WorldWideScience

Sample records for temperature accretion discs

  1. Rethinking Black Hole Accretion Discs

    Science.gov (United States)

    Salvesen, Greg

    Accretion discs are staples of astrophysics. Tapping into the gravitational potential energy of the accreting material, these discs are highly efficient machines that produce copious radiation and extreme outflows. While interesting in their own right, accretion discs also act as tools to study black holes and directly influence the properties of the Universe. Black hole X-ray binaries are fantastic natural laboratories for studying accretion disc physics and black hole phenomena. Among many of the curious behaviors exhibited by these systems are black hole state transitions -- complicated cycles of dramatic brightening and dimming. Using X-ray observations with high temporal cadence, we show that the evolution of the accretion disc spectrum during black hole state transitions can be described by a variable disc atmospheric structure without invoking a radially truncated disc geometry. The accretion disc spectrum can be a powerful diagnostic for measuring black hole spin if the effects of the disc atmosphere on the emergent spectrum are well-understood; however, properties of the disc atmosphere are largely unconstrained. Using statistical methods, we decompose this black hole spin measurement technique and show that modest uncertainties regarding the disc atmosphere can lead to erroneous spin measurements. The vertical structure of the disc is difficult to constrain due to our ignorance of the contribution to hydrostatic balance by magnetic fields, which are fundamental to the accretion process. Observations of black hole X-ray binaries and the accretion environments near supermassive black holes provide mounting evidence for strong magnetization. Performing numerical simulations of accretion discs in the shearing box approximation, we impose a net vertical magnetic flux that allows us to effectively control the level of disc magnetization. We study how dynamo activity and the properties of turbulence driven by the magnetorotational instability depend on the

  2. Episodic accretion: the interplay of infall and disc instabilities

    Science.gov (United States)

    Küffmeier, Michael; Frimann, Søren; Jensen, Sigurd S.; Haugbølle, Troels

    2018-01-01

    Using zoom-simulations carried out with the adaptive mesh-refinement code RAMSES with a dynamic range of up to 227 ≈ 1.34 × 108 we investigate the accretion profiles around six stars embedded in different environments inside a (40 pc)3 giant molecular cloud, the role of mass infall and disc instabilities on the accretion profile, and thus on the luminosity of the forming protostar. Our results show that the environment in which the protostar is embedded determines the overall accretion profile of the protostar. Infall onto the circumstellar disc may trigger gravitational disc instabilities in the disc at distances of around ˜10 to ˜50 AU leading to rapid transport of angular momentum and strong accretion bursts. These bursts typically last for about ˜10 to a ˜100 years, consistent with typical orbital times at the location of the instability, and enhance the luminosity of the protostar. Calculations with the stellar evolution code MESA show that the accretion bursts induce significant changes in the protostellar properties, such as the stellar temperature and radius. We apply the obtained protostellar properties to produce synthetic observables with RADMC3D and predict that accretion bursts lead to observable enhancements around 20 to 200 μm in the spectral energy distribution of Class 0 type young stellar objects.

  3. Spectral properties of the accretion discs around rotating black holes

    Indian Academy of Sciences (India)

    Samir Mandal

    2018-02-10

    Feb 10, 2018 ... Abstract. We study the radiation properties of an accretion disc around a rotating black hole. We solve the hydrodynamic equations and calculate the transonic solutions of accretion disc in the presence of shocks. Then we use these solutions to generate the radiation spectrum in the presence of radiative ...

  4. Accretion onto Protoplanetary Discs: Implications for Globular Cluster Evolution

    Science.gov (United States)

    Wijnen, Thomas; Pols, Onno; Portegies Zwart, Simon

    2015-08-01

    In the past decade, observational evidence that Globular Clusters (GCs) harbour multiple stellar populations has grown steadily. These observations are hard to reconcile with the classic picture of star formation in GCs, which approximates them as a single generation of stars. However, Bastian et al. recently suggested an evolutionary scenario in which a second (and higher order) population is formed by the accretion of chemically enriched material onto the low-mass stars in the initial GC population. In this early disc accretion scenario the low-mass, pre-main sequence stars sweep up gas expelled by the more massive stars of the same generation into their protoplanetary disc as they move through the cluster centre.Using assumptions that represent the (dynamical) conditions in a typical GC, we investigate whether a low-mass star surrounded by a protoplanetary disc can indeed accrete sufficient enriched material to account for the observed abundances in 'second generation' stars. We compare the outcome of two different smoothed particle hydrodynamics codes and check for consistency. In particular, we focus on the lifetime and stability of the disc and on the gas accretion rate onto both the star and the disc.

  5. Stable accretion from a cold disc in highly magnetized neutron stars

    Science.gov (United States)

    Tsygankov, S. S.; Mushtukov, A. A.; Suleimanov, V. F.; Doroshenko, V.; Abolmasov, P. K.; Lutovinov, A. A.; Poutanen, J.

    2017-11-01

    Aims: The aim of this paper is to investigate the transition of a strongly magnetized neutron star into the accretion regime with very low accretion rate. Methods: For this purpose, we monitored the Be-transient X-ray pulsar GRO J1008-57 throughout a full orbital cycle. The current observational campaign was performed with the Swift/XRT telescope in the soft X-ray band (0.5-10 keV) between two subsequent Type I outbursts in January and September 2016. Results: The expected transition to the propeller regime was not observed. However, transitions between different regimes of accretion were detected. In particular, after an outburst, the source entered a stable accretion state characterised by an accretion rate of 1014-1015 g s-1. We associate this state with accretion from a cold (low-ionised) disc of temperature below 6500 K. We argue that a transition to this accretion regime should be observed in all X-ray pulsars that have a certain combination of the rotation frequency and magnetic field strength. The proposed model of accretion from a cold disc is able to explain several puzzling observational properties of X-ray pulsars.

  6. Face-on accretion onto a protoplanetary disc

    Science.gov (United States)

    Wijnen, T. P. G.; Pols, O. R.; Pelupessy, F. I.; Portegies Zwart, S.

    2016-10-01

    Context. Stars are generally born in clustered stellar environments, which can affect their subsequent evolution. An example of this environmental influence can be found in globular clusters (GCs) harbouring multiple stellar populations. An evolutionary scenario in which a second (and possibly higher order) population is formed by the accretion of chemically enriched material onto the low-mass stars in the initial GC population has been suggested to explain the multiple stellar populations. The idea, dubbed early disc accretion, is that the low-mass, pre-main-sequence stars sweep up gas expelled by the more massive stars of the same generation into their protoplanetary disc as they move through the cluster core. The same process could also occur, to a lesser extent, in embedded stellar systems that are less dense. Aims: Using assumptions that represent the (dynamical) conditions in a typical GC, we investigate whether a low-mass star of 0.4 M⊙ surrounded by a protoplanetary disc can accrete a sufficient amount of enriched material to account for the observed abundances in so-called second generation GC stars. In particular, we focus on the gas-loading rate onto the disc and star, as well as on the lifetime and stability of the disc. Methods: We perform simulations at multiple resolutions with two different smoothed particle hydrodynamics codes and compare the results. Each code uses a different implementation of the artificial viscosity. Results: We find that the gas-loading rate is about a factor of two smaller than the rate based on geometric arguments, because the effective cross-section of the disc is smaller than its surface area. Furthermore, the loading rate is consistent for both codes, irrespective of resolution. Although the disc gains mass in the high-resolution runs, it loses angular momentum on a timescale of 104 yr. Two effects determine the loss of (specific) angular momentum in our simulations: (1) continuous ram pressure stripping and (2

  7. Beyond the standard model of the disc-line spectral profiles from black hole accretion discs

    Czech Academy of Sciences Publication Activity Database

    Sochora, Vjačeslav; Karas, Vladimír; Svoboda, Jiří; Dovčiak, Michal

    2014-01-01

    Roč. 54, č. 4 (2014), s. 301-304 ISSN 1210-2709 R&D Projects: GA ČR(CZ) GC13-00070J Institutional support: RVO:67985815 Keywords : accretion discs * black hole physics * galactic nuclei Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  8. Instability in strongly magnetized accretion discs: a global perspective

    Science.gov (United States)

    Das, Upasana; Begelman, Mitchell C.; Lesur, Geoffroy

    2018-01-01

    We examine the properties of strongly magnetized accretion discs in a global framework, with particular focus on the evolution of magnetohydrodynamic instabilities such as the magnetorotational instability (MRI). Work by Pessah & Psaltis showed that MRI is stabilized beyond a critical toroidal field in compressible, differentially rotating flows and, also, reported the appearance of two new instabilities beyond this field. Their results stemmed from considering geometric curvature effects due to the suprathermal background toroidal field, which had been previously ignored in weak-field studies. However, their calculations were performed under the local approximation, which poses the danger of introducing spurious behaviour due to the introduction of global geometric terms in an otherwise local framework. In order to avoid this, we perform a global eigenvalue analysis of the linearized MHD equations in cylindrical geometry. We confirm that MRI indeed tends to be highly suppressed when the background toroidal field attains the Pessah-Psaltis limit. We also observe the appearance of two new instabilities that emerge in the presence of highly suprathermal toroidal fields. These results were additionally verified using numerical simulations in PLUTO. There are, however, certain differences between the the local and global results, especially in the vertical wavenumber occupancies of the various instabilities, which we discuss in detail. We also study the global eigenfunctions of the most unstable modes in the suprathermal regime, which are inaccessible in the local analysis. Overall, our findings emphasize the necessity of a global treatment for accurately modelling strongly magnetized accretion discs.

  9. Anisotropic radiation from accretion disc coronae in active galactic nuclei

    Science.gov (United States)

    Xu, Ya-Di

    2015-05-01

    In the unification scheme for active galactic nuclei, type 1 Seyfert galaxies and type 2 Seyfert galaxies are thought to be intrinsically the same but viewed at different angles. However, the Fe Kα emission line luminosity of type 1 Seyfert galaxies was found on average to be about twice that of type 2 Seyfert galaxies for a given X-ray continuum luminosity in previous work. We construct an accretion disc-corona model in which a fraction of the energy dissipated in the disc is extracted to heat the corona above the disc. The radiation transfer equation with Compton scattering processes is an integro-differential equation, which is solved numerically for the corona with a parallel plane geometry. We find that the specific intensity of X-ray radiation from the corona changes little with the viewing angle θ when θ is small (nearly face-on), and it is sensitive to θ if the viewing angle is large (θ ≳ 40°). The radiation from the cold disc, mostly in infrared, optical and UV bands, is almost proportional to cos θ when θ ≲ 40°, while it decreases more rapidly than cos θ when θ ≳ 40° because of strong absorption in the corona in this case. For Seyfert galaxies, the Fe Kα line may probably be emitted from the disc irradiated by the X-ray continuum emission. The observed equivalent width difference between type 1 Seyfert galaxies and type 2 Seyfert galaxies can be reproduced by our model calculations, provided the type 1 Seyfert galaxies are observed nearly face-on and the average inclination angle of type 2 Seyfert galaxies is ˜65°.

  10. Dust inflated accretion disc as the origin of the broad line region in active galactic nuclei

    Science.gov (United States)

    Baskin, Alexei; Laor, Ari

    2018-02-01

    The broad line region (BLR) in active galactic nuclei (AGNs) is composed of dense gas (˜1011 cm-3) on sub-pc scale, which absorbs about 30 per cent of the ionizing continuum. The outer size of the BLR is likely set by dust sublimation, and its density by the incident radiation pressure compression (RPC). But, what is the origin of this gas, and what sets its covering factor (CF)? Czerny & Hryniewicz (2011) suggested that the BLR is a failed dusty wind from the outer accretion disc. We explore the expected dust properties, and the implied BLR structure. We find that graphite grains sublimate only at T ≃ 2000 K at the predicted density of ˜1011 cm-3, and therefore large graphite grains (≥0.3 μm) survive down to the observed size of the BLR, RBLR. The dust opacity in the accretion disc atmosphere is ˜50 times larger than previously assumed, and leads to an inflated torus-like structure, with a predicted peak height at RBLR. The illuminated surface of this torus-like structure is a natural place for the BLR. The BLR CF is mostly set by the gas metallicity, the radiative accretion efficiency, a dynamic configuration and ablation by the incident optical-UV continuum. This model predicts that the BLR should extend inwards of RBLR to the disc radius where the surface temperature is ≃2000 K, which occurs at Rin ≃ 0.18RBLR. The value of Rin can be tested by reverberation mapping of the higher ionization lines, predicted by RPC to peak well inside RBLR. The dust inflated disc scenario can also be tested based on the predicted response of RBLR and the CF to changes in the AGN luminosity and accretion rate.

  11. The gravitational microlens influence on X-ray spectral line generated by an AGN accretion disc

    Directory of Open Access Journals (Sweden)

    Popović L.Č.

    2001-01-01

    Full Text Available The influence of gravitational microlensing on the X-ray spectral line profiles originated from a relativistic accretion disc has been studied. Using a disc model, we show that microlensing can induce noticeable changes in the line shapes when the Einstein ring radius associated with the microlens is of a size comparable to that of the accretion disc. Taking into account the relatively small size of the X-ray accretion disc, we found that compact objects (of about a Solar mass which belong to the bulge of the host galaxy can produce significant changes in the X-ray line profile of AGN.

  12. Accretion-disc precession in UX Ursae Majoris

    Science.gov (United States)

    de Miguel, E.; Patterson, J.; Cejudo, D.; Ulowetz, J.; Jones, J. L.; Boardman, J.; Barret, D.; Koff, R.; Stein, W.; Campbell, T.; Vanmunster, T.; Menzies, K.; Slauson, D.; Goff, W.; Roberts, G.; Morelle, E.; Dvorak, S.; Hambsch, F.-J.; Starkey, D.; Collins, D.; Costello, M.; Cook, M. J.; Oksanen, A.; Lemay, D.; Cook, L. M.; Ogmen, Y.; Richmond, M.; Kemp, J.

    2016-04-01

    We report the results of a long campaign of time series photometry on the nova-like variable UX Ursae Majoris during 2015. It spanned 150 nights, with ˜ 1800 h of coverage on 121 separate nights. The star was in its normal `high state' near magnitude V = 13, with slow waves in the light curve and eclipses every 4.72 h. Remarkably, the star also showed a nearly sinusoidal signal with a full amplitude of 0.44 mag and a period of 3.680 ± 0.007 d. We interpret this as the signature of a retrograde precession (wobble) of the accretion disc. The same period is manifest as a ±33 s wobble in the timings of mid-eclipse, indicating that the disc's centre of light moves with this period. The star also showed strong `negative superhumps' at frequencies ωorb + N and 2ωorb + N, where ωorb and N are, respectively, the orbital and precession frequencies. It is possible that these powerful signals have been present, unsuspected, throughout the more than 60 yr of previous photometric studies.

  13. Characterising face-on accretion onto and the subsequent contraction of protoplanetary discs

    Science.gov (United States)

    Wijnen, T. P. G.; Pols, O. R.; Pelupessy, F. I.; Portegies Zwart, S.

    2017-06-01

    Context. Observations indicate that stars generally lose their protoplanetary discs on a timescale of about 5 Myr. Which mechanisms are responsible for the disc dissipation is still debated. Aims: Here we investigate the movement through an ambient medium as a possible cause of disc dispersal. The ram pressure exerted by the flow can truncate the disc and the accretion of material with no azimuthal angular momentum leads to further disc contraction. Methods: We derive a theoretical model from accretion disc theory that describes the evolution of the disc radius, mass, and surface density profile as a function of the density and velocity of the ambient medium. We test our model by performing hydrodynamical simulations of a protoplanetary disc embedded in a flow with different velocities and densities. Results: We find that our model gives an adequate description of the evolution of the disc radius and accretion rate onto the disc. The total disc mass in the simulations follows the theoretically expected trend, except at the lowest density where our simulated discs lose mass owing to continuous stripping. This stripping may be a numerical rather than a physical effect. Some quantitative differences exist between the model predictions and the simulations. These are at least partly caused by numerical viscous effects in the disc and depend on the resolution of the simulation. Conclusions: Our model can be used as a conservative estimate for the process of face-on accretion onto protoplanetary discs, as long as viscous processes in the disc can be neglected. The model predicts that in dense gaseous environments, discs can shrink substantially in size and can, in theory, sweep up an amount of gas of the order of their initial mass. This process could be relevant for planet formation in dense environments.

  14. Efficiency of gas cooling and accretion at the disc-corona interface

    NARCIS (Netherlands)

    Armillotta, L.; Fraternali, F.; Marinacci, F.

    2016-01-01

    In star-forming galaxies, stellar feedback can have a dual effect on the circumgalactic medium both suppressing and stimulating gas accretion. The trigger of gas accretion can be caused by disc material ejected into the halo in the form of fountain clouds and by its interaction with the surrounding

  15. Quantifying the Imprecision of Accretion Theory and Implications for Multi-Epoch Observations of Protoplanetary Discs

    DEFF Research Database (Denmark)

    Blackman, Eric G.; Nauman, Farrukh; Edgar, Richard G.

    2010-01-01

    If accretion disc emission results from turbulent dissipation, then axisymmetric accretion theory must be used as a mean field theory: turbulent flows are at most axisymmetric only when suitably averaged. Spectral predictions therefore have an intrinsic imprecision that must be quantified to inte...

  16. X-ray reflection in oxygen-rich accretion discs of ultracompact X-ray binaries

    DEFF Research Database (Denmark)

    Madej, O. K.; Garcia, Jeronimo; Jonker, P. G.

    2014-01-01

    . The donor star in these sources is a carbon-oxygen or oxygen-neon-magnesium white dwarf. Hence, the accretion disc is enriched with oxygen which makes the O viii Ly alpha line particularly strong. Modelling the X-ray reflection off a carbon- and oxygen-enriched, hydrogen- and helium-poor disc with models...

  17. A Laboratory Plasma Experiment for Studying Magnetic Dynamics of Accretion Discs and Jets

    OpenAIRE

    Hsu, S. C.; Bellan, P. M.

    2002-01-01

    This work describes a laboratory plasma experiment and initial results which should give insight into the magnetic dynamics of accretion discs and jets. A high-speed multiple-frame CCD camera reveals images of the formation and helical instability of a collimated plasma, similar to MHD models of disc jets, and also plasma detachment associated with spheromak formation, which may have relevance to disc winds and flares. The plasmas are produced by a planar magnetized coaxial gun. The resulting...

  18. HERO - A 3D general relativistic radiative post-processor for accretion discs around black holes

    Science.gov (United States)

    Zhu, Yucong; Narayan, Ramesh; Sadowski, Aleksander; Psaltis, Dimitrios

    2015-08-01

    HERO (Hybrid Evaluator for Radiative Objects) is a 3D general relativistic radiative transfer code which has been tailored to the problem of analysing radiation from simulations of relativistic accretion discs around black holes. HERO is designed to be used as a post-processor. Given some fixed fluid structure for the disc (i.e. density and velocity as a function of position from a hydrodynamic or magnetohydrodynamic simulation), the code obtains a self-consistent solution for the radiation field and for the gas temperatures using the condition of radiative equilibrium. The novel aspect of HERO is that it combines two techniques: (1) a short-characteristics (SC) solver that quickly converges to a self-consistent disc temperature and radiation field, with (2) a long-characteristics (LC) solver that provides a more accurate solution for the radiation near the photosphere and in the optically thin regions. By combining these two techniques, we gain both the computational speed of SC and the high accuracy of LC. We present tests of HERO on a range of 1D, 2D, and 3D problems in flat space and show that the results agree well with both analytical and benchmark solutions. We also test the ability of the code to handle relativistic problems in curved space. Finally, we discuss the important topic of ray defects, a major limitation of the SC method, and describe our strategy for minimizing the induced error.

  19. Accreting transition discs with large cavities created by X-ray photoevaporation in C and O depleted discs

    Science.gov (United States)

    Ercolano, Barbara; Weber, Michael L.; Owen, James E.

    2018-01-01

    Circumstellar discs with large dust depleted cavities and vigorous accretion on to the central star are often considered signposts for (multiple) giant planet formation. In this Letter, we show that X-ray photoevaporation operating in discs with modest (factors 3-10) gas-phase depletion of carbon and oxygen at large radii ( > 15 au) yields the inner radius and accretion rates for most of the observed discs, without the need to invoke giant planet formation. We present one-dimensional viscous evolution models of discs affected by X-ray photoevaporation assuming moderate gas-phase depletion of carbon and oxygen, well within the range reported by recent observations. Our models use a simplified prescription for scaling the X-ray photoevaporation rates and profiles at different metallicity, and our quantitative result depends on this scaling. While more rigorous hydrodynamical modelling of mass-loss profiles at low metallicities is required to constrain the observational parameter space that can be explained by our models, the general conclusion that metal sequestering at large radii may be responsible for the observed diversity of transition discs is shown to be robust. Gap opening by giant planet formation may still be responsible for a number of observed transition discs with large cavities and very high accretion rate.

  20. Disc truncation in embedded star clusters: Dynamical encounters versus face-on accretion

    Science.gov (United States)

    Wijnen, T. P. G.; Pols, O. R.; Pelupessy, F. I.; Portegies Zwart, S.

    2017-08-01

    Observations indicate that the dispersal of protoplanetary discs in star clusters occurs on time scales of about 5 Myr. Several processes are thought to be responsible for this disc dispersal. Here we compare two of these processes: dynamical encounters and interaction with the interstellar medium, which includes face-on accretion and ram pressure stripping. We perform simulations of embedded star clusters with parameterisations for both processes to determine the environment in which either of these processes is dominant. We find that face-on accretion, including ram pressure stripping, is the dominant disc truncation process if the fraction of the total cluster mass in stars is ≲30% regardless of the cluster mass and radius. Dynamical encounters require stellar densities ≳104 pc-3 combined with a mass fraction in stars of ≈90% to become the dominant process. Our results show that during the embedded phase of the cluster, the truncation of the discs is dominated by face-on accretion and dynamical encounters become dominant when the intra-cluster gas has been expelled. As a result of face-on accretion, the protoplanetary discs become compact and their surface density increases. In contrast, dynamical encounters lead to discs that are less massive and remain larger.

  1. The disappearance and reformation of the accretion disc during a low state of FO Aquarii

    Science.gov (United States)

    Hameury, J.-M.; Lasota, J.-P.

    2017-09-01

    Context. FO Aquarii, an asynchronous magnetic cataclysmic variable (intermediate polar) went into a low state in 2016, from which it slowly and steadily recovered without showing dwarf nova outbursts. This requires explanation since in a low state, the mass-transfer rate is in principle too low for the disc to be fully ionised and the disc should be subject to the standard thermal and viscous instability observed in dwarf novae. Aims: We investigate the conditions under which an accretion disc in an intermediate polar could exhibit a luminosity drop of two magnitudes in the optical band without showing outbursts. Methods: We use our numerical code for the time evolution of accretion discs, including other light sources from the system (primary, secondary, hot spot). Results: We show that although it is marginally possible for the accretion disc in the low state to stay on the hot stable branch, the required mass-transfer rate in the normal state would then have to be extremely high, of the order of 1019 g s-1 or even larger. This would make the system so intrinsically bright that its distance should be much larger than allowed by all estimates. We show that observations of FO Aqr are well accounted for by the same mechanism that we have suggested as explaining the absence of outbursts during low states of VY Scl stars: during the decay, the magnetospheric radius exceeds the circularisation radius, so that the disc disappears before it enters the instability strip for dwarf nova outbursts. Conclusions: Our results are unaffected, and even reinforced, if accretion proceeds both via the accretion disc and directly via the stream during some intermediate stages; the detailed process through which the disc disappears still requires investigation.

  2. A tilted and warped inner accretion disc around a spinning black hole: an analytical solution

    Science.gov (United States)

    Chakraborty, Chandrachur; Bhattacharyya, Sudip

    2017-08-01

    Inner accretion disc around a black hole provides a rare, natural probe to understand the fundamental physics of the strong gravity regime. A possible tilt of such a disc, with respect to the black hole spin equator, is important. This is because such a tilt affects the observed spectral and timing properties of the disc X-ray emission via Lense-Thirring precession, which could be used to test the theoretical predictions regarding the strong gravity. Here, we analytically solve the steady, warped accretion disc equation of Scheurer and Feiler, and find an expression of the radial profile of the disc tilt angle. In our exact solution, considering a prograde disc around a slowly spinning black hole, we include the inner part of the disc, which was not done earlier in this formalism. Such a solution is timely, as a tilted inner disc has recently been inferred from X-ray spectral and timing features of the accreting black hole H1743-322. Our tilt angle radial profile expression includes observationally measurable parameters, such as black hole mass and Kerr parameter, and the disc inner edge tilt angle Win, and hence can be ideal to confront observations. Our solution shows that the disc tilt angle in 10-100 gravitational radii is a significant fraction of the disc outer edge tilt angle, even for Win = 0. Moreover, tilt angle radial profiles have humps in ˜10-1000 gravitational radii for some sets of parameter values, which should have implications for observed X-ray features.

  3. The inner disc radius in the propeller phase and accretion-propeller transition of neutron stars

    Science.gov (United States)

    Ertan, Ünal

    2017-04-01

    We have investigated the critical conditions required for a steady propeller effect for magnetized neutron stars with optically thick, geometrically thin accretion discs. We have shown through simple analytical calculations that a steady-state propeller mechanism cannot be sustained at an inner disc radius where the viscous and magnetic stresses are balanced. The radius calculated by equating these stresses is usually found to be close to the conventional Alfvén radius for spherical accretion, rA. Our results show that: (1) a steady propeller phase can be established with a maximum inner disc radius that is at least ∼15 times smaller than rA depending on the mass-flow rate of the disc, rotational period and strength of the magnetic dipole field of the star, (2) the critical accretion rate corresponding to the accretion-propeller transition is orders of magnitude lower than the rate estimated by equating rA to the co-rotation radius. Our results are consistent with the properties of the transitional millisecond pulsars that show transitions between the accretion powered X-ray pulsar and the rotational powered radio-pulsar states.

  4. Boundary-layer temperatures in high accretion rate cataclysmic variables

    Energy Technology Data Exchange (ETDEWEB)

    Hoare, M.G.; Drew, J.E. (Oxford Univ. (UK). Dept. of Physics Oxford Univ. (UK). Dept. of Astrophysics)

    1991-04-01

    We use the Zanstra method to derive limits on boundary-layer temperatures in eclipsing dwarf novae during outburst and nova-like variables, using the observed He II {lambda}1640 and {lambda}4686 recombination lines. It is assumed that all the emission is produced in the wind rather than the accretion disc. This method constrains the boundary-layer temperatures to between 50 000 and 100 000 K depending on the degree of wind bipolarity. These estimates are lower than the T>or approx200 000 K predicted theoretically. Possible explanations include rapid rotation of the white dwarf and spreading of the boundary layer over the entire white-dwarf surface. (author).

  5. Eclipsing the innermost accretion disc regions in AGN

    Czech Academy of Sciences Publication Activity Database

    Sanfrutos, M.; Miniutti, G.; Dovčiak, Michal; Agis-Gonzalez, B.

    2016-01-01

    Roč. 337, 4-5 (2016), s. 546-551 ISSN 0004-6337 Institutional support: RVO:67985815 Keywords : accretion disks * black hole physics * relativistic effects Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.916, year: 2016

  6. The signature of the magnetorotational instability in the Reynolds and Maxwell stress tensors in accretion discs

    DEFF Research Database (Denmark)

    Pessah, Martin Elias; Chan, Chi-kwan; Psaltis, Dimitrios

    2006-01-01

    The magnetorotational instability is thought to be responsible for the generation of magnetohydrodynamic turbulence that leads to enhanced outward angular momentum transport in accretion discs. Here, we present the first formal analytical proof showing that, during the exponential growth of the i...

  7. Radio emission from Sgr A*: pulsar transits through the accretion disc

    Science.gov (United States)

    Christie, I. M.; Petropoulou, M.; Mimica, P.; Giannios, D.

    2017-06-01

    Radiatively inefficient accretion flow models have been shown to accurately account for the spectrum and luminosity observed from Sgr A* in the X-ray regime down to mm wavelengths. However, observations at a few GHz cannot be explained by thermal electrons alone but require the presence of an additional non-thermal particle population. Here, we propose a model for the origin of such a population in the accretion flow via means of a pulsar orbiting the supermassive black hole in our Galaxy. Interactions between the relativistic pulsar wind with the disc lead to the formation of a bow shock in the wind. During the pulsar's transit through the accretion disc, relativistic pairs, accelerated at the shock front, are injected into the disc. The radio-emitting particles are long lived and remain within the disc long after the pulsar's transit. Periodic pulsar transits through the disc result in regular injection episodes of non-thermal particles. We show that for a pulsar with spin-down luminosity Lsd ˜ 3 × 1035 erg s-1 and a wind Lorentz factor of γw ˜ 104 a quasi-steady synchrotron emission is established with luminosities in the 1-10 GHz range comparable to the observed one.

  8. Accurate Modelling of Relativistic Iron Lines from Accretion Discs

    OpenAIRE

    Beckwith, Kris; Done, Chris

    2004-01-01

    Observations of fluorescent iron lines from accreting black holes provide one of the best tests of strong field gravity available to date, and the only current observational tool to probe black hole spacetime. However, the two most widely used models for spectral fitting (diskline, laor) are over a decade old and have significant limitations. We present a new code for calculating these effects which will be incorporated within the XSPEC package

  9. Forecasting temperature fluctuations of brake discs on a hoisting machine

    Energy Technology Data Exchange (ETDEWEB)

    Barecki, Z.; Jankowski, A.

    1987-01-01

    Evaluates a method for forecasting temperature of brake discs on hoists used in underground coal mines. Formulae describing the following phenomena are derived: energy of mechanical braking, density of energy stream absorbed by the friction liners on disc brakes, temperature increase of a disc brake caused by braking, disc cooling intensity, disc temperature during repeated braking, minimum disc mass and surface. Use of the forecasting formulae is explained with the example of disc brake operation on 2 hoists. Temperature increase on disc surface and temperature increase of disc volume are treated as 2 basic indices characterizing disc brake operation. 11 refs.

  10. Modeling circumstellar disc fragmentation and episodic protostellar accretion with smoothed particle hydrodynamics in cell

    Science.gov (United States)

    Stoyanovskaya, O. P.; Snytnikov, N. V.; Snytnikov, V. N.

    2017-10-01

    We discuss the ability of the smoothed particle hydrodynamics (SPH) method combined with a grid-based solver for the Poisson equation to model mass accretion onto protostars in gravitationally unstable protostellar discs. We scrutinize important features of coupling the SPH with grid-based solvers and numerical issues associated with (1) large number of SPH neighbors and (2) relation between gravitational softening and hydrodynamic smoothing length. We report results of our simulations of razor-thin disc prone to fragmentation and demonstrate that the algorithm being simple and homogeneous captures the target physical processes - disc gravitational fragmentation and accretion of gas onto the protostar caused by inward migration of dense clumps. In particular, we obtain two types of accretion bursts: a short-duration one caused by a quick inward migration of the clump, previously reported in the literature, and the prolonged one caused by the clump lingering at radial distances on the order of 15-25 au. The latter is culminated with a sharp accretion surge caused by the clump ultimately falling on the protostar.

  11. BEYOND THE STANDARD MODEL OF THE DISC–LINE SPECTRAL PROFILES FROM BLACK HOLE ACCRETION DISCS

    Directory of Open Access Journals (Sweden)

    Vjaceslav Sochora

    2014-08-01

    Full Text Available The strong gravitational field of a black hole has distinct effects on the observed profile of a spectral line from an accretion disc near a black hole. The observed profile of the spectral line is broadened and skewed by a fast orbital motion and redshifted by a gravitational field. These effects can help us to constrain the parameters of a system with a black hole, both in active galactic nuclei and in a stellar-mass black hole. Here we explore the fact that an accretion disc emission can be mathematically imagined as a superposition of radiating accretion rings that extend from the inner edge to the outer rim of the disc, with some radially varying emissivity. In our work, we show that a characteristic double-horn profile of several radially confined (relatively narrow accretion rings or belts could be recognized by the planned instruments onboard future satellites (such as the proposed ESA Large Observatory for X-ray Timing.

  12. Magnetized advective accretion flows: formation of magnetic barriers in Magnetically Arrested Discs

    Science.gov (United States)

    Mondal, Tushar; Mukhopadhyay, Banibrata

    2018-02-01

    We discuss the importance of large scale strong magnetic field in the removal of angular momentum outward, as well as the possible origin of different kinds of magnetic barrier in advective, geometrically thick, sub-Keplerian accretion flows around black holes. The origin of this large scale strong magnetic field near the event horizon is due to the advection of the magnetic flux by the accreting gas from the environment, say, the interstellar medium or a companion star, because of flux freezing. In this simplest vertically averaged, 1.5 -dimensional disc model, we choose the maximum upper limit of the magnetic field, which the disc around a black hole can sustain. In this so called magnetically arrested disc (MAD) model, the accreting gas either decelerates or faces the magnetic barrier near the event horizon by the accumulated magnetic field depending on the geometry. The magnetic barrier may knock the matter to infinity. We suggest that these types of flow are the building block to produce jets and outflows in the accreting system. We also find that in some cases, when matter is trying to go back to infinity after knocking the barrier, matter is prevented being escaped by the cumulative action of strong gravity and the magnetic tension, hence by another barrier. In this way, magnetic field can lock the matter in between these two barriers and it might be a possible explanation for the formation of episodic jet.

  13. Accretion disc mapping of the shortest period eclipsing binary SDSS J0926+36

    Science.gov (United States)

    Schlindwein, W.; Baptista, R.

    2014-10-01

    AM CVn stars are ultracompact binaries (P_{orb}probably as a reminiscence of a (in some cases undetected) previous outburst. Its eclipsing nature allows a unique opportunity to disentangle the emission from several different light sources, and to map the surface brightness distribution of its hydrogen-deficient accretion disc with the aid of maximum entropy eclipse mapping techniques. Here we report the eclipse mapping analysis of optical light curves of SDSS J0926+36, collected with the 2.4 m Liverpool Robotic Telescope, covering 20 orbits of the binary over 5 nights of observations between 2012 February and March. The object was in quiescence at all runs. Our data show no evidence of superhumps nor of orbital modulation due to anisotropic emission from a bright spot at disc rim. Accordingly, the average out-of-eclipse flux level is consistent with that of the superhump-subtracted previous light curves. We combined all runs to obtain an orbital light curve of improved S/N. The corresponding eclipse map shows a compact source at disc centre (T_{b}simeq 17000 K), a faint, cool accretion disc (˜ 4000 K) plus enhanced emission along the gas stream (˜ 6000 K) beyond the impact point at the outer disc rim, suggesting the occurrence of gas stream overflow at that epoch.

  14. Multifrequency Observations of BL Lacertae: The Quest for Accretion Disc Signatures

    Science.gov (United States)

    Raiteri, C. M.; Villata, M.; Capetti, A.; Webt Collaboration

    2010-10-01

    BL Lacertae is the prototype of a class of active galactic nuclei whose continuum emission is dominated by non-thermal radiation from the jet. However, its optical spectrum has occasionally shown a broad and strong Hα emission line, suggesting that the broad line region is photoionized by the accretion disc radiation. The Whole Earth Blazar Telescope (WEBT) organized a huge multiwavelength campaign in 2007-2008, also involving three pointings by the XMM-Newton satellite, with the main goal to look for signatures of the accretion disc. These observations were complemented by optical spectroscopic monitoring at the 3.6 m Telescopio Nazionale Galileo (TNG). The brightness level was relatively low. However, in the optical band we observed the most noticeable inter-day variability episode ever detected by the WEBT in more than 15 years. The spectral energy distributions (SEDs) built with simultaneous radio-to-X-ray data at the epochs of the XMM-Newton observations present a prominent UV excess as well as a slight soft-X-ray excess. We interpret the UV excess as a signature of the accretion disc. Since in previous observations the X-ray spectrum was found to vary dramatically, we suggest that the X-ray emission is due to a second synchrotron component, in addition to the one responsible for the radio-to-optical emission.

