WorldWideScience

Sample records for temperature ceramic selective

  1. Tribology of selected ceramics at temperatures to 900 C

    Science.gov (United States)

    Sliney, H. E.; Jacobson, T. P.; Deadmore, D.; Miyoshi, K.

    1986-01-01

    Results of fundamental and focused research on the tribological properties of ceramics are discussed. The basic friction and wear characteristics are given for ceramics of interest for use in gas turbine, adiabatic diesel, and Stirling engine applications. The importance of metal oxides in ceramic/metal sliding combinations is illustrated. The formulation and tribological additives are described. Friction and wear data are given for carbide and oxide-based composite coatings for temperatures to at least 900 C.

  2. Selecting Ceramics - Introduction

    OpenAIRE

    Cassidy, M.

    2002-01-01

    AIM OF PRESENTATION: To compare a number of materials for extracoronal restoration of teeth with particular reference to CAD-CAM ceramics. CASE DESCRIPTION AND TREATMENT CARRIED OUT: This paper will be illustrated using clinical examples of patients treated using different ceramic restorations to present the advantages and disadvantages and each technique. The different requirements of tooth preparation, impression taking and technical procedures of each system will be presented and compar...

  3. Selective recovery of silver from waste low-temperature co-fired ceramic and valorization through silver nanoparticle synthesis.

    Science.gov (United States)

    Swain, Basudev; Shin, Dongyoon; Joo, So Yeong; Ahn, Nak Kyoon; Lee, Chan Gi; Yoon, Jin-Ho

    2017-11-01

    Considering the value of silver metal and silver nanoparticles, the waste generated during manufacturing of low temperature co-fired ceramic (LTCC) were recycled through the simple yet cost effective process by chemical-metallurgy. Followed by leaching optimization, silver was selectively recovered through precipitation. The precipitated silver chloride was valorized though silver nanoparticle synthesis by a simple one-pot greener synthesis route. Through leaching-precipitation optimization, quantitative selective recovery of silver chloride was achieved, followed by homogeneous pure silver nanoparticle about 100nm size were synthesized. The reported recycling process is a simple process, versatile, easy to implement, requires minimum facilities and no specialty chemicals, through which semiconductor manufacturing industry can treat the waste generated during manufacturing of LTCC and reutilize the valorized silver nanoparticles in manufacturing in a close loop process. Our reported process can address issues like; (i) waste disposal, as well as value-added silver recovery, (ii) brings back the material to production stream and address the circular economy, and (iii) can be part of lower the futuristic carbon economy and cradle-to-cradle technology management, simultaneously. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Panel report on high temperature ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Nolet, T C [ed.

    1979-01-01

    Fundamental research is reported concerning high temperature ceramics for application in turbines, engines, batteries, gasifiers, MHD, fuel cells, heat exchangers, and hot wall combustors. Ceramics microstructure and behavior are included. (FS)

  5. MHD oxidant intermediate temperature ceramic heater study

    Science.gov (United States)

    Carlson, A. W.; Chait, I. L.; Saari, D. P.; Marksberry, C. L.

    1981-09-01

    The use of three types of directly fired ceramic heaters for preheating oxygen enriched air to an intermediate temperature of 1144K was investigated. The three types of ceramic heaters are: (1) a fixed bed, periodic flow ceramic brick regenerative heater; (2) a ceramic pebble regenerative heater. The heater design, performance and operating characteristics under conditions in which the particulate matter is not solidified are evaluated. A comparison and overall evaluation of the three types of ceramic heaters and temperature range determination at which the particulate matter in the MHD exhaust gas is estimated to be a dry powder are presented.

  6. High temperature alloys and ceramic heat exchanger

    International Nuclear Information System (INIS)

    Okamoto, Masaharu

    1984-04-01

    From the standpoint of energy saving, the future operating temperatures of process heat and gas turbine plants will become higher. For this purpose, ceramics is the most promissing candidate material in strength for application to high-temperature heat exchangers. This report deals with a servey of characteristics of several high-temperature metallic materials and ceramics as temperature-resistant materials; including a servey of the state-of-the-art of ceramic heat exchanger technologies developed outside of Japan, and a study of their application to the intermediate heat exchanger of VHTR (a very-high-temperature gas-cooled reactor). (author)

  7. High temperature fracture of ceramic materials

    International Nuclear Information System (INIS)

    Wiederhorn, S.M.

    1979-01-01

    A review is presented of fracture mechanisms and methods of lifetime prediction in ceramic materials. Techniques of lifetime prediction are based on the science of fracture mechanics. Application of these techniques to structural ceramics is limited by our incomplete understanding of fracture mechanisms in these materials, and by the occurrence of flaw generation in these materials at elevated temperatures. Research on flaw generation and fracture mechanisms is recommended as a way of improving the reliability of structural ceramics

  8. High-temperature materials and structural ceramics

    International Nuclear Information System (INIS)

    1990-01-01

    This report gives a survey of research work in the area of high-temperature materials and structural ceramics of the KFA (Juelich Nuclear Research Center). The following topics are treated: (1) For energy facilities: ODS materials for gas turbine blades and heat exchangers; assessment of the remaining life of main steam pipes, material characterization and material stress limits for First-Wall components; metallic and graphitic materials for high-temperature reactors. (2) For process engineering plants: composites for reformer tubes and cracking tubes; ceramic/ceramic joints and metal/ceramic and metal/metal joints; Composites and alloys for rolling bearing and sliding systems up to application temperatures of 1000deg C; high-temperature corrosion of metal and ceramic material; porous ceramic high-temperature filters and moulding coat-mix techniques; electrically conducting ceramic material (superconductors, fuel cells, solid electrolytes); high-temperature light sources (high-temperature chemistry); oil vapor engines with caramic components; ODS materials for components in diesel engines and vehicle gas turbines. (MM) [de

  9. High Temperature Characterization of Ceramic Pressure Sensors

    National Research Council Canada - National Science Library

    Fonseca, Michael A; English, Jennifer M; Von Arx, Martin; Allen, Mark G

    2001-01-01

    This work reports functional wireless ceramic micromachined pressure sensors operating at 450 C, with demonstrated materials and readout capability indicating potential extension to temperatures in excess of 600 C...

  10. Multilayer ultra-high-temperature ceramic coatings

    Science.gov (United States)

    Loehman, Ronald E [Albuquerque, NM; Corral, Erica L [Tucson, AZ

    2012-03-20

    A coated carbon-carbon composite material with multiple ceramic layers to provide oxidation protection from ultra-high-temperatures, where if the carbon-carbon composite material is uninhibited with B.sub.4C particles, then the first layer on the composite material is selected from ZrB.sub.2 and HfB.sub.2, onto which is coated a layer of SiC coated and if the carbon-carbon composite material is inhibited with B.sub.4C particles, then protection can be achieved with a layer of SiC and a layer of either ZrB.sub.2 and HfB.sub.2 in any order.

  11. Electronic ceramics in high-temperature environments

    International Nuclear Information System (INIS)

    Searcy, A.W.; Meschi, D.J.

    1982-01-01

    Simple thermodynamic means are described for understanding and predicting the influence of temperature changes, in various environments, on electronic properties of ceramics. Thermal gradients, thermal cycling, and vacuum annealing are discussed, as well as the variations of ctivities and solubilities with temperature. 7 refs

  12. High temperature resistant cermet and ceramic compositions

    Science.gov (United States)

    Phillips, W. M. (Inventor)

    1978-01-01

    Cermet compositions having high temperature oxidation resistance, high hardness and high abrasion and wear resistance, and particularly adapted for production of high temperature resistant cermet insulator bodies are presented. The compositions are comprised of a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Also disclosed are novel ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride.

  13. Ceramics for high temperature applications

    International Nuclear Information System (INIS)

    Mocellin, A.

    1977-01-01

    Problems related to materials, their fabrication, properties, handling, improvements are examined. Silicium nitride and silicium carbide are obtained by vacuum hot-pressing, reaction sintering and chemical vapour deposition. Micrographs are shown. Mechanical properties i.e. room and high temperature strength, creep resistance fracture mechanics and fatigue resistance. Recent developments of pressureless sintered Si C and the Si-Al-O-N quaternary system are mentioned

  14. Localized temperature stability in Low Temperature Cofired Ceramics (LTCC).

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Steven Xunhu; Hsieh, Lung-Hwa.

    2012-04-01

    The base dielectrics of commercial low temperature cofired ceramics (LTCC) systems have a temperature coefficient of resonant frequency ({tau}{sub f}) in the range -50 {approx} -80 ppm/C. In this research we explored a method to realize zero or near zero {tau}{sub f} resonators by incorporating {tau}{sub f} compensating materials locally into a multilayer LTCC structure. To select composition for {tau}{sub f} adjustment, {tau}{sub f} compensating materials with different amount of titanates were formulated, synthesized, and characterized. Chemical interactions and physical compatibility between the {tau}{sub f} modifiers and the host LTCC dielectrics were investigated. Studies on stripline (SL) resonator panels with multiple compensating dielectrics revealed that: 1) compositions using SrTiO{sub 3} provide the largest {tau}{sub f} adjustment among titanates, 2) the {tau}{sub f} compensation is proportional to the amount of SrTiO{sub 3} in compensating materials, as well as the thickness of the compensating layer, and 3) the most effective {tau}{sub f} compensation is achieved when the compensating dielectric is integrated next to the SL. Using the effective dielectric constant of a heterogeneous layered dielectric structure, results from Method of Momentum (MoM) electromagnetic simulations are consistent with the experimental observations.

  15. Ceramic membranes for high temperature hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Fain, D.E.; Roettger, G.E. [Oak Ridge K-25 Site, TN (United States)

    1996-08-01

    Ceramic gas separation membranes can provide very high separation factors if the pore size is sufficiently small to separate gas molecules by molecular sieving and if oversized pores are adequately limited. Ceramic membranes typically have some pores that are substantially larger than the mean pore size and that should be regarded as defects. To assess the effects of such defects on the performance of ceramic membranes, a simple mathematical model has been developed to describe flow through a gas separation membrane that has a primary mode of flow through very small pores but that has a secondary mode of flow through undesirably large pores. This model permits separation factors to be calculated for a specified gas pair as a function of the molecular weights and molecular diameters of the gases, the membrane pore diameter, and the diameter and number of defects. This model will be described, and key results from the model will be presented. The separation factors of the authors membranes continue to be determined using a permeance test system that measures flows of pure gases through a membrane at temperatures up to 275{degrees}C. A primary goal of this project for FY 1996 is to develop a mixed gas separation system for measuring the separation efficiency of membranes at higher temperatures. Performance criteria have been established for the planned mixed gas separation system and design of the system has been completed. The test system is designed to measure the separation efficiency of membranes at temperatures up to 600{degrees}C and pressures up to 100 psi by separating the constituents of a gas mixture containing hydrogen. The system will accommodate the authors typical experimental membrane that is tubular and has a diameter of about 9 mm and a length of about 23 cm. The design of the new test system and its expected performance will be discussed.

  16. High temperature ceramic-tubed reformer

    Science.gov (United States)

    Williams, Joseph J.; Rosenberg, Robert A.; McDonough, Lane J.

    1990-03-01

    The overall objective of the HiPHES project is to develop an advanced high-pressure heat exchanger for a convective steam/methane reformer. The HiPHES steam/methane reformer is a convective, shell and tube type, catalytic reactor. The use of ceramic tubes will allow reaction temperature higher than the current state-of-the-art outlet temperatures of about 1600 F using metal tubes. Higher reaction temperatures increase feedstock conversion to synthesis gas and reduce energy requirements compared to currently available radiant-box type reformers using metal tubes. Reforming of natural gas is the principal method used to produce synthesis gas (primarily hydrogen and carbon monoxide, H2 and CO) which is used to produce hydrogen (for refinery upgrading), methanol, as well as several other important materials. The HiPHES reformer development is an extension of Stone and Webster's efforts to develop a metal-tubed convective reformer integrated with a gas turbine cycle.

  17. Proceedings of the national symposium on materials and processing: functional glass/glass-ceramics, advanced ceramics and high temperature materials

    International Nuclear Information System (INIS)

    Ghosh, A.; Sahu, A.K.; Viswanadham, C.S.; Ramanathan, S.; Hubli, R.C.; Kothiyal, G.P.

    2012-10-01

    With the development of materials science it is becoming increasingly important to process some novel materials in the area of glass, advanced ceramics and high temperature metals/alloys, which play an important role in the realization of many new technologies. Such applications demand materials with tailored specifications. Glasses and glass-ceramics find exotic applications in areas like radioactive waste storage, optical communication, zero thermal expansion coefficient telescopic mirrors, human safety gadgets (radiation resistance windows, bullet proof apparels, heat resistance components etc), biomedical (implants, hyperthermia treatment, bone cement, bone grafting etc). Advanced ceramic materials have been beneficial in biomedical applications due to their strength, biocompatibility and wear resistance. Non-oxide ceramics such as carbides, borides, silicides, their composites, refractory metals and alloys are useful as structural and control rod components in high temperature fission/ fusion reactors. Over the years a number of novel processing techniques like selective laser melting, microwave heating, nano-ceramic processing etc have emerged. A detailed understanding of the various aspects of synthesis, processing and characterization of these materials provides the base for development of novel technologies for different applications. Keeping this in mind and realizing the need for taking stock of such developments a National Symposium on Materials and Processing -2012 (MAP-2012) was planned. The topics covered in the symposium are ceramics, glass/glass-ceramics and metals and materials. Papers relevant to INIS are indexed separately

  18. High temperature measurements of the microwave dielectric properties of ceramics

    International Nuclear Information System (INIS)

    Baeraky, T.A.

    1999-06-01

    Equipment has been developed for the measurement of dielectric properties at high temperature from 25 to 1700 deg. C in the microwave frequency range 614.97 to 3620.66 MHz using the cavity perturbation technique, to measure the permittivity of a range of ceramic materials. The complex permittivities of the standard materials, water and methanol, were measured at low temperature and compared with the other published data. A statistical analysis was made for the permittivity measurements of water and methanol using sample holders of different diameter. Also the measurements of these materials were used to compare the simple perturbation equation with its modifications and alternation correction methods for sample shape and the holes at the two endplates of the cavity. The dielectric properties of solid materials were investigated from the permittivity measurements on powder materials, shown in table 4.7, using the dielectric mixture equations. Two kinds of ceramics, oxide and nitrides, were selected for the high temperature dielectric measurements in microwave frequency ranges. Pure zirconia, yttria-stabilised zirconia, and Magnesia-stabilised zirconia are the oxide ceramics while aluminium nitride and silicon nitride are the nitride ceramics. A phase transformation from monoclinic to tetragonal was observed in pure zirconia in terms of the complex permittivity measurements, and the conduction mechanism in three regions of temperature was suggested to be ionic in the first region and a mixture of ionic and electronic in the second. The phase transition disappeared with yttria-stabilised zirconia but it was observed with magnesia-stabilised zirconia. Yttria doped zirconia was fully stabilised while magnesia stabilised was partially stabilised zirconia. The dielectric property measurements of aluminium nitride indicated that there is a transition from AIN to AlON, which suggested that the external layer of the AIN which was exposed to the air, contains alumina. It was

  19. Advanced ceramic material for high temperature turbine tip seals

    Science.gov (United States)

    Solomon, N. G.; Vogan, J. W.

    1978-01-01

    Ceramic material systems are being considered for potential use as turbine blade tip gas path seals at temperatures up to 1370 1/4 C. Silicon carbide and silicon nitride structures were selected for study since an initial analysis of the problem gave these materials the greatest potential for development into a successful materials system. Segments of silicon nitride and silicon carbide materials over a range of densities, processed by various methods, a honeycomb structure of silicon nitride and ceramic blade tip inserts fabricated from both materials by hot pressing were tested singly and in combination. The evaluations included wear under simulated engine blade tip rub conditions, thermal stability, impact resistance, machinability, hot gas erosion and feasibility of fabrication into engine components. The silicon nitride honeycomb and low-density silicon carbide using a selected grain size distribution gave the most promising results as rub-tolerant shroud liners. Ceramic blade tip inserts made from hot-pressed silicon nitride gave excellent test results. Their behavior closely simulated metal tips. Wear was similar to that of metals but reduced by a factor of six.

  20. Dense high temperature ceramic oxide superconductors

    Science.gov (United States)

    Landingham, Richard L.

    1993-01-01

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  1. Ceramic membranes for high temperature hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Adcock, K.D.; Fain, D.E.; James, D.L.; Powell, L.E.; Raj, T.; Roettger, G.E.; Sutton, T.G. [East Tennessee Technology Park, Oak Ridge, TN (United States)

    1997-12-01

    The separative performance of the authors` ceramic membranes has been determined in the past using a permeance test system that measured flows of pure gases through a membrane at temperatures up to 275 C. From these data, the separation factor was determined for a particular gas pair from the ratio of the pure gas specific flows. An important project goal this year has been to build a Mixed Gas Separation System (MGSS) for measuring the separation efficiencies of membranes at higher temperatures and using mixed gases. The MGSS test system has been built, and initial operation has been achieved. The MGSS is capable of measuring the separation efficiency of membranes at temperatures up to 600 C and pressures up to 100 psi using a binary gas mixture such as hydrogen/methane. The mixed gas is fed into a tubular membrane at pressures up to 100 psi, and the membrane separates the feed gas mixture into a permeate stream and a raffinate stream. The test membrane is sealed in a stainless steel holder that is mounted in a split tube furnace to permit membrane separations to be evaluated at temperatures up to 600 C. The compositions of the three gas streams are measured by a gas chromatograph equipped with thermal conductivity detectors. The test system also measures the temperatures and pressures of all three gas streams as well as the flow rate of the feed stream. These data taken over a range of flows and pressures permit the separation efficiency to be determined as a function of the operating conditions. A mathematical model of the separation has been developed that permits the data to be reduced and the separation factor for the membrane to be determined.

  2. High temperature strengthening of zirconium-toughened ceramics

    International Nuclear Information System (INIS)

    Claussen, N.

    1986-01-01

    Transformation-toughened (i.e. ZrO/sub 2/-toughened) ceramics represent a new class of high performance ceramics with spectacular strength properties at low and intermediate temperatures. However, at temperatures above about 700 0 C, most of these tough oxide-base ceramics can no longer be used as load-bearing engineering parts because of characteristic deficiencies. The aim of the present paper is to provide and discuss microstructural design strategies which may enable ZrO/sub 2/-toughened ceramics to be applied at higher temperatures. From the various strategies suggested, three appear to show good prospects, namely (a) the prevention of glassy intergranular films, (b) the addition of hard high modulus particles and (c) whikser or fibre reinforcement. Experimental approaches are presented from some ZrO/sub 2/-toughened ceramics, elg. tetragonal ZrO/sub 2/ polycrystals and ZrO/sub 2/-toughened cordierite, spinel and mullite

  3. Development of nickel membranes deposited on ceramic materials by electroless plating: studies of the hydrogen perm-selectivity properties at elevated temperatures

    International Nuclear Information System (INIS)

    Amer, J.

    2008-09-01

    The main objective of this work was to synthesize nickel based membranes by electroless plating on materials such as alumina-α, alumina-γ and zirconia with various textures and to determine their hydrogen perm-selectivity at high temperatures. The synthesis of metal films of high purity (≥ 99% mass Ni) resulting from the choice of hydrazine with its dual role of reducing and complexing agent has revealed that the diameter of pores on the surface support has an impact on the quality of metal adherence. The various contributions of hydrogen transport through these composite membranes at low temperatures (Knudsen and surface diffusion) and at high temperatures (Knudsen and activated diffusion) was established. At its implementation in a membrane reactor (reaction of propane dehydrogenation), the layer of nickel showed a very good resistance to coking. (author)

  4. Selection of optimal sintering temperature of K0.5Na0.5NbO3 ceramics for electromechanical applications

    Directory of Open Access Journals (Sweden)

    Gaurav Vats

    2014-03-01

    Full Text Available This paper has considered the selection of the optimal processing parameter (sintering temperature leading to best possible properties of K0.5Na0.5NbO3 (KNN for electromechanical applications. Vital piezoelectric properties for such applications include the piezoelectric coupling coefficient (kp, piezoelectric coefficient (d31, Curie temperature (Tc, remanent polarization (Pr, coercive field (Ec, density (ρ, elastic compliance (S11E and S12E and dielectric loss (tan δ. The weights and priority of these physical properties for KNN are calculated using the modified digital logic (MDL method. The priority order of these properties used for the selection of optimal processing parameters is as d31>tan δ>S11E=S12E>Tc=Pr>ρ>kp>Ec. The weights obtained using MDL are further incorporated with analytic hierarchy process (AHP and VlseKriterijumska Optimisacija I Kompromisno Resenje (VIKOR in order to determine the optimal sintering temperature for KNN. Both methods suggest that 1080 °C and 1120 °C are the most and least desirable sintering temperatures, respectively. Finally, sensitivity analysis is performed for the robustness of our results and prediction of most influential parameter in terms of sensitivity. tan δ is found to be the most sensitive property for alteration in the present ranking.

  5. Temperature dependence of piezoelectric properties for textured SBN ceramics.

    Science.gov (United States)

    Kimura, Masahiko; Ogawa, Hirozumi; Kuroda, Daisuke; Sawada, Takuya; Higuchi, Yukio; Takagi, Hiroshi; Sakabe, Yukio

    2007-12-01

    Temperature dependences of piezoelectric properties were studied for h001i textured ceramics of bismuth layer-structured ferroelectrics, SrBi(2)Nb(2)O(9) (SBN). The textured ceramics with varied orientation degrees were fabricated by templated, grain-growth method, and the temperature dependences of resonance frequency were estimated. Excellent temperature stability of resonance frequency was obtained for the 76% textured ceramics. The resonance frequency of the 76% textured specimens varied almost linearly over a wide temperature range. Therefore, the variation was slight, even in a high temperature region above 150 degrees C. Temperature stability of a quartz crystal oscillator is generally higher than that of a ceramic resonator around room temperature. The variation of resonance frequency for the 76% textured SrBi(2)Nb(2)O(9) was larger than that of oscillation frequency for a typical quartz oscillator below 150 degrees C also in this study. However, the variation of the textured SrBi(2)Nb(2)O(9) was smaller than that of the quartz oscillator over a wide temperature range from -50 to 250 degrees C. Therefore, textured SrBi(2)Nb(2)O(9) ceramics is a major candidate material for the resonators used within a wide temperature range.

  6. Temperature Measurement of Ceramic Materials Using a Multiwavelength Pyrometer

    Science.gov (United States)

    Ng, Daniel; Fralick, Gustave

    1999-01-01

    The surface temperatures of several pure ceramic materials (alumina, beryllia, magnesia, yittria and spinel) in the shape of pellets were measured using a multiwavelength pyrometer. In one of the measurements, radiation signal collection is provided simply by an optical fiber. In the other experiments, a 4.75 inch (12 cm) parabolic mirror collects the signal for the spectrometer. Temperature measurement using the traditional one- and two-color pyrometer for these ceramic materials is difficult because of their complex optical properties, such as low emissivity which varies with both temperature and wavelength. In at least one of the materials, yittria, the detected optical emission increased as the temperature was decreased due to such emissivity variation. The reasons for such changes are not known. The multiwavelength pyrometer has demonstrated its ability to measure surface temperatures under such conditions. Platinum electrodes were embedded in the ceramic pellets for resistance measurements as the temperature changed.

  7. Fracture peculiarities in ceramic tungsten at different temperatures in vacuum

    International Nuclear Information System (INIS)

    Uskov, E.I.; Babak, A.V.

    1981-01-01

    Stress-strain diagrams and results of metallographic analyses are presented for the ceramic tungsten samples tested for fracture toughness under conditions of eccentric tension at different temperatures (20...1600 deg C) in vacuum. The tungsten fracture is shown to be of brittle nature within the whole temperature range studied, but the fracture process has its own peculiarities at different test temperatures

  8. 4TH International Conference on High-Temperature Ceramic Matrix Composites

    National Research Council Canada - National Science Library

    2001-01-01

    .... Topic to be covered include fibers, interfaces, interphases, non-oxide ceramic matrix composites, oxide/oxide ceramic matrix composites, coatings, and applications of high-temperature ceramic matrix...

  9. Measurement of relative permittivity of LTCC ceramic at different temperatures

    Directory of Open Access Journals (Sweden)

    Qiulin Tan

    2014-02-01

    Full Text Available Devices based on LTCC (low-temperature co-fired ceramic technology are more widely applied in high temperature environments, and the temperature-dependent properties of the LTCC material play an important role in measurements of the characteristics of these devices at high temperature. In this paper, the temperature-dependence of the relative permittivity of DuPont 951 LTCC ceramic is studied from room temperature to 500 °C. An expression for relative permittivity is obtained, which relates the relative permittivity to the resonant frequency, inductance, parasitic capacitance and electrode capacitance of the LTCC sample. Of these properties, the electrode capacitance is the most strongly temperature-dependent. The LTCC sample resonant frequency, inductance and parasitic capacitance were measured (from room temperature to 500 °C with a high temperature measurement system comprising a muffle furnace and network analyzer. We found that the resonant frequency reduced and the inductance and parasitic capacitance increased slightly as the temperature increases. The relative permittivity can be calculated from experimental frequency, inductance and parasitic capacitance measurements. Calculating results show that the relative permittivity of DuPont 951 LTCC ceramic ceramic increases to 8.21 from room temperature to 500 °C.

  10. Processing and properties of pressable ceramic with non-uniform reinforcement for selective-toughening

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Wei [School of Mechanical and Chemical Engineering, The University of Western Australia, Perth, WA 6009 (Australia); School of Dentistry, The University of Western Australia, WA 6009 (Australia); Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110004 (China); Hu, Xiaozhi, E-mail: xiao.zhi.hu@uwa.edu.au [School of Mechanical and Chemical Engineering, The University of Western Australia, Perth, WA 6009 (Australia); Ichim, Paul [School of Dentistry, The University of Western Australia, WA 6009 (Australia); Sun, Xudong [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110004 (China)

    2012-12-15

    Brittle low-strength and low-toughness pressable dental ceramic can be reinforced by ductile elongated gold-particles (GP). A customized crown structure can be adequately strengthened by distributing GP only in critical sections of the crown, where high tensile stresses are experienced. In the present study, a non-uniformly structured ceramic-matrix composite with excellent interfacial bonding, twofold fracture toughness and strength at desired locations, is fabricated using pressable dental ceramic and GP. The layout pattern and sequence of different GP/ceramic powder mixtures, high-temperature flow properties of these mixtures during hot-pressing and the sample mold geometry are used to control the distribution and locations of GP for selective toughening and strengthening. Nano-crystalline structures of the pressable ceramic-matrix and the nano-scaled interfacial region around GP have been revealed by high-magnification field-emission scanning electron microscopy. Toughening and strengthening mechanisms of the elongated GP including residual stresses from composite processing and ductile fracture of GP are discussed together with SEM observations. Bulk flexural strength and local micro-indentation fracture and deformation characteristics of the selective-toughened ceramic/metal composite have been compared to those of the monolithic pressable ceramic to validate the toughening and strengthening mechanisms.

  11. High temperature tribological properties of plasma-sprayed metallic coatings containing ceramic particles

    International Nuclear Information System (INIS)

    Dallaire, S.; Legoux, J.G.

    1995-01-01

    For sealing a moving metal component with a dense silica-based ceramic pre-heated at 800 C, coatings with a low coefficient of friction and moderate wear loss are required. As reported previously, plasma-sprayed coatings containing solid lubricants could reduce sliding wear in high-temperature applications. Plasma-sprayed metal-based coatings containing ceramic particles have been considered for high temperature sealing. Selected metal powders (NiCoCrAlY, CuNi, CuNiIn, Ag, Cu) and ceramic particles (boron nitride, Zeta-B ceramic) were agglomerated to form suitable spray powders. Plasma-sprayed composite coatings and reference materials were tested in a modified pin-on-disc apparatus in which the stationary disc consisted of a dense silica-based ceramic piece initially heated at 800 C and allowed to cool down during tests. The influence of single exposure and repeated contacts with a dense silica-based ceramic material pre-heated to 800 C on the coefficient of friction, wear loss and damage to the ceramic piece was evaluated. Being submitted to a single exposure at high temperature, coatings containing malleable metals such as indium, silver and copper performed well. The outstanding tribological characteristics of the copper-Zeta-B ceramic coating was attributed to the formation of a glazed layer on the surface of this coating which lasted over exposures to high temperature. This glazed layer, composed of fine oxidation products, provided a smooth and polished surface and helped maintaining the coefficient of friction low

  12. A high temperature testing system for ceramic composites

    Science.gov (United States)

    Hemann, John

    1994-01-01

    Ceramic composites are presently being developed for high temperature use in heat engine and space power system applications. The operating temperature range is expected to be 1090 to 1650 C (2000 F to 3000 F). Very little material data is available at these temperatures and, therefore, it is desirable to thoroughly characterize the basic unidirectional fiber reinforced ceramic composite. This includes testing mainly for mechanical material properties at high temperatures. The proper conduct of such characterization tests requires the development of a tensile testing system includes unique gripping, heating, and strain measuring devices which require special considerations. The system also requires an optimized specimen shape. The purpose of this paper is to review various techniques for measuring displacements or strains, preferably at elevated temperatures. Due to current equipment limitations it is assumed that the specimen is to be tested at a temperature of 1430 C (2600F) in an oxidizing atmosphere. For the most part, previous high temperature material characterization tests, such as flexure and tensile tests, have been performed in inert atmospheres. Due to the harsh environment in which the ceramic specimen is to be tested, many conventional strain measuring techniques can not be applied. Initially a brief description of the more commonly used mechanical strain measuring techniques is given. Major advantages and disadvantages with their application to high temperature tensile testing of ceramic composites are discussed. Next, a general overview is given for various optical techniques. Advantages and disadvantages which are common to these techniques are noted. The optical methods for measuring strain or displacement are categorized into two sections. These include real-time techniques. Finally, an optical technique which offers optimum performance with the high temperature tensile testing of ceramic composites is recommended.

  13. Low temperature sintering of fluorapatite glass-ceramics

    Science.gov (United States)

    Denry, Isabelle; Holloway, Julie A.

    2014-01-01

    Fluorapatite glass-ceramics have been shown to be excellent candidates as scaffold materials for bone grafts, however, scaffold production by sintering is hindered by concurrent crystallization of the glass. Our goal was to investigate the effect of Ca/Al ratio on the sintering behavior of Nb-doped fluorapatite-based glasses in the SiO2-Al2O3-P2O5-MgO-Na2O-K2O-CaO-CaF2 system. Glass compositions with Ca/Al ratio of 1 (A), 2 (B), 4 (C) and 19 (D) were prepared by twice melting at 1525°C for 3h. Glasses were either cast as cylindrical ingots or ground into powders. Disc-shaped specimens were prepared by either sectioning from the ingots or powder-compacting in a mold, followed by heat treatment at temperatures ranging between 700 and 1050°C for 1h. The density was measured on both sintered specimens and heat treated discs as controls. The degree of sintering was determined from these measurements. XRD showed that fluorapatite crystallized in all glass-ceramics. A high degree of sintering was achieved at 775°C for glass-ceramic D (98.99±0.04%), and 900°C for glass-ceramic C (91.31±0.10). Glass-ceramics A or B were only partially sintered at 1000°C (63.6±0.8% and 74.1±1.5%, respectively). SEM revealed a unique microstructure of micron-sized spherulitic fluorapatite crystals in glass-ceramics C and D. Increasing the Ca/Al ratio promoted low temperature sintering of fluorapatite glass-ceramics, which are traditionally difficult to sinter. PMID:24252652

  14. Low temperature sintering of fluorapatite glass-ceramics.

    Science.gov (United States)

    Denry, Isabelle; Holloway, Julie A

    2014-02-01

    Fluorapatite glass-ceramics have been shown to be excellent candidates as scaffold materials for bone grafts, however, scaffold production by sintering is hindered by concurrent crystallization of the glass. Objective, our goal was to investigate the effect of Ca/Al ratio on the sintering behavior of Nb-doped fluorapatite-based glasses in the SiO2-Al2O3-P2O5-MgO-Na2O-K2O-CaO-CaF2 system. Methods, glass compositions with Ca/Al ratio of 1 (A), 2 (B), 4 (C) and 19 (D) were prepared by twice melting at 1525°C for 3h. Glasses were either cast as cylindrical ingots or ground into powders. Disk-shaped specimens were prepared by either sectioning from the ingots or powder-compacting in a mold, followed by heat treatment at temperatures ranging between 700 and 1050°C for 1h. The density was measured on both sintered specimens and heat treated discs as controls. The degree of sintering was determined from these measurements. Results and Significance XRD showed that fluorapatite crystallized in all glass-ceramics. A high degree of sintering was achieved at 775°C for glass-ceramic D (98.99±0.04%), and 900°C for glass-ceramic C (91.31±0.10). Glass-ceramics A or B were only partially sintered at 1000°C (63.6±0.8% and 74.1±1.5%, respectively). SEM revealed a unique microstructure of micron-sized spherulitic fluorapatite crystals in glass-ceramics C and D. Increasing the Ca/Al ratio promoted low temperature sintering of fluorapatite glass-ceramics, which are traditionally difficult to sinter. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Temperature dependence of high field electromechanical coupling in ferroelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, P M; Cain, M G; Stewart, M, E-mail: paul.weaver@npl.co.u [National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW (United Kingdom)

    2010-04-28

    A study of the temperature dependence of the electromechanical response of ferroelectric lead zirconate titanate (PZT) ceramics at high electric fields (up to 1.3 kV mm{sup -1}) is reported. Simultaneous measurements were performed of strain, electric field and polarization to form a complete response map from room temperature up to 200 {sup 0}C. An electrostrictive model is shown to provide an accurate description of the electromechanical response to high levels of induced polarization and electric field. This provides a method for decoupling strain contributions from thermal expansion and polarization changes. Direct measurements of electrostriction and thermal expansion, above and below the Curie temperature, are reported. Electrostriction coefficients are shown to be temperature dependent in these ceramic materials, with different values above and below the Curie temperature.

  16. Mechanical Properties of Ceramics for High Temperature Applications

    Science.gov (United States)

    1976-12-01

    meets another aim of gas turbine ceramics. Temperature measuring by optical pyrometer gives here a reproducibility of approximately 150 C. The...with a similar acoustic impedence to the host material (e.g., certain inclusions, large grains) will be minimal, signal averaging instrumentation

  17. NOVEL CERAMIC MEMBRANE FOR HIGH TEMPERATURE CARBON DIOXIDE SEPARATION; SEMIANNUAL

    International Nuclear Information System (INIS)

    Jerry Y.S. Lin; Jun-ichi Ida

    2001-01-01

    This project is aimed at demonstrating technical feasibility for a lithium zirconate based dense ceramic membrane for separation of carbon dioxide from flue gas at high temperature. The research work conducted in this reporting period was focused on several fundamental issues of lithium zirconate important to the development of the dense inorganic membrane. These fundamental issues include material synthesis of lithium zirconate, phases and microstructure of lithium zirconate and structure change of lithium zirconate during sorption/desorption process. The results show difficulty to prepare the dense ceramic membrane from pure lithium zirconate, but indicate a possibility to prepare the dense inorganic membrane for carbon dioxide separation from a composite lithium zirconate

  18. High temperature properties and processes in ceramics: thermomigration

    International Nuclear Information System (INIS)

    1978-01-01

    The focus of this program is on the effects of large temperature gradients on the transport processes, the defect structure and resulting physical properties of ceramics. In particular, the transport of ions due to thermal gradients is one of the least understood phenomenon in materials science and is presumably based on fundamental understanding of thermodynamics, atomistic kinetic processes, and structure-property relationships. The purpose of this research is to systematically consider each of the elements of atomic transport due to driving forces other than composition gradients in a model ceramic system

  19. The temperature dependences of electromechanical properties of PLZT ceramics

    Science.gov (United States)

    Czerwiec, M.; Zachariasz, R.; Ilczuk, J.

    2008-02-01

    The mechanical and electrical properties in lanthanum modified lead zirconate-titanate ceramics of 5/50/50 and 10/50/50 were studied by mechanical loss Q - 1, Young's modulus E, electric permittivity ɛ and tangent of dielectric loss of angle tgδ measurements. The internal friction Q - 1 and Young modulus E measured from 290 K to 600 K shows that Curie temperature TC is located at 574 K and 435 K (1st cycle of heating) respectively for ceramic samples 5/50/50 and 10/50/50. The movement of TC in second cycle of heating to lower temperature (561 K for 5/50/50 and 420 K for 10/50/50) has been observed. Together with Q - 1 and E measurements, temperature dependences of ɛ=f(T) and tgδ=f(T) were determinated in temperature range from 300 K to 730 K. The values of TC obtained during ɛ and tgδ measurements were respectively: 560 K for 5/50/50 and 419 K for 10/50/50. These temperatures are almost as high as the temperatures obtained by internal friction Q - 1 measurements in second cycle of heating. In ceramic sample 10/50/50 the additional maximum on internal friction Q - 1 curve at the temperature 316 K was observed.

  20. Thermal conductivity measurements of PTFE and Al2O3 ceramic at sub-Kelvin temperatures

    Science.gov (United States)

    Drobizhev, Alexey; Reiten, Jared; Singh, Vivek; Kolomensky, Yury G.

    2017-07-01

    The design of low temperature bolometric detectors for rare event searches necessitates careful selection and characterization of structural materials based on their thermal properties. We measure the thermal conductivities of polytetrafluoroethylene (PTFE) and Al2O3 ceramic (alumina) in the temperature ranges of 0.17-0.43 K and 0.1-1.3 K, respectively. For the former, we observe a quadratic temperature dependence across the entire measured range. For the latter, we see a cubic dependence on temperature above 0.3 K, with a linear contribution below that temperature. This paper presents our measurement techniques, results, and theoretical discussions.

  1. High density microelectronics package using low temperature cofirable ceramics

    International Nuclear Information System (INIS)

    Fu, S.-L.; Hsi, C.-S.; Chen, L.-S.; Lin, W. K.

    1997-01-01

    Low Temperature Cofired Ceramics (LTCC) is a relative new thick film process and has many engineering and manufacturing advantages over both the sequential thick film process and high temperature cofired ceramic modules. Because of low firing temperature, low sheet resistance metal conductors, commercial thick film resistors, and thick film capacitors can be buried in or printed on the substrates. A 3-D multilayer ceramic substrate can be prepared via laminating and co-firing process. The packing density of the LTCC substrates can be increased by this 3-D packing technology. At Kaohsiung Polytechnic Institute (KPI), a LTCC substrate system has been developed for high density packaging applications, which had buried surface capacitors and resistors. The developed cordierite-glass ceramic substrate, which has similar thermal expansion as silicon chip, is a promising material for microelectronic packaging. When the substrates were sintered at temperatures between 850-900 degree centigrade, a relative density higher than 96 % can be obtained. The substrate had a dielectric constant between 5.5 and 6.5. Ruthenium-based resistor pastes were used for resistors purposes. The resistors fabricated in/on the LTCC substrates were strongly depended on the microstructures developed in the resistor films. Surface resistors were laser trimmed in order to obtain specific values for the resistors. Material with composition Pb(Fe 2/3 W 1/3 ) x (Fe l/2 Nb l/2 ) y Ti 2 O 3 was used as dielectric material of the capacitor in the substrate. The material can be sintered at temperatures between 850-930 degree centigrade, and has dielectric constant as high as 26000. After cofiring, good adhesion between dielectric and substrate layers was obtained. Combing the buried resistors and capacitors together with the lamination of LTCC layer, a 3-dimensional multilayered ceramic package was fabricated. (author)

  2. High density microelectronics package using low temperature cofirable ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Fu, S -L; Hsi, C -S; Chen, L -S; Lin, W K [Kaoshiung Polytechnic Institute Ta-Hsu, Kaoshiung (China)

    1998-12-31

    Low Temperature Cofired Ceramics (LTCC) is a relative new thick film process and has many engineering and manufacturing advantages over both the sequential thick film process and high temperature cofired ceramic modules. Because of low firing temperature, low sheet resistance metal conductors, commercial thick film resistors, and thick film capacitors can be buried in or printed on the substrates. A 3-D multilayer ceramic substrate can be prepared via laminating and co-firing process. The packing density of the LTCC substrates can be increased by this 3-D packing technology. At Kaohsiung Polytechnic Institute (KPI), a LTCC substrate system has been developed for high density packaging applications, which had buried surface capacitors and resistors. The developed cordierite-glass ceramic substrate, which has similar thermal expansion as silicon chip, is a promising material for microelectronic packaging. When the substrates were sintered at temperatures between 850-900 degree centigrade, a relative density higher than 96 % can be obtained. The substrate had a dielectric constant between 5.5 and 6.5. Ruthenium-based resistor pastes were used for resistors purposes. The resistors fabricated in/on the LTCC substrates were strongly depended on the microstructures developed in the resistor films. Surface resistors were laser trimmed in order to obtain specific values for the resistors. Material with composition Pb(Fe{sub 2/3}W{sub 1/3}){sub x}(Fe{sub l/2}Nb{sub l/2}){sub y}Ti{sub 2}O{sub 3} was used as dielectric material of the capacitor in the substrate. The material can be sintered at temperatures between 850-930 degree centigrade, and has dielectric constant as high as 26000. After cofiring, good adhesion between dielectric and substrate layers was obtained. Combing the buried resistors and capacitors together with the lamination of LTCC layer, a 3-dimensional multilayered ceramic package was fabricated. (author)

  3. Ceramic matrix composites -- Advanced high-temperature structural materials

    International Nuclear Information System (INIS)

    Lowden, R.A.; Ferber, M.K.; DiPietro, S.G.

    1995-01-01

    This symposium on Ceramic Matrix Composites: Advanced High-Temperature Structural Materials was held at the 1994 MRS Fall Meeting in Boston, Massachusetts on November 28--December 2. The symposium was sponsored by the Department of Energy's Office of Industrial Technology's Continuous Fiber Ceramic Composites Program, the Air Force Office of Scientific Research, and NASA Lewis Research Center. Among the competing materials for advanced, high-temperature applications, ceramic matrix composites are leading candidates. The symposium was organized such that papers concerning constituents--fibers and matrices--were presented first, followed by composite processing, modeling of mechanical behavior, and thermomechanical testing. More stable reinforcements are necessary to enhance the performance and life of fiber-reinforced ceramic composites, and to ensure final acceptance of these materials for high-temperature applications. Encouraging results in the areas of polymer-derived SiC fibers and single crystal oxide filaments were given, suggesting composites with improved thermomechanical properties and stability will be realized in the near future. The significance of the fiber-matrix interface in the design and performance of these materials is evident. Numerous mechanical models to relate interface properties to composite behavior, and interpret test methods and data, were enthusiastically discussed. One issue of great concern for any advanced material for use in extreme environments is stability. This theme arose frequently throughout the symposium and was the topic of focus on the final day. Fifty nine papers have been processed separately for inclusion on the data base

  4. High Temperature Electrostrictive Ceramics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes to develop high temperature electrostrictors from bismuth-based ferroelectrics. These materials will exhibit high strain and low loss in...

  5. Processing and properties of pressable ceramic with non-uniform reinforcement for selective-toughening

    International Nuclear Information System (INIS)

    Yi, Wei; Hu, Xiaozhi; Ichim, Paul; Sun, Xudong

    2012-01-01

    Brittle low-strength and low-toughness pressable dental ceramic can be reinforced by ductile elongated gold-particles (GP). A customized crown structure can be adequately strengthened by distributing GP only in critical sections of the crown, where high tensile stresses are experienced. In the present study, a non-uniformly structured ceramic–matrix composite with excellent interfacial bonding, twofold fracture toughness and strength at desired locations, is fabricated using pressable dental ceramic and GP. The layout pattern and sequence of different GP/ceramic powder mixtures, high-temperature flow properties of these mixtures during hot-pressing and the sample mold geometry are used to control the distribution and locations of GP for selective toughening and strengthening. Nano-crystalline structures of the pressable ceramic–matrix and the nano-scaled interfacial region around GP have been revealed by high-magnification field-emission scanning electron microscopy. Toughening and strengthening mechanisms of the elongated GP including residual stresses from composite processing and ductile fracture of GP are discussed together with SEM observations. Bulk flexural strength and local micro-indentation fracture and deformation characteristics of the selective-toughened ceramic/metal composite have been compared to those of the monolithic pressable ceramic to validate the toughening and strengthening mechanisms.

  6. Multilayer ceramic capacitors for pulsed power, high temperature applications

    International Nuclear Information System (INIS)

    Cygan, S.; McLarney, J.; Prymak, J.; Bohn, P.

    1991-01-01

    The performance of the multilayer ceramic capacitors (MLC) in high frequency power applications has improved significantly over the last years. One of the possible applications of MLC capacitors is the automotive industry where repetitive discharging of capacitors is required. A 0.25-μF capacitor using NPO dielectric subjected to repetitive discharging with the rate of 700 pulses per second, magnitude of 600-V and 195-A peak currents showed no degradation in performance at 298 K or 398 K even after 1 billion discharge cycles. Less than a 5-K temperature rise was observed under these conditions. The most exciting, newly emerging utilization for MLC capacitors, however, might be the high temperature application (up to 473 K for underhood utilization), where ceramic capacitors with higher volumetric efficiency as compared to glass or polymer type capacitors prove very superior. Moreover ceramic capacitors, which next to glass capacitors exhibit the greatest radiation resistance among all insulating materials (Hanks and Hamman 1971), might also be best suited in the future for high temperature operation in space environment. The pulsed power performance of the 0.25-μF NPO capacitor was evaluated under repetitive discharge conditions (200 V, 700 pps) at high temperature, 473 K, and the results are presented in this paper

  7. Non-contact temperature Raman measurement in YSZ and alumina ceramics

    Science.gov (United States)

    Thapa, Juddha; Chorpening, Benjamin T.; Buric, Michael P.

    2018-02-01

    Yttria-stabilized zirconia (YSZ: ZrO2 + Y2O3) and alumina (Al2O3) are widely used in high-temperature applications due to their high-temperature stability, low thermal conductivity, and chemical inertness. Alumina is used extensively in engineered ceramic applications such as furnace tubes and thermocouple protection tubes, while YSZ is commonly used in thermal barrier coatings on turbine blades. Because they are already often found in high temperature and combustion applications, these two substances have been compared as candidates for Raman thermometry in high-temperature energy-related applications. Both ceramics were used with as-received rough surfaces, i.e., without polishing or modification. This closely approximates surface conditions in practical high-temperature situations. A single-line argon ion laser at 488nm was used to excite the materials inside a cylindrical furnace while measuring Raman spectra with a fixed-grating spectrometer. The shift in the peak positions of the most intense A1g peak at 418cm-1 (room temperature position) of alumina ceramic and relatively more symmetric Eg peak at 470cm-1 (room temperature position) of YSZ were measured and reported along with a thermocouple-derived reference temperature up to about 1000°C. This study showed that alumina and YSZ ceramics can be used in high-temperature Raman thermometry with an accuracy of 4.54°C and 10.5°C average standard deviations respectively over the range of about 1000°C. We hope that this result will guide future researchers in selecting materials and utilizing Raman non-contact temperature measurements in harsh environments.

  8. Tritium release from lithium ceramics at constant temperature

    International Nuclear Information System (INIS)

    Verrall, R.A.; Miller, J.M.

    1992-02-01

    Analytic methods for post-irradiation annealing tests to measure tritium release from lithium ceramics at constant temperature are examined. Modifications to the Bertone (1) relations for distinguishing diffusion-controlled release from desorption-controlled release are shown. The methods are applied to tests on sintered LiA10 2 ; first-order desorption is shown to control tritium release for these tests

  9. Preparation of high-temperature superconducting ceramics

    International Nuclear Information System (INIS)

    Causa, M.T.; Dutrus, S.M.; Esparza, Daniel; Fainstein, Carlos; Malachevsky, M.T.; Salva, Horacio; Sanchez, Rodolfo; Steren, L.B.; Tovar, Manuel; Veglio, Nestor

    1987-01-01

    We have prepared samples of the family ABa2Cu3Ox (A=Y, Gd, Eu, Dy, Sm, Er). The powdered samples were characterized by X-ray diffraction at room temperature. We have also studied the effect of Fe impurities in YBa2Cu3Ox and EuBa2Cu3Ox. Moreover, single crystals of YBa2Cu3Ox and La(1-x)SrxCuO4 were grown using cooper oxide flux. (Author) [es

  10. Laser beam joining of non-oxidic ceramics for ultra high temperature resistant joints

    International Nuclear Information System (INIS)

    Lippmann, W.; Knorr, J.; Wolf, R.; Reinecke, A.M.; Rasper, R.

    2004-01-01

    The excellent technical properties of silicon carbide (SiC) and silicon nitride (Si 3 N 4 ) ceramics, such as resistance to extreme temperatures, oxidation, mechanical wear, aggressive chemical substances and radioactive radiation and also its high thermal conductivity and good temperature-shock resistance, make these ceramics ideally suited for use in the field of nuclear technology. However, their practical use has been limited so far because of the unavailability of effective joining techniques for these ceramics, especially for high temperature applications. A new joining technology (CERALINK registered ) has been developed in a network project which allowed high temperature resistant and vacuum-tight joining of SiC or Si 3 N 4 ceramics. A power laser is used as heat source, which makes it possible to join ceramic components in free atmosphere in combination with a pure oxidic braze filler. As no furnace is necessary, there are no limitations on the component dimensions by the furnace-geometry. During the joining process, the heated area can be limited to the seam area so that this technology can also be used to encapsulate materials with a low melting point. The seam has a high mechanical strength, it is resistant to a wide range of chemicals and radiation and it is also vacuum-tight. The temperature resistance can be varied by variation of the braze filler composition - usually between 1,400 C and >1,600 C. Beside the optimum filler it is also important to select the suitable laser wavelength. The paper will demonstrate the influence of different wave lengths, i. e. various laser types, on the seam quality. Examples are chosen to illustrate the strengths and limitations of the new technology

  11. Precursors-Derived Ceramic Membranes for High-Temperature Separation of Hydrogen

    OpenAIRE

    Yuji, Iwamoto

    2007-01-01

    This review describes recent progress in the development of hydrogen-permselective ceramic membranes derived from organometallic precursors. Microstructure and gas transport property of microporous amorphous silica-based membranes are briefly described. Then, high-temperature hydrogen permselectivity, hydrothermal stability as well as hydrogen/steam selectivity of the amorphous silica-based membranes are discussed from a viewpoint of application to membrane reactors for conversion enhancement...

  12. Temperature control system for liquid-fed ceramic melters

    International Nuclear Information System (INIS)

    Westsik, J.H. Jr.

    1986-10-01

    A temperature-feedback system has been developed for controlling electrical power to liquid-fed ceramic melters (LFCM). Software, written for a microcomputer-based data acquisition and process monitoring system, compares glass temperatures with a temperature setpoint and adjusts the electrical power accordingly. Included in the control algorithm are steps to reject failed thermocouples, spatially average the glass temperatures, smooth the averaged temperatures over time using a digital filter, and detect foaming in the glass. The temperature control system has proved effective during all phases of melter operation including startup, steady operation, loss of feed, and shutdown. This system replaces current, power, and resistance feedback control systems used previously in controlling the LFCM process

  13. Novel low-temperature sintering ceramic substrate based on indialite/cordierite glass ceramics

    Science.gov (United States)

    Varghese, Jobin; Vahera, Timo; Ohsato, Hitoshi; Iwata, Makoto; Jantunen, Heli

    2017-10-01

    In this paper, a novel low-temperature sintering substrate for low temperature co-fired ceramic applications based on indialite/cordierite glass ceramics with Bi2O3 as a sintering aid showing low permittivity (εr) and ultralow dielectric loss (tan δ) is described. The fine powder of indialite was prepared by the crystallization of cordierite glass at 1000 °C/1 h. The optimized sintering temperature was 900 °C with 10 wt % Bi2O3 addition. The relative density achieved was 97%, and εr and tan δ were 6.10 and 0.0001 at 1 MHz, respectively. The composition also showed a moderately low temperature coefficient of relative permittivity of 118 ppm/°C at 1 MHz. The obtained linear coefficient of thermal expansion was 3.5 ppm/°C in the measured temperature range of 100 to 600 °C. The decreasing trend in dielectric loss, the low relative permittivity at 1 MHz, and the low thermal expansion of the newly developed composition make it an ideal choice for radio frequency applications.

  14. High temperature structural ceramic materials manufactured by the CNTD process

    International Nuclear Information System (INIS)

    Stiglich, J.J. Jr.; Bhat, D.G.; Holzl, R.A.

    1980-01-01

    Controlled Nucleation Thermochemical Deposition (CNTD) has emerged from classical chemical deposition (CVD) technology. This paper describes the techniques of thermochemical grain refinement. The effects of such refinement on mechanical properties of materials at room temperature and at elevated temperatures are outlined. Emphasis is given to high temperature structural ceramic materials such as SiC, Si 3 N 4 , AlN, and TiB 2 and ZrB 2 . An example of grain refinement accompanied by improvements in mechanical properties is SiC. Grain sizes of 500 to 1000 A have been observed in CNTD SiC with room temperature MOR of 1380 to 2070 MPa (4 pt bending) and MOR of 3450 to 4140 MPa (4 pt bending) at 1350 0 C. Various applications of these materials to the solution of high temperature structural problems are described. (author)

  15. Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials

    Science.gov (United States)

    Keith, Theo G.

    2005-01-01

    The purpose of this report is to provide a final report for the period of 12/1/03 through 11/30/04 for NASA Cooperative Agreement NCC3-776, entitled "Elevated Temperature Testing and Modeling of Advanced Toughened Ceramic Materials." During this final period, major efforts were focused on both the determination of mechanical properties of advanced ceramic materials and the development of mechanical test methodologies under several different programs of the NASA-Glenn. The important research activities made during this period are: 1. Mechanical properties evaluation of two gas-turbine grade silicon nitrides. 2) Mechanical testing for fuel-cell seal materials. 3) Mechanical properties evaluation of thermal barrier coatings and CFCCs and 4) Foreign object damage (FOD) testing.

  16. Mechanical behavior of high strength ceramic fibers at high temperatures

    Science.gov (United States)

    Tressler, R. E.; Pysher, D. J.

    1991-01-01

    The mechanical behavior of commercially available and developmental ceramic fibers, both oxide and nonoxide, has been experimentally studied at expected use temperatures. In addition, these properties have been compared to results from the literature. Tensile strengths were measured for three SiC-based and three oxide ceramic fibers for temperatures from 25 C to 1400 C. The SiC-based fibers were stronger but less stiff than the oxide fibers at room temperature and retained more of both strength and stiffness to high temperatures. Extensive creep and creep-rupture experiments have been performed on those fibers from this group which had the best strengths above 1200 C in both single filament tests and tests of fiber bundles. The creep rates for the oxides are on the order of two orders of magnitude faster than the polymer derived nonoxide fibers. The most creep resistant filaments available are single crystal c-axis sapphire filaments. Large diameter CVD fabricated SiC fibers are the most creep and rupture resistant nonoxide polycrystalline fibers tested to date.

  17. High-Temperature Ceramic Matrix Composite with High Corrosion Resistance

    Science.gov (United States)

    2010-06-02

    description of high temperature oxidation processes of composite ceramic materials of ZrB2 - SiC and ZrB2-SiC-Zr(Mo)Si2 systems up to high (~1300 °C...analysis was applied using MІN-7 mineralogical microscope and a set of standard immersion liquids with the known values of refraction coefficients...2.0 V) corresponds to the simultaneous formation of ZrO2 zirconium dioxide of monoclinic modification and Zr(OH)4 zirconium hydroxide which is

  18. High temperature microplasticity of fine-grained ceramics

    International Nuclear Information System (INIS)

    Lakki, A.; Schaller, R.

    1996-01-01

    Several fine-grained ceramics exhibit enhanced ductility or even structural superplasticity at high temperature. Grain boundaries play a dominant role in the deformation process of these materials which usually involves diffusion-accommodated grain boundary sliding. Sliding is either lubricated by an amorphous intergranular phase or takes place by glide and climb of grain boundary dislocations. At high temperature, anelastic deformation precedes plastic deformation and stems from the short range motion of lattice defects, such as dislocations and grain boundaries. The energy loss (''mechanical loss'') associated with such motion can be measured by using the technique of mechanical spectroscopy. Moreover, at the onset of plasticity (''microplasticity''), long range irrecoverable motion of defects contributes to additional mechanical loss. Mechanical loss spectra may then give an insight into mechanisms operating at the transition between anelastic and plastic deformation. As an illustration, the spectra of three fine-grained ceramics (Si 3 N 4 , ZrO 2 , Al 2 O 3 ) are presented. In all cases, anelastic relaxation phenomena (peak and background) have been observed at high temperature (> 1200 K), bearing a close relation with creep behaviour. Their analysis permits to distinguish between different types of microstructrual elements: bulk regions of amorphous intergranular phase at triple points, grain boundaries separated by a thin glassy film and ''clean'' grain boundaries. (orig.)

  19. Temperature dependence of magnetoresistance in lanthanum manganite ceramics

    International Nuclear Information System (INIS)

    Gubkin, M.K.; Zalesskii, A.V.; Perekalina, T.M.

    1996-01-01

    Magnetoresistivity in the La0.9Na0.1Mn0.9(V,Co)0.1O3 and LaMnO3+δ ceramics was studied. The temperature dependence of magnetoresistance in these specimens was found to differ qualitatively from that in the La0.9Na0.1MnO3 single crystal (the magnetoresistance value remains rather high throughout the measurement range below the Curie temperature), with the maximum values being about the same (20-40% in the field of 20 kOe). Previously published data on magnetization, high frequency magnetic susceptibility, and local fields at the 139La nuclei of the specimens with similar properties attest to their magnetic inhomogeneity. The computation of the conductivity of the nonuniformly ordered lanthanum manganite was performed according to the mean field theory. The calculation results allow one to interpret qualitatively various types of experimental temperature dependences of magnetoresistance

  20. Temperature variation in metal ceramic technology analyzed using time domain optical coherence tomography

    Science.gov (United States)

    Sinescu, Cosmin; Topala, Florin I.; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.

    2014-01-01

    The quality of dental prostheses is essential in providing good quality medical services. The metal ceramic technology applied in dentistry implies ceramic sintering inside the dental oven. Every ceramic material requires a special sintering chart which is recommended by the producer. For a regular dental technician it is very difficult to evaluate if the temperature inside the oven remains the same as it is programmed on the sintering chart. Also, maintaining the calibration in time is an issue for the practitioners. Metal ceramic crowns develop a very accurate pattern for the ceramic layers depending on the temperature variation inside the oven where they are processed. Different patterns were identified in the present study for the samples processed with a variation in temperature of +30 °C to +50 °C, respectively - 30 0°C to -50 °C. The OCT imagistic evaluations performed for the normal samples present a uniform spread of the ceramic granulation inside the ceramic materials. For the samples sintered at a higher temperature an alternation between white and darker areas between the enamel and opaque layers appear. For the samples sintered at a lower temperature a decrease in the ceramic granulation from the enamel towards the opaque layer is concluded. The TD-OCT methods can therefore be used efficiently for the detection of the temperature variation due to the ceramic sintering inside the ceramic oven.

  1. A high temperature ceramic heat exchanger element for a solar thermal receiver

    Science.gov (United States)

    Strumpf, H. J.; Kotchick, D. M.; Coombs, M. G.

    1982-01-01

    The development of a high-temperature ceramic heat exchanger element to be integrated into a solar receiver producing heated air was studied. A number of conceptual designs were developed for heat exchanger elements of differing configuration. These were evaluated with respect to thermal performance, pressure drop, structural integrity, and fabricability. The final design selection identified a finned ceramic shell as the most favorable concept. The shell is surrounded by a larger metallic shell. The flanges of the two shells are sealed to provide a leak-tight pressure vessel. The ceramic shell is to be fabricated by a innovative combination of slip casting the receiver walls and precision casting the heat transfer finned plates. The fins are bonded to the shell during firing. The unit is sized to produce 2150 F air at 2.7 atm pressure, with a pressure drop of about 2 percent of the inlet pressure. This size is compatible with a solar collector providing a receiver input of 85 kw(th). Fabrication of a one-half scale demonstrator ceramic receiver was completed.

  2. High-temperature ceramic heat exchanger element for a solar thermal receiver

    Science.gov (United States)

    Strumpf, H. J.; Kotchick, D. M.; Coombs, M. G.

    1982-01-01

    A study was performed by AiResearch Manufacturing Company, a division of The Garrett Corporation, on the development a high-temperature ceramic heat exchanger element to be integrated into a solar receiver producing heated air. A number of conceptual designs were developed for heat exchanger elements of differing configuration. These were evaluated with respect to thermal performance, pressure drop, structural integrity, and fabricability. The final design selection identified a finned ceramic shell as the most favorable concept. The shell is surrounded by a larger metallic shell. The flanges of the two shells are sealed to provide a leak-tight pressure vessel. The ceramic shell is to be fabricated by an innovative combination of slip casting the receiver walls and precision casting the heat transfer finned plates. The fins are bonded to the shell during firing. The unit is sized to produce 2150 F ar at 2.7 atm pressure, with a pressure drop of about 2 percent of the inlet pressure. This size is compatible with a solar collector providing a receiver input of 85 kw(th). Fabrication of a one-half scale demonstrator ceramic receiver has been completed.

  3. Gas Separation Properties of Polyimide Thin Films on Ceramic Supports for High Temperature Applications.

    Science.gov (United States)

    Escorihuela, Sara; Tena, Alberto; Shishatskiy, Sergey; Escolástico, Sonia; Brinkmann, Torsten; Serra, Jose Manuel; Abetz, Volker

    2018-03-07

    Novel selective ceramic-supported thin polyimide films produced in a single dip coating step are proposed for membrane applications at elevated temperatures. Layers of the polyimides P84 ® , Matrimid 5218 ® , and 6FDA-6FpDA were successfully deposited onto porous alumina supports. In order to tackle the poor compatibility between ceramic support and polymer, and to get defect-free thin films, the effect of the viscosity of the polymer solution was studied, giving the entanglement concentration (C*) for each polymer. The C* values were 3.09 wt. % for the 6FDA-6FpDA, 3.52 wt. % for Matrimid ® , and 4.30 wt. % for P84 ® . A minimum polymer solution concentration necessary for defect-free film formation was found for each polymer, with the inverse order to the intrinsic viscosities (P84 ® ≥ Matrimid ® > 6FDA-6FpDA). The effect of the temperature on the permeance of prepared membranes was studied for H₂, CH₄, N₂, O₂, and CO₂. As expected, activation energy of permeance for hydrogen was higher than for CO₂, resulting in H₂/CO₂ selectivity increase with temperature. More densely packed polymers lead to materials that are more selective at elevated temperatures.

  4. Gas Separation Properties of Polyimide Thin Films on Ceramic Supports for High Temperature Applications

    Directory of Open Access Journals (Sweden)

    Sara Escorihuela

    2018-03-01

    Full Text Available Novel selective ceramic-supported thin polyimide films produced in a single dip coating step are proposed for membrane applications at elevated temperatures. Layers of the polyimides P84®, Matrimid 5218®, and 6FDA-6FpDA were successfully deposited onto porous alumina supports. In order to tackle the poor compatibility between ceramic support and polymer, and to get defect-free thin films, the effect of the viscosity of the polymer solution was studied, giving the entanglement concentration (C* for each polymer. The C* values were 3.09 wt. % for the 6FDA-6FpDA, 3.52 wt. % for Matrimid®, and 4.30 wt. % for P84®. A minimum polymer solution concentration necessary for defect-free film formation was found for each polymer, with the inverse order to the intrinsic viscosities (P84® ≥ Matrimid® >> 6FDA-6FpDA. The effect of the temperature on the permeance of prepared membranes was studied for H2, CH4, N2, O2, and CO2. As expected, activation energy of permeance for hydrogen was higher than for CO2, resulting in H2/CO2 selectivity increase with temperature. More densely packed polymers lead to materials that are more selective at elevated temperatures.

  5. Pyroelectric Ceramics as Temperature Sensors for Energy System Applications

    Science.gov (United States)

    Silva, Jorge Luis

    Temperature is continuously monitored in energy systems to ensure safe operation temperatures, increase efficiency and avoid high emissions. Most of energy systems operate at high temperature and harsh environments to achieve higher efficiencies, therefore temperature sensing devices that can operate under these conditions are highly desired. The interest has increased in temperature sensors capable to operate and in harsh environments and temperature sensors capable to transmit thermal information wirelessly. One of the solutions for developing harsh environment sensors is to use ceramic materials, especially functional ceramics such as pyroelectrics. Pyroelectric ceramics could be used to develop active sensors for both temperature and pressure due to their capabilities in coupling energy among mechanical, thermal, and electrical domains. In this study, two different pyroelectric materials were used to develop two different temperature sensors systems. First, a high temperature sensor was developed using a lithium niobate (LiNbO3) pyroelectric ceramic. With its Curie temperature of 1210 °C, lithium niobate is capable to maintain its pyroelectric properties at high temperature making it ideal for temperature sensing at high temperature applications. Lithium niobate has been studied previously in the attempt to use its pyroelectric current as the sensing mechanism to measure temperatures up to 500 °C. Pyroelectric coefficient of lithium niobate is a function of temperature as reported in a previous study, therefore a dynamic technique is utilized to measure the pyroelectric coefficient of the lithium niobate used in this study. The pyroelectric coefficient was successfully measured up to 500 °C with coefficients ranging from -8.5 x 10 -5 C/m2 °C at room temperature to -23.70 x 10 -5 C/m2 °C at 500 °C. The lithium niobate sensor was then tested at higher temperatures: 220 °C, 280 °C, 410 °C and 500 °C with 4.31 %, 2.1 %, 0.4 % and 0.6 % deviation

  6. Ceramic high temperature superconductor levitating motor with laser commutator

    International Nuclear Information System (INIS)

    Roslan Abd Shukor; Lee Keng Heong

    1996-01-01

    The design of a magnetically levitating motor using a ceramic high temperature superconductor with laser commutator is discussed. A YBa sub 2 Cu sub 3 O sub 7-δ high temperature superconductor with 25 mm diameter and 6 mm thickness is used to levitate a Nd-Fe-B magnet (19.0 mm diameter and 4.8 mm thickness) which is attached symmetrically to a 150 mm long graphite rod. A smaller magnet (5.5 mm diameter and 2.0 mm thickness) is attached at each end of the rod with the appropriate poles arrangements. A suitable laser beam chopper is used to optically drive a solenoid which repels the smaller magnets thus driving the motor. A simple and efficient liquid nitrogen supply system is designed to cool the superconductor. The stability of the bearing is provided by the flux pinning in this type-II superconductor. Some characteristics of the motor are discussed

  7. Robust, high temperature-ceramic membranes for gas separation

    Science.gov (United States)

    Berchtold, Kathryn A.; Young, Jennifer S.

    2014-07-29

    A method of making ceramic membranes, and the ceramic membranes so formed, comprising combining a ceramic precursor with an organic or inorganic comonomer, forming the combination as a thin film on a substrate, photopolymerizing the thin film, and pyrolyzing the photopolymerized thin film.

  8. Electrical properties and temperature stability of a new kind of lead-free piezoelectric ceramics

    International Nuclear Information System (INIS)

    Wang Yuanyu; Wu Jiagang; Xiao Dingquan; Zhang Bin; Wu Wenjuan; Shi Wei; Zhu Jianguo

    2008-01-01

    0.995[(K 0.50 Na 0.50 ) 0.94 Li 0.06 ]NbO 3 -0.005AETiO 3 (AE=Ca, Sr, Mg, Ba) lead-free piezoelectric ceramics were prepared by normal sintering. The effects of the AETiO 3 and poling temperature on the electrical properties of the ceramics were carefully studied, and the temperature stability of the electrical properties of the ceramics was also investigated. The experimental results show that the ceramics with Li and CaTiO 3 possess the pure phase, Li and AETiO 3 improves the electrical properties of the pure (K 0.50 Na 0.50 )NbO 3 ceramics, the poling temperature near tetragonal and orthorhombic phase transition will enhance the piezoelectric properties of the ceramics and the KNLN-CT ceramics exhibit good temperature stability of electrical properties for tetragonal and orthorhombic phase transition below room temperature. The KNLN-CT ceramics exhibit relatively good properties: d 33 = 172 pC N -1 , k p = 0.43, tan δ = 0.032, ε r = 771 and T c = 465 deg. C. As a result, the KNLN-CT ceramic is promising candidate material for piezoelectric devices.

  9. Nonaqueous slip casting of high temperature ceramic superconductors using an investment casting technique

    Science.gov (United States)

    Hooker, Matthew W. (Inventor); Taylor, Theodore D. (Inventor); Wise, Stephanie A. (Inventor); Buckley, John D. (Inventor); Vasquez, Peter (Inventor); Buck, Gregory M. (Inventor); Hicks, Lana P. (Inventor)

    1993-01-01

    A process for slip casting ceramic articles that does not employ parting agents and affords the casting of complete, detailed, precision articles that do not possess parting lines is presented. This process is especially useful for high temperature superconductors and water-sensitive ceramics. A wax pattern for a shell mold is provided, and an aqueous mixture of a calcium sulfate-bonded investment material is applied as a coating to the wax pattern. The coated wax pattern is then dried, followed by curing to vaporize the wax pattern and leave a shell mold of the calcium sulfate-bonded investment material. The shell mold is cooled to room temperature, and a ceramic slip, created by dispersing a ceramic powder in an organic liquid, is poured therein. After a ceramic shell of desired thickness or a solid article has set up in the shell mold, excess ceramic slip is poured out. The shell mold is misted with water and peeled away from the ceramic article, after which the ceramic is fired to provide a complete, detailed, precision, high temperature superconductive ceramic article without parting lines. The casting technique may take place in the presence of a magnetic field to orient the ceramic powders during the casting process.

