WorldWideScience

Sample records for temperature atmospheric water

  1. STRATOSPHERIC TEMPERATURES AND WATER LOSS FROM MOIST GREENHOUSE ATMOSPHERES OF EARTH-LIKE PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Kasting, James F.; Kopparapu, Ravi K. [Department of Geosciences, The Pennsylvania State University, State College, PA 16801 (United States); Chen, Howard, E-mail: jfk4@psu.edu, E-mail: hwchen@bu.edu [Department of Astronomy, Boston University, 725 Commonwealth Ave., Boston, MA 02215 (United States)

    2015-11-01

    A radiative-convective climate model is used to calculate stratospheric temperatures and water vapor concentrations for ozone-free atmospheres warmer than that of modern Earth. Cold, dry stratospheres are predicted at low surface temperatures, in agreement with recent 3D calculations. However, at surface temperatures above 350 K, the stratosphere warms and water vapor becomes a major upper atmospheric constituent, allowing water to be lost by photodissociation and hydrogen escape. Hence, a moist greenhouse explanation for loss of water from Venus, or some exoplanet receiving a comparable amount of stellar radiation, remains a viable hypothesis. Temperatures in the upper parts of such atmospheres are well below those estimated for a gray atmosphere, and this factor should be taken into account when performing inverse climate calculations to determine habitable zone boundaries using 1D models.

  2. Learning from the interplay between discharge and water temperature for signals of hydrologic and atmospheric change

    Science.gov (United States)

    Schaefli, Bettina; Larsen, Joshua

    2017-04-01

    The interplay between river discharge and water temperature regimes determines the habitat quality of river ecosystems, and understanding their interplay is thus critical to assess future ecosystem health in the context of climate change and anthropogenic impacts. Beyond the evident practical importance for ecosystem management, understanding this water temperature-discharge interplay also has great potential to gain new insights into the dominant hydro-climatological processes occurring at the catchment scale. Central to this is the analysis of bivariate distributions between discharge and water temperature, in combination with simple thermal models, at different temporal scales and across many catchments. Potential insights to be gained include: i) the relative roles of rain, glacier, snow, and groundwater inputs, ii) the influence of atmospheric forcings, and iii) the mixing of the stream network. Using detailed records from Swiss catchments, we show the relative importance of these drivers, how they vary between catchments, as well as their susceptibility to change over time. This work provides a data-based, yet physical basis for understanding how the thermal regime of rivers is regulated by hydrologic and atmospheric processes, and thus provides a template to understand the thermal range of aquatic ecosystems. Such a physical understanding is critical in order to better interpret changing stream temperatures, and the thermal flux they provide to downstream lake and ocean environments.

  3. The Relation Between Atmospheric Humidity and Temperature Trends for Stratospheric Water

    Science.gov (United States)

    Fueglistaler, S.; Liu, Y. S.; Flannaghan, T. J.; Haynes, P. H.; Dee, D. P.; Read, W. J.; Remsberg, E. E.; Thomason, L. W.; Hurst, D. F.; Lanzante, J. R.; hide

    2013-01-01

    We analyze the relation between atmospheric temperature and water vapor-a fundamental component of the global climate system-for stratospheric water vapor (SWV). We compare measurements of SWV (and methane where available) over the period 1980-2011 from NOAA balloon-borne frostpoint hygrometer (NOAA-FPH), SAGE II, Halogen Occultation Experiment (HALOE), Microwave Limb Sounder (MLS)/Aura, and Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) to model predictions based on troposphere-to-stratosphere transport from ERA-Interim, and temperatures from ERA-Interim, Modern Era Retrospective-Analysis (MERRA), Climate Forecast System Reanalysis (CFSR), Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC), HadAT2, and RICHv1.5. All model predictions are dry biased. The interannual anomalies of the model predictions show periods of fairly regular oscillations, alternating with more quiescent periods and a few large-amplitude oscillations. They all agree well (correlation coefficients 0.9 and larger) with observations for higherfrequency variations (periods up to 2-3 years). Differences between SWV observations, and temperature data, respectively, render analysis of the model minus observation residual difficult. However, we find fairly well-defined periods of drifts in the residuals. For the 1980s, model predictions differ most, and only the calculation with ERA-Interim temperatures is roughly within observational uncertainties. All model predictions show a drying relative to HALOE in the 1990s, followed by a moistening in the early 2000s. Drifts to NOAA-FPH are similar (but stronger), whereas no drift is present against SAGE II. As a result, the model calculations have a less pronounced drop in SWV in 2000 than HALOE. From the mid-2000s onward, models and observations agree reasonably, and some differences can be traced to problems in the temperature data. These results indicate that both SWV and temperature data may still suffer

  4. Estimating trends in atmospheric water vapor and temperature time series over Germany

    Science.gov (United States)

    Alshawaf, Fadwa; Balidakis, Kyriakos; Dick, Galina; Heise, Stefan; Wickert, Jens

    2017-08-01

    Ground-based GNSS (Global Navigation Satellite System) has efficiently been used since the 1990s as a meteorological observing system. Recently scientists have used GNSS time series of precipitable water vapor (PWV) for climate research. In this work, we compare the temporal trends estimated from GNSS time series with those estimated from European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-Interim) data and meteorological measurements. We aim to evaluate climate evolution in Germany by monitoring different atmospheric variables such as temperature and PWV. PWV time series were obtained by three methods: (1) estimated from ground-based GNSS observations using the method of precise point positioning, (2) inferred from ERA-Interim reanalysis data, and (3) determined based on daily in situ measurements of temperature and relative humidity. The other relevant atmospheric parameters are available from surface measurements of meteorological stations or derived from ERA-Interim. The trends are estimated using two methods: the first applies least squares to deseasonalized time series and the second uses the Theil-Sen estimator. The trends estimated at 113 GNSS sites, with 10 to 19 years temporal coverage, vary between -1.5 and 2.3 mm decade-1 with standard deviations below 0.25 mm decade-1. These results were validated by estimating the trends from ERA-Interim data over the same time windows, which show similar values. These values of the trend depend on the length and the variations of the time series. Therefore, to give a mean value of the PWV trend over Germany, we estimated the trends using ERA-Interim spanning from 1991 to 2016 (26 years) at 227 synoptic stations over Germany. The ERA-Interim data show positive PWV trends of 0.33 ± 0.06 mm decade-1 with standard errors below 0.03 mm decade-1. The increment in PWV varies between 4.5 and 6.5 % per degree Celsius rise in temperature, which is comparable to the theoretical rate of the Clausius

  5. Estimation of absolute water surface temperature based on atmospherically corrected thermal infrared multispectral scanner digital data

    Science.gov (United States)

    Anderson, James E.

    1986-01-01

    Airborne remote sensing systems, as well as those on board Earth orbiting satellites, sample electromagnetic energy in discrete wavelength regions and convert the total energy sampled into data suitable for processing by digital computers. In general, however, the total amount of energy reaching a sensor system located at some distance from the target is composed not only of target related energy, but, in addition, contains a contribution originating from the atmosphere itself. Thus, some method must be devised for removing or at least minimizing the effects of the atmosphere. The LOWTRAN-6 Program was designed to estimate atmospheric transmittance and radiance for a given atmospheric path at moderate spectral resolution over an operational wavelength region from 0.25 to 28.5 microns. In order to compute the Thermal Infrared Multispectral Scanner (TIMS) digital values which were recorded in the absence of the atmosphere, the parameters derived from LOWTRAN-6 are used in a correction equation. The TIMS data were collected at 1:00 a.m. local time on November 21, 1983, over a recirculating cooling pond for a power plant in southeastern Mississippi. The TIMS data were analyzed before and after atmospheric corrections were applied using a band ratioing model to compute the absolute surface temperature of various points on the power plant cooling pond. The summarized results clearly demonstrate the desirability of applying atmospheric corrections.

  6. Sensitivity of temperate grassland species to elevated atmospheric CO2 and the interaction with temperature and water stress

    Directory of Open Access Journals (Sweden)

    M.B. JONES

    2008-12-01

    Full Text Available The annual cycle of growth of many temperate grasses is limited by low temperatures during the winter and spring and water stress during the summer. Climate change, induced by increase in the concentration of greenhouse gases in the atmosphere, can affect the growth and community structure of temperate grasslands in two ways. The first is directly through changes in atmospheric concentration of CO2 and the second is indirectly through changes in temperature and rainfall. At higher latitudes, where growth is largely temperature limited, it is probable that the direct effects of enhanced CO2 will be less than at low latitudes. However, interactions with increasing temperature and water stress are complex. Temperate grasslands range from intensively managed monocultures of sown species to speciesrich natural and semi-natural communities whose local distributions are controlled by variations in soil type and drainage. The different species can show marked differences in their responses to increasing CO2 concentrations, rising temperatures and water stress. This will probably result in major alterations in the community structure of temperate grasslands in the future. In addition to impacts on primary productivity and community structure, a long-term effect of elevated CO2 on grasslands is likely to be a significant increase in soil carbon storage. However, this may be counteracted by increases in temperature.;

  7. Estimation of the Total Atmospheric Water Vapor Content and Land Surface Temperature Based on AATSR Thermal Data

    Science.gov (United States)

    Zhang, Tangtang; Wen, Jun; van der Velde, Rogier; Meng, Xianhong; Li, Zhenchao; Liu, Yuanyong; Liu, Rong

    2008-01-01

    The total atmospheric water vapor content (TAWV) and land surface temperature (LST) play important roles in meteorology, hydrology, ecology and some other disciplines. In this paper, the ENVISAT/AATSR (The Advanced Along-Track Scanning Radiometer) thermal data are used to estimate the TAWV and LST over the Loess Plateau in China by using a practical split window algorithm. The distribution of the TAWV is accord with that of the MODIS TAWV products, which indicates that the estimation of the total atmospheric water vapor content is reliable. Validations of the LST by comparing with the ground measurements indicate that the maximum absolute derivation, the maximum relative error and the average relative error is 4.0K, 11.8% and 5.0% respectively, which shows that the retrievals are believable; this algorithm can provide a new way to estimate the LST from AATSR data. PMID:27879795

  8. Ozone, water vapor, and temperature anomalies associated with atmospheric blocking events over Eastern Europe in spring - summer 2010

    Science.gov (United States)

    Sitnov, S. A.; Mokhov, I. I.; Lupo, A. R.

    2017-09-01

    Using data from the AIRS satellite instrument (V6, L3), ozone, water vapor (WV), and temperature anomalies associated with the relatively short spring atmospheric blocking event and anomalously prolonged summer block over European Russia (ER) in 2010 are analyzed. Within the domain of the blocking anticyclones, negative total column ozone (TCO) anomalies and positive total column water vapor (TCWV) anomalies reaching the values of -25 and -32 Dobson Units (DU) and 10 and 11 kg m-2 during the spring and summer blocks are observed, respectively. Conversely, within the regions adjacent to the anticyclones to the west and east, positive TCO anomalies (77 and 45 DU) and negative TCWV anomalies (-3 and -4 kg m-2) are found. These TCO and TCWV anomalies are conditioned by the regional atmospheric circulation associated with the strong omega-type blocking. The TCO deficit and TCWV surplus within the atmospheric blocking domain are explained primarily by the poleward advection of subtropical air with low TCO and high TCWV content and tropopause uplift. The TCO and TCWV anomalies are also associated with quasi-stationary Rossby wave trains that accompanied these blocking events. An analysis of the anomaly vertical structure shows that the marked TCO decrease is primarily due to the lower stratospheric ozone decrease, while the strong TCWV increase is mainly the result of an increase of lower tropospheric WV content. The possible role of photochemical ozone destruction in the lower stratosphere due to WV advection within the blocked regions is also discussed. Vertical profiles of the thermal anomalies during both atmospheric blocking events reveal dipole-like structures characterized by positive temperature anomalies in the troposphere and negative anomalies in the lower stratosphere.

  9. Absorption cooling sources atmospheric emissions decrease by implementation of simple algorithm for limiting temperature of cooling water

    Directory of Open Access Journals (Sweden)

    Wojdyga Krzysztof

    2017-01-01

    Full Text Available Constant strive to improve the energy efficiency forces carrying out activities aimed at reduction of energy consumption hence decreasing amount of contamination emissions to atmosphere. Cooling demand, both for air-conditioning and process cooling, plays an increasingly important role in the balance of Polish electricity generation and distribution system in summer. During recent years' demand for electricity during summer months has been steadily and significantly increasing leading to deficits of energy availability during particularly hot periods. This causes growing importance and interest in trigeneration power generation sources and heat recovery systems producing chilled water. Key component of such system is thermally driven chiller, mostly absorption, based on lithium-bromide and water mixture. Absorption cooling systems also exist in Poland as stand-alone systems, supplied with heating from various sources, generated solely for them or recovered as waste or useless energy. The publication presents a simple algorithm, designed to reduce the amount of heat for the supply of absorption chillers producing chilled water for the purposes of air conditioning by reducing the temperature of the cooling water, and its impact on decreasing emissions of harmful substances into the atmosphere. Scale of environmental advantages has been rated for specific sources what enabled evaluation and estimation of simple algorithm implementation to sources existing nationally.

  10. Absorption cooling sources atmospheric emissions decrease by implementation of simple algorithm for limiting temperature of cooling water

    Science.gov (United States)

    Wojdyga, Krzysztof; Malicki, Marcin

    2017-11-01

    Constant strive to improve the energy efficiency forces carrying out activities aimed at reduction of energy consumption hence decreasing amount of contamination emissions to atmosphere. Cooling demand, both for air-conditioning and process cooling, plays an increasingly important role in the balance of Polish electricity generation and distribution system in summer. During recent years' demand for electricity during summer months has been steadily and significantly increasing leading to deficits of energy availability during particularly hot periods. This causes growing importance and interest in trigeneration power generation sources and heat recovery systems producing chilled water. Key component of such system is thermally driven chiller, mostly absorption, based on lithium-bromide and water mixture. Absorption cooling systems also exist in Poland as stand-alone systems, supplied with heating from various sources, generated solely for them or recovered as waste or useless energy. The publication presents a simple algorithm, designed to reduce the amount of heat for the supply of absorption chillers producing chilled water for the purposes of air conditioning by reducing the temperature of the cooling water, and its impact on decreasing emissions of harmful substances into the atmosphere. Scale of environmental advantages has been rated for specific sources what enabled evaluation and estimation of simple algorithm implementation to sources existing nationally.

  11. Retrieval techniques and information content analysis to improve remote sensing of atmospheric water vapor, liquid water and temperature from ground-based microwave radiometer measurements

    Science.gov (United States)

    Sahoo, Swaroop

    Observation of profiles of temperature, humidity and winds with sufficient accuracy and fine vertical and temporal resolution are needed to improve mesoscale weather prediction, track conditions in the lower to mid-troposphere, predict winds for renewable energy, inform the public of severe weather and improve transportation safety. In comparing these thermodynamic variables, the absolute atmospheric temperature varies only by 15%; in contrast, total water vapor may change by up to 50% over several hours. In addition, numerical weather prediction (NWP) models are initialized using water vapor profile information, so improvements in their accuracy and resolution tend to improve the accuracy of NWP. Current water vapor profile observation systems are expensive and have insufficient spatial coverage to observe humidity in the lower to mid-troposphere. To address this important scientific need, the principal objective of this dissertation is to improve the accuracy, vertical resolution and revisit time of tropospheric water vapor profiles retrieved from microwave and millimeter-wave brightness temperature measurements. This dissertation advances the state of knowledge of retrieval of atmospheric water vapor from microwave brightness temperature measurements. It focuses on optimizing two information sources of interest for water vapor profile retrieval, i.e. independent measurements and background data set size. From a theoretical perspective, it determines sets of frequencies in the ranges of 20-23, 85-90 and 165-200 GHz that are optimal for water vapor retrieval from each of ground-based and airborne radiometers. The maximum number of degrees of freedom for the selected frequencies for ground-based radiometers is 5-6, while the optimum vertical resolution is 0.5 to 1.5 km. On the other hand, the maximum number of degrees of freedom for airborne radiometers is 8-9, while the optimum vertical resolution is 0.2 to 0.5 km. From an experimental perspective, brightness

  12. Observation of a strong inverse temperature dependence for the opacity of atmospheric water vapor in the mm continuum near 280 GHz

    Science.gov (United States)

    Emmons, Louisa K.; De Zafra, Robert L.

    1990-01-01

    Results are presented of the field measurements of atmospheric opacity at 278 GHz (9.3/cm) conducted at the McMurdo Station (Antarctica) during the austral springs of 1986 and 1987, in conjunction with balloon measurements of water vapor profile and total column density, showing a strong inverse temperature dependence when normalized to precipitable water vapor. The value of measured opacity per mm of precipitable water vapor (PWV) is roughly two times greater at -35 C than at -10 C and three times greater than measurements at +25 C reported by Zammit and Ade (1981). Various theories proposed to explain excess absorption in continuum regions are reviewed.

  13. Electronic quenching of OH(A) by water in atmospheric pressure plasmas and its influence on the gas temperature determination by OH(A-X) emission

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, Peter; Schram, Daan C [Department of Applied Physics, Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven (Netherlands); Iza, Felipe; Kong, Michael G [Department of Electronic and Electrical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom); Guns, Peter; Lauwers, Daniel; Leys, Christophe [Department of Applied Physics, Ghent University, Jozef Plateaustraat 22, B-9000 Ghent (Belgium); Gonzalvo, Yolanda Aranda [Plasma and Surface Analysis Division, Hiden Analytical Ltd, 420 Europa Boulevard, Warrington WA5 7UN (United Kingdom)], E-mail: p.j.bruggeman@tue.nl

    2010-02-15

    In this paper it is shown that electronic quenching of OH(A) by water prevents thermalization of the rotational population distribution of OH(A). This means that the observed ro-vibrational OH(A-X) emission band is (at least partially) an image of the formation process and is determined not only by the gas temperature. The formation of negative ions and clusters for larger water concentrations can contribute to the non-equilibrium. The above is demonstrated in RF excited atmospheric pressure glow discharges in He-water mixtures in a parallel metal plate reactor by optical emission spectroscopy. For this particular case a significant overpopulation of high rotational states appears around 1000 ppm H{sub 2}O in He. The smallest temperature parameter of a non-Boltzmann (two-temperature) distribution fitted to the experimental spectrum of OH(A-X) gives a good representation of the gas temperature. Only the rotational states with the smallest rotational numbers (J {<=} 7) are thermalized and representative for the gas temperature.

  14. Terrestrial atmosphere, water and astrobiology

    Directory of Open Access Journals (Sweden)

    Coradini M.

    2010-12-01

    Full Text Available Primitive life, defined as a chemical system capable to transfer its molecular information via self-replication and also capable to evolve, originated about 4 billion years ago from the processing of organic molecules by liquid water. Terrestrial atmosphere played a key role in the process by allowing the permanent presence of liquid water and by participating in the production of carbon-based molecules. Water molecules exhibit specific properties mainly due to a dense network of hydrogen bonds. The carbon-based molecules were either home made in the atmosphere and/or in submarine hydrothermal systems or delivered by meteorites and micrometeorites. The search for possible places beyond the earth where the trilogy atmosphere/water/life could exist is the main objective of astrobiology. Within the Solar System, exploration missions are dedicated to Mars, Europa, Titan and the icy bodies. The discovery of several hundreds of extrasolar planets opens the quest to the whole Milky Way.

  15. temperature fluctuation inside inert atmosphere silos

    African Journals Online (AJOL)

    This research was conducted to study temperature fluctuation inside the inert atmosphere silos loaded with wheat, compare the temperature fluctuation across the top, middle and bottom part of the silo in relation to the ambient temperature. Temperature readings of the ambient and at the top, middle and bottom part of the ...

  16. Retrieval of atmospheric-temperature and water-vapor profiles by use of combined satellite and ground-based infrared spectral-radiance measurements.

    Science.gov (United States)

    Ho, Shu-Peng; Smith, William L; Huang, Hung-Lung

    2002-07-10

    A nonlinear sounding retrieval algorithm is used to produce vertical-temperature and water-vapor profiles from coincident observations taken by the airborne High-resolution Interferometer Sounder (HIS) and the ground-based Atmospheric Emitted Radiance Interferometer (AERI) during the SUbsonic Contrails and Clouds Effects Special Study (SUCCESS). Also, clear sky Geostationary Operational Environmental Satellite (GOES) and AERI radiance measurements, achieved on a daily real-time basis at the Department of Energy's Oklahoma CART (Cloud and Radiation Testbed) site, are used to demonstrate the current profiling capability by use of simultaneous geostationary satellite and ground-based remote sensing observations under clear-sky conditions. The discrepancy principle, a method to find the proper smoothing parameters from the minimum value between the normalized spectral residual norm and the a priori upper bound, is used to demonstrate the feasibility and effectiveness of on-line simultaneous tuning of the multiple weighting and smoothing parameters from the combined satellite/airborne and ground-based measurements for the temperature and water-vapor retrieval in this nonlinear-retrieval process. An objective method to determine the degrees of freedom (d.f.) of the observation signal is derived. The d.f. of the radiance signal for the combined GOES and AERI measurements is larger than that for either instrument alone; while the d.f. of the observation signal for the combined GOES and AERI measurements is larger than that for either instrument alone and of the combined GOES and AERI measurements. The use of simultaneous clear-sky AERI and GOES data now provides improved vertical temperature and moisture soundings on an hourly basis for use in the Atmospheric Radiation Measurement program [J. Appl. Meteorol. 37, 875 (1998)].

  17. temperature fluctuation inside inert atmosphere silos

    African Journals Online (AJOL)

    user

    TEMPERATURE FLUCTUATION INSIDE INERT ATMOSPHERE SILOS. E. S. Ajayi, et al. Nigerian Journal of Technology. Vol. 35, No. 3, July 2016. 643 also resist heat flow from solar radiation from outside. This is usually achieved by painting the silo wall with white paint. Some of the advantages of inert atmosphere storage ...

  18. temperature fluctuation inside inert atmosphere silos

    African Journals Online (AJOL)

    user

    This research was conducted to study temperature fluctuation inside the inert atmosphere silos loaded with wheat, compare ... gases most especially carbondioxide (CO2) is due to safety of ... even to agriculture and resistance of pests to some.

  19. Low Temperature Atmospheric Pressure Plasma Sterilization Shower

    Science.gov (United States)

    Gandhiraman, R. P.; Beeler, D.; Meyyappan, M.; Khare, B. N.

    2012-10-01

    Low-temperature atmospheric pressure plasma sterilization shower to address both forward and backward biological contamination issues is presented. The molecular effects of plasma exposure required to sterilize microorganisms is also analysed.

  20. NOAA NOS SOS, EXPERIMENTAL - Water Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NOS SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have water temperature data. *These services are for testing and evaluation...

  1. Sensitivity of the atmospheric water cycle to corrections of the sea surface temperature bias over southern Africa in a regional climate model

    Science.gov (United States)

    Weber, Torsten; Haensler, Andreas; Jacob, Daniela

    2017-12-01

    Regional climate models (RCMs) have been used to dynamically downscale global climate projections at high spatial and temporal resolution in order to analyse the atmospheric water cycle. In southern Africa, precipitation pattern were strongly affected by the moisture transport from the southeast Atlantic and southwest Indian Ocean and, consequently, by their sea surface temperatures (SSTs). However, global ocean models often have deficiencies in resolving regional to local scale ocean currents, e.g. in ocean areas offshore the South African continent. By downscaling global climate projections using RCMs, the biased SSTs from the global forcing data were introduced to the RCMs and affected the results of regional climate projections. In this work, the impact of the SST bias correction on precipitation, evaporation and moisture transport were analysed over southern Africa. For this analysis, several experiments were conducted with the regional climate model REMO using corrected and uncorrected SSTs. In these experiments, a global MPI-ESM-LR historical simulation was downscaled with the regional climate model REMO to a high spatial resolution of 50 × 50 km2 and of 25 × 25 km2 for southern Africa using a double-nesting method. The results showed a distinct impact of the corrected SST on the moisture transport, the meridional vertical circulation and on the precipitation pattern in southern Africa. Furthermore, it was found that the experiment with the corrected SST led to a reduction of the wet bias over southern Africa and to a better agreement with observations as without SST bias corrections.

  2. Temperature variability over the tropical middle atmosphere

    Directory of Open Access Journals (Sweden)

    K. Mohanakumar

    1994-04-01

    Full Text Available A study on the variability of temperature in the tropical middle atmosphere over Thumba (8 32' N, 76 52' E, located at the southern part of India, has been carried out based on rocket observations for a period of 20 years, extending from 1970 to 1990. The rocketsonde-derived mean temperatures over Thumba are corrected prior to 1978 and then compared with the middle atmospheric reference model developed from satellite observations and Solar Mesosphere Explorer (SME satellite data. Temperature variability at every 1 km interval in the 25-75 km region was analysed. The tropical stratosphere is found to be highly stable, whereas considerable variability is noted in the middle mesosphere. The effect of seasonal cycle is least in the lower stratosphere. Annual and semi-annual oscillations in temperature are the primary oscillations in the tropical middle atmosphere. Annual temperature oscillations are dominant in the mesosphere and semi-annual oscillations are strong in the stratosphere. The stratopause region is noted to be the part of the middle atmosphere least sensitive to the changes in solar activity and long-term variability.

  3. Atmospheric correction for sea surface temperature retrieval from ...

    Indian Academy of Sciences (India)

    An atmospheric correction method has been applied on sea surface temperature (SST) retrieval algorithm using Very High Resolution Radiometer (VHRR) single window channel radiance data onboard Kalpana satellite (K-SAT). The technique makes use of concurrent water vapour fields available from Microwave Imager ...

  4. The STARTWAVE atmospheric water database

    Directory of Open Access Journals (Sweden)

    J. Morland

    2006-01-01

    Full Text Available The STARTWAVE (STudies in Atmospheric Radiative Transfer and Water Vapour Effects project aims to investigate the role which water vapour plays in the climate system, and in particular its interaction with radiation. Within this framework, an ongoing water vapour database project was set up which comprises integrated water vapour (IWV measurements made over the last ten years by ground-based microwave radiometers, Global Positioning System (GPS receivers and sun photometers located throughout Switzerland at altitudes between 330 and 3584 m. At Bern (46.95° N, 7.44° E tropospheric and stratospheric water vapour profiles are obtained on a regular basis and integrated liquid water, which is important for cloud characterisation, is also measured. Additional stratospheric water vapour profiles are obtained by an airborne microwave radiometer which observes large parts of the northern hemisphere during yearly flight campaigns. The database allows us to validate the various water vapour measurement techniques. Comparisons between IWV measured by the Payerne radiosonde with that measured at Bern by two microwave radiometers, GPS and sun photometer showed instrument biases within ±0.5 mm. The bias in GPS relative to sun photometer over the 2001 to 2004 period was –0.8 mm at Payerne (46.81° N, 6.94° E, 490 m, which lies in the Swiss plains north of the Alps, and +0.6 mm at Davos (46.81° N, 9.84° E, 1598 m, which is located within the Alps in the eastern part of Switzerland. At Locarno (46.18° N, 8.78° E, 366 m, which is located on the south side of the Alps, the bias is +1.9 mm. The sun photometer at Locarno was found to have a bias of –2.2 mm (13% of the mean annual IWV relative to the data from the closest radiosonde station at Milano. This result led to a yearly rotation of the sun photometer instruments between low and high altitude stations to improve the calibrations. In order to demonstrate the capabilites of the database for studying

  5. Atmospheric temperature sounding with the Fourier spectrometer

    Science.gov (United States)

    Asmus, V. V.; Timofeyev, Yu. M.; Polyakov, A. V.; Uspensky, A. B.; Golovin, Yu. M.; Zavelevich, F. S.; Kozlov, D. A.; Rublev, A. N.; Kukharsky, A. V.; Pyatkin, V. P.; Rusin, E. V.

    2017-07-01

    Preliminary results of a space experiment using the IKFS-2 infrared sounder (Meteor-M2 satellite) showed high-quality of measurements of spectra of the outgoing thermal radiation of the atmosphere-surface system and the adequacy of developed IR radiation atmospheric models in the 15-μm carbon gas absorption band used to recover the vertical profiles of the atmospheric temperature. Outgoing radiation spectra measured by IKFS-2 instruments make it possible to restore vertical temperature profiles with errors close to 1K in most of the 0-30 km high-altitude region, except for the lower troposphere and altitudes above 30 km, where these errors are close to 2-3K.

  6. Validation of HITEMP-2010 for carbon dioxide and water vapour at high temperatures and atmospheric pressures in 450-7600cm-1 spectral range

    DEFF Research Database (Denmark)

    Alberti, Michael; Weber, Roman; Mancini, Marco

    2015-01-01

    The objective of the work is validation of HITEMP-2010 at atmospheric pressures and temperatures reaching 1770K. To this end, spectral transmissivities at 1cm-1 resolution and excellent signal-to-noise-ratio have been measured for 22 CO2/H2O/N2 mixtures. In this paper we consider the 450cm-1-7600...... absorption lines listed in HITEMP-2010 have not been observed in the measured spectra and/or are wrongly scaled with temperature. The complete (there are no missing bands) spectra spanning the 450-7600cm-1 range are appended as Supplementary Material....

  7. Reconciling atmospheric temperatures in the early Archean

    DEFF Research Database (Denmark)

    Pope, Emily Catherine; Bird, Dennis K.; Rosing, Minik Thorleif

    Average surface temperatures of Earth in the Archean remain unresolved despite decades of diverse approaches to the problem. As in the present, early Earth climates were complex systems dependent on many variables. With few constraints on such variables, climate models must be relatively simplistic...... rock record. The goal of this study is to compile and reconcile Archean geologic and geochemical features that are in some way controlled by surface temperature and/or atmospheric composition, so that at the very least paleoclimate models can be checked by physical limits. Data used to this end include...

  8. Tagging Water Sources in Atmospheric Models

    Science.gov (United States)

    Bosilovich, M.

    2003-01-01

    Tagging of water sources in atmospheric models allows for quantitative diagnostics of how water is transported from its source region to its sink region. In this presentation, we review how this methodology is applied to global atmospheric models. We will present several applications of the methodology. In one example, the regional sources of water for the North American Monsoon system are evaluated by tagging the surface evaporation. In another example, the tagged water is used to quantify the global water cycling rate and residence time. We will also discuss the need for more research and the importance of these diagnostics in water cycle studies.

  9. DMSP SSMT/2 - Atmospheric Water Vapor Profiler

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SSM/T-2 sensor is a five channel, total power microwave radiometer with three channels situated symmetrically about the 183.31 GHz water vapor resonance line and...

  10. Atmospheric precipitable water in Jos, Nigeria | Utah | Nigerian ...

    African Journals Online (AJOL)

    ... the atmosphere of Jos in the month of August has a value of 4.44±0.47cm, while the minimum of 1.54±0.47cm was found in the month of February. The regression models have been presented and discussed. Keywords: Precipitable water vapour, dew-point temperature, relative humidity. Nigerian Journal of Physics Vol.

  11. Soil Water and Temperature System (SWATS) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Bond, D

    2005-01-01

    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the SGP climate research site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.

  12. Temperature-Dependent Henry's Law Constants of Atmospheric Amines.

    Science.gov (United States)

    Leng, Chunbo; Kish, J Duncan; Roberts, Jason E; Dwebi, Iman; Chon, Nara; Liu, Yong

    2015-08-20

    There has been growing interest in understanding atmospheric amines in the gas phase and their mass transfer to the aqueous phase because of their potential roles in cloud chemistry, secondary organic aerosol formation, and the fate of atmospheric organics. Temperature-dependent Henry's law constants (KH) of atmospheric amines, a key parameter in atmospheric chemical transport models to account for mass transfer, are mostly unavailable. In this work, we investigated gas-liquid equilibria of five prevalent atmospheric amines, namely 1-propylamine, di-n-propylamine, trimethylamine, allylamine, and 4-methylmorpholine using bubble column technique. We reported effective KH, intrinsic KH, and gas phase diffusion coefficients of these species over a range of temperatures relevant to the lower atmosphere for the first time. The measured KH at 298 K and enthalpy of solution for 1-propylamine, di-n-propylamine, trimethylamine, allylamine, and 4-methylmorpholine are 61.4 ± 4.9 mol L(-1) atm(-1) and -49.0 ± 4.8 kJ mol(-1); 14.5 ± 1.2 mol L(-1) atm(-1) and -72.5 ± 6.8 kJ mol(-1); 8.9 ± 0.7 mol L(-1) atm(-1) and -49.6 ± 4.7 kJ mol(-1); 103.5 ± 10.4 mol L(-1) atm(-1) and -42.7 ± 4.3 kJ mol(-1); and 952.2 ± 114.3 mol L(-1) atm(-1) and -82.7 ± 9.7 kJ mol(-1), respectively. In addition, we evaluated amines' characteristic times to achieve gas-liquid equilibrium for partitioning between gas and aqueous phases. Results show gas-liquid equilibrium can be rapidly established at natural cloud droplets surface, but the characteristic times may be extended substantially at lower temperatures and pHs. Moreover, our findings imply that atmospheric amines are more likely to exist in cloud droplets, and ambient temperature, water content, and pH of aerosols play important roles in their partitioning.

  13. TES/Aura L2 Atmospheric Temperatures Limb V005

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric vertical profile estimates and associated errors (diagonals and covariance matrices), along with retrieved surface temperature, cloud effective optical...

  14. TES/Aura L2 Atmospheric Temperatures Nadir V004

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric vertical profile estimates and associated errors (diagonals and covariance matrices), along with retrieved surface temperature, cloud effective optical...

  15. TES/Aura L2 Atmospheric Temperatures Nadir V006

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric vertical profile estimates and associated errors (diagonals and covariance matrices), along with retrieved surface temperature, cloud effective optical...

  16. TES/Aura L2 Atmospheric Temperatures Limb V003

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric vertical profile estimates and associated errors (diagonals and covariance matrices), along with retrieved surface temperature, cloud effective optical...

  17. TES/Aura L2 Atmospheric Temperatures Nadir V003

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric vertical profile estimates and associated errors (diagonals and covariance matrices), along with retrieved surface temperature, cloud effective optical...

  18. TES/Aura L2 Atmospheric Temperatures Limb V004

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric vertical profile estimates and associated errors (diagonals and covariance matrices), along with retrieved surface temperature, cloud effective optical...

  19. Modelling water temperature in TOXSWA

    NARCIS (Netherlands)

    Jacobs, C.M.J.; Deneer, J.W.; Adriaanse, P.I.

    2010-01-01

    A reasonably accurate estimate of the water temperature is necessary for a good description of the degradation of plant protection products in water which is used in the surface water model TOXSWA. Based on a consideration of basic physical processes that describe the influence of weather on the

  20. NOS CO-OPS Meteorological Data, Water Temperature, 6-Minute

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has Water Temperature data from NOAA NOS Center for Operational Oceanographic Products and Services (CO-OPS). WARNING: These preliminary data have not...

  1. NOAA NDBC SOS, 2006-present, sea_water_temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have sea_water_temperature data. Because of the nature of SOS requests,...

  2. MODIS/Aqua Temperature and Water Vapor Profiles 5-Min L2 Swath 5km - NRT

    Data.gov (United States)

    National Aeronautics and Space Administration — The level-2 MODIS Temperature and Water Vapor Profile Product MYD07_L2 consists of 30 gridded parameters related to atmospheric stability, atmospheric temperature...

  3. Atmospheric solar heating rate in the water vapor bands

    Science.gov (United States)

    Chou, Ming-Dah

    1986-01-01

    The total absorption of solar radiation by water vapor in clear atmospheres is parameterized as a simple function of the scaled water vapor amount. For applications to cloudy and hazy atmospheres, the flux-weighted k-distribution functions are computed for individual absorption bands and for the total near-infrared region. The parameterization is based upon monochromatic calculations and follows essentially the scaling approximation of Chou and Arking, but the effect of temperature variation with height is taken into account in order to enhance the accuracy. Furthermore, the spectral range is extended to cover the two weak bands centered at 0.72 and 0.82 micron. Comparisons with monochromatic calculations show that the atmospheric heating rate and the surface radiation can be accurately computed from the parameterization. Comparisons are also made with other parameterizations. It is found that the absorption of solar radiation can be computed reasonably well using the Goody band model and the Curtis-Godson approximation.

  4. Water loss from Venus: Implications for the Earth's early atmosphere

    Science.gov (United States)

    Richardson, S. M.; Pollack, J. B.; Reynolds, R. T.

    1985-01-01

    The atmosphere of Venus outgassed rapidly as a result of planetary heating during accretion, resulting in massive water loss. The processes affecting atmospheric chemistry following accretion have consisted largely of hydrogen escape and internal re-equilibrium. The initial bulk composition of Venus and Earth are assumed to have been roughly similar. Chemical speciation on Venus was controlled by the temperature and oxygen buffering capacity of the surface magma. It is also assumed that the surfaces of planetary bodies of the inner solar system were partly or wholly molten during accretion with a temperature estimated at 1273 to 1573 K. To investigate the range of reasonable initial atmospheric compositions on Venus, limits have to be set for the proportion of total hydrogen and the buffered fugacity of oxygen. Using the C/H ratio of 0.033 set for Earth, virtually all of the water generated during outgassing must later have been lost in order to bring the current CO2/H2O ratio for Venus up to its observed value of 10 sup 4 to 10 sup 5. The proportion of H2O decreases in model atmospheres with successfully higher C/H values, ultimately approaching the depleted values currently observed on Venus. Increasing C/H also results in a rapid increase in CO/H2O and provides an efficient mechanism for water loss by the reaction CO+H2O = CO2 + H2. This reaction, plus water loss mechanisms involving crustal iron, could have removed a very large volume of water from the Venusian atmosphere, even at a low C/H value.

  5. Gas-exchange, water use efficiency and yield responses of elite potato (Solanum tuberosum L.) cultivars to changes in atmospheric carbon dioxide concentration, temperature and relative humidity

    DEFF Research Database (Denmark)

    Kaminski, Kacper Piotr; Sørensen, Kirsten Kørup; Nielsen, Kåre Lehmann

    2014-01-01

    In spite of the agricultural importance of potato (Solanum tuberosum L.), most plant physiology studies have not accounted for the effect of the interaction between elevated carbon dioxide concentration ([CO2]) and other consequences of climate change on WUE. In 2010, a first controlled environment...... and stomatal conductance (high temperature) or a combination of those two responses (moderate temperature). The results signify that beneficial effects of potato plant cultivation at elevated [CO2] comprise increased WUE at various temperature levels, but due to acclimation of photosynthesis the increase...

  6. Atmospheric Water Balance and Variability in the MERRA-2 Reanalysis

    Science.gov (United States)

    Bosilovich, Michael G.; Robertson, Franklin R.; Takacs, Lawrence; Molod, Andrea; Mocko, David

    2017-01-01

    Closing and balancing Earths global water cycle remains a challenge for the climate community. Observations are limited in duration, global coverage, and frequency, and not all water cycle terms are adequately observed. Reanalyses aim to fill the gaps through the assimilation of as many atmospheric water vapor observations as possible. Former generations of reanalyses have demonstrated a number of systematic problems that have limited their use in climate studies, especially regarding low-frequency trends. This study characterizes the NASA Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) water cycle relative to contemporary reanalyses and observations. MERRA-2 includes measures intended to minimize the spurious global variations related to in homogeneity in the observational record. The global balance and cycling of water from ocean to land is presented, with special attention given to the water vapor analysis increment and the effects of the changing observing system. While some systematic regional biases can be identified,MERRA-2 produces temporally consistent time series of total column water and transport of water from ocean to land. However, the interannual variability of ocean evaporation is affected by the changing surface-wind-observing system, and precipitation variability is closely related to the evaporation. The surface energy budget is also strongly influenced by the interannual variability of the ocean evaporation. Furthermore, evaluating the relationship of temperature and water vapor indicates that the variations of water vapor with temperature are weaker in satellite data reanalyses, not just MERRA-2, than determined by observations, atmospheric models, or reanalyses without water vapor assimilation.

  7. Experimental and Numerical Studies of Atmosphere Water Interactions

    KAUST Repository

    Bou-Zeid, Elie

    2011-07-04

    Understanding and quantifying the interaction of the atmosphere with underlying water surfaces is of great importance for a wide range of scientific fields such as water resources management, climate studies of ocean-atmosphere exchange, and regional weat

  8. Fast Temperature Sensor for use in Atmospheric Sciences Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Southwest Sciences proposes a novel sensor to measure atmospheric temperature at high frequency (10 Hz) and with high precision and accuracy (0.1 degrees C)....

  9. ATMOSPHERIC CIRCULATION OF HOT JUPITERS: DAYSIDE–NIGHTSIDE TEMPERATURE DIFFERENCES

    Energy Technology Data Exchange (ETDEWEB)

    Komacek, Thaddeus D.; Showman, Adam P., E-mail: tkomacek@lpl.arizona.edu [Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721 (United States)

    2016-04-10

    The full-phase infrared light curves of low-eccentricity hot Jupiters show a trend of increasing dayside-to-nightside brightness temperature difference with increasing equilibrium temperature. Here, we present a three-dimensional model that explains this relationship, in order to provide insight into the processes that control heat redistribution in tidally locked planetary atmospheres. This three-dimensional model combines predictive analytic theory for the atmospheric circulation and dayside–nightside temperature differences over a range of equilibrium temperatures, atmospheric compositions, and potential frictional drag strengths with numerical solutions of the circulation that verify this analytic theory. The theory shows that the longitudinal propagation of waves mediates dayside–nightside temperature differences in hot Jupiter atmospheres, analogous to the wave adjustment mechanism that regulates the thermal structure in Earth’s tropics. These waves can be damped in hot Jupiter atmospheres by either radiative cooling or potential frictional drag. This frictional drag would likely be caused by Lorentz forces in a partially ionized atmosphere threaded by a background magnetic field, and would increase in strength with increasing temperature. Additionally, the amplitude of radiative heating and cooling increases with increasing temperature, and hence both radiative heating/cooling and frictional drag damp waves more efficiently with increasing equilibrium temperature. Radiative heating and cooling play the largest role in controlling dayside–nightside temperature differences in both our analytic theory and numerical simulations, with frictional drag only being important if it is stronger than the Coriolis force. As a result, dayside–nightside temperature differences in hot Jupiter atmospheres increase with increasing stellar irradiation and decrease with increasing pressure.

  10. Atmospheric Circulation of Hot Jupiters: Dayside-Nightside Temperature Differences

    Science.gov (United States)

    Komacek, Thaddeus D.; Showman, Adam P.

    2016-04-01

    The full-phase infrared light curves of low-eccentricity hot Jupiters show a trend of increasing dayside-to-nightside brightness temperature difference with increasing equilibrium temperature. Here, we present a three-dimensional model that explains this relationship, in order to provide insight into the processes that control heat redistribution in tidally locked planetary atmospheres. This three-dimensional model combines predictive analytic theory for the atmospheric circulation and dayside-nightside temperature differences over a range of equilibrium temperatures, atmospheric compositions, and potential frictional drag strengths with numerical solutions of the circulation that verify this analytic theory. The theory shows that the longitudinal propagation of waves mediates dayside-nightside temperature differences in hot Jupiter atmospheres, analogous to the wave adjustment mechanism that regulates the thermal structure in Earth’s tropics. These waves can be damped in hot Jupiter atmospheres by either radiative cooling or potential frictional drag. This frictional drag would likely be caused by Lorentz forces in a partially ionized atmosphere threaded by a background magnetic field, and would increase in strength with increasing temperature. Additionally, the amplitude of radiative heating and cooling increases with increasing temperature, and hence both radiative heating/cooling and frictional drag damp waves more efficiently with increasing equilibrium temperature. Radiative heating and cooling play the largest role in controlling dayside-nightside temperature differences in both our analytic theory and numerical simulations, with frictional drag only being important if it is stronger than the Coriolis force. As a result, dayside-nightside temperature differences in hot Jupiter atmospheres increase with increasing stellar irradiation and decrease with increasing pressure.

  11. temperature fluctuation inside inert atmosphere silos

    African Journals Online (AJOL)

    user

    foreigners and involves the use of sophisticated gadgets that cannot be easily adopted by farmer [3]. The factors affecting temperature of grains in store includes the bin or silo size, wall insulation, shading of the bin or silo complex, heat generation by the grain and the surrounding, material of construction and grain agitation ...

  12. Escape of atmospheres and loss of water

    Science.gov (United States)

    Hunten, D. M.; Donahue, T. M.; Walker, J. C. G.; Kasting, J. F.

    1989-01-01

    The properties and limitations of several loss processes for atmospheric gases are presented and discussed. They include thermal loss (Jeans and hydrodynamic); nonthermal loss (all processes involve charged particles); and impact erosion, including thermal escape from a molten body heated by rapid accretion. Hydrodynamic escape, or 'blowoff', is of particular interest because it offers the prospect of processing large quantities of gas and enriching the remainder in heavy elements and isotopes. In a second part, the water budgets and likely evolutionary histories of Venus, Earth and Mars are assessed. Although it is tempting to associate the great D/H enrichment on Venus with loss of a large initial endowment, a steady state with juvenile water (perhaps from comets) is equally probable.

  13. Calculations of atmospheric transmittance in the 11 micrometer window for estimating skin temperature from VISSR infrared brightness temperatures

    Science.gov (United States)

    Chesters, D.

    1984-01-01

    An algorithm for calculating the atmospheric transmittance in the 10 to 20 micro m spectral band from a known temperature and dewpoint profile, and then using this transmittance to estimate the surface (skin) temperature from a VISSR observation in the 11 micro m window is presented. Parameterizations are drawn from the literature for computing the molecular absorption due to the water vapor continuum, water vapor lines, and carbon dioxide lines. The FORTRAN code is documented for this application, and the sensitivity of the derived skin temperature to variations in the model's parameters is calculated. The VISSR calibration uncertainties are identified as the largest potential source of error.

  14. Improved controlled atmosphere high temperature scanning probe microscope

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Wu, Yuehua; Jacobsen, Torben

    2013-01-01

    ) is monitored by an oxygen sensor. We present here some examples of its capabilities demonstrated by high temperature topography with simultaneously ac electrical conductance measurements during atmosphere changes, electrochemical impedance spectroscopy at various temperatures, and measurements of the surface......To locally access electrochemical active surfaces and interfaces in operando at the sub-micron scale at high temperatures in a reactive gas atmosphere is of great importance to understand the basic mechanisms in new functional materials, for instance, for energy technologies, such as solid oxide...... fuel cells and electrolyzer cells. Here, we report on advanced improvements of our original controlled atmosphere high temperature scanning probe microscope, CAHT-SPM. The new microscope can employ a broad range of the scanning probe techniques including tapping mode, scanning tunneling microscopy...

  15. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment

  16. Assessing atmospheric temperature data sets for climate studies

    Directory of Open Access Journals (Sweden)

    Magnus Cederlöf

    2016-07-01

    Full Text Available Observed near-surface temperature trends during the period 1979–2014 show large differences between land and ocean, with positive values over land (0.25–0.27 °C/decade that are significantly larger than over the ocean (0.06–0.12 °C/decade. Temperature trends in the mid-troposphere of 0.08-0.11 °C/decade, on the other hand, are similar for both land and ocean and agree closely with the ocean surface temperature trend. The lapse rate is consequently systematically larger over land than over the ocean and also shows a positive trend in most land areas. This is puzzling as a response to external warming, such as from increasing greenhouse gases, is broadly the same throughout the troposphere. The reduced tropospheric warming trend over land suggests a weaker vertical temperature coupling indicating that some of the processes in the planetary boundary layer such as inversions have a limited influence on the temperature of the free atmosphere. Alternatively, the temperature of the free atmosphere is influenced by advection of colder tropospheric air from the oceans. It is therefore suggested to use either the more robust tropospheric temperature or ocean surface temperature in studies of climate sensitivity. We also conclude that the European Centre for Medium-Range Weather Forecasts Reanalysis Interim can be used to obtain consistent temperature trends through the depth of the atmosphere, as they are consistent both with near-surface temperature trends and atmospheric temperature trends obtained from microwave sounding sensors.

  17. Water vapor measurement system in global atmospheric sampling program, appendix

    Science.gov (United States)

    Englund, D. R.; Dudzinski, T. J.

    1982-01-01

    The water vapor measurement system used in the NASA Global Atmospheric Sampling Program (GASP) is described. The system used a modified version of a commercially available dew/frostpoint hygrometer with a thermoelectrically cooled mirror sensor. The modifications extended the range of the hygrometer to enable air sample measurements with frostpoint temperatures down to -80 C at altitudes of 6 to 13 km. Other modifications were made to permit automatic, unattended operation in an aircraft environment. This report described the hygrometer, its integration with the GASP system, its calibration, and operational aspects including measurement errors. The estimated uncertainty of the dew/frostpoint measurements was + or - 1.7 Celsius.

  18. MODIS/Terra Near Real Time (NRT) Temperature and Water Vapor Profiles 5-Min L2 Swath 5km

    Data.gov (United States)

    National Aeronautics and Space Administration — The level-2 MODIS Temperature and Water Vapor Profile Product MOD07_L2 consists of 30 gridded parameters related to atmospheric stability, atmospheric temperature...

  19. MODIS/Aqua Near Real Time (NRT) Temperature and Water Vapor Profiles 5-Min L2 Swath 5km

    Data.gov (United States)

    National Aeronautics and Space Administration — The level-2 MODIS Temperature and Water Vapor Profile Product MYD07_L2 consists of 30 gridded parameters related to atmospheric stability, atmospheric temperature...

  20. Soil Water and Temperature System (SWATS) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-04-01

    The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.

  1. Temperature extremes in Western Europe and associated atmospheric anomalies

    Science.gov (United States)

    Carvalho, V. A.; Santos, J. A.

    2009-09-01

    This worḱs focal point is the analysis of temperature extremes over Western Europe in the period 1957-2007 and their relationship to large-scale anomalies in the atmospheric circulation patterns. The study is based on temperature daily time series recorded at a set of meteorological stations covering the target area. The large-scale anomalies are analyzed using data from the National Centers for Environmental Prediction reanalysis project. Firstly, a preliminary statistical analysis was undertaken in order to identify data gaps and erroneous values and to check the homogeneity of the time series, using not only elementary statistical approaches (e.g., chronograms, box-plots, scatter-plots), but also a set of non-parametric statistical tests particularly suitable for the analysis of monthly and seasonal mean temperature time series (e.g., Wald-Wolfowitz serial correlation test, Spearman and Mann-Kendall trend tests). Secondly, based on previous results, a selection of the highest quality time series was carried out. Aiming at identifying temperature extremes, we then proceed to the isolation of months with temperature values above or below pre-selected thresholds based on the empirical distribution of each time series. In particular, thresholds are based on percentiles specifically computed for each individual temperature record (data adaptive) and not on fixed values. As a result, a calendar of extremely high and extremely low monthly mean temperatures is obtained and the large-scale atmospheric conditions during each extreme are analyzed. Several atmospheric fields are considered in this study (e.g., 2-m maximum and minimum air temperature, sea level pressure, geopotential height, zonal and meridional wind components, vorticity, relative humidity) at different isobaric levels. Results show remarkably different synoptic conditions for temperature extremes in different parts of Western Europe, highlighting the different dynamical mechanisms underlying their

  2. Physisorbed Water on Silica at Mars Temperatures

    Science.gov (United States)

    Sutter, B.; Sriwatanapongse, W.; Quinn, R.; Klug, C.; Zent, A.

    2002-01-01

    The usefulness of nuclear magnetic resonance spectroscopy in probing water interactions on silica at Mars temperatures is discussed. Results indicate that two types of water occur with silica at Mars temperatures. Additional information is contained in the original extended abstract.

  3. Drinking Water Temperature Modelling in Domestic Systems

    OpenAIRE

    Moerman, A.; Blokker, M.; Vreeburg, J.; van der Hoek, J.P.

    2014-01-01

    Domestic water supply systems are the final stage of the transport process to deliver potable water to the customers’ tap. Under the influence of temperature, residence time and pipe materials the drinking water quality can change while the water passes the domestic drinking water system. According to the Dutch Drinking Water Act the drinking water temperature may not exceed the 25 °C threshold at point-of-use level. This paper provides a mathematical approach to model the heating of drinking...

  4. Determining Atmospheric Pressure Using a Water Barometer

    Science.gov (United States)

    Lohrengel, C. Frederick, II; Larson, Paul R.

    2012-01-01

    The atmosphere is an envelope of compressible gases that surrounds Earth. Because of its compressibility and nonuniform heating by the Sun, it is in constant motion. The atmosphere exerts pressure on Earth's surface, but that pressure is in constant flux. This experiment allows students to directly measure atmospheric pressure by measuring the…

  5. INTRODUCTION: Anticipated changes in the global atmospheric water cycle

    Science.gov (United States)

    Allan, Richard P.; Liepert, Beate G.

    2010-06-01

    an important example. Understanding surface solar 'dimming' and 'brightening' trends in the context of past and current changes in the water cycle are discussed in a guest editorial by Wild and Liepert (2010). The key roles anthropogenic aerosols can play on a regional scale are discussed by Lau et al (2010) through their study of the regional impact of absorbing aerosols on warming and snow melt over the Himalayas. The overarching goal of climate prediction is to provide reliable, probabilistic estimates of future changes. Relating hydrological responses back to a sound physical basis, the motivation for this special focus issue, is paramount in building confidence in anticipated changes, especially in the global water cycle. We are grateful to the reviewers and the journal editorial board for making this focus issue possible. Focus on Anticipated Changes in the Global Atmospheric Water Cycle Contents Editorials The global atmospheric water cycle Lennart Bengtsson The Earth radiation balance as driver of the global hydrological cycle Martin Wild and Beate Liepert Letters Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols William K M Lau, Maeng-Ki Kim, Kyu-Myong Kim and Woo-Seop Lee Current changes in tropical precipitation Richard P Allan, Brian J Soden, Viju O John, William Ingram and Peter Good Direct versus indirect effects of tropospheric humidity changes on the hydrologic cycle S C Sherwood How closely do changes in surface and column water vapor follow Clausius-Clapeyron scaling in climate change simulations? P A O'Gorman and C J Muller Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes Geert Lenderink and Erik van Meijgaard Are climate-related changes to the character of global-mean precipitation predictable? Graeme L Stephens and Yongxiang Hu A comparison of large scale changes in surface humidity over land in observations and CMIP3 general

  6. A new passive sampler for collecting atmospheric tritiated water vapor

    Science.gov (United States)

    Feng, Bin; Chen, Bo; Zhuo, Weihai; Zhang, Weiyuan

    2017-04-01

    A new passive sampler was developed for collecting environmental tritiated water vapor. The construction of the sampler was improved according to computational fluid dynamics (CFD) simulations in which the influence on vapor collection by the turbulence inside the sampler was considered. Through changes in temperature from 5 °C to 35 °C and relative humidity from 45% to 90%, the new sampler revealed stable performance of the sampling rate. Compared with the previous samplers, the new sampler significantly lowered the effect of wind speed. Using the adsorption kinetic curve of the sampler provided in the co-comparison experiments, the quantitative relationship between the mass of adsorbed water and the cumulative absolute humidity exposure was established. Field applications in the vicinity of a nuclear power plant show that the data obtained by the new samplers is consistent with the active measurement. The sampler was preliminarily proven to be reliable and flexible for field investigation of HTO in the atmosphere.

  7. National Coral Reef Monitoring Program: Water Temperature Data from Subsurface Temperature Recorders (STRs) deployed at coral reef sites in the Pacific Remote Island Areas from 2011 to 2016

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water temperature data are collected using subsurface temperature recorders (STRs) that aid in the monitoring of seawater temperature variability at permanent coral...

  8. National Coral Reef Monitoring Program: Water Temperature Data from Subsurface Temperature Recorders (STRs) deployed at coral reef sites in American Samoa from 2012 to 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water temperature data are collected using subsurface temperature recorders (STRs) that aid in the monitoring of seawater temperature variability at permanent coral...

  9. National Coral Reef Monitoring Program: Water Temperature Data from Subsurface Temperature Recorders (STRs) deployed at coral reef sites in the Hawaiian Archipelago from 2010 to 2016

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water temperature data are collected using subsurface temperature recorders (STRs) that aid in the monitoring of seawater temperature variability at permanent coral...

  10. National Coral Reef Monitoring Program: Water Temperature Data from Subsurface Temperature Recorders (STRs) deployed at coral reef sites in the Marianas Archipelago from 2011 to 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water temperature data are collected using subsurface temperature recorders (STRs) that aid in the monitoring of seawater temperature variability at permanent coral...

  11. Temperature extremes in Europe: overview of their driving atmospheric patterns

    Directory of Open Access Journals (Sweden)

    C. Andrade

    2012-05-01

    Full Text Available As temperature extremes have a deep impact on environment, hydrology, agriculture, society and economy, the analysis of the mechanisms underlying their occurrence, including their relationships with the large-scale atmospheric circulation, is particularly pertinent and is discussed here for Europe and in the period 1961–2010 (50 yr. For this aim, a canonical correlation analysis, coupled with a principal component analysis (BPCCA, is applied between the monthly mean sea level pressure fields, defined within a large Euro-Atlantic sector, and the monthly occurrences of two temperature extreme indices (TN10p – cold nights and TX90p – warm days in Europe. Each co-variability mode represents a large-scale forcing on the occurrence of temperature extremes. North Atlantic Oscillation-like patterns and strong anomalies in the atmospheric flow westwards of the British Isles are leading couplings between large-scale atmospheric circulation and winter, spring and autumn occurrences of both cold nights and warm days in Europe. Although summer couplings depict lower coherence between warm and cold events, important atmospheric anomalies are key driving mechanisms. For a better characterization of the extremes, the main features of the statistical distributions of the absolute minima (TNN and maxima (TXX are also examined for each season. Furthermore, statistically significant downward (upward trends are detected in the cold night (warm day occurrences over the period 1961–2010 throughout Europe, particularly in summer, which is in clear agreement with the overall warming.

  12. Micro-scale heterogeneity in water temperature | Dallas | Water SA

    African Journals Online (AJOL)

    Micro-scale heterogeneity in water temperature was examined in 6 upland sites in the Western Cape, South Africa. Hourly water temperature data converted to daily data showed that greatest differences were apparent in daily maximum temperatures between shallow- and deep-water biotopes during the warmest period of ...

  13. Surface temperatures and temperature gradient features of the US Gulf Coast waters

    Science.gov (United States)

    Huh, O. K.; Rouse, L. J., Jr.; Smith, G. W.

    1977-01-01

    Satellite thermal infrared data on the Gulf of Mexico show that a seasonal cycle exists in the horizontal surface temperature structure. In the fall, the surface temperatures of both coastal and deep waters are nearly uniform. With the onset of winter, atmospheric cold fronts, which are accompanied by dry, low temperature air and strong winds, draw heat from the sea. A band of cooler water forming on the inner shelf expands, until a thermal front develops seaward along the shelf break between the cold shelf waters and the warmer deep waters of the Gulf. Digital analysis of the satellite data was carried out in an interactive mode using a minicomputer and software. A time series of temperature profiles illustrates the temporal and spatial changes in the sea-surface temperature field.

  14. Intermediate Temperature Water Heat Pipe Tests

    Science.gov (United States)

    Devarakonda, Angirasa; Xiong, Da-Xi; Beach, Duane E.

    2005-01-01

    Heat pipes are among the most promising technologies for space radiator systems. Water heat pipes are explored in the intermediate temperature range of 400 to above 500 K. The thermodynamic and thermo-physical properties of water are reviewed in this temperature range. Test data are reported for a copper-water heat pipe. The heat pipe was tested under different orientations. Water heat pipes show promise in this temperature range. Fabrication and testing issues are being addressed.

  15. Salinity and water temperature data from the Coastal Waters of Washington/Oregon from 01 March 2001 to 31 December 2001 (NODC Accession 0001142)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Salinity and water temperature data were collected using conductivity sensor and temperature probe in the Coastal Waters of Washington/Orgen from March 1, 2001 to...

  16. Atmospheric water vapor retrieval from Landsat 8 thermal infrared images

    Science.gov (United States)

    Ren, Huazhong; Du, Chen; Liu, Rongyuan; Qin, Qiming; Yan, Guangjian; Li, Zhao-Liang; Meng, Jinjie

    2015-03-01

    Atmospheric water vapor (wv) is required for the accurate retrieval of the land surface temperature from remote sensing data and other applications. This work aims to estimate wv from Landsat 8 Thermal InfraRed Sensor (TIRS) images using a new modified split-window covariance-variance ratio (MSWCVR) method on the basis of the brightness temperatures of two thermal infrared bands. Results show that the MSWCVR method can theoretically retrieve wv with an accuracy better than 0.3 g/cm2 for dry atmosphere (wv Robotic Network) ground-measured data and MODIS (Moderate Resolution Imaging Spectroradiometer) products. The results show that the retrieved wv from the TIRS data is highly correlated with the wv of AERONET and MODIS but is generally larger. This difference was probably attributed to the uncertainty of radiometric calibration and stray light coming outside from field of view of TIRS instrument in the current images. Consequently, the data quality and radiometric calibration of the TIRS data should be improved in the future.

  17. Haze heats Pluto’s atmosphere yet explains its cold temperature

    Science.gov (United States)

    Zhang, Xi; Strobel, Darrell F.; Imanaka, Hiroshi

    2017-11-01

    Pluto’s atmosphere is cold and hazy. Recent observations have shown it to be much colder than predicted theoretically, suggesting an unknown cooling mechanism. Atmospheric gas molecules, particularly water vapour, have been proposed as a coolant; however, because Pluto’s thermal structure is expected to be in radiative-conductive equilibrium, the required water vapour would need to be supersaturated by many orders of magnitude under thermodynamic equilibrium conditions. Here we report that atmospheric hazes, rather than gases, can explain Pluto’s temperature profile. We find that haze particles have substantially larger solar heating and thermal cooling rates than gas molecules, dominating the atmospheric radiative balance from the ground to an altitude of 700 kilometres, above which heat conduction maintains an isothermal atmosphere. We conclude that Pluto’s atmosphere is unique among Solar System planetary atmospheres, as its radiative energy equilibrium is controlled primarily by haze particles instead of gas molecules. We predict that Pluto is therefore several orders of magnitude brighter at mid-infrared wavelengths than previously thought—a brightness that could be detected by future telescopes.

  18. Drinking Water Temperature Modelling in Domestic Systems

    NARCIS (Netherlands)

    Moerman, A.; Blokker, M.; Vreeburg, J.; Van der Hoek, J.P.