  15. Evolution of the accretion disc around the supermassive black hole of NGC 7213

    Science.gov (United States)

    Schimoia, Jaderson S.; Storchi-Bergmann, Thaisa; Winge, Cláudia; Nemmen, Rodrigo S.; Eracleous, Michael

    2017-12-01

    We present observations of the double-peaked broad H α profile emitted by the active nucleus of NGC 7213 using the Gemini South Telescope in 13 epochs between 2011 September 27 and 2013 July 23. This is the first time that the double-peaked line profile of this nucleus - typical of gas emission from the outer parts of an accretion disc surrounding a supermassive black hole (SMBH) - is reported to vary. From the analysis of the line profiles we find two variability time-scales: (1) the shortest one, between 7 and 28 d, is consistent with the light travel time between the ionizing source and the part of the disc emitting the line; and (2) a longer one of ≳3 m corresponding to variations in the relative intensity of the blue and red sides of the profile, which can be identified with the dynamical time-scale of this outer part of the accretion disc. We modelled the line profiles as due to emission from a region between ≈300 and 3000 gravitational radii of a relativistic, Keplerian accretion disc surrounding the SMBH. Superposed on the disc emissivity, the model includes an asymmetric feature in the shape of a spiral arm with a rotation period of ≈21 m, which reproduces the variations in the relative intensity of the blue and red sides of the profile. Besides these variations, the rms variation profile reveals the presence of another variable component in the broad line, with smaller velocity width W68 (the width of the profile corresponding to 68 per cent of the flux) of ∼2100 km s-1.

  16. Estimation of bipolar jets from accretion discs around Kerr black holes

    Science.gov (United States)

    Kumar, Rajiv; Chattopadhyay, Indranil

    2017-08-01

    We analyse flows around a rotating black hole and obtain self-consistent accretion-ejection solutions in full general relativistic prescription. Entire energy-angular momentum parameter space is investigated in the advective regime to obtain shocked and shock-free accretion solutions. Jet equations of motion are solved along the von Zeipel surfaces computed from the post-shock disc, simultaneously with the equations of accretion disc along the equatorial plane. For a given spin parameter, the mass outflow rate increases as the shock moves closer to the black hole, but eventually decreases, maximizing at some intermediate value of shock location. Interestingly, we obtain all types of possible jet solutions, for example, steady shock solution with multiple critical points, bound solution with two critical points and smooth solution with single critical point. Multiple critical points may exist in jet solution for spin parameter as ≥ 0.5. The jet terminal speed generally increases if the accretion shock forms closer to the horizon and is higher for corotating black hole than the counter-rotating and the non-rotating one. Quantitatively speaking, shocks in jet may form for spin parameter as > 0.6 and jet shocks range between 6rg and 130rg above the equatorial plane, while the jet terminal speed vj∞ > 0.35 c if Bernoulli parameter E≥1.01 for as > 0.99.

  17. Corotation resonance and overstable oscillations in black hole accretion discs: general relativistic calculations

    Czech Academy of Sciences Publication Activity Database

    Horák, Jiří; Lai, D.

    2013-01-01

    Roč. 434, č. 4 (2013), s. 2761-2771 ISSN 0035-8711 R&D Projects: GA MŠk ME09036; GA ČR(CZ) GAP209/11/2004 Grant - others:NASA(US) NNX12AF85G; NSF(US) AST-1008245; NSF(US) AST-1211061; Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100031202 Institutional support: RVO:67985815 Keywords : accretion discs * hydrodynamics * X-ray binaries Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.226, year: 2013

  18. Observational appearance and spectrum of black hole winds from supercritical accretion discs: scattering effect

    Science.gov (United States)

    Orihashi, M.; Fukue, J.

    2017-12-01

    We investigate the observational appearance of a black hole wind blown off from a supercritical accretion disc, considering the electron scattering, which separates the thermalization surface and the apparent photosphere, especially in the high-energy regime. Similar to the spherical case, the size of the thermalization surface becomes quite smaller than that of the apparent photosphere. In contrast with the spherical case, the shapes of the thermalization surface as well as the apparent photosphere are extremely aspherical. As a result, the expected spectral energy distribution is somewhat flat and soft in the middle and high-energy regimes, except for a small peak of the outer disc origin in the low-energy regime.

  19. Primordial protostars accreting beyond the ΩΓ-limit: radiation effect around the star-disc boundary

    Science.gov (United States)

    Takahashi, Sanemichi Z.; Omukai, Kazuyuki

    2017-11-01

    We consider whether the maximum mass of first stars is imposed by the protostellar spin (i.e. by the so-called ΩΓ-limit), which requires the sum of the radiation and centrifugal forces at the stellar surface to be smaller than the inward pull of the gravity. Once the accreting protostar reaches such a marginal state, the star cannot spin up more and is not allowed to accrete more gas with inward angular momentum flux. So far, however, the effect of stellar radiation on the structure of the accretion disc has not been properly taken into account in discussing the effect of the ΩΓ-limit on the formation of the first stars. Here, we obtain a series of steady accretion-disc solutions considering such an effect, and we find solutions without net angular momentum influx to the stars with arbitrary rotation rates, in addition to those with finite angular momentum flows. The accretion of positive angular momentum flows pushes the star beyond the ΩΓ-limit, which is allowed only with the external pressure provided by the circumstellar disc. However, the accretion with no net angular momentum influx does not result in the spin-up of the star. Thus, the existence of the solution with no net angular momentum influx indicates that protostars can keep growing in mass by accretion, even after they reach the ΩΓ-limit.

  20. HST Spatially Resolved Spectra of the Accretion Disc and Gas Stream of the Nova-Like Variable UX Ursae Majoris

    Science.gov (United States)

    Baptista, Raymundo; Horne, Keith; Wade, Richard A.; Hubeny, Ivan; Long, Knox S.; Rutten, Rene G. M.

    1998-01-01

    Time-resolved eclipse spectroscopy of the nova-like variable UX UMa obtained with the Hubble Space Telescope/Faint Object Spectrograph (HST/FOS) on 1994 August and November is analysed with eclipse mapping techniques to produce spatially resolved spectra of its accretion disk and gas stream as a function of distance from the disk centre. The inner accretion disk is characterized by a blue continuum filled with absorption bands and lines, which cross over to emission with increasing disk radius, similar to that reported at optical wavelengths. The comparison of spatially resolved spectra at different azimuths reveals a significant asymmetry in the disk emission at ultraviolet (UV) wavelengths, with the disk side closest to the secondary star showing pronounced absorption by an 'iron curtain' and a Balmer jump in absorption. These results suggest the existence of an absorbing ring of cold gas whose density and/or vertical scale increase with disk radius. The spectrum of the infalling gas stream is noticeably different from the disc spectrum at the same radius suggesting that gas overflows through the impact point at the disk rim and continues along the stream trajectory, producing distinct emission down to 0.1 R(sub LI). The spectrum of the uneclipsed light shows prominent emission lines of Lyalpha, N v lambda1241, SiIV Lambda 1400, C IV Lambda 1550, HeII Lambda 1640, and MgII Lambda 2800, and a UV continuum rising towards longer wavelengths. The Balmer jump appears clearly in emission indicating that the uneclipsed light has an important contribution from optically thin gas. The lines and optically thin continuum emission are most probably emitted in a vertically extended disk chromosphere + wind. The radial temperature profiles of the continuum maps are well described by a steady-state disc model in the inner and intermediate disk regions (R greater than or equal to 0.3R(sub LI) ). There is evidence of an increase in the mass accretion rate from August to November

  1. Fate of an accretion disc around a black hole when both the viscosity and dark energy is in effect

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Sandip; Biswas, Ritabrata [The University of Burdwan, Department of Mathematics, Burdwan, West Bengal (India)

    2017-10-15

    This paper deals with the viscous accretion flow of a modified Chaplygin gas towards a black hole as the central gravitating object. A modified Chaplygin gas is a particular type of dark energy model which mimics of radiation era to phantom era depending on the different values of its parameters. We compare the dark energy accretion with the flow of adiabatic gas. An accretion disc flowing around a black hole is an example of a transonic flow. To construct the model, we consider three components of the Navier-Stokes equation, the equation of continuity and the modified Chaplygin gas equation of state. As a transonic flow passes through the sonic point, the velocity gradient being apparently singular there, it gives rise to two flow branches: one in-falling, the accretion and the other outgoing, the wind. We show that the wind curve is stronger and the wind speed reaches that of light at a finite distance from the black hole when dark energy is considered. Besides, if we increase the viscosity, the accretion disc is shortened in radius. These two processes acting together make the system deviate much from the adiabatic accretion case. It shows a weakening process for the accretion procedure by the work of the viscous system influencing both the angular momentum transport and the repulsive force of the modified Chaplygin gas. (orig.)

  2. Disc-jet coupling in low-luminosity accreting neutron stars

    Science.gov (United States)

    Tudor, V.; Miller-Jones, J. C. A.; Patruno, A.; D'Angelo, C. R.; Jonker, P. G.; Russell, D. M.; Russell, T. D.; Bernardini, F.; Lewis, F.; Deller, A. T.; Hessels, J. W. T.; Migliari, S.; Plotkin, R. M.; Soria, R.; Wijnands, R.

    2017-09-01

    In outburst, neutron star X-ray binaries produce less powerful jets than black holes at a given X-ray luminosity. This has made them more difficult to study as they fade towards quiescence. To explore whether neutron stars power jets at low accretion rates (LX ≲ 1036 erg s-1), we investigate the radio and X-ray properties of three accreting millisecond X-ray pulsars (IGR J17511-3057, SAX J1808.4-3658 and IGR J00291+5934) during their outbursts in 2015, and of the non-pulsing neutron star Cen X-4 in quiescence (2015) and in outburst (1979). We did not detect the radio counterpart of IGR J17511-3057 in outburst or of Cen X-4 in quiescence, but did detect IGR J00291+5934 and SAX J1808.4-3658, showing that at least some neutron stars launch jets at low accretion rates. While the radio and X-ray emission in IGR J00291+5934 seem to be tightly correlated, the relationship in SAX J1808.4-3658 is more complicated. We find that SAX J1808.4-3658 produces jets during the reflaring tail, and we explore a toy model to ascertain whether the radio emission could be attributed to the onset of a strong propeller. The lack of a universal radio/X-ray correlation, with different behaviours in different neutron star systems (with various radio/X-ray correlations; some being radio faint and others not), points at distinct disc-jet interactions in individual sources, while always being fainter in the radio band than black holes at the same X-ray luminosity.

  3. Probing the geometry and motion of AGN coronae through accretion disc emissivity profiles

    Science.gov (United States)

    Gonzalez, A. G.; Wilkins, D. R.; Gallo, L. C.

    2017-12-01

    To gain a better understanding of the inner disc region that comprises active galactic nuclei, it is necessary to understand the pattern in which the disc is illuminated (the emissivity profile) by X-rays emitted from the continuum source above the black hole (corona). The differences in the emissivity profiles produced by various corona geometries are explored via general relativistic ray tracing simulations. Through the analysis of various parameters of the geometries simulated it is found that emissivity profiles produced by point source and extended geometries such as cylindrical slabs and spheroidal coronae placed on the accretion disc are distinguishable. Profiles produced by point source and conical geometries are not significantly different, requiring an analysis of reflection fraction to differentiate the two geometries. Beamed point and beamed conical sources are also simulated in an effort to model jet-like coronae, though the differences here are most evident in the reflection fraction. For a point source we determine an approximation for the measured reflection fraction with the source height and velocity. Simulating spectra from the emissivity profiles produced by the various geometries produce distinguishable differences. Overall spectral differences between the geometries do not exceed 15 per cent in the most extreme cases. It is found that emissivity profiles can be useful in distinguishing point source and extended geometries given high-quality spectral data of extreme, bright sources over long exposure times. In combination with reflection fraction, timing and spectral analysis we may use emissivity profiles to discern the geometry of the X-ray source.

  4. Accretion

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    The process by which a celestial body increases its mass by aggregating smaller objects which collide with it. Several types of object grow by accretion. In binary stars in which mass transfer is taking place, one member grows at the expense of the other; black holes, including supermassive black holes believed to be present in active galactic nuclei, also increase their mass by accretion. In bot...

  5. Comparison of Ejection Events in the Jet and Accretion Disc Outflows in 3C 111

    Science.gov (United States)

    Tombesi, F.; Sambruna, R. M.; Marscher, A. P.; Jorstad, S. G.; Reynolds, C. S.; Markowtiz, A.

    2012-01-01

    We present a comparison of the parameters of accretion disc outflows and the jet of the broad-line radio galaxy 3C 111 on sub-pc scales. We make use of published X-ray observations of ultra-fast outflows (UFOs) and new 43 GHz VLBA images to track the jet knots ejection. We find that the superluminal jet coexists with the mildly relativistic outflows on sub-pc scales, possibly indicating a transverse stratification of a global flow. The two are roughly in pressure equilibrium, with the UFOs potentially providing additional support for the initial jet collimation. The UFOs are much more massive than the jet, but their kinetic power is probably about an order of magnitude lower, at least for the observations considered here. However, their momentum flux is equivalent and both of them are powerful enough to exert a concurrent feedback impact on the surrounding environment. A link between these components is naturally predicted in the context of MHD models for jet/outflow formation. However, given the high radiation throughput of AGNs, radiation pressure should also be taken into account. From the comparison with the long-term 2-10 keV RXTE light curve we find that the UFOs are preferentially detected during periods of increasing flux. We also find the possibility to place the UFOs within the known X-ray dips-jet ejection cycles, which has been shown to be a strong proof of the disc-jet connection, in analogue with stellar-mass black holes. However, given the limited number of observations presently available, these relations are only tentative and additional spectral monitoring is needed to test them conclusively.

  6. Production of the entire range of r-process nuclides by black hole accretion disc outflows from neutron star mergers

    Science.gov (United States)

    Wu, Meng-Ru; Fernández, Rodrigo; Martínez-Pinedo, Gabriel; Metzger, Brian D.

    2016-12-01

    We consider r-process nucleosynthesis in outflows from black hole accretion discs formed in double neutron star and neutron star-black hole mergers. These outflows, powered by angular momentum transport processes and nuclear recombination, represent an important - and in some cases dominant - contribution to the total mass ejected by the merger. Here we calculate the nucleosynthesis yields from disc outflows using thermodynamic trajectories from hydrodynamic simulations, coupled to a nuclear reaction network. We find that outflows produce a robust abundance pattern around the second r-process peak (mass number A ˜ 130), independent of model parameters, with significant production of A < 130 nuclei. This implies that dynamical ejecta with high electron fraction may not be required to explain the observed abundances of r-process elements in metal poor stars. Disc outflows reach the third peak (A ˜ 195) in most of our simulations, although the amounts produced depend sensitively on the disc viscosity, initial mass or entropy of the torus, and nuclear physics inputs. Some of our models produce an abundance spike at A = 132 that is absent in the Solar system r-process distribution. The spike arises from convection in the disc and depends on the treatment of nuclear heating in the simulations. We conclude that disc outflows provide an important - and perhaps dominant - contribution to the r-process yields of compact binary mergers, and hence must be included when assessing the contribution of these systems to the inventory of r-process elements in the Galaxy.

  7. The Comptonization of accretion disc X-ray emission: consequences for X-ray reflection and the geometry of AGN coronae

    Science.gov (United States)

    Wilkins, D. R.; Gallo, L. C.

    2015-03-01

    We consider the Comptonization of the photons that make up the relativistically blurred reflection that is commonly detected from the accretion discs of active galactic nuclei by the coronae of energetic particles believed to give rise to the powerful X-ray continua by the inverse-Compton scattering of thermal seed photons from the disc. Recent measurements of the emissivity profiles of accretion discs as well as reverberation time lags between the primary X-ray continuum and the reflection suggest that this corona is situated at a low height above the disc and extends radially, tens of gravitational radii over the disc surface, hence should also Compton scatter the reflected X-rays. We find that the detection of blurred reflection from as close in as the innermost stable circular orbits (ISCOs) of maximally rotating black holes is consistent with such coronae, but requires that the corona be patchy, consisting perhaps of a number of isolated flares throughout the region. Considering only the requirement that it be possible to detect reflection from the ISCO, we find that at any given moment, the covering fraction of the inner part of the accretion disc by the corona needs to be less than 85 per cent, although the detection of `reflection-dominated' spectra in which the total reflected flux exceeds that seen in the continuum requires covering fractions as low as 50 or 25 per cent.

  8. Disc-jet coupling in low-luminosity accreting neutron stars

    NARCIS (Netherlands)

    Tudor, V.; Miller-Jones, J. C. A.; Patruno, A.; D'Angelo, C. R.; Jonker, P. G.; Russell, D. M.; Russell, T. D.; Bernardini, F.; Lewis, F.; Deller, A.T.; Hessels, J. W. T.; Migliari, S.; Plotkin, R. M.; Soria, R.; Wijnands, R.

    2017-01-01

    In outburst, neutron star X-ray binaries produce less powerful jets than black holes at a given X-ray luminosity. This has made them more difficult to study as they fade towards quiescence. To explore whether neutron stars power jets at low accretion rates (LX ≲ 1036 erg s-1), we investigate the

  9. Thin viscous elliptical accretion discs with orbits sharing a common longitude of periastron. VI. Simplification of the dynamical equation

    Science.gov (United States)

    Dimitrov, D.

    2012-10-01

    We continue the series of papers, devoted to the investigation and simplification of the dynamical equation, governing the structure of the stationary elliptical accretion discs. These studies are in the frameworks, specified according to the model of Lyubarskij et al. [7]. In addition to the previous examinations, we find one more linear relation between the coefficients of this second order ordinary differential equation, which enables us to eliminate effectively at least four of them. This is in the course of our approach to reduce the number of these functions, depending on the eccentricity, its derivative and the power n in the viscosity law η = β Σ n. They appear in the equation during the process of averaging (i.e. integrating) over the azimuthal angle of the elliptical orbits. At the present stage of the investigations, there still remain three integrals of the indicated type. Except the case of integer values of n, their analytical solutions are not known. In connection with the linear dependence or independence of these functions (this is a subject of our future studies), the dynamical equation of the elliptical accretion discs may be split into a system of corresponding number of more simple equations about the unknown eccentricities of the particle orbits. Such an approach is in accordance with our base line, carried out through the referred series of papers, to make a progress, as much as possible, into the solving of the task by means of purely analytical methods. And only when the further advance in this way (if the final solution is not already attained) is so complicated, that it is impasse, to use numerical simulations.

  10. The Effects of High Density on the X-ray Spectrum Reflected from Accretion Discs Around Black Holes

    Science.gov (United States)

    Garcia, Javier A.; Fabian, Andrew C.; Kallman, Timothy R.; Dauser, Thomas; Parker, Micahel L.; McClintock, Jeffrey E.; Steiner, James F.; Wilms, Jorn

    2016-01-01

    Current models of the spectrum of X-rays reflected from accretion discs around black holes and other compact objects are commonly calculated assuming that the density of the disc atmosphere is constant within several Thomson depths from the irradiated surface. An important simplifying assumption of these models is that the ionization structure of the gas is completely specified by a single, fixed value of the ionization parameter (xi), which is the ratio of the incident flux to the gas density. The density is typically fixed at n(sub e) = 10(exp 15) per cu cm. Motivated by observations, we consider higher densities in the calculation of the reflected spectrum. We show by computing model spectra for n(sub e) approximately greater than 10(exp 17) per cu cm that high-density effects significantly modify reflection spectra. The main effect is to boost the thermal continuum at energies 2 approximately less than keV. We discuss the implications of these results for interpreting observations of both active galactic nuclei and black hole binaries. We also discuss the limitations of our models imposed by the quality of the atomic data currently available.

  11. Irradiation of an Accretion Disc by a Jet: General Properties and Implications for Spin Measurements of Black Holes

    Science.gov (United States)

    T.Dauser; Garcia, J.; Wilms, J.; Boeck, M.; Brenneman, L. W.; Falanga, M.; Fukumura, Keigo; Reynolds, C. S.

    2013-01-01

    X-ray irradiation of the accretion disc leads to strong reflection features, which are then broadened and distorted by relativistic effects. We present a detailed, general relativistic approach to model this irradiation for different geometries of the primary X-ray source. These geometries include the standard point source on the rotational axis as well as more jet-like sources, which are radially elongated and accelerating. Incorporating this code in the RELLINE model for relativistic line emission, the line shape for any configuration can be predicted. We study how different irradiation geometries affect the determination of the spin of the black hole. Broad emission lines are produced only for compact irradiating sources situated close to the black hole. This is the only case where the black hole spin can be unambiguously determined. In all other cases the line shape is narrower, which could either be explained by a low spin or an elongated source. We conclude that for those cases and independent of the quality of the data, no unique solution for the spin exists and therefore only a lower limit of the spin value can be given

  12. Estimation of mass outflow rates from dissipative accretion disc around rotating black holes

    Science.gov (United States)

    Aktar, Ramiz; Das, Santabrata; Nandi, Anuj; Sreehari, H.

    2017-11-01

    We study the properties of the dissipative accretion flow around rotating black holes in the presence of mass loss. We obtain a complete set of global inflow-outflow solutions in the steady state by solving the underlying conservation equations self-consistently. We observe that global inflow-outflow solutions are not the isolated solution, instead such solutions are possible for wide range of inflow parameters. Accordingly, we identify the boundary of the parameter space for outflows, spanned by the angular momentum (λin) and the energy (E_in) at the inner sonic point (xin), as a function of the dissipation parameters and find that parameter space gradually shrinks with the increase of dissipation rates. Further, we examine the properties of the outflow rate R_{\\dot{m}} (defined as the ratio of the outflow-to-inflow mass flux) and ascertain that dissipative processes play a decisive role in determining the outflow rates. We calculate the limits on the maximum outflow rate (R_{\\dot{m}}^max) in terms of viscosity parameter (α) as well as the black hole spin (ak) and obtain the limiting range as 3 {per cent} ≤ R_{\\dot{m}}^max ≤ 19 {per cent}. Moreover, we calculate the viable range of α that admits the coupled inflow-outflow solutions and find that α ≲ 0.25 for R_{\\dot{m}} ≠ 0. Finally, we discuss the observational implication of our formalism to infer the spin of the black holes. Towards this, considering the highest observed quasi-periodic oscillation frequency of the black hole source GRO J1655-40 (˜450 Hz), we constrain the spin value of the source as ak ≥ 0.57.

  13. Thin viscous elliptical accretion discs with orbits sharing a common longitude of periastron. V. Linear relations between azimuthal-angle averaged factors in the dynamical equation

    Science.gov (United States)

    Dimitrov, D.

    2012-10-01

    We consider a model of elliptical stationary accretion discs developed by Lyubarskij et al. [4], which have derived a second order ordinary differential equation, describing the spatial structure of these objects. This dynamical equation contains seven integrals, arising from the azimuthal averaging along the elliptical disc particle orbits. They are functions on the unknown eccentricity distribution e(u), its derivative dot{e}(u) ≡ de(u)/du and the power n in the viscosity low η = β Σ n, where u ≡ ln p, p is the focal parameter of the concrete elliptical particle orbit. In the present paper, we derive linear relations between these unknown integrals, which may be useful to eliminate three of these quantities. It is also possible to eliminate even one more integral, but proving of this statement will be postponed in a forthcoming paper. The considered approach is maintained with a view to split the dynamical equation into a system of more simple differential equations.

  14. Impact of Brake Pad Structure on Temperature and Stress Fields of Brake Disc

    OpenAIRE

    Guoshun Wang; Rong Fu

    2013-01-01

    Utilizing ABAQUS finite element software, the study established the relationship between a brake pad structure and distributions of temperature and thermal stress on brake disc. By introducing radial structure factor and circular structure factor concepts, the research characterized the effect of friction block radial and circumferential arrangement on temperature field of the brake disc. A method was proposed for improving heat flow distribution of the brake disc through optimizing the posit...

  15. Numerical Analysis of Temperature Field in a Disc Brake at Different Cover Angle of the Pad

    Directory of Open Access Journals (Sweden)

    Grześ Piotr

    2014-12-01

    Full Text Available In the paper an influence of the cover angle of the pad on temperature fields of the components of the disc brake is studied. A three-dimensional finite element (FE model of the pad-disc system was developed at the condition of equal temperatures on the contacting surfaces. Calculations were carried out for a single braking process at constant deceleration assuming that the contact pressure corresponds with the cover angle of the pad so that the moment of friction is equal in each case analysed. Evolutions and distributions of temperature both for the contact surface of the pad and the disc were computed and shown.

  16. X-ray Dips Followed by Superluminal Ejections as Evidence for An Accretion Disc Feeding the Jet in A Radio Galaxy

    Science.gov (United States)

    Marscher, Alan P.; Jorstad, Svetlana G.; Gomez, Jose-Luis; Aller, Margo F.; Terasranta, Harri; Lister, Matthew L.; Stirling, Alastair, M.

    2002-01-01

    Accretion onto black holes is thought to power the relativistic jets and other high-energy phenomena in both active galactic nuclei (AGNs) and the "microquasar" binary systems located in our Galaxy. However, until now there has been insufficient multifrequency monitoring to establish a direct observational link between the black hole and the jet in an AGE. This contrasts with the case of microquasars, in which superluminal features appear and propagate down the radio jet shortly after sudden decreases in the X-ray flux. Such an X-ray dip is most likely caused by the disappearance of a section of the inner accretion disc, part of which falls past the event horizon and the remainder of which is injected into the jet. This infusion of energy generates a disturbance that propagates down the jet, creating the appearance of a superluminal bright spot. Here we report the results of three years of intensive monitoring of the X-ray and radio emission of the Seyfert-like radio galaxy 3C 120. As in the case of microquasars, dips in the X-ray emission are followed by ejections of bright superluminal knots in the radio jet. Comparison of the characteristic length and time scales allows us to infer that the rotational states of the black holes in these two objects are different.

  17. Accurate Modelling of Relativistic Iron Lines from Accretion Discs(Session 8 : Key Physical Evidence for BHs)

    OpenAIRE

    Kris, BECKWITH; Chris, DONE; Department of Physics, University of Durham

    2004-01-01

    Observations of fluorescent iron lines from accreting black holes provide one of the best tests of strong field gravity available to date, and the only current observational tool to probe black hole spacetime. However, the two most widely used models for spectral fitting (diskline, laor) are over a decade old and have significant limitations. We present a new code for calculating these effects which will be incorporated within the XSPEC package.

  18. Planet population synthesis driven by pebble accretion in cluster environments

    Science.gov (United States)

    Ndugu, N.; Bitsch, B.; Jurua, E.

    2018-02-01

    The evolution of protoplanetary discs embedded in stellar clusters depends on the age and the stellar density in which they are embedded. Stellar clusters of young age and high stellar surface density destroy protoplanetary discs by external photoevaporation and stellar encounters. Here, we consider the effect of background heating from newly formed stellar clusters on the structure of protoplanetary discs and how it affects the formation of planets in these discs. Our planet formation model is built on the core accretion scenario, where we take the reduction of the core growth time-scale due to pebble accretion into account. We synthesize planet populations that we compare to observations obtained by radial velocity measurements. The giant planets in our simulations migrate over large distances due to the fast type-II migration regime induced by a high disc viscosity (α = 5.4 × 10-3). Cold Jupiters (rp > 1 au) originate preferably from the outer disc, due to the large-scale planetary migration, while hot Jupiters (rp population of isolated stars host a significant amount of giant planets even at low metallicity, in contradiction to observations where giant planets are preferably found around high metallicity stars, indicating that pebble accretion is very efficient in the standard pebble accretion framework. On the other hand, discs around stars embedded in cluster environments hardly form any giant planets at low metallicity in agreement with observations, where these changes originate from the increased temperature in the outer parts of the disc, which prolongs the core accretion time-scale of the planet. We therefore conclude that the outer disc structure and the planet's formation location determines the giant planet occurrence rate and the formation efficiency of cold and hot Jupiters.

  19. Thin viscous elliptical accretion discs with orbits sharing a common longitude of periastron. III. Numerical evaluations of the validity domain of the solutions

    Science.gov (United States)

    Dimitrov, Dimitar

    2008-09-01

    We have investigated the validity domain of the dynamical equation which defines the structure of a two-dimensional elliptical accretion disc model of Lyubarskij et al. [9]. Only cases with integer powers in the viscosity law η Σn are considered, namely n = -1, 0, +1, +2 and +3 (η is the viscosity coefficient, Σ is the disc surface density). This approach is adopted in view of the fact that the analytical expressions for the dynamical equation for these particular values of n are already derived in an earlier paper [7]. As a mathematical problem, we have to solve a second order ordinary differential equation with initial conditions - two arbitrary constants e0 (the value of the eccentricity) and its derivative e0 for a given fixed value of the focal parameter p0 of a selected elliptical trajectory. In the present paper we have chosen the following grid of values: e0 = 0.00, +0.20 and +0.50 ; e0 varies by step 0.01 accordingly from -1.00 to +1.00, from -0.80 to +1.20 and from -0.50 to + 1.50. The independent variable u in the dynamical equation is defined as a logarithm of the focal parameter p of the elliptical particle trajectories, i.e., u = ln p. Respectively, e = e(u ; eu, elf n) and e = e(u ; etj, elf n). By the definition of the problem, each eccentricity e must be a real function and from physical reasons the inequalities |e(u) | equation is solved by means of numerical methods and the range of variation of u where the above restrictions are satisfied is found out. For each of the 15 combinations (n, e0) the permitted range of variation of u as a function of e0 is presented

  20. Impact of Brake Pad Structure on Temperature and Stress Fields of Brake Disc

    Directory of Open Access Journals (Sweden)

    Guoshun Wang

    2013-01-01

    Full Text Available Utilizing ABAQUS finite element software, the study established the relationship between a brake pad structure and distributions of temperature and thermal stress on brake disc. By introducing radial structure factor and circular structure factor concepts, the research characterized the effect of friction block radial and circumferential arrangement on temperature field of the brake disc. A method was proposed for improving heat flow distribution of the brake disc through optimizing the position of the friction block of the brake pad. Structure optimization was conducted on brake pads composed of 5 or 7 circular friction blocks. The result shows that, with the same overall contact area of friction pair, an appropriate brake pad structure can make the friction energy distribute evenly and therefore lowers peak temperature and stress of the brake disc. Compared with a brake pad of 7 friction blocks, an optimized brake pad of 5 friction blocks lowered the peak temperature of the corresponding brake disc by 4.9% and reduced the highest stress by 10.7%.

  1. Multiwavelength temporal and spectral variability of the blazar OJ 287 during and after the 2015 December flare: a major accretion disc contribution

    Science.gov (United States)

    Kushwaha, Pankaj; Gupta, Alok C.; Wiita, Paul J.; Gaur, Haritma; de Gouveia Dal Pino, E. M.; Bhagwan, Jai; Kurtanidze, O. M.; Larionov, V. M.; Damljanovic, G.; Uemura, M.; Semkov, E.; Strigachev, A.; Bachev, R.; Vince, O.; Gu, Minfeng; Zhang, Z.; Abe, T.; Agarwal, A.; Borman, G. A.; Fan, J. H.; Grishina, T. S.; Hirochi, J.; Itoh, R.; Kawabata, M.; Kopatskaya, E. N.; Kurtanidze, S. O.; Larionova, E. G.; Larionova, L. V.; Mishra, A.; Morozova, D. A.; Nakaoka, T.; Nikolashvili, M. G.; Savchenko, S. S.; Troitskaya, Yu. V.; Troitsky, I. S.; Vasilyev, A. A.

    2018-01-01

    We present a multiwavelength spectral and temporal analysis of the blazar OJ 287 during its recent activity between 2015 December and 2016 May, showing strong variability in the near-infrared (NIR) to X-ray energies with detection at γ-ray energies as well. Most of the optical flux variations exhibit strong changes in polarization angle and degree. All the interband time lags are consistent with simultaneous emissions. Interestingly, on days with excellent data coverage in the NIR-UV bands, the spectral energy distributions (SEDs) show signatures of bumps in the visible-UV bands, never seen before in this source. The optical bump can be explained as accretion-disc emission associated with the primary black hole of mass ∼ 1.8 × 1010 M⊙ while the little bump feature in the optical-UV appears consistent with line emission. Further, the broad-band SEDs extracted during the first flare and during a quiescent period during this span show very different γ-ray spectra compared to previously observed flare or quiescent spectra. The probable thermal bump in the visible seems to have been clearly present since 2013 May, as found by examining all available NIR-optical observations, and favours the binary supermassive black hole model. The simultaneous multiwavelength variability and relatively weak γ-ray emission that shows a shift in the SED peak is consistent with γ-ray emission originating from inverse Compton scattering of photons from the line emission that apparently contributes to the little blue bump.

  2. The Present SP Tests for Determining the Transition Temperature TSP on "U" Notch Disc Specimens.

    Science.gov (United States)

    Matocha, Karel; Dorazil, Ondrej; Hurst, Roger

    2017-05-03

    The principal difference between the small punch (SP) testing technique and standardized impact testing lies in the fact that the SP tests carried out in accordance with CWA 15627 Small Punch Test Method for Metallic Materials use disc-shaped test specimens without a notch. Especially in tough materials, the temperature dependence of SP fracture energy ESP in the transition area is very steep and lies close to the temperature of liquid nitrogen. In this case, the determination of SP transition temperature TSP can lead to significant errors in its determination. Efforts to move the transition area of penetration testing closer to the transition area of standardized impact tests led to the proposal of the notched disc specimen 8 mm in diameter and 0.5 mm in thickness with a "U" shaped notch 0.2 mm deep in the axis plane of the disc. The paper summarizes the results obtained to date when determining the transition temperature of SP tests TSP, determined according to CWA 15627 for material of pipes made of P92, P22, and a heat treated 14MoV6-3 steel in the as delivered state. Although the results obtained confirmed the results of other works in that the presence of a notch in a SP disc is insufficient to increase the transition temperature significantly and certainly not to the values obtained by Charpy testing, comparison of the different behaviors of the alloys tested reveals some evidence that the notch reduces the energy for initiation. This implies that the test on a notched disc is more a test of crack growth and would be a useful instrument if included in the forthcoming EU standard for SP testing.

  3. Temperature dependence of the magnetization of disc shaped NiO nanoparticles

    DEFF Research Database (Denmark)

    Klausen, Stine Nyborg; Lindgard, P.A.; Lefmann, Kim

    2002-01-01

    We present neutron diffraction data of NiO nanoparticles measuring the total magnetization and the sublattice magnetization at various temperatures. Electron microscopy shows that the particles are disc shaped with average diameter of about 12 nm and a thickness of about 2 nm. The Neel temperature...... as a temperature dependent contribution of a structural peak in contrast to bulk NiO. The two magnetic signals vanish at the same temperature. The data are interpreted on the basis of an extended mean field model on disc shaped NiO particles. This model includes the finite size dependence of the effective field...... (approximate to460 K) is less than for bulk NiO (523 K). The magnetic domain size, as estimated from the width of the neutron diffraction peaks corresponding to the antiferromagnetic reflection is smaller than the particle size estimated from the structural peaks. A ferromagnetic contribution is present...

  4. Thin viscous elliptical accretion discs with orbits sharing a common longitude of periastron. IV. Proof of the homogeneity of the dynamical equation, governing disc structure for arbitrary powers n in the viscosity law η = βΣn

    Science.gov (United States)

    Dimitrov, D.

    2009-10-01

    We consider the models of elliptical accretion discs developed by Lyubarskij et al. [1] and discuss their specific properties. In particular, we emphasize on possible deviations from the Keplerian rotation, magnetorotational instability, external illumination of the disc, etc., which may take place with real accretion flows (as indicated by a lot of observations), but are not taken into account in the above theoretical constructions. According to the models, the viscosity coefficient η is adopted to have a power law form: η = β Σ n (β is a constant, Σ is the disc surface density). We investigate the dynamical equation, which is derived by Lyubarskij et al. [1], for a continuous set of values of the power n. Physically reasonable n occupy the zone between ≈ -1 and ≈ +3. The basic result of our investigation is that the dynamical equation, governing the structure of elliptical discs, is a homogeneous second order ordinary differential equation for any values of n in the designated interval. This is a generalization of our previously established result for the case of integer values of n only.