  10. Method for producing ceramic composition having low friction coefficient at high operating temperatures

    Science.gov (United States)

    Lankford, Jr., James

    1988-01-01

    A method for producing a stable ceramic composition having a surface with a low friction coefficient and high wear resistance at high operating temperatures. A first deposition of a thin film of a metal ion is made upon the surface of the ceramic composition and then a first ion implantation of at least a portion of the metal ion is made into the near surface region of the composition. The implantation mixes the metal ion and the ceramic composition to form a near surface composite. The near surface composite is then oxidized sufficiently at high oxidizing temperatures to form an oxide gradient layer in the surface of the ceramic composition.

  11. A porous ceramic membrane tailored high-temperature supercapacitor

    Science.gov (United States)

    Zhang, Xin; He, Benlin; Zhao, Yuanyuan; Tang, Qunwei

    2018-03-01

    The supercapacitor that can operate at high-temperature are promising for markedly increase in capacitance because of accelerated charge movement. However, the state-of-the-art polymer-based membranes will decompose at high temperature. Inspired by solid oxide fuel cells, we present here the experimental realization of high-temperature supercapacitors (HTSCs) tailored with porous ceramic separator fabricated by yttria-stabilized zirconia (YSZ) and nickel oxide (NiO). Using activated carbon electrode and supporting electrolyte from potassium hydroxide (KOH) aqueous solution, a category of symmetrical HTSCs are built in comparison with a conventional polymer membrane based device. The dependence of capacitance performance on temperature is carefully studied, yielding a maximized specific capacitance of 272 F g-1 at 90 °C for the optimized HTSC tailored by NiO/YSZ membrane. Moreover, the resultant HTSC has relatively high durability when suffer repeated measurement over 1000 cycles at 90 °C, while the polymer membrane based supercapacitor shows significant reduction in capacitance at 60 °C. The high capacitance along with durability demonstrates NiO/YSZ membrane tailored HTSCs are promising in future advanced energy storage devices.

  12. Method of producing a carbon coated ceramic membrane and associated product

    Science.gov (United States)

    Liu, Paul K. T.; Gallaher, George R.; Wu, Jeffrey C. S.

    1993-01-01

    A method of producing a carbon coated ceramic membrane including passing a selected hydrocarbon vapor through a ceramic membrane and controlling ceramic membrane exposure temperature and ceramic membrane exposure time. The method produces a carbon coated ceramic membrane of reduced pore size and modified surface properties having increased chemical, thermal and hydrothermal stability over an uncoated ceramic membrane.

  13. Fabrication and characterization of low temperature co-fired cordierite glass–ceramics from potassium feldspar

    International Nuclear Information System (INIS)

    Wu, Jianfang; Li, Zhen; Huang, Yanqiu; Li, Fei; Yang, Qiuran

    2014-01-01

    Highlights: • Low cost cordierite glass–ceramics were fabricated from potassium feldspar. • The glass–ceramics could be highly densified below 950 °C. • The glass–ceramics exhibit extraordinary properties. • The glass–ceramics can be used as LTCC substrates. • The excess SiO 2 improved the microstructure and properties of the glass–ceramics. -- Abstract: Cordierite glass–ceramics for low temperature co-fired ceramic (LTCC) substrates were fabricated successfully using potassium feldspar as the main raw material. The sintering and crystallization behaviors of the glass–ceramics were investigated by the differential scanning calorimetry (DSC), X-ray diffraction (XRD), and field emission scanning electron microscope (FESEM). The results indicated that the glass–ceramics could be highly densified at 850 °C and the cordierite was the main crystalline phase precipitated from the glasses in the temperature range between 900 and 925 °C. The study also evaluated the physical properties including dielectric properties, thermal expansion and flexural strength of the glass–ceramics. The glass–ceramics showed low dielectric constants in the range of 6–8 and low dielectric losses in the range of 0.0025–0.01. The coefficients of thermal expansion (CTEs) are between 4.32 and 5.48 × 10 −6 K −1 and flexural strength of the glass–ceramics are 90–130 MPa. All of those qualify the glass–ceramics for further research to be used as potential LTCC substrates in the multilayer electronic substrate field. Additionally, the excess SiO 2 acted as a great role in improving the sinterability of the glasses, and the microstructure and dielectric properties of the relevant glass–ceramics

  14. Method of depositing thin films of high temperature Bi-Sr-Ca-Cu-O-based ceramic oxide superconductors

    International Nuclear Information System (INIS)

    Budd, K.D.

    1991-01-01

    This patent describes a method. It comprises preparing a liquid precursor of a Bi-Sr-Ca-Cu-O- based ceramic oxide superconductor phase, wherein the liquid precursor comprises an alkoxyalkanol, copper acrylate, strontium acrylate, bismuth nitrate, and calcium nitrate, wherein the liquid precursor has a cation ratio sufficient to form the desired stoichiometry in the ceramic oxide superconductor phase when the liquid precursor is heated to a temperature and for a time sufficient to provide the desired ceramic oxide superconductor phase, and wherein the copper acrylate, strontium acrylate, bismuth nitrate, and calcium nitrate are mutually soluble in the alkoxyalkanol; applying the liquid precursor to a substrate, wherein the substrate is one of an oxide ceramic, a metal selected from the group consisting of Ag and Ni, and Si; and heating the substrate in an oxygen-containing atmosphere with the liquid precursor applied thereon to a temperature and for a time sufficient to form a thin film comprising at least one Bi-Sr- Ca-Cu-O-based high temperature ceramic oxide superconductor phase

  15. Ceramic Composite Intermediate Temperature Stress-Rupture Properties Improved Significantly

    Science.gov (United States)

    Morscher, Gregory N.; Hurst, Janet B.

    2002-01-01

    Silicon carbide (SiC) composites are considered to be potential materials for future aircraft engine parts such as combustor liners. It is envisioned that on the hot side (inner surface) of the combustor liner, composites will have to withstand temperatures in excess of 1200 C for thousands of hours in oxidizing environments. This is a severe condition; however, an equally severe, if not more detrimental, condition exists on the cold side (outer surface) of the combustor liner. Here, the temperatures are expected to be on the order of 800 to 1000 C under high tensile stress because of thermal gradients and attachment of the combustor liner to the engine frame (the hot side will be under compressive stress, a less severe stress-state for ceramics). Since these composites are not oxides, they oxidize. The worst form of oxidation for strength reduction occurs at these intermediate temperatures, where the boron nitride (BN) interphase oxidizes first, which causes the formation of a glass layer that strongly bonds the fibers to the matrix. When the fibers strongly bond to the matrix or to one another, the composite loses toughness and strength and becomes brittle. To increase the intermediate temperature stress-rupture properties, researchers must modify the BN interphase. With the support of the Ultra-Efficient Engine Technology (UEET) Program, significant improvements were made as state-of-the-art SiC/SiC composites were developed during the Enabling Propulsion Materials (EPM) program. Three approaches were found to improve the intermediate-temperature stress-rupture properties: fiber-spreading, high-temperature silicon- (Si) doped boron nitride (BN), and outside-debonding BN.

  16. High temperature corrosion of advanced ceramic materials for hot gas filters. Topical report for part 1 of high temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Spear, K.E.; Crossland, C.E.; Shelleman, D.L.; Tressler, R.E. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering

    1997-12-11

    This program consists of two separate research areas. Part 1, for which this report is written, studied the high temperature corrosion of advanced ceramic hot gas filters, while Part 2 studied the long-term durability of ceramic heat exchangers to coal combustion environments. The objectives of Part 1 were to select two candidate ceramic filter materials for flow-through hot corrosion studies and subsequent corrosion and mechanical properties characterization. In addition, a thermodynamic database was developed so that thermochemical modeling studies could be performed to simulate operating conditions of laboratory reactors and existing coal combustion power plants, and to predict the reactions of new filter materials with coal combustion environments. The latter would make it possible to gain insight into problems that could develop during actual operation of filters in coal combustion power plants so that potential problems could be addressed before they arise.

  17. Fatigue limit of polycrystalline zirconium oxide ceramics: effect of grinding and low-temperature aging

    NARCIS (Netherlands)

    Pereira, G.K.R.; Silvestri, T.; Amaral, M.; Rippe, M.P.; Kleverlaan, C.J.; Valandro, L.F.

    2016-01-01

    The following study aimed to evaluate the effect of grinding and low-temperature aging on the fatigue limit of Y-TZP ceramics for frameworks and monolithic restorations. Disc specimens from each ceramic material, Lava Frame (3M ESPE) and Zirlux FC (Ivoclar Vivadent) were manufactured according to

  18. Corrosion of Ceramic Materials

    Science.gov (United States)

    Opila, Elizabeth J.; Jacobson, Nathan S.

    1999-01-01

    Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.

  19. Fracture Toughness of Ceramics Fired at Different Temperatures

    Directory of Open Access Journals (Sweden)

    Peter SIN

    2012-03-01

    Full Text Available The fracture toughness test was performed at room temperature on sets of 5 ceramic samples made from material for high voltage insulators (kaolin 36 wt. %, Al2O3 30 wt. %, clay 12 wt. % and feldspar 22 wt. % fired at temperatures 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1250, 1300, 1400, 1500 °C at heating and cooling rate of 5 °C/min. The precrack was made to each sample by indentation under the loads 10 N – 200 N, the dwell time was 45 s and the loading rate was 10 N/s. Results of the fracture toughness tests were in accordance with changes of structure of the samples after the partial firings. Fracture toughness from 20 °C to 500 °C is almost constant and it varies between 0.1 MPa·m0.5and 0.2 MPa·m0.5. Dehydroxylation (420 °C – 600 °C does not influence the value of fracture toughness. At temperature interval where we assume sintering (700 °C – 1250 °C we observe exponential dependence of fracture toughness up to 1.5 MPa·m0.5. From comparison of the fracture toughness, Young’s modulus and flexural strength follows a correlation and proporcionality of these mechanical properties.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1349

  20. Synthesis of Highly Uniform and Compact Lithium Zinc Ferrite Ceramics via an Efficient Low Temperature Approach.

    Science.gov (United States)

    Xu, Fang; Liao, Yulong; Zhang, Dainan; Zhou, Tingchuan; Li, Jie; Gan, Gongwen; Zhang, Huaiwu

    2017-04-17

    LiZn ferrite ceramics with high saturation magnetization (4πM s ) and low ferromagnetic resonance line widths (ΔH) represent a very critical class of material for microwave ferrite devices. Many existing approaches emphasize promotion of the grain growth (average size is 10-50 μm) of ferrite ceramics to improve the gyromagnetic properties at relatively low sintering temperatures. This paper describes a new strategy for obtaining uniform and compact LiZn ferrite ceramics (average grains size is ∼2 μm) with enhanced magnetic performance by suppressing grain growth in great detail. The LiZn ferrites with a formula of Li 0.415 Zn 0.27 Mn 0.06 Ti 0.1 Fe 2.155 O 4 were prepared by solid reaction routes with two new sintering strategies. Interestingly, results show that uniform, compact, and pure spinel ferrite ceramics were synthesized at a low temperature (∼850 °C) without obvious grain growth. We also find that a fast second sintering treatment (FSST) can further improve their gyromagnetic properties, such as higher 4πM s and lower ΔH. The two new strategies are facile and efficient for densification of LiZn ferrite ceramics via suppressing grain growth at low temperatures. The sintering strategy reported in this study also provides a referential experience for other ceramics, such as soft magnetism ferrite ceramics or dielectric ceramics.

  1. Evaluation of Ultra-High Temperature Ceramics for Aeropropulsion Use

    Science.gov (United States)

    Levine, Stanley R.; Opila, Elizabeth J.; Halbig, Michael C.; Kiser, James D.; Singh, Mrityunjay; Salem, Jonathan A.

    2001-01-01

    Among the ultra-high temperature ceramics (UHTC) are a group of materials consisting of zirconium diboride or hafnium diboride plus silicon carbide, and in some instances, carbon. These materials offer a good combination of properties that make them candidates for airframe leading edges on sharp-bodied reentry vehicles. These UHTC perform well in the environment for such applications, i.e., air at low pressure. The purpose of this study was to examine three of these materials under conditions more representative of a propulsion environment, i.e., higher oxygen partial pressure and total pressure. Results of strength and fracture toughness measurements, furnace oxidation and high velocity thermal shock exposures are presented for ZrB2 plus 20 volume % SiC, ZrB2 plus 14 volume % SiC plus 30 volume % C, and SCS-9a SiC fiber reinforced ZrB2 plus 20 volume % SiC. The poor oxidation resistance of UHTCs is the predominant factor limiting their applicability to propulsion applications.

  2. low temperature irradiation effects in iron-alloys and ceramics

    International Nuclear Information System (INIS)

    Kuramoto, Eiichi; Abe, Hironobu; Tanaka, Minoru; Nishi, Kazuya; Tomiyama, Noriyuki.

    1991-01-01

    Electron beam irradiation at 77K and neutron irradiation at 20K were carried out on Fe-Cr and Fe-Cr-Ni alloys and ZnO and graphite system ceramics, and by measuring positron annihilation lifetime, the micro-information about irradiation-introduced defects was obtained. The temperature of the movement of atomic vacancies in pure iron is about 200K, but it was clarified that by the addition of Cr, it was not much affected. However, in the case of high concentration Cr alloys, the number of atomic vacancies which take part in the formation of micro-voids decreased as compared with the case of pure iron. It is considered that among the irradiation defects of ZnO, O-vac. restored below 300degC. It is considered that in the samples without irradiation, the stage of restoration exists around 550degC, which copes with structural defects. By the measurement of graphite without irradiation, the positron annihilation lifetime corresponding with the interface of matrix and crystal grains, grain boundaries and internal surfaces was almost determined. The materials taken up most actively in the research and development of nuclear fusion reactor materials are austenitic and ferritic stainless steels, and their irradiation defects have been studied. (K.I.)

  3. Ultra High Temperature and Multifunctional Ceramic Matrix Composite – Coating Systems for Light-Weight Space and Aero Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Revolutionary ultra-high temperature, high mechanical loading capable, oxidation resistant, durable ceramic coatings and light-weight fiber-reinforced Ceramic Matrix...

  4. Measurement of temperature fields in specimens of quartz ceramic during surface ablation

    Science.gov (United States)

    Frolov, G. A.; Pasichnyi, V. V.; Suzdal'Tsev, E. I.; Tsyganenko, V. S.

    1989-08-01

    The authors propose a method of mounting thermocouples and have obtained temperature fields within specimens of pure and doped quartz ceramic. The linearity of the dependenceΔ * = fleft( {sqrt tau } right) for deep isotherms has been proved experimentally.

  5. Whole ceramic-like microreactors from inorganic polymers for high temperature or/and high pressure chemical syntheses.

    Science.gov (United States)

    Ren, Wurong; Perumal, Jayakumar; Wang, Jun; Wang, Hao; Sharma, Siddharth; Kim, Dong-Pyo

    2014-02-21

    Two types of whole ceramic-like microreactors were fabricated from inorganic polymers, polysilsesquioxane (POSS) and polyvinylsilazane (PVSZ), that were embedded with either perfluoroalkoxy (PFA) tube or polystyrene (PS) film templates, and subsequently the templates were removed by physical removal (PFA tube) or thermal decomposition (PS). A POSS derived ceramic-like microreactor with a 10 cm long serpentine channel was obtained by an additional "selective blocking of microchannel" step and subsequent annealing at 300 °C for 1 h, while a PVSZ derived ceramic-like microreactor with a 14 cm long channel was yielded by a co-firing process of the PVSZ-PS composite at 500 °C for 2 h that led to complete decomposition of the film template leaving a microchannel behind. The obtained whole ceramic-like microfluidic devices revealed excellent chemical and thermal stabilities in various solvents, and they were able to demonstrate unique chemical performance at high temperature or/and high pressure conditions such as Michaelis-Arbuzov rearrangement at 150-170 °C, Wolff-Kishner reduction at 200 °C, synthesis of super-paramagnetic Fe3O4 nanoparticles at 320 °C and isomerisation of allyloxybenzene to 2-allylphenol (250 °C and 400 psi). These economic ceramic-like microreactors fabricated by a facile non-lithographic method displayed excellent utility under challenging conditions that is superior to any plastic microreactors and comparable to glass and metal microreactors with high cost.

  6. PERFORMANCE AND SELECTIVITY OF CERAMIC MEMBRANES IN THE ULTRAFILTRATION OF MODEL EMULSION IN SALINE

    Directory of Open Access Journals (Sweden)

    Konrad ĆWIRKO

    2017-04-01

    Full Text Available Oily wastewaters from different onshore and offshore installations and from maritime transport pose a serious threat to the environment so they must be treated by multistage separation also including membrane processes. The main advantages of such membranes are high performance and selectivity, high resistance for temperature and pressure, resistance for acids, bases and solvents, long service life and for application – significant reduction of industries and transport environmental impact. This work presents the results of the process of separation of oil from the emulsion with NaCl addition. Research was performed with a use of laboratory installation with ceramic 300 kDa membrane. The analysis concerned performance and selectivity of a membrane in the function of time and test results have been subsequently compared with the requirements of the IMO.

  7. Laser treatment of dental ceramic/cement layers: transmitted energy, temperature effects and surface characterisation.

    Science.gov (United States)

    Pich, Olena; Franzen, René; Gutknecht, Norbert; Wolfart, Stefan

    2015-02-01

    In the present paper, we investigate the behaviour of different dental materials under laser irradiation. We have used e.max Ceram, e.max ZirCAD, and e.max Press dental ceramics and glass ionomer cement Ketac Cem in the present study. The dental ceramics were prepared in the form of samples with thickness of 0.5-2 mm. We used two lasers [solid-state laser (Er:YAG, Fidelis III+, Fotona) and an 810- nm diode laser (FOX, A.R.C)] for the transillumination of ceramic samples. It has been shown that the laser energy transmitted through the ceramic material decreases to 30-40% of the original values along with an increase in the thickness of the irradiated sample. Pigmented ceramic samples show more laser energy loss compared to the samples containing no pigment. We investigated the temperature evolution in composite sandwiched ceramic/cement samples under laser treatment. The increase in the irradiation time and laser power led to a temperature increase of up to 80 °C. The surfaces of irradiated ceramic samples were examined with X-ray photoelectron spectroscopy to evaluate changes in chemical composition, such as a decrease in the C signal, accompanied by a strong increase in the Zr peak for the Er:YAG laser, while the 810-nm diode laser showed no change in the ratio of elements on the surface.

  8. Microstructure and Dielectric Properties of LPCVD/CVI-SiBCN Ceramics Annealed at Different Temperatures

    Directory of Open Access Journals (Sweden)

    Jianping Li

    2017-06-01

    Full Text Available SiBCN ceramics were introduced into porous Si3N4 ceramics via a low-pressure chemical vapor deposition and infiltration (LPCVD/CVI technique, and then the composite ceramics were heat-treated from 1400 °C to 1700 °C in a N2 atmosphere. The effects of annealing temperatures on microstructure, phase evolution, dielectric properties of SiBCN ceramics were investigated. The results revealed that α-Si3N4 and free carbon were separated below 1700 °C, and then SiC grains formed in the SiBCN ceramic matrix after annealing at 1700 °C through a phase-reaction between free carbon and α-Si3N4. The average dielectric loss of composites increased from 0 to 0.03 due to the formation of dispersive SiC grains and the increase of grain boundaries.

  9. Abrasive wear of ceramic wear protection at ambient and high temperatures

    Science.gov (United States)

    Varga, M.; Adam, K.; Tumma, M.; Alessio, K. O.

    2017-05-01

    Ceramic wear protection is often applied in abrasive conditions due to their excellent wear resistance. This is especially necessary in heavy industries conveying large amounts of raw materials, e.g. in steel industry. Some plants also require material transport at high temperatures and velocities, making the need of temperature stable and abrasion resistant wear protection necessary. Various types and wear behaviour of ceramic protection are known. Hence, the goal of this study is to identify the best suitable ceramic materials for abrasive conditions in harsh environments at temperatures up to 950°C and severe thermal gradients. Chamottes, known for their excellent thermal shock resistance are compared to high abrasion resistant ceramic wear tiles and a cost efficient cement-bounded hard compound. Testing was done under high-stress three-body abrasion regime with a modified ASTM G65 apparatus enabling for investigations up to ~950°C. Thereto heated abrasive is introduced into the wear track and also preheated ceramic samples were used and compared to ambient temperature experiments. Results indicate a significant temperature influence on chamottes and the hard compound. While the chamottes benefit from temperature increase, the cement-bounded hard compound showed its limitation at abrasive temperatures of 950°C. The high abrasion resistant wear tiles represented the materials with the best wear resistance and less temperature influence in the investigated range.

  10. Alumina-zirconium ceramics synthesis by selective laser sintering/melting

    International Nuclear Information System (INIS)

    Shishkovsky, I.; Yadroitsev, I.; Bertrand, Ph.; Smurov, I.

    2007-01-01

    In the present paper, porous refractory ceramics synthesized by selective laser sintering/melting from a mixture of zirconium dioxide, aluminum and/or alumina powders are subjected to optical metallography and X-ray analysis to study their microstructure and phase composition depending on the laser processing parameters. It is shown that high-speed laser sintering in air yields ceramics with dense structure and a uniform distribution of the stabilizing phases. The obtained ceramic-matrix composites may be used as thermal and electrical insulators and wear resistant coating in solid oxide fuel cells, crucibles, heating elements, medical tools. The possibility to reinforce refractory ceramics by laser synthesis is shown on the example of tetragonal dioxide of zirconium with hardened micro-inclusion of Al 2 O 3 . By applying finely dispersed Y 2 O 3 powder inclusions, the type of the ceramic structure is significantly changed

  11. Design and manufacture of ceramic heat pipes for high temperature applications

    International Nuclear Information System (INIS)

    Meisel, Peter; Jobst, Matthias; Lippmann, Wolfgang; Hurtado, Antonio

    2015-01-01

    Heat exchangers based on ceramic heat pipes were designed for use under highly abrasive and corrosive atmospheres at temperatures in the range of 800–1200 °C for high-temperature power-engineering applications. The presented heat pipes are gravity assisted and based on a multi-layer concept comprising a ceramic cladding and an inner metal tube that contains sodium as the working fluid. Hermetical encapsulation of the working fluid was achieved by electron-beam welding of the inner metal tube. Subsequently, closure of the surrounding ceramic tube was performed by laser brazing technology using a glass solder. Temperature resistance and functionality of the manufactured ceramic thermosyphons could be confirmed experimentally in a hot combustion gas atmosphere at temperatures up to 1100 °C. The ceramic tubes used had an outer diameter of 22 mm and a total length of 770 mm. The measured axial heat transfer of the ceramic gravity assisted heat pipes at the stationary operating point with cold/hot gas temperature of 100 °C/900 °C was 400 W. The result of the calculation using the created mathematical model amounted to 459 W. - Highlights: • Heat-pipe design consists of a ceramic shell and an inner metallic tube. • Laser brazing technology is suitable to seal ceramic heat-pipes. • Thermal characteristic of double wall thermosyphon was modelled using FEM code. • Experimental investigations demonstrated functionality of double wall thermosyphons

  12. Temperature dependent dielectric relaxation and ac-conductivity of alkali niobate ceramics studied by impedance spectroscopy

    Science.gov (United States)

    Yadav, Abhinav; Mantry, Snigdha Paramita; Fahad, Mohd.; Sarun, P. M.

    2018-05-01

    Sodium niobate (NaNbO3) ceramics is prepared by conventional solid state reaction method at sintering temperature 1150 °C for 4 h. The structural information of the material has been investigated by X-ray diffraction (XRD) and Field emission scanning electron microscopy (FE-SEM). The XRD analysis of NaNbO3 ceramics shows an orthorhombic structure. The FE-SEM micrograph of NaNbO3 ceramics exhibit grains with grain sizes ranging between 1 μm to 5 μm. The surface coverage and average grain size of NaNbO3 ceramics are found to be 97.6 % and 2.5 μm, respectively. Frequency dependent electrical properties of NaNbO3 is investigated from room temperature to 500 °C in wide frequency range (100 Hz-5 MHz). Dielectric constant, ac-conductivity, impedance, modulus and Nyquist analysis are performed. The observed dielectric constant (1 kHz) at transition temperature (400 °C) are 975. From conductivity analysis, the estimated activation energy of NaNbO3 ceramics is 0.58 eV at 10 kHz. The result of Nyquist plot shows that the electrical behavior of NaNbO3 ceramics is contributed by grain and grain boundary responses. The impedance and modulus spectrum asserts that the negative temperature coefficient of resistance (NTCR) behavior and non-Debye type relaxation in NaNbO3.

  13. Fundamental studies of ceramic/metal interfacial reactions at elevated temperatures.

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, S. M.; Billings, G. W.; Indacochea, J. E.

    2000-12-14

    This work characterizes the interfaces resulting from exposing oxide and non-oxide ceramic substrates to zirconium metal and stainless steel-zirconium containing alloys. The ceramic/metal systems together were preheated at about 600 C and then the temperatures were increased to the test maximum temperature, which exceeded 1800 C, in an atmosphere of high purity argon. Metal samples were placed onto ceramic substrates, and the system was heated to elevated temperatures past the melting point of the metallic specimen. After a short stay at the peak temperature, the system was cooled to room temperature and examined. The chemical changes across the interface and other microstructural developments were analyzed with energy dispersive spectroscopy (EDS). This paper reports on the condition of the interfaces in the different systems studied and describes possible mechanisms influencing the microstructure.

  14. Investigation of the thermophysical properties of oxide ceramic materials at liquid-helium temperatures

    International Nuclear Information System (INIS)

    Taranov, A. V.; Khazanov, E. N.

    2008-01-01

    The main regularities in the transport of thermal phonons in oxide ceramic materials are investigated at liquid-helium temperatures. The dependences of the thermophysical characteristics of ceramic materials on their structural parameters (such as the grain size R, the grain boundary thickness d, and the structure of grain boundaries) are analyzed. It is demonstrated that, in dense coarse-grained ceramic materials with qR>>1 (where q is the phonon wave vector), the grain boundaries and the grain size are the main factors responsible for the thermophysical characteristics of the material at liquid-helium temperatures. A comparative analysis of the thermophysical characteristics of optically transparent ceramic materials based on the Y 3 Al 5 O 12 (YAG) and Y 2 O 3 cubic oxides synthesized under different technological conditions is performed using the proposed criterion

  15. High temperature solar selective coatings

    Science.gov (United States)

    Kennedy, Cheryl E

    2014-11-25

    Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.

  16. Surface Characteristics and Biofilm Development on Selected Dental Ceramic Materials

    Directory of Open Access Journals (Sweden)

    Kyoung H. Kim

    2017-01-01

    Full Text Available Background. Intraoral adjustment and polishing of dental ceramics often affect their surface characteristics, promoting increased roughness and consequent biofilm growth. This study correlated surface roughness to biofilm development with four commercially available ceramic materials. Methods. Four ceramic materials (Vita Enamic®, Lava™ Ultimate, Vitablocs Mark II, and Wieland Reflex® were prepared as per manufacturer instructions. Seventeen specimens of each material were adjusted and polished to simulate clinical intraoral procedures and another seventeen remained unaltered. Specimens were analysed by SEM imaging, confocal microscopy, and crystal violet assay. Results. SEM images showed more irregular surface topography in adjusted specimens than their respective controls. Surface roughness (Ra values were greater in all materials following adjustments. All adjusted materials with the exception of Vitablocs Mark II promoted significantly greater biofilm growth relative to controls. Conclusion. Simulated intraoral polishing methods resulted in greater surface roughness and increased biofilm accumulation.

  17. Improving Erosion Resistance of Plasma-Sprayed Ceramic Coatings by Elevating the Deposition Temperature Based on the Critical Bonding Temperature

    Science.gov (United States)

    Yao, Shu-Wei; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2018-01-01

    Interlamellar bonding within plasma-sprayed coatings is one of the most important factors dominating the properties and performance of coatings. The interface bonding between lamellae significantly influences the erosion behavior of plasma-sprayed ceramic coatings. In this study, TiO2 and Al2O3 coatings with different microstructures were deposited at different deposition temperatures based on the critical bonding temperature concept. The erosion behavior of ceramic coatings was investigated. It was revealed that the coatings prepared at room temperature exhibit a typical lamellar structure with numerous unbonded interfaces, whereas the coatings deposited at the temperature above the critical bonding temperature present a dense structure with well-bonded interfaces. The erosion rate decreases sharply with the improvement of interlamellar bonding when the deposition temperature increases to the critical bonding temperature. In addition, the erosion mechanisms of ceramic coatings were examined. The unbonded interfaces in the conventional coatings act as pre-cracks accelerating the erosion of coatings. Thus, controlling interlamellar bonding formation based on the critical bonding temperature is an effective approach to improve the erosion resistance of plasma-sprayed ceramic coatings.

  18. Hydrogen separation from high temperature CO-containing syn-gas flow using molecular ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Soudarev, A.; Konakov, G.; Souryaninov, A.; Molchanov, A. [Boyko Research Engineering Ceramic Heat Engines Center Ltd., St. Petersburg (Russian Federation); Lelait, L.; Stevens, P.H. [European Inst. for Power Studies, Karlsruhe (Germany)

    2006-07-01

    Poisoning of the platinum (Pt) metals used as catalysts for proton exchange membrane fuel cells (PEMFCs) can negatively impact on PEMFC operation efficiency. In order to address this issue, a supply of hydrogen with a carbon monoxide (CO) admixtures is required. This paper provided details of a new type of molecular ceramic membrane (MCM) that allows the separation of hydrogen (H{sub 2}) from the hydrocarbon fuel reforming products that contain CO and has higher temperature and pressure capacity than other membranes. After various tests, alumo-magnesium spinel (AMS) was selected as the most promising porous material for the ceramic multi-layer membrane. The crystalline structure of the AMS showed good thermo-dynamic stability during tests that ranged between 20 and 1400 degrees C, as well as a chemical resistance relative to the effects of the aggressive fuel cell environment, and no exposure to the oxidation-recovery processes in the CO and H{sub 2} flow. The macroporous substrate of the AMS and the membrane selection layers have the same composition. The formation of the carrier was conducted by a semi-dry molding on a hydraulic press. Formation of the nano-porous structure in the carrier macro-pores by the polysilicon acid sol solution treatment allowed the synthesis of the amorphous silica and crystobalite crystals with a developed surface and nano-dimension subporosity. Test results have shown that the MCM has optimum penetrability and selectivity values as well as admissible thermo-mechanical properties. H{sub 2} flow through the membrane was 1.5-1.7 times greater than the CO flow. It was concluded that the AMS-based membrane devices will increase the efficiency of the PEMFC power plants and reduce their degradation capacity. 2 refs., 1 tab., 1 fig.

  19. Construction and testing of a system for the electrical characterization of ceramic thermistors at low temperatures

    Directory of Open Access Journals (Sweden)

    F. C. S. Luz

    2014-03-01

    Full Text Available A high-precision and low cost system was built for the electrical characterization of ceramic thermistors at low temperatures, using components readily available in materials research laboratories. The system presented excellent reproducibility in the electrical characterization of NTC ceramic sensors from -75 ºC (195 K to 23 ºC (296 K. The behavior of the NTC sensor was comparable to that of commercial thermistors only below room temperature (α = -3.2%/K, demonstrating the importance of fully characterizing these materials at both low and high temperatures.

  20. Processing of high-temperature simulated waste glass in a continuous ceramic melter

    International Nuclear Information System (INIS)

    Barnes, S.M.; Brouns, R.A.; Hanson, M.S.

    1980-01-01

    Recent operations have demonstrated that high-melting-point glasses and glass-ceramics can be successfully processed in joule-heated, ceramic-lined melters with minor modifications to the existing technology. Over 500 kg of simulated waste glasses have been processed at temperatures up to 1410 0 C. The processability of the two high-temperature waste forms tested is similar to existing borosilicate waste glasses. High-temperature waste glass formulations produced in the bench-scale melter exhibit quality comparing favorably to standard waste glass formulations

  1. Study of High Temperature Failure Mechanism in Ceramics

    Science.gov (United States)

    1992-01-01

    characteristics of the glass-ceramic are presented in Figure 9 for K = 0.95 MPaI -at 750"C and in Figure 10 forK = 0.59 MPa’mat 775"C. Results I presented in these...at K = 0.59 MPai1- and Figure 12(b) showing the removal of those cavities by sintering at K = 0.5 MPaI -. The near-tip region where creep cavities

  2. Design of Ultra-High Temperature Ceramics for Improved Performance

    Science.gov (United States)

    2009-02-28

    Student Speaking Contest (UHTC talks highlighted) Afternoon, May 11 — Yuhua Hall (B) Oral Presentation Competition for Domestic Students...materials (i. Cao •v/’/.i :v< Studi tit ( agliari, Italy) ;S^| (SAOH) Microstructurc and mechanical properties of ZrB.- based 111 If. via...spark plasma sintering J.l... Cao (Beijing Instiiuti >;< ! s-;j (SA016) Abladon rcsistunt ol pressureless sintered /riy-based ceramics /’ Q

  3. An investigation of high-temperature irradiation test program of new ceramic materials

    International Nuclear Information System (INIS)

    Ishino, Shiori; Terai, Takayuki; Oku, Tatsuo

    1999-08-01

    The Japan Atomic Energy Research Institute entrusted the Atomic Energy Society of Japan with an investigation into the trend of irradiation processing/damage research on new ceramic materials. The present report describes the result of the investigation, which was aimed at effective execution of irradiation programs using the High Temperature Engineering Test Reactor (HTTR) by examining preferential research subjects and their concrete research methods. Objects of the investigation were currently on-going preliminary tests of functional materials (high-temperature oxide superconductor and high-temperature semiconductor) and structural materials (carbon/carbon and SiC/SiC composite materials), together with newly proposed subjects of, e.g., radiation effects on ceramics-coated materials and super-plastic ceramic materials as well as microscopic computer simulation of deformation and fracture of ceramics. These works have revealed 1) the background of each research subject, 2) its objective and significance from viewpoints of science and engineering, 3) research methodology in stages from preliminary tests to real HTTR irradiation, and 4) concrete HTTR-irradiation methods which include main specifications of test specimens, irradiation facilities and post-irradiation examination facilities and apparatuses. The present efforts have constructed the important fundamentals in the new ceramic materials field for further planning and execution of the innovative basic research on high-temperature engineering. (author)

  4. Piezoelectric and electromechanical properties of ultrahigh temperature CaBi2Nb2O9 ceramics

    International Nuclear Information System (INIS)

    Wang, Jin-Feng; Zhang, Shujun; Shrout, Thomas R.; Wang, Chun-Ming

    2009-01-01

    The piezoelectric, dielectric, and electromechanical properties of the (KCe) co-substituted calcium bismuth niobate (CaBi 2 Nb 2 O 9 , CBN) were investigated. The piezoelectric activities of CBN ceramics were significantly enhanced and the dielectric loss tan δ decreased by (KCe) substitution. The Ca 0.9 (KCe) 0.05 Bi 2 Nb 2 O 9 ceramics possess the optimal piezoelectric properties, and the piezoelectric coefficient (d 33 ), Curie temperature (T C ), and electromechanical coupling factors (k p and k t ) were found to be 16 pC/N, 868 C, 8.6%, and 23.8%, respectively. The excellent dielectric and electromechanical spectra, together with the high piezoelectric activities and ultrahigh Curie temperature, make CBN ceramics promising candidates for high temperature piezoelectric applications. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Influence of sintering temperature in red ceramic with addition of mill scale

    International Nuclear Information System (INIS)

    Arnt, A.B.C.; Rocha, M.R.; Bernardin, A.M.; Meller, J.G.

    2010-01-01

    This study aimed to evaluate the influence of sintering temperature in a red ceramic body with the addition of mill scale. This residue consists of oxides of iron had to replace the function of pigments used in ceramic materials. After chemical characterization, by X-ray diffraction, X-ray fluorescence and scanning electron microscopy, this residue was added at a rate of 5% in commercial ceramic past. The formulations were subjected to different burn temperatures of around 950 deg C, 1000 deg C and 1200 deg C. The formulations were evaluated for physical loss to fire, linear firing shrinkage, water absorption and flexural strength by 3 and intensity of tone. The results indicate that the different firing temperatures influence the strength and stability of tone in the formulations tested. (author)

  6. Polymer-derived microporous ceramics for membranes and sensors for high temperature hydrogen purification and sensing

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Ravi Mohan

    2012-06-11

    The growing interest in the use of hydrogen as main fuel has increased the need for pure hydrogen (H{sub 2}) production and purification. There are several by-products (CO, H{sub 2}O, CO{sub 2}) associated with the production of hydrogen which might damage the production rate. Therefore, separation of hydrogen from other gases is an important step in the hydrogen production process. If H{sub 2} can be selectively removed from the product side during hydrogen production in membrane reactors, then it would be possible to achieve complete CO conversion in a single-step under high temperature conditions. The main goal of the present work is the high temperature H{sub 2} purification and sensing by applying polymer-derived ceramics. To prove the concept, the microporous SiBCN, Si{sub 3}N{sub 4} and SiCN ceramic membranes have been synthesized by the polymer-pyrolysis route and their performance for the hydrogen separation have been evaluated in tubular membranes as well as in planar chemiresistors. The synthesis of amorphous SiBCN ceramics has been realized through pyrolysis of poly(organoborosilazanes) in argon. Multilayered amorphous SiBCN/{gamma}-Al{sub 2}O{sub 3}/{alpha}-Al{sub 2}O{sub 3} membranes with gradient porosity have been realized and assessed with respect to the thermal stability, pore-size distribution and H{sub 2}/CO permeance. N{sub 2}-adsorption measurement indicates micropores in the range of 0.68-0.73 nm for three-fold SiBCN/{gamma}-Al{sub 2}O{sub 3}/{alpha}-Al{sub 2}O{sub 3} membrane. SEM characterization of three-fold SiBCN/{gamma}-Al{sub 2}O{sub 3}/{alpha}-Al{sub 2}O{sub 3} membrane shows the thickness of SiBCN membrane layer is 2.8 {mu}m; gas permeance measurements of the membrane shows H{sub 2}/CO selectivity of about 10.5 and the H{sub 2} permeance of about 1.05 x 10{sup -8} mol m{sup -2}s{sup -1}Pa{sup -1}. The observed gas permeation properties point out that the transportation of gas molecules through the membrane is governed by both

  7. ADM guidance-Ceramics: Fracture toughness testing and method selection.

    Science.gov (United States)

    Cesar, Paulo Francisco; Della Bona, Alvaro; Scherrer, Susanne S; Tholey, Michael; van Noort, Richard; Vichi, Alessandro; Kelly, Robert; Lohbauer, Ulrich

    2017-06-01

    The objective is within the scope of the Academy of Dental Materials Guidance Project, which is to provide dental materials researchers with a critical analysis of fracture toughness (FT) tests such that the assessment of the FT of dental ceramics is conducted in a reliable, repeatable and reproducible way. Fracture mechanics theory and FT methodologies were critically reviewed to introduce basic fracture principles and determine the main advantages and disadvantages of existing FT methods from the standpoint of the dental researcher. The recommended methods for FT determination of dental ceramics were the Single Edge "V" Notch Beam (SEVNB), Single Edge Precracked Beam (SEPB), Chevron Notch Beam (CNB), and Surface Crack in Flexure (SCF). SEVNB's main advantage is the ease of producing the notch via a cutting disk, SEPB allows for production of an atomically sharp crack generated by a specific precracking device, CNB is technically difficult, but based on solid fracture mechanics solutions, and SCF involves fracture from a clinically sized precrack. The IF test should be avoided due to heavy criticism that has arisen in the engineering field regarding the empirical nature of the calculations used for FT determination. Dental researchers interested in FT measurement of dental ceramics should start with a broad review of fracture mechanics theory to understand the underlying principles involved in fast fracture of ceramics. The choice of FT methodology should be based on the pros and cons of each test, as described in this literature review. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Testing and Modeling Ultra-High Temperature Ceramic (UHTC) Materials For Hypersonic Flight

    Science.gov (United States)

    2011-11-30

    Ridge, D. G. Fletcher, C. O. Asma , O. Chazot, and J. Thömel, “Oxidation of ZrB2-SiC Ultra-High Temperature Ceramic Composites in Dissociated Air...Fletcher, C. O. Asma , “Characterization of ZrB2-SiC Ceramics Tested by Plasma Stream Oxidation,” poster, 32 th International Conference...Fahrenholtz, W.G., Hilmas, G.E., Zhu, S.M., Ridge, J., Fletcher, D.G., Asma , C.O., and Thomel, J., "Oxidation of ZrB2-SiC Ultrahigh-Temperature

  9. Assessment of the State of the Art of Ultra High Temperature Ceramics

    Science.gov (United States)

    Johnson, Sylvia; Gasch, Matt; Stackpoole, Mairead

    2009-01-01

    Ultra High Temperature Ceramics (UHTCs) are a family of materials that includes the borides, carbides and nitrides of hafnium-, zirconium- and titanium-based systems. UHTCs are famous for possessing some of the highest melting points of known materials. In addition, they are very hard, have good wear resistance, mechanical strength, and relatively high thermal conductivities (compared to other ceramic materials). Because of these attributes, UHTCs are ideal for thermal protection systems, especially those that require chemical and structural stability at extremely high operating temperatures. UHTCs have the potential to revolutionize the aerospace industry by enabling the development of sharp hypersonic vehicles or atmospheric entry probes capable of the most extreme entry conditions.

  10. High temperature monitoring of silicon carbide ceramics by confocal energy dispersive X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi, E-mail: stx@bnu.edu.cn

    2016-04-15

    Highlights: • X-ray scattering was used for monitoring oxidation situation of SiC ceramics. • A calibration curve was obtained. • The confocal X-ray scattering technology was based on polycapillary X-ray optics. • The variations of contents of components of SiC ceramics were obtained. - Abstract: In the present work, we presented an alternative method for monitoring of the oxidation situation of silicon carbide (SiC) ceramics at various high temperatures in air by measuring the Compton-to-Rayleigh intensity ratios (I{sub Co}/I{sub Ra}) and effective atomic numbers (Z{sub eff}) of SiC ceramics with the confocal energy dispersive X-ray fluorescence (EDXRF) spectrometer. A calibration curve of the relationship between I{sub Co}/I{sub Ra} and Z{sub eff} was established by using a set of 8 SiC calibration samples. The sensitivity of this approach is so high that it can be easily distinguished samples of Z{sub eff} differing from each other by only 0.01. The linear relationship between the variation of Z{sub eff} and the variations of contents of C, Si and O of SiC ceramics were found, and the corresponding calculation model of the relationship between the ΔZ and the ΔC{sub C}, ΔC{sub Si}, and ΔC{sub O} were established. The variation of contents of components of the tested SiC ceramics after oxidation at high temperature was quantitatively calculated based on the model. It was shown that the results of contents of carbon, silicon and oxygen obtained by this method were in good agreement with the results obtained by XPS, giving values of relative deviation less than 1%. It was concluded that the practicality of this proposed method for monitoring of the oxidation situation of SiC ceramics at high temperatures was acceptable.

  11. Study of the capacitance technique for measuring high-temperature blade tip clearance on ceramic rotors

    Science.gov (United States)

    Barranger, John P.

    1993-01-01

    Higher operating temperatures required for increased engine efficiency can be achieved by using ceramic materials for engine components. Ceramic turbine rotors are subject to the same limitations with regard to gas path efficiency as their superalloy predecessors. In this study, a modified frequency-modulation system is proposed for the measurement of blade tip clearance on ceramic rotors. It is expected to operate up to 1370 C (2500 F), the working temperature of present engines with ceramic turbine rotors. The design of the system addresses two special problems associated with nonmetallic blades: the capacitance is less than that of a metal blade and the effects of temperature may introduce uncertainty with regard to the blade tip material composition. To increase capacitance and stabilize the measurement, a small portion of the rotor is modified by the application of 5-micron-thick platinum films. The platinum surfaces on the probe electrodes and rotor that are exposed to the high-velocity gas stream are coated with an additional 10-micron-thick protective ceramic topcoat. A finite-element method is applied to calculate the capacitance as a function of clearance.

  12. Fracture Mechanisms of Zirconium Diboride Ultra-High Temperature Ceramics under Pulse Loading

    Science.gov (United States)

    Skripnyak, Vladimir V.; Bragov, Anatolii M.; Skripnyak, Vladimir A.; Lomunov, Andrei K.; Skripnyak, Evgeniya G.; Vaganova, Irina K.

    2015-06-01

    Mechanisms of failure in ultra-high temperature ceramics (UHTC) based on zirconium diboride under pulse loading were studied experimentally by the method of SHPB and theoretically using the multiscale simulation method. The obtained experimental and numerical data are evidence of the quasi-brittle fracture character of nanostructured zirconium diboride ceramics under compression and tension at high strain rates and the room temperatures. Damage of nanostructured porous zirconium diboride -based UHTC can be formed under stress pulse amplitude below the Hugoniot elastic limit. Fracture of nanostructured ultra-high temperature ceramics under pulse and shock-wave loadings is provided by fast processes of intercrystalline brittle fracture and relatively slow processes of quasi-brittle failure via growth and coalescence of microcracks. A decrease of the shear strength can be caused by nano-voids clusters in vicinity of triple junctions between ceramic matrix grains and ultrafine-grained ceramics. This research was supported by grants from ``The Tomsk State University Academic D.I. Mendeleev Fund Program'' and also N. I. Lobachevski State University of Nizhny Novgorod (Grant of post graduate mobility).

  13. Influence of radiant heating treatments on fusion of high-temperature superconducting yttrium ceramics

    International Nuclear Information System (INIS)

    Bitenbaev, M.I.; Polyakov, A.I.

    1999-01-01

    Regardless of the fact that the materials made of HTSC-ceramics are promising, there is no any information about their successful practical application in publications. To our opinion, it is explained by the fact, first of all, that the conservative technologies of the powder metallurgy do not allow producing HTSC systems with excellent operating performance (structure homogeneity, long-term stability of Sc properties and etc.). This report presents outcomes of experiments on fusion of yttrium ceramics containing raw components irradiated by g-rays 60 Co under the temperature exceeding 500 degrees C. HTSC properties of ceramics were studied according to their differential spectra of radio-frequency (RF) field absorption. The RF absorption spectrum of yttrium ceramics samples produced according to conservative technology is sufficiently permitted triplet with the Sc transition temperatures range of 80 K, 90 K, 95 K. Irradiation under the increased temperatures and mechanical limitation allow producing samples of yttrium HTSC-ceramics with sufficient homogeneous structure and superconducting properties that are stable to air conditions for not less than one year

  14. "Ultra"-Fast Fracture Strength of Advanced Structural Ceramic Materials Studied at Elevated Temperatures

    Science.gov (United States)

    Choi, Sung R.; Gyekenyesi, John P.

    1999-01-01

    The accurate determination of inert strength is important in reliable life prediction of structural ceramic components. At ambient temperature, the inert strength of a brittle material is typically regarded as free of the effects of slow crack growth due to stress corrosion. Therefore, the inert strength can be determined either by eliminating active species, especially moisture, with an appropriate inert medium, or by using a very high test rate. However, at elevated temperatures, the concept or definition of the inert strength of brittle ceramic materials is not clear, since temperature itself is a degrading environment, resulting in strength degradation through slow crack growth and/or creep. Since the mechanism to control strength is rate-dependent viscous flow, the only conceivable way to determine the inert strength at elevated temperatures is to utilize a very fast test rate that either minimizes the time for or eliminates slow crack growth. Few experimental studies have measured the elevated-temperature, inert (or "ultra"-fast fracture) strength of advanced ceramics. At the NASA Lewis Research Center, an experimental study was initiated to better understand the "ultra"-fast fracture strength behavior of advanced ceramics at elevated temperatures. Fourteen advanced ceramics - one alumina, eleven silicon nitrides, and two silicon carbides - have been tested using constant stress-rate (dynamic fatigue) testing in flexure with a series of stress rates including the "ultra"-fast stress rate of 33 000 MPa/sec with digitally controlled test frames. The results for these 14 advanced ceramics indicate that, notwithstanding possible changes in flaw populations as well as flaw configurations because of elevated temperatures, the strength at 33 000 MPa/sec approached the room-temperature strength or reached a higher value than that determined at the conventional test rate of 30 MPa/sec. On the basis of the experimental data, it can be stated that the elevated-temperature

  15. Influence of heating rate and temperature firing on the properties of bodies of red ceramic

    International Nuclear Information System (INIS)

    Silva, B.J. da; Goncalves, W.P.; Cartaxo, J.M.; Macedo, R.S.; Neves, G.A.; Santana, L.N.L.; Menezes, R.R.

    2011-01-01

    In the red ceramic industry, the firing is one of the main stages of the production process. There are two heating rates prevailing at this stage: the slow (traditional ceramics) and fast. The slow rate more used in Brazil, is considered delayed. This study aims to evaluate the influence of particle size and chemical composition of three mixture of clay, used in the manufacture of red ceramic products and to study the influence of the firing temperature on their technological properties. When subjected to heating rates slow and fast. Initially, the mixtures were characterized subsequently were extruded, dried and subjected to firing at temperatures of 900 and 1000 ° C with heating rates of 5, 20 and 30 °C/min. The results indicated that the chemical composition and particle size influenced significantly the technological properties and that the bodies obtained with the paste that had lower levels of flux showed better stability. (author)

  16. Ceramics baking temperature influence on the dosimetric parameters essential in TL dating

    International Nuclear Information System (INIS)

    Krumpschmid, K.R.

    1986-11-01

    Thermoluminescence in quartz is used for dating of ceramics. The main problem is the 'intercept', i.e. the deviation from linearity in the relationship thermoluminescence versus absorbed dose of natural radiation. This deviation is most probably dependent on the fabrication method of the ceramics. In the present work the hypothesis is tested that the most important parameter, in this respect, is the baking temperature. Four types of ceramic bricks were fabricated, with four burning cycles of end temperatures of 550 0 C, 650 0 C, 900 0 C and 1200 0 C respectively, then irradiated and finally underwent the TL-procedure. The results are discussed with regard of the maximum of glow curve, intensity, fading, sensitivity to beta radiation and to additional alpha radiation and the intercept. (qui)

  17. Micro-machinable polymer-derived ceramic sensors for high-temperature applications

    Science.gov (United States)

    Liu, Jian; Xu, Chengying; An, Linan

    2010-04-01

    Micro-sensors are highly desired for on-line temperature/pressure monitoring in turbine engines to improve their efficiency and reduce pollution. The biggest challenge for developing this type of sensors is that the sensors have to sustain at extreme environments in turbine engine environments, such as high-temperatures (>800 °C), fluctuated pressure and oxidation/corrosion surroundings. In this paper, we describe a class of sensors made of polymer-derived ceramics (PDCs) for such applications. PDCs have the following advantages over conventional ceramics, making them particularly suitable for these applications: (i) micromachining capability, (ii) tunable electric properties, and (iii) hightemperature capability. Here, we will discuss the materials and their properties in terms of their applications for hightemperature micro-sensors, and microfabrication technologies. In addition, we will also discuss the design of a heat-flux sensor based on polymer-derived ceramics.

  18. Bond strength of selected composite resin-cements to zirconium-oxide ceramic

    Science.gov (United States)

    Fons-Font, Antonio; Amigó-Borrás, Vicente; Granell-Ruiz, María; Busquets-Mataix, David; Panadero, Rubén A.; Solá-Ruiz, Maria F.

    2013-01-01

    Objectives: The aim of this study was to evaluate bond strengths of zirconium-oxide (zirconia) ceramic and a selection of different composite resin cements. Study Design: 130 Lava TM cylinders were fabricated. The cylinders were sandblasted with 80 µm aluminium oxide or silica coated with CoJet Sand. Silane, and bonding agent and/or Clearfil Ceramic Primer were applied. One hundred thirty composite cement cylinders, comprising two dual-polymerizing (Variolink II and Panavia F) and two autopolymerizing (Rely X and Multilink) resins were bonded to the ceramic samples. A shear test was conducted, followed by an optical microscopy study to identify the location and type of failure, an electron microscopy study (SEM and TEM) and statistical analysis using the Kruskal-Wallis test for more than two independent samples and Mann-Whitney for two independent samples. Given the large number of combinations, Bonferroni correction was applied (α=0.001). Results: Dual-polymerizing cements provided better adhesion values (11.7 MPa) than the autopolymerizing (7.47 MPa) (p-value M-Wzirconium-oxide ceramic, creating a more rough and retentive surface, thus providing an improved micromechanical interlocking between the cement and the ceramic. Key words:Shear bond strength, silica coating, surface treatment, zirconia ceramics, phosphate monomer. PMID:22926485

  19. Ceramic-supported thin PVA pervaporation membranes combining high flux and high selectivity : contradicting the flux-selectivity paradigm

    NARCIS (Netherlands)

    Peters, T.A.; Poeth, C.H.S.; Benes, N.E.; Buijs, H.C.W.M.; Vercauteren, F.F.; Keurentjes, J.T.F.

    2006-01-01

    Thin, high-flux and highly selective cross-linked poly(vinyl)alcohol waterselective layers have been prepared on top of hollow fibre ceramic supports. The supports consist of an alpha-Al2O3 hollow fibre substrate and an intermediate gamma-Al2O3 layer, which provides a sufficiently smooth surface for

  20. Use of the inverse temperature profile in microwave processing of advanced ceramics

    International Nuclear Information System (INIS)

    Binner, J.G.P.; Al-Dawery, I.A.; Aneziris, C.; Cross, T.E.

    1992-01-01

    Attempts are being made to exploit the inverse temperature profile which can be developed with microwave heating with respect to the processing of certain advanced ceramics. This paper discusses the results obtained to date during the microwave sintering of YBCO high-T c superconductors and the microwave reaction bonding of silicon nitride

  1. Preparation and electromagnetic properties of low-temperature sintered ferroelectric-ferrite composite ceramics

    International Nuclear Information System (INIS)

    Yue Zhenxing; Chen Shaofeng; Qi Xiwei; Gui Zhilun; Li Longtu

    2004-01-01

    For the purpose of multilayer chip EMI filters, the new ferroelectric-ferrite composite ceramics were prepared by mixing PMZNT relaxor ferroelectric powder with composition of 0.85Pb(Mg 1/3 Nb 2/3 )O 3 -0.1Pb(Ni 1/3 Nb 2/3 )O 3 -0.05PbTiO 3 and NiCuZn ferrite powder with composition of (Ni 0.20 Cu 0.20 Zn 0.60 )O(Fe 2 O 3 ) 0.97 at low sintering temperatures. A small amount of Bi 2 O 3 was added to low sintering temperature. Consequently, the dense composite ceramics were obtained at relative low sintering temperatures, which were lower than 940 deg. C. The X-ray diffractometer (XRD) identifications showed that the sintered ceramics retained the presence of distinct ferroelectric and ferrite phases. The sintering studies and scanning electron microscope (SEM) observations revealed that the co-existed two phases affect the sintering behavior and grain growth of components. The electromagnetic properties, such as dielectric constant and initial permeability, change continuously between those of two components. Thus, the low-temperature sintered ferroelectric-ferrite composite ceramics with tunable electromagnetic properties were prepared by adjusting the relative content of two components. These materials can be used for multilayer chip EMI filters with various properties

  2. The Enhancement of the Selectivity of Complex Reactions by a Catalytic Membrane Reactor -Ethylene Oxidation Over a Ag Catalyst Supported in a Ceramic Membrane-

    OpenAIRE

    馮, 臨; 小林, 正義; Lin, FENG; Masayoshi, KOBAYASHI

    1991-01-01

    This research demonstrated that, using a membrane reactor consisting of a tubular, microporous, glass-ceramic membrane, it is possible to achieve selective oxidation of ethylene to ethylene oxide with an Ag catalyst. In experiments which a reaction temperature range of 115 to 300℃ and a contact time of 1.5 to 5 seconds, resulting data illustrated the following characteristics of this membrane reactor : 1) compared with a classic tubular reactor, the selectivity of ethylene oxide is increased ...

  3. Use of Single-Tow Ceramic Matrix Minicomposites to Determine Fundamental Room and Elevated Temperature Properties

    Science.gov (United States)

    Almansour, Amjad S.

    The room and high temperature mechanical properties of continuous ceramic fiber reinforced matrix composites makes them attractive for implementation in aerospace and nuclear applications. However, the effect of fiber content has not been addressed in previous work. Therefore, single tow composites with fiber content ranging from 3 to 47 % was studied. Single fiber tow minicomposite is the basic architectural feature of woven and laminate ceramic matrix composites (CMCs). An in depth understanding of the initiation and evolution of damage in various ceramic fiber reinforced minicomposites with different fiber volume fractions and interphases was investigated employing several non-destructive evaluation techniques. A new technique is used to determine matrix crack content based on a damage parameter derived from speed of sound measurements which is compared with the established method using cumulative energy of Acoustic Emission (AE) events. Also, a modified theoretical model was implemented to obtain matrix stress at the onset of matrix cracking. Room temperature tensile, high temperature creep rupture and high temperature oxidation degradation loading conditions were all considered and composites' constituents were characterized. Moreover, fibers/matrix load sharing was modeled in creep and fiber volume fraction effect on load transfer was investigated using derived theoretical models. Fibers and matrix creep parameters, load transfer model results and numerical model methodology were used to construct minicomposites' creep strain model to predict creep damage of the different fiber type and content minicomposites. Furthermore, different fiber volume fractions ceramic matrix minicomposites' electrical resistivity temperature dependence isn't well understood. Therefore, the influence of fiber content, heat treatment cycles and creep on electrical resistivity measurements of SiC/SiC minicomposites were also studied here. Next, minicomposites' testing and

  4. Design and proof of concept of an innovative very high temperature ceramic solar absorber

    Science.gov (United States)

    Leray, Cédric; Ferriere, Alain; Toutant, Adrien; Olalde, Gabriel; Peroy, Jean-Yves; Chéreau, Patrick; Ferrato, Marc

    2017-06-01

    Hybrid solar gas-turbine (HSGT) is an attractive technology to foster market penetration of CSP. HSGT offers some major advantages like for example high solar-to-electric conversion efficiency, reduced water requirement and low capital cost. A very high temperature solar receiver is needed when elevated solar share is claimed. A few research works, as reported by Karni et al. [8] and by Buck et al. [1], have been dedicated to solar receiver technologies able to deliver pressurized air at temperature above 750°C. The present work focuses on research aiming at developing an efficient and reliable solar absorber able to provide pressurized air at temperature up to 1000°C and more. A surface absorber technology is selected and a modular design of receiver is proposed in which each absorber module is made of BOOSTEC® SiC ceramic (silicon carbide) as bulk material with straight air channels inside. Early stage experimental works done at CNRS/PROMES on lab-scale absorbers showed that the thermo-mechanical behavior of this material is a critical issue, resulting in elevated probability of failure under severe conditions like large temperature gradient or steep variation of solar flux density in situations of cloud covering. This paper reports on recent progress made at CNRS/PROMES to address this critical issue. The design of the absorber has been revised and optimized according to thermo-mechanical numerical simulations, and an experimental proof of concept has been done on a pilot-scale absorber module at Themis solar tower facility.

  5. Influence of temperature and heat treatment on crack resistance of ceramic tungsten

    International Nuclear Information System (INIS)

    Uskov, E.I.; Babak, A.V.; Bega, N.D.

    1983-01-01

    The effect of testing temperature in the range from 20 to 2000 deg C, and recrystallization annealing at 2200 deg C on crack resistance of ceramic tungsten in vacuum, is investigated. The extension diagrams thus obtained have been treated in accordance with the standard technique. The value of the critical crack loading and the stress intensity coefficient have been determined. Structural changes have been controlled with X-ray structural methods. Crack resistance of tungsten increases in the test temperature range from 20 deg C to Tsub(x) which is connected with the increase of mobility of screw components of dislocation loops. At the temperature more than Tsub(x) the plasticity growth of ceramic tungsten takes place simultaneously with grain boundary embrittlement. Recrystallization annealing at 2200 deg C creates the structure resistant to temperature effect; crack resistance being minimum

  6. Soluble and meltable hyperbranched polyborosilazanes toward high-temperature stable SiBCN ceramics.

    Science.gov (United States)

    Kong, Jie; Wang, Minjun; Zou, Jianhua; An, Linan

    2015-04-01

    High-temperature stable siliconborocarbonitride (SiBCN) ceramics produced from single-source preceramic polymers have received increased attention in the last two decades. In this contribution, soluble and meltable polyborosilazanes with hyperbranched topology (hb-PBSZ) were synthesized via a convenient solvent-free, catalyst-free and one-pot A2 + B6 strategy, an aminolysis reaction of the A2 monomer of dichloromethylsilane and the B6 monomer of tris(dichloromethylsilylethyl)borane in the presence of hexamethyldisilazane. The amine transition reaction between the intermediates of dichlorotetramethyldisilazane and tri(trimethylsilylmethylchlorosilylethyl)borane led to the formation of dendritic units of aminedialkylborons rather than trialkylborons. The cross-linked hb-PBSZ precursors exhibited a ceramic yield higher 80%. The resultant SiBCN ceramics with a boron atomic composition of 6.0-8.5% and a representative formula of Si1B(0.19)C(1.21)N(0.39)O(0.08) showed high-temperature stability and retained their amorphous structure up to 1600 °C. These hyperbranched polyborosilazanes with soluble and meltable characteristics provide a new perspective for the design of preceramic polymers possessing advantages for high-temperature stable polymer-derived ceramics with complex structures/shapes.

  7. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity.

    Science.gov (United States)

    Si, Yang; Wang, Xueqin; Dou, Lvye; Yu, Jianyong; Ding, Bin

    2018-04-01

    Ultralight aerogels that are both highly resilient and compressible have been fabricated from various materials including polymer, carbon, and metal. However, it has remained a great challenge to realize high elasticity in aerogels solely based on ceramic components. We report a scalable strategy to create superelastic lamellar-structured ceramic nanofibrous aerogels (CNFAs) by combining SiO 2 nanofibers with aluminoborosilicate matrices. This approach causes the random-deposited SiO 2 nanofibers to assemble into elastic ceramic aerogels with tunable densities and desired shapes on a large scale. The resulting CNFAs exhibit the integrated properties of flyweight densities of >0.15 mg cm -3 , rapid recovery from 80% strain, zero Poisson's ratio, and temperature-invariant superelasticity to 1100°C. The integral ceramic nature also provided the CNFAs with robust fire resistance and thermal insulation performance. The successful synthesis of these fascinating materials may provide new insights into the development of ceramics in a lightweight, resilient, and structurally adaptive form.

  8. Enhanced green upconversion by controlled ceramization of Er3+–Yb3+ co-doped sodium niobium tellurite glass–ceramics for low temperature sensors

    International Nuclear Information System (INIS)

    Suresh Kumar, J.; Pavani, K.; Graça, M.P.F.; Soares, M.J.

    2014-01-01

    Highlights: • Upconversion luminescence improved in glass–ceramics compared to host glass. • Judd–Ofelt and radiative parameters calculated. • NIR decay curve results concur the results of improved luminescence. • Temperature dependent upconversion support the use of materials for sensors. - Abstract: Tellurite based glasses are well-known for their upconversion properties besides having a disadvantage of low mechanical strength dragging them away from practical applications. The present work deals with preparation of sodium niobium tellurite (SNT) glasses using melt quenching method, in which small quantities of boron and silicon in the form of oxides are added to improve their mechanical properties. Controlled heat treatment is performed to ceramize the prepared glasses based on the thermal data given by DTA. XRD and SEM profiles of the glass–ceramics which confirmed the formation of crystalline monoclinic Sodium Tellurium Niobium Oxide (Na 1.4 Nb 3 Te 4.9 O 18 ) phase (JCPDS card No. 04–011-7556). Upconversion measurements in the visible region were made for the prepared Er 3+ –Yb 3+ co-doped glasses and glass–ceramics with 980 nm laser excitation varying the laser power and concentration of Er 3+ ions. Results showed that the upconversion luminescence intensity was enhanced by ten times in SNT glass–ceramics compared to that in the SNT glasses. Decay curves give evidence of high performance of glass–ceramics compared to glasses due to ceramization and structural changes. Temperature dependent visible upconversion was performed to test the ability of efficient SNT glass–ceramic at low temperatures and variation of upconversion intensities was studied

  9. All-dielectric metamaterial frequency selective surface based on spatial arrangement ceramic resonators

    Science.gov (United States)

    Li, Liyang; Wang, Jun; Feng, Mingde; Ma, Hua; Wang, Jiafu; Du, Hongliang; Qu, Shaobo

    In this paper, we demonstrate a method of designing all-dielectric metamaterial frequency selective surface (FSS) with ceramic resonators in spatial arrangement. Compared with the traditional way, spatial arrangement provides a flexible way to handle the permutation and combination of different ceramic resonators. With this method, the resonance response can be adjusted easily to achieve pass/stop band effects. As an example, a stop band spatial arrangement all-dielectric metamaterial FSS is designed. Its working band is in 11.65-12.23GHz. By adjusting permittivity and geometrical parameters of ceramic resonators, we can easily modulate the resonances, band pass or band stop characteristic, as well as the working band.

  10. [Research progress in CoCr metal-ceramic alloy fabricated by selective laser melting].

    Science.gov (United States)

    Yan, X; Lin, H

    2018-02-09

    Cobalt-chromium alloys have been applied to dental porcelain fused to metal (PFM) restorations over the past decades owing to their excellent corrosion resistance, good biocompatibility and low price. The production of CoCr metal-ceramic restorations has always been based on traditional lost-wax casting techniques. However, in recent years, selective laser melting (SLM) is becoming more and more highly valued by dental laboratories and dental practitioners due to its individuation, precision and efficiency. This paper mainly reviews the recent researches on the production process of copings, microstructure, mechanical property, metal-ceramic bond strength, fit of copings, corrosion resistance and biocompatibility of SLM CoCr metal-ceramic alloy.

  11. Specific-heat measurement of single metallic, carbon, and ceramic fibers at very high temperature

    International Nuclear Information System (INIS)

    Pradere, C.; Goyheneche, J.M.; Batsale, J.C.; Dilhaire, S.; Pailler, R.

    2005-01-01

    The main objective of this work is to present a method for measuring the specific heat of single metallic, carbon, and ceramic fibers at very high temperature. The difficulty of the measurement is due to the microscale of the fiber (≅10 μm) and the important range of temperature (700-2700 K). An experimental device, a modelization of the thermal behavior, and an analytic model have been developed. A discussion on the measurement accuracy yields a global uncertainty lower than 10%. The characterization of a tungsten filament with thermal properties identical to those of the bulk allows the validation of the device and the thermal estimation method. Finally, measurements on carbon and ceramic fibers have been done at very high temperature

  12. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    Science.gov (United States)

    Cox, Sarah B.; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, which allows a shape to be formed prior to the cure, and is then pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Basalt fibers are used for the reinforcement in the composite system. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material.

  13. Mixed conduction protonic/electronic ceramic for high temperature electrolysis anode

    International Nuclear Information System (INIS)

    Goupil, Gregory

    2011-01-01

    This thesis validates the concept of mixed electron/proton ceramic conductors to be used as anode materials for intermediate temperature steam electrolyzer. The materials developed are based on cobaltites of alkaline-earth metals and rare earth elements commonly used for their high electronic conductivity in the temperature range of 300-600 C. The stability of each material has been assessed during 350 h in air and moist air. After checking the chemical compatibility with the BaZr 0.9 Y 0.1 O 3 electrolyte material, eight compositions have been selected: BaCoO 3 , LaCoO 3 , Sr 0.5 La 0.5 CoO 3 , Ba 0.5 La 0.5 CoO 3 , GdBaCo 2 O 5 , NdBaCo 2 O 5 , SmBaCo 2 O 5 and PrBaCo 2 O 5 . The thermal evolution of the oxygen stoichiometry of each material was determined by coupling iodo-metric titration and TGA in dry air. TGA in moist air has allowed determining the optimum temperature range for which proton incorporation is possible and maximized. Proton incorporation profiles have been determined on two cobaltites using SIMS and nuclear microanalysis in the ERDA configuration. Deuterium diffusion coefficients have been determined confirming the proton mobility in these materials. Under moist air, NdBaCo 2 O 5 is shown to incorporate rapidly a significant number of protons that spread homogeneously within the material bulk. Anode microstructure optimization has allowed reaching at 450 C and 600 C total resistance values on symmetrical cell highly promising. (author) [fr

  14. An investigation of texturing by magnetic and mechanical techniques in high critical temperature superconducting ceramics

    International Nuclear Information System (INIS)

    Deschanels, X.

