our calculations. 223 ...

  8. Impact of Gate Dielectric in Carrier Mobility in Low Temperature Chalcogenide Thin Film Transistors for Flexible Electronics

    KAUST Repository

    Salas-Villasenor, A. L.

    2010-06-29

    Cadmium sulfide thin film transistors were demonstrated as the n-type device for use in flexible electronics. CdS thin films were deposited by chemical bath deposition (70° C) on either 100 nm HfO2 or SiO2 as the gate dielectrics. Common gate transistors with channel lengths of 40-100 μm were fabricated with source and drain aluminum top contacts defined using a shadow mask process. No thermal annealing was performed throughout the device process. X-ray diffraction results clearly show the hexagonal crystalline phase of CdS. The electrical performance of HfO 2 /CdS -based thin film transistors shows a field effect mobility and threshold voltage of 25 cm2 V-1 s-1 and 2 V, respectively. Improvement in carrier mobility is associated with better nucleation and growth of CdS films deposited on HfO2. © 2010 The Electrochemical Society.

  9. Temperature dependence of lattice parameter of (Ga,Mn)As on GaAs substrate

    Science.gov (United States)

    Matsukura, Fumihiro; Ohno, Hideo

    2015-09-01

    We measure the temperature dependence of the lattice parameter of (Ga,Mn)As by X-ray diffraction. The result shows that the lattice parameter of (Ga,Mn)As shows similar temperature dependence to that of GaAs, and no obvious change is observed in the vicinity of its Curie temperature.

  10. Temperature dependence of the kinetic coefficients of superconductors in the intermediate state

    International Nuclear Information System (INIS)

    Gorelik, L.Y.; Kadigrobov, A.M.

    1981-01-01

    It is demonstrated that in the case of a superconductor in the intermediate state at temperature T such that e0/T 0 denoting the characteristic superconductor energy gap) the sound absorption coefficient can be strongly temperature dependent and thermal conductivity along the layers of normal metal can be nonlinearly dependent on the temperature

  11. DC-bias and visible light effect on dielectric characteristics of La0.5Cr0.5TiO3+δ

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2017-10-01

    Full Text Available La0.5Cr0.5TiO3+δ ceramic sample was prepared via traditional solid-state reaction route. Frequency and temperature dependence of dielectric permittivity were studied in the range of 102 ~ 106 Hz and of 77 ~ 360 K, respectively. It was observed that extraordinarily high low-frequency dielectric constants appeared at room temperature, and dielectric relaxation peaks shifted to higher temperature with increasing frequency. In the dc-bias studies, it was also found that the dielectric permittivity had obviously dc-bias dependence in low frequency, but independence as the frequency above 14 kHz. Interestingly, the dielectric characteristics of the sample had obvious light dependence at room temperature within the measured frequency range. The results demonstrate that visible light improves the dielectric properties of the ceramic by means of I–V and complex impedance analysis. Keywords: Ceramics, Dielectric properties, Dc-bias dependence, Visible light dependence

  12. Temperature dependence of poly(lactic acid) mechanical properties

    DEFF Research Database (Denmark)

    Zhou, Chengbo; Guo, Huilong; Li, Jingqing

    2016-01-01

    The mechanical properties of polymers are not only determined by their structures, but also related to the temperature field in which they are located. The yield behaviors, Young's modulus and structures of injection-molded poly(lactic acid) (PLA) samples after annealing at different temperatures....... For the samples annealed between 80 and 120 oC, a peculiar double yield appears when stretched within 50–60 oC and only the first or the second yield can be found at the lower and higher draw temperatures. The yield strain and yield stress together with Young's modulus were obtained and discussed in terms...

  13. Temperature Dependence of Dark Current in Quantum Well Infrared Detectors

    National Research Council Canada - National Science Library

    Hickey, Thomas

    2002-01-01

    ...) /cu cm were gathered and analyzed for various temperatures. The device was cooled with a closed cycle refrigerator, and the data were acquired using the Agilent 4155B Semiconductor Parameter Analyzer...

  14. The distance and temperature dependence of electron-transfer rates

    International Nuclear Information System (INIS)

    Sutin, N.

    1987-01-01

    Electron transfer occurs over relatively long distances in a variety of systems. In interpreting the measured electron-transfer rates it is usually assumed that the rate constants depend exponentially on the distance separating the two redox sites and that this distance dependence arises from the decrease in the electronic coupling of the redox sites with increasing separation. Although the electronic coupling is an important factor determining the distance dependence of the rate, theoretical considerations suggest that the nuclear factors are also important. The various factors determining long-range electron-transfer rates are discussed and it is shown that very different distance dependences are predicted for reactions in the normal and inverted free-energy regions. The effect of the enthalpy change on the electron-transfer rate is also considered; three enthalpy regions are identified depending on the overall free energy and entropy changes for the reaction

  15. Temperature dependence of the magnetic properties of ferromagnetic amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gaunt, P.

    1979-01-01

    The magnetic hysteresis properties of amorphous alloys have recently been discussed in terms of an exchange-enhanced applied field. This absolute-zero model is here extended to finite temperatures. The modified treatment predicts a remanent magnetization which is unaffected by thermal activation while the coercive force falls (finally to zero) as temperature increases. Comparison with experiment for TbFe/sub 2/ suggests that regions of volume approx. =7500 A/sup 3/ reverse coherently.

  16. Similar temperature dependencies of glycolytic enzymes : An evolutionary adaptation to temperature dynamics?

    NARCIS (Netherlands)

    Cruz, L.A.B.; Hebly, M.; Duong, G.H.; Wahl, S.A.; Pronk, J.T.; Heijnen, J.J.; Daran-Lapujade, P.; Van Gulik, W.M.

    2012-01-01

    Background Temperature strongly affects microbial growth, and many microorganisms have to deal with temperature fluctuations in their natural environment. To understand regulation strategies that underlie microbial temperature responses and adaptation, we studied glycolytic pathway kinetics in

  17. Temperature-dependent indentation behavior of transformation-toughened zirconia-based ceramics

    Science.gov (United States)

    Tikare, Veena; Heuer, Arthur H.

    1991-01-01

    Indentation behavior of Ce-TZP, Y-TZP, and Mg-PSZ between room temperature and 1300 C was investigated. Hardness decreased with increasing temperature for all three materials, but indentation cracking increased with increasing temperature. The opposing temperature dependences are discussed in terms of dislocation and transformation plasticity.

  18. Microwave and infrared dielectric properties of Sr{sub 1-3x/2}Ce{sub x}TiO{sub 3} (x = 0.154-0.400) incipient ferroelectrics at cryogenic temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Roberto L [Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, CP 702, Belo Horizonte MG, 30123-970 (Brazil); Lobo, Ricardo P S M [Laboratoire Photons et Matiere (CNRS - UPR5), ESPCI, Universite Pierre et Marie Curie, 10 rue Vauquelin, 75231 Cedex 05, Paris France (France); Subodh, Ganesanpotti; Sebastian, Mailadil T [Materials and Minerals Division, NIIST, Trivandrum-695 019 (India); Jacob, Mohan V [Electronic Material Research Lab, School of Engineering, James Cook University, Townsville, QLD, 4811 (Australia); Dias, Anderson, E-mail: bmoreira@fisica.ufmg.b [Departamento de Quimica, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, ICEB II, Ouro Preto-MG, 35400-000 (Brazil)

    2009-04-07

    Sr{sub 1-3x/2}Ce{sub x}TiO{sub 3} (x = 0.154-0.400) or Sr{sub 2+n}Ce{sub 2}Ti{sub 5+n}O{sub 15+3n} (n {<=} 8) ceramics were prepared by the mixed oxide route. The microwave (MW) dielectric properties of the compounds were investigated in the temperature range from 8 to 295 K. The permittivity increases for decreasing temperatures and saturates below 30 K, following Barrett's equation, demonstrating the incipient ferroelectric nature of the investigated materials. The dielectric loss tangent decreases for decreasing temperatures, reaching a minimum at about 80-120 K, and again increases with further cooling due to the rotations of TiO{sub 6} octahedra. Infrared-reflectivity data show that the dielectric response of the system is driven by the lowest-frequency polar (soft) mode, particularly at lower temperatures, where the phonons become practically uncoupled. The results help us to understand why Sr{sub 1-3x/2}Ce{sub x}TiO{sub 3} materials present more appropriate dielectric properties for MW tunable applications, compared with pure SrTiO{sub 3}.

  19. Phonon effect on the temperature dependence of spin susceptibility and magnetization in metals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D.J.; Tanaka, C.; Ukon, S.

    1985-06-01

    In many transition metals the paramagnetic spin susceptibility X increases with increasing temperature much beyond ordinary theories could account for. We demonstrate how the effect of the electron-phonon interactions enable us to understand such temperature dependence of X.

  20. Studies on dielectric properties of ferrocenylhydrazone coordinated polymers irradiated by γ-rays

    International Nuclear Information System (INIS)

    Lin Yun; Chen Jie; Lin Zhanru

    2007-01-01

    The three ferrocenylhydrazone coordinated metal polymers were synthesized (PZM). The effect of the 60 Co γ irradiation on microwave dielectric properties and their temperature-dielectric properties were studies. It has been found that the dielectric parameters (ε', tgδ) of coordinated polymers increase along with the absorbed doses and coordinated metals in order Cu, Co, Ni, However, the dependent curves of dielectric parameters on arise-down temperature are universal. On the other hand, the small changes in chemical structure before and after irradiation were confirmed by IR differential spectrometry and SEM. It is possible to make such coordinated polymers as a multifunctional polymeric material with optical, electric and magnetic properties, which may be potentially used in microwave communication. (authors)

  1. Low temperature sintering and microwave dielectric properties of Zn{sub 0.5}Ti{sub 0.5}NbO{sub 4} ceramics with ZnO additive for LTCC applications

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Ching-Fang, E-mail: cftseng@nuu.edu.tw; Chen, Po-Hsien; Lin, Po-An

    2015-05-25

    Highlights: • The microwave dielectric properties of ZnO-doped Zn{sub 0.5}Ti{sub 0.5}NbO{sub 4} ceramics were investigated. • By ZnO additions, the dielectric properties were associated with the unit cell volume, polarizability, and microstructure. • At 920 °C, ZTN doped with 2 wt% ZnO had excellent microwave dielectric properties for the application of LTCC. - Abstract: The Zn{sub 0.5}Ti{sub 0.5}NbO{sub 4} ceramics had been prepared by conventional solid-state reaction method and the influence of ZnO additive doping on their sintering temperature, densification, microstructure and microwave dielectric properties were investigated. The addition of ZnO as liquid phase flux can effectively decrease the sintering temperature of the Zn{sub 0.5}Ti{sub 0.5}NbO{sub 4} ceramics from 1100 to 920 °C, and well-densified microwave ceramics with uniform grains at 920 °C. The X-ray diffraction patterns revealed all samples exhibited orthorhombic ZnTiNb{sub 2}O{sub 8} phase and ZnO phase. The Zn{sub 0.5}Ti{sub 0.5}NbO{sub 4} ceramics with 2 wt% ZnO sintered at 920 °C for 6 h showed good microwave dielectric properties of Q × f = 98,100 GHz, ε{sub r} = 33.2, and τ{sub f} = −59.3 ppm/°C. Good microwave dielectric properties and low firing temperature made Zn{sub 0.5}Ti{sub 0.5}NbO{sub 4} ceramics a promising candidate for LTCC application in wireless communication system.