  5. The structure of young embedded protostellar discs

    Science.gov (United States)

    MacFarlane, Benjamin A.; Stamatellos, Dimitris

    2017-12-01

    Young protostellar discs provide the initial conditions for planet formation. The properties of these discs may be different from those of late-phase (T Tauri) discs due to continuing infall from the envelope and protostellar variability resulting from irregular gas accretion. We use a set of hydrodynamic simulations to determine the structure of discs forming in collapsing molecular clouds. We examine how radiative feedback from the host protostar affects the disc properties by examining three regimes: without radiative feedback, with continuous radiative feedback and with episodic feedback, similar to FU Ori-type outbursts. We find that the radial surface density and temperature profiles vary significantly as the disc accretes gas from the infalling envelope. These profiles are sensitive to the presence of spiral structure, induced by gravitational instabilities, and the radiative feedback provided by the protostar, especially in the case when the feedback is episodic. We also investigate whether mass estimates from position-velocity (PV) diagrams are accurate for early-phase discs. We find that the protostellar system mass (I.e. the mass of the protostar and its disc) is underestimated by up to 20 per cent, due to the impact of an enhanced radial pressure gradient on the gas. The mass of early-phase discs is a significant fraction of the mass of the protostar, so PV diagrams cannot accurately provide the mass of the protostar alone. The enhanced radial pressure gradient expected in young discs may lead to an increased rate of dust depletion due to gas drag, and therefore to a reduced dust-to-gas ratio.

  6. STUDY REGARDING THE CAR BRAKE DISC TEMPERATURE VARIATION DURING THE LENGTHY BRAKING

    OpenAIRE

    DRAGOMIR George; PANCU Rares; MITRAN Tudor Adrian; GEORGESCU Liviu; MOCA Sorin; CHIOREANU Catalin

    2015-01-01

    When a car descends a slope with a great length, the thermal stresses resulting from contact between the brake discs and brake pads, there is possible to exceed the maximal limits of the materials resistance, resulting the rapid wear, decreasing performance of braking or the loss control of movement and the road accidents are producing. The study refers to establishment the dependence between the braking intensity and time when the temperature achieves a maximum limit ...

  7. STUDY REGARDING THE CAR BRAKE DISC TEMPERATURE VARIATION DURING THE LENGTHY BRAKING

    OpenAIRE

    DRAGOMIR George; PANCU Rares; MITRAN Tudor Adrian; GEORGESCU Liviu

    2015-01-01

    When a car descends a slope with a great length, the thermal stresses resulting from contact between the brake discs and brake pads, there is possible to exceed the maximal limits of the materials resistance, resulting the rapid wear, decreasing the performance of braking or the loss control of movement and the road accidents are producing. The study refers to establishment the dependence between the braking intensity and time when the temperature achieves a the maximu...

  8. Temperature regulates expression of the Drosophila vestigial gene only in mutant wing discs.

    Science.gov (United States)

    Silber, J; Flagiello, D; Cossard, R; Zider, A; Becker, J L

    1997-10-01

    All Vestigial mutants in Drosophila melanogaster display a thermosensitive phenotype, with the exception of two which disrupt an intronic wing-specific enhancer element. Here we report a very unusual transcriptional regulation; temperature changes are associated with alterations in the level of vg expression only in the wing disc of thermosensitive mutant flies and not in the brain. No effect is observed in the wild-type strain. The tissue specificity of the temperature effect indicates an involvement of the intronic wing-specific enhancer element in determining the thermosensitivity of mutants.

  9. Experimental study of ice accretion on circular cylinders at moderate low temperatures

    DEFF Research Database (Denmark)

    Koss, Holger H.; Gjelstrup, Henrik; Georgakis, Christos T.

    2012-01-01

    detailed knowledge on the shape characteristics of ice accretion on circular cylinders under the specific conditions where large amplitude vibration of iced bridge have been observed in nature. Hence, the study shall serve as a reference and the results will be used for validation of numerical...

  10. Post-irradiation examinations and high-temperature tests on undoped large-grain UO{sub 2} discs

    Energy Technology Data Exchange (ETDEWEB)

    Noirot, J., E-mail: jean.noirot@cea.fr [CEA, DEN, DEC, Cadarache, F-13108 St. Paul Lez Durance (France); Pontillon, Y. [CEA, DEN, DEC, Cadarache, F-13108 St. Paul Lez Durance (France); Yagnik, S. [EPRI, P.O. Box 10412, Palo Alto, CA 94303-0813 (United States); Turnbull, J.A. [Independent Consultant (United Kingdom)

    2015-07-15

    Within the Nuclear Fuel Industry Research (NFIR) programme, several fuel variants –in the form of thin circular discs – were irradiated in the Halden Boiling Water Reactor (HBWR) at burn-ups up to ∼100 GWd/t{sub HM}. The design of the fuel assembly was similar to that used in other HBWR programmes: the assembly contained several rods with fuel discs sandwiched between Mo discs, which limited temperature differences within each fuel disc. One such variant was made of large-grain UO{sub 2} discs (3D grain size = ∼45 μm) which were subjected to three burn-ups: 42, 72 and 96 GWd/t{sub HM}. Detailed characterizations of some of these irradiated large-grain UO{sub 2} discs were performed in the CEA Cadarache LECA-STAR hot laboratory. The techniques used included electron probe microanalysis (EPMA), scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS). Comparisons were then carried out with more standard grain size UO{sub 2} discs irradiated under the same conditions. Examination of the high burn-up large-grain UO{sub 2} discs revealed the limited formation of a high burn-up structure (HBS) when compared with the standard-grain UO{sub 2} discs at similar burn-up. High burn-up discs were submitted to temperature transients up to 1200 °C in the heating test device called Merarg at a relatively low temperature ramp rate (0.2 °C/s). In addition to the total gas release during these tests, the release peaks throughout the temperature ramp were monitored. Tests at 1600 °C were also conducted on the 42 GWd/t{sub HM} discs. The fuels were then characterized with the same microanalysis techniques as those used before the tests, to investigate the effects of these tests on the fuel’s microstructure and on the fission gas behaviour. This paper outlines the high resistance of this fuel to gas precipitation at high temperature and to HBS formation at high burn-up. It also shows the similarity of the positions, within the grains, where HBS forms

  11. Investigation of temperature and thermal stress in ventilated disc brake based on 3D thermomechanical coupling model

    Directory of Open Access Journals (Sweden)

    Ali Belhocine

    2013-09-01

    Full Text Available The objective of this study is to analyse the thermal behaviour of the full and ventilated brake discs of the vehicles using computing code ANSYS. The modelling of the temperature distribution in the disc brake is used to identify all the factors, and the entering parameters concerned at the time of the braking operation such as the type of braking, the geometric design of the disc, and the used material. The numerical simulation for the coupled transient thermal field and stress field is carried out by sequentially thermal-structural coupled method based on ANSYS to evaluate the stress fields and of deformations which are established in the disc and the contact pressure on the pads. The results obtained by the simulation are satisfactory compared with those of the specialised literature.

  12. Galactic fountains and gas accretion

    OpenAIRE

    Marinacci, F.; Binney, J.; Fraternali, F.; Nipoti, C.; Ciotti, L.; Londrillo, P.

    2010-01-01

    Star-forming disc galaxies such as the Milky Way need to accrete $\\gsim$ 1 $M_{\\odot}$ of gas each year to sustain their star formation. This gas accretion is likely to come from the cooling of the hot corona, however it is still not clear how this process can take place. We present simulations supporting the idea that this cooling and the subsequent accretion are caused by the passage of cold galactic-fountain clouds through the hot corona. The Kelvin-Helmholtz instability strips gas from th...

  13. Elliptical Accretion and Low Luminosity from High Accretion Rate Stellar Tidal Disruption Events

    Science.gov (United States)

    Svirski, Gilad; Piran, Tsvi; Krolik, Julian

    2017-05-01

    Models for tidal disruption events (TDEs) in which a supermassive black hole disrupts a star commonly assume that the highly eccentric streams of bound stellar debris promptly form a circular accretion disc at the pericentre scale. However, the bolometric peak luminosity of most TDE candidates, ˜ 1044 erg s- 1, implies that we observe only ˜1 per cent of the energy expected from radiatively efficient accretion. Even the energy that must be lost to circularize the returning tidal flow is larger than the observed energy. Recently, Piran et al. suggested that the observed optical TDE emission is powered by shocks at the apocentre between freshly infalling material and earlier arriving matter. This model explains the small radiated energy, the low temperature and the large radius implied by the observations as well as the t-5/3 light curve. However the question of the system's low bolometric efficiency remains unanswered. We suggest that the high orbital energy and low angular momentum of the flow make it possible for magnetic stresses to reduce the matter's already small angular momentum to the point at which it can fall ballistically into the supermassive black hole before circularization. As a result, the efficiency is only ˜1-10 per cent of a standard accretion disc's efficiency. Thus, the intrinsically high eccentricity of the tidal debris naturally explains why most TDE candidates are fainter than expected.

  14. Episodic accretion on to strongly magnetic stars

    NARCIS (Netherlands)

    D'Angelo, C.R.; Spruit, H.C.

    2010-01-01

    Some accreting neutron stars and young stars show unexplained episodic flares in the form of quasi-periodic oscillations or recurrent outbursts. In a series of two papers, we present new work on an instability that can lead to episodic outbursts when the accretion disc is truncated by the star's

  15. Instability of warped discs

    Science.gov (United States)

    Doǧan, S.; Nixon, C. J.; King, A. R.; Pringle, J. E.

    2018-01-01

    Accretion discs are generally warped. If a warp in a disc is too large, the disc can `break' apart into two or more distinct planes, with only tenuous connections between them. Further if an initially planar disc is subject to a strong differential precession, then it can be torn apart into discrete annuli that precess effectively independently. In previous investigations, torque-balance formulae have been used to predict where and when the disc breaks into distinct parts. In this work, focusing on discs with Keplerian rotation and where the shearing motions driving the radial communication of the warp are damped locally by turbulence (the `diffusive' regime), we investigate the stability of warped discs to determine the precise criterion for an isolated warped disc to break. We find and solve the dispersion relation, which in general yields three roots. We provide a comprehensive analysis of this viscous-warp instability and the emergent growth rates and their dependence on disc parameters. The physics of the instability can be understood as a combination of (1) a term which would generally encapsulate the classical Lightman-Eardley instability in planar discs (given by ∂(νΣ)/∂Σ condition acting on the diffusion of the warp amplitude given in simplified form by ∂(ν2|ψ|)/∂|ψ| < 0. We discuss our findings in the context of discs with an imposed precession, and comment on the implications for different astrophysical systems.

  16. Impact of sintering temperature on the structural, electrical, and optical properties of doped ZnO nanoparticle-based discs

    Science.gov (United States)

    Sendi, Rabab Khalid; Mahmud, Shahrom

    2012-11-01

    In the current study, 20 nm zinc oxide (ZnO) nanoparticles were used to make high-density ZnO discs doped with Bi2O3 and Mn2O3 via the conventional ceramic processing method. Different sintering temperatures were found to have significant impacts on the ZnO discs, especially on enhancing grain growth even at a low sintering temperature of only 980 °C. The strong solid-state reaction during sintering may be attributed to the high surface area of the 20 nm ZnO nanoparticles that promoted a strong surface reaction even at low sintering temperatures. Moreover, the sintering process also improved the grain crystallinity, as shown in the lowering of the intrinsic compressive stress based on the X-ray diffraction lattice constant and full-wave half-maximum data. The sintering temperatures also significantly influenced the electrical properties of the doped ZnO discs with a marked drop in the breakdown voltage from 330 V (sample at 980 °C) to 80 V (sample at 1380 °C). The resistivity also experienced a dramatic drop from 304.4 kΩ cm (sample at 980 °C) to 98.86 kΩ cm (sample at 1380 °C). The observed shift in the energy band-gap from a higher to a lower value may be attributed to the conversion of compressive stress to tensile stress with increasing sintering temperature. The Raman spectra indicate that the sintering temperatures and dopants in the discs had significant effects on the E2(high) phonon mode and ZnO crystal structures. Therefore, the sintering process can be used as a new technique for controlling the breakdown voltage of doped ZnO discs made from ZnO nanoparticles with improved structural and optical properties.

  17. Infrared observations of white dwarfs and the implications for the accretion of dusty planetary material

    Science.gov (United States)

    Bonsor, Amy; Farihi, Jay; Wyatt, Mark C.; van Lieshout, Rik

    2017-06-01

    Infrared excesses around metal-polluted white dwarfs have been associated with the accretion of dusty planetary material. This work analyses the available infrared data for an unbiased sample of white dwarfs and demonstrates that no more than 3.3 per cent can have a wide, flat, opaque dust disc, extending to the Roche radius, with a temperature at the disc inner edge of Tin = 1400 K, the standard model for the observed excesses. This is in stark contrast to the incidence of pollution of about 30 per cent. We present four potential reasons for the absence of an infrared excess in polluted white dwarfs, depending on their stellar properties and inferred accretion rates: (I) their dust discs are opaque, but narrow, thus evading detection if more than 85 per cent of polluted white dwarfs have dust discs narrower than δr white dwarfs with sinking time-scales longer than hundreds of years, (III) their dust is optically thin, which can supply low accretion rates of 20 000 K. Future observations sensitive to faint infrared excesses or the presence of gas can test the scenarios presented here, thereby better constraining the nature of the material fuelling accretion in polluted white dwarfs.

  18. The Dusty Accretion of Polluted White Dwarfs

    Science.gov (United States)

    Bonsor, A.; Farihi, J.; Wyatt, M. C.; van Lieshout, R.

    2017-03-01

    Infrared observations of polluted white dwarfs provide key insights into the accretion processes in action. The standard model for the observed infrared excesses is a flat, opaque, dust disc. The infrared observations are inconsistent with the presence of such a disc around all polluted white dwarfs. We discuss potential explanations for the absence of an infrared excess for many polluted white dwarfs.

  19. The Present SP Tests for Determining the Transition Temperature TSP on “U” Notch Disc Specimens

    Science.gov (United States)

    Matocha, Karel; Dorazil, Ondrej; Hurst, Roger

    2017-01-01

    The principal difference between the small punch (SP) testing technique and standardized impact testing lies in the fact that the SP tests carried out in accordance with CWA 15627 Small Punch Test Method for Metallic Materials use disc-shaped test specimens without a notch. Especially in tough materials, the temperature dependence of SP fracture energy ESP in the transition area is very steep and lies close to the temperature of liquid nitrogen. In this case, the determination of SP transition temperature TSP can lead to significant errors in its determination. Efforts to move the transition area of penetration testing closer to the transition area of standardized impact tests led to the proposal of the notched disc specimen 8 mm in diameter and 0.5 mm in thickness with a “U” shaped notch 0.2 mm deep in the axis plane of the disc. The paper summarizes the results obtained to date when determining the transition temperature of SP tests TSP, determined according to CWA 15627 for material of pipes made of P92, P22, and a heat treated 14MoV6-3 steel in the as delivered state. Although the results obtained confirmed the results of other works in that the presence of a notch in a SP disc is insufficient to increase the transition temperature significantly and certainly not to the values obtained by Charpy testing, comparison of the different behaviors of the alloys tested reveals some evidence that the notch reduces the energy for initiation. This implies that the test on a notched disc is more a test of crack growth and would be a useful instrument if included in the forthcoming EU standard for SP testing. PMID:28772851

  20. Standing shocks in magnetized dissipative accretion flow around ...

    Indian Academy of Sciences (India)

    We explore the global structure of the accretion flow around a Schwarzschild black hole where the accretion disc is threaded by toroidal magnetic fields. The accretion flow is optically thin and advection dominated. The synchrotron radiation is considered to be the active cooling mechanism in the flow. With this, we obtain ...

  1. Standing shocks in magnetized dissipative accretion flow around ...

    Indian Academy of Sciences (India)

    BIPLOB SARKAR

    2018-02-09

    Feb 9, 2018 ... Abstract. We explore the global structure of the accretion flow around a Schwarzschild black hole where the accretion disc is threaded by toroidal magnetic fields. The accretion flow is optically thin and advection dominated. The synchrotron radiation is considered to be the active cooling mechanism in the ...

  2. Molecules in Protoplanetary HAEBE discs as seen with Herschel.

    Science.gov (United States)

    Meeus, G.

    2011-05-01

    The discovery of planets around other stars has revealed that planet formation is ubiquitous. However, the mechanisms determining planet formation are not (yet) well-understood. Primordial protoplanetary discs consist 99% out of gas, and only 1% out of dust. With time, those discs are believed to evolve from a flaring geometry into a flat geometry, as the initially small dust grains grow to larger sizes and settle towards the mid-plane. In the mean time, the gas will disperse, until so little is left that giant planets no longer can form. It is thus important to understand the chemical composition of the disc and the influence of the gas heating/cooling processes on the disc structure, and finally how gas gets dispersed as a pieces of the puzzle of planet formation. In this contribution, we study the protoplanetary discs around Herbig Ae/Be stars, young objects of intermediate mass, in the context of gas chemistry. We present Herschel PACS spectroscopic observations for a sample that was obtained within the GASPS (Gas in Protoplanetary Systems) Open Time Key Project, concentrating on the detection and characterisation of emission lines of the molecules H20, CO and CH+ (besides [OI] and [CII]), tracing the disc between 5 and 500 AU. We look for correlations between the observed line fluxes and stellar properties such as effective temperature, Halpha emission, accretion rates and UV flux, as well as the disc properties: degree of flaring, presence and strength of PAH emission and disc mass. We will present a few cases to show how simultaneous modeling (using the thermo-chemical disc code ProDiMo) of the atomic fine structure lines and both Space Telescope and ground-based molecular lines can constrain the disc gas mass, once the disc structure is derived (here with the radiative transfer code MCFost). Finally, we compare our gas line observations with those of young debris disc stars, for which the HAEBE stars are thought to be progenitors.

  3. Dead discs, unstable discs and the stars they surround

    Directory of Open Access Journals (Sweden)

    D’Angelo Caroline

    2014-01-01

    Full Text Available Strong stellar magnetic fields significantly alter the behaviour of surrounding accretion discs. Recent work has demonstrated that at low accretion rates a large amount of mass can remain confined in the disc, contrary to the standard assumption that the magnetic field will expel the disc in an outflow (the “propeller regime”. These “dead discs” often become unstable, causing cycles of accretion onto the central star. Here I present the main predictions of this model, and argue that it provides a good explanation for the peculiar behaviour seen in several accreting sources with strong magnetic fields. I will focus in particular on three accreting millisecond X-ray pulsars: SAX J1808.4-3658, NGC 6440 X-2 and IGR J00291+5934. These sources all show low-frequency quasi-periodic oscillations consistent with a variable accretion rate, as well as unusual outburst patterns that suggest gas is confined in the inner disc regions during quiescence.

  4. Thanatology in protoplanetary discs. The combined influence of Ohmic, Hall, and ambipolar diffusion on dead zones

    Science.gov (United States)

    Lesur, Geoffroy; Kunz, Matthew W.; Fromang, Sébastien

    2014-06-01

    Protoplanetary discs are poorly ionised due to their low temperatures and high column densities and are therefore subject to three "non-ideal" magnetohydrodynamic (MHD) effects: Ohmic dissipation, ambipolar diffusion, and the Hall effect. The existence of magnetically driven turbulence in these discs has been a central question since the discovery of the magnetorotational instability (MRI). Early models considered Ohmic diffusion only and led to a scenario of layered accretion, in which a magnetically "dead" zone in the disc midplane is embedded within magnetically "active" surface layers at distances of about 1-10 au from the central protostellar object. Recent work has suggested that a combination of Ohmic dissipation and ambipolar diffusion can render both the midplane and surface layers of the disc inactive and that torques due to magnetically driven outflows are required to explain the observed accretion rates. We reassess this picture by performing three-dimensional numerical simulations that include all three non-ideal MHD effects for the first time. We find that the Hall effect can generically "revive" dead zones by producing a dominant azimuthal magnetic field and a large-scale Maxwell stress throughout the midplane, provided that the angular velocity and magnetic field satisfy Ω·B > 0. The attendant large magnetic pressure modifies the vertical density profile and substantially increases the disc scale height beyond its hydrostatic value. Outflows are produced but are not necessary to explain accretion rates ≲ 10-7 M⊙ yr-1. The flow in the disc midplane is essentially laminar, suggesting that dust sedimentation may be efficient. These results demonstrate that if the MRI is relevant for driving mass accretion in protoplanetary discs, one must include the Hall effect to obtain even qualitatively correct results. Appendices are available in electronic form at http://www.aanda.org

  5. Intrinsic disc emission and the soft X-ray excess in active galactic nuclei

    Science.gov (United States)

    Done, Chris; Davis, S. W.; Jin, C.; Blaes, O.; Ward, M.

    2012-03-01

    Narrow-line Seyfert 1 (NLS1) galaxies have low-mass black holes and mass accretion rates close to (or exceeding) Eddington, so a standard blackbody accretion disc should peak in the extreme ultraviolet. However, the lack of true absorption opacity in the disc means that the emission is better approximated by a colour temperature corrected blackbody, and this colour temperature correction is large enough (˜2.4) that the bare disc emission from a zero spin black hole can extend into the soft X-ray bandpass. Part of the soft X-ray excess seen in these objects must be intrinsic emission from the disc unless the vertical structure is very different to that predicted. None the less, this is not the whole story even for the extreme NLS1 as the shape of the soft excess is much broader than predicted by a bare disc spectrum, indicating some Compton upscattering by warm, optically thick material. We associate this with the disc itself, so it must ultimately be powered by mass accretion. We build an energetically self-consistent model assuming that the emission thermalizes to a (colour temperature corrected) blackbody only at large radii. At smaller radii the gravitational energy is split between powering optically thick Comptonized disc emission (forming the soft X-ray excess) and an optically thin corona above the disc (forming the tail to higher energies). We show examples of this model fit to the extreme NLS1 RE J1034+396, and to the much lower Eddington fraction broad-line Seyfert 1 PG 1048+231. We use these to guide our fits and interpretations of three template spectra made from co-adding multiple sources to track out a sequence of active galactic nucleus (AGN) spectra as a function of L/LEdd. Both the individual objects and template spectra show the surprising result that the Compton upscattered soft X-ray excess decreases in importance with increasing L/LEdd. The strongest soft excesses are associated with low mass accretion rate AGN rather than being tied to some

  6. Detailed disc assembly temperature prediction: comparison between CFD and simplified engineering methods

    CSIR Research Space (South Africa)

    Snedden, Glen C

    2003-09-01

    Full Text Available Previous simulations of a turbojet disc cavity with full Navier-Stokes CFD and simplified geometry and boundary conditions have been improved to reduce the level of approximation. A new grid was built using a multi-block approach. The case...

  7. Dippers and dusty disc edges: new diagnostics and comparison to model predictions

    Science.gov (United States)

    Bodman, Eva H. L.; Quillen, Alice C.; Ansdell, Megan; Hippke, Michael; Boyajian, Tabetha S.; Mamajek, Eric E.; Blackman, Eric G.; Rizzuto, Aaron; Kastner, Joel H.

    2017-09-01

    We revisit the nature of large dips in flux from extinction by dusty circumstellar material that is observed by Kepler for many young stars in the Upper Sco and ρ Oph star formation regions. These young, low-mass 'dipper' stars are known to have low accretion rates and primarily host moderately evolved dusty circumstellar discs. Young low-mass stars often exhibit rotating starspots that cause quasi-periodic photometric variations. We found no evidence for periods associated with the dips that are different from the starspot rotation period in spectrograms constructed from the light curves. The material causing the dips in most of these light curves must be approximately corotating with the star. We find that disc temperatures computed at the disc corotation radius are cool enough that dust should not sublime. Crude estimates for stellar magnetic field strengths and accretion rates are consistent with magnetospheric truncation near the corotation radius. Magnetospheric truncation models can explain why the dips are associated with material near corotation and how dusty material is lifted out of the mid-plane to obscure the star that would account for the large fraction of young low-mass stars that are dippers. We propose that variations in disc orientation angle, stellar magnetic field dipole tilt axis and disc accretion rate are underlying parameters accounting for differences in the dipper light curves.

  8. The Outflow-Disc Interaction in Young Stellar Objects

    OpenAIRE

    Pestalozzi, Michele

    2000-01-01

    In this work the most spectacular phenomena occurring during the formation of a star are briefly reviewed: accretion through a rotating disc of matter and outflow through the poles of the new stellar object. Magnetic fields have been proposed to be principally responsible for the coexistence of these opposed mechanisms of accretion and outflowing. According to different models, the magnetic fields are either twisted or stretched by the accretion disc, allowing the formation of polar channels ...

  9. Experimental investigation of grain size effect on fatigue crack growth rate in turbine disc superalloy GH4169 under different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dianyin [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191 (China); Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191 (China); Mao, Jianxing [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Song, Jun, E-mail: jun.song2@mcgill.ca [Mining and Materials Engineering, McGill University, Montreal, QC, Canada H3A 0C5 (Canada); Meng, Fanchao [Mining and Materials Engineering, McGill University, Montreal, QC, Canada H3A 0C5 (Canada); Shan, Xiaoming [China Aviation Powerplant Research Institute, Zhuzhou 412002 (China); Wang, Rongqiao, E-mail: wangrq@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191 (China); Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191 (China)

    2016-07-04

    Systematic experiments for fatigue crack growth (FCG) rate on compact tension (CT) specimens have been conducted in nickel-based superalloy GH4169 at a broad range of temperatures with a frequency of 10 Hz and a stress ratio of 0.1. In order to investigate the crack closure behavior, FCG experiments at stress ratio of 0.5 were also performed by comparing with the results at stress ration of 0.1. CT specimens were cut from three typical locations of an actual forged turbine disc to investigate the effect of grain size on the FCG behaviors. The grain size distribution, precipitates and fracture surface characteristics at different locations of the turbine disc were examined through optical microscope, transmission electron microscope (TEM) and scanning electronic microscope (SEM) analyses. Digital image correlation (DIC), optical interferometry and oxide film measurements were carried out to investigate the presence and inducement of the crack closure. Then a modified FCG model, with a distribution factor that evaluates the scattering in the FCG rate, was formulated to describe the dependence of FCG rate on grain size. Finally, the possible microscopic mechanisms to explain the grain size effect on the FCG behaviors based on crack deflection and blockage, and the crack closure inducements involving plasticity and oxide were discussed in this study.

  10. The slimming effect of advection on black-hole accretion flows

    Science.gov (United States)

    Lasota, J.-P.; Vieira, R. S. S.; Sadowski, A.; Narayan, R.; Abramowicz, M. A.

    2016-03-01

    Context. At super-Eddington rates accretion flows onto black holes have been described as slim (aspect ratio H/R ≲ 1) or thick (H/R> 1) discs, also known as tori or (Polish) doughnuts. The relation between the two descriptions has never been established, but it was commonly believed that at sufficiently high accretion rates slim discs inflate, becoming thick. Aims: We wish to establish under what conditions slim accretion flows become thick. Methods: We use analytical equations, numerical 1 + 1 schemes, and numerical radiative MHD codes to describe and compare various accretion flow models at very high accretion rates. Results: We find that the dominant effect of advection at high accretion rates precludes slim discs becoming thick. Conclusions: At super-Eddington rates accretion flows around black holes can always be considered slim rather than thick.

  11. Fountain-driven gas accretion by the Milky Way

    Directory of Open Access Journals (Sweden)

    Ciotti L.

    2012-02-01

    Full Text Available Accretion of fresh gas at a rate of ∼ 1M☉yr−1 is necessary in star-forming disc galaxies, such as the Milky Way, in order to sustain their star-formation rates. In this work we present the results of a new hydrodynamic simulation supporting the scenario in which the gas required for star formation is drawn from the hot corona that surrounds the star-forming disc. In particular, the cooling of this hot gas and its accretion on to the disc are caused by the passage of cold galactic fountain clouds through the corona.

  12. Asymmetric MHD outflows/jets from accreting T Tauri stars

    Science.gov (United States)

    Dyda, S.; Lovelace, R. V. E.; Ustyugova, G. V.; Lii, P. S.; Romanova, M. M.; Koldoba, A. V.

    2015-06-01

    Observations of jets from young stellar objects reveal the asymmetric outflows from some sources. A large set of 2.5D magnetohydrodynamic simulations was carried out for axisymmetric viscous/diffusive disc accretion to rotating magnetized stars for the purpose of assessing the conditions where the outflows are asymmetric relative to the equatorial plane. We consider initial magnetic fields that are symmetric about the equatorial plane and consist of a radially distributed field threading the disc (disc field) and a stellar dipole field. (1) For pure disc-fields the symmetry or asymmetry of the outflows is affected by the mid-plane plasma β of the disc. For discs with small plasma β, outflows are symmetric to within 10 per cent over time-scales of hundreds of inner disc orbits. For higher β discs, the coupling of the upper and lower coronal plasmas is broken, and quasi-periodic field motion leads to asymmetric episodic outflows. (2) Accreting stars with a stellar dipole field and no disc-field exhibit episodic, two component outflows - a magnetospheric wind and an inner disc wind. Both are characterized by similar velocity profiles but the magnetospheric wind has densities ≳ 10 times that of the disc wind. (3) Adding a disc field parallel to the stellar dipole field enhances the magnetospheric winds but suppresses the disc wind. (4) Adding a disc field which is antiparallel to the stellar dipole field in the disc suppresses the magnetospheric and disc winds. Our simulations reproduce some key features of observations of asymmetric outflows of T Tauri stars.

  13. Suomi NPP ATMS Level 1B Brightness Temperature V1 (SNPPATMSL1B) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Technology Microwave Sounder (ATMS) Level 1B data files contain brightness temperature measurements along with ancillary spacecraft, instrument, and...

  14. The Gas Content Of Protoplanetary Herbig Ae/be Discs As Seen With Herschel

    Science.gov (United States)

    Meeus, Gwendolyn; (Herschel OTKP, GASPS; Dent), PI B.

    2011-09-01

    The mechanisms determining planet formation are not (yet) well-understood. Primordial protoplanetary discs consist 99% out of gas, and only 1% out of dust. With time, those discs are believed to evolve from a flaring geometry into a flat geometry, as the initially small dust grains grow to larger sizes and settle towards the mid-plane. In the mean time, the gas will disperse, until so little is left that giant planets no longer can form. As an important piece of the puzzle of planet formation, it is important to understand the influence of the gas heating/cooling processes on the young disc structure, its chemical composition and finally how fast gas gets dispersed. In this talk, we study the protoplanetary discs around Herbig Ae/Be stars, young objects of intermediate mass, in the context of its gas content. We present Herschel PACS spectroscopic observations for a sample that was obtained within the GASPS (Gas in Protoplanetary Systems) Open Time Key Project, concentrating on the detection and characterisation of emission lines of the [OI], [CII], and CO, tracing the disc between 5 and 500 AU. We look for correlations between the observed line fluxes and stellar properties such as effective temperature, Halpha emission, accretion rates and UV flux, as well as the disc properties: degree of flaring, presence and strength of PAH emission and disc mass. We will present a few cases to show how simultaneous modeling (using the thermo-chemical disc code ProDiMo) of the atomic fine structure lines and both molecular lines can constrain the disc gas mass, once the disc structure is derived. Finally, we compare our gas line observations with those of young debris disc stars, for which the HAEBE stars are thought to be progenitors.

  15. Accretion by the Galaxy

    Directory of Open Access Journals (Sweden)

    Binney J.

    2012-02-01

    Full Text Available Cosmology requires at least half of the baryons in the Universe to be in the intergalactic medium, much of which is believed to form hot coronae around galaxies. Star-forming galaxies must be accreting from their coronae. Hi observations of external galaxies show that they have Hi halos associated with star formation. These halos are naturally modelled as ensembles of clouds driven up by supernova bubbles. These models can fit the data successfully only if clouds exchange mass and momentum with the corona. As a cloud orbits, it is ablated and forms a turbulent wake where cold high-metallicity gas mixes with hot coronal gas causing the prompt cooling of the latter. As a consequence the total mass of Hi increases. This model has recently been used to model the Leiden-Argentina-Bonn survey of Galactic Hi. The values of the model’s parameters that are required to model NGC 891, NGC 2403 and our Galaxy show a remarkable degree of consistency, despite the very different natures of the two external galaxies and the dramatic difference in the nature of the data for our Galaxy and the external galaxies. The parameter values are also consistent with hydrodynamical simulations of the ablation of individual clouds. The model predicts that a galaxy that loses its cool-gas disc for instance through a major merger cannot reform it from its corona; it can return to steady star formation only if it can capture a large body of cool gas, for example by accreting a gas-rich dwarf. Thus the model explains how major mergers can make galaxies “red and dead.”

  16. NODC Standard Product: Global ocean temperature and salinity profiles (2 disc set) (NODC Accession 0098058)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This set of CD-ROMs contains global ocean temperature and salinity profiles derived from NODC archive data files. It includes oceanographic station (bottle) data,...

  17. Protoplanetary disc `isochrones' and the evolution of discs in the M˙-Md plane

    Science.gov (United States)

    Lodato, Giuseppe; Scardoni, Chiara E.; Manara, Carlo F.; Testi, Leonardo

    2017-12-01

    In this paper, we compare simple viscous diffusion models for the disc evolution with the results of recent surveys of the properties of young protoplanetary discs. We introduce the useful concept of 'disc isochrones' in the accretion rate-disc mass plane and explore a set of Monte Carlo realization of disc initial conditions. We find that such simple viscous models can provide a remarkable agreement with the available data in the Lupus star forming region, with the key requirement that the average viscous evolutionary time-scale of the discs is comparable to the cluster age. Our models produce naturally a correlation between mass accretion rate and disc mass that is shallower than linear, contrary to previous results and in agreement with observations. We also predict that a linear correlation, with a tighter scatter, should be found for more evolved disc populations. Finally, we find that such viscous models can reproduce the observations in the Lupus region only in the assumption that the efficiency of angular momentum transport is a growing function of radius, thus putting interesting constraints on the nature of the microscopic processes that lead to disc accretion.

  18. Runaway gas accretion and gap opening versus type I migration

    Science.gov (United States)

    Crida, A.; Bitsch, B.

    2017-03-01

    Growing planets interact with their natal protoplanetary disc, which exerts a torque onto them allowing them to migrate in the disc. Small mass planets do not affect the gas profile and migrate in the fast type-I migration. Although type-I migration can be directed outwards for planets smaller than 20 - 30M⊕ in some regions of the disc, planets above this mass should be lost into the central star long before the disc disperses. Massive planets push away material from their orbit and open a gap. They subsequently migrate in the slower, type II migration, which could save them from migrating all the way to the star. Hence, growing giant planets can be saved if and only if they can reach the gap opening mass, because this extends their migration timescale, allowing them to eventually survive at large orbits until the disc itself disperses. However, most of the previous studies only measured the torques on planets with fixed masses and orbits to determine the migration rate. Additionally, the transition between type-I and type-II migration itself is not well studied, especially when taking the growth mechanism of rapid gas accretion from the surrounding disc into account. Here we use isothermal 2D disc simulations with FARGO-2D1D to study the migration behaviour of gas accreting protoplanets in discs. We find that migrating giant planets always open gaps in the disc. We further show analytically and numerically that in the runaway gas accretion regime, the growth time-scale is comparable to the type-I migration time-scale, indicating that growing planets will reach gap opening masses before migrating all the way to the central star in type-I migration if the disc is not extremely viscous and/or thick. An accretion rate limited to the radial gas flow in the disc, in contrast, is not fast enough. When gas accretion by the planet is taken into account, the gap opening process is accelerated because the planet accretes material originating from its horseshoe region. This

  19. Accreting White Dwarfs as Universal Accretion Laboratories

    Science.gov (United States)

    Knigge, Christian

    Accreting white dwarfs (AWDs) are numerous, bright and nearby, making them excellent laboratories for the study of accretion physics. Since their accretion flows are unaffected by relativistic effects or ultra-strong magnetic fields, they provide a crucial "control" group for efforts to understand more complex/compact systems, such as accreting neutron stars (NSs) and black holes (BHs). Here, I will review recent work on AWDs, which has revealed that these superficially simple systems actually exhibit the full range of accretion-related phenomenology seen in accreting NSs and BHs. For example, (i) AWDs undergo mass loss in the form of both disk winds and radio jets; (ii) their disk winds are only seen in high-Mdot states, similar to what is observed in accreting BHs; (iii) they exhibit (possibly hysteretic) outbursts produced by disk instabilities, as also seen in NS and BH transients; and (iv) they produce accretion-induced stochastic variability ("flickering") that exhibits the same rms-flux relation as observed in low-mass X-ray binaries and AGN. Based on this rich and shared phenomenology, it is reasonable to hope that much of accretion physics is universal. In this context, AWDs hold great promise as observational testing grounds for attempts to model and understand these physics.