    1992-11-01

    The principal goal of this work is to quantify the influence of texture of ceramic superconductors ReBaCuO (Re=Dy, Y) on their critical current density (Jc). The magnetic alignment of particles at ambient temperature is the first technique who has allowed us to produce superconducting (Meissner effect) and textured ceramics. However, these materials are very brittle because of their porosity and this makes it impossible to measure their Jc. Press-forging (or creep sintering) is the second technique who has allowed us to prepare highly textured ceramics materials which are also dense. We have studied the influence of various conditions of thermomechanical treatment (sintering time and temperature, applied load, rate of deformation, density of the material at the beginning) on the texture quality. We have shown that at 900 deg, the eutectic liquid formed by BaCuO 2 , CuO and YBa 2 Cu 3 0 7-Y various mechanisms that help explain the formation of observed texture. After the oxidation stage which requires heat treatment under controlled atmospheres, we obtain superconducting ceramics (Tc=85 K). Moreover, this study also shows that the texture can improve the Jc by 400%, to 750 A/cm 2 at 77 K in the best specimens. This low value is explained by the presence of non-superconducting secondary phases and amorphous phases at the grain boundaries. (Author). 120 refs., figs., tabs

  15. Facilitated transport ceramic membranes for high-temperature gas cleanup. Final report, February 1990--April 1994

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, R.; Minford, E.; Damle, A.S.; Gangwal, S.K.; Hart, B.A.

    1994-04-01

    The objective of this program was to demonstrate the feasibility of developing high temperature, high pressure, facilitated transport ceramic membranes to control gaseous contaminants in Integrated Gasification Combined Cycle (IGCC) power generation systems. Meeting this objective requires that the contaminant gas H{sub 2}S be removed from an IGCC gas mixture without a substantial loss of the other gaseous components, specifically H{sub 2} and CH{sub 4}. As described above this requires consideration of other, nonconventional types of membranes. The solution evaluated in this program involved the use of facilitated transport membranes consisting of molten mixtures of alkali and alkaline earth carbonate salts immobilized in a microporous ceramic support. To accomplish this objective, Air Products and Chemicals, Inc., Golden Technologies Company Inc., and Research Triangle Institute worked together to develop and test high temperature facilitated membranes for the removal of H{sub 2}S from IGCC gas mixtures. Three basic experimental activities were pursued: (1) evaluation of the H{sub 2}S chemistry of a variety of alkali and alkaline earth carbonate salt mixtures; (2) development of microporous ceramic materials which were chemically and physically compatible with molten carbonate salt mixtures under IGCC conditions and which could function as a host to support a molten carbonate mixture and; (3) fabrication of molten carbonate/ceramic immobilized liquid membranes and evaluation of these membranes under conditions approximating those found in the intended application. Results of these activities are presented.

  16. Sealed glass coating of high temperature ceramic superconductors

    Science.gov (United States)

    Wu, Weite; Chu, Cha Y.; Goretta, Kenneth C.; Routbort, Jules L.

    1995-01-01

    A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor.

  17. Determination of temperature dependence of piezoelectric coefficients matrix of lead zirconate titanate ceramics by quasi-static and resonance method

    International Nuclear Information System (INIS)

    Li Fei; Xu Zhuo; Wei Xiaoyong; Yao Xi

    2009-01-01

    The piezoelectric coefficients (d 33 , -d 31 , d 15 , g 33 , -g 31 , g 15 ) of soft and hard lead zirconate titanate ceramics were measured by the quasi-static and resonance methods, at temperatures from 20 to 300 0 C. The results showed that the piezoelectric coefficients d 33 , -d 31 and d 15 obtained by these two methods increased with increasing temperature for both hard and soft PZT ceramics, while the piezoelectric coefficients g 33 , -g 31 and g 15 decreased with increasing temperature for both hard and soft PZT ceramics. In this paper, the observed results were also discussed in terms of intrinsic and extrinsic contributions to piezoelectric response.

  18. High temperature resistant materials and structural ceramics for use in high temperature gas cooled reactors and fusion plants

    International Nuclear Information System (INIS)

    Nickel, H.

    1992-01-01

    Irrespective of the systems and the status of the nuclear reactor development lines, the availability, qualification and development of materials are crucial. This paper concentrates on the requirements and the status of development of high temperature metallic and ceramic materials for core and heat transferring components in advanced HTR supplying process heat and for plasma exposed, high heat flux components in Tokamak fusion reactor types. (J.P.N.)

  19. Temperature stability and electrical properties in La-doped KNN-based ceramics

    KAUST Repository

    Lv, Xiang; Wu, Jiagang; Zhu, Jianguo; Xiao, Dingquan; Zhang, Xixiang

    2018-01-01

    To improve the temperature stability and electrical properties of KNN‐based ceramics, we simultaneously consider the phase boundary and the addition of rare earth element (La), 0.96K0.5Na0.5Nb0.96Sb0.04O3‐0.04(Bi1‐xLax)0.5Na0.5ZrO3 (0 ≤ x ≤ 1.0) ceramics. More specifically, we investigate how the phase boundary and the addition of La3+ affect the phase structure, electrical properties, and temperature stability of the ceramic. We show that increasing the La3+ content leads to a change in phase structure, from a rhombohedral‐tetragonal (R‐T) phase coexistence to a cubic phase. More importantly, we show that the appropriate addition of La3+ (x = 0.2) can simultaneously improve the unipolar strain (from 0.127% to 0.147%) and the temperature stability (i.e., the unipolar strain of 0.147% remains unchanged when T is increased from 25 to 80°C). In addition, we find that the ceramics with x = 0.2 exhibit a large piezoelectric constant (d33) of ~430 pC/N, a high Curie temperature (TC) of ~240°C and a fatigue‐free behavior (after 106 electric cycles). The enhanced electrical properties mostly originate from the easy domain switching, whereas the improved temperature stability can be attributed to the R‐T phase boundary and the appropriate addition of La3+.

  20. Temperature stability and electrical properties in La-doped KNN-based ceramics

    KAUST Repository

    Lv, Xiang

    2018-04-16

    To improve the temperature stability and electrical properties of KNN‐based ceramics, we simultaneously consider the phase boundary and the addition of rare earth element (La), 0.96K0.5Na0.5Nb0.96Sb0.04O3‐0.04(Bi1‐xLax)0.5Na0.5ZrO3 (0 ≤ x ≤ 1.0) ceramics. More specifically, we investigate how the phase boundary and the addition of La3+ affect the phase structure, electrical properties, and temperature stability of the ceramic. We show that increasing the La3+ content leads to a change in phase structure, from a rhombohedral‐tetragonal (R‐T) phase coexistence to a cubic phase. More importantly, we show that the appropriate addition of La3+ (x = 0.2) can simultaneously improve the unipolar strain (from 0.127% to 0.147%) and the temperature stability (i.e., the unipolar strain of 0.147% remains unchanged when T is increased from 25 to 80°C). In addition, we find that the ceramics with x = 0.2 exhibit a large piezoelectric constant (d33) of ~430 pC/N, a high Curie temperature (TC) of ~240°C and a fatigue‐free behavior (after 106 electric cycles). The enhanced electrical properties mostly originate from the easy domain switching, whereas the improved temperature stability can be attributed to the R‐T phase boundary and the appropriate addition of La3+.

  1. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    Science.gov (United States)

    Cox, Sarah B.; Lui, Donovan; Wang, Xin; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000 deg C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200 deg C, Beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  2. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    Science.gov (United States)

    Cox, Sarah B.; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200C, beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  3. High temperature resistant cermet and ceramic compositions. [for thermal resistant insulators and refractory coatings

    Science.gov (United States)

    Phillips, W. M. (Inventor)

    1978-01-01

    High temperature oxidation resistance, high hardness and high abrasion and wear resistance are properties of cermet compositions particularly to provide high temperature resistant refractory coatings on metal substrates, for use as electrical insulation seals for thermionic converters. The compositions comprise a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride are also described.

  4. High temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Crossland, C.E.; Shelleman, D.L.; Spear, K.E. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1996-08-01

    A vertical flow-through furnace has been built to study the effect of corrosion on the morphology and mechanical properties of ceramic hot gas filters. Sections of 3M Type 203 and DuPont Lanxide SiC-SiC filter tubes were sealed at one end and suspended in the furnace while being subjected to a simulated coal combustion environment at 870{degrees}C. X-ray diffraction and electron microscopy is used to identify phase and morphology changes due to corrosion while burst testing determines the loss of mechanical strength after exposure to the combustion gases. Additionally, a thermodynamic database of gaseous silicon compounds is currently being established so that calculations can be made to predict important products of the reaction of the environment with the ceramics. These thermodynamic calculations provide useful information concerning the regimes where the ceramic may be degraded by material vaporization. To verify the durability and predict lifetime performance of ceramic heat exchangers in coal combustion environments, long-term exposure testing of stressed (internally pressurized) tubes must be performed in actual coal combustion environments. The authors have designed a system that will internally pressurize 2 inch OD by 48 inch long ceramic heat exchanger tubes to a maximum pressure of 200 psi while exposing the outer surface of the tubes to coal combustion gas at the Combustion and Environmental Research Facility (CERF) at the Pittsburgh Energy and Technology Center. Water-cooled, internal o-ring pressure seals were designed to accommodate the existing 6 inch by 6 inch access panels of the CERF. Tubes will be exposed for up to a maximum of 500 hours at temperatures of 2500 and 2600{degrees}F with an internal pressure of 200 psi. If the tubes survive, their retained strength will be measured using the high temperature tube burst test facility at Penn State University. Fractographic analysis will be performed to identify the failure source(s) for the tubes.

  5. Preparation and Characteristics of Porous Ceramics by a foaming Technology at Low Temperature

    Science.gov (United States)

    Zhang, H. Q.; Wang, S. P.; Wen, J.; Wu, N.; Xu, S. H.

    2017-12-01

    Recycling and converting coal gangue and red mud into porous ceramics with good performance is a feasible disposal route. In this present work, porous foam ceramics was prepared using coal gangue and red mud as main raw materials at low sintering temperature, The amount of coal gangue and red mud were up to 70 wt%. To regulate the forming and sintering performance of the product, quartz sands and clay material were added to the formula. The green body was formed by a foaming technology using aluminum powders as foaming agents at room temperature. After foamed, the specimens were dried at 60-80 °C, and then calcined at 1060°C. Effects of concentration of NaOH and amount of aluminum powders on the phase, mechanical properties and microstructure were investigated here. Such study is expected to provide a new utilization route of the coal gangue and red mud, and brings both intensive environmental and economic benefits.

  6. Defects level evaluation of LiTiZn ferrite ceramics using temperature dependence of initial permeability

    Science.gov (United States)

    Malyshev, A. V.; Petrova, A. B.; Sokolovskiy, A. N.; Surzhikov, A. P.

    2018-06-01

    The method for evaluating the integral defects level and chemical homogeneity of ferrite ceramics based on temperature dependence analysis of initial permeability is suggested. A phenomenological expression for the description of such dependence was suggested and an interpretation of its main parameters was given. It was shown, that the main criterion of the integral defects level of ferrite ceramics is relation of two parameters correlating with elastic stress value in a material. An indicator of structural perfection can be a maximum value of initial permeability close to Curie point as well. The temperature dependences of initial permeability have analyzed for samples sintered in laboratory conditions and for the ferrite industrial product. The proposed method allows controlling integral defects level of the soft ferrite products and has high sensitivity compare to typical X-ray methods.

  7. Observation of room temperature saturated ferroelectric polarization in Dy substituted BiFeO3 ceramics

    KAUST Repository

    Zhang, Shuxia

    2012-04-06

    High quality Bi1− x Dy x FeO3 (0 ≤ x ≤ 0.15) ceramics have been fabricated by sintering Dy-doped BiFeO3 (BFO) precursor powders at a low temperature of 780 °C. The magnetic properties of BFO were improved by the introduction of Dy on the Bi-site. More importantly, well saturated ferroelectric hysteresis loops and polarization switching currents have been observed at room temperature. A large remnant polarization (2P r) value of 62 μC/cm2 is achieved, which is the highest value reported so far for rare-earth-doped BFO ceramics. Moreover, mechanisms for improved multiferroic properties depending on chemical doping-caused structure evolutions have also been discussed.

  8. Observation of room temperature saturated ferroelectric polarization in Dy substituted BiFeO3 ceramics

    KAUST Repository

    Zhang, Shuxia; Wang, Lei; Chen, Yao; Wang, Dongliang; Yao, Yingbang; Ma, Yanwei

    2012-01-01

    High quality Bi1− x Dy x FeO3 (0 ≤ x ≤ 0.15) ceramics have been fabricated by sintering Dy-doped BiFeO3 (BFO) precursor powders at a low temperature of 780 °C. The magnetic properties of BFO were improved by the introduction of Dy on the Bi-site. More importantly, well saturated ferroelectric hysteresis loops and polarization switching currents have been observed at room temperature. A large remnant polarization (2P r) value of 62 μC/cm2 is achieved, which is the highest value reported so far for rare-earth-doped BFO ceramics. Moreover, mechanisms for improved multiferroic properties depending on chemical doping-caused structure evolutions have also been discussed.

  9. Performance ceramic red mass containing mill scale of rolling in different firing temperatures

    International Nuclear Information System (INIS)

    Meller, J.G.; Arnt, A.B.C; Rocha, M.R.

    2014-01-01

    This study aimed to evaluate the performance of the properties of samples of red clay with addition of mill scale steel. This residue consists of oxides of iron has the function replace pigments used in ceramic materials. The mechanical strength of the sintered material can be associated with reactions that occur during sintering, leading to the formation of compounds provided with good mechanical characteristics, particle size of the components and the structure of the dough piece after the compactation. After chemical and microstructural characterization diffraction and fluorescence X-rays, this residue was added in the proportion of 1.45% of a commercial ceramic mass. The formulations were subjected to different temperatures and performance of the formulations was evaluated for physical characteristics: loss on ignition, linear firing shrinkage, water absorption, flexural strength by 3 and intensity of tone. The loss on ignition and linear firing shrinkage tests relate to the sintering temperature with the performance of the tested formulations. (author)

  10. Creep of crystals: High-temperature deformation processes in metals, ceramics and minerals

    Science.gov (United States)

    Poirier, J. P.

    An introductory text describing high-temperature deformation processes in metals, ceramics, and minerals is presented. Among the specific topics discussed are: the mechanical aspects of crystal deformation; lattice defects; and phenomenological and thermodynamical analysis of quasi-steady-state creep. Consideration is also given to: dislocation creep models; the effect of hydrostatic pressure on deformation; creep polygonization; and dynamic recrystallization. The status of experimental techniques for the study of transformation plasticity in crystals is also discussed.

  11. Negative thermal expansion of lithium aluminosilicate ceramics at cryogenic temperatures

    International Nuclear Information System (INIS)

    Garcia-Moreno, Olga; Fernandez, Adolfo; Khainakov, Sergei; Torrecillas, Ramon

    2010-01-01

    Five lithium aluminosilicate compositions of the LAS system have been synthesized and sintered. The coefficient of thermal expansion of the sintered samples has been studied down to cryogenic conditions. The data presented here under cryogenic conditions will be of value in the future design of new composite materials with very low thermal expansion values. The variation in thermal expansion properties with composition and sintering temperature was studied and is discussed in relation to composition and crystal structure.

  12. Effect of investment type and mold temperature on casting accuracy and titanium-ceramic bond.

    Science.gov (United States)

    Leal, Mônica Barbosa; Pagnano, Valéria Oliveira; Bezzon, Osvaldo Luiz

    2013-01-01

    This study evaluated the casting accuracy of crown margins and metal-ceramic shear bond strength (SBS) of pure titanium injected into casting molds made using 2 investment types at 3 mold temperatures. Sixty crown (30-degree beveled finish line) and 60 cylinder (5mm diameter × 8mm high) patterns were divided into 6 groups (n=10), and cast using a phosphate-bonded investment (P) and a magnesium oxide-bonded investment (U), at 400°C (groups P400 and U400), 550°C (groups P550 and U550) and 700°C (groups P700 and U700) mold temperatures. Crown margins were recorded in impression material, the degree of marginal rounding was measured and margin length deficiencies (µm) were calculated. Titanium-ceramic specimens were prepared using Triceram ceramic (2mm high) and SBS was tested. Failure modes were assessed by optical microscopy. Data were subjected to two-way ANOVA and Tukey's HSD test (α=0.05). For casting accuracy, expressed by marginal deficiency (µm), investment U provided more accurate results (64 ± 11) than P (81 ± 23) (pcasting accuracy for U700 (55 ± 7) and worse for P700 (109 ± 18). Casting accuracy at 700°C (82 ± 31) was significantly different from 400°C (69 ± 9) and 550°C (68 ± 9) (pcasting accuracy than investment P. The SBS was similar for all combinations of investments and temperatures.

  13. High-temperature thermoelectric properties of La-doped BaSnO3 ceramics

    International Nuclear Information System (INIS)

    Yasukawa, Masahiro; Kono, Toshio; Ueda, Kazushige; Yanagi, Hiroshi; Hosono, Hideo

    2010-01-01

    To elucidate the thermoelectric properties at high temperatures, perovskite-type La-doped BaSnO 3 ceramics were fabricated by a polymerized complex (PC) method and subsequent spark plasma sintering (SPS) technique. Fine powders of Ba 1-x La x SnO 3 (x = 0.00-0.07) were prepared by the PC method using citrate complexes, and SPS treatment converted the powders into dense ceramics with relative densities of 93-97%. The La content dependence of the lattice parameter suggested that the solubility of La for Ba sites was approximately x = 0.03. The temperature dependence of the electrical conductivity σ and Seebeck coefficient S showed that each La-doped ceramic was an n-type degenerate semiconductor in the measured temperature range of 373-1073 K. The La content dependence of the S values indicated that the electron carrier concentration increased successively up to x = 0.03, which was the solubility limit of the La atoms. The thermoelectric power factors S 2 σ increased drastically with La doping, and reached a maximum for x = 0.01 with values of 0.8 x 10 -4 W m -1 K -2 at 373 K to 2.8 x 10 -4 W m -1 K -2 at 1073 K.

  14. Preparation and temperature dependence of electrostriction properties for PMN-based composite ceramics

    International Nuclear Information System (INIS)

    Zhao Jingbo; Qu Shaobo; Du Hongliang; Zheng Yanju; Xu Zhuo

    2009-01-01

    Both low- and high-temperature units were prepared by columbite precursor method, and Pb(Mg 1/3 Nb 2/3 )O 3 (PMN)-based ferroelectric composite ceramics were prepared by conventional method, baking-block method and coating method, respectively. The effects of preparation methods on dielectric and electrostriction properties as well as the temperature-dependence property of the obtained composite ceramics were studied. The results show that compared with the samples prepared by traditional blend sintering method, of the samples prepared by baking-block and coating methods have much better dielectric and electrostriction properties. For those prepared by baking-block method, the electrostriction temperature-dependence properties are good in the range of 20-60 deg. C. For those prepared by coating method, the dielectric temperature-dependence properties are also good in the broad range of -30 to 70 deg. C, and the electrostriction temperature properties are better than those prepared by blending-block. Compared with the traditional blending sintering method, the dielectric and electrostriction temperature-dependence properties are much better, which effectively solves the problem of temperature properties existing in present engineering applications.

  15. Peculiarities of the temperature dependences of trapped magnetic field in Y-HTSC ceramics

    International Nuclear Information System (INIS)

    Sukhanov, A.A.; Omel'chenko, V.I.

    2001-01-01

    The temperature dependence H t (T) of trapped magnetic field (TMF) in Y-HTSC ceramics are studied. For the fields-cooled trapping the H t (T) dependences coincide with the dependences of H t on trapping temperature T t . Both dependences fall off monotonously with increasing temperature, and for low fields they reach saturation as temperature is decreased. When the trapping is induced by the field pulse after zero cooling the H t (T t ) dependences show a maximum while the H t (T) curves drop monotonously with increase in temperature. In this case the rate of their dropping increases with decrease in pulse magnitude and the temperature of TMF vanishing decreases with T t and H. The results are discussed and it is shown that contrast to the Been model the theory based on the model of TMF in superconductive loops gives an adequate analytical description of the observed features of the temperature dependences of trapped magnetic field in the Y-HTSC ceramics

  16. Survey report on high temperature irradiation experiment programs for new ceramic materials in the HTTR (High Temperature Engineering Test Reactor). 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    A survey research on status of research activities on new ceramic materials in Japan was carried out under contract between Japan Atomic Energy Research Institute and Atomic Energy Society of Japan. The purpose of the survey is to provide information to prioritize prospective experiments and tests in the HTTR. The HTTR as a high temperature gas cooled reactor has a unique and superior capability to irradiate large-volumed specimen at high temperature up to approximately 800degC. The survey was focused on mainly the activities of functional ceramics and heat resisting ceramics as a kind of structural ceramics. As the result, the report recommends that the irradiation experiment of functional ceramics is feasible to date. (K. Itami)

  17. High temperature fracture and fatigue of ceramics. Annual technical progress report No. 6, August 15, 1994--August 14, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Cox, B.

    1996-04-01

    This report covers work done in the first year of our new contract {open_quotes}High Temperature Fracture and Fatigue of Ceramics,{close_quotes} which commenced in August, 1995 as a follow-on from our prior contract {open_quotes}Mechanisms of Mechanical Fatigue in Ceramics.{close_quotes} Our activities have consisted mainly of studies of the failure of fibrous ceramic matrix composites (CMCs) at high temperature; with a little fundamental work on the role of stress redistribution in the statistics of fracture and cracking in the presence of viscous fluids.

  18. Method for selecting raw materials to preparing ceramic masses: application to raw material for red ceramic

    International Nuclear Information System (INIS)

    Moreno, Maria Margarita Torres; Rocha, Rogers Raphael da; Zanard, Antenor

    2012-01-01

    We studied the raw materials used in a factory building blocks, located in Cesario Lange city (SP). It extracts raw materials from various sources in the region to make the dough. The mixtures were prepared from dry milled powders based on data related to the plasticity of the raw materials. It was obtained with the apparatus Vicat-cone in order to obtain similar levels of water absorption of the samples burned at 900 deg C for all compositions. To quantify the proportion of each clay was used the Lever Rule. In this firing temperature, where sintering is mainly by diffusion from a solid state, different compositions of the same set of four raw materials resulted in similar values. (author)

  19. Creep performance of oxide ceramic fiber materials at elevated temperature in air and in steam

    Science.gov (United States)

    Armani, Clinton J.

    Structural aerospace components that operate in severe conditions, such as extreme temperatures and detrimental environments, require structural materials that have superior long-term mechanical properties and that are thermochemically stable over a broad range of service temperatures and environments. Ceramic matrix composites (CMCs) capable of excellent mechanical performance in harsh environments are prime candidates for such applications. Oxide ceramic materials have been used as constituents in CMCs. However, recent studies have shown that high-temperature mechanical performance of oxide-oxide CMCs deteriorate in a steam-rich environment. The degradation of strength at elevated temperature in steam has been attributed to the environmentally assisted subcritical crack growth in the oxide fibers. Furthermore, oxide-oxide CMCs have shown significant increases in steady-state creep rates in steam. The present research investigated the effects of steam on the high-temperature creep and monotonic tension performance of several oxide ceramic materials. Experimental facilities were designed and configured, and experimental methods were developed to explore the influence of steam on the mechanical behaviors of ceramic fiber tows and of ceramic bulk materials under temperatures in the 1100--1300°C range. The effects of steam on creep behavior of Nextel(TM)610 and Nextel(TM)720 fiber tows were examined. Creep rates at elevated temperatures in air and in steam were obtained for both types of fibers. Relationships between creep rates and applied stresses were modeled and underlying creep mechanisms were identified. For both types of fiber tows, a creep life prediction analysis was performed using linear elastic fracture mechanics and a power-law crack velocity model. These results have not been previously reported and have critical design implications for CMC components operating in steam or near the recommended design limits. Predictions were assessed and validated via

  20. Oxide glass to high temperature ceramic superconductors - a novel route

    International Nuclear Information System (INIS)

    Chaudhuri, B.K.; Som, K.K.

    1992-01-01

    Recently it has been discovered that many of transition metal oxide (TMO) glasses like Bi-Sr-Ca-Cu-O, Y-Ba-Cu-O, Bi-Pb-Sr-Ca-Cu-O etc. can be directly converted to the corresponding high temperature superconducting phases by properly annealing the respective glasses. In this review recent developements in this field are summarised. The structural, electrical, dielectrical, magnetic, optical, and other properties of these new type of (TMO) glass systems have been elucidated comparing them with the corresponding results of already known (TMO) glasses which do not become superconductors on annealing above their glass transition temperatures (T g ). The electrical properties of this novel glass system have been analysed with reference to the various existing theoretical models based on polaron hopping conduction mechanism. The electrical, magnetic, and other properties of the respective superconductors obtained from their corresponding glass phases by annealing above (T g ) and the possibility of drawing wires, ribbons etc. from these glass matrices and then converting them to their high T c superconducting phases have also been discussed. (author). 107 refs., 32 figs., 5 tabs

  1. Chemical-technological approach to the selection of ceramic materials with predetermined thermistor properties

    Energy Technology Data Exchange (ETDEWEB)

    Plewa, J.; Altenburg, H. [Fachhochschule Muenster, Steinfurt (Germany). SIMa and Supraleiter-Keramik-Kristalle; Brunner, M. [Fachhochschule Koeln (Germany). Elektronische Bauelemente; Shpotyuk, O.; Vakiv, M. [Scientific Research Co. ' ' Carat' ' , Lviv Scientific Research Inst. of Materials, Lviv (Ukraine)

    2002-07-01

    The selection possibilities of quaternary Cu-Ni-Co-Mn oxide system restricted by cubic spinels (CuMn{sub 2}O{sub 4}, MnCo{sub 2}O{sub 4} and NiMn{sub 2}O{sub 4}) for NTC thermistors application were discussed. Phase compositions, microstructural features and electrical properties of the investigated spinel-structured ceramics were studied in tight connection with technological regimes of their sintering. (orig.)

  2. Surface-Selective Preferential Production of Reactive Oxygen Species on Piezoelectric Ceramics for Bacterial Killing

    OpenAIRE

    Tan, Guoxin; Wang, Shuangying; Zhu, Ye; Zhou, Lei; Yu, Peng; Wang, Xiaolan; He, Tianrui; Chen, Junqi; Mao, Chuanbin; Ning, Chengyun

    2016-01-01

    Reactive oxygen species (ROS) can be used to kill bacterial cells, and thus the selective generation of ROS from material surfaces is an emerging direction in antibacterial material discovery. We found the polarization of piezoelectric ceramic causes the two sides of the disk to become positively and negatively charged, which translate into cathode and anode surfaces in an aqueous solution. Because of the microelectrolysis of water, ROS are preferentially formed on the cathode surface. Conseq...

  3. Feature selection for neural network based defect classification of ceramic components using high frequency ultrasound.

    Science.gov (United States)

    Kesharaju, Manasa; Nagarajah, Romesh

    2015-09-01

    The motivation for this research stems from a need for providing a non-destructive testing method capable of detecting and locating any defects and microstructural variations within armour ceramic components before issuing them to the soldiers who rely on them for their survival. The development of an automated ultrasonic inspection based classification system would make possible the checking of each ceramic component and immediately alert the operator about the presence of defects. Generally, in many classification problems a choice of features or dimensionality reduction is significant and simultaneously very difficult, as a substantial computational effort is required to evaluate possible feature subsets. In this research, a combination of artificial neural networks and genetic algorithms are used to optimize the feature subset used in classification of various defects in reaction-sintered silicon carbide ceramic components. Initially wavelet based feature extraction is implemented from the region of interest. An Artificial Neural Network classifier is employed to evaluate the performance of these features. Genetic Algorithm based feature selection is performed. Principal Component Analysis is a popular technique used for feature selection and is compared with the genetic algorithm based technique in terms of classification accuracy and selection of optimal number of features. The experimental results confirm that features identified by Principal Component Analysis lead to improved performance in terms of classification percentage with 96% than Genetic algorithm with 94%. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Grain Oriented Perovskite Layer Structure Ceramics for High-Temperature Piezoelectric Applications

    Science.gov (United States)

    Fuierer, Paul Anton

    The perovskite layer structure (PLS) compounds have the general formula (A^{2+}) _2(B^{5+})_2 O_7, or (A^ {3+})_2(B^{4+ })_2O_7, and crystallize in a very anisotropic layered structure consisting of parallel slabs made up of perovskite units. Several of these compounds possess the highest Curie temperatures (T_{rm c} ) of any known ferroelectrics. Two examples are Sr_2Nb_2O _7 with T_{rm c} of 1342^circC, and La_2Ti_2O _7 with T_{rm c} of 1500^circC. This thesis is an investigation of PLS ceramics and their feasibility as a high temperature transducer material. Piezoelectricity in single crystals has been measured, but the containerless float zone apparatus necessary to grow high quality crystals of these refractory compounds is expensive and limited to a small number of research groups. Previous attempts to pole polycrystalline Sr_2Nb _2O_7 have failed, and to this point piezoelectricity has been absent. The initiative taken in this research was to investigate PLS ceramics by way of composition and processing schemes such that polycrystalline bodies could be electrically poled. The ultimate objective then was to demonstrate piezoelectricity in PLS ceramics, especially at high temperatures. Donor-doping of both La_2Ti _2O_7 and Sr_2Nb_2O _7 was found to increase volume resistivities at elevated temperatures, an important parameter to consider during the poling process. Sr_2Ta _2O_7 (T _{rm c} = -107 ^circC) was used to make solid solution compositions with moderately high Curie temperatures, of about 850^circC, and lower coercive fields. A hot-forging technique was employed to produce ceramics with high density (>99% of theoretical) and high degree of grain orientation (>90%). Texturing was characterized by x-ray diffraction and microscopy. Considerable anisotropy was observed in physical and electrical properties, including thermal expansion, resistivity, dielectric constant, and polarization. The direction perpendicular to the forging axis proved to be the

  5. Effects of pressure and temperature on pore structure of ceramic synthesized from rice husk: A small angle neutron scattering investigation

    Energy Technology Data Exchange (ETDEWEB)

    Raut Dessai, R., E-mail: reshooin@yahoo.com [Department of Physics, Goa University, Taleigao Plateau, Goa 403 206 (India); Desa, J.A.E. [Department of Physics, Goa University, Taleigao Plateau, Goa 403 206 (India); Sen, D.; Mazumder, S. [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2013-07-05

    Highlights: ► A porous ceramic has been prepared from silica obtained from rice husk. ► The ceramic has a hierarchical pore structure from micrometric to nano-metric. ► Small Angle Neutron Scattering data indicate nano-pore connectivity to micro-pores. ► Pore morphology can be tuned by compaction pressure and sintering temperature. -- Abstract: Ceramic powder has been synthesized from rice husk as the source of silica. In order to probe the evolution of its hierarchical mesoscopic and microscopic porous structure, the ceramic powder was compacted at different pressures and was sintered at different temperatures. A glassy ceramic to crystalline transition under thermal treatment (up to 1000 °C) was revealed by X-ray diffraction. Existence of pores in two widely separated length scales was indicated by small angle neutron scattering with the smaller ones having mass fractal arrangement. Although no significant change in small pore structure under thermal effect was indicated, a significant modification of the same has been revealed by small angle neutron scattering at different compaction pressures. Connectivity between the pores was ascertained from scattering experiments on the ceramic compact impregnated with heavy water. Scanning electron microscopy shows the microstructure to undergo appreciable coalescence of micrometric ceramic particles for sintering temperature and pressure changes.

  6. Mapping grain boundary heterogeneity at the nanoscale in a positive temperature coefficient of resistivity ceramic

    Science.gov (United States)

    Holsgrove, Kristina M.; Kepaptsoglou, Demie M.; Douglas, Alan M.; Ramasse, Quentin M.; Prestat, Eric; Haigh, Sarah J.; Ward, Michael B.; Kumar, Amit; Gregg, J. Marty; Arredondo, Miryam

    2017-06-01

    Despite being of wide commercial use in devices, the orders of magnitude increase in resistance that can be seen in some semiconducting BaTiO3-based ceramics, on heating through the Curie temperature (TC), is far from well understood. Current understanding of the behavior hinges on the role of grain boundary resistance that can be modified by polarization discontinuities which develop in the ferroelectric state. However, direct nanoscale resistance mapping to verify this model has rarely been attempted, and the potential approach to engineer polarization states at the grain boundaries, that could lead to optimized positive temperature coefficient (PTC) behavior, is strongly underdeveloped. Here we present direct visualization and nanoscale mapping in a commercially optimized BaTiO3-PbTiO3-CaTiO3 PTC ceramic using Kelvin probe force microscopy, which shows that, even in the low resistance ferroelectric state, the potential drop at grain boundaries is significantly greater than in grain interiors. Aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy reveal new evidence of Pb-rich grain boundaries symptomatic of a higher net polarization normal to the grain boundaries compared to the purer grain interiors. These results validate the critical link between optimized PTC performance and higher local polarization at grain boundaries in this specific ceramic system and suggest a novel route towards engineering devices where an interface layer of higher spontaneous polarization could lead to enhanced PTC functionality.

  7. Mapping grain boundary heterogeneity at the nanoscale in a positive temperature coefficient of resistivity ceramic

    Directory of Open Access Journals (Sweden)

    Kristina M. Holsgrove

    2017-06-01

    Full Text Available Despite being of wide commercial use in devices, the orders of magnitude increase in resistance that can be seen in some semiconducting BaTiO3-based ceramics, on heating through the Curie temperature (TC, is far from well understood. Current understanding of the behavior hinges on the role of grain boundary resistance that can be modified by polarization discontinuities which develop in the ferroelectric state. However, direct nanoscale resistance mapping to verify this model has rarely been attempted, and the potential approach to engineer polarization states at the grain boundaries, that could lead to optimized positive temperature coefficient (PTC behavior, is strongly underdeveloped. Here we present direct visualization and nanoscale mapping in a commercially optimized BaTiO3–PbTiO3–CaTiO3 PTC ceramic using Kelvin probe force microscopy, which shows that, even in the low resistance ferroelectric state, the potential drop at grain boundaries is significantly greater than in grain interiors. Aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy reveal new evidence of Pb-rich grain boundaries symptomatic of a higher net polarization normal to the grain boundaries compared to the purer grain interiors. These results validate the critical link between optimized PTC performance and higher local polarization at grain boundaries in this specific ceramic system and suggest a novel route towards engineering devices where an interface layer of higher spontaneous polarization could lead to enhanced PTC functionality.

  8. Hard-Wired Dopant Networks and the Prediction of High Transition Temperatures in Ceramic Superconductors

    International Nuclear Information System (INIS)

    Phillips, J.C.

    2010-01-01

    The review multiple successes of the discrete hard-wired dopant network model ZZIP, and comment on the equally numerous failures of continuum models, in describing and predicting the properties of ceramic superconductors. The prediction of transition temperatures can be regarded in several ways, either as an exacting test of theory, or as a tool for identifying theoretical rules for defining new homology models. Popular first principle methods for predicting transition temperatures in conventional crystalline superconductors have failed for cuprate HTSC, as have parameterized models based on CuO2 planes (with or without apical oxygen). Following a path suggested by Bayesian probability, it was found that the glassy, self-organized dopant network percolative model is so successful that it defines a new homology class appropriate to ceramic superconductors. The reasons for this success in an exponentially complex (non-polynomial complete, NPC) problem are discussed, and a critical comparison is made with previous polynomial (PC) theories. The predictions are successful for the superfamily of all ceramics, including new non-cuprates based on FeAs in place of CuO2.

  9. Effects of Ceramic Density and Sintering Temperature on the Mechanical Properties of a Novel Polymer-Infiltrated Ceramic-Network Zirconia Dental Restorative (Filling) Material.

    Science.gov (United States)

    Li, Weiyan; Sun, Jian

    2018-05-10

    BACKGROUND Polymer-infiltrated ceramic-network (PICN) dental material is a new and practical development in orthodontics. Sintering is the process of forming a stable solid mass from a powder by heating without melting. The aim of this study was to evaluate the effects of sintering temperature on the mechanical properties of a PICN zirconia dental material. MATERIAL AND METHODS A dense zirconia ceramic and four PICN zirconia dental materials, with varying porosities, were sintered at three different temperatures; 12 PICN zirconia dental materials based on these porous ceramics were prepared, as well as a pure polymer. After the specimen preparation, flexural strength and elastic modulus values were measured using the three-point bending test, and fracture toughness were determined by the single-edge notched beam (SENB) method. The Vickers hardness test method was used with an indentation strength (IS) test. Scanning electron microscopy (SEM) was used to examine the microstructure of the ceramic surface and the fracture surface. RESULTS Mechanical properties of the PICN dental materials, including flexural strength, elastic modulus, fracture toughness, and hardness, were more similar to the properties of natural teeth when compared with traditional dental ceramic materials, and were affected by the density and sintering temperature. SEM showed that the porous ceramic network became cohesive and that the length of cracks in the PICN dental material was reduced. CONCLUSIONS PICN zirconia dental materials were characterized by similar mechanical properties to natural dental tissues, but further studies are required continue to improve the similarities with natural human enamel and dentin.

  10. Application of high temperature ceramic superconductors (CSC) to commercial tokamak reactors

    International Nuclear Information System (INIS)

    Ehst, D.A.; Kim, S.; Gohar, Y.; Turner, L.; Smith, D.L.; Mattas, R.

    1987-10-01

    Ceramic superconductors operating near liquid nitrogen temperature may experience higher heating rates without losing stability, compared to conventional superconductors. This will permit cable design with less stabilizer, reducing fabrication costs for large fusion magnets. Magnet performance is studied for different operating current densities in the superconductor, and cost benefits to commercial tokamak reactors are estimated. It appears that 10 kA . cm -2 (at 77 K and ∼10 T) is a target current density which must be achieved in order for the ceramic superconductors to compete with conventional materials. At current densities around 50 kA . cm -2 most potential benefits have already been gained, as magnet structural steel begins to dominate the cost at this point. For a steady state reactor reductions of ∼7% are forecast for the overall capital cost of the power plant in the best case. An additional ∼3% cost saving is possible for pulsed tokamaks. 9 refs., 4 figs., 8 tabs

  11. Ceramic stabilization of hazardous wastes: a high performance room temperature process

    International Nuclear Information System (INIS)

    Maloney, M.D.

    1996-01-01

    ANL has developed a room-temperature process for converting hazardous materials to a ceramic structure. It is similar to vitrification but is achieved at low cost, similar to conventional cement stabilization. The waste constituents are both chemically stabilized and physically encapsulated, producing very low leaching levels and the potential for delisting. The process, which is pH-insensitive, is ideal for inorganic sludges and liquids, as well as mixed chemical-radioactive wastes, but can also handle significant percentages of salts and even halogenated organics. High waste loadings are possible and densification occurs,so that volumes are only slightly increased and in some cases (eg, incinerator ash) are reduced. The ceramic product has strength and weathering properties far superior to cement products

  12. Laser hybrid brazing of oxide ceramics for high temperature gas sensing applications in (V)HTRS

    Energy Technology Data Exchange (ETDEWEB)

    Heilmann, F. [Robert Bosch GmbH, Stuttgart (Germany). Corporate Research and Advance Engineering; Technische Univ. Dresden (Germany). Chair of Hydrogen- and Nuclear Engineering; Rixecker, G. [Robert Bosch GmbH, Stuttgart (Germany). Corporate Research and Advance Engineering; Boerner, F.D.; Lippmann, W.; Hurtado, A. [Technische Univ. Dresden (Germany). Chair of Hydrogen- and Nuclear Engineering

    2009-07-01

    It has been shown that the use of halogen lamps to assist laser brazing reduces total energy and joining time. For parts with specific geometries not suitable for a rotation process, an assistive heating with halogen lamps might be even more beneficial, to alleviate temperature gradients and transients. Forsterite-based ceramics are highly suitable as a joining partner for ZrO{sub 2}, especially in a laser brazing process based on volume heating. By adding Fe{sub 2}O{sub 3} to the raw powder mixture, the absorptivity of the forsterite ceramic can be tuned with an optimum at 0.1 wt.% Fe, reducing the necessary laser energy input even more. (orig.)

  13. The temperature dependence of thermooptical properties of magnetooptical TAG ceramics doped with silicon and titanium

    Science.gov (United States)

    Starobor, Aleksey; Palashov, Oleg

    2018-04-01

    Thermal effects in terbium aluminum garnet (TAG) ceramics (thermal lens and thermally induced depolarization) doped with silicon and titanium were investigated in temperature range of 79-293K. Samples with low dopant concentrations shows decreasing of negative thermal effects with cooling to 79 K. However for most part of samples thermal depolarization starts increasing after initial decreasing with cooling. Apparently it is connected with defects in media. Best sample (0.4 at% of Si) as pure TAG shows monotonous decreasing of thermally induced depolarization and 3.5 times Verdet constant increasing with cooling to 79 K, that leads to 1.8-times advantage over common magnetooptical media - terbium gallium garnet. It allows to provide an isolation of 30 dB at a radiation power of more than 6 kW as estimated. However, the procedure for creating ceramics samples obviously needs improvement because of the large scatter in the quality of the samples.

  14. The chemical composition and compression strengths of refractory ceramics, tested for 3 curing temperatures

    International Nuclear Information System (INIS)

    Wan Khairuddin bin Wan Ali

    1994-01-01

    An investigation was carried out to determine and compile the mechanical strength of a refractory ceramic made of ground fire bricks and refractory fire mortar. Three different compositions were studied for the compression strength and it was found that the composition with 50% fire bricks and 50% fire mortar gives the best mechanical strength. With this composition the maximum failure compression stress is 3.2 MPa. and the Young Modulus is 403.5 MPa. The investigation also shows that the curing temperatures and the composition percentages play an important role in determining the strength of the ceramic. The trend obtained from the investigation shows that there is the possibility that an optimum value of composition percentage exist

  15. Exchange of hydrogen isotopes in oxide ceramics at room temperature

    International Nuclear Information System (INIS)

    Suzuki, H.; Morita, K.; Soda, K.

    2001-01-01

    The decay curves of D and up-take curves of H on the exchange of D implanted into Li 2 TiO 3 for H in H 2 O vapor caused by exposure to normal-air at room temperature have been measured as a function of exposure time at different implantation concentrations by means of the elastic recoil detection technique. The re-emission curves of D retained and H up-taken in a specimen by isochronal annealing for 10 min have been also measured. It is found that the thermal re-emission of D and H takes place uniformly over the whole specimen due to local molecular recombination in the bulk and that the re-emission rates of H and D in the near-surface layers are slower than those in the deeper layers. It is also found that the decay of D caused by the D-H exchange takes place rapidly in the beginning and the retained amount of D attains at a constant level and the retained fraction of D are higher as the initial implantation concentrations of D are lower. The decay curves of D and the up-take curves of H have been analysed using the mass balance equations, in which the elementary processes are taken into account according to the exchange model of one way diffusion from the surface into the bulk. It is shown that the solution of the mass balance equations reproduces well the experimental data. The rate constants of the elementary processes determined are discussed. (orig.)

  16. Intrapulpal Temperature Increase During Er:YAG Laser-Aided Debonding of Ceramic Brackets.

    Science.gov (United States)

    Yilanci, Hilal; Yildirim, Zeynep Beyza; Ramoglu, Sabri Ilhan

    2017-04-01

    The purpose of this study was to evaluate the temperature changes in the pulp chamber while using a newly introduced application of Er:YAG laser to debond ceramic brackets in a study model with a pulpal circulation with and without thermocycled samples. An esthetic alternative to stainless steel brackets, ceramic brackets have been proposed. However, because of their low fracture resistance and high bond strengths, ceramic brackets can cause a problem when they are being removed using conventional techniques. Experimental Groups A and B were established for samples with or without thermocycling. The same 20 maxillary central incisor and 20 premolar teeth were used in both groups. Pulpal blood microcirculation was simulated using an apparatus described in a previous study. Monocrystalline brackets were bonded by using Transbond XT. In Group A, brackets were debonded using the Er:YAG laser (600 mJ, 2 Hz, long pulse, and no air or water spray) after being stored in distilled water for 24 h. In Group B, brackets were debonded using the same laser system as that used in Group A after being stored in distilled water for 24 h and then thermocycled for a total of 5000 cycles between 5°C and 55°C. The laser irradiation duration and intrapulpal temperature changes were measured. In Group B, the intrapulpal temperature increase of the central incisors was significantly higher than that of the premolar teeth. In the central incisor and premolar teeth groups, there were no statistically significant difference between Groups A and B (p > 0.05). A positive correlation was found between laser irradiation duration and temperature increase (p brackets. This method can be used safely under the consideration of intrapulpal temperature changes.

  17. Surface-Selective Preferential Production of Reactive Oxygen Species on Piezoelectric Ceramics for Bacterial Killing.

    Science.gov (United States)

    Tan, Guoxin; Wang, Shuangying; Zhu, Ye; Zhou, Lei; Yu, Peng; Wang, Xiaolan; He, Tianrui; Chen, Junqi; Mao, Chuanbin; Ning, Chengyun

    2016-09-21

    Reactive oxygen species (ROS) can be used to kill bacterial cells, and thus the selective generation of ROS from material surfaces is an emerging direction in antibacterial material discovery. We found the polarization of piezoelectric ceramic causes the two sides of the disk to become positively and negatively charged, which translate into cathode and anode surfaces in an aqueous solution. Because of the microelectrolysis of water, ROS are preferentially formed on the cathode surface. Consequently, the bacteria are selectively killed on the cathode surface. However, the cell experiment suggested that the level of ROS is safe for normal mammalian cells.

  18. Influences of donor dopants on the properties of PZT-PMS-PZN piezoelectric ceramics sintered at low temperatures

    International Nuclear Information System (INIS)

    Yoon, Seokjin; Choi, Jiwon; Choi, Jooyoung; Wan, Dandan; Li, Qian; Yang, Ying

    2010-01-01

    0.90Pb(Zr 0.48 Ti 0.52 )O 3 -0.05Pb(Mn 1/3 Sb 2/3 )O 3 -0.05Pb(Zn 1/3 Nb 2/3 )O 3 quaternary piezoelectric ceramics with CuO added were synthesized by using a conventional method at low sintering temperatures. CuO additive, 1.0 wt%, significantly improves the sinterability of 0.90PZT-0.05PMS-0.05PZN ceramics, lowering the sintering temperature to 900 .deg. C and showing moderate electrical properties: d 33 = 306 pC/N, Q m = 997, k p = 53.6%, tanδ = 0.50%, and ε T 33 = 1351. To obtain more optimal piezoelectric properties, we selected Bi 2 O 3 and Nb 2 O 5 as donor dopants to introduce a softening effect. The crystal structure, micro-morphology and electrical properties were studied in terms of the Bi 2 O 3 and the Nb 2 O 5 contents. Our study demonstrates that Bi 2 O 3 is very effective in improving the piezoelectric properties, causing a significant enhancement in d 33 and k p values. Particularly, 0.75-wt%-Bi 2 O 3 -added 0.90PZT-0.05PMS-0.05PZN + 1.0 wt% CuO ceramics show excellent electrical properties: d 33 = 363 pC/N, Q m = 851, k p = 59.3%, tanδ = 0.38%, and ε T 33 = 1596. On the other hand, the effect of Nb 2 O 5 on the piezoelectric properties is very complicated, 0.50 wt% Nb 2 O 5 doped 0.90PZT-0.05PMS-0.05PZN + 1.0 wt% CuO ceramics have a remarkable improvement in k p value and maintain good electrical properties: d 33 = 300 pC/N, Q m = 971, k p = 58.4%, tanδ = 0.36%, and ε T 33 = 1332.

  19. The usage of ceramics in the manufacture of the lining of temperature sensors for the oil industry

    International Nuclear Information System (INIS)

    Domingues, R.O.; Yadava, Y.P.; Sanguinetti Ferreira, R.A.

    2014-01-01

    In the oil production, many types of sensors are used in order to monitor some important parameters such as temperature, pressure and flow. These sensors are subjected to harsh operating conditions. Therefore they must present an inert and stable behavior in these conditions. The temperature sensors that are more suited to the oil industry are the Temperature Detectors by Resistance (TDR), because they have high accuracy and wide temperature range. Usually these devices are built with metals as detectors of temperature by encapsulated resistance in inert ceramics. The main objective of this research is to produce new ceramics of a Ca_2AlZrO_5_,_5 cubic complex perovskite structure for the encapsulation of temperature sensors. The stoichiometric amounts of the constituent chemicals, with a high degree of purity, are homogenized, through a solid state reaction in a high energy ball mill. They are then compacted by uniaxial pressing and calcined at 1200°C for 24 hours. Soon after, the tablet is crushed giving place to a ceramic powder and the analysis of X-ray diffraction is performed. According to the sintering behavior of the ceramic powder, the microstructure and the homogeneity are studied by the Scanning Electron Microscopy. The results are presented in terms of the potential of this ceramic for applications as components of temperature sensors. (author)

  20. Fatigue limit of polycrystalline zirconium oxide ceramics: Effect of grinding and low-temperature aging.

    Science.gov (United States)

    Pereira, G K R; Silvestri, T; Amaral, M; Rippe, M P; Kleverlaan, C J; Valandro, L F

    2016-08-01

    The following study aimed to evaluate the effect of grinding and low-temperature aging on the fatigue limit of Y-TZP ceramics for frameworks and monolithic restorations. Disc specimens from each ceramic material, Lava Frame (3M ESPE) and Zirlux FC (Ivoclar Vivadent) were manufactured according to ISO:6872-2008 and assigned in accordance with two factors: (1) "surface treatment"-without treatment (as-sintered, Ctrl), grinding with coarse diamond bur (181µm; Grinding); and (2) "low-temperature aging (LTD)" - presence and absence. Grinding was performed using a contra-angle handpiece under constant water-cooling. LTD was simulated in an autoclave at 134°C under 2-bar pressure for 20h. Mean flexural fatigue limits (20,000 cycles) were determined under sinusoidal loading using stair case approach. For Lava ceramic, it was observed a statistical increase after grinding procedure and different behavior after LTD stimuli (Ctrltemperature aging promoted a statistical increase in the fatigue limit (Ctrltemperature aging did not damage the fatigue limit values significantly for both materials evaluated, even though those conditions promoted increase in m-phase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Influence of light curing unit and ceramic thickness on temperature rise during resin cement photo-activation.

    Science.gov (United States)

    Guiraldo, Ricardo Danil; Consani, Simonides; Mastrofrancisco, Sarina; Consani, Rafael Leonardo Xediek; Sinhoreti, Mario Alexandre Coelho; Correr-Sobrinho, Lourenço

    2008-11-01

    The aim of this study was to determine the effect of different ceramic thickness on heat generation during resin cement photo-activation by QTH (quartz-tungsten-halogen), LED (light emitting diode), and PAC (plasma arc-curing) LCUs (light curing units). The resin cement used was Rely X ARC (3M-ESPE), and the ceramic was IPS Empress Esthetic (Ivoclar-Vivadent), of which 0.7-, 1.4- and 2.0-mm thick disks, 0.8 mm in diameter were made. Temperature increase was recorded with a type-K thermocouple connected to a digital thermometer (Iopetherm 46). An acrylic resin base was built to guide the thermocouple and support the 1.0-mm thick dentin disk. A 0.1-mm thick black adhesive paper matrix with a perforation 6 mm in diameter was placed on the dentin to contain the resin cement and support the ceramic disks of different thicknesses. Three LCUs were used: QTH, LED and PAC. Nine groups were formed (n=10) according to the interaction: 3 ceramic thicknesses, 1 resin cement and 3 photo-activation methods. Temperature increase data were submitted to Tukey's test (5%). For all ceramic thicknesses, a statistically significant difference in temperature increase was observed among the LCUs, with the highest mean value for the QTH LCU (p0.05). The interaction of higher energy density with smaller ceramic thickness showed higher temperature increase values.

  2. Development of Advanced Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites: Path Toward 2700 F Temperature Capability and Beyond

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Hurst, Janet B.; Good, Brian; Costa, Gustavo; Bhatt, Ramakrishna T.; Fox, Dennis S.

    2017-01-01

    Advanced environmental barrier coating systems for SiC-SiC Ceramic Matrix Composite (CMC) turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant coating development challenges is to achieve prime-reliant environmental barrier coating systems to meet the future 2700F EBC-CMC temperature stability and environmental durability requirements. This presentation will emphasize recent NASA environmental barrier coating system testing and down-selects, particularly the development path and properties towards 2700-3000F durability goals by using NASA hafnium-hafnia-rare earth-silicon-silicate composition EBC systems for the SiC-SiC CMC turbine component applications. Advanced hafnium-based compositions for enabling next generation EBC and CMCs capabilities towards ultra-high temperature ceramic coating systems will also be briefly mentioned.

  3. Selective etching of injection molded zirconia-toughened alumina: Towards osseointegrated and antibacterial ceramic implants.

    Science.gov (United States)

    Flamant, Quentin; Caravaca, Carlos; Meille, Sylvain; Gremillard, Laurent; Chevalier, Jérôme; Biotteau-Deheuvels, Katia; Kuntz, Meinhard; Chandrawati, Rona; Herrmann, Inge K; Spicer, Christopher D; Stevens, Molly M; Anglada, Marc

    2016-12-01

    Due to their outstanding mechanical properties and excellent biocompatibility, zirconia-toughened alumina (ZTA) ceramics have become the gold standard in orthopedics for the fabrication of ceramic bearing components over the last decade. However, ZTA is bioinert, which hampers its implantation in direct contact with bone. Furthermore, periprosthetic joint infections are now the leading cause of failure for joint arthroplasty prostheses. To address both issues, an improved surface design is required: a controlled micro- and nano-roughness can promote osseointegration and limit bacterial adhesion whereas surface porosity allows loading and delivery of antibacterial compounds. In this work, we developed an integrated strategy aiming to provide both osseointegrative and antibacterial properties to ZTA surfaces. The micro-topography was controlled by injection molding. Meanwhile a novel process involving the selective dissolution of zirconia (selective etching) was used to produce nano-roughness and interconnected nanoporosity. Potential utilization of the porosity for loading and delivery of antibiotic molecules was demonstrated, and the impact of selective etching on mechanical properties and hydrothermal stability was shown to be limited. The combination of injection molding and selective etching thus appears promising for fabricating a new generation of ZTA components implantable in direct contact with bone. Zirconia-toughened alumina (ZTA) is the current gold standard for the fabrication of orthopedic ceramic components. In the present work, we propose an innovative strategy to provide both osseointegrative and antibacterial properties to ZTA surfaces: we demonstrate that injection molding allows a flexible design of surface micro-topography and can be combined with selective etching, a novel process that induces nano-roughness and surface interconnected porosity without the need for coating, avoiding reliability issues. These surface modifications have the

  4. Design and preliminary analysis of in-vessel core catcher made of high-temperature ceramics material in PWR

    International Nuclear Information System (INIS)

    Xu Hong; Ma Li; Wang Junrong; Zhou Zhiwei

    2011-01-01

    In order to protect the interior wall of pressure vessel from melting, as an additional way to external reactor vessel cooling (ERVC), a kind of in-vessel core catcher (IVCC) made of high-temperature ceramics material was designed. Through the high-temperature and thermal-resistance characteristic of IVCC, the distributing of heat flux was optimized. The results show that the downward average heat flux from melt in ceramic layer reduces obviously and the interior wall of pressure vessel doesn't melt, keeping its integrity perfectly. Increasing of upward heat flux from metallic layer makes the upper plenum structure's temperature ascend, but the temperature doesn't exceed its melting point. In conclusion, the results indicate the potential feasibility of IVCC made of high-temperature ceramics material. (authors)

  5. Investigation on the minimum film boiling temperature on metallic and ceramic heaters

    International Nuclear Information System (INIS)

    Ladisch, R.

    1980-06-01

    The minimum film boiling temperature on ceramic and metallic heaters has been experimentally studied. The knowledge of this temperature boundary is important in safety considerations on all liquid cooled nuclear reactors. The experiments have been carried out by quenching a hot metal cylinder with and without ceramic coating of aluminium in water. Results show that the minimum film boiling temperature Tsub(min) increases with water subcooling and is dependend upon the thermophysical properties of the heating surface. The roughness of the heater does not affect Tsub(min). At low subcoolings the vapour film is more stable and seems to break down when the specific heatflux upon liquid solid contact is lower than a threshold value above which film boiling can be reestablished. At higher subcoolings instead the vapour film is thinner and more stable. In this case the surface temperature decreases beyond the value by which the specific heatflux upon liquid solid contact would be lower than the threshold value. As soon as the vapour film becomes unstable, it collapses. (orig.) [de

  6. Lower sintering temperature of nanostructured dense ceramics compacted from dry nanopowders using powerful ultrasonic action

    Science.gov (United States)

    Khasanov, O.; Reichel, U.; Dvilis, E.; Khasanov, A.

    2011-10-01

    Nanostructured high dense zirconia ceramics have been sintered from dry nanopowders compacted by uniaxial pressing with simultaneous powerful ultrasonic action (PUA). Powerful ultrasound with frequency of 21 kHz was supplied from ultrasonic generator to the mold, which was the ultrasonic wave-guide. Previously the mold was filled by non-agglomerated zirconia nanopowder having average particle size of 40 nm. Any binders or plasticizers were excluded at nanopowder processing. Compaction pressure was 240 MPa, power of ultrasonic generator at PUA was 1 kW and 3 kW. The fully dense zirconia ceramics has been sintered at 1345°C and high-dense ceramics with a density of 99.1%, the most grains of which had the sizes Dgr <= 200 nm, has been sintered at low sintering temperature (1325°C). Applied approach prevents essential grain growth owing to uniform packing of nanoparticles under vibrating PU-action at pressing, which provides the friction forces control during dry nanopowder compaction without contaminating binders or plasticizers.

  7. Glass and Glass-Ceramic Materials from Simulated Composition of Lunar and Martian Soils: Selected Properties and Potential Applications

    Science.gov (United States)

    Ray, C. S.; Sen, S.; Reis, S. T.; Kim, C. W.

    2005-01-01

    In-situ resource processing and utilization on planetary bodies is an important and integral part of NASA's space exploration program. Within this scope and context, our general effort is primarily aimed at developing glass and glass-ceramic type materials using lunar and martian soils, and exploring various applications of these materials for planetary surface operations. Our preliminary work to date have demonstrated that glasses can be successfully prepared from melts of the simulated composition of both lunar and martian soils, and the melts have a viscosity-temperature window appropriate for drawing continuous glass fibers. The glasses are shown to have the potential for immobilizing certain types of nuclear wastes without deteriorating their chemical durability and thermal stability. This has a direct impact on successfully and economically disposing nuclear waste generated from a nuclear power plant on a planetary surface. In addition, these materials display characteristics that can be manipulated using appropriate processing protocols to develop glassy or glass-ceramic magnets. Also discussed in this presentation are other potential applications along with a few selected thermal, chemical, and structural properties as evaluated up to this time for these materials.

  8. The nitrate to ammonia and ceramic (NAC) process: A newly developed low-temperature technology

    International Nuclear Information System (INIS)

    Mattus, A.J.; Lee, D.D.

    1993-01-01

    Bench-top feasibility studies with Hanford single-shell tank (SST) simulants, using a new low-temperature (50-60 degrees C) process for converting nitrate to ammonia and ceramic, have conclusively shown that between 90 and 99% of the nitrate at Hanford can be readily converted to ammonia. In this process, aluminum powders or shot can be used to convert alkaline, nitrate-based supernate to ammonia and an alumina-silica-based ceramic solid. The process may actually be able to utilize already contaminated aluminum scrap metal from various US DOE sites to effect the conversion. The final nitrate-free ceramic product can be calcined, pressed, and sintered like any other ceramic. Based upon the starting volumes of 6.2 and 3.1 M sodium nitrate solution (probable supernate concentrations resulting from salt-cake/sludge removal from the Hanford SSTs), volume reductions as high as 70% are currently obtained, compared with an expected 40 to 50% volume increase if the Hanford supernate were grouted. Engineering data extracted from bench-top studies indicate that the process will be very economical. These data were used to cost a batch facility with a production rate of 1200 kilograms of nitrate per hour for processing all the Hanford SST waste over 20 years. Our process cost analysis indicates that between $2.01 and 2.66 will be required to convert each kilogram of nitrate. Based upon 1957 literature, these costs are one-third to one-half of the processing costs quoted for electrolytic and thermal processes

  9. Clinical marginal and internal fit of metal ceramic crowns fabricated with a selective laser melting technology.

    Science.gov (United States)

    Huang, Zhuoli; Zhang, Lu; Zhu, Jingwei; Zhang, Xiuyin

    2015-06-01

    Selective laser melting (SLM) technology has been introduced to fabricate dental restorations. However, the fit of these restorations still needs further study. The purpose of this in vivo investigation was to compare the marginal and internal fit of SLM metal ceramic crowns with 2 lost-wax cast metal ceramic crowns and to evaluate the influence of tooth type on the marginal and internal fit of these crowns. A total of 330 metal ceramic crowns were evaluated. The metal copings were fabricated with SLM Co-Cr, cast Au-Pt, and cast Co-Cr alloy (n=110). The marginal and internal gaps of crowns were recorded by using a replica technique. The anterior and premolar replicas were sectioned 2 times, and molar replicas were sectioned 4 times. The marginal and internal gap width of each cross section was examined by stereomicroscope at ×30 magnification. Two-way analysis of variance was performed to identify the statistical difference among the groups. The marginal fit of the SLM Co-Cr group (75.6 ±32.6 μm) was not different from the cast Au-Pt group (76.8 ±32.1 μm) (P>.05) but was better than the cast Co-Cr group (91.0 ±36.3 μm) (P.05). The mean occlusal gap width of the SLM Co-Cr group (309.8 ±106.6 μm) was significantly higher than that of the cast Au-Pt group (254.6 ±109.6 μm) and the cast Co-Cr group (249.6 ±110.4 μm) (P.05). Also, no significant difference was found in the axial fit among the anterior group (138.3 ±52.5 μm), the premolar group (132.9 ±50.4 μm), and the molar group (134.4 ±52.5 μm) (P>.05). The anterior group (267.6 ±110.2 μm) did not differ from the premolar group (270.2 ±112.8 μm) and the molar group (268.6 ±110.5 μm) in occlusal fit (P>.05). The marginal fit of SLM Co-Cr metal ceramic crowns was similar to that of the cast Au-Pt metal ceramic crowns and was better than that of the cast Co-Cr metal ceramic crowns. The SLM Co-Cr metal ceramic crowns were not significantly different from the 2 cast metal ceramic crowns in axial

  10. Fracture Toughness and Reliability in High-Temperature Structural Ceramics and Composites: Prospects and Challenges for the 21st Century

    Science.gov (United States)

    Dutta, Sunil

    1999-01-01

    The importance of high fracture toughness and reliability in Si3N4, and SiC-based structural ceramics and ceramic matrix composites is reviewed. The potential of these ceramics and ceramic matrix composites for high temperature applications in defense and aerospace applications such as gas turbine engines, radomes, and other energy conversion hardware have been well recognized. Numerous investigations were pursued to improve fracture toughness and reliability by incorporating various reinforcements such as particulate-, whisker-, and continuous fiber into Si3N4 and SiC matrices. All toughening mechanisms, e.g. crack deflection, crack branching, crack bridging, etc., essentially redistribute stresses at the crack tip and increase the energy needed to propagate a crack through the composite material, thereby resulting in improved fracture toughness and reliability. Because of flaw insensitivity, continuous fiber reinforced ceramic composite (CFCC) was found to have the highest potential for higher operating temperature and longer service conditions. However, the ceramic fibers should display sufficient high temperature strength and creep resistance at service temperatures above 1000 'C. The greatest challenge to date is the development of high quality ceramic fibers with associate coatings able to maintain their high strength in oxidizing environment at high temperature. In the area of processing, critical issues are, preparation of optimum matrix precursors, precursor infiltration into fiber array, and matrix densification at a temperature, where grain crystallization and fiber degradation do not occur. A broad scope of effort is required for improved processing and properties with a better understanding of all candidate composite systems.

  11. Metal-ceramic bond strength of Co-Cr alloy fabricated by selective laser melting.

    Science.gov (United States)

    Xiang, Nan; Xin, Xian-Zhen; Chen, Jie; Wei, Bin

    2012-06-01

    This study was to evaluated the metal-ceramic bond strength of a Co-Cr dental alloy prepared using a selective laser melting (SLM) technique. Two groups comprised of twenty Co-Cr metal bars each were prepared using either a SLM or traditional lost-wax casting method. Ten bars from each group were moulded into standard ISO 9693:1999 dimensions of 25 mm × 3 mm × 0.5 mm with 1.1 mm of porcelain fused onto an 8 mm × 3 mm rectangular area in the centre of each bar. Metal-ceramic bonding was assessed using a three-point bending test. Fracture mode analysis and area fraction of adherence porcelain (AFAP) were determined by measuring Si content of specimens by SEM/EDS. Student's t-test within the groups demonstrated no significant difference for the mean bond strength between the SLM and traditional cast sample groups. While SEM/EDS analysis indicated a mixed fracture mode on the debonding interface of both the SLM and the cast groups, the SLM group showed significantly more porcelain adherence than the control group (p<0.05). The SLM metal-ceramic system exhibited a bonding strength that exceeds the requirement of ISO 9691:1999(E) and it even showed a better behaviour in porcelain adherence test comparable to traditional cast methods. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. High-temperature electromass transfer in the perovskite La-Sr-Ga-Fe-Mg-O ceramics

    International Nuclear Information System (INIS)

    Aleksandrovskij, V.V.; Kaleva, G.M.; Mosunov, A.V.; Politova, E.D.; Stefanovich, S.Yu.; Avetistov, A.K.; Venskovskij, N.U.

    2001-01-01

    Physicochemical mechanism of oxygen-ion transfer in perovskite-like solid solutions within La-Sr-Ga-Fe-Mg-O system was studied using kinetic dependences of oxygen deficit at variation of gas medium composition. One discusses relation between the phenomenon of mass loss, linear deformation and conducting features of a ceramic material. Oxygen-ion transfer was determined to proceed by vacancy jumping mechanism. On the basis of data on dielectric relaxation in lanthanum gallate base solid solutions one obtained new evidences of vacancy correlation under high temperature [ru

  13. Fabrication and performance evaluation of a high temperature co-fired ceramic vaporizing liquid microthruster

    International Nuclear Information System (INIS)

    Cheah, Kean How; Low, Kay-Soon

    2015-01-01

    This paper presents the study of a microelectromechanical system (MEMS)-scaled microthruster using ceramic as the structural material. A vaporizing liquid microthruster (VLM) has been fabricated using the high temperature co-fired ceramic (HTCC) technology. The developed microthruster consists of five components, i.e. inlet, injector, vaporizing chamber, micronozzle and microheater, all integrated in a chip with a dimension of 30 mm × 26 mm × 8 mm. In the dry test, the newly developed microheater which is deposited on zirconia substrate consumes 21% less electrical power than those deposited on silicon substrate to achieve a temperature of 100 °C. Heating temperature as high as 409.1 °C can be achieved using just 5 W of electrical power. For simplicity and safety, a functional test of the VLM with water as propellant has been conducted in the laboratory. Full vaporization of water propellant feeding at different flow rates has been successfully demonstrated. A maximum thrust of 633.5 µN at 1 µl s −1 propellant consumption rate was measured using a torsional thrust stand. (paper)

  14. Silica frit formulation for low temperature co-fired ceramic tapes (LTCC)

    International Nuclear Information System (INIS)

    Nor Hayati Alias; Che Seman Mahmood

    2006-01-01

    Glassifier agents or so called fluxes could function to lower down the melting temperature of a ceramic material. Two types of silica based glass frits have been formulated to undergo vitrification at temperature lower than 1000 degree C. Frit A powder is composing of 11% Sodium Carbonate, 11% Calcium Oxide,15% Plumbum Oxide and 10% MgO while Frit B is composing of 12% Boron Oxide, 5% Ceria, 11% Sodium Carbonate and 2% Magnesium Oxide as glassifier agent in Silica powder. Two different ceramic slurries were made from a-alumina powder with addition of either Frit A or Frit B and also dispersant, binder and plasticizers, followed by casting into 0.04 mm thickness alumina green tapes. The tapes were then fired at temperature 1000 degree C to burn out plastic binder system and to vitrify the glass frits. Scanning Electron Microscopy (SEM)/EDX techniques were carried out to observe the changes in microstructure of the tape due to vitrication of glass frits. Comparisons were made with alumina green tapes without any glass frit component and with Commercial LTCC DuPont 951 tape. (Author)

  15. Low temperature synthesis & characterization of lead-free BCZT ceramics using molten salt method

    Science.gov (United States)

    Jai Shree, K.; Chandrakala, E.; Das, Dibakar

    2018-04-01

    Piezoelectric properties are greatly influenced by the synthesis route, microstructure, stoichiometry of the chemical composition, purity of the starting materials. In this study, molten salt method was used to prepare lead-free BCZT ceramics. Molten salt method is one of the simplestmethods to prepare chemically-purified, single phase powders in high yield often at lower temperatures and shorten reaction time. Calcination of the molten salt synthesized powders resulted in asingle-phase perovskite structure at 1000 °C which is ˜ 350 °C less than the conventional solid-sate reaction method. With increasing calcination temperature the average template size was increased (˜ 0.5-2 µm). Formation of well dispersive templates improves the sinterability at lower temperatures. Lead-free BCZT ceramics sintered at 1500 °C for 2 h resulted in homogenous and highly dense microstructure with ˜92% of the theoretical density and a grain size of ˜ 35 µm. This highly dense microstructure could enhance the piezoelectric properties of the system.