    2014-01-01

    Domestic water supply systems are the final stage of the transport process to deliver potable water to the customers’ tap. Under the influence of temperature, residence time and pipe materials the drinking water quality can change while the water passes the domestic drinking water system. According

  19. The solar cyclone: A solar chimney for harvesting atmospheric water

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwa, B.A. [Los Alamos National Laboratory, MS B216, Los Alamos, NM 87545 (United States); Kashiwa, Corey B. [191 University Blvd PMB 876, Denver, CO 80206 (United States)

    2008-02-15

    The Solar Cyclone has been introduced as a means of extracting fresh water from Earth's atmosphere. The conceptual device operates in the fashion of a Solar Chimney; it is composed of a greenhouse for collecting and storing solar energy as heat, with a central chimney that channels an updraft of surface air heated in the greenhouse. An expansion cyclone separator for condensing and removing atmospheric water is placed at the base of the chimney. The separator consists of a strongly rotating vortex in which the central temperature is well below the dew point for the greenhouse air. Power consumed in the expansion and separation is furnished by the motive potential of the chimney updraft. Turbulent flow conditions are established in the expansion cyclone separator to enhance the centrifugal separation. Excess updraft power is used to generate electricity, as is done in the Solar Chimney. The article furnishes a theoretical basis for the feasibility of the Solar Cyclone, suggesting that an experimental study of the separation device would be worthwhile. (author)

  20. Lunar absorption spectrophotometer for measuring atmospheric water vapor.

    Science.gov (United States)

    Querel, Richard R; Naylor, David A

    2011-02-01

    A novel instrument has been designed to measure the nighttime atmospheric water vapor column abundance by near-infrared absorption spectrophotometry of the Moon. The instrument provides a simple, effective, portable, and inexpensive means of rapidly measuring the water vapor content along the lunar line of sight. Moreover, the instrument is relatively insensitive to the atmospheric model used and, thus, serves to provide an independent calibration for other measures of precipitable water vapor from both ground- and space-based platforms.

  1. Water cycle dynamic increases resilience of vegetation under higher atmospheric carbon dioxide concentration

    Science.gov (United States)

    Lemordant, L. A.; Gentine, P.; Stéfanon, M.; Drobinski, P. J.; Fatichi, S.

    2015-12-01

    Plant stomata couple the energy, water and carbon cycles. Photosynthesis requires stomata to open to take up carbon dioxide. In the process water vapor is released as transpiration. As atmospheric CO2 concentration rises, for the same amount of CO2 uptake, less water vapor is transpired, translating into higher water use efficiency. Reduced water vapor losses will increase soil water storage if the leaf area coverage remains similar. This will in turn alter the surface energy partitioning: more heat will be dissipated as sensible heat flux, resulting in possibly higher surface temperatures. In contrast with this common hypothesis, our study shows that the water saved during the growing season by increased WUE can be mobilized by the vegetation and help reduce the maximum temperature of mid-latitude heat waves. The large scale meteorological conditions of 2003 are the basis of four regional model simulations coupling an atmospheric model to a surface model. We performed two simulations with respectively 2003 (CTL) and 2100 (FUT) atmospheric CO2 applied to both the atmospheric and surface models. A third (RAD) and a fourth (FER) simulations are run with 2100 CO2 concentration applied to respectively the atmospheric model only and the surface model only. RAD investigates the impact of the radiative forcing, and FER the response to vegetation CO2 fertilization. Our results show that the water saved through higher water use efficiency during the growing season enabled by higher atmospheric carbon dioxide concentrations helps the vegetation to cope during severe heat and dryness conditions in the summer of mid-latitude climate. These results demonstrate that consideration of the vegetation carbon cycle is essential to model the seasonal water cycle dynamic and land-atmosphere interactions, and enhance the accuracy of the model outputs especially for extreme events. They also have important implications for the future of agriculture, water resources management, ecosystems

  2. A Useful Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data

    Science.gov (United States)

    Rivalland, Vincent; Tardy, Benjamin; Huc, Mireille; Hagolle, Olivier; Marcq, Sébastien; Boulet, Gilles

    2016-04-01

    Land Surface temperature (LST) is a critical variable for studying the energy and water budgets at the Earth surface, and is a key component of many aspects of climate research and services. The Landsat program jointly carried out by NASA and USGS has been providing thermal infrared data for 40 years, but no associated LST product has been yet routinely proposed to community. To derive LST values, radiances measured at sensor-level need to be corrected for the atmospheric absorption, the atmospheric emission and the surface emissivity effect. Until now, existing LST products have been generated with multi channel methods such as the Temperature/Emissivity Separation (TES) adapted to ASTER data or the generalized split-window algorithm adapted to MODIS multispectral data. Those approaches are ill-adapted to the Landsat mono-window data specificity. The atmospheric correction methodology usually used for Landsat data requires detailed information about the state of the atmosphere. This information may be obtained from radio-sounding or model atmospheric reanalysis and is supplied to a radiative transfer model in order to estimate atmospheric parameters for a given coordinate. In this work, we present a new automatic tool dedicated to Landsat thermal data correction which improves the common atmospheric correction methodology by introducing the spatial dimension in the process. The python tool developed during this study, named LANDARTs for LANDsat Automatic Retrieval of surface Temperature, is fully automatic and provides atmospheric corrections for a whole Landsat tile. Vertical atmospheric conditions are downloaded from the ERA Interim dataset from ECMWF meteorological organization which provides them at 0.125 degrees resolution, at a global scale and with a 6-hour-time step. The atmospheric correction parameters are estimated on the atmospheric grid using the commercial software MODTRAN, then interpolated to 30m resolution. We detail the processing steps

  3. Laboratory Experiments to Investigate the Exchange of Water Between the Atmosphere and Surface on Mars

    Science.gov (United States)

    Nikolakakos, G.; Whiteway, J. A.

    2016-12-01

    Laboratory chamber experiments have been carried out to investigate the exchange of water between the atmosphere and surface on Mars. Raman Scattering was applied to detect water uptake by samples of magnesium perchlorate hexahydrate. When exposed to the water vapor pressure and temperatures found at the Phoenix landing site, magnesium perchlorate hexahydrate samples of the size found on Mars began to undergo deliquescence at temperatures above the frost point temperature for pure water ice. Significant water uptake from the atmosphere began to occur within minutes, indicating that bulk deliquescence is likely to occur on present-day Mars. This demonstrates that perchlorates in the surface material can contribute to the hydrological cycle on Mars by absorbing water directly from the atmosphere. Chamber experiments have also been conducted to study adsorption of water on regolith grains. Raman spectroscopy has been applied to study the adsorption properties of zeolites under conditions found at the Phoenix landing site on Mars. Preliminary experimental results indicate that zeolites on the surface of Mars are capable of adsorbing water from the atmosphere on diurnal time scales and that Raman spectroscopy provides a promising method for detecting this process during a landed mission.

  4. NOAA Climate Data Record (CDR) of Atmospheric Layer Temperatures, Version 3.3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atmospheric Layer Temperature Climate Data Record (CDR) dataset is a monthly analysis of the tropospheric and stratospheric data using temperature sounding...

  5. WATER TEMPERATURE and other data from SHEARWATER from 1987-07-02 to 1989-08-10 (NODC Accession 9100199)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water depth and temperature data were collected as part of Tropical Ocean Global Atmosphere (TOGA) project from ship MV SHEARWATER between July 2, 1987 and...

  6. Douglas-fir seedlings exhibit metabolic responses to increased temperature and atmospheric drought.

    Directory of Open Access Journals (Sweden)

    Kirstin Jansen

    Full Text Available In the future, periods of strongly increased temperature in concert with drought (heat waves will have potentially detrimental effects on trees and forests in Central Europe. Norway spruce might be at risk in the future climate of Central Europe. However, Douglas-fir is often discussed as an alternative for the drought and heat sensitive Norway spruce, because some provenances are considered to be well adapted to drier and warmer conditions. In this study, we identified the physiological and growth responses of seedlings from two different Douglas-fir provenances to increased temperature and atmospheric drought during a period of 92 days. We analysed (i plant biomass, (ii carbon stable isotope composition as an indicator for time integrated intrinsic water use efficiency, (iii apparent respiratory carbon isotope fractionation as well as (iv the profile of polar low molecular metabolites. Plant biomass was only slightly affected by increased temperatures and atmospheric drought but the more negative apparent respiratory fractionation indicated a temperature-dependent decrease in the commitment of substrate to the tricarboxylic acid cycle. The metabolite profile revealed that the simulated heat wave induced a switch in stress protecting compounds from proline to polyols. We conclude that metabolic acclimation successfully contributes to maintain functioning and physiological activity in seedlings of both Douglas-fir provenances under conditions that are expected during heat waves (i.e. elevated temperatures and atmospheric drought. Douglas-fir might be a potentially important tree species for forestry in Central Europe under changing climatic conditions.

  7. Temperature retrieval at the southern pole of the Venusian atmosphere

    Science.gov (United States)

    Garate-Lopez, Itziar; Garcia-Munoz, A.; Hueso, R.; Sanchez-Lavega, A.

    2013-10-01

    Venus’ thermal radiation spectrum is punctuated by CO2 bands of various strengths probing into different atmospheric depths. It is thus possible to invert measured spectra of thermal radiation to infer atmospheric temperature profiles. VIRTIS-M observations of Venus in the 3-5 µm range allow us to study the night time thermal structure of the planet’s upper troposphere and lower mesosphere from 50 to 105 km [1, 2]. Building a forward radiative transfer model that solves the radiative transfer equation for the atmosphere on a line-by-line basis, we confirmed that aerosol scattering must be taken into account and we studied the impact of factors such as cloud opacity, and the size, composition and vertical distribution of aerosols [3]. The cloud top altitude and aerosol scale height have a notable impact on the spectrum. However, their weighting function matrices have similar structures contributing to the degeneracy of the temperature retrieval algorithm [2]. Our retrieval code is focused on the strong 4.3µm CO2 band, which enables the determination of the thermal profile above the cloud top, and based on the algorithm proposed by Grassi et al. (2008) in their equation (2). We present temperature maps for the south pole of Venus, where a highly variable vortex is observed. We aim to combine these maps with our previously measured velocity fields from the same VIRTIS-M infrared images [4], in order to infer the potential vorticity distribution for different vortex configurations and to improve the understanding of its unpredictable character and its role in the general atmospheric circulation. Acknowledgements This work was supported by the Spanish MICIIN projects AYA2009-10701 and AYA2012-36666 with FEDER funds, by Grupos Gobierno Vasco IT-765-13 and by Universidad País Vasco UPV/EHU through program UFI11/55. IGL and AGM gratefully acknowledge ESA/RSSD for hospitality and access to ‘The Grid’ computing resources. References [1] Roos-Serote, M., et al

  8. Linking atmospheric blocking to European temperature extremes in spring

    Science.gov (United States)

    Brunner, Lukas; Hegerl, Gabriele; Steiner, Andrea

    2017-04-01

    The weather in Europe is influenced by a range of dynamical features such as the Atlantic storm tracks, the jet stream, and atmospheric blocking. Blocking describes an atmospheric situation in which a stationary and persistent high pressure system interrupts the climatological flow for several days to weeks. It can trigger cold and warm spells which is of special relevance during the spring season because vegetation is particularly vulnerable to extreme temperatures in the early greening phase. We investigate European cold and warm spells in the 36 springs from 1979 to 2014 in temperature data from the European daily high-resolution gridded dataset (E-OBS) and connect them to blocking derived from geopotential height fields from ERA-Interim. A highly significant link between blocking and both, cold and warm spells is found that changes during spring. Resolving monthly frequencies, we find a shift in the preferred locations of blocking throughout spring. The maximum blocking frequency during cold spells shifts from Scandinavia to the British Isles in March and April. During warm spells it continuously shifts further northward during the spring season. The location of the block is found to be essential for the sign of the relationship. Blocking over the north-eastern Atlantic and over northern Europe is strongly linked to cold conditions, while blocking over central Europe is associated with warm conditions. Consistently the spatial distribution of temperature extremes across Europe is highly sensitive to the occurrence of blocking. More than 80 % of cold spells in south-eastern Europe occur during blocking, compared to less than 30 % in northern Europe. Warm spells show the opposite pattern and more than 70 % co-occur with blocking in northern Europe, compared to less than 30 % in parts of southern Europe. We find considerable interannual variability over the analysis period from 1979 to 2014 but also a decrease in cold spells and an increase in warm spells

  9. Gulf of Maine - Water Salinity, Temperature and Sigma t (density) data from 1912 to 1930

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This table contains water salinity, temperature and sigma t (density) data from 1912 to 1930 binned at 10 meter depth intervals (from 300 meters up to 0 meters) for...

  10. Gulf of Maine - Water Salinity, Temperature and Sigma t (density) data from 1981 to 2005

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This table contains water salinity, temperature and sigma t (density) data from 1981 to 2005 binned at 10 meter depth intervals (from 300 meters up to 0 meters) for...

  11. Gulf of Maine - Water Salinity, Temperature and Sigma t (density) data from 1956 to 1980

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This table contains water salinity, temperature and sigma t (density) data from 1956 to 1980 binned at 10 meter depth intervals (from 300 meters up to 0 meters) for...

  12. Gulf of Maine - Water Salinity, Temperature and Sigma t (density) data from 1931 to 1955

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This table contains water salinity, temperature and sigma t (density) data from 1931 to 1955 binned at 10 meter depth intervals (from 300 meters up to 0 meters) for...

  13. Oscillations in atmospheric water above Switzerland

    Science.gov (United States)

    Hocke, Klemens; Navas-Guzmán, Francisco; Moreira, Lorena; Bernet, Leonie; Mätzler, Christian

    2017-10-01

    Cloud fraction (CF), integrated liquid water (ILW) and integrated water vapour (IWV) were continuously measured from 2004 to 2016 by the TROpospheric WAter RAdiometer (TROWARA) in Bern, Switzerland. There are indications for interannual variations of CF and ILW. A spectral analysis shows that IWV is dominated by an annual oscillation, leading to an IWV maximum of 24 kg m-2 in July to August and a minimum of 8 kg m-2 in February. The seasonal behaviour of CF and ILW is composed by both the annual and the semiannual oscillation. However, the annual oscillation of CF has a maximum in December while the annual oscillation of ILW has a maximum in July. The semiannual oscillations of CF and ILW are strong from 2010 to 2014. The normalized power spectra of ILW and CF show statistically significant spectral components with periods of 76, 85, 97 and 150 days. We find a similarity between the power spectra of ILW and CF with those of zonal wind at 830 hPa (1.5 km) above Bern. Particularly, the occurrence of higher harmonics in the CF and ILW spectra is possibly forced by the behaviour of the lower-tropospheric wind. The mean amplitude spectra of CF, ILW and IWV show increased short-term variability on timescales less than 40 days from spring to fall. We find a weekly cycle of CF and ILW from June to September with increased values on Saturday, Sunday and Monday.

  14. Atmospheric radio refractivity and water vapour density at Oshodi ...

    African Journals Online (AJOL)

    ... columnar water vapour density ρ can be used to estimate N over Oshodi, and Kano. For instance, line of regression of N upon ρ for Oshodi at the 0-3km atmospheric column is N = (4.93 ± 0.75) ρ + 254.15 ± 11.26. Keywords: atmospheric humidity, columnar radio refractivity. Nigeria Journal of Pure and Applied Physics Vol ...

  15. Oscillations in atmospheric water above Switzerland

    Directory of Open Access Journals (Sweden)

    K. Hocke

    2017-10-01

    Full Text Available Cloud fraction (CF, integrated liquid water (ILW and integrated water vapour (IWV were continuously measured from 2004 to 2016 by the TROpospheric WAter RAdiometer (TROWARA in Bern, Switzerland. There are indications for interannual variations of CF and ILW. A spectral analysis shows that IWV is dominated by an annual oscillation, leading to an IWV maximum of 24 kg m−2 in July to August and a minimum of 8 kg m−2 in February. The seasonal behaviour of CF and ILW is composed by both the annual and the semiannual oscillation. However, the annual oscillation of CF has a maximum in December while the annual oscillation of ILW has a maximum in July. The semiannual oscillations of CF and ILW are strong from 2010 to 2014. The normalized power spectra of ILW and CF show statistically significant spectral components with periods of 76, 85, 97 and 150 days. We find a similarity between the power spectra of ILW and CF with those of zonal wind at 830 hPa (1.5 km above Bern. Particularly, the occurrence of higher harmonics in the CF and ILW spectra is possibly forced by the behaviour of the lower-tropospheric wind. The mean amplitude spectra of CF, ILW and IWV show increased short-term variability on timescales less than 40 days from spring to fall. We find a weekly cycle of CF and ILW from June to September with increased values on Saturday, Sunday and Monday.

  16. LBA-ECO CD-02 Oxygen Isotopes of Plant Tissue Water and Atmospheric Water Vapor

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports the oxygen isotope signatures of water extracted from plant tissue (xylem from the stems and leaf tissue) and of atmospheric water...

  17. LBA-ECO CD-02 Oxygen Isotopes of Plant Tissue Water and Atmospheric Water Vapor

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports the oxygen isotope signatures of water extracted from plant tissue (xylem from the stems and leaf tissue) and of atmospheric water vapor from...

  18. Water loss from terrestrial planets with CO{sub 2}-rich atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Wordsworth, R. D.; Pierrehumbert, R. T., E-mail: rwordsworth@uchicago.edu [Department of the Geophysical Sciences, University of Chicago, 60637 IL (United States)

    2013-12-01

    Water photolysis and hydrogen loss from the upper atmospheres of terrestrial planets is of fundamental importance to climate evolution but remains poorly understood in general. Here we present a range of calculations we performed to study the dependence of water loss rates from terrestrial planets on a range of atmospheric and external parameters. We show that CO{sub 2} can only cause significant water loss by increasing surface temperatures over a narrow range of conditions, with cooling of the middle and upper atmosphere acting as a bottleneck on escape in other circumstances. Around G-stars, efficient loss only occurs on planets with intermediate CO{sub 2} atmospheric partial pressures (0.1-1 bar) that receive a net flux close to the critical runaway greenhouse limit. Because G-star total luminosity increases with time but X-ray and ultraviolet/ultravoilet luminosity decreases, this places strong limits on water loss for planets like Earth. In contrast, for a CO{sub 2}-rich early Venus, diffusion limits on water loss are only important if clouds caused strong cooling, implying that scenarios where the planet never had surface liquid water are indeed plausible. Around M-stars, water loss is primarily a function of orbital distance, with planets that absorb less flux than ∼270 W m{sup –2} (global mean) unlikely to lose more than one Earth ocean of H{sub 2}O over their lifetimes unless they lose all their atmospheric N{sub 2}/CO{sub 2} early on. Because of the variability of H{sub 2}O delivery during accretion, our results suggest that many 'Earth-like' exoplanets in the habitable zone may have ocean-covered surfaces, stable CO{sub 2}/H{sub 2}O-rich atmospheres, and high mean surface temperatures.

  19. WATER TEMPERATURE and other data from COOK from 1989-02-07 to 1989-12-14 (NODC Accession 9500116)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water depth and temperature data was collected as part of Global Temperature- Salinity Pilot Project (GTSPP) from HMAS Cook by the Australian Oceanographic Data...

  20. Comparing Stable Water Isotope Variation in Atmospheric Moisture Observed over Coastal Water and Forests

    Science.gov (United States)

    Lai, C. T.; Rambo, J. P.; Welp, L. R.; Bible, K.; Hollinger, D. Y.

    2014-12-01

    Stable oxygen (δ18O) and hydrogen (δD) isotopologues of atmospheric moisture are strongly influenced by large-scale synoptic weather cycles, surface evapotranspiration and boundary layer mixing. Atmospheric water isotope variation has been shown to empirically relate to relative humidity (Rh) of near surface moisture, and to a less degree, air temperature. Continuous δ18O and δD measurements are becoming more available, providing new opportunities to investigate processes that control isotope variability. This study shows the comparison of δ18O and δD measured at a continental location and over coastal waters for 3 seasons (spring to fall, 2014). The surface moisture isotope measurements were made using two LGR spectroscopy water vapor isotope analyzers (Los Gatos Research Inc.), one operated in an old-growth coniferous forest at Wind River field station, WA (45.8205°N, 121.9519°W), and another sampling marine air over seawater at the Scripps Pier in San Diego, CA (32.8654°N, 117.2536°W), USA. Isotope variations were measured at 1Hz and data were reported as hourly averages with an overall accuracy of ±0.1‰ for δ18O, ±0.5‰ for δ2H. Day-to-day variations in δ18O and δD are shown strongly influenced by synoptic weather events at both locations. Boundary layer mixing between surface moisture and the dry air entrained from the free troposphere exerts a midday maximum and a consistent diel pattern in deuterium excess (dx). At the forest site, surface moisture also interacts with leaf water through transpiration during the day and re-equilibration at night. The latter occurs by retro-diffusion of atmospheric H2O molecules into leaf intercellular space, which becomes intensified as Rh increaes after nightfall, and continues until sunrise, to counter-balance the evaporative isotopic enrichment in leaf water on a daily basis. These vegetation effects lead to negative dx values consistently observed at nighttime in this continental location that were not

  1. TES/Aura L3 Atmospheric Temperatures Monthly Gridded V002

    Data.gov (United States)

    National Aeronautics and Space Administration — Monthly averages of atmospheric temperature and VMR for atmospheric species are provided at 2 deg. lat. X 4 deg. long. spatial grids and at a subset of TES standard...

  2. Fortnightly atmospheric tides forced by spring and neap tides in coastal waters.

    Science.gov (United States)

    Iwasaki, Shinsuke; Isobe, Atsuhiko; Miyao, Yasuyuki

    2015-05-18

    The influence of sea surface temperature (SST) on atmospheric processes over the open ocean has been well documented. However, atmospheric responses to SST in coastal waters are poorly understood. Oceanic stratification (and consequently, SST) in coastal waters largely depends on the fortnightly spring-neap tidal cycle, because of variations in vertical tidal mixing. Here we investigate how changes in SST during the fortnightly tidal cycle affect the lower-level atmosphere over the Seto Inland Sea, Japan. We use a combination of in situ measurements, satellite observations and a regional atmospheric model. We find that the SST in summer shows cool (warm) anomalies over most of the inland sea during spring (neap) tides. Additionally, surface air temperature is positively correlated with the SST as it varies during the fortnightly tidal cycle. Moreover, the fortnightly spring-neap cycle also influences the surface wind speed because the atmospheric boundary layer becomes stabilized or destabilized in response to the difference between air temperature and SST.

  3. Atmospheric correction for sea surface temperature retrieval from ...

    Indian Academy of Sciences (India)

    using Very High Resolution Radiometer (VHRR) single window channel radiance data onboard Kalpana satellite .... Atmospheric correction (WV in equation 1) is ... Atmospheric correction for SST retrieval. 341. Table 2. Characteristics of VHRR sensor onboard Kalpana satellite. Channel wavelength. Resolution. Sensor.

  4. A Software Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data

    Directory of Open Access Journals (Sweden)

    Benjamin Tardy

    2016-08-01

    Full Text Available Land surface temperature (LST is an important variable involved in the Earth’s surface energy and water budgets and a key component in many aspects of environmental research. The Landsat program, jointly carried out by NASA and the USGS, has been recording thermal infrared data for the past 40 years. Nevertheless, LST data products for Landsat remain unavailable. The atmospheric correction (AC method commonly used for mono-window Landsat thermal data requires detailed information concerning the vertical structure (temperature, pressure and the composition (water vapor, ozone of the atmosphere. For a given coordinate, this information is generally obtained through either radio-sounding or atmospheric model simulations and is passed to the radiative transfer model (RTM to estimate the local atmospheric correction parameters. Although this approach yields accurate LST data, results are relevant only near this given coordinate. To meet the scientific community’s demand for high-resolution LST maps, we developed a new software tool dedicated to processing Landsat thermal data. The proposed tool improves on the commonly-used AC algorithm by incorporating spatial variations occurring in the Earth’s atmosphere composition. The ERA-Interim dataset (ECMWFmeteorological organization was used to retrieve vertical atmospheric conditions, which are available at a global scale with a resolution of 0.125 degrees and a temporal resolution of 6 h. A temporal and spatial linear interpolation of meteorological variables was performed to match the acquisition dates and coordinates of the Landsat images. The atmospheric correction parameters were then estimated on the basis of this reconstructed atmospheric grid using the commercial RTMsoftware MODTRAN. The needed surface emissivity was derived from the common vegetation index NDVI, obtained from the red and near-infrared (NIR bands of the same Landsat image. This permitted an estimation of LST for the entire

  5. A new voxel-based model for the determination of atmospheric weighted mean temperature in GPS atmospheric sounding

    Science.gov (United States)

    He, Changyong; Wu, Suqin; Wang, Xiaoming; Hu, Andong; Wang, Qianxin; Zhang, Kefei

    2017-06-01

    The Global Positioning System (GPS) is a powerful atmospheric observing system for determining precipitable water vapour (PWV). In the detection of PWV using GPS, the atmospheric weighted mean temperature (Tm) is a crucial parameter for the conversion of zenith tropospheric delay (ZTD) to PWV since the quality of PWV is affected by the accuracy of Tm. In this study, an improved voxel-based Tm model, named GWMT-D, was developed using global reanalysis data over a 4-year period from 2010 to 2013 provided by the United States National Centers for Environmental Prediction (NCEP). The performance of GWMT-D was assessed against three existing empirical Tm models - GTm-III, GWMT-IV, and GTmN - using different data sources in 2014 - the NCEP reanalysis data, surface Tm data provided by Global Geodetic Observing System and radiosonde measurements. The results show that the new GWMT-D model outperforms all the other three models with a root-mean-square error of less than 5.0 K at different altitudes over the globe. The new GWMT-D model can provide a practical alternative Tm determination method in real-time GPS-PWV remote sensing systems.

  6. A new voxel-based model for the determination of atmospheric weighted mean temperature in GPS atmospheric sounding

    Directory of Open Access Journals (Sweden)

    C. He

    2017-06-01

    Full Text Available The Global Positioning System (GPS is a powerful atmospheric observing system for determining precipitable water vapour (PWV. In the detection of PWV using GPS, the atmospheric weighted mean temperature (Tm is a crucial parameter for the conversion of zenith tropospheric delay (ZTD to PWV since the quality of PWV is affected by the accuracy of Tm. In this study, an improved voxel-based Tm model, named GWMT-D, was developed using global reanalysis data over a 4-year period from 2010 to 2013 provided by the United States National Centers for Environmental Prediction (NCEP. The performance of GWMT-D was assessed against three existing empirical Tm models – GTm-III, GWMT-IV, and GTm_N – using different data sources in 2014 – the NCEP reanalysis data, surface Tm data provided by Global Geodetic Observing System and radiosonde measurements. The results show that the new GWMT-D model outperforms all the other three models with a root-mean-square error of less than 5.0 K at different altitudes over the globe. The new GWMT-D model can provide a practical alternative Tm determination method in real-time GPS-PWV remote sensing systems.

  7. Climate and basin drivers of seasonal river water temperature dynamics

    Science.gov (United States)

    Laizé, Cédric L. R.; Bruna Meredith, Cristian; Dunbar, Michael J.; Hannah, David M.

    2017-06-01

    dominating climate drivers and physical processes may change across seasons and across the stream temperature range. The role of basin permeability, size, and elevation as modifiers of the climate-water temperature associations was confirmed; permeability has the primary influence, followed by size and elevation. Smaller, upland, and/or impermeable basins are the most influenced by atmospheric heat exchanges, while larger, lowland and permeable basins are the least influenced. The study showed the importance of accounting properly for the spatial and temporal variability of climate-stream temperature associations and their modification by basin properties.

  8. Annual Book of ASTM Standards, Part 23: Water; Atmospheric Analysis.

    Science.gov (United States)

    American Society for Testing and Materials, Philadelphia, PA.

    Standards for water and atmospheric analysis are compiled in this segment, Part 23, of the American Society for Testing and Materials (ASTM) annual book of standards. It contains all current formally approved ASTM standard and tentative test methods, definitions, recommended practices, proposed methods, classifications, and specifications. One…

  9. A condensed water method for measuring the atmospheric radon

    CERN Document Server

    Wu Xin; Pan Xiao Qing; Yu Yi Ling

    1998-01-01

    The author summarizes the present situation of atmospheric Radon measurement, and introduces the working principle, working method and advantage and disadvantage of condensed water method in detail. The structure and function of the instrument used for this method, and the measuring result are discussed. The direction of further work is pointed out from now on

  10. TES/Aura L2 Atmospheric Temperatures Limb Special Observation V003

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric vertical profile estimates and associated errors (diagonals and covariance matrices), along with retrieved surface temperature, cloud effective optical...

  11. TES/Aura L2 Atmospheric Temperatures Nadir Special Observation V006

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric vertical profile estimates and associated errors (diagonals and covariance matrices), along with retrieved surface temperature, cloud effective optical...

  12. TES/Aura L2 Atmospheric Temperatures Limb Special Observation V004

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric vertical profile estimates and associated errors (diagonals and covariance matrices), along with retrieved surface temperature, cloud effective optical...

  13. TES/Aura L2 Atmospheric Temperatures Nadir Special Observation V005

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric vertical profile estimates and associated errors (diagonals and covariance matrices), along with retrieved surface temperature, cloud effective optical...

  14. TES/Aura L2 Atmospheric Temperatures Nadir Special Observation V004

    Data.gov (United States)

    National Aeronautics and Space Administration — Atmospheric vertical profile estimates and associated errors (diagonals and covariance matrices), along with retrieved surface temperature, cloud effective optical...

  15. DETECTION AND MODELING OF TEMPERATURE INVERSION IN THE ATMOSPHERE USING MODIS IMAGES (CASE STUDY: KERMANSHAH

    Directory of Open Access Journals (Sweden)

    H. Kachar

    2015-12-01

    Full Text Available Increase of temperature with height in the troposphere is called temperature inversion. Parameters such as strength and depth are characteristics of temperature inversion. Inversion strength is defined as the temperature difference between the surface and the top of the inversion and the depth of inversion is defined as the height of the inversion from the surface. The common approach in determination of these parameters is the use of Radiosonde where these measurements are too sparse. The main objective of this study is detection and modeling the temperature inversion using MODIS thermal infrared data. There are more than 180 days per year in which the temperature inversion conditions are present in Kermanshah city. Kermanshah weather station was selected as the study area. 90 inversion days was selected from 2007 to 2008 where the sky was clear and the Radiosonde data were available. Brightness temperature for all thermal infrared bands of MODIS was calculated for these days. Brightness temperature difference between any of the thermal infrared bands of MODIS and band 31 was found to be sensitive to strength and depth of temperature inversion. Then correlation coefficients between these pairs and the inversion depth and strength both calculated from Radiosonde were evaluated. The results showed poor linear correlation. This was found to be due to the change of the atmospheric water vapor content and the relatively weak temperature inversion strength and depth occurring in Kermanshah. The polynomial mathematical models and Artificial intelligence algorithms were deployed for detection and modeling the temperature inversion. A model with the lowest terms and highest possible accuracy was obtained. The Model was tested using 20 independent test data. Results indicate that the inversion strength can be estimated with RMSE of 0.84° C and R2 of 0.90. Also inversion depth can be estimated with RMSE of 54.56 m and R2 of 0.86.

  16. Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics

    CERN Document Server

    Makarieva, A M; Sheil, D; Nobre, A D; Li, B -L

    2010-01-01

    Phase transitions of atmospheric water play a ubiquitous role in the Earth's climate system, but their direct impact on atmospheric dynamics has escaped wide attention. Here we examine and advance a theory as to how condensation influences atmospheric pressure through the mass removal of water from the gas phase with a simultaneous account of the latent heat release. Building from the fundamental physical principles we show that condensation is associated with a decline in air pressure in the lower atmosphere. This decline occurs up to a certain height, which ranges from 3 to 4 km for surface temperatures from 10 to 30 deg C. We then estimate the horizontal pressure differences associated with water vapor condensation and find that these are comparable in magnitude with the pressure differences driving observed circulation patterns. The water vapor delivered to the atmosphere via evaporation represents a store of potential energy available to accelerate air and thus drive winds. Our estimates suggest that the...

  17. Dynamic water vapor and temperature calibration system.

    Science.gov (United States)

    Montague, F W; Primiano, F P; Saidel, G M

    1984-06-01

    The objective evaluation of thermal and humidification processes in the pulmonary system requires accurate dynamic measurements of temperature and water vapor concentration of a flowing gas mixture. The adequacy of instruments used for such measurements can only be determined by dynamic calibration techniques. We have developed a method of producing step changes in temperature and water vapor content of a gas mixture undergoing controlled steady flow. The system consists of two reservoirs and a slide valve that switches a test section between them. The inlet (usually a probe or catheter tip) of the device to be calibrated is positioned in the test section. The flow rate through the test section is minimally changed during the transition between gas from one reservoir to that of the other. The system has been used to analyze the response of a thermistor and a respiratory mass spectrometer to changes in gas temperature and water vapor.

  18. ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. I. ATMOSPHERIC DYNAMICS VIA THE SHALLOW WATER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Kevin [Center for Space and Habitability, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Workman, Jared, E-mail: kevin.heng@csh.unibe.ch, E-mail: jworkman@coloradomesa.edu [Colorado Mesa University, 1260 Kennedy Avenue, Grand Junction, CO 81501 (United States)

    2014-08-01

    Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical, and spherical), rotation, magnetic tension, and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag, and magnetic drag), and magnetic tension are included. The global atmospheric structure is largely controlled by a single key parameter that involves the Rossby and Prandtl numbers. This near-universality breaks down when either molecular viscosity or magnetic drag acts non-uniformly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulations of atmospheric circulation. We also find that hydrodynamic and magnetic sources of friction have dissimilar phase signatures and affect the flow in fundamentally different ways, implying that using Rayleigh drag to mimic magnetic drag is inaccurate. We exhaustively lay down the theoretical formalism (dispersion relations, governing equations, and time-dependent wave solutions) for a broad suite of models. In all situations, we derive the steady state of an atmosphere, which is relevant to interpreting infrared phase and eclipse maps of exoplanetary atmospheres. We elucidate a pinching effect that confines the atmospheric structure to be near the equator. Our suite of analytical models may be used to develop decisively physical intuition and as a reference point for three-dimensional magnetohydrodynamic simulations of atmospheric circulation.

  19. Temperatures in a runaway greenhouse on the evolving Venus Implications for water loss

    Science.gov (United States)

    Watson, A. J.; Donahue, T. M.; Kuhn, W. R.

    1984-01-01

    Some aspects of the temperature structure of a runaway greenhouse on Venus are examined using one-dimensional radiative transfer techniques. It is found that there generally is a region high in the atmosphere where condensation and cloud formation can occur, while deep in the atmosphere the gas is strongly unsaturated with respect to water vapor. The necessity of including clouds introduces considerably uncertainty into the calculation of surface temperatures. Under reasonable assumptions concerning the clouds, temperatures deep in the atmosphere are high enough to produce a plastic or even molten surface, which may significantly ease the problem of explaining the loss of oxygen.

  20. Atmospheric Water Harvesting: Role of Surface Wettability and Edge Effect

    KAUST Repository

    Jin, Yong

    2017-06-23

    Atmospheric water is emerging as an important potable water source. The present work experimentally and theoretically investigates water condensation and collection on flat surfaces with contrasting contact angles and contact angle hysteresis (CAH) to elucidate their roles on water mass collection efficiency. The experimental results indicate that a hydrophilic surface promotes nucleation and individual droplets growth, and a surface with a low CAH tends to let a smaller droplet to slide down, but the overall water mass collection efficiency is independent of both surface contact angle and CAH. The experimental results agree well with our theoretical calculations. During water condensation, a balance has to be struck between single droplet growth and droplet density on a surface so as to maintain a constant water droplet surface coverage ratio, which renders the role of both surface wettability and hysteresis insignificant to the ultimate water mass collection. Moreover, water droplets on the edges of a surface grow much faster than those on the non-edge areas and thus dominate the contribution to the water mass collection by the entire surface, directly pointing out the very important role of edge effect on water condensation and collection.

  1. Viscosity of water-in-oil emulsions. Variation with temperature and water volume fraction

    Energy Technology Data Exchange (ETDEWEB)

    Farah, Marco A.; Caldas, Jorge Navaes [Petroleo Brasileiro S.A., Rua General Canabarro, 500, Maracana, Rio, CEP 2057-900 (Brazil); Oliveira, Roberto C. [Petroleo Brasileiro S.A., Cenpes, Cidade Universitaria (Brazil); Rajagopal, Krishnaswamy [LATCA-Laboratorio de Termodinamica e Cinetica Aplicada-Escola de Quimica, Departamento de Engenharia Quimica, Universidade Federal do Rio de Janeiro, UFRJ, Cidade Universitaria, C.P. 68452, CEP 21949-900, Rio de Janeiro (Brazil)

    2005-09-15

    Water-in-oil emulsions are important in the petroleum industry in production operations, where the water content of the emulsion can be as high as 60% in volume, also in petroleum refining operations where generally the water content is low. The effective viscosity of water-in-oil emulsions depends mainly on the volume fraction of dispersed phase and temperature, along with several minor effects, such as shear rate, average droplet size, droplet size distribution, viscosity and density of oil. Using six different crude oils, the effective viscosities of several synthetic water-in-oil emulsions are measured at atmospheric pressure using a dynamic viscosimeter for different shear rates, temperatures and volume fractions of the dispersed phase. The ASTM equation, method D-341, for describing viscosity as a function of temperature is extended to include the variation of dispersed phase volume fraction. The proposed equation gives good correlation between the measured viscosities of water-in-oil emulsions as a function of temperature and the volume fraction of water.

  2. Escherichia coli survival in waters: Temperature dependence

    Science.gov (United States)

    Knowing the survival rates of water-borne Escherichia coli is important in evaluating microbial contamination and making appropriate management decisions. E. coli survival rates are dependent on temperature, a dependency that is routinely expressed using an analogue of the Q10 mo...

  3. Atmospheric Water-Cycle Regimes and Cloud Regimes

    Science.gov (United States)

    Wong, S.; Fetzer, E. J.; L'Ecuyer, T. S.

    2013-12-01

    The relationship between the atmospheric water vapor budget and cloud properties is investigated by collocated reanalysis fields from Modern Era Retrospective-analysis for Research and Applications (MERRA) and the observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument. Intensities of surface water exchange (precipitation minus evaporation) are analyzed in the space of 'dynamical regimes', which are defined by combination of large-scale water vapor advection and convergence calculated from the MERRA. The atmospheric water vapor sinks associated with mid-latitude storm systems and precipitation in the west coast of United States are mainly driven by the large-scale dynamical advection, while those associated with tropical deep convection and summertime monsoons are mainly driven by water vapor convergence. Subtropical subsidence area over the eastern ocean basins is dominated by strong water vapor divergence. These dynamical regimes are then connected to the collocated MODIS cloud top pressure and cloud optical thickness. Probability density distributions of these MODIS cloud properties associated with each dynamical regime will be presented.

  4. Plant water-stress parameterization determines the strength of land-atmosphere coupling

    Science.gov (United States)

    Combe, Marie; Vilà-Guerau de Arellano, Jordi; Ouwersloot, Huug G.; Peters, Wouter

    2016-04-01

    Land-surface models that are currently used in numerical weather predictions models and earth system models all assume various plant water-stress parameterizations. We investigate the impact of this variety of parametrizations on the performance of atmospheric models. For this, we use a conceptual framework where a convective atmospheric boundary-layer (ABL) model is coupled to a daytime model for the land surface fluxes of carbon, water, and energy. We first validate our coupled model for a set of surface and upper-atmospheric diurnal observations over a grown maize field in the Netherlands. We then perform a sensitivity analysis of this coupled land-atmosphere system by varying the modeled plant water-stress response from a very insensitive to a sensitive response during dry soil conditions. We first propose and verify a feedback diagram that ties plant water-stress response and large-scale atmospheric conditions to the diurnal cycles of ABL CO2, humidity and temperature. Based on our undertanstanding of the diurnal coupled system, we then explore the impact of the assumed water-stress reponse for the development of a dry spell on a synoptic time scale. We find that during a progressive 3-week soil drying caused by evapotranspiration, an insensitive plant will dampen atmospheric heating because the vegetation continues to transpire while soil moisture is available. In contrast, the sensitive plant reduces its transpiration to prevent soil moisture depletion. But when absolute soil moisture comes close to wilting point, the insensitive plant will suddenly close its stomata causing a switch to a land-atmosphere coupling regime dominated by sensible heat exchange. We find that in both cases, our modeled progressive soil moisture depletion contributes to further atmospheric warming up to 6 K, reduced photosynthesis up to 89 %, and CO2 enrichment up to 30 ppm, but the full impact is strongly delayed for the insensitive plant. Finally, we demonstrate that the assumed

  5. ANNEALING OF POLYCRYSTALLINE THIN FILM SILICON SOLAR CELLS IN WATER VAPOUR AT SUB-ATMOSPHERIC PRESSURES

    Directory of Open Access Journals (Sweden)

    Peter Pikna

    2014-10-01

    Full Text Available Thin film polycrystalline silicon (poly-Si solar cells were annealed in water vapour at pressures below atmospheric pressure. PN junction of the sample was contacted by measuring probes directly in the pressure chamber filled with steam during passivation. Suns-VOC method and a Lock-in detector were used to monitor an effect of water vapour to VOC of the solar cell during whole passivation process (in-situ. Tested temperature of the sample (55°C – 110°C was constant during the procedure. Open-circuit voltage of a solar cell at these temperatures is lower than at room temperature. Nevertheless, voltage response of the solar cell to the light flash used during Suns-VOC measurements was good observable. Temperature dependences for multicrystalline wafer-based and polycrystalline thin film solar cells were measured and compared. While no significant improvement of thin film poly-Si solar cell parameters by annealing in water vapour at under-atmospheric pressures was observed up to now, in-situ observation proved required sensitivity to changing VOC at elevated temperatures during the process.

  6. Convective cells of internal gravity waves in the earth's atmosphere with finite temperature gradient

    Directory of Open Access Journals (Sweden)

    O. Onishchenko

    2013-03-01

    Full Text Available In this paper, we have investigated vortex structures (e.g. convective cells of internal gravity waves (IGWs in the earth's atmosphere with a finite vertical temperature gradient. A closed system of nonlinear equations for these waves and the condition for existence of solitary convective cells are obtained. In the atmosphere layers where the temperature decreases with height, the presence of IGW convective cells is shown. The typical parameters of such structures in the earth's atmosphere are discussed.

  7. What Determines Water Temperature Dynamics in the San Francisco Bay-Delta System?

    Science.gov (United States)

    Vroom, J.; van der Wegen, M.; Martyr-Koller, R. C.; Lucas, L. V.

    2017-11-01

    Water temperature is an important factor determining estuarine species habitat conditions. Water temperature is mainly governed by advection (e.g., from rivers) and atmospheric exchange processes varying strongly over time (day-night, seasonally) and the spatial domain. On a long time scale, climate change will impact water temperature in estuarine systems due to changes in river flow regimes, air temperature, and sea level rise. To determine which factors govern estuarine water temperature and its sensitivity to changes in its forcing, we developed a process-based numerical model (Delft3D Flexible Mesh) and applied it to a well-monitored estuarine system (the San Francisco Estuary) for validation. The process-based approach allows for detailed process description and a physics-based analysis of governing processes. The model was calibrated for water year 2011 and incorporated 3-D hydrodynamics, salinity intrusion, water temperature dynamics, and atmospheric coupling. Results show significant skill in reproducing temperature observations on daily, seasonal, and yearly time scales. In North San Francisco Bay, thermal stratification is present, enhanced by salinity stratification. The temperature of the upstream, fresh water Delta area is captured well in 2-D mode, although locally—on a small scale—vertical processes (e.g., stratification) may be important. The impact of upstream river temperature and discharge and atmospheric forcing on water temperatures differs throughout the Delta, possibly depending on dispersion and residence times. Our modeling effort provides a sound basis for future modeling studies including climate change impact on water temperature and associated ecological modeling, e.g., clam and fish habitat and phytoplankton dynamics.

  8. Experimental Research on Water Boiling Heat Transfer on Horizontal Copper Rod Surface at Sub-Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Li-Hua Yu

    2015-09-01

    Full Text Available In recent years, water (R718 as a kind of natural refrigerant—which is environmentally-friendly, safe and cheap—has been reconsidered by scholars. The systems of using water as the refrigerant, such as water vapor compression refrigeration and heat pump systems run at sub-atmospheric pressure. So, the research on water boiling heat transfer at sub-atmospheric pressure has been an important issue. There are many research papers on the evaporation of water, but there is a lack of data on the characteristics at sub-atmospheric pressures, especially lower than 3 kPa (the saturation temperature is 24 °C. In this paper, the experimental research on water boiling heat transfer on a horizontal copper rod surface at 1.8–3.3 kPa is presented. Regression equations of the boiling heat transfer coefficient are obtained based on the experimental data, which are convenient for practical application.

  9. WATER TEMPERATURE and other data from unknown platforms in the TOGA Area - Pacific from 1992-02-28 to 1995-03-15 (NODC Accession 9500136)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water depth and temperature data were collected in TOGA Area - Pacific (30 N to 30 S) as part of Tropical Ocean Global Atmosphere (TOGA) project between February...

  10. WATER TEMPERATURE and other data from CAP SAINT PAUL, ROSPICO and other platforms from 1981-11-22 to 1990-02-11 (NODC Accession 9000091)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water depth and temperature data was collected from more than a dozen ships. The data was collected from TOGA (Tropical Ocean Global Atmosphere) Area in the...

  11. Escherichia coli survival in waters: temperature dependence.

    Science.gov (United States)

    Blaustein, R A; Pachepsky, Y; Hill, R L; Shelton, D R; Whelan, G

    2013-02-01

    Knowing the survival rates of water-borne Escherichia coli is important in evaluating microbial contamination and making appropriate management decisions. E. coli survival rates are dependent on temperature, a dependency that is routinely expressed using an analogue of the Q₁₀ model. This suggestion was made 34 years ago based on 20 survival curves taken from published literature, but has not been revisited since then. The objective of this study was to re-evaluate the accuracy of the Q₁₀ equation, utilizing data accumulated since 1978. We assembled a database of 450 E. coli survival datasets from 70 peer-reviewed papers. We then focused on the 170 curves taken from experiments that were performed in the laboratory under dark conditions to exclude the effects of sunlight and other field factors that could cause additional variability in results. All datasets were tabulated dependencies "log concentration vs. time." There were three major patterns of inactivation: about half of the datasets had a section of fast log-linear inactivation followed by a section of slow log-linear inactivation; about a quarter of the datasets had a lag period followed by log-linear inactivation; and the remaining quarter were approximately linear throughout. First-order inactivation rate constants were calculated from the linear sections of all survival curves and the data grouped by water sources, including waters of agricultural origin, pristine water sources, groundwater and wells, lakes and reservoirs, rivers and streams, estuaries and seawater, and wastewater. Dependency of E. coli inactivation rates on temperature varied among the water sources. There was a significant difference in inactivation rate values at the reference temperature between rivers and agricultural waters, wastewaters and agricultural waters, rivers and lakes, and wastewater and lakes. At specific sites, the Q₁₀ equation was more accurate in rivers and coastal waters than in lakes making the value of

  12. Atmospheric forcing intensifies the effects of regional ocean warming on reef-scale temperature anomalies during a coral bleaching event

    Science.gov (United States)

    Zhang, Zhenlin; Falter, James; Lowe, Ryan; Ivey, Greg; McCulloch, Malcolm

    2013-09-01

    We investigate how local atmospheric conditions and hydrodynamic forcing contributed to local variations in water temperature within a fringing coral reef-lagoon system during the peak of a marine heat wave in 2010-2011 that caused mass coral bleaching across Western Australia. A three-dimensional circulation model Regional Ocean Modeling System (ROMS) with a built-in air-sea heat flux exchange module Coupled Ocean Atmosphere Experiment (COARE) was coupled with a spectral wave model Simulating Waves Nearshore (SWAN) to resolve the surface heat exchange and wave-driven reef circulation in Coral Bay, Ningaloo Reef. Using realistic oceanic and atmospheric forcing, the model predictions were in good agreement with measured time series of water temperature at various locations in the coral reef system during the bleaching event. Through a series of sensitivity analyses, we found that the difference in temperature between the reef and surrounding offshore waters (ΔT) was predominantly a function of both the daily mean net heat flux (Qnet>¯) and residence time, whereas diurnal variations in reef water temperature were dependent on the diurnal fluctuation in the net heat flux. We found that reef temperatures were substantially higher than offshore in the inner lagoon under normal weather conditions and over the entire reef domain under more extreme weather conditions (0.7°C-1.5°C). Although these temperature elevations were still less than that caused by the regional ocean warming (2°C-3°C), the arrival of peak seasonal temperatures in the summer of 2010-2011 (when net atmospheric heat fluxes were positive and abnormally high) caused substantially higher thermal stresses than would have otherwise occurred if offshore temperatures had reached their normal seasonal maxima in autumn (when net atmospheric heat fluxes were negative or cooling). Therefore, the degree heating weeks calculated based on offshore temperature substantially underestimated the thermal stresses

  13. Interpolating atmospheric water vapor delay by incorporating terrain elevation information

    Science.gov (United States)

    Xu, W. B.; Li, Z. W.; Ding, X. L.; Zhu, J. J.

    2011-09-01

    In radio signal-based observing systems, such as Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR), the water vapor in the atmosphere will cause delays during the signal transmission. Such delays vary significantly with terrain elevation. In the case when atmospheric delays are to be eliminated from the measured raw signals, spatial interpolators may be needed. By taking advantage of available terrain elevation information during spatial interpolation process, the accuracy of the atmospheric delay mapping can be considerably improved. This paper first reviews three elevation-dependent water vapor interpolation models, i.e., the Best Linear Unbiased Estimator in combination with the water vapor Height Scaling Model (BLUE + HSM), the Best Linear Unbiased Estimator coupled with the Elevation-dependent Covariance Model (BLUE + ECM), and the Simple Kriging with varying local means based on the Baby semi-empirical model (SKlm + Baby for short). A revision to the SKlm + Baby model is then presented, where the Onn water vapor delay model is adopted to substitute the inaccurate Baby semi-empirical model (SKlm + Onn for short). Experiments with the zenith wet delays obtained through the GPS observations from the Southern California Integrated GPS Network (SCIGN) demonstrate that the SKlm + Onn model outperforms the other three. The RMS of SKlm + Onn is only 0.55 cm, while those of BLUE + HSM, BLUE + ECM and SKlm + Baby amount to 1.11, 1.49 and 0.77 cm, respectively. The proposed SKlm + Onn model therefore represents an improvement of 29-63% over the other known models.

  14. An improved film evaporation correlation for saline water at sub-atmospheric pressures

    KAUST Repository

    Shahzada, Muhammad Wakil

    2011-10-03

    This paper presents an investigation of heat transfer correlation in a falling-film evaporator working with saline water at sub-atmospheric pressures. The experiments are conducted at different salinity levels ranging from 15000 to 90000 ppm, and the pressures were maintained between 0.92 to 2.81 kPa (corresponds to saturation temperatures of 5.9 – 23 0C). The effect of salinity, saturation pressures and chilled water temperatures on the heat transfer coefficient are accounted in the modified film evaporation correlations. The results are fitted to the Han & Fletcher\\'s and Chun & Seban\\'s falling-film correlations which are used in desalination industry. We modify the said correlations by adding salinity and saturation temperature corrections with respective indices to give a better agreement to our measured data.

  15. An improved film evaporation correlation for saline water at sub-atmospheric pressures

    Science.gov (United States)

    Shahzada, Muhammad Wakil; Ng, Kim Choon; Thu, Kyaw; Myat, Aung; Gee, Chun Won

    2012-06-01

    This paper presents an investigation of heat transfer correlation in a falling-film evaporator working with saline water at sub-atmospheric pressures. The experiments are conducted at different salinity levels ranging from 15000 to 90000 ppm, and the pressures were maintained between 0.92 to 2.81 kPa (corresponds to saturation temperatures of 5.9 - 23 0C). The effect of salinity, saturation pressures and chilled water temperatures on the heat transfer coefficient are accounted in the modified film evaporation correlations. The results are fitted to the Han & Fletcher's and Chun & Seban's falling-film correlations which are used in desalination industry. We modify the said correlations by adding salinity and saturation temperature corrections with respective indices to give a better agreement to our measured data.

  16. Global Floods and Water Availability Driven by Atmospheric Rivers

    Science.gov (United States)

    Paltan, Homero; Waliser, Duane; Lim, Wee Ho; Guan, Bin; Yamazaki, Dai; Pant, Raghav; Dadson, Simon

    2017-10-01

    While emerging regional evidence shows that atmospheric rivers (ARs) can exert strong impacts on local water availability and flooding, their role in shaping global hydrological extremes has not yet been investigated. Here we quantify the relative contribution of ARs variability to both flood hazard and water availability. We find that globally, precipitation from ARs contributes 22% of total global runoff, with a number of regions reaching 50% or more. In areas where their influence is strongest, ARs may increase the occurrence of floods by 80%, while absence of ARs may increase the occurrence of hydrological droughts events by up to 90%. We also find that 300 million people are exposed to additional floods and droughts due the occurrence of ARs. ARs provide a source of hydroclimatic variability whose beneficial or damaging effects depend on the capacity of water resources managers to predict and adapt to them.

  17. Liquid water on Mars - An energy balance climate model for CO2/H2O atmospheres

    Science.gov (United States)

    Hoffert, M. I.; Callegari, A. J.; Hsieh, C. T.; Ziegler, W.

    1981-01-01

    A simple climatic model is developed for a Mars atmosphere containing CO2 and sufficient liquid water to account for the observed hydrologic surface features by the existence of a CO2/H2O greenhouse effect. A latitude-resolved climate model originally devised for terrestrial climate studies is applied to Martian conditions, with the difference between absorbed solar flux and emitted long-wave flux to space per unit area attributed to the divergence of the meridional heat flux and the poleward heat flux assumed to equal the atmospheric eddy heat flux. The global mean energy balance is calculated as a function of atmospheric pressure to assess the CO2/H2O greenhouse liquid water hypothesis, and some latitude-resolved cases are examined in detail in order to clarify the role of atmospheric transport and temperature-albedo feedback. It is shown that the combined CO2/H2O greenhouse at plausible early surface pressures may account for climates hot enough to support a hydrological cycle and running water at present-day insolation and visible albedo levels.

  18. Translational, rotational and vibrational temperatures of a gliding arc discharge at atmospheric pressure air

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas

    2014-01-01

    Gliding arc discharges have generally been used to generate non-equilibrium plasma at atmospheric pressure. Temperature distributions of a gliding arc are of great interest both for fundamental plasma research and for practical applications. In the presented studies, translational, rotational...... and vibrational temperatures of a gliding arc generated at atmospheric pressure air are investigated. Translational temperatures (about 1100 K) were measured by laser-induced Rayleigh scattering, and two-dimensional temperature imaging was performed. Rotational and vibrational temperatures (about 3600 K and 6700...

  19. Modelling highly variable daily maximum water temperatures in a ...

    African Journals Online (AJOL)

    ... hourly water temperatures were used to calculate daily maximum water temperatures for nine sites within the Sabie-Sand River system, Mpumalanga Province, South Africa. A suite of statistical models for simulating daily maximum water temperatures, of differing complexity and using inputs of air temperature, flow rates, ...

  20. 21 CFR 880.5560 - Temperature regulated water mattress.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Temperature regulated water mattress. 880.5560... Therapeutic Devices § 880.5560 Temperature regulated water mattress. (a) Identification. A temperature... heating and water circulating components, and an optional cooling component. The temperature control may...

  1. Global river temperatures and sensitivity to atmospheric warming and changes in river flow

    NARCIS (Netherlands)

    Vliet, van M.T.H.; Ludwig, F.; Zwolsman, J.J.G.; Weedon, G.P.; Kabat, P.

    2011-01-01

    This study investigates the impact of both air temperature and river discharge changes on daily water temperatures for river stations globally. A nonlinear water temperature regression model was adapted to include discharge as a variable in addition to air temperature, and a time lag was

  2. Simulating sunflower canopy temperatures to infer root-zone soil water potential

    Science.gov (United States)

    Choudhury, B. J.; Idso, S. B.

    1983-01-01

    A soil-plant-atmosphere model for sunflower (Helianthus annuus L.), together with clear sky weather data for several days, is used to study the relationship between canopy temperature and root-zone soil water potential. Considering the empirical dependence of stomatal resistance on insolation, air temperature and leaf water potential, a continuity equation for water flux in the soil-plant-atmosphere system is solved for the leaf water potential. The transpirational flux is calculated using Monteith's combination equation, while the canopy temperature is calculated from the energy balance equation. The simulation shows that, at high soil water potentials, canopy temperature is determined primarily by air and dew point temperatures. These results agree with an empirically derived linear regression equation relating canopy-air temperature differential to air vapor pressure deficit. The model predictions of leaf water potential are also in agreement with observations, indicating that measurements of canopy temperature together with a knowledge of air and dew point temperatures can provide a reliable estimate of the root-zone soil water potential.

  3. Determination of density of temperature coefficients for the Earth's atmosphere muons

    Science.gov (United States)

    Yanchukovskiy, Valeriy; Kuzmenko, Vasiliy

    2015-06-01

    When studying variations of cosmic ray intensity, by the use of muon telescopes located deep in the atmosphere it is necessary to take into account changes in atmospheric parameters, mainly pressure and temperature. The density distribution of temperature coefficients of the atmosphere muon intensity needs to be estimated from observations. To this purpose, the method of principal components regression and methods of projection to latent structures (PLS-1 and PLS-2). We used data of continuous recording of muons, as well as Novosibirsk 2004-2010 aerological data. As shown by comparing results, PLS-2 method allows us to estimate the density distribution of muon intensity temperature coefficients with minimal errors.

  4. Modeling Caspian Sea water level oscillations under different scenarios of increasing atmospheric carbon dioxide concentrations

    Directory of Open Access Journals (Sweden)

    Roshan GholamReza

    2012-12-01

    Full Text Available Abstract The rapid rise of Caspian Sea water level (about 2.25 meters since 1978 has caused much concern to all five surrounding countries, primarily because flooding has destroyed or damaged buildings and other engineering structures, roads, beaches and farm lands in the coastal zone. Given that climate, and more specifically climate change, is a primary factor influencing oscillations in Caspian Sea water levels, the effect of different climate change scenarios on future Caspian Sea levels was simulated. Variations in environmental parameters such as temperature, precipitation, evaporation, atmospheric carbon dioxide and water level oscillations of the Caspian sea and surrounding regions, are considered for both past (1951-2006 and future (2025-2100 time frames. The output of the UKHADGEM general circulation model and five alternative scenarios including A1CAI, BIASF, BIMES WRE450 and WRE750 were extracted using the MAGICC SCENGEN Model software (version 5.3. The results suggest that the mean temperature of the Caspian Sea region (Bandar-E-Anzali monitoring site has increased by ca. 0.17°C per decade under the impacts of atmospheric carbon dioxide changes (r=0.21. The Caspian Sea water level has increased by ca. +36cm per decade (r=0.82 between the years 1951-2006. Mean results from all modeled scenarios indicate that the temperature will increase by ca. 3.64°C and precipitation will decrease by ca. 10% (182 mm over the Caspian Sea, whilst in the Volga river basin, temperatures are projected to increase by ca. 4.78°C and precipitation increase by ca. 12% (58 mm by the year 2100. Finally, statistical modeling of the Caspian Sea water levels project future water level increases of between 86 cm and 163 cm by the years 2075 and 2100, respectively.

  5. The Dehydration of Water Worlds via Atmospheric Losses

    Science.gov (United States)

    Dong, Chuanfei; Huang, Zhenguang; Lingam, Manasvi; Tóth, Gábor; Gombosi, Tamas; Bhattacharjee, Amitava

    2017-09-01

    We present a three-species multi-fluid magnetohydrodynamic model (H+, H2O+, and e -), endowed with the requisite atmospheric chemistry, that is capable of accurately quantifying the magnitude of water ion losses from exoplanets. We apply this model to a water world with Earth-like parameters orbiting a Sun-like star for three cases: (I) current normal solar wind conditions, (II) ancient normal solar wind conditions, and (III) one extreme “Carrington-type” space weather event. We demonstrate that the ion escape rate for (II), with a value of 6.0 × 1026 s-1, is about an order of magnitude higher than the corresponding value of 6.7 × 1025 s-1 for (I). Studies of ion losses induced by space weather events, where the ion escape rates can reach ˜1028 s-1, are crucial for understanding how an active, early solar-type star (e.g., with frequent coronal mass ejections) could have accelerated the depletion of the exoplanet’s atmosphere. We briefly explore the ramifications arising from the loss of water ions, especially for planets orbiting M-dwarfs where such effects are likely to be significant.

  6. The Dehydration of Water Worlds via Atmospheric Losses

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chuanfei; Bhattacharjee, Amitava [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Huang, Zhenguang; Tóth, Gábor; Gombosi, Tamas [Center for Space Environment Modeling, University of Michigan, Ann Arbor, MI 48109 (United States); Lingam, Manasvi, E-mail: dcfy@princeton.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2017-09-20

    We present a three-species multi-fluid magnetohydrodynamic model (H{sup +}, H{sub 2}O{sup +}, and e {sup −}), endowed with the requisite atmospheric chemistry, that is capable of accurately quantifying the magnitude of water ion losses from exoplanets. We apply this model to a water world with Earth-like parameters orbiting a Sun-like star for three cases: (i) current normal solar wind conditions, (ii) ancient normal solar wind conditions, and (iii) one extreme “Carrington-type” space weather event. We demonstrate that the ion escape rate for (ii), with a value of 6.0 × 10{sup 26} s{sup −1}, is about an order of magnitude higher than the corresponding value of 6.7 × 10{sup 25} s{sup −1} for (i). Studies of ion losses induced by space weather events, where the ion escape rates can reach ∼10{sup 28} s{sup −1}, are crucial for understanding how an active, early solar-type star (e.g., with frequent coronal mass ejections) could have accelerated the depletion of the exoplanet’s atmosphere. We briefly explore the ramifications arising from the loss of water ions, especially for planets orbiting M-dwarfs where such effects are likely to be significant.

  7. Modelling atmospheric temperature rise due to pollutants and its ...

    African Journals Online (AJOL)

    ... a mathematical model we show that temperature increases (warming) as the Hartman number due to pollutant increases. Thus, temperature and pollutants contribute to global warming. We also discuss the implications of the result on agriculture and forestry. Journal of the Nigerian Association of Mathematical Physics, ...

  8. Atmospheric turbulence temperature on the laser wavefront properties

    Science.gov (United States)

    Contreras López, J. C.; Ballesteros Díaz, A.; Tíjaro Rojas, O. J.; Torres Moreno, Y.

    2017-06-01

    Temperature is a physical magnitude that if is higher, the refractive index presents more important random fluctuations, which produce a greater distortion in the wavefront and thus a displacement in its centroid. To observe the effect produced by the turbulent medium strongly influenced by temperature on propagation laser beam, we experimented with two variable and controllable temperature systems designed as optical turbulence generators (OTG): a Turbulator and a Parallelepiped glass container. The experimental setup use three CMOS cameras and four temperature sensors spatially distributed to acquire synchronously information of the laser beam wavefront and turbulence temperature, respectively. The acquired information was analyzed with MATLAB® software tool, that it allows to compute the position, in terms of the evolution time, of the laser beam center of mass and their deviations produced by different turbulent conditions generated inside the two manufactured systems. The results were reflected in the statistical analysis of the centroid shifting.