  2. On the Temperature Dependence of the Shear Viscosity and Holography

    CERN Document Server

    Cremonini, Sera; Szepietowski, Phillip

    2012-01-01

    We examine the structure of the shear viscosity to entropy density ratio eta/s in holographic theories of gravity coupled to a scalar field, in the presence of higher derivative corrections. Thanks to a non-trivial scalar field profile, eta/s in this setup generically runs as a function of temperature. In particular, its temperature behavior is dictated by the shape of the scalar potential and of the scalar couplings to the higher derivative terms. We consider a number of dilatonic setups, but focus mostly on phenomenological models that are QCD-like. We determine the geometric conditions needed to identify local and global minima for eta/s as a function of temperature, which translate to restrictions on the signs and ranges of the higher derivative couplings. Finally, such restrictions lead to an holographic argument for the existence of a global minimum for eta/s in these models, at or above the deconfinement transition.

  3. Dielectric, elastic, anelastic and conductivity behaviour of ...

    Indian Academy of Sciences (India)

    The presence of two phases was confirmed by X-ray diffraction. The temperature variation of dielectric constant, ', dielectric loss, tan , d.c. conductivity, a.c. conductivity, elastic and anelastic behaviour of ferrite–ferroelectric composites were studied in the temperature range 30–350°C. The a.c. conductivity measurements ...

  4. Temperature-dependent enthalpy of oxygenation in Antarctic fish hemoglobins

    DEFF Research Database (Denmark)

    Fago, A.; Wells, R.M.G.; Weber, Roy E.

    1997-01-01

    literature data for the enthalpy of oxygenation in Antarctic fish hemoglobins derives from the use of the nonintegrated (linearized) form of the van't Hoff equation over different temperature ranges. The general assumption that a low heat of oxygenation in hemoglobins from polar animals represents......The effect of temperature on the oxygen-binding properties of the hemoglobins of three cold-adapted Antarctic fish species, Dissostichus mawsoni, Pagothenia borchgrevinki and Trematomus, sp., has been investigated under different pH values and buffer conditions. A clear non linear van't Hoff plot...

  5. Laboratory study of temperature dependence of creep of argillaceous rocks

    International Nuclear Information System (INIS)

    Boisson, J.Y.; Audiguier, M.; Billiotte, J.; Deveughele, M.; Norotte, V.

    1989-01-01

    The study deals with the evaluation of the long term effects of temperature variations on argillaceous soil structure and volume as a function of their initial petrophysical characteristics and their preconsolidation. From an experimental point of view, the study deals with the volumetric deformation of samples performed in oedometer apparatus at temperature between 20 0 C and 110 0 C and their permeability measurement. As an illustration of texture and mechanical behaviour study, the results of swelling, consolidation and creep of an argillaceous sample at 20 0 C are presented

  6. Temperature dependence of lattice parameters of alpha-zirconium

    International Nuclear Information System (INIS)

    Versaci, R.A.; Ipohorski, M.

    1991-01-01

    This work presents a brief review of X-ray and thermal expansion determination of lattice parameters for α-Zirconium. Data reported by different authors cover almost all the field of existence of the hexagonal phase of Zirconium, from temperatures as low as 4.2 K up to about 1130 K, near the α→β transformation temperature. Polynomial expressions based on a least squares fitting of experimental data are also presented. The expressions obtained by Goldak et al. are considered to be the most complete. The influence of impurities on the lattice parameters is also discussed. (Author) [es

  7. The external field dependence of the BCS critical temperature

    DEFF Research Database (Denmark)

    Frank, Rupert L.; Hainzl, Christian; Seiringer, Robert

    2016-01-01

    We consider the Bardeen-Cooper-Schrieffer free energy functional for particles interacting via a two-body potential on a microscopic scale and in the presence of weak external fields varying on a macroscopic scale. We study the influence of the external fields on the critical temperature. We show...... that in the limit where the ratio between the microscopic and macroscopic scale tends to zero, the next to leading order of the critical temperature is determined by the lowest eigenvalue of the linearization of the Ginzburg-Landau equation....

  8. A Study of the Temperature Dependence of Bienzyme Systems and Enzymatic Chains

    Directory of Open Access Journals (Sweden)

    N. V. Kotov

    2007-01-01

    Full Text Available It is known that most enzyme-facilitated reactions are highly temperature dependent processes. In general, the temperature coefficient, Q10, of a simple reaction reaches 2.0–3.0. Nevertheless, some enzyme-controlled processes have much lower Q10 (about 1.0, which implies that the process is almost temperature independent, even if individual reactions involved in the process are themselves highly temperature dependent. In this work, we investigate a possible mechanism for this apparent temperature compensation: simple mathematical models are used to study how varying types of enzyme reactions are affected by temperature. We show that some bienzyme-controlled processes may be almost temperature independent if the modules involved in the reaction have similar temperature dependencies, even if individually, these modules are strongly temperature dependent. Further, we show that in non-reversible enzyme chains the stationary concentrations of metabolites are dependent only on the relationship between the temperature dependencies of the first and last modules, whilst in reversible reactions, there is a dependence on every module. Our findings suggest a mechanism by which the metabolic processes taking place within living organisms may be regulated, despite strong variation in temperature.

  9. Dielectric loss of strontium titanate thin films

    Science.gov (United States)

    Dalberth, Mark Joseph

    1999-12-01

    Interest in strontium titanate (STO) thin films for microwave device applications continues to grow, fueled by the telecommunications industry's interest in phase shifters and tunable filters. The optimization of these devices depends upon increasing the phase or frequency tuning and decreasing the losses in the films. Currently, the dielectric response of thin film STO is poorly understood through lack of data and a theory to describe it. We have studied the growth of STO using pulsed laser deposition and single crystal substrates like lanthanum aluminate and neodymium gallate. We have researched ways to use ring resonators to accurately measure the dielectric response as a function of temperature, electric field, and frequency from low radio frequencies to a few gigahertz. Our films grown on lanthanum aluminate show marked frequency dispersion in the real part of the dielectric constant and hints of thermally activated loss behavior. We also found that films grown with conditions that optimized the dielectric constant showed increased losses. In an attempt to simplify the system, we developed a technique called epitaxial lift off, which has allowed us to study films removed from their growth substrates. These free standing films have low losses and show obvious thermally activated behavior. The "amount of tuning," as measured by a figure of merit, KE, is greater in these films than in the films still attached to their growth substrates. We have developed a theory that describes the real and imaginary parts of the dielectric constant. The theory models the real part using a mean field description of the ionic motion in the crystal and includes the loss by incorporating the motion of charged defects in the films.

  10. Synthesis and temperature-dependent studies of a perovskite-like manganese formate framework templated with protonated acetamidine.

    Science.gov (United States)

    Mączka, Mirosław; Janczak, Jan; Trzebiatowska, Monika; Sieradzki, Adam; Pawlus, Sebastian; Pikul, Adam

    2017-07-04

    We report the synthesis, crystal structure, thermal, dielectric, phonon and magnetic properties of the [CH 3 C(NH 2 ) 2 ][Mn(HCOO) 3 ] (AceMn) compound. Our results show that this compound crystallizes in the perovskite-like orthorhombic structure, space group Imma. It undergoes a structural phase transition at 304 K into a monoclinic structure, space group P2 1 /n. X-ray diffraction, dielectric, IR and Raman studies show that the ordering of the acetamidinium cations triggers the phase transition. Low-temperature magnetic studies show that this compound exhibits weak ferromagnetic properties below 9.0 K.

  11. Temperature Dependence of the Stability of Ion Pair Interactions ...

    Indian Academy of Sciences (India)

    Abstract. An understanding of the determinants of the thermal stability of thermostable proteins is expected to enable design of enzymes that can be employed in industrial biocatalytic processes carried out at high temperatures. A major factor that has been proposed to stabilize thermostable proteins is the high occurrence.

  12. Temperature Dependence of the Stability of Ion Pair Interactions ...

    Indian Academy of Sciences (India)

    An understanding of the determinants of the thermal stability of thermostable proteins is expected to enable design of enzymes that can be employed in industrial biocatalytic processes carried out at high temperatures. A major factor that has been proposed to stabilize thermostable proteins is the high occurrenceof salt ...

  13. Second law analysis of a reacting temperature dependent viscous ...

    African Journals Online (AJOL)

    In this paper, entropy generation during the flow of a reacting viscous fluid through an inclined Channel with isothermal walls are investigated. The coupled energy and momentum equations were solved numerically. Previous results in literature (Adesanya et al 2006 [[17]) showed both velocity and temperature have two ...

  14. A temperature dependent slip factor based thermal model for friction ...

    Indian Academy of Sciences (India)

    alloy using the finite element software ABACUS considering constant frictional heat source. Chao & Tang (2003) simulated a temperature distribution of FSW process using finite element software ABACUS .... Nandan et al (2006) stated that the material flow is significant when the viscosity is less than. 4 MPa-s for the ...

  15. Temperature-dependent gas transport and its correlation with kinetic ...

    Indian Academy of Sciences (India)

    2017-05-20

    May 20, 2017 ... have been made to see this trade-off relation at relatively higher temperature. ... drug delivery, etc. Membrane-based separation process on polymer nanocomposite has been extensively discussed in lit- erature. The extraordinary properties of ... in solubility, with increased permeability due to interac-.

  16. Temperature dependence of transport coefficients of 'simple liquid ...

    African Journals Online (AJOL)

    ... has been investigated. The study carried out at two densities, r* = 0.60 and r* = 0.95. Result shows erratic variations of the shear viscosity in the two lattices structures. KeyWords: Temperature effect, face centred, simple cubic, transport properties, simple liquid. [Global Jnl Pure & Appl. Sci. Vol.9(3) 2003: 403-406] ...