  16. Comparison of setting time and temperature hydration in mortar with substituent ceramic

    International Nuclear Information System (INIS)

    Rodrigues, R.A.; Alves, L.S.; Evangelista, A.C.J.; Almeida, V.C.

    2011-01-01

    The workability of mortar is determined mainly by the kinetics of hydration of the hydraulic binder, the process of gelation / hydration of this material in aqueous solutions is significantly influenced by the presence of additives. As a result, this work aims at studying changes in setting time and temperature of hydration of mortars with 10, 15 and 30% of Portland cement replaced by residues of porcelain and ceramic bricks. The influence of these residues in the cement hydration process was studied by testing takes time, temperature, hydration and X-ray diffraction. The results indicate that the mortar setting time not changed significantly since the temperature of hydration has a minor variation on what is preferred because it reduces the microcracks created in mortar during drying.(author)

  17. Preparation of a surface-grafted imprinted ceramic membrane for selective separation of molybdate anion from water solutions.

    Science.gov (United States)

    Zeng, Jianxian; Dong, Zhihui; Zhang, Zhe; Liu, Yuan

    2017-07-05

    A surface-grafted imprinted ceramic membrane (IIP-PVI/CM) for recognizing molybdate (Mo(VI)) anion was prepared by surface-initiated graft-polymerization. Firstly, raw alumina ceramic membrane (CM) was deposited with SiO 2 active layer by situ hydrolysis deposition method. Subsequently, γ-methacryloxy propyl trimethoxyl silane (MPS) was used as a coupling agent to introduce double bonds onto the SiO 2 layer (MPS-CM). Then, 1-vinylimidazole (VI) was employed as a functional monomer to graft-polymerization onto the MPS-CM (PVI-CM). During the graft-polymerization, the influence factors of grafting degree of PVI were investigated in detail. Under optimum conditions (monomer concentration 20wt%, temperature 70°C, initiator amount 1.1wt% and reaction time 8h), the grafting degree of 20.39g/100g was obtained. Further, Mo(VI) anion was used as a template to imprint in the PVI-CM by employing 1,6-dibromohexane as a cross-linking agent, and then Mo(VI) was removed, obtaining the IIP-PVI/CM with many imprinted cavities for Mo(VI). Thereafter, static adsorption and dynamic separation properties of IIP-PVI/CM for Mo(VI) were studied. Results indicate that IIP-PVI/CM shows a specific selectivity for Mo(VI) with the adsorption capacity of 0.69mmol/100g, and the selectivity coefficient of IIP-PVI/CM is 7.48 for molybdate to tungstate anions. During the dynamic separation, IIP-PVI/CM has also good selectivity for separation of Mo(VI) and W(VI) anions. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Single-source-precursor Synthesis and High-temperature Behavior of SiC Ceramics Containing Boron

    Science.gov (United States)

    Gui, Miaomiao; Fang, Yunhui; Yu, Zhaoju

    2014-12-01

    In this paper, a hyperbranched polyborocarbosilane (HPBCS) was prepared by a one-pot synthesis with Cl2Si(CH3)CH2Cl, Cl3SiCH2Cl and BCl3 as the starting materials. The obtained HPBCS was characterized by GPC, FT-IR and NMR, and was confirmed to have hyperbranched structures. The thermal property of the resulting HPBCS was investigated by TGA. The ceramic yield of the HPBCS is about 84% and that of the counterpart hyperbranched hydridopolycarbosilane is only 45%, indicating that the introduction of boron into the preceramic polymer significantly improved the ceramic yield. With the polymer-derived ceramic route, the final ceramics were annealed at 1800 °C in argon atmosphere for 2 h in order to characterize the microstructure and to evaluate the high-temperature behavior. The final ceramic microstructure was studied by XRD and SEM, indicating that the introduction of boron dramatically inhibits SiC crystallization. The boron-containing SiC ceramic shows excellent high-temperature behavior against decomposition and crystallization at 1800 °C.

  19. Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering

    International Nuclear Information System (INIS)

    Wang, Y.P.; Zhou, L.; Zhang, M.F.; Chen, X.Y.; Liu, J.-M.; Liu, Z.G.

    2004-01-01

    Single-phased ferroelectromagnet BiFeO 3 ceramics with high resistivity were synthesized by a rapid liquid phase sintering technique. Saturated ferroelectric hysteresis loops were observed at room temperature in the ceramics sintered at 880 deg. C for 450 s. The spontaneous polarization, remnant polarization, and the coercive field are 8.9 μC/cm 2 , 4.0 μC/cm 2 , and 39 kV/cm, respectively, under an applied field of 100 kV/cm. It is proposed that the formation of Fe 2+ and an oxygen deficiency leading to the higher leakage can be greatly suppressed by the very high heating rate, short sintering period, and liquid phase sintering technique. The latter was also found effective in increasing the density of the ceramics. The sintering technique developed in this work is expected to be useful in synthesizing other ceramics from multivalent or volatile starting materials

  20. Ceramic/Metal Composites with Positive Temperature Dependence of Thermal Conductivity

    International Nuclear Information System (INIS)

    Li Jianhui; Yu Qi; Sun Wei; Zhang Rui; Wang Ke; Li Jingfeng; Ichigozaki, Daisuke

    2013-01-01

    Most materials show decreasing thermal conductivity with increasing temperature, but an opposite temperature dependence of thermal conductivity is required for some industrial applications. The present work was conducted with a motivation to develop composite materials with a positive temperature dependence of thermal conductivity. ZrO 2 / stainless steel powders (304L) composite, with 3% stearic acid, was prepared by normal sintering under the protecting of Ar after mixing by mechanical ball milling technique. With the 304L content increasing from 10% to 20%, the thermal conductivity values increased. For all samples, the thermal conductivity in the temperature range of room temperature to 700 °C decreased with temperature below 300 °C, and then began to increase. The increasing thermal conductivity of the composites (within the high temperature range was attributed to the difference of the thermal conductivity and thermal expansion coefficient between ZrO 2 ceramic and 304L stainless steel powders. Two simple models were also used to estimate the thermal conductivity of the composites, which were in good agreement with the experiment results.

  1. Formation of Green compact structure of low-temperature ceramics with taking into account the thermal degradation of the binder

    Science.gov (United States)

    Tovpinets, A. O.; Leytsin, V. N.; Dmitrieva, M. A.; Ivonin, I. V.; Ponomarev, S. V.

    2017-12-01

    The solution of the tasks in the field of creating and processing materials for additive technologies requires the development of a single theory of materials for various applications and processes. A separate class of materials that are promising for use in additive technologies includes materials whose consolidation is ensured by the presence of low-melting components in the initial mixture which form a matrix at a temperature not exceeding the melting point, recrystallization or destruction of any of the responsible refractory components of the initial dispersion. The study of the contribution of the binder thermal destruction to the structure and phase composition of the initial compact of the future composite is essential for the development of modern technologies for the synthesis of low-temperature ceramics. This paper investigates the effect of the thermal destruction of a binder on the formation of a green compact of low-temperature ceramics and the structural-mechanical characteristics of sintered ceramics. The approach proposed in Ref. [1] for evaluating the structure and physical characteristics of sintered low-temperature ceramics is improved to clarify the structure of green compacts obtained after thermal destruction of the polymer binder, with taking into account the pores formed and the infusible residue. The obtained results enable a more accurate prediction of thermal stresses in the matrix of sintered ceramics and serve as a basis for optimization.

  2. Determination of temperature dependence of piezoelectric coefficients matrix of lead zirconate titanate ceramics by quasi-static and resonance method

    Energy Technology Data Exchange (ETDEWEB)

    Li Fei; Xu Zhuo; Wei Xiaoyong; Yao Xi, E-mail: lifei1216@gmail.co [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China)

    2009-05-07

    The piezoelectric coefficients (d{sub 33}, -d{sub 31}, d{sub 15}, g{sub 33}, -g{sub 31}, g{sub 15}) of soft and hard lead zirconate titanate ceramics were measured by the quasi-static and resonance methods, at temperatures from 20 to 300 {sup 0}C. The results showed that the piezoelectric coefficients d{sub 33}, -d{sub 31} and d{sub 15} obtained by these two methods increased with increasing temperature for both hard and soft PZT ceramics, while the piezoelectric coefficients g{sub 33}, -g{sub 31} and g{sub 15} decreased with increasing temperature for both hard and soft PZT ceramics. In this paper, the observed results were also discussed in terms of intrinsic and extrinsic contributions to piezoelectric response.

  3. Bright upconversion luminescence and increased Tc in CaBi2Ta2O9:Er high temperature piezoelectric ceramics

    International Nuclear Information System (INIS)

    Peng Dengfeng; Wang Xusheng; Yao Xi; Xu Chaonan; Lin Jian; Sun Tiantuo

    2012-01-01

    Er 3+ doped CaBi 2 Ta 2 O 9 (CBT) bismuth layered-structure high temperature piezoelectric ceramics were synthesized by the traditional solid state method. The upconversion (UC) emission properties of Er 3+ doped CBT ceramics were investigated as a function of Er 3+ concentration and incident pump power. A bright green upconverted emission was obtained under excitation 980 nm at room temperature. The observed strong green and weak red emission bands corresponded to the transitions from 4 S 3/2 and 4 F 9/2 to 4 I 15/2 , respectively. The dependence of UC emission intensity on pumping power indicated that a three-photon process was involved in UC emissions. Studies of dielectric with temperature have also been carried out. Introduction of Er increased the Curie temperature of CBT, thus, making this ceramic suitable for sensor applications at higher temperatures. Because of its strong up-converted emission and increased Tc, the multifunctional high temperature piezoelectric ceramic may be useful in high temperature sensor, fluorescence thermometry, and optical-electro integration applications.

  4. Process Developed for Generating Ceramic Interconnects With Low Sintering Temperatures for Solid Oxide Fuel Cells

    Science.gov (United States)

    Zhong, Zhi-Min; Goldsby, Jon C.

    2005-01-01

    Solid oxide fuel cells (SOFCs) have been considered as premium future power generation devices because they have demonstrated high energy-conversion efficiency, high power density, and extremely low pollution, and have the flexibility of using hydrocarbon fuel. The Solid-State Energy Conversion Alliance (SECA) initiative, supported by the U.S. Department of Energy and private industries, is leading the development and commercialization of SOFCs for low-cost stationary and automotive markets. The targeted power density for the initiative is rather low, so that the SECA SOFC can be operated at a relatively low temperature (approx. 700 C) and inexpensive metallic interconnects can be utilized in the SOFC stack. As only NASA can, the agency is investigating SOFCs for aerospace applications. Considerable high power density is required for the applications. As a result, the NASA SOFC will be operated at a high temperature (approx. 900 C) and ceramic interconnects will be employed. Lanthanum chromite-based materials have emerged as a leading candidate for the ceramic interconnects. The interconnects are expected to co-sinter with zirconia electrolyte to mitigate the interface electric resistance and to simplify the processing procedure. Lanthanum chromites made by the traditional method are sintered at 1500 C or above. They react with zirconia electrolytes (which typically sinter between 1300 and 1400 C) at the sintering temperature of lanthanum chromites. It has been envisioned that lanthanum chromites with lower sintering temperatures can be co-fired with zirconia electrolyte. Nonstoichiometric lanthanum chromites can be sintered at lower temperatures, but they are unstable and react with zirconia electrolyte during co-sintering. NASA Glenn Research Center s Ceramics Branch investigated a glycine nitrate process to generate fine powder of the lanthanum-chromite-based materials. By simultaneously doping calcium on the lanthanum site, and cobalt and aluminum on the

  5. Effects of firing temperature on the properties of ceramics produced from a clay tailings

    International Nuclear Information System (INIS)

    Oliveira, V.M.C.A.; Vidal, A.B.; Ribeiro, S.

    2012-01-01

    The aim of this study was to evaluate the properties of ceramics produced by the firing of a tailing from a clay mining of quartz sand for their application in construction, primarily in the floors and walls. The waste was pressed and the compacts were fired at 1000, 1100, 1200, 1300, 1400 and 1500°C. The results showed linear shrinkage (RL) and water absorption (AA) ranging from 0.5 to 6.5% and 16.4 to 0.5%, respectively. It was also decreased porosity and bulk density increased with increasing treatment temperature. In the analyzes of fracture was observed increase cohesion between particles and connections of the reduction in porosity with increasing firing temperature. The sample showed a better set of mechanical properties of the sample was fired at 1300°C, and present the best appearance. (author)

  6. Characterisation of Ceramic-Coated 316LN Stainless Steel Exposed to High-Temperature Thermite Melt and Molten Sodium

    Science.gov (United States)

    Ravi Shankar, A.; Vetrivendan, E.; Shukla, Prabhat Kumar; Das, Sanjay Kumar; Hemanth Rao, E.; Murthy, S. S.; Lydia, G.; Nashine, B. K.; Mallika, C.; Selvaraj, P.; Kamachi Mudali, U.

    2017-11-01

    Currently, stainless steel grade 316LN is the material of construction widely used for core catcher of sodium-cooled fast reactors. Design philosophy for core catcher demands its capability to withstand corium loading from whole core melt accidents. Towards this, two ceramic coatings were investigated for its application as a layer of sacrificial material on the top of core catcher to enhance its capability. Plasma-sprayed thermal barrier layer of alumina and partially stabilised zirconia (PSZ) with an intermediate bond coat of NiCrAlY are selected as candidate material and deposited over 316LN SS substrates and were tested for their suitability as thermal barrier layer for core catcher. Coated specimens were exposed to high-temperature thermite melt to simulate impingement of molten corium. Sodium compatibility of alumina and PSZ coatings were also investigated by exposing samples to molten sodium at 400 °C for 500 h. The surface morphology of high-temperature thermite melt-exposed samples and sodium-exposed samples was examined using scanning electron microscope. Phase identification of the exposed samples was carried out by x-ray diffraction technique. Observation from sodium exposure tests indicated that alumina coating offers better protection compared to PSZ coating. However, PSZ coating provided better protection against high-temperature melt exposure, as confirmed during thermite melt exposure test.

  7. The effect of temperature and loading frequency on the converse piezoelectric response of soft PZT ceramics

    Science.gov (United States)

    Dapeng, Zhu; Qinghui, Jiang; Yingwei, Li

    2017-12-01

    The converse piezoelectric coefficient d 33 of soft PZT ceramics was measured from 20 °C to 150 °C under different loading frequency. Results showed that in the tested temperature range, the evolution of d 33 obeys the Rayleigh-law behavior. The influence of temperature on d 33 is a little complicated. For instance, the maximum d 33 was observed at 150 °C when the applied electric field E was at 0.1 kV mm-1. When E increased to 0.3 kV mm-1 and 0.4 kV mm-1, the maximum d 33 was observed at 120 °C and 100 °C, respectively. Such behaviors are rationalized by the evolution of the Rayleigh parameters d init and α. For d init, it increases as temperature increases. While for α, it first increases and then decreases with the increase of temperature due to the evolution of the spontaneous strain and the volume of the switched domains. In the tested loading frequency, d 33 decreased linearly with the logarithm of the frequency of electric field. With the increase of temperature, the influence of frequency on d 33 gradually weakened, implying that at high temperature, the motion of domain walls became active and the pinning effect of defects nearly disappeared.

  8. Temperature variations in sintering ovens for metal ceramic dental prostheses: non-destructive assessment using OCT

    Science.gov (United States)

    Sinescu, C.; Bradu, A.; Duma, V.-F.; Topala, F. I.; Negrutiu, M. L.; Podoleanu, A. G.

    2018-02-01

    We present a recent investigation regarding the use of optical coherence tomography (OCT) in the monitoring of the calibration loss of sintering ovens for the manufacturing of metal ceramic dental prostheses. Differences in the temperatures of such ovens with regard to their specifications lead to stress and even cracks in the prostheses material, therefore to the failure of the dental treatment. Evaluation methods of the ovens calibration consist nowadays of firing supplemental samples; this is subjective, expensive, and time consuming. Using an in-house developed swept source (SS) OCT system, we have demonstrated that a quantitative assessment of the internal structure of the prostheses, therefore of the temperature settings of the ovens can be made. Using en-face OCT images acquired at similar depths inside the samples, the differences in reflectivity allow for the evaluation of the differences in granulation (i.e., in number and size of ceramic grains) of the prostheses material. Fifty samples, divided in five groups, each sintered at different temperatures (lower, higher, or equal to the prescribed one) have been analyzed. The consequences of the temperature variations with regard to the one prescribed were determined. Rules-of-thumb were extracted to monitor objectively, using only OCT images of currently manufactured samples, the settings of the oven. The method proposed allows for avoiding producing prostheses with defects. While such rules-of-thumb achieve a qualitative assessment, an insight in our on-going work on the quantitative assessment of such losses of calibration on dental ovens using OCT is also made.

  9. Mechanical properties, reliability assessment and design of ceramic components used in high temperature assemblies

    International Nuclear Information System (INIS)

    Bendeich, P.J.

    2002-01-01

    The use of ceramic materials in high temperature structural components holds may advantages over conventional materials such as metals. These include high temperature strength, creep resistance, wear resistance, corrosion resistance, and stiffness. The tradeoff for these improved properties is the brittle nature of ceramics and their tendency for catastrophic failure and lack of damage tolerance. In this work some the various strategies available to overcome these limitations are reviewed. These include stochastic design strategies using the Weibull and Batdorf methods of failure probability prediction rather than the more familiar deterministic methods. Fracture mechanics analysis is also used extensively in this work to predict damage tolerance and failure conditions. A range of testing methods was utilised to provide material information for the methods outlined above. These included: flexural strength measurement for the determination of failure probability parameters; fracture toughness measurement using indentation methods and crack growth measurement; thermal expansion measurement; temperature dependant dynamic Young's modulus measurement; and thermal shock testing using a central heating laser. A new inverse method for measuring specific heat was developed and critically examined for practical use. This is particularly valuable in modelling transient thermal conditions for use in thermal shock analysis. A shape optimisation technique utilising a biological growth law was adapted for use with ceramic components utilising failure probability as the objective function. These methods were utilised in the design and subsequent failure analysis of a high temperature hotpress ram. The results of the failure probability analysis showed that the design had a very low probability of failure under normal operating conditions. Fracture mechanics analysis indicated that damage tolerance in the critical retaining bolt mechanism was high with damage likely to cause

  10. Stereo-selective hydrolytic reaction of toxic compounds by enzyme immobilized on porous ceramics; Takoshitsu ceramics kotaika koso ni yoru dokusei kagobutsu no rittai sentakuteki kasui bunkai hanno

    Energy Technology Data Exchange (ETDEWEB)

    Kato, K.; Saito, T. [National Industrial Research Institute of Nagoya, Nagoya (Japan)

    2000-08-25

    Experiment was made on stereo-selective hydrolytic reaction of trifluoroethyl ester of ketoprophene by various kinds of lipase. In addition, study was made on the stability of lipase simply immobilized on porous ceramics under the existence of organic solvent. In the experiment, the hydrolytic activity of 8 kinds of lipase was studied for ketoprophene monochloroethyl ester (1a) and trifluoroethyl ester (1b). The experiment result showed that lipase M originating in mold (Mucor Javanicus) shows a high reactivity and stereo-selectivity for the compound (1a). The lipase immobilized on porous ceramics was easily obtained by a very simple method composed of only throwing carriers into enzyme suspension, agitation and refrigerated drying. The lipase immobilized on porous ceramics 'Toyonite 200-A' synthesized from kaolinite retained the residual activity of nearly 50%, original selectivity and considerable stability after 5 times of repetitive uses. This study result is useful for bio- reactors and bio-sensors for synthesis or decomposition of compounds. (NEDO)

  11. Investigation of firing temperature variation in ovens for ceramic-fused-to-metal dental prostheses using swept source optical coherence tomography

    Science.gov (United States)

    Todor, Raluca; Negrutiu, Meda-Lavinia; Sinescu, Cosmin; Topala, Florin Ionel; Bradu, Adrian; Duma, Virgil-Florin; Romînu, Mihai; Podoleanu, Adrian G.

    2018-03-01

    One of the most common fabrication techniques for dental ceramics is sintering, a process of heating of the ceramic to ensure densification. This occurs by viscous flow when the firing temperature is reached. Acceptable restorations require the alloy and ceramic to be chemically, thermally, mechanically, and aesthetically compatible. Thermal and mechanical compatibility include a fusing temperature of ceramic that does not cause distortion of the metal substructure. Decalibration of ovens used for firing of the ceramic layers for metal ceramic dental prostheses leads to stress and cracks in the veneering material, and ultimately to the failure of the restoration. 25 metal ceramic prostheses were made for this study. They were divided in five groups, each sintered at a different temperature: a group at the temperature prescribed by the producer, two groups at lower and two groups at higher temperatures set in the ceramic oven. An established noninvasive biomedical imaging method, swept source (SS) optical coherence tomography (OCT) was employed, in order to evaluate the modifications induced when using temperatures different from those prescribed for firing the samples. A quantitative assessment of the probes is performed by en-face OCT images, taken at constant depths inside the samples. The differences in granulation, thus in reflectivity allow for extracting rules-of-thumb to evaluate fast, by using only the prostheses currently produced the current calibration of the ceramic oven. OCT imaging can allow quick identification of the oven decalibration, to avoid producing dental prostheses with defects.

  12. High temperature dielectric relaxation anomaly of Y3+ and Mn2+ doped barium strontium titanate ceramics

    International Nuclear Information System (INIS)

    Yan, Shiguang; Mao, Chaoliang; Wang, Genshui; Yao, Chunhua; Cao, Fei; Dong, Xianlin

    2014-01-01

    Relaxation like dielectric anomaly is observed in Y 3+ and Mn 2+ doped barium strontium titanate ceramics when the temperature is over 450 K. Apart from the conventional dielectric relaxation analysis method with Debye or modified Debye equations, which is hard to give exact temperature dependence of the relaxation process, dielectric response in the form of complex impedance, assisted with Cole-Cole impedance model corrected equivalent circuits, is adopted to solve this problem and chase the polarization mechanism in this paper. Through this method, an excellent description to temperature dependence of the dielectric relaxation anomaly and its dominated factors are achieved. Further analysis reveals that the exponential decay of the Cole distribution parameter n with temperature is confirmed to be induced by the microscopic lattice distortion due to ions doping and the interaction between the defects. At last, a clear sight to polarization mechanism containing both the intrinsic dipolar polarization and extrinsic distributed oxygen vacancies hopping response under different temperature is obtained.

  13. [Influence of compaction pressure and pre-sintering temperature on the machinability of zirconia ceramic].

    Science.gov (United States)

    Huang, Huil; Li, Jing; Zhang, Fuqiang; Sun, Jing; Gao, Lian

    2011-10-01

    In order to make certain the compaction pressure as well as pre-sintering temperature on the machinability of the zirconia ceramic. 3 mol nano-size 3 mol yttria partially stabilized zirconia (3Y-TZP) powder were compacted at different isostatic pressure and sintered at different temperature. The cylindrical surface was traversed using a hard metal tool. Surface and edge quality were checked visually using light stereo microscopy. Pre-sintering temperature had the obviously influence on the machinability of 3Y-TZP. The cutting surface was smooth, and the integrality of edge was better when the pre-sintering temperature was chosen between 800 degrees C to 900 degrees C. Compaction pressure showed only a weak influence on machinability of 3Y-TZP blanks, but the higher compaction pressure result in the poor surface quality. The best machinability of pre-sintered zirconia body was found for 800-900 degrees C pre-sintering temperature, and 200-300 MPa compaction pressure.

  14. Application of high temperature ceramic superconductors (CSC) to commercial tokamak reactors

    International Nuclear Information System (INIS)

    Ehst, D.A.; Kim, S.; Gohar, Y.; Turner, L.; Smith, D.L.; Mattas, R.

    1988-08-01

    Ceramic superconductors operating near liquid nitrogen temperature may experience higher heating rates without losing stability, compared conventional superconductors. This will permit cable design with less stabilizer, reducing fabrication costs for large fusion magnets. Magnet performance is studied for different operating current densities in the superconductor, and cost benefits to commercial tokamak reactors are estimated. It appears that 10 kA /center dot/ cm/sup /minus/2/ (at 77 K and /approximately/10 T) is a target current density which must be achieved in order for the ceramic superconductors to compete with conventional materials. At current densities around 50 kA /center dot/ cm/sup /minus/2/ most potential benefits have already been gained, as magnet structural steel begins to dominate the cost at this point. For a steady state reactor reductions of /approximately/7% are forecast for the overall capital cost of the power plant in the best case. An additional /approximately/3% cost saving is possible for pulsed tokamaks. 9 refs., 4 figs., 8 tabs

  15. Highly sensitive room temperature ammonia gas sensor based on Ir-doped Pt porous ceramic electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenlong [College of pharmacy and biological engineering, Chengdu University, Chengdu, 610106 (China); Department of chemical and materials engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Liu, Yen-Yu [Department of chemical and materials engineering, Tunghai University, Taichung 407, Taiwan (China); Do, Jing-Shan, E-mail: jsdo@ncut.edu.tw [Department of chemical and materials engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Li, Jing, E-mail: lijing@cdu.edu.cn [College of pharmacy and biological engineering, Chengdu University, Chengdu, 610106 (China)

    2016-12-30

    Highlights: • Water vapors seem to hugely improve the electrochemical activity of the Pt and Pt-Ir porous ceramic electrodes. • The gas sensors based on the Pt and Pt-Ir alloy electrodes possess good sensing performances. • The reaction path of the ammonia on platinum has been discussed. - Abstract: Room temperature NH{sub 3} gas sensors based on Pt and Pt-Ir (Ir doping Pt) porous ceramic electrodes have been fabricated by both electroplating and sputtering methods. The properties of the gaseous ammonia sensors have been examined by polarization and chronoamperometry techniques. The influence of humidity on the features of the resulting sensors in the system has also been discussed, and the working potential was optimized. Water vapors seem to hugely improve the electrochemical activity of the electrode. With increasing the relative humidity, the response of the Pt-Ir(E)/Pt(S)/PCP sensor to NH{sub 3} gas could be enhanced remarkably, and the sensitivity increases from 1.14 to 12.06 μA ppm{sup −1} cm{sup −2} .Then we have also discussed the sensing mechanism of the Pt-Ir sensor and the result has been confirmed by X-ray photoelectron spectroscopy of the electrode surface before and after reaction in the end.

  16. High temperature synthesis of ceramic composition by directed reaction of molten titanium or zirconium with boron carbide

    International Nuclear Information System (INIS)

    Johnson, W.B.

    1990-01-01

    Alternative methods of producing ceramics and ceramic composites include sintering, hot pressing and more recently hot isostatic pressing (HIP) and self-propagating high temperature synthesis (SHS). Though each of these techniques has its advantages, each suffers from several restrictions as well. Sintering may require long times at high temperatures and for most materials requires sintering aids to get full density. These additives can, and generally do, change (often degrade) the properties of the ceramic. Hot pressing and hot isostatic pressing are convenient methods to quickly prepare samples of some materials to full density, but generally are expensive and may damage some types of reinforcements during densification. This paper focuses on the preparation and processing of composites prepared by the directed reaction of molten titanium or zirconium with boron carbide. Advantages and disadvantages of this approach when compared to traditional methods are discussed, with reference to specific examples. Examples of microstructure are properties of these materials are reported

  17. Influence of temperature and composition in the mechanical resistance and porosity of ceramic pieces

    Directory of Open Access Journals (Sweden)

    Jordán Vidal, M. M.

    2001-03-01

    Full Text Available We have tried to establish a relationship between the raw material and the mechanical properties of ceramic pieces subjected to different firing processes, so under the determinant of the thermal process we have done a follow up on the petrogenetic process that the manufacture of ceramics represents. This is evaluated in terms of the mechanical behaviour of the ceramic tile bodies, which have been normalised and submitted to tests for flexion. The principal objective is to be able to indicate what the optimum firing temperature for each sample is, and to determine what it is in the ceramic body which offers the greatest resistance when a specific force is applied. The study of the texture of the ceramic body will be considered mainly in relation to the existent porosity, as well as its distribution, which conditions its characteristics and specifications. The relation between porosity and the parameters that describe the porous texture of the ceramic tile pieces studied is complicated because of the fact that these have many pores with a complex and irregular spatial disposition, with a broad distribution of forms and sizes, and as such they do not fit into established empirical equations.

    Se ha tratado de establecer la relación entre materia prima y propiedades mecánicas de piezas cerámicas sometidas a procesos de cocción diversos. Bajo el condicionante del proceso térmico se realiza un seguimiento del proceso petrogenético que representa la fabricación cerámica y se evalúa a través del comportamiento mecánico de probetas cerámicas normalizadas y sometidas a ensayos de flexión. El objetivo principal es poder indicar cuál es la temperatura óptima de cocción para cada muestra y determinar cuál es aquélla en que la probeta cerámica ofrece una mayor resistencia al aplicarle una determinada carga. El estudio de la textura de la matriz cerámica es de gran interés en relación con la porosidad, asi como su distribuci

  18. Application of Self-Propagating High Temperature Synthesis to the Fabrication of Actinide Bearing Nitride and Other Ceramic Nuclear Fuels

    International Nuclear Information System (INIS)

    Moore, John J.; Reigel, Marissa M.; Donohoue, Collin D.

    2009-01-01

    The project uses an exothermic combustion synthesis reaction, termed self-propagating high-temperature synthesis (SHS), to produce high quality, reproducible nitride fuels and other ceramic type nuclear fuels (cercers and cermets, etc.) in conjunction with the fabrication of transmutation fuels. The major research objective of the project is determining the fundamental SHS processing parameters by first using manganese as a surrogate for americium to produce dense Zr-Mn-N ceramic compounds. These fundamental principles will then be transferred to the production of dense Zr-Am-N ceramic materials. A further research objective in the research program is generating fundamental SHS processing data to the synthesis of (i) Pu-Am-Zr-N and (ii) U-Pu-Am-N ceramic fuels. In this case, Ce will be used as the surrogate for Pu, Mn as the surrogate for Am, and depleted uranium as the surrogate for U. Once sufficient fundamental data has been determined for these surrogate systems, the information will be transferred to Idaho National Laboratory (INL) for synthesis of Zr-Am-N, Pu-Am-Zr-N and U-Pu-Am-N ceramic fuels. The high vapor pressures of americium (Am) and americium nitride (AmN) are cause for concern in producing nitride ceramic nuclear fuel that contains Am. Along with the problem of Am retention during the sintering phases of current processing methods, are additional concerns of producing a consistent product of desirable homogeneity, density and porosity. Similar difficulties have been experienced during the laboratory scale process development stage of producing metal alloys containing Am wherein compact powder sintering methods had to be abandoned. Therefore, there is an urgent need to develop a low-temperature or low-heat fuel fabrication process for the synthesis of Am-containing ceramic fuels. Self-propagating high temperature synthesis (SHS), also called combustion synthesis, offers such an alternative process for the synthesis of Am nitride fuels. Although SHS

  19. High Temperature Deformation Behavior of YBa2Cu3O6+x Superconducting Ceramic Materials

    Science.gov (United States)

    1993-05-15

    Mocellin , High Tech. Ceramics, ed P. Vinvinzini, Pub. Elsevier Science Publisher (1986). 15. F. Wakai, S. Sakaguchi and M. Matsuno, Adv. Ceram. Mater...Soc., 68r101, 552 (1985). 18. C. Carry and A. Mocellin , J. Amer. Ceram. Soc., 69f91, C215 (1986). 19. P. C. Panda, E. R. Seydal and R. Raj, US Patent

  20. Study on the improvement of high temperature mechanical properties of carbon fiber reinforced ceramics composites through texture and interface controls; Tanso sen`i kyoka ceramics fukugo zairyo no soshiki kaimen seigyo ni yoru koon rikigaku tokusei kaizen ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    To improve the tenacity and reliability of ceramics, the fiber reinforced ceramics composites compounding high strength long fibers and ceramics have been investigated. In this study, carbon fibers were selected as reinforcement fibers. The hexagonal boron nitride (hBN) was selected as a matrix having the plastic deformation performance. To intend to control the composition of the fiber/matrix interface, composites were created by adding polysilazane which was an organic Si (Si3N4) source. Relationships between the condition of interface of each phase and the high temperature mechanical properties were examined by changing the fabrication condition, to grasp the technical problems, such as the optimization of fabrication condition. Knowledge on the fabrication of long fiber reinforced ceramics composites was obtained including the arbitrary control technology of interface consistency of ceramics composites for super high temperature structures. The carbon fiber reinforced hBN composites developed in this study have excellent strength up to 1,500 centigrade and fracture energy, and they are new prospective materials as well as C/C composites. 4 refs., 37 figs., 13 tabs.

  1. [Effects of repeated firing on microleakage of selective laser melting ceramic crowns].

    Science.gov (United States)

    Zhong, Qun; Peng, Yan; Wu, Xue-Ying; Weng, Jia-Wei

    2016-12-01

    To investigate the effects of repeated firing on microleakage of selective laser melting ceramic crowns. Fifty molars were randomly divided into 2 groups (25 teeth in each group). Teeth in group A received a chamfer finish line preparation, whereas teeth in group B received a shoulder finish line. After SLM metal crowns were fabricated, all the crowns received initial oxidation step, opaque firing, dentin firing and glaze firing, then crowns in each group were randomly divided into 5 sub-groups according to different time of clinical firings. Glass ionomer was applied for bonding. After 5000 thermocycles ranging from 5degrees centigrade to 55degrees centigrade, all the specimens was evaluated by dye penetration and then microleakage was examined under light microscopy. The data were analyzed with SPSS 20.0 software package. Microleakage between all specimens of group A were not statistically significant (P>0.05) whereas that of group B were statistically significant (P<0.05); After the fifth time of clinical firing, microleakage of specimens in group B(B5) were significantly higher than that of group A(A5). Repeated firings had no significant influence on marginal microleakage of SLM ceramic crowns whereas the crowns of chamfer finish lines result in better clinical performance after repeated firings.

  2. Progress In Developing an Impermeable, High Temperature Ceramic Composite for Advanced Reactor Clad And Structural Applications

    International Nuclear Information System (INIS)

    Feinroth, Herbert; Hao, Bernard; Fehrenbacher, Larry; Patterson, Mark

    2002-01-01

    Most Advanced Reactors for Energy and Space Applications require higher temperature materials for fuel cladding and core internal structures. For temperatures above 500 deg. C, metal alloys do not retain sufficient strength or long term corrosion resistance for use in either water, liquid metal or gas cooled systems. In the case of water cooled systems, such metals react exo-thermically with water during core overheating accidents, thus requiring extensive and expensive emergency systems to protect against major releases. Past efforts to apply ceramic composites (oxide, carbide or nitride based) having passive safety characteristics, good strength properties at high temperatures, and reasonable resistance to crack growth, have not been successful, either because of irradiation induced effects, or lack of impermeability to fission gases. Under a Phase 1 SBIR (Small Business Innovative Research) project sponsored by DOE's Office of Nuclear Energy, the authors have developed a new material system that may solve these problems. A hybrid tubular structure (0.6 inches in outside diameter) consisting of an inner layer of monolithic silicon carbide (SiC) and outer layers of SiC-SiC composite, bonded to the inner layer, has been fabricated in small lengths. Room temperature permeability tests demonstrate zero gas leakage at pressures up to 120 psig internal pressure. Four point flexural bending tests on these hybrid tubular specimens demonstrate a 'graceful' failure mode: i.e. - the outer composite structure sustains a failure mode under stress that is similar to the yield vs. stress characteristics of metal structures. (authors)

  3. Analysis of the temperature and stress distributions in ceramic window materials subjected to microwave heating

    International Nuclear Information System (INIS)

    Ferber, M.K.; Kimrey, H.D.; Becher, P.F.

    1983-07-01

    The temperature and stress and distributions generated in ceramic materials currently employed in microwave gyrotron tube windows were determined for a variety of operating conditions. Both edge- and face-cooled windows of either polycrystalline BeO or polycrystalline Al 2 O 3 were considered. The actual analysis involved three steps. First, a computer program was used to determine the electric field distribution within the window at a given power level and frequency (TE 02 wave propagation assumed). This program was capable of describing both the radial and axial dependence of the electric field. The effects of multiple internal reflections at the various dielectric interfaces were also accounted for. Secondly, the field distribution was used to derive an expression for the heat generated per unit volume per unit time within the window due to dieletric losses. A generalized heat conduction computer code was then used to compute the temperature distribution based on the heat generation function. Third, the stresses were determined from the temperature profiles using analytical expression or a finite-element computer program. Steady-state temperature and stress profiles were computed for the face-cooled and edge-cooled windows

  4. Stress- and temperature-dependent scaling behavior of dynamic hysteresis in soft PZT bulk ceramics

    International Nuclear Information System (INIS)

    Yimnirun, R; Wongsaenmai, S; Wongmaneerung, R; Wongdamnern, N; Ngamjarurojana, A; Ananta, S; Laosiritaworn, Y

    2007-01-01

    Effects of electric field-frequency, electric field-amplitude, mechanical stress, and temperature on the hysteresis area, especially the scaling form, were investigated in soft lead zirconate titanate (PZT) bulk ceramics. The hysteresis area was found to depend on the frequency and field-amplitude with the same set of exponents as the power-law scaling for both with and without stresses. The inclusion of stresses into the power-law was obtained in the form of σ=0 > ∝ f -0.25 E 0 σ 0.45 which indicates the difference in energy dissipation between the under-stress and stress-free conditions. The power-law temperature scaling relations were obtained for hysteresis area (A) and remanent polarization P r , while the coercivity E C was found to scale linearly with temperature T. The three temperature scaling relations were also field-dependent. At fixed field amplitude E 0 , the scaling relations take the forms of ∝ T -1.1024 , P r ∼T -1.2322 and (E C0 - E C ) ∼T

  5. Investigation of deterioration mechanism of electrical ceramic insulating materials under high temperature

    International Nuclear Information System (INIS)

    Mizutani, Yoshinobu; Ito, Tetsuo; Okamoto, Tatsuki; Kumazawa, Ryoji; Aizawa, Rie; Moriyama, Hideshige

    2000-01-01

    It is thought that ceramic insulator can be applied to electric power equipments that are under high temperature not to be able use organic materials. Our research has suggested components of mica-alumina combined insulation. As the results of and carried out temperature accelerating test, combined insulation life is expected long term over 40 years at over 500-Celsius degrees. However to construct high reliable insulating system, it is clarified deterioration mechanism on combined insulation and evaluates life of that. Therefore we carried out metal behavior test and voltage aging test using mica-sheet and alumina-cloth that are components of combined insulation under high temperature in nitrogen gas atmosphere. It is cleared two metal behavior mechanisms: One is that the opening of insulator are filled up with copper that is oxidized, the other is the metal diffuses in alumina-cloth through surface. And distance of metal behavior is able to be estimated at modulate temperature and in modulate time. It is also cleared that alumina-cloth is deteriorated by metal behavior into alumina-cloth. These results indicate that combined insulation is deteriorated from electrode side by metal behavior and is finally broken down through alumina-cloth. (author)

  6. Mechanical properties and porosity of dental glass-ceramics hot-pressed at different temperatures

    Directory of Open Access Journals (Sweden)

    Carla Castiglia Gonzaga

    2008-09-01

    Full Text Available The objective of this work was to evaluate biaxial-flexural-strength (σf, Vickers hardness (HV, fracture toughness (K Ic, Young's modulus (E, Poisson's ratio (ν and porosity (P of two commercial glass-ceramics, Empress (E1 and Empress 2 (E2, as a function of the hot-pressing temperature. Ten disks were hot-pressed at 1065, 1070, 1075 and 1080 °C for E1; and at 910, 915, 920 and 925 °C for E2. The porosity was measured by an image analyzer software and s f was determined using the piston-on-three-balls method. K Ic and HV were determined by an indentation method. Elastic constants were determined by the pulse-echo method. For E1 samples treated at different temperatures, there were no statistical differences among the values of all evaluated properties. For E2 samples treated at different temperatures, there were no statistical differences among the values of σf, E, and ν, however HV and K Ic were significantly higher for 910 and 915 °C, respectively. Regarding P, the mean value obtained for E2 for 925 °C was significantly higher compared to other temperatures.

  7. Oxidation Study of an Ultra High Temperature Ceramic Coatings Based on HfSiCN

    Science.gov (United States)

    Sacksteder, Dagny; Waters, Deborah L.; Zhu, Dongming

    2018-01-01

    High temperature fiber-reinforced ceramic matrix composites (CMCs) are important for aerospace applications because of their low density, high strength, and significantly higher-temperature capabilities compared to conventional metallic systems. The use of the SiCf/SiC and Cf/SiC CMCs allows the design of lighter-weight, more fuel efficient aircraft engines and also more advanced spacecraft airframe thermal protection systems. However, CMCs have to be protected with advanced environmental barrier coatings when they are incorporated into components for the harsh environments such as in aircraft engine or spacecraft applications. In this study, high temperature oxidation kinetics of an advanced HfSiCN coating on Cf/SiC CMC substrates were investigated at 1300 C, 1400 C, and 1500 C by using thermogravimetric analysis (TGA). The coating oxidation reaction parabolic rate constant and activation energy were estimated from the experimental results. The oxidation reaction studies showed that the coatings formed the most stable, predominant HfSiO4-HfO2 scales at 1400 C. A peroxidation test at 1400 C then followed by subsequent oxidation tests at various temperatures also showed more adherent scales and slower scale growth because of reduced the initial transient oxidation stage and increased HfSiO4-HfO2 content in the scales formed on the HfSiCN coatings.

  8. Noise characteristics of resistors buried in low-temperature co-fired ceramics

    International Nuclear Information System (INIS)

    Kolek, A; Ptak, P; Dziedzic, A

    2003-01-01

    The comparison of noise properties of conventional thick film resistors prepared on alumina substrates and resistors embedded in low-temperature co-fired ceramics (LTCCs) is presented. Both types of resistors were prepared from commercially available resistive inks. Noise measurements of LTCC resistors below 1 kHz show Gaussian 1/f noise. This is concluded from the calculations of the second spectra as well as from studying the volume dependence of noise intensity. It has occurred that noise index of LTCC resistors on average is not worse than that of conventional resistors. A detailed study of co-fired surface resistors and co-fired buried resistors show that burying a resistor within LTCC substrate usually leads to (significant) enhancement of resistance but not of noise intensity. We interpret this behaviour as another argument in favour of tunnelling as the dominant conduction mechanism in LTCC resistors

  9. Effectiveness of high temperature innovative geometry fixed ceramic matrix regenerators used in glass furnaces

    Directory of Open Access Journals (Sweden)

    Wołkowycki Grzegorz

    2016-03-01

    Full Text Available The paper presents the effectiveness of waste heat recovery regenerators equipped with innovative ceramic matrix forming an integral part of a real glass furnace. The paper full description of the regenerators’ matrix structure with its dimensions, thermo-physical properties and operating parameters is included experimentally determined was the effectiveness of the regenerators has been descrbed using the obtained experimental data such as the operating temperature, gas flows as well as the gases generated during the liquid glass manufacturing process. The effectiveness values refer not only to the heating cycle when the regenerator matrix is heated by combustion gases but also to the cooling cycle in which the matrix is cooled as a result of changes in the direction of the flowing gas. On the basis of the determined effectiveness values for both cycles and measurement uncertainties it was possible, to calculate the weighted average efficiency for each of the regenerators.

  10. Effect of sintering temperatures on titanium matrix composites reinforced by ceramic particles

    Energy Technology Data Exchange (ETDEWEB)

    Romero, F.; Amigo, V.; Busquets, D.; Klyatskina, E. [Mechanical and Materials Engineering Department. Polytechnical University of Valencia, Valencia (Spain)

    2005-07-01

    Titanium and titanium composites have a potential use in aerospace and biotechnology industries, and nowadays in others like sports and fashion ones. In this work composite materials, based on titanium matrix reinforced with ceramic particles, have been developed. PM route is used to obtain compact and sintered samples. TiN and TiAl powders, are milled with Ti powder in different volumetric percentages in a ball mill. These mixtures are pressed in a uniaxial press and sintered in a vacuum furnace at different temperatures between 1180 to 1220 deg. C. Porosity of samples is analysed, before and after the sintering process, by Archimedes technique and by image analysis. Mechanical properties and the reinforcement particles influence in the titanium matrix are studied by flexion test in green and sintered states, and by hardness and microhardness tests. Complimentarily, a microstructural analysis is carried out by optical and electron microscopy, and the reactivity between the reinforce particles and titanium matrix are studied. (authors)

  11. High energy storage density over a broad temperature range in sodium bismuth titanate-based lead-free ceramics.

    Science.gov (United States)

    Yang, Haibo; Yan, Fei; Lin, Ying; Wang, Tong; Wang, Fen

    2017-08-18

    A series of (1-x)Bi 0.48 La 0.02 Na 0.48 Li 0.02 Ti 0.98 Zr 0.02 O 3 -xNa 0.73 Bi 0.09 NbO 3 ((1-x)LLBNTZ-xNBN) (x = 0-0.14) ceramics were designed and fabricated using the conventional solid-state sintering method. The phase structure, microstructure, dielectric, ferroelectric and energy storage properties of the ceramics were systematically investigated. The results indicate that the addition of Na 0.73 Bi 0.09 NbO 3 (NBN) could decrease the remnant polarization (P r ) and improve the temperature stability of dielectric constant obviously. The working temperature range satisfying TCC 150  °C  ≤±15% of this work spans over 400 °C with the compositions of x ≥ 0.06. The maximum energy storage density can be obtained for the sample with x = 0.10 at room temperature, with an energy storage density of 2.04 J/cm 3 at 178 kV/cm. In addition, the (1-x)LLBNTZ-xNBN ceramics exhibit excellent energy storage properties over a wide temperature range from room temperature to 90 °C. The values of energy storage density and energy storage efficiency is 0.91 J/cm 3 and 79.51%, respectively, for the 0.90LLBNTZ-0.10NBN ceramic at the condition of 100 kV/cm and 90 °C. It can be concluded that the (1-x)LLBNTZ-xNBN ceramics are promising lead-free candidate materials for energy storage devices over a broad temperature range.

  12. Mechanical behavior of a Y-TZP ceramic for monolithic restorations: effect of grinding and low-temperature aging

    NARCIS (Netherlands)

    Pereira, G.K.R.; Silvestri, T.; Camargo, R.; Rippe, M.P.; Amaral, M.; Kleverlaan, C.J.; Valandro, L.F.

    2016-01-01

    This study aimed to investigate the effects of grinding with diamond burs and low-temperature aging on the mechanical behavior (biaxial flexural strength and structural reliability), surface topography, and phase transformation of a Y-TZP ceramic for monolithic dental restorations. Disc-shaped

  13. Experimental analysis of temperature profiles in ceramic brickwork elements subjected to high temperatures

    Directory of Open Access Journals (Sweden)

    Maciá, M. E.

    2013-12-01

    Full Text Available This article discusses heat transfer through a brick element in order to know the thermal behavior of onedimensional brickwork masonry samples exposed to high temperatures. The object of the tests is to build time-temperature curves according to different thermal steps in transient to experimentally determine the temperature profiles in the interior of a wall. Through this study, it is possible to demonstrate absolute moisture of a factory item from 300 °C (variation of temperatures in the interior of the element, avoid the associated phenomenon of evaporation of water during the thermal process as well as to obtain profiles of temperatures that help calculate the cross section of a factory element subjected to high temperatures.En este artículo se analiza la transferencia de calor a través de un elemento de fábrica de ladrillo con el fin de conocer el comportamiento térmico de secciones de fábrica unidimensionales expuestas a altas temperaturas. El objeto de los ensayos es construir curvas tiempo-temperatura en función de diversos escalones térmicos en régimen transitorio para determinar experimentalmente los perfiles de temperatura en el interior de un muro. A través de este estudio es posible evidenciar el contenido de humedad absoluta de un elemento de fábrica a partir de los 300 ºC (variación de las temperaturas en el interior del elemento, evitar el fenómeno asociado de la evaporación del agua durante el proceso térmico así como obtener perfiles de temperaturas que ayuden a calcular la sección eficaz de un elemento de fábrica sometido a altas temperaturas.

  14. Transition duct system with arcuate ceramic liner for delivering hot-temperature gases in a combustion turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, David J.

    2017-11-07

    A transition duct system (10) for delivering hot-temperature gases from a plurality of combustors in a combustion turbine engine is provided. The system includes an exit piece (16) for each combustor. The exit piece may include an arcuate connecting segment (36). An arcuate ceramic liner (60) may be inwardly disposed onto a metal outer shell (38) along the arcuate connecting segment of the exit piece. Structural arrangements are provided to securely attach the ceramic liner in the presence of substantial flow path pressurization. Cost-effective serviceability of the transition duct systems is realizable since the liner can be readily removed and replaced as needed.

  15. Wide gap active brazing of ceramic-to-metal-joints for high temperature applications

    Science.gov (United States)

    Bobzin, K.; Zhao, L.; Kopp, N.; Samadian Anavar, S.

    2014-03-01

    Applications like solid oxide fuel cells and sensors increasingly demand the possibility to braze ceramics to metals with a good resistance to high temperatures and oxidative atmospheres. Commonly used silver based active filler metals cannot fulfill these requirements, if application temperatures higher than 600°C occur. Au and Pd based active fillers are too expensive for many fields of use. As one possible solution nickel based active fillers were developed. Due to the high brazing temperatures and the low ductility of nickel based filler metals, the modification of standard nickel based filler metals were necessary to meet the requirements of above mentioned applications. To reduce thermally induced stresses wide brazing gaps and the addition of Al2O3 and WC particles to the filler metal were applied. In this study, the microstructure of the brazed joints and the thermo-chemical reactions between filler metal, active elements and WC particles were analyzed to understand the mechanism of the so called wide gap active brazing process. With regard to the behavior in typical application oxidation and thermal cycle tests were conducted as well as tensile tests.

  16. Influence of phase transformations on the mechanical behaviour of refractory ceramics at high temperature

    International Nuclear Information System (INIS)

    Schmitt, N.; Poirier, J.

    2009-01-01

    Refractories used at high temperature are subjected to high chemical and mechanical stresses. The mastery of their microstructure as well as the phase changes occurring in service is essential to ensure resistance to wear and failure of refractory linings. Great progress has been made: combining efficient techniques for the investigation of the microstructure with powerful numerical tools (thermochemical and thermo-mechanical computations) provides information (e.g., degradation mechanisms) that cannot be obtained directly. Also multi-physical and multi-scale models developing materials with high-performance for higher temperature and with longer lifetime. In this paper, through several examples we show some interactions between the mechanical behavior and the microstructure transformations of refractory ceramics. The tools developed to characterize their microstructure change in situ (e.g., at high temperature) and to identify their kinetics are described. Some methodologies and tools developed in recent years, today, provide a better understanding of in-service behavior of refractories while identifying the critical material and process parameters likely to increase life-time. (authors)

  17. Fertility and semen quality of workers exposed to high temperatures in the ceramics industry.

    Science.gov (United States)

    Figà-Talamanca, I; Dell'Orco, V; Pupi, A; Dondero, F; Gandini, L; Lenzi, A; Lombardo, F; Scavalli, P; Mancini, G

    1992-01-01

    The objective of this study was to test the hypothesis that chronic occupational exposure to high temperatures may be detrimental to male reproduction. The study was based on 92 healthy ceramics oven operators with a long exposure to high temperatures, and 87 controls, recruited from the shipment department of the same industry. Interviews with all subjects provided data on sociodemographic characteristics, health status, and fertility problems. Semen analysis was carried out on 46 of the workers exposed to high temperatures, and 14 of the controls, and included evaluation of the sperm concentration, morphology, and motility, including computer-assisted sperm motion analysis (velocity, linearity, ALH, BCF). The results of the questionnaire showed that exposed individuals had a higher incidence of childlessness and of self-reported difficulty in conceiving than controls. The semen analysis showed no significant differences except in sperm velocity. Although differences in semen parameters, taken singly, were not statistically significant, the overall evaluation of the sperm parameters indicated a higher prevalence of pathologic sperm profiles among the exposed compared to the controls.

  18. Processing, microstructure, and electric properties of buried resistors in low-temperature co-fired ceramics

    International Nuclear Information System (INIS)

    Yang, Pin; Rodriguez, Mark A.; Kotula, Paul; Miera, Brandon K.; Dimos, Duane

    2001-01-01

    The electrical properties of ruthenium oxide based devitrifiable resistors embedded within low-temperature co-fired ceramics were investigated from -100 o C to 100 o C. Special attention was given to the processing conditions and their effects on resistance and temperature coefficient of resistance (TCR). Results indicate that within this temperature range the conductance for these buried resistors is limited by tunneling of charge carriers through the thin glass layer between ruthenium oxide particles. A modified version of the tunneling barrier model is proposed to account for the microstructure ripening observed during thermal processing. The model parameters determined from curve fitting show that charging energy (i.e., the energy required for a charge carrier to tunnel through the glass barrier) is strongly dependent on particle size and particle--particle separation between ruthenium oxide grains. Initial coarsening of ruthenium oxide grains was found to reduce the charging energy and lower the resistance. However, when extended ripening occurs, the increase in particle--particle separation increases the charging energy, reduces the tunneling probability and gives rise to a higher resistance. The tradeoff between these two effects results in an optimum microstructure with a minimum resistance and TCR. Furthermore, the TCR of these buried resistors has been shown to be governed by the magnitude of the charging energy. Model parameters determined by our analysis appear to provide quantitative physical interpretations to the microstructural changes in the resistor, which in turn, are controlled by the processing conditions

  19. Novel polymer derived ceramic-high temperature heat flux sensor for gas turbine environment

    International Nuclear Information System (INIS)

    Nagaiah, N R; Kapat, J S; An, L; Chow, L

    2006-01-01

    This paper attempts to prove the feasibility of a novel High Temperature Heat Flux (HTHF) sensor for gas turbine environment. Based on the latest improvement in a new type of Polymer-Derived Ceramic (PDC) material, the authors present the design and development of a HTHF sensor based on PDC material, and show that such a sensor is indeed feasible. The PDC-HTHF sensor is fabricated using newly developed polymer derived SiCN, whose conductivity is controlled by proper composition and treatment condition. Direct measurements and characterization of the relevant material properties are presented. Electrical conductivity can be varied from 0 (insulator) to 100 (ohm.cm) -1 ; in addition a value of 4000 ppm/ 0 C (at 600 K) is obtained for temperature coefficient of resistance. This novel sensor is found to perform quite satisfactorily at about 1400 0 C for long term as compared to conventional heat flux sensors available commercially. This type of PDC-HTHF sensor can be used in harsh environments due to its high temperature resistance and resistance to oxidation. This paper also discusses lithography as a microfabrication technique to manufacture the proposed PDC-HTHF sensor. In our current design, the sensor dimensions are 2.5mm in diameter and 250 μm thickness

  20. Lattice Thermal Conductivity of Ultra High Temperature Ceramics ZrB2 and HfB2 from Atomistic Simulations

    Science.gov (United States)

    Lawson, John W.; Murray, Daw S.; Bauschlicher, Charles W., Jr.

    2011-01-01

    Atomistic Green-Kubo simulations are performed to evaluate the lattice thermal conductivity for single crystals of the ultra high temperature ceramics ZrB2 and HfB2 for a range of temperatures. Recently developed interatomic potentials are used for these simulations. Heat current correlation functions show rapid oscillations which can be identified with mixed metal-Boron optical phonon modes. Agreement with available experimental data is good.

  1. Ultimate Tensile Strength as a Function of Test Rate for Various Ceramic Matrix Composites at Elevated Temperatures

    Science.gov (United States)

    Choi, Sung R.; Bansal, Narottam P.; Gyekenyesi, John P.

    2002-01-01

    Ultimate tensile strength of five different continuous fiber-reinforced ceramic composites, including SiC/BSAS (2D 2 types), SiC/MAS-5 (2D), SiC/SiC (2D enhanced), and C/SiC(2D) was determined as a function of test rate at I 100 to 1200 'C in air. All five composite materials exhibited a significant dependency of ultimate strength on test rate such that the ultimate strength decreased with decreasing test rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life from one loading configuration (constant stress rate) to another (constant stress loading) for SiC/BSAS suggested that the overall macroscopic failure mechanism of the composites would be the one governed by a power-law type of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics.

  2. Circadian rhythm of temperature selection in a nocturnal lizard.

    Science.gov (United States)

    Refinetti, R; Susalka, S J

    1997-08-01

    We recorded body temperature and locomotor activity of Tokay geckos (Gekko gecko) with free access to a heat source under a 14:10 light-dark cycle and in constant darkness. Under the light-dark cycle, the lizards selected higher temperatures during the light phase, when locomotor activity was less intense. Rhythmicity in temperature selection was transiently disrupted but later resumed when the animals were placed in constant darkness. These results demonstrate the existence of a circadian rhythm of temperature selection in nocturnal ectotherms and extend previous findings of a temporal mismatch between the rhythms of locomotor activity and temperature selection in nocturnal rodents.

  3. Achievement report for fiscal 1998 on research and development of industrial science technologies. Research and development on synergy ceramics (research and development of ultra-high temperature gas turbines for electric power generation); 1998 nendo shinaji ceramics no kenkyu kaihatsu. Hatsuden'yo koon gas turbine no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This paper describes development of synergy ceramics. In developing a technology to design property fusion processes, studies were made on control of nano-structures by using a high-order nano-structure process, and on evaluation of micro region properties. Such nanocomposite bodies were selected for the object as piezoelectric ceramics PZT group (which increases mechanical characteristics and durability without impeding electric characteristics) and alumina-group YAG (which enhances high-temperature strength). Three-dimensional analyses were performed on particle morphology and crack structures by using focusing ion beams as a study on destruction behavior by means of microscopic and macroscopic particle morphology control. This paper reports the achievements of research and development on control of continuous small pore morphology (uni-directionally pierced pores on a new-type low expansion material used as matrix), intra-particle interface (discusses methods to micronize silicon nitride ceramics tissues), intra-layer interface (oxide-based ceramics are laminated on surface to improve oxidation and heat resistance without impeding high-temperature mechanical properties of non-oxide-based ceramics), intra-layer boundary (Pb-based double composition piezoelectric body having stable layer interface), and boundaries between inorganic and organic matters. (NEDO)

  4. Synthesis of Hafnium-Based Ceramic Materials for Ultra-High Temperature Aerospace Applications

    Science.gov (United States)

    Johnson, Sylvia; Feldman, Jay

    2004-01-01

    This project involved the synthesis of hafnium (Hf)-based ceramic powders and Hf-based precursor solutions that were suitable for preparation of Hf-based ceramics. The Hf-based ceramic materials of interest in this project were hafnium carbide (with nominal composition HE) and hafnium dioxide (HfO2). The materials were prepared at Georgia Institute of Technology and then supplied to research collaborators Dr. Sylvia Johnson and Dr. Jay Feldman) at NASA Ames Research Center.

  5. Effect of oxidation at elevated temperature on elastic and interface properties of ceramic matrix composites

    Czech Academy of Sciences Publication Activity Database

    Brandstetter, J.; Glogar, Petr; Loidl, D.; Kromp, K.

    2005-01-01

    Roč. 290, - (2005), s. 340-343 ISSN 1013-9826. [International conference on fractography of advanced ceramics /2./. Stará Lesná, 03.10.2005-06.10.2005] R&D Projects: GA AV ČR(CZ) KSK2067107 Institutional research plan: CEZ:AV0Z30460519 Keywords : polysiloxane * ceramic matrix composite * shear modulus Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.224, year: 2005

  6. Guidelines for Selection, Screening and Qualification of Low-Voltage Commercial Multilayer Ceramic Capacitors for Space Programs

    Science.gov (United States)

    Teverovsky, Alexander A.

    2012-01-01

    This document has been developed in the course of NASA Electronic Parts and Packaging (NEPP) program and is not an official endorsement of the insertion of commercial capacitors in space programs or an established set of requirements for their testing. The purpose of this document is to suggest possible ways for selection, screening, and qualification of commercial capacitors for NASA projects and open discussions in the parts engineering community related to the use of COTS ceramic capacitors. This guideline is applicable to commercial surface mount chip, simple parallel plate design, multi-layer ceramic capacitors (MLCCs) rated to voltages of 100V and less. Parts with different design, e.g. low inductance ceramic capacitors (LICA), land grid array (LGA) etc., might need additional testing and tailoring of the requirements described in this document. Although the focus of this document is on commercial MLCCs, many procedures discussed below would be beneficial for military-grade capacitors

  7. Updating Classifications of Ceramic Dental Materials: A Guide to Material Selection.

    Science.gov (United States)

    McLaren, Edward A; Figueira, Johan

    2015-06-01

    The indications for and composition of today's dental ceramic materials serve as the basis for determining the appropriate class of ceramics to use for a given case. By understanding the classifications, composition, and characteristics of the latest all-ceramic materials, which are presented in this article in order of most to least conservative, dentists and laboratory technicians can best determine the ideal material for a particular treatment.

  8. NATO Advanced Research Workshop on Boron Rich Solids Sensors for Biological and Chemical Detection, Ultra High Temperature Ceramics, Thermoelectrics, Armor

    CERN Document Server

    Orlovskaya, Nina

    2011-01-01

    The objective of this book is to discuss the current status of research and development of boron-rich solids as sensors, ultra-high temperature ceramics, thermoelectrics, and armor. Novel biological and chemical sensors made of stiff and light-weight boron-rich solids are very exciting and efficient for applications in medical diagnoses, environmental surveillance and the detection of pathogen and biological/chemical terrorism agents. Ultra-high temperature ceramic composites exhibit excellent oxidation and corrosion resistance for hypersonic vehicle applications. Boron-rich solids are also promising candidates for high-temperature thermoelectric conversion. Armor is another very important application of boron-rich solids, since most of them exhibit very high hardness, which makes them perfect candidates with high resistance to ballistic impact. The following topical areas are presented: •boron-rich solids: science and technology; •synthesis and sintering strategies of boron rich solids; •microcantileve...

  9. Microstrain temperature evolution in β-eucryptite ceramics: Measurement and model

    International Nuclear Information System (INIS)

    Bruno, G.; Garlea, V.O.; Muth, J.; Efremov, A.M.; Watkins, T.R.; Shyam, A.

    2012-01-01

    Mechanisms of microcracking and stress release in β-eucryptite ceramics were investigated by applying a combination of neutron diffraction (ND), dilatometry and the Integrity Factor Model (IFM). It was observed that the macroscopic thermal expansion of solid samples closely follows the lattice thermal expansion as a function of temperature, and both are dominated by microcracks closing (during heating) and opening (during cooling). Analogous experiments on powders showed that the stresses that manifest peak shift are indeed relieved by comminution, and that the resulting lattice thermal expansion can be considered as unconstrained. By means of Rietveld refinement of the ND data, the evolution with temperature of peak width parameters linked to strain distributions along the basal, pyramidal and axial planes could also be extracted. The peak width parameters S HKL correlated well with the strains calculated by peak shift and with the model results. Furthermore, while the peak shifts showed that the powders are basically stress free, the S HKL showed a strong evolution of the peak width. Powders carry, therefore, a measurable strain distribution inside the particles, owing to the thermal expansion anisotropy of the crystallites. The IFM allowed this behavior to be rationalized, and the effect of microcracking on thermal expansion to be quantified. Experimental data allowed accurate numerical prediction of microcracking on cooling and of the evolution of microstresses. They also allowed the derivation of the material elastic modulus from bulk thermal expansion curves through the IFM concept. Ultrasound resonance measurements of the elastic modulus strongly support these theoretical predictions.

  10. Development of a material property database on selected ceramic matrix composite materials

    Science.gov (United States)

    Mahanta, Kamala

    1996-01-01

    Ceramic Matrix Composites, with fiber/whisker/particulate reinforcement, possess the attractive properties of ceramics such as high melting temperature, high strength and stiffness at high temperature, low density, excellent environmental resistance, combined with improved toughness and mechanical reliability. These unique properties have made these composites an enabling technology for thermomechanically demanding applications in high temperature, high stress and aggressive environments. On a broader scale, CMC's are anticipated to be applicable in aircraft propulsion, space propulsion, power and structures, in addition to ground based applications. However, it is also true that for any serious commitment of the material toward any of the intended critical thermo-mechanical applications to materialize, vigorous research has to be conducted for a thorough understanding of the mechanical and thermal behavior of CMC's. The high technology of CMC'S is far from being mature. In view of this growing need for CMC data, researchers all over the world have found themselves drawn into the characterization of CMC's such as C/SiC, SiC/SiC, SiC/Al203, SiC/Glass, SiC/C, SiC/Blackglas. A significant amount of data has been generated by the industries, national laboratories and educational institutions in the United States of America. NASA/Marshall Space Flight Center intends to collect the 'pedigreed' CMC data and store those in a CMC database within MAPTIS (Materials and Processes Technical Information System). The task of compilation of the CMC database is a monumental one and requires efforts in various directions. The project started in the form of a summer faculty fellowship in 1994 and has spilled into the months that followed and into the summer faculty fellowship of 1995 and has the prospect of continuing into the future for a healthy growth, which of course depends to a large extent on how fast CMC data are generated. The 10-week long summer fellowship has concentrated

  11. Reliability of Ceramic Column Grid Array Interconnect Packages Under Extreme Temperatures

    Science.gov (United States)

    Ramesham, Rajeshuni

    2011-01-01

    A paper describes advanced ceramic column grid array (CCGA) packaging interconnects technology test objects that were subjected to extreme temperature thermal cycles. CCGA interconnect electronic package printed wiring boards (PWBs) of polyimide were assembled, inspected nondestructively, and, subsequently, subjected to ex - treme-temperature thermal cycling to assess reliability for future deep-space, short- and long-term, extreme-temperature missions. The test hardware consisted of two CCGA717 packages with each package divided into four daisy-chained sections, for a total of eight daisy chains to be monitored. The package is 33 33 mm with a 27 27 array of 80%/20% Pb/Sn columns on a 1.27-mm pitch. The change in resistance of the daisy-chained CCGA interconnects was measured as a function of the increasing number of thermal cycles. Several catastrophic failures were observed after 137 extreme-temperature thermal cycles, as per electrical resistance measurements, and then the tests were continued through 1,058 thermal cycles to corroborate and understand the test results. X-ray and optical inspection have been made after thermal cycling. Optical inspections were also conducted on the CCGA vs. thermal cycles. The optical inspections were conclusive; the x-ray images were not. Process qualification and assembly is required to optimize the CCGA assembly, which is very clear from the x-rays. Six daisy chains were open out of seven daisy chains, as per experimental test data reported. The daisy chains are open during the cold cycle, and then recover during the hot cycle, though some of them also opened during the hot thermal cycle..

  12. High temperature (salt melt) corrosion tests with ceramic-coated steel

    Energy Technology Data Exchange (ETDEWEB)

    Schütz, Adelheid [University Bayreuth, Metals and Alloys, Ludwig-Thoma-Str. 36b, D-95447 Bayreuth (Germany); Günthner, Martin; Motz, Günter [University Bayreuth, Ceramic Materials Engineering, L.-Thoma-Str. 36b, D-95447 Bayreuth (Germany); Greißl, Oliver [EnBW Kraftwerke AG, Schelmenwasenstraße 13-15, D-70567 Stuttgart (Germany); Glatzel, Uwe, E-mail: uwe.glatzel@uni-bayreuth.de [University Bayreuth, Metals and Alloys, Ludwig-Thoma-Str. 36b, D-95447 Bayreuth (Germany)

    2015-06-01

    Thermal recycling of refuse in waste-to-energy plants reduces the problems connected to waste disposal, and is an alternative source of electric energy. However, the combustion process in waste incinerators results in a fast degradation of the steam-carrying superheater steel tubes by corrosive attack and abrasive wear. Higher firing temperatures are used to increase their efficiency but lead to higher corrosion rates. It is more economical to apply protective coatings on the superheater steel tubes than to replace the base material. In-situ tests were conducted in a waste-to-energy plant first in order to identify and quantify all involved corrosive elements. Laboratory scale experiments with salt melts were developed accordingly. The unprotected low-alloyed steel displayed substantial local corrosion. Corrosion was predominant along the grain boundaries of α-ferrite. The corrosion rate was further increased by FeCl{sub 3} and a mixture of HCL and FeCl{sub 3}. Coatings based on pre-ceramic polymers with specific filler particles were engineered to protect superheater tubes. Tests proved their suitability to protect low-alloYed steel tubes from corrosive attack under conditions typical for superheaterS in waste incinerators, rendering higher firing temperatures in waste-to-energy plants possible. - Highlights: • Corrosion wall thickness losses of 400 μm/2 weeks occurred in a waste incinerator. • Abrasion is a major problem on superheater tubes in waste incinerators. • Laboratory salt melt tests can simulate metal corrosion in waste incinerators. • Corrosion protection coatings for steel (temperature: max. 530 °C) were developed. • Higher steam temperatures are possible in WIs with the developed coatings.

  13. A low-temperature process for the denitration of Hanford single-shell tank, nitrate-based waste utilizing the nitrate to ammonia and ceramic (NAC) process

    International Nuclear Information System (INIS)

    Mattus, A.J.; Lee, D.D.; Dillow, T.A.; Farr, L.L.; Loghry, S.L.; Pitt, W.W.; Gibson, M.R.