  9. Detection of Atmospheric Water Deposits in Porous Media Using the TDR Technique

    Directory of Open Access Journals (Sweden)

    Anna Nakonieczna

    2015-04-01

    Full Text Available Investigating the intensity of atmospheric water deposition and its diurnal distribution is essential from the ecological perspective, especially regarding dry geographic regions. It is also important in the context of monitoring the amount of moisture present within building materials in order to protect them from excessive humidity. The objective of this study was to test a constructed sensor and determine whether it could detect and track changes in the intensity of atmospheric water deposition. An operating principle of the device is based on the time-domain reflectometry technique. Two sensors of different plate volumes were manufactured. They were calibrated at several temperatures and tested during field measurements. The calibration turned out to be temperature independent. The outdoor measurements indicated that the upper limits of the measurement ranges of the sensors depended on the volumes of the plates and were equal to 1:2 and 2:8 mm H2O. The respective sensitivities were equal to 3.2 x 10-3 and 7.5 x 10-3 g∙ps-1. The conducted experiments showed that the construction of the designed device and the time-domain reflectometry technique were appropriate for detecting and tracing the dynamics of atmospheric water deposition. The obtained outcomes were also collated with the readings taken in an actual soil sample. For this purpose, an open container sensor, which allows investigating atmospheric water deposition in soil, was manufactured. It turned out that the readings taken by the porous ceramic plate sensor reflected the outcomes of the measurements performed in a soil sample.

  10. Detection of atmospheric water deposits in porous media using the TDR technique.

    Science.gov (United States)

    Nakonieczna, Anna; Kafarski, Marcin; Wilczek, Andrzej; Szypłowska, Agnieszka; Janik, Grzegorz; Albert, Małgorzata; Skierucha, Wojciech

    2015-04-13

    Investigating the intensity of atmospheric water deposition and its diurnal distribution is essential from the ecological perspective, especially regarding dry geographic regions. It is also important in the context of monitoring the amount of moisture present within building materials in order to protect them from excessive humidity. The objective of this study was to test a constructed sensor and determine whether it could detect and track changes in the intensity of atmospheric water deposition. An operating principle of the device is based on the time-domain reflectometry technique. Two sensors of different plate volumes were manufactured. They were calibrated at several temperatures and tested during field measurements. The calibration turned out to be temperature independent. The outdoor measurements indicated that the upper limits of the measurement ranges of the sensors depended on the volumes of the plates and were equal to 1:2 and 2:8 mm H2O. The respective sensitivities were equal to 3.2 x 10(-3) and 7.5 x 10(-3) g∙ps(-1). The conducted experiments showed that the construction of the designed device and the time-domain reflectometry technique were appropriate for detecting and tracing the dynamics of atmospheric water deposition. The obtained outcomes were also collated with the readings taken in an actual soil sample. For this purpose, an open container sensor, which allows investigating atmospheric water deposition in soil, was manufactured. It turned out that the readings taken by the porous ceramic plate sensor reflected the outcomes of the measurements performed in a soil sample.

  11. Habitability of waterworlds: runaway greenhouses, atmospheric expansion, and multiple climate states of pure water atmospheres.

    Science.gov (United States)

    Goldblatt, Colin

    2015-05-01

    There are four different stable climate states for pure water atmospheres, as might exist on so-called "waterworlds." I map these as a function of solar constant for planets ranging in size from Mars-sized to 10 Earth-mass. The states are as follows: globally ice covered (Ts ⪅ 245 K), cold and damp (270 ⪅ Ts ⪅ 290 K), hot and moist (350 ⪅ Ts ⪅ 550 K), and very hot and dry (Tsx2A86;900 K). No stable climate exists for 290 ⪅ T s ⪅ 350 K or 550 ⪅ Ts ⪅ 900 K. The union of hot moist and cold damp climates describes the liquid water habitable zone, the width and location of which depends on planet mass. At each solar constant, two or three different climate states are stable. This is a consequence of strong nonlinearities in both thermal emission and the net absorption of sunlight. Across the range of planet sizes, I account for the atmospheres expanding to high altitudes as they warm. The emitting and absorbing surfaces (optical depth of unity) move to high altitude, making their area larger than the planet surface, so more thermal radiation is emitted and more sunlight absorbed (the former dominates). The atmospheres of small planets expand more due to weaker gravity; the effective runaway greenhouse threshold is about 35 W m(-2) higher for Mars, 10 W m(-2) higher for Earth or Venus, but only a few W m(-2) higher for a 10 Earth-mass planet. There is an underlying (expansion-neglected) trend of increasing runaway greenhouse threshold with planetary size (40 W m(-2) higher for a 10 Earth-mass planet than for Mars). Summing these opposing trends means that Venus-sized (or slightly smaller) planets are most susceptible to a runaway greenhouse. The habitable zone for pure water atmospheres is very narrow, with an insolation range of 0.07 times the solar constant. A wider habitable zone requires background gas and greenhouse gas: N2 and CO2 on Earth, which are biologically controlled. Thus, habitability depends on inhabitance.

  12. The initial responses of hot liquid water released under low atmospheric pressures: Experimental insights

    Science.gov (United States)

    Bargery, Alistair Simon; Lane, Stephen J.; Barrett, Alexander; Wilson, Lionel; Gilbert, Jennie S.

    2010-11-01

    Experiments have been performed to simulate the shallow ascent and surface release of water and brines under low atmospheric pressure. Atmospheric pressure was treated as an independent variable and water temperature and vapor pressure were examined as a function of total pressure variation down to low pressures. The physical and thermal responses of water to reducing pressure were monitored with pressure transducers, temperature sensors and visible imaging. Data were obtained for pure water and for solutions with dissolved NaCl or CO 2. The experiments showed the pressure conditions under which the water remained liquid, underwent a rapid phase change to the gas state by boiling, and then solidified because of removal of latent heat. Liquid water is removed from phase equilibrium by decompression. Solid, liquid and gaseous water are present simultaneously, and not at the 611 Pa triple point, because dynamic interactions between the phases maintain unstable temperature gradients. After phase changes stop, the system reverts to equilibrium with its surroundings. Surface and shallow subsurface pressure conditions were simulated for Mars and the icy satellites of the outer Solar System. Freezing by evaporation in the absence of wind on Mars is shown to be unlikely for pure water at pressures greater than c. 670 Pa, and for saline solutions at pressures greater than c. 610 Pa. The physical nature of ice that forms depends on the salt content. Ice formed from saline water at pressures less than c. 610 Pa could be similar to terrestrial sea ice. Ice formed from pure water at pressures less than c. 100 Pa develops a low thermal conductivity and a 'honeycomb' structure created by sublimation. This ice could have a density as low as c. 450 kg m -3 and a thermal conductivity as low as 1.6 W m -1 K -1, and is highly reflective, more akin to snow than the clear ice from which it grew. The physical properties of ice formed from either pure or saline water at low pressures will

  13. Ocean water temperature from data loggers from FIXED PLATFORMS from 12 January 1997 to 30 April 1998 (NODC Accession 9800117)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean water temperature data were collected from data loggers attached to FIXED PLATFORMS. Data were collected by University of Hawaii at Manoa (UHM) from 12 January...

  14. WATER TEMPERATURE and other data from REEVES from 1990-07-11 to 1990-07-24 (NCEI Accession 9000200)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data in this accession was collected from ship Reeves over two week period spanning from July 11-24, 1990. The real time data of water temperature at varying...

  15. WATER TEMPERATURE and other data from SEMMES from 1990-07-01 to 1990-07-26 (NCEI Accession 9000212)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data in this accession was collected from ship Semmes between July 1, 1990 and July 26, 1990. The real time data of water temperature at varying depth...

  16. WATER TEMPERATURE and other data from REASONER from 1990-07-01 to 1990-07-31 (NCEI Accession 9000203)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data in this accession was collected from ship Reasoner over a period of one month in July 1990. The real time data of water temperature at varying depth...

  17. WATER TEMPERATURE and other data from HALYBURTON from 1990-08-08 to 1990-08-31 (NCEI Accession 9000222)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data in this accession was collected from Ship Halyburton between August 8-31, 1990. The real time data of water temperature at varying depth bathythermograph...

  18. WATER TEMPERATURE and other data from VREELAND from 1990-11-02 to 1990-11-16 (NCEI Accession 9000298)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data in this accession was collected from Ship Vreeland between November 2-16, 1990. The real time data of water temperature at varying depth bathythermograph...

  19. WATER TEMPERATURE and other data from REASONER from 1990-04-09 to 1990-04-30 (NCEI Accession 9000115)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data in this accession was collected from ship Reasoner between April 9 to April 30, 1990. The real time data of water temperature at varying depth...

  20. WATER TEMPERATURE and other data from UNKNOWN from 1964-01-03 to 1969-12-05 (NODC Accession 9300085)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water depth and temperature data were collected as part of South Atlantic Ventilation Experiment (SAVE) from over a dozen ships between January 3, 1964 and...

  1. WATER TEMPERATURE and other data from PACMERCHANT from 1989-08-04 to 1989-11-14 (NCEI Accession 9000001)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water temperature data in this accession was collected from the ship Pac Merchant by National Ocean Service (NOS), Seattle, WA. The Bathythermograph data were...

  2. WATER TEMPERATURE and other data from REEVES in the South China Sea on 1990-09-30 (NODC Accession 9000257)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data in this accession was collected in South China Sea (Nan Hai) from ship Reeves on September 30, 1990. The real time data of water temperature at varying...

  3. WATER TEMPERATURE and other data from REASONER from 1990-05-01 to 1990-05-18 (NCEI Accession 9000147)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data in this accession was collected from ship Reasoner between May 1 to May 18, 1990. The real time data of water temperature at varying depth bathythermograph...

  4. Modeling the water decarbonization processes in atmospheric deaerators

    Science.gov (United States)

    Leduhovsky, G. V.

    2017-02-01

    A mathematical model of the water decarbonization processes in atmospheric deaerators is proposed to calculate the thermal decomposition degree of hydrocarbonates in a deaerator, pH of a deaerated water sample, and the mass concentration of free carbonic acid in it on a carbon dioxide basis. The mathematical description of these processes is based on the deaeration tank water flow model implemented in the specialized software suite for the calculation of three-dimensional liquid flows, where a real water flow is a set of parallel small plug-flow reactors, and the rate constant of the reaction representing a generalized model of the thermal decomposition of hydrocarbonates with consideration for its chemical and diffusion stages is identified by experimental data. Based on the results of experimental studies performed on deaerators of different designs with and without steam bubbling in their tanks, an empirical support of this model has been developed in the form of recommended reaction order and rate constant values selected depending on the overall alkalinity of water fed into a deaerator. A self-contained mathematical description of the water decarbonization processes in deaerators has been obtained. The proposed model precision has been proven to agree with the specified metrological characteristics of the potentiometric and alkalimetric methods for measuring pH and the free carbonic acid concentration in water. This allows us to recommend the obtained model for the solution of practical problems of forming a specified amount of deaerated water via the selection of the structural and regime parameters of deaerators during their design and regime adjustment.

  5. Simulating soybean canopy temperature as affected by weather variables and soil water potential

    Science.gov (United States)

    Choudhury, B. J.

    1982-01-01

    Hourly weather data for several clear sky days during summer at Phoenix and Baltimore which covered a wide range of variables were used with a plant atmosphere model to simulate soybean (Glycine max L.) leaf water potential, stomatal resistance and canopy temperature at various soil water potentials. The air and dew point temperatures were found to be the significant weather variables affecting the canopy temperatures. Under identical weather conditions, the model gives a lower canopy temperature for a soybean crop with a higher rooting density. A knowledge of crop rooting density, in addition to air and dew point temperatures is needed in interpreting infrared radiometric observations for soil water status. The observed dependence of stomatal resistance on the vapor pressure deficit and soil water potential is fairly well represented. Analysis of the simulated leaf water potentials indicates overestimation, possibly due to differences in the cultivars.

  6. CHAPTER 6. Biomimetic Materials for Efficient Atmospheric Water Collection

    KAUST Repository

    Zhang, Lianbin

    2016-02-23

    Water scarcity is a severe problem in semi-arid desert regions, land-scarce countries and in countries with high levels of economic activity. In these regions, the collection of atmospheric water - for example, fog - is recognized as an important method of providing water. In nature, through millions of year evolution, some animals and plants in many of the arid regions have developed unique and highly efficient systems with delicate microstructures and composition for the purpose of fog collection to survive the harsh conditions. With the unique ability of fog collection, these creatures could readily cope with insufficient access to fresh water or lack of precipitation. These natural examples have inspired the design and fabrication of artificial fog collection materials and devices. In this chapter, we will first introduce some natural examples for their unique fog collection capability, and then give some examples of the bioinspired materials and devices that are fabricated artificially to mimic these natural creatures for the purpose of fog collection. We believe that the biomimetic strategy is one of the most promising routes for the design and fabrication of functional materials and devices for the solution of the global water crisis.

  7. TES/Aura L2 Atmospheric Temperatures Limb V006

    Data.gov (United States)

    National Aeronautics and Space Administration — TES Level 2 data contain retrieved species (or temperature) profiles at the observation targets and the estimated errors. The geolocation, quality and other data...

  8. Midnight Temperature Maximum (MTM) in Whole Atmosphere Model (WAM) Simulations

    Science.gov (United States)

    2016-04-14

    amplitudes and phases of the semidiurnal tidal modes [Fuller-Rowell, 1981; Fesen, 1996; Meriwether et al., 2008]. It has been suggested that higher-order...geomagnetic conditions. 3. Results and Discussion [6] Figure 1 presents snapshots of temperature deviation DT from the zonal mean T0 at a pressure level near...30!S at (left) UT = 0:00 and (right) UT = 6:00. See text for details. Figure 2. Temperature amplitude spectrum as a function of frequency and zonal

  9. A secular carbon debt from atmospheric high temperature combustion of stem wood?

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    2012-01-01

    Basically, combustion of woody biomass in high temperature processes that react with atmospheric air results in a long lasting addition of carbon dioxide to the atmosphere. When harvesting large extra amounts of stem tree for energetic use, a global as well as secular time frame is needed to assess...

  10. The Effect of Water Vapor on the Thermal Decomposition of Pyrite in N2 Atmosphere

    Directory of Open Access Journals (Sweden)

    Nesrin BOYABAT

    2009-03-01

    Full Text Available In this study, the effect of water vapor on the thermal decomposition of pyrite mineral in nitrogen atmosphere has been investigated in a horizontal tube furnace. Temperature, time and water vapor concentration were used as experimental parameters. According to the data obtained at nitrogen/ water vapor environment, it was observed that the water vapor on the decomposition of pyrite increased the decomposition rate. The decomposition reaction is well represented by the "shrinking core" model and can be divided into two regions with different rate controlling step. The rate controlling steps were determined from the heat transfer through the gas film for the low conversions, while it was determined from the mass transfer through product ash layer for the high conversions. The activation energies of this gas and ash film mechanisms were found to be 77 and 81 kJ/mol-1, respectively.

  11. Influence of atmospheric and sea surface temperature on the size of hurricane Catarina

    National Research Council Canada - National Science Library

    Radu, Raluca; Toumi, Ralf; Phau, Jared

    2014-01-01

    ...‐resolution numerical simulations of hurricane Catarina in the South Atlantic indicate that the TC size increases proportionally to the surface latent heat flux, when atmospheric and sea surface temperature ( SST ) are increased...

  12. MGS RS: ATMOSPHERIC TEMPERATURE-PRESSURE PROFILES V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains over 21000 temperature-pressure profiles (TPS files) of the neutral atmosphere derived from Mars Global Surveyor (MGS) radio occultation data....

  13. Effect of temperature oscillation on chemical reaction rates in the atmosphere

    Science.gov (United States)

    Eberstein, I. J.

    1974-01-01

    The effect of temperature fluctuations on atmospheric ozone chemistry is examined by considering the Chapman photochemical theory of ozone transport to calculate globally averaged ozone production rates from mean reaction rates, activation energies, and recombination processes.

  14. Adsorption of glyoxal molecules on atmospheric water ice nanoparticles

    Science.gov (United States)

    Schrems, O.; Ignatov, S. K.; Gadzhiev, O. B.

    2012-12-01

    Ice nanoparticles play an important role in physics and chemistry of the Earth atmosphere. Knowledge about the uptake and incorporation of atmospheric trace gases in ice particles as well as their interactions with water molecules is very important for the understanding of processes at the air/ice interface. The interaction of the atmospheric trace gases with atmospheric nanoparticles is also an important issue for the development of modern physicochemical models. Usually, the interactions between trace gases and small particles considered theoretically apply small-size model complexes or the surface models representing only fragments of the ideal surface. In this study we used modern quantum chemical methods to study the interaction of glyoxal molecules (HCOCHO) with the full-size particles of crystalline water ice of nanoscale size. Glyoxal, the simplest a-dicarbonyl, is an atmospheric relevant carbonyl compound and is formed as product in the photooxidation of simple volatile organic compounds in air in the presence of NOx. The ice particles consisting of 48, 72, and 216 water molecules with a distorted structure of hexagonal water ice Ih were studied using the new SCC-DFTBA method combining well the advantages of the DFT theory and semiempirical methods of quantum chemistry. Typical sizes of the ice particles were in the range 1.5-2.6 nm. The glyoxal molecules were coordinated on different sites of the nanoparticles corresponding to different ice Ih crystal planes: (0001), (10-10), (11-20). The structure of coordination complexes, their vibrational frequencies, the corresponding adsorption energies and thermodynamic parameters (the enthalpy and the Gibbs free energy of adsorption) were evaluated using the full optimization followed by the frequency calculations. Additionally, the different modes of incorporation of the glyoxal molecules into the ice particles were considered and the corresponding structural and energetic parameters were evaluated. The

  15. Thermodynamics of the formaldehyde-water and formaldehyde-ice systems for atmospheric applications.

    Science.gov (United States)

    Barret, Manuel; Houdier, Stephan; Domine, Florent

    2011-01-27

    Formaldehyde (HCHO) is a species involved in numerous key atmospheric chemistry processes that can significantly impact the oxidative capacity of the atmosphere. Since gaseous HCHO is soluble in water, the water droplets of clouds and the ice crystals of snow exchange HCHO with the gas phase and the partitioning of HCHO between the air, water, and ice phases must be known to understand its chemistry. This study proposes thermodynamic formulations for the partitioning of HCHO between the gas phase and the ice and liquid water phases. A reanalysis of existing data on the vapor-liquid equilibrium has shown the inadequacy of the Henry's law formulation, and we instead propose the following equation to predict the mole fraction of HCHO in liquid water at equilibrium, X(HCHO,liq), as a function of the partial pressure P(HCHO) (Pa) and temperature T (K): X(HCHO,liq) = 1.700 × 10(-15) e((8014/T))(P(HCHO))(1.105). Given the paucity of data on the gas-ice equilibrium, the solubility of HCHO and the diffusion coefficient (D(HCHO)) in ice were measured by exposing large single ice crystals to low P(HCHO). Our recommended value for D(HCHO) over the temperature range 243-266 K is D(HCHO) = 6 × 10(-12) cm(2) s(-1). The solubility of HCHO in ice follows the relationship X(HCHO,ice) = 9.898 × 10(-13) e((4072/T))(P(HCHO))(0.803). Extrapolation of these data yields the P(HCHO) versus 1/T phase diagram for the H(2)O-HCHO system. The comparison of our results to existing data on the partitioning of HCHO between the snow and the atmosphere in the high arctic highlights the interplay between thermodynamic equilibrium and kinetics processes in natural systems.

  16. An Experimental Investigation of the Process of Isotope Exchange that Takes Place when Heavy Water Is Exposed to the Atmosphere

    Science.gov (United States)

    Deeney, F. A.; O'Leary, J. P.

    2009-01-01

    We have used the recently developed method for rapid measurement of maximum density temperature to determine the rate at which hydrogen and deuterium isotope exchange takes place when a sample of heavy water is exposed to the atmosphere. We also provide a simple explanation for the observed linear rate of transition. (Contains 2 figures.)

  17. Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics

    Directory of Open Access Journals (Sweden)

    A. M. Makarieva

    2013-01-01

    Full Text Available Phase transitions of atmospheric water play a ubiquitous role in the Earth's climate system, but their direct impact on atmospheric dynamics has escaped wide attention. Here we examine and advance a theory as to how condensation influences atmospheric pressure through the mass removal of water from the gas phase with a simultaneous account of the latent heat release. Building from fundamental physical principles we show that condensation is associated with a decline in air pressure in the lower atmosphere. This decline occurs up to a certain height, which ranges from 3 to 4 km for surface temperatures from 10 to 30 °C. We then estimate the horizontal pressure differences associated with water vapor condensation and find that these are comparable in magnitude with the pressure differences driving observed circulation patterns. The water vapor delivered to the atmosphere via evaporation represents a store of potential energy available to accelerate air and thus drive winds. Our estimates suggest that the global mean power at which this potential energy is released by condensation is around one per cent of the global solar power – this is similar to the known stationary dissipative power of general atmospheric circulation. We conclude that condensation and evaporation merit attention as major, if previously overlooked, factors in driving atmospheric dynamics.

  18. Response of Earth's Atmosphere to Increases in Solar Flux and Implications for Loss of Water from Venus

    Science.gov (United States)

    Kasting, J. F.; Pollock, J. G.; Ackerman, T. P.

    1985-01-01

    A one dimensional radiative convective model is used to compute temperature and water vapor profiles as functions of solar flux for earthlike atmosphere. The troposphere is assumed to be fully saturated with a moist adiabatic lapse rate, and changes in cloudiness are neglected. Predicted surface temperatures increase monotonically from -1 to 111 C as the solar flux is increased from 0.81 to 1.45 times its present value. The results imply that the surface temperature of a primitive water rich Venus should have been at least 80-100 C and may have been much higher, water vapor should have been a major atmospheric constituent at all altitudes, leading to the rapid hydrodynamic escape of hydrogen. The oxygen left behind by this process was presumably consumed by reactions with reduced minerals in the crust.

  19. VizieR Online Data Catalog: Horizontal temperature at Venus upper atmosphere (Peralta+, 2016)

    Science.gov (United States)

    Peralta, J.; Lopez-Valverde, M. A.; Gilli, G.; Piccialli, A.

    2015-11-01

    The dayside atmospheric temperatures in the UMLT of Venus (displayed in Figure 7A of this article) are listed as a CSV data file. These values consist of averages in bins of 5° in latitude and 0.25-hours in local time from dayside temperatures covering five years of data (from 2006/05/14 to 2011/06/05). These temperatures were inferred from the CO2 NLTE nadir spectra measured by the instrument VIRTIS-H onboard Venus Express (see article for full description of the procedure), and are representative of the atmospheric region between 10-2 to 10-5mb. Along with the temperatures, we also provide the corresponding error and the number of temperatures averaged in each bin. The format of the CSV file reasonably agrees with the expected format of the data files to be provided in the future version of the Venus International Reference Atmosphere (VIRA). (1 data file).

  20. Fiber performance in hydrogen atmosphere at high temperature

    Science.gov (United States)

    Semjonov, Sergey L.; Kosolapov, Alexey F.; Nikolin, Ivan V.; Ramos, Rogerio; Vaynshteyn, Vladimir; Hartog, Arthur

    2006-04-01

    Optical losses induced in fibers at 300 °C and in hydrogen atmosphere were studied. A non-linear dependence of hydrogen penetration through the carbon coating on hydrogen pressure was observed. It was demonstrated that carbon coating could not defend the fiber from hydrogen penetration for a long time period. At some time, the hydrogen presence in the fiber core resulted in high optical losses in all spectral range in the case of Ge-doped fibers. It was found that the short-wavelength loss edge (SWE) in a Ge-doped fiber co-doped with a small amount of phosphorus was significantly smaller than that in Ge-doped fibers without co-doping. Nevertheless, P-codoping effect did not decrease optical losses related with SWE completely.

  1. An Analytical Formula for Potential Water Vapor in an Atmosphere of Constant Lapse Rate

    Directory of Open Access Journals (Sweden)

    Ali Varmaghani

    2012-01-01

    Full Text Available Accurate calculation of precipitable water vapor (PWV in the atmosphere has always been a matter of importance for meteorologists. Potential water vapor (POWV or maximum precipitable water vapor can be an appropriate base for estimation of probable maximum precipitation (PMP in an area, leading to probable maximum flood (PMF and flash flood management systems. PWV and POWV have miscellaneously been estimated by means of either discrete solutions such as tables, diagrams or empirical methods; however, there is no analytical formula for POWV even in a particular atmospherical condition. In this article, fundamental governing equations required for analytical calculation of POWV are first introduced. Then, it will be shown that this POWV calculation relies on a Riemann integral solution over a range of altitude whose integrand is merely a function of altitude. The solution of the integral gives rise to a series function which is bypassed by approximation of saturation vapor pressure in the range of -55 to 55 degrees Celsius, and an analytical formula for POWV in an atmosphere of constant lapse rate is proposed. In order to evaluate the accuracy of the suggested equation, exact calculations of saturated adiabatic lapse rate (SALR at different surface temperatures were performed. The formula was compared with both the diagrams from the US Weather Bureau and SALR. The results demonstrated unquestionable capability of analytical solutions and also equivalent functions.

  2. The neutral atmosphere temperature experiment. [for thermospheric nitrogen measurement on AEROS satellite

    Science.gov (United States)

    Spencer, N. W.; Pelz, D. T.; Niemann, H. B.; Carignan, G. R.; Caldwell, J. R.

    1974-01-01

    The AEROS Neutral Atmosphere Temperature Experiment (NATE) is designed to measure the kinetic temperature of molecular nitrogen in the thermosphere. A quadrupole mass spectrometer tuned to N2 measures the N2 density variation in a small spherical antechamber having a knife-edged orifice which is exposed to the atmosphere at the outer surface of the spacecraft. The changing density of N2 due to the spinning motion of the spacecraft permits determination of the velocity distribution of the N2 from which the temperature is calculated. An alternate mode of operation of the instrument allows measurement of the other gases in the atmosphere as well as N2 permitting determination of the neutral particle composition of the atmosphere.

  3. Water cycles in closed ecological systems: effects of atmospheric pressure.

    Science.gov (United States)

    Rygalov, Vadim Y; Fowler, Philip A; Metz, Joannah M; Wheeler, Raymond M; Bucklin, Ray A

    2002-01-01

    In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from ~1 to 10 L m-2 d-1 (~1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems.

  4. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Hawaiian Archipelago in 2013 (NCEI Accession 0161327)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  5. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Pacific Remote Island Areas since 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  6. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across American Samoa in 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  7. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Mariana Archipelago in 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  8. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Hawaiian Archipelago since 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  9. A Method for the Estimation of the Atmospheric Temperature Profile.

    Science.gov (United States)

    1981-11-01

    Some of these statistics are available in publications of the Bureau of Meteorology . McRae(ref.3) presents tables of mean and standard deviation in...Variability of Temperature and Geopotential, Australia. Surface to 100 mb". Bureau of Meteorology , Department of the Interior, 1977 4 Maher, J.V. and...34Upper Air Statistics, Australia - Lee, D.M. Surface to 5 mb, 1957 to 1975". Bureau of Meteorology , Department of the Interior, undated 5 Maher, J.V

  10. Atmospheric Pressure Low Temperature Plasma System for Additive Manufacturing

    Science.gov (United States)

    Burnette, Matthew; Staack, David

    2016-09-01

    There is growing interest in using plasmas for additive manufacturing, however these methods use high temperature plasmas to melt the material. We have developed a novel technique of additive manufacturing using a low temperature dielectric barrier discharge (DBD) jet. The jet is attached to the head of a 3D printer to allow for precise control of the plasma's location. Various methods are employed to deposit the material, including using a vaporized precursor or depositing a liquid precursor directly onto the substrate or into the plasma via a nebulizer. Various materials can be deposited including metals (copper using copper (II) acetylacetonate), polymers (PMMA using the liquid monomer), and various hydrocarbon compounds (using alcohols or a 100% methane DBD jet). The rastering pattern for the 3D printer was modified for plasma deposition, since it was originally designed for thermoplastic extrusion. The design constraints for fill pattern selection for the plasma printer are influenced by substrate heating, deposition area, and precursor consumption. Depositions onto pressure and/or temperature sensitive substrates can be easily achieved. Deposition rates range up to 0.08 cm3/hr using tris(2-methoxyethoxy)(vinyl)silane, however optimization can still be done on the system to improve the deposition rate. For example higher concentration of precursor can be combined with faster motion and higher discharge powers to increase the deposition rate without overheating the substrate.

  11. Spectroscopic Studies of a Low-Temperature Atmospheric Plasmoid Analogous to Ball Lightning

    Science.gov (United States)

    Dubowsky, Scott E.; Friday, David M.; Peters, Kevin C.; Perry, Richard H.; Zhao, Zhangji; Deutsch, Bradley; Bhargava, Rohit; Liu, Jui-Nung; McCall, Benjamin J.

    2014-06-01

    Atmospheric-pressure, low-temperature plasmas exist in nature in the form of ball lightning, and last year a natural ball lightning event was finally observed with scientific equipment. Production of ball lightning in the laboratory dates back to Tesla's work at Colorado Springs. Today, Tesla's ``fireballs" are easily produced in the laboratory by discharging kiloJoules of energy slightly above an electrolyte solution via a metal electrode. For the sake of clarity, those plasmas produced using this technique are referred to as ``plasmoids." Valuable information is obtained from previous experiments, such as the identification of water clusters and the temperature of the interior of plasmoids.c We perform mass spectrometry and Fourier-transform infrared emission spectroscopy in an effort to characterize these plasmoids. We present, to our knowledge, the first mass spectrometric data and infrared emission spectra of plasmoid discharges. Mass spectrometry reveals the presence of small protonated water clusters [H+(H_2O)_2, H+(H_2O)_3] and nitrogen-containing molecules [NO+, NO+-H_2O]. IR spectra exhibit signals observed in the water emission region (1300-2000 cm-1, 3000-4000 cm-1), and signals in several other regions of interest. Fundamental properties of these plasmoids including the electron energy distribution function, component densities, and collisional cross sections will be discussed. Cen, J.; Yuan, P.; Xue, S. Phys. Rev. Lett. 2014, 112, 035001 Tesla, N. Colorado Springs Notes 1899-1900; Marinčić, A., Ed.; Nolit: Beograd, Yugoslavia, 1978; pp 368-370 Friday, D.M.; Broughton, P.B.; Lee, T.A.; Schutz, G.A.; Betz, J.N.; Lindsay, C.M. J. Phys. Chem. A 2013, 117 (39), 9931-9940

  12. Moist convection and the vertical structure and water abundance of Jupiter's atmosphere

    Science.gov (United States)

    Del Genio, Anthony D.; Mcgrattan, Kevin B.

    1990-01-01

    The cumulative effects of an ensemble of moist convective plumes on a conditionally unstable atmosphere are predicted by a model of moist convection on Jupiter in which the heating/cooling and drying/moistening of the environment occur through (1) compensating subsidence, (2) detrainment of updraft air at cloud tops, and (3) the evaporation and melting of falling condensate. Parahydrogen is transported as a passive tracer. Pure moist convective, mixed moist-dry convective, and primarily dry convective regimes are possible, depending on the assumed deep-water abundance, efficiency of condensate evaporation, and initial temperature profile.

  13. The impact of atmospheric ammonia and temperature on growth and nitrogen metabolism of winter wheat

    NARCIS (Netherlands)

    Clement, J.M A M; Loorbach, J; Meijer, J; van Hasselt, P.R; Stulen, G

    The effect of atmospheric ammonia in combination with low and moderate growth temperature on growth and nitrogen metabolism of winter wheat plants (Triticum aestivum L. cv. Urban) was investigated. Plants were exposed to 0, 1000 and 2000 nl l(-1) NH3 for 1 week at moderate day/night temperatures

  14. Investigation of water adsorption and hygroscopicity of atmospherically relevant particles using a commercial vapor sorption analyzer

    Science.gov (United States)

    Gu, Wenjun; Li, Yongjie; Zhu, Jianxi; Jia, Xiaohong; Lin, Qinhao; Zhang, Guohua; Ding, Xiang; Song, Wei; Bi, Xinhui; Wang, Xinming; Tang, Mingjin

    2017-10-01

    Water adsorption and hygroscopicity are among the most important physicochemical properties of aerosol particles, largely determining their impacts on atmospheric chemistry, radiative forcing, and climate. Measurements of water adsorption and hygroscopicity of nonspherical particles under subsaturated conditions are nontrivial because many widely used techniques require the assumption of particle sphericity. In this work we describe a method to directly quantify water adsorption and mass hygroscopic growth of atmospheric particles for temperature in the range of 5-30 °C, using a commercial vapor sorption analyzer. A detailed description of instrumental configuration and experimental procedures, including relative humidity (RH) calibration, is provided first. It is then demonstrated that for (NH4)2SO4 and NaCl, deliquescence relative humidities and mass hygroscopic growth factors measured using this method show good agreements with experimental and/or theoretical data from literature. To illustrate its ability to measure water uptake by particles with low hygroscopicity, we used this instrument to investigate water adsorption by CaSO4 ṡ 2H2O as a function of RH at 25 °C. The mass hygroscopic growth factor of CaSO4 ṡ 2H2O at 95 % RH, relative to that under dry conditions (RH < 1 %), was determined to be (0.450±0.004) % (1σ). In addition, it is shown that this instrument can reliably measure a relative mass change of 0.025 %. Overall, we have demonstrated that this commercial instrument provides a simple, sensitive, and robust method to investigate water adsorption and hygroscopicity of atmospheric particles.

  15. Water Ice Clouds and Dust in the Martian Atmosphere Observed by Mars Climate Sounder

    Science.gov (United States)

    Benson, Jennifer L.; Kass, David; Heavens, Nicholas; Kleinbohl, Armin

    2011-01-01

    The water ice clouds are primarily controlled by the temperature structure and form at the water condensation level. Clouds in all regions presented show day/night differences. Cloud altitude varies between night and day in the SPH and tropics: (1) NPH water ice opacity is greater at night than day at some seasons (2) The diurnal thermal tide controls the daily variability. (3) Strong day/night changes indicate that the amount of gas in the atmosphere varies significantly. See significant mixtures of dust and ice at the same altitude planet-wide (1) Points to a complex radiative and thermal balance between dust heating (in the visible) and ice heating or cooling in the infrared. Aerosol layering: (1) Early seasons reveal a zonally banded spatial distribution (2) Some localized longitudinal structure of aerosol layers (3) Later seasons show no consistent large scale organization

  16. A synthesis of atmospheric mercury depletion event chemistry linking atmosphere, snow and water

    Science.gov (United States)

    Steffen, A.; Douglas, T.; Amyot, M.; Ariya, P.; Aspmo, K.; Berg, T.; Bottenheim, J.; Brooks, S.; Cobbett, F.; Dastoor, A.; Dommergue, A.; Ebinghaus, R.; Ferrari, C.; Gardfeldt, K.; Goodsite, M. E.; Lean, D.; Poulain, A.; Scherz, C.; Skov, H.; Sommar, J.; Temme, C.

    2007-07-01

    It was discovered in 1995 that, during the spring time, unexpectedly low concentrations of gaseous elemental mercury (GEM) occurred in the Arctic air. This was surprising for a pollutant known to have a long residence time in the atmosphere; however conditions appeared to exist in the Arctic that promoted this depletion of mercury (Hg). This phenomenon is termed atmospheric mercury depletion events (AMDEs) and its discovery has revolutionized our understanding of the cycling of Hg in Polar Regions while stimulating a significant amount of research to understand its impact to this fragile ecosystem. Shortly after the discovery was made in Canada, AMDEs were confirmed to occur throughout the Arctic, sub-Artic and Antarctic coasts. It is now known that, through a series of photochemically initiated reactions involving halogens, GEM is converted to a more reactive species and is subsequently associated to particles in the air and/or deposited to the polar environment. AMDEs are a means by which Hg is transferred from the atmosphere to the environment that was previously unknown. In this article we review the history of Hg in Polar Regions, the methods used to collect Hg in different environmental media, research results of the current understanding of AMDEs from field, laboratory and modeling work, how Hg cycles around the environment after AMDEs, gaps in our current knowledge and the future impacts that AMDEs may have on polar environments. The research presented has shown that while considerable improvements in methodology to measure Hg have been made the main limitation remains knowing the speciation of Hg in the various media. The processes that drive AMDEs and how they occur are discussed. As well, the roles that the snow pack, oceans, fresh water and the sea ice play in the cycling of Hg are presented. It has been found that deposition of Hg from AMDEs occurs at marine coasts and not far inland and that a fraction of the deposited Hg does not remain in the same

  17. Fiber optic distributed temperature sensing for the determination of the nocturnal atmospheric boundary layer height

    Directory of Open Access Journals (Sweden)

    C. A. Keller

    2011-02-01

    Full Text Available A new method for measuring air temperature profiles in the atmospheric boundary layer at high spatial and temporal resolution is presented. The measurements are based on Raman scattering distributed temperature sensing (DTS with a fiber optic cable attached to a tethered balloon. These data were used to estimate the height of the stable nocturnal boundary layer. The experiment was successfully deployed during a two-day campaign in September 2009, providing evidence that DTS is well suited for this atmospheric application. Observed stable temperature profiles exhibit an exponential shape confirming similarity concepts of the temperature inversion close to the surface. The atmospheric mixing height (MH was estimated to vary between 5 m and 50 m as a result of the nocturnal boundary layer evolution. This value is in good agreement with the MH derived from concurrent Radon-222 (222Rn measurements and in previous studies.

  18. WATER TEMPERATURE and other data from ANRO AUSTRALIA, ENCOUNTER BAY and other platforms in the Timor Sea, Flores Sea and other waters from 1990-07-10 to 1991-08-19 (NODC Accession 9500139)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water depth and temperature data was collected as part of Global Temperature- Salinity Pilot Project (GTSPP) using 4 different ships by the Commonwealth...

  19. Implementing earth observation and advanced satellite based atmospheric sounders for water resource and climate modelling

    DEFF Research Database (Denmark)

    Boegh, E.; Dellwik, Ebba; Hahmann, Andrea N.

    for effective land surface representation in water resource modeling” (2009- 2012). The purpose of the new research project is to develop remote sensing based model tools capable of quantifying the relative effects of site-specific land use change and climate variability at different spatial scales......This paper discusses preliminary remote sensing (MODIS) based hydrological modelling results for the Danish island Sjælland (7330 km2) in relation to project objectives and methodologies of a new research project “Implementing Earth observation and advanced satellite based atmospheric sounders....... For this purpose, a) internal catchment processes will be studied using a Distributed Temperature Sensing (DTS) system, b) Earth observations will be used to upscale from field to regional scales, and c) at the largest scale, satellite based atmospheric sounders and meso-scale climate modelling will be used...

  20. Observed and simulated temperature dependence of the liquid water path of low clouds

    Energy Technology Data Exchange (ETDEWEB)

    Del Genio, A.D.; Wolf, A.B. [NASA Goddard Institute for Space Studies, New York, NY (United States)

    1996-04-01

    Data being acquired at the Atmospheric Radiation Measurement (ARM) Southern great Plains (SGP) Cloud and Radiation Testbed (CART) site can be used to examine the factors determining the temperature dependence of cloud optical thickness. We focus on cloud liquid water and physical thickness variations which can be derived from existing ARM measurements.

  1. Short-term stream water temperature observations permit rapid assessment of potential climate change impacts

    Science.gov (United States)

    Peter Caldwell; Catalina Segura; Shelby Gull Laird; Ge Sun; Steven G. McNulty; Maria Sandercock; Johnny Boggs; James M. Vose

    2015-01-01

    Assessment of potential climate change impacts on stream water temperature (Ts) across large scales remains challenging for resource managers because energy exchange processes between the atmosphere and the stream environment are complex and uncertain, and few long-term datasets are available to evaluate changes over time. In this study, we...

  2. VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres

    Directory of Open Access Journals (Sweden)

    Venot Olivia

    2014-02-01

    Full Text Available Ultraviolet (UV absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We performed these measurements for the 115 - 200 nm range at 300, 410, 480, and 550 K. In the 195 - 230 nm range, we worked at seven temperatures between 465 and 800 K. We found that the absorption cross section of CO2 is very sensitive to temperature, especially above 160 nm. Within the studied range of temperature, the CO2 cross section can vary by more than two orders of magnitude. This, in particular, makes the absorption of CO2 significant up to wavelengths as high as 230 nm, while it is negligible above 200 nm at 300 K. To investigate the influence of these new data on the photochemistry of exoplanets, we implemented the measured cross section into a 1D photochemical model. The model predicts that accounting for this temperature dependency of CO2 cross section can affect the computed abundances of NH3, CO2, and CO by one order of magnitude in the atmospheres of hot Jupiter and hot Neptune.

  3. Uncertainty of Wheat Water Use: Simulated Patterns and Sensitivity to Temperature and CO2

    Science.gov (United States)

    Cammarano, Davide; Roetter, Reimund P.; Asseng, Senthold; Ewert, Frank; Wallach, Daniel; Martre, Pierre; Hatfield, Jerry L.; Jones, James W.; Rosenzweig, Cynthia E.; Ruane, Alex C.; hide

    2016-01-01

    Projected global warming and population growth will reduce future water availability for agriculture. Thus, it is essential to increase the efficiency in using water to ensure crop productivity. Quantifying crop water use (WU; i.e. actual evapotranspiration) is a critical step towards this goal. Here, sixteen wheat simulation models were used to quantify sources of model uncertainty and to estimate the relative changes and variability between models for simulated WU, water use efficiency (WUE, WU per unit of grain dry mass produced), transpiration efficiency (Teff, transpiration per kg of unit of grain yield dry mass produced), grain yield, crop transpiration and soil evaporation at increased temperatures and elevated atmospheric carbon dioxide concentrations ([CO2]). The greatest uncertainty in simulating water use, potential evapotranspiration, crop transpiration and soil evaporation was due to differences in how crop transpiration was modelled and accounted for 50 of the total variability among models. The simulation results for the sensitivity to temperature indicated that crop WU will decline with increasing temperature due to reduced growing seasons. The uncertainties in simulated crop WU, and in particularly due to uncertainties in simulating crop transpiration, were greater under conditions of increased temperatures and with high temperatures in combination with elevated atmospheric [CO2] concentrations. Hence the simulation of crop WU, and in particularly crop transpiration under higher temperature, needs to be improved and evaluated with field measurements before models can be used to simulate climate change impacts on future crop water demand.

  4. Amplification of surface temperature trends and variability in thetropical atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Santer, B.D.; Wigley, T.M.L.; Mears, C.; Wentz, F.J.; Klein,S.A.; Seidel, D.J.; Taylor, K.E.; Thorne, P.W.; Wehner, M.F.; Gleckler,P.J.; Boyle, J.S.; Collins, W.D.; Dixon, K.W.; Doutriaux, C.; Free, M.; Fu, Q.; Hansen, J.E.; Jones, G.S.; Ruedy, R.; Karl, T.R.; Lanzante, J.R.; Meehl, G.A.; Ramaswamy, V.; Russell, G.; Schmidt, G.A.

    2005-08-11

    The month-to-month variability of tropical temperatures is larger in the troposphere than at the Earth's surface. This amplification behavior is similar in a range of observations and climate model simulations, and is consistent with basic theory. On multi-decadal timescales, tropospheric amplification of surface warming is a robust feature of model simulations, but occurs in only one observational dataset. Other observations show weak or even negative amplification. These results suggest that either different physical mechanisms control amplification processes on monthly and decadal timescales, and models fail to capture such behavior, or (more plausibly) that residual errors in several observational datasets used here affect their representation of long-term trends.

  5. Dynamics of the atmospheric boundary layer response to ocean mesoscale sea surface temperatures

    Science.gov (United States)

    Schneider, Niklas; Taguchi, Bunmei; Nonaka, Masami; Kuwano-Yoshida, Akira; Nakamura, Hisashi

    2017-04-01

    A recent theory for the mid-latitude atmospheric response to ocean mesoscale sea surface temperature (SST) variations is tested in the Southern Ocean using an extended integration of an atmospheric general circulation model. The theory is based on a linearization of the steady state, atmospheric boundary-layer dynamics, and yields the atmospheric response as classical Ekman dynamics extended to include advection, and sea surface temperature induced changes of atmospheric mixing and hydrostatic pressure. The theory predicts the response at each horizontal wave number to be governed by spectral transfer function between sea surface temperature and boundary layer variables, that are dependent on large-scale winds and the formulation of boundary layer mixing. The general circulation model, AFES, is shown to reproduce observed regressions between surface wind stress and sea surface temperatures. These 'coupling coefficients' are explained by SST induced changes of the surface stability, that directly impact surface stress, and changes of the surface winds. Estimates of the spectral transfer function between the latter and surface temperature are consistent with the theory, and suggest that it faithfully captures the underlying physics.

  6. Predicting top-of-atmosphere radiance for arbitrary viewing geometries from the visible to thermal infrared: generalization to arbitrary average scene temperatures

    Science.gov (United States)

    Florio, Christopher J.; Cota, Steve A.; Gaffney, Stephanie K.

    2010-08-01

    In a companion paper presented at this conference we described how The Aerospace Corporation's Parameterized Image Chain Analysis & Simulation SOftware (PICASSO) may be used in conjunction with a limited number of runs of AFRL's MODTRAN4 radiative transfer code, to quickly predict the top-of-atmosphere (TOA) radiance received in the visible through midwave IR (MWIR) by an earth viewing sensor, for any arbitrary combination of solar and sensor elevation angles. The method is particularly useful for large-scale scene simulations where each pixel could have a unique value of reflectance/emissivity and temperature, making the run-time required for direct prediction via MODTRAN4 prohibitive. In order to be self-consistent, the method described requires an atmospheric model (defined, at a minimum, as a set of vertical temperature, pressure and water vapor profiles) that is consistent with the average scene temperature. MODTRAN4 provides only six model atmospheres, ranging from sub-arctic winter to tropical conditions - too few to cover with sufficient temperature resolution the full range of average scene temperatures that might be of interest. Model atmospheres consistent with intermediate temperature values can be difficult to come by, and in any event, their use would be too cumbersome for use in trade studies involving a large number of average scene temperatures. In this paper we describe and assess a method for predicting TOA radiance for any arbitrary average scene temperature, starting from only a limited number of model atmospheres.

  7. Sea-ice cover in the Nordic Seas and the sensitivity to Atlantic water temperatures

    Science.gov (United States)

    Jensen, Mari F.; Nisancioglu, Kerim H.; Spall, Michael A.

    2017-04-01

    Changes in the sea-ice cover of the Nordic Seas have been proposed to play a key role for the dramatic temperature excursions associated with the Dansgaard-Oeschger events during the last glacial. However, with its proximity to the warm Atlantic water, how a sea-ice cover can persist in the Nordic Seas is not well understood. In this study, we apply an eddy-resolving configuration of the Massachusetts Institute of Technology general circulation model with an idealized topography to study the presence of sea ice in a Nordic Seas-like domain. We assume an infinite amount of warm Atlantic water present in the south by restoring the southern area to constant temperatures. The sea-surface temperatures are restored toward cold, atmospheric temperatures, and as a result, sea ice is present in the interior of the domain. However, the sea-ice cover in the margins of the Nordic Seas, an area with a warm, cyclonic boundary current, is sensitive to the amount of heat entering the domain, i.e., the restoring temperature in the south. When the temperature of the warm, cyclonic boundary current is high, the margins are free of sea ice and heat is released to the atmosphere. We show that with a small reduction in the temperature of the incoming Atlantic water, the Nordic Seas-like domain is fully covered in sea ice. Warm water is still entering the Nordic Seas, however, this happens at depths below a cold, fresh surface layer produced by melted sea ice. Consequently, the heat release to the atmosphere is reduced along with the eddy heat fluxes. Results suggest a threshold value in the amount of heat entering the Nordic Seas before the sea-ice cover disappears in the margins. We study the sensitivity of this threshold to changes in atmospheric temperatures and vertical diffusivity.

  8. Plasma-water interactions at atmospheric pressure in a dc microplasma

    Science.gov (United States)

    Patel, Jenish; Němcová, Lucie; Mitra, Somak; Graham, William; Maguire, Paul; Švrček, Vladimir; Mariotti, Davide

    2013-09-01

    Plasma-liquid interactions generate a variety of chemical species that are very useful for the treatment of many materials and that makes plasma-induced liquid chemistry (PiLC) very attractive for industrial applications. The understanding of plasma-induced chemistry with water can open up a vast range of plasma-activated chemistry in liquid with enormous potential for the synthesis of chemical compounds, nanomaterials synthesis and functionalization. However, this basic understanding of the chemistry occurring at the plasma-liquid interface is still poor. In the present study, different properties of water are analysed when processed by plasma at atmospheric-pressure with different conditions. In particular, pH, temperature and conductivity of water are measured against current and time of plasma processing. We also observed the formation of molecular oxygen (O2) and hydrogen peroxide (H2O2) for the same plasma conditions. The current of plasma processing was found to affect the water properties and the production of hydrogen peroxide in water. The relation between the number of electrons injected from plasma in water and the number of H2O2 molecules was established and based on these results a scenario of reactions channels activated by plasma-water interface is concluded.

  9. Modeling the potential effects of climate change on water temperature downstream of a shallow reservoir, lower Madison River, MT [USA

    Energy Technology Data Exchange (ETDEWEB)

    Gooseff, M.N. [Department of Geology and Geological Engineering, Colorado School of Mines, Golden, CO, 80401 (United States); Strzepek, K. [Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, CO (United States); Chapra, S.C. [Department of Civil and Environmental Engineering, Tufts University, Medford, MA (United States)

    2005-02-01

    A numerical stream temperature model that accounts for kinematic wave flow routing, and heat exchange fluxes between stream water and the atmosphere, and stream water and the stream bed is developed and calibrated to a data-set from the Lower Madison River, Montana, USA. Future climate scenarios were applied to the model through changes to the atmospheric input data based on air temperature and solar radiation output from four General Circulation Models (GCM) for the region under atmospheric CO2 concentration doubling. The purpose of this study was to quantify potential climate change impacts on water temperature for the Lower Madison River, and to assess possible impacts to aquatic ecosystems. Because water temperature is a critical component of fish habitat, this information could be of use in future planning operations of current reservoirs. We applied air temperature changes to diurnal temperatures, daytime temperatures only, and nighttime temperatures only, to assess the impacts of variable potential warming trends. The results suggest that, given the potential climatic changes, the aquatic ecosystem downstream of Ennis Lake will experience higher water temperatures, possibly leading to increased stress on fish populations.Daytime warming produced the largest increases in downstream water temperature.

  10. Canopy Stomatal Conductance Unlocks Partitioning of Ecosystem-Atmosphere Carbon and Water Exchanges

    Science.gov (United States)

    Wehr, R. A.; Munger, J. W.; McManus, J. B.; Nelson, D. D.; Zahniser, M. S.; Davidson, E. A.; Wofsy, S. C.; Saleska, S. R.

    2016-12-01

    Stomata are a key nexus in biosphere-atmosphere interactions: the gateway for both carbon gain and water loss by plant canopies. Accurate quantification of canopy stomatal conductance enables partitioning of both evapotranspiration (ET) and net ecosystem-atmosphere CO2 exchange (NEE)—the latter via CO2 isotope flux measurements. To those ends, we determined the behavior of canopy stomatal conductance in a temperate deciduous forest based on heat and water vapor flux measurements, and validated that determination based on uptake of carbonyl sulfide, which also passes through the stomata. We found that the canopy stomatal conductance followed a simple empirical function of leaf area index, light intensity, diffuse light fraction, and leaf-air water vapor gradient. The dependence on light intensity was highly linear, in contrast to the leaf scale, and in contrast to the behavior of canopy photosynthesis. Using canopy stomatal conductance, we partitioned ET and found that evaporation in this ecosystem peaks at the time of the year when soils are driest and atmospheric vapor pressure deficit is low—because soil temperature is an important driver. As stomatal conductance impacts not only the rate of photosynthesis but also the fractionation of carbon isotopes by photosynthesis, we were also able to combine canopy stomatal conductance with CO2 isotope flux measurements in order to partition NEE. We found that: (1) canopy respiration is much less during the day than at night, likely due to the inhibition of leaf respiration by light (that is, the Kok effect), and (2) canopy photosynthetic light-use efficiency does not decline through the summer, in contrast to standard estimates. These results clarify how leaf-level physiological dynamics impact ecosystem-atmosphere gas exchange, and demonstrate the utility of combining multiple tracers to constrain the processes underlying that exchange.

  11. Long term evolution of temperature in the venus upper atmosphere at the evening and morning terminators

    Science.gov (United States)

    Krause, P.; Sornig, M.; Wischnewski, C.; Kostiuk, T.; Livengood, T. A.; Herrmann, M.; Sonnabend, G.; Stangier, T.; Wiegand, M.; Pätzold, M.; Mahieux, A.; Vandaele, A. C.; Piccialli, A.; Montmessin, F.

    2018-01-01

    within a single run with a typically time range of 2-10 days. This variation is not connected to the solar cycle. Sub-millimeter observations by Clancy et al. found a relation between temperatures and long-term variation in mesospheric water vapor, SO2, and sulfate aerosols (Clancy and Muhleman, 1991; Clancy et al., 2012). SO2 column densities observed by SOIR at the terminator are fairly stable over the time period of 2006-2011 (Mahieux et al., 2015), supporting the hypothesis of a relation between SO2 and temperature variations. The temperatures derived from the infrared heterodyne spectroscopy (IR-het) are compared to results from the Venus Express space mission (VEx). A consistence with the temperatures from the VEx instruments SOIR, VIRTIS and SPICAV is found. As the instruments probe different local time, SPICAV probes the pure nightside, SOIR across the terminator and IR-het the pure dayside atmosphere it is not surprising that the IR-het temperatures are mostly on the warmer side compared to results from SPICAV and SOIR.

  12. Effect of combustion temperature on the atmospheric stability of polychlorinated dibenzo-p-dioxins and dibenzofurans

    Energy Technology Data Exchange (ETDEWEB)

    Pennise, D.M.; Kamens, R.M. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Environmental Sciences and Engineering

    1994-12-31

    Atmospheric emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs and PCDFs) are likely to increase in the future due to an increase in municipal and hazardous waste incineration. There is little information regarding the atmospheric stability of PCDDs and PCDFs. In this study PCDDs and PCDFs were generated from the combustion of a mixture of pentachlorophenol polyvinyl chloride pipe shavings, and wood chips treated with pentachlorophenol. These emissions were injected into outdoor Teflon film chambers and aged in sunlight under typical atmospheric conditions. Incineration experiments were conducted using low temperature combustion (400--470 C range) and high temperature combustion (670--800 C range). Concentrations of PCDDs and PCDFs were determined over time by collecting both particulate and vapor phase samples. These compounds were found to exist primarily in the particulate phase. Based on previous results with polybrominated dioxins and furans, the authors expect particulate phase PCDDs and PCDF to slowly degrade over periods of hours in the low temperature experiments. However, in high temperature experiments, they expect particulate phase PCDD and PCDF emissions to be stable. Differences in the morphology and chemical composition of the combustion particles generated can explain the differences in the Atmospheric stability of particle associated organics produced from the low temperature and high temperature experiments.

  13. Determination of water surface temperature based on the use of Thermal Infrared Multispectral Scanner data

    Science.gov (United States)

    Anderson, James E.

    1992-01-01

    A straightforward method for compensating Thermal Infrared Multispectral Scanner (TIMS) digital data for the influence of atmospheric path radiance and the attenuation of target energy by the atmosphere is presented. A band ratioing model useful for estimating water surface temperatures, which requires no ground truth measurements, is included. A study conducted to test the potential of the model and the magnitudes of the corrections for atmosphere encountered is presented. Results of the study, which was based on data collected during an engineering evaluation flight of TIMS, indicate errors in the estimate of the surface temperature of the water fall from +/- 1.0 C for uncorrected data to +/- 0.4 C when data have been corrected according to the model presented. This value approaches the noise-limited thermal resolution of the sensor at the time of the flight.

  14. Temperature variations in Titan's upper atmosphere: Impact on Cassini/Huygens

    Directory of Open Access Journals (Sweden)

    B. Kazeminejad

    2005-06-01

    Full Text Available Temperature variations of Titan's upper atmosphere due to the plasma interaction of the satellite with Saturn's magnetosphere and Titan's high altitude monomer haze particles can imply an offset of up to ±30K from currently estimated model profiles. We incorporated these temperature uncertainties as an offset into the recently published Vervack et al. (2004 (Icarus, Vol. 170, 91-112 engineering model and derive extreme case (i.e. minimum and maximum profiles temperature, pressure, and density profiles. We simulated the Huygens probe hypersonic entry trajectory and obtain, as expected, deviations of the probe trajectory for the extreme atmosphere models compared to the simulation based on the nominal one. These deviations are very similar to the ones obtained with the standard Yelle et al. (1997 (ESA SP-1177 profiles. We could confirm that the difference in aerodynamic drag is of an order of magnitude that can be measured by the probe science accelerometer. They represent an important means for the reconstruction of Titan's upper atmospheric properties. Furthermore, we simulated a Cassini low Titan flyby trajectory. No major trajectory deviations were found. The atmospheric torques due to aerodynamic drag, however, are twice as high for our high temperature profile as the ones obtained with the Yelle maximum profile and more than 5 times higher than the worst case estimations from the Cassini project. We propose to use the Cassini atmospheric torque measurements during its low flybys to derive the atmospheric drag and to reconstruct Titan's upper atmosphere density, pressure, and temperature. The results could then be compared to the reconstructed profiles obtained from Huygens probe measurements. This would help to validate the probe measurements and decrease the error bars.

  15. Temperature variations in Titan's upper atmosphere: Impact on Cassini/Huygens

    Directory of Open Access Journals (Sweden)

    B. Kazeminejad

    2005-06-01

    Full Text Available Temperature variations of Titan's upper atmosphere due to the plasma interaction of the satellite with Saturn's magnetosphere and Titan's high altitude monomer haze particles can imply an offset of up to ±30K from currently estimated model profiles. We incorporated these temperature uncertainties as an offset into the recently published Vervack et al. (2004 (Icarus, Vol. 170, 91-112 engineering model and derive extreme case (i.e. minimum and maximum profiles temperature, pressure, and density profiles. We simulated the Huygens probe hypersonic entry trajectory and obtain, as expected, deviations of the probe trajectory for the extreme atmosphere models compared to the simulation based on the nominal one. These deviations are very similar to the ones obtained with the standard Yelle et al. (1997 (ESA SP-1177 profiles. We could confirm that the difference in aerodynamic drag is of an order of magnitude that can be measured by the probe science accelerometer. They represent an important means for the reconstruction of Titan's upper atmospheric properties. Furthermore, we simulated a Cassini low Titan flyby trajectory. No major trajectory deviations were found. The atmospheric torques due to aerodynamic drag, however, are twice as high for our high temperature profile as the ones obtained with the Yelle maximum profile and more than 5 times higher than the worst case estimations from the Cassini project. We propose to use the Cassini atmospheric torque measurements during its low flybys to derive the atmospheric drag and to reconstruct Titan's upper atmosphere density, pressure, and temperature. The results could then be compared to the reconstructed profiles obtained from Huygens probe measurements. This would help to validate the probe measurements and decrease the error bars.

  16. Long-living plasmoids from an atmospheric water discharge

    Energy Technology Data Exchange (ETDEWEB)

    Versteegh, A; Fussmann, G; Juettner, B; Noack, S [Institut fuer Physik der Humboldt-Universitaet zu Berlin, Newtonstrasse 15, 12489 Berlin (Germany); Behringer, K; Fantz, U [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Wendelsteinstrasse 1, 17491 Greifswald (Germany)], E-mail: alex.versteegh@physik.hu-berlin.de

    2008-05-01

    Ball-like plasmoids were generated from discharging a capacitor bank via a water surface. In the autonomous stage after current zero they have diameters up to 0.2 m and lifetimes of some hundreds of milliseconds, thus resembling ball lightning in some way. They were studied by applying high speed cameras, electric probes, calorimetric measurements, and spectroscopy. The plasmoids are found to consist of a true plasma surrounded by a cold envelope. Decreasing electron densities in the order of 10{sup 20}-10{sup 22} m{sup -3} were measured from Stark broadening in the initial (formation) phase. The electron temperature is estimated to be 2000-5000 K during most of the plasmoid's lifetime. The temperature of the neutral particles can exceed 1300 K. Calcium hydroxide molecular band emission is the major source of visible radiation in the autonomous phase. Chemiluminescence reactions between dissociation products of water and dissolved calcium are proposed as a source for this emission. The plasmoid's colder boundary layer consists of electric double layers that may be attributed to the characteristic shape of the balls.

  17. Long-living plasmoids from an atmospheric water discharge

    Science.gov (United States)

    Versteegh, A.; Behringer, K.; Fantz, U.; Fussmann, G.; Jüttner, B.; Noack, S.

    2008-05-01

    Ball-like plasmoids were generated from discharging a capacitor bank via a water surface. In the autonomous stage after current zero they have diameters up to 0.2 m and lifetimes of some hundreds of milliseconds, thus resembling ball lightning in some way. They were studied by applying high speed cameras, electric probes, calorimetric measurements, and spectroscopy. The plasmoids are found to consist of a true plasma surrounded by a cold envelope. Decreasing electron densities in the order of 1020-1022 m-3 were measured from Stark broadening in the initial (formation) phase. The electron temperature is estimated to be 2000-5000 K during most of the plasmoid's lifetime. The temperature of the neutral particles can exceed 1300 K. Calcium hydroxide molecular band emission is the major source of visible radiation in the autonomous phase. Chemiluminescence reactions between dissociation products of water and dissolved calcium are proposed as a source for this emission. The plasmoid's colder boundary layer consists of electric double layers that may be attributed to the characteristic shape of the balls.

  18. The H2O-O2 water vapour complex in the Earth's atmosphere

    Directory of Open Access Journals (Sweden)

    S. Kondo

    2011-08-01

    Full Text Available Until recently, abundance estimates for bound molecular complexes have been affected by uncertainties of a factor 10–100. This is due to the difficulty of accurately obtaining the equilibrium constant, either from laboratory experiments or by statistical thermodynamic calculations. In this paper, we firstly present laboratory experiments that we performed in order to determine the molecular structure of H2O-O2. We also derive global abundance estimates for H2O-O2 in the Earth's atmosphere. The equilibrium constant Kp evaluated using the "anharmonic oscillator approach" (AHOA (Sabu et al., 2005 was employed: the AHOA explains well the structure of the complex obtained by the present experiment. The Kp calculated by this method shows a realistic temperature dependence. We used this Kp to derive global abundance estimates for H2O-O2 in the Earth's atmosphere. The distribution of H2-O2 follows that of water vapour in the troposphere and seems inversely proportional to temperature in the lower stratosphere. Preliminary estimates at the surface show amount of H2O-O2 is comparable to CO or N2O, ranking water vapour complexes among the ten most abundant species in the boundary layer.