  17. Temperature-dependent demography of Chilades pandava peripatria (Lepidoptera: Lycaenidae).

    Science.gov (United States)

    Ravuiwasa, Kaliova Tavou; Tan, Ching-Wen; Hwang, Shaw-Yhi

    2011-10-01

    Chilades pandava peripatria Hsu and its host plant Cycas taitungensis Shen, Hill, Tsou & Chen are both endemic species to Taiwan. Ch. pandava peripatria has a specific association with buds and soft leaves of cycad plants. The introduced species, Cy. revoluta, have prolonged budding periods and extensive auxiliary buds that extensively contribute to the outbreak of Ch. pandava peripatria. An in-depth knowledge of the development, survival, and fecundity of Ch. pandava peripatria under different environmental conditions is necessary to understand the population growth of Ch. pandava peripatria. The demography of Ch. pandava peripatria was studied based on the age-stage, two-sex life table at 20, 23, 25, 28, and 31 degrees C, 70% RH, and a photoperiod of 16:8 (L:D) h under laboratory conditions. Ch. pandava peripatria completed its development under tested temperatures but did not produce offsprings at 23 degrees C. Because of the high egg mortality at 20 degrees C, the data at this given temperature were excluded from this study. The intrinsic rate of increase (r) under these tested temperatures was 0.1846, 0.2919, and 0.1412 d(-1), respectively. The net reproductive rate (H(o)) was 165.47, 262.32, and 56.68 offsprings per individual and the mean generation time (T) was 27.72, 19.10, and 28.67 d, respectively. Our results indicated that Ch. pandava peripatria is highly adaptable to environments where temperature ranges from 25 to 31 degrees C.

  18. Temperature-dependent reactions of phthalic acid on Ag(100)

    Czech Academy of Sciences Publication Activity Database

    Franke, M.; Marchini, M.; Zhang, L.; Tariq, Q.; Tsud, N.; Vorokhta, M.; Vondráček, Martin; Prince, K.; Röckert, M.; Williams, F.J.; Steinrück, H.-P.; Lytken, O.

    2015-01-01

    Roč. 119, č. 41 (2015), 23580-23585 ISSN 1932-7447 Institutional support: RVO:68378271 Keywords : phthalic acid * NEXAFS * photoemission spectroscopy * temperature-programmed desoprtion Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.509, year: 2015

  19. A DFT study of temperature dependent dissociation mechanism of ...

    Indian Academy of Sciences (India)

    of HF in HF(H2O)7 cluster. SWATANTRA K YADAVa, HIRDYESH MISHRAa,∗ and ASHWANI K TIWARIb,∗ ... Dissociation constant, KRP, of HF dissociation and pKa values of HF in cluster at various temperatures have been reported. ... a series of studies on water cluster by means of graph theory and ab initio methods and ...

  20. Temperature Dependences on Various Types of Photovoltaic (PV) Panel

    International Nuclear Information System (INIS)

    Audwinto, I A; Leong, C S; Sopian, K; Zaidi, S H

    2015-01-01

    Temperature is one of the key roles in PV technology performance, since with the increases of temperature the open-circuit voltage will drop accordingly so do the electrical efficiency and power output generation. Different types of Photovoltaic (PV) panels- silicon solar panels and thin film solar panels; mono-crystalline, poly-crystalline, CIS, CIGS, CdTe, back-contact, and bi-facial solar panel under 40°C to 70°C approximately with 5°C interval have been comparatively analyzed their actual performances with uniformly distribution of light illumination from tungsten halogen light source, ±500W/m 2 . DC-Electronic Load and Data Logger devices with “Lab View” data program interface were used to collect all the necessary parameters in this study. Time needed to achieve a certain degree of temperature was recorded. Generally, each of the panels needed 15 minutes to 20 minutes to reach 70°C. Halogen based light source is not compatible in short wave-length in response to thin-film solar cell. Within this period of times, all the panels are facing a performance loss up to 15%. Other parameters; P max , V max , I max , V oc , I sc , R serries , R shunt , Fillfactor were collected as study cases. Our study is important in determining Photovoltaic type selection and system design as for study or industrial needed under different temperature condition. (paper)

  1. Le Chatelier's Principle Applied to the Temperature Dependence of Solubility.

    Science.gov (United States)

    Treptow, Richard S.

    1984-01-01

    One effect of temperature is its influence on solubility, and that effect is used as a common example when teaching Le Chatelier's principle. Attempts to clarify the question of whether the principle holds in the case of the solubility of ionic compounds in water by investigating the literature data in detail. (JN)

  2. temperature dependence of the thermal conductivity of a grog ...

    African Journals Online (AJOL)

    Thermal conductivity values, in the temperature range 300 – 1200 K, have been measured in air and at atmospheric pressure for a Kenyan kaolinite refractory with 0% - 50% grog proportions. The experimental thermal conductivity values were then compared with those calculated using the Zumbrunnen et al [1] and the ...

  3. Temperature dependence of fluctuation time scales in spin glasses

    DEFF Research Database (Denmark)

    Kenning, Gregory G.; Bowen, J.; Sibani, Paolo

    2010-01-01

    Using a series of fast cooling protocols we have probed aging effects in the spin glass state as a function of temperature. Analyzing the logarithmic decay found at very long time scales within a simple phenomenological barrier model, leads to the extraction of the fluctuation time scale of the s...

  4. What is the temperature dependence of the Casimir effect?

    Energy Technology Data Exchange (ETDEWEB)

    Hoeye, J S [Department of Physics, Norwegian University of Science and Technology, N-7491, Trondheim (Norway); Brevik, I [Department of Energy and Process Engineering, Norwegian University of Science and Technology, N-7491, Trondheim (Norway); Aarseth, J B [Department of Energy and Process Engineering, Norwegian University of Science and Technology, N-7491, Trondheim (Norway); Milton, K A [Department of Physics, Washington University, St. Louis, MO 63130 (United States)

    2006-05-19

    There has been recent criticism of our approach to the Casimir force between real metallic surfaces at finite temperature, saying it is in conflict with the third law of thermodynamics and in contradiction with experiment. We show that these claims are unwarranted, and that our approach has strong theoretical support, while the experimental situation is still unclear.

  5. Temperature dependence of twinning activity in random textured cast magnesium

    Czech Academy of Sciences Publication Activity Database

    Čapek, J.; Farkas, G.; Pilch, Jan; Máthis, K.

    2015-01-01

    Roč. 627, MAR (2015), s. 333-335 ISSN 0921-5093 R&D Projects: GA ČR(CZ) GAP204/12/1360; GA MŠk LM2011019 Institutional support: RVO:61389005 Keywords : magnesium * acoustic emission * neutron diffraction * deformation twinning * high temperature Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.647, year: 2015

  6. Dynamic dielectric analysis - A means for process control

    Science.gov (United States)

    Kranbuehl, D.; Delos, S.; Hoff, M.; Weller, L.

    1986-01-01

    The development of dynamic dielectric analysis techniques (as a 'smart' sensor for quantitative NDE) and of intelligent closed-loop cure systems is reported. The cure process of both BF3:R-catalyzed and uncatalyzed tetraglycidyl-4,4'-diaminodiphenyl methane (TGDDM)/diamine epoxy resins was studied. Measurements were made over a frequency range of six decades. The resin was monitored continuously throughout the cure process as it changed from a viscous liquid to a highly crosslinked solid. From the frequency dependence of the dielectric loss, the specific conductivity has been determined and shown to directly monitor the viscosity before the gel point is reached. Dielectric master plots of the cure process, analogous to time-temperature superposition plots for rheological data, have been developed.

  7. A physical explanation of the temperature dependence of physiological processes mediated by cilia and flagella

    Science.gov (United States)

    Humphries, Stuart

    2013-01-01

    The majority of biological rates are known to exhibit temperature dependence. Here I reveal a direct link between temperature and ecologically relevant rates such as swimming speeds in Archaea, Bacteria, and Eukaryotes as well as fluid-pumping and filtration rates in many metazoans, and show that this relationship is driven by movement rates of cilia and flagella. I develop models of the temperature dependence of cilial and flagellar movement rates and evaluate these with an extensive compilation of data from the literature. The model captures the temperature dependence of viscosity and provides a mechanistic and biologically interpretable explanation for the temperature dependence of a range of ecologically relevant processes; it also reveals a clear dependence on both reaction rate-like processes and the physics of the environment. The incorporation of viscosity allows further insight into the effects of environmental temperature variation and of processes, such as disease, that affect the viscosity of blood or other body fluids. PMID:23959901

  8. Frequency-dependent local field factors in dielectric liquids by a polarizable force field and molecular dynamics simulations

    International Nuclear Information System (INIS)

    Davari, Nazanin; Haghdani, Shokouh; Åstrand, Per-Olof

    2015-01-01

    A force field model for calculating local field factors, i.e. the linear response of the local electric field for example at a nucleus in a molecule with respect to an applied electric field, is discussed. It is based on a combined charge-transfer and point-dipole interaction model for the polarizability, and thereby it includes two physically distinct terms for describing electronic polarization: changes in atomic charges arising from transfer of charge between the atoms and atomic induced dipole moments. A time dependence is included both for the atomic charges and the atomic dipole moments and if they are assumed to oscillate with the same frequency as the applied electric field, a model for frequency-dependent properties are obtained. Furthermore, if a life-time of excited states are included, a model for the complex frequency-dependent polariability is obtained including also information about excited states and the absorption spectrum. We thus present a model for the frequency-dependent local field factors through the first molecular excitation energy. It is combined with molecular dynamics simulations of liquids where a large set of configurations are sampled and for which local field factors are calculated. We are normally not interested in the average of the local field factor but rather in configurations where it is as high as possible. In electrical insulation, we would like to avoid high local field factors to reduce the risk for electrical breakdown, whereas for example in surface-enhanced Raman spectroscopy, high local field factors are desired to give dramatically increased intensities

  9. Molecular players involved in temperature-dependent sex determination and sex differentiation in Teleost fish

    Science.gov (United States)

    2014-01-01

    The molecular mechanisms that underlie sex determination and differentiation are conserved and diversified. In fish species, temperature-dependent sex determination and differentiation seem to be ubiquitous and molecular players involved in these mechanisms may be conserved. Although how the ambient temperature transduces signals to the undifferentiated gonads remains to be elucidated, the genes downstream in the sex differentiation pathway are shared between sex-determining mechanisms. In this paper, we review recent advances on the molecular players that participate in the sex determination and differentiation in fish species, by putting emphasis on temperature-dependent sex determination and differentiation, which include temperature-dependent sex determination and genetic sex determination plus temperature effects. Application of temperature-dependent sex differentiation in farmed fish and the consequences of temperature-induced sex reversal are discussed. PMID:24735220

  10. Temperature-dependent surface density of alkylthiol monolayers on gold nanocrystals

    Science.gov (United States)

    Liu, Xuepeng; Lu, Pin; Zhai, Hua; Wu, Yucheng

    2018-03-01

    Atomistic molecular dynamics (MD) simulations are performed to study the surface density of passivating monolayers of alkylthiol chains on gold nanocrystals at temperatures ranging from 1 to 800 K. The results show that the surface density of alkylthiol monolayer reaches a maximum value at near room temperature (200-300 K), while significantly decreases with increasing temperature in the higher temperature region (> 300 {{K}}), and slightly decreases with decreasing temperature at low temperature (< 200 {{K}}). We find that the temperature dependence of surface ligand density in the higher temperature region is attributed to the substantial ligand desorption induced by the thermal fluctuation, while that at low temperature results from the reduction in entropy caused by the change in the ordering of passivating monolayer. These results are expected helpful to understand the temperature-dependent surface coverage of gold nanocrystals.