    1994-12-01

    Bench-top feasibility studies with Hanford single-shell tank (SST) simulants, using a new, low-temperature (50 to 60C) process for converting nitrate to ammonia and ceramic (NAC), have conclusively shown that between 85 to 99% of the nitrate can be readily converted. In this process, aluminum powders or shot can be used to convert alkaline, nitrate-based supernate to ammonia and an aluminum oxide-sodium aluminate-based solid which might function as its own waste form. The process may actually be able to utilize already contaminated aluminum scrap metal from various DOE sites to effect the conversion. The final, nearly nitrate-free ceramic-like product can be pressed and sintered like other ceramics. Based upon the starting volumes of 6.2 and 3.1 M sodium nitrate solution, volume reductions of 50 to 55% were obtained for the waste form produced, compared to an expected 35 to 50% volume increase if the Hanford supernate were grouted. Engineering data extracted from bench-top studies indicate that the process will be very economical to operate, and data were used to cost a batch, 1,200-kg NO 3 /h plant for working off Hanford SST waste over 20 years. Their total process cost analysis presented in the appendix, indicates that between $2.01 to 2.66 per kilogram of nitrate converted will be required. Additionally, data on the fate of select radioelements present in solution are presented in this report as well as kinetic, operational, and control data for a number of experiments. Additionally, if the ceramic product functions as its own waste form, it too will offer other cost savings associated with having a smaller volume of waste form as well as eliminating other process steps such as grouting

  14. Modification of the Selectivity Properties of Tubular Ceramic Membranes after Alkaline Treatment

    Directory of Open Access Journals (Sweden)

    Patrick Dutournié

    2017-11-01

    Full Text Available This work focuses on the selectivity modification of ceramic membranes after a mild alkaline treatment. Filtration of pure salt-water solutions was carried out with commercial titania membranes before and after the treatment. After treatment, the rejection of NaF significantly decreased, while the rejection of NaCl and NaBr increased. Additionally, NaI and Na2SO4 remained close to zero. Pore size and electrical charge being almost unchanged, only significant modifications in the dielectric effects can explain this modification of selectivity. Therefore, the surface chemistry and the interaction (nature and magnitude with the solvent and with the species present in the solution appear to be modified by the alkaline treatment. This trend is also illustrated by discussing the electric and the dielectric properties that were numerically identified before and after treatment. The alkaline treatment significantly decreased the apparent dielectric constant of NaCl-water solution in the pore, highlighting the rejection of sodium chloride. Contrariwise, the modification of the surface chemistry increased the apparent dielectric constant of NaF-water solution by promoting fluoride transmission.

  15. Effects of body formulation and firing temperature to properties of ceramic tile incorporated with electric arc furnace (EAF) slag waste

    Science.gov (United States)

    Sharif, Nurulakmal Mohd; Lim, Chi Yang; Teo, Pao Ter; Seman, Anasyida Abu

    2017-07-01

    Significant quantities of sludge and slag are generated as waste materials or by-products from steel industries. One of the by-products is Electric Arc Furnace (EAF) steel slag which consists of oxides such as CaO, Al2O3 and FeO. This makes it possible for slag to partially replace the raw materials in ceramic tile production. In our preliminary assessment of incorporating the EAF slag into ceramic tile, it was revealed that at fixed firing temperature of 1150°C, the tile of composition 40 wt.% EAF slag - 60 wt.% ball clay has comparable properties with commercial ceramic tile. Thus, this current study would focus on effects of body formulation (different weight percentages of K-feldspar and silica) and different firing temperatures to properties of EAF slag added ceramic tile. EAF slag from Southern Steel Berhad (SSB) was crushed into micron size (EAF slag content was 40 wt.%) and milled with ball clay, K-feldspar and silica before compacted and fired at 1125°C and 1150°C. The EAF slag added tile was characterized in terms of water absorption, apparent porosity, bulk density, modulus of rupture (MOR) and phase analysis via X-ray diffraction (XRD). The composition of 40 wt.% EAF slag - 30 wt.% ball clay - 10 wt.% K-feldspar - 20 wt.% silica (10F_20S), fired at 1150°C showed the lowest water absorption, apparent porosity and highest bulk density due to enhancement of densification process during firing. However, the same composition of ceramic tile (10F_20S) had the highest MOR at lower firing temperature of 1125°C, contributed by presence of the highest total amount of anorthite and wollastonite reinforcement crystalline phases (78.40 wt.%) in the tile. Overall, both the water absorption and MOR of all ceramic tiles surpassed the requirement regulated by MS ISO 13006:2014 Standard (Annex G: Dry-pressed ceramic tile with low water absorption, Eb ≤ 0.50 % and minimum MOR of 35 MPa).

  16. A method for the densification of ceramic layers, especially ceramic layers within solid oxide cell (SOC) technology, and products obtained by the method

    DEFF Research Database (Denmark)

    2013-01-01

    A ceramic layer, especially for use in solid oxide cell (SOC) technology, is densified in a method comprising (a) providing a multilayer system by depositing the porous ceramic layer, which is to be densified, onto the selected system of ceramic layers on a support, (b) pre-sintering the resulting......(s) in the porous layer surface and (e) performing a thermal treatment at a temperature T2, where T2 > ?1, to obtain densification of and grain growth in the porous layer formed in step (b). The method makes it possible to obtain dense ceramic layers at temperatures, which are compatible with the other materials...... present in a ceramic multilayer system....

  17. Synthesis of Ceramic Protective Coatings for Chemical Plant Parts Operated in Hi-temperature and Corrosive/Erosive Environment

    International Nuclear Information System (INIS)

    Son, M. C.; Park, J. R.; Hong, K. T.; Seok, H. K.

    2005-01-01

    Some feasibility studies are conducted to produce an advanced ceramic coating, which reveals superior chemical and mechanical strength, on metal base structure used in chemical plant. This advanced coating on metallic frame can replace ceramic delivery pipe and reaction chamber used in chemical plant, which are operated in hi-temperature and corrosive/erosive environment. An dual spraying is adopted to reduce the residual stress in order to increase the coating thickness and the residual stress is estimated by in-situ manner. Then new methodology is tried to form special coating of yttrium aluminum garnet(YAG), which reveals hi-strength and low-creep rates at hi-temperature, superior anti-corrosion property, hi-stability against Alkali-Vapor corrosion, and so on, on iron base structure. To verify the formation of YAG during thermal spraying, XRD(X ray diffraction) technique was used

  18. An Investigation of Fiber Reinforced Chemically Bonded Phosphate Ceramic Composites at Room Temperature.

    Science.gov (United States)

    Ding, Zhu; Li, Yu-Yu; Lu, Can; Liu, Jian

    2018-05-21

    In this study, chemically bonded phosphate ceramic (CBPC) fiber reinforced composites were made at indoor temperatures. The mechanical properties and microstructure of the CBPC composites were studied. The CBPC matrix of aluminum phosphate binder, metakaolin, and magnesia with different Si/P ratios was prepared. The results show that when the Si/P ratio was 1.2, and magnesia content in the CBPC was 15%, CBPC reached its maximum flexural strength. The fiber reinforced CBPC composites were prepared by mixing short polyvinyl alcohol (PVA) fibers or unidirectional continuous carbon fiber sheets. Flexural strength and dynamic mechanical properties of the composites were determined, and the microstructures of specimens were analyzed by scanning electron micrography, X-ray diffraction, and micro X-ray computed tomography. The flexural performance of continuous carbon fiber reinforced CBPC composites was better than that of PVA fiber composites. The elastic modulus, loss modulus, and loss factor of the fiber composites were measured through dynamic mechanical analysis. The results showed that fiber reinforced CBPC composites are an inorganic polymer viscoelastic material with excellent damping properties. The reaction of magnesia and phosphate in the matrix of CBPC formed a different mineral, newberyite, which was beneficial to the development of the CBPC.

  19. Robustness and Versatility of Thin Films on Low Temperature Cofired Ceramic (LTCC)

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, J. Ambrose; Vianco, P. T.; Johnson, M. H.; Goldammer, S.

    2011-10-09

    Thin film multilayers have previously been introduced on multilayer low temperature cofired ceramic (LTCC). The ruggedness of a multipurpose Ti-Cu-Pt-Au stack has continued to benefit fabrication and reliability in state-of-theart modules. Space optimization is described, preserving miniaturization of critical spaces and component pads. Additional soldering details are also presented, including trends with solder-stop materials. Feature compensation becomes a simple step in the normal manufacturing flow which enables exact targeting of desired feature sizes. In addition, fine details of the manufacturing process, including ion milling, will be discussed. We will discuss full long-term aging results and structural details that reinforce the reliability and function. Different thin film materials for specific applications can be exploited for additional capabilities such as filters and other integral components. Cross sections verify the results shown. This successful integration of thin films on LTCC points to higher frequencies which require finer lines and spaces. Advancements of these applications become possible due to the associated progression of smaller skin depth and thinner metallic material.

  20. Low temperature co-fired ceramic packaging of CMOS capacitive sensor chip towards cell viability monitoring.

    Science.gov (United States)

    Halonen, Niina; Kilpijärvi, Joni; Sobocinski, Maciej; Datta-Chaudhuri, Timir; Hassinen, Antti; Prakash, Someshekar B; Möller, Peter; Abshire, Pamela; Kellokumpu, Sakari; Lloyd Spetz, Anita

    2016-01-01

    Cell viability monitoring is an important part of biosafety evaluation for the detection of toxic effects on cells caused by nanomaterials, preferably by label-free, noninvasive, fast, and cost effective methods. These requirements can be met by monitoring cell viability with a capacitance-sensing integrated circuit (IC) microchip. The capacitance provides a measurement of the surface attachment of adherent cells as an indication of their health status. However, the moist, warm, and corrosive biological environment requires reliable packaging of the sensor chip. In this work, a second generation of low temperature co-fired ceramic (LTCC) technology was combined with flip-chip bonding to provide a durable package compatible with cell culture. The LTCC-packaged sensor chip was integrated with a printed circuit board, data acquisition device, and measurement-controlling software. The packaged sensor chip functioned well in the presence of cell medium and cells, with output voltages depending on the medium above the capacitors. Moreover, the manufacturing of microfluidic channels in the LTCC package was demonstrated.

  1. Characterization of ceramics and intermetallics fabricated by self-propagating high-temperature synthesis

    International Nuclear Information System (INIS)

    Hurst, J.B.

    1989-05-01

    Three efforts aimed at investigating the process of self-propagating high temperature synthesis (SHS) for the fabrication of structural ceramics and intermetallics are summarized. Of special interest was the influence of processing variables such as exothermic dopants, gravity, and green state morphology in materials produced by SHS. In the first effort directed toward the fabrication of SiC, exothermic dopants of yttrium and zirconium were added to SiO2 or SiO2 + NiO plus carbon powder mix and processed by SHS. This approach was unsuccessful since it did not produce the desired product of crystalline SiC. In the second effort, the influence of gravity was investigated by examining Ni-Al microstructures which were produced by SHS combustion waves traveling with and opposite the gravity direction. Although final composition and total porosities of the combusted Ni-Al compounds were found to be gravity independent, larger pores were created in those specimens which were combusted opposite to the gravity force direction. Finally, it was found that green microstructure has a significant effect on the appearance of the combusted piece. Severe pressing laminations were observed to arrest the combustion front for TiC samples

  2. Low temperature co-fired ceramic packaging of CMOS capacitive sensor chip towards cell viability monitoring

    Directory of Open Access Journals (Sweden)

    Niina Halonen

    2016-11-01

    Full Text Available Cell viability monitoring is an important part of biosafety evaluation for the detection of toxic effects on cells caused by nanomaterials, preferably by label-free, noninvasive, fast, and cost effective methods. These requirements can be met by monitoring cell viability with a capacitance-sensing integrated circuit (IC microchip. The capacitance provides a measurement of the surface attachment of adherent cells as an indication of their health status. However, the moist, warm, and corrosive biological environment requires reliable packaging of the sensor chip. In this work, a second generation of low temperature co-fired ceramic (LTCC technology was combined with flip-chip bonding to provide a durable package compatible with cell culture. The LTCC-packaged sensor chip was integrated with a printed circuit board, data acquisition device, and measurement-controlling software. The packaged sensor chip functioned well in the presence of cell medium and cells, with output voltages depending on the medium above the capacitors. Moreover, the manufacturing of microfluidic channels in the LTCC package was demonstrated.

  3. Development of a double-layered ceramic filter for aerosol filtration at high-temperatures: the filter collection efficiency.

    Science.gov (United States)

    de Freitas, Normanda L; Gonçalves, José A S; Innocentini, Murilo D M; Coury, José R

    2006-08-25

    The performance of double-layered ceramic filters for aerosol filtration at high temperatures was evaluated in this work. The filtering structure was composed of two layers: a thin granular membrane deposited on a reticulate ceramic support of high porosity. The goal was to minimize the high pressure drop inherent of granular structures, without decreasing their high collection efficiency for small particles. The reticulate support was developed using the technique of ceramic replication of polyurethane foam substrates of 45 and 75 pores per inch (ppi). The filtering membrane was prepared by depositing a thin layer of granular alumina-clay paste on one face of the support. Filters had their permeability and fractional collection efficiency analyzed for filtration of an airborne suspension of phosphatic rock in temperatures ranging from ambient to 700 degrees C. Results revealed that collection efficiency decreased with gas temperature and was enhanced with filtration time. Also, the support layer influenced the collection efficiency: the 75 ppi support was more effective than the 45 ppi. Particle collection efficiency dropped considerably for particles below 2 microm in diameter. The maximum collection occurred for particle diameters of approximately 3 microm, and decreased again for diameters between 4 and 8 microm. Such trend was successfully represented by the proposed correlation, which is based on the classical mechanisms acting on particle collection. Inertial impaction seems to be the predominant collection mechanism, with particle bouncing/re-entrainment acting as detachment mechanisms.

  4. Refining of high-temperature uranium melt by filtration through foam-ceramic filters

    International Nuclear Information System (INIS)

    Antsiferov, V.N.; Porozova, S.E.; Filippov, V.B.; Shtutsa, M.G.; Il'enko, E.V.; Kolotygina, N.S.

    2004-01-01

    An opportunity of applying foam-ceramic filters of corundum-mullite composition has been studied in refining natural uranium melts. Uranium melting conditions were chosen depending on technical characteristics of the foam ceramic filters. When their using, a portion of nonmetallic inclusions decreases by 20-30% (as little as 2.0-3.5% ingot weight), their size is reduced and their distribution in the ingot volume is equalized, contamination of uranium by the filter material being failed to be noticed. The parameters of foam-ceramic filters are optimized for provision of stable characteristics of uranium melt filtration process [ru

  5. Diffusion in ceramics

    CERN Document Server

    Pelleg, Joshua

    2016-01-01

    This textbook provides an introduction to changes that occur in solids such as ceramics, mainly at high temperatures, which are diffusion controlled, as well as presenting research data. Such changes are related to the kinetics of various reactions such as precipitation, oxidation and phase transformations, but are also related to some mechanical changes, such as creep. The book is composed of two parts, beginning with a look at the basics of diffusion according to Fick's Laws. Solutions of Fick’s second law for constant D, diffusion in grain boundaries and dislocations are presented along with a look at the atomistic approach for the random motion of atoms. In the second part, the author discusses diffusion in several technologically important ceramics. The ceramics selected are monolithic single phase ones, including: A12O3, SiC, MgO, ZrO2 and Si3N4. Of these, three refer to oxide ceramics (alumina, magnesia and zirconia). Carbide based ceramics are represented by the technologically very important Si-ca...

  6. Ceramic Composite Mechanical Fastener System for High-Temperature Structural Assemblies, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Hot structures fabricated from ceramic composite materials are an attractive design option for components of future high-speed aircraft, re-entry vehicles and...

  7. A new high temperature resistant glass–ceramic coating for gas ...

    Indian Academy of Sciences (India)

    Unknown

    resultant coatings showed presence of a number of microcrystalline phases. SEM micrographs ... processing of two novel glass–ceramic coating materials, ... stainless steel tray to yield frit (a friable glassy material). .... Frit (– 20 mesh) powder.

  8. Implementation Challenges for Sintered Silicon Carbide Fiber Bonded Ceramic Materials for High Temperature Applications

    Science.gov (United States)

    Singh, M.

    2011-01-01

    During the last decades, a number of fiber reinforced ceramic composites have been developed and tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. In addition to continuous fiber reinforced composites, other innovative materials have been developed including the fibrous monoliths and sintered fiber bonded ceramics. The sintered silicon carbide fiber bonded ceramics have been fabricated by the hot pressing and sintering of silicon carbide fibers. However, in this system reliable property database as well as various issues related to thermomechanical performance, integration, and fabrication of large and complex shape components has yet to be addressed. In this presentation, thermomechanical properties of sintered silicon carbide fiber bonded ceramics (as fabricated and joined) will be presented. In addition, critical need for manufacturing and integration technologies in successful implementation of these materials will be discussed.

  9. Enhanced green upconversion by controlled ceramization of Er{sup 3+}–Yb{sup 3+} co-doped sodium niobium tellurite glass–ceramics for low temperature sensors

    Energy Technology Data Exchange (ETDEWEB)

    Suresh Kumar, J., E-mail: suresh@ua.pt; Pavani, K.; Graça, M.P.F.; Soares, M.J.

    2014-12-25

    Highlights: • Upconversion luminescence improved in glass–ceramics compared to host glass. • Judd–Ofelt and radiative parameters calculated. • NIR decay curve results concur the results of improved luminescence. • Temperature dependent upconversion support the use of materials for sensors. - Abstract: Tellurite based glasses are well-known for their upconversion properties besides having a disadvantage of low mechanical strength dragging them away from practical applications. The present work deals with preparation of sodium niobium tellurite (SNT) glasses using melt quenching method, in which small quantities of boron and silicon in the form of oxides are added to improve their mechanical properties. Controlled heat treatment is performed to ceramize the prepared glasses based on the thermal data given by DTA. XRD and SEM profiles of the glass–ceramics which confirmed the formation of crystalline monoclinic Sodium Tellurium Niobium Oxide (Na{sub 1.4}Nb{sub 3}Te{sub 4.9}O{sub 18}) phase (JCPDS card No. 04–011-7556). Upconversion measurements in the visible region were made for the prepared Er{sup 3+}–Yb{sup 3+} co-doped glasses and glass–ceramics with 980 nm laser excitation varying the laser power and concentration of Er{sup 3+} ions. Results showed that the upconversion luminescence intensity was enhanced by ten times in SNT glass–ceramics compared to that in the SNT glasses. Decay curves give evidence of high performance of glass–ceramics compared to glasses due to ceramization and structural changes. Temperature dependent visible upconversion was performed to test the ability of efficient SNT glass–ceramic at low temperatures and variation of upconversion intensities was studied.

  10. Synthesis and characterisation of novel low temperature ceramic and its implementation as substrate in dual segment CDRA

    Science.gov (United States)

    Kumari, Preeti; Tripathi, Pankaj; Sahu, Bhagirath; Singh, S. P.; Parkash, Om; Kumar, Devendra

    2018-02-01

    Li2O-(2-3x)MgO-(x)Al2O3-P2O5 (LMAP) (x = 0.00-0.08) ceramic system was prepared through solid state synthesis route at different sintering temperatures (800-925 °C). A small addition of Al2O3 (x = 0.02) in LMAP ceramics lowers the sintering temperature by more than 100 °C with good relative density of 94.13%. The sintered samples were characterized in terms of density, apparent porosity, water absorption, crystal structure, micro-structure and microwave dielectric properties. Silver compatibility test is also performed for its use as electrode material in low temperature co-fired ceramic (LTCC) application. To check the performance of the prepared LTCC as substrate, a microstrip-fed aperture-coupled dual segment cylindrical dielectric resonator antenna (DS-CDRA) is designed using LMAP (x = 0.02) ceramic as substrate material and Barium Strontium Titanate with 10 wt% of PbO-BaO-B2O3-SiO2 glass (BSTG) and Teflon as the components of resonating material. The simulation study of the DS-CDRA is performed using the Ansys High Frequency Structure Simulator (HFSS) software. A conductive coating of silver is used on the substrate. The simulated and measured -10 dB reflection coefficient bandwidths of 910 MHz (9.07-9.98 GHz at resonant frequency of 9.49 GHz) and 1080 MHz (8.68-9.76 GHz at resonant frequency of 9.36 GHz), respectively are achieved. The measured results of the fabricated antenna are found in good agreement with the simulation results. The prepared material can find potential applications in radar and radio navigation as well as radio astronomy and military satellite communication.

  11. Laser all-ceramic crown removal and pulpal temperature--a laboratory proof-of-principle study.

    Science.gov (United States)

    Rechmann, P; Buu, N C H; Rechmann, B M T; Finzen, F C

    2015-11-01

    The objective of this proof-of-principle laboratory pilot study was to evaluate the temperature increase in the pulp chamber in a worst case scenario during Er:YAG laser debonding of all-ceramic crowns. Twenty extracted molars were prepared to receive all-ceramic IPS E.max CAD full contour crowns. The crowns were bonded to the teeth with Ivoclar Multilink Automix. Times for laser debonding and temperature rise in the pulp chamber using micro-thermocouples were measured. The Er:YAG was used with 560 mJ/pulse. The irradiation was applied at a distance of 5 mm from the crown surface. Additional air-water spray for cooling was utilized. Each all-ceramic crown was successfully laser debonded with an average debonding time of 135 ± 35 s. No crown fractured, and no damage to the underlying dentin was detected. The bonding cement deteriorated, but no carbonization at the dentin/cement interface occurred. The temperature rise in the pulp chamber averaged 5.4° ± 2.2 °C. During 8 out of the 20 crown removals, the temperature rise exceeded 5.5 °C, lasting 5 to 43 s (average 18.8 ± 11.6 s). A temperature rise of 11.5 °C occurred only once, while seven times the temperature rise was limited to 6.8 ± 0.5 °C. Temperature rises above 5.5 °C occurred only when the laser was applied from one side and additional cooling from the side opposite the irradiation. Er:YAG laser energy can successfully be used to efficiently debond all-ceramic crowns from natural teeth. Temperature rises exceeding 5.5 °C only occur when an additional air/water cooling from a dental syringe is inaccurately directed. To avoid possible thermal damage and to allow further heat diffusion, clinically temperature-reduced water might be applied.

  12. Significantly enhanced piezoelectricity in low-temperature sintered Aurivillius-type ceramics with ultrahigh Curie temperature of 800 °C

    International Nuclear Information System (INIS)

    Cai, Kai; Huang, Chengcheng; Guo, Dong

    2017-01-01

    We report an Aurivillius-type piezoelectric ceramic (Ca 1−2x (LiCe) x Bi 4 Ti 3.99 Zn 0.01 O 15 ) that has an ultrahigh Curie temperature (T c ) around 800 °C and a significantly enhanced piezoelectric coefficient (d 33 ), comparable to that of textured ceramics fabricated using the complicated templating method. Surprisingly, the highest d 33 of 26 pC/N was achieved at an unexpectedly low sintering temperature (T s ) of only 920 °C (∼200 °C lower than usual) despite the non-ideal density. Study of different synthesized samples indicates that a relatively low T s is crucial for suppressing Bi evaporation and abnormal grain growth, which are indispensable for high resistivity and effective poling due to decreased carrier density and restricted anisotropic conduction. Because the layered structure is sensitive to lattice defects, controlled Bi loss is considered to be crucial for maintaining structural order and spontaneous polarization. This low-T s system is very promising for practical applications due to its high piezoelectricity, low cost and high reproducibility. Contrary to our usual understanding, the results reveal that a delicate balance of density, Bi loss and grain morphology achieved by adjusting the sintering temperature is crucial for the enhancing performance in Aurivillius-type high- T c ceramics. (paper)

  13. Multi-layer SiC ceramics/Mo joints brazed using high-temperature solders

    International Nuclear Information System (INIS)

    Olesinska, W.; Kesik, J.

    2003-01-01

    The paper presents the results of studies on joining SiC ceramics with molybdenum, with the ceramic surface being activated by titanium, chromium or copper. Titanium or chromium were deposited by the sputtering technique, and copper - by the electro-chemical method. The microstructures of the SiC/Mo joints brazed with the CuMn13Ni3 solder and copper in a nitrogen atmosphere were examined and the results discussed. The joints, in which the ceramic surface was activated in addition with chromium, do not contain mechanical defects caused by the joining process, and the ceramic surface is covered with a continuous layer of the solder. A phase analysis of the interface surface identified an MeSiC phase. The mechanical strength of the joints in which the ceramic surface was modified by the Ti, Cr and Cu layers was markedly greater than that of the joints brazed directly to the uncoated ceramics with the use of active solders. (author)

  14. [In vitro evaluation of low-temperature aging effects of Y2O3 stabilized tetragonal zirconia polycrystals dental ceramics].

    Science.gov (United States)

    Yi, Yuan-fu; Liu, Hong-chen; Wang, Chen; Tian, Jie-mo; Wen, Ning

    2008-03-01

    To investigate the influence of in vitro low-temperature degradation (LTD) treatment on the structural stability of 5 kinds of Y2O3 stabilized tetragonal zirconia polycrystals (Y-TZP) dental ceramics. TZ-3YS powder was compacted at 200 MPa using cold isostatic pressure and pre-sintered at 1050 degrees C for 2 h forming presintered blocks. Specimens were sectioned into 15 mm x 15 mm x 1.5 mm slices from blocks of TZ-3YS, Vita In-Ceram YZ, Ivoclar, Cercon Smart, and Kavo Y-TZP presintered blocks, 18 slices for each brand, and then densely sintered. Specimens were divided into 6 groups and subjected to an accelerated aging test carried out in an autoclave in steam at 134 degrees C, 0.2 MPa, for 0, 1, 2, 3, 4, and 5 h. X-ray diffraction (XRD) was used to identify crystal phases and relative content of monoclinic phase was calculated. Specimens for three-point bending test were fabricated using TZ-3YS ceramics according to the ISO 6872 standard and bending strength was tested before and after aging. The polished and aging specimens of TZ-3YS and Cercon Smart zirconia ceramics were observed by atomic force microscopy (AFM) to evaluate surface microstructure. Tetragonal-to-monoclinic phase transformation was detected for specimens of TZ-3YS, Vita In-Ceram YZ, Ivoclar, and Kavo zirconia ceramics except for Cercon Smart ceramics after aging, and the relative content of monoclinic phase was increasing with the prolonged aging time. TZ-3YS was the most affected material, Kavo took the second, and Vita and Ivoclar were similar. Aging had no significant negative effects on flexural strength of TZ-3YS with average bending strength being over 1100 MPa. The nucleation and growth of monoclinic phase were detected by AFM in surface of Cercon Smart zirconia in which monoclinic phase was not detected by XRD. The results suggest that LTD of dental Y-TZP is time dependent, but the aging test does not reduce the flexural strength of TZ-3YS. The long-term clinical serviceability of dental

  15. Microfabrication of a Novel Ceramic Pressure Sensor with High Sensitivity Based on Low-Temperature Co-Fired Ceramic (LTCC Technology

    Directory of Open Access Journals (Sweden)

    Chen Li

    2014-06-01

    Full Text Available In this paper, a novel capacitance pressure sensor based on Low-Temperature Co-Fired Ceramic (LTCC technology is proposed for pressure measurement. This approach differs from the traditional fabrication process for a LTCC pressure sensor because a 4J33 iron-nickel-cobalt alloy is applied to avoid the collapse of the cavity and to improve the performance of the sensor. Unlike the traditional LTCC sensor, the sensitive membrane of the proposed sensor is very flat, and the deformation of the sensitivity membrane is smaller. The proposed sensor also demonstrates a greater responsivity, which reaches as high as 13 kHz/kPa in range of 0–100 kPa. During experiments, the newly fabricated sensor, which is only about 6.5 cm2, demonstrated very good performance: the repeatability error, hysteresis error, and nonlinearity of the sensor are about 4.25%, 2.13%, and 1.77%, respectively.

  16. Investigation of a zirconia co-fired ceramic calorimetric microsensor for high-temperature flow measurements

    International Nuclear Information System (INIS)

    Lekholm, Ville; Persson, Anders; Klintberg, Lena; Thornell, Greger

    2015-01-01

    This paper describes the design, fabrication and characterization of a flow sensor for high-temperature, or otherwise aggressive, environments, like, e.g. the propulsion system of a small spacecraft. The sensor was fabricated using 8 mol% yttria stabilized zirconia (YSZ8) high-temperature co-fired ceramic (HTCC) tape and screen printed platinum paste. A calorimetric flow sensor design was used, with five 80 µm wide conductors, separated by 160 µm, in a 0.4 mm wide, 0.1 mm deep and 12.5 mm long flow channel. The central conductor was used as a heater for the sensor, and the two adjacent conductors were used to resistively measure the heat transferred from the heater by forced convection. The two outermost conductors were used to study the influence of an auxiliary heat source on the sensor. The resistances of the sensor conductors were measured using four-point connections, as the gas flow rate was slowly increased from 0 to 40 sccm, with different power supplied through the central heater, as well as with an upstream or downstream heater powered. In this study, the thermal and electrical integrability of microcomponents on the YSZ8 substrate was of particular interest and, hence, the influence of thermal and ionic conduction in the substrate was studied in detail. The effect of the ion conductivity of YSZ8 was studied by measuring the resistance of a platinum conductor and the resistance between two adjacent conductors on YSZ8, in a furnace at temperatures from 20 to 930 °C and by measuring the resistance with increasing current through a conductor. With this design, the influence of ion conductivity through the substrate became apparent above 700 °C. The sensitivity of the sensor was up to 1 mΩ sccm −1 in a range of 0–10 sccm. The results show that the signal from the sensor is influenced by the integrated auxiliary heating conductors and that these auxiliary heaters provide a way to balance disturbing heat sources, e.g. thrusters or other

  17. Method of sintering ceramic materials

    Science.gov (United States)

    Holcombe, Cressie E.; Dykes, Norman L.

    1992-01-01

    A method for sintering ceramic materials is described. A ceramic article is coated with layers of protective coatings such as boron nitride, graphite foil, and niobium. The coated ceramic article is embedded in a container containing refractory metal oxide granules and placed within a microwave oven. The ceramic article is heated by microwave energy to a temperature sufficient to sinter the ceramic article to form a densified ceramic article having a density equal to or greater than 90% of theoretical density.

  18. Immobilization of actinides in stable mineral type and ceramic materials (high temperature synthesis)

    Energy Technology Data Exchange (ETDEWEB)

    Starkov, O.; Konovalov, E.

    1996-05-01

    Alternative vitrification technologies are being developed in the world for the immobilization of high radioactive waste in materials with improved thermodynamic stability, as well as improved chemical and thermal stability and stability to radiation. Oxides, synthesized in the form of analogs to rock-forming minerals and ceramics, are among those materials that have highly stable properties and are compatible with the environment. In choosing the appropriate material, we need to be guided by its geometric stability, the minimal number of cations in the structure of the material and the presence of structural elements in the mineral that are isomorphs of uranium and thorium, actinoids found in nature. Rare earth elements, yttrium, zirconium and calcium are therefore suitable. The minerals listed in the table (with the exception of the zircon) are pegatites by origin, i.e. they are formed towards the end of the magma crystallization of silicates form the residual melt, enriched with Ta, Nb, Ti, Zr, Ce, Y, U and Th. Uranium and thorium in the form of isomorphic admixtures form part of the lattice of the mineral. These minerals, which are rather simple in composition and structure and are formed under high temperatures, may be viewed as natural physio-chemical systems that are stable and long-lived in natural environments. The similarity of the properties of actinoids and lanthanoids plays an important role in the geochemistry of uranium and thorium; however, uranium (IV) is closer to the {open_quotes}heavy{close_quotes} group of lanthanoids (the yttrium group) while thorium (IV) is closer to the {open_quotes}light{close_quotes} group (the cerium group). That is why rare earth minerals contain uranium and thorium in the form of isomorphic admixtures.

  19. Development of high temperature resistant ceramic matrix composites based on SiC- and novel SiBNC-fibres

    International Nuclear Information System (INIS)

    Daenicke, Enrico

    2014-01-01

    Novel ceramic fibres in the quaternary system Si-B-C-N exhibit excellent high temperature stability and creep resistance. In th is work it was investigated, to what extent these outstanding properties of SiBNC-fibres can be transferred into ceramic matrix composites (CMC) in comparison to commercial silicon carbide (SiC) fibres. For the CMC development the liquid silicon infiltration (LSI) as well as the polymer infiltration and pyrolysis process (PIP) was applied. Extensive correlations between fibre properties, fibre coating (without, pyrolytic carbon, lanthanum phosphate), process parameters of the CMC manufacturing method and the mechanical and microstructural properties of the CMC before and after exposure to air could be established. Hence, the potential of novel CMCs can be assessed and application fields can be derived.

  20. Novel room-temperature-setting phosphate ceramics for stabilizing combustion products and low-level mixed wastes

    International Nuclear Information System (INIS)

    Wagh, A.S.; Singh, D.

    1994-01-01

    Argonne National Laboratory, with support from the Office of Technology in the US Department of Energy (DOE), has developed a new process employing novel, chemically bonded ceramic materials to stabilize secondary waste streams. Such waste streams result from the thermal processes used to stabilize low-level, mixed wastes. The process will help the electric power industry treat its combustion and low-level mixed wastes. The ceramic materials are strong, dense, leach-resistant, and inexpensive to fabricate. The room-temperature-setting process allows stabilization of volatile components containing lead, mercury, cadmium, chromium, and nickel. The process also provides effective stabilization of fossil fuel combustion products. It is most suitable for treating fly and bottom ashes

  1. Transition duct system with straight ceramic liner for delivering hot-temperature gases in a combustion turbine engine

    Science.gov (United States)

    Wiebe, David J.

    2017-05-16

    A transition duct system (10) for delivering hot-temperature gases from a plurality of combustors in a combustion turbine engine is provided. The system includes an exit piece (16) for each combustor. The exit piece may include a straight path segment (26) for receiving a gas flow from a respective combustor. A straight ceramic liner (40) may be inwardly disposed onto a metal outer shell (38) along the straight path segment of the exit piece. Structural arrangements are provided to securely attach the ceramic liner in the presence of substantial flow path pressurization. Cost-effective serviceability of the transition duct systems is realizable since the liner can be readily removed and replaced as needed.

  2. Reactive Spark Plasma Sintering and Mechanical Properties of Zirconium Diboride–Titanium Diboride Ultrahigh Temperature Ceramic Solid Solutions

    Directory of Open Access Journals (Sweden)

    Karthiselva N. S.

    2016-09-01

    Full Text Available Ultrahigh temperature ceramics (UHTCs such as diborides of zirconium, hafnium tantalum and their composites are considered to be the candidate materials for thermal protection systems of hypersonic vehicles due to their exceptional combination of physical, chemical and mechanical properties. A composite of ZrB2-TiB2 is expected to have better properties. In this study, an attempt has been made to fabricate ZrB2-TiB2 ceramics using mechanically activated elemental powders followed by reactive spark plasma sintering (RSPS at 1400 °C. Microstructure and phase analysis was carried out using X-ray diffractometer (XRD and electron microscopy to understand microstructure evolution. Fracture toughness and hardness were evaluated using indentation methods. Nanoindentation was used to measure elastic modulus. Compressive strength of the composites has been reported.

  3. Temperature Characteristics of Monolithically Integrated Wavelength-Selectable Light Sources

    International Nuclear Information System (INIS)

    Han Liang-Shun; Zhu Hong-Liang; Zhang Can; Ma Li; Liang Song; Wang Wei

    2013-01-01

    The temperature characteristics of monolithically integrated wavelength-selectable light sources are experimentally investigated. The wavelength-selectable light sources consist of four distributed feedback (DFB) lasers, a multimode interferometer coupler, and a semiconductor optical amplifier. The oscillating wavelength of the DFB laser could be modulated by adjusting the device operating temperature. A wavelength range covering over 8.0nm is obtained with stable single-mode operation by selecting the appropriate laser and chip temperature. The thermal crosstalk caused by the lateral heat spreading between lasers operating simultaneously is evaluated by oscillating-wavelength shift. The thermal crosstalk approximately decreases exponentially as the increasing distance between lasers

  4. Three-dimensional single-channel thermal analysis of fully ceramic microencapsulated fuel via two-temperature homogenized model

    International Nuclear Information System (INIS)

    Lee, Yoonhee; Cho, Nam Zin

    2014-01-01

    Highlights: • Two-temperature homogenized model is applied to thermal analysis of fully ceramic microencapsulated (FCM) fuel. • Based on the results of Monte Carlo calculation, homogenized parameters are obtained. • 2-D FEM/1-D FDM hybrid method for the model is used to obtain 3-D temperature profiles. • The model provides the fuel-kernel and SiC matrix temperatures separately. • Compared to UO 2 fuel, the FCM fuel shows ∼560 K lower maximum temperatures at steady- and transient states. - Abstract: The fully ceramic microencapsulated (FCM) fuel, one of the accident tolerant fuel (ATF) concepts, consists of TRISO particles randomly dispersed in SiC matrix. This high heterogeneity in compositions leads to difficulty in explicit thermal calculation of such a fuel. For thermal analysis of a fuel element of very high temperature reactors (VHTRs) which has a similar configuration to FCM fuel, two-temperature homogenized model was recently proposed by the authors. The model was developed using particle transport Monte Carlo method for heat conduction problems. It gives more realistic temperature profiles, and provides the fuel-kernel and graphite temperatures separately. In this paper, we apply the two-temperature homogenized model to three-dimensional single-channel thermal analysis of the FCM fuel element for steady- and transient-states using 2-D FEM/1-D FDM hybrid method. In the analyses, we assume that the power distribution is uniform in radial direction at steady-state and that in axial direction it is in the form of cosine function for simplicity. As transient scenarios, we consider (i) coolant inlet temperature transient, (ii) inlet mass flow rate transient, and (iii) power transient. The results of analyses are compared to those of conventional UO 2 fuel having the same geometric dimension and operating conditions

  5. On the high temperature phase transition in Ba(Zr0.20Ti0.80O3 ceramic

    Directory of Open Access Journals (Sweden)

    K. P. Chandra

    2017-08-01

    Full Text Available Temperature dependent X-ray diffraction (XRD and dielectric properties of perovskite Ba(Zr0.2Ti0.8O3 ceramic prepared using a standard solid-state reaction process is presented. Along with phase transitions at low temperature, a new phase transition at high temperature (873∘C at 20Hz, diffusive in character has been found where the lattice structure changes from monoclinic (space group: P2∕m to hexagonal (space group: P6∕mmm. This result places present ceramic in the list of potential candidate for intended high temperature applications. The AC conductivity data followed hopping type charge conduction and supports jump relaxation model. The experimental value of d33=98pC/N was found. The dependence of polarization and strain on electric field at room temperature suggested that lead-free Ba(Zr0.2Ti0.8O3 is a promising material for electrostrictive applications.

  6. Stress relaxation and creep of high-temperature gas-cooled reactor core support ceramic materials: a literature search

    International Nuclear Information System (INIS)

    Selle, J.E.; Tennery, V.J.

    1980-05-01

    Creep and stress relaxation in structural ceramics are important properties to the high-temperature design and safety analysis of the core support structure of the HTGR. The ability of the support structure to function for the lifetime of the reactor is directly related to the allowable creep strain and the ability of the structure to withstand thermal transients. The thermal-mechanical response of the core support pads to steady-state stresses and potential thermal transients depends on variables, including the ability of the ceramics to undergo some stress relaxation in relatively short times. Creep and stress relaxation phenomena in structural ceramics of interest were examined. Of the materials considered (fused silica, alumina, silicon nitride, and silicon carbide), alumina has been more extensively investigated in creep. Activation energies reported varied between 482 and 837 kJ/mole, and consequently, variations in the assigned mechanisms were noted. Nabarro-Herring creep is considered as the primary creep mechanism and no definite grain size dependence has been identified. Results for silicon nitride are in better agreement with reported activation energies. No creep data were found for fused silica or silicon carbide and no stress relaxation data were found for any of the candidate materials. While creep and stress relaxation are similar and it is theoretically possible to derive the value of one property when the other is known, no explicit demonstrated relationship exists between the two. For a given structural ceramic material, both properties must be experimentally determined to obtain the information necessary for use in high-temperature design and safety analyses

  7. Influence of selected washing treatments and drying temperatures ...

    African Journals Online (AJOL)

    Influence of selected washing treatments and drying temperatures on ... with regard to the optimal retention of the crude protein and fat levels of the dried dagaa. ... are accessible to most of the households involved in dried fish processing.

  8. High-temperature nanoporous ceramic monolith prepared from a polymeric bicontinuous microemulsion template.

    Science.gov (United States)

    Jones, Brad H; Lodge, Timothy P

    2009-02-11

    Nanoporous ceramic with a unique pore structure was derived from an all-hydrocarbon polymeric bicontinuous microemulsion (BmuE). The BmuE was designed to allow facile removal of one phase, resulting in a nanoporous polymer monolith with BmuE-like structure. The pores were filled with a commercially available, polymeric precursor to nonoxide, Si-based ceramics. Pyrolysis resulted in a monolith of nanoporous ceramic, stable to at least 1000 degrees C, with a BmuE-like pore structure. The pore structure is disordered and 3-D continuous. Microscopy and gas sorption measurements suggest a well-defined pore size distribution spanning roughly 60-100 nm, sizes previously unattainable through related techniques.

  9. Development of low-expansion ceramics with strength retention to elevated temperatures. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hirschfeld, D.A.; Brown, J.J. Jr. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)

    1994-09-01

    The development of advanced engines has resulted in the need for new ceramic compositions which exhibit thermo-mechanical properties suitable for the engine environment, e.g., low thermal expansion, stability to 1,200 C, and thermal shock resistance. To meet these goals, a two phase research program was instituted. In the first phase, new oxide ceramics were identified in the AlPO{sub 4}-{beta}-eucryptite, {beta}-cristobalite, mullite and zircon systems. This research focused on screening and property characterization of ceramics in the four systems. The most promising compositions in the AlPO{sub 4}-{beta}-eucryptite and zircon systems were then further evaluated and developed in the second phase with the goal of being ready for prototype testing in actual engines. Of the compositions, calcium magnesium zirconium phosphate (zircon system) exhibits the most desirable properties and is presently being developed for commercialization.

  10. Influence of temperature on the dielectric nonlinearity of BaTiO{sub 3}-based multi-layer ceramic capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Seok-Hyun, E-mail: seokhyun72.yoon@samsung.com; Kim, Mi-Yang [LCR Materials Group, Corporate R& D Institute, Samsung Electro-Mechanics Co., Ltd., Suwon, Gyunggi-Do 443-743 (Korea, Republic of)

    2016-06-13

    Temperature dependence of the dielectric nonlinearity was investigated for the BaTiO{sub 3} multilayer ceramic capacitor. The decrease in temperature caused a significant increase in the degree of dielectric nonlinearity. The Preisach analysis shows that such effect corresponds to a decrease in reversible and a significant increase in irreversible domain wall contribution to polarization. The magnitude of spontaneous polarization (P{sub S}) was increased with decreasing temperature. It can be associated with phase transition from pseudo-cubic to monoclinic and its resultant change in the polar direction, which was observed through transmission electron microscopy. These results demonstrate that the increase in P{sub S} with the decrease in temperature inhibits domain wall motion in low driving field as it is anticipated to increase the degree of intergranular constraints during domain wall motion. But it results in a more steep increase in the dielectric constants beyond the threshold field where domain wall motion can occur.

  11. Experimental investigation on high temperature anisotropic compression properties of ceramic-fiber-reinforced SiO{sub 2} aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Duoqi; Sun, Yantao [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China); Feng, Jian [National Key Laboratory of Science and Technology on Advanced Ceramic Fibers and Composites, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Yang, Xiaoguang, E-mail: yxg@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China); Han, Shiwei; Mi, Chunhu [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China); Jiang, Yonggang [National Key Laboratory of Science and Technology on Advanced Ceramic Fibers and Composites, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Qi, Hongyu [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China)

    2013-11-15

    Compression tests were conducted on a ceramic-fiber-reinforced SiO{sub 2} aerogel at high temperature. Anisotropic mechanical property was found. In-plane Young's modulus is more than 10 times higher than that of out-of-plane, but fracture strain is much lower by a factor of 100. Out-of-plane Young's modulus decreases with increasing temperature, but the in-plane modulus and fracture stress increase with temperature. The out-of-plane property does not change with loading rates. Viscous flow at high temperature is found to cause in-plane shrinkage, and both in-plane and out-of-plane properties change. Compression induced densification of aerogel matrix was also found by Scanning Electron Microscope analysis.

  12. Experimental investigation on high temperature anisotropic compression properties of ceramic-fiber-reinforced SiO2 aerogel

    International Nuclear Information System (INIS)

    Shi, Duoqi; Sun, Yantao; Feng, Jian; Yang, Xiaoguang; Han, Shiwei; Mi, Chunhu; Jiang, Yonggang; Qi, Hongyu

    2013-01-01

    Compression tests were conducted on a ceramic-fiber-reinforced SiO 2 aerogel at high temperature. Anisotropic mechanical property was found. In-plane Young's modulus is more than 10 times higher than that of out-of-plane, but fracture strain is much lower by a factor of 100. Out-of-plane Young's modulus decreases with increasing temperature, but the in-plane modulus and fracture stress increase with temperature. The out-of-plane property does not change with loading rates. Viscous flow at high temperature is found to cause in-plane shrinkage, and both in-plane and out-of-plane properties change. Compression induced densification of aerogel matrix was also found by Scanning Electron Microscope analysis

  13. Processing, Structure and High Temperature Oxidation Properties of Polymer-Derived and Hafnium Oxide Based Ceramic Systems

    Science.gov (United States)

    Terauds, Kalvis

    Demands for hypersonic aircraft are driving the development of ultra-high temperature structural materials. These aircraft, envisioned to sustain Mach 5+, are expected to experience continuous temperatures of 1200--1800°C on the aircraft surface and temperatures as high as 2800°C in combustion zones. Breakthroughs in the development of fiber based ceramic matrix composites (CMCs) are opening the door to a new class of high-tech UHT structures for aerospace applications. One limitation with current carbon fiber or silicon carbide fiber based CMC technology is the inherent problem of material oxidation, requiring new approaches for protective environmental barrier coatings (EBC) in extreme environments. This thesis focuses on the development and characterization of SiCN-HfO2 based ceramic composite EBC systems to be used as a protective layer for silicon carbide fiber based CMCs. The presented work covers three main architectures for protection (i) multilayer films, (ii) polymer-derived HfSiCNO, and (iii) composite SiCN-HfO 2 infiltration. The scope of this thesis covers processing development, material characterization, and high temperature oxidation behavior of these three SiCN-HfO2 based systems. This work shows that the SiCN-HfO 2 composite materials react upon oxidation to form HfSiO4, offering a stable EBC in streaming air and water vapor at 1600°C.

  14. Thermal expansion at low temperatures of glass-ceramics and glasses

    Energy Technology Data Exchange (ETDEWEB)

    White, G K [National Measurement Lab., Sydney (Australia)

    1976-08-01

    The linear thermal expansion coefficient, ..cap alpha.., has been measured from 2 to 32 K and from 55 to 90 K for a machineable glass-ceramic, an 'ultra-low expansion' titanium silicate glass (Corning ULE), and ceramic glasses (Cer-Vit and Zerodur), and for glassy carbon. ..cap alpha.. is negative for the ultra-low expansion materials below 100 K, as for pure vitreous silica. Comparative data are reported for ..cap alpha..-quartz , ..cap alpha..-cristobalite, common opal, and vitreous silica.

  15. A Low Temperature Co-fired Ceramics Manufactured Power Inductor Based on A Ternary Hybrid Material System

    Science.gov (United States)

    Xie, Yunsong; Chen, Ru

    Low temperature co-fired ceramics (LTCC) is one of the most important techniques to produce circuits with high working frequency, multi-functionality and high integration. We have developed a methodology to enable a ternary hybrid material system being implemented into the LTCC manufacturing process. The co-firing sintering process can be divided into a densification and cooling process. In this method, a successful ternary hybrid material densification process is achieved by tuning the sintering profile of each material to match each other. The system integrity is maintained in the cooling process is obtained by develop a strong bonding at the interfaces of each materials. As a demonstration, we have construct a power inductor device made of the ternary material system including Ag, NiCuZn ferrite and non-magnetic ceramic. The power inductors well maintains its physical integrity after sintering. The microscopic images show no obvious sign of cracks or structural deformation. More importantly, despite the bonding between the ferrite and ceramic is enhanced by non-magnetic element diffusion, the undesired magnetic elements diffusion is effectively suppressed. The electric performance shows that the power handling capability is comparable to the current state of art device.

  16. Isothermal and adiabatic Young’s moduli of alumina and zirconia ceramics at elevated temperatures

    Czech Academy of Sciences Publication Activity Database

    Pabst, W.; Gregorová, E.; Černý, Martin

    2013-01-01

    Roč. 33, 15/16 (2013), s. 3085-3093 ISSN 0955-2219 Institutional support: RVO:67985891 Keywords : mechanical properties * porosity * Al2O3 * ZrO2 Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.307, year: 2013

  17. Thermal Properties of Transparent Yb-Doped YAG Ceramics at Elevated Temperatures

    Czech Academy of Sciences Publication Activity Database

    Hostaša, J.; Matějíček, Jiří; Nait-Ali, B.; Smith, D.S.; Pabst, W.; Esposito, L.

    2014-01-01

    Roč. 97, č. 8 (2014), s. 2602-2606 ISSN 0002-7820 Institutional support: RVO:61389021 Keywords : yttrium aluminium garnet * Yb:YAG * thermal diffusivity Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.610, year: 2014 http://onlinelibrary.wiley.com/doi/10.1111/jace.13015/abstract

  18. Tensile Stress Rupture Behavior of a Woven Ceramic Matrix Composite in Humid Environments at Intermediate Temperature

    National Research Council Canada - National Science Library

    LaRochelle, Kevin J

    2005-01-01

    Stress rupture tests on the Sylramic(TM) fiber with an in-situ layer of boron nitride, boron nitride interphase, and SiC matrix ceramic matrix composite were performed at 550 degrees C and 750 degrees C with 0.0, 0.2...

  19. Composite metal-ceramic material for high temperature energy conversion applications

    NARCIS (Netherlands)

    Wolff, L.R.

    1988-01-01

    At Eindhoven Universitu of technology a composite metal-ceramic material is being developed. It will serve as a protective confinement for a combustion heated Thermionic Energy Converter (TEC). This protective confinement of 'hot shell' consists of a composite W-TiN-SiC layer structure. The outer

  20. Spark-plasma sintering of ZrB2 ultra-high-temperature ceramics

    OpenAIRE

    Zamora Rodríguez, Víctor

    2013-01-01

    This work was performed in the context of the research line entitled Processing and Sintering of Advanced Ceramic Materials in the Grupo Especializado de Materiales of the University of Extremadura, and was supported by the Ministerio de Ciencia y Tecnología (Government of Spain) and FEDER funds under the Grant Nº MAT 2007-61609.

  1. Creep and Oxidation of Hafnium Diboride Based Ultra High Temperature Ceramics at 1500C

    Science.gov (United States)

    2015-12-01

    word ceramic comes from the Greek word keramos, meaning pottery, but now refers to many classes of materials, including clays , abrasives......these situations, the viscosity of the grain boundary becomes an important factor for the creep rate. 25 When grain elongation accompanies grain

  2. Comparison of the bond strength of ceramics to Co-Cr alloys made by casting and selective laser melting.

    Science.gov (United States)

    Lawaf, Shirin; Nasermostofi, Shahbaz; Afradeh, Mahtasadat; Azizi, Arash

    2017-02-01

    Considering the importance of metal-ceramic bond, the present study aimed to compare the bond strength of ceramics to cobalt-chrome (Co-Cr) alloys made by casting and selective laser melting (SLM). In this in-vitro experimental study, two sample groups were prepared, with one group comprising of 10 Co-Cr metal frameworks fabricated by SLM method and the other of 10 Co-Cr metal frameworks fabricated by lost wax cast method with the dimensions of 0.5 × 3 × 25 mm (following ISO standard 9693). Porcelain with the thickness of 1.1 mm was applied on a 3 × 8-mm central rectangular area of each sample. Afterwards, bond strengths of the samples were assessed with a Universal Testing Machine. Statistical analysis was performed with Kolmogorov-Smirnov test and T-test. Bond strength in the conventionally cast group equaled 74.94 ± 16.06 MPa, while in SLM group, it equaled 69.02 ± 5.77 MPa. The difference was not statistically significant ( P ≤ .05). The results indicated that the bond strengths between ceramic and Co-Cr alloys made by casting and SLM methods were not statistically different.

  3. Influence of Sintering Temperature on Pore Structure and Electrical properties of Technologically Modified MgO-Al2O3 Ceramics

    Directory of Open Access Journals (Sweden)

    Halyna Klym

    2015-03-01

    Full Text Available Technologically modified spinel ceramics are prepared from Al2O3 and 4MgCO3×Mg(OH2×5H2O powders at 1200, 1300 and 1400 oC. The influence of sintering temperature on porous structure and exploitation properties of obtained humidity-sensitive MgO-Al2O3 ceramics are studied. It is shown that increasing of preparing temperature from 1200 to 1400 oC result in transformation of pore size distribution in ceramics from tri- to bi-modal including the open macro- and mesopores with sizes from tem to hundreds nm and nanopores until to a few nm. The studied ceramic elements with electrical resistances ~ 10-2-102 MОhm are high humidity sensitive in the region of 30-95 % with minimal hysteresis in adsorption-desorption cycles. It is established that increasing of humidity sensitivity in ceramics are related to achievement near to optimum pore size distribution and quantity of pores in the all regions. Prolonged degradation transformation in ceramics at higher temperature and relative humidity result in lose sensitivity up to 40-50 %.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5189

  4. Effect of ultra high temperature ceramics as fuel cladding materials on the nuclear reactor performance by SERPENT Monte Carlo code

    Energy Technology Data Exchange (ETDEWEB)

    Korkut, Turgay; Kara, Ayhan; Korkut, Hatun [Sinop Univ. (Turkey). Dept. of Nuclear Energy Engineering

    2016-12-15

    Ultra High Temperature Ceramics (UHTCs) have low density and high melting point. So they are useful materials in the nuclear industry especially reactor core design. Three UHTCs (silicon carbide, vanadium carbide, and zirconium carbide) were evaluated as the nuclear fuel cladding materials. The SERPENT Monte Carlo code was used to model CANDU, PWR, and VVER type reactor core and to calculate burnup parameters. Some changes were observed at the same burnup and neutronic parameters (keff, neutron flux, absorption rate, and fission rate, depletion of U-238, U-238, Xe-135, Sm-149) with the use of these UHTCs. Results were compared to conventional cladding material zircalloy.

  5. Room temperature magnetic and dielectric properties of cobalt doped CaCu3Ti4O12 ceramics

    Science.gov (United States)

    Mu, Chunhong; Song, Yuanqiang; Wang, Haibin; Wang, Xiaoning

    2015-05-01

    CaCu3Ti4-xCoxO12 (x = 0, 0.2, 0.4) ceramics were prepared by a conventional solid state reaction, and the effects of cobalt doping on the room temperature magnetic and dielectric properties were investigated. Both X-ray diffraction and energy dispersive X-ray spectroscopy confirmed the presence of Cu and Co rich phase at grain boundaries of Co-doped ceramics. Scanning electron microscopy micrographs of Co-doped samples showed a striking change from regular polyhedral particle type in pure CaCu3Ti4O12 (CCTO) to sheet-like grains with certain growth orientation. Undoped CaCu3Ti4O12 is well known for its colossal dielectric constant in a broad temperature and frequency range. The dielectric constant value was slightly changed by 5 at. % and 10 at. % Co doping, whereas the second relaxation process was clearly separated in low frequency region at room temperature. A multirelaxation mechanism was proposed to be the origin of the colossal dielectric constant. In addition, the permeability spectra measurements indicated Co-doped CCTO with good magnetic properties, showing the initial permeability (μ') as high as 5.5 and low magnetic loss (μ″ < 0.2) below 3 MHz. And the interesting ferromagnetic superexchange coupling in Co-doped CaCu3Ti4O12 was discussed.

  6. ZrC Ceramics Prepared by Self-propagating High-temperature Synthesis/Single Action Pressing

    Directory of Open Access Journals (Sweden)

    CHENG Yong

    2017-01-01

    Full Text Available ZrC ceramics were prepared by mechanical axial compression of self-propagating high-temperature synthesis/single action pressing (SHS/SAP.The effects of pressure on microstructure and densification of the products,as well as the relationship between displacement/variation of the load curve and SHS reaction,were studied.The structure and properties of the products were investigated by XRD and SEM.In addition,the density was measured by the drain away liquid method.Meanwhile,universal testing machine was used to record the displacement and load curve alternations.The results indicate that products are mainly composed of ZrC phase,the process of exhaust are accelerated as the increasing of pressure as well,leading to the smaller size of porosity and crystal particles.Density manifested as an increasing pattern by the elevated pressure with no longer change at 80MPa.Due to the strong attenuation of pressure at the peak of temperature,the density of the production is only 65.7% in 120MPa.The end point of the SHS reaction and the plastic time of the products can be monitored by displacement and load curve.The results provide evidence for the application of self-propagating high-temperature synthesis/pseudo-hot isostatic pressing to further improve the density of ceramics.

  7. Theoretical Research on Thermal Shock Resistance of Ultra-High Temperature Ceramics Focusing on the Adjustment of Stress Reduction Factor

    Directory of Open Access Journals (Sweden)

    Daining Fang

    2013-02-01

    Full Text Available The thermal shock resistance of ceramics depends on not only the mechanical and thermal properties of materials, but also the external constraint and thermal condition. So, in order to study the actual situation in its service process, a temperature-dependent thermal shock resistance model for ultra-high temperature ceramics considering the effects of the thermal environment and external constraint was established based on the existing theory. The present work mainly focused on the adjustment of the stress reduction factor according to different thermal shock situations. The influences of external constraint on both critical rupture temperature difference and the second thermal shock resistance parameter in either case of rapid heating or cooling conditions had been studied based on this model. The results show the necessity of adjustment of the stress reduction factor in different thermal shock situations and the limitations of the applicable range of the second thermal shock resistance parameter. Furthermore, the model was validated by the finite element method.

  8. Selection of a glass-ceramic formulation to immobilize fluorinel- sodium calcine

    International Nuclear Information System (INIS)

    Staples, B.A.; Wood, H.C.

    1994-12-01

    One option for immobilizing calcined high level wastes produced by nuclear fuel reprocessing activities at the Idaho Chemical Processing Plant (ICPP) is conversion to a glass-ceramic form through hot isostatic pressing. Calcines exist in several different chemical compositions, and thus candidate formulations have been developed for converting each to glass-ceramic forms which are potentially resistant to aqueous corrosion and stable enough to qualify for repository storage. Fluorinel/Na, a chemically complex calcine type, is one of the types being stored at ICPP, and development efforts have identified three formulations with potential for immobilizing it. These are a glass forming additive that uses aluminum metal to enhance reactivity, a second glass forming additive that uses titanium metal to enhance reactivity and a third that uses not only a combination of silicon and titanium metals but enough phosphorous pentoxide to form a calcium phosphate host phase in the glass-ceramic product. Glass-ceramics of each formulation performed well in restricted characterization tests. However, none of the three was subjected to rigorous testing that would provide information on whether each was processable, that is able to retain favorable characteristics over a practical range of processing conditions

  9. Synthesis and analysis of Mo-Si-B based coatings for high temperature oxidation protection of ceramic materials

    Science.gov (United States)

    Ritt, Patrick J.

    The use of Ni-based superalloys in turbine engines has all but been exhausted, with operating temperatures nearing the melting point of these materials. The use of ceramics in turbine engines, particularly ceramic matrix composites such as SiC/C and SiC/SiC, is of interest due to their low density and attractive mechanical properties at elevated temperatures. The same materials are also in consideration for leading edges on hypersonic vehicles. However, SiC-based composites degrade in high temperature environments with low partial pressures of oxygen due to active oxidation, as well as high temperature environments containing water or sand. The need for a protective external coating for SiC-based composites in service is obvious. To date, no coating investigated for SiC/C or SiC/SiC has been proven to be resistant to oxidation and corrosion at intermediate and high temperatures, as well as in environments deficient in oxygen. The Mo-Si-B coating shows great promise in this area, having been proven resistant to attack from oxidation at extreme temperatures, from water vapor and from calcia-magnesia-aluminosilicate (CMAS). The adaptation of the Mo-Si-B coating for ceramic materials is presented in detail here. Evaluation of the coating under a range of oxidation conditions as well as simulated re-entry conditions confirms the efficacy of the Mo-Si-B based coating as protection from catastrophic failure. The key to the oxidation and corrosion resistance is a robust external aluminoborosilica glass layer that forms and flows quickly to cover the substrate, even under the extreme simulated re-entry conditions. Suppression of active oxidation of SiC, which may occur during atmospheric re-entry and hypersonic flight trajectories, has also been examined. In order to adapt the Mo-Si-B based coating to low partial pressures of oxygen and elevated temperatures, controlled amounts of Al were added to the Mo-Si-B based coating. The resulting coating decreased the inward

  10. Site-selective fluorescence spectroscopy investigations of LnPO{sub 4} xenotime ceramics for radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, A.; Peters, L. [RWTH Aachen Univ. (Germany). Inst. of Crystallography; Holthausen, J.; Neumeier, S. [Forschungszentrum Juelich (Germany); Huittinen, Nina [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Loesch, Henry

    2017-06-01

    Europium incorporation in different LnPO{sub 4} (Ln=Tb, Lu and Gd{sub 1-x}Lu{sub x}) phases crystallizing in the xenotime structure was investigated with site-selective TRLFS, PXRD and Rietveld analyses. Based on recorded emission spectra and diffraction patterns, the formation of three different crystal systems (xenotime, anhydrite, and monazite) could be identified. Aging of the ceramic samples and a second sintering step led to an accumulation of europium in the grain boundaries and on the surface.

  11. A low temperature co-fired ceramic power inductor manufactured using a glass-free ternary composite material system

    Science.gov (United States)

    Li, Yuanxun; Xie, Yunsong; Xie, Ru; Chen, Daming; Han, Likun; Su, Hua

    2018-03-01

    A glass-free ternary composite material system (CMS) manufactured employing the low temperature ( 890 ° C ) co-fired ceramic (LTCC) technique is reported. This ternary CMS consists of silver, NiCuZn ferrite, and Zn2SiO4 ceramic. The reported device fabricated from this ternary CMS is a power inductor with a nominal inductance of 1.0 μH. Three major highlights were achieved from the device and the material study. First, unlike most other LTCC methods, no glass is required to be added in either of the dielectric materials in order to co-fire the NiCuZn ferrite, Zn2SiO4 ceramic, and silver. Second, a successfully co-fired silver, NiCuZn, and Zn2SiO4 device can be achieved by optimizing the thermal shrinkage properties of both NiCuZn and Zn2SiO4, so that they have a very similar temperature shrinkage profile. We have also found that strong non-magnetic elemental diffusion occurs during the densification process, which further enhances the success rate of manufacturing co-fired devices. Last but not least, elemental mapping suggests that strong magnetic elemental diffusion between NiCuZn and Zn2SiO4 has been suppressed during the co-firing process. The investigation of electrical performance illustrates that while the ordinary binary CMS based power inductor can deal with 400 mA DC, the ternary CMS based power inductor is able to handle higher DC currents, 700 mA and 620 mA DC, according to both simulation and experiment demonstrations, respectively.

  12. Low-Temperature Sintering Li3Mg1.8Ca0.2NbO6 Microwave Dielectric Ceramics with LMZBS Glass

    Science.gov (United States)

    Wang, Gang; Zhang, Huaiwu; Liu, Cheng; Su, Hua; Jia, Lijun; Li, Jie; Huang, Xin; Gan, Gongwen

    2018-05-01

    Li3Mg1.8Ca0.2NbO6 ceramics doped with Li2O-MgO-ZnO-B2O3-SiO2 glass (LMZBS) were prepared via a solid-state route. The LMZBS glass effectively reduced the sintering temperature of Li3Mg1.8Ca0.2NbO6 ceramics to 950°C. The effects of the LMZBS glass on the sintering behavior, microstructures and microwave dielectric properties of Li3Mg1.8Ca0.2NbO6 ceramics are discussed in detail. Among all the LMZBS doped Li3Mg1.8Ca0.2NbO6 ceramics, the sample with 1 wt.% of LMZBS glass sintered at 950°C for 4 h exhibited good dielectric properties: ɛ r = 16.7, Q × f = 31,000 GHz (9.92 GHz), τ f = - 1.3 ppm/°C. The Li3Mg1.8Ca0.2NbO6 ceramics possessed excellent chemical compatibility with Ag electrodes, and could be applied in low temperature co-fired ceramics (LTCC) applications.

  13. Synthesis of crystalline ceramics for actinide immobilisation

    International Nuclear Information System (INIS)

    Burakov, B.; Gribova, V.; Kitsay, A.; Ojovan, M.; Hyatt, N.C.; Stennett, M.C.

    2007-01-01

    Methods for the synthesis of ceramic wasteforms for the immobilization of actinides are common to those for non-radioactive ceramics: hot uniaxial pressing (HUP); hot isostatic pressing (HIP); cold pressing followed by sintering; melting (for some specific ceramics, such as garnet/perovskite composites). Synthesis of ceramics doped with radionuclides is characterized with some important considerations: all the radionuclides should be incorporated into crystalline structure of durable host-phases in the form of solid solutions and no separate phases of radionuclides should be present in the matrix of final ceramic wasteform; all procedures of starting precursor preparation and ceramic synthesis should follow safety requirements of nuclear industry. Synthesis methods that avoid the use of very high temperatures and pressures and are easily accomplished within the environment of a glove-box or hot cell are preferable. Knowledge transfer between the V. G. Khlopin Radium Institute (KRI, Russia) and Immobilisation Science Laboratory (ISL, UK) was facilitated in the framework of a joint project supported by UK Royal Society. In order to introduce methods of precursor preparation and ceramic synthesis we selected well-known procedures readily deployable in radiochemical processing plants. We accounted that training should include main types of ceramic wasteforms which are currently discussed for industrial applications. (authors)

  14. Temperature Dependence of Electrical Resistance of Woven Melt-Infiltrated SiCf/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Appleby, Matthew P.; Morscher, Gregory N.; Zhu, Dongming

    2016-01-01

    Recent studies have successfully shown the use of electrical resistance (ER)measurements to monitor room temperature damage accumulation in SiC fiber reinforced SiC matrix composites (SiCf/SiC) Ceramic Matrix Composites (CMCs). In order to determine the feasibility of resistance monitoring at elevated temperatures, the present work investigates the temperature dependent electrical response of various MI (Melt Infiltrated)-CVI (Chemical Vapor Infiltrated) SiC/SiC composites containing Hi-Nicalon Type S, Tyranno ZMI and SA reinforcing fibers. Test were conducted using a commercially available isothermal testing apparatus as well as a novel, laser-based heating approach developed to more accurately simulate thermomechanical testing of CMCs. Secondly, a post-test inspection technique is demonstrated to show the effect of high-temperature exposure on electrical properties. Analysis was performed to determine the respective contribution of the fiber and matrix to the overall composite conductivity at elevated temperatures. It was concluded that because the silicon-rich matrix material dominates the electrical response at high temperature, ER monitoring would continue to be a feasible method for monitoring stress dependent matrix cracking of melt-infiltrated SiC/SiC composites under high temperature mechanical testing conditions. Finally, the effect of thermal gradients generated during localized heating of tensile coupons on overall electrical response of the composite is determined.

  15. Lower sintering temperature of nanostructured dense ceramics compacted from dry nanopowders using powerful ultrasonic action

    OpenAIRE

    Khasanov, O.; Reichel, U.; Dvilis, E.; Khasanov, A.

    2011-01-01

    Nanostructured high dense zirconia ceramics have been sintered from dry nanopowders compacted by uniaxial pressing with simultaneous powerful ultrasonic action (PUA). Powerful ultrasound with frequency of 21 kHz was supplied from ultrasonic generator to the mold, which was the ultrasonic wave-guide. Previously the mold was filled by non-agglomerated zirconia nanopowder having average particle size of 40 nm. Any binders or plasticizers were excluded at nanopowder processing. Compaction pressur...

  16. Low-temperature microwave and THz dielectric response in novel microwave ceramics

    Czech Academy of Sciences Publication Activity Database

    Kamba, Stanislav; Noujni, Dmitri; Pashkin, Alexej; Petzelt, Jan; Pullar, R. C.; Axelsson, A.-K.; McN Alford, N.