  19. Moisture Absorption Model of Composites Considering Water Temperature Effect

    Directory of Open Access Journals (Sweden)

    HUI Li

    2016-11-01

    Full Text Available The influence of water temperature on composite moisture absorption parameters was investigated in temperature-controlled water bath. Experiments of carbon fiber/bismaleimide resin composites immersed in water of 60℃, 70℃and 80℃ were developed respectively. According to the moisture content-time curves obtained from the experimental results, the diffusion coefficient and the balanced moisture content of the composites immersed in different water temperature could be calculated. What's more, the effect of water temperature on the diffusion coefficient and the balanced moisture content were discussed too. According to the Arrhenius equation and the law of Fick, a moisture absorption model was proposed to simulate the hygroscopic behaviour of the composite laminates immersed in different water temperature which can predict the absorption rate of water of the composites immersed in distilled water of 95℃ at any time precisely and can calculate how long it will take to reach the specific absorption rate.

  20. Atmospheric Corrections for Altimetry Studies over Inland Water

    Directory of Open Access Journals (Sweden)

    M. Joana Fernandes

    2014-05-01

    Full Text Available Originally designed for applications over the ocean, satellite altimetry has been proven to be a useful tool for hydrologic studies. Altimeter products, mainly conceived for oceanographic studies, often fail to provide atmospheric corrections suitable for inland water studies. The focus of this paper is the analysis of the main issues related with the atmospheric corrections that need to be applied to the altimeter range to get precise water level heights. Using the corrections provided on the Radar Altimeter Database System, the main errors present in the dry and wet tropospheric corrections and in the ionospheric correction of the various satellites are reported. It has been shown that the model-based tropospheric corrections are not modeled properly and in a consistent way in the various altimetric products. While over the ocean, the dry tropospheric correction (DTC is one of the most precise range corrections, in some of the present altimeter products, it is the correction with the largest errors over continental water regions, causing large biases of several decimeters, and along-track interpolation errors up to several centimeters, both with small temporal variations. The wet tropospheric correction (WTC from the on-board microwave radiometers is hampered by the contamination on the radiometer measurements of the surrounding lands, making it usable only in the central parts of large lakes. In addition, the WTC from atmospheric models may also have large errors when it is provided at sea level instead of surface height. These errors cannot be corrected by the user, since no accurate expression exists for the height variation of the WTC. Alternative and accurate corrections can be computed from in situ data, e.g., DTC from surface pressure at barometric stations and WTC from Global Navigation Satellite System permanent stations. The latter approach is particularly favorable for small lakes and reservoirs, where GNSS-derived WTC at a single

  1. Tracking atmospheric boundary layer dynamics with water vapor D-excess observations

    KAUST Repository

    Parkes, Stephen

    2015-04-01

    Stable isotope water vapor observations present a history of hydrological processes that have impacted on an air mass. Consequently, there is scope to improve our knowledge of how different processes impact on humidity budgets by determining the isotopic end members of these processes and combining them with in-situ water vapor measurements. These in-situ datasets are still rare and cover a limited geographical expanse, so expanding the available data can improve our ability to define isotopic end members and knowledge about atmospheric humidity dynamics. Using data collected from an intensive field campaign across a semi-arid grassland site in eastern Australia, we combine multiple methods including in-situ stable isotope observations to study humidity dynamics associated with the growth and decay of the atmospheric boundary layer and the stable nocturnal boundary layer. The deuterium-excess (D-excess) in water vapor is traditionally thought to reflect the sea surface temperature and relative humidity at the point of evaporation over the oceans. However, a number of recent studies suggest that land-atmosphere interactions are also important in setting the D-excess of water vapor. These studies have shown a highly robust diurnal cycle for the D-excess over a range of sites that could be exploited to better understand variations in atmospheric humidity associated with boundary layer dynamics. In this study we use surface radon concentrations as a tracer of surface layer dynamics and combine these with the D-excess observations. The radon concentrations showed an overall trend that was inversely proportional to the D-excess, with early morning entrainment of air from the residual layer of the previous day both diluting the radon concentration and increasing the D-excess, followed by accumulation of radon at the surface and a decrease in the D-excess as the stable nocturnal layer developed in the late afternoon and early evening. The stable nocturnal boundary layer

  2. Effects of Temperature and Growing Seasons on Crop Water ...

    African Journals Online (AJOL)

    PROF HORSFALL

    ABSTRACT: Water savings can be improved through reducing agricultural water consumption. The crop water requirement (CWR) depends on several factors including temperature and growing seasons. This study investigated the effects of temperature and growing seasons on CWR in Saudi Arabia. Increase in ...

  3. Atmospheric-pressure electric discharge as an instrument of chemical activation of water solutions

    Science.gov (United States)

    Rybkin, V. V.; Shutov, D. A.

    2017-11-01

    Results of experimental studies and numerical simulations of physicochemical characteristics of plasmas generated in different types of atmospheric-pressure discharges (pulsed streamer corona, gliding electric arc, dielectric barrier discharge, glow-discharge electrolysis, diaphragmatic discharge, and dc glow discharge) used to initiate various chemical processes in water solutions are analyzed. Typical reactor designs are considered. Data on the power supply characteristics, plasma electron parameters, gas temperatures, and densities of active particles in different types of discharges excited in different gases and their dependences on the external parameters of discharges are presented. The chemical composition of active particles formed in water is described. Possible mechanisms of production and loss of plasma particles are discussed.

  4. Temperature diagnostics of a non-thermal plasma jet at atmospheric pressure

    Science.gov (United States)

    Schäfer, Jan

    2013-09-01

    The study reflects the concept of the temperature as a physical quantity resulting from the second thermodynamic law. The reliability of different approaches of the temperature diagnostics of open non-equilibrium systems is discussed using examples of low temperature atmospheric pressure discharges. The focus of this work is a miniaturized non-thermal atmospheric pressure plasma jet for local surface treatment at ambient atmosphere. The micro-discharge is driven with a capacitively coupled radio frequency electric field at 27.12 MHz and fed with argon at rates of about 1 slm through the capillary with an inner diameter of 4 mm. The discharge consists of several contracted filaments with diameter around 300 μm which are rotating azimuthally in the capillary in a self-organized manner. While the measured temperatures of the filament core exceed 700 K, the heat impact on a target below the plasma jet remains limited leading to target temperatures below 400 K. Different kinds of temperatures and energy transport processes are proposed and experimentally investigated. Nevertheless, a reliable and detailed temperature diagnostics is a challenge. We report on a novel diagnostics approach for the spatially and temporally resolved measurement of the gas temperature based on the optical properties of the plasma. Laser Schlieren Deflectometry is adapted to explore temperature profiles of filaments and their behaviour. In parallel, the method demonstrates a fundamental Fermat's principle of minimal energy. Information acquired with this method plays an important role for the optimization of local thin film deposition and surface functionalization by means of the atmospheric pressure plasma jet. The work was supported in part by the Deutsche Forschungsgemeinschaft within SFB-TR 24.

  5. Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K

    Science.gov (United States)

    Wang, Bingbing; Laskin, Alexander; Roedel, Tobias; Gilles, Mary K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

    2012-09-01

    Ice formation induced by atmospheric particles through heterogeneous nucleation is not well understood. Onset conditions for heterogeneous ice nucleation and water uptake by particles collected in Los Angeles and Mexico City were determined as a function of temperature (200-273 K) and relative humidity with respect to ice (RHice). Four dominant particle types were identified including soot associated with organics, soot with organic and inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn-containing particles apportioned to emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Above 230 K, significant differences in onsets of water uptake and immersion freezing of different particle types were observed. Below 230 K, particles exhibited high deposition ice nucleation efficiencies and formed ice atRHicewell below homogeneous ice nucleation limits. The data suggest that water uptake and immersion freezing are more sensitive to changes in particle chemical composition compared to deposition ice nucleation. The data demonstrate that anthropogenic and marine influenced particles, exhibiting various chemical and physical properties, possess distinctly different ice nucleation efficiencies and can serve as efficient IN at atmospheric conditions typical for cirrus and mixed-phase clouds.

  6. The ground-based FTIR network's potential for investigating the atmospheric water cycle

    Directory of Open Access Journals (Sweden)

    M. Schneider

    2010-04-01

    Full Text Available We present tropospheric H216O and HD16O/H216O vapour profiles measured by ground-based FTIR (Fourier Transform Infrared spectrometers between 1996 and 2008 at a northern hemispheric subarctic and subtropical site (Kiruna, Northern Sweden, 68° N and Izaña, Tenerife Island, 28° N, respectively. We compare these measurements to an isotope incorporated atmospheric general circulation model (AGCM. If the model is nudged towards meteorological fields of reanalysis data the agreement is very satisfactory on time scales ranging from daily to inter-annual. Taking the Izaña and Kiruna measurements as an example we document the FTIR network's unique potential for investigating the atmospheric water cycle. At the subarctic site we find strong correlations between the FTIR data, on the one hand, and the Arctic Oscillation index and the northern Atlantic sea surface temperature, on the other hand. The Izaña FTIR measurements reveal the importance of the Hadley circulation and the Northern Atlantic Oscillation index for the subtropical middle/upper tropospheric water balance. We document where the AGCM is able to capture these complexities of the water cycle and where it fails.

  7. Spontaneous ignition in afterburner segment tests at an inlet temperature of 1240 K and a pressure of 1 atmosphere with ASTM jet-A fuel

    Science.gov (United States)

    Schultz, D. F.; Branstetter, J. R.

    1973-01-01

    A brief testing program was undertaken to determine if spontaneous ignition and stable combustion could be obtained in a jet engine afterburning operating with an inlet temperature of 1240 K and a pressure of 1 atmosphere with ASTM Jet-A fuel. Spontaneous ignition with 100-percent combustion efficiency and stable burning was obtained using water-cooled fuel spraybars as flameholders.

  8. The effect of pavement-watering on subsurface pavement temperatures

    OpenAIRE

    Hendel, Martin; Royon, Laurent

    2015-01-01

    International audience; Pavement-watering is currently viewed as a potential climate change adaptation and urban heat island mitigation technique. The effects of pavement-watering on pavement temperature measured 5 cm deep are presented and discussed. Subsurface temperature measurements could not be used to improve or optimize pavement-watering methods as was seen in previous work on surface temperatures or subsurface pavement heat flux measurements.

  9. Influence of physicochemical water characteristics in the transport of methane to the atmosphere at Rodrigo de Freitas lagoon, RJ

    Directory of Open Access Journals (Sweden)

    Plínio Carlos Alvalá

    2012-12-01

    Full Text Available The accumulation and decomposition of organic matter in water bodies can increase the potential emission of greenhouse gases to the atmosphere. In this study, in a prospective and exploratory way, we evaluated the relationship between physicochemical characteristics of water on the transport of methane to the atmosphere at Rodrigo de Freitas lagoon, RJ. In 2011, campaigns were carried out in which 200 samples were collected for analysis of superficial methane emission and 30 water samples were collected to verify the dissolution of this gas in the water column, measuring simultaneously both the physicochemical water parameters along this column. The methane flow measurements showed that this lagoon is a source methane emission to the atmosphere with an average flux of 33 ± 10 mgCH4m-2d-1. The evaluation of limnological parameters that could affect the emission flux revealed that the water depth and temperature were the most influential factors in this process. A profile analysis of methane in the water column suggests the existence of a higher concentration of this gas in the region of the sedimentary strata at the bottom of the lagoon. However, the potential emission may not reach the surface, possibly due to the decrease in the rate of vertical diffusion of methane, as a result of the increase of pressure with depth and the presence of methanotrophic bacterias that consume methane throughout the water column.

  10. Thermal infrared remote sensing of water temperature in riverine landscapes

    Science.gov (United States)

    Handcock, Rebecca N.; Torgersen, Christian E.; Cherkauer, Keith A.; Gillespie, Alan R.; Klement, Tockner; Faux, Russell N.; Tan, Jing; Carbonneau, Patrice E.; Piégay, Hervé

    2012-01-01

    Water temperature in riverine landscapes is an important regional indicator of water quality that is influenced by both ground- and surface-water inputs, and indirectly by land use in the surrounding watershed (Brown and Krygier, 1970; Beschta et al., 1987; Chen et al., 1998; Poole and Berman, 2001).Coldwater fishes such as salmon and trout are sensitive to elevated water temperature; therefore, water temperature must meet management guidelines and quality standards, which aim to create a healthy environment for endangered populations (McCullough et al., 2009). For example, in the USA, the Environmental Protection Agency (EPA) has established water quality standards to identify specific temperature criteria to protect coldwater fishes (Environmental Protection Agency, 2003). Trout and salmon can survive in cool-water refugia even when temperatures at other measurement locations are at or above the recommended maximums (Ebersole et al., 2001; Baird and Krueger, 2003; High et al., 2006). Spatially extensive measurements of water temperature are necessary to locate these refugia, to identify the location of ground- and surface-water inputs to the river channel, and to identify thermal pollution sources. Regional assessment of water temperature in streams and rivers has been limited by sparse sampling in both space and time. Water temperature has typically been measured using a network of widely distributed instream gages, which record the temporal change of the bulk, or kinetic, temperature of the water (Tk) at specific locations. For example, the State of Washington (USA) recorded water quality conditions at 76 stations within the Puget Lowlands eco region, which contains 12,721 km of streams and rivers (Washington Department of Ecology, 1998). Such gages are sparsely distributed, are typically located only in larger streams and rivers, and give limited information about the spatial distribution of water temperature.

  11. Covariation of coastal water temperature and microbial pollution at interannual to tidal periods

    Science.gov (United States)

    Boehm, Alexandria B.; Lluch-Cota, Daniel B.; Davis, Kristen A.; Winant, Clinton D.; Monismith, Stephen G.

    2004-03-01

    Water temperature and fecal indicator bacteria levels covary along the shoreline of Huntington and Newport Beach, California at interannual to tidal periods. During summer, cooler than average waters caused by interannual variability in sea surface temperature (SST), synoptic upwelling, and tidal-period cooling are coincident with elevated levels of microbial pollution in the surf zone. This relationship can be explained by the effects of weakening in stratification on the fate of a waste water plume and the prolonged persistence of fecal indicator bacteria in colder waters. During winter, warmer than average water caused by basin scale oscillations and atmospheric and oceanographic processes that contribute to the Multivariate El Nino Southern Oscillation Index are indicative of elevated total coliform levels in the surf zone. The elevated coliform levels can be ascribed to increased rainfall, and the resultant storm water inflow to the surf zone.

  12. Oral bacterial inactivation using a novel low-temperature atmospheric-pressure plasma device

    Directory of Open Access Journals (Sweden)

    Ya-Ting Chang

    2016-03-01

    Conclusion: The novel low-temperature atmospheric-pressure device was capable of achieving effective sterilization of E. faecalis within a 2-minute interval. Further studies are needed to validate complete inactivation, refine the laboratory-made low-temperature plasma device, and develop a new plasma-jet device, which will be superior to traditional sterilization methods and can be used in root canal environment. This novel sterilization method can also be used as a clinical reference tool.

  13. Estimation of the Ocean Skin Temperature using the NASA GEOS Atmospheric Data Assimilation System

    Science.gov (United States)

    Koster, Randal D.; Akella, Santha; Todling, Ricardo; Suarez, Max

    2016-01-01

    This report documents the status of the development of a sea surface temperature (SST) analysis for the Goddard Earth Observing System (GEOS) Version-5 atmospheric data assimilation system (ADAS). Its implementation is part of the steps being taken toward the development of an integrated earth system analysis. Currently, GEOS-ADAS SST is a bulk ocean temperature (from ocean boundary conditions), and is almost identical to the skin sea surface temperature. Here we describe changes to the atmosphere-ocean interface layer of the GEOS-atmospheric general circulation model (AGCM) to include near surface diurnal warming and cool-skin effects. We also added SST relevant Advanced Very High Resolution Radiometer (AVHRR) observations to the GEOS-ADAS observing system. We provide a detailed description of our analysis of these observations, along with the modifications to the interface between the GEOS atmospheric general circulation model, gridpoint statistical interpolation-based atmospheric analysis and the community radiative transfer model. Our experiments (with and without these changes) show improved assimilation of satellite radiance observations. We obtained a closer fit to withheld, in-situ buoys measuring near-surface SST. Evaluation of forecast skill scores corroborate improvements seen in the observation fits. Along with a discussion of our results, we also include directions for future work.

  14. 78 FR 70076 - Aging Management of Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and...

    Science.gov (United States)

    2013-11-22

    ... COMMISSION Aging Management of Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and... Guidance (LR-ISG), LR-ISG-2012-02, ``Aging Management of Internal Surfaces, Fire Water Systems, Atmospheric... aging management programs (AMPs), aging management review (AMR) items, and definitions in NUREG- 1801...

  15. Microwave measurements of temperature profiles, integrated water vapour, and liquid water path at Thule Air Base, Greenland.

    Science.gov (United States)

    Pace, Giandomenico; Di Iorio, Tatiana; di Sarra, Alcide; Iaccarino, Antonio; Meloni, Daniela; Mevi, Gabriele; Muscari, Giovanni; Cacciani, Marco

    2017-04-01

    A RPG Humidity And Temperature PROfiler (HATPRO-G2 ) radiometer was installed at Thule Air Base (76.5° N, 68.8° W), Greenland, in June 2016 in the framework of the Study of the water VApour in the polar AtmosPhere (SVAAP) project. The Danish Meteorological Institute started measurements of atmospheric properties at Thule Air Base in early '90s. The Thule High Arctic Atmospheric Observatory (THAAO) has grown in size and observing capabilities during the last three decades through the international effort of United States (NCAR and University of Alaska Fairbanks) and Italian (ENEA, INGV, University of Roma and Firenze) institutions (http://www.thuleatmos-it.it). Within this context, the intensive field campaign of the SVAAP project was aimed at the investigation of the surface radiation budget and took place from 5 to 28 July, 2016. After the summer campaign the HATPRO has continued to operate in order to monitor the annual variability of the temperature profile and integrated water vapour as well as the presence and characteristics of liquid clouds in the Artic environment. The combined use of the HATPRO together with other automatic instruments, such as a new microwave spectrometer (the water Vapour Emission Spectrometer for Polar Atmosphere VESPA-22), upward- and downward-looking pyranometers and pyrgeometers, a zenith-looking pyrometer operating in the 9.6-11.5 µm spectral range, an all sky camera, and a meteorological station, allows to investigate the clouds' physical and optical properties, as well as their impact on the surface radiation budget. This study will present and discuss the first few months of HATPRO observations; the effectiveness of the statistical retrieval used to derive the physical parameters from the HATPRO brightness temperatures will also be investigated through the comparison of the temperature and humidity profiles, and integrated water vapour, with data from radiosondes launched during the summer campaign and in winter time.

  16. Implications of atmospheric conditions for analysis of surface temperature variability derived from landscape-scale thermography.

    Science.gov (United States)

    Hammerle, Albin; Meier, Fred; Heinl, Michael; Egger, Angelika; Leitinger, Georg

    2017-04-01

    Thermal infrared (TIR) cameras perfectly bridge the gap between (i) on-site measurements of land surface temperature (LST) providing high temporal resolution at the cost of low spatial coverage and (ii) remotely sensed data from satellites that provide high spatial coverage at relatively low spatio-temporal resolution. While LST data from satellite (LSTsat) and airborne platforms are routinely corrected for atmospheric effects, such corrections are barely applied for LST from ground-based TIR imagery (using TIR cameras; LSTcam). We show the consequences of neglecting atmospheric effects on LSTcam of different vegetated surfaces at landscape scale. We compare LST measured from different platforms, focusing on the comparison of LST data from on-site radiometry (LSTosr) and LSTcam using a commercially available TIR camera in the region of Bozen/Bolzano (Italy). Given a digital elevation model and measured vertical air temperature profiles, we developed a multiple linear regression model to correct LSTcam data for atmospheric influences. We could show the distinct effect of atmospheric conditions and related radiative processes along the measurement path on LSTcam, proving the necessity to correct LSTcam data on landscape scale, despite their relatively low measurement distances compared to remotely sensed data. Corrected LSTcam data revealed the dampening effect of the atmosphere, especially at high temperature differences between the atmosphere and the vegetated surface. Not correcting for these effects leads to erroneous LST estimates, in particular to an underestimation of the heterogeneity in LST, both in time and space. In the most pronounced case, we found a temperature range extension of almost 10 K.

  17. Implications of atmospheric conditions for analysis of surface temperature variability derived from landscape-scale thermography

    Science.gov (United States)

    Hammerle, Albin; Meier, Fred; Heinl, Michael; Egger, Angelika; Leitinger, Georg

    2017-04-01

    Thermal infrared (TIR) cameras perfectly bridge the gap between (i) on-site measurements of land surface temperature (LST) providing high temporal resolution at the cost of low spatial coverage and (ii) remotely sensed data from satellites that provide high spatial coverage at relatively low spatio-temporal resolution. While LST data from satellite (LSTsat) and airborne platforms are routinely corrected for atmospheric effects, such corrections are barely applied for LST from ground-based TIR imagery (using TIR cameras; LSTcam). We show the consequences of neglecting atmospheric effects on LSTcam of different vegetated surfaces at landscape scale. We compare LST measured from different platforms, focusing on the comparison of LST data from on-site radiometry (LSTosr) and LSTcam using a commercially available TIR camera in the region of Bozen/Bolzano (Italy). Given a digital elevation model and measured vertical air temperature profiles, we developed a multiple linear regression model to correct LSTcam data for atmospheric influences. We could show the distinct effect of atmospheric conditions and related radiative processes along the measurement path on LSTcam, proving the necessity to correct LSTcam data on landscape scale, despite their relatively low measurement distances compared to remotely sensed data. Corrected LSTcam data revealed the dampening effect of the atmosphere, especially at high temperature differences between the atmosphere and the vegetated surface. Not correcting for these effects leads to erroneous LST estimates, in particular to an underestimation of the heterogeneity in LST, both in time and space. In the most pronounced case, we found a temperature range extension of almost 10 K.

  18. Assimilation of water temperature and discharge data for ensemble water temperature forecasting

    Science.gov (United States)

    Ouellet-Proulx, Sébastien; Chimi Chiadjeu, Olivier; Boucher, Marie-Amélie; St-Hilaire, André

    2017-11-01

    Recent work demonstrated the value of water temperature forecasts to improve water resources allocation and highlighted the importance of quantifying their uncertainty adequately. In this study, we perform a multisite cascading ensemble assimilation of discharge and water temperature on the Nechako River (Canada) using particle filters. Hydrological and thermal initial conditions were provided to a rainfall-runoff model, coupled to a thermal module, using ensemble meteorological forecasts as inputs to produce 5 day ensemble thermal forecasts. Results show good performances of the particle filters with improvements of the accuracy of initial conditions by more than 65% compared to simulations without data assimilation for both the hydrological and the thermal component. All thermal forecasts returned continuous ranked probability scores under 0.8 °C when using a set of 40 initial conditions and meteorological forecasts comprising 20 members. A greater contribution of the initial conditions to the total uncertainty of the system for 1-dayforecasts is observed (mean ensemble spread = 1.1 °C) compared to meteorological forcings (mean ensemble spread = 0.6 °C). The inclusion of meteorological uncertainty is critical to maintain reliable forecasts and proper ensemble spread for lead times of 2 days and more. This work demonstrates the ability of the particle filters to properly update the initial conditions of a coupled hydrological and thermal model and offers insights regarding the contribution of two major sources of uncertainty to the overall uncertainty in thermal forecasts.

  19. Effects of microphysical schemes on orographic precipitation and atmospheric water cycle in the WRF model

    Science.gov (United States)

    Cossu, Federico; Hocke, Klemens; Kämpfer, Niklaus

    2013-04-01

    Atmospheric processes that occur at spatial and temporal scales not resolved by global and regional climate models (GCMs and RCMs) are represented by means of physical parameterizations (or schemes), which are based on several assumptions and approximations. The drawback of using these simplified schemes is the risk of introducing errors in the models, especially when long simulations are performed. This study focuses on the microphysical schemes, the parameterizations responsible for determining the amount of atmospheric water vapour and the liquid and solid atmospheric water content. A correct estimation of cloud density/distribution and precipitation amounts is crucial for long-term climate simulations. Clouds and water vapour modify the radiative properties of the atmosphere, while precipitation affects soil moisture, temperature and albedo. Furthermore, microphysics parameterizations are important for the hydrological and energy budgets, especially for RCMs that employ mass-conserving formulations of the model equations. The Weather Research and Forecasting (WRF) model, a modern numerical weather prediction (NWP) model, has been recently used for regional climate downscaling. WRF was originally designed for short-range NWP but not expressly for long-term climate simulations, and the success of the simulations strongly depends on the parameterizations used. There is therefore the need to test whether WRF physical schemes are suitable for climate prediction or not. Our objective, rather than developing a new parameterization suitable for RCMs, is to make a comparative evaluation of the existing microphysical schemes available in WRF. To achieve this, we perform an idealized simulation in which a fixed set of physical schemes is chosen and a simple terrain model is adopted to eliminate the effects due to complex topography. This method lacks a direct verification with observations but allows to isolate the effects due solely to the microphysical schemes. With

  20. Compensatory water effects link yearly global land CO2 sink changes to temperature

    Science.gov (United States)

    Jung, Martin; Reichstein, Markus; Schwalm, Christopher R.; Huntingford, Chris; Sitch, Stephen; Ahlström, Anders; Arneth, Almut; Camps-Valls, Gustau; Ciais, Philippe; Friedlingstein, Pierre; Gans, Fabian; Ichii, Kazuhito; Jain, Atul K.; Kato, Etsushi; Papale, Dario; Poulter, Ben; Raduly, Botond; Rödenbeck, Christian; Tramontana, Gianluca; Viovy, Nicolas; Wang, Ying-Ping; Weber, Ulrich; Zaehle, Sönke; Zeng, Ning

    2017-01-01

    Large interannual variations in the measured growth rate of atmospheric carbon dioxide (CO2) originate primarily from fluctuations in carbon uptake by land ecosystems. It remains uncertain, however, to what extent temperature and water availability control the carbon balance of land ecosystems across spatial and temporal scales. Here we use empirical models based on eddy covariance data and process-based models to investigate the effect of changes in temperature and water availability on gross primary productivity (GPP), terrestrial ecosystem respiration (TER) and net ecosystem exchange (NEE) at local and global scales. We find that water availability is the dominant driver of the local interannual variability in GPP and TER. To a lesser extent this is true also for NEE at the local scale, but when integrated globally, temporal NEE variability is mostly driven by temperature fluctuations. We suggest that this apparent paradox can be explained by two compensatory water effects. Temporal water-driven GPP and TER variations compensate locally, dampening water-driven NEE variability. Spatial water availability anomalies also compensate, leaving a dominant temperature signal in the year-to-year fluctuations of the land carbon sink. These findings help to reconcile seemingly contradictory reports regarding the importance of temperature and water in controlling the interannual variability of the terrestrial carbon balance. Our study indicates that spatial climate covariation drives the global carbon cycle response.

  1. Compensatory Water Effects Link Yearly Global Land CO2 Sink Changes to Temperature

    Science.gov (United States)

    Jung, Martin; Reichstein, Markus; Tramontana, Gianluca; Viovy, Nicolas; Schwalm, Christopher R.; Wang, Ying-Ping; Weber, Ulrich; Weber, Ulrich; Zaehle, Soenke; Zeng, Ning; hide

    2017-01-01

    Large interannual variations in the measured growth rate of atmospheric carbon dioxide (CO2) originate primarily from fluctuations in carbon uptake by land ecosystems13. It remains uncertain, however, to what extent temperature and water availability control the carbon balance of land ecosystems across spatial and temporal scales314. Here we use empirical models based on eddy covariance data15 and process-based models16,17 to investigate the effect of changes in temperature and water availability on gross primary productivity (GPP), terrestrial ecosystem respiration (TER) and net ecosystem exchange (NEE) at local and global scales. We find that water availability is the dominant driver of the local interannual variability in GPP and TER. To a lesser extent this is true also for NEE at the local scale, but when integrated globally, temporal NEE variability is mostly driven by temperature fluctuations. We suggest that this apparent paradox can be explained by two compensatory water effects. Temporal water-driven GPP and TER variations compensate locally, dampening water-driven NEE variability. Spatial water availability anomalies also compensate, leaving a dominant temperature signal in the year-to-year fluctuations of the land carbon sink. These findings help to reconcile seemingly contradictory reports regarding the importance of temperature and water in controlling the interannual variability of the terrestrial carbon balance36,9,11,12,14. Our study indicates that spatial climate covariation drives the global carbon cycle response.

  2. SIMULTANEOUS DETECTION OF WATER, METHANE, AND CARBON MONOXIDE IN THE ATMOSPHERE OF EXOPLANET HR 8799 b

    Energy Technology Data Exchange (ETDEWEB)

    Barman, Travis S. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Konopacky, Quinn M. [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA, 92093 (United States); Macintosh, Bruce [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Marois, Christian, E-mail: barman@lpl.arizona.edu [NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Rd, Victoria, BC V9E 2E7 (Canada)

    2015-05-01

    Absorption lines from water, methane, and carbon monoxide are detected in the atmosphere of exoplanet HR 8799 b. A medium-resolution spectrum presented here shows well-resolved and easily identified spectral features from all three molecules across the K band. The majority of the lines are produced by CO and H{sub 2}O, but several lines clearly belong to CH{sub 4}. Comparisons between these data and atmosphere models covering a range of temperatures and gravities yield log mole fractions of H{sub 2}O between −3.09 and −3.91, CO between −3.30 and −3.72, and CH{sub 4} between −5.06 and −5.85. More precise mole fractions are obtained for each temperature and gravity studied. A reanalysis of H-band data, previously obtained at a similar spectral resolution, results in a nearly identical water abundance as determined from the K-band spectrum. The methane abundance is shown to be sensitive to vertical mixing and indicates an eddy diffusion coefficient in the range of 10{sup 6}–10{sup 8} cm{sup 2} s{sup −1}, comparable to mixing in the deep troposphere of Jupiter. The model comparisons also indicate a carbon-to-oxygen ratio (C/O) between ∼0.58 and 0.7, encompassing previous estimates for a second planet in the same system, HR 8799 c. Super-stellar C/O could indicate planet formation by core-accretion; however, the range of possible C/O for these planets (and the star) is currently too large to comment strongly on planet formation. More precise values of the bulk properties (e.g., effective temperature and surface gravity) are needed for improved abundance estimates.

  3. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise

    Science.gov (United States)

    Trevor F. Keenan; David Y. Hollinger; Gil Boher; Danilo Dragoni; J. William Munger; Hans Peter. Schmid

    2013-01-01

    Terrestrial plants remove CO2 from the atmosphere through photosynthesis, a process that is accompanied by the loss of water vapour from leaves. The ratio of water loss to carbon gain, or water-use efficiency, is a key characteristic of ecosystem function that is central to the global cycles of water, energy and carbon. Here we analyse direct,...

  4. Prediction of water temperature metrics using spatial modelling in ...

    African Journals Online (AJOL)

    Water temperature regime dynamics should be viewed regionally, where regional divisions have an inherent underpinning by an understanding of natural thermal variability. The aim of this research was to link key water temperature metrics to readily-mapped environmental surrogates, and to produce spatial images of ...

  5. Variability in estuarine water temperature gradients and influence on ...

    African Journals Online (AJOL)

    Variability in estuarine water temperature gradients and influence on the distribution of zooplankton: a biogeographical perspective. TH Wooldridge, SHP Deyzel. Abstract. Structure and variability of water temperature gradients and potential influence on distribution of two tropical zooplankters (the mysid Mesopodopsis ...

  6. Ocean and atmosphere coupling, connection between sub-polar Atlantic air temperature, Icelandic minimum and temperature in Serbia

    Directory of Open Access Journals (Sweden)

    Milovanović Boško

    2009-01-01

    Full Text Available In the presented paper correlation between the northern part of the Atlantic ocean (belt between 50-65°N and the atmospheric pressure is examined. Connection between the ocean temperature and atmospheric pressure is the most obvious in the El Nino southern oscillation mechanism. Thus, so far it is not known that such a mechanism exist in the Atlantic ocean. The main accent in the presented paper is focused on the connection between Iceland low and the sea surface temperature (SST in the subpolar part of the Atlantic ocean (used data are in grid 5x5°. By hierarchical cluster analysis five relatively unified clusters of sea surface temperatures grid cells are defined. By multiple linear regression, we examined the correlation between each of the depicted clusters with position and intensity of Iceland low, and identified the most important grid cells inside every cluster. The analysis of the relation between Iceland low and air temperature in Serbia and Belgrade has shown the strongest correlation for the longitude of this centre of action. .

  7. Atmospheric nitrogen deposition in estuarine and coastal waters: Biogeochemical and water quality impacts

    Energy Technology Data Exchange (ETDEWEB)

    Paerl, H.W.; Peierls, B.L. [Univ. of North Carolina, Chapel Hill, NC (United States). Inst. of Marine Sciences; Fogel, M.L. [Carnegie Institution of Washington, DC (United States). Geophysical Lab.; Aguilar, C. [Univ. of North Carolina, Chapel Hill, NC (United States). Inst. of Marine Sciences]|[Carnegie Institution of Washington, DC (United States). Geophysical Lab.

    1994-12-31

    Atmospheric deposition (AD) is a significant source of biologically-available ``new`` nitrogen in N-limited estuarine and coastal ocean waters. From 10 to over 50% of ``new`` N inputs are attributable to AD in waters ``downwind`` of emissions. In situ microcosm and mesocosm bioassays indicate that this ``new`` N source can enhance microalgal primary production and may alter community composition. Relative to terrestrial and regenerated N inputs, the dominant AD-N sources, NO{sub 3}k{sup {minus}}, NH{sub 4}{sup {plus}}, and dissolves organic nitrogen (DON) reveal stable N isotope ratios ({delta}{sup 15}N) generally deplete in {sup 15}N. The relatively low {delta}{sup 15}N ratio of AD-N has been used as a tracer of the incorporation and fate of this ``new`` N source in receiving water. Diagnostic biomarker molecules, including proteins and pigments (chlorophylls), indicate rapid algal utilization and transformation of AD-N. Seasonal production and N isotope studies in mixed and stratified North Carolina Atlantic coastal and offshore (i.e. Gulf Stream) waters indicate a marked impact of AD-N on microbial production. AD-N is an important and thus far poorly recognized source of ``new`` N in N-limited waters; these waters characterized a large proportion of the world`s estuarine and coastal zones. AD-N may additionally play a role in recently-noted coastal eutrophication and algal nuisance bloom dynamics.

  8. WATER TEMPERATURE and other data from WELLINGTON MARU and KASHIMASAN MARU in the TOGA Area - Pacific from 1989-05-10 to 1991-05-10 (NODC Accession 9100192)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water depth and temperature data were collected in TOGA Area - Pacific (30 N to 30 S) as part of Tropical Ocean Global Atmosphere (TOGA) project from ships...

  9. WATER TEMPERATURE and other data from CAP SAINT PAUL, SEAS EIFFEL and other platforms in the TOGA Area - Pacific from 1985-04-01 to 1991-02-21 (NODC Accession 9100117)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water depth and temperature data was collected using multiple ships as part of Tropical Ocean Global Atmosphere (TOGA) project from TOGA Area - Pacific (30 N to...

  10. WATER TEMPERATURE and other data from PACIFIC ISLANDER, RIMBAUD and other platforms in the TOGA Area - Pacific from 1989-01-04 to 1989-12-31 (NCEI Accession 9000226)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water depth and temperature data was collected from ship Moana Wave. The data was collected from TOGA (Tropical Ocean Global Atmosphere) Area in the Pacific (30...

  11. Contribution of changes in atmospheric circulation patterns to extreme temperature trends.

    Science.gov (United States)

    Horton, Daniel E; Johnson, Nathaniel C; Singh, Deepti; Swain, Daniel L; Rajaratnam, Bala; Diffenbaugh, Noah S

    2015-06-25

    Surface weather conditions are closely governed by the large-scale circulation of the Earth's atmosphere. Recent increases in the occurrence of some extreme weather phenomena have led to multiple mechanistic hypotheses linking changes in atmospheric circulation to increasing probability of extreme events. However, observed evidence of long-term change in atmospheric circulation remains inconclusive. Here we identify statistically significant trends in the occurrence of atmospheric circulation patterns, which partially explain observed trends in surface temperature extremes over seven mid-latitude regions of the Northern Hemisphere. Using self-organizing map cluster analysis, we detect robust circulation pattern trends in a subset of these regions during both the satellite observation era (1979-2013) and the recent period of rapid Arctic sea-ice decline (1990-2013). Particularly substantial influences include the contribution of increasing trends in anticyclonic circulations to summer and autumn hot extremes over portions of Eurasia and North America, and the contribution of increasing trends in northerly flow to winter cold extremes over central Asia. Our results indicate that although a substantial portion of the observed change in extreme temperature occurrence has resulted from regional- and global-scale thermodynamic changes, the risk of extreme temperatures over some regions has also been altered by recent changes in the frequency, persistence and maximum duration of regional circulation patterns.

  12. Competition between cheatgrass and bluebunch wheatgrass is altered by temperature, resource availability, and atmospheric CO2 concentration.

    Science.gov (United States)

    Larson, Christian D; Lehnhoff, Erik A; Noffsinger, Chance; Rew, Lisa J

    2017-12-22

    Global change drivers (elevated atmospheric CO2, rising surface temperatures, and changes in resource availability) have significant consequences for global plant communities. In the northern sagebrush steppe of North America, the invasive annual grass Bromus tectorum (cheatgrass) is expected to benefit from projected warmer and drier conditions, as well as increased CO2 and nutrient availability. In growth chambers, we addressed this expectation using two replacement series experiments designed to test competition between B. tectorum and the native perennial bunchgrass Pseudoroegneria spicata. In the first experiment, we tested the effects of elevated temperature, decreased water and increased nutrient availability, on competition between the two species. In the second, we tested the effects of elevated atmospheric CO2 and decreased water availability on the competitive dynamic. In both experiments, under all conditions, P. spicata suppressed B. tectorum, though, in experiment one, warmer and drier conditions and elevated nutrient availability increased B. tectorum's competitiveness. In experiment two, when grown in monoculture, both species responded positively to elevated CO2. However, when grown in competition, elevated CO2 increased P. spicata's suppressive effect, and the combination of dry soil conditions and elevated CO2 enhanced this effect. Our findings demonstrate that B. tectorum competitiveness with P. spicata responds differently to global change drivers; thus, future conditions are unlikely to facilitate B. tectorum invasion into established P. spicata communities of the northern sagebrush steppe. However, disturbance (e.g., fire) to these communities, and the associated increase in soil nutrients, elevates the risk of B. tectorum invasion.

  13. Atmospheric pressure chemical vapor deposition (APCVD) grown bi-layer graphene transistor characteristics at high temperature

    KAUST Repository

    Qaisi, Ramy M.

    2014-05-15

    We report the characteristics of atmospheric chemical vapor deposition grown bilayer graphene transistors fabricated on ultra-scaled (10 nm) high-κ dielectric aluminum oxide (Al2O3) at elevated temperatures. We observed that the drive current increased by >400% as temperature increased from room temperature to 250 °C. Low gate leakage was maintained for prolonged exposure at 100 °C but increased significantly at temperatures >200 °C. These results provide important insights for considering chemical vapor deposition graphene on aluminum oxide for high temperature applications where low power and high frequency operation are required. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Thermoplastic Elastomer Part Color as Function of Temperature Histories and Oxygen Atmosphere During Selective Laser Sintering

    Science.gov (United States)

    Kummert, C.; Josupeit, S.; Schmid, H.-J.

    2017-11-01

    The influence of selective laser sintering (SLS) parameters on PA12 part properties is well known, but research on other materials is rare. One alternative material is a thermoplastic elastomer (TPE) called PrimePart ST that is more elastic and shows a distinct SLS processing behavior. It undergoes a three-dimensional temperature distribution during the SLS process within the TPE part cake. To examine this further, a temperature measurement system that allows temperature measurements inside the part cake is applied to TPE in the present work. Position-dependent temperature histories are directly correlated with the color and mechanical properties of built parts and are in very good agreement with artificial heat treatment in a furnace. Furthermore, it is clearly shown that the yellowish discoloration of parts in different intensities is not only temperature dependent but also influenced by the residual oxygen content in the process atmosphere. Nevertheless, the discoloration has no influence on the mechanical part properties.

  15. Water Isotope Tracers of Indo-Pacific Atmospheric Circulation: A Modern Take on Past Dynamics

    Science.gov (United States)

    Konecky, B. L.; Noone, D. C.; Nusbaumer, J. M.; Cobb, K. M.; Conroy, J. L.

    2015-12-01

    Stable oxygen and hydrogen isotope ratios (δ18O, δD) in precipitation, terrestrial water bodies, groundwater, and surface seawater are powerful integrators of the atmospheric water cycle. As such, proxy archives of δ18O and δD form the basis for much of our understanding of past changes in Indo-Pacific climate. Water isotope studies of the past millennium suggest that both internal variability and forced changes in global temperature drove decadal to centennial changes in monsoons, the Intertropical Convergence Zone, ENSO, and other modes of variability. However, recent observations as well as proxy data have shown that δ18O and δD signatures are far more complex than previously believed. Testing hypotheses about the drivers of past Indo-Pacific hydroclimate therefore requires an improved understanding of modern-day isotope ratios. In this study, we present new analyses of Indo-Pacific climate/isotope relationships from satellite and in situ observations, as well as new simulations with water isotope-enabled components of the Community Earth System Model. We evaluate the mechanisms that reinforce or weaken the tropical amount effect, which is often invoked in interpreting paleo-isotope data as hydroclimate proxies. We find that the amount effect is highly variable through space and time. Generally, it is strongest at sites with large-amplitude variations in the seasonal cycle. Circulation and moisture convergence play key roles in determining the strength of the amount effect, although cloud processes such as Rayleigh distillation and rain evaporation are still important, especially in determining initial isotope ratios of transported moisture. The relative influence of these mechanisms on vapor δ18O and δD varies in different parts of the tropics, affecting how regional archives record ENSO and other circulation patterns. We discuss these differences, and their implications for reconstructing Indo-Pacific atmospheric variability on decadal and longer

  16. Micropatterned Surfaces for Atmospheric Water Condensation via Controlled Radical Polymerization and Thin Film Dewetting.

    Science.gov (United States)

    Wong, Ian; Teo, Guo Hui; Neto, Chiara; Thickett, Stuart C

    2015-09-30

    Inspired by an example found in nature, the design of patterned surfaces with chemical and topographical contrast for the collection of water from the atmosphere has been of intense interest in recent years. Herein we report the synthesis of such materials via a combination of macromolecular design and polymer thin film dewetting to yield surfaces consisting of raised hydrophilic bumps on a hydrophobic background. RAFT polymerization was used to synthesize poly(2-hydroxypropyl methacrylate) (PHPMA) of targeted molecular weight and low dispersity; spin-coating of PHPMA onto polystyrene films produced stable polymer bilayers under appropriate conditions. Thermal annealing of these bilayers above the glass transition temperature of the PHPMA layer led to complete dewetting of the top layer and the formation of isolated PHPMA domains atop the PS film. Due to the vastly different rates of water nucleation on the two phases, preferential dropwise nucleation of water occurred on the PHPMA domains, as demonstrated by optical microscopy. The simplicity of the preparation method and ability to target polymers of specific molecular weight demonstrate the value of these materials with respect to large-scale water collection devices or other materials science applications where patterning is required.

  17. Correlation between the season, temperature and atmospheric pressure with incidence and pathogenesis of acute appendicitis

    Directory of Open Access Journals (Sweden)

    Karanikolić Aleksandar

    2016-01-01

    Full Text Available Introduction. There is very little literature data on the correlation between the seasons, temperature and atmospheric pressure, and pathogenesis of acute appendicitis (AA. Objective. The aim of this research is to investigate the association between the seasons, changes in atmospheric temperature and pressure, and patients’ age and severity of the clinical form of AA in the city of Niš. Methods. This study included 395 patients diagnosed with AA, who, during the two-year period, from July 1st 2011 to June 30th 2013, were hospitalized and operated on at the Department of General Surgery, Clinical Center in Niš, Serbia. Results. The increased average daily values of barometric pressure by 1 millibar on the day when the event took place was associated (p < 0.05 with the decrease of total risk of the occurrence of appendicitis by 2.2% (0.2-4.1%. In all observed patients, each increase of the mean daily temperature by 1°C three days before the event took place (Lag 3 was associated (p < 0.05 with the increase of total risk of the occurrence of appendicitis by 1.3% (0.1-2.5%. Conclusion. According to the results of this research, we can conclude that patients’ sex, age and severity of the clinical form of AA are not in connection with the seasons, while there are certain connections between appendicitis occurrence and atmospheric temperature and pressure.

  18. On the relationship between the QBO/ENSO and atmospheric temperature using COSMIC radio occultation data

    Science.gov (United States)

    Gao, Pan; Xu, Xiaohua; Zhang, Xiaohong

    2017-04-01

    In this paper, the spatial patterns and vertical structure of atmospheric temperature anomalies, in both the tropics and the extratropical latitudes, associated with the El Niño-Southern Oscillation (ENSO) and quasi-biennial oscillation (QBO) in the upper troposphere and stratosphere are investigated using global positioning system (GPS) radio occultation (RO) measurements from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) Formosa Satellite Mission 3 mission from July 2006 to February 2014. We find that negative correlations between the atmospheric temperature in the tropics and ENSO are observed at 17-30 km in the lower stratosphere at a lag of 1-4 months and at a lead of 1 month. Out-of-phase temperature variation is observed in the troposphere over the mid-latitude band and in-phase behaviour is observed in the lower stratosphere. Interestingly, we also find that there is a significant negative correlation at a lag of 1-3 months from 32 km to 40 km in the mid-latitude region of the Northern Hemisphere. The atmospheric temperature variations over mid-latitude regions in both hemispheres are closely related to the QBO. There are also two narrow zones over the subtropical jet zone where the QBO signals are strong in both hemispheres, approximately parallel to the equator. Finally, we develop a new robust index to describe the strength of the ENSO and QBO signal.

  19. Venus High Temperature Atmospheric Dropsonde and Extreme-Environment Seismometer (HADES)

    Science.gov (United States)

    Boll, Nathan J.; Salazar, Denise; Stelter, Christopher J.; Landis, Geoffrey A.; Colozza, Anthony J.

    2014-01-01

    The atmospheric composition and geologic structure of Venus have been identified by the US National Research Council's Decadal Survey for Planetary Science as priority targets for scientific exploration, however the high temperature and pressure at the surface, along with the highly corrosive chemistry of the Venus atmosphere, present significant obstacles to spacecraft design that have severely limited past and proposed landed missions. Following the methodology of the NASA Innovative Advanced Concepts (NIAC) proposal regime and the Collaborative Modeling and Parametric Assessment of Space Systems (COMPASS) design protocol, this paper presents a conceptual study and initial feasibility analysis for a Discovery-class Venus lander capable of an extended-duration mission at ambient temperature and pressure, incorporating emerging technologies within the field of high temperature electronics in combination with novel configurations of proven, high Technology Readiness Level (TRL) systems. Radioisotope Thermal Power (RTG) systems and silicon carbide (SiC) communications and data handling are examined in detail, and various high-temperature instruments are proposed, including a seismometer and an advanced photodiode imager. The study combines this technological analysis with proposals for a descent instrument package and a relay orbiter to demonstrate the viability of an integrated atmospheric and in-situ geologic exploratory mission that differs from previous proposals by greatly reducing the mass, power requirements, and cost, while achieving important scientific goals.

  20. Influence of water vapour and permanent gases on the atmospheric optical depths and transmittance

    Science.gov (United States)

    Badescu, V.

    1991-05-01

    The influence of the atmospheric state on the extinction of direct solar radiation has been studied by using a four layer atmospheric model. Simple analytical formulae are established for the spectral optical depths of permanent gases and water vapour. These formulae use the ground level values of air pressure, temperature and relative huniidity. An additional parameter, related to the vertical distribution of the hunmidity content, is used for a better estimation of the water vapour optical depth. Good agreement between theory and measurements is found. The paper shows the dependence of the atmospheric spectral transmittance on the above mentioned parameters. L'influence de l'état atmosphérique sur l'extinction de la radiation solaire directe a été étudiée à l'aide d'un modèle atmosphérique développé antérieurement par l'auteur. Des formules simples ont été établies pour l'épaisseur optique spectrale des gaz et de la vapeur d'eau. Ces formules utilisent les valeurs de la pression atmosphérique, de la température et de l'humidité relative, mesurées au niveau du sol. Un paramètre supplémentaire, lié à la distribution verticale du contenu d'humidité, est utilisé pour calculer l'épaisseur optique due à la vapeur d'eau. La théorie est en bon accord avec les résultats des mesures. Le travail montre la dépendance de la transmittance atmosphérique spectrale en fonction des paramètres spécifiés ci-dessus.

  1. Morphological features and variations of temperature in the upper thermosphere simulated by a whole atmosphere GCM

    Directory of Open Access Journals (Sweden)

    H. Fujiwara

    2010-02-01

    Full Text Available In order to illustrate morphological features and variations of temperature in the upper thermosphere, we performed numerical simulations with a whole atmosphere general circulation model (GCM for the solar minimum and geomagnetically quiet conditions in March, June, September, and December. In previous GCMs, tidal effects were imposed at the lower boundaries assuming dominant diurnal and semi-diurnal tidal modes. Since the GCM used in the present study covers all the atmospheric regions, the atmospheric tides with various modes are generated within the GCM. The global temperature distributions obtained from the GCM are in agreement with ones obtained from NRLMSISE-00. In addition, the GCM also represents localised temperature structures which are superimposed on the global day-night distributions. These localised structures, which vary from hour to hour, would be observed as variations with periods of about 2–3 h at a single site. The amplitudes of the 2–3 h variations are significant at high-latitude, while the amplitudes are small at low-latitude. The diurnal temperature variation is more clearly identified at low-latitude than at high-latitude. When we assume the same high-latitude convection electric field in each month, the temperature calculated in the polar cap region shows diurnal variation more clearly in winter than in summer. The midnight temperature maximum (MTM, which is one of the typical low-latitude temperature structures, is also seen in the GCM results. The MTMs in the GCM results show significant day-to-day variation with amplitudes of several 10s to about 150 K. The wind convergence and stream of warm air are found around the MTM. The GCM also represent the meridional wind reversals and/or abatements which are caused due to local time variations of airflow pattern in the low-latitude region.

  2. Comparison between Satellite Water Vapour Observations and Atmospheric Models’ Predictions of the Upper Tropospheric Thermal Radiation

    Directory of Open Access Journals (Sweden)

    J. R. Dim

    2011-01-01

    Full Text Available Atmospheric profiles (temperature, pressure, and humidity are commonly used parameters for aerosols and cloud properties retrievals. In preparation of the launch of the Global Change Observation Mission-Climate/Second-Generation GLobal Imager (GCOM-C/SGLI satellite, an evaluation study on the sensitivity of atmospheric models to variations of atmospheric conditions is conducted. In this evaluation, clear sky and above low clouds water vapour radiances of the upper troposphere obtained from satellite observations and those simulated by atmospheric models are compared. The models studied are the Nonhydrostatic ICosahedral Atmospheric Model (NICAM and the National Center for Environmental Protection/Department Of Energy (NCEP/DOE. The satellite observations are from the Terra/Moderate Resolution Imaging Spectroradiometer (Terra/MODIS satellite. The simulations performed are obtained through a forward radiative transfer calculation procedure. The resulting radiances are transformed into the upper tropospheric brightness temperature (UTBT and relative humidity (UTRH. The discrepancies between the simulated data and the observations are analyzed. These analyses show that both the NICAM and the NCEP/DOE simulated UTBT and UTRH have comparable distribution patterns. However the simulations’ differences with the observations are generally lower with the NCEP/DOE than with the NICAM. The NCEP/DOE model outputs very often overestimate the UTBT and therefore present a drier upper troposphere. The impact of the lower troposphere instability (dry convection on the upper tropospheric moisture and the consequences on the models’ results are evaluated through a thunderstorm and moisture predictor (the K-stability index. The results obtained show a positive relation between the instability and the root mean square error (RMSE: observation versus models. The study of the impact of convective clouds shows that the area covered by these clouds increases with the

  3. 21 CFR 1250.42 - Water systems; constant temperature bottles.

    Science.gov (United States)

    2010-04-01

    ... and protected as to minimize the hazard of contamination of the water supply. (c) On all new or... containers used for storing or dispensing potable water shall be kept clean at all times and shall be... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Water systems; constant temperature bottles. 1250...

  4. Experimental investigation of stabilization of flowing water temperature with a water-PCM heat exchanger

    Directory of Open Access Journals (Sweden)

    Charvat Pavel

    2014-03-01

    Full Text Available Experiments have been carried out in order to investigate the stabilization of water temperature with a water-PCM heat exchanger. The water-PCM heat exchanger was of a rather simple design. It was a round tube, through which the water flowed, surrounded with an annular layer of PCM. The heat exchanger was divided into one meter long segments (modules and the water temperature was monitored at the outlet of each of the segments. A paraffin-based PCM with the melting temperature of 42 °C was used in the experiments. The experimental set-up consisted of two water reservoirs kept at different temperatures, the water-PCM heat exchanger, PC controlled valves and a data acquisition system. As the first step a response to a step change in the water temperature at the inlet of the heat exchanger was investigated. Subsequently, a series of experiments with a square wave change of temperature at the inlet of the exchanger were carried out. The square wave temperature profile was achieved by periodic switching between the two water reservoirs. Several amplitudes and periods of temperature square wave were used. The results of experiments show that a water-PCM heat exchanger can effectively be used to stabilize the flowing water temperature when the inlet temperature changes are around the melting range of the PCM.

  5. A comparative summary on streamers of positive corona discharges in water and atmospheric pressure gases

    Science.gov (United States)

    Tachibana, Kunihide; Motomura, Hideki

    2015-07-01

    From an intention of summarizing present understandings of positive corona discharges in water and atmospheric pressure gases, we tried to observe streamers in those media by reproducing and complementing previously reported results under a common experimental setup. We used a point-to-plane electrode configuration with different combinations of electrode gap (7 and 19 mm length) and pulsed power sources (0.25 and 2.5 ɛs duration). The general features of streamers were similar and the streamer-to-spark transition was also observed in both the media. However, in the details large differences were observed due to inherent nature of the media. The measured propagation speed of streamers in water of 0.035 × 106 ms-1 was much smaller than the speed in gases (air, N2 and Ar) from 0.4 to 1.1 × 106 ms-1 depending on species. In He the discharge looked glow-like and no streamer was observed. The other characteristics of streamers in gases, such as inception voltage, number of branches and thickness did also depend on the species. The thickness and the length of streamers in water were smaller than those in gases. From the volumetric expansion of a streamer in water after the discharge, the molecular density within the streamer medium was estimated to be rarefied from the density of water by about an order of magnitude in the active discharge phase. We derived also the electron density from the analysis of Stark broadened spectral lines of H and O atoms on the order of 1025 m-3 at the earlier time of the streamer propagation. The analyzed background blackbody radiation, rotational temperature of OH band emission and population density of Cu atomic lines yielded a consistent temperature of the streamer medium between 7000 and 10 000 K. Using the present data with a combination of the analysis of static electric field and previously reported results, we discuss the reason for the relatively low streamer inception voltage in water as compared to the large difference in the

  6. Control of matric water potential by temperature differential

    Science.gov (United States)

    Palmer, R. J. Jr; Nienow, J. A.; Friedmann, E. I.

    1987-01-01

    A method for controlling relative humidity based on temperature differentials, rather than on salt solutions, is described. This method has the following advantages: (1) it does not exhibit the anomalous CO2 solution effects that we have found to occur with salt solutions; (2) humidity is continuously adjustable without sample removal; (3) circulation of the atmosphere results in short equilibration times.

  7. Maintaining Atmospheric Mass and Water Balance Within Reanalysis

    Science.gov (United States)

    Takacs, Lawrence L.; Suarez, Max; Todling, Ricardo

    2015-01-01

    This report describes the modifications implemented into the Goddard Earth Observing System Version-5 (GEOS-5) Atmospheric Data Assimilation System (ADAS) to maintain global conservation of dry atmospheric mass as well as to preserve the model balance of globally integrated precipitation and surface evaporation during reanalysis. Section 1 begins with a review of these global quantities from four current reanalysis efforts. Section 2 introduces the modifications necessary to preserve these constraints within the atmospheric general circulation model (AGCM), the Gridpoint Statistical Interpolation (GSI) analysis procedure, and the Incremental Analysis Update (IAU) algorithm. Section 3 presents experiments quantifying the impact of the new procedure. Section 4 shows preliminary results from its use within the GMAO MERRA-2 Reanalysis project. Section 5 concludes with a summary.

  8. WATER TEMPERATURE and other data from MICRONESIAN COMMERCE, POLYNESIA and other platforms from 1990-06-08 to 1991-01-14 (NODC Accession 9100063)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water depth and temperature data was collected from multiple ships such as MICRONESIAN INDEPENDANCE, MICRONESIAN COMMERCE, LARS MAERSK, MCKINNEY MAERSK, MOANA...

  9. Temperature and water density data from meteorological sensors in the Sea of Japan and Yellow Sea from KODC, 01 January 1923 to 31 December 2001 (NODC Accession 0000914)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and water density data were collected using meteorological sensors from coastal stations in the Sea of Japan and Yellow Sea. Data were submitted by the...

  10. Temperature profile and water depth data collected from HARKNESS in the Indian Ocean from 15 December 1986 to 14 January 1987 (NODC Accession 8700087)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the HARKNESS in the Indian Ocean and TOGA Area - India Ocean. Data were collected...

  11. WATER TEMPERATURE and other data from SEDCO/BP 471 from 1990-09-01 to 1990-10-06 (NCEI Accession 9000272)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data in this accession was collected from ship Sedco/BP 471 between September 1, 1990 and October 6, 1990. The real time data of water temperature at varying...

  12. WATER TEMPERATURE and other data from USS HERALD from 1992-06-02 to 1992-06-29 (NODC Accession 9200145)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data in this accession were collected from USS HERALD between June 2, 1992 and June 28, 1992. The real time data of water temperature at varying depth...

  13. WATER TEMPERATURE and other data from USS ABRAHAM LINCOLN from 1995-05-19 to 1995-06-03 (NCEI Accession 9500094)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data in this accession were collected from USS ABRAHAM LINCOLN between May 19, 1995 and June 3, 1995. The real time data of water temperature at varying depth...

  14. WATER TEMPERATURE and other data from USS RICHMOND K. TURNER, USS CUSHING and other platforms from 1991-01-14 to 1992-10-29 (NCEI Accession 9300065)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water depth and temperature data was collected from eight ships by the US Navy. The data was collected from January 14, 1991 to October 29, 1992. 32 envelopes of...

  15. WATER TEMPERATURE and other data from USCGC POLAR STAR from 1989-11-02 to 1990-04-11 (NODC Accession 9000089)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water depth and temperature data was collected from ship Polar Star. The data was collected from November 2, 1989 to April 11, 1990 as part of project Deep...

  16. WATER TEMPERATURE and other data from USCGC POLAR STAR in the South Pacific Ocean from 1992-11-08 to 1993-04-12 (NODC Accession 9300068)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water depth and temperature data was collected in South Pacific Ocean as part of project Deep Freeze from ship POLAR STAR. The data was collected from November...

  17. WATER TEMPERATURE and other data from NEWCASTLE, FLINDERS and other platforms from 1993-08-01 to 1995-03-29 (NCEI Accession 9600003)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water depth and temperature data was collected from five ships by the Australian and New Zealand Navy. The data was collected between August 1, 1993 and March...

  18. Temperature profile and water depth data collected from R/V ENDEAVOR using CTD casts from 14 September 1981 to 01 October 1981 (NODC Accession 8600220)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using CTD casts from the R/V ENDEAVOR. Data were collected from 14 September 1981 to 01 October 1981 by Woods...

  19. WATER TEMPERATURE and other data from NEDLLOYD MANILA in the TOGA Area - Pacific from 1990-07-26 to 1990-11-15 (NCEI Accession 9000295)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water depth and temperature data was collected as part of SEAS III project from ship Manila Nedlloyd. The data was collected from TOGA (Tropical Ocean Global...

  20. Water temperature and salinity profiles from CTD and XBT casts aboard multiple platforms from 1986-01-09 to 2011-01-29 (NCEI Accession 0103557)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This water temperature and salinity profile data set is a product from the Commonwealth Scientific and Industrial Research Organization (CSIRO) used to compare...

  1. WATER TEMPERATURE and other data from unknown platforms from 1993-12-29 to 1995-07-30 (NODC Accession 9500134)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water depth and temperature data were collected as part of Seasonal Response of the Equatorial Atlantic (SEQUAL) experiment/ Francais Ocean et Climat dans...

  2. WATER TEMPERATURE and other data from USS THACH in the Sea of Japan from 1995-10-22 to 1995-10-31 (NCEI Accession 9500153)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data in this accession were collected in Sea of Japan from USS THACH between October 22, 1995 and October 31, 1995. The real time data of water temperature at...

  3. Temperature profile and water depth data collected from USS MOBILE BAY in the NW Atlantic Ocean from 05 March 1987 to 31 March 1987 (NODC Accession 8700170)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS MOBILE BAY in the Northwest Atlantic Ocean and Caribbean Sea. Data were...

  4. Temperature profile and water depth data collected from DOWNES in the NW Pacific (limit-180W) from 09 September 1986 to 29 September 1986 (NODC Accession 8700044)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT from the DOWNES in the Northeast Pacific Ocean. Data were collected from 09 September 1986...

  5. Temperature data from thermistor casts in the Atlantic Ocean's coastal waters off Florida by from 01 January 2000 to 31 December 2003 (NODC Accession 0002518)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature data were collected using SBE 39 thermistor casts in the Atlantic Ocean's coastal waters off Florida from January 1, 2000 to December 31, 2003 as part of...

  6. WATER TEMPERATURE and other data from WADDELL in the Caribbean Sea from 1992-03-01 to 1992-04-01 (NODC Accession 9200094)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data in this accession were collected in Caribbean Sea from ship WADDELL between March 1, 1992 and April 1, 1992. The real time data of water temperature at...

  7. WATER TEMPERATURE and other data from DISCOVERY, CHARLES DARWIN and other platforms from 1987-08-24 to 1992-11-02 (NODC Accession 9300124)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water depth and temperature data were collected from ships CHARLES DARWIN, CLYDE-OWS LIMA, DISCOVERY, and OCEAN WEATHER STATION L between August 24 1987 and...

  8. WATER TEMPERATURE and other data from USS STUMP DD-978) from 1990-04-01 to 1990-04-05 (NCEI Accession 9000105)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data in this accession was collected from USS Stump between April 1 and April 5, 1990. The real time data of water temperature at varying depth bathythermograph...