  20. Accretion Processes in Astrophysics

    Science.gov (United States)

    González Martínez-País, Ignacio; Shahbaz, Tariq; Casares Velázquez, Jorge

    2014-03-01

    List of contributors; List of participants; Preface; Acknowledgments; Abbreviations; 1. Accretion disks Henk Spruit; 2. The evolution of binary systems Philipp Podsiadlowski; 3. Accretion onto white dwarfs Brian Warner; 4. Accretion in X-ray binary systems Robert I. Hynes; 5. X-ray binary populations in galaxies Giuseppina Fabbiano; 6. Observational characteristics of accretion onto black holes I Chris Done; 7. Observational characteristics of accretion onto black holes II Rob Fender; 8. Computing black hole accretion John F. Hawley; Appendix: Piazzi Smyth, the Cape of Good Hope, Tenerife and the siting of large telescopes Brian Warner.

  1. Two-component magnetohydrodynamical outflows around young stellar objects Interplay between stellar magnetospheric winds and disc-driven jets

    National Research Council Canada - National Science Library

    Meliani, Z; Casse, F; Sauty, C

    2006-01-01

    We present the first-ever simulations of non-ideal magnetohydrodynamical (MHD) stellar magnetospheric winds coupled with disc-driven jets where the resistive and viscous accretion disc is self-consistently described...

  2. The multiplicity and anisotropy of galactic satellite accretion

    Science.gov (United States)

    Shao, Shi; Cautun, Marius; Frenk, Carlos S.; Grand, Robert J. J.; Gómez, Facundo A.; Marinacci, Federico; Simpson, Christine M.

    2018-02-01

    We study the incidence of group and filamentary dwarf galaxy accretion into Milky Way (MW) mass haloes using two types of hydrodynamical simulations: EAGLE, which resolves a large cosmological volume, and the AURIGA suite, which are very high resolution zoom-in simulations of individual MW-sized haloes. The present-day 11 most massive satellites are predominantly (75%) accreted in single events, 14% in pairs and 6% in triplets, with higher group multiplicities being unlikely. Group accretion becomes more common for fainter satellites, with 60% of the top 50 satellites accreted singly, 12% in pairs, and 28% in richer groups. A group similar in stellar mass to the Large Magellanic Cloud (LMC) would bring on average 15 members with stellar mass larger than 10^4{ M_\\odot}. Half of the top 11 satellites are accreted along the two richest filaments. The accretion of dwarf galaxies is highly anisotropic, taking place preferentially perpendicular to the halo minor axis, and, within this plane, preferentially along the halo major axis. The satellite entry points tend to be aligned with the present-day central galaxy disc and satellite plane, but to a lesser extent than with the halo shape. Dwarfs accreted in groups or along the richest filament have entry points that show an even larger degree of alignment with the host halo than the full satellite population. We also find that having most satellites accreted as a single group or along a single filament is unlikely to explain the MW disc of satellites.

  3. Stream-fed accretion in intermediate polars

    Science.gov (United States)

    Hellier, C.

    2002-01-01

    I review the observational evidence for stream-fed accretion in intermediate polars. Recent work on the discless system V2400 Oph confirms the pole-flipping model of stream-fed accretion, but this applies only to a minority of the flow. The bulk of the flow is in the form of blobs circling the white dwarf, a state which might have been a precursor to disc formation in other IPs. I also discuss work on the systems with anomalously long spin periods, V1025 Cen and EX Hya. There are arguments both for and against stream-fed accretion in V1025 Cen, and further work is necessary before reaching a conclusion about this system.

  4. The gravo-magneto disc instability with a viscous dead zone

    OpenAIRE

    Martin, Rebecca G.; Lubow, Stephen H.

    2013-01-01

    We consider the evolution of accretion discs that contain some turbulence within a disc dead zone, a region about the disc midplane of a disc that is not sufficiently ionised for the magneto-rotational instability (MRI) to drive turbulence. In particular, we determine whether additional sources of turbulence within a dead zone are capable of suppressing gravo-magneto (GM) disc outbursts that arise from a rapid transition from gravitationally produced to MRI produced turbulence. With viscous $...

  5. Demonstration of a magnetic Prandtl number disc instability from first principles

    Science.gov (United States)

    Potter, William J.; Balbus, Steven A.

    2017-12-01

    Understanding what determines the strength of MHD turbulence in accretion discs is a question of fundamental theoretical and observational importance. In this work we investigate whether the dependence of the turbulent accretion disc stress ($\\alpha$) on the magnetic Prandtl number (Pm) is sufficiently sensitive to induce thermal-viscous instability using 3D MHD simulations. We first investigate whether the $\\alpha$-Pm dependence, found by many previous authors, has a physical or numerical origin by conducting a suite of local shearing-box simulations. We find that a definite $\\alpha$-Pm dependence persists when simultaneously increasing numerical resolution and decreasing the absolute values of both the viscous and resistive dissipation coefficients. This points to a physical origin of the $\\alpha$-Pm dependence. Using a further set of simulations which include realistic turbulent heating and radiative cooling, and by giving Pm a realistic physical dependence on the plasma temperature and density, we demonstrate that the $\\alpha$-Pm dependence is sufficiently strong to lead to a local instability. We confirm that the instability manifests itself as an unstable limit cycle by mapping the local thermal-equilibrium curve of the disc. This is the first self-consistent MHD simulation demonstrating the Pm instability from first principles. This result is important because a physical Pm instability would lead to the global propagation of heating and cooling fronts and a transition between disc states on timescales compatible with the observed hard/soft state transitions in black hole binaries.

  6. Heat distribution in disc brake

    Science.gov (United States)

    Klimenda, Frantisek; Soukup, Josef; Kampo, Jan

    2016-06-01

    This article is deals by the thermal analysis of the disc brake with floating caliper. The issue is solved by numerically. The half 2D model is used for solution in program ADINA 8.8. Two brake discs without the ventilation are solved. One disc is made from cast iron and the second is made from stainless steel. Both materials are an isotropic. By acting the pressure force on the brake pads will be pressing the pads to the brake disc. Speed will be reduced (slowing down). On the contact surface generates the heat, which the disc and pads heats. In the next part of article is comparison the maximum temperature at the time of braking. The temperatures of both materials for brake disc (gray cast iron, stainless steel) are compares. The heat flux during braking for the both materials is shown.

  7. Orbital eccentricity as a probe of thick disc formation scenarios

    NARCIS (Netherlands)

    Sales, Laura V.; Helmi, Amina; Abadi, Mario G.; Brook, Chris B.; Gomez, Facundo A.; Roskar, Rok; Debattista, Victor P.; House, Elisa; Steinmetz, Matthias; Villalobos, Alvaro

    2009-01-01

    We study the orbital properties of stars in four (published) simulations of thick discs formed by (i) accretion from disrupted satellites, (ii) heating of a pre-existing thin disc by a minor merger, (iii) radial migration and (iv) gas-rich mergers. We find that the distribution of orbital

  8. Forming spectroscopic massive protobinaries by disc fragmentation

    Science.gov (United States)

    Meyer, D. M.-A.; Kuiper, R.; Kley, W.; Johnston, K. G.; Vorobyov, E.

    2018-01-01

    The surroundings of massive protostars constitute an accretion disc which has numerically been shown to be subject to fragmentation and responsible for luminous accretion-driven outbursts. Moreover, it is suspected to produce close binary companions which will later strongly influence the star's future evolution in the Hertzsprung-Russel diagram. We present three-dimensional gravitation-radiation-hydrodynamic numerical simulations of 100 M⊙ pre-stellar cores. We find that accretion discs of young massive stars violently fragment without preventing the (highly variable) accretion of gaseous clumps on to the protostars. While acquiring the characteristics of a nascent low-mass companion, some disc fragments migrate on to the central massive protostar with dynamical properties showing that its final Keplerian orbit is close enough to constitute a close massive protobinary system, having a young high- and a low-mass components. We conclude on the viability of the disc fragmentation channel for the formation of such short-period binaries, and that both processes - close massive binary formation and accretion bursts - may happen at the same time. FU-Orionis-type bursts, such as observed in the young high-mass star S255IR-NIRS3, may not only indicate ongoing disc fragmentation, but also be considered as a tracer for the formation of close massive binaries - progenitors of the subsequent massive spectroscopic binaries - once the high-mass component of the system will enter the main-sequence phase of its evolution. Finally, we investigate the Atacama Large (sub-)Millimeter Array observability of the disc fragments.

  9. MHD Simulations of Magnetized Stars in the Propeller Regime of Accretion

    Directory of Open Access Journals (Sweden)

    Lii Patrick

    2014-01-01

    Full Text Available Accreting magnetized stars may be in the propeller regime of disc accretion in which the angular velocity of the stellar magnetosphere exceeds that of the inner disc. In these systems, the stellar magnetosphere acts as a centrifugal barrier and inhibits matter accretion onto the rapidly rotating star. Instead, the matter accreting through the disc accumulates at the disc-magnetosphere interface where it picks up angular momentum and is ejected from the system as a wide-angled outflow which gradually collimates at larger distances from the star. If the ejection rate is lower than the accretion rate, the matter will accumulate at the boundary faster than it can be ejected; in this case, accretion onto the star proceeds through an episodic accretion instability in which the episodes of matter accumulation are followed by a brief episode of simultaneous ejection and accretion of matter onto the star. In addition to the matter dominated wind component, the propeller outflow also exhibits a well-collimated, magnetically-dominated Poynting jet which transports energy and angular momentum away from the star. The propeller mechanism may explain some of the weakly-collimated jets and winds observed around some T Tauri stars as well as the episodic variability present in their light curves. It may also explain some of the quasi-periodic variability observed in cataclysmic variables, millisecond pulsars and other magnetized stars.

  10. The formation of planets by disc fragmentation

    Directory of Open Access Journals (Sweden)

    Stamatellos Dimitris

    2013-04-01

    Full Text Available I discuss the role that disc fragmentation plays in the formation of gas giant and terrestrial planets, and how this relates to the formation of brown dwarfs and low-mass stars, and ultimately to the process of star formation. Protostellar discs may fragment, if they are massive enough and can cool fast enough, but most of the objects that form by fragmentation are brown dwarfs. It may be possible that planets also form, if the mass growth of a proto-fragment is stopped (e.g. if this fragment is ejected from the disc, or suppressed and even reversed (e.g by tidal stripping. I will discuss if it is possible to distinguish whether a planet has formed by disc fragmentation or core accretion, and mention of a few examples of observed exoplanets that are suggestive of formation by disc fragmentation.

  11. Advective accretion flow properties around rotating black holes ...

    Indian Academy of Sciences (India)

    We examine the properties of the viscous dissipative accretion flow around rotating black holes in the presence of mass loss. Considering the thin disc approximation, we self-consistently calculate the inflow-outflow solutions and observe that the mass outflow rates decrease with the increase in viscosity parameter ( α ).

  12. Shocks in the relativistic transonic accretion with low angular momentum

    Czech Academy of Sciences Publication Activity Database

    Suková, Petra; Charzynski, S.; Janiuk, A.

    2017-01-01

    Roč. 472, č. 4 (2017), s. 4327-4342 ISSN 0035-8711 R&D Projects: GA ČR(CZ) GJ17-06962Y Institutional support: RVO:67985815 Keywords : accretion discs * hydrodynamics * shock waves Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.961, year: 2016

  13. Forming disc galaxies in major mergers - III. The effect of angular momentum on the radial density profiles of disc galaxies

    Science.gov (United States)

    Peschken, N.; Athanassoula, E.; Rodionov, S. A.

    2017-06-01

    We study the effect of angular momentum on the surface density profiles of disc galaxies, using high-resolution simulations of major mergers whose remnants have downbending radial density profiles (type II). As described in the previous papers of this series, in this scenario, most of the disc mass is acquired after the collision via accretion from a hot gaseous halo. We find that the inner and outer disc scalelengths, as well as the break radius, correlate with the total angular momentum of the initial merging system, and are larger for high-angular momentum systems. We follow the angular momentum redistribution in our simulated galaxies, and find that like the mass, the disc angular momentum is acquired via accretion, I.e. to the detriment of the gaseous halo. Furthermore, high-angular momentum systems give more angular momentum to their discs, which directly affects their radial density profile. Adding simulations of isolated galaxies to our sample, we find that the correlations are valid also for disc galaxies evolved in isolation. We show that the outer part of the disc at the end of the simulation is populated mainly by inside-out stellar migration, and that in galaxies with higher angular momentum, stars travel radially further out. This, however, does not mean that outer disc stars (in type II discs) were mostly born in the inner disc. Indeed, generally the break radius increases over time, and not taking this into account leads to overestimating the number of stars born in the inner disc.

  14. The rotation of discs around neutron stars: dependence on the Hall diffusion

    Science.gov (United States)

    Faghei, Kazem; Salehi, Fatemeh

    2018-01-01

    In this paper, we study the dynamics of a geometrically thin, steady and axisymmetric accretion disc surrounding a rotating and magnetized star. The magnetic field lines of star penetrate inside the accretion disc and are twisted due to the differential rotation between the magnetized star and the disc. We apply the Hall diffusion effect in the accreting plasma, because of the Hall diffusion plays an important role in both fully ionized plasma and weakly ionized medium. In the current research, we show that the Hall diffusion is also an important mechanism in accreting plasma around neutron stars. For the typical system parameter values associated with the accreting X-ray binary pulsar, the angular velocity of the inner regions of disc departs outstandingly from Keplerian angular velocity, due to coupling between the magnetic field of neutron star and the rotating plasma of disc. We found that the Hall diffusion is very important in inner disc and increases the coupling between the magnetic field of neutron star and accreting plasma. On the other word, the rotational velocity of inner disc significantly decreases in the presence of the Hall diffusion. Moreover, the solutions imply that the fastness parameter decreases and the angular velocity transition zone becomes broad for the accreting plasma including the Hall diffusion.

  15. Accretion on to Magnetic White Dwarfs

    Directory of Open Access Journals (Sweden)

    Wickramasinghe Dayal

    2014-01-01

    The polars have no counterparts in neutron star systems and their study provides unique insights into the complex nature of the magnetospheric boundary. The observed properties of accretion shocks at the white dwarf surface such as the anomalous soft-X-ray excess and its time variability provide strong support for the hypothesis that under certain circumstances the field channelled funnel flow is “blobby”. This has been attributed to interchange instabilities such as the Magnetic Rayleigh-Taylor instability in the shocked gas at the stream-magnetosphere boundary where the stream fragments into discrete clumps of gas. As the clumps penetrate into the magnetosphere, they are shredded into smaller mass blobs via the Kelvin-Helmholtz instability that then couple on to field lines over an extended inner transition region in the orbital plane. The more massive blobs penetrate deep into the photosphere of the white dwarf releasing their energy as a reprocessed soft-X-ray black body component. Although similar instabilities are expected in the inner transition region in disced accretion albeit on a different scale there has been no direct observational evidence for blobby accretion in the generally lower field and disced IPs.

  16. Simulations of the magnetospheres of accreting millisecond pulsars

    Science.gov (United States)

    Parfrey, Kyle; Spitkovsky, Anatoly; Beloborodov, Andrei M.

    2017-08-01

    Accreting pulsars power relativistic jets and display a complex spin phenomenology. These behaviours may be closely related to the large-scale configuration of the star's magnetic field, shaped by its interaction with the surrounding accretion disc. Here, we present the first relativistic simulations of the interaction of a pulsar magnetosphere with an accretion flow. Our axisymmetric simulations treat the magnetospheric, or coronal, regions using a resistive extension of force-free electrodynamics. The magnetic field is also evolved inside the disc, which is a defined volume with a specified velocity field and conductivity profile, found using an α-disc model. We study a range of disc α-parameters, thicknesses, magnetic Prandtl numbers and inner truncation radii. We find that a large fraction of the magnetic flux in the pulsar's closed zone is opened by the intrusion of the disc, leading to an enhancement of the power extracted by the pulsar wind and the spin-down torque applied to the pulsar. In our simulations, most of the spin-down contribution to the stellar torque acts on open field lines. The efficiency of field-line opening is high in the simulations' long-term quasi-steady states, which implies that a millisecond pulsar's electromagnetic wind could be strong enough to power the observed neutron-star radio jets, and may significantly affect the pulsar's spin evolution.

  17. Atmospheric signatures of giant exoplanet formation by pebble accretion

    Science.gov (United States)

    Madhusudhan, Nikku; Bitsch, Bertram; Johansen, Anders; Eriksson, Linn

    2017-08-01

    Atmospheric chemical abundances of giant planets lead to important constraints on planetary formation and migration. Studies have shown that giant planets that migrate through the protoplanetary disc can accrete substantial amounts of oxygen-rich planetesimals, leading to supersolar metallicities in the envelope and solar or subsolar C/O ratios. Pebble accretion has been demonstrated to play an important role in core accretion and to have growth rates that are consistent with planetary migration. The high pebble accretion rates allow planetary cores to start their growth beyond 10 au and subsequently migrate to cold (≳1 au), warm (˜0.1-1 au) or hot (≲0.1 au) orbits. In this work we investigate how the formation of giant planets via pebble accretion influences their atmospheric chemical compositions. We find that under the standard pebble accretion scenario, where the core is isolated from the envelope, the resulting metallicities (O/H and C/H ratios) are subsolar, while the C/O ratios are supersolar. Planets that migrate through the disc to become hot Jupiters accrete substantial amounts of water vapour, but still acquire slightly subsolar O/H and supersolar C/O of 0.7-0.8. The metallicity can be substantially subsolar (˜0.2-0.5 × solar) and the C/O can even approach 1.0 if the planet accretes its envelope mostly beyond the CO2 ice line, i.e. cold Jupiters or hot Jupiters that form far out and migrate in by scattering. Allowing for core erosion yields significantly supersolar metallicities and solar or subsolar C/O, which can also be achieved by other means, e.g. photoevaporation and late-stage planetesimal accretion.

  18. Super-Eddington Accreting Tidal Disruption Events

    Science.gov (United States)

    Lin, Dacheng; Guillochon, James; Komossa, St.; Ramirez-Ruiz, Enrico; Irwin, Jimmy; Maksym, W. Peter; Grupe, Dirk; Godet, Olivier; Webb, Natalie; Barret, Didier; Zauderer, Bevin; Duc, Pierre-Alain; Carrasco, Eleazar R.; Gwyn, Stephen

    2017-08-01

    Multiwavelength flares from tidal disruption and subsequent accretion of stars are important for study of otherwise dormant massive black holes in galactic nuclei. Previous well-monitored candidate flares were short-lived, with most emission confined to within ~1 year. Here, we report our discovery of a well observed super-long (>11 years) luminous X-ray flare from the nuclear region of a dwarf starburst galaxy. After an apparently fast rise within ~4 months a decade ago, the X-ray luminosity, though showing a weak trend of decay, has been persistently high at around the Eddington limit. The X-ray spectra are soft and can be described with Comptonized emission from an optically thick low-temperature corona, a super-Eddington accretion signature often observed in accreting stellar-mass black holes. Dramatic spectral softening was also caught in one recent observation, implying either a temporary transition from the super-Eddington accretion state to the standard thermal state, or the presence of a transient highly blueshifted (~0.36c) warm absorber. All these properties in concert suggest a tidal disruption event with an unusually long super-Eddington accretion phase that has never before been observed. We also found two additional events showing similar X-ray spectra characteristic of super-Eddington accretion from two otherwise quiescent galaxies. Therefore these events seem to form a new, super-Eddington accreting class of tidal disruption events.

  19. Inner disc obscuration in GRS 1915+105 based on relativistic slim disc model

    Czech Academy of Sciences Publication Activity Database

    Vierdayanti, K.; Sądowski, A.; Mineshige, L.S.; Bursa, Michal

    2013-01-01

    Roč. 436, č. 1 (2013), s. 71-81 ISSN 0035-8711 Institutional support: RVO:67985815 Keywords : accretion discs * black hole physics * GRS 1915+105 Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.226, year: 2013

  20. Theory of wind accretion

    Directory of Open Access Journals (Sweden)

    Shakura N.I.

    2014-01-01

    Full Text Available A review of wind accretion in high-mass X-ray binaries is presented. We focus attention to different regimes of quasi-spherical accretion onto the neutron star: the supersonic (Bondi accretion, which takes place when the captured matter cools down rapidly and falls supersonically toward NS magnetospghere, and subsonic (settling accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. Two regimes of accretion are separated by an X-ray luminosity of about 4 × 1036 erg/s. In the subsonic case, which sets in at low luminosities, a hot quasi-spherical shell must be formed around the magnetosphere, and the actual accretion rate onto NS is determined by ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instability. We calculate the rate of plasma entry the magnetopshere and the angular momentum transfer in the shell due to turbulent viscosity appearing in the convective differentially rotating shell. We also discuss and calculate the structure of the magnetospheric boundary layer where the angular momentum between the rotating magnetosphere and the base of the differentially rotating quasi-spherical shell takes place. We show how observations of equilibrium X-ray pulsars Vela X-1 and GX 301-2 can be used to estimate dimensionless parameters of the subsonic settling accretion theory, and obtain the width of the magnetospheric boundary layer for these pulsars.

  1. Simulations of small solid accretion on to planetesimals in the presence of gas

    Science.gov (United States)

    Hughes, A. G.; Boley, A. C.

    2017-12-01

    The growth and migration of planetesimals in a young protoplanetary disc are fundamental to planet formation. In all models of early growth, there are several processes that can inhibit grains from reaching larger sizes. Nevertheless, observations suggest that growth of planetesimals must be rapid. If a small number of 100 km sized planetesimals do manage to form in the disc, then gas drag effects could enable them to efficiently accrete small solids from beyond their gravitationally focused cross-section. This gas-drag-enhanced accretion can allow planetesimals to grow at rapid rates, in principle. We present self-consistent hydrodynamics simulations with direct particle integration and gas-drag coupling to estimate the rate of planetesimal growth due to pebble accretion. Wind tunnel simulations are used to explore a range of particle sizes and disc conditions. We also explore analytic estimates of planetesimal growth and numerically integrate planetesimal drift due to the accretion of small solids. Our results show that, for almost every case that we consider, there is a clearly preferred particle size for accretion that depends on the properties of the accreting planetesimal and the local disc conditions. For solids much smaller than the preferred particle size, accretion rates are significantly reduced as the particles are entrained in the gas and flow around the planetesimal. Solids much larger than the preferred size accrete at rates consistent with gravitational focusing. Our analytic estimates for pebble accretion highlight the time-scales that are needed for the growth of large objects under different disc conditions and initial planetesimal sizes.

  2. Magnetic field structure in accretion columns on HMXB and effects on CRSF

    Directory of Open Access Journals (Sweden)

    Mukherjee Dipanjan

    2014-01-01

    Full Text Available In accreting neutron star binaries, matter is channelled by the magnetic fields from the accretion disc to the poles of neutron stars forming an accretion mound. We model such mounds by numerically solving the Grad-Shafranov equation for axisymmetric static MHD equilibria. From our solutions we infer local distortion of field lines due to the weight of accreted matter. Variation in mass loading at the accretion disc will alter the shape of the accretion mound which will also affect the local field distortion. From simulations of cyclotron resonance scattering features from HMXBs, we conclude that local field distortion will greatly affect the shape and nature of the CRSF. From phase resolved spectral analysis one can infer the local field structure and hence the nature of mass loading of field lines at the accretion disc. We also study the stability of such mounds by performing MHD simulations using the PLUTO MHD code. We find that pressure and gravity driven instabilities depend on the total mass accreted and the nature of mass loading of the field lines.

  3. How important is non-ideal physics in simulations of sub-Eddington accretion on to spinning black holes?

    Science.gov (United States)

    Foucart, Francois; Chandra, Mani; Gammie, Charles F.; Quataert, Eliot; Tchekhovskoy, Alexander

    2017-09-01

    Black holes with accretion rates well below the Eddington rate are expected to be surrounded by low-density, hot, geometrically thick accretion discs. This includes the two black holes being imaged at subhorizon resolution by the Event Horizon Telescope. In these discs, the mean free path for Coulomb interactions between charged particles is large, and the accreting matter is a nearly collisionless plasma. Despite this, numerical simulations have so far modelled these accretion flows using ideal magnetohydrodynamics. Here, we present the first global, general relativistic, 3D simulations of accretion flows on to a Kerr black hole including the non-ideal effects most likely to affect the dynamics of the disc: the anisotropy between the pressure parallel and perpendicular to the magnetic field, and the heat flux along magnetic field lines. We show that for both standard and magnetically arrested discs, the pressure anisotropy is comparable to the magnetic pressure, while the heat flux remains dynamically unimportant. Despite this large pressure anisotropy, however, the time-averaged structure of the accretion flow is strikingly similar to that found in simulations treating the plasma as an ideal fluid. We argue that these similarities are largely due to the interchangeability of the viscous and magnetic shear stresses as long as the magnetic pressure is small compared to the gas pressure, and to the subdominant role of pressure/viscous effects in magnetically arrested discs. We conclude by highlighting outstanding questions in modelling the dynamics of low-collisionality accretion flows.

  4. On the diversity and statistical properties of protostellar discs

    Science.gov (United States)

    Bate, Matthew R.

    2018-01-01

    We present results from the first population synthesis study of protostellar discs. We analyse the evolution and properties of a large sample of protostellar discs formed in a radiation hydrodynamical simulation of star cluster formation. Due to the chaotic nature of the star formation process, we find an enormous diversity of young protostellar discs, including misaligned discs, and discs whose orientations vary with time. Star-disc interactions truncate discs and produce multiple systems. Discs may be destroyed in dynamical encounters and/or through ram-pressure stripping, but reform by later gas accretion. We quantify the distributions of disc mass and radii for protostellar ages up to ≈105 yrs. For low-mass protostars, disc masses tend to increase with both age and protostellar mass. Disc radii range from of order ten to a few hundred au, grow in size on timescales ≲ 104 yr, and are smaller around lower-mass protostars. The radial surface density profiles of isolated protostellar discs are flatter than the minimum mass solar nebula model, typically scaling as Σ∝r-1. Disc to protostar mass ratios rarely exceed two, with a typical range of Md/M* = 0.1 - 1 to ages ≲ 104 yrs and decreasing thereafter. We quantify the relative orientation angles of circumstellar discs and the orbit of bound pairs of protostars, finding a preference for alignment that strengths with decreasing separation. We also investigate how the orientations of the outer parts of discs differ from the protostellar and inner disc spins for isolated protostars and pairs.

  5. Continuum Reverberation Mapping of AGN Accretion Disks

    Directory of Open Access Journals (Sweden)

    Michael M. Fausnaugh

    2017-12-01

    Full Text Available We show recent detections of inter-band continuum lags in three AGN (NGC 5548, NGC 2617, and MCG+08-11-011, which provide new constraints on the temperature profiles and absolute sizes of the accretion disks. We find lags larger than would be predicted for standard geometrically thin, optically thick accretion disks by factors of 2.3–3.3. For NGC 5548, the data span UV through optical/near-IR wavelengths, and we are able to discern a steeper temperature profile than the T ~ R−3/4 expected for a standard thin disk. Using a physical model, we are also able to estimate the inclinations of the disks for two objects. These results are similar to those found from gravitational microlensing of strongly lensed quasars, and provide a complementary approach for investigating the accretion disk structure in local, low luminosity AGN.

  6. Accretion onto a charged higher-dimensional black hole

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Iftikhar, Sehrish [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2016-03-15

    This paper deals with the steady-state polytropic fluid accretion onto a higher-dimensional Reissner-Nordstroem black hole. We formulate the generalized mass flux conservation equation, energy flux conservation and relativistic Bernoulli equation to discuss the accretion process. The critical accretion is investigated by finding the critical radius, the critical sound velocity, and the critical flow velocity. We also explore gas compression and temperature profiles to analyze the asymptotic behavior. It is found that the results for the Schwarzschild black hole are recovered when q = 0 in four dimensions. We conclude that the accretion process in higher dimensions becomes slower in the presence of charge. (orig.)

  7. Gas accretion onto galaxies

    CERN Document Server

    Davé, Romeel

    2017-01-01

    This edited volume presents the current state of gas accretion studies from both observational and theoretical perspectives, and charts our progress towards answering the fundamental yet elusive question of how galaxies get their gas. Understanding how galaxies form and evolve has been a central focus in astronomy for over a century. These studies have accelerated in the new millennium, driven by two key advances: the establishment of a firm concordance cosmological model that provides the backbone on which galaxies form and grow, and the recognition that galaxies grow not in isolation but within a “cosmic ecosystem” that includes the vast reservoir of gas filling intergalactic space. This latter aspect in which galaxies continually exchange matter with the intergalactic medium via inflows and outflows has been dubbed the “baryon cycle”. The topic of this book is directly related to the baryon cycle, in particular its least well constrained aspect, namely gas accretion. Accretion is a rare area of ast...

  8. HIRDLS/Aura Level 3 Temperature 1deg Lat Zonal Fourier Coefficients V007 (H3ZFCT) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The "HIRDLS/Aura Level 3 Temperature Zonal Fourier Coefficients" version 7 data product (H3ZFCT) contains the entire mission (~3 years) of HIRDLS data expressed as...

  9. ESMR/Nimbus-5 Level 1 Calibrated Brightness Temperature V001 (ESMRN5L1) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — ESMRN5L1 is the Nimbus-5 Electrically Scanning Microwave Radiometer (ESMR) Level 1 Calibrated Brightness Temperature product and contains calibrated radiances...

  10. ESMR/Nimbus-5 Images of Brightness Temperature on 70 mm Film V001 (ESMRN5IM) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — ESMRN5IM is the Nimbus-5 Electrically Scanning Microwave Radiometer (ESMR) data product containing daily brightness temperature images from 70-mm photofacsimile film...

  11. Herniated lumbar disc

    OpenAIRE

    Jordon, Jo; Konstantinou, Kika; O'Dowd, John

    2009-01-01

    Herniated lumbar disc is a displacement of disc material (nucleus pulposus or annulus fibrosis) beyond the intervertebral disc space. The highest prevalence is among people aged 30-50 years, with a male to female ratio of 2:1.

  12. Herniated lumbar disc

    OpenAIRE

    Jordan, Jo; Konstantinou, Kika; O'Dowd, John

    2011-01-01

    Herniated lumbar disc is a displacement of disc material (nucleus pulposus or annulus fibrosis) beyond the intervertebral disc space. The highest prevalence is among people aged 30 to 50 years, with a male to female ratio of 2:1.

  13. Accretion by the Galaxy

    NARCIS (Netherlands)

    Binney, J.; Fraternali, F.; Reylé, C.; Robin, A.; Schultheis, M.

    Cosmology requires at least half of the baryons in the Universe to be in the intergalactic medium, much of which is believed to form hot coronae around galaxies. Star-forming galaxies must be accreting from their coronae. Hi observations of external galaxies show that they have Hi halos associated

  14. Herniated Cervical Disc

    Science.gov (United States)

    ... and Emotional Distress Muscle Spasms Pinched Nerve Discitis Degenerative Conditions Bulge vs Herniation Cervical Stenosis, Myelopathy, and Radiculopathy Herniated Lumbar Disc Herniated Cervical Disc ...

  15. Reverberation Mapping of AGN Accretion Disks

    Science.gov (United States)

    Fausnaugh, Michael; AGN STORM Collaboration

    2017-01-01

    I will discuss new reverberation mapping results that allow us to investigate the temperature structure of AGN accretion disks. By measuring time-delays between broad-band continuum light curves, we can determine the size of the disk as a function of wavelength. I will discuss the detection of continuum lags in NGC 5548 reported by the AGN STORM project and implications for the accretion disk. I will also present evidence for continuum lags in two other AGN for which we recently measured black hole masses from continuum-Hbeta reverberations. The mass measurements allow us to compare the continuum lags to predictions from standard thin disk theory, and our results indicate that the accretion disks are larger than the simplest expectations.

  16. DSC Study of Collagen in Disc Disease

    Directory of Open Access Journals (Sweden)

    S. Skrzyński

    2009-01-01

    Full Text Available Differential scanning calorimetry (DSC has been used to estimate the effect of disc disease on the collagen helix-coil transition and morphology for tissue extracted from patients during surgical operation. Forty discs were obtained from patients with degenerative disc disease undergoing surgery for low back pain. The patients were in the age between 20 and 70 years old. The specimens were kept wet during DSC experiment. The data allow the comparison between thermal stability of collagen tissue from healthy patients and from patients suffering from disc disease. In the paper the comparison between thermal helix-coil transition for collagen fibers from patients suffering from disc disease and collagen fibers from healthy organisms has been discussed. The heating rate has an influence on the position on denaturation temperatures of collagen in disc tissues. Higher helix-coil transition temperature of collagen in degenerated disc suggests that additional intermolecular cross linking of collagen fibers occurs. Denaturation temperatures of collagen in degenerated male disc possess smaller values than in female ones. Disc disease induces changes in collagen structure and leads to formation of additional crosslinks between collagen fibers.

  17. The general relativistic thin disc evolution equation

    Science.gov (United States)

    Balbus, Steven A.

    2017-11-01

    In the classical theory of thin disc accretion discs, the constraints of mass and angular momentum conservation lead to a diffusion-like equation for the turbulent evolution of the surface density. Here, we revisit this problem, extending the Newtonian analysis to the regime of Kerr geometry relevant to black holes. A diffusion-like equation once again emerges, but now with a singularity at the radius at which the effective angular momentum gradient passes through zero. The equation may be analysed using a combination of Wentzel-Kramers-Brillouin techniques, local techniques and matched asymptotic expansions. It is shown that imposing the boundary condition of a vanishing stress tensor (more precisely the radial-azimuthal component thereof) allows smooth stable modes to exist external to the angular momentum singularity, the innermost stable circular orbit, while smoothly vanishing inside this location. The extension of the disc diffusion equation to the domain of general relativity introduces a new tool for numerical and phenomenological studies of accretion discs, and may prove to be a useful technique for understanding black hole X-ray transients.

  18. THE STUDY OF THE TEMPERATURE OF THE HEATING DISC BRAKES OF PASSENGER CAR DURING THE ADJUSTING THE BRAKING

    Directory of Open Access Journals (Sweden)

    Yu. . Ya. Vodiannikov

    2007-11-01

    Full Text Available Results of research of the brake disk heating temperature under the brake shoe lining during the regulating braking of a passenger train are presented. It is established that the greatest temperature in the disk arises at an exit of a brake shoe lining on a direction of the wheel pair rotation, and its value depends on pressure in the brake cylinder (correlation factor 0.556 and braking time (correlation factor 0.331, the correlation factor for speed in the beginning of regulating braking was equal to 0.135.

  19. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion.