    2006-01-01

    Roč. 26, - (2006), s. 1845-1851 ISSN 0955-2219 R&D Projects: GA ČR(CZ) GA202/04/0993; GA AV ČR(CZ) IAA1010213; GA MŠk(CZ) OC 525.20 Institutional research plan: CEZ:AV0Z10100520 Keywords : dielectric properties * spectroscopy * perovskites * microwave ceramics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.576, year: 2006

  17. A Passive Pressure Sensor Fabricated by Post-Fire Metallization on Zirconia Ceramic for High-Temperature Applications

    Directory of Open Access Journals (Sweden)

    Tao Luo

    2014-09-01

    Full Text Available A high-temperature pressure sensor realized by the post-fire metallization on zirconia ceramic is presented. The pressure signal can be read out wirelessly through the magnetic coupling between the reader antenna and the sensor due to that the sensor is equivalent to an inductive-capacitive (LC resonance circuit which has a pressure-sensitive resonance frequency. Considering the excellent mechanical properties in high-temperature environment, multilayered zirconia ceramic tapes were used to fabricate the pressure-sensitive structure. Owing to its low resistivity, sliver paste was chosen to form the electrical circuit via post-fire metallization, thereby enhancing the quality factor compared to sensors fabricated by cofiring with a high-melting-point metal such as platinum, tungsten or manganese. The design, fabrication, and experiments are demonstrated and discussed in detail. Experimental results showed that the sensor can operate at 600 °C with quite good coupling. Furthermore, the average sensitivity is as high as 790 kHz/bar within the measurement range between 0 and 1 Bar.

  18. Efficient decomposition of formaldehyde at room temperature over Pt/honeycomb ceramics with ultra-low Pt content.

    Science.gov (United States)

    Nie, Longhui; Zheng, Yingqiu; Yu, Jiaguo

    2014-09-14

    Pt/honeycomb ceramic (Pt/HC) catalysts with ultra-low Pt content (0.005-0.055 wt%) were for the first time prepared by an impregnation of honeycomb ceramics with Pt precursor and NaBH4-reduction combined method. The microstructures, morphologies and textural properties of the resulting samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The obtained Pt/HC catalysts were used for catalytic oxidative decomposition of formaldehyde (HCHO) at room temperature. It was found that the as-prepared Pt/HC catalysts can efficiently decompose HCHO in air into CO2 and H2O at room temperature. The catalytic activity of the Pt/HC catalysts increases with increasing the Pt loading in the range of 0.005-0.013 wt%, and the further increase of the Pt loading does not obviously improve catalytic activity. From the viewpoint of cost and catalytic performance, 0.013 wt% Pt loading is the optimal Pt loading amount, and the Pt/HC catalyst with 0.013 wt% Pt loading also exhibited good catalytic stability. Considering practical applications, this work will provide new insights into the low-cost and large-scale fabrication of advanced catalytic materials for indoor air purification.

  19. Influence of sintering temperature in red ceramic with addition of mill scale; Influencia da temperatura de sinterizacao em ceramica vermelha com adicao de carepa/residuo de laminacao

    Energy Technology Data Exchange (ETDEWEB)

    Arnt, A.B.C.; Rocha, M.R.; Bernardin, A.M.; Meller, J.G., E-mail: anb@unesc.ne [Universidade do Extremo Sul Catarinense (UNESC), Criciuma, SC (Brazil). Engenharia de Materiais. Lab. de Fenomenos de Superficies e Tratamentos Termicos

    2010-07-01

    This study aimed to evaluate the influence of sintering temperature in a red ceramic body with the addition of mill scale. This residue consists of oxides of iron had to replace the function of pigments used in ceramic materials. After chemical characterization, by X-ray diffraction, X-ray fluorescence and scanning electron microscopy, this residue was added at a rate of 5% in commercial ceramic past. The formulations were subjected to different burn temperatures of around 950 deg C, 1000 deg C and 1200 deg C. The formulations were evaluated for physical loss to fire, linear firing shrinkage, water absorption and flexural strength by 3 and intensity of tone. The results indicate that the different firing temperatures influence the strength and stability of tone in the formulations tested. (author)

  20. Bright upconversion luminescence and increased Tc in CaBi{sub 2}Ta{sub 2}O{sub 9}:Er high temperature piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Peng Dengfeng [Functional Materials Research Laboratory, Tongji University, 1239 Siping Road, Shanghai 200092 (China); National Institute of Advanced Industrial Science and Technology, Kyushu, 807-1 Shuku, Tosu, Saga 841-0052 (Japan); Wang Xusheng; Yao Xi [Functional Materials Research Laboratory, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Xu Chaonan [National Institute of Advanced Industrial Science and Technology, Kyushu, 807-1 Shuku, Tosu, Saga 841-0052 (Japan); Lin Jian; Sun Tiantuo [College of Material Science and Engineering, Tongji University, 4800 Cao' an Highway, Shanghai 201804 (China)

    2012-05-15

    Er{sup 3+} doped CaBi{sub 2}Ta{sub 2}O{sub 9} (CBT) bismuth layered-structure high temperature piezoelectric ceramics were synthesized by the traditional solid state method. The upconversion (UC) emission properties of Er{sup 3+} doped CBT ceramics were investigated as a function of Er{sup 3+} concentration and incident pump power. A bright green upconverted emission was obtained under excitation 980 nm at room temperature. The observed strong green and weak red emission bands corresponded to the transitions from {sup 4}S{sub 3/2} and {sup 4}F{sub 9/2} to {sup 4}I{sub 15/2}, respectively. The dependence of UC emission intensity on pumping power indicated that a three-photon process was involved in UC emissions. Studies of dielectric with temperature have also been carried out. Introduction of Er increased the Curie temperature of CBT, thus, making this ceramic suitable for sensor applications at higher temperatures. Because of its strong up-converted emission and increased Tc, the multifunctional high temperature piezoelectric ceramic may be useful in high temperature sensor, fluorescence thermometry, and optical-electro integration applications.

  1. Low sintering temperature and high piezoelectric properties of Li-doped (Ba,Ca)(Ti,Zr)O3 lead-free ceramics

    International Nuclear Information System (INIS)

    Chen, Xiaoming; Ruan, Xuezheng; Zhao, Kunyun; He, Xueqing; Zeng, Jiangtao; Li, Yongsheng; Zheng, Liaoying; Park, Chul Hong; Li, Guorong

    2015-01-01

    Highlights: • Li-doped Ba 0.85 Ca 0.15 Ti 0.9 Zr 0.1 O 3 (BCZT) lead-free piezoceramics were prepared by the two-step synthesis and solid-state reaction method. • Their sintering temperature decreases from about 1540 °C down to about 1400 °C. • With the proper addition of Li, the densities and grain sizes of ceramics increase. • The ceramics not only have the characteristics of hard piezoceramics but also possesses the features of soft piezoceramics at low sintering temperature. - Abstract: Li-doped Ba 0.85 Ca 0.15 Ti 0.9 Zr 0.1 O 3 (BCZT) lead-free piezoelectric ceramics were prepared by the two-step synthesis and the solid-state reaction method. The density and grain size of ceramics sufficiently increases by Li-doped sintering aid, and their sintering temperature decreases from about 1540 °C down to about 1400 °C. X-ray diffraction reveals that the phase structure of Li-doped BCTZ ceramics is changed with the sintering temperature, which is consistent with their phase transition observed by the temperature-dependent dielectric curves. The well-poled Li-doped BCZT ceramics show a high piezoelectric constant d 33 (512 pC/N) and a planar electromechanical coupling factor k p (0.49), which have the characteristics of soft Pb(Zr,Ti)O 3 (PZT) piezoceramic, on the other hand, the mechanical quality factor Q m is about 190, which possesses the features of hard PZT piezoceramics. The enhanced properties of the Li-doped BCZT are explained by the combination of Li-doped effect and sintering effect on the microstructure and the phase transition around room temperature

  2. X-Ray Characterization of Resistor/Dielectric Material for Low Temperature Co-Fired Ceramic Packages

    International Nuclear Information System (INIS)

    DIMOS, DUANE B.; KOTULA, PAUL G.; RODRIGUEZ, MARK A.; YANG, PIN

    1999-01-01

    High temperature XRD has been employed to monitor the devitrification of Dupont 951 low temperature co-fired ceramic (LTCC) and Dupont E84005 resistor ink. The LTCC underwent devitrification to an anorthite phase in the range of 835-875 C with activation energy of 180 kJ/mol as calculated from kinetic data. The resistor paste underwent devitrification in the 835-875 C range forming monoclinic and hexagonal celcian phases plus a phase believed to be a zinc-silicate. RuO(sub 2) appeared to be stable within this devitrified resistor matrix. X-ray radiography of a co-fired circuit indicated good structural/chemical compatibility between the resistor and LTCC

  3. Temperature and energy effects on secondary electron emission from SiC ceramics induced by Xe17+ ions.

    Science.gov (United States)

    Zeng, Lixia; Zhou, Xianming; Cheng, Rui; Wang, Xing; Ren, Jieru; Lei, Yu; Ma, Lidong; Zhao, Yongtao; Zhang, Xiaoan; Xu, Zhongfeng

    2017-07-25

    Secondary electron emission yield from the surface of SiC ceramics induced by Xe 17+ ions has been measured as a function of target temperature and incident energy. In the temperature range of 463-659 K, the total yield gradually decreases with increasing target temperature. The decrease is about 57% for 3.2 MeV Xe 17+ impact, and about 62% for 4.0 MeV Xe 17+ impact, which is much larger than the decrease observed previously for ion impact at low charged states. The yield dependence on the temperature is discussed in terms of work function, because both kinetic electron emission and potential electron emission are influenced by work function. In addition, our experimental data show that the total electron yield gradually increases with the kinetic energy of projectile, when the target is at a constant temperature higher than room temperature. This result can be explained by electronic stopping power which plays an important role in kinetic electron emission.

  4. Temperature coefficient of piezoelectric constants in Pb(Mg1/3 Nb2/3O3 - PbTiO3 ceramics

    Directory of Open Access Journals (Sweden)

    Manuel Henrique Lente

    2004-06-01

    Full Text Available In this work, the thermal stability of piezoelectric constants of PMN-PT ceramics in the tetragonal and rhombohedral phases were investigated in a wide range of temperatures. The results showed that the tetragonal PMN-PT presented higher thermal stability and, consequently, the temperature coefficients for the piezoelectric constants were approximately zero. This result revealed to be much better than that commonly found for PZT ceramics. Although the rhombohedral PMN-PT presented a slight lower thermal stability, the values found for the coupling factor were significantly higher than the tetragonal composition.

  5. Ceramic Parts for Turbines

    Science.gov (United States)

    Jones, R. D.; Carpenter, Harry W.; Tellier, Jim; Rollins, Clark; Stormo, Jerry

    1987-01-01

    Abilities of ceramics to serve as turbine blades, stator vanes, and other elements in hot-gas flow of rocket engines discussed in report. Ceramics prime candidates, because of resistance to heat, low density, and tolerance of hostile environments. Ceramics considered in report are silicon nitride, silicon carbide, and new generation of such ceramic composites as transformation-toughened zirconia and alumina and particulate- or whisker-reinforced matrices. Report predicts properly designed ceramic components viable in advanced high-temperature rocket engines and recommends future work.

  6. Ceramic gas turbine shroud

    Science.gov (United States)

    Shi, Jun; Green, Kevin E.

    2014-07-22

    An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.

  7. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  8. Fiscal 2000 achievement report on research and development of industrial technologies. Research and development of synergy ceramics (Research and development of ultrahigh temperature gas turbine for power generation); 2000 nendo sangyo kagaku gijutsu kenkyu kaihatsu seika hokokusho. Synergy ceramics no kenkyu kaihatsu (hatsuden'yo chokoon gas turbine no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The fruits of fiscal 2000 efforts to develop high temperature energy materials and ultraprecision materials are briefly described. Activities are conducted in the four fields of (1) materials derivation and advanced evaluation/design technologies, (2) application technologies, (3) common base technologies, and (4) multifunction realization process evaluation. Discussed in field (1) are high temperature energy materials, high performance active materials, fundamental technologies for member designing, active materials for dealing with environmental gas, silicon based high resistance energy materials, porous multiple layer ceramic materials, macro-/micro-scale stress analysis technology, and microfracture analysis technology. Discussed in field (2) are heat resistant and damage tolerant materials, heat shielding materials and energy absorbing materials, and nanofilter materials capable of selective separation. In the study of active materials specific for environmental gas, a catalyst is developed, stable at high temperatures and capable of treating NOx selectively. The catalyst is a layered product comprising Ba hexaaluminate layers and stabilized zirconia layers. (NEDO)

  9. Fiscal 2000 achievement report on research and development of industrial technologies. Research and development of synergy ceramics (Research and development of ultrahigh temperature gas turbine for power generation); 2000 nendo sangyo kagaku gijutsu kenkyu kaihatsu seika hokokusho. Synergy ceramics no kenkyu kaihatsu (hatsuden'yo chokoon gas turbine no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The fruits of fiscal 2000 efforts to develop high temperature energy materials and ultraprecision materials are briefly described. Activities are conducted in the four fields of (1) materials derivation and advanced evaluation/design technologies, (2) application technologies, (3) common base technologies, and (4) multifunction realization process evaluation. Discussed in field (1) are high temperature energy materials, high performance active materials, fundamental technologies for member designing, active materials for dealing with environmental gas, silicon based high resistance energy materials, porous multiple layer ceramic materials, macro-/micro-scale stress analysis technology, and microfracture analysis technology. Discussed in field (2) are heat resistant and damage tolerant materials, heat shielding materials and energy absorbing materials, and nanofilter materials capable of selective separation. In the study of active materials specific for environmental gas, a catalyst is developed, stable at high temperatures and capable of treating NOx selectively. The catalyst is a layered product comprising Ba hexaaluminate layers and stabilized zirconia layers. (NEDO)

  10. Influence of radiant heating treatments on fusion of high-temperature superconducting yttrium ceramics; Vliyanie termoradiatsionnykh obrabotok na sintez vysokotempiraturnykh sverkhprovodyaschikh ittrievykh keramik

    Energy Technology Data Exchange (ETDEWEB)

    Bitenbaev, M I; Polyakov, A I [Inst. Yadernoj Fiziki Natsionalnogo Yadernogo Tsentra Respubliki Kazakhstan, Almaty (Kazakhstan)

    1999-07-01

    Regardless of the fact that the materials made of HTSC-ceramics are promising, there is no any information about their successful practical application in publications. To our opinion, it is explained by the fact, first of all, that the conservative technologies of the powder metallurgy do not allow producing HTSC systems with excellent operating performance (structure homogeneity, long-term stability of Sc properties and etc.). This report presents outcomes of experiments on fusion of yttrium ceramics containing raw components irradiated by g-rays {sup 60}Co under the temperature exceeding 500 degrees C. HTSC properties of ceramics were studied according to their differential spectra of radio-frequency (RF) field absorption. The RF absorption spectrum of yttrium ceramics samples produced according to conservative technology is sufficiently permitted triplet with the Sc transition temperatures range of 80 K, 90 K, 95 K. Irradiation under the increased temperatures and mechanical limitation allow producing samples of yttrium HTSC-ceramics with sufficient homogeneous structure and superconducting properties that are stable to air conditions for not less than one year.

  11. Grain boundary engineering of highly deformable ceramics

    International Nuclear Information System (INIS)

    Mecartney, M.L.

    2000-01-01

    Highly deformable ceramics can be created with the addition of intergranular silicate phases. These amorphous intergranular phases can assist in superplastic deformation by relieving stress concentrations and minimizing grain growth if the appropriate intergranular compositions are selected. Examples from 3Y-TZP and 8Y-CSZ ceramics are discussed. The grain boundary chemistry is analyzed by high resolution analytical TEM is found to have a strong influence on the cohesion of the grains both at high temperature and at room temperature. Intergranular phases with a high ionic character and containing large ions with a relatively weak bond strength appear to cause premature failure. In contrast, intergranular phases with a high degree of covalent character and similar or smaller ions than the ceramic and a high ionic bond strength are the best for grain boundary adhesion and prevention of both cavitation at high temperatures and intergranular fracture at room temperature

  12. Wear of MgO-CaO-SiO2-P2O5-F-Based Glass Ceramics Compared to Selected Dental Ceramics

    Directory of Open Access Journals (Sweden)

    Jongee Park

    2007-01-01

    Full Text Available Wear of a glass-ceramic produced through controlled crystallization of a glass in the MgO-CaO-SiO2-P2O5-F system has been evaluated and compared to various commercial dental ceramics including IPS Empress 2, Cergo Pressable Ceramic, Cerco Ceram, and Super porcelain EX-3. Wear tests were performed in accord with the ASTM G99 for wear testing with a pin-on-disk apparatus. The friction coefficient and specific wear rate of the materials investigated were determined at a load of 10 N and at ambient laboratory conditions. Microhardness of the materials was also measured to elucidate the appropriateness of these materials for dental applications.

  13. Effect of CuO addition on the sintering temperature and microwave dielectric properties of CaSiO3–Al2O3 ceramics

    Directory of Open Access Journals (Sweden)

    Denghao Li

    2014-06-01

    Full Text Available CuO-doped CaSiO3–1 wt% Al2O3 ceramics were synthesized via a traditional solid-state reaction method, and their sintering behavior, microstructure and microwave dielectric properties were investigated. The results showed that appropriate CuO addition could accelerate the sintering process and assist the densification of CaSiO3–1 wt% Al2O3 ceramics, which could effectively lower the densification temperature from 1250 °C to 1050 °C. However, the addition of CuO undermined the microwave dielectric properties. The optimal amount of CuO addition was found to be 0.8 wt%, and the derived CaSiO3–Al2O3 ceramic sintered at 1100 °C presented good microwave dielectric properties of εr=7.27, Q×f=16,850 GHz and τf=−39.53 ppm/°C, which is much better than those of pure CaSiO3 ceramic sintered at 1340 oC (Q×f=13,109 GHz. The chemical compatibility of the above ceramic with 30 Pd/70 Ag during the cofiring process has also been investigated, and the result showed that there was no chemical reaction between palladium–silver alloys and ceramics.

  14. Mechanical behavior of a Y-TZP ceramic for monolithic restorations: effect of grinding and low-temperature aging.

    Science.gov (United States)

    Pereira, G K R; Silvestri, T; Camargo, R; Rippe, M P; Amaral, M; Kleverlaan, C J; Valandro, L F

    2016-06-01

    This study aimed to investigate the effects of grinding with diamond burs and low-temperature aging on the mechanical behavior (biaxial flexural strength and structural reliability), surface topography, and phase transformation of a Y-TZP ceramic for monolithic dental restorations. Disc-shaped specimens (Zirlux FC, Ivoclar Vivadent) were manufactured according to ISO 6872 (2008) and divided in accordance with two factors: "grinding - 3 levels" and "LTD - 2 levels". Grinding was performed using a contra-angle handpiece under constant water-cooling with different grit-sizes (extra-fine and coarse diamond burs). LTD was simulated in an autoclave at 134°C, under a pressure of 2 bar, over a period of 20h. Surface topography analysis showed an increase in roughness based on surface treatment grit-size (Coarse>Xfine>Ctrl), LTD did not influence roughness values. Both grinding and LTD promoted an increase in the amount of m-phase, although different susceptibilities to degradation were observed. According to existing literature the increase of m-phase content is a direct indicative of Y-TZP degradation. Weibull analysis showed an increase in characteristic strength after grinding (Coarse=Xfine>Ctrl), while for LTD, distinct effects were observed (Ctrlgrinding showed not to be detrimental to the mechanical properties of Zirlux FC Y-TZP ceramic. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Low Temperature Broad Band Dielectric Spectroscopy of Multiferroic Bi6Fe2Ti3O18 Ceramics

    Directory of Open Access Journals (Sweden)

    Lisińska-Czekaj A.

    2016-09-01

    Full Text Available In the present research the tool of broadband dielectric spectroscopy was utilized to characterize dielectric behavior of Bi6Fe2Ti3O18 (BFTO Aurivillius-type multiferroic ceramics. Dielectric response of BFTO ceramics was studied in the frequency domain (Δν=0.1Hz – 10MHz within the temperature range ΔT=-100°C – 200°C. The Kramers-Kronig data validation test was employed to validate the impedance data measurements and it was found that the measured impedance data exhibited good quality justifying further analysis. The residuals were found to be less than 1%, whereas the “chi-square” parameter was within the range χ2~10−7−10−5. Experimental data were analyzed using the circle fit of simple impedance arc plotted in the complex Z”-Z’ plane (Nyquist plot. The total ac conductivity of the grain boundaries was thus revealed and the activation energy of ac conductivity for the grain boundaries was calculated. It was found that activation energy of ac conductivity of grain boundaries changes from EA=0.20eV to EA=0.55eV while temperature rises from T=-100°C up to T=200°C. On the base of maxima of the impedance semicircles (ωmτm=1 the relaxation phenomena were characterized in terms of the temperature dependence of relaxation times and relevant activation energy was calculated (EA=0.55eV.

  16. In vitro solubility and bioactivity of Sr and Mg co-doped calcium phosphate glass-ceramics derived from different heat-treatment temperatures

    International Nuclear Information System (INIS)

    Cai Shu; Li Jianxin; Xu Guohua; Li, Xudong; Ye Xiaojian; Jiang Wei

    2011-01-01

    Highlights: ► Porous glass ceramics were prepared by controlled heat treatment process. ► A fast release of Mg ions has a great influence on the Ca/P ratio of the deposits. ► The chemical stability of the deposited apatite directly affects cell behavior. ► The glass ceramics heat-treated at 760 °C and 780 °C show less glass. ► The degradation rates are both compatible with cell growth and differentiation. - Abstract: CaO–P 2 O 5 –Na 2 O–SrO–MgO glass–ceramic system was prepared by controlled heat treatment process. Solubility and bioactivity of glass-ceramics were measured and evaluated in simulated body fluid (SBF) and cell culture medium respectively. The dissolution behavior of these glass-ceramics strongly depends on the amount and microstructure of the crystals precipitated by sintering treatment. Concerning the bioactivity, the onset of the apatite formation on the glass–ceramic system was directly dependent on the amount of bioactive glass amount which can be controlled using different temperatures of heat treatment. After immersing glass–ceramic in SBF, Mg ion as one of system composition can be released from residual glass and provides a high impact on the Ca/P ratio and chemical stability of the deposited apatite layer that directly affects cell attachment and proliferation in in vitro cell culture system. The glass ceramics heat-treated at 760 °C and 780 °C show less glass amount, and their degradation rates are both compatible with cell growth and differentiation.

  17. Cu{sub 1.5}Mn{sub 1.5}O{sub 4}-based ceramic spectrally selective coatings for efficient solar absorber applications

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Pengjun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); University of Chinese Academy of Sciences, Beijing, 100049 (China); Geng, Qingfen; Gao, Xianghu [Research & Development Center for Eco-material and Eco-chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Yang, Shengrong [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Liu, Gang, E-mail: gangliu@licp.cas.cn [Research & Development Center for Eco-material and Eco-chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China)

    2016-08-05

    Cu{sub 1.5}Mn{sub 1.5}O{sub 4}-based ceramic spectrally selective (CSS) coating was deposited on aluminum substrate using a sol–gel dip-coating method. The citric acid introduced in the precursor system lowered the required calcining temperature of crystalline Cu{sub 1.5}Mn{sub 1.5}O{sub 4}. X-Ray diffraction (XRD) peaks of coatings annealed above 450 °C were found to coincide exactly with that of crystalline Cu{sub 1.5}Mn{sub 1.5}O{sub 4} in JCPDS database. By optimizing the withdrawal rate and calcining temperature, coating with spectral selectivity as good as α{sub s} = 0.876 and ε{sub 100} = 0.057 was achieved after only one dipping/annealing cycle. Subjected to an accelerated ageing test at 259 °C, the obtained CSS coating showed an excellent thermally durability with the performance criterion (PC) values below 0.05. - Highlights: • Cu{sub 1.5}Mn{sub 1.5}O{sub 4}-based CSS coating is achieved after only one dipping/annealing cycle. • Cu{sub 1.5}Mn{sub 1.5}O{sub 4} coating is obtained as the annealing temperature reaches to 450 °C. • Cu{sub 1.5}Mn{sub 1.5}O{sub 4} coating exhibits optical parameter: α{sub s} = 0.876 and ε{sub 100} = 0.057. • Cu{sub 1.5}Mn{sub 1.5}O{sub 4} coating shows the excellent stability in low to mid temperature region.

  18. A prototype knowledge-based system for material selection of ceramic matrix composites of automotive engine components

    Energy Technology Data Exchange (ETDEWEB)

    Sapuan, S.M.; Jacob, M.S.D.; Mustapha, F.; Ismail, N

    2002-12-15

    A prototype knowledge based system (KBS) for material selection of ceramic matrix composites (CMC) for engine components such as piston, connecting rod and piston ring is proposed in this paper. The main aim of this research work is to select the most suitable material for the automotive engine components. The selection criteria are based upon the pre-defined constraint value. The constraint values are mechanical, physical properties and manufacturing techniques. The constraint values are the safety values for the product design. The constraint values are selected from the product design specification. The product design specification values are selected from the past design calculation and some values are calculated by the help of past design data. The knowledge-based system consists of several modules such as knowledge acquisition module, inference module and user interface module. The domains of the knowledge-based system are defined as objects and linked together by hierarchical graph. The system is capable of selecting the most suitable materials and ranks the materials with respect to their properties. The design engineers can choose the required materials related to the materials property.

  19. Temperature selection of goldfish (Carassius auratus L. ) and brook trout (Salvelinus fontinalis Mitch. ) after heterogeneous temperature acclimation

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, R.

    1977-01-01

    Goldfish and brook trout were acclimated heterogeneously to temperature by exposing the head and tail simultaneously to different temperatures. The temperature selection of heterogeneously acclimated fish was tested in a vertical temperature gradient and compared to that of homogeneously acclimated fish. All fish selected temperatures essentially corresponding to the state of acclimation of their head. It is concluded that the brain acts as the main control of temperature selection in fish.

  20. Improved ferroelectric and pyroelectric properties of Pb-doped SrBi4Ti4O15 ceramics for high temperature applications

    International Nuclear Information System (INIS)

    Venkata Ramana, E.; Graça, M.P.F.; Valente, M.A.; Bhima Sankaram, T.

    2014-01-01

    Highlights: • Sr 1−x Pb x Bi 4 Ti 4 O 15 (SPBT, x = 0 − 0.4) ceramics were synthesized by soft chemical method. • X-ray diffraction analysis confirmed the formation of bismuth layered structure. • SEM images showed plate like grain morphology with random orientation of plate faces. • Pb-doping resulted in improved ferroelectricity of SrBi 4 Ti 4 O 15 ceramics. • Pb-doped SrBi 4 Ti 4 O 15 exhibited improved pyroelectric properties with high T C . -- Abstract: Ferroelectric properties of Pb-modified strontium bismuth titanate ceramics with chemical formula Sr 1−x Pb x Bi 4 Ti 4 O 15 (x = 0–0.4) were investigated. Polycrystalline ceramics were synthesized by soft chemical method to study the effect of Pb-doping on its physical properties. X-ray diffraction analysis revealed a bismuth layered structure for all the compounds. The doping resulted in an increased tetragonal strain and improved ferroelectric properties. Scanning electron microscope images showed plate like grain morphology with random orientation of platelets. The ferroelectric transition temperature of the ceramics increased systematically from 525 °C to 560 °C with the increase of doping concentration. The piezoelectric coefficient (d 33 ) of the ceramics was enhanced significantly with Pb doping, exhibiting a maximum value of 21.8 pC/N for 40 mol.% Pb-doped SBT. Pyroelectric studies carried out using the Byer–Roundy method indicated that the modified SBT ceramics are promising candidates for high temperature pyroelectric applications

  1. Electrical Conduction of Ba(Ti0.99Fe0.01)O3-δ Ceramic at High Temperatures

    Science.gov (United States)

    Yu, Zi-De; Chen, Xiao-Ming

    2018-03-01

    BaTiO3 and Ba(Ti0.99Fe0.01)O3-δ ceramics with dense microstructure have been synthesized by a solid-state reaction method, and their electrical conduction investigated by broadband electrical impedance spectroscopy at frequencies from 0.05 Hz to 3 × 106 Hz and temperatures from 200°C to 400°C. Compared with BaTiO3, the real part of the permittivity and the phase-transition temperature of Ba(Ti0.99Fe0.01)O3-δ decreased. Relaxation peaks appeared in the curves of the imaginary part of the permittivity as a function of frequency. With increase in frequency, the peaks gradually shifted towards higher frequency and their height increased. Conductivity was closely related to frequency and temperature. Frequency-dependent conductivity was analyzed using the Jonscher double power law. Compared with BaTO3, Ba(Ti0.99Fe0.01)O3-δ exhibited high impedance at given frequency and temperature. Impedance Cole-Cole plots displayed two semicircles, which could be well fit using two parallel RC equivalent circuit models. The conductivity activation energy was found to be around 1 eV. For Ba(Ti0.99Fe0.01)O3-δ , the electrical modulus curve versus frequency displayed two peaks.

  2. Effects of B{sub 2}O{sub 3} content and sintering temperature on crystallization and microstructure of CBS glass–ceramic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Li, Pengyang [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Wang, Shubin, E-mail: shubinwang@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials and Engneering, Beihang University, Beijing 100191 (China); Liu, Jianggao; Feng, Mengjie; Yang, Xinwang [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2015-11-30

    Graphical abstract: (a) TEM photogram of CG3 sintered at 800 °C, crystals are obvious; (b) the XRD patterns of CG3 glass samples sintered at various temperatures; (c) SEM photogram of CG3 sintered at 800 °C; (d) Kissinger, Augis–Bennett and Ozawa kinetics plots of CG3 glass samples. - Highlights: • Combining sol–gel method with direct sintering method to reduce the temperature of coatings formation. • Characterizing CaO–SiO{sub 2}–B{sub 2}O{sub 3} glass–ceramic coatings on porous substrates. • Surface crystallization of CBS glass–ceramic coatings: nucleation and kinetics. • Activation energies for crystal growth in CBS glass–ceramics with different contents of B{sub 2}O{sub 3}. - Abstract: Borosilicate glass–ceramics precursors with varying compositional ratios in the CaO–SiO{sub 2}–B{sub 2}O{sub 3} (CBS) system were synthesized by sol–gel method. The precursors were calcined at 1200 °C for 2 h to form glass powders. The glass–ceramics were prepared by overlaying glass slurries on the substrates before sintering at different temperatures. The as-prepared glasses and glass–ceramics were characterized by differential scanning calorimetry and X-ray diffraction. The crystallization activation energies (E{sub c}) were calculated using the Kissinger method from DSC results. The morphology and crystallization behavior of the glass–ceramics were monitored by scanning electron microscopy. Both glass transition and crystallization temperatures decreased, however, the metastable zone increased. The E{sub c} values of CBS glasses and glass–ceramics were 254.1, 173.2 and 164.4 kJ/mol with increasing B{sub 2}O{sub 3} content, whereas that of the calcined G3 glass was 104.9 kJ/mol. Finally, the coatings were prepared at a low temperature (700 °C). The crystals that grew on the surface of multilayer coatings demonstrated heterogeneous surface nucleation and crystallization after heat-treatment from 700 °C to 850 °C for 4 h.

  3. Effect of sintering temperature on the microstructure and properties of foamed glass-ceramics prepared from high-titanium blast furnace slag and waste glass

    Science.gov (United States)

    Chen, Chang-hong; Feng, Ke-qin; Zhou, Yu; Zhou, Hong-ling

    2017-08-01

    Foamed glass-ceramics were prepared via a single-step sintering method using high-titanium blast furnace slag and waste glass as the main raw materials The influence of sintering temperature (900-1060°C) on the microstructure and properties of foamed glass-ceramics was studied. The results show that the crystal shape changed from grainy to rod-shaped and finally turned to multiple shapes as the sintering temperature was increased from 900 to 1060°C. With increasing sintering temperature, the average pore size of the foamed glass-ceramics increased and subsequently decreased. By contrast, the compressive strength and the bulk density decreased and subsequently increased. An excessively high temperature, however, induced the coalescence of pores and decreased the compressive strength. The optimal properties, including the highest compressive strength (16.64 MPa) among the investigated samples and a relatively low bulk density (0.83 g/cm3), were attained in the case of the foamed glass-ceramics sintered at 1000°C.

  4. Development of a high temperature ceramic-to-metal seal for Air Force Weapons Laboratory Laser

    Science.gov (United States)

    Honnell, R. E.; Stoddard, S. D.

    1987-03-01

    Procedures were developed for fabricating vacuum tight metal-to-ceramic ring seals between Inconel 625 and MgO-3 wt % Y2O3 tubes metallized with a calcia-alumina-silica glass (CaO-29 wt % Al2O3-35 wt % SiO2) containing 50 vol % molybdenum filler. Palniro No. 1 (Au-25 wt % Pd-25 wt % Ni) was found to be the most reliable braze for joining Inconel to metallized MgO-3 wt % Y2O3 bodies. The reliabilities of the processing procedures and the material systems were demonstrated. A prototype electrical feedthrough was fabricated for 1173 K operation in air or vacuum.

  5. Diode-pumped high power 2.7 μm Er:Y2O3 ceramic laser at room temperature

    Science.gov (United States)

    Wang, Li; Huang, Haitao; Shen, Deyuan; Zhang, Jian; Chen, Hao; Tang, Dingyuan

    2017-09-01

    Investigation of room temperature laser performance of the polycrystalline Er:Y2O3 ceramic at 2.7 μm with respect to dopant concentrations was conducted. With 7 at.% Er3+ concentration Er:Y2O3 ceramic as laser gain medium, over 2.05 W of CW output power at 2.7 μm was generated with a slope efficiency of 11.1% with respect to the absorbed LD pump power. The prospects for improvement in lasing efficiency and output power are considered.

  6. Development of Nano-crystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hai [Missouri Univ. of Science and Technology, Rolla, MO (United States); Dong, Junhang [Univ. of Cincinnati, OH (United States); Lin, Jerry [Arizona State Univ., Tempe, AZ (United States); Romero, Van [New Mexico Institute of Mining and Technology, Socorro, NM (United States)

    2012-03-01

    This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases. This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.

  7. Novel Routes for Sintering of Ultra-high Temperature Ceramics and their Properties

    Science.gov (United States)

    2014-10-31

    Structural investigation was carried out on metallographic microscope MIM–10, x-ray phase analysis– x-ray device DRON –2. Microhardness was measured by MPT...high- temperature X-ray diffractometer DRON -UM1 with high-temperature device UVD- 2000 (temperature interval 290-830K) and monochromatic Cu-Kα

  8. Dielectric properties of (K0.5Na0.5)NbO3-(Bi0.5Li0.5)ZrO3 lead-free ceramics as high-temperature ceramic capacitors

    Science.gov (United States)

    Yan, Tianxiang; Han, Feifei; Ren, Shaokai; Ma, Xing; Fang, Liang; Liu, Laijun; Kuang, Xiaojun; Elouadi, Brahim

    2018-04-01

    (1 - x)K0.5Na0.5NbO3- x(Bi0.5Li0.5)ZrO3 (labeled as (1 - x)KNN- xBLZ) lead-free ceramics were fabricated by a solid-state reaction method. A research was conducted on the effects of BLZ content on structure, dielectric properties and relaxation behavior of KNN ceramics. By combining the X-ray diffraction patterns with the temperature dependence of dielectric properties, an orthorhombic-tetragonal phase coexistence was identified for x = 0.03, a tetragonal phase was determined for x = 0.05, and a single rhombohedral structure occurred at x = 0.08. The 0.92KNN-0.08BLZ ceramic exhibits a high and stable permittivity ( 1317, ± 15% variation) from 55 to 445 °C and low dielectric loss (≤ 6%) from 120 to 400 °C, which is hugely attractive for high-temperature capacitors. Activation energies of both high-temperature dielectric relaxation and dc conductivity first increase and then decline with the increase of BLZ, which might be attributed to the lattice distortion and concentration of oxygen vacancies.

  9. Heat Transfer and Failure Mode Analyses of Ultrahigh-Temperature Ceramic Thermal Protection System of Hypersonic Vehicles

    Directory of Open Access Journals (Sweden)

    Tianbao Cheng

    2014-01-01

    Full Text Available The transient temperature distribution of the ultrahigh-temperature ceramic (UHTC thermal protection system (TPS of hypersonic vehicles is calculated using finite volume method. Convective cooling enables a balance of heat increment and loss to be achieved. The temperature in the UHTC plate at the balance is approximately proportional to the surface heat flux and is approximately inversely proportional to the convective heat transfer coefficient. The failure modes of the UHTCs are presented by investigating the thermal stress field of the UHTC TPS under different thermal environments. The UHTCs which act as the thermal protection materials of hypersonic vehicles can fail because of the tensile stress at the lower surface, an area above the middle plane, and the upper surface as well as because of the compressive stress at the upper surface. However, the area between the lower surface and the middle plane and a small area near the upper surface are relatively safe. Neither the compressive stress nor the tensile stress will cause failure of these areas.

  10. Continuous Fiber Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    Fareed, Ali [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States); Craig, Phillip A. [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States)

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  11. Numerical analysis of steady state and transient analysis of high temperature ceramic plate-fin heat exchanger

    International Nuclear Information System (INIS)

    Nagarajan, Vijaisri; Chen, Yitung; Wang, Qiuwang; Ma, Ting

    2014-01-01

    Highlights: • Rip saw fin design is considered to be the best because it has thin fins and has higher heat transfer coefficient. • Minimum principal stress and maximum safety factor are obtained for the inverted bolt fin design. • Maximum principal stress and minimum safety factor are obtained for triangular fin design. • Thermal stress has significant impact than mechanical stress. • High principal stress is found at the startup and shutdown stage. - Abstract: In this study three-dimensional model of ceramic plate-fin high temperature heat exchanger with different fin designs and arrangements is analyzed numerically using ANSYS FLUENT and ANSYS structural module. The ability of ceramics to withstand high temperature and corrosion makes silicon carbide (SiC) suitable candidate material to be used in high temperature heat exchanger. The operating temperature of heat exchanger is 950 °C and the operating pressure is 1.5 MPa. The working fluids are helium, sulfur trioxide, sulfur dioxide, oxygen and the water vapor. Fluid flow and heat transfer analysis are carried out for steady and transient state in FLUENT. The obtained thermal and pressure load for the steady and transient state from ANSYS FLUENT are imported to ANSYS structural module to obtain the principal stress and the factor of safety. Different arrangements of rectangular fins, triangular fins, inverted bolt fins and ripsaw fins are studied. From the results it is found that the minimum stress and the maximum safety factor are obtained for inverted bolt fins. The triangular fins have the maximum principal stress and minimum factor of safety. However, the fluid flow and heat transfer analysis show inverted bolt fins and triangular fins produce higher pressure drop and friction factor. The steady state maximum principal stress is 10.08 MPa, 9.90 MPa and 11.43 MPa for straight, staggered and top and bottom ripsaw fin arrangement. The corresponding safety factors are 21.80, 21.95 and 19

  12. Fabrication of low temperature cofired ceramic (LTCC) chip couplers for high frequencies : I. Effect of binder burnout process on the formation of electrode line

    Energy Technology Data Exchange (ETDEWEB)

    Cho, N.T.; Shim, K.B.; Lee, S.W. [Hanyang University, Seoul (Korea); Koo, K.D. [K-Cera Inc., Yongin (Korea)

    1999-06-01

    In the fabrication of ceramic chip couplers for high frequency applications such as the mobile communication equipment, the formation of electrode lines and Ag diffusion were investigated with heat treatment conditions for removing organic binders. The deformation and densification of the electrode line greatly depended on the binder burnout process due to the overlapped temperature zone near 400{sup o} C of the binder dissociation and the solid phase sintering of the silver electrode. Ag ions were diffused into the glass ceramic substrate. The Ag diffusion was led by the glassy phase containing Pb ions rather than by the crystalline phase containing Ca ions. The fact suggests that the Ag diffusion could be controlled by managing the composition of the glass ceramic substrate. 9 refs., 10 figs., 1 tab.

  13. Intensive up-conversion photoluminescence of Er3+-doped Bi7Ti4NbO21 ferroelectric ceramics and its temperature sensing

    Directory of Open Access Journals (Sweden)

    Hua Zou

    2014-10-01

    Full Text Available The intensive up-conversion (UC photoluminescence and temperature sensing behavior of Er3+-doped Bi7Ti4NbO21(BTN ferroelectric ceramics prepared by a conventional solid-state reaction technique have been investigated. The X-ray diffraction and field emission scanning electron microscope analyses demonstrated that the Er3+-doped BTN ceramics are single phase and uniform flake-like structure. With the Er3+ ions doping, the intensive UC emission was observed without obviously changing the properties of ferroelectric. The optimal emission intensity was obtained when Er doping level was 15 mol.%. The temperature sensing behavior was studied by fluorescence intensity ratio (FIR technique of two green UC emission bands, and the experimental data fitted very well with the function of temperature in a range of 133–573 K. It suggested that the Er3+-doped BTN ferroelectric ceramics are very good candidates for applications such as optical thermometry, electro-optical devices and bio-imaging ceramics.

  14. LOW-TEMPERATURE SINTERED (ZnMg2SiO4 MICROWAVE CERAMICS WITH TiO2 ADDITION AND CALCIUM BOROSILICATE GLASS

    Directory of Open Access Journals (Sweden)

    BO LI

    2011-03-01

    Full Text Available The low-temperature sintered (ZnMg2SiO–TiO2 microwave ceramic using CaO–B2O3–SiO2 (CBS as a sintering aid has been developed. Microwave properties of (Zn1-xMgx2SiO4 base materials via sol-gel method were highly dependent on the Mg-substituted content. Further, effects of CBS and TiO2 additives on the crystal phases, microstructures and microwave characteristics of (ZnMg2SiO4 (ZMS ceramics were investigated. The results indicated that CBS glass could lower the firing temperature of ZMS dielectrics effectively from 1170 to 950°C due to the liquid-phase effect, and significantly improve the sintering behavior and microwave properties of ZMS ceramics. Moreover, ZMS–TiO2 ceramics showed the biphasic structure and the abnormal grain growth was suppressed by the pinning effect of second phase TiO2. Proper amount of TiO2 could tune the large negative temperature coefficient of resonant frequency (tf of ZMS system to a near zero value. (Zn0.8Mg0.22SiO4 codoped with 10 wt.% TiO2 and 3 wt.% CBS sintered at 950°C exhibits the dense microstructure and excellent microwave properties: εr = 9.5, Q·f = 16 600 GHz and tf = −9.6 ppm/°C.

  15. Nuclear-Thermal Analysis of Fully Ceramic Microencapsulated Fuel via Two-Temperature Homogenized Model

    International Nuclear Information System (INIS)

    Lee, Yoon Hee; Cho, Nam Zin

    2013-01-01

    The FCM fuel is based on a proven safety philosophy that has been utilized operationally in very high temperature reactors (VHTRs). However, the FCM fuel consists of TRISO particles randomly dispersed in SiC matrix. The high heterogeneity in composition leads to difficulty in explicit thermal calculation of such a fuel. Therefore, an appropriate homogenization model becomes essential. In this paper, we apply the two-temperature homogenized model to thermal analysis of an FCM fuel. The model was recently proposed in order to provide more realistic temperature profiles in the fuel element in VHTRs. We applied the two-temperature homogenized model to FCM fuel. The two-temperature homogenized model was obtained by particle transport Monte Carlo calculation applied to the pellet region consisting of many coated particles uniformly dispersed in SiC matrix. Since this model gives realistic temperature profiles in the pellet (providing fuel-kernel temperature and SiC matrix temperature distinctly), it can be used for more accurate neutronics evaluation such as Doppler temperature feedback. The transient thermal calculation may be performed also more realistically with temperature-dependent homogenized parameters in various scenarios

  16. Proton Content and Nature in Perovskite Ceramic Membranes for Medium Temperature Fuel Cells and Electrolysers

    Directory of Open Access Journals (Sweden)

    Aneta Slodczyk

    2012-07-01

    Full Text Available Recent interest in environmentally friendly technology has promoted research on green house gas-free devices such as water steam electrolyzers, fuel cells and CO2/syngas converters. In such applications, proton conducting perovskite ceramics appear especially promising as electrolyte membranes. Prior to a successful industrial application, it is necessary to determine/understand their complex physical and chemical behavior, especially that related to proton incorporation mechanism, content and nature of bulk protonic species. Based on the results of quasi-elastic neutron scattering (QNS, thermogravimetric analysis (TGA, Raman and IR measurements we will show the complexity of the protonation process and the importance of differentiation between the protonic species adsorbed on a membrane surface and the bulk protons. The bulk proton content is very low, with a doping limit (~1–5 × 10−3 mole/mole, but sufficient to guarantee proton conduction below 600 °C. The bulk protons posses an ionic, covalent bond free nature and may occupy an interstitial site in the host perovskite structure.

  17. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells

    Science.gov (United States)

    Choi, Sihyuk; Kucharczyk, Chris J.; Liang, Yangang; Zhang, Xiaohang; Takeuchi, Ichiro; Ji, Ho-Il; Haile, Sossina M.

    2018-03-01

    Over the past several years, important strides have been made in demonstrating protonic ceramic fuel cells (PCFCs). Such fuel cells offer the potential of environmentally sustainable and cost-effective electric power generation. However, their power outputs have lagged behind predictions based on their high electrolyte conductivities. Here we overcome PCFC performance and stability challenges by employing a high-activity cathode, PrBa0.5Sr0.5Co1.5Fe0.5O5+δ (PBSCF), in combination with a chemically stable electrolyte, BaZr0.4Ce0.4Y0.1Yb0.1O3 (BZCYYb4411). We deposit a thin dense interlayer film of the cathode material onto the electrolyte surface to mitigate contact resistance, an approach which is made possible by the proton permeability of PBSCF. The peak power densities of the resulting fuel cells exceed 500 mW cm-2 at 500 °C, while also offering exceptional, long-term stability under CO2.

  18. The effects of nanophase ceramic materials on select functions of human mesenchymal stem cells

    Science.gov (United States)

    Dulgar-Tulloch, Aaron Joseph

    2005-11-01

    Modification of the chemistry and surface topography of nanophase ceramics can provide biomaterial formulations capable of directing the functions of adherent cells. This effect relies on the type, amount, and conformation of adsorbed proteins that mediate the adhesion of mesenchymally-descended lineages. The mechanisms driving this response are not yet well-understood and have not been investigated for human mesenchymal stem cells (HMSCs), a progenitor-lineage critical to orthopaedic biomaterials. The present study addressed these needs by examining the in vitro adhesion, proliferation, and osteogenic differentiation of HMSCs as a function of substrate chemistry and grain size, with particular attention to the protein-mediated mechanisms of cell adhesion. Alumina, titania, and hydroxyapatite substrates were prepared with 1500, 200, 50, and 24 (alumina only) nm grain sizes, and characterized with respect to surface properties, porosity, composition, and phase. Adhesion of HMSCs was dependent upon both chemistry and grain size. Specifically, adhesion on alumina and hydroxyapatite was reduced on 50 and 24 (alumina only) nm surfaces, as compared to 1500 and 200 nm surfaces, while adhesion on titania substrates was independent of grain size. Investigation into the protein-mediated mechanisms of this response identified vitronectin as the dominant adhesive protein, demonstrated random protein distribution across the substrate surface without aggregation or segregation, and confirmed the importance of the type, amount, and conformation of adsorbed proteins in cell adhesion. Minimal cell proliferation was observed on 50 and 24 (alumina only) nm substrates of any chemistry. Furthermore, cell proliferation was up-regulated on 200 nm substrates after 7 days of culture. Osteogenic differentiation was not detected on 50 nm substrates throughout the 28 day culture period. In contrast, osteogenic differentiation was strongly enhanced on 200 nm substrates, occurring approximately

  19. High pressure low temperature hot pressing method for producing a zirconium carbide ceramic

    Science.gov (United States)

    Cockeram, Brian V.

    2017-01-10

    A method for producing monolithic Zirconium Carbide (ZrC) is described. The method includes raising a pressure applied to a ZrC powder until a final pressure of greater than 40 MPa is reached; and raising a temperature of the ZrC powder until a final temperature of less than 2200.degree. C. is reached.

  20. Large ceramics for fusion applications

    International Nuclear Information System (INIS)

    Hauth, W.E.; Stoddard, S.D.

    1979-01-01

    Prominent ceramic raw materials and products manufacturers were surveyed to determine the state of the art for alumina ceramic fabrication. This survey emphasized current capabilities and limitations for fabrication of large, high-density, high-purity, complex shapes. Some directions are suggested for future needs and development. Ceramic-to-ceramic sealing has applications for several technologies that require large and/or complex vacuum-tight ceramic shapes. Information is provided concerning the assembly of complex monolithic ceramic shapes by bonding of subassemblies at temperatures ranging from 450 to 1500 0 C. Future applications and fabrication techniques for various materials are presented

  1. Strain profiles in ion implanted ceramic polycrystals: An approach based on reciprocal-space crystal selection

    Energy Technology Data Exchange (ETDEWEB)

    Palancher, H., E-mail: herve.palancher@cea.fr; Martin, G.; Fouet, J. [CEA, DEN, DEC, F-13108 Saint Paul lez Durance (France); Goudeau, P. [Institut Pprime, CNRS-Université de Poitiers–ENSMA, SP2MI, F-86360 Chasseneuil (France); Boulle, A. [Science des Procédés Céramiques et Traitements de Surface (SPCTS), CNRS UMR 7315, Centre Européen de la Céramique, 12 rue Atlantis, 87068 Limoges (France); Rieutord, F. [CEA, DSM, INAC, F-38054 Grenoble Cedex 9 (France); Favre-Nicolin, V. [Université Grenoble-Alpes, F-38041 Grenoble, France, Institut Universitaire de France, F-75005 Paris (France); Blanc, N. [Institut NEEL, CNRS-Univ Grenoble Alpes, F-38042 Grenoble (France); Onofri, C. [CEA, DEN, DEC, F-13108 Saint Paul lez Durance (France); CEMES, CNRS UPR 8011, 29 rue Jeanne Marvig, BP 94347, 31055 Toulouse Cedex 4 (France)

    2016-01-18

    The determination of the state of strain in implanted materials is a key issue in the study of their mechanical stability. Whereas this question is nowadays relatively easily solved in the case of single crystals, it remains a challenging task in the case of polycrystalline materials. In this paper, we take benefit of the intense and parallel beams provided by third generation synchrotron sources combined with a two-dimensional detection system to analyze individual grains in polycrystals, hence obtaining “single crystal-like” data. The feasibility of the approach is demonstrated with implanted UO{sub 2} polycrystals where the in-depth strain profile is extracted for individual grains using numerical simulations of the diffracted signal. The influence of the implantation dose is precisely analyzed for several diffracting planes and grains. This work suggests that, at low fluences, the development of strain is mainly due to ballistic effects with little effect from He ions, independently from the crystallographic orientation. At higher fluences, the evolution of the strain profiles suggests a partial and anisotropic plastic relaxation. With the present approach, robust and reliable structural information can be obtained, even from complex polycrystalline ceramic materials.

  2. Contrasting the beam interaction characteristics of selected lasers with a partially stabilized zirconia bio-ceramic

    International Nuclear Information System (INIS)

    Lawrence, J.

    2002-01-01

    Differences in the beam interaction characteristics of a CO 2 laser, a Nd:YAG laser, a high power diode laser (HPDL) and an excimer laser with a partially stabilized zirconia bio-ceramic have been studied. A derivative of Beer-Lambert's law was applied and the laser beam absorption lengths of the four lasers were calculated as 33.55x10 -3 cm for the CO 2 laser, 18.22x10 -3 cm for the Nd : YAG laser, 17.17x10 -3 cm for the HPDL and 8.41x10 -6 cm for the excimer laser. It was determined graphically that the fluence threshold values at which significant material removal was effected by the CO 2 laser, the Nd:YAG laser, the HPDL and the excimer laser were 52 J cm -2 , 97 J cm -2 , 115 J cm -2 and 0.48 J cm -2 , respectively. The thermal loading value for the CO 2 laser, the Nd : YAG laser, the HPDL and the excimer laser were calculated as being 1.55 kJ cm -3 , 5.32 kJ cm 3 , 6.69 kJ cm -3 and 57.04 kJ cm -3 , respectively. (author)

  3. A novel design and analysis of a MEMS ceramic hot-wire anemometer for high temperature applications

    International Nuclear Information System (INIS)

    Nagaiah, N R; Sleiti, A K; Rodriguez, S; Kapat, J S; An, L; Chow, L

    2006-01-01

    This paper attempts to prove the feasibility of high temperature MEMS hot-wire anemometer for gas turbine environment. No such sensor exists at present. Based on the latest improvement in a new type of Polymer-Derived Ceramic (PDC) material, the authors present a Novel design, structural and thermal analysis of MEMS hot-wire anemometer (HWA) based on PDC material, and show that such a sensor is indeed feasible. This MEMS Sensor is microfabricated by using three types of PDC materials such as SiAlCN, SiCN (lightly doped) and SiCN (heavily doped) for sensing element (hot-wire), support prongs and connecting leads respectively. This novel hot wire anemometer can perform better than a conventional HWA in which the hot wire is made of tungsten or platinum-iridium. This type of PDC-HWA can be used in harsh environment due to its high temperature resistance, tensile strength and resistance to oxidation. This HWA is fabricated using microstereolithography as a novel microfabrication technique to manufacture the proposed MEMS Sensor

  4. Coaxial monitoring of temperature field in selective pulsed laser melting

    Science.gov (United States)

    Liu, Che; Chen, Zhongyun; Cao, Hongzhong; Zhou, Jianhong

    2017-10-01

    Selective Laser Melting is a rapid manufacturing technology which produces complex parts layer by layer. The presence of thermal stress and thermal strain in the forming process often leads to defects in the formed parts. In order to detect fabricate errors and avoid failure which caused by thermal gradient in time. An infrared thermal imager and a high speed CCD camera were applied to build a coaxial optical system for real-time monitoring the temperature distribution and changing trend of laser affected zone in SLM forming process. Molten tracks were fabricated by SLM under different laser parameters such as frequency, pulse width. And the relationship between the laser parameters and the temperature distribution were all obtained and analyzed.

  5. A novel highly porous ceramic foam with efficient thermal insulation and high temperature resistance properties fabricated by gel-casting process

    Science.gov (United States)

    Yu, Jiahong; Wang, Guixiang; Tang, Di; Qiu, Ya; Sun, Nali; Liu, Wenqiao

    2018-01-01

    The design of super thermal insulation and high-temperature resistant materials for high temperature furnaces is crucial due to the energy crisis and the huge wasting. Although it is told that numerous studies have been reported about various of thermal insulation materials prepared by different methods, the applications of yttria-stabilized zirconia (YSZ) ceramic foams fabricated through tert-butyl alcohol (TBA)-based gel-casting process in bulk thermal isolators were barely to seen. In this paper, highly porous yttria-stabilized zirconia (YSZ) ceramic foams were fabricated by a novel gel-casting method using tert-butyl alcohol (TBA) as solvent and pore-forming agent. Different raw material ratio, sintering temperature and soaking time were all investigated to achieve optimal thermal insulation and mechanical properties. We can conclude that porosity drops gradually while compressive strength increases significantly with the rising temperature from 1000-1500°C. With prolonged soaking time, there is no obvious change in porosity but compressive strength increases gradually. All specimens have uniformly distributed pores with average size of 0.5-2μm and show good structural stability at high temperature. The final obtained ceramic foams displayed an outstanding ultra-low thermal conductivity property with only 200.6 °C in cold surface while the hot side was 1000 °C (hold 60 min to keep thermal balance before testing) at the thickness of 10 mm.

  6. Temperature-controlled down-conversion luminescence behavior of Eu3+ -doped transparent MF2 (M = Ba, Ca, Sr) glass ceramics.

    Science.gov (United States)

    Zhou, B; E, C Q; Bu, Y Y; Meng, L; Yan, X H; Wang, X F

    2017-03-01

    Eu 3 + -doped transparent glass ceramics containing MF 2 (M = Ba, Ca, Sr) nanocrystals were fabricated using a melt-quenching method, and the resulting structures were studied using X-ray diffraction. Levels 5 D 1 and 5 D 0 of Eu 3 + ions were verified as thermally coupled levels using the fluorescence intensity ratio method. The fluorescence intensity ratios, optical temperature sensitivity and thermal quenching ratios of the transparent glass ceramics were studied as a function of temperature. With an increase in temperature, the relative sensitivity (S R ) decreased sharply at first, then slowly increased, before finally decreasing. The minimum S R values of GCBaF 2 (GCB), GCCaF 2 (GCC) and GCSrF 2 (GCS) were 2.8 × 10 -4 , 0.8 × 10 -4 and 1.9 × 10 - 4  K -1 at 360, 269 and 319 K, respectively. Glass ceramics with an intense emission intensity can be used to convert the measured spectrum into temperature and may have an important role in temperature detectors. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Comparison of Different Energy Levels of Er:YAG Laser Regarding Intrapulpal Temperature Change During Safe Ceramic Bracket Removal.

    Science.gov (United States)

    Nalbantgil, Didem; Tozlu, Murat; Oztoprak, Mehmet Oguz

    2018-04-01

    This study was done to compare the intrapulpal temperature change generated by different energy levels of Er:YAG laser used during debonding of ceramic brackets and find the most suitable level for clinical use. Eighty polycrystalline alumina brackets were bonded on bovine incisor teeth, which were randomly divided into 4 groups of 20. One group was assigned as control. In the study groups, after laser exposure with 2, 4, or 6 Watt energy levels, brackets were debonded using an Instron Universal Testing machine. Adhesive remnant index (ARI) scores were recorded to evaluate the site of debonding. To assess intrapulpal thermal increase, 60 human premolar teeth that were prepared in the same way, at the same energy levels, by a thermocouple were used. When the debonding forces, intrapulpal temperature increases, and ARI of the groups were examined, statistically significant difference was observed between the groups. Mean temperature increases of 0.67°C ± 0.12°C, 1.25°C ± 0.16°C, and 2.36°C ± 0.23°C were recorded for the 2, 4, and 6 Watt laser groups. The mean shear bond strength was 21.35 ± 3.43 megapascals (MPa) for the control group, whereas they were 8.79 ± 2.47, 3.28 ± 0.73, and 2.46 ± 0.54 MPa for the 2, 4, and 6 Watt laser groups, respectively. Four watts is the most efficient and safe energy level to be used, utilizing Er:YAG laser with water cooling spray for 6 sec by scanning method during debonding of polycrystalline alumina brackets without any carbonization effects and detrimental temperature changes at debond sites.

  8. Portfolio: Ceramics.

    Science.gov (United States)

    Hardy, Jane; And Others

    1982-01-01

    Describes eight art activities using ceramics. Elementary students created ceramic tiles to depict ancient Egyptian and medieval European art, made ceramic cookie stamps, traced bisque plates on sketch paper, constructed clay room-tableaus, and designed clay relief masks. Secondary students pit-fired ceramic pots and designed ceramic Victorian…

  9. Ceramic Nanocomposites from Tailor-Made Preceramic Polymers

    Directory of Open Access Journals (Sweden)

    Gabriela Mera

    2015-04-01

    Full Text Available The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs. Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Various structural and functional properties of silicon-containing ceramic nanocomposites as well as different preparative strategies to achieve nano-scaled PDC-NC-based ordered structures are highlighted, based on selected ceramic nanocomposite systems. Furthermore, prospective applications of the PDC-NCs such as high-temperature stable materials for thermal protection systems, membranes for hot gas separation purposes, materials for heterogeneous catalysis, nano-confinement materials for hydrogen storage applications as well as anode materials for secondary ion batteries are introduced and discussed in detail.

  10. Ceramic Nanocomposites from Tailor-Made Preceramic Polymers.

    Science.gov (United States)

    Mera, Gabriela; Gallei, Markus; Bernard, Samuel; Ionescu, Emanuel

    2015-04-01

    The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs). Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Various structural and functional properties of silicon-containing ceramic nanocomposites as well as different preparative strategies to achieve nano-scaled PDC-NC-based ordered structures are highlighted, based on selected ceramic nanocomposite systems. Furthermore, prospective applications of the PDC-NCs such as high-temperature stable materials for thermal protection systems, membranes for hot gas separation purposes, materials for heterogeneous catalysis, nano-confinement materials for hydrogen storage applications as well as anode materials for secondary ion batteries are introduced and discussed in detail.

  11. Ceramic Nanocomposites from Tailor-Made Preceramic Polymers

    Science.gov (United States)

    Mera, Gabriela; Gallei, Markus; Bernard, Samuel; Ionescu, Emanuel

    2015-01-01

    The present Review addresses current developments related to polymer-derived ceramic nanocomposites (PDC-NCs). Different classes of preceramic polymers are briefly introduced and their conversion into ceramic materials with adjustable phase compositions and microstructures is presented. Emphasis is set on discussing the intimate relationship between the chemistry and structural architecture of the precursor and the structural features and properties of the resulting ceramic nanocomposites. Various structural and functional properties of silicon-containing ceramic nanocomposites as well as different preparative strategies to achieve nano-scaled PDC-NC-based ordered structures are highlighted, based on selected ceramic nanocomposite systems. Furthermore, prospective applications of the PDC-NCs such as high-temperature stable materials for thermal protection systems, membranes for hot gas separation purposes, materials for heterogeneous catalysis, nano-confinement materials for hydrogen storage applications as well as anode materials for secondary ion batteries are introduced and discussed in detail. PMID:28347023

  12. New ceramic materials

    International Nuclear Information System (INIS)

    Moreno, R.; Dominguez-Rodriguez, A.

    2010-01-01

    This article is to provide a new ceramic materials in which, with a control of their processing and thus their microstructural properties, you can get ceramic approaching ever closer to a metal, both in its structural behavior at low as at high temperatures. (Author) 30 refs.

  13. Tb{sup 3+}/Eu{sup 3+}: YF{sub 3} nanophase embedded glass ceramics: Structural characterization, tunable luminescence and temperature sensing behavior

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Daqin, E-mail: dqchen@hdu.edu.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018 (China); Wang, Zhongyi; Zhou, Yang [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018 (China); Huang, Ping, E-mail: phuang@fjirsm.ac.cn [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on The Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Ji, Zhenguo, E-mail: jizg@hdu.edu.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018 (China)

    2015-10-15

    Tb{sup 3+}/Eu{sup 3+} co-doped transparent bulk glass ceramics containing orthorhombic β-YF{sub 3} nanocrystals were successfully synthesized by melt-quenching and subsequent heating. The partition of the active centers into the YF{sub 3} crystalline lattice was confirmed by elemental mapping in the scanning transmission electron microscope, emission spectra and decay curves. As a consequence, Tb{sup 3+} → Eu{sup 3+} energy transfer was demonstrated to be more efficient in the glass ceramic than in the precursor glass, which resulted in color tunable luminescence by simply modifying Eu{sup 3+} content and induced the linearly temperature-dependent fluorescence intensity ratio between the Tb{sup 3+}: {sup 5}D{sub 4} → {sup 7}F{sub 5} transition and the Eu{sup 3+}: {sup 5}D{sub 0} → {sup 7}F{sub 4} one in the Tb{sup 3+}/Eu{sup 3+} co-doped glass ceramic. It is expected that the investigated glass ceramic might be a promising candidate for solid-state lighting as well as optical temperature sensor. - Highlights: • Lanthanide doped glass ceramics containing YF{sub 3} nanocrystals were fabricated. • Tb{sup 3+} and Eu{sup 3+} dopants were confirmed to incorporate into YF{sub 3} lattice. • Tunable luminescence was realized via Tb{sup 3+} → Eu{sup 3+} energy transfer. • Linearly temperature-dependent fluorescence intensity ratio was detected.

  14. Mode I and Mode II Interlaminar Crack Growth Resistances of Ceramic Matrix Composites at Ambient Temperature

    National Research Council Canada - National Science Library

    Choi, Sung R; Kowalik, Robert W; Alexander, Donald J

    2007-01-01

    ...) including three gas-turbine grade melt-infiltrated SiC/SiC composites. Modes I and II crack growth resistances, GI and GII, were evaluated at ambient temperature using double cantilever beam and end notched flexure methods, respectively...

  15. Micromechanical Prediction of Tensile Damage for Ceramic Matrix Composites under High Temperature

    National Research Council Canada - National Science Library

    Delale, F

    1994-01-01

    ... (namely Nicalon/CAS II Composites) at room and elevated temperatures. First the composite Specimens were machined into dog-bone shape and polished to increase efficacy of observation in the SEM...

  16. Low sintering temperature and high piezoelectric properties of Li-doped (Ba,Ca)(Ti,Zr)O{sub 3} lead-free ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaoming [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Ruan, Xuezheng; Zhao, Kunyun [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); He, Xueqing [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Zeng, Jiangtao, E-mail: zjt@mail.sic.ac.cn [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Li, Yongsheng [School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zheng, Liaoying [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Park, Chul Hong [Department of Physics Education, Pusan National University, Pusan 609735 (Korea, Republic of); Li, Guorong [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2015-05-25

    Highlights: • Li-doped Ba{sub 0.85}Ca{sub 0.15}Ti{sub 0.9}Zr{sub 0.1}O{sub 3} (BCZT) lead-free piezoceramics were prepared by the two-step synthesis and solid-state reaction method. • Their sintering temperature decreases from about 1540 °C down to about 1400 °C. • With the proper addition of Li, the densities and grain sizes of ceramics increase. • The ceramics not only have the characteristics of hard piezoceramics but also possesses the features of soft piezoceramics at low sintering temperature. - Abstract: Li-doped Ba{sub 0.85}Ca{sub 0.15}Ti{sub 0.9}Zr{sub 0.1}O{sub 3} (BCZT) lead-free piezoelectric ceramics were prepared by the two-step synthesis and the solid-state reaction method. The density and grain size of ceramics sufficiently increases by Li-doped sintering aid, and their sintering temperature decreases from about 1540 °C down to about 1400 °C. X-ray diffraction reveals that the phase structure of Li-doped BCTZ ceramics is changed with the sintering temperature, which is consistent with their phase transition observed by the temperature-dependent dielectric curves. The well-poled Li-doped BCZT ceramics show a high piezoelectric constant d{sub 33} (512 pC/N) and a planar electromechanical coupling factor k{sub p} (0.49), which have the characteristics of soft Pb(Zr,Ti)O{sub 3} (PZT) piezoceramic, on the other hand, the mechanical quality factor Q{sub m} is about 190, which possesses the features of hard PZT piezoceramics. The enhanced properties of the Li-doped BCZT are explained by the combination of Li-doped effect and sintering effect on the microstructure and the phase transition around room temperature.

  17. Influence of sintering temperature on microstructures and energy-storage properties of barium strontium titanate glass-ceramics prepared by sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jia; Zhang, Yong; Song, Xiaozhen; Zhang, Qian; Yang, Dongliang; Chen, Yongzhou [Beijing Key Laboratory of Fine Ceramics, State Key Laboratory of New Ceramics and Fine Processing, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084 (China)

    2015-12-15

    The sol-gel processing, microstructures, dielectric properties and energy-storage properties of barium strontium titanate glass-ceramics over the sintering temperature range of 1000-1150 C were studied. Through the X-ray diffraction result, it is revealed that the crystallinity increases as the sintering temperature increased from 1000 to 1080 C and has reached a steady-state regime above 1100 C. Scanning electron microscopy images showed that with the increase of sintering temperature, the crystal size increased. Dielectric measurements revealed that the increase in the sintering temperature resulted in a significant increase in the dielectric constant, a strong sharpness of the temperature-dependent dielectric response and a pronounced decrease of the temperature of the dielectric maximum. The correlation between charge spreading behavior and activation energies of crystal and glass was discussed by the employment of the impedance spectroscopy studies. As a result of polarization-electric field hysteresis loops, both the charged and discharged densities increased with increasing sintering temperature. And the maximum value of energy storage efficiency was found to occur at 1130 C. Finally, the dependence of released energy and power densities calculated from the discharged current-time (I-t) curves on the sintering temperature was studied. The relationship between the energy storage properties and microstructure was correlated. Polarization-electric field hysteresis loops for the BST glass-ceramics sintered at different temperatures. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Amorphous intergranular films in silicon nitride ceramics quenched from high temperatures

    International Nuclear Information System (INIS)

    Cinibulk, M.K.; Kleebe, H.; Schneider, G.A.; Ruehle, M.