  9. Water temperature data from expendable bathythermographs by vessels participating in NOAA's SEAS program from 03 May 2000 to 21 November 2000 (NODC Accession 0000352)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water temperature and other data were collected from multiple ships in a world-wide distribution from May 3, 2000 to November 21, 2000. Data were submitted by...

  10. Temperature profile and water depth data collected from HARKNESS in the Indian Ocean from 01 March 1987 to 10 March 1987 (NODC Accession 8700159)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT from the HARKNESS in the Indian Ocean and TOGA Area - Indian Ocean. Data were collected from...

  11. Temperature profile and water depth data collected from COCHRANE in the South China Sea and other seas from 09 January 1987 to 22 February 1987 (NODC Accession 8700095)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT from the COCHRANE in the South China and other seas. Data were collected from 09 January...

  12. WATER TEMPERATURE and other data from PACPRINCESS, ACT 6 and other platforms from 1988-10-15 to 1991-10-07 (NODC Accession 9200032)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water depth and temperature data were collected from multiple ships between October 15, 1988 and October 7, 1991. The originator's bathythermograph (XBT) data...

  13. WATER TEMPERATURE and other data from USCGC SHERMAN from 1990-02-16 to 1990-03-02 (NCEI Accession 9000065)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data in this accession was collected from US Coast Guard Cutter Sherman between February 16, 1990 and March 2, 1990. The real time data of water temperature at...

  14. WATER TEMPERATURE and other data from OLEANDER and YANKEE CLIPPER in the NW Atlantic from 1991-01-05 to 1991-12-11 (NODC Accession 9200018)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water depth and temperature data was collected in NW Atlantic (limit-40 W) from ships OLEANDER and YANKEE CLIPPER as part of Ship Of Opportunity Programme...

  15. Regional effects of atmospheric aerosols on temperature: an evaluation of an ensemble of online coupled models

    Science.gov (United States)

    Baró, Rocío; Palacios-Peña, Laura; Baklanov, Alexander; Balzarini, Alessandra; Brunner, Dominik; Forkel, Renate; Hirtl, Marcus; Honzak, Luka; Pérez, Juan Luis; Pirovano, Guido; San José, Roberto; Schröder, Wolfram; Werhahn, Johannes; Wolke, Ralf; Žabkar, Rahela; Jiménez-Guerrero, Pedro

    2017-08-01

    The climate effect of atmospheric aerosols is associated with their influence on the radiative budget of the Earth due to the direct aerosol-radiation interactions (ARIs) and indirect effects, resulting from aerosol-cloud-radiation interactions (ACIs). Online coupled meteorology-chemistry models permit the description of these effects on the basis of simulated atmospheric aerosol concentrations, although there is still some uncertainty associated with the use of these models. Thus, the objective of this work is to assess whether the inclusion of atmospheric aerosol radiative feedbacks of an ensemble of online coupled models improves the simulation results for maximum, mean and minimum temperature at 2 m over Europe. The evaluated models outputs originate from EuMetChem COST Action ES1004 simulations for Europe, differing in the inclusion (or omission) of ARI and ACI in the various models. The cases studies cover two important atmospheric aerosol episodes over Europe in the year 2010: (i) a heat wave event and a forest fire episode (July-August 2010) and (ii) a more humid episode including a Saharan desert dust outbreak in October 2010. The simulation results are evaluated against observational data from the E-OBS gridded database. The results indicate that, although there is only a slight improvement in the bias of the simulation results when including the radiative feedbacks, the spatiotemporal variability and correlation coefficients are improved for the cases under study when atmospheric aerosol radiative effects are included.

  16. Regional effects of atmospheric aerosols on temperature: an evaluation of an ensemble of online coupled models

    Directory of Open Access Journals (Sweden)

    R. Baró

    2017-08-01

    Full Text Available The climate effect of atmospheric aerosols is associated with their influence on the radiative budget of the Earth due to the direct aerosol–radiation interactions (ARIs and indirect effects, resulting from aerosol–cloud–radiation interactions (ACIs. Online coupled meteorology–chemistry models permit the description of these effects on the basis of simulated atmospheric aerosol concentrations, although there is still some uncertainty associated with the use of these models. Thus, the objective of this work is to assess whether the inclusion of atmospheric aerosol radiative feedbacks of an ensemble of online coupled models improves the simulation results for maximum, mean and minimum temperature at 2 m over Europe. The evaluated models outputs originate from EuMetChem COST Action ES1004 simulations for Europe, differing in the inclusion (or omission of ARI and ACI in the various models. The cases studies cover two important atmospheric aerosol episodes over Europe in the year 2010: (i a heat wave event and a forest fire episode (July–August 2010 and (ii a more humid episode including a Saharan desert dust outbreak in October 2010. The simulation results are evaluated against observational data from the E-OBS gridded database. The results indicate that, although there is only a slight improvement in the bias of the simulation results when including the radiative feedbacks, the spatiotemporal variability and correlation coefficients are improved for the cases under study when atmospheric aerosol radiative effects are included.

  17. Effects of Changes in Meteorological Conditions on Lake Evaporation, Water Temperature, and Heat Budget in a Deep Lake

    Science.gov (United States)

    Ito, Yuji; Momii, Kazuro

    To reveal effects of changes in meteorological conditions on lake evaporation, water temperature, and heat budget in a deep lake, sensitivity analyses have been performed for Lake Ikeda, Kagoshima prefecture. In the study, the sensitivities of three aspects to the 10%-increased solar radiation, air temperature, relative humidity, and wind speed were estimated based on numerical calculations for 1981-2005 with the verified one-dimensional mathematical model that computes thermal transfer in the lake. The results demonstrated that the meteorological component which gives the largest evaporation-promoting effect was solar radiation and the component which brings the largest lake-heating was air temperature. When solar radiation was increased, the vapor pressure difference between lake-surface and atmosphere was increased and the atmospheric stability was decreased, which present the desirable condition for evaporation. Air temperature being higher, the lake-surface was intensively heated by increased atmospheric radiation. As for the humidity case, lake evaporation was decreased in any season due to decrease in vapor pressure difference. Although rise in water temperature was caused by decrease in latent heat, it was inhibited with cooling by sensible heat. Wind being up, water temperature was fallen at the lake-surface and risen around the 20 m depth by vertical thermal mixing effect. The mixing effect prevented from releasing heat to atmosphere, resulting in the secondary large lake-heating but smaller than air temperature case.

  18. Erosion processes in molassic cliffs: the role of the rock surface temperature and atmospheric conditions

    Science.gov (United States)

    Carrea, Dario; Abellán, Antonio; Guerin, Antoine; Jaboyedoff, Michel; Voumard, Jérémie

    2014-05-01

    The morphology of the Swiss Plateau is modeled by numerous steep cliffs of Molasse. These cliffs are mainly composed of sub-horizontal alternated layers of sandstone, shale and conglomerates deposed in the Alps foreland basin during the Tertiary period. These Molasse cliffs are affected by erosion processes inducing numerous rockfall events. Thus, it is relevant to understand how different external factors influence Molasse erosion rates. In this study, we focus on analyzing temperature variation during a winter season. As pilot study area we selected a cliff which is formed by a sub-horizontal alternation of outcropping sandstone and shale. The westward facing test site (La Cornalle, Vaud, Switzerland), which is a lateral scarp of a slow moving landslide area, is currently affected by intense erosion. Regarding data acquisition, we monitored both in-situ rock and air temperatures at 15 minutes time-step since October 2013: (1) on the one hand we measured Ground Surface Temperature (GST) at near-surface (0.1 meter depth) using a GST mini-datalogger M-Log5W-Rock model; (2) On the other hand we monitored atmospheric conditions using a weather station (Davis Vantage pro2 plus) collecting numerous parameters (i.e. temperature, irradiation, rain, wind speed, etc.). Furthermore, the area was also seasonally monitored by Ground-Based (GB) LiDAR since 2010 and monthly monitored since September 2013. In order to understand how atmospheric conditions (such as freeze and thaw effect) influence the erosion of the cliff, we modeled the temperature diffusion through the rock mass. To this end, we applied heat diffusion and radiation equation using a 1D temperature profile, obtaining as a result both temperature variations at different depths together with the location of the 0°C isotherm. Our model was calibrated during a given training set using both in-situ rock temperatures and atmospheric conditions. We then carried out a comparison with the rockfall events derived from the

  19. Flexible sample environment for high resolution neutron imaging at high temperatures in controlled atmosphere

    DEFF Research Database (Denmark)

    Makowska, Malgorzata G.; Kuhn, Luise Theil; Cleemann, Lars Nilausen

    2015-01-01

    with any other technique. This paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 ◦C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging......High material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible...

  20. Mean ocean temperature change over the last glacial transition based on heavy noble gases in the atmosphere

    Science.gov (United States)

    Bereiter, Bernhard; Severinghaus, Jeff; Shackleton, Sarah; Baggenstos, Daniel; Kawamura, Kenji

    2017-04-01

    On paleo-climatic timescales heavy noble gases (krypton and xenon) are conserved in the atmosphere-ocean system and are passively cycled through this system without interaction with any biogeochemical process. Due to the characteristic temperature dependency of the gas solubility factors in sea water, the atmospheric noble gas content is unambiguously linked to mean global ocean temperature (MOT). Here we use this proxy to reconstruct MOT over the course of the last glacial transition based on measurements of trapped air in the WAIS Divide ice core. We analyzed 78 ice samples with a recently developed method that yields the isotopic ratios of N2, Ar, Kr and the elemental ratios of Kr/N2, Xe/N2 and Xe/Kr in the trapped air with the required precision. Based on the isotopic ratios we correct the elemental ratios for the fractionation processes in the firn column to obtain the true atmospheric values. On the basis of a 4-box model that incorporates effects of sea-level change, different saturation states of the water and different temperature distributions in the global ocean, we infer MOT based on the three elemental ratio pairs and assess its uncertainty. On average, the uncertainty of our MOT record is +/- 0.27°C, which is a significant improvement to earlier studies that reached about +/- 1°C uncertainty. This allows an unprecedented assessment of the glacial-interglacial MOT difference, as well as a direct comparison between MOT and climate change for the first time. We find a LGM-Holocene difference of 2.6°C, which is on the lower end of what earlier studies have suggested (3 +/- 1°C) and provides a new constraint on ocean heat uptake over the last glacial transition. Furthermore, we find a very close relation between MOT and Antarctic temperatures which shows for the first time the effect of Atlantic overturning circulation changes on global ocean heat uptake. Finally, our record shows a MOT warming rate during the Younger Dryas that is almost double to

  1. Refining multi-model projections of temperature extremes by evaluation against land–atmosphere coupling diagnostics

    Directory of Open Access Journals (Sweden)

    S. Sippel

    2017-05-01

    Full Text Available The Earth's land surface and the atmosphere are strongly interlinked through the exchange of energy and matter. This coupled behaviour causes various land–atmosphere feedbacks, and an insufficient understanding of these feedbacks contributes to uncertain global climate model projections. For example, a crucial role of the land surface in exacerbating summer heat waves in midlatitude regions has been identified empirically for high-impact heat waves, but individual climate models differ widely in their respective representation of land–atmosphere coupling. Here, we compile an ensemble of 54 combinations of observations-based temperature (T and evapotranspiration (ET benchmarking datasets and investigate coincidences of T anomalies with ET anomalies as a proxy for land–atmosphere interactions during periods of anomalously warm temperatures. First, we demonstrate that a large fraction of state-of-the-art climate models from the Coupled Model Intercomparison Project (CMIP5 archive produces systematically too frequent coincidences of high T anomalies with negative ET anomalies in midlatitude regions during the warm season and in several tropical regions year-round. These coincidences (high T, low ET are closely related to the representation of temperature variability and extremes across the multi-model ensemble. Second, we derive a land-coupling constraint based on the spread of the T–ET datasets and consequently retain only a subset of CMIP5 models that produce a land-coupling behaviour that is compatible with these benchmark estimates. The constrained multi-model simulations exhibit more realistic temperature extremes of reduced magnitude in present climate in regions where models show substantial spread in T–ET coupling, i.e. biases in the model ensemble are consistently reduced. Also the multi-model simulations for the coming decades display decreased absolute temperature extremes in the constrained ensemble. On the other hand

  2. Refining multi-model projections of temperature extremes by evaluation against land-atmosphere coupling diagnostics

    Science.gov (United States)

    Sippel, Sebastian; Zscheischler, Jakob; Mahecha, Miguel D.; Orth, Rene; Reichstein, Markus; Vogel, Martha; Seneviratne, Sonia I.

    2017-05-01

    The Earth's land surface and the atmosphere are strongly interlinked through the exchange of energy and matter. This coupled behaviour causes various land-atmosphere feedbacks, and an insufficient understanding of these feedbacks contributes to uncertain global climate model projections. For example, a crucial role of the land surface in exacerbating summer heat waves in midlatitude regions has been identified empirically for high-impact heat waves, but individual climate models differ widely in their respective representation of land-atmosphere coupling. Here, we compile an ensemble of 54 combinations of observations-based temperature (T) and evapotranspiration (ET) benchmarking datasets and investigate coincidences of T anomalies with ET anomalies as a proxy for land-atmosphere interactions during periods of anomalously warm temperatures. First, we demonstrate that a large fraction of state-of-the-art climate models from the Coupled Model Intercomparison Project (CMIP5) archive produces systematically too frequent coincidences of high T anomalies with negative ET anomalies in midlatitude regions during the warm season and in several tropical regions year-round. These coincidences (high T, low ET) are closely related to the representation of temperature variability and extremes across the multi-model ensemble. Second, we derive a land-coupling constraint based on the spread of the T-ET datasets and consequently retain only a subset of CMIP5 models that produce a land-coupling behaviour that is compatible with these benchmark estimates. The constrained multi-model simulations exhibit more realistic temperature extremes of reduced magnitude in present climate in regions where models show substantial spread in T-ET coupling, i.e. biases in the model ensemble are consistently reduced. Also the multi-model simulations for the coming decades display decreased absolute temperature extremes in the constrained ensemble. On the other hand, the differences between projected

  3. SPECTROSCOPIC EVIDENCE FOR A TEMPERATURE INVERSION IN THE DAYSIDE ATMOSPHERE OF HOT JUPITER WASP-33b

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, Korey; Mandell, Avi M. [Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Madhusudhan, Nikku [Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA (United Kingdom); Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Knutson, Heather, E-mail: khaynes0112@gmail.com [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-06-20

    We present observations of two occultations of the extrasolar planet WASP-33b using the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope, which allow us to constrain the temperature structure and composition of its dayside atmosphere. WASP-33b is the most highly irradiated hot Jupiter discovered to date, and the only exoplanet known to orbit a δ-Scuti star. We observed in spatial scan mode to decrease instrument systematic effects in the data, and removed fluctuations in the data due to stellar pulsations. The rms for our final, binned spectrum is 1.05 times the photon noise. We compare our final spectrum, along with previously published photometric data, to atmospheric models of WASP-33b spanning a wide range in temperature profiles and chemical compositions. We find that the data require models with an oxygen-rich chemical composition and a temperature profile that increases at high altitude. We find that our measured spectrum displays an excess in the measured flux toward short wavelengths that is best explained as emission from TiO. If confirmed by additional measurements at shorter wavelengths, this planet would become the first hot Jupiter with a thermal inversion that can be definitively attributed to the presence of TiO in its dayside atmosphere.

  4. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes

    Science.gov (United States)

    Kimberly A. Novick; Darren L. Ficklin; Paul C. Stoy; Christopher A. Williams; Gil Bohrer; Andrew C. Oishi; Shirley A. Papuga; Peter D. Blanken; Asko Noormets; Benjamin N. Sulman; Russell L. Scott; Lixin Wang; Richard P. Phillips

    2016-01-01

    Soil moisture supply and atmospheric demand for water independently limit-and profoundly affect-vegetation productivity and water use during periods of hydrologic stress1-4. Disentangling the impact of these two drivers on ecosystem carbon and water cycling is difficult because they are often correlated, and experimental tools for manipulating...

  5. Atmospheric humidity

    Science.gov (United States)

    Water vapor plays a critical role in earth's atmosphere. It helps to maintain a habitable surface temperature through absorption of outgoing longwave radiation, and it transfers trmendous amounts of energy from the tropics toward the poles by absorbing latent heat during evaporation and subsequently...

  6. Water Intake by Outdoor Temperature Among Children Aged 1-10 Years: Implications for Community Water Fluoridation in the U.S.

    Science.gov (United States)

    Beltrán-Aguilar, Eugenio D; Barker, Laurie; Sohn, Woosung; Wei, Liang

    2015-01-01

    The U.S. water fluoridation recommendations, which have been in place since 1962, were based in part on findings from the 1950s that children's water intake increased with outdoor temperature. We examined whether or not water intake is associated with outdoor temperature. Using linked data from the National Health and Nutrition Examination Survey (NHANES) 1999-2004 and the National Oceanic and Atmospheric Administration, we examined reported 24-hour total and plain water intake in milliliters per kilogram of body weight per day of children aged 1-10 years by maximum outdoor temperature on the day of reported water intake, unadjusted and adjusted for age, sex, race/ethnicity, and poverty status. We applied linear regression methods that were used in previously reported analyses of data from NHANES 1988-1994 and from the 1950s. We found that total water intake was not associated with temperature. Plain water intake was weakly associated with temperature in unadjusted (coefficient 5 0.2, p=0.015) and adjusted (coefficient 5 0.2, p=0.013) linear regression models. However, these models explained little of the individual variation in plain water intake (unadjusted: R(2)=0.005; adjusted: R(2)=0.023). Optimal fluoride concentration in drinking water to prevent caries need not be based on outdoor temperature, given the lack of association between total water intake and outdoor temperature, the weak association between plain water intake and outdoor temperature, and the minimal amount of individual variance in plain water intake explained by outdoor temperature. These findings support the change in the U.S. Public Health Service recommendation for fluoride concentration in drinking water for the prevention of dental caries from temperature-related concentrations to a single concentration that is not related to outdoor temperature.

  7. Water Intake by Outdoor Temperature Among Children Aged 1–10 Years: Implications for Community Water Fluoridation in the U.S.

    Science.gov (United States)

    Beltrán-Aguilar, Eugenio D.; Sohn, Woosung; Wei, Liang

    2015-01-01

    Objective The U.S. water fluoridation recommendations, which have been in place since 1962, were based in part on findings from the 1950s that children's water intake increased with outdoor temperature. We examined whether or not water intake is associated with outdoor temperature. Methods Using linked data from the National Health and Nutrition Examination Survey (NHANES) 1999–2004 and the National Oceanic and Atmospheric Administration, we examined reported 24-hour total and plain water intake in milliliters per kilogram of body weight per day of children aged 1–10 years by maximum outdoor temperature on the day of reported water intake, unadjusted and adjusted for age, sex, race/ethnicity, and poverty status. We applied linear regression methods that were used in previously reported analyses of data from NHANES 1988–1994 and from the 1950s. Results We found that total water intake was not associated with temperature. Plain water intake was weakly associated with temperature in unadjusted (coefficient 5 0.2, p=0.015) and adjusted (coefficient 5 0.2, p=0.013) linear regression models. However, these models explained little of the individual variation in plain water intake (unadjusted: R2=0.005; adjusted: R2=0.023). Conclusion Optimal fluoride concentration in drinking water to prevent caries need not be based on outdoor temperature, given the lack of association between total water intake and outdoor temperature, the weak association between plain water intake and outdoor temperature, and the minimal amount of individual variance in plain water intake explained by outdoor temperature. These findings support the change in the U.S. Public Health Service recommendation for fluoride concentration in drinking water for the prevention of dental caries from temperature-related concentrations to a single concentration that is not related to outdoor temperature. PMID:26346578

  8. Constraining the Surficial Liquid Water and Resulting Atmospheric Water Vapor Abundance at Recurring Slope Lineae (RSL) Locations on Mars

    Science.gov (United States)

    Berdis, Jodi; Murphy, Jim; Wilson, Robert John

    2017-10-01

    Possible signatures of atmospheric water vapor arising from Martian Recurring Slope Lineae (RSLs) are investigated in this study. RSLs appear during local spring and summer on downward, equator-facing slopes at southern mid-latitudes (~31-52°S Stillman et al. 2014), and have been linked to liquid water which leaves behind streaks of briny material (McEwen et al. 2011, McEwen et al. 2014). Viking Orbiter Mars Atmospheric Water Detector (VO MAWD) and Mars Global Surveyor Thermal Emission Spectrometer (MGS TES) derived atmospheric water vapor abundance values are interrogated to determine whether four RSL locations at southern mid-latitudes (Palikir Crater, Hale Crater, Horowitz Crater, Coprates Chasma) exhibit episodic, enhanced local atmospheric water vapor abundance during southern spring and summer (Ls = 180-360°) when RSLs are observed to develop (Stillman et al. 2014, Ojha et al. 2015). Significant water vapor signals at these locations might reveal RSLs as the source of the enhanced water vapor. Detected atmospheric water vapor signals would expand upon current knowledge of RSLs, whereas non-detection could provide upper limits on RSL water source content. In order to assess how much surficial RSL water would be required to produce a detectable signal, we utilize the high spatial resolution Geophysical Fluid Dynamics Laboratory Mars Climate General Circulation Model to simulate the evaporation of RSL-producing surface water and quantify the magnitude and temporal duration of water vapor content that might be anticipated in response to inferred RSL surface water release. Finally, we will assess the ability of past and future orbiter-based instruments to detect such water vapor quantities.

  9. Spatial and temporal variation of correlation between the Arctic total ozone and atmospheric temperature

    Science.gov (United States)

    Huang, Fuxiang; Ren, suling; Han, Shuangshuang; Zheng, xiangdong; Deng, xuejiao

    2017-04-01

    Daily total ozone and atmospheric temperature profile data in 2015 from the AIRS are used to investigate the spatial and temporal variation of the correlation between the Arctic atmospheric ozone and temperature. In the study, 11 lays atmospheric temperature profiles from the troposphere to the stratosphere are investigated. These layer heights are 20, 50, 70, 100, 200, 250, 300, 400, 500, 600 and 700 hPa respectively. The results show that a significant seasonal split exists in the correlation between the Arctic ozone and atmospheric temperature. Figure 1 shows the spatial and temporal variation of the coefficient between the atmospheric ozone and temperature at 50hPa. It can be seen from the figure that an obvious spatiotemporal difference exists in the correlation between the Arctic total ozone and atmospheric temperature in the lower stratosphere. First, the seasonal difference is very remarkable, which is shown as a significant positive correlation in most regions during winter and summer, while no correlation in the majority of regions occurs during spring and autumn, with a weak positive or negative correlation in a small number regions. Second, the spatial differences are also very obvious. The summer maximum correlation coefficient occurs in the Barents Sea and other locations at 0.8 and above, while the winter maximum occurs in the Baffin Bay area at 0.6 to 0.8. However, in a small number of regions, such as the land to the west of the Bering Strait in winter and the Arctic Ocean core area in summer, the correlation coefficients were unable to pass the significance test to show no correlation. At the same time, in spring and autumn, a positive correlation only occurs over a few low-latitude land areas, while over other Arctic areas, weak negative correlation exists. The differences in horizontal position are clearly related to the land-sea distribution, underlying surface characteristics, glacial melting, and other factors. In the troposphere, the ozone

  10. Effects of Irrigation in India on the Atmospheric Water Budget

    NARCIS (Netherlands)

    Tuinenburg, O.A.; Hutjes, R.W.A.; Stacke, T.; Wiltshire, A.; Lucas-Picher, P.

    2014-01-01

    The effect of large-scale irrigation in India on the moisture budget of the atmosphere was investigated using three regional climate models and one global climate model, all of which performed an irrigated run and a natural run without irrigation. Using a common irrigation map, year-round irrigation

  11. Seasonal Variation of Atmospheric Composition of Water-Soluble ...

    African Journals Online (AJOL)

    `123456789jkl''''#

    dust dispersion and biomass burning made a significant contribution to the atmospheric particulate pollution in. Morogoro. Keywords: Ion chromatography; Aerosol Characterization; coarse, fine and PM10 fractions; Meteorology. Introduction here is an increasing awareness of the influence of ambient particulate matter (PM) ...

  12. Increasing vertical resolution of three-dimensional atmospheric water vapor retrievals using a network of scanning compact microwave radiometers

    Science.gov (United States)

    Sahoo, Swaroop

    2011-12-01

    The thermodynamic properties of the troposphere, in particular water vapor content and temperature, change in response to physical mechanisms, including frictional drag, evaporation, transpiration, heat transfer and flow modification due to terrain. The planetary boundary layer (PBL) is characterized by a high rate of change in its thermodynamic state on time scales of typically less than one hour. Large horizontal gradients in vertical wind speed and steep vertical gradients in water vapor and temperature in the PBL are associated with high-impact weather. Observation of these gradients in the PBL with high vertical resolution and accuracy is important for improvement of weather prediction. Satellite remote sensing in the visible, infrared and microwave provide qualitative and quantitative measurements of many atmospheric properties, including cloud cover, precipitation, liquid water content and precipitable water vapor in the upper troposphere. However, the ability to characterize the thermodynamic properties of the PBL is limited by the confounding factors of ground emission in microwave channels and of cloud cover in visible and IR channels. Ground-based microwave radiometers are routinely used to measure thermodynamic profiles. The vertical resolution of such profiles retrieved from radiometric brightness temperatures depends on the number and choice of frequency channels, the scanning strategy and the accuracy of brightness temperature measurements. In the standard technique, which uses brightness temperatures from vertically pointing radiometers, the vertical resolution of the retrieved water vapor profile is similar to or larger than the altitude at which retrievals are performed. This study focuses on the improvement of the vertical resolution of water vapor retrievals by including scanning measurements at a variety of elevation angles. Elevation angle scanning increases the path length of the atmospheric emission, thus improving the signal-to-noise ratio

  13. Temperature influence on water transport in hardened cement pastes

    Energy Technology Data Exchange (ETDEWEB)

    Drouet, Emeline [CEA, DEN, DPC, SECR, Laboratoire d' Etude du Comportement des Bétons et des Argiles, F-91191 Gif sur Yvette Cedex (France); Poyet, Stéphane, E-mail: stephane.poyet@cea.fr [CEA, DEN, DPC, SECR, Laboratoire d' Etude du Comportement des Bétons et des Argiles, F-91191 Gif sur Yvette Cedex (France); Torrenti, Jean-Michel [Université Paris-Est, IFSTTAR, Département Matériaux & Structures, 14-52 boulevard Newton, F-77447 Marne la Vallée cedex 2 (France)

    2015-10-15

    Describing water transport in concrete is an important issue for the durability assessment of radioactive waste management reinforced concrete structures. Due to the waste thermal output such structures would be submitted to moderate temperatures (up to 80 °C). We have then studied the influence of temperature on water transport within hardened cement pastes of four different formulations. Using a simplified approach (describing only the permeation of liquid water) we characterized the properties needed to describe water transport (up to 80 °C) using dedicated experiments. For each hardened cement paste the results are presented and discussed.

  14. Effect of Climate Change on Water Temperature and ...

    Science.gov (United States)

    There is increasing evidence that our planet is warming and this warming is also resulting in rising sea levels. Estuaries which are located at the interface between land and ocean are impacted by these changes. We used CE-QUAL-W2 water quality model to predict changes in water temperature as a function of increasing air temperatures and rising sea level for the Yaquina Estuary, Oregon (USA). Annual average air temperature in the Yaquina watershed is expected to increase about 0.3 deg C per decade by 2040-2069. An air temperature increase of 3 deg C in the Yaquina watershed is likely to result in estuarine water temperature increasing by 0.7 to 1.6 deg C. Largest water temperature increases are expected in the upper portion of the estuary, while sea level rise may ameliorate some of the warming in the lower portion of the estuary. Smallest changes in water temperature are predicted to occur in the summer, and maximum changes during the winter and spring. Increases in air temperature may result in an increase in the number of days per year that the 7-day maximum average temperature exceeds 18 deg C (criterion for protection of rearing and migration of salmonids and trout) as well as other water quality concerns. In the upstream portion of the estuary, a 4 deg C increase in air temperature is predicted to cause an increase of 40 days not meeting the temperature criterion, while in the lower estuary the increase will depend upon rate of sea level rise (rang

  15. Snow-atmosphere coupling and its impact on temperature variability and extremes over North America

    Science.gov (United States)

    Diro, G. T.; Sushama, L.; Huziy, O.

    2017-07-01

    The impact of snow-atmosphere coupling on climate variability and extremes over North America is investigated using modeling experiments with the fifth generation Canadian Regional Climate Model (CRCM5). To this end, two CRCM5 simulations driven by ERA-Interim reanalysis for the 1981-2010 period are performed, where snow cover and depth are prescribed (uncoupled) in one simulation while they evolve interactively (coupled) during model integration in the second one. Results indicate systematic influence of snow cover and snow depth variability on the inter-annual variability of soil and air temperatures during winter and spring seasons. Inter-annual variability of air temperature is larger in the coupled simulation, with snow cover and depth variability accounting for 40-60% of winter temperature variability over the Mid-west, Northern Great Plains and over the Canadian Prairies. The contribution of snow variability reaches even more than 70% during spring and the regions of high snow-temperature coupling extend north of the boreal forests. The dominant process contributing to the snow-atmosphere coupling is the albedo effect in winter, while the hydrological effect controls the coupling in spring. Snow cover/depth variability at different locations is also found to affect extremes. For instance, variability of cold-spell characteristics is sensitive to snow cover/depth variation over the Mid-west and Northern Great Plains, whereas, warm-spell variability is sensitive to snow variation primarily in regions with climatologically extensive snow cover such as northeast Canada and the Rockies. Furthermore, snow-atmosphere interactions appear to have contributed to enhancing the number of cold spell days during the 2002 spring, which is the coldest recorded during the study period, by over 50%, over western North America. Additional results also provide useful information on the importance of the interactions of snow with large-scale mode of variability in modulating

  16. Evidence of water vapor in excess of saturation in the atmosphere of Mars.

    Science.gov (United States)

    Maltagliati, L; Montmessin, F; Fedorova, A; Korablev, O; Forget, F; Bertaux, J-L

    2011-09-30

    The vertical distribution of water vapor is key to the study of Mars' hydrological cycle. To date, it has been explored mainly through global climate models because of a lack of direct measurements. However, these models assume the absence of supersaturation in the atmosphere of Mars. Here, we report observations made using the SPICAM (Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars) instrument onboard Mars Express that provide evidence of the frequent presence of water vapor in excess of saturation, by an amount far surpassing that encountered in Earth's atmosphere. This result contradicts the widespread assumption that atmospheric water on Mars cannot exist in a supersaturated state, directly affecting our long-term representation of water transport, accumulation, escape, and chemistry on a global scale.

  17. Scanning Multichannel Microwave Radiometer (SMMR) Monthly Mean Atmospheric Liquid Water (ALW) By Prabhakara

    Data.gov (United States)

    National Aeronautics and Space Administration — SMMR_ALW_PRABHAKARA data are Special Multichannel Microwave Radiometer (SMMR) Monthly Mean Atmospheric Liquid Water (ALW) data by Prabhakara.The Prabhakara Scanning...

  18. VO1/VO2 MARS ATMOSPHERIC WATER DETECTOR 4 V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of the raster-averaged radiant intensities and associated data parameters produced from data acquired by the Mars Atmospheric Water Detectors...

  19. Turbidity of the atmospheric and water at the major ports of India

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Desa, E.; Rodrigues, A.; Ramdasan, K.

    The atmospheric and water turbidity observed at nine major ports of India, namely Cochin, Mangalore, Mormugao, Mumbai, Jawaharlal Nehru (JNP), Kandla on the west coast and Tuticorin, Chennai and Visakhapatnam on the east coast, using the parameters...

  20. [Atmospheric correction method for HJ-1 CCD imagery over waters based on radiative transfer model].

    Science.gov (United States)

    Xu, Hua; Gu, Xing-Fa; Li, Zheng-Qiang; Li, Li; Chen, Xing-Feng

    2011-10-01

    Atmospheric correction is a bottleneck in quantitative application of Chinese satellites HJ-1 data to remote sensing of water color. According to the characteristics of CCD sensors, the present paper made use of air-water coupled radiative transfer model to work out the look-up table (LUT) of atmospheric corrected parameters, and thereafter developed pixel-by-pixel atmospheric correction method over waters accomplishing the water-leaving remote sensing reflectance with accessorial meteorological input. The paper validates the HJ-1 CCD retrievals with MODIS and in-situ results. It was found that the accuracy in blue and green bands is good. However, the accuracy in red or NIR bands is much worse than blue or green ones. It was also demonstrated that the aerosol model is a sensitive factor to the atmospheric correction accuracy.

  1. Ternary liquid-liquid equilibrium for eugenol + tert-butanol + water system at 303.15 and 323.15K and atmospheric pressure

    Science.gov (United States)

    Sucipto, Retno Kumala Hesti; Kuswandi, Wibawa, Gede

    2017-05-01

    The objective of this study was to determine ternary liquid-liquid equilibrium for eugenol + tert-butanol + water system at 303.15 and 323.15K and atmospheric pressure. Using 25 mL equilibrium cell equipped jacketted water connected to water bath to maintain equilibrium temperature constant. The procedure of this experiment was conducted by inserting mixture of eugenol + tert-butanol + water system at certain composition into equilibrium cell. The solution was stirred for 4 hours and then was allowed for 20 hours in order to separate aqueous and organic phases completely. The temperature equilibrium cell of and the atmosphere pressure were recorded as equilibrium temperature and pressure for each measurenment. The equilibrium compositions of each phase were analyzed using Gas Chromatography. The experimental data obtained in this work were correlated with NRTL and UNIQUAC models with root mean square deviation between esperimental and calculated equilibrium compositions of 0.03% and 0.04% respectively.

  2. Model analysis of the effects of atmospheric drivers on storage water use in Scots pine

    Directory of Open Access Journals (Sweden)

    H. Verbeeck

    2007-08-01

    Full Text Available Storage water use is an indirect consequence of the interplay between different meteorological drivers through their effect on water flow and water potential in trees. We studied these microclimatic drivers of storage water use in Scots pine (Pinus sylvestris L. growing in a temperate climate. The storage water use was modeled using the ANAFORE model, integrating a dynamic water flow and – storage model with a process-based transpiration model. The model was calibrated and validated with sap flow measurements for the growing season of 2000 (26 May–18 October.

    Because there was no severe soil drought during the study period, we were able to study atmospheric effects. Incoming radiation and vapour pressure deficit (VPD were the main atmospheric drivers of storage water use. The general trends of sap flow and storage water use are similar, and follow more or less the pattern of incoming radiation. Nevertheless, considerable differences in the day-to-day pattern of sap flow and storage water use were observed. VPD was determined to be one of the main drivers of these differences. During dry atmospheric conditions (high VPD storage water use was reduced. This reduction was higher than the reduction in measured sap flow. Our results suggest that the trees did not rely more on storage water during periods of atmospheric drought, without severe soil drought. The daily minimum tree water content was lower in periods of high VPD, but the reserves were not completely depleted after the first day of high VPD, due to refilling during the night.

    Nevertheless, the tree water content deficit was a third important factor influencing storage water use. When storage compartments were depleted beyond a threshold, storage water use was limited due to the low water potential in the storage compartments. The maximum relative contribution of storage water to daily transpiration was also constrained by an increasing tree water content

  3. Spatio-temporal attributes of water temperature and ...

    African Journals Online (AJOL)

    2013-01-20

    Jan 20, 2013 ... on macroinvertebrate assemblages, particularly in association with changing altitude within given southern African mountain drainage systems. Thus ... Keywords: Aquatic macroinvertebrates, water temperature, hydraulic biotypes, Drakensberg ..... altitudinal spatial density of monitoring sites be considered.

  4. A Self-Validation Method for High-Temperature Thermocouples Under Oxidizing Atmospheres

    Science.gov (United States)

    Mokdad, S.; Failleau, G.; Deuzé, T.; Briaudeau, S.; Kozlova, O.; Sadli, M.

    2015-08-01

    Thermocouples are prone to significant drift in use particularly when they are exposed to high temperatures. Indeed, high-temperature exposure can affect the response of a thermocouple progressively by changing the structure of the thermoelements and inducing inhomogeneities. Moreover, an oxidizing atmosphere contributes to thermocouple drift by changing the chemical nature of the metallic wires by the effect of oxidation. In general, severe uncontrolled drift of thermocouples results from these combined influences. A periodic recalibration of the thermocouple can be performed, but sometimes it is not possible to remove the sensor out of the process. Self-validation methods for thermocouples provide a solution to avoid this drawback, but there are currently no high-temperature contact thermometers with self-validation capability at temperatures up to . LNE-Cnam has developed fixed-point devices integrated to the thermocouples consisting of machined alumina-based devices for operation under oxidizing atmospheres. These devices require small amounts of pure metals (typically less than 2 g). They are suitable for self-validation of high-temperature thermocouples up to . In this paper the construction and the characterization of these integrated fixed-point devices are described. The phase-transition plateaus of gold, nickel, and palladium, which enable coverage of the temperature range between and , are assessed with this self-validation technique. Results of measurements performed at LNE-Cnam with the integrated self-validation module at several levels of temperature will be presented. The performance of the devices are assessed and discussed, in terms of robustness and metrological characteristics. Uncertainty budgets are also proposed and detailed.

  5. Investigations of hot water temperature changes at the pipe outflow

    Science.gov (United States)

    Wojtkowiak, Janusz; Oleśkowicz-Popiel, Czesław

    2017-11-01

    In this paper a process of cold water withdrawing from hot water supply pipe systems without recirculation is considered. System of partial differential equations was used to describe the pipe and water temperature changes. An exact solution of a simplified form of the equations was obtained and validated experimentally. The exact solution was applied to calculate the hot water temperature changes at the pipe outflow. Calculations were done for typical pipe materials (PP, PE, Cu), different pipe diameters and lengths as well as for various water flow rates. It was shown that in order to obtain the required hot water temperature in the tap, there is necessary to withdrawn much more (even two times) water from the pipe in comparison to the pipe volume. The reason of such significant water wastes is a heat exchange between hot water flowing inside the pipe and the colder pipe walls. The results can be useful for optimal selection of hot water supply pipes as well as for making decision about applying of hot water recirculating systems.

  6. The effect of cloud liquid water on temperature retrievals from microwave measurements

    Science.gov (United States)

    Bernet, Leonie; Navas-Guzmán, Francisco; Kämpfer, Niklaus

    2017-04-01

    Ground-based microwave radiometry provides atmospheric profiles for both clear sky and cloudy weather conditions. The effect of clouds on measurements from microwave radiometers is low compared to other remote sensing techniques but cannot be neglected at certain frequencies. In this study, clouds have been characterized and included in microwave retrievals in order to investigate their effect on tropospheric temperature profiles measured by the TEMPERA microwave radiometer. TEMPERA retrieves atmospheric temperature profiles by measuring emitted radiation of molecular oxygen at around 60 GHz. Because cloud liquid water also absorbs and emits radiation at the used frequency range, it is important to analyse the influence of liquid water on the microwave retrieval. In order to characterize the clouds, data from various instruments have been used, all located at the aerological station of MeteoSwiss at Payerne (Switzerland). Cloud base altitudes were detected using ceilometer measurements while the integrated liquid water (ILW) was measured by a HATPRO radiometer. Additional cloud information was obtained from a co-located sky camera and using an automatic partial cloud amount detection algorithm (APCADA). All this information has been used to characterize the clouds by means of a Liquid Water Content (LWC) profile. Different LWC profiles (shapes and values) have been tested to find the best cloud characterization depending on cloud type, altitude and ILW. Temperature profiles have been obtained incorporating this liquid water profile in the inversion algorithm and they have been evaluated against retrievals without considering clouds, in order to assess the liquid water effect on microwave measurements. The results have been compared with the temperature profiles from radiosondes which are regularly launched twice a day at the aerological station. Two years of data have been analyzed and almost 300 non-precipitating cloud cases were studied. The statistical analysis

  7. Adiabatic flame temperature of sodium combustion and sodium-water reaction

    Energy Technology Data Exchange (ETDEWEB)

    Okano, Y.; Yamaguchi, A. [Japan Nuclear Cycle Development Institute, Ibaraki (Japan)

    2001-07-01

    In this paper, background information of sodium fire and sodium-water reaction accidents of LMFBR (liquid metal fast breeder reactor) is mentioned at first. Next, numerical analysis method of GENESYS is described in detail. Next, adiabatic flame temperature and composition of sodium combustion are analyzed, and affect of reactant composition, such oxygen and moisture, is discussed. Finally, adiabatic reaction zone temperature and composition of sodium-water reaction are calculated, and affects of reactant composition, sodium vaporization, and pressure are stated. Chemical equilibrium calculation program for generic chemical system (GENESYS) is developed in this study for the research on adiabatic flame temperature of sodium combustion and adiabatic reaction zone temperature of sodium-water reaction. The maximum flame temperature of the sodium combustion is 1,950 K at the standard atmospheric condition, and is not affected by the existence of moisture. The main reaction product is Na{sub 2}O{sub (l)}, and in combustion in moist air, with NaOH{sub (g)}. The maximum reaction zone temperature of the sodium-water reaction is 1,600 K, and increases with the system pressure. The main products are NaOH{sub (g)}, NaOH{sub (l)} and H2{sub (g)}. Sodium evaporation should be considered in the cases of sodium-rich and high pressure above 10 bar.

  8. A Data-driven Approach for Retrieving Temperatures and Abundances in Brown Dwarf Atmospheres

    Science.gov (United States)

    Line, Michael R.; Fortney, Jonathan J.; Marley, Mark S.; Sorahana, Satoko

    2014-09-01

    Brown dwarf spectra contain a wealth of information about their molecular abundances, temperature structure, and gravity. We present a new data driven retrieval approach, previously used in planetary atmosphere studies, to extract the molecular abundances and temperature structure from brown dwarf spectra. The approach makes few a priori physical assumptions about the state of the atmosphere. The feasibility of the approach is first demonstrated on a synthetic brown dwarf spectrum. Given typical spectral resolutions, wavelength coverage, and noise, property precisions of tens of percent can be obtained for the molecular abundances and tens to hundreds of K on the temperature profile. The technique is then applied to the well-studied brown dwarf, Gl 570D. From this spectral retrieval, the spectroscopic radius is constrained to be 0.75-0.83 R J, log (g) to be 5.13-5.46, and T eff to be between 804 and 849 K. Estimates for the range of abundances and allowed temperature profiles are also derived. The results from our retrieval approach are in agreement with the self-consistent grid modeling results of Saumon et al. This new approach will allow us to address issues of compositional differences between brown dwarfs and possibly their formation environments, disequilibrium chemistry, and missing physics in current grid modeling approaches as well as a many other issues.

  9. Water temperature modeling in the Garonne River (France

    Directory of Open Access Journals (Sweden)

    Larnier K.

    2010-10-01

    Full Text Available Stream water temperature is one of the most important parameters for water quality and ecosystem studies. Temperature can influence many chemical and biological processes and therefore impacts on the living conditions and distribution of aquatic ecosystems. Simplified models such as statistical models can be very useful for practitioners and water resource management. The present study assessed two statistical models – an equilibrium-based model and stochastic autoregressive model with exogenous inputs – in modeling daily mean water temperatures in the Garonne River from 1988 to 2005. The equilibrium temperature-based model is an approach where net heat flux at the water surface is expressed as a simpler form than in traditional deterministic models. The stochastic autoregressive model with exogenous inputs consists of decomposing the water temperature time series into a seasonal component and a short-term component (residual component. The seasonal component was modeled by Fourier series and residuals by a second-order autoregressive process (Markov chain with use of short-term air temperatures as exogenous input. The models were calibrated using data of the first half of the period 1988–2005 and validated on the second half. Calibration of the models was done using temperatures above 20 °C only to ensure better prediction of high temperatures that are currently at stake for the aquatic conditions of the Garonne River, and particularly for freshwater migrating fishes such as Atlantic Salmon (Salmo salar L.. The results obtained for both approaches indicated that both models performed well with an average root mean square error for observed temperatures above 20 °C that varied on an annual basis from 0.55 °C to 1.72 °C on validation, and good predictions of temporal occurrences and durations of three temperature threshold crossings linked to the conditions of migration and survival of Atlantic Salmon.

  10. Solubility and reactivity of HNCO in water: insights into HNCO's fate in the atmosphere

    Science.gov (United States)

    Borduas, N.; Place, B.; Wentworth, G. R.; Abbatt, J. P. D.; Murphy, J. G.

    2016-01-01

    A growing number of ambient measurements of isocyanic acid (HNCO) are being made, yet little is known about its fate in the atmosphere. To better understand HNCO's loss processes and particularly its atmospheric partitioning behaviour, we measure its effective Henry's Law coefficient KHeff with a bubbler experiment using chemical ionization mass spectrometry as the gas phase analytical technique. By conducting experiments at different pH values and temperature, a Henry's Law coefficient KH of 26 ± 2 M atm-1 is obtained, with an enthalpy of dissolution of -34 ± 2 kJ mol-1, which translates to a KHeff of 31 M atm-1 at 298 K and at pH 3. Our approach also allows for the determination of HNCO's acid dissociation constant, which we determine to be Ka = 2.1 ± 0.2 × 10-4 M at 298 K. Furthermore, by using ion chromatography to analyze aqueous solution composition, we revisit the hydrolysis kinetics of HNCO at different pH and temperature conditions. Three pH-dependent hydrolysis mechanisms are in play and we determine the Arrhenius expressions for each rate to be k1 = (4.4 ± 0.2) × 107 exp(-6000 ± 240/T) M s-1, k2 = (8.9 ± 0.9) × 106 exp(-6770 ± 450/T) s-1 and k3 = (7.2 ± 1.5) × 108 exp(-10 900 ± 1400/T) s-1, where k1 is for HNCO + H++ H2O → NH4++ CO2, k2 is for HNCO + H2O → NH3 + CO2 and k3 is for NCO-+ 2 H2O → NH3+ HCO3-. HNCO's lifetime against hydrolysis is therefore estimated to be 10 days to 28 years at pH values, liquid water contents, and temperatures relevant to tropospheric clouds, years in oceans and months in human blood. In all, a better parameterized Henry's Law coefficient and hydrolysis rates of HNCO allow for more accurate predictions of its concentration in the atmosphere and consequently help define exposure of this toxic molecule.

  11. Isotopic composition of carbon in atmospheric air; use of a diffusion model at the water/atmosphere interface in Velenje Basin

    Directory of Open Access Journals (Sweden)

    Tjaša Kanduč

    2015-07-01

    Full Text Available CO2 concentrations (partial pressure of CO2, pCO2, and isotope compositions of carbon dioxide in air (δ13CCO2, temperature (T and relative humidity (H have been measured in the atmosphere in the Velenje Basin. Samples were collected monthly in the calendar year 2011 from 9 locations in the area where the largest thermal power plant in Slovenia with the greatest emission of CO2 to the atmosphere (around 4M t/year is located. Values of pCO2 ranged from 239 to 460 ppm with an average value of 294 ppm, which is below the average atmospheric CO2 pressure (360 ppm. δ13CCO2 ranged from -18.0 to -6.4 ‰, with an average value of -11.7 ‰. These values are similar to those measured in Wroclaw, Poland. We performed the comparison of δ13CCO2 values in atmospheric air with Wroclaw since researchers used similar approach to trace δ13CCO2 around anthropogenic sources. The isotopic composition of dissolved inorganic carbon (δ13CDIC in rivers and lakes from the Velenje basin changes seasonally from -13.5 to -7.1‰. The values of δ13CDIC indicate the occurrence of biogeochemical processes in the surface waters, with dissolution of carbonates and degradation of organic matter being the most important. A concentration and diffusion model was used to calculate the time of equilibration between dissolved inorganic carbon in natural sources (rivers and atmospheric CO2.

  12. Data Assimilation of AIRS Water Vapor Profiles: Impact on Precipitation Forecasts for Atmospheric River Cases Affecting the Western of the United States

    Science.gov (United States)

    Blankenship, Clay; Zavodsky, Bradley; Jedlovec, Gary; Wick, Gary; Neiman, Paul

    2013-01-01

    Atmospheric rivers are transient, narrow regions in the atmosphere responsible for the transport of large amounts of water vapor. These phenomena can have a large impact on precipitation. In particular, they can be responsible for intense rain events on the western coast of North America during the winter season. This paper focuses on attempts to improve forecasts of heavy precipitation events in the Western US due to atmospheric rivers. Profiles of water vapor derived from from Atmospheric Infrared Sounder (AIRS) observations are combined with GFS forecasts by a three-dimensional variational data assimilation in the Gridpoint Statistical Interpolation (GSI). Weather Research and Forecasting (WRF) forecasts initialized from the combined field are compared to forecasts initialized from the GFS forecast only for 3 test cases in the winter of 2011. Results will be presented showing the impact of the AIRS profile data on water vapor and temperature fields, and on the resultant precipitation forecasts.

  13. Vertical distribution of water in the atmosphere of Venus - A simple thermochemical explanation

    Science.gov (United States)

    Lewis, John S.; Grinspoon, David H.

    1990-01-01

    Several lines of evidence concerning the vertical abundance profile of water in the atmosphere of Venus lead to strikingly unusual distributions (the water vapor abundance decreases sharply in the immediate vicinity of the surface) or to serious conflicts in the profiles (different IR bands suggest water abundances that are discrepant by a factor of 2.5 to 10). These data sets can be reconciled if (1) water molecules associate with carbon dioxide and sulfur trioxide to make gaseous carbonic acid and sulfuric acid in the lower atmosphere, and (2) the discrepant 0.94-micrometer water measurements are due to gaseous sulfuric acid, requiring it to be a somewhat stronger absorber than water vapor in this wavelength region. A mean total water abundance of 50 + or - 20 parts/million and a near-surface free water vapor abundance of 10 + or - 4 parts/million are derived.

  14. Temperature stratification in a hot water tank with circulation pipe

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1998-01-01

    The aim of the project is to investigate the change in temperature stratification due to the operation of a circulation pipe. Further, putting forward rules for design of pipe inlet in order not to disturb the temperature stratification in the hot water tank. A validated computer model based...

  15. Temperature-dependent Henry's law constants of atmospheric organics of biogenic origin.

    Science.gov (United States)

    Leng, Chunbo; Kish, J Duncan; Kelley, Judas; Mach, Mindy; Hiltner, Joseph; Zhang, Yunhong; Liu, Yong

    2013-10-10

    There have been growing interests in modeling studies to understand oxidation of volatile organic compounds in the gas phase and their mass transfer to the aqueous phase for their potential roles in cloud chemistry, formation of secondary organic aerosols, and fate of atmospheric organics. Temperature-dependent Henry's law constants, key parameters in the atmospheric models to account for mass transfer, are often unavailable. In the present work, we investigated gas-liquid equilibriums of isoprene, limonene, α-pinene, and linalool using a bubble column technique. These compounds, originating from biogenic sources, were selected for their implications in atmospheric cloud chemistry and secondary organic aerosol formation. We reported Henry's law constants (K(H)), first order loss rates (k), and gas phase diffusion coefficients over a range of temperatures relevant to the lower atmosphere (278-298 K) for the first time. The measurement results of K(H) values for isoprene, limonene, α-pinene, and linalool at 298 K were 0.036 ± 0.003; 0.048 ± 0.004; 0.029 ± 0.004; and 21.20 ± 0.30 mol L(-1) atm(-1), respectively. The fraction for these compounds in stratocumulus and cumulonimbus clouds at 278 K were also estimated in this work (isoprene, 1.0 × 10(-6), 6.8 × 10(-6); limonene, 1.5 × 10(-6), 1.0 × 10(-5); α-pinene, 4.5 × 10(-7), 3.1 × 10(-6); and linalool, 6.2 × 10(-4), 4.2 × 10(-3)). Our measurements in combination with literature results indicated that noncyclic alkenes could have smaller K(H) values than those of cyclic terpenes and that K(H) values may increase with an increasing number of double bonds. It was also shown that estimated Henry's law constants and their temperature dependence based on model prediction can differ from experimental results considerably and that direct measurements of temperature-dependent Henry's law constants of atmospheric organics are necessary for future work.

  16. Convective organization in the super-parameterized community atmosphere model with constant surface temperature

    Science.gov (United States)

    Kuang, Z.

    2015-12-01

    Organization in a moist convecting atmosphere is investigated using the super-parameterized community atmosphere model (SPCAM) in aquaplanet setting with constant surface temperature, with and without planetary rotation. Without radiative and surface feedbacks, convective organization is dominated by convectively coupled gravity waves without planetary rotation and convectively coupled equatorial waves when there is planetary rotation. This behavior is well captured when the cloud resolving model (CRM) in SPCAM is replaced by its linear response function, computed following Kuang (2010), for the state of radiative convective equilibrium (RCE). With radiative feedback, however, convection self-aggregates, and with planetary rotation, the tropical zonal wavenumber-frequency spectrum features a red noise background. These behaviors in the presence of the radiative feedback are not captured when the CRM is replaced by its linear response function around the RCE state with radiative feedback included in the construction. Implications to organization in a moist convecting atmosphere will be discussed. Kuang, Z., Linear response functions of a cumulus ensemble to temperature and moisture perturbations and implication to the dynamics of convectively coupled waves, J. Atmos. Sci., 67, 941-962, (2010)

  17. Effects of temperature and growing seasons on crop water ...

    African Journals Online (AJOL)

    The crop water requirement (CWR) depends on several factors including temperature and growing seasons. This study investigated the effects of temperature and growing seasons on CWR in Saudi Arabia. Increase in temperature by 1°C increased the CWR by 1.9 - 2.9%, 1.9 – 3.0% and 2.2 – 3.8% for dates, alfalfa and ...

  18. Using a Venus Atmosphere Model to Investigate Variations in Cloud-level Winds and Temperatures

    Science.gov (United States)

    Parish, Helen; Mitchell, Jonathan

    2017-10-01

    We have developed a new Venus Middle atmosphere Model (VMM), which simulates the atmosphere from just below the cloud deck to around 100 km altitude, with the aim of focusing on the dynamics at cloud levels and above. We take this approach as the circulation and dynamics between the ground and cloud altitudes are not well known. Wind velocities below ~40 km altitude cannot be observed remotely and there are only a few in-situ wind profiles from entry probes on the Venera and Pioneer Venus missions, which are limited in spatial and temporal coverage. However, in the atmosphere at cloud altitudes significant information can be obtained on the circulation and dynamics of Venus' atmosphere and many more observations are available, including measurements from Venus Express and Akatsuki. Preliminary results from the VMM with a simplified radiation scheme have been validated by comparison with Pioneer Venus and Venus Express measurements and show reasonable agreement with the observations. Values of parameters near the lower boundary which are not well measured can be inferred by comparison with values at higher altitudes. We use sensitivity experiments to determine the most important processes involved in shaping the wind and temperature structure at cloud altitudes. We compare the results of simulations with measurements from Pioneer Venus and Venera probes and from the Venus Express and Akatsuki missions

  19. Direct measurements of the effect of biomass burning over the Amazon on the atmospheric temperature profile

    Directory of Open Access Journals (Sweden)

    L. Remer

    2009-11-01

    Full Text Available Aerosols suspended in the atmosphere interact with solar radiation and clouds, thus change the radiation energy fluxes in the atmospheric column. In this paper we measure changes in the atmospheric temperature profile as a function of the smoke loading and the cloudiness, over the Amazon basin, during the dry seasons (August and September of 2005–2008. We show that as the aerosol optical depth (AOD increases from 0.02 to a value of ~0.6, there is a decrease of ~4°C at 1000 hPa, and an increase of ~1.5°C at 850 hPa. The warming of the aerosol layer at 850 hPa is likely due to aerosol absorption when the particles are exposed to direct illumination by the sun. The large values of cooling in the lower layers could be explained by a combination of aerosol extinction of the solar flux in the layers aloft together with an aerosol-induced increase of cloud cover which shade the lower atmosphere. We estimate that the increase in cloud fraction due to aerosol contributes about half of the observed cooling in the lower layers.

  20. Quantitative estimates of disturbances contributed by a megalopolis to the temperature field of the atmospheric boundary layer

    Science.gov (United States)

    Kadygrov, N. E.; Kruchenitskii, G. M.; Lykov, A. D.

    2007-02-01

    Seasonal and diurnal variations in the temperature of the atmospheric boundary layer (ABL) are analyzed, and the features of spatial and temporal variations in ABL temperature that are caused by the influence of a megalopolis are revealed. The gradients of air temperature for the megalopolis, its vicinity, and background conditions are compared. A multiplicative model of the seasonal diurnal variability of ABL temperature is constructed, and the relative frequencies of unstable ABL-temperature stratification are studied.

  1. Trends in the chemistry of atmospheric deposition and surface waters in the Lake Maggiore catchment

    Directory of Open Access Journals (Sweden)

    M. Rogora

    2001-01-01

    Full Text Available The Lake Maggiore catchment is the area of Italy most affected by acid deposition. Trend analysis was performed on long-term (15-30 years series of chemical analyses of atmospheric deposition, four small rivers draining forested catchments and four high mountain lakes. An improvement in the quality of atmospheric deposition was detected, due to decreasing sulphate concentration and increasing pH. Similar trends were also found in high mountain lakes and in small rivers. Atmospheric deposition, however, is still providing a large and steady flux of nitrogen compounds (nitrate and ammonium which is causing increasing nitrogen saturation in forest ecosystems and increasing nitrate levels in rivers. Besides atmospheric deposition, an important factor controlling water acidification and recovery is the weathering of rocks and soils which may be influenced by climate warming. A further factor is the episodic deposition of Saharan calcareous dust which contributes significantly to base cation deposition. Keywords: trend, atmospheric deposition, nitrogen, stream water chemistry.

  2. Interacting Temperature and Water Activity Modulate Production of ...

    African Journals Online (AJOL)

    Online2PDF.com

    This study evaluated the effect of temperature and water activity (aw) on destruxin A (DA) production by two strains of M. ... 32. West African Journal of Applied Ecology, vol. 24 (1), 2016 water stress on destruxin production in ..... Rearing tomato whitefly and field evaluation of modified and unmodified conidia of. Beauveria ...

  3. Temperature-programmed desorption of water and ammonia on ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Temperature-programmed desorption (TPD) of water and ammonia over. ZrO2 and sulphated ZrO2 prepared by different methods has been investigated for measuring strong acidity and acidity distribution on sulphated zirconia-type solid super-acid catalysts. The TPD of water provides a simple reliable method for ...

  4. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Hawaiian Archipelago from 2016-09-01 to 2016-09-27 (NCEI Accession 0161171)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  5. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Mariana Archipelago from 2014-03-24 to 2014-05-05 (NCEI Accession 0161168)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  6. Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere.

    Science.gov (United States)

    Gorski, Galen; Strong, Courtenay; Good, Stephen P; Bares, Ryan; Ehleringer, James R; Bowen, Gabriel J

    2015-03-17

    Anthropogenic modification of the water cycle involves a diversity of processes, many of which have been studied intensively using models and observations. Effective tools for measuring the contribution and fate of combustion-derived water vapor in the atmosphere are lacking, however, and this flux has received relatively little attention. We provide theoretical estimates and a first set of measurements demonstrating that water of combustion is characterized by a distinctive combination of H and O isotope ratios. We show that during periods of relatively low humidity and/or atmospheric stagnation, this isotopic signature can be used to quantify the concentration of water of combustion in the atmospheric boundary layer over Salt Lake City. Combustion-derived vapor concentrations vary between periods of atmospheric stratification and mixing, both on multiday and diurnal timescales, and respond over periods of hours to variations in surface emissions. Our estimates suggest that up to 13% of the boundary layer vapor during the period of study was derived from combustion sources, and both the temporal pattern and magnitude of this contribution were closely reproduced by an independent atmospheric model forced with a fossil fuel emissions data product. Our findings suggest potential for water vapor isotope ratio measurements to be used in conjunction with other tracers to refine the apportionment of urban emissions, and imply that water vapor emissions associated with combustion may be a significant component of the water budget of the urban boundary layer, with potential implications for urban climate, ecohydrology, and photochemistry.

  7. Skin Temperature Analysis and Bias Correction in a Coupled Land-Atmosphere Data Assimilation System

    Science.gov (United States)

    Bosilovich, Michael G.; Radakovich, Jon D.; daSilva, Arlindo; Todling, Ricardo; Verter, Frances

    2006-01-01

    In an initial investigation, remotely sensed surface temperature is assimilated into a coupled atmosphere/land global data assimilation system, with explicit accounting for biases in the model state. In this scheme, an incremental bias correction term is introduced in the model's surface energy budget. In its simplest form, the algorithm estimates and corrects a constant time mean bias for each gridpoint; additional benefits are attained with a refined version of the algorithm which allows for a correction of the mean diurnal cycle. The method is validated against the assimilated observations, as well as independent near-surface air temperature observations. In many regions, not accounting for the diurnal cycle of bias caused degradation of the diurnal amplitude of background model air temperature. Energy fluxes collected through the Coordinated Enhanced Observing Period (CEOP) are used to more closely inspect the surface energy budget. In general, sensible heat flux is improved with the surface temperature assimilation, and two stations show a reduction of bias by as much as 30 Wm(sup -2) Rondonia station in Amazonia, the Bowen ratio changes direction in an improvement related to the temperature assimilation. However, at many stations the monthly latent heat flux bias is slightly increased. These results show the impact of univariate assimilation of surface temperature observations on the surface energy budget, and suggest the need for multivariate land data assimilation. The results also show the need for independent validation data, especially flux stations in varied climate regimes.

  8. Implementation of Coupled Skin Temperature Analysis and Bias Correction in a Global Atmospheric Data Assimilation System

    Science.gov (United States)

    Radakovich, Jon; Bosilovich, M.; Chern, Jiun-dar; daSilva, Arlindo

    2004-01-01

    The NASA/NCAR Finite Volume GCM (fvGCM) with the NCAR CLM (Community Land Model) version 2.0 was integrated into the NASA/GMAO Finite Volume Data Assimilation System (fvDAS). A new method was developed for coupled skin temperature assimilation and bias correction where the analysis increment and bias correction term is passed into the CLM2 and considered a forcing term in the solution to the energy balance. For our purposes, the fvDAS CLM2 was run at 1 deg. x 1.25 deg. horizontal resolution with 55 vertical levels. We assimilate the ISCCP-DX (30 km resolution) surface temperature product. The atmospheric analysis was performed 6-hourly, while the skin temperature analysis was performed 3-hourly. The bias correction term, which was updated at the analysis times, was added to the skin temperature tendency equation at every timestep. In this presentation, we focus on the validation of the surface energy budget at the in situ reference sites for the Coordinated Enhanced Observation Period (CEOP). We will concentrate on sites that include independent skin temperature measurements and complete energy budget observations for the month of July 2001. In addition, MODIS skin temperature will be used for validation. Several assimilations were conducted and preliminary results will be presented.

  9. Our contaminated atmosphere: The danger of climate change, phases 1 and 2. [effect of atmospheric particulate matter on surface temperature and earth's radiation budget

    Science.gov (United States)

    Cimorelli, A. J.; House, F. B.