  11. TEMPERATURE-DEPENDENCE OF CHLOROPHYLL FLUORESCENCE INDUCTION AND PHOTOSYNTHESIS IN TOMATO AS AFFECTED BY TEMPERATURE AND LIGHT CONDITIONS DURING GROWTH

    NARCIS (Netherlands)

    JANSSEN, LHJ; WAMS, HE; VANHASSELT, PR

    The temperature dependence of chlorophyll fluorescence induction and photosynthesis of tomato plants grown at different temperatures and light intensities was studied. Chlorophyll fluorescence induction and photosynthetic activity of leaf discs was determined between 0-degrees and 30-degrees-C. Two

  12. Temperature dependent transport characteristics of graphene/n-Si diodes

    NARCIS (Netherlands)

    Parui, S.; Ruiter, R.; Zomer, P. J.; Wojtaszek, M.; van Wees, B. J.; Banerjee, T.

    2014-01-01

    Realizing an optimal Schottky interface of graphene on Si is challenging, as the electrical transport strongly depends on the graphene quality and the fabrication processes. Such interfaces are of increasing research interest for integration in diverse electronic devices as they are thermally and

  13. Temperature dependence of planktonic metabolism in the ocean

    Science.gov (United States)

    Regaudie-De-Gioux, A.; Duarte, C. M.

    2012-03-01

    Standard metabolic theory predicts that both respiration and photosynthesis should increase with increasing temperature, albeit at different rates. However, test of this prediction for ocean planktonic communities is limited, despite the broad consequences of this prediction in the present context of global ocean warming. We compiled a large data set on volumetric planktonic metabolism in the open ocean and tested the relationship between specific metabolic rates and water temperature. The relationships derived are consistent with predictions derived from metabolic theory of ecology, yielding activation energy for planktonic metabolism consistent with predictions from the metabolic theory. These relationships can be used to predict the effect of warming on ocean metabolism and, thus, the role of planktonic communities in the flow of carbon in the global ocean.

  14. Acoustic and relaxation behaviors of polydimethylsiloxane studied by using brillouin and dielectric spectroscopies

    Science.gov (United States)

    Lee, Byoung Wan; Ko, Jae-Hyeon; Park, Jaehoon; Shin, Dong-Myeong; Hwang, Yoon-Hwae

    2016-04-01

    The temperature dependences of the acoustic properties and the dielectric relaxation times of polydimethylsiloxane were investigated by using high-resolution Brillouin and broadband dielectric spectroscopies. The longitudinal sound velocity showed a large increase upon approaching the glass transition temperature while the acoustic absorption coefficient exhibited a maximum at ~263 K. Comparison of these results with previous ultrasonic data revealed a substantial frequency dispersion of the acoustic properties of this silicone-based elastomer. The relaxation times derived from the acoustic absorption peaks were consistent with the temperature dependence of the dielectric relaxation time of the structural a process, indicating a strong coupling between the acoustic waves and the segmental motions of the main chains.

  15. Frequency and temperature dependence of high damping elastomers

    International Nuclear Information System (INIS)

    Kulak, R.F.; Hughes, T.H.

    1993-01-01

    High damping steel-laminated elastomeric seismic isolation bearings are one of the preferred devices for isolating large buildings and structures. In the US, the current reference design for the Advanced Liquid Metal Reactor (ALMR) uses laminated bearings for seismic isolation. These bearings are constructed from alternating layers of high damping rubber and steel plates. They are typically designed for shear strains between 50 and 100% and are expected to sustain two to three times these levels for beyond design basis loading conditions. Elastomeric bearings are currently designed to provide a system frequency between 0.4 and 0.8 Hz and expected to operate between -20 and 40 degrees Centigrade. To assure proper performance of isolation bearings, it is necessary to characterize the elastomer's response under expected variations of frequency and temperature. The dynamic response of the elastomer must be characterized within the frequency range that spans the bearing acceptance test frequency, which may be as low as 0.005 Hz, and the design frequency. Similarly, the variation in mechanical characteristics of the elastomer must be determined over the design temperature range, which is between -20 and 40 degrees Centigrade. This paper reports on (1) the capabilities of a testing facility at ANL for testing candidate elastomers, (2) the variation with frequency and temperature of the stiffness and damping of one candidate elastomer, and (3) the effect of these variations on bearing acceptance testing criteria and on the choice of bearing design values for stiffness and damping

  16. Frequency and temperature dependence of high damping elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Kulak, R.F.; Hughes, T.H.

    1993-08-01

    High damping steel-laminated elastomeric seismic isolation bearings are one of the preferred devices for isolating large buildings and structures. In the US, the current reference design for the Advanced Liquid Metal Reactor (ALMR) uses laminated bearings for seismic isolation. These bearings are constructed from alternating layers of high damping rubber and steel plates. They are typically designed for shear strains between 50 and 100% and are expected to sustain two to three times these levels for beyond design basis loading conditions. Elastomeric bearings are currently designed to provide a system frequency between 0.4 and 0.8 Hz and expected to operate between {minus}20 and 40 degrees Centigrade. To assure proper performance of isolation bearings, it is necessary to characterize the elastomer`s response under expected variations of frequency and temperature. The dynamic response of the elastomer must be characterized within the frequency range that spans the bearing acceptance test frequency, which may be as low as 0.005 Hz, and the design frequency. Similarly, the variation in mechanical characteristics of the elastomer must be determined over the design temperature range, which is between {minus}20 and 40 degrees Centigrade. This paper reports on (1) the capabilities of a testing facility at ANL for testing candidate elastomers, (2) the variation with frequency and temperature of the stiffness and damping of one candidate elastomer, and (3) the effect of these variations on bearing acceptance testing criteria and on the choice of bearing design values for stiffness and damping.

  17. Efficiency and temperature dependence of water removal by membrane dryers

    Science.gov (United States)

    Leckrone, K. J.; Hayes, J. M.

    1997-01-01

    The vapor pressure of water in equilibrium with sorption sites within a Nafion membrane is given by log P(WN) = -3580/T + 10.01, where P(WN) is expressed in Torr and T is the membrane temperature, in kelvin. The efficiency of dryers based on selective permeation of water through Nafion can thus be enhanced by cooling the membrane. Residual water in effluents exceeds equilibrium levels if insufficient time is allowed for water to diffuse to the membrane surface as gas passes through the dryer. For tubular configurations, this limitation can be avoided if L > or = Fc(10(3.8)/120 pi D), where L is the length of the tubular membrane, in centimeters, Fc is the gas flow rate, in mL/ min, and D is the diffusion coefficient for water in the carrier gas at the operating temperature of the dryer, in cm2/s. An efficient dryer that at room temperature dries gas to a dew point of -61 degrees C is described; the same dryer maintained at 0 degrees C yields a dew point of -80 degrees C and removes water as effectively as Mg(ClO4)2 or a dry ice/acetone slush. The use of Nafion membranes to construct devices capable of delivering gas streams with low but precisely controlled humidities is discussed.

  18. Temperature dependence of Henry's law constants of metolachlor and diazinon.

    Science.gov (United States)

    Feigenbrugel, Valérie; Le Calvé, Stéphane; Mirabel, Philippe

    2004-10-01

    A dynamic system based on the water/air equilibrium at the interface within the length of a microporous tube has been used to determine experimentally the Henry's law constants (HLC) of two pesticides: metolachlor and diazinon. The measurements were conducted over the temperature range 283-301 K. At 293 K, HLCs values are (42.6+/-2.8) x 10(3) (in units of M atm(-1)) for metolachlor and (3.0+/-0.3)x10(3) for diazinon. The obtained data were used to derive the following Arrhenius expressions: HLC=(3.0+/-0.4) x 10(-11) exp((10,200+/-1,000)/T) for metolachlor and (7.2+/-0.5) x 10(-15) exp((11,900+/-700)/T) for diazinon. At a cumulus cloud temperature of 283 K, the fractions of metolachlor and diazinon in the atmospheric aqueous phase are about 57% and 11% respectively. In order to evaluate the impact of a cloud on the atmospheric chemistry of both studied pesticides, we compare also their atmospheric lifetimes under clear sky (tau(gas)), and cloudy conditions (tau(multiphase)). The calculated multiphase lifetimes (in units of hours) are significantly lower than those in gas phase at a cumulus temperature of 283 K (in parentheses): metolachlor, 0.4 (2.9); diazinon, 1.9 (5.0).

  19. Experimental and theoretical investigation of temperature-dependent electrical fatigue studies on 1-3 type piezocomposites

    Directory of Open Access Journals (Sweden)

    Y. Mohan

    2016-03-01

    Full Text Available 1-3 type piezocomposites are very attractive materials for transducers and biomedical application, due to its high electromechanical coupling effects. Reliability study on 1-3 piezocomposites subjected to cyclic loading condition in transducer application is one of the primary concern. Hence, this study focuses on 1-3 piezocomposites for various PZT5A1 fiber volume fraction subjected to electrical fatigue loading up-to 106 cycles and at various elevated temperature. Initially experiments are performed on 1-3 piezocomposites, in order to understand the degradation phenomena due to various range in amplitude of electric fields (unipolar & bipolar, frequency of applied electric field and for various ambient temperature. Performing experiments for high cycle fatigue and for different fiber volume fraction of PZT5A1 is a time consuming process. Hence, a simplified macroscopic uni-axial model based on physical mechanisms of domain switching and continuum damage mechanics has been developed to predict the non-linear fatigue behaviour of 1-3 piezocomposites for temperature dependent electrical fatigue loading conditions. In this model, damage effects namely domain pinning, frozen domains and micro cracks, are considered as a damage variable (ω. Remnant variables and material properties are considered as a function of internal damage variable and the growth of the damage is derived empirically based on the experimental observation to predict the macroscopic changes in the properties. The measured material properties and dielectric hysteresis (electric displacement vs. electric field as well as butterfly curves (longitudinal strain vs. electric field are compared with the simulated results. It is observed that variation in amplitude of bipolar electric field and temperature has a strong influence on the response of 1-3 piezocomposites.