    1993-01-01

    High-temperature microstructure of an MgO-hot-pressed Si 3 N 4 and a Yb 2 O 3 + Al 2 O 3 -sintered/annealed Si 3 N 4 were obtained by quenching thin specimens from temperatures between 1,350 and 1,550 C. Quenching materials from 1,350 C produced no observable exchanges in the secondary phases at triple-grain junctions or along grain boundaries. Although quenching from temperatures of ∼1,450 C also showed no significant changes in the general microstructure or morphology of the Si 3 N 4 grains, the amorphous intergranular film thickness increased substantially from an initial ∼1 nm in the slowly cooled material to 1.5--9 nm in the quenched materials. The variability of film thickness in a given material suggests a nonequilibrium state. Specimens quenched from 1,550 C revealed once again thin (1-nm) intergranular films at all high-angle grain boundaries, indicating an equilibrium condition. The changes observed in intergranular-film thickness by high-resolution electron microscopy can be related to the eutectic temperature of the system and to diffusional and viscous processes occurring in the amorphous intergranular film during the high-temperature anneal prior to quenching

  19. Chemical characterization of marajoara ceramics

    International Nuclear Information System (INIS)

    Toyota, Rosimeiri Galbiati

    2009-01-01

    In this study the elemental concentration of Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Nd, Rb, Sc, Sm, Ta, Tb, Th, U, Yb and Zn were determined by instrumental neutron activation analysis (INAA) in 204 fragments of Marajoara archaeological ceramics, of which 156 were provided by the Archaeology and Ethnology Museum of Sao Paulo University (MAE) and 48 were provided by Dr. Denise Pahl Schaan, Marajo Museum curator. Also, 9 contemporary ceramics produced and marketed at Marajo Island were analyzed. Electron paramagnetic resonance (EPR) analyses were performed in 8 archaeological samples and 1 contemporary sample in order to identify the burning temperature of the samples. X-ray diffraction (XRD) analyses were performed in 13 archaeological samples and 2 contemporary samples for the investigation of their mineralogical composition. Mahalanobis distance was used for the study of outlier while modified filter was used for the study of the temper added to the ceramic paste. Result interpretation was performed using cluster analysis, principal components analysis and discriminant analysis. Procrustes analysis was used for variable selection and it showed that the Ce, Fe, Eu, Hf, K and Th variables are adequate for the characterization of the analyzed samples. The comparative study among the archaeological and contemporary ceramics showed the arrangement of two well-defined and close groups for the archaeological samples and a third, distant group for the contemporary ones. This result indicates that the archaeological and contemporary ceramics differ in their composition. EPR and XRD analysis were inconclusive for the differentiation of archaeological and contemporary ceramics. (author)

  20. Young's modulus and fracture toughness of silicon nitride ceramics at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Rouxel, T. [Rennes Univ. (France). Lab. de Recherche en Mecanique Applicee

    2002-07-01

    The temperature dependencies of Young's modulus (E) and fracture toughness (K{sub 1c}) of several silicon nitride-based monolithic and composite materials, are reviewed. A transition range is observed between 1130 and 1180 C on the E(T) curves, which is systematically 150 to 200 C above the T{sub g} of oxynitride glasses of composition close to that of the intergranular glassy pockets. It is thus supposed that this transition reflects the behaviour of the interfacial glassy films. The higher the glassy phase content, the higher is the temperature sensitivity. The presence of SiC particles greatly attenuates the sensitivity. Thus, Young's modulus decreases more slowly with temperature and fracture toughness changes little up to 1300 C. The K{sub 1c} (T) curves exhibit four different stages which are discussed and interpreted on the basis of a theoretical model. (orig.)

  1. High throughput measurement of high temperature strength of ceramics in controlled atmosphere and its use on solid oxide fuel cell anode supports

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Curran, Declan; Rasmussen, Steffen

    2014-01-01

    In the development of structural and functional ceramics for high temperature electrochemical conversion devices such as solid oxide fuel cells, their mechanical properties must be tested at operational conditions, i.e. at high temperature and controlled atmospheres. Furthermore, characterization...... for testing multiple samples at operational conditions providing a high throughput and thus the possibility achieve high reliability. Optical methods are used to measure deformations contactless, frictionless load measuring is achieved, and multiple samples are handled in one heat up. The methodology...... is validated at room temperature, and exemplified by measurement of the strength of solid oxide fuel cell anode supports at 800 C. © 2014 Elsevier B.V. All rights reserved....

  2. Phase transformation in multiferroic Bi5Ti3FeO15 ceramics by temperature-dependent ellipsometric and Raman spectra: An interband electronic transition evidence

    Science.gov (United States)

    Jiang, P. P.; Duan, Z. H.; Xu, L. P.; Zhang, X. L.; Li, Y. W.; Hu, Z. G.; Chu, J. H.

    2014-02-01

    Thermal evolution and an intermediate phase between ferroelectric orthorhombic and paraelectric tetragonal phase of multiferroic Bi5Ti3FeO15 ceramic have been investigated by temperature-dependent spectroscopic ellipsometry and Raman scattering. Dielectric functions and interband transitions extracted from the standard critical-point model show two dramatic anomalies in the temperature range of 200-873 K. It was found that the anomalous temperature dependence of electronic transition energies and Raman mode frequencies around 800 K can be ascribed to intermediate phase transformation. Moreover, the disappearance of electronic transition around 3 eV at 590 K is associated with the conductive property.

  3. High-temperature equilibrium vacancy formation in ceramic materials studied by positron annihilation

    International Nuclear Information System (INIS)

    Forster, M.; Claudy, W.; Hermes, H.; Major, J.; Schaefer, H.E.; Koch, M.; Maier, K.; Stoll, H.

    1992-01-01

    Positron lifetime measurements were used in order to study thermal vacancy formation in NiO, YBa 2 Cu 3 O 7-δ , α-Al 2 O 3 , MgO and 6H-SiC at high temperatures. In NiO two increases of the positron trapping rate at 450K and 1200K (po 2 =10 5 Pa) are attributed to the change of charge of neutral extrinsic Ni-vacancies (c ≅ 10 -4 ) into a negative charge state and to the nonstochiometric formation of charged Ni-vacancies at high temperatures. In YBa 2 Cu 3 O 7-δ the oxygen loss or uptake at T > 680K with an activation enthalpy of 1.03eV can be studied by the variation of the positron lifetime with temperature and oxygen partial pressure. In α-Al 2 O 3 the positrons are annihilated from the delocalized free state between 1000K and 2250K and no positron trapping of thermally formed vacancies was detected which may be understood in terms of the theoretically predicted low concentrations of thermal vacancies. In MgO and 6H-SiC positron lifetime measurements were performed up to temperatures of about 2000K

  4. High Temperature Advanced Structural Composites. Volume 2. Ceramic Matrix Composites, Fiber Processing and Properties, and Interfaces

    Science.gov (United States)

    1993-04-02

    furfural . toughness and a pseudoplasticity. the latter of treated to a higher temperature. The mamx or acetylenic resins provide simple processing...crystalline by TU/SAD and has an effective surface area of 250 m /go based on BET measurments with N2 adsorption . This solid crystallizes to high purity

  5. Negative thermal expansion up to 1000 C of ZrTiO4-Al2TiO5 ceramics for high-temperature applications

    International Nuclear Information System (INIS)

    Kim, I.J.; Kim, H.C.; Han, I.S.; Aneziris, C.G.

    2005-01-01

    High temperature structural ceramics based on Al 2 TiO 5 -ZrTiO 4 (ZAT) having excellent thermal-shock-resistance were synthesized by a reaction sintering. The ZAT ceramics sintered at 1600 C had a negative thermal expansions up to 1000 C and a much lower thermal expansion coefficient (0.3 ∝ 1.3 x 10 -6 /K) than that of polycrystalline Al 2 TiO 5 (1.5 x 10 -6 /K). These low thermal expansion are apparently due to a combination of microcracking caused by the large thermal expansion anisotropy of the crystal axes of the Al 2 TiO 5 phase. The microstructural degradation of the composites after various thermal treatment for high temperature applications were analyzed by scanning electron microscopy, X-ray diffraction, ultrasonic and dilatometer. (orig.)

  6. Effects of La{sub 2}O{sub 3}-doping and sintering temperature on the dielectric properties of BaSrTiO{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hong Wei; Chang, Chun Rui [College of Science, North China University of Science and Technology, Hebei Province (China); Li, Yuan Liang [Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, North China University of Science and Technology, Hebei Province (China); Yan, Chun Liang [Analysis and Testing Center, North China University of Science and Technology, Hebei Province (China)

    2016-03-15

    Using BaCO{sub 3}, SrCO{sub 3} and TiO{sub 2}, et al as crude materials, La{sub 2}O{sub 3} as dopant, Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} (BST) Ceramics of perovskite structure were prepared by solid state reaction method. We investigated the effects of La{sub 2}O{sub 3} -doping and sintering temperature on the dielectric properties of BaSrTiO{sub 3} ceramics. The experiment results show that: The amount of La{sub 2}O{sub 3} can increase the dielectric constant of the sample, with the doping amount increasing, the dielectric constant increases. The sintering temperature has also significant impact on the dielectric properties. The dielectric constant of the sample reaches its highest point at 1280 °C. (author)

  7. First assessment of Li2O-Bi2O3 ceramic oxides for high temperature carbon dioxide capture

    Institute of Scientific and Technical Information of China (English)

    E.M.Briz-López; M.J.Ramírez-Moreno; I.C.Romero-Ibarra; C.Gómez-Yá(n)ez; H.Pfeiffer; J.Ortiz-Landeros

    2016-01-01

    The capacity to capture CO2 was determined in several stoichiometric compositions in the Li2O-Bi2O3 system.The compounds (Li7BiO6,Li5BiOs,Li3BiO4 and LiBiO2 phases) were synthesized via solid-state reaction and characterized by X-ray diffraction,scanning electron microscopy and N2 adsorption techniques.The samples were heat-treated at temperatures from 40 to 750 ℃ under the CO2 atmosphere to evaluate the carbonate formation,which is indicative of the capacity of CO2 capture.Moreover,Li7BiO6 shows an excellent CO2 capture capacity of 7.1 mmol/g,which is considerably higher than those of other previously reported ceramics.Li7BiO6 is able to react with CO2 from 240 ℃ to approximately 660 ℃ showing a high kinetic reaction even at CO2 partial pressure values as low as 0.05.

  8. First assessment of Li2O–Bi2O3 ceramic oxides for high temperature carbon dioxide capture简

    Institute of Scientific and Technical Information of China (English)

    E.M.Briz-López; M.J.Ramírez-Moreno; I.C.Romero-Ibarra; C.Gómez-Yá?ez; H.Pfeiffer; J.Ortiz-Landeros

    2016-01-01

    The capacity to capture CO2 was determined in several stoichiometric compositions in the Li2O–Bi2O3 system. The compounds(Li7BiO6, Li5BiO5, Li3BiO4 and LiBiO2 phases) were synthesized via solid-state reaction and characterized by X-ray diffraction, scanning electron microscopy and N2 adsorption techniques.The samples were heat-treated at temperatures from 40 to 750 °C under the CO2 atmosphere to evaluate the carbonate formation, which is indicative of the capacity of CO2 capture. Moreover, Li7BiO6 shows an excellent CO2 capture capacity of 7.1 mmol/g, which is considerably higher than those of other previously reported ceramics. Li7BiO6 is able to react with CO2 from 240 °C to approximately 660 °C showing a high kinetic reaction even at CO2 partial pressure values as low as 0.05.

  9. Comparative study of irreversibility effects in Nb foil and high temperature superconducting ceramics by μSR

    International Nuclear Information System (INIS)

    Grebinnik, V.G.; Duginov, V.N.; Zhukov, V.A.

    1990-01-01

    We present the results of investigation of superconducting niobium and high temperature ceramical superconductor La 1.9 Sr 0.1 CuO 4 by the μSR technique. The experiments with the niobium sample have confirmed high reliability of the μSR-technique in determining such characteristics of type II superconductors as T c , H c1 , H c2 , the magnetic field penetration depth λ, and the critical current density J c . The analysis of the field dependences of the distribution width and mean value of the magnetic fields on the muon when the samples are magnetized was carried out. One has revealed qualitative difference in the behaviour of the magnetic dield distribution width in Nb and LaSrCuO. While the niobium data are well described in the frame of the critical state model, application of the similar approach to the high-T c superconductor did not give satisfactory description of our experimental results. 10 refs.; 4 figs

  10. Effect of metal selection and porcelain firing on the marginal accuracy of titanium-based metal ceramic restorations.

    Science.gov (United States)

    Shokry, Tamer E; Attia, Mazen; Mosleh, Ihab; Elhosary, Mohamed; Hamza, Tamer; Shen, Chiayi

    2010-01-01

    Titanium is the most biocompatible metal used for dental casting; however, there is concern about its marginal accuracy after porcelain application since this aspect has direct influence on marginal fit. The purpose of this study was to determine the effect that metal selection and the porcelain firing procedure have on the marginal accuracy of metal ceramic prostheses. Cast CP Ti, milled CP Ti, cast Ti-6Al-7Nb, and cast Ni-Cr copings (n=5) were fired with compatible porcelains (Triceram for titanium-based metals and VITA VMK 95 for Ni-Cr alloy). The Ni-Cr alloy fired with its porcelain served as the control. Photographs of metal copings placed on a master die were made. Marginal discrepancy was determined on the photographs using an image processing program at 8 predetermined locations before airborne-particle abrasion for porcelain application, after firing of the opaque layer, and after firing of the dentin layer. Repeated-measures 2-way ANOVA was used to investigate the effect of metal selection and firing stage, and paired t tests were used to determine the effect of each firing stage within each material group (alpha=.05). ANOVA showed that both metal selection and firing stage significantly influenced the measured marginal discrepancy (Pcast Ti-6Al-7Nb alloy (P=.003). Titanium copings fabricated by CAD/CAM demonstrated the least marginal discrepancy among all groups, while the base metal (Ni-Cr) groups exhibited the most discrepancy of all groups tested. Copyright 2010 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  11. Temperature and driving field dependence of fatigue processes in PZT bulk ceramics

    International Nuclear Information System (INIS)

    Glaum, Julia; Granzow, Torsten; Schmitt, Ljubomira Ana; Kleebe, Hans-Joachim; Roedel, Juergen

    2011-01-01

    The temperature- and field-dependent degradation properties of bulk Pb(Zr,Ti)O 3 material (PZT) under a unipolar electric field were investigated. Unipolar cycling leads to the build-up of an internal bias field based on the agglomeration of charges at grain boundaries. A simple model was developed which describes the general dynamics of unipolar fatigue and its dependence on temperature and driving field. Comparing the large and small signal permittivity before and after fatigue led to the conclusion that domain walls became clamped by the agglomerated charges. This clamping effect could be visualized by transmission electron microscopy (TEM). Additionally, the TEM investigations revealed that unipolar fatigue leads to a weakening of the microstructure and to the development of microcracks.

  12. Processing and characterization of transformation-toughened ceramics with strength retention to elevated temperatures. Final report

    International Nuclear Information System (INIS)

    Cutler, R.A.; Brinkpeter, C.B.; Vircar, A.V.; Shetty, D.K.

    1994-09-01

    Monolithic and three-layered Al 2 O 3 -- 15 vol % ZrO 2 composites were fabricated by slip casting aqueous slurries. The outer and inner layers of three-layer composites contained unstabilized and partially stabilized ZrO 2 , respectively. Transformation of part of the unstabilized ZrO 2 led to surface compressive stresses in the outer layers. Strain gage, x-ray, indentation crack length, and strength measurements were used to determine the magnitude of residual stresses in the composites. The strength of the three-layer composites (∼1200 MPa) was 500--700 MPa higher than that of the monolithic outer layer composites at room temperature and 350 MPa higher at 750 degree C. The strength differential decreased rapidly above the m → t transformation temperature. Three-layered composites showed excellent damage resistance and improved reliability. Cam follower rollers were fabricated to demonstrate the applicability of this technique for making automotive components

  13. Process for forming unusually strong joints between metals and ceramics by brazing at temperatures that do no exceed 750 degree C.

    Science.gov (United States)

    Hammond, Joseph P.; David, Stan A.; Woodhouse, John J.

    1986-01-01

    This invention is a process for joining metals to ceramics to form very strong bonds using low brazing temperature, i.e., less than 750.degree. C., and particularly for joining nodular cast iron to partially stabilized zirconia. The process provides that the ceramic be coated with an active metal, such as titanium, that can form an intermetallic with a low melting point brazing alloy such as 60Ag-30Cu-10Sn. The nodular cast iron is coated with a noncarbon containing metal, such as copper, to prevent carbon in the nodular cast iron from dissolving in the brazing alloy. These coated surfaces can be brazed together with the brazing alloy between at less than 750.degree. C. to form a very strong joint. An even stronger bond can be formed if a transition piece is used between the metal and ceramic. It is preferred for the transition piece to have a coefficient of thermal compatible with the coefficient of thermal expansion of the ceramic, such as titanium.

  14. Development of a ceramic membrane from a lithian spinel, Li1+xMyMn2-yO4 (M=trivalent or tetravalent cations) for a Li ion-selective electrode

    Science.gov (United States)

    Yoon, H.; Venugopal, N.; Rim, T.; Yang, B.; Chung, K.; Ko, T.

    2010-12-01

    Recently a few lithium containing ceramics are reported as promising cathodes for application in lithium batteries. Among them, a spinel-type lithium manganate (LM) exhibits an exceptionally high ion selectivity at room temperature. Thus, LM could have a great potential as an ion selective membrane material for screening interfering ions from lithium ion for the determination of lithium ion in salt solution. In this study, we developed an ion-selective electrode based on LM as a membrane material and investigated its lithium ion selectivity by varying the content of M in composition. A sol-gel process was successfully applied for preparing LM films without resorting to calcination at a high temperature. The LM thin film-type membranes exhibit a high selectivity for Li ion over other cations, a wide operation detection range of 10-5 ~ 10-2 M, and a fast response time less than 60 s. Furthermore, our result demonstrates a linear potentiometric response over a wide range of lithium concentration, which is compared to that of a lithium ion-selective electrode based on an ionophore. Acknowledgements: This research was supported by a grant from the Development of Technology for Extraction of Resources Dissolved in Sea Water Program funded by Ministry of Land Transport and Maritime Affairs in Korean Government (2010).

  15. Young`s modulus of ceramic matrix composites with polysiloxane based matrix at elevated temperatures

    Czech Academy of Sciences Publication Activity Database

    Černý, Martin; Glogar, Petr

    2004-01-01

    Roč. 39, č. 6 (2004), s. 2239-2242 ISSN 0022-2461 R&D Projects: GA ČR GA106/02/0177; GA ČR GP106/02/P025 Institutional research plan: CEZ:AV0Z3046908 Keywords : composite material * Young `s modulus * high temperature Subject RIV: JI - Composite Materials Impact factor: 0.864, year: 2004

  16. Preparation of high temperature superconductor ceramics using cuban reactives. Optimization of the synthesis method

    International Nuclear Information System (INIS)

    Leyva Fabelo, A.; Cruz, C.; Aragon, B.; Suarez, J.C.; Mora, M.

    1991-01-01

    Results of the crystallographic characterization of a group of Cuban Products, which are evaluated to be employed in HTSC fabrication are presented in this paper. The first results on the synthesis of HTSC (RBa 2 Cu 3 0 7δ , R= Y, La, Nd) using Cuban reactives, are presented. The so called 'solid state reaction method of synthesis' was optimized, obtaining a critical temperature of more than 93 k

  17. `Joint Research and Development of Industrial Technology,` an international research collaboration for fiscal 1997. Research and development for practical application of low-temperature sinterable, highly heat-radiating materials for ceramics; 1997 nendo kokusai kenkyu kyoryoku jigyo `sangyo kiban gijutsu kyodo kenkyu kaihatsu`. Teion shoketsu kohonetsusei ceramics kiban zairyo no jitsuyoka gijutsu no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    A highly heat-conducting AlN ceramic substrate is developed for the cooling of semiconductor integrated circuit devices and power controlling semiconductor devices. In the development of a low-temperature sinterable ceramic texture, a sintering assistant is selected. In this process various assistants are tested for the effect of their presence on the occurrence of AlN oxidation and on the magnitude of standard energy for aluminate compound formation. The volatility at high temperatures of the components of the assistants are also examined. The sintering assistant developed for this project (mixture of Y2O3, CaO, LaB6, and WO3) is used in the sintering of an AlN material powder developed by The Dow Chemical Co., and then it is demonstrated that highly heat-conducting AlN substrates are mass-produced by continuous sintering at 1600degC in a nitrogen atmosphere, the product having a relative density of 100%, average heat conductivity of 154W/mK, bend resisting strength of 440MPa, and a fracture toughness value of 3.8MPam{sup 1/2}. 6 refs., 92 figs., 10 tabs.

  18. Temperature-dependent dielectric and energy-storage properties of Pb(Zr,Sn,Ti)O{sub 3} antiferroelectric bulk ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xuefeng; Liu, Zhen; Xu, Chenhong; Cao, Fei; Wang, Genshui; Dong, Xianlin, E-mail: xldong@mail.sic.ac.cn [Key laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai (China)

    2016-05-15

    The dielectric and energy-storage properties of Pb{sub 0.99}Nb{sub 0.02}[(Zr{sub 0.60}Sn{sub 0.40}){sub 0.95}Ti{sub 0.05}]{sub 0.98}O{sub 3} (PNZST) bulk ceramics near the antiferroelectric (AFE)-ferroelectric (FE) phase boundary are investigated as a function of temperature. Three characteristic temperatures T{sub 0}, T{sub C}, T{sub 2} are obtained from the dielectric temperature spectrum. At different temperature regions (below T{sub 0}, between T{sub 0} and T{sub C}, and above T{sub C}), three types of hysteresis loops are observed as square double loop, slim loop and linear loop, respectively. The switching fields and recoverable energy density all first increase and then decrease with increasing temperature, and reach their peak values at ∼T{sub 0}. These results provide a convenient method to optimize the working temperature of antiferroelectric electronic devices through testing the temperature dependent dielectric properties of antiferroelectric ceramics.

  19. Selective and low temperature transition metal intercalation in layered tellurides

    Science.gov (United States)

    Yajima, Takeshi; Koshiko, Masaki; Zhang, Yaoqing; Oguchi, Tamio; Yu, Wen; Kato, Daichi; Kobayashi, Yoji; Orikasa, Yuki; Yamamoto, Takafumi; Uchimoto, Yoshiharu; Green, Mark A.; Kageyama, Hiroshi

    2016-01-01

    Layered materials embrace rich intercalation reactions to accommodate high concentrations of foreign species within their structures, and find many applications spanning from energy storage, ion exchange to secondary batteries. Light alkali metals are generally most easily intercalated due to their light mass, high charge/volume ratio and in many cases strong reducing properties. An evolving area of materials chemistry, however, is to capture metals selectively, which is of technological and environmental significance but rather unexplored. Here we show that the layered telluride T2PTe2 (T=Ti, Zr) displays exclusive insertion of transition metals (for example, Cd, Zn) as opposed to alkali cations, with tetrahedral coordination preference to tellurium. Interestingly, the intercalation reactions proceed in solid state and at surprisingly low temperatures (for example, 80 °C for cadmium in Ti2PTe2). The current method of controlling selectivity provides opportunities in the search for new materials for various applications that used to be possible only in a liquid. PMID:27966540

  20. Processing and characterization of transformation-toughened ceramics with strength retention to elevated temperatures. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, R.A.; Brinkpeter, C.B. [Ceramatec, Inc., Salt Lake City, UT (United States); Vircar, A.V.; Shetty, D.K. [Univ. of Utah (United States)

    1994-09-01

    Monolithic and three-layered Al{sub 2}O{sub 3} -- 15 vol % ZrO{sub 2} composites were fabricated by slip casting aqueous slurries. The outer and inner layers of three-layer composites contained unstabilized and partially stabilized ZrO{sub 2}, respectively. Transformation of part of the unstabilized ZrO{sub 2} led to surface compressive stresses in the outer layers. Strain gage, x-ray, indentation crack length, and strength measurements were used to determine the magnitude of residual stresses in the composites. The strength of the three-layer composites ({approx}1200 MPa) was 500--700 MPa higher than that of the monolithic outer layer composites at room temperature and 350 MPa higher at 750{degree}C. The strength differential decreased rapidly above the m {yields} t transformation temperature. Three-layered composites showed excellent damage resistance and improved reliability. Cam follower rollers were fabricated to demonstrate the applicability of this technique for making automotive components.

  1. Preparation and encapsulation performance of Al_2O_3-SiO_2-B_2O_3 glass-ceramic for high temperature thermal storage

    International Nuclear Information System (INIS)

    Li, Ruguang; Zhu, Jiaoqun; Zhou, Weibing; Cheng, Xiaomin; Liu, Fengli

    2017-01-01

    Highlights: • Al_2O_3-B_2O_3-SiO_2 has good chemical durability, corrosion resistance and dense structure. • The material rarely used in high temperature thermal storage. • The material was prepared and characterized in the paper. - Abstract: In this paper, Al_2O_3-SiO_2-B_2O_3 glass-ceramic was prepared and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), further, the porosity was detected by Archimedes principle, thermo physical properties were investigated by differential scanning calorimeter (DSC), respectively. The phase composition was detected by XRD, and the morphology was observed by SEM. The results indicated that the thermal conductivities of the Al_2O_3-SiO_2-B_2O_3 glass-ceramic were between 1.3 and 1.5 W·(m·K)"−"1, and the material had good thermal stability in the range of 300–900 °C. The porosity and apparent density were increased with the temperature. The porosity of Al_2O_3-SiO_2-B_2O_3 glass-ceramic in ranging from 1.2 to 9.6%, the apparent density were between 2.12 and 2.67 g·cm"−"3, and heat capacities were between 0.64 and 0.79 kJ/(kg·K). All the results indicated that the Al_2O_3-SiO_2-B_2O_3 glass-ceramic can be applied as encapsulation material in high temperature latent thermal energy storage.

  2. Changes in the flexural strength of engineering ceramics after high temperature sodium corrosion test. Influence after sodium exposure for 1000 hours

    International Nuclear Information System (INIS)

    Hayashi, Kazunori; Tachi, Yoshiaki; Kano, Shigeki; Hirakawa, Yasushi; Komine, Ryuji; Yoshida, Eiichi

    1998-02-01

    Engineering ceramics have excellent properties such as high strength, high hardness and high heat resistance compared with metallic materials. To apply the ceramic in fast reactor environment, it is necessary to evaluate the sodium compatibility and the influence of sodium on the mechanical properties of ceramics. In this study, the influence of high temperature sodium on the mechanical properties of sintered ceramics of conventional and high purity Al 2 O 3 , SiC, SiAlON, AlN and unidirectional solidified ceramics of Al 2 O 3 /YAG eutectic composite were investigated by means of flexure tests. Test specimens were exposed in liquid sodium at 823K and 923K for 3.6Ms. There were no changes in the flexural strength of the conventional and high purity Al 2 O 3 , AlN and Al 2 O 3 /YAG eutectic composite after the sodium exposure at 823K. On the contrary, the decrease in the flexural strength was observed in SiC and SiAlON. After the sodium exposure at 923K, there were also no changes in the flexural strength of AlN and Al 2 O 3 /YAG eutectic composite. In the conventional and high purity Al 2 O 3 and SiC, the flexural strength decreased and signs of grain boundary corrosion were detected by surface observation. The flexural strength of SiAlON after the sodium exposure at 923K increased instead of severe corrosion. In the specimens those showed no changes in the flexural strength, further exposure in sodium is needed to verify whether the mechanical properties degrade or not. For SiAlON, it is necessary to clarify the reason for the increased strength after the sodium exposure at 923K. (author)

  3. Attachment of Free Filament Thermocouples for Temperature Measurements on Ceramic Matrix Composites

    Science.gov (United States)

    Lei, Jih-Fen; Cuy, Michael D.; Wnuk, Stephen P.

    1998-01-01

    At the NASA Lewis Research Center, a new installation technique utilizing convoluted wire thermocouples (TC's) was developed and proven to produce very good adhesion on CMC's, even in a burner rig environment. Because of their unique convoluted design, such TC's of various types and sizes adhere to flat or curved CMC specimens with no sign of delamination, open circuits, or interactions-even after testing in a Mach 0.3 burner rig to 1200 C (2200 F) for several thermal cycles and at several hours at high temperatures. Large differences in thermal expansion between metal thermocouples and low-expansion materials, such as CMC's, normally generate large stresses in the wires. These stresses cause straight wires to detach, but convoluted wires that are bonded with strips of coating allow bending in the unbonded portion to relieve these expansion stresses.

  4. The FUBR-1B experiment, irradiation of lithium ceramics to high burnups under large temperature gradients

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Knight, R.C.; Densley, P.J.; Pember, L.A.; Johnson, C.E.; Poeppel, R.B.; Yang, L.

    1985-01-01

    Solid breeder materials used for supplying the tritium for fueling fusion power reactors will be required to withstand a variety of severe environmental conditions such as irradiation damage, thermal stresses and chemical reactions while continuing to produce tritium and not interfering with other essential components in the complex blanket region. In the FUBR-1B experiment several solid breeder candidates are being subjected to the most hostile conditions foreseen in a fusion reactor's blanket. Some material, such as Li 2 O, Li 8 ZrO 6 , and Li 4 SiO 4 , possess high lithium atom densities which are reflected in high tritium breeding ratios. Other material, such as LiAlO 2 and Li 2 ZrO 3 , appear to have exceptional irradiation stability. Verifying the magnitude of these differences will allow national selection between design options

  5. Boric oxide or boric acid sintering aid for sintering ceramics

    International Nuclear Information System (INIS)

    Lawler, H.A.

    1979-01-01

    The invention described relates to the use of liquid sintering aid in processes involving sintering of ceramic materials to produce dense, hard articles having industrial uses. Although the invention is specifically discussed in regard to compositions containing silicon carbide as the ceramic material, other sinterable carbides, for example, titanium carbide, may be utilized as the ceramic material. A liquid sintering aid for densifying ceramic material is selected from solutions of H 3 BO 3 , B 2 O 3 and mixtures of these solutions. In sintering ceramic articles, e.g. silicon carbide, a shaped green body is formed from a particulate ceramic material and a resin binder, and the green body is baked at a temperature of 500 to 1000 0 C to form a porous body. The liquid sintering aid of B 2 O 3 and/or H 3 BO 3 is then dispersed through the porous body and the treated body is sintered at a temperature of 1900 to 2200 0 C to produce the sintered ceramic article. (U.K.)

  6. Surface treatment of zirconia ceramics

    International Nuclear Information System (INIS)

    1980-01-01

    A method of chemically micropitting and/or microcratering at least a portion of a smooth surface of an impervious zirconia-base ceramic is described, comprising (a) contacting the smooth surface with a liquid leachant selected from concentrated sulphuric acid, ammonium bisulphate, alkali metal bisulphates and mixtures thereof at a temperature of at least 250 0 C for a period of time sufficient to effect micropitting and/or microcratering generally uniformly distributed throughout the microstructure of the resultant leached surface; (b) removing the leached surface from contact with the leachant; (c) contacting the leached surface with hydrochloric acid to effect removal from the leached surface of a residue thereon comprising sulphate of metal elements including zirconium in the ceramic; (d) removing the leached surface from contact with the hydrochloric acid; and (e) rinsing the leached surface with water to effect removal of acid residue from that surface. (author)

  7. Comparison of Reactive and Non-Reactive Spark Plasma Sintering Routes for the Fabrication of Monolithic and Composite Ultra High Temperature Ceramics (UHTC Materials

    Directory of Open Access Journals (Sweden)

    Roberto Orrù

    2013-04-01

    Full Text Available A wider utilization of ultra high temperature ceramics (UHTC materials strongly depends on the availability of efficient techniques for their fabrication as dense bodies. Based on recent results reported in the literature, it is possible to state that Spark Plasma Sintering (SPS technology offers a useful contribution in this direction. Along these lines, the use of two different SPS-based processing routes for the preparation of massive UHTCs is examined in this work. One method, the so-called reactive SPS (R-SPS, consists of the synthesis and densification of the material in a single step. Alternatively, the ceramic powders are first synthesized by Self-propagating High-temperature Synthesis (SHS and then sintered by SPS. The obtained results evidenced that R-SPS method is preferable for the preparation of dense monolithic products, while the sintering of SHS powders requires relatively milder conditions when considering binary composites. The different kinetic mechanisms involved during R-SPS of the monolithic and composite systems, i.e., combustion-like or gradual solid-diffusion, respectively, provides a possible explanation. An important role is also played by the SHS process, particularly for the preparation of composite powders, since stronger interfaces are established between the ceramic constituents formed in situ, thus favoring diffusion processes during the subsequent SPS step.

  8. Laser-joined Al{sub 2}O{sub 3} and ZrO{sub 2} ceramics for high-temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Boerner, Floriana-Dana, E-mail: floriana.boerner@tu-dresden.d [Dresden University of Technology (TU Dresden), Institute of Power Engineering, Chair of Hydrogen Technology and Nuclear Power Engineering, George-Baehr-Str. 3, D-01062 Dresden (Germany); Lippmann, Wolfgang, E-mail: wolfgang.lippmann@tu-dresden.d [Dresden University of Technology (TU Dresden), Institute of Power Engineering, Chair of Hydrogen Technology and Nuclear Power Engineering, George-Baehr-Str. 3, D-01062 Dresden (Germany); Hurtado, Antonio, E-mail: antonio.hurtado@tu-dresden.d [Dresden University of Technology (TU Dresden), Institute of Power Engineering, Chair of Hydrogen Technology and Nuclear Power Engineering, George-Baehr-Str. 3, D-01062 Dresden (Germany)

    2010-10-01

    A laser process is presented that has been specially developed for joining oxide ceramics such as zirconium oxide (ZrO{sub 2}) and aluminium oxide (Al{sub 2}O{sub 3}). It details, by way of example, the design of the laser process applied for to producing both Al{sub 2}O{sub 3}-Al{sub 2}O{sub 3} and ZrO{sub 2}-ZrO{sub 2} joints using siliceous glasses as fillers. The heat source used was a continuous wave diode laser with a wavelength range of 808-1010 nm. Glasses of the SiO{sub 2}-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}-MeO system were developed as high-temperature resistant brazing fillers whose expansion coefficients, in particular, were optimally adapted to those of the ceramics to be joined. Specially designed measuring devices help to determine both the temperature-dependent emission coefficients and the synchronously determined proportions of reflection and transmission. The glass-ceramic joints produced are free from gas inclusions and macroscopic defects and exhibit a homogenous structure. The average strength values achieved were 158 MPa for the Al{sub 2}O{sub 3} system and 190 MPa for the ZrO{sub 2} system, respectively.

  9. Effect of Heat-Pressing Temperature and Holding Time on the Microstructure and Flexural Strength of Lithium Disilicate Glass-Ceramics

    Science.gov (United States)

    Gao, Jing; Wang, Hui; Chen, Jihua

    2015-01-01

    The present study aimed to evaluate the influence of various heat-pressing procedures (different holding time and heat pressing temperature) on the microstructure and flexural strength of lithium disilicate glass ceramic. An experimental lithium silicate glass ceramic (ELDC) was prepared from the SiO2-Li2O-K2O-Al2O3-ZrO2-P2O5 system and heat-pressed following different procedures by varying temperature and holding time. The flexural strength was tested and microstructure was analyzed. The relationships between the microstructure, mechanical properties and heat-pressing procedures were discussed in-depth. Results verified the feasibility of the application of dental heat-pressing technique in processing the experimental lithium disilicate glass ceramic. Different heat-pressing procedures showed significant influence on microstructure and flexural strength. ELDC heat-pressed at 950℃ with holding time of 15 min achieved an almost pore-free microstructure and the highest flexural strength, which was suitable for dental restorative application. PMID:25985206

  10. Effect of heat-pressing temperature and holding time on the microstructure and flexural strength of lithium disilicate glass-ceramics.

    Directory of Open Access Journals (Sweden)

    Fu Wang

    Full Text Available The present study aimed to evaluate the influence of various heat-pressing procedures (different holding time and heat pressing temperature on the microstructure and flexural strength of lithium disilicate glass ceramic. An experimental lithium silicate glass ceramic (ELDC was prepared from the SiO2-Li2O-K2O-Al2O3-ZrO2-P2O5 system and heat-pressed following different procedures by varying temperature and holding time. The flexural strength was tested and microstructure was analyzed. The relationships between the microstructure, mechanical properties and heat-pressing procedures were discussed in-depth. Results verified the feasibility of the application of dental heat-pressing technique in processing the experimental lithium disilicate glass ceramic. Different heat-pressing procedures showed significant influence on microstructure and flexural strength. ELDC heat-pressed at 950℃ with holding time of 15 min achieved an almost pore-free microstructure and the highest flexural strength, which was suitable for dental restorative application.

  11. Optimization of protein fractionation by skim milk microfiltration: Choice of ceramic membrane pore size and filtration temperature.

    Science.gov (United States)

    Jørgensen, Camilla Elise; Abrahamsen, Roger K; Rukke, Elling-Olav; Johansen, Anne-Grethe; Schüller, Reidar B; Skeie, Siv B

    2016-08-01

    The objective of this study was to investigate how ceramic membrane pore size and filtration temperature influence the protein fractionation of skim milk by cross flow microfiltration (MF). Microfiltration was performed at a uniform transmembrane pressure with constant permeate flux to a volume concentration factor of 2.5. Three different membrane pore sizes, 0.05, 0.10, and 0.20µm, were used at a filtration temperature of 50°C. Furthermore, at pore size 0.10µm, 2 different filtration temperatures were investigated: 50 and 60°C. The transmission of proteins increased with increasing pore size, giving the permeate from MF with the 0.20-µm membrane a significantly higher concentration of native whey proteins compared with the permeates from the 0.05- and 0.10-µm membranes (0.50, 0.24, and 0.39%, respectively). Significant amounts of caseins permeated the 0.20-µm membrane (1.4%), giving a permeate with a whitish appearance and a casein distribution (αS2-CN: αS1-CN: κ-CN: β-CN) similar to that of skim milk. The 0.05- and 0.10-µm membranes were able to retain all caseins (only negligible amounts were detected). A permeate free from casein is beneficial in the production of native whey protein concentrates and in applications where transparency is an important functional characteristic. Microfiltration of skim milk at 50°C with the 0.10-µm membrane resulted in a permeate containing significantly more native whey proteins than the permeate from MF at 60°C. The more rapid increase in transmembrane pressure and the significantly lower concentration of caseins in the retentate at 60°C indicated that a higher concentration of caseins deposited on the membrane, and consequently reduced the native whey protein transmission. Optimal protein fractionation of skim milk into a casein-rich retentate and a permeate with native whey proteins were obtained by 0.10-µm MF at 50°C. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All

  12. Effect of deposition temperature & oxygen pressure on mechanical properties of (0.5) BZT-(0.5)BCT ceramic thin films

    Science.gov (United States)

    Sailaja, P.; Kumar, N. Pavan; Rajalakshmi, R.; Kumar, R. Arockia; Ponpandian, N.; Prabahar, K.; Srinivas, A.

    2018-05-01

    Lead free ferroelectric thin films of {(0.5) BZT-(0.5) BCT} (termed as BCZT) were deposited on Pt/TiO2/SiO2/Si substrates by pulsed laser deposition at four deposition temperatures 600, 650, 700, 750°C and at two oxygen pressures viz. 75mtorr and 100 mtorr using BCZT ceramic target (prepared by solid state sintering method). The effect of deposition temperature and oxygen pressure on the structure, microstructure and mechanical properties of BCZT films were studied. X-ray diffraction patterns of deposited films confirm tetragonal crystal symmetry and the crystallinity of the films increases with increasing deposition temperature. Variation in BCZT grain growth was observed when the films are deposited at different temperatures andoxygen pressures respectively. The mechanical properties viz. hardness and elastic modulus were also found to be high with increase in the deposition temperature and oxygen pressure. The results will be discussed.

  13. Utilization of niobium pentoxide as additive for reducing the ''in situ'' reaction temperature of ceramic composites in the system mullite-zirconia

    International Nuclear Information System (INIS)

    Melo, F.C.L. de; Cairo, C.A.A.; Piorino Neto, F.; Cunha, P.A.; Devezas, T.C.

    1988-01-01

    Ceramics Composites of the system mullite-zirconia were produced trough reaction sintering, following the equation: 2ZrSiO 4 +3Al 2 O 3 +x(Al 2 O 3 +Nb 2 O 5 )--> 2ZrO 2 +Al 6 Si 2 O 13 +2xAlNbO 4 , with different x values (0.05,0.1 e 0.25), trying to investigate the role of niobia as sintering aid. Through x-ray diffraction was evaluated the fraction of zirconia tetragonal phase retained in the ceramic matrix, and the produced composites were caracterized as to the apparent porosity and density, sintering shrinkage and rupture strenght. The reaction sintering temperature was reduced from 1600 0 C (x=0) to 1400 0 C (with x=0.1). (author) [pt

  14. Microstructure and High Temperature Oxidation Property of Fe-Cr-B Based Metal/Ceramic Composite Manufactured by Powder Injection Molding Process

    Science.gov (United States)

    Joo, Yeun-Ah; Kim, Young-Kyun; Yoon, Tae-Sik; Lee, Kee-Ahn

    2018-03-01

    This study investigated the microstructure and high temperature oxidation property of Fe-Cr-B metal/ceramic composite manufactured using powder injection molding process. Observations of initial microstructure showed a unique structure where α-Fe and (Cr, Fe)2B form a continuous three-dimensional network. High temperature oxidation tests were performed at 900, 1000 and 1100 °C, for 24 h, and the oxidation weight gain according to each temperature condition was 0.13, 0.84 and 6.4 mg/cm2, respectively. The oxidation results according to time at 900 and 1000 °C conditions represented parabolic curves, and at 1100 °C condition formed a rectilinear curve. Observation and phase analysis results of the oxides identified Cr2O3 and SiO2 at 900 and 1000 °C. In addition to Cr2O3 and SiO2, CrBO3 and FeCr2O4 formed due to phase decomposition of boride were identified at 1100 °C. Based on the findings above, this study suggested the high temperature oxidation mechanism of Fe-Cr-B metal/ceramic composite manufactured using powder injection molding, and the possibility of its application as a high temperature component material was also discussed.

  15. Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  16. Final technical report to Department of Energy, Basic Energy Sciences. ''Oxide ceramic alloys and microlaminates'' (1996-1999) and ''Low temperature processing and kinetics of ceramics and ceramic matrix composites with large interfacial areas'' (1999-2000)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, I-Wei

    2001-03-26

    We have discovered a novel two-step sintering method that opened up a low temperature processing window within which fully dense nanocrystalline yttrium oxide was obtained with no concurrent grain growth during final-stage sintering. We have developed a new method of processing laminate ceramics using deformation processing in the green state. We have lastly developed a colloidal processing technique to encapsulate biomolecules at ambient, neutral-pH, aqueous conditions.

  17. Ceramic Materials Selection of Fuel Crucibles based on Plasma Spray Coating for SFR

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hoon; Kim, Jonghwan; Kim, Hyungtae; Ko, Youngmo; Woo, Yoonmyung; Oh, Seokjin; Kim, Kihwan; Lee, Chanbock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-07-01

    The plasma-sprayed coating can provide the crucible with a denser, more friable coating layer, compared with the more friable coating layer formed by slurry-coating, which was used to prevent the interaction between melt and crucibles. Plasma-sprayed coatings are consolidated by mechanical interlocking of the molten particles impacting on the substrate and are dense by the heat applied by the plasma. The increased coating density is advantageous because it should not require frequent re coating and U-Zr melt penetration through the protective layer is more difficult in a dense coating than in a porous coating. In this study, we used Vacuum Plasma Spray method to investigate permanent coatings for re-usable crucibles for melting and casting of metallic fuel onto niobium substrates. Niobium was selected as a substrate because of its refractory nature and the coefficient of thermal expansion is similar to that of many of the candidate materials. After the HfC, ZrC, TiC, TaC, Y{sub 2}O{sub 3}, and 8% YSZ coatings were applied the resulting microstructure and chemical compositions was characterized to find the optimum process conditions for coating. Thermal plasma-sprayed coatings of refractory materials can be applied to develop a re-usable crucible coating for metallic fuel, such as the U-Zr alloy proposed for sodium cooled fast reactors.

  18. [Ceramic-on-ceramic bearings in total hip arthroplasty (THA)].

    Science.gov (United States)

    Sentürk, U; Perka, C

    2015-04-01

    The main reason for total hip arthroplasty (THA) revision is the wear-related aseptic loosening. Younger and active patients after total joint replacement create high demands, in particular, on the bearings. The progress, especially for alumina ceramic-on-ceramic bearings and mixed ceramics have solved many problems of the past and lead to good in vitro results. Modern ceramics (alumina or mixed ceramics containing alumina) are extremely hard, scratch-resistant, biocompatible, offer a low coefficient of friction, superior lubrication and have the lowest wear rates in comparison to all other bearings in THA. The disadvantage of ceramic is the risk of material failure, i.e., of ceramic fracture. The new generation of mixed ceramics (delta ceramic), has reduced the risk of head fractures to 0.03-0.05 %, but the risk for liner fractures remains unchanged at about 0.02 %. Assuming a non-impinging component implantation, ceramic-on-ceramic bearings have substantial advantages over all other bearings in THA. Due to the superior hardness, ceramic bearings produce less third body wear and are virtually impervious to damage from instruments during the implantation process. A specific complication for ceramic-on-ceramic bearings is "squeaking". The high rate of reported squeaking (0.45 to 10.7 %) highlights the importance of precise implant positioning and the stem and patient selection. With precise implant positioning this problem is rare with many implant designs and without clinical relevance. The improved tribology and the presumable resulting implant longevity make ceramic-on-ceramic the bearing of choice for young and active patients. Georg Thieme Verlag KG Stuttgart · New York.

  19. Thermo chemical calculations applied to the study of ceramic corrosion at high temperature - Steel-making applications; Apport de la thermodynamique a l'etude de la corrosion des ceramiques a haute temperature - Applications siderurgiques

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, J. [Orleans Univ., Polytechnique, 45 (France); Centre National de la Recherche Scientifique (CNRS/CEMHTI), 45 - Orleans-la-Source (France)

    2008-05-15

    At high temperature, corrosion by gas, slag or metal is recognized in many cases as the essential degradation mode of ceramics. The reaction between the ceramic and the corrosive agent should be described taking into account both the kinetic aspects (rates and mechanisms of the reactions) and the thermodynamic aspects (equilibrium conditions). After a short description of the thermodynamic tools, we will show how some thermo chemical calculations, involving complex multi-component systems at high temperature, can be applied to explain some practical situations. Different examples, from steel making, will be considered: effects of composition changes upon the stability of the refractories and reactions of corrosion between the refractories, the gas and the liquid oxides. (author)

  20. Synthesis and surface characterization of alumina-silica-zirconia nanocomposite ceramic fibres on aluminium at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Mubarak Ali, M., E-mail: masterscience2003@yahoo.co.in [Advanced Materials Research Laboratory, Department of Chemistry, Periyar University, Omalur Main Road, Salem 636 011, Tamil Nadu (India); Raj, V., E-mail: alaguraj2@rediffmail.com [Advanced Materials Research Laboratory, Department of Chemistry, Periyar University, Omalur Main Road, Salem 636 011, Tamil Nadu (India)

    2010-04-01

    Alumina-silica-zirconia nanocomposite (ASZNC) ceramic fibres were synthesized by conventional anodization route. Scanning Electron Microscopy (SEM), Atomic Force microscopy (AFM), X-Ray Diffraction (XRD) and Energy Dispersive X-Ray spectroscopy (EDAX) were used to characterize the morphology and crystalloid structure of ASZNC fibres. Current density (DC) is one of the important parameters to get the alumina-silica-zirconia nanocomposite (ASZNC) ceramic fibres by this route. Annealing of the films exhibited a drastic change in the properties due to improved crystallinity. The root mean square roughness of the sample observed from atomic force microscopic analysis is about 71.5 nm which is comparable to the average grain size of the coatings which is about 72 nm obtained from X-Ray diffraction. The results indicate that, the ASZNC fibres are arranged well in the nanostructure. The thickness of the coating increased with the anodizing time, but the coatings turned rougher and more porous. At the initial stage the growth of ceramic coating increases inwards to the metal substrate and outwards to the coating surface simultaneously. Subsequently, it mainly grows towards the metal substrate and the density of the ceramic coating increases gradually, which results in the decrease of the total thickness as anodizing time increases. This new approach of preparing ASZNC ceramic fibres may be important in applications ranging from gas sensors to various engineering materials.

  1. Deodorant ceramic catalyst. Dasshu ceramics shokubai

    Energy Technology Data Exchange (ETDEWEB)

    Arai, K. (Kobe Steel Ltd., Kobe (Japan)); Naka, R. (Hitachi Ltd., Tokyo (Japan))

    1993-07-01

    Concerning debromination to be used for the filter of deodorizing device, those of long life and high deodorizing performance are demanded a great deal. As one of this kind of debromination, a deodorant ceramic catalyst (mangantid) has been developed and put for practical use as deodorant for refrigerator. In this article, the information and knowledge obtained by the development of mangantid, the features as well as several properties of the product are stated. The deodorizing methods currently used practically are roughly divided into 6 kinds such as the adsorption method, the direct combustion method, the catalytic method and the oxidation method, but each of them has its own merit and demerit, hence it is necessary to select the method in accordance with the kind of odor and its generating condition. Mangantid is a compound body of high deodorant material in a honeycomb configuration, and has the features that in comparison with the existing deordorants, its pressure loss is smaller, its deodorizing rate is bigger, and acidic, neutral and basic gaseous components can be removed in a well-balanced manner. Deodorization with mangantid has the mechanism to let the odorous component contact and react with the catalyst and change the component to the non-odorous component in the temperature range from room temperature to the low temperature region. 5 refs., 11 figs., 1 tab.

  2. Low Temperature Selective Catalytic Reduction of Nitrogen Oxides in Production of Nitric Acid by the Use of Liquid

    Directory of Open Access Journals (Sweden)

    Kabljanac, Ž.

    2011-11-01

    Full Text Available This paper presents the application of low-temperature selective catalytic reduction of nitrous oxides in the tail gas of the dual-pressure process of nitric acid production. The process of selective catalytic reduction is carried out using the TiO2/WO3 heterogeneous catalyst applied on a ceramic honeycomb structure with a high geometric surface area per volume. The process design parameters for nitric acid production by the dual-pressure procedure in a capacity range from 75 to 100 % in comparison with designed capacity for one production line is shown in the Table 1. Shown is the effectiveness of selective catalytic reduction in the temperature range of the tail gas from 180 to 230 °C with direct application of liquid ammonia, without prior evaporation to gaseous state. The results of inlet and outlet concentrations of nitrous oxides in the tail gas of the nitric acid production process are shown in Figures 1 and 2. Figure 3 shows the temperature dependence of the selective catalytic reduction of nitrous oxides expressed as NO2in the tail gas of nitric acid production with the application of a constant mass flow of liquid ammonia of 13,0 kg h-1 and average inlet mass concentration of the nitrous oxides expressed as NO2of 800,0 mgm-3 during 100 % production capacity. The specially designed liquid-ammonia direct-dosing system along with the effective homogenization of the tail gas resulted in emission levels of nitrous oxides expressed as NO2 in tail gas ranging from 100,0 to 185,0 mg m-3. The applied low-temperature selective catalytic reduction of the nitrous oxides in the tail gases by direct use of liquid ammonia is shown in Figure 4. It is shown that low-temperature selective catalytic reduction with direct application of liquid ammonia opens a new opportunity in the reduction of nitrous oxide emissions during nitric acid production without the risk of dangerous ammonium nitrate occurring in the process of subsequent energy utilization of

  3. The effect of core material, veneering porcelain, and fabrication technique on the biaxial flexural strength and weibull analysis of selected dental ceramics.

    Science.gov (United States)

    Lin, Wei-Shao; Ercoli, Carlo; Feng, Changyong; Morton, Dean

    2012-07-01

    The objective of this study was to compare the effect of veneering porcelain (monolithic or bilayer specimens) and core fabrication technique (heat-pressed or CAD/CAM) on the biaxial flexural strength and Weibull modulus of leucite-reinforced and lithium-disilicate glass ceramics. In addition, the effect of veneering technique (heat-pressed or powder/liquid layering) for zirconia ceramics on the biaxial flexural strength and Weibull modulus was studied. Five ceramic core materials (IPS Empress Esthetic, IPS Empress CAD, IPS e.max Press, IPS e.max CAD, IPS e.max ZirCAD) and three corresponding veneering porcelains (IPS Empress Esthetic Veneer, IPS e.max Ceram, IPS e.max ZirPress) were selected for this study. Each core material group contained three subgroups based on the core material thickness and the presence of corresponding veneering porcelain as follows: 1.5 mm core material only (subgroup 1.5C), 0.8 mm core material only (subgroup 0.8C), and 1.5 mm core/veneer group: 0.8 mm core with 0.7 mm corresponding veneering porcelain with a powder/liquid layering technique (subgroup 0.8C-0.7VL). The ZirCAD group had one additional 1.5 mm core/veneer subgroup with 0.7 mm heat-pressed veneering porcelain (subgroup 0.8C-0.7VP). The biaxial flexural strengths were compared for each subgroup (n = 10) according to ISO standard 6872:2008 with ANOVA and Tukey's post hoc multiple comparison test (p≤ 0.05). The reliability of strength was analyzed with the Weibull distribution. For all core materials, the 1.5 mm core/veneer subgroups (0.8C-0.7VL, 0.8C-0.7VP) had significantly lower mean biaxial flexural strengths (p Empress and e.max groups, regardless of core thickness and fabrication techniques. Comparing fabrication techniques, Empress Esthetic/CAD, e.max Press/CAD had similar biaxial flexural strength (p= 0.28 for Empress pair; p= 0.87 for e.max pair); however, e.max CAD/Press groups had significantly higher flexural strength (p Empress Esthetic/CAD groups. Monolithic core

  4. Studies on high-performance ceramic heat exchanger for ultra high temperature. 2nd Report. Heat transfer of finned tube bundle immersed in fluidized bed; Chokoon`yo koseino ceramic netsu kokanki ni kansuru kenkyu. 2. Ryudo sonai no rin kangun no netsudentatsu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Himeji, Y; Kumada, M [Gifu University, Gifu (Japan). Faculty of Engineering

    1998-03-25

    Studies were carried out to develop a high-performance ceramic heat exchanger for ultra high temperatures using a fluidized bed. In the former study, Heat transfer coefficient had been improved by applying fluidized bed to the heat exchanger for high temperature with smooth ceramic tubes. In this study, finned ceramic tubes were applied instead of smooth tubes for more improvement of heat transfer and experiments were performed on condition that the maximum bed temperature was 1100degC. Fluidization remained stable and the bed temperature uniform in the bed similarly as the case of smooth tube. A heat transfer coefficient of finned tube was evaluated and it was improved about 3 times as large as that of smooth tube. The performance of the heat exchanger was also evaluated using temperature efficiency and exergy efficiency. 4 refs., 11 figs., 1 tab.

  5. Report on achievements in fiscal 1999. Research and development of synergy ceramics (research and development of ultra-high temperature gas turbine for power generation); 1999 nendo synergy ceramics no kenkyu kaihatsu seika hokokusho. Hatsuden'yo chokoon gas turbine no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This research and development has been performed on the following themes: (1) high-temperature energy materials, (2) high-function active materials, (3) fundamental member material design technologies, (4) materials to activate specific environmental gases, (5) energy materials having high resistance to silicon groups, (6) porous multi-layer ceramic materials, (7) micro and macro applied analytic technologies, and (8) microscopically destructive analysis technologies. In Item 1, investigations were performed on the relationship of micro columnar particle structure of porous silicon nitride bodies with strength and destruction energy to identify the mechanism for manifestation of these characteristics. In Item 2, catalyst and electrode materials having the selectively separating and cleaning functions were developed, and materials to convert oxides thermo-electrically having high characteristics were discussed. In Item 3, polycrystalline alumina, polycrystalline zirconia, and zirconia particle dispersed alumina were fabricated on the trial basis to give them microscopic and macroscopic evaluations. In Item 4, crystalline hexa-aluminates in single phase were synthesized successfully. In Item 5, a synthesizing experiment was carried out on Ca-{alpha} sialon powder to evaluate and analyze the configuration phase of the product and the particle patterns. In Item 7, the homogenizing method was used to develop a three-dimensional program to analyze the correlation between the microscopic non-homogeneous structure and the macroscopic properties of synergy ceramics. In Item 8, the basic dimensions of porous alumina bodies were discussed based on energy density. (NEDO)

  6. Report on achievements in fiscal 1999. Research and development of synergy ceramics (research and development of ultra-high temperature gas turbine for power generation); 1999 nendo synergy ceramics no kenkyu kaihatsu seika hokokusho. Hatsuden'yo chokoon gas turbine no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This research and development has been performed on the following themes: (1) high-temperature energy materials, (2) high-function active materials, (3) fundamental member material design technologies, (4) materials to activate specific environmental gases, (5) energy materials having high resistance to silicon groups, (6) porous multi-layer ceramic materials, (7) micro and macro applied analytic technologies, and (8) microscopically destructive analysis technologies. In Item 1, investigations were performed on the relationship of micro columnar particle structure of porous silicon nitride bodies with strength and destruction energy to identify the mechanism for manifestation of these characteristics. In Item 2, catalyst and electrode materials having the selectively separating and cleaning functions were developed, and materials to convert oxides thermo-electrically having high characteristics were discussed. In Item 3, polycrystalline alumina, polycrystalline zirconia, and zirconia particle dispersed alumina were fabricated on the trial basis to give them microscopic and macroscopic evaluations. In Item 4, crystalline hexa-aluminates in single phase were synthesized successfully. In Item 5, a synthesizing experiment was carried out on Ca-{alpha} sialon powder to evaluate and analyze the configuration phase of the product and the particle patterns. In Item 7, the homogenizing method was used to develop a three-dimensional program to analyze the correlation between the microscopic non-homogeneous structure and the macroscopic properties of synergy ceramics. In Item 8, the basic dimensions of porous alumina bodies were discussed based on energy density. (NEDO)

  7. The usage of ceramics in the manufacture of the lining of temperature sensors for the oil industry; Utilizacao de ceramica para encapsulamento de sensores de temperatura na industria petrolifera

    Energy Technology Data Exchange (ETDEWEB)

    Domingues, R.O.; Yadava, Y.P.; Sanguinetti Ferreira, R.A., E-mail: rebeka.oliveira@yahoo.com.br, E-mail: yadava@ufpe.br, E-mail: ricardo.sanguinetti@pq.cnpq.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Engenharia Mecanica

    2014-07-01

    In the oil production, many types of sensors are used in order to monitor some important parameters such as temperature, pressure and flow. These sensors are subjected to harsh operating conditions. Therefore they must present an inert and stable behavior in these conditions. The temperature sensors that are more suited to the oil industry are the Temperature Detectors by Resistance (TDR), because they have high accuracy and wide temperature range. Usually these devices are built with metals as detectors of temperature by encapsulated resistance in inert ceramics. The main objective of this research is to produce new ceramics of a Ca{sub 2}AlZrO{sub 5,5} cubic complex perovskite structure for the encapsulation of temperature sensors. The stoichiometric amounts of the constituent chemicals, with a high degree of purity, are homogenized, through a solid state reaction in a high energy ball mill. They are then compacted by uniaxial pressing and calcined at 1200°C for 24 hours. Soon after, the tablet is crushed giving place to a ceramic powder and the analysis of X-ray diffraction is performed. According to the sintering behavior of the ceramic powder, the microstructure and the homogeneity are studied by the Scanning Electron Microscopy. The results are presented in terms of the potential of this ceramic for applications as components of temperature sensors. (author)

  8. Tailoring order–disorder temperature and microwave dielectric properties of Ba[(Co0.6Zn0.41/3Nb2/3]O3 ceramics

    Directory of Open Access Journals (Sweden)

    Tu Lai Sun

    2016-03-01

    Full Text Available The order–disorder temperature (To–d of Ba[(Co0.6Zn0.41/3Nb2/3]O3 ceramics was determined via X-ray diffraction, Raman spectroscopy and differential thermal analysis, respectively. To–d was determined to be between 1425 and 1450 °C by a quenching method. The endothermic peak in the DTA curve shows the order–disorder transition. B2O3 was applied to tune the densification temperature (Ts and tailor the microwave dielectric properties. The ordering degree and unloaded quality factor (Qf are improved when Ts is reduced to 1400 °C at B2O3 content of 0.25 mol%. Ts is further decreased and the ordering degree and Qf are decreased when B2O3 content is increased to 0.5 mol%. The dielectric constant (εr and temperature coefficient of resonant frequency (τf decrease slightly with increasing B2O3 content. The optimum microwave dielectric properties (i.e., εr = 34.0, Qf = 50,400 GHz, τf = 5.5 × 10−6/°C are obtained for the Ba[(Co0.6Zn0.41/3Nb2/3]O3-0.25 mol% B2O3 ceramics sintered at a lower temperature.

  9. Effect of sintering temperature on physical, structural and optical properties of wollastonite based glass-ceramic derived from waste soda lime silica glasses

    Directory of Open Access Journals (Sweden)

    Karima Amer Almasri

    Full Text Available The impact of different sintering temperatures on physical, optical and structural properties of wollastonite (CaSiO3 based glass-ceramics were investigated for its potential application as a building material. Wollastonite based glass-ceramics was provided by a conventional melt-quenching method and followed by a controlled sintering process. In this work, soda lime silica glass waste was utilized as a source of silicon. The chemical composition and physical properties of glass were characterized by using Energy Dispersive X-ray Fluorescence (EDXRF and Archimedes principle. The Archimedes measurement results show that the density increased with the increasing of sintering temperature. The generation of CaSiO3, morphology, size and crystal phase with increasing the heat-treatment temperature were examined by field emission scanning electron microscopy (FESEM, Fourier transforms infrared reflection spectroscopy (FTIR, and X-ray diffraction (XRD. The average calculated crystal size gained from XRD was found to be in the range 60 nm. The FESEM results show a uniform distribution of particles and the morphology of the wollastonite crystal is in relict shapes. The appearance of CaO, SiO2, and Ca-O-Si bands disclosed from FTIR which showed the formation of CaSiO3 crystal phase. In addition to the calculation of the energy band gap which found to be increased with increasing sintering temperature. Keywords: Soda lime silica glass, Wollastonite, Sintering, Structural properties, Optical properties

  10. State selective reactions of cosmic dust analogues at cryogenic temperatures

    International Nuclear Information System (INIS)

    Perry, James Samuel Anthony

    2001-01-01

    Molecular hydrogen (H 2 ) is the most abundant molecule in interstellar space. It is crucial for initiating all of the chemistry in the Interstellar Medium (ISM) and consequently plays an important role in star formation. However, the amount of H 2 believed to exist in the ISM cannot be accounted for by formation through gas-phase reactions alone. The current, widely accepted theory, is that H 2 forms on the surface of cosmic dust grains. These grains are thought to be composed of amorphous forms of carbon or silicates with temperatures of around 10 K. This thesis describes a new experiment that has been constructed to study H 2 formation on the surface of cosmic dust analogues and presents the initial experimental results. The experiment simulates, through ultra-high vacuum and the use of cryogenics, the conditions of the ISM where cosmic dust grains and H 2 molecules exist. During the experiment, a beam of atomic hydrogen is aimed at a cosmic dust analogue target. H 2 formed on the target's surface is ionised using a laser spectroscopy technique known as Resonance Enhanced Multiphoton lonisation (REMPI) and detected using time-of-flight mass spectrometry. The sensitivity of REMPI is such that H 2 molecules can be ionised in selective internal energy states. This allows the rovibrational populations of the H 2 molecules desorbing from the cosmic dust targets to be determined, providing information on the energy budget of the H 2 formation process in the ISM. Preliminary results from the experiment show that H 2 molecules formed on a diamond-like-carbon surface have a significant non-thermal population of excited vibrational and rotational energy states. (author)

  11. Ceramic fiber reinforced filter

    Science.gov (United States)

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  12. Corrosion resistant ceramic materials

    Science.gov (United States)

    Kaun, T.D.

    1996-07-23

    Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.

  13. Corrosion resistant ceramic materials

    Science.gov (United States)

    Kaun, Thomas D.

    1996-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  14. The precursors effects on biomimetic hydroxyapatite ceramic powders.

    Science.gov (United States)

    Yoruç, Afife Binnaz Hazar; Aydınoğlu, Aysu

    2017-06-01

    In this study, effects of the starting material on chemical, physical, and biological properties of biomimetic hydroxyapatite ceramic powders (BHA) were investigated. Characterization and chemical analysis of BHA powders were performed by using XRD, FT-IR, and ICP-AES. Microstructural features such as size and morphology of the resulting BHA powders were characterized by using BET, nano particle sizer, pycnometer, and SEM. Additionally, biological properties of the BHA ceramic powders were also investigated by using water-soluble tetrazolium salts test (WST-1). According to the chemical analysis of BHA ceramic powders, chemical structures of ceramics which are prepared under different conditions and by using different starting materials show differences. Ceramic powders which are produced at 80°C are mainly composed of hydroxyapatite, dental hydroxyapatite (contain Na and Mg elements in addition to Ca), and calcium phosphate sulfide. However, these structures are altered at high temperatures such as 900°C depending on the features of starting materials and form various calcium phosphate ceramics and/or their mixtures such as Na-Mg-hydroxyapatite, hydroxyapatite, Mg-Whitlockit, and chloroapatite. In vitro cytotoxicity studies showed that amorphous ceramics produced at 80°C and ceramics containing chloroapatite structure as main or secondary phases were found to be extremely cytotoxic. Furthermore, cell culture studies showed that highly crystalline pure hydroxyapatite structures were extremely cytotoxic due to their high crystallinity values. Consequently, the current study indicates that the selection of starting materials which can be used in the production of calcium phosphate ceramics is very important. It is possible to produce calcium phosphate ceramics which have sufficient biocompatibility at physiological pH values and by using appropriate starting materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Molecular Weiss domain polarization in piezoceramics to diaphragm, cantilever and channel construction in low-temperature-cofired ceramics for micro-fluidic applications

    International Nuclear Information System (INIS)

    Khanna, P.K.; Ahmad, S.; Grimme, R.

    2005-01-01

    This paper presents the efforts made to study the process of comminution to Weiss domain polarization and phase transition in piezoceramics together with the versatility of low-temperature-cofired ceramics-based devices and components for their ready adoption for typical applications in the area of micro-fluidics. A conceptual micro-fluidic module has been presented and few unit entities necessary for its realization have been described. The purpose of these entities is to position the sensors and actuators by using piezoelectric materials. Investigations are performed to make useful constructions like diaphragms and cantilevers for laying the sensing elements, cavities for burying the electronic chip devices, and channels for fluid transportation. In order to realize these constructions, the basic step involves machining of circular, straight line, rectangular and square-shaped structure in the green ceramic tapes followed by lamination and firing with post-machining in some cases. The diaphragm and cavity includes one or more un-machined layer stacked together with several machined layers with rectangular or square slits. The cantilever is an extension of the diaphragm creation process with inclusion of a post-machining step. The channel essentially consists of a machined green ceramic layer sandwiched between an un-machined and a partially machined layer. The fabrication for all the above constructions has been exemplified and the details have been discussed

  16. Corrosion behavior of Al-Fe-sputtering-coated steel, high chromium steels, refractory metals and ceramics in high temperature Pb-Bi

    International Nuclear Information System (INIS)

    Abu Khalid, Rivai; Minoru, Takahashi

    2007-01-01

    Corrosion tests of Al-Fe-coated steel, high chromium steels, refractory metals and ceramics were carried out in high temperature Pb-Bi at 700 C degrees. Oxygen concentrations in this experiment were 6.8*10 -7 wt.% for Al-Fe-coated steels and 5*10 -6 wt.% for high chromium steels, refractory metals and ceramics. All specimens were immersed in molten Pb-Bi in a corrosion test pot for 1.000 hours. Coating was done with using the unbalanced magnetron sputtering (UBMS) technique to protect the steel from corrosion. Sputtering targets were Al and SUS-304. Al-Fe alloy was coated on STBA26 samples. The Al-Fe alloy-coated layer could be a good protection layer on the surface of steel. The whole of the Al-Fe-coated layer still remained on the base surface of specimen. No penetration of Pb-Bi into this layer and the matrix of the specimen. For high chromium steels i.e. SUS430 and Recloy10, the oxide layer formed in the early time could not prevent the penetration of Pb-Bi into the base of the steels. Refractory metals of tungsten (W) and molybdenum (Mo) had high corrosion resistance with no penetration of Pb-Bi into their matrix. Penetration of Pb-Bi into the matrix of niobium (Nb) was observed. Ceramic materials were SiC and Ti 3 SiC 2 . The ceramic materials of SiC and Ti 3 SiC 2 had high corrosion resistance with no penetration of Pb-Bi into their matrix. (authors)

  17. Wonderland of ceramics superplasticity; Ceramics chososei no sekai

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, F. [National Industrial Research Inst. of Nagoya, Nagoya (Japan)

    1995-07-01

    It has been ten years since it was found that ceramics, which is strong and hard at room temperatures and does not deform at all, may exhibit a superplasticity phenomenon at high temperatures that it endlessly elongates when pulled as if it were chewing gum. This phenomenon is one of peculiar behaviours which nano-crystal ceramics, pulverized to an extent that the crystalline particle size is on the order of nanometers, show. The application of superplasticity made the material engineers`s old dream come true that hard ceramics are arbitrarily deformed and machined like metal. Using as models materials such as silicone nitride, alumina and zirconia, this paper describes the history and deformation mechanism of ceramics superplasticity, material design aiming at superplasticization and application of ceramics superplasticity to the machining technology. Furthermore, it describes the trend and future development of international joint researches on the basic surveys on ceramics superplasticity. 25 refs., 11 figs.