    Science.gov (United States)

    Johansen, Anders; Low, Mordecai-Mark Mac; Lacerda, Pedro; Bizzarro, Martin

    2015-04-01

    Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas drag-assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars's size along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles in the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts.

  20. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion

    Science.gov (United States)

    Johansen, Anders; Low, Mordecai-Mark Mac; Lacerda, Pedro; Bizzarro, Martin

    2015-01-01

    Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas drag–assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars’s size along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles in the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts. PMID:26601169

  1. Dead Zones around Young Stellar Objects: FU Orionis Outbursts and Transition Discs

    OpenAIRE

    Martin, Rebecca G.; Lubow, Stephen H.; Livio, Mario; Pringle, J. E.

    2012-01-01

    We perform global time-dependent simulations of an accretion disc around a young stellar object with a dead zone (a region where the magneto-rotational instability cannot drive turbulence because the material is not sufficiently ionised). For infall accretion rates on to the disc of around 10^-7 Msun/yr, dead zones occur if the critical magnetic Reynolds number is larger than about 10^4. We model the collapse of a molecular gas cloud. At early times when the infall accretion rate is high, the...

  2. Non-Axisymmetric Line Driven Disc Winds I - Disc Perturbations

    Science.gov (United States)

    Dyda, Sergei; Proga, Daniel

    2018-01-01

    We study mass outflows driven from accretion discs by radiation pressure due to spectral lines. To investigate non-axisymmetric effects, we use the ATHENA++ code and develop a new module to account for radiation pressure driving. In 2D, our new simulations are consistent with previous 2D axisymmetric solutions by Proga et al. who used the ZEUS 2D code. Specifically, we find that the disc winds are time dependent, characterized by a dense stream confined to ˜45° relative to the disc midplane and bounded on the polar side by a less dense, fast stream. In 3D we introduce a vertical, ϕ-dependent, subsonic velocity perturbation in the disc midplane. The perturbation does not change the overall character of the solution but global outflow properties such as the mass, momentum and kinetic energy fluxes are altered by up to 100%. Non-axisymmetric density structures develop and persist mainly at the base of the wind. They are relatively small, and their densities can be a few times higher that the azimuthal average. The structure of the non-axisymmetric and axisymmetric solutions differ also in other ways. Perhaps most importantly from the observational point of view are the differences in the so called clumping factors, that serve as a proxy for emissivity due to two body processes. In particular, the spatially averaged clumping factor over the entire fast stream, while it is of a comparable value in both solutions, it varies about 10 times faster in the non-axisymmetric case.

  3. Minimum weight design of inhomogeneous rotating discs

    Energy Technology Data Exchange (ETDEWEB)

    Jahed, Hamid [Department of Mechanical Engineering, Iran University of Science and Technology, Tehran 16844 (Iran, Islamic Republic of); Farshi, Behrooz [Department of Mechanical Engineering, Iran University of Science and Technology, Tehran 16844 (Iran, Islamic Republic of)]. E-mail: farshi@iust.ac.ir; Bidabadi, Jalal [Department of Mechanical Engineering, Iran University of Science and Technology, Tehran 16844 (Iran, Islamic Republic of)

    2005-01-01

    There are numerous applications for gas turbine discs in the aerospace industry such as in turbojet engines. These discs normally work under high temperatures while subjected to high angular velocities. Minimizing the weight of such items in aerospace applications results in benefits such as low dead weights and lower costs. High speed of rotation causes large centrifugal forces in a disc and simultaneous application of high temperatures reduces disc material strength. Thus, the latter effects tend to increase deformations of the disc under the applied loads. In order to obtain a reliable disc analysis and arrive at the corresponding correct stress distribution, solutions should consider changes in material properties due to the temperature field throughout the disc. To achieve this goal, an inhomogeneous disc model with variable thickness is considered. Using the variable material properties method, stresses are obtained for the disc under rotation and a steady temperature field. In this paper this is done by modelling the rotating disc as a series of rings of different but constant properties. The optimum disc profile is arrived at by sequentially proportioning the thicknesses of each ring to satisfy the stress requirements. This method vis-a-vis a mathematical programming procedure for optimization shows several advantages. Firstly, it is simple iterative proportioning in each design cycle not requiring involved mathematical operations. Secondly, due to its simplicity it alleviates the necessity of certain simplifications that are common in so-called rigorous mathematical procedures. The results obtained, compared to those published in the literature show agreement and superiority. A further advantage of the proposed method is the independence of the end results from the initially assumed point in the iterative design routine, unlike most methods published so far.

  4. SCAMS/Nimbus-6 Level 2 Water Vapor and Temperature, as well as Antenna and Brightness Temperature V001 (SCAMSN6L2) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nimbus-6 Scanning Microwave Spectrometer (SCAMS) Level 2 data product contains water vapor and temperature profiles, as well as antenna and brightness...

  5. DZ Chamaeleontis: a bona fide photoevaporating disc

    Science.gov (United States)

    Canovas, H.; Montesinos, B.; Schreiber, M. R.; Cieza, L. A.; Eiroa, C.; Meeus, G.; de Boer, J.; Ménard, F.; Wahhaj, Z.; Riviere-Marichalar, P.; Olofsson, J.; Garufi, A.; Rebollido, I.; van Holstein, R. G.; Caceres, C.; Hardy, A.; Villaver, E.

    2018-02-01

    Context. DZ Cha is a weak-lined T Tauri star (WTTS) surrounded by a bright protoplanetary disc with evidence of inner disc clearing. Its narrow Hα line and infrared spectral energy distribution suggest that DZ Cha may be a photoevaporating disc. Aims: We aim to analyse the DZ Cha star + disc system to identify the mechanism driving the evolution of this object. Methods: We have analysed three epochs of high resolution optical spectroscopy, photometry from the UV up to the sub-mm regime, infrared spectroscopy, and J-band imaging polarimetry observations of DZ Cha. Results: Combining our analysis with previous studies we find no signatures of accretion in the Hα line profile in nine epochs covering a time baseline of 20 yr. The optical spectra are dominated by chromospheric emission lines, but they also show emission from the forbidden lines [SII] 4068 and [OI] 6300Å that indicate a disc outflow. The polarized images reveal a dust depleted cavity of 7 au in radius and two spiral-like features, and we derive a disc dust mass limit of Mdust 80 MJup) companions are detected down to 0.̋07 ( 8 au, projected). Conclusions: The negligible accretion rate, small cavity, and forbidden line emission strongly suggests that DZ Cha is currently at the initial stages of disc clearing by photoevaporation. At this point the inner disc has drained and the inner wall of the truncated outer disc is directly exposed to the stellar radiation. We argue that other mechanisms like planet formation or binarity cannot explain the observed properties of DZ Cha. The scarcity of objects like this one is in line with the dispersal timescale (≲105 yr) predicted by this theory. DZ Cha is therefore an ideal target to study the initial stages of photoevaporation. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 097.C-0536. Based on data obtained from the ESO Science Archive Facility under request number 250112.

  6. Accretion onto a noncommutative geometry inspired black hole

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rahul [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); Jamia Millia Islamia, Multidisciplinary Centre for Advanced Research and Studies (MCARS), New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa)

    2017-09-15

    The spherically symmetric accretion onto a noncommutative (NC) inspired Schwarzschild black hole is treated for a polytropic fluid. The critical accretion rate M, sonic speed a{sub s} and other flow parameters are generalized for the NC inspired static black hole and compared with the results obtained for the standard Schwarzschild black holes. Also explicit expressions for gas compression ratios and temperature profiles below the accretion radius and at the event horizon are derived. This analysis is a generalization of Michel's solution to the NC geometry. Owing to the NC corrected black hole, the accretion flow parameters also have been modified. It turns out that M ∼ M{sup 2} is still achievable but r{sub s} seems to be substantially decreased due to the NC effects. They in turn do affect the accretion process. (orig.)

  7. Accretion onto a noncommutative geometry inspired black hole

    Science.gov (United States)

    Kumar, Rahul; Ghosh, Sushant G.

    2017-09-01

    The spherically symmetric accretion onto a noncommutative (NC) inspired Schwarzschild black hole is treated for a polytropic fluid. The critical accretion rate \\dot{M}, sonic speed a_s and other flow parameters are generalized for the NC inspired static black hole and compared with the results obtained for the standard Schwarzschild black holes. Also explicit expressions for gas compression ratios and temperature profiles below the accretion radius and at the event horizon are derived. This analysis is a generalization of Michel's solution to the NC geometry. Owing to the NC corrected black hole, the accretion flow parameters also have been modified. It turns out that \\dot{M} ≈ {M^2} is still achievable but r_s seems to be substantially decreased due to the NC effects. They in turn do affect the accretion process.

  8. Heating of protostellar accretion disks

    Science.gov (United States)

    de Campos, R. R.; Jatenco-Pereira, V.

    2017-07-01

    The magneto-rotational instability (MRI) is believed to be the mechanism responsible for a magneto-hydrodynamic turbulence that could lead to the accretion observed in protoplanetary disks. The need of a minimum amount of ionization in protostellar accretion disks is necessary for the MRI to take place. There are in the literature several studies that include the damping of Alfvén waves as an additional heating source besides the viscous heating mechanism in a geometrically thin and optically thick disk. The damping of the waves transfers energy to the disk increasing the temperature and consequently its ionization fraction, making possible the presence of the MRI in a large part of the disk. We analyzed the contribution of non-ideal effects such as Ohmic and ambipolar diffusion for the disk heating and compare these heating rates with those obtained by damping of Alfvén waves. In order to study these non-ideal effects, we have estimated the radiation emission of each effect through the energy conservation equation, and associated each emission with a black body radiation, which enabled us to assign a temperature contribution of each effect. Using the ATHENA code we were able to simulate the disk at different radial distances, and estimate the electric current density needed to calculate the radiation emission associated with each effect. Once we have those data, we were able to compare the results with other heating sources, like viscosity and Alfvén waves damping, and we concluded that the Ohmic and ambipolar diffusions do not heat the disk in any significant way.

  9. Super-Eddington accretion on to the neutron star NGC 7793 P13: Broad-band X-ray spectroscopy and ultraluminous X-ray sources

    Science.gov (United States)

    Walton, D. J.; Fürst, F.; Harrison, F. A.; Stern, D.; Bachetti, M.; Barret, D.; Brightman, M.; Fabian, A. C.; Middleton, M. J.; Ptak, A.; Tao, L.

    2018-02-01

    We present a detailed, broad-band X-ray spectral analysis of the ultraluminous X-ray source (ULX) pulsar NGC 7793 P13, a known super-Eddington source, utilizing data from the XMM-Newton, NuSTAR and Chandra observatories. The broad-band XMM-Newton+NuSTAR spectrum of P13 is qualitatively similar to the rest of the ULX sample with broad-band coverage, suggesting that additional ULXs in the known population may host neutron star accretors. Through time-averaged, phase-resolved and multi-epoch studies, we find that two non-pulsed thermal blackbody components with temperatures ∼0.5 and 1.5 keV are required to fit the data below 10 keV, in addition to a third continuum component which extends to higher energies and is associated with the pulsed emission from the accretion column. The characteristic radii of the thermal components appear to be comparable, and are too large to be associated with the neutron star itself, so the need for two components likely indicates the accretion flow outside the magnetosphere is complex. We suggest a scenario in which the thick inner disc expected for super-Eddington accretion begins to form, but is terminated by the neutron star's magnetic field soon after its onset, implying a limit of B ≲ 6 × 1012 G for the dipolar component of the central neutron star's magnetic field. Evidence of similar termination of the disc in other sources may offer a further means of identifying additional neutron star ULXs. Finally, we examine the spectrum exhibited by P13 during one of its unusual 'off' states. These data require both a hard power-law component, suggesting residual accretion on to the neutron star, and emission from a thermal plasma, which we argue is likely associated with the P13 system.

  10. Stability of black hole accretion disks

    Directory of Open Access Journals (Sweden)

    Czerny B.

    2012-12-01

    Full Text Available We discuss the issues of stability of accretion disks that may undergo the limit-cycle oscillations due to the two main types of thermal-viscous instabilities. These are induced either by the domination of radiation pressure in the innermost regions close to the central black hole, or by the partial ionization of hydrogen in the zone of appropriate temperatures. These physical processes may lead to the intermittent activity in AGN on timescales between hundreds and millions of years. We list a number of observational facts that support the idea of the cyclic activity in high accretion rate sources. We conclude however that the observed features of quasars may provide only indirect signatures of the underlying instabilities. Also, the support from the sources with stellar mass black holes, whose variability timescales are observationally feasible, is limited to a few cases of the microquasars. Therefore we consider a number of plausible mechanisms of stabilization of the limit cycle oscillations in high accretion rate accretion disks. The newly found is the stabilizing effect of the stochastic viscosity fluctuations.

  11. Observations of Herbig Ae/Be Stars with Herschel/PACS: The Atomic and Molecular Contents of Their Protoplanetary Discs

    Science.gov (United States)

    Meeus, G.; Montesinos, B.; Mendigutia, I.; Kamp, I.; Thi, W. F.; Eiroa, C.; Grady, C. A.; Mathews, G.; Sandell, G.; Martin-Zaidi, C.; hide

    2012-01-01

    We observed a sample of 20 representative Herbig Ae/Be stars and 5 A-type debris discs with PACS onboard Herschel, as part of the GAS in Protoplanetary Systems (GASPS) project. The observations were done in spectroscopic mode, and cover the far-infrared lines of [OI], [CII], CO, CH+, H20, and OH. We have a [OI]63 micro/ detection rate of 100% for the Herbig Ae/Be and 0% for the debris discs. The [OI] 145 micron line is only detected in 25% and CO J = 18-17 in 45% (and fewer cases for higher J transitions) of the Herbig Ae/Be stars, while for [CII] 157 micron, we often find spatially variable background contamination. We show the first detection of water in a Herbig Ae disc, HD 163296, which has a settled disc. Hydroxyl is detected as well in this disc. First seen in HD 100546, CH+ emission is now detected for the second time in a Herbig Ae star, HD 97048. We report fluxes for each line and use the observations as line diagnostics of the gas properties. Furthermore, we look for correlations between the strength of the emission lines and either the stellar or disc parameters, such as stellar luminosity, ultraviolet and X-ray flux. accretion rate, polycyclic aromatic hydrocarbon (PAH) band strength, and flaring. We find that the stellar ultraviolet flux is the dominant excitation mechanism of [OI] 63 micron, with the highest line fluxes being found in objects with a large amount of flaring and among the largest PAH strengths. Neither the amount of accretion nor the X-ray luminosity has an influence on the line strength. We find correlations between the line flux of [OI]63 micron and [OI] 145 micron, CO J = IS-17 and [OI] 6300 A, and between the continuum flux at 63 micron and at 1.3 mm, while we find weak correlations between the line flux. of [OI] 63 micron and the PAH luminosity, the line flux of CO J = 3-2, the continuum flux at 63 pm, the stellar effective temperature, and the Br-gamma luminosity. Finally, we use a combination of the [OI] 63 micron and C(12)O J

  12. Black hole spin dependence of general relativistic multi-transonic accretion close to the horizon

    Czech Academy of Sciences Publication Activity Database

    Das, T. K.; Nag, S.; Hedge, S.; Bhattacharya, S.; Maity, I.; Czerny, B.; Barai, P.; Wiita, P. J.; Karas, Vladimír; Naskar, T.

    2015-01-01

    Roč. 37, May (2015), s. 81-104 ISSN 1384-1076 R&D Projects: GA ČR(CZ) GC13-00070J Institutional support: RVO:67985815 Keywords : black hole s * accretion discs Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.085, year: 2015

  13. The creation and persistence of a misaligned gas disc in a simulated early-type galaxy

    Science.gov (United States)

    van de Voort, Freeke; Davis, Timothy A.; Kereš, Dušan; Quataert, Eliot; Faucher-Giguère, Claude-André; Hopkins, Philip F.

    2015-08-01

    Massive early-type galaxies (ETGs) commonly have gas discs which are kinematically misaligned with the stellar component. These discs feel a torque from the stars and the angular momentum vectors are expected to align quickly. We present results on the evolution of a misaligned gas disc in a cosmological simulation of a massive ETG from the feedback in realistic environments project. This galaxy experiences a merger which, together with a strong galactic wind, removes most of the original gas disc. The galaxy subsequently reforms a gas disc through accretion of cold gas, but it is initially 120° misaligned with the stellar rotation axis. This misalignment persists for about 2 Gyr before the gas-star misalignment angle drops below 20°. The time it takes for the gaseous and stellar components to align is much longer than previously thought, because the gas disc is accreting a significant amount of mass for about 1.5 Gyr after the merger, during which the angular momentum change induced by accreted gas dominates over that induced by stellar torques. Once the gas accretion rate has decreased sufficiently, the gas disc decouples from the surrounding halo gas and realigns with the stellar component in about six dynamical times. During the late evolution of the misaligned gas disc, the centre aligns faster than the outskirts, resulting in a warped disc. We discuss the observational consequences of the long survival of our misaligned gas disc and how our results can be used to calibrate merger rate estimates from observed gas misalignments.

  14. Local models of astrophysical discs

    Science.gov (United States)

    Latter, Henrik N.; Papaloizou, John

    2017-12-01

    Local models of gaseous accretion discs have been successfully employed for decades to describe an assortment of small-scale phenomena, from instabilities and turbulence, to dust dynamics and planet formation. For the most part, they have been derived in a physically motivated but essentially ad hoc fashion, with some of the mathematical assumptions never made explicit nor checked for consistency. This approach is susceptible to error, and it is easy to derive local models that support spurious instabilities or fail to conserve key quantities. In this paper we present rigorous derivations, based on an asympototic ordering, and formulate a hierarchy of local models (incompressible, Boussinesq and compressible), making clear which is best suited for a particular flow or phenomenon, while spelling out explicitly the assumptions and approximations of each. We also discuss the merits of the anelastic approximation, emphasizing that anelastic systems struggle to conserve energy unless strong restrictions are imposed on the flow. The problems encountered by the anelastic approximation are exacerbated by the disc's differential rotation, but also attend non-rotating systems such as stellar interiors. We conclude with a defence of local models and their continued utility in astrophysical research.

  15. A search for passive protoplanetary discs in the Taurus-Auriga star-forming region

    Science.gov (United States)

    Duchêne, Gaspard; Becker, Adam; Yang, Yizhe; Bouy, Hervé; De Rosa, Robert J.; Patience, Jennifer; Girard, Julien H.

    2017-08-01

    We conducted a 12-month monitoring campaign of 33 T Tauri stars (TTS) in Taurus. Our goal was to monitor objects that possess a disc but have a weak H α line, a common accretion tracer for young stars, in order to determine whether they host a passive circumstellar disc. We used medium-resolution optical spectroscopy to assess the accretion status of the objects and to measure the H α line. We found no convincing examples of passive discs: only transition disc and debris disc systems in our sample are non-accreting. Among accretors, we found no example of flickering accretion, leading to an upper limit of 2.2 per cent on the duty cycle of accretion gaps, assuming that all accreting TTS experience such events. When combining literature results with our observations, we found that the reliability of traditional H α-based criteria to test for accretion is high but imperfect, particularly for low-mass TTS. We found a significant correlation between stellar mass and the full width at 10 per cent of the peak (W10) of the H α line that does not seem to be related to variations in free-fall velocity. Finally, our data revealed a positive correlation between the H α equivalent width and its W10, indicative of a systematic modulation in the line profile whereby the high-velocity wings of the line are proportionally more enhanced than its core when the line luminosity increases. We argue that this supports the hypothesis that the mass accretion rate on the central star is correlated with the H α W10 through a common physical mechanism.

  16. RADIATIVELY EFFICIENT MAGNETIZED BONDI ACCRETION

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Andrew J.; Klein, Richard I. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); McKee, Christopher F. [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720 (United States); Krumholz, Mark R. [Department of Astronomy and Astrophysics, University of California Santa Cruz, Santa Cruz, CA 94560 (United States); Teyssier, Romain, E-mail: ajcunn@gmail.com [Service d' Astrophysique, CEA Saclay, 91191 Gif-sur-Yvette (France)

    2012-01-10

    We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion from a uniform, isothermal gas onto a resistive, stationary point mass. Only mass, not magnetic flux, accretes onto the point mass. The simulations for this study avoid complications arising from boundary conditions by keeping the boundaries far from the accreting object. Our simulations leverage adaptive refinement methodology to attain high spatial fidelity close to the accreting object. Our results are particularly relevant to the problem of star formation from a magnetized molecular cloud in which thermal energy is radiated away on timescales much shorter than the dynamical timescale. Contrary to the adiabatic case, our simulations show convergence toward a finite accretion rate in the limit in which the radius of the accreting object vanishes, regardless of magnetic field strength. For very weak magnetic fields, the accretion rate first approaches the Bondi value and then drops by a factor of {approx}2 as magnetic flux builds up near the point mass. For strong magnetic fields, the steady-state accretion rate is reduced by a factor of {approx}0.2 {beta}{sup 1/2} compared to the Bondi value, where {beta} is the ratio of the gas pressure to the magnetic pressure. We give a simple expression for the accretion rate as a function of the magnetic field strength. Approximate analytic results are given in the Appendices for both time-dependent accretion in the limit of weak magnetic fields and steady-state accretion for the case of strong magnetic fields.

  17. Investigation of the coatings applied onto brake discs on disc-brake pad pair

    Directory of Open Access Journals (Sweden)

    I. Kiliçaslan

    2009-07-01

    Full Text Available While braking, according to the severity of it, thermal, metallurgical, constructive and tribological occurrences emerge on the brake disc-pad interface. In this study, NiCr was sprayed as bonding layer onto the discs, one ofwhich was coated with Al2O3-TiO2 by plasma spray and the other was coated with NiCr-Cr3C2 by High Velocity Oxygen Fuel (HVOF. In addition, the discs were tested with inertia dynamometer according to SAE’s J2522 testing procedure. The measurements showed that although the pads of the coated discs were exposed to higher braking temperatures, friction coefficient of the disc coated with NiCr- Cr3C2 was obtained 6 % higher compared to the original disc.

  18. Stellar explosions from accreting white dwarfs

    Science.gov (United States)

    Moore, Kevin L.

    Unstable thermonuclear burning on accreting white dwarfs (WDs) can lead to a wide variety of outcomes, and induce shock waves in several contexts. In classical and recurrent novae, a WD accreting hydrogen-rich material from a binary companion can experience thermonuclear runaways, ejecting mass into the interstellar/circumbinary environment at ~1000 km/s. This highly supersonic ejecta drives shock waves into the interstellar gas which may be relevant for sweeping out gas from globular clusters or forming circumstellar absorption regions in interacting supernovae. While runaway nuclear burning in novae releases enough energy for these objects to brighten by a factor of ~10 4 over roughly a weeklong outburst, it does not become dynamically unstable. In contrast, certain helium accretion scenarios may allow for dynamical burning modes, in part due to the higher temperature sensitivity of helium burning reactions and larger accreted envelopes. The majority of this thesis involves such dynamical burning modes, specifically detonations - shock waves sustained by nuclear energy release behind the shock front. We investigate when steady-state detonations are realizable in accreted helium layers on WDs, and model their strength and burning products using both semi-analytic and numerical models. We find the minimum helium layer thickness that will sustain a steady laterally propagating detonation and show that it depends on the density and composition of the helium layer, specifically 12 C and 16O. Though gravitationally unbound, the ashes still have unburned helium (~80% in the thinnest cases) and only reach up to heavy elements such as 40Ca, 44Ti, 48Cr, and 52Fe. It is rare for these thin shells to generate large amounts of radioactive isotopes necessary to power light curves, such as 56Ni. This has important implications on whether the unbound helium burning ashes may create faint and fast peculiar supernovae or events with virtually no radioactivity, as well as on off

  19. Protostellar accretion traced with chemistry

    DEFF Research Database (Denmark)

    Frimann, Søren; Jørgensen, Jes Kristian; Padoan, Paolo

    2016-01-01

    Context. Understanding how protostars accrete their mass is a centralquestion of star formation. One aspect of this is trying to understandwhether the time evolution of accretion rates in deeply embedded objectsis best characterised by a smooth decline from early to late stages orby intermittent...

  20. Radially truncated galactic discs

    NARCIS (Netherlands)

    de Grijs, R; Kregel, M; Wesson, KH

    2001-01-01

    We present the first results of a systematic analysis of radially truncated exponential discs for four galaxies of a complete sample of disc-dominated edge-on spiral galaxies. The discs of our sample galaxies are truncated at similar radii on either side of their centres. With the possible exception

  1. Radially truncated galactic discs

    NARCIS (Netherlands)

    Grijs, R. de; Kregel, M.; Wesson, K H

    2000-01-01

    Abstract: We present the first results of a systematic analysis of radially truncatedexponential discs for four galaxies of a sample of disc-dominated edge-onspiral galaxies. Edge-on galaxies are very useful for the study of truncatedgalactic discs, since we can follow their light distributions out

  2. Circumbinary discs from tidal disruption events

    Science.gov (United States)

    Coughlin, Eric R.; Armitage, Philip J.

    2017-10-01

    Tidal disruption events, which occur when a star is shredded by the tidal field of a supermassive black hole (SMBH), provide a means of fuelling black hole accretion. Here we show, using a combination of three-body orbit integrations and hydrodynamic simulations, that these events are also capable of generating circumbinary rings of gas around tight SMBH binaries with small mass ratios. Depending on the thermodynamics, these rings can either fragment into clumps that orbit the binary, or evolve into a gaseous circumbinary disc. We argue that tidal disruptions provide a direct means of generating circumbinary discs around SMBH binaries and, more generally, can replenish the reservoir of gas on very small scales in galactic nuclei.

  3. Shocks in the relativistic transonic accretion with low angular momentum

    Science.gov (United States)

    Suková, P.; Charzyński, S.; Janiuk, A.

    2017-12-01

    We perform 1D/2D/3D relativistic hydrodynamical simulations of accretion flows with low angular momentum, filling the gap between spherically symmetric Bondi accretion and disc-like accretion flows. Scenarios with different directional distributions of angular momentum of falling matter and varying values of key parameters such as spin of central black hole, energy and angular momentum of matter are considered. In some of the scenarios the shock front is formed. We identify ranges of parameters for which the shock after formation moves towards or outwards the central black hole or the long-lasting oscillating shock is observed. The frequencies of oscillations of shock positions which can cause flaring in mass accretion rate are extracted. The results are scalable with mass of central black hole and can be compared to the quasi-periodic oscillations of selected microquasars (such as GRS 1915+105, XTE J1550-564 or IGR J17091-3624), as well as to the supermassive black holes in the centres of weakly active galaxies, such as Sgr A*.

  4. The AMBRE project: chemical evolution models for the Milky Way thick and thin discs

    Science.gov (United States)

    Grisoni, V.; Spitoni, E.; Matteucci, F.; Recio-Blanco, A.; de Laverny, P.; Hayden, M.; Mikolaitis, Ŝ.; Worley, C. C.

    2017-12-01

    We study the chemical evolution of the thick and thin discs of the Galaxy by comparing detailed chemical evolution models with recent data from the Archéologie avec Matisse Basée sur les aRchives de l'ESO project. The data suggest that the stars in the thick and thin discs form two distinct sequences with the thick disc stars showing higher [α/Fe] ratios. We adopt two different approaches to model the evolution of thick and thin discs. In particular, we adopt (i) a two-infall approach where the thick disc forms fast and before the thin disc and by means of a fast gas accretion episode, whereas the thin disc forms by means of a second accretion episode on a longer time-scale; (ii) a parallel approach, where the two discs form in parallel but at different rates. By comparing our model results with the observed [Mg/Fe] versus [Fe/H] and the metallicity distribution functions in the two Galactic components, we conclude that the parallel approach can account for a group of α-enhanced metal-rich stars present in the data, whereas the two-infall approach cannot explain these stars unless they are the result of stellar migration. In both approaches, the thick disc has formed on a time-scale of accretion of 0.1 Gyr, whereas the thin disc formed on a time-scale of 7 Gyr in the solar region. In the two-infall approach, a gap in star formation between the thick and thin disc formation of several hundreds of Myr should be present, at variance with the parallel approach where no gap is present.

  5. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion

    DEFF Research Database (Denmark)

    Johansen, Anders; Mac Low, Mordecai-Mark; Lacerda, Pedro

    2015-01-01

    Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth...... of asteroids can result from gas drag–assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars’s size along with smaller asteroids whose size distribution matches...... that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25...

  6. Thermal analysis on motorcycle disc brake geometry

    Science.gov (United States)

    W. M. Zurin W., S.; Talib, R. J.; Ismail, N. I.

    2017-08-01

    Braking is a phase of slowing and stop the movement of motorcycle. During braking, the frictional heat was generated and the energy was ideally should be faster dissipated to surrounding to prevent the built up of the excessive temperature which may lead to brake fluid vaporization, thermoelastic deformation at the contact surface, material degradation and failure. In this paper, solid and ventilated type of motorcycle disc brake are being analyse using Computational Fluid Dynamic (CFD) software. The main focus of the analysis is the thermal behaviour during braking for solid and ventilated disc brake. A comparison between both geometries is being discussed to determine the better braking performance in term of temperature distribution. It is found that ventilated disc brake is having better braking performance in terms of heat transfer compare to solid disc.

  7. Protostellar accretion traced with chemistry

    DEFF Research Database (Denmark)

    Frimann, Søren; Jørgensen, Jes Kristian; Dunham, Michael M.

    2017-01-01

    Context. Understanding how accretion proceeds is a key question of star formation, with important implications for both the physical and chemical evolution of young stellar objects. In particular, very little is known about the accretion variability in the earliest stages of star formation. Aims....... Our aim is to characterise protostellar accretion histories towards individual sources by utilising sublimation and freeze-out chemistry of CO. Methods. A sample of 24 embedded protostars are observed with the Submillimeter Array (SMA) in context of the large program "Mass Assembly of Stellar Systems...

  8. Understanding X-ray Reflection as a Probe of Accreting Black Holes

    Science.gov (United States)

    Wilkins, Dan

    2014-01-01

    Active galactic nuclei (AGN) are some of the most luminous objects we see in the Universe, powered by the accretion of matter onto a supermassive black hole in the centre of a galaxy, yet many of the physical processes by which the energy is released and injected into the surroundings remain a mystery. X-rays are emitted from a ‘corona’ of energetic particles surrounding the black hole and as well as being observed directly, they are seen to be reflected from the accreting disc, producing a number of spectral features including emission lines that are broadened by relativistic effects in the proximity of the black hole. In my thesis, I develop methods through which detailed measurement of the reflected X-rays from the accretion disc can be used to probe the innermost regions of accretion flow and corona, right down to the innermost stable orbit and the event horizon. Novel spectral analysis techniques allow us to reconstruct, from the observed relativistic X-ray reflection spectrum the spatially resolved illumination pattern of the accretion disc and will discuss how comparing this to the results of systematic general relativistic ray tracing simulations I have developed, we are able to constrain the location and geometry of the X-ray emitting corona and understand the dramatic change of the narrow line Seyfert 1 galaxy 1H 0707-495 into an extremely low flux state in terms of a collapse in the corona. I will discuss how measurements of the X-ray variability, specifically the reverberation time lags that are observed between variability in the directly observed X-rays from the corona and those reflected from the accretion disc add a further dimension to the study of accreting black holes, letting us not only build up a three dimensional image of the immediate vicinity of the black hole but also to probe mechanisms by which the energy is released from the accretion flow; techniques that will let us exploit not just current instrumentation but future proposed X

  9. Inner disc rearrangement revealed by dramatic brightness variations in the young star PV Cep

    Science.gov (United States)

    Kun, M.; Szegedi-Elek, E.; Moór, A.; Kóspál, Á.; Ábrahám, P.; Apai, D.; Kiss, Z. T.; Klagyivik, P.; Magakian, T. Yu.; Mező, Gy.; Movsessian, T. A.; Pál, A.; Rácz, M.; Rogers, J.

    2011-06-01

    Young Sun-like stars at the beginning of the pre-main-sequence (PMS) evolution are surrounded by accretion discs and remnant protostellar envelopes. Photometric and spectroscopic variations of these stars are driven by interactions of the star with the disc. Time-scales and wavelength dependence of the variability carry information on the physical mechanisms behind these interactions. We conducted multi-epoch, multiwavelength study of PV Cep, a strongly variable, accreting PMS star. By combining our own observations from 2004 to 2010 with archival and literature data, we show that PV Cep started a spectacular fading in 2005, reaching an IC-band amplitude of 4 mag. Analysis of variation of the optical and infrared fluxes, colour indices and emission line fluxes suggests that the photometric decline in 2005-2009 resulted from an interplay between variable accretion and circumstellar extinction: since the central luminosity of the system is dominated by accretion, a modest drop in the accretion rate could induce the drastic restructuring of the inner disc. Dust condensation in the inner disc region might have resulted in the enhancement of the circumstellar extinction.

  10. Stability of radiation-pressure-dominated magnetized discs under a delayed viscosity prescription

    Science.gov (United States)

    Khosravi, A.; Khesali, A. R.

    2017-12-01

    In this paper, the stability of radiation-pressure-dominated accretion discs in the presence of magnetic field and the time delay between the stress and the pressure were investigated. The response of magnetic field to perturbation of height was considered as Bφ1/Bφ = -mH1/H. According to Ciesielski et al. (2012), for the delay larger than a critical value (e.g. if Ωτ radiation-pressure accretion discs. In this paper, the problem has been reviewed in the presence of a magnetic field again. Results showed that the presence of a magnetic field would decrease critical values of time delay to make the system stable. The results could also improve if radiation-pressure-dominated discs were stable at the critical value Ωτ radiation-pressure-dominated discs. However, if magnetic pressure dominated in the system, the stability of the system would decrease again.

  11. The Magnetospheres of (Accreting Neutron Stars

    Directory of Open Access Journals (Sweden)

    Wilms J.

    2014-01-01

    Full Text Available I give an overview of the most important observational tools to study the magnetospheres of accreting neutron stars, with a focus on accreting neutron stars in high mass X-ray binary systems. Topics covered are the different types of accretion onto neutron stars and the structure of the accretion column, and how models for these can be tested with observations.

  12. A highly dynamical debris disc in an evolved planetary system

    Science.gov (United States)

    Manser, Christopher

    2017-08-01

    Our HST/COS survey for the photospheric pollution by planetary debris undisputably demonstrates that at least 25% of white dwarfs host an evolved planetary system. The debris discs holding the material that accretes onto the white dwarf are produced by the tidal disruption of asteroids, and are observed in nearly 40 systems by infrared excess emission from micron-sized dust. In a small number of cases, we have also detected double-peaked Ca II 860 nm emission lines from a metal-rich gaseous disc in addition to photospheric pollution and circumstellar dust. Our ground-based monitoring of the brightest of these systems, SDSS J1228+1040, over the last eleven years shows a dramatic morphological change in the emission line profiles on the time-scale of years. The evolution of the line profiles is consistent with the precession of an eccentric disc on a period of 25 years, indicating a recent dynamical interaction within the underlying dust disc. This could either be related to the initial circularisation of the disc, or a secondary impact onto an existing disc. We expect that the accretion rate onto the white dwarf varies on the same timescale as the Ca II emission lines, and there is the tantalising possibility to detect changes in the bulk abundances, if the impact of a planetesimal with a different bulk abundance stirred up the disc. We request a small amount of COS time to monitor the debris abundances over the next three HST Cycles to test this hypothesis, and bolster our understanding of the late evolution of planetary systems.

  13. [Temperature storage ability and radiation ability of rotating anodes in high-performance roentgen tubes].

    Science.gov (United States)

    Schreiber, P

    1983-09-01

    In long time or serial operation metal anode discs with blackened layer can be loaded much higher than graphite anode discs, because the distance between thermal source and temperature sensitive spot in metal discs is larger than in graphite discs and the maximum permissible temperature for metal discs is much higher than that for graphite discs.