    1974-01-01

    The effects of increased concentrations of atmospheric particulate matter on average surface temperature and on the components of the earth's radiation budget are studied. An atmospheric model which couples particulate loading to surface temperature and to changes in the earth's radiation budget was used. A determination of the feasibility of using satellites to monitor the effect of increased atmospheric particulate concentrations is performed. It was found that: (1) a change in man-made particulate loading of a factor of 4 is sufficient to initiate an ice age; (2) variations in the global and hemispheric weighted averages of surface temperature, reflected radiant fluz and emitted radiant flux are nonlinear functions of particulate loading; and (3) a black satellite sphere meets the requirement of night time measurement sensitivity, but not the required day time sensitivity. A nonblack, spherical radiometer whose external optical properties are sensitive to either the reflected radiant fluz or the emitted radiant flux meets the observational sensitivity requirements.

  10. Glycerin Reformation in High Temperature and Pressure Water

    Science.gov (United States)

    2012-01-01

    hygroscopic, while ethanol is renewable and non-toxic (94). Water has a detrimental effect on the reaction because soaps can be formed, which cause...Lavric, V. (2005) Delocalized organic pollutant destruction through a self-sustaining supercritical water oxidation process, Energy Conversion and...2012 2. REPORT TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Glycerin Reformation in High Temperature and Pressure Water

  11. Historical Change of Equilibrium Water Temperature in Japan

    Science.gov (United States)

    Miyamoto, H.

    2015-12-01

    Changes in freshwater ecosystems due to a climate change have been great concern for sustainable river basin management both for water resources utilization and ecological conservation. However, their impact seems to be difficult to evaluate because of wide variety of basin characteristics along a river network both in nature and social environment. This presentation uses equilibrium water temperature as a simple criterion index for evaluating the long-term changes of stream thermal environment due to the historical climate change in Japan. It examines, at first, the relationship between the equilibrium water temperature and the stream temperature observed for 7 years at a lower reach in the Ibo River, Japan. It analyzes, then, the seasonal and regional trends of the equilibrium water temperature change for the last 50 years at 133 meteorological station sites throughout Japan, discussing their rising or falling characteristics. The correlation analysis at the local reach of the Ibo River shows that the equilibrium water temperature has similar trend of change as the stream temperature. However, its value tends to be higher than the stream temperature in summer, while lower in winter. The onset of the higher equilibrium water temperature fluctuates annually from mid February to early April. This onset fluctuation at each spring could be influenced by the different amount of snow at the antecedent winter. The rising or falling trends of the equilibrium water temperature are analyzed both annually and seasonally through the regression analysis of the 133 sites in Japan. Consequently, the trends of the temperature change could be categorized by 12 patterns. As for the seasonal analysis, the results shows that there are many sites indicating the falling trend in spring and summer, and rising trends in autumn and winter. In particular, winter has the strong rising tendency throughout Japan. As for the regional analysis, the result illustrates the precise rationality; e

  12. Atmospheric absorption model for dry air and water vapor at microwave frequencies below 100 GHz derived from spaceborne radiometer observations

    Science.gov (United States)

    Wentz, Frank J.; Meissner, Thomas

    2016-05-01

    The Liebe and Rosenkranz atmospheric absorption models for dry air and water vapor below 100 GHz are refined based on an analysis of antenna temperature (TA) measurements taken by the Global Precipitation Measurement Microwave Imager (GMI) in the frequency range 10.7 to 89.0 GHz. The GMI TA measurements are compared to the TA predicted by a radiative transfer model (RTM), which incorporates both the atmospheric absorption model and a model for the emission and reflection from a rough-ocean surface. The inputs for the RTM are the geophysical retrievals of wind speed, columnar water vapor, and columnar cloud liquid water obtained from the satellite radiometer WindSat. The Liebe and Rosenkranz absorption models are adjusted to achieve consistency with the RTM. The vapor continuum is decreased by 3% to 10%, depending on vapor. To accomplish this, the foreign-broadening part is increased by 10%, and the self-broadening part is decreased by about 40% at the higher frequencies. In addition, the strength of the water vapor line is increased by 1%, and the shape of the line at low frequencies is modified. The dry air absorption is increased, with the increase being a maximum of 20% at the 89 GHz, the highest frequency considered here. The nonresonant oxygen absorption is increased by about 6%. In addition to the RTM comparisons, our results are supported by a comparison between columnar water vapor retrievals from 12 satellite microwave radiometers and GPS-retrieved water vapor values.

  13. Optimal design of an atmospheric water generator (AWG) based on thermo-electric cooler (TEC) for drought in rural area

    Science.gov (United States)

    Suryaningsih, Sri; Nurhilal, Otong

    2016-02-01

    Drinking water availability is a major issue in some rural area in Indonesia during the summer season due to lack of rainfall, which peoples in this area have to fetch the water a few kilometers away from home. The Atmospheric Water Generator (AWG) is one of the alternative solution for fresh water recovery from atmosphere which is directly condensed the moisture content of water vapor from the air. This paper presents the method to develop a prototype of an AWG based on Thermo-electric cooler (TEC) that used 12 Volt DC, hence its suitability for using renewable energy resource. Computational Fluid Dynamics (CFD) is utilized to optimize the design process in the flow region only, it's not suitable for recent CFD software to use in Multi physics, because inaccuracy, cost and time saving. Some parameters such as temperature, moisture content, air flow, pressure, form of air flow channel and the water productivity per unit input of energy are to be considered. The result is presented as an experimental prototype of an AWG based on TEC and compared with other conventional commercial products.

  14. Water Recycling removal using temperature-sensitive hydronen

    Energy Technology Data Exchange (ETDEWEB)

    Rana B. Gupta

    2002-10-30

    The overall objective of this project was to study the proposed Water Recycling/Removal Using Temperature-Sensitive Hydrogels. The main element of this technology is the design of a suitable hydrogel that can perform needed water separation for pulp and paper industry. The specific topics studied are to answer following questions: (a) Can water be removed using hydrogel from large molecules such as lignin? (b) Can the rate of separation be made faster? (c) What are the molecular interactions with hydrogel surface? (d) Can a hydrogel be designed for a high ionic strength and high temperature? Summary of the specific results are given.

  15. Temperature of ground water at Philadelphia, Pennsylvania, 1979- 1981

    Science.gov (United States)

    Paulachok, Gary N.

    1986-01-01

    Anthropogenic heat production has undoubtedly caused increased ground-water temperatures in many parts of Philadelphia, Pennsylvania, as shown by temperatures of 98 samples and logs of 40 wells measured during 1979-81. Most sample temperatures were higher than 12.6 degrees Celsius (the local mean annual air temperature), and many logs depict cooling trends with depth (anomalous gradients). Heating of surface and shallow-subsurface materials has likely caused the elevated temperatures and anomalous gradients. Solar radiation on widespread concrete and asphalt surfaces, fossil-fuel combustion, and radiant losses from buried pipelines containing steam and process chemicals are believed to be the chief sources of heat. Some heat from these and other sources is transferred to deeper zones, mainly by conduction. Temperatures in densely urbanized areas are commonly highest directly beneath the land surface and decrease progressively with depth. Temperatures in sparsely urbanized areas generally follow the natural geothermal gradient and increase downward at about that same rate.

  16. The Relationship between Atmospheric Carbon Dioxide Concentration and Global Temperature for the Last 425 Million Years

    Directory of Open Access Journals (Sweden)

    W. Jackson Davis

    2017-09-01

    Full Text Available Assessing human impacts on climate and biodiversity requires an understanding of the relationship between the concentration of carbon dioxide (CO2 in the Earth’s atmosphere and global temperature (T. Here I explore this relationship empirically using comprehensive, recently-compiled databases of stable-isotope proxies from the Phanerozoic Eon (~540 to 0 years before the present and through complementary modeling using the atmospheric absorption/transmittance code MODTRAN. Atmospheric CO2 concentration is correlated weakly but negatively with linearly-detrended T proxies over the last 425 million years. Of 68 correlation coefficients (half non-parametric between CO2 and T proxies encompassing all known major Phanerozoic climate transitions, 77.9% are non-discernible (p > 0.05 and 60.0% of discernible correlations are negative. Marginal radiative forcing (ΔRFCO2, the change in forcing at the top of the troposphere associated with a unit increase in atmospheric CO2 concentration, was computed using MODTRAN. The correlation between ΔRFCO2 and linearly-detrended T across the Phanerozoic Eon is positive and discernible, but only 2.6% of variance in T is attributable to variance in ΔRFCO2. Of 68 correlation coefficients (half non-parametric between ΔRFCO2 and T proxies encompassing all known major Phanerozoic climate transitions, 75.0% are non-discernible and 41.2% of discernible correlations are negative. Spectral analysis, auto- and cross-correlation show that proxies for T, atmospheric CO2 concentration and ΔRFCO2 oscillate across the Phanerozoic, and cycles of CO2 and ΔRFCO2 are antiphasic. A prominent 15 million-year CO2 cycle coincides closely with identified mass extinctions of the past, suggesting a pressing need for research on the relationship between CO2, biodiversity extinction, and related carbon policies. This study demonstrates that changes in atmospheric CO2 concentration did not cause temperature change in the ancient climate.

  17. Mechanical characterisation of tungsten–1 wt.% yttrium oxide as a function of temperature and atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, T.; Jiménez, A. [Materials Science Department, Technical University of Madrid, E.T.S. de Ingenieros de Caminos, Canales y Puertos, C/Profesor Aranguren s/n, 28040 Madrid (Spain); Muñóz, A.; Monge, M.A.; Ballesteros, C. [Departamento de Física, Universidad Carlos III de Madrid, Leganés (Spain); Pastor, J.Y. [Materials Science Department, Technical University of Madrid, E.T.S. de Ingenieros de Caminos, Canales y Puertos, C/Profesor Aranguren s/n, 28040 Madrid (Spain)

    2014-11-15

    This study evaluates the mechanical behaviour of an Y{sub 2}O{sub 3}-dispersed tungsten (W) alloy and compares it to a pure W reference material. Both materials were processed via mechanical alloying (MA) and subsequent hot isostatic pressing (HIP). We performed non-standard three-point bending (TPB) tests in both an oxidising atmosphere and vacuum across a temperature range from 77 K, obtained via immersion in liquid nitrogen, to 1473 K to determine the mechanical strength, yield strength and fracture toughness. This research aims to evaluate how the mechanical behaviour of the alloy is affected by oxides formed within the material at high temperatures, primarily from 873 K, when the materials undergo a massive thermal degradation. The results indicate that the alloy is brittle to a high temperature (1473 K) under both atmospheres and that the mechanical properties degrade significantly above 873 K. We also used Vickers microhardness tests and the dynamic modulus by impulse excitation technique (IET) to determine the elastic modulus at room temperature. Moreover, we performed nanoindentation tests to determine the effect of size on the hardness and elastic modulus; however, no significant differences were found. Additionally, we calculated the relative density of the samples to assess the porosity of the alloy. Finally, we analysed the microstructure and fracture surfaces of the tested materials via field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). In this way, the relationship between the macroscopic mechanical properties and micromechanisms of failure could be determined based on the temperature and oxides formed.

  18. Investigating the impact of atmospheric blocking on temperature extremes across Europe using an objective index

    Science.gov (United States)

    Brunner, Lukas; Steiner, Andrea; Sillmann, Jana

    2017-04-01

    Atmospheric blocking is a key contributor to European temperature extremes. It leads to stable, long-lasting weather patterns, which favor the development of cold and warm spells. The link between blocking and such temperature extremes differs significantly across Europe. In northern Europe a majority of warm spells are connected to blocking, while cold spells are suppressed during blocked conditions. In southern Europe the opposite picture arises with most cold spells occurring during blocking and warm spells suppressed. Building on earlier work by Brunner et al. (2017) this study aims at a better understanding of the connection between blocking and temperature extremes in Europe. We investigate cold and warm spells with and without blocking in observations from the European daily high-resolution gridded dataset (E-OBS) from 1979 to 2015. We use an objective extreme index (Russo et al. 2015) to identify and compare cold and warm spells across Europe. Our work is lead by the main question: Are cold/warm spells coinciding with blocking different from cold/warm spells during unblocked conditions in regard to duration, extend, or amplitude? Here we present our research question and the study setup, and show first results of our analysis on European temperature extremes. Brunner, L., G. Hegerl, and A. Steiner (2017): Connecting Atmospheric Blocking to European Temperature Extremes in Spring. J. Climate, 30, 585-594, doi: 10.1175/JCLI-D-16-0518.1. Russo, S., J. Sillmann, and E. M. Fischer (2015): Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett. 10.12, S. 124003. doi: 10.1088/1748-9326/10/12/124003.

  19. On the quality of MIPAS kinetic temperature in the middle atmosphere

    Directory of Open Access Journals (Sweden)

    M. García-Comas

    2012-07-01

    Full Text Available The kinetic temperature and line of sight elevation information are retrieved from the MIPAS Middle Atmosphere (MA, Upper Atmosphere (UA and NoctiLucent-Cloud (NLC modes of high spectral resolution limb observations of the CO2 15 μm emission using the dedicated IMK/IAA retrieval algorithm, which considers non-local thermodynamic equilibrium conditions. These variables are accurately derived from about 20 km (MA and 40 km (UA and NLC to 105 km globally and both at daytime and nighttime. Typical temperature random errors are smaller than 0.5 K below 50 km, 0.5–2 K at 50–70 km, and 2–7 K above. The systematic error is typically 1 K below 70 km, 1–3 K from 70 to 85 km and 3–11 K from 85 to 100 km. The average vertical resolution is typically 4 km below 35 km, 3 km at 35–50 km, 4–6 km at 50–90 km, and 6–10 km above. We compared our MIPAS temperature retrievals from 2005 to 2009 with co-located ground-based measurements from the lidars located at the Table Mountain Facility and Mauna Loa Observatory, the SATI spectrograph in Granada (Spain and the Davis station spectrometer, and satellite observations from ACE-FTS, Aura-MLS and TIMED-SABER from 20 km to 100 km. We also compared MIPAS temperatures with the high latitudes climatology from falling sphere measurements. The comparisons show very good agreement, with differences smaller than 3 K below 85–90 km in mid-latitudes. Differences over the poles in this altitude range are larger but can be generally explained in terms of known biases of the other instruments. The comparisons above 90 km worsen and MIPAS retrieved temperatures are always larger than other instrument measurements.

  20. Optimum hot water temperature for absorption solar cooling

    Energy Technology Data Exchange (ETDEWEB)

    Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R. [Dpto. Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganes, Madrid (Spain); Zacarias, A. [ESIME UPA, IPN, Av. de las Granjas 682, Col. Santa Catarina, 02550, D.F. Mexico (Mexico)

    2009-10-15

    The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

  1. The effect of water deficit on body temperature during rugby.

    Science.gov (United States)

    Cohen, I; Mitchell, D; Seider, R; Kahn, A; Phillips, F

    1981-07-04

    Sweat losses, water deficits and changes in rectal temperature were measured in 13 first-league players during a rugby match. Changes in plasma volume, serum electrolyte and blood glucose levels were also determined. Rectal temperatures were markedly elevated after the match. Both temperatures reached levels which are known to be associated with an impairment of physical, mental and psychological function, and could have caused a deterioration in performance during the second half of the match. Body temperatures were high enough to have predisposed to aggressive behaviour. Increases in rectal temperature were related to water deficit. The small volumes of fluid ingested by the players just before and during the match suggest that they are unaware of the importance of preventing dehydration. Recommendations are made to reduce the risk of hyperthermia. Glucose and electrolyte supplementation is not required just before and during rugby.

  2. The Influence of High Aerosol Concentration on Atmospheric Boundary Layer Temperature Stratification

    Energy Technology Data Exchange (ETDEWEB)

    Khaykin, M.N.; Kadygrove, E.N.; Golitsyn, G.S.

    2005-03-18

    Investigations of the changing in the atmospheric boundary layer (ABL) radiation balance as cased by natural and anthropogenic reasons is an important topic of the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program. The influence of aerosol on temperature stratification of ABL while its concentration was extremely high within a long period of time was studied experimentally. The case was observed in Moscow region (Russia) with the transport of combustion products from peat-bog and forest fires in July-September, 2002. At this time the visibility was some times at about 100-300 m. Aerosol concentration measured by Moscow University Observatory and A.M. Obukhov Institute of Atmospheric Physics field station in Zvenigorod (55.7 N; 36.6 E) for several days was in 50-100 times more than background one (Gorchakov at al 2003). The high aerosol concentration can change the radiation balance at ABL, and so to change thermal stratification in ABL above the mega lopolis. For the analysis the data were used of synchronous measurements by MTP-5 (Microwave Temperature Profiler operating at wavelength 5 mm) in two locations, namely: downtown Moscow and country-side which is 50 km apart to the West (Zvenigorod station). (Kadygrov and Pick 1998; Westwater at al 1999; Kadygrov at al 2002). Zvenigorod station is located in strongly continental climate zone which is in between of the climates of ARM sites (NSANorth Slope of Alaska and SGP-Southern Great Plains). The town of Zvenigorod has little industry, small traffic volume and topography conductive to a good air ventilation of the town. For these reasons Zvenigorod can be considered as an undisturbed rural site. For the analysis some days were chosen with close meteorological parameters (average temperature, humidity, wind, pressure and cloud form) but strongly differing in aerosol concentration level.

  3. Multitechnique characterisation of 304L surface states oxidised at high temperature in steam and air atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Mamede, Anne-Sophie, E-mail: anne-sophie.mamede@ensc-lille.fr [University Lille, CNRS, ENSCL, Centrale Lille, University Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Nuns, Nicolas, E-mail: nicolas.nuns@univ-lille1.fr [University Lille, CNRS, ENSCL, Centrale Lille, University Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Cristol, Anne-Lise, E-mail: anne-lise.cristol@ec-lille.fr [University Lille, CNRS, Centrale Lille, Arts et Métiers Paris Tech, FRE 3723 – LML – Laboratoire de Mécanique de Lille, F-59000 Lille (France); Cantrel, Laurent, E-mail: laurent.cantrel@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, PSN-RES, Cadarache, Saint Paul lez Durance, 13115 (France); Laboratoire de Recherche Commun IRSN-CNRS-Lille 1: «Cinétique Chimique, Combustion, Réactivité» (C3R), Cadarache, Saint Paul lez Durance, 13115 (France); Souvi, Sidi, E-mail: sidi.souvi@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, PSN-RES, Cadarache, Saint Paul lez Durance, 13115 (France); Laboratoire de Recherche Commun IRSN-CNRS-Lille 1: «Cinétique Chimique, Combustion, Réactivité» (C3R), Cadarache, Saint Paul lez Durance, 13115 (France); and others

    2016-04-30

    Graphical abstract: - Highlights: • Mutitechnique characterisation of oxidised 304L. • Oxidation at high temperature under steam and air conditions of 304L stainless steel. • Chromium and manganese oxides formed in the outer layer. • Oxide profiles differ in air or steam atmosphere. - Abstract: In case of a severe accident occurring in a nuclear reactor, surfaces of the reactor coolant system (RCS), made of stainless steel (304L) rich in Cr (>10%) and Ni (8–12%), are oxidised. Fission products (FPs) are released from melt fuel and flow through the RCS. A part of them is deposited onto surfaces either by vapour condensation or by aerosol deposition mechanisms. To be able to understand the nature of interactions between these FPs and the RCS surfaces, a preliminary step is to characterize the RSC surface states in steam and air atmosphere at high temperatures. Pieces of 304L stainless steel have been treated in a flow reactor at two different temperatures (750 °C and 950 °C) for two different exposition times (24 h and 72 h). After surfaces analysing by a unique combination of surface analysis techniques (XPS, ToF-SIMS and LEIS), for 304L, the results show a deep oxide scale with multi layers and the outer layer is composed of chromium and manganese oxides. Oxide profiles differ in air or steam atmosphere. Fe{sub 2}O{sub 3} oxide is observed but in minor proportion and in all cases no nickel is detected near the surface. Results obtained are discussed and compared with the literature data.

  4. Comparison of Temperature Measurements in the Middle Atmosphere by Satellite with Profiles Obtained by Meteorological Rockets

    Science.gov (United States)

    Goldberg, Richard A.; Schmidlin, Francis J.; Feofilov, Artem; Bedrick, M.; Rose, R. Lynn

    2012-01-01

    Measurements using the inflatable falling sphere technique have occasionally been used to obtain temperature results from density data and thereby provide comparison with temperature profiles obtained by satellite sounders in the mesosphere and stratosphere. To insure density measurements within narrow time frames and close in space, the inflatable falling sphere is launched within seconds of the nearly overhead satellite pass. Sphere measurements can be used to validate remotely measured temperatures but also have the advantage of measuring small-scale atmospheric features. Even so, with the dearth of remaining falling spheres available (the manufacture of these systems has been discontinued), it may be time to consider whether the remote measurements are mature enough to stand alone. Three field studies are considered, one in 2003 from Northern Sweden, and two in 2010 from the vicinity of Kwajalein Atoll in the South Pacific and from Barking Sands, Hawaii. All three sites are used to compare temperature retrievals between satellite and in situ falling spheres. The major satellite instruments employed are SABER, MLS, and AIRS. The comparisons indicate that remotely measured temperatures mimic the sphere temperature measurements quite well. The data also confirm that satellite retrievals, while not always at the exact location required for detailed studies in space and time, compare sufficiently well to be highly useful. Although the falling sphere will provide a measurement at a specific location and time, satellites only pass a given location daily or less frequently. This report reveals that averaged satellite measurements can provide temperatures and densities comparable to those obtained from the falling sphere, thereby providing a reliable measure of global temperature

  5. Sensitivity of grapevine phenology to water availability, temperature and CO2 concentration

    Directory of Open Access Journals (Sweden)

    Johann Martínez-Lüscher

    2016-07-01

    Full Text Available In recent decades, mean global temperatures have increased in parallel with a sharp rise in atmospheric carbon dioxide (CO2 levels, with apparent implications for precipitation patterns. The aim of the present work is to assess the sensitivity of different phenological stages of grapevine to temperature and to study the influence of other factors related to climate change (water availability and CO2 concentration on this relationship. Grapevine phenological records from 9 plantings between 42.75°N and 46.03°N consisting of dates for budburst, flowering and fruit maturity were used. In addition, we used phenological data collected from two years of experiments with grapevine fruit-bearing cuttings with two grapevine varieties under two levels of water availability, two temperature regimes and two levels of CO2. Dormancy breaking and flowering were strongly dependent on spring temperature, while neither variation in temperature during the chilling period nor precipitation significantly affected budburst date. The time needed to reach fruit maturity diminished with increasing temperature and decreasing precipitation. Experiments under semi-controlled conditions revealed great sensitivity of berry development to both temperature and CO2. Water availability had significant interactions with both temperature and CO2; however, in general, water deficit delayed maturity when combined with other factors. Sensitivities to temperature and CO2 varied widely, but higher sensitivities appeared in the coolest year, particularly for the late ripening variety, ‘White Tempranillo’. The knowledge gained in whole plant physiology and multi stress approaches is crucial to predict the effects of climate change and to design mitigation and adaptation strategies allowing viticulture to cope with climate change.

  6. Investigating the effect of surface water - groundwater interactions on stream temperature using Distributed temperature sensing and instream temperature model

    DEFF Research Database (Denmark)

    Karthikeyan, Matheswaran; Blemmer, Morten; Mortensen, Julie Flor

    2011-01-01

    Surface water–groundwater interactions at the stream interface influences, and at times controls the stream temperature, a critical water property driving biogeochemical processes. This study investigates the effects of these interactions on temperature of Stream Elverdamsåen in Denmark using the...

  7. Modeling coupled interactions of carbon, water, and ozone exchange between terrestrial ecosystems and the atmosphere

    Science.gov (United States)

    Ned Nikolova; Karl F. Zeller

    2003-01-01

    A new biophysical model (FORFLUX) is presented to study the simultaneous exchange of ozone, carbon dioxide, and water vapor between terrestrial ecosystems and the atmosphere. The model mechanistically couples all major processes controlling ecosystem flows trace gases and water implementing recent concepts in plant eco-physiology, micrometeorology, and soil hydrology....

  8. Low temperature heating and high temperature cooling embedded water based surface heating and cooling systems

    CERN Document Server

    Babiak, Jan; Petras, Dusan

    2009-01-01

    This Guidebook describes the systems that use water as heat-carrier and when the heat exchange within the conditioned space is more than 50% radiant. Embedded systems insulated from the main building structure (floor, wall and ceiling) are used in all types of buildings and work with heat carriers at low temperatures for heating and relatively high temperature for cooling.

  9. Strengthening of the hydrological cycle in future scenarios: atmospheric energy and water balance perspective

    Directory of Open Access Journals (Sweden)

    A. Alessandri

    2012-11-01

    Full Text Available Future climate scenarios experiencing global warming are expected to strengthen the hydrological cycle during the 21st century (21C. We analyze the strengthening of the global-scale increase in precipitation from the perspective of changes in whole atmospheric water and energy balances. By combining energy and water equations for the whole atmosphere, we obtain constraints for the changes in surface fluxes and partitioning at the surface between sensible and latent components. We investigate the differences in the strengthening of the hydrological cycle in two centennial simulations performed with an Earth system model forced with specified atmospheric concentration pathways. Alongside the Special Report on Emissions Scenario (SRES A1B, which is a medium-high non-mitigation scenario, we consider a new aggressive-mitigation scenario (E1 with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2 K.

    Our results show that the mitigation scenario effectively constrains the global warming with a stabilization below 2 K with respect to the 1950–2000 historical period. On the other hand, the E1 precipitation does not follow the temperature field toward a stabilization path but continues to increase over the mitigation period. Quite unexpectedly, the mitigation scenario is shown to strengthen the hydrological cycle even more than SRES A1B till around 2070. We show that this is mostly a consequence of the larger increase in the negative radiative imbalance of atmosphere in E1 compared to A1B. This appears to be primarily related to decreased sulfate aerosol concentration in E1, which considerably reduces atmospheric absorption of solar radiation compared to A1B.

    The last decades of the 21C show a marked increase in global precipitation in A1B compared to E1, despite the fact that the two scenarios display almost the same overall increase of radiative imbalance with respect to the 20th century. Our

  10. The interpretation of data from the Viking Mars Atmospheric Water Detectors (MAWD): Some points for discussion

    Science.gov (United States)

    Clifford, Stephen M.

    1988-01-01

    Properly interpreted, water vapor column abundance measurements can provide important insights into many of the processes that govern the diurnal, seasonal, and climatic cycles of atmospheric water on Mars. The uncertain distribution of water vapor complicates this analysis. It is argued that if a significant fraction of the total atmospheric vapor content is concentrated within the lowermost scale height, then the hemispheric asymmetry in zonally averaged topography/air mass might itself explain the observed gradient in the annual and zonally averaged vapor abundance.

  11. A globally applicable, season-specific model for estimating the weighted mean temperature of the atmosphere

    Science.gov (United States)

    Yao, YiBin; Zhu, Shuang; Yue, ShunQiang

    2012-12-01

    In GPS meteorology, the weighted mean temperature is usually obtained by using a linear function of the surface temperature T s. However, not every GPS station can measure the surface temperature. The current study explores the characteristics of surface temperature and weighted mean temperature based on the global pressure and temperature model (GPT) and the Bevis T m- T s relationship ( T m = a + bT s). A new global weighted mean temperature (GWMT) model has been built which directly uses three-dimensional coordinates and day of the year to calculate the weighted mean temperature. The data of year 2005-2009 from 135 radiosonde stations provided by the Integrated Global Radiosonde Archive were used to calculate the model coefficients, which have been validated through examples. The result shows that the GWMT model is generally better than the existing liner models in most areas according to the statistic indexes (namely, mean absolute error and root mean square). Then we calculated precipitable water vapor, and the result shows that GWMT model can also yield high precision PWV.

  12. Coupling of North Pacific Productivity, Beringian Precipitation, and Antarctic Bottom Water Formation: an Atmospheric Link?

    Science.gov (United States)

    Caissie, B.; Wilkie, K. M. K.

    2016-12-01

    Changes in primary productivity in the North Pacific occur on a variety of timescales from seasonal to orbital. A prime indicator of this productivity is expressed as laminated intervals deposited simultaneously in intermediate-depth waters across the North Pacific and its marginal seas at Glacial Terminations. Debate continues regarding the mechanism that triggered this anoxia in the North Pacific. Some argue for a change in intermediate water ventilation, and others for simply an increase in primary productivity. While little evidence has been found for a change in ventilation of intermediate waters, primary productivity increased dramatically at Terminations. However, the cause of this primary productivity is currently unknown. Some have suggested increasing aeolian iron deposition, increasing nutrient input due to rising sea level, or changes in stratification. Here we show that although there is no change in intermediate water ventilation during laminated intervals, there is a significant change in the rate of Antarctic Bottom Water (AABW) Formation. We use new diatom records from the Bering Sea and previously published sediment records from the South Pacific and Lake El'gygytgyn, Russia to show that AABW formation is coupled with primary productivity in the North Pacific and terrestrial precipitation in Beringia. During three interglacials (MIS 1, MIS 5, and MIS 11), primary productivity, driven by increased upwelling, is high when AABW formation is high. This increased upwelling in turn increases the open water area of the Bering Sea, pushes sea ice farther north and increases moisture supply to the Beringian continent. At peak interglacials, productivity in the North Pacific and Beringian temperatures decrease simultaneously with a decrease in AABW formation. We attribute these changes to large-scale atmospheric climate modes linking changes in the strength and position of the Aleutian Low to upwelling of nutrient-rich waters in the North Pacific and Bering

  13. The effect of cloud liquid water on tropospheric temperature retrievals from microwave measurements

    Science.gov (United States)

    Bernet, Leonie; Navas-Guzmán, Francisco; Kämpfer, Niklaus

    2017-11-01

    Microwave radiometry is a suitable technique to measure atmospheric temperature profiles with high temporal resolution during clear sky and cloudy conditions. In this study, we included cloud models in the inversion algorithm of the microwave radiometer TEMPERA (TEMPErature RAdiometer) to determine the effect of cloud liquid water on the temperature retrievals. The cloud models were built based on measurements of cloud base altitude and integrated liquid water (ILW), all performed at the aerological station (MeteoSwiss) in Payerne (Switzerland). Cloud base altitudes were detected using ceilometer measurements while the ILW was measured by a HATPRO (Humidity And Temperature PROfiler) radiometer. To assess the quality of the TEMPERA retrieval when clouds were considered, the resulting temperature profiles were compared to 2 years of radiosonde measurements. The TEMPERA instrument measures radiation at 12 channels in the frequency range from 51 to 57 GHz, corresponding to the left wing of the oxygen emission line complex. When the full spectral information with all the 12 frequency channels was used, we found a marked improvement in the temperature retrievals after including a cloud model. The chosen cloud model influenced the resulting temperature profile, especially for high clouds and clouds with a large amount of liquid water. Using all 12 channels, however, presented large deviations between different cases, suggesting that additional uncertainties exist in the lower, more transparent channels. Using less spectral information with the higher, more opaque channels only also improved the temperature profiles when clouds where included, but the influence of the chosen cloud model was less important. We conclude that tropospheric temperature profiles can be optimized by considering clouds in the microwave retrieval, and that the choice of the cloud model has a direct impact on the resulting temperature profile.

  14. Visualization of Atmospheric Water Vapor Data for SAGE

    Science.gov (United States)

    Kung, Mou-Liang; Chu, W. P. (Technical Monitor)

    2000-01-01

    The goal of this project was to develop visualization tools to study the water vapor dynamics using the Stratospheric Aerosol and Gas Experiment 11 (SAGE 11) water vapor data. During the past years, we completed the development of a visualization tool called EZSAGE, and various Gridded Water Vapor plots, tools deployed on the web to provide users with new insight into the water vapor dynamics. Results and experiences from this project, including papers, tutorials and reviews were published on the main Web page. Additional publishing effort has been initiated to package EZSAGE software for CD production and distribution. There have been some major personnel changes since Fall, 1998. Dr. Mou-Liang Kung, a Professor of Computer Science assumed the PI position vacated by Dr. Waldo Rodriguez who was on leave. However, former PI, Dr. Rodriguez continued to serve as a research adviser to this project to assure smooth transition and project completion. Typically in each semester, five student research assistants were hired and trained. Weekly group meetings were held to discuss problems, progress, new research direction, and activity planning. Other small group meetings were also held regularly for different objectives of this project. All student research assistants were required to submit reports for conference submission.

  15. High temperature operation of a composite membrane-based solid polymer electrolyte water electrolyser

    Energy Technology Data Exchange (ETDEWEB)

    Antonucci, V.; Di Blasi, A.; Baglio, V.; Arico, A.S. [CNR-ITAE, Via Salita S. Lucia sopra Contesse 5, 98126 Messina (Italy); Ornelas, R.; Matteucci, F. [Tozzi Apparecchiature Elettriche SpA, Via Zuccherificio, 10-48010 Mezzano (RA) (Italy); Ledesma-Garcia, J.; Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Parque Tecnologico Queretaro, Sanfandila, Pedro Escobedo, C.P. 76703 Queretaro (Mexico)

    2008-10-15

    The high temperature behaviour of a solid polymer electrolyte (SPE) water electrolyser based on a composite Nafion-SiO{sub 2} membrane was investigated and compared to that of a commercial Nafion membrane. The SPE water electrolyser performance was studied from 80 to 120{sup o}C with an operating pressure varying between 1 and 3 bar abs. IrO{sub 2} and Pt were used as oxygen and hydrogen evolution catalysts, respectively. The assemblies were manufactured by using a catalyst-coated membrane (CCM) technique. The performance was significantly better for the composite Nafion-SiO{sub 2} membrane than commercial Nafion 115. Furthermore, the composite membrane allowed suitable water electrolysis at high temperature under atmospheric pressure. The current densities were 2 and 1.2 A cm{sup -2} at a terminal voltage of 1.9 V for Nafion-SiO{sub 2} and Nafion 115, respectively, at 100{sup o}C and atmospheric pressure. By increasing the temperature up to 120{sup o}C, the performance of Nafion 115 drastically decreased; whereas, the cell based on Nafion-SiO{sub 2} membrane showed a further increase of performance, especially when the pressure was increased to 3 bar abs (2.1 A cm{sup -2} at 1.9 V). (author)

  16. An extended Kalman-Bucy filter for atmospheric temperature profile retrieval with a passive microwave sounder

    Science.gov (United States)

    Ledsham, W. H.; Staelin, D. H.

    1978-01-01

    An extended Kalman-Bucy filter has been implemented for atmospheric temperature profile retrievals from observations made using the Scanned Microwave Spectrometer (SCAMS) instrument carried on the Nimbus 6 satellite. This filter has the advantage that it requires neither stationary statistics in the underlying processes nor linear production of the observed variables from the variables to be estimated. This extended Kalman-Bucy filter has yielded significant performance improvement relative to multiple regression retrieval methods. A multi-spot extended Kalman-Bucy filter has also been developed in which the temperature profiles at a number of scan angles in a scanning instrument are retrieved simultaneously. These multi-spot retrievals are shown to outperform the single-spot Kalman retrievals.

  17. Study of the Temperature Turbulences Effect upon Optical Beam in Atmospheric Optical Communication

    Directory of Open Access Journals (Sweden)

    F. Dvorak

    2011-09-01

    Full Text Available The paper deals with the study of the effect of temperature turbulences upon the optical beam. The polarization parameters of optical radiation sources and different optical beam states of polarization have been investigated. The obtained polarization parameters are projected on the Poincare sphere by means of Stokes vectors. The optical power distribution curves of optical beams are processed into diagrams. The horizontal and vertical components of linearly and circularly polarized optical beams have been studied. The turbulence flux has vertical direction and the optical beam is propagating through an atmosphere environment with three different states of turbulence. The evaluation of the obtained data was done by means of variance and correlation functions computing. Different rates of effect of temperature turbulences upon horizontal and vertical components were found. To reduce the rate of effect the advantage of an optical beam with circular polarization has been proposed.

  18. Development and Validation of Water Vapor Tracers as Diagnostics for the Atmospheric Hydrologic Cycle

    Science.gov (United States)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Understanding of the local and remote sources of water vapor can be a valuable diagnostic in understanding the regional atmospheric hydrologic cycle. In the present study, we have implemented passive tracers as prognostic variables to follow water vapor evaporated in predetermined regions until the water tracer precipitates. The formulation of the sources and sinks of tracer water is generally proportional to the prognostic water vapor variable. Because all water has been accounted for in tracers, the water vapor variable provides the validation of the tracer water and the formulation of the sources and sinks. The tracers have been implemented in a GEOS General Circulation Model (GCM) simulation consisting of several summer periods to determine the source regions of precipitation for the United States and India. The recycling of water and interannual variability of the sources of water will be examined. Potential uses in GCM sensitivity studies, predictability studies and data assimilation will be discussed.

  19. Diurnal variation of atmospheric water vapor at Gale crater: Analysis from ground-based measurements

    Science.gov (United States)

    Martinez, German; McConnochie, Timothy; Renno, Nilton; Meslin, Pierre-Yves; Fischer, Erik; Vicente-Retortillo, Alvaro; Borlina, Caue; Kemppinen, Osku; Genzer, Maria; Harri, Ari-Matti; de la Torre-Juárez, Manuel; Zorzano, Mari-Paz; Martin-Torres, Javier; Bridges, Nathan; Maurice, Sylvestre; Gasnault, Olivier; Gomez-Elvira, Javier; Wiens, Roger

    2016-04-01

    We analyze measurements obtained by Curiosity's Rover Environmental Monitoring Station (REMS) and ChemCam (CCAM) instruments to shed light on the hydrological cycle at Gale crater. In particular, we use nighttime REMS measurements taken when the atmospheric volume mixing ratio (VMR) and its uncertainty are the lowest (between 05:00 and 06:00 LTST) [1], and daytime CCAM passive sky measurements taken when the VMR is expected to be the highest (between 10:00 and 14:00 LTST) [2]. VMR is calculated from simultaneous REMS measurements of pressure (P), temperature (T) and relative humidity (RH) at 1.6 m (VMR is defined as RH×es(T)/P , where es is the saturation water vapor pressure over ice). The REMS relative humidity sensor has recently been recalibrated (June 2015), providing RH values slightly lower than those in the previous calibration (Dec 2014). The full diurnal cycle of VMR cannot be analyzed using only REMS data because the uncertainty in daytime VMR derived from REMS measurements is extremely high. Daytime VMR is inferred by fitting the output of a multiple-scattering discrete-ordinates radiative transfer model to CCAM passive sky observations [3]. CCAM makes these observations predominately in the vicinity of 11:00 - 12:00 LTST, but occasionally in the early morning near 08:00 LTST. We find that throughout the Martian year, the daytime VMR is higher than at night, with a maximum day-to-night ratio of about 6 during winter. Various processes might explain the differences between nighttime REMS and daytime CCAM VMR values. Potential explanations include: (i) surface nighttime frost formation followed by daytime sublimation [1], (ii) surface nighttime adsorption of water vapor by the regolith followed by daytime desorption and (iii) large scale circulations changing vertical H2O profiles at different times of the year. Potential formation of surface frost can only occur in late fall and winter [1], coinciding with the time when the diurnal amplitude of the near

  20. Strong Water Isotopic Anomalies in the Martian Atmosphere: Probing Current and Ancient Reservoirs

    Science.gov (United States)

    Villanueva, G. L.; Mumma, M. J.; Novak, R. E.; Käufl, H. U.; Hartogh, P.; Encrenaz, T.; Tokunaga, A.; Khayat, A.; Smith, M. D.

    2015-01-01

    We measured maps of atmospheric water (H2O) and its deuterated form (HDO) across the martian globe, showing strong isotopic anomalies and a significant high deuterium/hydrogen (D/H) enrichment indicative of great water loss. The maps sample the evolution of sublimation from the north polar cap, revealing that the released water has a representative D/H value enriched by a factor of about 7 relative to Earth's ocean [Vienna standard mean ocean water (VSMOW)]. Certain basins and orographic depressions show even higher enrichment, whereas high-altitude regions show much lower values (1 to 3 VSMOW). Our atmospheric maps indicate that water ice in the polar reservoirs is enriched in deuterium to at least 8 VSMOW, which would mean that early Mars (4.5 billion years ago) had a global equivalent water layer at least 137 meters deep.

  1. Organic particulate material levels in the atmosphere: conditions favoring sensitivity to varying relative humidity and temperature.

    Science.gov (United States)

    Pankow, James F

    2010-04-13

    This study examines the sensitivity in predicted levels of atmospheric organic particulate matter (M(o), microg m(-3)) as those levels may potentially be affected by changes in relative humidity and temperature. In a given system, for each partitioning compound, f(g) and f(p) represent the gaseous and particulate fractions (f(g) + f(p) = 1). Sensitivity in the M(o) levels becomes dampened as the compounds contributing significantly to M(o) are increasingly found in the particle phase (f(p) --> 1). Thus, although local maxima in sensitivity can be encountered as M(o) levels increase, because as M(o) increases each f(p) --> 1, then increasing M(o) levels generally tend to reduce sensitivity in M(o) levels to changes in relative humidity and temperature. Experiments designed to elucidate the potential magnitudes of the effects of relative humidity and temperature on M(o) levels must be carried out at M(o) levels that are relevant for the ambient atmosphere: The f(p) values for the important partitioning compounds must not be elevated above ambient-relevant values. Systems in which M(o) levels are low (e.g., 1-2 microg m(-3)) and/or composed of unaged secondary organic aerosol are the ones most likely to show sensitivity to changing relative humidity and temperature. Results from two published chamber studies are examined in the above regard: [Warren B, et al. (2009) Atmos Environ 43:1789-1795] and [Prisle NL, et al. (2010) Geophys Res Lett 37:L01802].

  2. Climate change scenarios of extreme temperatures and atmospheric humidity for Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Tejeda-Martinez, A. [Departamento de Ciencias Atmosfericas, Universidad Veracruzana, Xalapa, Veracruz (Mexico)]. E-mail: atejeda@uv.mx; Conde-Alvarez, C. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Valencia-Treviso, L.E. [Departamento de Ciencias Atmosfericas, Universidad Veracruzana, Xalapa, Veracruz (Mexico)

    2008-10-15

    The following study explores climatic change scenarios of extreme temperature and atmospheric humidity for the 2020 and 2050 decades. They were created for Mexico through the GFDLR30, ECHAM4 and HadCM2 general circulation models. Base scenario conditions were associated with the normal climatological conditions for the period 1961-1990, with a database of 50 surface observatories. It was necessary to empirically estimate the missing data in approximately half of the pressure measurements. For the period 1961-1990, statistical models of the monthly means of maximum and minimum temperatures and atmospheric humidity (relative and specific) were obtained from the observed data of temperature, solar radiation and precipitation. Based on the simulations of the GFDLR30, ECHAM4 and HADCM2 models, a future scenario of monthly means of maximum and minimum temperatures and humidity in climatic change conditions was created. The results shown are for the representative months of winter (January) and summer (July). [Spanish] En este articulo se presentan escenarios de cambio climatico referidos a temperaturas extremas y humedad atmosferica para las decadas de 2020 y 2050. Fueron generados para Mexico a partir de los modelos de circulacion general GFDLR30, ECHAM4 y HADCM2. El escenario base corresponde a las normales climatologicas del periodo 1961-1990 para 50 observatorios de superficie. Para la mitad de ellos fue necesario estimar empiricamente la presion atmosferica a partir de la altitud y para la totalidad se obtuvieron modelos estadisticos de los promedios mensuales de temperaturas maxima y minima asi como de humedad atmosferica (relativa y especifica). Esos modelos estadisticos, combinados con las salidas de los modelos de circulacion general mencionados, produjeron escenarios futuros de medias mensuales de temperaturas extremas y de humedad bajo condiciones de cambio climatico. Se mostraran los resultados para un mes representativo del invierno (enero) y otro del verano

  3. Water security, global change and land-atmosphere feedbacks.

    Science.gov (United States)

    Dadson, Simon; Acreman, Michael; Harding, Richard

    2013-11-13

    Understanding the competing pressures on water resources requires a detailed knowledge of the future water balance under uncertain environmental change. The need for a robust, scientifically rigorous evidence base for effective policy planning and practice has never been greater. Environmental change includes, but is not limited to, climate change; it also includes land-use and land-cover change, including deforestation for agriculture, and occurs alongside changes in anthropogenic interventions that are used in natural resource management such as the regulation of river flows using dams, which can have impacts that frequently exceed those arising in the natural system. In this paper, we examine the role that land surface models can play in providing a robust scientific basis for making resource management decisions against a background of environmental change. We provide some perspectives on recent developments in modelling in land surface hydrology. Among the range of current land surface and hydrology models, there is a large range of variability, which indicates that the specification and parametrization of several basic processes in the models can be improved. Key areas that require improvement in order to address hydrological applications include (i) the representation of groundwater in models, particularly at the scales relevant to land surface modelling, (ii) the representation of human interventions such as dams and irrigation in the hydrological system, (iii) the quantification and communication of uncertainty, and (iv) improved understanding of the impact on water resources availability of multiple use through treatment, recycling and return flows (and the balance of consumptive and conservative uses). Through a series of examples, we demonstrate that changes in water use could have important reciprocal impacts on climate over a wide area. The effects of water management decisions on climate feedbacks are only beginning to be investigated-they are

  4. High Temperature, Controlled-Atmosphere Aerodynamic Levitation Experiments with Applications in Planetary Science

    Science.gov (United States)

    Macris, C. A.; Badro, J.; Eiler, J. M.; Stolper, E. M.

    2016-12-01

    The aerodynamic levitation laser apparatus is an instrument in which spherical samples are freely floated on top of a stream of gas while being heated with a CO2laser to temperatures up to about 3500 °C. Laser heated samples, ranging in size from 0.5 to 3.5 mm diameter, can be levitated in a variety of chemically active or inert atmospheres in a gas-mixing chamber (e.g., Hennet et al. 2006; Pack et al. 2010). This allows for containerless, controlled-atmosphere, high temperature experiments with potential for applications in earth and planetary science. A relatively new technique, aerodynamic levitation has been used mostly for studies of the physical properties of liquids at high temperatures (Kohara et al. 2011), crystallization behavior of silicates and oxides (Arai et al. 2004), and to prepare glasses from compositions known to crystallize upon quenching (Tangeman et al. 2001). More recently, however, aerodynamic levitation with laser heating has been used as an experimental technique to simulate planetary processes. Pack et al. (2010) used levitation and melting experiments to simulate chondrule formation by using Ar-H2 as the flow gas, thus imposing a reducing atmosphere, resulting in reduction of FeO, Fe2O3, and NiO to metal alloys. Macris et al. (2015) used laser heating with aerodynamic levitation to reproduce the textures and diffusion profiles of major and minor elements observed in impact ejecta from the Australasian strewn field, by melting a powdered natural tektite mixed with 60-100 μm quartz grains on a flow of pure Ar gas. These experiments resulted in quantitative modeling of Si and Al diffusion, which allowed for interpretations regarding the thermal histories of natural tektites and their interactions with the surrounding impact vapor plume. Future experiments will employ gas mixing (CO, CO2, H2, O, Ar) in a controlled atmosphere levitation chamber to explore the range of fO2applicable to melt-forming impacts on other rocky planetary bodies

  5. About the Influence of the initial Atmosphere on the Earth's Temperature Distribution during it's Accumulation

    Science.gov (United States)

    Khachay, Y.; Anfilogov, V.; Antipin, A.

    2012-04-01

    We suggested a new model for accumulation of planets of the Earth's group [1], which is based on the contemporary results of geochemical analyses, which allow to obtain the concentrations of short living radioactive isotopes of 26Al in the matter of the pre planet cloud [2]. With use of that data new estimations of temperature distribution into the growing planetary pre planetary bodies into the Earth's nebular zone had been obtained. For the further Earth's temperature evolution, as it had been showed by the results of numerical modeling, the main role belongs to the temperature distribution in the forming Earth's core and the existence of a dense and transparent atmosphere. The shadow influence of the initial atmosphere had been researched in the paper [3]. We shall give the main consideration to these problems in that paper. It had been shown in [1], that on the earliest accumulation stage the heat release by the decay of 26Al it is sufficient for forming a central melted area and solid relatively thin mainly silicate upper envelope in the pre planetary body, with dimensions, larger than (50-100) km. The impact velocities on that stage are yet not large, therefore by the bodies impact with these or near dimensions liquid and mainly iron their parts merge, but the masses of the pre planetary bodies are not sufficient to gravitational keeping of silicate parts of the cold solid envelope. On that stage they remain into the nebular zone of the proto planet and the mechanism of matter differentiation for the future core and mantle reservoirs realizes. The process takes place yet in small bodies and is in time to finish during less than 10 million years. The next forming of the core and mantle structure continues according to all known estimations about 100 million years. Because of the merging of inner liquid parts of impacting bodies occur due to inelastic impact, the main part of potential energy transforms into heat. That continues up to that time when the iron

  6. Size matters in the water uptake and hygroscopic growth of atmospherically relevant multicomponent aerosol particles.

    Science.gov (United States)

    Laskina, Olga; Morris, Holly S; Grandquist, Joshua R; Qin, Zhen; Stone, Elizabeth A; Tivanski, Alexei V; Grassian, Vicki H

    2015-05-14

    Understanding the interactions of water with atmospheric aerosols is crucial for determining the size, physical state, reactivity, and climate impacts of this important component of the Earth's atmosphere. Here we show that water uptake and hygroscopic growth of multicomponent, atmospherically relevant particles can be size dependent when comparing 100 nm versus ca. 6 μm sized particles. It was determined that particles composed of ammonium sulfate with succinic acid and of a mixture of chlorides typical of the marine environment show size-dependent hygroscopic behavior. Microscopic analysis of the distribution of components within the aerosol particles show that the size dependence is due to differences in the mixing state, that is, whether particles are homogeneously mixed or phase separated, for different sized particles. This morphology-dependent hygroscopicity has consequences for heterogeneous atmospheric chemistry as well as aerosol interactions with electromagnetic radiation and clouds.

  7. Multitechnique characterisation of 304L surface states oxidised at high temperature in steam and air atmospheres

    Science.gov (United States)

    Mamede, Anne-Sophie; Nuns, Nicolas; Cristol, Anne-Lise; Cantrel, Laurent; Souvi, Sidi; Cristol, Sylvain; Paul, Jean-François

    2016-04-01

    In case of a severe accident occurring in a nuclear reactor, surfaces of the reactor coolant system (RCS), made of stainless steel (304L) rich in Cr (>10%) and Ni (8-12%), are oxidised. Fission products (FPs) are released from melt fuel and flow through the RCS. A part of them is deposited onto surfaces either by vapour condensation or by aerosol deposition mechanisms. To be able to understand the nature of interactions between these FPs and the RCS surfaces, a preliminary step is to characterize the RSC surface states in steam and air atmosphere at high temperatures. Pieces of 304L stainless steel have been treated in a flow reactor at two different temperatures (750 °C and 950 °C) for two different exposition times (24 h and 72 h). After surfaces analysing by a unique combination of surface analysis techniques (XPS, ToF-SIMS and LEIS), for 304L, the results show a deep oxide scale with multi layers and the outer layer is composed of chromium and manganese oxides. Oxide profiles differ in air or steam atmosphere. Fe2O3 oxide is observed but in minor proportion and in all cases no nickel is detected near the surface. Results obtained are discussed and compared with the literature data.

  8. Conductivity of SrTiO3 based oxides in the reducing atmosphere at high temperature

    DEFF Research Database (Denmark)

    Hashimoto, Shin-Ichi; Poulsen, Finn Willy; Mogensen, Mogens Bjerg

    2007-01-01

    The conductivities of several donor-doped SrTiO3 based oxides, which were prepared in air, were studied in a reducing atmosphere at high temperature. The conductivities of all specimens increased slowly with time at 1000 degrees C in 9% H-2/N-2, even after 100 h. Nb-doped SrTiO3 showed relatively...... at 500-800 degrees C, while that of La-doped SrTiO3 dropped immediately on exposure to air. The conduction behavior of Nb-doped SrTiO3 was explained by reduction of Ti4+ and/or Nb5+ and the relatively slow oxygen diffusibility. (c) 2006 Elsevier B.V. All rights reserved.......The conductivities of several donor-doped SrTiO3 based oxides, which were prepared in air, were studied in a reducing atmosphere at high temperature. The conductivities of all specimens increased slowly with time at 1000 degrees C in 9% H-2/N-2, even after 100 h. Nb-doped SrTiO3 showed relatively...... fast reduction and high conductivity compared with the other SrTiO3 based oxides. The conductivity of Nb-doped SrTiO3 was ca. 50 S cm(-1) at 500 degrees C after reduction at 1200 degrees C. After strong reduction, the conductivity of Nb-doped SrTiO3 was almost independent of the oxygen partial pressure...

  9. Manganese oxide phases and morphologies: A study on calcination temperature and atmospheric dependence.

    Science.gov (United States)

    Augustin, Matthias; Fenske, Daniela; Bardenhagen, Ingo; Westphal, Anne; Knipper, Martin; Plaggenborg, Thorsten; Kolny-Olesiak, Joanna; Parisi, Jürgen

    2015-01-01

    Manganese oxides are one of the most important groups of materials in energy storage science. In order to fully leverage their application potential, precise control of their properties such as particle size, surface area and Mn (x) (+) oxidation state is required. Here, Mn3O4 and Mn5O8 nanoparticles as well as mesoporous α-Mn2O3 particles were synthesized by calcination of Mn(II) glycolate nanoparticles obtained through an economical route based on a polyol synthesis. The preparation of the different manganese oxides via one route facilitates assigning actual structure-property relationships. The oxidation process related to the different MnO x species was observed by in situ X-ray diffraction (XRD) measurements showing time- and temperature-dependent phase transformations occurring during oxidation of the Mn(II) glycolate precursor to α-Mn2O3 via Mn3O4 and Mn5O8 in O2 atmosphere. Detailed structural and morphological investigations using transmission electron microscopy (TEM) and powder XRD revealed the dependence of the lattice constants and particle sizes of the MnO x species on the calcination temperature and the presence of an oxidizing or neutral atmosphere. Furthermore, to demonstrate the application potential of the synthesized MnO x species, we studied their catalytic activity for the oxygen reduction reaction in aprotic media. Linear sweep voltammetry revealed the best performance for the mesoporous α-Mn2O3 species.

  10. Manganese oxide phases and morphologies: A study on calcination temperature and atmospheric dependence

    Directory of Open Access Journals (Sweden)

    Matthias Augustin

    2015-01-01

    Full Text Available Manganese oxides are one of the most important groups of materials in energy storage science. In order to fully leverage their application potential, precise control of their properties such as particle size, surface area and Mnx+ oxidation state is required. Here, Mn3O4 and Mn5O8 nanoparticles as well as mesoporous α-Mn2O3 particles were synthesized by calcination of Mn(II glycolate nanoparticles obtained through an economical route based on a polyol synthesis. The preparation of the different manganese oxides via one route facilitates assigning actual structure–property relationships. The oxidation process related to the different MnOx species was observed by in situ X-ray diffraction (XRD measurements showing time- and temperature-dependent phase transformations occurring during oxidation of the Mn(II glycolate precursor to α-Mn2O3 via Mn3O4 and Mn5O8 in O2 atmosphere. Detailed structural and morphological investigations using transmission electron microscopy (TEM and powder XRD revealed the dependence of the lattice constants and particle sizes of the MnOx species on the calcination temperature and the presence of an oxidizing or neutral atmosphere. Furthermore, to demonstrate the application potential of the synthesized MnOx species, we studied their catalytic activity for the oxygen reduction reaction in aprotic media. Linear sweep voltammetry revealed the best performance for the mesoporous α-Mn2O3 species.

  11. Genetic Programming and Standardization in Water Temperature Modelling

    Directory of Open Access Journals (Sweden)

    Maritza Arganis

    2009-01-01

    Full Text Available An application of Genetic Programming (an evolutionary computational tool without and with standardization data is presented with the aim of modeling the behavior of the water temperature in a river in terms of meteorological variables that are easily measured, to explore their explanatory power and to emphasize the utility of the standardization of variables in order to reduce the effect of those with large variance. Recorded data corresponding to the water temperature behavior at the Ebro River, Spain, are used as analysis case, showing a performance improvement on the developed model when data are standardized. This improvement is reflected in a reduction of the mean square error. Finally, the models obtained in this document were applied to estimate the water temperature in 2004, in order to provide evidence about their applicability to forecasting purposes.

  12. Water temperature in irrigation return flow from the Upper Snake Rock watershed

    Science.gov (United States)

    Water returning to a river from an irrigated watershed could increase the water temperature in the river. The objective of this study was to compare the temperature of irrigation return flow water with the temperature of the diverted irrigation water. Water temperature was measured weekly in the mai...

  13. Observed behaviours of precipitable water vapour and precipitation intensity in response to upper air profiles estimated from surface air temperature.

    Science.gov (United States)

    Fujita, Mikiko; Sato, Tomonori

    2017-07-06

    Extremely heavy precipitation affects human society and the natural environment, and its behaviour under a warming climate needs to be elucidated. Recent studies have demonstrated that observed extreme precipitation increases with surface air temperature (SAT) at approximately the Clausius-Clapeyron (CC) rate, suggesting that atmospheric water vapour content can explain the relationship between extreme precipitation and SAT. However, the relationship between atmospheric water vapour content and SAT is poorly understood due to the lack of reliable observations with sufficient spatial and temporal coverage for statistical analyses. Here, we analyse the relationship between atmospheric water vapour content and SAT using precipitable water vapour (PWV) derived from global positioning system satellites. A super-CC rate appears in hourly PWV when the SAT is below 16 °C, whereas the rate decreases at high SAT, which is different from the precipitation-SAT relationship. The effects of upper air temperature and water vapour can consistently explain the super-CC rate of PWV relative to SAT. The difference between moist and dry adiabatic lapse rates increases with SAT, in consequence of more ability to hold water vapour in the free atmosphere under higher SAT conditions; therefore, attainable PWV increases more rapidly than the CC rate as SAT increases.

  14. Water Ice Clouds in the Martian Atmosphere: A View from MGS TES

    Science.gov (United States)

    Hale, A. S.; Tamppari, L. K.; Christensen, P. R.; Smith, M. D.; Bass, Deborah; Qu, Zheng; Pearl, J. C.

    2005-01-01

    We use the method of Tamppari et al. to map water ice clouds in the Martian atmosphere. This technique was originally developed to analyze the broadband Viking IRTM channels and we have now applied it to the TES data. To do this, the TES spectra are convolved to the IRTM bandshapes and spatial resolutions, enabling use of the same processing techniques as were used in Tamppari et al.. This retrieval technique relies on using the temperature difference recorded in the 20 micron and 11 micron IRTM bands (or IRTM convolved TES bands) to map cold water ice clouds above the warmer Martian surface. Careful removal of surface contributions to the observed radiance is therefore necessary, and we have used both older Viking-derived basemaps of the surface emissivity and albedo, and new MGS derived basemaps in order the explore any possible differences on cloud retrieval due to differences in surface contribution removal. These results will be presented in our poster. Our previous work has concentrated primarily on comparing MGS TES to Viking data; that work saw that large-scale cloud features, such as the aphelion cloud belt, are quite repeatable from year to year, though small scale behavior shows some variation. Comparison of Viking and MGS era cloud maps will be presented in our poster. In the current stage of our study, we have concentrated our efforts on close analysis of water ice cloud behavior in the northern summer of the three MGS mapping years on relatively small spatial scales, and present our results below. Additional information is included in the original extended abstract.

  15. Potential impacts of human water management on the European heat wave 2003 using fully integrated bedrock-to-atmosphere simulations

    Science.gov (United States)

    Keune, Jessica; Sulis, Mauro; Kollet, Stefan; Wada, Yoshihide

    2017-04-01

    Recent studies indicate that anthropogenic impacts on the terrestrial water cycle lead to a redistribution of water resources in space and time, can trigger land-atmosphere feedbacks, such as the soil moisture-precipitation feedback, and potentially enhance convection and precipitation. Yet, these studies do not consider the full hydrologic cycle from the bedrock to the atmosphere or apply simplified hydrologic models, neglecting the connection of irrigation to water withdrawal and groundwater depletion. Thus, there is a need to incorporate water resource management in 3D hydrologic models coupled to earth system models. This study addresses the impact of water resource management, i.e. irrigation and groundwater abstraction, on land-atmosphere feedbacks through the terrestrial hydrologic cycle in a physics-based soil-vegetation-atmosphere system simulating 3D groundwater dynamics at the continental scale. The integrated Terrestrial Systems Modeling Platform, TerrSysMP, consisting of the three-dimensional subsurface and overland flow model ParFlow, the Community Land Model CLM3.5 and the numerical weather prediction model COSMO of the German Weather Service, is set up over the European CORDEX domain in 0.11° resolution. The model closes the terrestrial water and energy cycles from aquifers into the atmosphere. Anthropogenic impacts are considered by applying actual daily estimates of irrigation and groundwater abstraction from Wada et al. (2012, 2016), as a source at the land surface and explicit removal of groundwater from aquifer storage, respectively. Simulations of the fully coupled system are performed over the 2003 European heat wave and compared to a reference simulation, which does not consider human interactions in the terrestrial water cycle. We study the space and time characteristics and evolution of temperature extremes, and soil moisture and precipitation anomalies influenced by human water management during the heat wave. A first set of simulations

  16. Development and validation of a drinking water temperature model in domestic drinking water supply systems

    NARCIS (Netherlands)

    Zlatanovic, Ljiljana; Moerman, Andreas; Hoek, van der Jan Peter; Vreeburg, Jan; Blokker, Mirjam

    2017-01-01

    Domestic drinking water supply systems (DDWSs) are the final step in the delivery of drinking water to consumers. Temperature is one of the rate-controlling parameters for many chemical and microbiological processes and is, therefore, considered as a surrogate parameter for water quality

  17. A Method for Assessing the Quality of Model-Based Estimates of Ground Temperature and Atmospheric Moisture Using Satellite Data

    Science.gov (United States)

    Wu, Man Li C.; Schubert, Siegfried; Lin, Ching I.; Stajner, Ivanka; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A method is developed for validating model-based estimates of atmospheric moisture and ground temperature using satellite data. The approach relates errors in estimates of clear-sky longwave fluxes at the top of the Earth-atmosphere system to errors in geophysical parameters. The fluxes include clear-sky outgoing longwave radiation (CLR) and radiative flux in the window region between 8 and 12 microns (RadWn). The approach capitalizes on the availability of satellite estimates of CLR and RadWn and other auxiliary satellite data, and multiple global four-dimensional data assimilation (4-DDA) products. The basic methodology employs off-line forward radiative transfer calculations to generate synthetic clear-sky longwave fluxes from two different 4-DDA data sets. Simple linear regression is used to relate the clear-sky longwave flux discrepancies to discrepancies in ground temperature ((delta)T(sub g)) and broad-layer integrated atmospheric precipitable water ((delta)pw). The slopes of the regression lines define sensitivity parameters which can be exploited to help interpret mismatches between satellite observations and model-based estimates of clear-sky longwave fluxes. For illustration we analyze the discrepancies in the clear-sky longwave fluxes between an early implementation of the Goddard Earth Observing System Data Assimilation System (GEOS2) and a recent operational version of the European Centre for Medium-Range Weather Forecasts data assimilation system. The analysis of the synthetic clear-sky flux data shows that simple linear regression employing (delta)T(sub g)) and broad layer (delta)pw provides a good approximation to the full radiative transfer calculations, typically explaining more thin 90% of the 6 hourly variance in the flux differences. These simple regression relations can be inverted to "retrieve" the errors in the geophysical parameters, Uncertainties (normalized by standard deviation) in the monthly mean retrieved parameters range from 7% for

  18. High atmospheric temperatures and ‘ambient incubation’ drive embryonic development and lead to earlier hatching in a passerine bird

    Science.gov (United States)

    Griffith, Simon C.; Mainwaring, Mark C.; Sorato, Enrico; Beckmann, Christa

    2016-01-01

    Tropical and subtropical species typically experience relatively high atmospheric temperatures during reproduction, and are subject to climate-related challenges that are largely unexplored, relative to more extensive work conducted in temperate regions. We studied the effects of high atmospheric and nest temperatures during reproduction in the zebra finch. We characterized the temperature within nests in a subtropical population of this species in relation to atmospheric temperature. Temperatures within nests frequently exceeded the level at which embryo’s develop optimally, even in the absence of parental incubation. We experimentally manipulated internal nest temperature to demonstrate that an average difference of 6°C in the nest temperature during the laying period reduced hatching time by an average of 3% of the total incubation time, owing to ‘ambient incubation’. Given the avian constraint of laying a single egg per day, the first eggs of a clutch are subject to prolonged effects of nest temperature relative to later laid eggs, potentially increasing hatching asynchrony. While birds may ameliorate the negative effects of ambient incubation on embryonic development by varying the location and design of their nests, high atmospheric temperatures are likely to constitute an important selective force on avian reproductive behaviour and physiology in subtropical and tropical regions, particularly in the light of predicted climate change that in many areas is leading to a higher frequency of hot days during the periods when birds breed. PMID:26998315

  19. Advection of Potential Temperature in the Atmosphere of Irradiated Exoplanets: A Robust Mechanism to Explain Radius Inflation

    Science.gov (United States)

    Tremblin, P.; Chabrier, G.; Mayne, N. J.; Amundsen, D. S.; Baraffe, I.; Debras, F.; Drummond, B.; Manners, J.; Fromang, S.