  18. Compact Ceramic Microchannel Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Lewinsohn, Charles [Ceramatec, Inc., Salt Lake City, UT (United States)

    2016-10-31

    The objective of the proposed work was to demonstrate the feasibility of a step change in power plant efficiency at a commercially viable cost, by obtaining performance data for prototype, compact, ceramic microchannel heat exchangers. By performing the tasks described in the initial proposal, all of the milestones were met. The work performed will advance the technology from Technology Readiness Level 3 (TRL 3) to Technology Readiness Level 4 (TRL 4) and validate the potential of using these heat exchangers for enabling high efficiency solid oxide fuel cell (SOFC) or high-temperature turbine-based power plants. The attached report will describe how this objective was met. In collaboration with The Colorado School of Mines (CSM), specifications were developed for a high temperature heat exchanger for three commercial microturbines. Microturbines were selected because they are a more mature commercial technology than SOFC, they are a low-volume and high-value target for market entry of high-temperature heat exchangers, and they are essentially scaled-down versions of turbines used in utility-scale power plants. Using these specifications, microchannel dimensions were selected to meet the performance requirements. Ceramic plates were fabricated with microchannels of these dimensions. The plates were tested at room temperature and elevated temperature. Plates were joined together to make modular, heat exchanger stacks that were tested at a variety of temperatures and flow rates. Although gas flow rates equivalent to those in microturbines could not be achieved in the laboratory environment, the results showed expected efficiencies, robust operation under significant temperature gradients at high temperature, and the ability to cycle the stacks. Details of the methods and results are presented in this final report.

  19. Substrate Integrated Waveguide Based Phase Shifter and Phased Array in a Ferrite Low Temperature Co-fired Ceramic Package

    KAUST Repository

    Nafe, Ahmed A.

    2014-03-01

    Phased array antennas, capable of controlling the direction of their radiated beam, are demanded by many conventional as well as modern systems. Applications such as automotive collision avoidance radar, inter-satellite communication links and future man-portable satellite communication on move services require reconfigurable beam systems with stress on mobility and cost effectiveness. Microwave phase shifters are key components of phased antenna arrays. A phase shifter is a device that controls the phase of the signal passing through it. Among the technologies used to realize this device, traditional ferrite waveguide phase shifters offer the best performance. However, they are bulky and difficult to integrate with other system components. Recently, ferrite material has been introduced in Low Temperature Co-fired Ceramic (LTCC) multilayer packaging technology. This enables the integration of ferrite based components with other microwave circuitry in a compact, light-weight and mass producible package. Additionally, the recent concept of Substrate Integrated Waveguide (SIW) allowed realization of synthesized rectangular waveguide-like structures in planar and multilayer substrates. These SIW structures have been shown to maintain the merits of conventional rectangular waveguides such as low loss and high power handling capabilities while being planar and easily integrable with other components. Implementing SIW structures inside a multilayer ferrite LTCC package enables monolithic integration of phase shifters and phased arrays representing a true System on Package (SoP) solution. It is the objective of this thesis to pursue realizing efficient integrated phase shifters and phased arrays combining the above mentioned technologies, namely Ferrite LTCC and SIW. In this work, a novel SIW phase shifter in ferrite LTCC package is designed, fabricated and tested. The device is able to operate reciprocally as well as non-reciprocally. Demonstrating a measured maximum

  20. Synthesis of Nanocrystalline CaWO4 as Low-Temperature Co-fired Ceramic Material: Processing, Structural and Physical Properties

    Science.gov (United States)

    Vidya, S.; Solomon, Sam; Thomas, J. K.

    2013-01-01

    Nanocrystalline scheelite CaWO4, a promising material for low-temperature co-fired ceramic (LTCC) applications, has been successfully synthesized through a single-step autoignition combustion route. Structural analysis of the sample was performed by powder x-ray diffraction (XRD), Fourier-transform infrared spectroscopy, and Raman spectroscopy. The XRD analysis revealed that the as-prepared sample was single phase with scheelite tetragonal structure. The basic optical properties and optical constants of the CaWO4 nanopowder were studied using ultraviolet (UV)-visible absorption spectroscopy, which showed that the material was a wide-bandgap semiconductor with bandgap of 4.7 eV at room temperature. The sample showed poor transmittance in the ultraviolet region but maximum transmission in the visible/near-infrared regions. The photoluminescence spectra recorded at different temperatures showed intense emission in the green region. The particle size estimated from transmission electron microscopy was 23 nm. The feasibility of CaWO4 for LTCC applications was studied from its sintering behavior. The sample was sintered at a relatively low temperature of 810°C to high density, without using any sintering aid. The surface morphology of the sintered sample was analyzed by scanning electron microscopy. The dielectric constant and loss factor of the sample measured at 5 MHz were found to be 10.50 and 1.56 × 10-3 at room temperature. The temperature coefficient of the dielectric constant was -88.71 ppm/°C. The experimental results obtained in this work demonstrate the potential of nano-CaWO4 as a low-temperature co-fired ceramic as well as an excellent luminescent material.

  1. Processing and characterisation of various mixed oxide and perovskite-based pigments for high temperature ceramic colouring application

    International Nuclear Information System (INIS)

    Kar, Jitendra Kumar; Stevens, Ron; Bowen, Christopher R.

    2008-01-01

    The potential of using new mixed oxides based on perovskite and cerium oxide-based pigments, for high temperature (above 1000 deg. C) ceramic colouring applications is presented in this paper. The solid-state synthesis method was used to manufacture the various pigment precursor powders used in this study. In the case of Er 6 MoO 12 , orange-yellow colours were observed at calcination temperatures of 1200 deg. C and 1300 deg. C with different soaking times. Examination of the X-ray diffraction pattern generated after heat treatment at 1200 deg. C for 2 h revealed the single-phase nature of the compound. However, when applied to unleaded commercial transparent glaze, the pigment powder changed to a light pink colour indicating instability of the pigment in the glaze. Similarly mixed oxides such as Ba 0.5 La 0.5 Na 0.5 Cu 0.5 Si 4 O 10 and Ba 0.5 La 0.5 Na 0.5 Cu 0.5 Si 2 O 6 produced vivid blue and violet-blue colour powders, respectively when calcined between 950 deg. C and 1050 deg. C for different soaking times. X-ray diffraction patterns for Ba 0.5 La 0.5 Na 0.5 Cu 0.5 Si 4 O 10 showed the presence of the phases which included (a) BaCuSi 4 O 10 (b) La 2 Si 2 O 7 (c) SiO 2 and La 2 O 3 (trace) whereas Ba 0.5 La 0.5 Na 0.5 Cu 0.5 Si 2 O 6 confirmed the presence of the phases such as (a) BaCuSi 4 O 10 and (b) BaCuSi 2 O 6 . These pigment powders were also not stable and light-green colours were observed when they were immersed in the unleaded commercial transparent glaze. Finally, A x B (2-x-y) Cr y O 3 (A = rare earth and B = Al) perovskite-type compounds produced a variety of shades of red and yellow colour depending on the rare earth, the value of x and y, and the calcination temperature. An intense brownish-red colour was obtained when the rare earth Erbium was used with x = 1, y = 0.06. From the X-ray diffraction trace, Er (Al Cr)O 3 was found to be the only phase present. SEM micrographs indicated the presence of agglomerates as well as two different types of

  2. Low temperature setting iron phosphate ceramics as a stabilization and solidification agent for incinerator ash contaminated with transuranic and RCRA metals

    International Nuclear Information System (INIS)

    Medvedev, P.G.; Hansen, M.; Wood, E.L.; Frank, S.M.; Sidwell, R.W.; Giglio, J.J.; Johnson, S.G.; Macheret, J.

    1997-01-01

    Incineration of combustible Mixed Transuranic Waste yields an ash residue that contains oxides of Resource Conservation and Recovery Act (RCRA) and transuranic metals. In order to dispose of this ash safely, it has to be solidified and stabilized to satisfy appropriate requirements for repository disposal. This paper describes a new method for solidification of incinerator ash, using room temperature setting iron phosphate ceramics, and includes fabrication procedures for these waste forms as well as results of the MCC-1 static leach test, XRD analysis, scanning electron microscopy studies and density measurements of the solidified waste form produced

  3. Phase transformation in multiferroic Bi5Ti3FeO15 ceramics by temperature-dependent ellipsometric and Raman spectra: An interband electronic transition evidence

    International Nuclear Information System (INIS)

    Jiang, P. P.; Duan, Z. H.; Xu, L. P.; Zhang, X. L.; Li, Y. W.; Hu, Z. G.; Chu, J. H.

    2014-01-01

    Thermal evolution and an intermediate phase between ferroelectric orthorhombic and paraelectric tetragonal phase of multiferroic Bi 5 Ti 3 FeO 15 ceramic have been investigated by temperature-dependent spectroscopic ellipsometry and Raman scattering. Dielectric functions and interband transitions extracted from the standard critical-point model show two dramatic anomalies in the temperature range of 200–873 K. It was found that the anomalous temperature dependence of electronic transition energies and Raman mode frequencies around 800 K can be ascribed to intermediate phase transformation. Moreover, the disappearance of electronic transition around 3 eV at 590 K is associated with the conductive property

  4. A comparison of corrosion resistance of cobalt-chromium-molybdenum metal ceramic alloy fabricated with selective laser melting and traditional processing.

    Science.gov (United States)

    Zeng, Li; Xiang, Nan; Wei, Bin

    2014-11-01

    A cobalt-chromium-molybdenum alloy fabricated by selective laser melting is a promising material; however, there are concerns about the change in its corrosion behavior. The purpose of this study was to evaluate the changes in corrosion behavior of a cobalt-chromium-molybdenum alloy fabricated by the selective laser melting technique before and after ceramic firing, with traditional processing of cobalt-chromium-molybdenum alloy serving as a control. Two groups of specimens were designated as group selective laser melting and group traditional. For each group, 20 specimens with a cylindrical shape were prepared and divided into 4 cells: selective laser melting as-cast, selective laser melting fired in pH 5.0 and 2.5, traditional as-cast, and traditional fired in pH 5.0 and 2.5. Specimens were prepared with a selective laser melting system for a selective laser melting alloy and the conventional lost wax technique for traditional cast alloy. After all specimen surfaces had been wet ground with silicon carbide paper (1200 grit), each group of 10 specimens was put through a series of ceramic firing cycles. Microstructure, Vickers microhardness, surface composition, oxide film thickness, and corrosion behavior were examined for specimens before and after ceramic firing. Three-way ANOVA was used to evaluate the effect of porcelain firing and pH values on the corrosion behavior of the 2 alloys (α=.05). Student t tests were used to compare the Vickers hardness. Although porcelain firing changed the microstructure, microhardness, and x-ray photoelectron spectroscopy results, it showed no significant influence on the corrosion behavior of the selective laser melting alloy and traditional cast alloy (P>.05). No statistically significant influence was found on the corrosion behavior of the 2 alloys in different pH value solutions (P>.05). The porcelain firing process had no significant influence on the corrosion resistance results of the 2 alloys. Compared with traditional

  5. Advanced Ceramics

    International Nuclear Information System (INIS)

    1989-01-01

    The First Florida-Brazil Seminar on Materials and the Second State Meeting about new materials in Rio de Janeiro State show the specific technical contribution in advanced ceramic sector. The others main topics discussed for the development of the country are the advanced ceramic programs the market, the national technic-scientific capacitation, the advanced ceramic patents, etc. (C.G.C.) [pt

  6. Emerging Ceramic-based Materials for Dentistry

    Science.gov (United States)

    Denry, I.; Kelly, J.R.

    2014-01-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. PMID:25274751

  7. Protonation and structural/chemical stability of Ln{sub 2}NiO{sub 4+δ} ceramics vs. H{sub 2}O/CO{sub 2}: High temperature/water pressure ageing tests

    Energy Technology Data Exchange (ETDEWEB)

    Upasen, S. [Sorbonne Universités, UPMC Univ Paris 06, UMR 8233, MONARIS, 75005 Paris (France); CNRS-IP2CT, UMR 8233, MONARIS, F-75005 Paris (France); Batocchi, P.; Mauvy, F. [ICMCB, ICMCB-CNRS-IUT-Université de Bordeaux, 33608 Pessac Cedex (France); Slodczyk, A. [Sorbonne Universités, UPMC Univ Paris 06, UMR 8233, MONARIS, 75005 Paris (France); CNRS-IP2CT, UMR 8233, MONARIS, F-75005 Paris (France); Colomban, Ph., E-mail: philippe.colomban@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 8233, MONARIS, 75005 Paris (France); CNRS-IP2CT, UMR 8233, MONARIS, F-75005 Paris (France)

    2015-02-15

    Highlights: • High temperature/water pressure autoclave is used to study the reaction/corrosion at SOFC/HTSE electrode. • High stability of Pr{sub 2}NiO{sub 4+δ} (PNO) and Nd{sub 2}NiO{sub 4+δ} (NNO) dense ceramics vs. water pressure is demonstrated. • Protonated rare-earth nickelates retain the perovskite-type structure and their H-content is determined. • Very low laser illumination power is required to avoid RE nickelate phase transition. • Nickelates show increasing stability from La to Pr/Nd vs. CO{sub 2}-rich high temperature water vapor. - Abstract: Mixed ionic-electronic conductors (MIEC) such as rare-earth nickelates with a general formula Ln{sub 2}NiO{sub 4+δ} (Ln = La, Pr, Nd) appear as potential for energy production and storage systems: fuel cells, electrolysers and CO{sub 2} converters. Since a good electrode material should exhibit important stability in operating conditions, the structural and chemical stability of different nickelate-based, well-densified ceramics have been studied using various techniques: TGA, dilatometry, XRD, Raman scattering and IR spectroscopy. Consequently, La{sub 2}NiO{sub 4+δ} (LNO), Pr{sub 2}NiO{sub 4+δ} (PNO) and Nd{sub 2}NiO{sub 4+δ} (NNO) have been exposed during 5 days to high water vapor pressure (40 bar) at intermediate temperature (550 °C) in an autoclave device, the used water being almost free or saturated with CO{sub 2}. Such protonation process offers an accelerating stability test and allows the choice of the most pertinent composition for industrial applications requiring a selected material with important life-time. In order to understand any eventual change of crystal structure, the ceramics were investigated in as-prepared, pristine state as well as after protonation and deprotonation (due to thermal treatment till 1000 °C under dry atmosphere). The results show the presence of traces or second phases originating from undesirable hydroxylation and carbonation, detected in the near

  8. Steady- and transient-state analyses of fully ceramic microencapsulated fuel loaded reactor core via two-temperature homogenized thermal-conductivity model

    International Nuclear Information System (INIS)

    Lee, Yoonhee; Cho, Nam Zin

    2015-01-01

    Highlights: • Fully ceramic microencapsulated fuel-loaded core is analyzed via a two-temperature homogenized thermal-conductivity model. • The model is compared to harmonic- and volumetric-average thermal conductivity models. • The three thermal analysis models show ∼100 pcm differences in the k eff eigenvalue. • The three thermal analysis models show more than 70 K differences in the maximum temperature. • There occur more than 3 times differences in the maximum power for a control rod ejection accident. - Abstract: Fully ceramic microencapsulated (FCM) fuel, a type of accident-tolerant fuel (ATF), consists of TRISO particles randomly dispersed in a SiC matrix. In this study, for a thermal analysis of the FCM fuel with such a high heterogeneity, a two-temperature homogenized thermal-conductivity model was applied by the authors. This model provides separate temperatures for the fuel-kernels and the SiC matrix. It also provides more realistic temperature profiles than those of harmonic- and volumetric-average thermal conductivity models, which are used for thermal analysis of a fuel element in VHTRs having a composition similar to the FCM fuel, because such models are unable to provide the fuel-kernel and graphite matrix temperatures separately. In this study, coupled with a neutron diffusion model, a FCM fuel-loaded reactor core is analyzed via a two-temperature homogenized thermal-conductivity model at steady- and transient-states. The results are compared to those from harmonic- and volumetric-average thermal conductivity models, i.e., we compare k eff eigenvalues, power distributions, and temperature profiles in the hottest single-channel at steady-state. At transient-state, we compare total powers, reactivity, and maximum temperatures in the hottest single-channel obtained by the different thermal analysis models. The different thermal analysis models and the availability of fuel-kernel temperatures in the two-temperature homogenized thermal

  9. Single-source-precursor synthesis of dense SiC/HfC(x)N(1-x)-based ultrahigh-temperature ceramic nanocomposites.

    Science.gov (United States)

    Wen, Qingbo; Xu, Yeping; Xu, Binbin; Fasel, Claudia; Guillon, Olivier; Buntkowsky, Gerd; Yu, Zhaoju; Riedel, Ralf; Ionescu, Emanuel

    2014-11-21

    A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfC(x)N(1-x)-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfC(x)N(1-x)-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfC(x)N(1-x)-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm(-1), the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm(-1).

  10. Ion conductivity of nasicon ceramics

    International Nuclear Information System (INIS)

    Hoj, J.W.; Engell, J.

    1989-01-01

    The Nasicon ss ,Na 1 + X Zr 2 Si X P 3 - X O 12 o , X , 3, includes some of the best solid state sodium conductors known today. Compositions in the interval 1.6 , X , 2.6 show conductivities comparable to the best β double-prime-alumina ceramics. It is well known that the ion conductivity of β-alumina is strongly dependent on the texture of the ceramic. Here a similar behavior is reported for Nasicon ceramics. Ceramics of the bulk composition Na 2.94 Zr 1.49 Si 2.20 P 0.80 O 10.85 were prepared by a gel method. The final ceramics consist of Nasicon crystals with x = 2.14 and a glass phase. The grain size and texture of the ceramics were controlled by varying the thermal history of the gel based raw materials and the sintering conditions. The room temperature resistivity of the resulting ceramics varies from 3.65*10 3 ohm cm to 1.23*10 3 ohm cm. Using the temperature comparison method and estimates of the area of grain boundaries in the ceramics, the resistivity of the Nasicon phase is estimated to be 225 ohm cm at 25 degrees C. B 2 O 3 - or Al 2 O 3 -doping of the glass bearing Nasicon ceramic lower the room temperature resistivity by a factor 2 to 5. The dopants do not substitute into the Nasicon phase in substantial amounts

  11. The effect of sexual selection on adaptation and extinction under increasing temperatures.

    Science.gov (United States)

    Parrett, Jonathan M; Knell, Robert J

    2018-04-25

    Strong sexual selection has been reported to both enhance and hinder the adaptive capacity and persistence of populations when exposed to novel environments. Consequently, how sexual selection influences population adaption and persistence under stress remains widely debated. Here, we present two empirical investigations of the fitness consequences of sexual selection on populations of the Indian meal moth, Plodia interpunctella, exposed to stable or gradually increasing temperatures. When faced with increasing temperatures, strong sexual selection was associated with both increased fecundity and offspring survival compared with populations experiencing weak sexual selection, suggesting sexual selection acts to drive adaptive evolution by favouring beneficial alleles. Strong sexual selection did not, however, delay extinction when the temperature became excessively high. By manipulating individuals' mating opportunities during fitness assays, we were able to assess the effect of multiple mating independently from the effect of population-level sexual selection, and found that polyandry has a positive effect on both fecundity and offspring survival under increasing temperatures in those populations evolving with weak sexual selection. Within stable temperatures, there were some benefits from strong sexual selection but these were not consistent across the entire experiment, possibly reflecting changing costs and benefits of sexual selection under stabilizing and directional selection. These results indicate that sexual selection can provide a buffer against climate change and increase adaptation rates within a continuously changing environment. These positive effects of sexual selection may, however, be too small to protect populations and delay extinction when environmental changes are relatively rapid. © 2018 The Author(s).

  12. Single-source-precursor synthesis of dense SiC/HfCxN1-x-based ultrahigh-temperature ceramic nanocomposites

    Science.gov (United States)

    Wen, Qingbo; Xu, Yeping; Xu, Binbin; Fasel, Claudia; Guillon, Olivier; Buntkowsky, Gerd; Yu, Zhaoju; Riedel, Ralf; Ionescu, Emanuel

    2014-10-01

    A novel single-source precursor was synthesized by the reaction of an allyl hydrido polycarbosilane (SMP10) and tetrakis(dimethylamido)hafnium(iv) (TDMAH) for the purpose of preparing dense monolithic SiC/HfCxN1-x-based ultrahigh temperature ceramic nanocomposites. The materials obtained at different stages of the synthesis process were characterized via Fourier transform infrared (FT-IR) as well as nuclear magnetic resonance (NMR) spectroscopy. The polymer-to-ceramic transformation was investigated by means of MAS NMR and FT-IR spectroscopy as well as thermogravimetric analysis (TGA) coupled with in situ mass spectrometry. Moreover, the microstructural evolution of the synthesized SiHfCN-based ceramics annealed at different temperatures ranging from 1300 °C to 1800 °C was characterized by elemental analysis, X-ray diffraction, Raman spectroscopy and transmission electron microscopy (TEM). Based on its high temperature behavior, the amorphous SiHfCN-based ceramic powder was used to prepare monolithic SiC/HfCxN1-x-based nanocomposites using the spark plasma sintering (SPS) technique. The results showed that dense monolithic SiC/HfCxN1-x-based nanocomposites with low open porosity (0.74 vol%) can be prepared successfully from single-source precursors. The average grain size of both HfC0.83N0.17 and SiC phases was found to be less than 100 nm after SPS processing owing to a unique microstructure: HfC0.83N0.17 grains were embedded homogeneously in a β-SiC matrix and encapsulated by in situ formed carbon layers which acted as a diffusion barrier to suppress grain growth. The segregated Hf-carbonitride grains significantly influenced the electrical conductivity of the SPS processed monolithic samples. While Hf-free polymer-derived SiC showed an electrical conductivity of ca. 1.8 S cm-1, the electrical conductivity of the Hf-containing material was analyzed to be ca. 136.2 S cm-1.A novel single-source precursor was synthesized by the reaction of an allyl hydrido

  13. Room temperature surface piezoelectricity in SrTiO.sub.3./sub. ceramics via piezoresponse force microscopy

    Czech Academy of Sciences Publication Activity Database

    Kholkin, A.; Bdikin, I.; Ostapchuk, Tetyana; Petzelt, Jan

    2008-01-01

    Roč. 93, č. 22 (2008), 222905/1-222905/3 ISSN 0003-6951 R&D Projects: GA ČR GP202/06/P219 Institutional research plan: CEZ:AV0Z10100520 Keywords : strontium titanate ceramics * piezoresponse force microscopy * flexoelectric effect * polar grain boundaries Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.726, year: 2008

  14. Evolution of microstructure and performance in magnesium potassium phosphate ceramics: role of sintering temperature of MgO powder

    Czech Academy of Sciences Publication Activity Database

    Viani, Alberto; Sotiriadis, Konstantinos; Šašek, Petr; Appavou, M.-S.

    2016-01-01

    Roč. 42, č. 14 (2016), s. 16310-16316 ISSN 0272-8842 R&D Projects: GA MŠk(CZ) LO1219 Keywords : chemically-bonded ceramics * X-ray diffraction (XRD) * small angle neutron scattering (SANS) * microstructure * amorphous materials Subject RIV: JN - Civil Engineering Impact factor: 2.986, year: 2016 http://www.sciencedirect.com/science/article/pii/S027288421631255X

  15. Influences of spark plasma sintering temperature on the microstructures and thermoelectric properties of (Sr0.95Gd0.05)TiO3 ceramics

    Science.gov (United States)

    Li, Liang-Liang; Qin, Xiao-Ying; Liu, Yong-Fei; Liu, Quan-Zhen

    2015-06-01

    (Sr0.95Gd0.05)TiO3 (SGTO) ceramics are successfully prepared via spark plasma sintering (SPS) respectively at 1548, 1648, and 1748 K by using submicron-sized SGTO powders synthesized from a sol-gel method. The densities, microstructures, and thermoelectric properties of the SGTO ceramics are studied. Though the Seebeck coefficient shows no obvious difference in the case that SPS temperatures range from 1548 K to 1648 K, the electrical conductivity and the thermal conductivity increase remarkably due to the increase in grain size and density. The sample has a density higher than 98% theoretical density as the sintering temperature increases up to 1648 K and shows average grain sizes increasing from ˜ 0.7 μm to 7 μm until 1748 K. As a result, the maximum of the dimensionless figure of merit of ˜ 0.24 is achieved at ˜ 1000 K for the samples sintered at 1648 K and 1748 K, which was ˜ 71% larger than that (0.14 at ˜ 1000 K) for the sample sintered at 1548 K due to the enhancement of the power factor. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174292, 51101150, and 11374306).

  16. Dielectric behavior of CaCu3Ti4O12: Poly Vinyl Chloride ceramic polymer composites at different temperature and frequencies

    Directory of Open Access Journals (Sweden)

    Ajay Pratap Singh

    2016-12-01

    Full Text Available In this study, the efforts have been made to obtain relatively high dielectric constant polymer-ceramic composite by incorporating the giant dielectric constant material, calcium copper titanate (CCTO in a PVC polymer matrix. We have prepared composites of CaCu3Ti4O12 (CCTO ceramic and Poly Vinyl Chloride (PVC polymer in various ratios (by volume in addition to pure CCTO. For this, CCTO was prepared by the conventional oxide route (solid-state reaction method. The structural, the microstructural and the dielectric properties of the composites were studied using X-ray diffraction, Scanning Electron Microscope, and impedance analyzer respectively. The study of dielectric constant and dielectric loss of the pure CCTO and the composites reveal that there is good range of dielectric constants and dielectric losses for the studied composites. The pure sample of CCTO exhibits giant dielectric constant at low frequency within the studied temperature range. As frequency increases, dielectric constant drastically decreases and approaching a constant value at 1 MHz. Above the intermediate temperature, the dielectric constant and dielectric loss for pure CCTO is more frequency dependent than its composites.

  17. Producing ceramic laminate composites by EPD

    International Nuclear Information System (INIS)

    Nicholson, P.S.; Sarkar, P.; Datta, S.

    1996-01-01

    The search for tough structural ceramics to operate at high temperatures in hostile environments has led to the development of ceramic composites. This class of material includes laminar ceramic-ceramic composites, continuous-fiber-reinforced ceramic composites and functionally graded materials. The present authors developed electrophoretic deposition (EPD) to synthesize lamellar, fiber-reinforced and functionally graded composites. This paper briefly describes the synthesis and characterization of these EPD composites and introduces a novel class of lamellar composites with nonplanar layers. The synthesis of the latter demonstrates the facility of the EPD process for the synthesis of ceramic composites. The process is totally controllable via suspension concentration, deposition current, voltage and time

  18. Material Performance of Fully-Ceramic Micro-Encapsulated Fuel under Selected LWR Design Basis Scenarios: Final Report

    International Nuclear Information System (INIS)

    Boer, B.; Sen, R.S.; Pope, M.A.; Ougouag, A.M.

    2011-01-01

    The extension to LWRs of the use of Deep-Burn coated particle fuel envisaged for HTRs has been investigated. TRISO coated fuel particles are used in Fully-Ceramic Microencapsulated (FCM) fuel within a SiC matrix rather than the graphite of HTRs. TRISO particles are well characterized for uranium-fueled HTRs. However, operating conditions of LWRs are different from those of HTRs (temperature, neutron energy spectrum, fast fluence levels, power density). Furthermore, the time scales of transient core behavior during accidents are usually much shorter and thus more severe in LWRs. The PASTA code was updated for analysis of stresses in coated particle FCM fuel. The code extensions enable the automatic use of neutronic data (burnup, fast fluence as a function of irradiation time) obtained using the DRAGON neutronics code. An input option for automatic evaluation of temperature rise during anticipated transients was also added. A new thermal model for FCM was incorporated into the code; so-were updated correlations (for pyrocarbon coating layers) suitable to estimating dimensional changes at the high fluence levels attained in LWR DB fuel. Analyses of the FCM fuel using the updated PASTA code under nominal and accident conditions show: (1) Stress levels in SiC-coatings are low for low fission gas release (FGR) fractions of several percent, as based on data of fission gas diffusion in UO 2 kernels. However, the high burnup level of LWR-DB fuel implies that the FGR fraction is more likely to be in the range of 50-100%, similar to Inert Matrix Fuels (IMFs). For this range the predicted stresses and failure fractions of the SiC coating are high for the reference particle design (500 (micro)mm kernel diameter, 100 (micro)mm buffer, 35 (micro)mm IPyC, 35 (micro)mm SiC, 40 (micro)mm OPyC). A conservative case, assuming 100% FGR, 900K fuel temperature and 705 MWd/kg (77% FIMA) fuel burnup, results in a 8.0 x 10 -2 failure probability. For a 'best-estimate' FGR fraction of 50

  19. High temperature mechanical behaviour of glass-ceramics in the YSiAlON and ErSiAlON systems

    Energy Technology Data Exchange (ETDEWEB)

    Bondanini, A.; Massouras, G.; Besson, J.L. [ENSCI, Limoges (France). SPCTS

    2002-07-01

    The high temperature mechanical behaviour of oxynitride glass-ceramics in the YSiAlON and ErSiAlON systems was studied in the 950-1150 C temperature range under compressive stresses ranging from 20 to 100 MPa. The parent glass had a composition of 35 Y(or Er)-45 Si-20 Al-83 O-17 N in equivalent percent. Starting from these glasses, glass-ceramics were prepared using a two stage heat treatment: nucleation at the optimum nucleation temperature followed by crystal growth at 1050, 1150 or 1250 C. The two parent glasses had similar viscosities, with that of the Er-glass being slightly less than that of the Y-glass. After the devitrification treatment at 1050 C, B-phase (M{sub 2}SiAlO{sub 5}N) was the only crystalline phase formed in both systems. The creep behaviour was similar for the yttrium and the erbium materials. It was characterised by a long transient stage, due to the viscoelastic response of the residual glass, with recovered strain after unloading decreasing as loading time increased. The creep resistance was compared to that of the parent glasses in terms of apparent viscosity. The crystallisation of 75% of the glass resulted in an increase in viscosity such that a temperature some 100 C higher showed the same viscosity value. After heat treatment at 1150 C, the phase assemblage in the yttrium material changed with the formation of wollastonite and partial conversion of B-phase into Iw-phase. The apparent viscosity was 2 orders of magnitude higher than that of the samples heat treated at 1050 C and no strain recovery was observed upon unloading. In contrast, the erbium materials retained the same microstructure as after the heat treatment at 1050{sup b}C and there was no difference in the creep behaviour of the samples heat treated at 1050 or 1150 C. After a crystallisation treatment at 1250 C of the yttrium parent glass, the glass-ceramic consisted of yttrium aluminium garnet, N-apatite and {beta}-Y{sub 2}Si{sub 2}O{sub 7} and showed excellent creep

  20. Ceramic breeder materials

    International Nuclear Information System (INIS)

    Johnson, C.E.

    1990-01-01

    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was recognized by the International Thermonuclear Reactor (ITER) design team in its selection of ceramics as the first option for the ITER breeder material. Blanket design studies have indicated properties in the candidate materials data base that need further investigation. Current studies are focusing on tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between the ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests, some as part of an international collaboration for development of ceramic breeder materials, are underway. 32 refs., 1 fig., 1 tab

  1. Selected topics in high temperature chemistry defect chemistry of solids

    CERN Document Server

    Johannesen, Ø

    2013-01-01

    The properties of materials at high temperature play a vital role in their processing and practical use. The real properties of materials at elevated temperatures are very often governed by defects in their structure. Lattice defects may consist of point defects like vacancies, interstitial atoms or substituted atoms. These classes are discussed in general and specifically for oxides, nitrides, carbides and sulfides. Defect aggregates, shear structures and adaptive structures are also described. Special attention is paid to hydrogen defects which seem to play an important role in several mater

  2. Low-temperature sintering and microwave dielectric properties of Al2TeO6–TeO2 ceramics

    International Nuclear Information System (INIS)

    Kagomiya, Isao; Kodama, Yuichiro; Shimizu, Yukihiro; Kakimoto, Ken-ichi; Ohsato, Hitoshi; Miyauchi, Yasuharu

    2015-01-01

    Highlights: • This is the first study of dielectric properties of Al 2 TeO 6 –TeO 2 sintered at 900 °C. • The sintering at 900 °C contributed to densification, but it causes TeO 2 evaporation. • The annealing at 750 °C was effective for the further densification. • The both ε r and Q · f in the Al 2 TeO 6 –TeO 2 were improved with the annealing. - Abstract: We propose Al 2 TeO 6 –TeO 2 ceramics as a candidate for use as low-temperature co-fired ceramics (LTCC). We investigated microwave dielectric properties and low-temperature sintering conditions for Al 2 TeO 6 –TeO 2 ceramics. The calcined Al 2 TeO 6 powders were sintered at 900 °C for 2–10 h with 30–50 wt% additive TeO 2 . X-ray powder diffraction patterns showed that the sintered samples were Al 2 TeO 6 –TeO 2 composite with no other phase. The apparent density was improved with the additive TeO 2 content of up to 45 wt%. The dielectric constant (ε r ) increased by adding TeO 2 content from 35 to 45 wt%, although the quality factor (Q · f) decreased. During sintering at 900 °C, the ε r of the Al 2 TeO 6 –TeO 2 decreased slightly, whereas the Q · f increased gradually. The observed microstructures showed that the longer sintering time makes fewer pores in Al 2 TeO 6 –TeO 2 ceramics. Sintering at 900 °C for a long time contributes to densification, but it simultaneously causes TeO 2 evaporation. To prevent TeO 2 evaporation, we investigated the effects of annealing at 750 °C after sintering at 900 °C. Apparent densities or ε r for the annealed samples were higher than those of the non-annealed samples. The Q · f improved with increasing annealing duration time, suggesting that sintering proceeded well during annealing with slower TeO 2 evaporation at 750 °C. The results show that annealing at 750 °C is effective to facilitate sintering and to control TeO 2 evaporation

  3. Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste

    Directory of Open Access Journals (Sweden)

    Inès M. M. M. Ponsot

    2014-07-01

    Full Text Available Ceramics and glass ceramics based on industrial waste have been widely recognized as competitive products for building applications; however, there is a great potential for such materials with novel functionalities. In this paper, we discuss the development of magnetic sintered glass ceramics based on two iron-rich slags, coming from non-ferrous metallurgy and recycled borosilicate glass. The substantial viscous flow of the glass led to dense products for rapid treatments at relatively low temperatures (900–1000 °C, whereas glass/slag interactions resulted in the formation of magnetite crystals, providing ferrimagnetism. Such behavior could be exploited for applying the obtained glass ceramics as induction heating plates, according to preliminary tests (showing the rapid heating of selected samples, even above 200 °C. The chemical durability and safety of the obtained glass ceramics were assessed by both leaching tests and cytotoxicity tests.

  4. Predictive Surface Roughness Model for End Milling of Machinable Glass Ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, M Mohan; Gorin, Alexander [School of Engineering and Science, Curtin University of Technology, Sarawak (Malaysia); Abou-El-Hossein, K A, E-mail: mohan.m@curtin.edu.my [Mechanical and Aeronautical Department, Nelson Mandela Metropolitan University, Port Elegebeth, 6031 (South Africa)

    2011-02-15

    Advanced ceramics of Machinable glass ceramic is attractive material to produce high accuracy miniaturized components for many applications in various industries such as aerospace, electronics, biomedical, automotive and environmental communications due to their wear resistance, high hardness, high compressive strength, good corrosion resistance and excellent high temperature properties. Many research works have been conducted in the last few years to investigate the performance of different machining operations when processing various advanced ceramics. Micro end-milling is one of the machining methods to meet the demand of micro parts. Selecting proper machining parameters are important to obtain good surface finish during machining of Machinable glass ceramic. Therefore, this paper describes the development of predictive model for the surface roughness of Machinable glass ceramic in terms of speed, feed rate by using micro end-milling operation.

  5. Predictive Surface Roughness Model for End Milling of Machinable Glass Ceramic

    International Nuclear Information System (INIS)

    Reddy, M Mohan; Gorin, Alexander; Abou-El-Hossein, K A

    2011-01-01

    Advanced ceramics of Machinable glass ceramic is attractive material to produce high accuracy miniaturized components for many applications in various industries such as aerospace, electronics, biomedical, automotive and environmental communications due to their wear resistance, high hardness, high compressive strength, good corrosion resistance and excellent high temperature properties. Many research works have been conducted in the last few years to investigate the performance of different machining operations when processing various advanced ceramics. Micro end-milling is one of the machining methods to meet the demand of micro parts. Selecting proper machining parameters are important to obtain good surface finish during machining of Machinable glass ceramic. Therefore, this paper describes the development of predictive model for the surface roughness of Machinable glass ceramic in terms of speed, feed rate by using micro end-milling operation.

  6. Steady- and transient-state analysis of fully ceramic microencapsulated fuel with randomly dispersed tristructural isotropic particles via two-temperature homogenized model-I: Theory and method

    International Nuclear Information System (INIS)

    Lee, Yoon Hee; Cho, Bum Hee; Cho, Nam Zin

    2016-01-01

    As a type of accident-tolerant fuel, fully ceramic microencapsulated (FCM) fuel was proposed after the Fukushima accident in Japan. The FCM fuel consists of tristructural isotropic particles randomly dispersed in a silicon carbide (SiC) matrix. For a fuel element with such high heterogeneity, we have proposed a two-temperature homogenized model using the particle transport Monte Carlo method for the heat conduction problem. This model distinguishes between fuel-kernel and SiC matrix temperatures. Moreover, the obtained temperature profiles are more realistic than those of other models. In Part I of the paper, homogenized parameters for the FCM fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure are obtained by (1) matching steady-state analytic solutions of the model with the results of particle transport Monte Carlo method for heat conduction problems, and (2) preserving total enthalpies in fuel kernels and SiC matrix. The homogenized parameters have two desirable properties: (1) they are insensitive to boundary conditions such as coolant bulk temperatures and thickness of cladding, and (2) they are independent of operating power density. By performing the Monte Carlo calculations with the temperature-dependent thermal properties of the constituent materials of the FCM fuel, temperature-dependent homogenized parameters are obtained

  7. Ceramic hot-gas filter

    Science.gov (United States)

    Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.

    1999-05-11

    A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.

  8. Ceramic hot-gas filter

    Science.gov (United States)

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    1999-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  9. Development of functional ceramics for nuclear fusion devices and their property measurements in radiation environment

    International Nuclear Information System (INIS)

    Ohno, Hideo; Kondo, Tatsuo

    1989-01-01

    The research and development of high performance ceramics related to nuclear energy increase their importance. Especially innovation and application of ceramics are needed in fusion reactors. Necessity of the selection of composite elements for low activation ceramics and transmutation effects with high energy neutron are summarized in general requirements. The development of new materials such as Si 3 N 4 with good dielectric properties and the application of zirconia for high temperature electrolysis of tritiated water in tritium recycling system are summarized as topical issues. (author)

  10. Ceramic heat exchangers. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The bibliography contains citations of selected patents concerning the use of ceramic materials in the manufacture of industrial heat exchangers. The focus is on ceramics that display resistance to high temperature corrosion, abrasion, wear, and thermal shock. The design and fabrication of rotary, regenerative, and recuperative heat exchangers are discussed. Ceramic heat exchangers for uses in gas turbines, waste heat recovery equipment, and central heating systems are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  11. Ceramic heat exchangers. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The bibliography contains citations of selected patents concerning the use of ceramic materials in the manufacture of industrial heat exchangers. The focus is on ceramics that display resistance to high temperature corrosion, abrasion, wear, and thermal shock. The design and fabrication of rotary, regenerative, and recuperative heat exchangers are discussed. Ceramic heat exchangers for uses in gas turbines, waste heat recovery equipment, and central heating systems are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  12. Archaeometric studies of ceramics from the Sao Paulo II archaeological site

    International Nuclear Information System (INIS)

    Rogerio Baria; Munita, C.S.; Cano, N.F.; Tatumi, S.H.; Silva-Carrera, B.N.; Shigueo Watanabe; Neves, E.G.

    2015-01-01

    This paper aims at studying the elementary chemical composition of 70 ceramic fragments from the Sao Paulo II archaeological site by instrumental neutron activation analysis. The concentration data was studied next using multivariate statistical methods, such as cluster analysis, principal component analysis and discriminant analysis. The results showed three different chemical groups of samples regarding the similarity/dissimilarity between the samples. Ceramics from each group have been selected and dated using thermoluminescence. The firing temperature of the ceramics was determined by electron paramagnetic resonance. (author)

  13. Ceramic cutting tools materials, development and performance

    CERN Document Server

    Whitney, E Dow

    1994-01-01

    Interest in ceramics as a high speed cutting tool material is based primarily on favorable material properties. As a class of materials, ceramics possess high melting points, excellent hardness and good wear resistance. Unlike most metals, hardness levels in ceramics generally remain high at elevated temperatures which means that cutting tip integrity is relatively unaffected at high cutting speeds. Ceramics are also chemically inert against most workmetals.

  14. Fatigue strength of Al2O3 and Si3N4 ceramics

    International Nuclear Information System (INIS)

    Sonsino, C.M.

    1992-01-01

    Various Al 2 O 3 ceramics and random samples of two Si 3 N 4 ceramics were examined, with all specimens differing in terms of material and manufacturing parameters. Of the Al 2 O 3 ceramics, randomly selected specimens were tested for their banding strength at room temperature, and three specifically selected specimens were tested for their compressive strength at room temperature, at 800 C and at 1200 C. A number of specimen variants were examined by cyclic fatigue tests at room temperature and 800 C, and at 1200 C in one case, the specimens used being slightly notched specimens (α n = 1,02 and 1,08), or more heavily notched speciments (α n = 1.77, 1.90 and 2.24), with bending loads being either cyclic or growing. The Si 3 N 4 specimens were randomly chosen for bending tests and cyclic fatigue tests, at room temperature. (orig./MM) [de

  15. Ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    This paper describes the relation between reactions at ceramic-metal interfaces and the development of strong interfacial bonds in ceramic joining. Studies on a number of systems are described, including silicon nitrides, aluminium nitrides, mullite, and aluminium oxides. Joints can be weakened by stresses such as thermal expansion mismatch. Ceramic joining is used in a variety of applications such as solid oxide fuel cells.

  16. Coupling in-situ X-ray micro- and nano-tomography and discrete element method for investigating high temperature sintering of metal and ceramic powders

    Directory of Open Access Journals (Sweden)

    Yan Zilin

    2017-01-01

    Full Text Available The behaviour of various powder systems during high temperature sintering has been investigated by coupling X-ray microtomography and discrete element method (DEM. Both methods are particularly relevant to analyse particle interactions and porosity changes occurring during sintering. Two examples are presented. The first one deals with a copper powder including artificially created pores which sintering has been observed in situ at the European synchrotron and simulated by DEM. 3D images with a resolution of 1.5 μm have been taken at various times of the sintering cycle. The comparison of the real displacement of particle centers with the displacement derived from the mean field assumption demonstrates significant particle rearrangement in some regions of the sample. Although DEM simulation showed less rearrangement, it has been able to accurately predict the densification kinetics. The second example concerns multilayer ceramic capacitors (MLCCs composed of hundreds of alternated metal electrode and ceramic dielectric layers. The observation of Ni-based MLCCs by synchrotron nanotomography at Argon National Laboratory with a spatial resolution between 10 and 50 nm allowed understanding the origin of heterogeneities formed in Ni layers during sintering. DEM simulations confirmed this analysis and provided clues for reducing these defects.

  17. Effect of Prior Exposure at Elevated Temperatures on Tensile Properties and Stress-Strain Behavior of Three Oxide/Oxide Ceramic Matrix Composites

    Science.gov (United States)

    2015-03-26

    observations on the fracture surface using an optical microscope and SEM. 4 II. Background 2.1 Ceramics Ceramics are inorganic and nonmetallic... The original uses for ceramic were primarily decorative, until more utilitarian purposes were discovered. Pottery was developed around 9,000...OF THREE OXIDE/OXIDE CERAMIC MATRIX COMPOSITES THESIS Christopher J. Hull, Captain, USAF AFIT-ENY-MS-15-M-228 DEPARTMENT OF THE AIR FORCE

  18. Sensitive Ceramics

    DEFF Research Database (Denmark)

    2014-01-01

    Sensitive Ceramics is showing an interactive digital design tool for designing wall like composition with 3d ceramics. The experiment is working on two levels. One which has to do with designing compositions and patterns in a virtual 3d universe based on a digital dynamic system that responds on ...... with realizing the modules in ceramics by 3d printing directly in porcelain with a RapMan printer that coils up the 3d shape in layers. Finally the ceramic modules are mounted in a laser cut board that reflects the captured composition of the movement of the hands....

  19. Effect of MnO2 doping and temperature treatment on optical energy band gap properties in Zn-Bi-Ti-O varistor ceramics

    International Nuclear Information System (INIS)

    Ghazali, M. S. M.; Abdullah, W. R. W.; Zakaria, A.; Kamari, H. M.; Rizwan, Z.

    2016-01-01

    In this study, the optical band-gap energy ( Eg ) was investigated with respect to MnO 2 and sintering temperatures on ZnO based varistor ceramics. Eg of the ceramic (99-x) mol% ZnO + 0.5 mol% Bi 2 O 3 + 0.5 mol% TiO 2 + × MnO 2 where × = 0, 0.2, 0.4, 0.6 and 0.8 mol%, were determined using UV-Vis spectrophotometer. The samples was prepared through solid-state route and sintered at the sintering temperature from 1110, 1140 and 1170 °C for 45 and 90 min in open air. At no doping of MnO 2 , the values of Eg are 2.991 ± 0.001, 2.989 ± 0.001 eV for 45 and 90 min sintering time; respectively. Eg was decreased to 2.192 ± 0.001 eV at 1140 °C at 45 min sintering time. Similar result of Eg was observed at longer heat treatment. Further addition of dopant causing the Eg decreases rapidly to 2.099 and 2.106 ± 0.001 eV at 45 and 90 min sintering time; respectively. XRD analysis indicates that there is hexagonal ZnO and secondary phases, Zn 2 MnO 4 , Bi 4 Ti 3 O 12 and Zn 2 Ti 3 O 8 . The relative density of the sintered ceramics decreased or remain constant with the increase of MnO 2 concentration for 45 min sintering time, however, further prolong sintering time; the relative density decreases form 90.25 to 88.35%. This indicates the pores are increasing with the increase of heat treatment. The variation of sintering temperatures to the optical band gap energy of based ZnO varistor doped with MnO 2 due to the formation of interface states. (paper)

  20. Evolution of phase transformation behavior and dielectric temperature stability of BaTiO3–Bi(Zn0.5Zr0.5)O3 ceramics system

    International Nuclear Information System (INIS)

    Wang, Yiliang; Chen, Xiuli; Zhou, Huanfu; Fang, Liang; Liu, Laijun; Zhang, Hui

    2013-01-01

    Highlights: ► (1 − x)BaTiO 3 –xBi(Zn 0.5 Zr 0.5 )O 3 ceramics were synthesized. ► A systematic structural change was observed near x = 0.07 and x = 0.4. ► A change from a normal ferroelectric behavior to diffusive and dispersive relaxor-like characteristic was also observed. ► (1 − x)BT–xBZZ ceramics show good dielectric temperature stability over a wide temperature range. - Abstract: (1 − x)BaTiO 3 –xBi(Zn 0.5 Zr 0.5 )O 3 [(1 − x)BT–xBZZ, 0.01 ⩽ x ⩽ 0.6] ceramics were synthesized by solid-state reaction technique. Based on the X-ray diffraction data analysis, a systematic structure change from the ferroelectric tetragonal phase to pseudocubic phase and the pseudocubic phase to orthorhombic phase was observed near x = 0.07 and x = 0.4 at room temperature, respectively. Dielectric measurements show a dielectric anomaly, over the temperature range from 50 to 200 °C for the compositions with 0.03 ⩽ x ⩽ 0.09. A change from a normal ferroelectric behavior to diffusive and dispersive relaxor-like characteristic was also observed. Moreover, (1 − x)BT–xBZZ ceramics show good dielectric temperature stability over a wide temperature range, which indicates that these ceramics can be applied in the temperature stability devices.

  1. Physicochemical characterization of ceramics from Sao Paulo II archaeological site

    International Nuclear Information System (INIS)

    Ribeiro, Rogerio Baria

    2013-01-01

    Archaeometry is a consolidated field with a wide application of nuclear analytical techniques for the characterization, protection, and restoration of archaeological pieces. This project aimed at studying the elementary chemical composition of 70 ceramic fragments samples from Sao Paulo II archaeological site, located along the Solimoes River channel, next to Coari city, in Brazilian Amazon. The characterization of samples was performed by neutron activation analysis (NAA). By the determination of 24 elements in the ceramic fragments ( Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Nd, Sb, Sm. Rb, Se, Ta, Tb, Th, U, Yb and Zn), it was possible to define groups of samples regarding the similarity/dissimilarity in elementary chemical composition. For such a task, the multivariate statistical methods employed were cluster analysis (C A), principal component analysis (PCA) and discriminant analysis (DA). Afterwards, seven ceramic fragments were selected based on the groups previously established, for the characterization of the site temporal horizon. Those ceramic fragments were analyzed by thermoluminescence (TL) and EPR for dating purposes. The firing temperatures were determined by electron paramagnetic resonance (EPR) technique, in order to infer about some aspects of the ceramic manufacture employed by the ancient peoples that lived in Sao Paulo 11. By the results obtained in this study, it was possible to identify the quantity of clay sources employed by the ceramists and the age of the ceramic pieces. Therefore, the results of this research may contribute to the study on the occupation dynamics in the pre-colonial Brazilian Amazon. (author)

  2. Operation and design selection of high temperature superconducting magnetic bearings

    International Nuclear Information System (INIS)

    Werfel, F N; Floegel-Delor, U; Riedel, T; Rothfeld, R; Wippich, D; Goebel, B

    2004-01-01

    Axial and radial high temperature superconducting (HTS) magnetic bearings are evaluated by their parameters. Journal bearings possess advantages over thrust bearings. High magnetic gradients in a multi-pole permanent magnet (PM) configuration, the surrounding melt textured YBCO stator and adequate designs are the key features for increasing the overall bearing stiffness. The gap distance between rotor and stator determines the specific forces and has a strong impact on the PM rotor design. We report on the designing, building and measuring of a 200 mm prototype 100 kg HTS bearing with an encapsulated and thermally insulated melt textured YBCO ring stator. The encapsulation requires a magnetically large-gap (4-5 mm) operation but reduces the cryogenic effort substantially. The bearing requires 3 l of LN 2 for cooling down, and about 0.2 l LN 2 h -1 under operation. This is a dramatic improvement of the efficiency and in the practical usage of HTS magnetic bearings

  3. Bulk glass ceramics containing Yb{sup 3+}/Er{sup 3+}: β-NaGdF{sub 4} nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Daqin, E-mail: dqchen@fjirsm.ac.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wan, Zhongyi; Zhou, Yan [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Huang, Ping, E-mail: phuang@fjirsm.ac.cn [Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 (China); Zhong, Jiasong; Ding, Mingye [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Xiang, Weidong; Liang, Xiaojuan [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); Ji, Zhenguo, E-mail: jizg@hdu.edu.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2015-07-25

    Highlights: • Hexagonal NaGdF{sub 4} nanocrystals embedded bulk glass ceramics were fabricated. • The incorporation of Ln{sup 3+} dopants into the β-NaGdF{sub 4} lattice was demonstrated. • Upconversion luminescence was highly intensified after glass crystallization. • Such glass ceramics had possible application in the optical temperature sensors. - Abstract: Lanthanide doped hexagonal β-NaGdF{sub 4} nanocrystals embedded transparent bulk glass ceramics were successfully fabricated via a phase-separation-controlled crystallization route. Elemental mapping in the scanning transmission electron microscope and optical spectroscopy analysis demonstrated the partition of the active centers into the β-NaGdF{sub 4} crystalline lattice. As a result, upconversion luminescence of the glass ceramic co-doped with Yb{sup 3+} and Er{sup 3+} is about 60 times as high as that of the precursor glass, attributing to the modification of Yb{sup 3+}/Er{sup 3+} surrounding from phase-separated amorphous nanoparticle to β-NaGdF{sub 4} crystalline lattice with low phonon energy and high crystallinity after crystallization. Furthermore, the temperature-dependent green upconversion emissions assigned to {sup 2}H{sub 11/2} → {sup 4}I{sub 15/2} (520 nm) and {sup 4}S{sub 3/2} → {sup 4}I{sub 15/2} (540 nm) transitions were investigated, and the corresponding fluorescence intensity ratio of these two thermally coupled emitting-states greatly enhanced with increase of temperature. Using such fabricated glass ceramic as an optical thermometric medium, the maximum sensitivity reached as high as 0.0037 K{sup −1} at 580 K. It is expected that the investigated Er{sup 3+}/Yb{sup 3+} codoped glass ceramic might be a very promising candidate for accurate optical temperature sensors.

  4. Temperature selection of juvenile Atlantic salmon (Salmo salar) as influenced by various toxic substances

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, R H

    1976-08-01

    Previous exposure to sodium pentachlorophenate (NaPCP), Guthion, malathion, Dursban, and Dibrom lowered the preferred temperature for juvenile Atlantic salmon (Salmo salar) tested in a horizontal temperature gradient. Lindane, CuSO/sub 4/, ZnSO/sub 4/, CdSO/sub 4/, Sevin, heptachlor, and fenitrothion did not change the preferred temperature significantly. Comparison with other published results indicates that those substances that increase the preferred temperature are more toxic (based on relevant changes in 24-h LC50) at low temperatures and vice versa. It is suggested that such shifts in selected temperature may be of potential immediate, short-term, survival value to the fish. (auth)

  5. ANL-1(A) - Development of nondestructive evaluation methods for structural ceramics

    International Nuclear Information System (INIS)

    Ellingson, W.A.; Roberts, R.A.; Gopalsami, N.; Dieckman, S.; Hentea, T.; Vaitekunas, J.J.

    1989-01-01

    This section includes the following papers: Development of Nondestructive Evaluation Methods for Structural Ceramics; Effects of Flaws on the Fracture Behavior of Structural Ceramics; Design, Fabrication, and Interface Characterization of Ceramic Fiber-Ceramic Matrix Composites; Development of Advanced Fiber-Reinforced Ceramics; Modeling of Fibrous Preforms for CVD Infiltration; NDT of Advanced Ceramic Composite Materials; Joining of Silicon Carbide Reinforced Ceramics; Superconducting Film Fabrication Research; Short Fiber Reinforced Structural Ceramics; Structural Reliability and Damage Tolerance of Ceramic Composites for High-Temperature Applications; Fabrication of Ceramic Fiber-Ceramic Matrix Composites by Chemical Vapor Infiltration; Characterization of Fiber-CVD Matrix interfacial Bonds; Microwave Sintering of Superconducting Ceramics; Improved Ceramic Composites Through Controlled Fiber-Matrix Interactions; Evaluation of Candidate Materials for Solid Oxide Fuel Cells; Ceramic Catalyst Materials: Hydrous Metal Oxide Ion-Exchange Supports for Coal Liquefaction; and Investigation of Properties and Performance of Ceramic Composite Components

  6. Mechanical properties of ceramics

    CERN Document Server

    Pelleg, Joshua

    2014-01-01

    This book discusses the mechanical properties of ceramics and aims to provide both a solid background for undergraduate students, as well as serving as a text to bring practicing engineers up to date with the latest developments in this topic so they can use and apply these to their actual engineering work.  Generally, ceramics are made by moistening a mixture of clays, casting it into desired shapes and then firing it to a high temperature, a process known as 'vitrification'. The relatively late development of metallurgy was contingent on the availability of ceramics and the know-how to mold them into the appropriate forms. Because of the characteristics of ceramics, they offer great advantages over metals in specific applications in which hardness, wear resistance and chemical stability at high temperatures are essential. Clearly, modern ceramics manufacturing has come a long way from the early clay-processing fabrication method, and the last two decades have seen the development of sophisticated technique...

  7. Plutonium immobilization in glass and ceramics

    International Nuclear Information System (INIS)

    Knecht, D.A.; Murphy, W.M.

    1996-01-01

    The Materials Research Society Nineteenth Annual Symposium on the Scientific Basis for Nuclear Waste Management was held in Boston on November 27 to December 1, 1995. Over 150 papers were presented at the Symposium dealing with all aspects of nuclear waste management and disposal. Fourteen oral sessions and on poster session included a Plenary session on surplus plutonium dispositioning and waste forms. The proceedings, to be published in April, 1996, will provide a highly respected, referred compilation of the state of scientific development in the field of nuclear waste management. This paper provides a brief overview of the selected Symposium papers that are applicable to plutonium immobilization and plutonium waste form performance. Waste forms that were described at the Symposium cover most of the candidate Pu immobilization options under consideration, including borosilicate glass with a melting temperature of 1150 degrees C, a higher temperature (1450 degrees C) lanthanide glass, single phase ceramics, multi-phase ceramics, and multi-phase crystal-glass composites (glass-ceramics or slags). These Symposium papers selected for this overview provide the current status of the technology in these areas and give references to the relevant literature

  8. Plutonium immobilization in glass and ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, D.A. [Lockheed Martin Idaho Technologies, Idaho Falls (United States); Murphy, W.M. [Southwest Research Institute, San Antonio, TX (United States)

    1996-05-01

    The Materials Research Society Nineteenth Annual Symposium on the Scientific Basis for Nuclear Waste Management was held in Boston on November 27 to December 1, 1995. Over 150 papers were presented at the Symposium dealing with all aspects of nuclear waste management and disposal. Fourteen oral sessions and on poster session included a Plenary session on surplus plutonium dispositioning and waste forms. The proceedings, to be published in April, 1996, will provide a highly respected, referred compilation of the state of scientific development in the field of nuclear waste management. This paper provides a brief overview of the selected Symposium papers that are applicable to plutonium immobilization and plutonium waste form performance. Waste forms that were described at the Symposium cover most of the candidate Pu immobilization options under consideration, including borosilicate glass with a melting temperature of 1150 {degrees}C, a higher temperature (1450 {degrees}C) lanthanide glass, single phase ceramics, multi-phase ceramics, and multi-phase crystal-glass composites (glass-ceramics or slags). These Symposium papers selected for this overview provide the current status of the technology in these areas and give references to the relevant literature.

  9. Inorganic glass ceramic slip rings

    Science.gov (United States)

    Glossbrenner, E. W.; Cole, S. R.

    1972-01-01

    Prototypes of slip rings have been fabricated from ceramic glass, a material which is highly resistant to deterioration due to high temperature. Slip ring assemblies were not structurally damaged by mechanical tests and performed statisfactorily for 200 hours.

  10. Electro-caloric effect in lead-free Sn doped BaTiO3 ceramics at room temperature and low applied fields

    International Nuclear Information System (INIS)

    Upadhyay, Sanjay Kumar; Reddy, V. Raghavendra; Bag, Pallab; Rawat, R.; Gupta, S. M.; Gupta, Ajay

    2014-01-01

    Structural, dielectric, ferroelectric (FE), 119 Sn Mössbauer, and specific heat measurements of polycrystalline BaTi 1–x Sn x O 3 (x = 0% to 15%) ceramics are reported. Phase purity and homogeneous phase formation with Sn doping is confirmed from x-ray diffraction and 119 Sn Mössbauer measurements. With Sn doping, the microstructure is found to change significantly. Better ferroelectric properties at room temperature, i.e., increased remnant polarization (38% more) and very low field switchability (225% less) are observed for x = 5% sample as compared to other samples and the results are explained in terms of grain size effects. With Sn doping, merging of all the phase transitions into a single one is observed for x ≥ 10% and for x = 5%, the tetragonal to orthorhombic transition temperature is found close to room temperature. As a consequence better electro-caloric effects are observed for x = 5% sample and therefore is expected to satisfy the requirements for non-toxic, low energy (field) and room temperature based applications.

  11. Selective solar absorber emittance measurement at elevated temperature

    Science.gov (United States)

    Giraud, Philémon; Braillon, Julien; Raccurt, Olivier

    2017-06-01

    Durability of solar components for CSP (Concentrated Solar Power Plant) technologies is a key point to lower cost and ensure their large deployment. These technologies concentrated the solar radiation by means of mirrors on a receiver tube where it is collected as thermal energy. The absorbers are submitted to strong environmental constraints and the degradation of their optical properties (emittance and solar absorbance) have a direct impact on performance. The characterization of a material in such condition is complicated and requires advanced apparatuses, and different measurement methods exist for the determination of the two quantities of relevance regarding an absorber, which are its emittance and its solar absorbance. The objective is to develop new optical equipment for measure the emittance of this solar absorber at elevated temperature. In this paper, we present an optical bench developed for emittance measurement on absorbers is conditions of use. Results will be shown, with a discussion of some factors of influence over this measurement and how to control them.

  12. Improved ferroelectric/piezoelectric properties and bright green/UC red emission in (Li,Ho)-doped CaBi4Ti4O15 multifunctional ceramics with excellent temperature stability and superior water-resistance performance.

    Science.gov (United States)

    Xiao, Ping; Guo, Yongquan; Tian, Mijie; Zheng, Qiaoji; Jiang, Na; Wu, Xiaochun; Xia, Zhiguo; Lin, Dunmin

    2015-10-21

    Multifunctional materials based on rare earth ion doped ferro/piezoelectrics have attracted considerable attention in recent years. In this work, new lead-free multifunctional ceramics of Ca1-x(LiHo)x/2Bi4Ti4O15 were prepared by a conventional solid-state reaction method. The great multi-improvement in ferroelectricity/piezoelectricity, down/up-conversion luminescence and temperature stability of the multifunctional properties is induced by the partial substitution of (Li0.5Ho0.5)(2+) for Ca(2+) ions in CaBi4Ti4O15. All the ceramics possess a bismuth-layer structure, and the crystal structure of the ceramics is changed from a four layered bismuth-layer structure to a three-layered structure with the level of (Li0.5Ho0.5)(2+) increasing. The ceramic with x = 0.1 exhibits simultaneously, high resistivity (R = 4.51 × 10(11)Ω cm), good piezoelectricity (d33 = 10.2 pC N(-1)), high Curie temperature (TC = 814 °C), strong ferroelectricity (Pr = 9.03 μC cm(-2)) and enhanced luminescence. These behaviours are greatly associated with the contribution of (Li0.5Ho0.5)(2+) in the ceramics. Under the excitation of 451 nm light, the ceramic with x = 0.1 exhibits a strong green emission peak centered at 545 nm, corresponding to the transition of the (5)S2→(5)I8 level in Ho(3+) ions, while a strong red up-conversion emission band located at 660 nm is observed under the near-infrared excitation of 980 nm at room temperature, arising from the transition of (5)F5→(5)I8 levels in Ho(3+) ions. Surprisingly, the excellent temperature stability of ferroelectricity/piezoelectricity/luminescence and superior water-resistance behaviors of piezoelectricity/luminescence are also obtained in the ceramic with x = 0.1. Our study suggests that the present ceramics may have potential applications in advanced multifunctional devices at high temperature.

  13. [Ceramic posts].

    Science.gov (United States)

    Mainjot, Amélie; Legros, Caroline; Vanheusden, Alain

    2006-01-01

    As a result of ceramics and all-ceram technologies development esthetic inlay core and abutments flooded the market. Their tooth-colored appearance enhances restoration biomimetism principally on the marginal gingiva area. This article reviews indications and types of cores designed for natural teeth and implants.

  14. Spectral Collection of Polyethylene Pellets at nearly Cryogenic Temperature to Improve Selectivity of Raman Measurement

    International Nuclear Information System (INIS)

    Kim, Saetbyeol; Lee, Sanguk; Hwang, Jinyoung; Chung, Hoeil

    2010-01-01

    Raman spectroscopy has been extensively used for analysis of diverse polymer samples. Normally, Raman spectral collection of samples is routinely performed at room temperature for convenience. However, the feasibility of improving spectral selectivity and the resulting quantitative accuracy, when samples are measured at nearly cryogenic temperature, has not been investigated. For this purpose, we attempted to measure the density of polyethylene (PE) pellets at cryogenic temperatures and the resulting accuracies were compared with that from room temperature measurement. Initially, each of 25 PE sample was allowed to cool down to cryogenic temperature and the corresponding Raman spectra were continuously collected while the temperature of sample increased. When the temperature of sample was at cryogenic temperature, the resulting band widths were narrower compared to those at room temperature, thereby improving the accuracy of density measurement. In overall, the proposed Raman scheme is simple and efficient; therefore, it could be further applied for analysis of other polymers.

  15. Climate Prediction Center(CPC)Monthly U.S. Selected Cities Temperature Summary

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly U.S. reported temperature summaries in degrees Fahrenheit generated from the GTS metar(hourly) and synoptic(6-hourly)observations for selected cities based...

  16. Climate Prediction Center (CPC) Weekly U.S. Selected Cities Temperature Summary

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weekly U.S. reported temperature summaries in degrees Fahrenheit generated from the GTS metar(hourly) and synoptic(6-hourly)observations for selected cities based on...

  17. Selection for Protein Kinetic Stability Connects Denaturation Temperatures to Organismal Temperatures and Provides Clues to Archaean Life.

    Directory of Open Access Journals (Sweden)

    M Luisa Romero-Romero

    Full Text Available The relationship between the denaturation temperatures of proteins (Tm values and the living temperatures of their host organisms (environmental temperatures: TENV values is poorly understood. Since different proteins in the same organism may show widely different Tm's, no simple universal relationship between Tm and TENV should hold, other than Tm≥TENV. Yet, when analyzing a set of homologous proteins from different hosts, Tm's are oftentimes found to correlate with TENV's but this correlation is shifted upward on the Tm axis. Supporting this trend, we recently reported Tm's for resurrected Precambrian thioredoxins that mirror a proposed environmental cooling over long geological time, while remaining a shocking ~50°C above the proposed ancestral ocean temperatures. Here, we show that natural selection for protein kinetic stability (denaturation rate can produce a Tm↔TENV correlation with a large upward shift in Tm. A model for protein stability evolution suggests a link between the Tm shift and the in vivo lifetime of a protein and, more specifically, allows us to estimate ancestral environmental temperatures from experimental denaturation rates for resurrected Precambrian thioredoxins. The TENV values thus obtained match the proposed ancestral ocean cooling, support comparatively high Archaean temperatures, and are consistent with a recent proposal for the environmental temperature (above 75°C that hosted the last universal common ancestor. More generally, this work provides a framework for understanding how features of protein stability reflect the environmental temperatures of the host organisms.

  18. Fiscal 1997 report of the R and D result of industrial science and technology. R and D on synergy ceramics (R and D on an ultrahigh-temperature gas turbine for power generation); 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu seika hokokusho. Synergy ceramics no kenkyu kaihatsu (hatsuden`yo chokoon gas turbine no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    For development of high-efficiency power generation gas turbines using petroleum substituting energy, the process technology which can highly harmonize conflicting characteristics and various functions was developed for new ceramic materials. This paper summarizes the result in fiscal 1997. On design technology of the characteristics harmonizing process, the design and synthesis of ceramic precursors were made by using chemical reaction of metal organics. On analysis of fracture behavior by controlling microscopic and macroscopic particle shapes, orientations were observed by convergent ion beam. On control technology of a structure formation process, study was made on continuous pore shape control to form porous material with uni-directionally arranged pores in ceramic matrix, interface control between particles to decrease a plastic deformation temperature and improve a heat insulation, interface control between phases of a rare-earth silicate/silicon-carbide-based composite, boundary control between layers of piezoelectric ceramics, and boundary control of the composite where inorganic-organic hybrids occupy the interface between ceramic particles. 79 refs., 193 figs., 15 tabs.

  19. Lattice Thermal Conductivity of Ultra High Temperature Ceramics (UHTC) ZrB2 and HfB2 from Atomistic Simulations

    Science.gov (United States)

    Lawson, John W.; Daw, Murray S.; Bauschlicher, Charles W.

    2012-01-01

    Ultra high temperature ceramics (UHTC) including ZrB2 and HfB2 have a number of properties that make them attractive for applications in extreme environments. One such property is their high thermal conductivity. Computational modeling of these materials will facilitate understanding of fundamental mechanisms, elucidate structure-property relationships, and ultimately accelerate the materials design cycle. Progress in computational modeling of UHTCs however has been limited in part due to the absence of suitable interatomic potentials. Recently, we developed Tersoff style parameterizations of such potentials for both ZrB2 and HfB2 appropriate for atomistic simulations. As an application, Green-Kubo molecular dynamics simulations were performed to evaluate the lattice thermal conductivity for single crystals of ZrB2 and HfB2. The atomic mass difference in these binary compounds leads to oscillations in the time correlation function of the heat current, in contrast to the more typical monotonic decay seen in monoatomic materials such as Silicon, for example. Results at room temperature and at elevated temperatures will be reported.

  20. Low-temperature setting phosphate ceramics for stabilization of DOE problem low level mixed-waste: I. Material and waste form development

    International Nuclear Information System (INIS)

    Singh, D.; Wagh, A.; Knox, L.; Mayberry, J.

    1994-03-01

    Chemically bonded phosphate ceramics are proposed as candidates for solidification and stabilization of some of the open-quotes problemclose quotes DOE low-level mixed wastes at low-temperatures. Development of these materials is crucial for stabilization of waste streams which have volatile species and any use of high-temperature technology leads to generation of off-gas secondary waste streams. Several phosphates of Mg, Al, and Zr have been investigated as candidate materials. Monoliths of these phosphates were synthesized using chemical routes at room or slightly elevated temperatures. Detailed physical and chemical characterizations have been conducted on some of these phosphates to establish their durability. Magnesium ammonium phosphate has shown to possess excellent mechanical and as well chemical properties. These phosphates were also used to stabilize a surrogate ash waste with a loading ranging from 25-35 wt.%. Characterization of the final waste forms show that waste immobilization is due to both chemical stabilization and physical encapsulation of the surrogate waste which is desirable for waste immobilization