  20. Low-Temperature Sintering of Ba0.5Sr0.5TiO3-SrMoO4 Dielectric Tunable Composite Ceramics for LTCC Applications

    Science.gov (United States)

    Tang, Linjiang; Wang, Jinwen; Zhai, Jiwei

    2013-08-01

    A sintering-aid system using melting of B-Li glass for barium strontium titanate (BST)-based compositions to be used in low-temperature cofired ceramic (LTCC) layers is introduced. The effects of the sintering aid on the microstructure, dielectric properties, and application in LTCC were investigated. The composition Ba0.5Sr0.5TiO3-SrMoO4 with 3 wt.% B-Li glass sintered at 950°C exhibits optimized dielectric properties, including low dielectric constant (368), low dielectric loss (0.007), and moderate tunability (13%, 60 kV/cm) at 10 kHz. At 1.44 GHz, it possesses a dielectric constant of 218 and Q value of 230. LTCC multilayer ceramic capacitors fabricated by the tape-casting process have steady relative tunability of 12% at 300 V, suggesting that BST50-SrMoO4-B-Li glass composite ceramic is a promising candidate for electrically tunable LTCC microwave device applications.

  1. Development of dielectric barrier discharge-type ozone generator constructed with piezoelectric transformers: effect of dielectric electrode materials on ozone generation

    Science.gov (United States)

    Teranishi, Kenji; Shimomura, Naoyuki; Suzuki, Susumu; Itoh, Haruo

    2009-11-01

    The dependence of ozone generation on the types of dielectric electrode material has been investigated using an ozone generator constructed with the piezoelectric transformer developed in our laboratory. The ozone generator is based on the excitation of the dielectric barrier discharge (DBD), which has the advantage of a compact configuration for generating ozone. Four kinds of dielectric materials are prepared for dielectric barrier electrodes. Electrical properties of the DBD and the ozone generation characteristics are investigated for the different dielectric materials. Differences in the discharge mode among the barrier electrode materials are recognized and discussed on the basis of the results of the Lissajous figures and voltage-current waveforms. During the continuous running of the generator, a temporal decrease in ozone concentration is observed owing to the temperature increase inside the reactor. Although the ozone generation characteristics are influenced by many properties of dielectrics, two important factors for achieving high-efficiency ozone generation are identified in this study. One is the use of a high-thermal conductivity material for the dielectric electrode, which functions well as a heat sink for transferring the generated heat to the outside through the material. The other factor is the control of the discharge mode. Our results show that the discharge mode that is considered as Townsend-like DBD is suitable for high-efficiency ozone generation.

  2. Eliashberg Analysis of Temperature Dependent Pairing Mechanism in d-Wave Superconductors: Application to High Temperature Superconductivity

    OpenAIRE

    Ahmadi, O.; Coffey, L.

    2012-01-01

    Results are presented for the temperature and frequency dependence of the real and imaginary parts of the diagonal self energy for a d-wave superconductor. An Eliashberg analysis, which has been successful in recent fitting of superconductor-insulator-superconductor tunnel junction conductances for BiSrCaCuO (Bi-2212), is extended to finite temperatures. The effect of the temperature dependence of the 40 meV spin resonance mode, measured in inelastic neutron scattering (INS) in Bi-2212, on th...

  3. The electrical and dielectric properties of the Au/Ti/HfO2/n-GaAs structures

    Science.gov (United States)

    Karabulut, Abdulkerim; Türüt, Abdulmecit; Karataş, Şükrü

    2018-04-01

    In this work, temperature dependent electrical and dielectric properties of the Au/Ti/HfO2/n-GaAs structures were investigated using capacitance-voltage (C-V) and conductance-voltage (G-V) measurements in the temperature range of 60-320 K by steps of 20 K at 1 MHz. The dielectric constant (ε‧), dielectric loss (ε″), dielectric loss tangent (tanδ) and ac electrical conductivities (σac) have been calculated as a function of temperature. These values of the ε‧, ε″, tanδ and σac have been found to be 2.272, 5.981, 2.631 and 3.32 × 10-6 (Ω-1cm-1) at 80 K, respectively, 1.779, 2.315, 1.301 and 1.28 × 10-6 (Ω-1cm-1), respectively at 320 K. These decrease of the dielectric parameters (ε‧, ε″, tanδ and σac) have been observed at high temperatures. The experimental results show that electrical and dielectric properties are strongly temperature and bias voltage dependent.

  4. Dielectric properties of bismuth titanate ceramics containing SiO2 and Nd2O3 as additives

    Directory of Open Access Journals (Sweden)

    Stanislav S. Slavov

    2012-09-01

    Full Text Available Bismuth-titanate ceramics containing SiO2 and Nd2O3 as additives are synthesized by melt quenching method in the system Bi2O3-TiO2-Nd2O3-SiO2 in the temperature range of 1250–1500 °C. The phase composition of the obtained materials is determined by X-ray diffraction analysis and energy dispersive spectroscopy. Using scanning electron microscopy different microstructures are observed in the samples depending on the composition. Different values of conductivity, dielectric losses and relative permittivity are obtained depending on the composition. It is established that all investigated samples are dielectric materials with conductivity between 10^-9 and 10^-13 (Ω·cm^-1 at room temperature, dielectric permittivity from 1000 to 3000 and dielectric losses tgδ between 0.0002 and 0.1.

  5. Accuracy of dielectric-dependent hybrid functionals in the prediction of optoelectronic properties of metal oxide semiconductors: a comprehensive comparison with many-body GW and experiments

    Science.gov (United States)

    Gerosa, M.; E Bottani, C.; Di Valentin, C.; Onida, G.; Pacchioni, G.

    2018-01-01

    Understanding the electronic structure of metal oxide semiconductors is crucial to their numerous technological applications, such as photoelectrochemical water splitting and solar cells. The needed experimental and theoretical knowledge goes beyond that of pristine bulk crystals, and must include the effects of surfaces and interfaces, as well as those due to the presence of intrinsic defects (e.g. oxygen vacancies), or dopants for band engineering. In this review, we present an account of the recent efforts in predicting and understanding the optoelectronic properties of oxides using ab initio theoretical methods. In particular, we discuss the performance of recently developed dielectric-dependent hybrid functionals, providing a comparison against the results of many-body GW calculations, including G 0 W 0 as well as more refined approaches, such as quasiparticle self-consistent GW. We summarize results in the recent literature for the band gap, the band level alignment at surfaces, and optical transition energies in defective oxides, including wide gap oxide semiconductors and transition metal oxides. Correlated transition metal oxides are also discussed. For each method, we describe successes and drawbacks, emphasizing the challenges faced by the development of improved theoretical approaches. The theoretical section is preceded by a critical overview of the main experimental techniques needed to characterize the optoelectronic properties of semiconductors, including absorption and reflection spectroscopy, photoemission, and scanning tunneling spectroscopy (STS).

  6. Temperature Dependence Viscosity and Density of Different Biodiesel Blends

    OpenAIRE

    Vojtěch Kumbár; Antonín Skřivánek

    2015-01-01

    The main goal of this paper is to assess the effect of rapeseed oil methyl ester (RME) concentration in diesel fuel on its viscosity and density behaviour. The density and dynamic viscosity were observed at various mixing ratios of RME and diesel fuel. All measurements were performed at constant temperature of 40 °C. Increasing ratio of RME in diesel fuel was reflected in increased density value and dynamic viscosity of the blend. In case of pure RME, pure diesel fuel, and a blend of both (B3...

  7. Dynamic temperature dependence patterns in future energy demand models in the context of climate change

    NARCIS (Netherlands)

    Hekkenberg, M.; Moll, H.C.; Schoot Uiterkamp, A.J.M.

    2009-01-01

    Energy demand depends on outdoor temperature in a 'u' shaped fashion. Various studies have used this temperature dependence to investigate the effects of climate change on energy demand. Such studies contain implicit or explicit assumptions to describe expected socio-economic changes that may affect

  8. Study on the effect of testing machine rigidity on strength and ductility temperature dependences obtained

    International Nuclear Information System (INIS)

    Krashchenko, V.P.; Statsenko, V.E.; Rudnitskij, N.P.

    1984-01-01

    Investigation procedures are described for rigidity of testing machines and mechanical properties of tantalum and nickel in the temperature range 293-1873K. Temperature dependences are presented for strength characteristics of the investigated materials obtained with the use of installations of different rigidity. Dependence analysis is carried out and recommendations are given as to the characteristics application

  9. Temperature dependent charge transport studies across thermodynamic glass transition in P3HT:PCBM bulk heterojunction: insight from J-V and impedance spectroscopy

    Science.gov (United States)

    Sarkar, Atri; Rahaman, Abdulla Bin; Banerjee, Debamalya

    2018-03-01

    Temperature dependent charge transport properties of P3HT:PCBM bulk heterojunction are analysed by dc and ac measurements under dark conditions across a wide temperature range of 110-473 K, which includes the thermodynamic glass transition temperature (Tg ˜320 K) of the system. A change from Ohmic conduction to space charge limited current conduction at higher (⩾1.2 V) applied bias voltages above  ⩾200 K is observed from J-V characteristics. From capacitance-voltage (C-V) measurement at room temperature, the occurrence of a peak near the built-in voltage is observed below the dielectric relaxation frequency, originating from the competition between drift and diffusion driven motions of charges. Carrier concentration (N) is calculated from C-V measurements taken at different temperatures. Room temperature mobility values at various applied bias voltages are in accordance with that obtained from transient charge extraction by linearly increasing voltage measurement. Sample impedance is measured over five decades of frequency across temperature range by using lock-in detection. This data is used to extract temperature dependence of carrier mobility (μ), and dc conductivity (σ_dc ) which is low frequency extrapolation of ac conductivity. An activation energy of  ˜126 meV for the carrier hopping process at the metal-semiconductor interface is estimated from temperature dependence of σ_dc . Above T g, μ levels off to a constant value, whereas σ_dc starts to decrease after a transition knee at T g that can be seen as a combined effect of changes in μ and N. All these observed changes across T g can be correlated to enhanced polymer motion above the glass transition.