  14. Artificial Disc Replacement

    Science.gov (United States)

    ... Artificial discs are usually made of metal or plastic-like (biopolymer) materials, or a combination of the two. These materials have been used in the body for many years. Total disc replacements have been used in Europe since the late 1980s. The most commonly used ...

  15. Intratracheal Seal Disc

    DEFF Research Database (Denmark)

    Christiansen, Karen J; Moeslund, Niels; Lauridsen, Henrik

    2017-01-01

    21, CT was repeated before euthanasia. The trachea and epidermis were excised en bloc for histopathological evaluation. RESULTS: Insertion and correct placement of the disc was unproblematic in all animals. CT at day 14 confirmed a clear airway, appropriate placement of the disc, and full closure...

  16. Predictions for the reverberating spectral line signal from a newly formed black hole accretion disk: case of tidal disruption flares

    Czech Academy of Sciences Publication Activity Database

    Zhang, W.; Yu, W.; Karas, Vladimír; Dovčiak, Michal

    2015-01-01

    Roč. 807, č. 89 (2015), s. 1-12 ISSN 0004-637X R&D Projects: GA MŠk(CZ) LH14049; GA ČR(CZ) GC13-00070J Institutional support: RVO:67985815 Keywords : black hole s * accretion discs Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.909, year: 2015

  17. Periodic self-lensing from accreting massive black hole binaries

    Science.gov (United States)

    D'Orazio, Daniel J.; Di Stefano, Rosanne

    2018-03-01

    Nearly 150 massive black hole binary (MBHB) candidates at sub-pc orbital separations have been reported in recent literature. Nevertheless, the definitive detection of even a single such object remains elusive. If at least one of the black holes is accreting, the light emitted from its accretion disc will be lensed by the other black hole for binary orbital inclinations near to the line of sight. This binary self-lensing could provide a unique signature of compact MBHB systems. We show that, for MBHBs with masses in the range 106-1010 M⊙ and with orbital periods less than ˜10 yr, strong lensing events should occur in one to 10s of per cent of MBHB systems that are monitored for an entire orbit. Lensing events will last from days for the less massive, shorter period MBHBs to a year for the most massive ˜10 year orbital period MBHBs. At small inclinations of the binary orbit to the line of sight, lensing must occur and will be accompanied by periodicity due to the relativistic Doppler boost. Flares at the same phase as the otherwise average flux of the Doppler modulation would be a smoking gun signature of self-lensing and can be used to constrain binary parameters. For MBHBs with separation ≳100 Schwarzschild radii, we show that finite-sized source effects could serve as a probe of MBH accretion disc structure. Finally, we stress that our lensing probability estimate implies that ˜10 of the known MBHB candidates identified through quasar periodicity should exhibit strong lensing flares.

  18. Accreted oceanic materials in Japan

    Science.gov (United States)

    Isozaki, Y.; Maruyama, S.; Furuoka, F.

    1990-09-01

    The Phanerozoic circum-Pacific orogenic belts contain numerous ocean-derived materials accreted through plate converging processes. Japanese Islands, in particular, display various kinds of oceanic materials of different origins including fragments of seamounts, oceanic reef limestone, MORB-like rocks and oceanic mantle, and pelagic sediments. The compilation of these rocks in many subduction complexes of Late Permian to the present, led to following conclusions. Accretion processes work effectively only for materials primarily composing the upper portion of subducting oceanic crust, i.e. Layer 1 and Layer 2. Many fragments of seamount with alkali basalt (600), hot-spot seamount (26), oceanic reef limestone (291), MORB-like basalt (200), and numerous cherts (more than 1000) are recognized as ancient oceanic materials accreted to the Japanese Islands. However, gabbros and mantle materials of Layer 3 and lower parts of the oceanic lithosphere, scarcely occur in subduction-accretion complexes except for a few examples of back-arc basin or fore-arc origin. Accretion occurs episodically. In Southwest Japan, oceanic materials were accreted intermittently in (a) end-Permian, (b) Middle-Late Jurassic, (c) Late Cretaceous times, (d) at ca. 50 Ma, and (e) in Miocene times, while in Northeast Japan and Hokkaido this occurred in (b) Middle-Late Jurassic, (c) Late Cretaceous, and (f) Early Cretaceous times. In contrast to the general belief on accretion of younger oceanic plates, the majority of Japanese subduction-accretion complexes were formed during the subduction of plates, up to 160 Ma old. The accretionary events in end-Permian and Middle-Late Jurassic times coincide with northward collision of ancient island arcs, oceanic rises or seamount chains (of hot-spot origin) with the Asian continent. Accretion relevant to subduction of older plates may be controlled by the collision-subduction process of these topographic reliefs on an oceanic plate. In addition, the

  19. Ice accretion simulations on airfoils

    Science.gov (United States)

    Özgen, S.; Uğur, N.; Görgülü, I.; Tatar, V.

    2017-06-01

    Ice shape predictions for a NACA0012 airfoil and collection efficiency predictions for the Twin Otter airfoil are obtained and presented. The results are validated with reference numerical and experimental data. Ice accretion modeling mainly consists of four steps: flow field solution; droplet trajectory calculations; thermodynamic analyses; and ice accretion simulation with the Extended Messinger Model. The models are implemented in a FORTRAN code to perform icing analyses for twodimensional (2D) geometries. The results are in good agreement with experimental and numerical reference data. It is deduced that increasing computational layers in calculations improves the ice shape predictions. The results indicate that collection efficiencies and impingement zone increase with increasing droplet diameter.

  20. Timing the accretion flow around accreting millisecond pulsars

    NARCIS (Netherlands)

    Linares, M.

    2008-01-01

    At present, ten years after they were first discovered, ten accreting millisecond pulsars are known. I present a study of the aperiodic X-ray variability in three of these systems, which led to the discovery of simultaneous kHz quasi periodic oscillations in XTE J1807—294 and extremely strong

  1. Analyzing the Spectra of Accreting X-Ray Pulsars

    Science.gov (United States)

    Wolff, Michael

    This proposal seeks funding for the analysis of accretion-powered X-ray pulsar spectra from NASA/ HEASARC archived X-ray data. Spectral modeling of accreting X-ray pulsars can tell us a great deal about the physical conditions in and near high mass X-ray binary systems. Such systems have accretion flows where plasma is initially channeled from an accretion disk by the strong neutron star magnetic field, eventually falling onto the magnetic polar cap of the neutron star compact object. Many of these accreting X-ray pulsars have X-ray spectra that consist of broad power-law continua with superposed cyclotron resonant scattering features indicating magnetic field strengths above 10^12 G. The energies of these cyclotron line features have recently been shown to vary with X-ray luminosity in a number of sources such as Her X-1 and V 0332+53, a phenomenon not well understood. Another recent development is the relatively new analytic model for the spectral continuum formation in accretion-powered pulsar systems developed by Becker & Wolff. In their formalism the accretion flows are assumed to go through radiation- dominated radiative shocks and settle onto the neutron star surface. The radiation field consists of strongly Comptonized bremsstrahlung emission from the entire plasma, Comptonized cyclotron emission from the de-excitations of Landau-excited electrons in the neutron star magnetic field, and Comptonized black-body emission from a thermal mound near the neutron star surface. We seek to develop the data analysis tools to apply this model framework to the X-ray data from a wide set of sources to make progress characterizing the basic accretion properties (e.g., magnetic field strength, plasma temperatures, polar cap size, accretion rate per unit area, dominance of bulk vs. thermal Comptonization) as well as understanding the variations of the cyclotron line energies with X-ray luminosity. The three major goals of our proposed work are as follows: In the first year

  2. Line-driven ablation of circumstellar discs - I. Optically thin decretion discs of classical Oe/Be stars.

    Science.gov (United States)

    Kee, Nathaniel Dylan; Owocki, Stanley; Sundqvist, J O

    2016-05-21

    discussion of future extensions to study line-driven ablation of denser, optically thick, accretion discs of pre-main-sequence massive stars.

  3. Fundamental Ice Crystal Accretion Physics Studies

    Science.gov (United States)

    Struk, Peter M.; Broeren, Andy P.; Tsao, Jen-Ching; Vargas, Mario; Wright, William B.; Currie, Tom; Knezevici, Danny; Fuleki, Dan

    2012-01-01

    Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations. Icing tests were performed at Mach numbers of 0.2 to 0.3, total pressures from 93 to 45 kPa, and total temperatures from 5 to 15 C. Ice and liquid water contents ranged up to 20 and 3 g/m3, respectively. The ice appeared well adhered to the surface in the lowest pressure tests (45 kPa) and, in a particular case, showed continuous leading-edge ice growth to a thickness greater than 15 mm in 3 min. Such widespread deposits were not observed in the highest pressure tests, where the accretions were limited to a small area around the leading edge. The suction surface was typically ice-free in the tests at high pressure, but not at low pressure. The icing behavior at high and low pressure appeared to be correlated with the wet-bulb temperature, which was estimated to be above 0 C in tests at 93 kPa and below 0 C in tests at lower pressure, the latter enhanced by more evaporative cooling of water. The authors believe that the large ice accretions observed in the low pressure tests would undoubtedly cause the aerodynamic performance of a compressor component

  4. Swings between rotation and accretion power in a binary millisecond pulsar.

    Science.gov (United States)

    Papitto, A; Ferrigno, C; Bozzo, E; Rea, N; Pavan, L; Burderi, L; Burgay, M; Campana, S; Di Salvo, T; Falanga, M; Filipović, M D; Freire, P C C; Hessels, J W T; Possenti, A; Ransom, S M; Riggio, A; Romano, P; Sarkissian, J M; Stairs, I H; Stella, L; Torres, D F; Wieringa, M H; Wong, G F

    2013-09-26

    It is thought that neutron stars in low-mass binary systems can accrete matter and angular momentum from the companion star and be spun-up to millisecond rotational periods. During the accretion stage, the system is called a low-mass X-ray binary, and bright X-ray emission is observed. When the rate of mass transfer decreases in the later evolutionary stages, these binaries host a radio millisecond pulsar whose emission is powered by the neutron star's rotating magnetic field. This evolutionary model is supported by the detection of millisecond X-ray pulsations from several accreting neutron stars and also by the evidence for a past accretion disc in a rotation-powered millisecond pulsar. It has been proposed that a rotation-powered pulsar may temporarily switch on during periods of low mass inflow in some such systems. Only indirect evidence for this transition has hitherto been observed. Here we report observations of accretion-powered, millisecond X-ray pulsations from a neutron star previously seen as a rotation-powered radio pulsar. Within a few days after a month-long X-ray outburst, radio pulses were again detected. This not only shows the evolutionary link between accretion and rotation-powered millisecond pulsars, but also that some systems can swing between the two states on very short timescales.

  5. Swings between rotation and accretion power in a binary millisecond pulsar

    Science.gov (United States)

    Papitto, A.; Ferrigno, C.; Bozzo, E.; Rea, N.; Pavan, L.; Burderi, L.; Burgay, M.; Campana, S.; di Salvo, T.; Falanga, M.; Filipović, M. D.; Freire, P. C. C.; Hessels, J. W. T.; Possenti, A.; Ransom, S. M.; Riggio, A.; Romano, P.; Sarkissian, J. M.; Stairs, I. H.; Stella, L.; Torres, D. F.; Wieringa, M. H.; Wong, G. F.

    2013-09-01

    It is thought that neutron stars in low-mass binary systems can accrete matter and angular momentum from the companion star and be spun-up to millisecond rotational periods. During the accretion stage, the system is called a low-mass X-ray binary, and bright X-ray emission is observed. When the rate of mass transfer decreases in the later evolutionary stages, these binaries host a radio millisecond pulsar whose emission is powered by the neutron star's rotating magnetic field. This evolutionary model is supported by the detection of millisecond X-ray pulsations from several accreting neutron stars and also by the evidence for a past accretion disc in a rotation-powered millisecond pulsar. It has been proposed that a rotation-powered pulsar may temporarily switch on during periods of low mass inflow in some such systems. Only indirect evidence for this transition has hitherto been observed. Here we report observations of accretion-powered, millisecond X-ray pulsations from a neutron star previously seen as a rotation-powered radio pulsar. Within a few days after a month-long X-ray outburst, radio pulses were again detected. This not only shows the evolutionary link between accretion and rotation-powered millisecond pulsars, but also that some systems can swing between the two states on very short timescales.

  6. Accretion-induced variability links young stellar objects, white dwarfs, and black holes.

    Science.gov (United States)

    Scaringi, Simone; Maccarone, Thomas J; Körding, Elmar; Knigge, Christian; Vaughan, Simon; Marsh, Thomas R; Aranzana, Ester; Dhillon, Vikram S; Barros, Susana C C

    2015-10-01

    The central engines of disc-accreting stellar-mass black holes appear to be scaled down versions of the supermassive black holes that power active galactic nuclei. However, if the physics of accretion is universal, it should also be possible to extend this scaling to other types of accreting systems, irrespective of accretor mass, size, or type. We examine new observations, obtained with Kepler/K2 and ULTRACAM, regarding accreting white dwarfs and young stellar objects. Every object in the sample displays the same linear correlation between the brightness of the source and its amplitude of variability (rms-flux relation) and obeys the same quantitative scaling relation as stellar-mass black holes and active galactic nuclei. We also show that the most important parameter in this scaling relation is the physical size of the accreting object. This establishes the universality of accretion physics from proto-stars still in the star-forming process to the supermassive black holes at the centers of galaxies.

  7. Thermal analysis of disc brakes using finite element method

    Science.gov (United States)

    Jaenudin, Jamari, J.; Tauviqirrahman, M.

    2017-01-01

    Disc brakes are components of a vehicle that serve to slow or stop the rotation of the wheel. This paper discusses the phenomenon of heat distribution on the brake disc during braking. Heat distribution on the brake disc is caused by kinetic energy changing into mechanical energy. Energy changes occur during the braking process due to friction between the surface of the disc and a disc pad. The temperature resulting from this friction rises high. This thermal analysis on brake discs is aimed to evaluate the performance of an electric car in the braking process. The aim of this study is to analyze the thermal behavior of the brake discs using the Finite Element Method (FEM) through examining the heat distribution on the brake disc using 3-D modeling. Results obtained from the FEM reflect the effects of high heat due to the friction between the disc pad with the disc rotor. Results of the simulation study are used to identify the effect of the heat distribution that occurred during the braking process.

  8. Through thick and thin : Structure of the Galactic thick disc from extragalactic surveys

    NARCIS (Netherlands)

    Kordopatis, G.; Hill, V.; Irwin, M.; Gilmore, G.; Wyse, R. F. G.; Tolstoy, E.; de Laverny, P.; Recio-Blanco, A.; Battaglia, G.; Starkenburg, E.

    Context. We aim to understand the accretion history of the Milky Way by exploring the vertical and radial properties of the Galactic thick disc. Aims. We study the chemical and kinematic properties of roughly a thousand spectra of faint magnitude foreground Galactic stars observed serendipitously

  9. First results from the use of the relativistic and slim disc model SLIMULX in XSPEC

    Czech Academy of Sciences Publication Activity Database

    Caballero-García, María Dolores; Bursa, Michal; Dovčiak, Michal; Fabrika, S.; Castro-Tirado, A.J.; Karas, Vladimír

    2017-01-01

    Roč. 47, č. 2 (2017), s. 84-93 ISSN 1335-1842 EU Projects: European Commission(XE) 312789 - STRONGGRAVITY Institutional support: RVO:67985815 Keywords : accretion-discs * black hole physics * relativistic processes Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.336, year: 2016

  10. Disc-corona interaction in the heartbeat state of GRS 1915+105

    Science.gov (United States)

    Yan, Shu-Ping; Ji, Li; Liu, Si-Ming; Méndez, Mariano; Wang, Na; Li, Xiang-Dong; Qu, Jin-Lu; Sun, Wei; Ge, Ming-Yu; Liao, Jin-Yuan; Niu, Shu; Ding, Guo-Qiang; Liu, Qing-Zhong

    2018-02-01

    Timing analysis provides information about the dynamics of matter accreting on to neutron stars and black holes, and hence is crucial for studying the physics of the accretion flow around these objects. It is difficult, however, to associate the different variability components with each of the spectral components of the accretion flow. We apply several new methods to two Rossi X-ray Timing Explorer observations of the black hole binary GRS 1915+105 during its heartbeat state to explore the origin of the X-ray variability and the interactions of the accretion-flow components. We offer a promising window into the disc-corona interaction through analysing the formation regions of the disc aperiodic variabilities with different time-scales via comparing the corresponding transition energies of the amplitude-ratio spectra. In a previous paper, we analysed the Fourier power density as a function of energy and frequency to study the origin of the aperiodic variability, and combined that analysis with the phase lag as a function of frequency to derive a picture of the disc-corona interaction in this source. We here, for the first time, investigate the phase-lag as a function of energy and frequency, and display some interesting details of the disc-corona interaction. Besides, the results from the shape of amplitude-ratio spectrum and from several other aspects suggest that the quasi-periodic oscillation originates from the corona.

  11. ZOMG - II. Does the halo assembly history influence central galaxies and gas accretion?

    Science.gov (United States)

    Romano-Díaz, Emilio; Garaldi, Enrico; Borzyszkowski, Mikolaj; Porciani, Cristiano

    2017-08-01

    The growth rate and the internal dynamics of galaxy-sized dark-matter haloes depend on their location within the cosmic web. Haloes that sit at the nodes grow in mass till the present time and are dominated by radial orbits. Conversely, haloes embedded in prominent filaments do not change much in size and are dominated by tangential orbits. Using zoom hydrodynamical simulations including star formation and feedback, we study how gas accretes on to these different classes of objects, which, for simplicity, we dub 'accreting' and 'stalled' haloes. We find that all haloes get a fresh supply of newly accreted gas in their inner regions, although this slowly decreases with time, in particular for the stalled haloes. The inflow of new gas is always higher than (but comparable with) that of recycled material. Overall, the cold-gas fraction increases (decreases) with time for the accreting (stalled) haloes. In all cases, a stellar disc and a bulge form at the centre of the simulated haloes. The total stellar mass is in excellent agreement with expectations based on the abundance-matching technique. Many properties of the central galaxies do not seem to correlate with the large-scale environment in which the haloes reside. However, there are two notable exceptions that characterize stalled haloes with respect to their accreting counterparts: (I) The galaxy disc contains much older stellar populations. (II) Its vertical scaleheight is larger by a factor of 2 or more. This thickening is likely due to the heating of the long-lived discs by mergers and close flybys.

  12. The Black Hole Accretion Code

    CERN Document Server

    Porth, Oliver; Mizuno, Yosuke; Younsi, Ziri; Rezzolla, Luciano; Moscibrodzka, Monika; Falcke, Heino; Kramer, Michael

    2016-01-01

    We present the black hole accretion code (BHAC), a new multidimensional general-relativistic magnetohydrodynamics module for the MPI-AMRVAC framework. BHAC has been designed to solve the equations of ideal general-relativistic magnetohydrodynamics in arbitrary spacetimes and exploits adaptive mesh refinement techniques with an efficient block-based approach. Several spacetimes have already been implemented and tested. We demonstrate the validity of BHAC by means of various one-, two-, and three-dimensional test problems, as well as through a close comparison with the HARM3D code in the case of a torus accreting onto a black hole. The convergence of a turbulent accretion scenario is investigated with several diagnostics and we find accretion rates and horizon-penetrating fluxes to be convergent to within a few percent when the problem is run in three dimensions. Our analysis also involves the study of the corresponding thermal synchrotron emission, which is performed by means of a new general-relativistic radi...

  13. Continuum and line modelling of discs around young stars - I. 300000 disc models for HERSCHEL/GASPS

    Science.gov (United States)

    Woitke, P.; Pinte, C.; Tilling, I.; Ménard, F.; Kamp, I.; Thi, W.-F.; Duchêne, G.; Augereau, J.-C.

    2010-06-01

    We have combined the thermo-chemical disc code ProDiMo with the Monte Carlo radiative transfer code MCFOST to calculate a grid of ~300000 circumstellar disc models, systematically varying 11 stellar, disc and dust parameters including the total disc mass, several disc shape parameters and the dust-to-gas ratio. For each model, dust continuum and line radiative transfer calculations are carried out for 29 far-infrared, sub-mm and mm lines of [OI], [CII], 12CO and o/p-H2O under five inclinations. The grid allows us to study the influence of the input parameters on the observables, to make statistical predictions for different types of circumstellar discs and to find systematic trends and correlations between the parameters, the continuum fluxes and the line fluxes. The model grid, comprising the calculated disc temperature and chemical structures, the computed spectral energy distributions, line fluxes and profiles, will be used in particular for the data interpretation of the HERSCHEL open time-key program GASPS. The calculated line fluxes show a strong dependence on the assumed ultraviolet excess of the central star and on the disc flaring. The fraction of models predicting [OI] and [CII] fine-structure lines fluxes above HERSCHEL/PACS and SPICA/SAFARI detection limits is calculated as a function of disc mass. The possibility of deriving the disc gas mass from line observations is discussed.

  14. Can massive stars be formed by accretion?

    Science.gov (United States)

    Yorke, H. W.

    2000-01-01

    Radiative effects strongly hinder the formation of massive stars. A necessary condition for accretion growth of a hydrostatic object up to high masses is the formation of and accretion through a circumstellar disk.

  15. Origin of chemically distinct discs in the Auriga cosmological simulations

    Science.gov (United States)

    Grand, Robert J. J.; Bustamante, Sebastián; Gómez, Facundo A.; Kawata, Daisuke; Marinacci, Federico; Pakmor, Rüdiger; Rix, Hans-Walter; Simpson, Christine M.; Sparre, Martin; Springel, Volker

    2018-03-01

    The stellar disc of the Milky Way shows complex spatial and abundance structure that is central to understanding the key physical mechanisms responsible for shaping our Galaxy. In this study, we use six very high resolution cosmological zoom-in simulations of Milky Way-sized haloes to study the prevalence and formation of chemically distinct disc components. We find that our simulations develop a clearly bimodal distribution in the [α/Fe]-[Fe/H] plane. We find two main pathways to creating this dichotomy, which operate in different regions of the galaxies: (a) an early (z > 1) and intense high-[α/Fe] star formation phase in the inner region (R ≲ 5 kpc) induced by gas-rich mergers, followed by more quiescent low-[α/Fe] star formation; and (b) an early phase of high-[α/Fe] star formation in the outer disc followed by a shrinking of the gas disc owing to a temporarily lowered gas accretion rate, after which disc growth resumes. In process (b), a double-peaked star formation history around the time and radius of disc shrinking accentuates the dichotomy. If the early star formation phase is prolonged (rather than short and intense), chemical evolution proceeds as per process (a) in the inner region, but the dichotomy is less clear. In the outer region, the dichotomy is only evident if the first intense phase of star formation covers a large enough radial range before disc shrinking occurs; otherwise, the outer disc consists of only low-[α/Fe] sequence stars. We discuss the implication that both processes occurred in the Milky Way.

  16. Numerical simulations of the Cosmic Battery in accretion flows around astrophysical black holes

    Science.gov (United States)

    Contopoulos, I.; Nathanail, A.; Sądowski, A.; Kazanas, D.; Narayan, R.

    2018-01-01

    We implement the KORAL code to perform two sets of very long general relativistic radiation magnetohydrodynamic simulations of an axisymmetric optically thin magnetized flow around a non-rotating black hole: one with a new term in the electromagnetic field tensor due to the radiation pressure felt by the plasma electrons on the comoving frame of the electron-proton plasma, and one without. The source of the radiation is the accretion flow itself. Without the new term, the system evolves to a standard accretion flow due to the development of the magneto-rotational instability. With the new term, however, the system eventually evolves to a magnetically arrested disc state in which a large-scale jet-like magnetic field threads the black hole horizon. Our results confirm the secular action of the Cosmic Battery in accretion flows around astrophysical black holes.

  17. Accretion onto a Kiselev black hole

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Lei [Hebei University, College of Physical Science and Technology, Baoding (China); Yang, Rongjia [Hebei University, College of Physical Science and Technology, Baoding (China); Hebei University, Hebei Key Lab of Optic-Electronic Information and Materials, Baoding (China)

    2017-05-15

    We consider accretion onto a Kiselev black hole. We obtain the fundamental equations for accretion without the back-reaction. We determine the general analytic expressions for the critical points and the mass accretion rate and find the physical conditions the critical points should fulfill. The case of a polytropic gas are discussed in detail. It turns out that the quintessence parameter plays an important role in the accretion process. (orig.)

  18. Effect of accretion on the pre-main-sequence evolution of low-mass stars and brown dwarfs

    Science.gov (United States)

    Vorobyov, Eduard I.; Elbakyan, Vardan; Hosokawa, Takashi; Sakurai, Yuya; Guedel, Manuel; Yorke, Harold

    2017-09-01

    Aims: The pre-main-sequence evolution of low-mass stars and brown dwarfs is studied numerically starting from the formation of a protostellar or proto-brown dwarf seed and taking into account the mass accretion onto the central object during the initial several Myr of evolution. Methods: The stellar evolution was computed using the STELLAR evolution code with recent modifications. The mass accretion rates were taken from numerical hydrodynamics models by computing the circumstellar disk evolution starting from the gravitational collapse of prestellar cloud cores of various mass and angular momentum. The resulting stellar evolution tracks were compared with the isochrones and isomasses calculated using non-accreting models. Results: We find that mass accretion in the initial several Myr of protostellar evolution can have a strong effect on the subsequent evolution of young stars and brown dwarfs. The disagreement between accreting and non-accreting models in terms of the total stellar luminosity L∗, stellar radius R∗, and effective temperature Teff depends on the thermal efficiency of accretion, that is, on the fraction of accretion energy that is absorbed by the central object. The largest mismatch is found for the cold accretion case, in which essentially all accretion energy is radiated away. The relative deviations in L∗ and R∗ in this case can reach 50% for objects 1.0 Myr old, and they remain notable even for objects 10 Myr old. In the hot and hybrid accretion cases, in which a constant fraction of accretion energy is absorbed, the disagreement between accreting and non-accreting models becomes less pronounced, but still remains notable for objects 1.0 Myr old. These disagreements may lead to an incorrect age estimate for objects of (sub-)solar mass when using the isochrones that are based on non-accreting models, as has also been noted previously. We find that objects with strong luminosity bursts exhibit notable excursions in the L∗-Teff diagram

  19. Cold Accretion from the Cosmic Web

    Science.gov (United States)

    Kohler, Susanna

    2016-06-01

    The cosmic web is a vast, foam-like network of filaments and voids stretching throughout the universe. How did the first galaxies form within the cosmic web, at the intersections of filaments? New observations of a protodisk a galaxy in the early stages of formation may provide a clue.Models for Galaxy FormationNarrowband image of the candidate protodisk (marked with a white ellipse) and filaments (outlined in white). [Adapted from Martin et al. 2016]The standard model for galaxy formation, known as the hot accretion model, argues that galaxies form out of collapsing, virialized gas that forms a hot halo and then slowly cools, fueling star and galaxy formation at its center.But what if galaxies are actually formed from cool gas? In this contrasting picture, the cold accretion model, cool (temperature of ~104 K) unshocked gas from cosmic web filaments flows directly onto galactic disks forming at the filamentary intersections. The narrow streams of cold gas deliver fuel for star formation.A signature of the cold accretion model is that the streams of cold gas form a disk as the gas spirals inward, sinking toward the central protogalaxy. Detecting these cold-flow disks could be strong evidence in support of this model and last year, a team of authors reported just such a detection! This year theyre back again with a second object that may provide confirmation of cold accretion from the cosmic web.A Candidate ProtodiskThe team, led by Christopher Martin (California Institute of Technology), made the discovery using the Palomar Cosmic Web Imager, an instrument designed to observe faint emission from the intergalactic medium. Martin and collaborators found a large (R 100 kpc, more than six times the radius of the Milky Way), rotating structure of hydrogen gas, illuminated by the nearby quasi-stellar object QSO HS1549+1919. The system is located at a redshift of z~2.8.The authors testthree potential kinematic models of the candidate protodisk and filaments. In (a) two

  20. The use of birefringence for predicting the stiffness of injection molded polycarbonate discs

    NARCIS (Netherlands)

    Neves, N.M.; Pouzada, A.S.; Voerman, J.H.D.; Powell, P.C.

    1998-01-01

    Polycarbonate discs were injection molded with different sets of molding conditions. The parameters studied were the flow rate, melt- and mold-temperature. The discs were subjected to three point support flexural tests. Those tests are specially intended for injection molded discs because of their

  1. How does an asymmetric magnetic field change the vertical structure of a hot accretion flow?

    Science.gov (United States)

    Samadi, M.; Abbassi, S.; Lovelace, R. V. E.

    2017-09-01

    This paper explores the effects of large-scale magnetic fields in hot accretion flows for asymmetric configurations with respect to the equatorial plane. The solutions that we have found show that the large-scale asymmetric magnetic field can significantly affect the dynamics of the flow and also cause notable outflows in the outer parts. Previously, we treated a viscous resistive accreting disc in the presence of an odd symmetric B-field about the equatorial plane. Now, we extend our earlier work by taking into account another configuration of large-scale magnetic field that is no longer symmetric. We provide asymmetric field structures with small deviations from even and odd symmetric B-field. Our results show that the disc's dynamics and appearance become different above and below the equatorial plane. The set of solutions also predicts that even a small deviation in a symmetric field causes the disc to compress on one side and expand on the other. In some cases, our solution represents a very strong outflow from just one side of the disc. Therefore, the solution may potentially explain the origin of one-sided jets in radio galaxies.

  2. Modelling hard and soft states of Cygnus X-1 with propagating mass accretion rate fluctuations

    Science.gov (United States)

    Rapisarda, S.; Ingram, A.; van der Klis, M.

    2017-12-01

    We present a timing analysis of three Rossi X-ray Timing Explorer observations of the black hole binary Cygnus X-1 with the propagating mass accretion rate fluctuations model PROPFLUC. The model simultaneously predicts power spectra, time lags and coherence of the variability as a function of energy. The observations cover the soft and hard states of the source, and the transition between the two. We find good agreement between model predictions and data in the hard and soft states. Our analysis suggests that in the soft state the fluctuations propagate in an optically thin hot flow extending up to large radii above and below a stable optically thick disc. In the hard state, our results are consistent with a truncated disc geometry, where the hot flow extends radially inside the inner radius of the disc. In the transition from soft to hard state, the characteristics of the rapid variability are too complex to be successfully described with PROPFLUC. The surface density profile of the hot flow predicted by our model and the lack of quasi-periodic oscillations in the soft and hard states suggest that the spin of the black hole is aligned with the inner accretion disc and therefore probably with the rotational axis of the binary system.

  3. Study of heat transfer on front– and back-vented brake discs

    OpenAIRE

    Supachai Lakkam; Kullayot Suwantaroj; Phupoom Puangcharoenchai; Songwut Mongkonlerdmanee; Saiprasit Koetniyom

    2013-01-01

    A brake disc plays an important role in the automotive industry since it concerns directly with safety. In order to develop proper heat ventilation a wide range of brake discs have been designed. Different types of physical brake disc geometries, as front- and back-vented brake discs, affect the heat ventilation directly. This is a vital factor of the brake’s capability. We recognized the importance of this circumstance and therefore attempted to create a test to investigate the temperature g...

  4. Accretion Processes in Star Formation

    DEFF Research Database (Denmark)

    Küffmeier, Michael

    that the accretion process of stars is heterogeneous in space, time and among different protostars. In some cases, disks form a few thousand years after stellar birth, whereas in other cases disk formation is suppressed due to efficient removal of angular momentum. Angular momentum is mainly transported outward......Stars and their corresponding protoplanetary disks form in different environments of Giant Molecular Clouds. By carrying state-of-the art zoom-simulations with the magnetohydrodynamical code ramses, I investigated the accretion process around young stars that are embedded in such different...... for short-lived radionuclides that enrich the cloud as a result of supernova explosions of the massive stars allows us to analyze the distribution of the short-lived radionuclides around young forming stars. In contradiction to results from highly-idealized models, we find that the discrepancy in 26 Al...

  5. Physical Environment of Accreting Neutron Stars

    Directory of Open Access Journals (Sweden)

    J. Wang

    2016-01-01

    Full Text Available Neutron stars (NSs powered by accretion, which are known as accretion-powered NSs, always are located in binary systems and manifest themselves as X-ray sources. Physical processes taking place during the accretion of material from their companions form a challenging and appealing topic, because of the strong magnetic field of NSs. In this paper, we review the physical process of accretion onto magnetized NS in X-ray binary systems. We, firstly, give an introduction to accretion-powered NSs and review the accretion mechanism in X-ray binaries. This review is mostly focused on accretion-induced evolution of NSs, which includes scenario of NSs both in high-mass binaries and in low-mass systems.

  6. The origins of active galactic nuclei obscuration: the 'torus' as a dynamical, unstable driver of accretion

    Science.gov (United States)

    Hopkins, Philip F.; Hayward, Christopher C.; Narayanan, Desika; Hernquist, Lars

    2012-02-01

    Recent multiscale simulations have made it possible to follow gas inflows responsible for high-Eddington ratio accretion on to massive black holes (BHs) from galactic scales to the BH accretion disc. When sufficient gas is driven towards a BH, gravitational instabilities generically form lopsided, eccentric discs that propagate inwards from larger radii. The lopsided stellar disc exerts a strong torque on the gas, driving inflows that fuel the growth of the BH. Here, we investigate the possibility that the same disc, in its gas-rich phase, is the putative 'torus' invoked to explain obscured active galactic nuclei (AGN) and the cosmic X-ray background. The disc is generically thick and has characteristic ˜1-10 pc sizes and masses resembling those required of the torus. Interestingly, the scale heights and obscured fractions of the predicted torii are substantial even in the absence of strong stellar feedback providing the vertical support. Rather, they can be maintained by strong bending modes and warps/twists excited by the inflow-generating instabilities. A number of other observed properties commonly attributed to 'feedback' processes may in fact be explained entirely by dynamical, gravitational effects: the lack of alignment between torus and host galaxy, correlations between local star formation rate (SFR) and turbulent gas velocities and the dependence of obscured fractions on AGN luminosity or SFR. We compare the predicted torus properties with observations of gas surface density profiles, kinematics, scale heights and SFR densities in AGN, and find that they are consistent in all cases. We argue that it is not possible to reproduce these observations and the observed column density distribution without a clumpy gas distribution, but allowing for simple clumping on small scales the predicted column density distribution is in good agreement with observations from NH˜ 1020-1027 cm-2. We examine how the NH distribution scales with galaxy and AGN properties

  7. Pseudoenhancement of intervertebral disc herniation

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Y.; Ootani, M.; Furukawa, T.; Tsukaguchi, I. (Dept. of Radiology, Osaka Rosai Hospital (Japan)); Mitomo, M. (Dept. of Radiology, Osaka Univ. Medical School (Japan))

    1992-08-01

    Two patients with intervertebral disc herniation appeared to demonstrate abnormally diffuse and intense enhancement of the disc after intravenous administration of gadolinium-DTPA for MRI. Surgery disclosed a dilated epidural venous plexus in one and vascular granulation tissue in the other, associated with the herniated disc material. The mechanism of this 'pseudoenhancement' of the disc appears to be a partial volume effect of disc material and the adjacent veins or granulation tissue. Pseudoenhancement of a herniated disc should be included in the differential diagnosis of a diffusely enhancing epidural mass. (orig.).

  8. Spiral arms in thermally stratified protoplanetary discs

    Science.gov (United States)

    Juhász, Attila; Rosotti, Giovanni P.

    2018-02-01

    Spiral arms have been observed in nearly a dozen protoplanetary discs in near-infrared scattered light and recently also in the submillimetre continuum. While one of the most compelling explanations is that they are driven by planetary or stellar companions, in all but one cases such companions have not yet been detected and there is even ambiguity on whether the planet should be located inside or outside the spirals. Here, we use 3D hydrodynamic simulations to study the morphology of spiral density waves launched by embedded planets taking into account the vertical temperature gradient, a natural consequence of stellar irradiation. Our simulations show that the pitch angle of the spirals in thermally stratified discs is the lowest in the disc mid-plane and increases towards the disc surface. We combine the hydrodynamic simulations with 3D radiative transfer calculations to predict that the pitch angle of planetary spirals observed in the near-infrared is higher than in the submillimetre. We also find that in both cases the spirals converge towards the planet. This provides a new powerful observational method to determine if the perturbing planet is inside or outside the spirals, as well as map the thermal stratification of the disc.