    2017-01-01

    The anomalously large radii of strongly irradiated exoplanets have remained a major puzzle in astronomy. Based on a two-dimensional steady-state atmospheric circulation model, the validity of which is assessed by comparison to three-dimensional calculations, we reveal a new mechanism, namely the advection of the potential temperature due to mass and longitudinal momentum conservation, a process occurring in the Earth's atmosphere or oceans. In the deep atmosphere, the vanishing heating flux forces the atmospheric structure to converge to a hotter adiabat than the one obtained with 1D calculations, implying a larger radius for the planet. Not only do the calculations reproduce the observed radius of HD 209458b, but also reproduce the observed correlation between radius inflation and irradiation for transiting planets. Vertical advection of potential temperature induced by non-uniform atmospheric heating thus provides a robust mechanism to explain the inflated radii of irradiated hot Jupiters.

  20. Development of solid electrolytes for water electrolysis at intermediate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Linkous, C.A.; Kopitzke, R.W. [Florida Solar Energy Center, Cape Canaveral, FL (United States)

    1995-09-01

    If an electrolyzer could operate at higher temperatures, several benefits would accrue. The first is that the thermodynamic electrical energy requirement to drive the reaction would be reduced. Supplying the total enthalpy of reaction at any temperature involves a combination of electrical and thermal energy inputs. Because of the positive entropy associated with water decomposition, the thermal contribution increases as temperature rises, allowing the free energy requirement to decrease. Thus the open circuit voltage, V{sub oc}, for water splitting drops as temperature rises. At room temperature, V{sub oc} for water decomposition is 1.229 V. At 400{degrees}C, voltage requirement has dropped to 1.1 V; at 1000{degrees}C, it is only 0.92 V. Since electricity is a more expensive form of energy on a btu basis, the more energy taken from the thermal surroundings the better. Moreover, this thermal energy content could be solar-derived. While the cost of solar thermal energy varies in the range of $360-900/peak kilowatt, the installed cost of photovoltaic electricity is in the range of $4,000-5,000/peak kilowatt. Thus if one is compelled to erect an array of photovoltaic panels to generate the e.m.f. necessary to split water, substituting as much area with thermal collectors as possible represents a substantial cost savings.

  1. Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet.

    Science.gov (United States)

    Fraine, Jonathan; Deming, Drake; Benneke, Bjorn; Knutson, Heather; Jordán, Andrés; Espinoza, Néstor; Madhusudhan, Nikku; Wilkins, Ashlee; Todorov, Kamen

    2014-09-25

    Transmission spectroscopy has so far detected atomic and molecular absorption in Jupiter-sized exoplanets, but intense efforts to measure molecular absorption in the atmospheres of smaller (Neptune-sized) planets during transits have revealed only featureless spectra. From this it was concluded that the majority of small, warm planets evolve to sustain atmospheres with high mean molecular weights (little hydrogen), opaque clouds or scattering hazes, reducing our ability to observe the composition of these atmospheres. Here we report observations of the transmission spectrum of the exoplanet HAT-P-11b (which has a radius about four times that of Earth) from the optical wavelength range to the infrared. We detected water vapour absorption at a wavelength of 1.4 micrometres. The amplitude of the water absorption (approximately 250 parts per million) indicates that the planetary atmosphere is predominantly clear down to an altitude corresponding to about 1 millibar, and sufficiently rich in hydrogen to have a large scale height (over which the atmospheric pressure varies by a factor of e). The spectrum is indicative of a planetary atmosphere in which the abundance of heavy elements is no greater than about 700 times the solar value. This is in good agreement with the core-accretion theory of planet formation, in which a gas giant planet acquires its atmosphere by accreting hydrogen-rich gas directly from the protoplanetary nebula onto a large rocky or icy core.

  2. Comparison of Radiophysical and Optical Infrared Ground-Based Methods for Measuring Integrated Content of Atmospheric Water Vapor in Atmosphere

    Science.gov (United States)

    Ionov, D. V.; Kalinnikov, V. V.; Timofeyev, Yu. M.; Zaitsev, N. A.; Virolainen, Y. A.; Kostsov, V. S.; Poberovskii, A. V.

    2017-09-01

    By virtue of their all-weather capabilities, the radiophysical atmospheric sensing methods allow one, in particular, to perform continuous observations of variations in the atmospheric content of water vapor being the most important natural greenhouse gas. The measurement station of St. Petersburg State University at Peterhof (59.88° N, 29.83° E) runs a number of ground-based instruments to determine total water-vapor content (TWVC) in the atmosphere. During a year period from September 2014 to September 2015, the TWVC was synchronously measured by two radiophysical methods, namely, the microwave and radio-refraction techniques, as well as the optical infrared method. Comparisons show that the average systematic and random discrepancies among the three methods amount to 0.3-0.5 kg/m2 (3-7%) and 0.4-0.6 kg/m2 (8-11%), respectively. The maximum relative differences (up to 20%) among the results of different-type measurements are observed for very small TWVC values (below 5 kg/m2). Empirical estimates of the random errors of the methods were 0.5, 0.3, and 0.3 kg/m2 for the radio-refraction, microwave, and infrared methods, respectively. The results of the TWVC measuring by the radio-refraction and microwave methods are in good agreement and yield greater values than those obtained by the optical method. The obtained discrepancies in the TWVC estimates are small compared with the published results of similar comparisons, which can, in particular, be attributed to the high spatiotemporal matching of various measurements.

  3. Remote sensing of atmospheric water content from Bhaskara SAMIR data. [using statistical linear regression analysis

    Science.gov (United States)

    Gohil, B. S.; Hariharan, T. A.; Sharma, A. K.; Pandey, P. C.

    1982-01-01

    The 19.35 GHz and 22.235 GHz passive microwave radiometers (SAMIR) on board the Indian satellite Bhaskara have provided very useful data. From these data has been demonstrated the feasibility of deriving atmospheric and ocean surface parameters such as water vapor content, liquid water content, rainfall rate and ocean surface winds. Different approaches have been tried for deriving the atmospheric water content. The statistical and empirical methods have been used by others for the analysis of the Nimbus data. A simulation technique has been attempted for the first time for 19.35 GHz and 22.235 GHz radiometer data. The results obtained from three different methods are compared with radiosonde data. A case study of a tropical depression has been undertaken to demonstrate the capability of Bhaskara SAMIR data to show the variation of total water vapor and liquid water contents.

  4. An interim reference model for the variability of the middle atmosphere water vapor distribution

    Science.gov (United States)

    Remsberg, E. E.; Russell, J. M., III; Wu, C.-Y.

    1990-01-01

    A reference model for the middle atmosphere water vapor distribution for some latitudes and seasons was developed using two data sets. One is the seven months of Nimbus LIMS data obtained during November 1978 to May 1979 over the range 64 deg S - 84 deg N latitude and from about 100-mb to 1-mb altitude, and the other is represented by water vapor profiles from 0.2 mb to 0.01 mb in the mid-mesosphere, measured on ground at several fixed mid-latitude sites in the Northern Hemisphere, using microwave-emission techniques. This model provides an interim water vapor profile for the entire vertical range of the middle atmosphere, with accuracies of better than 25 percent. The daily variability of stratospheric water vapor profiles about the monthly mean is demonstrated, and information is provided on the longitudinal variability of LIMS water vapor profiles about the daily, weekly, and monthly zonal means.

  5. Modeling caspian sea water level oscilLations Under Diffrent Scenarioes of Increasing Atmospheric Carbon Dioxide Concentrations

    Directory of Open Access Journals (Sweden)

    GholamReza Roshan

    2012-12-01

    Full Text Available The rapid rise of Caspian Sea water level (about 2.25 meters since 1978 has caused much concern to all five surrounding countries, primarily because flooding has destroyed or damaged buildings and other engineering structures, roads, beaches and farm lands in thecoastal zone. Given that climate, and more specifically climate change, is a primary factor influencing oscillations in Caspian Sea water levels, the effect of different climate change scenarios on future Caspian Sea levels was stimulated. Variations in environmentalparameters such as temperature, precipitation, evaporation, tmospheric carbon dioxide and water level oscillations of the Caspian sea and surrounding regions, are considered for bothpast (1951-2006 and future (2025-2100 time frames. The output of the UKHADGEM general circulation model and five alternative scenarios including A1CAI, BIASF, BIMES WRE450 and WRE750 were extracted using the MAGICC SCENGEN Model software(version 5.3. The results suggest that the mean temperature of the Caspian Sea region (Bandar-E-Anzali monitoring site has increased by ca. 0.17ºC per decade under the impacts of atmospheric carbon dioxide changes (r=0.21. The Caspian Sea water level has increasedby ca. +36 mm per decade (r=0.82 between the years 1951-2006. Mean results from all modeled scenarios indicate that the temperature will increase by ca. 3.64ºC and precipitation will decrease by ca. 10% (182 mm over the Caspian Sea, whilst in the Volga river basin,temperatures are projected to increase by ca. 4.78ºC and precipitation increase by ca. 12% (58 mm by the year 2100. Finally, statistical modeling of the Caspian Sea water levels projectfuture water level increases of between 86 cm and 163 cm by the years 2075 and 2100, respectively.

  6. DYNAMIC ERROR OF THE TEMPERATURE SENSORS WITH THE SOUNDING OF THE ATMOSPHERE

    Directory of Open Access Journals (Sweden)

    E. A. Bolelov

    2017-01-01

    Full Text Available Radiosounding of the atmosphere is an essential component constituting the base for prognostic aviation authorities. GPR scanning data are the basis for the mapping of baric topography used in the development of aviation weather forecasts. Currently, numerical methods of weather forecast have become especially popular. This is quite justified, as these methods allow to increase the accuracy of weather forecasts and these techniques represent the future. However, the era of "numerical weather prediction" will not come soon. This is primarily due to imperfect numerical forecast models, which do not provide for timeliness and reliability of weather forecasting required for aviation. However, the quality of meteorological support of aircraft flights is largely determined by the timeliness and predictability of the aviation weather forecasts. In this regard, the network of radiosounding functions require the presentation of the theoretical foundations and providing consumers with normalized metrological characteristics of the measuring system of radio sounding, methods of measurement and a reasonable assessment of the reliability of the results of sensing. A number of these problems have been resolved nowadays, however, so far the problem of estimating dynamic measurement errors in the sounding is not solved. The metrological characteristics and the dynamic error of measurement of temperature with the new temperature sensors of foreign production (NТС MFB-5000-3220, recently used in the Russian radiosondes still require the detailed studies.This article is devoted to one of the most important types of errors of radio sounding – the dynamic errors of measurement, to be precise, the dynamic error of the temperature measurement. In the article the problem of determining the value of dynamic errors of radiosondes is being solved alongside with the investigation of the role of this kind of errors when assessing the reliability of the results of the

  7. Efficiency and temperature dependence of water removal by membrane dryers

    Science.gov (United States)

    Leckrone, K. J.; Hayes, J. M.

    1997-01-01

    The vapor pressure of water in equilibrium with sorption sites within a Nafion membrane is given by log P(WN) = -3580/T + 10.01, where P(WN) is expressed in Torr and T is the membrane temperature, in kelvin. The efficiency of dryers based on selective permeation of water through Nafion can thus be enhanced by cooling the membrane. Residual water in effluents exceeds equilibrium levels if insufficient time is allowed for water to diffuse to the membrane surface as gas passes through the dryer. For tubular configurations, this limitation can be avoided if L > or = Fc(10(3.8)/120 pi D), where L is the length of the tubular membrane, in centimeters, Fc is the gas flow rate, in mL/ min, and D is the diffusion coefficient for water in the carrier gas at the operating temperature of the dryer, in cm2/s. An efficient dryer that at room temperature dries gas to a dew point of -61 degrees C is described; the same dryer maintained at 0 degrees C yields a dew point of -80 degrees C and removes water as effectively as Mg(ClO4)2 or a dry ice/acetone slush. The use of Nafion membranes to construct devices capable of delivering gas streams with low but precisely controlled humidities is discussed.

  8. The atmosphere can be a source of certain water soluble volatile organic compounds in urban streams

    Science.gov (United States)

    Kenner, Scott J.; Bender, David A.; Zogorski, John S.; ,; James F. Pankow,

    2014-01-01

    Surface water and air volatile organic compound (VOC) data from 10 U.S. Geological Survey monitoring sites were used to evaluate the potential for direct transport of VOCs from the atmosphere to urban streams. Analytical results of 87 VOC compounds were screened by evaluating the occurrence and detection levels in both water and air, and equilibrium concentrations in water (Cws) based on the measured air concentrations. Four compounds (acetone, methyl tertiary butyl ether, toluene, and m- & p-xylene) were detected in more than 20% of water samples, in more than 10% of air samples, and more than 10% of detections in air were greater than long-term method detection levels (LTMDL) in water. Benzene was detected in more than 20% of water samples and in more than 10% of air samples. Two percent of benzene detections in air were greater than one-half the LTMDL in water. Six compounds (chloroform, p-isopropyltoluene, methylene chloride, perchloroethene, 1,1,1-trichloroethane, and trichloroethene) were detected in more than 20% of water samples and in more than 10% of air samples. Five VOCs, toluene, m- & p-xylene, methyl tert-butyl ether (MTBE), acetone, and benzene were identified as having sufficiently high concentrations in the atmosphere to be a source to urban streams. MTBE, acetone, and benzene exhibited behavior that was consistent with equilibrium concentrations in the atmosphere.

  9. Foliar Water Uptake of Tamarix ramosissima from an Atmosphere of High Humidity

    Directory of Open Access Journals (Sweden)

    Shuang Li

    2014-01-01

    Full Text Available Many species have been found to be capable of foliar water uptake, but little research has focused on this in desert plants. Tamarix ramosissima was investigated to determine whether its leaves can directly absorb water from high humidity atmosphere and, if they can, to understand the magnitude and importance of foliar water uptake. Various techniques were adopted to demonstrate foliar water uptake under submergence or high atmospheric humidity. The mean increase in leaf water content after submergence was 29.38% and 20.93% for mature and tender leaves, respectively. In the chamber experiment, obvious reverse sap flow occurred when relative humidity (RH was persistently above 90%. Reverse flow was recorded first in twigs, then in branches and stems. For the stem, the percentage of negative sap flow rate accounting for the maximum value of sap flow reached 10.71%, and its amount accounted for 7.54% of diurnal sap flow. Small rainfall can not only compensate water loss of plant by foliar uptake, but also suppress transpiration. Foliar uptake can appear in the daytime under certain rainfall events. High atmospheric humidity is beneficial for enhancing the water status of plants. Foliar uptake should be an important strategy of water acquisition for desert plants.

  10. [Atmospheric correction of HJ-1 CCD data for water imagery based on dark object model].

    Science.gov (United States)

    Zhou, Li-Guo; Ma, Wei-Chun; Gu, Wan-Hua; Huai, Hong-Yan

    2011-08-01

    The CCD multi-band data of HJ-1A has great potential in inland water quality monitoring, but the precision of atmospheric correction is a premise and necessary procedure for its application. In this paper, a method based on dark pixel for water-leaving radiance retrieving is proposed. Beside the Rayleigh scattering, the aerosol scattering is important to atmospheric correction, the water quality of inland lakes always are case II water and the value of water leaving radiance is not zero. So the synchronous MODIS shortwave infrared data was used to obtain the aerosol parameters, and in virtue of the characteristic that aerosol scattering is relative stabilized in 560 nm, the water-leaving radiance for each visible and near infrared band were retrieved and normalized, accordingly the remotely sensed reflectance of water was computed. The results show that the atmospheric correction method based on the imagery itself is more effective for the retrieval of water parameters for HJ-1A CCD data.

  11. SHORT-TERM EXPOSURE TO ATMOSPHERIC AMMONIA DOES NOT AFFECT LOW-TEMPERATURE HARDENING OF WINTER-WHEAT

    NARCIS (Netherlands)

    CLEMENT, JMAM; VENEMA, JH; VANHASSELT, PR

    1995-01-01

    The effect of atmospheric NH3 on low-temperature hardening of winter wheat (Triticum aestivum L. cv. Urban) was investigated. Growth and photosynthesis were stimulated by ammonia exposure. After a 14 d exposure at moderate temperatures (day/night 18.5/16 degrees C) total nitrogen content was

  12. The effect of cool water ingestion on gastrointestinal pill temperature.

    Science.gov (United States)

    Wilkinson, David M; Carter, James M; Richmond, Victoria L; Blacker, Sam D; Rayson, Mark P

    2008-03-01

    Telemetric gastrointestinal (GI) temperature pills are now commonly used to measure core body temperature and could minimize the risk of heat illness while maximizing operational effectiveness in workers subject to high levels of thermal strain. To quantify the effect of repeated cool water ingestion on the accuracy of GI pill temperature. Ten operational firefighters ingested a pill to measure GI temperature (T1int) before overnight sleep. Two hours following breakfast and 11.5 h after ingesting T1int, the firefighters ingested a second pill (T2int) before performing 8.5 h of intermittent activity (repetitive cycles of 30 min of seated rest followed by 30 min of general firefighter duties). During the first 2 min of each 30-min rest period, the firefighters consumed 250 mL of chilled water (5-8 degrees C). Water ingestion had a highly variable effect both within and between subjects in transiently (32 +/- 10 min) reducing the temperature of T2int in comparison with T1int. In general, this transient reduction in T2int became progressively smaller as time following ingestion increased. In some firefighters, the difference between T1int and T2int became negligible (+/- 0.1 degrees C) after 3 h, whereas in two others, large differences (peaking at 2.0 degrees C and 6.3 degrees C) were still observed when water was consumed 8 h after pill ingestion. These results show that a GI pill ingested immediately prior to physical activity cannot be used to measure core body temperature accurately in all individuals during the following 8 h when cool fluids are regularly ingested. This makes GI temperature measurement unsuitable for workers who respond to emergency deployments when regular fluid consumption is recommended operational practice.

  13. Trihalomethane hydrolysis in drinking water at elevated temperatures.

    Science.gov (United States)

    Zhang, Xiao-Lu; Yang, Hong-Wei; Wang, Xiao-Mao; Karanfil, Tanju; Xie, Yuefeng F

    2015-07-01

    Hydrolysis could contribute to the loss of trihalomethanes (THMs) in the drinking water at elevated temperatures. This study was aimed at investigating THM hydrolysis pertaining to the storage of hot boiled water in enclosed containers. The water pH value was in the range of 6.1-8.2 and the water temperature was varied from 65 to 95 °C. The effects of halide ions, natural organic matter, and drinking water matrix were investigated. Results showed that the hydrolysis rates declined in the order following CHBrCl2 > CHBr2Cl > CHBr3 > CHCl3. THM hydrolysis was primarily through the alkaline pathway, except for CHCl3 in water at relatively low pH value. The activation energies for the alkaline hydrolysis of CHCl3, CHBrCl2, CHBr2Cl and CHBr3 were 109, 113, 115 and 116 kJ/mol, respectively. No hydrolysis intermediates could accumulate in the water. The natural organic matter, and probably other constituents, in drinking water could substantially decrease THM hydrolysis rates by more than 50%. When a drinking water was at 90 °C or above, the first order rate constants for THM hydrolysis were in the magnitude of 10(-2)‒10(-1) 1/h. When the boiled real tap water was stored in an enclosed container, THMs continued increasing during the first few hours and then kept decreasing later on due to the competition between hydrolysis and further formation. The removal of THMs, especially brominated THMs, by hydrolysis would greatly reduce one's exposure to disinfection by-products by consuming the boiled water stored in enclosed containers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Understanding the Influence of Terrestrial Water Anomalies on Summer Surface Air Temperature Variability over North America

    Science.gov (United States)

    Merrifield, A.; Johnson, N. C.; Kosaka, Y.; Xie, S. P.

    2014-12-01

    Understanding natural variability in the climate system is vital for the detection and attribution of anthropogenically induced change in General Circulation Models (GCMs). GCM predictions of winter surface air temperature (SAT) variability generally are skillful at midlatitudes due to a strong coupling with tropical variability through atmospheric teleconnections. When atmospheric circulation weakens during the summer, however, GCM predictions of SAT variability are less skillful than during the winter, particularly over North America. This study examines the extent that terrestrial water anomalies in the Gravity Recovery and Climate Experiment (GRACE) equivalent water thickness product influence patterns of summer SAT variability over North America from 2002 to 2014. Analysis of the Atmospheric Model Intercomparison Project (AMIP) CM2.1 10-member ensemble indicates there is a significant land surface feedback on summer SAT. The GRACE product provides a metric for evaluating spurious soil moisture signals, which likely enhance summer SAT variability in the AMIP ensemble. To further investigate spatial patterns in soil moisture, simulated (AMIP) and reanalysis (Climate Prediction Center) rainfall patterns are used to demonstrate a potential cause-effect relationship between precipitation and terrestrial water anomalies. Finally, we evaluate whether soil moisture is a useful diagnostic for enhancing predictions of anomalous summer heat waves over North America.

  15. Karakoram temperature and glacial melt driven by regional atmospheric circulation variability

    Science.gov (United States)

    Forsythe, Nathan; Fowler, Hayley J.; Li, Xiao-Feng; Blenkinsop, Stephen; Pritchard, David

    2017-09-01

    Identifying mechanisms driving spatially heterogeneous glacial mass-balance patterns in the Himalaya, including the `Karakoram anomaly', is crucial for understanding regional water resource trajectories. Streamflows dependent on glacial meltwater are strongly positively correlated with Karakoram summer air temperatures, which show recent anomalous cooling. We explain these temperature and streamflow anomalies through a circulation system--the Karakoram vortex--identified using a regional circulation metric that quantifies the relative position and intensity of the westerly jet. Winter temperature responses to this metric are homogeneous across South Asia, but the Karakoram summer response diverges from the rest of the Himalaya. We show that this is due to seasonal contraction of the Karakoram vortex through its interaction with the South Asian monsoon. We conclude that interannual variability in the Karakoram vortex, quantified by our circulation metric, explains the variability in energy-constrained ablation manifested in river flows across the Himalaya, with important implications for Himalayan glaciers' futures.

  16. Water-temperature data acquisition activities in the United States

    Science.gov (United States)

    Pauszek, F.H.

    1972-01-01

    Along with the growing interest in water quality during the last decade, the need for data on all types of water-quality parameters has also increased. One parameter of particular interest, because of its many ramifications, is temperature. It influences many of the chemical and physical processes that take place in water. The solubility of gases--for example, oxygen and carbon dioxide--and the solution of mineral matter in water are functions of temperature. Such physical properties as density and viscosity vary with temperature. Oxidation of organic materials, as well as algal and bacterial growth, is promoted or retarded by favorable or unfavorable temperatures. Further, temperature bears on the utility of water: as a source of public water supplies; for industrial use, particularly if the water is used for cooling; and in the field of recreation involving contact sports, fishing, and fish culture. In recent years, temperature changes resulting from inflow of heated industrial waste, particularly effluent from power generating plants, have increased the need for temperature data to determine the degree of change, its effect on ecology, and the effect of any remedial action. Thus, because of the many extensive and intensive effects, a large amount of temperature data is collected on surface and ground waters by many agencies throughout the country. Moreover, because of its importance, there is a widespread interest in temperature even by those who are not active collectors of the data themselves. The industrialist, the manager, the public official, and others at one time or another may have need for temperature data and may well raise the questions: Who is collecting temperature data? What is the extent of the activity? Where are the data being collected? The purpose of this report is to answer these questions. The information in the report is confined to the activities of Federal and non-Federal agencies. It is based on information furnished to the Office of

  17. Winds and temperatures of the Arctic middle atmosphere during January measured by Doppler lidar

    Science.gov (United States)

    Hildebrand, Jens; Baumgarten, Gerd; Fiedler, Jens; Lübken, Franz-Josef

    2017-11-01

    We present an extensive data set of simultaneous temperature and wind measurements in the Arctic middle atmosphere. It consists of more than 300 h of Doppler Rayleigh lidar observations obtained during three January seasons (2012, 2014, and 2015) and covers the altitude range from 30 km up to about 85 km. The data set reveals large year-to-year variations in monthly mean temperatures and winds, which in 2012 are affected by a sudden stratospheric warming. The temporal evolution of winds and temperatures after that warming are studied over a period of 2 weeks, showing an elevated stratopause and the reformation of the polar vortex. The monthly mean temperatures and winds are compared to data extracted from the Integrated Forecast System of the European Centre for Medium-Range Weather Forecasts (ECMWF) and the Horizontal Wind Model (HWM07). Lidar and ECMWF data show good agreement of mean zonal and meridional winds below ≈ 55 km altitude, but we also find mean temperature, zonal wind, and meridional wind differences of up to 20 K, 20 m s-1, and 5 m s-1, respectively. Differences between lidar observations and HWM07 data are up to 30 m s-1. From the fluctuations of temperatures and winds within single nights we extract the potential and kinetic gravity wave energy density (GWED) per unit mass. It shows that the kinetic GWED is typically 5 to 10 times larger than the potential GWED, the total GWED increases with altitude with a scale height of ≈ 16 km. Since temporal fluctuations of winds and temperatures are underestimated in ECMWF, the total GWED is underestimated as well by a factor of 3-10 above 50 km altitude. Similarly, we estimate the energy density per unit mass for large-scale waves (LWED) from the fluctuations of nightly mean temperatures and winds. The total LWED is roughly constant with altitude. The ratio of kinetic to potential LWED varies with altitude over 2 orders of magnitude. LWEDs from ECMWF data show results similar to the lidar data. From the

  18. Climate change and agroecosystems: the effect of elevated atmospheric CO2 and temperature on crop growth, development, and yield

    Directory of Open Access Journals (Sweden)

    Streck Nereu Augusto

    2005-01-01

    Full Text Available The amount of carbon dioxide (CO2 of the Earths atmosphere is increasing, which has the potential of increasing greenhouse effect and air temperature in the future. Plants respond to environment CO2 and temperature. Therefore, climate change may affect agriculture. The purpose of this paper was to review the literature about the impact of a possible increase in atmospheric CO2 concentration and temperature on crop growth, development, and yield. Increasing CO2 concentration increases crop yield once the substrate for photosynthesis and the gradient of CO2 concentration between atmosphere and leaf increase. C3 plants will benefit more than C4 plants at elevated CO2. However, if global warming will take place, an increase in temperature may offset the benefits of increasing CO2 on crop yield.

  19. Water vaporization promotes coseismic fluid pressurization and buffers temperature rise

    NARCIS (Netherlands)

    Chen, Jianye|info:eu-repo/dai/nl/370819071; Niemeijer, André|info:eu-repo/dai/nl/370832132; Yao, Lu; Ma, Shengli

    2017-01-01

    We investigated the frictional properties of carbonate-rich gouge layers at a slip rate of 1.3 m/s, under dry and water-saturated conditions, while monitoring temperature at different locations on one of the gouge-host rock interfaces. All experiments showed a peak frictional strength of 0.4–0.7,

  20. Spatio-temporal attributes of water temperature and ...

    African Journals Online (AJOL)

    The study demonstrates that decreasing water temperatures, both spatially (with increasing altitude) and seasonally (from summer to winter), and/or decreasing diversity of hydraulic biotypes associated with stream-channel narrowing in Drakensberg rivers/streams, are associated with a general decrease in the absolute ...

  1. Possible effects of regulating hydroponic water temperature on plant ...

    African Journals Online (AJOL)

    Yomi

    2010-12-29

    Dec 29, 2010 ... production of antioxidants in cells exposed to heat stress. EFFECTS OF REGULATING HYDROPONIC WATER. TEMPERATURE ON NUTRIENT UPTAKE AND. ACCUMULATION IN PLANT TISSUES. Plant nutrients have a great potential for increasing yield and are capable of promoting plant growth ( ...

  2. Temperature-programmed desorption of water and ammonia on ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 115; Issue 4. Temperature-programmed desorption of water and ammonia on sulphated zirconia catalysts for ... Author Affiliations. Vasant R Choudhary1 Abhijeet J Karkamkar1. Chemical Engineering Division, National Chemical Laboratory, Pune 411 008, India ...

  3. Defluoridation of drinking water with pottery: effect of firing temperature.

    Science.gov (United States)

    Hauge, S; Osterberg, R; Bjorvatn, K; Selvig, K A

    1994-12-01

    Excessive fluoride (F) in drinking water should be removed, but simple, inexpensive methods of fluoride removal are not readily available. This study examines the F(-)-binding capacity of clay and clayware, especially the effect of the firing temperature on the F(-)-binding process. A series of pots were made from ordinary potter's clay and fired at 500-1000 degrees C. Likewise, small clay bricks were fired and then crushed and sieved. NaF solutions containing 10 mg/l F- (10 ppm F-) were prepared. Suitable aliquots of the solutions were poured into clay pots or exposed to powdered clayware. Samples were taken at storage periods of 30 min to 20 days and analyzed for F- by ion-selective electrodes. The rate and capacity of F(-)-binding in the clayware varied with the firing temperature. Clay fired at approximately 600 degrees C was most effective. Temperatures over 700 degrees C caused a decline in F(-)-binding, and pottery fired at 900 degrees C and above seemed unable to remove F- from water. Pots fired at 500 degrees C or less cracked in water. The findings indicate that clayware, fired at an optimal temperature, may be of practical value for partial defluoridation of drinking water.

  4. Effects of Hot Water Treatment and Temperature on Seedling ...

    African Journals Online (AJOL)

    An experiment was conducted at the Faculty of Agriculture, University of Maiduguri, to study the effect of hot water treatment and temperature on the morphological characteristics of Arabic gum. The experiment was laid out in a Randomized Complete Block Design in a factorial arrangement. The treatments included a ...

  5. CAAS: an atmospheric correction algorithm for the remote sensing of complex waters

    Directory of Open Access Journals (Sweden)

    P. Shanmugam

    2012-01-01

    Full Text Available The current SeaDAS atmospheric correction algorithm relies on the computation of optical properties of aerosols based on radiative transfer combined with a near-infrared (NIR correction scheme (originally with assumptions of zero water-leaving radiance for the NIR bands and several ancillary parameters to remove atmospheric effects in remote sensing of ocean colour. The failure of this algorithm over complex waters has been reported by many recent investigations, and can be attributed to the inadequate NIR correction and constraints for deriving aerosol optical properties whose characteristics are the most difficult to evaluate because they vary rapidly with time and space. The possibility that the aerosol and sun glint contributions can be derived in the whole spectrum of ocean colour solely from a knowledge of the total and Rayleigh-corrected radiances is developed in detail within the framework of a Complex water Atmospheric correction Algorithm Scheme (CAAS that makes no use of ancillary parameters. The performance of the CAAS algorithm is demonstrated for MODIS/Aqua imageries of optically complex waters and yields physically realistic water-leaving radiance spectra that are not possible with the SeaDAS algorithm. A preliminary comparison with in-situ data for several regional waters (moderately complex to clear waters shows encouraging results, with absolute errors of the CAAS algorithm closer to those of the SeaDAS algorithm. The impact of the atmospheric correction was also examined on chlorophyll retrievals with a Case 2 water bio-optical algorithm, and it was found that the CAAS algorithm outperformed the SeaDAS algorithm in terms of producing accurate pigment estimates and recovering areas previously flagged out by the later algorithm. These findings suggest that the CAAS algorithm can be used for applications focussing in quantitative assessments of the biological and biogeochemical properties in complex waters, and can easily be

  6. Formation of thermal flow fields and chemical transport in air and water by atmospheric plasma

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Tetsuji; Morfill, Gregor E [Max-Planck Institute for Extraterrestrial Physics, 85748 Garching (Germany); Iwafuchi, Yutaka [Graduate School of Engineering, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 9808577 (Japan); Sato, Takehiko, E-mail: sato@ifs.tohoku.ac.jp [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 9808577 (Japan)

    2011-05-15

    Cold atmospheric plasma is a potential tool for medical purposes, e.g. disinfection/sterilization. In order for it to be effective and functional, it is crucial to understand the transport mechanism of chemically reactive species in air as well as in liquid. An atmospheric plasma discharge was produced between a platinum pin electrode and the surface of water. The thermal flow field of a cold atmospheric plasma as well as its chemical components was measured. A gas flow with a velocity of around 15 m s{sup -1} to the water's surface was shown to be induced by the discharge. This air flow induced a circulating flow in the water from the discharge point at the water's surface because of friction. It was also demonstrated that the chemical components generated in air dissolved in water and the properties of the water changed. The reactive species were believed to be distributed mainly by convective transport in water, because the variation in the pH profile indicated by a methyl red solution resembled the induced flow pattern.

  7. Preconditioning of the YSZ-NiO Fuel Cell Anode in Hydrogenous Atmospheres Containing Water Vapor

    Science.gov (United States)

    Vasyliv, Bogdan; Podhurska, Viktoriya; Ostash, Orest

    2017-04-01

    The YSZ-NiO ceramics for solid oxide fuel cells (SOFCs) anode have been investigated. A series of specimens were singly reduced in a hydrogenous atmosphere (Ar-5 vol% H2 mixture) at 600 °C under the pressure of 0.15 MPa or subjected to `reduction in the mixture-oxidation in air' (redox) cycling at 600 °C. The YSZ-Ni cermets formed in both treatment conditions were then aged in `water vapor in Ar-5 vol% H2 mixture' atmosphere at 600 °C under the pressure of 0.15 MPa. Additionally, the behaviour of the as-received material in this atmosphere was studied. It was revealed that small amount of water vapor in Ar-5 vol% H2 mixture (water vapor pressure below 0.03 MPa) does not affect the reduction of the nickel phase in the YSZ-NiO ceramics, but causes some changes in the YSZ-Ni cermet structure. In particular, nanopore growth in tiny Ni particles takes place. At higher concentration of water vapor in the mixture (water vapor pressure above 0.03-0.05 MPa), converse changes in the kinetics of reduction occur. The best physical and mechanical properties were revealed for the material treated by redox cycling after holding at 600 °C in water depleted gas mixture. The dual effect of water vapor on nickel-zirconia anode behaviour is discussed basing on scanning electron microscopy analysis data, material electrical conductivity, and strength.

  8. Approximate analytical solution to diurnal atmospheric boundary-layer growth under well-watered conditions

    Science.gov (United States)

    The system of governing equations of a simplified slab model of the uniformly-mixed, purely convective, diurnal atmospheric boundary layer (ABL) is shown to allow immediate solutions for the potential temperature and specific humidity as functions of the ABL height and net radiation when expressed i...

  9. Increasing Water Temperature Triggers Dominance of Small Freshwater Plankton

    Science.gov (United States)

    Rasconi, Serena; Gall, Andrea; Winter, Katharina; Kainz, Martin J.

    2015-01-01

    Climate change scenarios predict that lake water temperatures will increase up to 4°C and rainfall events will become more intense and frequent by the end of this century. Concurrently, supply of humic substances from terrestrial runoff is expected to increase, resulting in darker watercolor (“brownification”) of aquatic ecosystems. Using a multi-seasonal, low trophic state mesocosm experiment, we investigated how higher water temperature and brownification affect plankton community composition, phenology, and functioning. We tested the hypothesis that higher water temperature (+3°C) and brownification will, a) cause plankton community composition to shift toward small sized phytoplankton and cyanobacteria, and, b) extend the length of the growing season entailing higher phytoplankton production later in the season. We demonstrate that the 3°C increase of water temperature favored the growth of heterotrophic bacteria and small sized autotrophic picophytoplankton cells with significantly higher primary production during warmer fall periods. However, 3X darker water (effect of brownification) caused no significant changes in the plankton community composition or functioning relative to control conditions. Our findings reveal that increased temperature change plankton community structure by favoring smaller sized species proliferation (autotrophic phytoplankton and small size cladocerans), and increase primary productivity and community turnover. Finally, results of this multi-seasonal experiment suggest that warming by 3°C in aquatic ecosystems of low trophic state may cause planktonic food web functioning to become more dominated by fast growing, r-trait species (i.e., small sizes and rapid development). PMID:26461029

  10. Technologies for Upgrading Light Water Reactor Outlet Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Daniel S. Wendt; Piyush Sabharwall; Vivek Utgikar

    2013-07-01

    Nuclear energy could potentially be utilized in hybrid energy systems to produce synthetic fuels and feedstocks from indigenous carbon sources such as coal and biomass. First generation nuclear hybrid energy system (NHES) technology will most likely be based on conventional light water reactors (LWRs). However, these LWRs provide thermal energy at temperatures of approximately 300°C, while the desired temperatures for many chemical processes are much higher. In order to realize the benefits of nuclear hybrid energy systems with the current LWR reactor fleets, selection and development of a complimentary temperature upgrading technology is necessary. This paper provides an initial assessment of technologies that may be well suited toward LWR outlet temperature upgrading for powering elevated temperature industrial and chemical processes during periods of off-peak power demand. Chemical heat transformers (CHTs) are a technology with the potential to meet LWR temperature upgrading requirements for NHESs. CHTs utilize chemical heat of reaction to change the temperature at which selected heat sources supply or consume thermal energy. CHTs could directly utilize LWR heat output without intermediate mechanical or electrical power conversion operations and the associated thermodynamic losses. CHT thermal characteristics are determined by selection of the chemical working pair and operating conditions. This paper discusses the chemical working pairs applicable to LWR outlet temperature upgrading and the CHT operating conditions required for providing process heat in NHES applications.

  11. A STUDY ON LEGIONELLA PNEUMOPHILA, WATER CHEMISTRY, AND ATMOSPHERIC CONDITIONS IN COOLING TOWERS AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.; Brigmon, R.

    2009-10-20

    elevated Legionella concentrations when the dew point temperature was high--a summertime occurrence. However, analysis of the three years of Legionella monitoring data of the 14 different SRS Cooling Towers demonstrated that elevated concentrations are observed at all temperatures and seasons. The objective of this study is to evaluate the ecology of L. pneumophila including serogroups and population densities, chemical, and atmospheric data, on cooling towers at SRS to determine whether relationships exist among water chemistry, and atmospheric conditions. The goal is to more fully understand the conditions which inhibit or encourage L. pneumophila growth and supply this data and associated recommendations to SRS Cooling Tower personnel for improved management of operation. Hopefully this information could then be used to help control L. pneumophila growth more effectively in SRS cooling tower water.

  12. Improving the low temperature dyeability of polyethylene terephthalate fabric with dispersive dyes by atmospheric pressure plasma discharge

    Energy Technology Data Exchange (ETDEWEB)

    Elabid, Amel E.A., E-mail: amelkanzi2014@gmail.com [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); Zhang, Jie; Shi, Jianjun; Guo, Ying; Ding, Ke [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Science, Donghua University, Shanghai 201620 (China); Zhang, Jing, E-mail: jingzh@dhu.cdu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Science, Donghua University, Shanghai 201620 (China)

    2016-07-01

    Graphical abstract: - Highlights: • Atmospheric pressure glow-like plasma with fine and uniform filament discharge has been successfully applied to the low temperature dyeing (95 °C) of PET fabric. • Simultaneously the dye uptake was increased as twice as much and the color strength rate was increased by about 20% for less than 3 min plasma treated PET. • Dyeing mechanism research showed the significance of surface roughing and functional group introduction by this kind of discharge. • Results highlight a novel environmentally friendly dyeing process for one of the largest commodity in polymer fabric. - Abstract: Polyethylene terephthalate (PET) fiber and textile is one of the largest synthetic polymer commodity in the world. The great energy consumption and pollution caused by the high temperature and pressure dyeing of PET fibers and fabrics with disperse dyes has been caused concern these years. In this study, an atmospheric pressure plasma with fine and uniform filament discharge operated at 20 kHz has been used to improve the low temperature dyeability of PET fabric at 95 °C with three cation disperse dyes: Red 73, Blue 183 and Yellow 211. The dyes uptake percentage of the treated PET fabrics was observed to increase as twice as much of untreated fabric. The color strength rate was increased more than 20%. The reducing of the water contact angle and the raising of the capillary height of treated PET fabric strip indicate its hydrophilicity improvement. Scanning electron microscope (SEM) results display nano to micro size of etching pits appeared uniformly on the fiber surface of the treated PET. Simultaneously, X-ray photoelectron spectroscopy (XPS) analysis indicates an increase of the oxygen content in the surface caused by the introduction of polar groups such as C=O and COOH. The rough surface with improved polar oxygen groups showed hydrophilicity and affinity to C.I. dispersive dyes and is believed to be caused by the strong and very fine

  13. High temperature gradient nanogap-Pirani micro-sensor with maximum sensitivity around atmospheric pressure

    Science.gov (United States)

    Ghouila-Houri, C.; Talbi, A.; Viard, R.; Moutaouekkil, M.; Elmazria, O.; Gallas, Q.; Garnier, E.; Merlen, A.; Pernod, P.

    2017-09-01

    This letter describes and discusses the design and testing of an efficient nanogap Pirani micro-sensor for pressure measurements in a wide range with a maximum sensitivity around atmospheric pressure. The structure combines a substrate-free heated wire and a mechanical support made of silicon oxide micro-bridges allowing both a constant nanoscale gap between the wire and the substrate and a 1 mm long and 3 μm wide wire. The high aspect ratio of the wire provides a uniform heating profile along the wire and contributes to low pressure detection. On the contrary, both the nanoscale gap and the short wire length between two micro-bridges contribute to shift the high limit of the pressure range. When tested between 10 kPa and 800 kPa, the sensor presents a wide measurement range, not fully reached by the experiments, with a maximum of sensitivity close to the atmospheric pressure and performances with up to 38%/dec sensitivity when operating in a constant temperature mode with an overheat of 20 °C.

  14. Trace hydrogen in helium atmosphere white dwarfs as a possible signature of water accretion

    Science.gov (United States)

    Gentile Fusillo, Nicola Pietro; Gänsicke, Boris T.; Farihi, Jay; Koester, Detlev; Schreiber, Matthias R.; Pala, Anna F.

    2017-06-01

    A handful of white dwarfs with helium-dominated atmospheres contain exceptionally large masses of hydrogen in their convection zones, with the metal-polluted white dwarf GD 16 being one of the earliest recognized examples. We report the discovery of a similar star: the white dwarf coincidentally named GD 17. We obtained medium-resolution spectroscopy of both GD 16 and GD 17 and calculated abundances and accretion rates of photospheric H, Mg, Ca, Ti, Fe and Ni. The metal abundance ratios indicate that the two stars recently accreted debris, which is Mg-poor compared to the composition of bulk Earth. However, unlike the metal pollutants, H never diffuses out of the atmosphere of white dwarfs and we propose that the exceptionally high atmospheric H content of GD 16 and GD 17 (2.2 × 1024 and 2.9 × 1024 g, respectively) could result from previous accretion of water bearing planetesimals. Comparing the detection of trace H and metal pollution among 729 helium atmosphere white dwarfs, we find that the presence of H is nearly twice as common in metal-polluted white dwarfs compared to their metal-free counterparts. This highly significant correlation indicates that, over the cooling age of the white dwarfs, at least some fraction of the H detected in many He atmospheres (including GD 16 and GD 17) is accreted alongside metal pollutants, where the most plausible source is water. In this scenario, water must be common in systems with rocky planetesimals.

  15. Detection of carbon monoxide and water absorption lines in an exoplanet atmosphere.

    Science.gov (United States)

    Konopacky, Quinn M; Barman, Travis S; Macintosh, Bruce A; Marois, Christian

    2013-03-22

    Determining the atmospheric structure and chemical composition of an exoplanet remains a formidable goal. Fortunately, advancements in the study of exoplanets and their atmospheres have come in the form of direct imaging--spatially resolving the planet from its parent star--which enables high-resolution spectroscopy of self-luminous planets in jovian-like orbits. Here, we present a spectrum with numerous, well-resolved molecular lines from both water and carbon monoxide from a massive planet orbiting less than 40 astronomical units from the star HR 8799. These data reveal the planet's chemical composition, atmospheric structure, and surface gravity, confirming that it is indeed a young planet. The spectral lines suggest an atmospheric carbon-to-oxygen ratio that is greater than that of the host star, providing hints about the planet's formation.

  16. The Temperature of the Dimethylhydrazine Drops Moving in the Atmosphere after Depressurization of the Fuel Tank Rockets

    Directory of Open Access Journals (Sweden)

    Bulba Elena

    2016-01-01

    Full Text Available This work includes the results of the numerical modeling of temperature changes process of the dimethylhydrazine (DMH drops, taking into account the radial temperature gradient in the air after the depressurization of the fuel compartments rockets at high altitude. There is formulated a mathematical model describing the process of DMH drops thermal state modifying when it's moving to the Earth's surface. There is the evaluation of the influence of the characteristic size of heptyl drops on the temperature distribution. It's established that the temperatures of the small size droplets practically completely coincide with the distribution of temperature in the atmosphere at altitudes of up to 40 kilometers.

  17. Simulating future water temperatures in the North Santiam River, Oregon

    Science.gov (United States)

    Buccola, Norman; Risley, John C.; Rounds, Stewart A.

    2016-01-01

    A previously calibrated two-dimensional hydrodynamic and water-quality model (CE-QUAL-W2) of Detroit Lake in western Oregon was used in conjunction with inflows derived from Precipitation-Runoff Modeling System (PRMS) hydrologic models to examine in-lake and downstream water temperature effects under future climate conditions. Current and hypothetical operations and structures at Detroit Dam were imposed on boundary conditions derived from downscaled General Circulation Models in base (1990–1999) and future (2059–2068) periods. Compared with the base period, future air temperatures were about 2 °C warmer year-round. Higher air temperature and lower precipitation under the future period resulted in a 23% reduction in mean annual PRMS-simulated discharge and a 1 °C increase in mean annual estimated stream temperatures flowing into the lake compared to the base period. Simulations incorporating current operational rules and minimum release rates at Detroit Dam to support downstream habitat, irrigation, and water supply during key times of year resulted in lower future lake levels. That scenario results in a lake level that is above the dam’s spillway crest only about half as many days in the future compared to historical frequencies. Managing temperature downstream of Detroit Dam depends on the ability to blend warmer water from the lake’s surface with cooler water from deep in the lake, and the spillway is an important release point near the lake’s surface. Annual average in-lake and release temperatures from Detroit Lake warmed 1.1 °C and 1.5 °C from base to future periods under present-day dam operational rules and fill schedules. Simulated dam operations such as beginning refill of the lake 30 days earlier or reducing minimum release rates (to keep more water in the lake to retain the use of the spillway) mitigated future warming to 0.4 and 0.9 °C below existing operational scenarios during the critical autumn spawning period for endangered

  18. The Evolution of Water in Martian Atmosphere, Hydrosphere, and Cryosphere: Insights from Hydrogen Isotopes

    Science.gov (United States)

    Usui, T.; Kurokawa, H.; Alexander, C.; Simon, J. I.; Wang, J.; Jones, J. H.

    2016-12-01

    Mars exploration missions provide compelling evidence for the presence of liquid water during the earliest geologic era (Noachian: > 3.9 Ga) of Mars. The amount and stability of liquid water on the surface is strongly influenced by the composition and pressure of the atmosphere. However, the evolution of Noachian atmosphere has been poorly constrained due to uncertainties of atmospheric loss regimes and internal/external factors such as impact flux and volcanic degassing. We can trace the evolution of the early Martian atmosphere and its interaction with the hydrosphere and cryosphere with hydrogen isotope ratios (D/H) because they fractionate during atmospheric escape and during hydrological cycling between the atmosphere, surface waters, and the polar ice caps. This study reports D/H ratios of primordial and 4 Ga-old atmosphere by ion microprobe analyses of Martian meteorites. Analyses of olivine-hosted glass inclusions in the most primitive shergottite (Yamato 980459) provide a near-chondritic D/H ratio (1.3×SMOW) for the 4.5 Ga primordial water preserved in the mantle. On the other hand, carbonates in Allan Hills 84001 provide a D/H range (1.5-2.0×SMOW) for the Noachian surface water that was isotopically equilibrated with the 4 Ga atmosphere. The latter observation requires that even after the Noachian period the hydrogen isotopes were fractionated significantly to reach the present-day value of 6×SMOW. Using the one-reservoir model of Kurokawa et al. (2014) we can provide minimum estimates on the amounts of hydrogen loss before and after 4 Ga based on the D/H data from the meteorites (1.3×SMOW at 4.5 Ga and 1.5-2.0×SMOW at 4 Ga) assuming the volume of polar surface-ice (20-30 m global equivalent layers, GEL). The model indicates that the hydrogen loss during the first 0.5 billion years (16-54 m GEL) was comparable to those (42-93 mGEL) in the remaining Martian history. These values are distinctly lower than the geological estimates on the volumes of

  19. Studying water in the soil-plant-atmosphere continuum: a bibliographic guide to techniques

    CSIR Research Space (South Africa)

    Scholes, RJ

    1989-01-01

    Full Text Available The parameters used to describe the flow of water, and energy to a lesser extent, through the soil-plant-atmosphere continuum are reviewed and the techniques used for estimating their values contrasted. The measurements which are necessary...

  20. Conversion function between the Linke turbidity and the atmospheric water vapor and aerosol content

    OpenAIRE

    Ineichen, Pierre

    2008-01-01

    This technical note presents a conversion function between the widely used Linke turbidity coefficient TL, the atmospheric water vapor and urban aerosol content. It takes into account the altitude of the application site. The function is based on radiative transfer calculations and validated with the help of an independent clear sky model. Its precision is around 0.12 units of TL.

  1. A ~0.1 bar Rule for Tropopause Temperature Minima in Thick Atmospheres of Planets and Large Moons

    Science.gov (United States)

    Robinson, T. D.; Catling, D. C.

    2013-12-01

    Tropopause temperature minima are fundamental for understanding planetary atmospheric structure. A number of shortwave absorbers (e.g., ozone, organic hazes) produce temperature inversions in the stratospheres of Earth, Jupiter, Saturn, Titan, Uranus and Neptune. These inversions lead to temperature minima that, remarkably, all occur near 0.1 bar, despite very different insolation, atmospheric composition, gravity, and internal heat flux. We examined the atmospheric thermal structure of solar system worlds with thick atmospheres using an analytic 1-D radiative-convective model, which assumes gray thermal radiative transfer. Shortwave radiative transfer is divided into a stratospheric channel, which allows for inversions, and a tropospheric channel for solar heating at depth and at the surface. We assume that a convective profile, which is adjusted to account for condensation, sits below the portion of the atmosphere that is in radiative equilibrium. The model ensures that the temperature and upwelling thermal flux are continuous across the radiative-convective boundary. Finally, the model uses a power-law scaling between the gray infrared optical depth and pressure, which is physically justified for tropospheres and lower stratospheres where opacity is dominated by collision-induced absorption and/or strong pressure broadening. For the worlds of the solar system, the tropopause temperature minimum always lies above the radiative-convective boundary. Thus, the shared 0.1 bar tropopause arises from the common physics of infrared radiative transfer. Model fits to solar system worlds show that the gray infrared optical depth where the tropopause minimum occurs is ~0.1. Furthermore, the gray infrared optical depths at a pressure of 1 bar are typically of order a few. These, along with the aforementioned scaling between pressure and infrared optical depth, set the tropopause pressure to be near 0.1 bar. Moving beyond the solar system, we show that the typical gray

  2. Study on the method of maintaining bathtub water temperature

    Science.gov (United States)

    Wang, Xiaoyan

    2017-05-01

    In order to make the water temperature constant and the spillage to its minimum, we use finite element method and grid transformation and have established an optimized model for people in the bathtub both in time and space, which is based on theories of heat convection and heat conduction and three-dimensional second-order equation. For the first question, we have worked out partial differential equations for three-dimensional heat convection. In the meantime, we also create an optimized temperature model in time and space by using initial conditions and boundary conditions. For the second question we have simulated the shape and volume of the tub and the human gestures in the tub based on the first question. As for the shape and volume of the tub, we draw conclusion that the tub whose surface area is little contains water with higher temperature. Thus, when we are designing bathtubs we can decrease the area so that we'll have less loss heat. For different gestures when people are bathing, we have found that gestures have no obvious influence on variations of water temperature. Finally, we did some simulating calculations, and did some analysis on precision and sensitivity

  3. THE ROLE OF AQUEOUS THIN FILM EVAPORATIVE COOLING ON RATES OF ELEMENTAL MERCURY AIR-WATER EXCHANGE UNDER TEMPERATURE DISEQUILIBRIUM CONDITIONS

    Science.gov (United States)

    The technical conununity has only recently addressed the role of atmospheric temperature variations on rates of air-water vapor phase toxicant exchange. The technical literature has documented that: 1) day time rates of elemental mercury vapor phase air-water exchange can exceed ...

  4. Achieving low return temperature for domestic hot water preparation by ultra-low-temperature district heating

    DEFF Research Database (Denmark)

    Yang, Xiaochen; Svendsen, Svend

    2017-01-01

    to achieve high efficiency of the ULTDH system, the return temperature should be as low as possible. For the energy-efficient buildings in the future, it is feasible to use ULTDH to cover the space heating demand. However, considering the comfort and hygiene requirements of domestic hot water (DHW...

  5. Validation of Atmospheric Water Vapor Derived from Ship-Borne GPS Measurements in the Chinese Bohai Sea

    Directory of Open Access Journals (Sweden)

    Shi-Jie Fan

    2016-04-01

    Full Text Available Atmospheric water vapor (AWV was investigated for the first time in the Chinese Bohai Sea using a Global Positioning System (GPS receiver aboard a lightweight (300-ton ship. An experiment was conducted to retrieve the AWV using the state-of-the-art GPS precise point positioning (PPP technique. The effects of atmospheric weighted mean temperature model and zenith wet delay constraint on GPS AWV estimates were discussed in the PPP estimation system. The GPS-derived precipitable water vapor (PWV and slant-path water vapor (SWV were assessed by comparing with those derived from the Fifth Generation NCAR/Penn State Mesoscale Model (MM5. The results showed the PWV and SWV differences between those derived from both GPS and MM5 are 1.5 mm root mean square (RMS with a bias of 0.2 and 3.9 mm RMS with a bias of -0.7 mm respectively. These good agreements indicate that the GPS-derived AWV in dynamic environments has a comparable accuracy with that of the MM5 model. This suggests that high accuracy and high spatio-temporal resolution humidity fields can be obtained using GPS in the Chinese Bohai Sea, which offers significant potential for meteorological applications and climate studies in this region.

  6. CFCI3 (CFC-11): UV Absorption Spectrum Temperature Dependence Measurements and the Impact on Atmospheric Lifetime and Uncertainty

    Science.gov (United States)

    Mcgillen, Max R.; Fleming, Eric L.; Jackman, Charles H.; Burkholder, James B.

    2014-01-01

    CFCl3 (CFC-11) is both an atmospheric ozone-depleting and potent greenhouse gas that is removed primarily via stratospheric UV photolysis. Uncertainty in the temperature dependence of its UV absorption spectrum is a significant contributing factor to the overall uncertainty in its global lifetime and, thus, model calculations of stratospheric ozone recovery and climate change. In this work, the CFC-11 UV absorption spectrum was measured over a range of wavelength (184.95 - 230 nm) and temperature (216 - 296 K). We report a spectrum temperature dependence that is less than currently recommended for use in atmospheric models. The impact on its atmospheric lifetime was quantified using a 2-D model and the spectrum parameterization developed in this work. The obtained global annually averaged lifetime was 58.1 +- 0.7 years (2 sigma uncertainty due solely to the spectrum uncertainty). The lifetime is slightly reduced and the uncertainty significantly reduced from that obtained using current spectrum recommendations

  7. Stratospheric evolution of temperature and different atmospheric trace gases during winters at the NDACC Alpine mid-latitude station at Bern

    Science.gov (United States)

    Navas-Guzmán, Francisco; Moreira, Lorena; Lainer, Martin; Schranz, Franziska; Hocke, Klemens; Kämpfer, Niklaus

    2017-04-01

    The Earth's climate is sensitive to changes in temperature and trace gas concentrations in the stratosphere region. There is a wealth of possible sources of natural variability of these atmospheric properties in the stratosphere. The concentration of species as ozone and water vapour can vary as a result of different factors, some interacting among themselves through their effects on chemistry and transport. For example, phenomena originally tropical such as the quasi-biennial oscillation (QBO) and El Niño-Southern Oscillation (ENSO) can lead to wave structures and wave propagation in mid-latitudes. This can affect the zonal mean meridional transport of trace gases from the tropics to mid-latitudes and polar latitudes in the stratosphere and also produce variations in the strength of the polar winter vortices and stratospheric warming events. Wintertime is specially an interesting period in which the variability in atmospheric parameters and composition is large. Strong changes in temperature and in the concentration of trace gases as ozone or water vapour can be observed in a very short time interval, and therefore measurements with a high temporal resolution are needed. The present study shows the capability of ground-based microwave technique to monitor with a relatively good spatial and temporal resolution the stratospheric composition and temperature during complex phenomena occurring in winter. In this way, the evolution of stratospheric temperature, ozone and water vapour profiles during the last winters over Bern (Switzerland) are analyzed. The measurements were performed by three microwave radiometers (TEMPERA for temperature, GROMOS for ozone and MIAWARA for water vapour) which have been designed and built at the University of Bern. The measurement at a fixed location allows to observe local atmospheric dynamics over a long-time period, which is crucial for climate research. The detection of some singular sudden stratospheric warming (SSW) during the

  8. Maximum Evaporation Rates of Water Droplets Approaching Obstacles in the Atmosphere Under Icing Conditions

    Science.gov (United States)

    Lowell, H. H.

    1953-01-01

    When a closed body or a duct envelope moves through the atmosphere, air pressure and temperature rises occur ahead of the body or, under ram conditions, within the duct. If cloud water droplets are encountered, droplet evaporation will result because of the air-temperature rise and the relative velocity between the droplet and stagnating air. It is shown that the solution of the steady-state psychrometric equation provides evaporation rates which are the maximum possible when droplets are entrained in air moving along stagnation lines under such conditions. Calculations are made for a wide variety of water droplet diameters, ambient conditions, and flight Mach numbers. Droplet diameter, body size, and Mach number effects are found to predominate, whereas wide variation in ambient conditions are of relatively small significance in the determination of evaporation rates. The results are essentially exact for the case of movement of droplets having diameters smaller than about 30 microns along relatively long ducts (length at least several feet) or toward large obstacles (wings), since disequilibrium effects are then of little significance. Mass losses in the case of movement within ducts will often be significant fractions (one-fifth to one-half) of original droplet masses, while very small droplets within ducts will often disappear even though the entraining air is not fully stagnated. Wing-approach evaporation losses will usually be of the order of several percent of original droplet masses. Two numerical examples are given of the determination of local evaporation rates and total mass losses in cases involving cloud droplets approaching circular cylinders along stagnation lines. The cylinders chosen were of 3.95-inch (10.0+ cm) diameter and 39.5-inch 100+ cm) diameter. The smaller is representative of icing-rate measurement cylinders, while with the larger will be associated an air-flow field similar to that ahead of an airfoil having a leading-edge radius

  9. Water relations and gas exchange in poplar and willow under water stress and elevated atmospheric CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.D. [Washington State Univ., Intensive Forestry Program, Puyallup, WA (United States); Tognetti, R. [Universita del Molize, Dipartimento de Scienze Animali, Vegetali e dell' Ambiente, Compobasso (Italy); Pris, P. [Consiglio Nazionale delle Ricerche, Instituto per l' Agroselvicoltura, Porano (Italy)

    2002-05-01

    Predictions of shifts in rainfall patterns as atmospheric [CO{sub 2}] increases could impact the growth of fast growing trees such as Populus spp. and Salix spp. and the interaction between elevated CO{sub 2} and water stress in these species is unknown. The objectives of this study were to characterize the responses to elevated CO{sub 2} and water stress in these two species, and to determine if elevated CO{sub 2} mitigated drought stress effects. Gas exchange, water potential components, whole plant transpiration and growth response to soil drying and recovery were assessed in hybrid poplar (clone 53-246) and willow (Salix sagitta) rooted cuttings growing in either ambient (350 {mu}mol mol{sup -1}) or elevated (700 {mu}mol mol{sup -1}) atmospheric CO{sub 2} concentration ([CO{sub 2}]). Predawn water potential decreased with increasing water stress while midday water potentials remained unchanged (isohydric response). Turgor potentials at both predawn and midday increased in elevated [CO{sub 2}], indicative of osmotic adjustment. Gas exchange was reduced by water stress while elevated [CO{sub 2}] increased photosynthetic rates, reduced leaf conductance and nearly doubled instantaneous transpiration efficiency in both species. Dark respiration decreased in elevated [CO{sub 2}] and water stress reduced Rd in the trees growing in ambient [CO{sub 2}]. Willow had 56% lower whole plant hydraulic conductivity than poplar, and showed a 14% increase in elevated [CO{sub 2}] while poplar was unresponsive. The physiological responses exhibited by poplar and willow to elevated [CO{sub 2}] and water stress, singly, suggest that these species respond like other tree species. The interaction Of [CO{sub 2}] and water stress suggests that elevated [CO{sub 2}] did mitigate the effects of water stress in willow, but not in poplar. (au)

  10. Precipitation recycling in West Africa - regional modeling, evaporation tagging and atmospheric water budget analysis

    Science.gov (United States)

    Arnault, Joel; Kunstmann, Harald; Knoche, Hans-Richard

    2015-04-01

    Many numerical studies have shown that the West African monsoon is highly sensitive to the state of the land surface. It is however questionable to which extend a local change of land surface properties would affect the local climate, especially with respect to precipitation. This issue is traditionally addressed with the concept of precipitation recycling, defined as the contribution of local surface evaporation to local precipitation. For this study the West African monsoon has been simulated with the Weather Research and Forecasting (WRF) model using explicit convection, for the domain (1°S-21°N, 18°W-14°E) at a spatial resolution of 10 km, for the period January-October 2013, and using ERA-Interim reanalyses as driving data. This WRF configuration has been selected for its ability to simulate monthly precipitation amounts and daily histograms close to TRMM (Tropical Rainfall Measuring Mission) data. In order to investigate precipitation recycling in this WRF simulation, surface evaporation tagging has been implemented in the WRF source code as well as the budget of total and tagged atmospheric water. Surface evaporation tagging consists in duplicating all water species and the respective prognostic equations in the source code. Then, tagged water species are set to zero at the lateral boundaries of the simulated domain (no inflow of tagged water vapor), and tagged surface evaporation is considered only in a specified region. All the source terms of the prognostic equations of total and tagged water species are finally saved in the outputs for the budget analysis. This allows quantifying the respective contribution of total and tagged atmospheric water to atmospheric precipitation processes. The WRF simulation with surface evaporation tagging and budgets has been conducted two times, first with a 100 km2 tagged region (11-12°N, 1-2°W), and second with a 1000 km2 tagged region (7-16°N, 6°W -3°E). In this presentation we will investigate hydro-atmospheric

  11. Assessment of a Technique for Estimating Total Column Water Vapor Using Measurements of the Infrared Sky Temperature

    Science.gov (United States)

    Merceret, Francis J.; Huddleston, Lisa L.