  10. Temperature Dependence on The Synthesis of Jatropha Biolubricant

    International Nuclear Information System (INIS)

    Resul, Muhammad Faiz M Gunam; Ghazi, Tinia Idaty Mohd; Idris, Azni

    2011-01-01

    Jatropha oil has good potential as the renewable energy as well as lubricant feedstock. The synthesis of jatropha biolubricant was performed by transesterification of jatropha methyl ester (JME) with trimethyl-ol-propane (TMP) with sodium methoxide (NaOCH3) catalyst. The effects of temperature on the synthesis were studied at a range between 120 deg. C and 200 deg. C with pressure kept at 10mbar. The conversion of JME to jatropha biolubricant was found to be the highest (47%) at 200 deg. C. However, it was suggested that the optimum temperature of the reaction is at 150 deg. C due to insignificant improvement in biolubricant production. To maintain forward reaction, the excess amount of JME was maintained at 3.9:1 ratios to TMP. Kinetic study was done and compared. The synthesis was found to follow a second order reaction with overall rate constant of 1.49 x 10-1 (%wt/wt.min.deg. C)-1. The estimated activation energy was 3.94 kJ/mol. Pour point for jatropha biolubricant was at -3 deg. C and Viscosity Index (VI) ranged from 178 to 183. The basic properties of jatropha biolubricant, pour point and viscosities are found comparable to other plant based biolubricant, namely palm oil and soybean based biolubricant.

  11. SPATIALLY SELECTED SPECKLE-CORRELOMETRY OF TEMPERATURE DEPENDENT GELATION KINETICS

    Directory of Open Access Journals (Sweden)

    Anna A. Isaeva

    2017-11-01

    Full Text Available The paper presents the application of speckle correlometry method with the spatial ring filtration of back scattered field with the usage of localized radiation source for the study of dynamic thermally activated processes in gel-like structures containing submicron particles and nanoparticles. Speckle-modulated images contain information about the processes taking place inside the investigated medium; therefore, they are effectively used in biomedicine and materials science. The transformation process from lysol to gel was considered in media based on technical gelatin dissolved in water with weight fraction equal to 0.28% containing titanium dioxide nanoparticles TiO2 (volume fraction of particles is equal to 0.1% and 0.01% and media based on food gelatin dissolved in water with weight fraction equal to 0.3% containing titanium dioxide nanoparticles TiO2 (volume fraction of particles is equal to 0.01% and 0.01%. The temperature of the medium during the structural transformation of "sol-gel" system was changed from 50 to 25°C. To estimate the experimentally obtained distribution of space-time intensity fluctuations of backscattered speckle fields, the correlation analysis and the formalism of Kolmogorov structure functions were used. The estimations of activation temperatures for the “sol-gel” transition process for technical and food gelatin were obtained. This approach can be successfully applied for the study of dynamic systems, for example, the demonstration of Brownian particle movements.

  12. Temperature dependent simulation of diamond depleted Schottky PIN diodes

    International Nuclear Information System (INIS)

    Hathwar, Raghuraj; Dutta, Maitreya; Chowdhury, Srabanti; Goodnick, Stephen M.; Koeck, Franz A. M.; Nemanich, Robert J.

    2016-01-01

    Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco ® Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond. The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures

  13. Temperature dependent simulation of diamond depleted Schottky PIN diodes

    Science.gov (United States)

    Hathwar, Raghuraj; Dutta, Maitreya; Koeck, Franz A. M.; Nemanich, Robert J.; Chowdhury, Srabanti; Goodnick, Stephen M.

    2016-06-01

    Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco® Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond. The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures

  14. Temperature dependent simulation of diamond depleted Schottky PIN diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hathwar, Raghuraj; Dutta, Maitreya; Chowdhury, Srabanti; Goodnick, Stephen M. [Department of Electrical Engineering, Arizona State University, Tempe, Arizona 85287-8806 (United States); Koeck, Franz A. M.; Nemanich, Robert J. [Department of Physics, Arizona State University, Tempe, Arizona 85287-8806 (United States)

    2016-06-14

    Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco{sup ®} Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond. The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures.

  15. Dielectric properties and electrical conductivity of flat micronic graphite/polyurethane composites

    Science.gov (United States)

    Plyushch, Artyom; Macutkevic, Jan; Kuzhir, Polina P.; Banys, Juras; Fierro, Vanessa; Celzard, Alain

    2016-03-01

    Results of broadband dielectric spectroscopy of flat micronic graphite (FMG)/polyurethane (PU) resin composites are presented in a wide temperature range (25-450 K). The electrical percolation threshold was found to lie between 1 and 2 vol. % of FMG. Above the percolation threshold, the composites demonstrated a huge hysteresis of properties on heating and cooling from room temperature up to 450 K, along with extremely high values of dielectric permittivity and electrical conductivity. Annealing proved to be a very simple but powerful tool for significantly improving the electrical properties of FMG-based composites. In order to explain this effect, the distributions of relaxation times were calculated by the complex impedance formalism. Below room temperature, both dielectric permittivity and electrical conductivity exhibited a very low temperature dependence, mainly caused by the different thermal properties of FMG and pure PU matrix.

  16. Evolution of phase transformation behavior and dielectric temperature stability of BaTiO3–Bi(Zn0.5Zr0.5)O3 ceramics system

    International Nuclear Information System (INIS)

    Wang, Yiliang; Chen, Xiuli; Zhou, Huanfu; Fang, Liang; Liu, Laijun; Zhang, Hui

    2013-01-01

    Highlights: ► (1 − x)BaTiO 3 –xBi(Zn 0.5 Zr 0.5 )O 3 ceramics were synthesized. ► A systematic structural change was observed near x = 0.07 and x = 0.4. ► A change from a normal ferroelectric behavior to diffusive and dispersive relaxor-like characteristic was also observed. ► (1 − x)BT–xBZZ ceramics show good dielectric temperature stability over a wide temperature range. - Abstract: (1 − x)BaTiO 3 –xBi(Zn 0.5 Zr 0.5 )O 3 [(1 − x)BT–xBZZ, 0.01 ⩽ x ⩽ 0.6] ceramics were synthesized by solid-state reaction technique. Based on the X-ray diffraction data analysis, a systematic structure change from the ferroelectric tetragonal phase to pseudocubic phase and the pseudocubic phase to orthorhombic phase was observed near x = 0.07 and x = 0.4 at room temperature, respectively. Dielectric measurements show a dielectric anomaly, over the temperature range from 50 to 200 °C for the compositions with 0.03 ⩽ x ⩽ 0.09. A change from a normal ferroelectric behavior to diffusive and dispersive relaxor-like characteristic was also observed. Moreover, (1 − x)BT–xBZZ ceramics show good dielectric temperature stability over a wide temperature range, which indicates that these ceramics can be applied in the temperature stability devices.

  17. The temperature dependence of pulse shape discrimination with NE213 scintillation counters

    International Nuclear Information System (INIS)

    Galloway, R.B.; Sharaf, J.M.

    1984-01-01

    The temperature dependence of the pulse shape discrimination between neutrons and gamma rays has been investigated for two scintillation counters using NE213 liquid scintillator. One counter used the zero cross-over timing technique of pulse shape discrimination and showed no significant temperature dependence over the range 35 to -8 0 C. The other used the space charge saturation technique of pulse shape discrimination and showed a marked temperature dependence. The findings are compared with previously published contradictory results. The influence of temperature on the gain of the detectors is found to be more important than the influence on the pulse shape discrimination. (orig.)

  18. Temperature-dependent electron paramagnetic resonance detect oxygen vacancy defects and Cr valence of tetragonal Ba(Ti1-xCrx)O3 ceramics

    Science.gov (United States)

    Han, Dan-Dan; Lu, Da-Yong; Meng, Fan-Ling; Yu, Xin-Yu

    2018-03-01

    Temperature-dependent electron paramagnetic resonance (EPR) study was employed to detect oxygen vacancy defects in the tetragonal Ba(Ti1-xCrx)O3 (x = 5%) ceramic for the first time. In the rhombohedral phase below -150 °C, an EPR signal at g = 1.955 appeared in the insulating Ba(Ti1-xCrx)O3 (x = 5%) ceramic with an electrical resistivity of 108 Ω cm and was assigned to ionized oxygen vacancy defects. Ba(Ti1-xCrx)O3 ceramics exhibited a tetragonal structure except Ba(Ti1-xCrx)O3 (x = 10%) with a tetragonal-hexagonal mixed phase and a first-order phase transition dielectric behavior (ε‧m > 11,000). Mixed valence Cr ions could coexist in ceramics, form CrTi‧-VOrad rad or CrTirad-TiTi‧ defect complexes and make no contribution to a dielectric peak shift towards low temperature.

  19. On the spectral dependence of the critical temperature of superconductors

    International Nuclear Information System (INIS)

    Combescot, R.

    1989-01-01

    The authors have solved analytically the linearized Eliashberg equations for T c in the weak coupling limit. The corrections to their result go to zero in this limit. Their calculation is valid for any spectral shape. They find a smooth dependence of T c on the spectral shape. Only the gross features of the spectrum are relevant. The authors propose for T c an interpolation formula valid for any coupling strength and any spectral shape. This formula is in good agreement with known numerical results. It agrees with all the qualitative behavior obtained from computer work

  20. Spectral and temperature-dependent infrared emissivity measurements of painted metals for improved temperature estimation during laser damage testing

    Science.gov (United States)

    Baumann, Sean M.; Keenan, Cameron; Marciniak, Michael A.; Perram, Glen P.

    2014-10-01

    A database of spectral and temperature-dependent emissivities was created for painted Al-alloy laser-damage-testing targets for the purpose of improving the uncertainty to which temperature on the front and back target surfaces may be estimated during laser-damage testing. Previous temperature estimates had been made by fitting an assumed gray-body radiance curve to the calibrated spectral radiance data collected from the back surface using a Telops Imaging Fourier Transform Spectrometer (IFTS). In this work, temperature-dependent spectral emissivity measurements of the samples were made from room temperature to 500 °C using a Surface Optics Corp. SOC-100 Hemispherical Directional Reflectometer (HDR) with Nicolet FTS. Of particular interest was a high-temperature matte-black enamel paint used to coat the rear surfaces of the Al-alloy samples. The paint had been assumed to have a spectrally flat and temperatureinvariant emissivity. However, the data collected using the HDR showed both spectral variation and temperature dependence. The uncertainty in back-surface temperature estimation during laser-damage testing made using the measured emissivities was improved from greater than +10 °C to less than +5 °C for IFTS pixels away from the laser burn-through hole, where temperatures never exceeded those used in the SOC-100 HDR measurements. At beam center, where temperatures exceeded those used in the SOC-100 HDR, uncertainty in temperature estimates grew beyond those made assuming gray-body emissivity. Accurate temperature estimations during laser-damage testing are useful in informing a predictive model for future high-energy-laser weapon applications.