  9. Design of high performance CMC brake discs

    Energy Technology Data Exchange (ETDEWEB)

    Krenkel, W.; Henke, T. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Stuttgart (Germany)

    1999-03-01

    Ceramic matrix composite (CMC) materials based on 2D-carbon fibre preforms show high heat-absorption capacities and good tribological as well as thermomechanical properties. To take advantage of the full lightweight potential of these new materials in high performance automotive brake discs, the thermal conductivity transverse to the friction surface has to be high in order to reduce the surface temperature. Experimental tests showed, that lower surface temperatures prevent overheating of the brake`s periphery and stabilizes the friction behaviour. In this study different design approaches with improved transverse heat conductivity have been investigated by finite element analysis. C/C-SiC bolts as well as SiC coatings and combinations of them have been investigated and compared with an orthotropic brake disc, showing a reduction of temperature of up to 50%. Original sized brake discs with C/C-SiC have been manufactured and tested under real conditions which verified the calculations. Using only low-cost CMC materials and avoiding any additional processing steps, the potential of C/C-SiC brake discs are very attractive under tribological as well as under economical aspects. (orig.) 4 refs.

  10. Probing the Accretion Processes in Soft X-Ray Selected Polars

    Directory of Open Access Journals (Sweden)

    I. Traulsen

    2015-02-01

    Full Text Available High-energy data of accreting white dwarfs give access to the regime of the primary accretion-induced energy release and the different proposed accretion scenarios. We perform XMM-Newton observations of polars selected due to their ROSAT hardness ratios close to -1.0 and model the emission processes in accretion column and accretion region. Our models consider the multi-temperature structure of the emission regions and are mainly determined by mass-flow density, magnetic field strength, and white-dwarf mass. To describe the full spectral energy distribution from infrared to X-rays in a physically consistent way, we include the stellar contributions and establish composite models, which will also be of relevance for future X-ray missions. We confirm the X-ray soft nature of three polars.

  11. Structure of accretion flows in nova-like cataclysmic variables: RW Sextantis and 1RXS J064434.5+334451

    Science.gov (United States)

    Hernandez, M. S.; Zharikov, S.; Neustroev, V.; Tovmassian, G.

    2017-09-01

    New time-resolved optical spectroscopic echelle observations of the nova-like cataclysmic variable RW Sextantis were obtained, with the aim of studying the properties of emission features in the system. The profile of the H α emission line can be clearly divided into two ('narrow' and 'wide') components. Similar emission profiles are observed in another nova-like system, 1RXS J064434.5+33445, for which we also reanalysed the spectral data and redetermined the system parameters. The source of the 'narrow', low-velocity component is the irradiated face of the secondary star. We disentangled and removed the 'narrow' component from the H α profile to study the origin and structure of the region emitting the wide component. We found that the 'wide' component is not related to the white dwarf or the wind from the central part of the accretion disc, but is emanated from the outer side of the disc. Inspection of literature on similar systems indicates that this feature is common for some other long-period nova-like variables. We propose that the source of the 'wide' component is an extended, low-velocity region in the outskirts of the opposite side of the accretion disc, with respect to the collision point of the accretion stream and the disc.

  12. HEAT TRANSIENT TRANSFER ANALYSIS OF BRAKE DISC /PAD SYSTEM

    OpenAIRE

    Thuppal Vedanta, Srivatsan; Kora, Naga Vamsi Krishna

    2016-01-01

    Braking is mainly controlled by the engine. Friction between a pair of pads and a rotating disc converts the kinetic energy of the vehicle into heat. High temperatures can be reached in the system which can be detrimental for both, components and passenger safety. Numerical techniques help simulate load cases and compute the temperatures field in brake disc and brake pads. The present work implements a Finite Element (FE) toolbox in Matlab/Simulink able to simulate different braking manoeuvre...

  13. Holographic versatile disc system

    Science.gov (United States)

    Horimai, Hideyoshi; Tan, Xiaodi

    2005-09-01

    A Holographic Versatile Disc (HVD) system, using Collinear Technologies for a high capacity and high data transfer rates storage system, is proposed. With its unique configuration the optical pickup can be designed as small as a DVD's, and can be placed on one side of the disc. With the HVD's special structure, the system can servo the focus/track and locate reading/writing address. A unique selectable capacity recording format of HVD and its standardization activity are also introduced. Experimental and theoretical studies suggest that the tilt, wavelength, defocus and de-track margins are wide enough to miniaturize the HVD system at a low cost. HVD systems using Collinear Technologies will be compatible with existing disc storage systems, like CD and DVD, and will enable us to expand its applications into other optical information storage systems.

  14. Bryan total disc arthroplasty: a replacement disc for cervical disc disease

    Directory of Open Access Journals (Sweden)

    Markus Wenger

    2010-07-01

    Full Text Available Markus Wenger1, Thomas-Marc Markwalder21Neurosurgery, Klinik Beau-Site and Salem-Spital, Berne, Switzerland; 2Attending Neurosurgeon FMH, Private Practice Spine Surgery, Berne-Muri, SwitzerlandAbstract: Total disc arthroplasty is a new option in the treatment of cervical degenerative disc disease. Several types of cervical disc prostheses currently challenge the gold-standard discectomy and fusion procedures. This review describes the Bryan Cervical Disc System and presents the Bryan prosthesis, its indications, surgical technique, complications, and outcomes, as given in the literature.Keywords: cervical spine, degenerative disc disease, disc herniation, myelopathy, spine surgery, bryan prosthesis, complication, outcome

  15. Cervical intervertebral disc replacement.

    Science.gov (United States)

    Cason, Garrick W; Herkowitz, Harry N

    2013-02-06

    Symptomatic adjacent-level disease after cervical fusion has led to the development and testing of several disc-replacement prostheses. Randomized controlled trials of cervical disc replacement (CDR) compared with anterior cervical discectomy and fusion (ACDF) have demonstrated at least equivalent clinical results for CDR with similar or lower complication rates. Biomechanical, kinematic, and radiographic studies of CDR reveal that the surgical level and adjacent vertebral level motion and center of rotation more closely mimic the native state. Lower intradiscal pressures adjacent to CDR may help decrease the incidence of adjacent spinal-level disease, but long-term follow-up is necessary to evaluate this theory.

  16. Innervation of ''painful'' lumbar discs

    NARCIS (Netherlands)

    Coppes, MH; Marani, E; Thomeer, RTWM; Groen, GJ

    1997-01-01

    Study Design. The authors investigated the innervation of discographically confirmed degenerated and ''painful'' human intervertebral discs. Objective. To determine the type and distribution patterns of nerve fibers present in degenerated human intervertebral discs. Summary of Background Data. The

  17. COMPARISON OF THERMOELASTIC RESULTS IN TWO TYPES OF FUNCTIONALLY GRADED BRAKE DISCS

    Directory of Open Access Journals (Sweden)

    Z.N. Ismarrubie

    2012-06-01

    Full Text Available A thermoelastic simulation of functionally graded (FG brake discs is performed using finite element (FE ANSYS. The material properties of two types of FG brake discs are assumed to vary in both radial and thickness directions according to a power law distribution. The brake discs are in contact with one hollow pure pad disc. Dry contact friction is considered as the heat source. The proper thicknesses of pad discs are found to have full-contact status. The behaviour of the thermoelastic results for thickness and radial FG brake discs are compared. The results show that the behaviour of temperature and vertical displacement in these two types of FG brake discs are the same. However, the variations of radial displacement for different grading indices are not the same. The behaviour of other results are quite similar. Thus, it can be concluded that the variation direction of material properties in FG brake discs can affect the results.

  18. Numerical Modeling of Disc Brake System in Frictional Contact

    Directory of Open Access Journals (Sweden)

    A. Belhocine

    2014-03-01

    Full Text Available Safety aspect in automotive engineering has been considered as a number one priority in development of new vehicle. Each single system has been studied and developed in order to meet safety requirement. Instead of having air bag, good suspension systems, good handling and safe cornering, there is one most critical system in the vehicle which is brake systems. The objective of this work is to investigate and analyse the temperature distribution of rotor disc during braking operation using ANSYS Multiphysics. The work uses the finite element analysis techniques to predict the temperature distribution on the full and ventilated brake disc and to identify the critical temperature of the rotor by holding account certain parameters such as; the material used, the geometric design of the disc and the mode of braking. The analysis also gives us, the heat flux distribution for the two discs.

  19. Thermal/Mechanical Measurement and Modeling of Bicycle Disc Brakes

    Directory of Open Access Journals (Sweden)

    Ioan Feier

    2018-02-01

    Full Text Available Brake induced heating has become more difficult to control as bicycle component mass has been reduced. High-power braking with insufficient cooling or thermal capacitance can create excessive temperatures, boiling brake fluid, performance degradation, and damage. To better understand component heating, a disc braking dynamometer has been constructed with a motor driven disc, hydraulic braking, and a miniature wind tunnel. Disc temperatures are studied for various braking scenarios using infrared techniques and thermocouples. A transient, numerical, MATLAB, lumped parameter thermal/mechanical model is created to predict the impact of key design parameters on braking performance and to understand the heat loss mechanisms from the brake system components. Computational fluid dynamics (CFD simulations are used to estimate the disc surface convective cooling coefficients for the model. The final model provides transient temperature predictions based on bicycle velocity and braking power, and successfully matches dynamometer experimental data.

  20. Spontaneously disappearing lumbar disc protrusion

    OpenAIRE

    Ushewokunze, Shungu; Abbas, Naeem; Dardis, Ronan; Killeen, Ian

    2008-01-01

    Spontaneous disappearance of a herniated lumbar disc is known to occur. This case study describes a 45-year-old patient whose symptoms of lumbar radiculopathy resolved and follow-up imaging showed complete disappearance of the disc prolapse. This phenomenon strengthens the role of conservative treatment in the management of lumbar disc protrusions.

  1. Protostellar accretion traced with chemistry

    DEFF Research Database (Denmark)

    Frimann, Søren; Jørgensen, Jes Kristian; Padoan, Paolo

    2016-01-01

    used foranalysing the observations. Methods: Simple freeze-out andsublimation chemistry is added to the simulation, and syntheticC18O line cubes are created for a large number of simulatedprotostars. The spatial extent of C18O is measured for thesimulated protostars and compared directly to a sample...... by infall from the larger scales of the molecular cloud, anddo not include any disk physics. The discrepancy between simulation andobservations is taken as support for the necessity of disks, even indeeply embedded objects, to produce episodic accretion events ofsufficient frequency and amplitude....

  2. Protostellar accretion traced with chemistry

    DEFF Research Database (Denmark)

    Frimann, Søren; Jørgensen, Jes Kristian; Dunham, Michael M.

    2017-01-01

    . Our aim is to characterise protostellar accretion histories towards individual sources by utilising sublimation and freeze-out chemistry of CO. Methods. A sample of 24 embedded protostars are observed with the Submillimeter Array (SMA) in context of the large program "Mass Assembly of Stellar Systems...... and their Evolution with the SMA" (MASSES). The size of the C18O-emitting region, where CO has sublimated into the gas-phase, is measured towards each source and compared to the expected size of the region given the current luminosity. The SMA observations also include 1.3 mm continuum data, which are used...

  3. Herniated Lumbar Disc

    Science.gov (United States)

    ... Manipulation may provide short-term relief from nonspecific low back pain, but should be avoided in most cases of herniated disc. At first, the exercises you learn may be gentle stretches or posture changes to reduce the back pain or leg ...

  4. Herniated Cervical Disc

    Science.gov (United States)

    ... recovery. Surgery is very effective in reducing the pain in the arms and shoulders caused by a herniated cervical disc. However, some ... time. How is this diagnosed? A thorough clinical evaluation to determine the character and location of the pain plus an examination of the neck and careful ...

  5. The DISC Quotient

    Science.gov (United States)

    Elliott, John R.; Baxter, Stephen

    2012-09-01

    D.I.S.C: Decipherment Impact of a Signal's Content. The authors present a numerical method to characterise the significance of the receipt of a complex and potentially decipherable signal from extraterrestrial intelligence (ETI). The purpose of the scale is to facilitate the public communication of work on any such claimed signal, as such work proceeds, and to assist in its discussion and interpretation. Building on a "position" paper rationale, this paper looks at the DISC quotient proposed and develops the algorithmic steps and comprising measures that form this post detection strategy for information dissemination, based on prior work on message detection, decipherment. As argued, we require a robust and incremental strategy, to disseminate timely, accurate and meaningful information, to the scientific community and the general public, in the event we receive an "alien" signal that displays decipherable information. This post-detection strategy is to serve as a stepwise algorithm for a logical approach to information extraction and a vehicle for sequential information dissemination, to manage societal impact. The "DISC Quotient", which is based on signal analysis processing stages, includes factors based on the signal's data quantity, structure, affinity to known human languages, and likely decipherment times. Comparisons with human and other phenomena are included as a guide to assessing likely societal impact. It is submitted that the development, refinement and implementation of DISC as an integral strategy, during the complex processes involved in post detection and decipherment, is essential if we wish to minimize disruption and optimize dissemination.

  6. Theory of Disk Accretion onto Magnetic Stars

    Directory of Open Access Journals (Sweden)

    Lai Dong

    2014-01-01

    Full Text Available Disk accretion onto magnetic stars occurs in a variety of systems, including accreting neutron stars (with both high and low magnetic fields, white dwarfs, and protostars. We review some of the key physical processes in magnetosphere-disk interaction, highlighting the theoretical uncertainties. We also discuss some applications to the observations of accreting neutron star and protostellar systems, as well as possible connections to protoplanetary disks and exoplanets.

  7. Solar neighbourhood and Galactic disc(s: New constraints

    Directory of Open Access Journals (Sweden)

    Schönrich R.

    2012-02-01

    Full Text Available We present a re-analysis of the Geneva-Copenhagen survey, based on improved effective temperature and metallicity scales, which also provide a better match to theoretical isochrones. The latter are used for a Bayesian investigation on stellar ages. With respect to previous analyses, our stars are on average 100 K hotter and 0.1 dex more metal rich, which shifts the peak of the metallicity distribution function around the solar value. From Strömgren photometry we are able to derive for the first time a proxy for alpha elements, which enables us to perform a tentative dissection of the chemical thin and thick disc. We find evidence for the latter being composed of an old, mildly but systematically alpha-enhanced population that extends to super solar metallicities, in agreement with spectroscopic studies. Our analysis suggests a strong interplay among ages, abundances and kinematics of stars.

  8. Bondi accretion onto cosmological black holes

    CERN Document Server

    Karkowski, Janusz

    2012-01-01

    In this paper we investigate a steady accretion within the Einstein-Straus vacuole, in the presence of the cosmological constant. The dark energy damps the mass accretion rate and --- above certain limit --- completely stops the steady accretion onto black holes, which in particular is prohibited in the inflation era and after (roughly) $10^{12}$ years from Big Bang (assuming the presently known value of the cosmological constant). Steady accretion would not exist in the late phases of the Penrose's scenario - known as the Weyl curvature hypothesis - of the evolution of the Universe.

  9. Bondi accretion onto cosmological black holes

    Science.gov (United States)

    Karkowski, Janusz; Malec, Edward

    2013-02-01

    In this paper we investigate a steady accretion within the Einstein-Straus vacuole, in the presence of the cosmological constant. The dark energy damps the mass accretion rate and—above a certain limit—completely stops the steady accretion onto black holes, which, in particular, is prohibited in the inflation era and after (roughly) 1012 years from the big bang (assuming the presently known value of the cosmological constant). Steady accretion would not exist in the late phases of the Penrose’s scenario—known as the Weyl curvature hypothesis—of the evolution of the Universe.

  10. AGN Variability: Probing Black Hole Accretion

    Science.gov (United States)

    Moreno, Jackeline; O'Brien, Jack; Vogeley, Michael S.; Richards, Gordon T.; Kasliwal, Vishal P.

    2017-01-01

    We combine the long temporal baseline of Sloan Digital Sky Survey (SDSS) for quasars in Stripe 82 with the high precision photometry of the Kepler/K2 Satellite to study the physics of optical variability in the accretion disk and supermassive black hole engine. We model the lightcurves directly as Continuous-time Auto Regressive Moving Average processes (C-ARMA) with the Kali analysis package (Kasliwal et al. 2016). These models are extremely robust to irregular sampling and can capture aperiodic variability structure on various timescales. We also estimate the power spectral density and structure function of both the model family and the data. A Green's function kernel may also be estimated for the resulting C-ARMA parameter fit, which may be interpreted as the response to driving impulses such as hotspots in the accretion disk. We also examine available spectra for our AGN sample to relate observed and modelled behavior to spectral properties. The objective of this work is twofold: to explore the proper physical interpretation of different families of C-ARMA models applied to AGN optical flux variability and to relate empirical characteristic timescales of our AGN sample to physical theory or to properties estimated from spectra or simulations like the disk viscosity and temperature. We find that AGN with strong variability features on timescales resolved by K2 are well modelled by a low order C-ARMA family while K2 lightcurves with weak amplitude variability are dominated by outliers and measurement errors which force higher order model fits. This work explores a novel approach to combining SDSS and K2 data sets and presents recovered characteristic timescales of AGN variability.

  11. Planet-disc interaction in laminar and turbulent discs

    Science.gov (United States)

    Stoll, Moritz H. R.; Picogna, Giovanni; Kley, Wilhelm

    2017-07-01

    In weakly ionised discs turbulence can be generated through the vertical shear instability (VSI). Embedded planets are affected by a stochastic component in the torques acting on them, which can impact their migration. In this work we study the interplay between a growing planet embedded in a protoplanetary disc and the VSI turbulence. We performed a series of 3D hydrodynamical simulations for locally isothermal discs with embedded planets in the mass range from 5 to 100 Earth masses. We study planets embedded in an inviscid disc that is VSI unstable, becomes turbulent, and generates angular momentum transport with an effective α = 5 × 10-4. This is compared to the corresponding viscous disc using exactly this α-value. In general we find that the planets have only a weak impact on the disc turbulence. Only for the largest planet (100 M⊕) does the turbulent activity become enhanced inside of the planet. The depth and width of a gap created by the more massive planets (30,100 M⊕) in the turbulent disc equal exactly that of the corresponding viscous case, leading to very similar torque strengths acting on the planet, with small stochastic fluctuations for the VSI disc. At the gap edges vortices are generated that are stronger and longer-lived in the VSI disc. Low mass planets (with Mp ≤ 10 M⊕) do not open gaps in the disc in either case, but generate for the turbulent disc an overdensity behind the planet that exerts a significant negative torque. This can boost the inward migration in VSI turbulent discs well above the Type I rate. Owing to the finite turbulence level in realistic 3D discs the gap depth will always be limited and migration will not stall in inviscid discs.

  12. Local expansions and accretive mappings

    Directory of Open Access Journals (Sweden)

    W. A. Kirk

    1983-01-01

    Full Text Available Let X and Y be complete metric spaces with Y metrically convex, let D⊂X be open, fix u0∈X, and let d(u=d(u0,u for all u∈D. Let f:X→2Y be a closed mapping which maps open subsets of D onto open sets in Y, and suppose f is locally expansive on D in the sense that there exists a continuous nonincreasing function c:R+→R+ with ∫+∞c(sds=+∞ such that each point x∈D has a neighborhood N for which dist(f(u,f(v≥c(max{d(u,d(v}d(u,v for all u,v∈N. Then, given y∈Y, it is shown that y∈f(D iff there exists x0∈D such that for x∈X\\D, dist(y,f(x0≤dist(u,f(x. This result is then applied to the study of existence of zeros of (set-valued locally strongly accretive and ϕ-accretive mappings in Banach spaces

  13. Hydrodynamic simulations of accretion flows with time-varying viscosity

    Science.gov (United States)

    Roy, Abhishek; Chakrabarti, Sandip K.

    2017-12-01

    X-ray outbursts of stellar-mass black hole candidates are believed to be due to a sudden rise in viscosity, which transports angular momentum efficiently and increases the accretion rates, causing higher X-ray flux. After the viscosity is reduced, the outburst subsides and the object returns back to the pre-outburst quiescence stage. In the absence of a satisfactory understanding of the physical mechanism leading to such a sharp time dependence of viscous processes, we perform numerical simulations where we include the rise and fall of a viscosity parameter at an outer injection grid, assumed to be located at the accumulation radius where matter from the companion is piled up before being released by enhanced viscosity. We use a power-law radial dependence of the viscosity parameter (α ˜ rɛ), but the exponent (ɛ) is allowed to vary with time to mimic a fast rise and decay of the viscosity parameter. Since X-ray spectra of a black hole candidate can be explained by a Keplerian disc component in the presence of a post-shock region of an advective flow, our goal here is also to understand whether the flow configurations required to explain the spectral states of an outbursting source could be obtained by a time-varying viscosity. We present the results of our simulations to prove that low-angular-momentum (sub-Keplerian) advective flows do form a Keplerian disc in the pre-shock region when the viscosity is enhanced, which disappears on a much longer time-scale after the viscosity is withdrawn. From the variation of the Keplerian disc inside an advective halo, we believe that our result, for the first time, is able to simulate the two-component advective flow dynamics during an entire X-ray outburst and explain the observed hysteresis effects in the hardness-intensity diagram.

  14. A second decoupling between merging binary black holes and the inner disc - impact on the electromagnetic counterpart

    Science.gov (United States)

    Fontecilla, Camilo; Chen, Xian; Cuadra, Jorge

    2017-06-01

    The coalescence of two supermassive black holes (SMBHs) produces powerful gravitational wave radiation and, if gas is present in the vicinity, also an electromagnetic (EM) counterpart. In the standard picture, an EM outburst will be produced when the binary 'decouples' from the circum-binary disc and starts 'squeezing' the disc inside the secondary orbit, resulting in its quick accretion on to the primary black hole. Here, we use analytical arguments and numerical simulations to show that the disc within about 20 RS of an SMBH survives the merger without being depleted. The reason is a 'second decoupling': the inner disc thickens due to tidal heating and inefficient cooling, effectively decoupling from the interaction of the binary. We show that this second decoupling quenches the heating sources in the disc O(10^2) d before coalescence. This will render the peak UV/X-ray luminosity significantly weaker than previously thought. After the merger, the residual disc cools down and expands, merging with the outer disc rather than being completely accreted. This results in continuous EM emission, hindering the detection of the cut-off and re-brightening proposed in earlier studies.

  15. The angular momentum of hot coronae around spiral galaxies and its impact on the evolution of star forming discs

    NARCIS (Netherlands)

    Pezzulli, G.; Fraternali, F.; Binney, J.

    Galaxy formation theory and recent observations indicate that spiral galaxies are surrounded by massive and hot coronae, which potentially constitute a huge source of mass and angular momentum for the star forming discs embedded within them. Accretion from these reservoirs is likely a key ingredient

  16. Research on Heat-Mechanical Coupling of Ventilated Disc Brakes under the Condition of Emergency Braking

    Science.gov (United States)

    Tan, Xuelong; Zhang, Jian; Tang, Wenxian; Zhang, Yang

    Taking the ventilated disc brake in some company as research object, and using UG to build 3D models of brake disc and pad, and making use of ABAQUS/Standard to set up two parts' finite element model, via the decelerated motion of actual simulation brake disc, which gets ventilated disc brake in the case of emergency breaking in time and space distribution of conditions of temperature and stress field, summarizes the distribution of temperature field and stress field, proves complex coupling between temperature, stress, and supplies the direct basis for brake's fatigue life analysis.

  17. Cosmic microwave background limits on accreting primordial black holes

    Science.gov (United States)

    Ali-Haïmoud, Yacine; Kamionkowski, Marc

    2017-02-01

    Interest in the idea that primordial black holes (PBHs) might comprise some or all of the dark matter has recently been rekindled following LIGO's first direct detection of a binary-black-hole merger. Here we revisit the effect of accreting PBHs on the cosmic microwave background (CMB) frequency spectrum and the angular temperature and polarization power spectra. We compute the accretion rate and luminosity of PBHs, accounting for their suppression by Compton drag and Compton cooling by CMB photons. We estimate the gas temperature near the Schwarzschild radius and, hence, the free-free luminosity, accounting for the cooling resulting from collisional ionization when the background gas is mostly neutral. We account approximately for the velocities of PBHs with respect to the background gas. We provide a simple analytic estimate of the efficiency of energy deposition in the plasma. We find that the spectral distortions generated by accreting PBHs are too small to be detected by FIRAS, as well as by future experiments now being considered. We analyze Planck CMB temperature and polarization data and find, under our most conservative hypotheses, and at the order-of-magnitude level, that they rule out PBHs with masses ≳1 02 M⊙ as the dominant component of dark matter.

  18. Mild evolution of the stellar metallicity gradients of disc galaxies

    Science.gov (United States)

    Tissera, Patricia B.; Machado, Rubens E. G.; Vilchez, José M.; Pedrosa, Susana E.; Sanchez-Blazquez, Patricia; Varela, Silvio

    2017-08-01

    Context. The metallicity gradients of the stellar populations in disc galaxies and their evolution store relevant information on the disc formation history and on those processes which could mix stars a posteriori, such as migration, bars and/or galaxy-galaxy interactions. Aims: We aim to investigate the evolution of the metallicity gradients of the whole stellar populations in disc components of simulated galaxies in a cosmological context. Methods: We analyse simulated disc galaxies selected from a cosmological hydrodynamical simulation that includes chemical evolution and a physically motivated supernova feedback capable of driving mass-loaded galactic winds. Results: We detect a mild evolution with redshift in the metallicity slopes of - 0.02 ± 0.01 dex kpc-1 from z 1. If the metallicity profiles are normalised by the effective radius of the stellar disc, the slopes show no clear evolution for zmigration albeit weaker than in previous works. Conclusions: Our stellar discs show a mild evolution of the stellar metallicity slopes up to z 1, which is well-matched by the evolution calculated archeologically from the abundance distributions of mono-age stellar populations at z 0. The dispersion in the relations allows for stronger individual evolutions. Overall, supernova feedback could explain the trends but an impact of migration can not be totally discarded. Galaxy-galaxy interactions or small satellite accretions can also contribute to modify the metallicity profiles in the outer parts. Disentangling the effects of these processes for individual galaxies is still a challenge in a cosmological context.

  19. Initiation of continental accretion: metamorphic conditions

    Science.gov (United States)

    Clement, Conand; Frederic, Mouthereau; Gianreto, Manatschal; Adbeltif, Lahfid

    2017-04-01

    The physical processes involved at the beginning of the continental collision are largely unknown because they are transient and therefore hardly identifiable from the rock record. Despite the importance of key parameters for understanding mountain building processes, especially the formation of deep mountain roots and their impacts on earthquakes nucleation, rock/fluid transfers and oil/gas resources in the continental crust, observations from the earliest collision stages remain fragmentary. Here, we focus on the example of Taiwan, a young and active mountain belt where the transition from oceanic subduction, accretion of the first continental margin to mature collision can be followed in space and time. We present preliminary results and provide key questions regarding the reconstruction of time-pressure-temperature paths of rocks & fluids to allow discriminating between rift-related thermal/rheological inheritance and burial/heating phases during convergence. Previous studies have focused on peak temperatures analyzed by Raman Spectrometry of Carbonaceous Matter from the deeper structural layers exposed in the Central Range of Taiwan. In the pre-rift sediments, these studies reported a positive gradient from West to Est, and values from directly be interpreted in terms of syn-convergence nappe stacking only and must reflect a component of initial (pre-collisional) high-geothermal gradients (up to 60°C/km) known in the region, and higher temperature closer to the pre-rift units. Cross sections and maps with high resolution peak temperatures are in process as well as pressure estimations to determine how the sediments were metamorphosed. In addition to this work, we report a few inherited temperatures in the 390-570 °C range, indicating recycling of organic matter from metasediments that recorded HT events, likely originated from higher grade metamorphic units of mainland China, which have been eroded and deposited in the post-rift sediments.

  20. Accretion, primordial black holes and standard cosmology

    Indian Academy of Sciences (India)

    Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the conjecture that the primordial black holes ...

  1. Foundations of Black Hole Accretion Disk Theory.

    Science.gov (United States)

    Abramowicz, Marek A; Fragile, P Chris

    2013-01-01

    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).

  2. Accretion, primordial black holes and standard cosmology

    Indian Academy of Sciences (India)

    Abstract. Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the con- jecture that the primordial ...

  3. Foundations of Black Hole Accretion Disk Theory

    Directory of Open Access Journals (Sweden)

    Marek A. Abramowicz

    2013-01-01

    Full Text Available This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks, Shakura-Sunyaev (thin disks, slim disks, and advection-dominated accretion flows (ADAFs. After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs.

  4. Mechanotransduction in intervertebral discs.

    Science.gov (United States)

    Tsai, Tsung-Ting; Cheng, Chao-Min; Chen, Chien-Fu; Lai, Po-Liang

    2014-12-01

    Mechanotransduction plays a critical role in intracellular functioning--it allows cells to translate external physical forces into internal biochemical activities, thereby affecting processes ranging from proliferation and apoptosis to gene expression and protein synthesis in a complex web of interactions and reactions. Accordingly, aberrant mechanotransduction can either lead to, or be a result of, a variety of diseases or degenerative states. In this review, we provide an overview of mechanotransduction in the context of intervertebral discs, with a focus on the latest methods of investigating mechanotransduction and the most recent findings regarding the means and effects of mechanotransduction in healthy and degenerative discs. We also provide some discussion of potential directions for future research and treatments. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  5. Super-Eddington QSO RX J0439.6-5311 - II. Multiwavelength constraints on the global structure of the accretion flow

    Science.gov (United States)

    Jin, Chichuan; Done, Chris; Ward, Martin; Gardner, Emma

    2017-10-01

    We present a detailed multiwavelength study of an unobscured, highly super-Eddington Type-1 QSO RX J0439.6-5311. We combine the latest XMM-Newton observation with all archival data from infrared to hard X-rays. The optical spectrum is very similar to that of 1H 0707-495 in having extremely weak [O III] and strong Fe II emission lines, although the black hole mass is probably slightly higher at 5-10 × 106 M⊙. The broad-band spectral energy distribution is uniquely well defined due to the extremely low Galactic and intrinsic absorption, so the bolometric luminosity is tightly constrained. The optical/UV accretion disc continuum is seen down to 900 Å, showing that there is a standard thin disc structure down to R ≥ 190-380 Rg and determining the mass accretion rate through the outer disc. This predicts a much higher bolometric luminosity than observed, indicating that there must be strong wind and/or advective energy losses from the inner disc, as expected for a highly super-Eddington accretion flow. Significant outflows are detected in both the narrow-line region (NLR) and broad-line region (BLR) emission lines, confirming the presence of a wind. We propose a global picture for the structure of a super-Eddington accretion flow where the inner disc puffs up, shielding much of the potential NLR material, and show how inclination angle with respect to this and the wind can explain very different X-ray properties of RX J0439.6-5311 and 1H 0707-495. Therefore, this source provides strong supporting evidence that 'simple' and 'complex' super-Eddington NLS1s can be unified within the same accretion flow scenario but with different inclination angles. We also propose that these extreme NLS1s could be the low-redshift analogues of weak emission-line quasars.

  6. Confrontation of the Magnetically Arrested Disc Scenario with Observations of FR II Sources

    Directory of Open Access Journals (Sweden)

    Katarzyna Rusinek

    2017-10-01

    Full Text Available The main aim of our work was to check whether powers of jets in FR II radio galaxies (RGs and quasars (QSOs can be reproduced by the Magnetically Arrested Disc (MAD scenario. Assuming that established in the recent numerical simulations of the MAD scenario the (H/R2 dependence of the jet production efficiency is correct, we demonstrate that in order to reproduce the observed jet powers in FR II sources: (i accretion discs must be geometrically much thicker than the standard ones; (ii and/or that the jet production is strongly modulated.

  7. Probing dust settling in proto-planetary discs with ALMA

    Science.gov (United States)

    Boehler, Y.; Dutrey, A.; Guilloteau, S.; Piétu, V.

    2013-05-01

    Investigating the dynamical evolution of dust grains in proto-planetary discs is a key issue to understand how planets should form. We identify under which conditions dust settling can be constrained by high angular resolution observations at mm wavelengths, and which observational strategies are suited for such studies. Exploring a large range of models, we generate synthetic images of discs with different degrees of dust settling, and simulate high angular resolution (˜0.05-0.3 arcsec) Atacama Large Millimeter/submillimeter Array (ALMA) observations of these synthetic discs. The resulting data sets are then analysed blindly with homogeneous disc models (where dust and gas are totally mixed) and the derived disc parameters are used as tracers of the settling factor. Our dust discs are partially resolved by ALMA and present some specific behaviours on radial and mainly vertical directions, which can be used to quantify the level of settling. We find out that an angular resolution better than or equal to ˜0.1 arcsec (using 2.3 km baselines at 0.8mm) allows us to constrain the dust scale height and flaring index with sufficient precision to unambiguously distinguish between settled and non-settled discs, provided the inclination is close enough to edge-on (i ≥ 75°). Ignoring dust settling and assuming hydrostatic equilibrium when analysing such discs affect the derived dust temperature and the radial dependency of the dust emissivity index. The surface density distribution can also be severely biased at the highest inclinations. However, the derived dust properties remain largely unaffected if the disc scale height is fitted separately. ALMA has the potential to test some of the dust settling mechanisms, but for real discs, deviations from ideal geometry (warps, spiral waves) may provide an ultimate limit on the dust settling detection.

  8. DiSC

    DEFF Research Database (Denmark)

    Pedersen, Rasmus; Sloth, Christoffer; Bruun Andresen, Gorm

    2015-01-01

    This paper presents the MATLAB simulation framework, DiSC, for verifying voltage control approaches in power distribution systems. It consists of real consumption data, stochastic models of renewable resources, flexible assets, electrical grid, and models of the underlying communication channels....... The simulation framework makes it possible to validate control approaches, and thus advance realistic and robust control algorithms for distribution system voltage control. Two examples demonstrate the potential voltage issues from penetration of renewables in the distribution grid, along with simple control...

  9. Wave disc engine apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Norbert; Piechna, Janusz; Sun, Guangwei; Parraga, Pablo-Francisco

    2018-01-02

    A wave disc engine apparatus is provided. A further aspect employs a constricted nozzle in a wave rotor channel. A further aspect provides a sharp bend between an inlet and an outlet in a fluid pathway of a wave rotor, with the bend being spaced away from a peripheral edge of the wave rotor. A radial wave rotor for generating electricity in an automotive vehicle is disclosed in yet another aspect.