    2014-01-01

    A method for estimating the integrated precipitable water (IPW) content of the atmosphere using measurements of indicated infrared zenith sky temperature was validated over east-central Florida. The method uses inexpensive, commercial off the shelf, hand-held infrared thermometers (IRT). Two such IRTs were obtained from a commercial vendor, calibrated against several laboratory reference sources at KSC, and used to make IR zenith sky temperature measurements in the vicinity of KSC and Cape Canaveral Air Force Station (CCAFS). The calibration and comparison data showed that these inexpensive IRTs provided reliable, stable IR temperature measurements that were well correlated with the NOAA IPW observations.

  12. Long-term variability of iron supply, marine export production, and sea surface temperature in the subantarctic Atlantic, implications for atmospheric CO2

    Science.gov (United States)

    Martinez-Garcia, A.; Rosell-Mele, A.; Geibert, W.; Gersonde, R.; Masque, P.; Gaspari, V.; Barbante, C.

    2008-12-01

    Paleoclimatic reconstructions have provided a unique dataset to test the sensitivity of climate system to changes in atmospheric CO2 concentrations. However, the mechanisms behind glacial/interglacial (G/IG) variations in atmospheric CO2 concentrations observed in the Antarctic ice cores over the last 800 ky are still not completely understood. Here we present a multiproxy dataset of sea surface temperatures (SST), dust and iron supply, and marine export production, from the marine sediment core PS2489-2/ODP Site 1090 located in the subantarctic Atlantic (SA). This dataset allows us to evaluate various hypotheses focussing on the role of the Southern Ocean (SO) in modulating atmospheric CO2 over the last 800ky, and provides new information on SST, dust, and export production back to the Pliocene. The close correlation observed between iron inputs and marine export production in our record suggests that the process of iron fertilization has been a recurrent process operating in the SA over the G/IG cycles of the last 1.1 My. However, our data indicates that marine productivity in the present Subantarctic Zone can only explain a fraction of atmospheric CO2 changes occurring at glacial maxima in each glacial stage. Moreover, the good correlation of our SST to the EPICA Dome C records (EDC) temperature reconstruction over the last 800ka, suggest that physical processes, possibly related to changes in Antarctic sea-ice extent, surface water stratification and westerly winds position have also played an important role in modulating atmospheric CO2 over the last 800ky. On the long-term, our paleo-SST record reveals a major cooling event around 1.2-1.5 Ma that may have caused a profound impact on atmospheric CO2 and hence in the transition to a 100 kyr world during the Middle Pleistocene Climatic Transition.

  13. Density distributions of OH, Na, water vapor, and water mist in atmospheric-pressure dc helium glow plasmas in contact with NaCl solution

    Science.gov (United States)

    Sasaki, Koichi; Ishigame, Hiroaki; Nishiyama, Shusuke

    2015-07-01

    This paper reports the density distributions of OH, Na, water vapor and water mist in atmospheric-pressure dc helium glow plasmas in contact with NaCl solution. The densities of OH, Na and H2O had different spatial distributions, while the Na density had a similar distribution to mist, suggesting that mist is the source of Na in the gas phase. When the flow rate of helium toward the electrolyte surface was increased, the distributions of all the species densities concentrated in the neighboring region to the electrolyte surface more significantly. The densities of all the species were sensitive to the electric polarity of the power supply. In particular, we never detected Na and mist when the electrolyte worked as the anode of the dc discharge. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  14. Monitoring and modeling water temperature and trophic status of a shallow Mediterranean lake

    Science.gov (United States)

    Giadrossich, Filippo; Bueche, Thomas; Pulina, Silvia; Marrosu, Roberto; Padedda, Bachisio Mario; Mariani, Maria Antonietta; Vetter, Mark; Cohen, Denis; Pirastru, Mario; Niedda, Marcello; Lugliè, Antonella

    2017-04-01

    Lakes are sensitive to changes in climate and human activities. Over the last few decades, Mediterranean lakes have experienced various problems due to the current climate change (drought, flood, warming, salt accumulation, water quality changes, etc.), often amplified by water use, intensification of land use activities, and pollution. The overall impact of these changes on water resources is still an open question. In this study we monitor the trophic status and the dynamics of water temperature of Lake Baratz, the only natural lake in Sardinia, Italy, characterized by high salinity and shallow depth. We extend the research carried out in the past 8 years by integrating new physical, chemical and biological data using a multidisciplinary approach that combines hydrological and biological dynamics. In particular, the lake water balance and the thermal and hydrochemical regime are studied with a lake dynamic model (the General Lake Model or GLM) which combine the energy budget method for estimating lake evaporation, and a physically-based rainfall-runoff simulator for estimating lake inflow, calibrated with measurements at the cross section of the main inlet stream. The trophic state of the lake was evaluated applying the OCDE Probability Distribution Diagrams method, which requires nutrient concentrations in the lake (total phosphorus), phytoplankton chlorophyll a and Secchi disk transparency data. We collected field data from a raft station and a land station, measuring net solar radiation, air temperature and relative humidity, precipitation, wind velocity, atmospheric pressure, and temperature from thermistors submerged in the uppermost three centimeters of water and beneath the lake surface at depths of 1, 2, 3, 4, 5, 6, and 8 m. Samples for nutrients and chlorophyll a analyses were collected at the same above mentioned depths close to the raft station using a Niskin bottle. Temperature, salinity, pH, and dissolved oxygen were measured using a multi

  15. Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling

    Energy Technology Data Exchange (ETDEWEB)

    Boone, Eric J.; Laskin, Alexander; Laskin, Julia; Wirth, Christopher; Shepson, Paul B.; Stirm, Brian H.; Pratt, Kerri A.

    2015-07-21

    Cloud water and below-cloud atmospheric particle samples were collected onboard a research aircraft during the Southern Oxidant and Aerosol Study (SOAS) over a forested region of Alabama in June 2013. The organic molecular composition of the samples was studied to gain insights into the aqueous-phase processing of organic compounds within cloud droplets. High resolution mass spectrometry with nanospray desorption electrospray ionization and direct infusion electrospray ionization were utilized to compare the organic composition of the particle and cloud water samples, respectively. Isoprene and monoterpene-derived organosulfates and oligomers were identified in both the particles and cloud water, showing the significant influence of biogenic volatile organic compound oxidation above the forested region. While the average O:C ratios of the organic compounds were similar between the atmospheric particle and cloud water samples, the chemical composition of these samples was quite different. Specifically, hydrolysis of organosulfates and formation of nitrogen-containing compounds were observed for the cloud water when compared to the atmospheric particle samples, demonstrating that cloud processing changes the composition of organic aerosol.

  16. Effects of cold atmospheric plasma generated in DI water on Cancer cells

    CERN Document Server

    Chen, Zhitong; Cheng, Xiaoqian; Gjika, Eda; Keidar, Michael

    2016-01-01

    Cold atmospheric plasma (CAP) has been shown to affect cells not only directly, but also by means of indirect treatment with previously prepared plasma stimulated solution. The objective of this study is to reveal the effects of plasma-stimulated media (PSM) on breast cancer cells (MDA-MB-231) and gastric cancer cells (NCl-N87). In our experiments, cold atmospheric plasma is generated in water using helium as carrier gas. The plasma generated in DI water during a 30-minute treatment had the strongest affect in inducing apoptosis in cultured human breast and gastric cancer cells. This result can be attributed to the presence of reactive oxygen species (ROS) and reactive nitrogen species (RNS) produced in water during treatment.

  17. Alexandrite lidar for the atmospheric water vapor detection and development of powerful tunable sources in IR

    Science.gov (United States)

    Uchiumi, M.; Maeda, M.; Muraoka, K.; Uchino, O.

    1992-01-01

    New tunable solid-state lasers, such as alexandrite and Ti-sapphire lasers, provide a powerful technique to detect various molecules in the atmosphere whose absorption bands are in the infrared region. The differential absorption lidar (DIAL) system to measure the tropospheric water vapor has been investigated by many authors, in an early stage, by dye and ruby lasers. Using the alpha band of water vapor, the longest detection range can be obtained with high accuracy, and the alexandrite laser is the most suitable laser for this purpose. In this paper, we describe the detection of water vapor in the atmosphere by an alexandrite lidar, and the development of powerful tunable sources based on Raman lasers in the infrared region.

  18. Carbon Dioxide Mediates the Response to Temperature and Water Activity Levels in Aspergillus flavus during Infection of Maize Kernels

    Directory of Open Access Journals (Sweden)

    Matthew K. Gilbert

    2017-12-01

    Full Text Available Aspergillus flavus is a saprophytic fungus that may colonize several important crops, including cotton, maize, peanuts and tree nuts. Concomitant with A. flavus colonization is its potential to secrete mycotoxins, of which the most prominent is aflatoxin. Temperature, water activity (aw and carbon dioxide (CO2 are three environmental factors shown to influence the fungus-plant interaction, which are predicted to undergo significant changes in the next century. In this study, we used RNA sequencing to better understand the transcriptomic response of the fungus to aw, temperature, and elevated CO2 levels. We demonstrate that aflatoxin (AFB1 production on maize grain was altered by water availability, temperature and CO2. RNA-Sequencing data indicated that several genes, and in particular those involved in the biosynthesis of secondary metabolites, exhibit different responses to water availability or temperature stress depending on the atmospheric CO2 content. Other gene categories affected by CO2 levels alone (350 ppm vs. 1000 ppm at 30 °C/0.99 aw, included amino acid metabolism and folate biosynthesis. Finally, we identified two gene networks significantly influenced by changes in CO2 levels that contain several genes related to cellular replication and transcription. These results demonstrate that changes in atmospheric CO2 under climate change scenarios greatly influences the response of A. flavus to water and temperature when colonizing maize grain.

  19. Marine sediment tolerances for remote sensing of atmospheric aerosols over water

    Science.gov (United States)

    Whitlock, C. H.

    1982-01-01

    In surveying the literature, it is pointed out that there is a need to quantify the turbidity below which reflectance from the water column is negligible in comparison with atmospheric effects to allow the monitoring of aerosol optical depth over water bodies. Data that partially satisfy this need are presented. Laboratory measurements of reflectance upwelled from the water column are given for mixtures with various types of sediment at wavelengths between 400 and 1600 nm. The results of the study described here are a quantitative endorsement of the recommendations of Morell and Gordon (1980).

  20. Carbon dioxide, temperature, salinity, and atmospheric pressure from surface underway survey in the North Pacific from January 1998 to January 2004 (NODC Accession 0045502)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea surface pCO2, sea surface temperature, sea surface salinity, and atmospheric pressure measurements collected in the North Pacific as part of the NOAA Office of...

  1. Influence of Last Glacial Maximum boundary conditions on the global water isotope distribution in an atmospheric general circulation model

    Directory of Open Access Journals (Sweden)

    T. Tharammal

    2013-03-01

    Full Text Available To understand the validity of δ18O proxy records as indicators of past temperature change, a series of experiments was conducted using an atmospheric general circulation model fitted with water isotope tracers (Community Atmosphere Model version 3.0, IsoCAM. A pre-industrial simulation was performed as the control experiment, as well as a simulation with all the boundary conditions set to Last Glacial Maximum (LGM values. Results from the pre-industrial and LGM simulations were compared to experiments in which the influence of individual boundary conditions (greenhouse gases, ice sheet albedo and topography, sea surface temperature (SST, and orbital parameters were changed each at a time to assess their individual impact. The experiments were designed in order to analyze the spatial variations of the oxygen isotopic composition of precipitation (δ18Oprecip in response to individual climate factors. The change in topography (due to the change in land ice cover played a significant role in reducing the surface temperature and δ18Oprecip over North America. Exposed shelf areas and the ice sheet albedo reduced the Northern Hemisphere surface temperature and δ18Oprecip further. A global mean cooling of 4.1 °C was simulated with combined LGM boundary conditions compared to the control simulation, which was in agreement with previous experiments using the fully coupled Community Climate System Model (CCSM3. Large reductions in δ18Oprecip over the LGM ice sheets were strongly linked to the temperature decrease over them. The SST and ice sheet topography changes were responsible for most of the changes in the climate and hence the δ18Oprecip distribution among the simulations.

  2. Temperature Effect on the Nanostructure of SDS Micelles in Water.

    Science.gov (United States)

    Hammouda, Boualem

    2013-01-01

    Sodium dodecyl sulfate (SDS) surfactants form micelles when dissolved in water. These are formed of a hydrocarbon core and hydrophilic ionic surface. The small-angle neutron scattering (SANS) technique was used with deuterated water (D2O) in order to characterize the micelle structure. Micelles were found to be slightly compressed (oblate ellipsoids) and their sizes shrink with increasing temperature. Fits of SANS data to the Mean Spherical Approximation (MSA) model yielded a calculated micelle volume fraction which was lower than the SDS surfactant (sample mixing) volume fraction; this suggests that part of the SDS molecules do not participate in micelle formation and remain homogeneously mixed in the solvent. A set of material balance equations allowed the estimation of the SDS fraction in the micelles. This fraction was found to be high (close to one) except for samples around 1 % SDS fraction. The micelle aggregation number was found to decrease with increasing temperature and/or decreasing SDS fraction.

  3. The “Puzzle” of Water Behavior at Low Temperature

    Directory of Open Access Journals (Sweden)

    José Teixeira

    2010-09-01

    Full Text Available Thermodynamic and transport properties of liquid water are not fully understood despite a large amount of research work both experimental and theoretical. The maximum of density and the enhanced anomalies observed at low temperatures are at the origin of several models that, in some cases, predict specific and unique behavior such as spinodal lines or critical points. We show that a careful analysis of the neutron quasi-elastic scattering data, both the incoherent spectra and the dynamic of the partials, is compatible with a polymer-like model, where the hydrogen bond dynamics explains the behavior of water in the non-accessible temperature region extending from −30° C to the glass transition.

  4. The role of atmospheric internal variability on the prediction skill of interannual North Pacific sea-surface temperatures

    Science.gov (United States)

    Narapusetty, Balachandrudu

    2017-06-01

    The sensitivity of the sea-surface temperature (SST) prediction skill to the atmospheric internal variability (weather noise) in the North Pacific (20∘-60∘N;120∘E-80∘W) on decadal timescales is examined using state-of-the-art Climate Forecasting System model version 2 (CFS) and a variation of CFS in an Interactive Ensemble approach (CFSIE), wherein six copies of atmospheric components with different perturbed initial states of CFS are coupled with the same ocean model by exchanging heat, momentum and fresh water fluxes dynamically at the air-sea interface throughout the model integrations. The CFSIE experiments are designed to reduce weather noise and using a few ten-year long forecasts this study shows that reduction in weather noise leads to lower SST forecast skill. To understand the pathways that cause the reduced SST prediction skill, two twenty-year long forecasts produced with CFS and CFSIE for 1980-2000 are analyzed for the ocean subsurface characteristics that influence SST due to the reduction in weather noise in the North Pacific. The heat budget analysis in the oceanic mixed layer across the North Pacific reveals that weather noise significantly impacts the heat transport in the oceanic mixed layer. In the CFSIE forecasts, the reduced weather noise leads to increased variations in heat content due to shallower mixed layer, diminished heat storage and enhanced horizontal heat advection. The enhancement of the heat advection spans from the active Kuroshio regions of the east coast of Japan to the west coast of continental United States and significantly diffuses the basin-wide SST anomaly (SSTA) contrasts and leads to reduction in the SST prediction skill in decadal forecasts.

  5. Sensitivity of Landsat 8 Surface Temperature Estimates to Atmospheric Profile Data: A Study Using MODTRAN in Dryland Irrigated Systems

    KAUST Repository

    Rosas, Jorge

    2017-09-26

    The land surface temperature (LST) represents a critical element in efforts to characterize global surface energy and water fluxes, as well as being an essential climate variable in its own right. Current satellite platforms provide a range of spatial and temporal resolution radiance data from which LST can be determined. One of the most complete records of data comes via the Landsat series of satellites, which provide a continuous sequence that extends back to 1982. However, for much of this time, Landsat thermal data were provided through a single broadband thermal channel, making surface temperature retrieval challenging. To fully exploit the valuable time-series of thermal information that is available from these satellites requires efforts to better describe and understand the accuracy of temperature retrievals. Here, we contribute to these efforts by examining the impact of atmospheric correction on the estimation of LST, using atmospheric profiles derived from a range of in-situ, reanalysis, and satellite data. Radiance data from the thermal infrared (TIR) sensor onboard Landsat 8 was converted to LST by using the MODTRAN version 5.2 radiative transfer model, allowing the production of an LST time series based upon 28 Landsat overpasses. LST retrievals were then evaluated against in-situ thermal measurements collected over an arid zone farmland comprising both bare soil and vegetated surface types. Atmospheric profiles derived from AIRS, MOD07, ECMWF, NCEP, and balloon-based radiosonde data were used to drive the MODTRAN simulations. In addition to examining the direct impact of using various profile data on LST retrievals, randomly distributed errors were introduced into a range of forcing variables to better understand retrieval uncertainty. Results indicated differences in LST of up to 1 K for perturbations in emissivity and profile measurements, with the analysis also highlighting the challenges in modeling aerosol optical depth (AOD) over arid lands and

  6. Water accounting and vulnerability evaluation (WAVE): considering atmospheric evaporation recycling and the risk of freshwater depletion in water footprinting.

    Science.gov (United States)

    Berger, Markus; van der Ent, Ruud; Eisner, Stephanie; Bach, Vanessa; Finkbeiner, Matthias

    2014-04-15

    Aiming to enhance the analysis of water consumption and resulting consequences along the supply chain of products, the water accounting and vulnerability evaluation (WAVE) model is introduced. On the accounting level, atmospheric evaporation recycling within drainage basins is considered for the first time, which can reduce water consumption volumes by up to 32%. Rather than predicting impacts, WAVE analyzes the vulnerability of basins to freshwater depletion. Based on local blue water scarcity, the water depletion index (WDI) denotes the risk that water consumption can lead to depletion of freshwater resources. Water scarcity is determined by relating annual water consumption to availability in more than 11,000 basins. Additionally, WDI accounts for the presence of lakes and aquifers which have been neglected in water scarcity assessments so far. By setting WDI to the highest value in (semi)arid basins, absolute freshwater shortage is taken into account in addition to relative scarcity. This avoids mathematical artifacts of previous indicators which turn zero in deserts if consumption is zero. As illustrated in a case study of biofuels, WAVE can help to interpret volumetric water footprint figures and, thus, promotes a sustainable use of global freshwater resources.

  7. Methane fluxes on the water-atmosphere boundary in the Sea of Okhotsk

    Science.gov (United States)

    Mishukova, G. I.; Shakirov, R. B.; Obzhirov, A. I.

    2017-08-01

    High variability in methane fluxes at the water-atmosphere boundary was found for the first time for the period 1990-2016 using expeditionary data. Variability from absorption to emission with values of more than 5 kg km-2 day-1 was found in the whole sea area and over time. Increased emission in the Sea of Okhotsk is associated with distribution areas of through and composite anomalous gas-geochemical gas fields migrating from lithospheric sources. The interannual methane discharge into the atmosphere has an oscillatory seismic dependent nature.

  8. Development of advanced metallic coatings resistant to corrosion in high temperature industrial atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Weber, T.; Bender, R.; Rosado, C.; Schuetze, M. [DECHEMA e.V., Frankfurt am Main (Germany)

    2004-07-01

    Following the experimental results that {gamma}-TiAl is highly resistant in reducing sulfidizing atmospheres the development of Ti-Al-co-diffusion coatings produced in a single step pack cementation process was started. The appropriate diffusion powder compositions were selected using thermodynamical calculations. Different Al-Ti-, Al-Si- and Al-Ti-Si-diffusion coatings were successfully applied on austenitic steels as well as Ni-base materials and showed excellent behaviour in reducing sulfidizing atmospheres with high carbon contents (CH{sub 4} - 1% CO - 1% CO{sub 2} - 10% H{sub 2} - 7% H{sub 2}S) up to 700 deg. C, under metal dusting conditions (H{sub 2} - 25 CO - 2% H{sub 2}O and CO - 2.4% CO{sub 2} - 1% CH{sub 4} - 9.4% N{sub 2} - 23.4% H{sub 2} - 0.2% H{sub 2}O - 1 ppm H{sub 2}S-0.3 ppm HCl) at temperatures of 620 deg. C and 700 deg. C. The application of diffusion coatings on ferritic materials has to be modified due to the specific requirements on the mechanical properties which are affected by the heat treatment during the diffusion process. TiAl was also applied by the HVOF thermal spray method on ferritic steels. Due to similarity of the thermal expansion coefficients this substrate-coating system proved to be mechanically very stable also under thermal cycling conditions. (authors)

  9. Correlations of the first and second derivatives of atmospheric CO2 with global surface temperature and the El Nino-Southern Oscillation respectively

    CERN Document Server

    Leggett, L M W

    2014-01-01

    Understanding current global climate requires an understanding of trends both in Earth's atmospheric temperature and the El Nino-Southern Oscillation (ENSO), a characteristic large-scale distribution of warm water in the tropical Pacific Ocean and the dominant mode of year-to-year climate variability (Holbrook et al. 2009. However, despite much effort, the average projection of current climate models has become statistically significantly different from the observed 21st century global surface temperature trend (Fyfe 2013)and has failed to reflect the statistically significant evidence that annual-mean global temperature has not risen in the 21st century (Fyfe 2013, Kosaka 2013). Modelling also provides a wide range of predictions for future ENSO variability, some showing an increase, others a decrease and some no change (Guilyardi, et al. 2012; Bellenger, 2013). Here we present correlations which include the current era and do not have these drawbacks. The correlations arise as follows. First it has been sho...

  10. The influence of temperature on corn seed water uptake

    Directory of Open Access Journals (Sweden)

    Lekić Slavoljub S.

    2000-01-01

    Full Text Available Temperature is a very important factor which effects seed water uptake. In this paper we investigated the effect of high temperature and high humidity on seed rate imbibition for five corn hybrids. Seeds were placed at the temperature of 41°C and 95-100% relative humidity (treatment . These seeds were compared with control. Seeds were hydrated at 12°C and 20°C for 6, 12, 24, 48 h. The highest imbibition rate was shown by ZP SC 599 hydride seed. The lowest imbibition rate was shown by ZP SC 599 hybrid seed. The seed treated at 12°C had the lowest imbibition rate. At 20°C differences in imbibition rate were lower than at 12°C. .

  11. SSMM Atmospheric Correction Using in situ Spectra for Case-II Waters

    Science.gov (United States)

    Ryu, J.; Min, J.; Shanmugam, P.; Ahn, Y.

    2005-12-01

    Application of the Landsat TM/ETM+ signal over aquatic environment requires the retrieval of water-leaving radiance (Lw) from the total radiance recorded at the top-of-the-atmosphere (TOA) and thus of the water constituents' of interests. This paper compares the image-based atmospheric corrections such as empirical line method, COST method, and Spectral Shape Matching Method(SSMM) in the Landsat TM/ETM+ imagery, especially from Case-II waters around Korean peninsula. The SSMM which is simple and easy to implement on any satellite imagery relies on the assumption that spectral form of water-leaving radiance or reflectance for typical turbid or clear waters is nearly stable and provide a way to extract the path signal from the total signal recorded at the top of the atmosphere (LTOA). To assess the potential use of SSMM, several field campaigns were conducted in the Seamangeum area located at central western coastal area, KOREA corresponding with the Landsat-7 satellite's schedules. In situ observations were made from the coastal waters and land objects around the Seamangeum using ASD field spectroradiometer, consisting of Chl, Ap, SS, aDOM, F(d) . Firstly, SSMM was applied using the nearly stable spectrum from ocean area and the results were verified with in situ water-leaving spectra. Secondly, the SSMM was applied using spectra obtained from the land area and the results were compared with that from using stable ocean water-leaving radiance spectra. Finally, the performance of SSMM was compared with Empirical Line Method and COST model. The findings revealed that SSMM produced spectra consistent with in situ data, whereas other two methods sometimes yielded significantly high errors in these areas.

  12. Flared natural gas-based onsite atmospheric water harvesting (AWH) for oilfield operations

    Science.gov (United States)

    Wikramanayake, Enakshi D.; Bahadur, Vaibhav

    2016-03-01

    Natural gas worth tens of billions of dollars is flared annually, which leads to resource waste and environmental issues. This work introduces and analyzes a novel concept for flared gas utilization, wherein the gas that would have been flared is instead used to condense atmospheric moisture. Natural gas, which is currently being flared, can alternatively power refrigeration systems to generate the cooling capacity for large scale atmospheric water harvesting (AWH). This approach solves two pressing issues faced by the oil-gas industry, namely gas flaring, and sourcing water for oilfield operations like hydraulic fracturing, drilling and water flooding. Multiple technical pathways to harvest atmospheric moisture by using the energy of natural gas are analyzed. A modeling framework is developed to quantify the dependence of water harvest rates on flared gas volumes and ambient weather. Flaring patterns in the Eagle Ford Shale in Texas and the Bakken Shale in North Dakota are analyzed to quantify the benefits of AWH. Overall, the gas currently flared annually in Texas and North Dakota can harvest enough water to meet 11% and 65% of the water consumption in the Eagle Ford and the Bakken, respectively. Daily harvests of upto 30 000 and 18 000 gallons water can be achieved using the gas currently flared per well in Texas and North Dakota, respectively. In fifty Bakken sites, the water required for fracturing or drilling a new well can be met via onsite flared gas-based AWH in only 3 weeks, and 3 days, respectively. The benefits of this concept are quantified for the Eagle Ford and Bakken Shales. Assessments of the global potential of this concept are presented using data from countries with high flaring activity. It is seen that this waste-to-value conversion concept offers significant economic benefits while addressing critical environmental issues pertaining to oil-gas production.

  13. Satellite Retrieval of Atmospheric Water Budget over Gulf of Mexico- Caribbean Basin: Seasonal Variability

    Science.gov (United States)

    Smith, Eric A.; Santos, Pablo; Einaudi, Franco (Technical Monitor)

    2001-01-01

    This study presents results from a multi-satellite/multi-sensor retrieval system designed to obtain the atmospheric water budget over the open ocean. A combination of hourly-sampled monthly datasets derived from the GOES-8 5 Imager and the DMSP 7-channel passive microwave radiometer (SSM/I) have been acquired for the Gulf of Mexico-Caribbean Sea basin. Whereas the methodology is being tested over this basin, the retrieval system is designed for portability to any open-ocean region. Algorithm modules using the different datasets to retrieve individual geophysical parameters needed in the water budget equation are designed in a manner that takes advantage of the high temporal resolution of the GOES-8 measurements, as well as the physical relationships inherent to the SSM/I passive microwave signals in conjunction with water vapor, cloud liquid water, and rainfall. The methodology consists of retrieving the precipitation, surface evaporation, and vapor-cloud water storage terms in the atmospheric water balance equation from satellite techniques, with the water vapor advection term being obtained as the residue needed for balance. Thus, we have sought to develop a purely satellite-based method for obtaining the full set of terms in the atmospheric water budget equation without requiring in situ sounding information on the wind profile. The algorithm is partly validated by first cross-checking all the algorithm components through multiple-algorithm retrieval intercomparisons. More fundamental validation is obtained by directly comparing water vapor transports into the targeted basin diagnosed from the satellite algorithm to those obtained observationally from a network of land-based upper air stations that nearly uniformly surround the basin. Total columnar atmospheric water budget results will be presented for an extended annual cycle consisting of the months of October-97, January-98, April-98, July-98, October-98, and January-1999. These results are used to emphasize

  14. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle

    Science.gov (United States)

    Galewsky, Joseph; Steen-Larsen, Hans Christian; Field, Robert D.; Worden, John; Risi, Camille; Schneider, Matthias

    2016-12-01

    The measurement and simulation of water vapor isotopic composition has matured rapidly over the last decade, with long-term data sets and comprehensive modeling capabilities now available. Theories for water vapor isotopic composition have been developed by extending the theories that have been used for the isotopic composition of precipitation to include a more nuanced understanding of evaporation, large-scale mixing, deep convection, and kinetic fractionation. The technologies for in situ and remote sensing measurements of water vapor isotopic composition have developed especially rapidly over the last decade, with discrete water vapor sampling methods, based on mass spectroscopy, giving way to laser spectroscopic methods and satellite- and ground-based infrared absorption techniques. The simulation of water vapor isotopic composition has evolved from General Circulation Model (GCM) methods for simulating precipitation isotopic composition to sophisticated isotope-enabled microphysics schemes using higher-order moments for water and ice size distributions. The incorporation of isotopes into GCMs has enabled more detailed diagnostics of the water cycle and has led to improvements in its simulation. The combination of improved measurement and modeling of water vapor isotopic composition opens the door to new advances in our understanding of the atmospheric water cycle, in processes ranging from the marine boundary layer, through deep convection and tropospheric mixing, and into the water cycle of the stratosphere. Finally, studies of the processes governing modern water vapor isotopic composition provide an improved framework for the interpretation of paleoclimate proxy records of the hydrological cycle.

  15. Characterizations of atmospheric pressure low temperature plasma jets and their applications

    Science.gov (United States)

    Karakas, Erdinc

    2011-12-01

    Atmospheric pressure low temperature plasma jets (APLTPJs) driven by short pulses have recently received great attention because of their potential in biomedical and environmental applications. This potential is due to their user-friendly features, such as low temperature, low risk of arcing, operation at atmospheric pressure, easy handheld operation, and low concentration of ozone generation. Recent experimental observations indicate that an ionization wave exists and propagates along the plasma jet. The plasma jet created by this ionization wave is not a continuous medium but rather consists of a bullet-like-structure known as "Plasma Bullet". More interestingly, these plasma bullets actually have a donut-shaped makeup. The nature of the plasma bullet is especially interesting because it propagates in the ambient air at supersonic velocities without any externally applied electric field. In this dissertation, experimental insights are reported regarding the physical and chemical characteristics of the APLTPJs. The dynamics of the plasma bullet are investigated by means of a high-speed ICCD camera. A plasma bullet propagation model based on the streamer theory is confirmed with adequate explanations. It is also found that a secondary discharge, ignited by the charge accumulation on the dielectric electrode surfaces at the end of the applied voltage, interrupts the plasma bullet propagation due to an opposing current along the ionization channel. The reason for this interesting phenomenon is explained in detail. The plasma bullet comes to an end when the helium mole fraction along the ionization channel, or applied voltage, or both, are less than some critical values. The presence of an inert gas channel in the surrounding air, such as helium or argon, has a critical role in plasma bullet formation and propagation. For this reason, a fluid dynamics study is employed by a commercially available simulation software, COMSOL, based on finite element method. Spatio

  16. Sensitivity of open-water ice growth and ice concentration evolution in a coupled atmosphere-ocean-sea ice model

    Science.gov (United States)

    Shi, Xiaoxu; Lohmann, Gerrit

    2017-09-01

    A coupled atmosphere-ocean-sea ice model is applied to investigate to what degree the area-thickness distribution of new ice formed in open water affects the ice and ocean properties. Two sensitivity experiments are performed which modify the horizontal-to-vertical aspect ratio of open-water ice growth. The resulting changes in the Arctic sea-ice concentration strongly affect the surface albedo, the ocean heat release to the atmosphere, and the sea-ice production. The changes are further amplified through a positive feedback mechanism among the Arctic sea ice, the Atlantic Meridional Overturning Circulation (AMOC), and the surface air temperature in the Arctic, as the Fram Strait sea ice import influences the freshwater budget in the North Atlantic Ocean. Anomalies in sea-ice transport lead to changes in sea surface properties of the North Atlantic and the strength of AMOC. For the Southern Ocean, the most pronounced change is a warming along the Antarctic Circumpolar Current (ACC), owing to the interhemispheric bipolar seasaw linked to AMOC weakening. Another insight of this study lies on the improvement of our climate model. The ocean component FESOM is a newly developed ocean-sea ice model with an unstructured mesh and multi-resolution. We find that the subpolar sea-ice boundary in the Northern Hemisphere can be improved by tuning the process of open-water ice growth, which strongly influences the sea ice concentration in the marginal ice zone, the North Atlantic circulation, salinity and Arctic sea ice volume. Since the distribution of new ice on open water relies on many uncertain parameters and the knowledge of the detailed processes is currently too crude, it is a challenge to implement the processes realistically into models. Based on our sensitivity experiments, we conclude a pronounced uncertainty related to open-water sea ice growth which could significantly affect the climate system sensitivity.

  17. A process-based evapotranspiration model incorporating coupled soil water-atmospheric controls

    Science.gov (United States)

    Haghighi, Erfan; Kirchner, James

    2016-04-01

    Despite many efforts to develop evapotranspiration models (in the framework of the Penman-Monteith equation) with improved parametrizations of various resistance terms to water vapor transfer into the atmosphere, evidence suggests that estimates of evapotranspiration and its partitioning are prone to bias. Much of this bias could arise from the exclusion of surface hydro-thermal properties and of physical interactions close to the surface where heat and water vapor fluxes originate. Recent progress has been made in mechanistic modeling of surface-turbulence interactions, accounting for localized heat and mass exchange rates from bare soil surfaces covered by protruding obstacles. We seek to extend these results partially vegetated surfaces, to improve predictive capabilities and accuracy of remote sensing techniques quantifying evapotranspiration fluxes. The governing equations of liquid water, water vapor, and energy transport dynamics in the soil-plant-atmosphere system are coupled to resolve diffusive vapor fluxes from isolated pores (plant stomata and soil pores) across a near-surface viscous sublayer, explicitly accounting for pore-scale transport mechanisms and environmental forcing. Preliminary results suggest that this approach offers unique opportunities for directly linking transport properties in plants and adjacent bare soil with resulting plant transpiration and localized bare soil evaporation rates. It thus provides an essential building block for interpreting and upscaling results to field and landscape scales for a range of vegetation cover and atmospheric conditions.

  18. Atmospheric Pressure Glow Discharge for Point-of-Use Water Treatment

    Science.gov (United States)

    Lindsay, Alexander; Byrns, Brandon; Shannon, Steven; Knappe, Detlef

    2012-10-01

    Treatment of biological and chemical contaminants is an area of growing global interest where atmospheric pressure plasmas can make a significant contribution. Addressing key challenges of volume processing and operational cost, a large volume 162 MHz coaxial air-plasma source has been developed.footnotetextByrns (2012) J. Phys. D: Appl. Phys. 45 (2012) 195204 Because of VHF ballasting effects, the electric discharge is maintained at a steady glow, allowing formation of critical non-equilibrium chemistry. High densities, ne = 10^11-10^12, have been recorded. The atmospheric nature of the device permits straightforward and efficient treatment of water samples. [H^+] concentrations in 150 milliliter tap water samples have been shown to increase by 10^5 after five minutes of discharge exposure. Recent literature has demonstrated that increasing acidity is strongly correlated with a solution's ability to deactivate microbial contaminants.footnotetextTraylor (2011) J. Phys. D: Appl. Phys. 44 (2011) 472001 The work presented here will explore the impact of treatment gas, system configuration, and power density on water disinfection and PFC abatement. An array of plasma diagnostics, including OES and electrical measurements, are combined with post-process water analysis, including GC-MS and QT analysis of coliform and E.coli bacteria. Development of volume processing atmospheric plasma disinfection methods offers promise for point-of-use treatments in developing areas of the world, potentially supplementing or replacing supply and weather-dependent disinfection methods.

  19. Modelling impacts of atmospheric deposition and temperature on long-term DOC trends.

    Science.gov (United States)

    Sawicka, K; Rowe, E C; Evans, C D; Monteith, D T; E I Vanguelova; Wade, A J; J M Clark

    2017-02-01

    It is increasingly recognised that widespread and substantial increases in Dissolved organic carbon (DOC) concentrations in remote surface, and soil, waters in recent decades are linked to declining acid deposition. Effects of rising pH and declining ionic strength on DOC solubility have been proposed as potential dominant mechanisms. However, since DOC in these systems is derived mainly from recently-fixed carbon, and since organic matter decomposition rates are considered sensitive to temperature, uncertainty persists over the extent to which other drivers that could influence DOC production. Such potential drivers include fertilisation by nitrogen (N) and global warming. We therefore ran the dynamic soil chemistry model MADOC for a range of UK soils, for which time series data are available, to consider the likely relative importance of decreased deposition of sulphate and chloride, accumulation of reactive N, and higher temperatures, on soil DOC production in different soils. Modelled patterns of DOC change generally agreed favourably with measurements collated over 10-20years, but differed markedly between sites. While the acidifying effect of sulphur deposition appeared to be the predominant control on the observed soil water DOC trends in all the soils considered other than a blanket peat, the model suggested that over the long term, the effects of nitrogen deposition on N-limited soils may have been sufficient to raise the "acid recovery DOC baseline" significantly. In contrast, reductions in non-marine chloride deposition and effects of long term warming appeared to have been relatively unimportant. The suggestion that future DOC concentrations might exceed preindustrial levels as a consequence of nitrogen pollution has important implications for drinking water catchment management and the setting and pursuit of appropriate restoration targets, but findings still require validation from reliable centennial-scale proxy records, such as those being developed

  20. Effect of Water Vapor, Temperature, and Rapid Annealing on Formamidinium Lead Triiodide Perovskite Crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Jeffery A.; Wozny, Sarah; Alkurd, Nooraldeen R.; Yang, Mengjin; Kovarik, Libor; Holesinger, Terry G.; Al-Jassim, Mowafak; Zhu, Kai; Zhou, Weilie; Berry, Joseph J.

    2016-07-08

    Perovskite-based solar cells are one of the emerging candidates for radically lower cost photovoltaics. Herein, we report on the synthesis and crystallization of organic-inorganic formamidinium lead triiodide perovskite films under controlled atmospheric and environmental conditions. Using in situ (scanning) transmission electron microscopy, we make observations of the crystallization process of these materials in nitrogen and oxygen gas with and without the presence of water vapor. Complementary planar samples were also fabricated in the presence of water vapor and characterized by in situ X-ray diffraction. Direct observations of the material structure and final morphology indicate that the exposure to water vapor results in a porous film that is metastable, regardless of the presence of argon, nitrogen, or oxygen. However, the optimal crystallization temperature of 175 degrees C is unperturbed across conditions. Rapid modulation about the annealing temperature of 175 degrees C in +/-25 degrees C steps (150-200 degrees C) promotes crystallization and significantly improves the film morphology by overcoming the presence of impregnated water trapped in the material. Following this processing protocol, we demonstrate substantial growth to micron-size grains via observation inside of an environmentally controlled transmission electron microscope. Adapting this insight from our in situ microscopy, we are able to provide an informed materials protocol to control the structure and morphology of these organic-inorganic semiconductors, which is readily applicable to benchtop device growth strategies.

  1. Effect of Water Vapor, Temperature, and Rapid Annealing on Formamidinium Lead Triiodide Perovskite Crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Jeffery A.; Wozny, Sarah; Alkurd, Nooraldeen R.; Yang, Mengjin; Kovarik, Libor; Holesinger, Terry; Al-Jassim, Mowafak M.; Zhu, Kai; Zhou, Weilie; Berry, J. J.

    2016-07-08

    Perovskite-based solar cells are one of the emerging candidates for radically lower cost photovoltaics. Herein, we report on the synthesis and crystallization of organic-inorganic formamidinium lead triiodide perovskite films under controlled atmospheric and environmental conditions. Using in situ (scanning) transmission electron microscopy, we make observations of the crystallization process of these materials in nitrogen and oxygen gas with and without the presence of water vapor. Complementary planar samples were also fabricated in the presence of water vapor and characterized by in situ X-ray diffraction. Direct observations of the material structure and final morphology indicate that the exposure to water vapor results in a porous film that is metastable, regardless of the presence of argon, nitrogen, or oxygen. However, the optimal crystallization temperature of 175 °C is unperturbed across conditions. Rapid modulation about the annealing temperature of 175 °C in ±25 °C steps (150-200 °C) promotes crystallization and significantly improves the film morphology by overcoming the presence of impregnated water trapped in the material. Following this processing protocol, we demonstrate substantial growth to micron-size grains via observation inside of an environmentally controlled transmission electron microscope. Adapting this insight from our in situ microscopy, we are able to provide an informed materials protocol to control the structure and morphology of these organic-inorganic semiconductors, which is readily applicable to benchtop device growth strategies.

  2. Intercomparison of atmospheric water vapour measurements at a Canadian High Arctic site

    Science.gov (United States)

    Weaver, Dan; Strong, Kimberly; Schneider, Matthias; Rowe, Penny M.; Sioris, Chris; Walker, Kaley A.; Mariani, Zen; Uttal, Taneil; McElroy, C. Thomas; Vömel, Holger; Spassiani, Alessio; Drummond, James R.

    2017-08-01

    Water vapour is a critical component of the Earth system. Techniques to acquire and improve measurements of atmospheric water vapour and its isotopes are under active development. This work presents a detailed intercomparison of water vapour total column measurements taken between 2006 and 2014 at a Canadian High Arctic research site (Eureka, Nunavut). Instruments include radiosondes, sun photometers, a microwave radiometer, and emission and solar absorption Fourier transform infrared (FTIR) spectrometers. Close agreement is observed between all combination of datasets, with mean differences ≤ 1.0 kg m-2 and correlation coefficients ≥ 0.98. The one exception in the observed high correlation is the comparison between the microwave radiometer and a radiosonde product, which had a correlation coefficient of 0.92.A variety of biases affecting Eureka instruments are revealed and discussed. A subset of Eureka radiosonde measurements was processed by the Global Climate Observing System (GCOS) Reference Upper Air Network (GRUAN) for this study. Comparisons reveal a small dry bias in the standard radiosonde measurement water vapour total columns of approximately 4 %. A recently produced solar absorption FTIR spectrometer dataset resulting from the MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) retrieval technique is shown to offer accurate measurements of water vapour total columns (e.g. average agreement within -5.2 % of GRUAN and -6.5 % of a co-located emission FTIR spectrometer). However, comparisons show a small wet bias of approximately 6 % at the high-latitude Eureka site. In addition, a new dataset derived from Atmospheric Emitted Radiance Interferometer (AERI) measurements is shown to provide accurate water vapour measurements (e.g. average agreement was within 4 % of GRUAN), which usefully enables measurements to be taken during day and night (especially valuable during polar night).

  3. Preconditioning of the YSZ-NiO Fuel Cell Anode in Hydrogenous Atmospheres Containing Water Vapor.

    Science.gov (United States)

    Vasyliv, Bogdan; Podhurska, Viktoriya; Ostash, Orest

    2017-12-01

    The YSZ-NiO ceramics for solid oxide fuel cells (SOFCs) anode have been investigated. A series of specimens were singly reduced in a hydrogenous atmosphere (Ar-5 vol% H2 mixture) at 600 °C under the pressure of 0.15 MPa or subjected to 'reduction in the mixture-oxidation in air' (redox) cycling at 600 °C. The YSZ-Ni cermets formed in both treatment conditions were then aged in 'water vapor in Ar-5 vol% H2 mixture' atmosphere at 600 °C under the pressure of 0.15 MPa. Additionally, the behaviour of the as-received material in this atmosphere was studied. It was revealed that small amount of water vapor in Ar-5 vol% H2 mixture (water vapor pressure below 0.03 MPa) does not affect the reduction of the nickel phase in the YSZ-NiO ceramics, but causes some changes in the YSZ-Ni cermet structure. In particular, nanopore growth in tiny Ni particles takes place. At higher concentration of water vapor in the mixture (water vapor pressure above 0.03-0.05 MPa), converse changes in the kinetics of reduction occur. The best physical and mechanical properties were revealed for the material treated by redox cycling after holding at 600 °C in water depleted gas mixture. The dual effect of water vapor on nickel-zirconia anode behaviour is discussed basing on scanning electron microscopy analysis data, material electrical conductivity, and strength.

  4. The signatures of large-scale patterns of atmospheric variability in Antarctic surface temperatures

    Science.gov (United States)

    Marshall, Gareth J.; Thompson, David W. J.

    2016-04-01

    We investigate the impact that the four principal large-scale patterns of Southern Hemisphere (SH) atmospheric circulation variability have on Antarctic surface air temperature (SAT): (1) the southern baroclinic annular mode (BAM), which is associated with variations in extratropical storm amplitude; (2) the Southern Annular Mode (SAM), associated with latitudinal shifts in the midlatitude jet; and (3) the two Pacific-South American patterns (PSA1 and PSA2), which are characterized by wave trains originating in the tropical Pacific that extend across the SH extratropics. A key aspect is the use of 35 years of daily observations and reanalysis data, which affords a sufficiently large sample size to assess the signatures of the circulation patterns in both the mean and variability of daily mean SAT anomalies. The BAM exerts the weakest influence on Antarctic SAT, albeit it is still important over select regions. Consistent with previous studies, the SAM is shown to influence SAT across most of the continent throughout the year. The PSA1 also affects SAT across almost all of Antarctica. Regionally, both PSA patterns can exert a greater impact on SAT than the SAM but also have a significantly weaker influence during summer, reflecting the seasonality of the SH response to El Niño-Southern Oscillation. The SAM and PSA patterns have distinct signatures in daily SAT variance that are physically consistent with their signatures in extratropical dynamic variability. The broad-scale climate linkages identified here provide benchmarks for interpreting the Antarctic climate response to future changes in tropical sea surface temperatures, ozone recovery, and greenhouse gas increases.

  5. The Use of Bending Angle Retrieved By GPS Radio Occultation Technique For The Measurement of The Atmospheric Water Vapour Content

    Science.gov (United States)

    Vespe, F.; Benedetto, C.; Pacione, R.

    In the last decade the use of GPS radio occultation technique (GPS RO) has been deeply and widely investigated for retrieving physical and chemical Earth atmospheric parameters. The technique proved to be particularly precise in retrieving temperature profiles with an high vertical resolution (air) in 2 unknown (hydrostatic pressure and temperature). The system cannot be solved for lower troposphere because the water vapour pressu re is not negligible. So we are forced to include some other information such as the humidity computed by the models (ECMWF or NEP) or adding another observable in the system as the zenith troposphere delays estimated by the GPS ground stations. In this work we will investigate the possibility to retrieve humidity using only the bending angles achieved by the GPS RO. In particular, the humidity profiles are extracted differentiating the true bending angle profiles, retrieved by the GPS RO, with the dry ones, obtained by fitting and extrapolating the outer layers bending angles in a dry atmosphere model (exponential or Hopfield). The bending angles will be retrieved by CHAMP and SAC-C GPS RO data. Then the humidity profiles obtained with the proposed technique will be compared and validated with those retrieved with radio-sounding balloons over two sites at different latitudes: Brindisi (Italy) and Singapore (Japan).

  6. Atmosphere and water loss from early Mars under extreme solar wind and extreme ultraviolet conditions.

    Science.gov (United States)

    Terada, Naoki; Kulikov, Yuri N; Lammer, Helmut; Lichtenegger, Herbert I M; Tanaka, Takashi; Shinagawa, Hiroyuki; Zhang, Tielong

    2009-01-01

    The upper limits of the ion pickup and cold ion outflow loss rates from the early martian atmosphere shortly after the Sun arrived at the Zero-Age-Main-Sequence (ZAMS) were investigated. We applied a comprehensive 3-D multi-species magnetohydrodynamic (MHD) model to an early martian CO(2)-rich atmosphere, which was assumed to have been exposed to a solar XUV [X-ray and extreme ultraviolet (EUV)] flux that was 100 times higher than today and a solar wind that was about 300 times denser. We also assumed the late onset of a planetary magnetic dynamo, so that Mars had no strong intrinsic magnetic field at that early period. We found that, due to such extreme solar wind-atmosphere interaction, a strong magnetic field of about approximately 4000 nT was induced in the entire dayside ionosphere, which could efficiently protect the upper atmosphere from sputtering loss. A planetary obstacle ( approximately ionopause) was formed at an altitude of about 1000 km above the surface due to the drag force and the mass loading by newly created ions in the highly extended upper atmosphere. We obtained an O(+) loss rate by the ion pickup process, which takes place above the ionopause, of about 1.5 x 10(28) ions/s during the first water loss equivalent to a global martian ocean with a depth of approximately 8 m. Consequently, even if the magnetic protection due to the expected early martian magnetic dynamo is neglected, ion pickup and sputtering were most likely not the dominant loss processes for the planet's initial atmosphere and water inventory. However, it appears that the cold ion outflow into the martian tail, due to the transfer of momentum from the solar wind to the ionospheric plasma, could have removed a global ocean with a depth of 10-70 m during the first < or =150 million years after the Sun arrived at the ZAMS.

  7. Viability of sublethally injured coliform bacteria on fresh-cut cabbage stored in high CO2atmospheres following rinsing with electrolyzed water.

    Science.gov (United States)

    Izumi, Hidemi; Inoue, Ayano

    2018-02-02

    The extent of sublethally injured coliform bacteria on shredded cabbage, either rinsed or not rinsed with electrolyzed water, was evaluated during storage in air and high CO 2 controlled atmospheres (5%, 10%, and 15%) at 5°C and 10°C using the thin agar layer (TAL) method. Sublethally injured coliform bacteria on nonrinsed shredded cabbage were either absent or they were injured at a 64-65% level when present. Rinsing of shredded cabbage with electrolyzed water containing 25ppm available chlorine reduced the coliform counts by 0.4 to 1.1 log and caused sublethal injury ranging from 42 to 77%. Pantoea ananatis was one of the species injured by chlorine stress. When shredded cabbage, nonrinsed or rinsed with electrolyzed water, was stored in air and high CO 2 atmospheres at 5°C for 7days and 10°C for 5days, coliform counts on TAL plates increased from 3.3-4.5 to 6.5-9.0 log CFU/g during storage, with the increase being greater at 10°C than at 5°C. High CO 2 of 10% and 15% reduced the bacterial growth on shredded cabbage during storage at 5°C. Although injured coliform bacteria were not found on nonrinsed shredded cabbage on the initial day, injured coliforms at a range of 49-84% were detected on samples stored in air and high CO 2 atmospheres at 5°C and 10°C. Injured cells were detected more frequently during storage at both temperatures irrespective of the CO 2 atmosphere when shredded cabbage was rinsed with electrolyzed water. These results indicated that injured coliform bacteria on shredded cabbage, either rinsed or not rinsed with electrolyzed water, exhibited different degrees of injury during storage regardless of the CO 2 atmosphere and temperature tested. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. [Calculating method for crop water requirement based on air temperature].

    Science.gov (United States)

    Tao, Guo-Tong; Wang, Jing-Lei; Nan, Ji-Qin; Gao, Yang; Chen, Zhi-Fang; Song, Ni

    2014-07-01

    The importance of accurately estimating crop water requirement for irrigation forecast and agricultural water management has been widely recognized. Although it has been broadly adopted to determine crop evapotranspiration (ETc) via meteorological data and crop coefficient, most of the data in whether forecast are qualitative rather than quantitative except air temperature. Therefore, in this study, how to estimate ETc precisely only using air temperature data in forecast was explored, the accuracy of estimation based on different time scales was also investigated, which was believed to be beneficial to local irrigation forecast as well as optimal management of water and soil resources. Three parameters of Hargreaves equation and two parameters of McClound equation were corrected by using meteorological data of Xinxiang from 1970 to 2010, and Hargreaves equation was selected to calculate reference evapotranspiration (ET0) during the growth period of winter wheat. A model of calculating crop water requirement was developed to predict ETc at time scales of 1, 3, and 7 d intervals through combining Hargreaves equation and crop coefficient model based on air temperature. Results showed that the correlation coefficients between measured and predicted values of ETc reached 0.883 (1 d), 0.933 (3 d), and 0.959 (7 d), respectively. The consistency indexes were 0.94, 0.95 and 0.97, respectively, which showed that forecast error decreased with the increasing time scales. Forecasted accuracy with an error less than 1 mm x d(-1) was more than 80%, and that less than 2 mm x d(-1) was greater than 90%. This study provided sound basis for irrigation forecast and agricultural management in irrigated areas since the forecasted accuracy at each time scale was relatively high.

  9. Storm track sensitivity to sea surface temperature resolution in a regional atmosphere model

    Energy Technology Data Exchange (ETDEWEB)

    Woollings, Tim; Blackburn, Mike [University of Reading, Department of Meteorology, Walker Institute, Earley Gate, PO Box 243, Reading (United Kingdom); National Centre for Atmospheric Science, Reading (United Kingdom); Hoskins, Brian [University of Reading, Department of Meteorology, Walker Institute, Earley Gate, PO Box 243, Reading (United Kingdom); Imperial College London, Grantham Institute, London (United Kingdom); Hassell, David [University of Reading, Met Office, Hadley Centre (Reading Unit) Meteorology Building, PO Box 243, Reading, Berkshire (United Kingdom); Hodges, Kevin [University of Reading, Environmental Systems Science Center, Reading (United Kingdom)

    2010-08-15

    A high resolution regional atmosphere model is used to investigate the sensitivity of the North Atlantic storm track to the spatial and temporal resolution of the sea surface temperature (SST) data used as a lower boundary condition. The model is run over an unusually large domain covering all of the North Atlantic and Europe, and is shown to produce a very good simulation of the observed storm track structure. The model is forced at the lateral boundaries with 15-20 years of data from the ERA-40 reanalysis, and at the lower boundary by SST data of differing resolution. The impacts of increasing spatial and temporal resolution are assessed separately, and in both cases increasing the resolution leads to subtle, but significant changes in the storm track. In some, but not all cases these changes act to reduce the small storm track biases seen in the model when it is forced with low-resolution SSTs. In addition there are several clear mesoscale responses to increased spatial SST resolution, with surface heat fluxes and convective precipitation increasing by 10-20% along the Gulf Stream SST gradient. (orig.)

  10. Observation of semiannual and annual oscillation in equatorial middle atmospheric long term temperature pattern

    Directory of Open Access Journals (Sweden)

    A. Guharay

    2009-11-01

    Full Text Available Extensive measurement of middle atmospheric temperature with the help of lidar data of more than 10 years (1998–2008 and TIMED/SABER data of 7 years (2002–2008, has been carried out from a low latitude station, Gadanki, India (13.5° N, 79.2° E, which exhibits the presence of semiannual oscillation (SAO and annual oscillation (AnO. The AnO component is stronger in the mesospheric region (80–90 km and the SAO is dominant at stratospheric altitudes (30–50 km. Overall, the AnO possesses higher amplitude ~6–7 K, and the SAO shows less amplitude ~1–2 K. The AnO present at 90 km finds crest near summer solstice, and the same at 80 km shows peak near winter solstice with a downward progression speed ~1.7 km/month. The SAO propagates downward with an average phase speed ~9 km/month and phase maximizes around equinox and solstice at 50 and 30 km, respectively. The observed SAO has also shown seasonal asymmetry in peaks.

  11. Soil atmosphere exchange of carbonyl sulfide (COS regulated by diffusivity depending on water-filled pore space

    Directory of Open Access Journals (Sweden)

    H. Van Diest

    2008-04-01

    Full Text Available The exchange of carbonyl sulfide (COS between soil and the atmosphere was investigated for three arable soils from Germany, China and Finland and one forest soil from Siberia for parameterization in the relation to ambient carbonyl sulfide (COS concentration, soil water content (WC and air temperature. All investigated soils acted as sinks for COS. A clear and distinct uptake optimum was found for the German, Chinese, Finnish and Siberian soils at 11.5%, 9%, 11.5%, and 9% soil WC, respectively, indicating that the soil WC acts as an important biological and physical parameter for characterizing the exchange of COS between soils and the atmosphere. Different optima of deposition velocities (Vd as observed for the Chinese, Finnish and Siberian boreal soil types in relation to their soil WC, aligned at 19% in relation to the water-filled pore space (WFPS, indicating the dominating role of gas diffusion. This interpretation was supported by the linear correlation between Vd and bulk density. We suggest that the uptake of COS depends on the diffusivity dominated by WFPS, a parameter depending on soil WC, soil structure and porosity of the soil.

  12. Effect of allyl isothiocyanate in headspace and modified atmosphere on Pseduomonas Aeruginosa growth in fresh catfish fillets under abuse temperatures

    Science.gov (United States)

    Pseudomonas aeruginosa, a common spoilage microorganism on fresh catfish products, can grow rapidly at temperatures above 4 deg C during storage and transportation. Allyl isothiocyanate (AIT), an extract of horseradish oil, and modified atmosphere (MA) can be used to inhibit the growth of P. aerugin...

  13. Variability of the Structure Parameters of Temperature and Humidity Observed in the Atmospheric Surface Layer Under Unstable Conditions

    NARCIS (Netherlands)

    Braam, M.; Moene, A.F.; Beyrich, F.

    2014-01-01

    The structure parameters of temperature and humidity are important in scintillometry as they determine the structure parameter of the refractive index of air, the primary atmospheric variable obtained with scintillometers. In this study, we investigate the variability of the logarithm of the

  14. Low-temperature MTBE biodegradation in aquifer sediments with a history of low, seasonal ground water temperatures

    Science.gov (United States)

    Bradley, P.M.; Landmeyer, J.E.

    2006-01-01

    Sediments from two shallow, methyl tert-butyl ether (MTBE)-contaminated aquifers, with mean ground water temperatures ???10??C, demonstrated significant mineralization of [U-14C] MTBE to 14CO 2 at incubation temperatures as low as 4??C. These results indicate that microbial degradation can continue to contribute to the attenuation of MTBE in ground water under wintertime, low-temperature conditions. ?? 2006 National Ground Water Association.

  15. Spatial and temporal variations in atmospheric temperature and humidity gradients controlled by local urban land use intensity in Boston, MA

    Science.gov (United States)

    Wang, J.; Hutyra, L.; Li, D.; Friedl, M. A.

    2016-12-01

    Cities are home to the majority of humanity. Thus, understanding the mechanisms that control urban climates has substantial societal importance to a variety of sectors, including public health and energy management. While it is widely known that the surface climate of cities is modified by urban land use, relatively few studies have examined how spatial variability in urban land use intensity controls spatio-temporal variation in urban microclimates. We used data from an urban sensor network (n=25) and medium resolution remote sensing to explore the nature and magnitude of urban air temperature (Ta) and vapor pressure deficit (VPD) dependence on local land use and land cover on both diurnal and seasonal time scales in the Boston metropolitan area. We observed positive correlations between the amount of local impervious surface area (ISA) and Ta as well as strong positive correlations between local ISA and VPD. Dependence on local urbanization intensity peaked at night during the growing season, when urban Ta and VPD increased by up to 0.03 C and 0.008 kPa, respectively, for every 1% increase in ISA. In the daytime during the growing season, corresponding maximum gradients were 0.015 C and 0.006 kPa per for every 1% increase in ISA. Air temperatures and VPDs are coupled to each other, and their relationship exhibits significant diurnal hysteresis during the growing season with changes in VPD gradients generally preceding changes in Ta gradients. By removing the effect of changes in temperature on VPD, we show that 79% of the urban-rural difference in VPD was explained by differences in near surface atmospheric water content, which we attribute to lower rates of evapotranspiration arising from higher ISA, lower canopy cover, and lower leaf area in Boston relative to nearby rural areas. Combining medium resolution remote sensing data and ground measurements, we estimate spatially-explicit maps of net Ta and VPD enhancement resulting from Boston's spatially

  16. Temperature profile and water depth data collected from USS CURTS using BT and XBT casts in the Japan Sea from 11 January 1989 to 17 January 1989 (NODC Accession 8900027)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and water depth data were collected using BT and XBT casts from the USS CURTS in the Japan Sea. Data were collected from 11 January 1989 to 17...

  17. Temperature profile data collected using BT and XBT casts from NOAA Ship RESEARCHER in the Coastal Waters of Florida from 1983-12-01 to 1984-03-22 (NCEI Accession 8400103)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile data were collected using XBT and BT casts from NOAA Ship RESEARCHER in the Coastal Waters of Florida from 01 December 1983 to 22 March 1984....

  18. Temperature profile and water depth data collected from KIDD using BT and XBT casts in the North/South Pacific Ocean from 06 August 1977 to 30 April 1990 (NODC Accession 9000141)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water depth and temperature data was collected from thirty three different ships used for 44 cruises. The data was collected between August 6, 1987 to April 30,...

  19. Temperature profile and water depth data collected from IOWA using BT and XBT casts in the North Pacific Ocean from 31 May 1985 to 23 March 1990 (NODC Accession 9000092)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The water depth and temperature data was collected using two dozen different ships through a grant to Dr. Douglas C. Biggs MMS # 14-35-0001-30501. The data was...

  20. Oceanographic water temperature profiles from XBTs aboard multiple platforms as part of the GTSPP and SOT SOOP in the Southern Ocean and adjoining seas from 2016-02-10 to 2016-12-03 (NCEI Accession 0157632)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Oceanographic water temperature profiles collected from XBTs aboard the platforms Maersk Jalan, Shengking, L'Astrolabe, and Siangtan in the South Pacific Ocean,...