  1. Temperature dependence of resistance in epitaxial Fe/MgO/Fe magnetic tunnel junctions

    Science.gov (United States)

    Ma, Q. L.; Wang, S. G.; Zhang, J.; Wang, Yan; Ward, R. C. C.; Wang, C.; Kohn, A.; Zhang, X.-G.; Han, X. F.

    2009-08-01

    The temperature dependence of resistance in parallel (P) and antiparallel (AP) configurations (RP,AP) has been investigated in epitaxial Fe/MgO/Fe junctions with varying MgO barrier thicknesses tMgO. RAP exhibits a substantial decrease with increasing temperature for samples with tMgO ranging from 3.0 to 1.5 nm. In contrast, RP is approximately temperature independent when tMgO=3.0 nm and increases with temperature when tMgO=2.1 and 1.5 nm. Possible origins of this temperature dependence of resistance, which include taking into account a spin independent term and consideration of spin-flip scattering, are discussed. We attribute the temperature dependence of RP,AP to the misalignment of magnetic moments in the electrodes due to thermal excitations and its effect on the spin dependent tunneling.

  2. Temperature-dependent THz vibrational spectra of clenbuterol hydrochloride

    Science.gov (United States)

    Yang, YuPing; Lei, XiangYun; Yue, Ai; Zhang, Zhenwei

    2013-04-01

    Using the high-resolution Terahertz Time-domain spectroscopy (THz-TDS) and the standard sample pellet technique, the far-infrared vibrational spectra of clenbuterol hydrochloride (CH), a β 2-adrenergic agonist for decreasing fat deposition and enhancing protein accretion, were measured in temperature range of 77-295 K. Between 0.2 and 3.6 THz (6.6-120.0 cm-1), seven highly resolved spectral features, strong line-narrowing and a frequency blue-shift were observed with cooling. However, ractopamine hydrochloride, with some structural and pharmacological similarities to clenbuterol hydrochloride, showed no spectral features, indicating high sensitivity and strong specificity of THz-TDS. These results could be used for the rapid and nondestructive CH residual detection in food safety control.

  3. The thickness dependence of the phase transition temperature in PVDF

    Energy Technology Data Exchange (ETDEWEB)

    Mai, M. [Institute of Electrical Engineering Physics, Saarland University, D-66123 Saarbruecken (Germany); Fridkin, V. [Institute of Crystallography of Russian Academy of Sciences, 119333 Moscow (Russian Federation); Martin, B., E-mail: b.martin@mx.uni-saarland.de [Institute of Electrical Engineering Physics, Saarland University, D-66123 Saarbruecken (Germany); Leschhorn, A.; Kliem, H. [Institute of Electrical Engineering Physics, Saarland University, D-66123 Saarbruecken (Germany)

    2013-07-15

    It was found recently that in the Langmuir–Blodgett ultrathin vinylidene fluoride (PVDF) films there is ferroelectric phase transition of the first order. Earlier in the bulk PVDF this phase transition was not observed because the melting temperature of this ferroelectric polymer (∼170 °C) is lower than the point of the possible phase transition. Therefore this polymer was treated for a long time as pyroelectric. In the present work we investigate PVDF Langmuir–Blodgett films at the nanoscale and the film thickness interval, where ferroelectric phase transition disappears and transition from ferroelectric to pyroelectric state takes place. This phenomenon is explained by the finite-size effect at the nanoscale using Landau–Ginzburg–Devonshire (LGD) theory and by the Weiss mean field model.

  4. Dependence of electric strength on the ambient temperature

    International Nuclear Information System (INIS)

    Čaja, Alexander; Nemec, Patrik; Malcho, Milan

    2014-01-01

    At present, the volume concentration of electronic components in their miniaturization to different types of microchips and increasing their performance raises the problem of cooling such elements due to the increasing density of heat flow of heat loss. Compliance with safe operating temperature of active semiconductor element is very closely related to the reliability and durability not only components, but also the entire device. Often it is also necessary to electrically isolate the unit from the side of the cooler air. Cooling demand by natural convection is typical for applications with high operating reliability. To the reliability of the system for removing heat loss increased, it is necessary to minimize need to use the mechanically or electrically powered elements, such as circulation pumps or fans. Experience to date with applications of heat pipe in specific systems appears to be the most appropriate method of cooling

  5. Temperature-dependent thermal properties of Ru/C multilayers.

    Science.gov (United States)

    Yan, Shuai; Jiang, Hui; Wang, Hua; He, Yan; Li, Aiguo; Zheng, Yi; Dong, Zhaohui; Tian, Naxi

    2017-09-01

    Multilayers made of Ru/C are the most promising candidates when working in the energy region 8-20 keV. The stability of its thermal properties, including thermal expansion and thermal conduction, needs to be considered for monochromator or focusing components. Ru/C multilayers with periodic thicknesses of 3, 4 and 5 nm were investigated in situ by grazing-incidence X-ray reflectometry and diffuse scattering in order to study their thermal expansion characteristics as a function of annealing temperature up to 400°C. The thermal conductivity of multilayers with the same structure was also measured by the transient hot-wire method and compared with bulk values.

  6. Dependence of electric strength on the ambient temperature

    Energy Technology Data Exchange (ETDEWEB)

    Čaja, Alexander, E-mail: alexander.caja@fstroj.uniza.sk, E-mail: patrik.nemec@fstroj.uniza.sk, E-mail: milan.malcho@fstroj.uniza.sk; Nemec, Patrik, E-mail: alexander.caja@fstroj.uniza.sk, E-mail: patrik.nemec@fstroj.uniza.sk, E-mail: milan.malcho@fstroj.uniza.sk; Malcho, Milan, E-mail: alexander.caja@fstroj.uniza.sk, E-mail: patrik.nemec@fstroj.uniza.sk, E-mail: milan.malcho@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engeneering, Univerzitná 1, 010 26 Žilina (Slovakia)

    2014-08-06

    At present, the volume concentration of electronic components in their miniaturization to different types of microchips and increasing their performance raises the problem of cooling such elements due to the increasing density of heat flow of heat loss. Compliance with safe operating temperature of active semiconductor element is very closely related to the reliability and durability not only components, but also the entire device. Often it is also necessary to electrically isolate the unit from the side of the cooler air. Cooling demand by natural convection is typical for applications with high operating reliability. To the reliability of the system for removing heat loss increased, it is necessary to minimize need to use the mechanically or electrically powered elements, such as circulation pumps or fans. Experience to date with applications of heat pipe in specific systems appears to be the most appropriate method of cooling.

  7. Temperature and relative humidity dependence of radiochromic film dosimeter response to gamma electron radiation

    DEFF Research Database (Denmark)

    McLaughlin, W.L.; Puhl, J.M.; Miller, A.

    1995-01-01

    on some earlier studies, their response functions have been reported to be dependent on the temperature and relative humidity during irradiation. The present study investigates differences in response over practical ranges of temperature, relative humidity, dose, and for different recent batches of films...... humidity) and should be calibrated under environmental conditions (temperature) at which they will be used routinely....

  8. Temperature dependent electron Lande g-factor and interband matrix element in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, Jens; Doehrmann, Stefanie; Haegele, Daniel; Oestreich, Michael [Institute for Solid State Physics, Gottfried Wilhelm Leibniz University Hannover (Germany)

    2007-07-01

    High precision measurements of the electron Lande g-factor in GaAs are presented using spin quantum beat spectroscopy at low excitation densities and temperatures ranging from 2.6 to 300 K. Influences of nuclear spin polarization at low temperatures have been fully compensated. Comparing these measurements with available data for the temperature dependent effective mass reveals an unexpected strong temperature dependence of the interband matrix element and resolves a long lasting discrepancy between experiment and kp - theory. The strong decrease of the interband matrix element with increasing temperature is explained by phonon induced fluctuations of the interatomic spacing and adiabatic following of the electrons.

  9. Optical power limiting and transmitting properties of cadmium iodide single crystals: Temperature dependence

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.a [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)] [Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)] [Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2009-09-14

    Optical limiting properties of the single crystals of cadmium iodide are investigated using ns laser pulses. It is found that the transmissions in the crystals increase with increasing temperature. However, they limit the transmissions at high input powers. The limiting power is found to be higher at higher temperature. From the measured transmission data, the photon absorption coefficients are estimated. The temperature dependence of the coefficients shows a decrease in magnitude with increasing temperature. This might be due to the temperature-dependent bandgap shift of the material. The results demonstrate that the cadmium iodide single crystals are promising materials for applications in optical power limiting devices.

  10. Optical power limiting and transmitting properties of cadmium iodide single crystals: Temperature dependence

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2009-01-01

    Optical limiting properties of the single crystals of cadmium iodide are investigated using ns laser pulses. It is found that the transmissions in the crystals increase with increasing temperature. However, they limit the transmissions at high input powers. The limiting power is found to be higher at higher temperature. From the measured transmission data, the photon absorption coefficients are estimated. The temperature dependence of the coefficients shows a decrease in magnitude with increasing temperature. This might be due to the temperature-dependent bandgap shift of the material. The results demonstrate that the cadmium iodide single crystals are promising materials for applications in optical power limiting devices.

  11. Temperature dependence of a refractive index sensor based on a macrobending micro-plastic optical fiber.

    Science.gov (United States)

    Jing, Ning; Teng, Chuanxin; Zhao, Xiaowei; Zheng, Jie

    2015-03-10

    We investigate the temperature dependence of a refractive index (RI) sensor based on a macrobending micro-plastic optical fiber (m-POF) both theoretically and experimentally. The performance of the RI sensor at different temperatures (10°C-70°C) is measured and simulated over an RI range from 1.33 to 1.45. It is found that the temperature dependent bending loss and RI measurement deviation monotonically change with temperature, and the RI deviation has a higher gradient with temperature variation for a higher measured RI. Because of the linear trend of temperature dependence of the sensor, it is feasible to correct for changes in ambient temperature.

  12. Temperature dependence of the thermoelectric coeffiicients of lithium niobate and lithium tantalate

    International Nuclear Information System (INIS)

    Khachaturyan, O.A.; Gabrielyan, A.I.; Kolesnik, S.P.

    1988-01-01

    Thermoelectric Zeebeck,Thomson, Peltier coefficients for LiNbO 3 and LiTaO 3 monocrystals and their dependence on temperature in 300-1400 K range were investigated. It is shown that Zeebeck (α) coefficient changes its sign, depending on temperature change - the higher is α, the higher is material conductivity in the corresponding temperature region. Thomson and Peltier coefficients were calculated analytically for lithium niobate and tantalate

  13. Temperature dependence of the interfacial magnetic anisotropy in W/CoFeB/MgO

    OpenAIRE

    Kyoung-Min Lee; Jun Woo Choi; Junghyun Sok; Byoung-Chul Min

    2017-01-01

    The interfacial perpendicular magnetic anisotropy in W/CoFeB (1.2 ∼ 3 nm)/MgO thin film structures is strongly dependent on temperature, and is significantly reduced at high temperature. The interfacial magnetic anisotropy is generally proportional to the third power of magnetization, but an additional factor due to thermal expansion is required to explain the temperature dependence of the magnetic anisotropy of ultrathin CoFeB films. The reduction of the magnetic anisotropy is more prominent...

  14. Temperature dependence of shot noise in double barrier magnetic tunnel junctions

    Science.gov (United States)

    Niu, Jiasen; Liu, Liang; Feng, J. F.; Han, X. F.; Coey, J. M. D.; Zhang, X.-G.; Wei, Jian

    2018-03-01

    Shot noise reveals spin dependent transport properties in a magnetic tunnel junction. We report measurement of shot noise in CoFeB/MgO/CoFeB/MgO/CoFeB double barrier magnetic tunnel junctions, which shows a strong temperature dependence. The Fano factor used to characterize shot noise increases with decreasing temperature. A sequential tunneling model can be used to account for these results, in which a larger Fano factor results from larger spin relaxation length at lower temperatures.

  15. Broadband dielectric spectroscopy and calorimetric investigations of D-lyxose.

    Science.gov (United States)

    Singh, Lokendra P; Alegría, A; Colmenero, J

    2011-10-18

    Using broadband dielectric spectroscopy, we have studied different types of relaxation processes, namely, primary (α), secondary (β), and another sub-T(g) process called γ-process, in the supercooled state of D-lyxose, over a wide frequency (10(-2)-10(9) Hz) and temperature range (120-340 K). In addition, the same sample was analyzed by differential scanning calorimeter. The temperature dependence of the relaxation times as well as the dielectric strength of different processes has been critically examined. It has been observed that the slower secondary relaxation (designated as β-) process shifts to lower frequencies with increasing applied pressure, but not the faster one. This pressure dependence indicates that the observed slower secondary relaxation (β-) is Johari-Goldstein relaxation process and faster one (γ-process) is probably the rotation of hydroxymethyl (-CH(2)OH) side group attached to the sugar ring, that is, of intramolecular origin. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Wall temperature measurements using a thermal imaging camera with temperature-dependent emissivity corrections

    International Nuclear Information System (INIS)

    McDaid, Chloe; Zhang, Yang

    2011-01-01

    A methodology is presented whereby the relationship between temperature and emissivity for fused quartz has been used to correct the temperature values of a quartz impingement plate detected by an SC3000 thermal imaging camera. The methodology uses an iterative method using the initial temperature (obtained by assuming a constant emissivity) to find the emissivity values which are then put into the thermal imaging software and used to find the subsequent temperatures, which are used to find the emissivities, and so on until converged. This method is used for a quartz impingement plate that has been heated under various flame conditions, and the results are compared. Radiation losses from the plate are also calculated, and it is shown that even a slight change in temperature greatly affects the radiation loss. It is a general methodology that can be used for any wall material whose emissivity is a function of temperature

  17. Effect of temperature-dependent energy-level shifts on a semiconductor's Peltier heat

    International Nuclear Information System (INIS)

    Emin, D.

    1984-01-01

    The Peltier heat of a charge carrier in a semiconductor is calculated for the situation in which the electronic energy levels are temperature dependent. The temperature dependences of the electronic energy levels, generally observed optically, arise from their dependences on the vibrational energy of the lattice (e.g., as caused by thermal expansion). It has been suggested that these temperature dependences will typically have a major effect on the Peltier heat. The Peltier heat associated with a given energy level is a thermodynamic quantity; it is the product of the temperature and the change of the entropy of the system when a carrier is added in that level. As such, the energy levels cannot be treated as explicitly temperature dependent. The electron-lattice interaction causing the temperature dependence must be expressly considered. It is found that the carrier's interaction with the atomic vibrations lowers its electronic energy. However, the interaction of the carrier with the atomic vibrations also causes an infinitesimal lowering (approx.1/N) of each of the N vibrational frequencies. As a result, there is a finite carrier-induced increase in the average vibrational energy. Above the Debye temperature, this cancels the lowering of the carrier's electronic energy. Thus, the standard Peltier-heat formula, whose derivation generally ignores the temperature dependence of the electronic energy levels, is regained. This explains the apparent success of the standard formula in numerous analyses of electronic transport experiments

  18. Effect of annealing temperatures on the electrical conductivity and dielectric properties of Ni1.5Fe1.5O4 spinel ferrite prepared by chemical reaction at different pH values

    Science.gov (United States)

    Aneesh Kumar, K. S.; Bhowmik, R. N.

    2017-12-01

    The electrical conductivity and dielectric properties of Ni1.5Fe1.5O4 ferrite has been controlled by varying the annealing temperature of the chemical routed samples. The frequency activated conductivity obeyed Jonscher’s power law and universal scaling suggested semiconductor nature. An unusual metal like state has been revealed in the measurement temperature scale in between two semiconductor states with different activation energy. The metal like state has been affected by thermal annealing of the material. The analysis of electrical impedance and modulus spectra has confirmed non-Debye dielectric relaxation with contributions from grains and grain boundaries. The dielectric relaxation process is thermally activated in terms of measurement temperature and annealing temperature of the samples. The hole hopping process, due to presence of Ni3+ ions in the present Ni rich ferrite, played a significant role in determining the thermal activated conduction mechanism. This work has successfully applied the technique of a combined variation of annealing temperature and pH value during chemical reaction for tuning electrical parameters in a wide range; for example dc limit of conductivity ~10‑4–10‑12 S cm‑1, and unusually high activation energy ~0.17–1.36 eV.

  19. The temperature dependence on the electrical properties of dysprosium oxide deposited on n-porous GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Saghrouni, H., E-mail: hayet_sagrouni@yahoo.fr [Université de Sousse, LabEM-LR11ES34 Energie-Matériaux, Ecole Supérieure des Sciences et de la Technologie, Rue Lamine Abessi 4011, Hammam Sousse (Tunisia); Université de Sousse, Equipe de recherche caractérisations optoélectronique et spectroscopique des matériaux et nanomatériaux pour les télécommunications et capteurs, ISITCOM 4011, Hammam Sousse (Tunisia); Jomni, S. [Université de Tunis El Manar, LR: LAB MA03 Matériaux, Organisation et Propriétés, Faculté des Sciences de Tunis, 2092 (Tunisia); Cherif, A. [Université de Sousse, LabEM-LR11ES34 Energie-Matériaux, Ecole Supérieure des Sciences et de la Technologie, Rue Lamine Abessi 4011, Hammam Sousse (Tunisia); Université de Sousse, Equipe de recherche caractérisations optoélectronique et spectroscopique des matériaux et nanomatériaux pour les télécommunications et capteurs, ISITCOM 4011, Hammam Sousse (Tunisia); Belgacem, W. [Université de Tunis El Manar, LR: LAB MA03 Matériaux, Organisation et Propriétés, Faculté des Sciences de Tunis, 2092 (Tunisia); and others

    2016-08-15

    This paper describes the electrical and dielectric characteristics for the first time of the high-k Dy{sub 2}O{sub 3} oxide film deposited on the porous GaAs substrate by electron beam deposition under ultra vacuum. Morphological characterization is investigated by atomic force microscopy (AFM). The electrical and dielectric properties of Co/Au/Dy{sub 2}O{sub 3}/n-porous GaAs structure were studied in the temperature range of 80–500 K. The conductance and capacitance measurements were performed as a function of bias voltage and frequency. The dielectric constant (ε′), dielectric loss (ε″) and dielectric loss tangent (tanδ) of the structure are obtained from capacitance–voltage (C–V) and conductance–voltage (G/ω–V) measurements. These parameters are found to be strong functions of temperature and bias voltage. In the forward bias region, C–V plots show a negative capacitance (NC) behavior, ε′–V plots for each temperature value take negative values as well. Such negative values of C correspond to the maximum of the conductance (G/ω). The negative capacitance values appear abnormal when compared to the conventional behavior of ideal Schottky barrier diode (SBD) and metal–oxide–semiconductor (MOS) structures. The following behavior of the C and ε′ in the forward bias region has been explained with the minority-carrier injection and relaxation theory. From DC conductance study, electronic conduction is found to be dominated by thermally activated hopping at high temperature. Activation energy is deduced from the variation of conductance with temperature. The Nyquist plots exhibited single semi-circular arcs which were well fitted to an equivalent circuit. - Highlights: • The high-k Dy{sub 2}O{sub 3} oxide film is deposited on n-porous GaAs by means of electron beam deposition. • The electrical and dielectric properties of MOS structure were studied. • A strong negative capacitance (NC) phenomenon has been observed in the C-V and C

  20. Experimental determination of monoethanolamine protonation constant and its temperature dependency

    Directory of Open Access Journals (Sweden)

    Ma’mun Sholeh

    2017-01-01

    Full Text Available Carbon dioxide as one of the major contributors to the global warming problem is produced in large quantities by many important industries and its emission seems to rise from year to year. Aminebased absorption is one of the methods to capture CO2 from its sources. As a reactive system, mass transfer and chemical reaction take place simultaneously. In a vapor-liquid equilibrium model for the CO2-amine-water system, some parameters such as mass transfer coefficients and chemical equilibrium constants need to be known. However, some parameters could be determined experimentally and the rests could be regressed from the model. The protonation constant (pKa, as one of the model parameters, could then be measured experimentally. The purpose of this study is to measure the pKa of monoethanolamine (MEA at a range of temperatures from 303 to 330K by a potentiometric titration method. The experimental data obtained were in a good agreement with the literature data. The pKa data from this work together with those from the literature were then correlated in an empirical correlation to be used for future research.