  10. Total disc replacement.

    Science.gov (United States)

    Vital, J-M; Boissière, L

    2014-02-01

    Total disc replacement (TDR) (partial disc replacement will not be described) has been used in the lumbar spine since the 1980s, and more recently in the cervical spine. Although the biomechanical concepts are the same and both are inserted through an anterior approach, lumbar TDR is conventionally indicated for chronic low back pain, whereas cervical TDR is used for soft discal hernia resulting in cervicobrachial neuralgia. The insertion technique must be rigorous, with precise centering in the disc space, taking account of vascular anatomy, which is more complex in the lumbar region, particularly proximally to L5-S1. All of the numerous studies, including prospective randomized comparative trials, have demonstrated non-inferiority to fusion, or even short-term superiority regarding speed of improvement. The main implant-related complication is bridging heterotopic ossification with resulting loss of range of motion and increased rates of adjacent segment degeneration, although with an incidence lower than after arthrodesis. A sufficiently long follow-up, which has not yet been reached, will be necessary to establish definitively an advantage for TDR, particularly in the cervical spine. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Polarimetric microlensing of circumstellar discs

    Science.gov (United States)

    Sajadian, Sedighe; Rahvar, Sohrab

    2015-12-01

    We study the benefits of polarimetry observations of microlensing events to detect and characterize circumstellar discs around the microlensed stars located at the Galactic bulge. These discs which are unresolvable from their host stars make a net polarization effect due to their projected elliptical shapes. Gravitational microlensing can magnify these signals and make them be resolved. The main aim of this work is to determine what extra information about these discs can be extracted from polarimetry observations of microlensing events in addition to those given by photometry ones. Hot discs which are closer to their host stars are more likely to be detected by microlensing, owing to more contributions in the total flux. By considering this kind of discs, we show that although the polarimetric efficiency for detecting discs is similar to the photometric observation, but polarimetry observations can help to constraint the disc geometrical parameters e.g. the disc inner radius and the lens trajectory with respect to the disc semimajor axis. On the other hand, the time-scale of polarimetric curves of these microlensing events generally increases while their photometric time-scale does not change. By performing a Monte Carlo simulation, we show that almost four optically thin discs around the Galactic bulge sources are detected (or even characterized) through photometry (or polarimetry) observations of high-magnification microlensing events during 10-yr monitoring of 150 million objects.

  12. Formation of Extrasolar Giant Planets by Core Nucleated Accretion

    Science.gov (United States)

    Bodenheimer, Peter

    Central objectives: Improving our understanding of extra-solar gas giant planet formation through the Core-Nucleated Accretion model, based on constraints derived from extrasolar planet observations. More specifically, we will determine: (1) the physical conditions in a protoplanetary disk, at various distances from the star, that may lead to the formation of gas giant planets; (2) the effects of planetary migration, due to resonant torques, on realistic planet formation models, when disk evolution is taken into account; (3) luminosities, surface temperatures, and other observable properties of giant planets formed through core-nucleated accretion, which will help in the characterization of young planet candidates detected via imaging techniques. Methods and techniques: We will pursue these objectives mainly by means of numerical modeling. A number of state-of-the-art codes will be employed to model in detail different processes at various stages of the planet's growth. (1) A multi-zone accretion code will be used to model accretion of planetesimals onto the solid core. This approach will allow us to account for the evolution of the size distribution of the planetesimals, the variations of their velocity distribution relative to the planet's core, the orbital spacing of potential competing cores, and a time variable rate of accretion of small planetesimals with a range of sizes as well as of stochastic impacts of larger bodies. All these effects will provide a more accurate determination of the time scales for the growth of a giant planet's solid core. (2) A planet formation code that includes a large number of physical effects, calculated in a detailed manner, will be used to model the planet evolution until gas accretion ends. The code computes the interaction of the planetesimals with the protoplanet's envelope and determines whether the planetesimals reach the core or are dissolved in the envelope. The calculation of the thermal structure of the envelope takes

  13. Ultraviolet Echoes of Quasar Accretion Disks

    Science.gov (United States)

    Trump, Jonathan

    2017-08-01

    We propose a novel ultraviolet monitoring campaign with WFC3/UVIS to measure quasar accretion disk structure. The bulk of supermassive black hole growth occurs in luminous quasar phases of rapid accretion, yet the governing physics remains poorly understood. Continuum reverberation mapping (RM) measures the accretion disk size via the time lag between short- and long-wavelength emission: the proposed UV monitoring forms the foundation for simultaneous optical observations (expected to continue for our quasars through 2019). Currently only 4 Seyfert AGNs have UV/optical RM accretion-disk sizes, all low-luminosity and at z<0.02. We propose to monitor 5 new quasars, spanning an order of magnitude higher accretion rate and out to z 1. The 5 quasar targets are drawn from SDSS-RM, a pioneering multi-object spectroscopic RM campaign, and have been monitored with optical photometry and spectroscopy since 2014. The higher luminosity and accurate RM masses of our sample enable the first measurements of accretion-rate effects on accretion-disk size, with UV monitoring directly probing changes in the inner disk suggested by theory and previous indirect observations. Our proposed HST monitoring campaign is unusually efficient, targeting 5 quasars per orbit using the DASH method with UVIS subarray readouts. We use simulations to demonstrate that our 2-day cadence over 32 epochs will accurately measure continuum lags and accretion-disk structure. Ultraviolet monitoring of these 5 quasars will enable critical new measurements of accretion-disk structure during the rapid accretion mode that dominates black hole growth.

  14. Black-Hole Accretion Disks --- Towards a New Paradigm ---

    Science.gov (United States)

    Kato, S.; Fukue, J.; Mineshige, S.

    2008-03-01

    Part I: Concepts of Accretion Disks: Chap. 1: Introduction, 1.1 Accretion Energy - Historical Origin, { Accretion-Disk Paradigm - Active Universe, 1.3 Accretion-Powered Objects - Observational Reviews, 1.4 X-Ray Binaries and Ultra-Luminous X-Ray Sources, 1.5 Active Galactic Nuclei, 1.6 Present Paradigm, Chap. 2: Physical Processes Related to Accretion, 2.1 Eddington Luminosity, 2.2 Bondi Accretion, 2.3 Viscous Process, 2.4 Magnetic Instabilities, 2.5 Relativistic Effects Part II: Classical Picture: Chap. 3: Classical Models, 3.1 Viscous Accretion Disks, 3.2 Standard Disks, 3.3 Optically Thin Disks, 3.4 Accretion Disk Coronae, 3.5 Relativistic Standard Disks, 3.6 Relativistic Tori Chap. 4: Secular and Thermal Instabilities, 4.1 Secular Instability, 4.2 Thermal Instability, 4.3 Stability Examination on dot{M}-Σ and T-Σ Planes, 4.4 Mathematical Derivation of the Stability Criterion, Chap. 5: Dwarf-Nova Type Instability, 5.1 Thermal-Ionization Instability, 5.2 Time Evolution of Disks in X-Ray Novae Chap. 6: Observability of Relativistic Effects, 6.1 Ray Tracing, 6.2 Imaging - Black Hole Silhouette, 6.3 Spectroscopy - Continuum and Line, 6.4 Photometry - Light Curve Diagnosis, 6.5 Other Effects - Lensing and Jets, Part III: Modern Picture: Chap. 7: Equations to Construct Generalized Models, 7.1 Basic Equations and Importance of Advection, 7.2 One-Temperature Disks, 7.3 Two-Temperature Disks, 7.4 Time-Dependent Equations Chap. 8: Transonic Nature of Accretion Flows, 8.1 Topology of Black-Hole Accretion, 8.2 Regularity Condition at a Critical Radius, 8.3 Topology around the Critical Radius in Isothermal Disks, 8.4 Numerical Examples of Transonic Flows, 8.5 Transonic Flows with Standing Shocks Chap. 9: Radiatively Inefficient Accretion Flows, 9.1 Advection-Dominated Accretion Flow, 9.2 Radial Structure of Advection-Dominated Flow, 9.3 Radiation Spectra of Advection-Dominated Flow, 9.4 Stability of Advection-Dominated Flow, 9.5 Multi-Dimensional Effects, Chap. 10: Slim

  15. Observability of forming planets and their circumplanetary discs - I. Parameter study for ALMA

    Science.gov (United States)

    Szulágyi, J.; Plas, G. van der; Meyer, M. R.; Pohl, A.; Quanz, S. P.; Mayer, L.; Daemgen, S.; Tamburello, V.

    2018-01-01

    We present mock observations of forming planets with Atacama Large Millimeter Array (ALMA). The possible detections of circumplanetary discs (CPDs) were investigated around planets of Saturn, 1, 3, 5, and 10 Jupiter-masses that are placed at 5.2 au from their star. The radiative, 3D hydrodynamic simulations were then post-processed with RADMC3D and the ALMA observation simulator. We found that even though the CPDs are too small to be resolved, they are hot due to the accreting planet in the optically thick limit; therefore, the best chance to detect them with continuum observations in this case is at the shortest ALMA wavelengths, such as band 9 (440 μm). Similar fluxes were found in the case of Saturn and Jupiter-mass planets, as for the 10 MJup gas-giant, due to temperature-weighted optical depth effects: when no deep gap is carved, the planet region is blanketed by the optically thick circumstellar disc leading to a less efficient cooling there. A test was made for a 52 au orbital separation, which showed that optically thin CPDs are also detectable in band 7 but they need longer integration times (>5 h). Comparing the gap profiles of the same simulation at various ALMA bands and the hydro simulation confirmed that they change significantly, first because the gap is wider at longer wavelengths due to decreasing optical depth; secondly, the beam convolution makes the gap shallower and at least 25 per cent narrower. Therefore, caution has to be made when estimating planet masses based on ALMA continuum observations of gaps.

  16. Imprints of the super-Eddington accretion on the quasar clustering

    Science.gov (United States)

    Oogi, Taira; Enoki, Motohiro; Ishiyama, Tomoaki; Kobayashi, Masakazu A. R.; Makiya, Ryu; Nagashima, Masahiro; Okamoto, Takashi; Shirakata, Hikari

    2017-10-01

    Super-Eddington mass accretion has been suggested as an efficient mechanism to grow supermassive black holes. We investigate the imprint left by the radiative efficiency of the super-Eddington accretion process on the clustering of quasars using a new semi-analytic model of galaxy and quasar formation based on large-volume cosmological N-body simulations. Our model includes a simple model for the radiative efficiency of a quasar, which imitates the effect of photon trapping for a high mass accretion rate. We find that the model of radiative efficiency affects the relation between the quasar luminosity and the quasar host halo mass. The quasar host halo mass has only weak dependence on quasar luminosity when there is no upper limit for quasar luminosity. On the other hand, it has significant dependence on quasar luminosity when the quasar luminosity is limited by its Eddington luminosity. In the latter case, the quasar bias also depends on the quasar luminosity, and the quasar bias of bright quasars is in agreement with observations. Our results suggest that the quasar clustering studies can provide a constraint on the accretion disc model.

  17. The accretion flow in the discless intermediate polar V2400 Ophiuchi

    Science.gov (United States)

    Hellier, Coel; Beardmore, A. P.

    2002-03-01

    RXTE observations confirm that the X-ray light curve of V2400 Oph is pulsed at the beat cycle, as expected in a discless intermediate polar. There are no X-ray modulations at the orbital or spin cycles, but optical line profiles vary with all three cycles. We construct a model for line-profile variations in a discless accretor, based on the idea that the accretion stream flips from one magnetic pole to the other, and show that this accounts for the observed behaviour over the spin and beat cycles. The minimal variability over the orbital cycle implies that (1) V2400 Oph is at an inclination of only ~10°, and (2) much of the accretion flow is not in a coherent stream, but is circling the white dwarf, possibly as a ring of denser, diamagnetic blobs. We discuss the light that this sheds on disc formation in intermediate polars.

  18. Decoupling of magnetic fields in collapsing protostellar envelopes and disc formation and fragmentation

    Science.gov (United States)

    Zhao, Bo; Caselli, Paola; Li, Zhi-Yun; Krasnopolsky, Ruben

    2018-02-01

    Efficient magnetic braking is a formidable obstacle to the formation of rotationally supported discs (RSDs) around protostars in magnetized dense cores. We have previously shown, through 2D (axisymmetric) non-ideal magnetohydrodynamic simulations, that removing very small grains (VSGs: ∼10 Å to few 100 Å) can greatly enhance ambipolar diffusion and enable the formation of RSDs. Here, we extend the simulations of disc formation enabled by VSG removal to 3D. We find that the key to this scenario of disc formation is that the drift velocity of the magnetic field almost cancels out the infall velocity of the neutrals in the 102-103 au scale 'pseudo-disc' where the field lines are most severely pinched and most of protostellar envelope mass infall occurs. As a result, the bulk neutral envelope matter can collapse without dragging much magnetic flux into the disc-forming region, which lowers the magnetic braking efficiency. We find that the initial discs enabled by VSG removal tend to be Toomre-unstable, which leads to the formation of prominent spiral structures that function as centrifugal barriers. The piling-up of infall material near the centrifugal barrier often produces dense fragments of tens of Jupiter masses, especially in cores that are not too strongly magnetized. Some fragments accrete on to the central stellar object, producing bursts in mass accretion rate. Others are longer lived, although whether they can survive for a long term to produce multiple systems remains to be ascertained. Our results highlight the importance of dust grain evolution in determining the formation and properties of protostellar discs and potentially multiple systems.

  19. The Causal Connection Between Disc and Power-Law Variability in Hard State Black Hole X-Ray Binaries

    Science.gov (United States)

    Uttley, P.; Wilkinson, T.; Cassatella, P.; Wilms, J.; Pottschimdt, K.; Hanke, M.; Boeck, M.

    2010-01-01

    We use the XMM-Newton EPIC-pn instrument in timing mode to extend spectral time-lag studies of hard state black hole X-ray binaries into the soft X-ray band. \\Ve show that variations of the disc blackbody emission substantially lead variations in the power-law emission, by tenths of a second on variability time-scales of seconds or longer. The large lags cannot be explained by Compton scattering but are consistent with time-delays due to viscous propagation of mass accretion fluctuations in the disc. However, on time-scales less than a second the disc lags the power-law variations by a few ms, consistent with the disc variations being dominated by X-ray heating by the power-law, with the short lag corresponding to the light-travel time between the power-law emitting region and the disc. Our results indicate that instabilities in the accretion disc are responsible for continuum variability on time-scales of seconds or longer and probably also on shorter time-scales.

  20. [Temporomandibular joint disc surgery].

    Science.gov (United States)

    Potier, J; Maes, J-M; Nicot, R; Dumousseau, T; Cotelle, M; Ferri, J

    2016-09-01

    Temporomandibular joint (TMJ) disorders are a common disease and may be responsible for major functional and painful repercussions. Treatment is not consensual. The literature highlights the role of conservative treatments (physiotherapy, analgesics, splints) in a first attempt. Minimally invasive surgical techniques (arthroscopy, arthrocentesis) have developed rapidly in recent decades. They have proven effective and reliable, especially in patients suffering from irreducible or reducible anterior disc dislocation or presenting with arthopathies. The goal of our work was to make an update about disk surgery. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. First results from the use of the relativistic and slim disc model SLIMULX in XSPEC

    Science.gov (United States)

    Caballero-Garcia, M. D.; Bursa, M.; Dovčiak, M.; Fabrika, S.; Castro-Tirado, A. J.; Karas, V.

    2017-07-01

    Ultra-Luminous X-ray sources (ULXs) are accreting black holes for which their X-ray properties have been seen to be different to the case of stellar-mass black hole binaries. For most of the cases their intrinsic energy spectra are well described by a cold accretion disc (thermal) plus a curved high-energy emission components. The mass of the black hole (BH) derived from the thermal disc component is usually in the range of 100-1000 solar masses, which have led to the idea that this might represent strong evidence of the Intermediate Mass Black Holes (IMBH), proposed to exist by theoretical studies but with no firm detection (as a class) so far. Recent theoretical and observational developments are leading towards the idea that these sources are instead stellar-mass BHs accreting at an unusual super-Eddington regime. In this paper we briefly describe the model SLIMULX that can be used in XSPEC for the fit of thermal spectra of slim discs around stellar mass BHs in the super-Eddington regime. This model consistently takes all relativistic effects into account. We present the obtained results from the fit of the X-ray spectra from NGC 5408 X—1.

  2. Dynamic analysis of three autoventilated disc brakes

    Directory of Open Access Journals (Sweden)

    Ricardo A. García-León

    2017-09-01

    Full Text Available The braking system of a car must meet several requirements, among which safety is the most important. It is also composed of a set of mechanical parts such as springs, different types of materials (Metallic and Non Metallic, gases and liquids. The brakes must work safely and predictably in all circumstances, which means having a stable level of friction, in any condition of temperature, humidity and salinity of the environment. For a correct design and operation of brake discs, it is necessary to consider different aspects, such as geometry, type of material, mechanical strength, maximum temperature, thermal deformation, cracking resistance, among others. Therefore, the main objective of this work is to analyze the dynamics and kinetics of the brake system from the pedal as the beginning of mathematical calculations to simulate the behavior and Analysis of Finite Elements (FEA, with the help of SolidWorks Simulation Software. The results show that the third brake disc works best in relation to the other two discs in their different working conditions such as speed and displacement in braking, concluding that depending on the geometry of the brake and the cooling channels these systems can be optimized that are of great importance for the automotive industry.

  3. Late veneer and late accretion to the terrestrial planets

    Science.gov (United States)

    Brasser, R.; Mojzsis, S. J.; Werner, S. C.; Matsumura, S.; Ida, S.

    2016-12-01

    It is generally accepted that silicate-metal ('rocky') planet formation relies on coagulation from a mixture of sub-Mars sized planetary embryos and (smaller) planetesimals that dynamically emerge from the evolving circum-solar disc in the first few million years of our Solar System. Once the planets have, for the most part, assembled after a giant impact phase, they continue to be bombarded by a multitude of planetesimals left over from accretion. Here we place limits on the mass and evolution of these planetesimals based on constraints from the highly siderophile element (HSE) budget of the Moon. Outcomes from a combination of N-body and Monte Carlo simulations of planet formation lead us to four key conclusions about the nature of this early epoch. First, matching the terrestrial to lunar HSE ratio requires either that the late veneer on Earth consisted of a single lunar-size impactor striking the Earth before 4.45 Ga, or that it originated from the impact that created the Moon. An added complication is that analysis of lunar samples indicates the Moon does not preserve convincing evidence for a late veneer like Earth. Second, the expected chondritic veneer component on Mars is 0.06 weight percent. Third, the flux of terrestrial impactors must have been low (≲10-6 M⊕ Myr-1) to avoid wholesale melting of Earth's crust after 4.4 Ga, and to simultaneously match the number of observed lunar basins. This conclusion leads to an Hadean eon which is more clement than assumed previously. Last, after the terrestrial planets had fully formed, the mass in remnant planetesimals was ∼10-3 M⊕, lower by at least an order of magnitude than most previous models suggest. Our dynamically and geochemically self-consistent scenario requires that future N-body simulations of rocky planet formation either directly incorporate collisional grinding or rely on pebble accretion.

  4. Ice accretion modeling for wind turbine rotor blades

    Energy Technology Data Exchange (ETDEWEB)

    Chocron, D.; Brahimi, T.; Paraschivoiu, I.; Bombardier, J.A. [Ecole Polytechnique de Montreal (Canada)

    1997-12-31

    The increasing application of wind energy in northern climates implies operation of wind turbines under severe atmospheric icing conditions. Such conditions are well known in the Scandinavian countries, Canada and most of Eastern European countries. An extensive study to develop a procedure for the prediction of ice accretion on wind turbines rotor blades appears to be essential for the safe and economic operation of wind turbines in these cold regions. The objective of the present paper is to develop a computer code capable of simulating the shape and amount of ice which may accumulate on horizontal axis wind turbine blades when operating in icing conditions. The resulting code is capable to predict and simulate the formation of ice in rime and glaze conditions, calculate the flow field and particle trajectories and to perform thermodynamic analysis. It also gives the possibility of studying the effect of different parameters that influence ice formation such as temperature, liquid water content, droplet diameter and accretion time. The analysis has been conducted on different typical airfoils as well as on NASA/DOE Mod-0 wind turbine. Results showed that ice accretion on wind turbines may reduce the power output by more than 20%.

  5. Foundations of Black Hole Accretion Disk Theory

    National Research Council Canada - National Science Library

    Abramowicz, Marek A; Fragile, P. Chris

    2013-01-01

    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves...

  6. The physics of accretion onto black holes

    CERN Document Server

    Belloni, Tomaso; Casella, Piergiorgio; Gilfanov, Marat; Jonker, Peter; King, Andrew

    2015-01-01

    This title reviews in-depth research on accretion on all scales, from galactic binaries to intermediate mass and supermassive black holes. Possible future directions of accretion are also discussed. The following main themes are covered: a historical perspective; physical models of accretion onto black holes of all masses; black hole fundamental parameters; and accretion, jets and outflows. An overview and outlook on the topic is also presented.  This volume summarizes the status of the study of astrophysical black hole research and is aimed at astrophysicists and graduate students working in this field.  Originally published in Space Science Reviews, Vol 183/1-4, 2014.

  7. ASYMMETRIC ACCRETION FLOWS WITHIN A COMMON ENVELOPE

    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, Morgan; Ramirez-Ruiz, Enrico [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2015-04-10

    This paper examines flows in the immediate vicinity of stars and compact objects dynamically inspiralling within a common envelope (CE). Flow in the vicinity of the embedded object is gravitationally focused, leading to drag and potentially to gas accretion. This process has been studied numerically and analytically in the context of Hoyle–Lyttleton accretion (HLA). Yet, within a CE, accretion structures may span a large fraction of the envelope radius, and in so doing sweep across a substantial radial gradient of density. We quantify these gradients using detailed stellar evolution models for a range of CE encounters. We provide estimates of typical scales in CE encounters that involve main sequence stars, white dwarfs, neutron stars, and black holes with giant-branch companions of a wide range of masses. We apply these typical scales to hydrodynamic simulations of three-dimensional HLA with an upstream density gradient. This density gradient breaks the symmetry that defines HLA flow, and imposes an angular momentum barrier to accretion. Material that is focused into the vicinity of the embedded object thus may not be able to accrete. As a result, accretion rates drop dramatically, by one to two orders of magnitude, while drag rates are only mildly affected. We provide fitting formulae to the numerically derived rates of drag and accretion as a function of the density gradient. The reduced ratio of accretion to drag suggests that objects that can efficiently gain mass during CE evolution, such as black holes and neutron stars, may grow less than implied by the HLA formalism.

  8. Unstable Helium Shell Burning on Accreting White Dwarfs

    Science.gov (United States)

    Shen, Ken J.; Bildsten, Lars

    2009-07-01

    AM Canum Venaticorum (AM CVn) binaries consist of a degenerate helium donor and a helium, C/O, or O/Ne white dwarf accretor, with accretion rates of \\dot{M} = 10^{-13}\\--10^{-5} \\, M_\\odot \\; yr^{-1}. For accretion rates thermonuclear supernovae. In this paper, we study the evolution of the He-burning shells in more detail. We calculate maximum achievable temperatures as well as the minimum envelope masses that achieve dynamical burning conditions, finding that AM CVn systems with accretors gsim0.8 M sun will undergo dynamical burning. Triple-α reactions during the hydrostatic evolution set a lower limit to the 12C mass fraction of 0.001-0.05 when dynamical burning occurs, but core dredge-up may yield 12C, 16O, and/or 20Ne mass fractions of ~0.1. Accreted 14N will likely remain 14N during the accretion and convective phases, but regardless of 14N's fate, the neutron-to-proton ratio at the beginning of convection is fixed until the onset of dynamical burning. During explosive burning, the 14N will undergo 14N(α, γ)18F(α, p)21Ne, liberating a proton for the subsequent 12C(p, γ)13N(α, p)16O reaction, which bypasses the relatively slow α-capture onto 12C. Future hydrodynamic simulations must include these isotopes, as the additional reactions will reduce the Zel'dovich-von Neumann-Döring length, making the propagation of the detonation wave more likely.

  9. The late inspiral of supermassive black hole binaries with circumbinary gas discs in the LISA band

    Science.gov (United States)

    Tang, Yike; Haiman, Zoltán; MacFadyen, Andrew

    2018-02-01

    We present the results of 2D, moving-mesh, viscous hydrodynamical simulations of an accretion disc around a merging supermassive black hole binary (SMBHB). The simulation is pseudo-Newtonian, with the BHs modeled as point masses with a Paczynski-Wiita potential, and includes viscous heating, shock heating, and radiative cooling. We follow the gravitational inspiral of an equal-mass binary with a component mass Mbh = 106M⊙ from an initial separation of 60rg (where rg ≡ GMbh/c2 is the gravitational radius) to the merger. We find that a central, low-density cavity forms around the binary, as in previous work, but that the BHs capture gas from the circumbinary disc and accrete efficiently via their own minidiscs, well after their inspiral outpaces the viscous evolution of the disc. The system remains luminous, displaying strong periodicity at twice the binary orbital frequency throughout the entire inspiral process, all the way to the merger. In the soft X-ray band, the thermal emission is dominated by the inner edge of the circumbinary disc with especially clear periodicity in the early inspiral. By comparison, harder X-ray emission is dominated by the minidiscs, and the light curve is initially more noisy but develops a clear periodicity in the late inspiral stage. This variability pattern should help identify the EM counterparts of SMBHBs detected by the space-based gravitational-wave detector LISA.

  10. Optical effects related to Keplerian discs orbiting Kehagias-Sfetsos naked singularities

    Science.gov (United States)

    Stuchlík, Zdeněk; Schee, Jan

    2014-10-01

    We demonstrate possible optical signatures of the Kehagias-Sfetsos (KS) naked singularity spacetimes representing a spherically symmetric vacuum solution of the modified Hořava gravity. In such spacetimes, accretion structures significantly different from those present in standard black hole spacetimes occur due to the ‘antigravity’ effect, which causes an internal static sphere surrounded by Keplerian discs. We focus our attention on the optical effects related to the Keplerian accretion discs, constructing the optical appearance of the Keplerian discs, the spectral continuum due to their thermal radiation, and the spectral profiled lines generated in the innermost parts of such discs. The KS naked singularity signature is strongly encoded in the characteristics of predicted optical effects, especially in cases where the spectral continuum and spectral lines are profiled by the strong gravity of the spacetimes due to the vanishing region of the angular velocity gradient influencing the effectiveness of the viscosity mechanism. We can conclude that optical signatures of KS naked singularities can be well distinguished from the signatures of standard black holes.

  11. On the decay of strong magnetization in global disc simulations with toroidal fields

    Science.gov (United States)

    Fragile, P. Chris; Sądowski, Aleksander

    2017-05-01

    Strong magnetization in accretion discs could resolve a number of outstanding issues related to stability and state transitions in low-mass X-ray binaries. However, it is unclear how real discs become strongly magnetized and, even if they do, whether they can remain in such a state. In this paper, we address the latter issue through a pair of global disc simulations. Here, we only consider cases of initially purely toroidal magnetic fields contained entirely within a compact torus. We find that over only a few tens of orbital periods, the magnetization of an initially strongly magnetized disc, Pmag/Pgas ≥ 10, drops to ≲ 0.1, similar to the steady-state value reached in initially weakly magnetized discs. This is consistent with recent shearing box simulations with initially strong toroidal fields, the robust conclusion being that strongly magnetized toroidal fields cannot be locally self-sustaining. These results appear to leave net poloidal flux or extended radial fields as the only avenues for establishing strongly magnetized discs, ruling out the thermal collapse scenario.

  12. Properties of magnetically supported dissipative accretion flow around black holes with cooling effects

    Science.gov (United States)

    Sarkar, Biplob; Das, Santabrata; Mandal, Samir

    2018-01-01

    We investigate the global structure of the advection dominated accretion flow around a Schwarzschild black hole where the accretion disc is threaded by toroidal magnetic fields. We consider synchrotron radiative process as an effective cooling mechanism active in the flow. With this, we obtain the global transonic accretion solutions by exploring the variety of boundary conditions and dissipation parameters, namely accretion rate ({\\dot{m}}) and viscosity (αB). The fact that depending on the initial parameters, steady state accretion flows can possess centrifugally supported shock waves. These global shock solutions exist even when the level of dissipation is relatively high. We study the properties of shock waves and observe that the dynamics of the post-shock corona (hereafter, PSC) is regulated by the flow parameters. Interestingly, we find that shock solution disappears completely when the dissipation parameters exceed their critical values. We calculate the critical values of viscosity parameter (α ^cri_B) adopting the canonical values of adiabatic indices as γ = 4/3 (ultrarelativistic) and 1.5 (seminon-relativistic) and find that in the gas pressure dominated domain, α ^cri_B ˜ 0.4 for γ = 4/3 and α ^cri_B ˜ 0.27 for γ = 1.5, respectively. We further show that global shock solutions are relatively more luminous compared to the shock free solutions. Also, we have calculated the synchrotron spectra for shocked solutions. When the shock is considered to be dissipative in nature, it would have an important implication as the available energy at PSC can be utilized to power the outflowing matter escaped from PSC. Towards this, we calculate the maximum shock luminosity and discuss the observational implication of our present formalism.

  13. Relativistic Disc Line: A Tool to Constrain Neutron Star Equation of State Models

    Science.gov (United States)

    Bhattacharyya, Sudip

    2017-09-01

    Relativistic iron Kα spectral emission line from the inner disc of a neutron star Low-Mass X-ray Binary (LMXB) was first detected in 2007. This discovery opened up new ways to probe strong gravity and dense matter. The past decade has seen detections of such a line from many neutron star LMXBs, and confirmation of this line from the same source with several X-ray satellites. These have firmly established the new field of relativistic disc line from neutron star systems in only a decade or so. Fitting the shape of such a line with an appropriate general relativistic model provides the accretion disc inner edge radius to the stellar mass ratio. In this review, we briefly discuss how an accurate measurement of this ratio with a future larger area X-ray instrument can be used to constrain neutron star equation of state models.

  14. Chemical compositions of stars in two stellar streams from the Galactic thick disc

    Science.gov (United States)

    Ramya, P.; Reddy, Bacham E.; Lambert, David L.

    2012-10-01

    We present abundances for 20 elements for stars in two stellar streams identified by Arifyanto & Fuchs: 18 stars from the Arcturus stream and 26 from a new stream, which we call the AF06 stream, both from the Galactic thick disc. Results show that both streams are metal poor and very old (10-14 Gyr) with kinematics and abundances overlapping with the properties of local field thick-disc stars. Both streams exhibit a range in metallicity but with relative elemental abundances that are identical to those of thick-disc stars of the same metallicity. These results show that neither stream can result from dissolution of an open cluster. It is highly unlikely that either stream represents tidal debris from an accreted satellite galaxy. Both streams most probably owe their origin to dynamical perturbations within the Galaxy.

  15. 1 Hz Flaring in the Accreting Millisecond Pulsar NGC 6440 X-2: Disk Trapping and Accretion Cycles

    NARCIS (Netherlands)

    Patruno, A.; D'Angelo, C.

    2013-01-01

    The dynamics of the plasma in the inner regions of an accretion disk around accreting millisecond X-ray pulsars (AMXPs) is controlled by the magnetic field of the neutron star. The interaction between an accretion disk and a strong magnetic field is not well understood, particularly at low accretion

  16. Aerodynamics and thermal physics of helicopter ice accretion

    Science.gov (United States)

    Han, Yiqiang

    Ice accretion on aircraft introduces significant loss in airfoil performance. Reduced lift-to- drag ratio reduces the vehicle capability to maintain altitude and also limits its maneuverability. Current ice accretion performance degradation modeling approaches are calibrated only to a limited envelope of liquid water content, impact velocity, temperature, and water droplet size; consequently inaccurate aerodynamic performance degradations are estimated. The reduced ice accretion prediction capabilities in the glaze ice regime are primarily due to a lack of knowledge of surface roughness induced by ice accretion. A comprehensive understanding of the ice roughness effects on airfoil heat transfer, ice accretion shapes, and ultimately aerodynamics performance is critical for the design of ice protection systems. Surface roughness effects on both heat transfer and aerodynamic performance degradation on airfoils have been experimentally evaluated. Novel techniques, such as ice molding and casting methods and transient heat transfer measurement using non-intrusive thermal imaging methods, were developed at the Adverse Environment Rotor Test Stand (AERTS) facility at Penn State. A novel heat transfer scaling method specifically for turbulent flow regime was also conceived. A heat transfer scaling parameter, labeled as Coefficient of Stanton and Reynolds Number (CSR = Stx/Rex --0.2), has been validated against reference data found in the literature for rough flat plates with Reynolds number (Re) up to 1x107, for rough cylinders with Re ranging from 3x104 to 4x106, and for turbine blades with Re from 7.5x105 to 7x106. This is the first time that the effect of Reynolds number is shown to be successfully eliminated on heat transfer magnitudes measured on rough surfaces. Analytical models for ice roughness distribution, heat transfer prediction, and aerodynamics performance degradation due to ice accretion have also been developed. The ice roughness prediction model was

  17. Silver nano fabrication using leaf disc of Passiflora foetida Linn

    Science.gov (United States)

    Lade, Bipin D.; Patil, Anita S.

    2017-06-01

    The main purpose of the experiment is to develop a greener low cost SNP fabrication steps using factories of secondary metabolites from Passiflora leaf extract. Here, the leaf extraction process is omitted, and instead a leaf disc was used for stable SNP fabricated by optimizing parameters such as a circular leaf disc of 2 cm (1, 2, 3, 4, 5) instead of leaf extract and grade of pH (7, 8, 9, 11). The SNP synthesis reaction is tried under room temperature, sun, UV and dark condition. The leaf disc preparation steps are also discussed in details. The SNP obtained using (1 mM: 100 ml AgNO3+ singular leaf disc: pH 9, 11) is applied against featured room temperature and sun condition. The UV spectroscopic analysis confirms that sun rays synthesized SNP yields stable nano particles. The FTIR analysis confirms a large number of functional groups such as alkanes, alkyne, amines, aliphatic amine, carboxylic acid; nitro-compound, alcohol, saturated aldehyde and phenols involved in reduction of silver salt to zero valent ions. The leaf disc mediated synthesis of silver nanoparticles, minimizes leaf extract preparation step and eligible for stable SNP synthesis. The methods sun and room temperature based nano particles synthesized within 10 min would be use certainly for antimicrobial activity.

  18. Swift observations of V404 Cyg during the 2015 outburst: X-ray outflows from super-Eddington accretion

    Science.gov (United States)

    Motta, S. E.; Kajava, J. J. E.; Sánchez-Fernández, C.; Beardmore, A. P.; Sanna, A.; Page, K. L.; Fender, R.; Altamirano, D.; Charles, P.; Giustini, M.; Knigge, C.; Kuulkers, E.; Oates, S.; Osborne, J. P.

    2017-10-01

    The black hole (BH) binary V404 Cyg entered the outburst phase in 2015 June after 26 yr of X-ray quiescence, and with its behaviour broke the outburst evolution pattern typical of most BH binaries. We observed the entire outburst with the Swift satellite and performed time-resolved spectroscopy of its most active phase, obtaining over a thousand spectra with exposures from tens to hundreds of seconds. All the spectra can be fitted with an absorbed power-law model, which most of the time required the presence of a partial covering. A blueshifted iron-Kα line appears in 10 per cent of the spectra together with the signature of high column densities, and about 20 per cent of the spectra seem to show signatures of reflection. None of the spectra showed the unambiguous presence of soft disc-blackbody emission, while the observed bolometric flux exceeded the Eddington value in 3 per cent of the spectra. Our results can be explained assuming that the inner part of the accretion flow is inflated into a slim disc that both hides the innermost (and brightest) regions of the flow, and produces a cold, clumpy, high-density outflow that introduces the high absorption and fast spectral variability observed. We argue that the BH in V404 Cyg might have been accreting erratically or even continuously at Eddington/super-Eddington rates - thus sustaining a surrounding slim disc - while being partly or completely obscured by the inflated disc and its outflow. Hence, the largest flares produced by the source might not be accretion-driven events, but instead the effects of the unveiling of the extremely bright source hidden within the system.

  19. Accreting neutron stars by QFT

    Science.gov (United States)

    Chen, Shao-Guang

    layer with thickness of 1 km then q = 1 (N1S1), the gravity from N1S1 inside and exterior will be completely shielded. Because of net nuν _{0} flux is the medium to produce and transmit gravity, q obstructed by the shielding layer lie on the density of layer matter and the section of single nucleon to electronic neutrino obtained by nuclear physics experiments is about 1.1*10 ({-) 43} cm (2) . The mass inside N1S1 for exterior has not gravity interaction, it equivalent to has not inertia as the mass vanish. The neutron star is as a empty shell thereby may rapidly rotating and has not upper limit of mass and radii by the gravity accretion of N1S1, which will influence the mechanisms of pulsars, quasars and X-rays generated. At N1S1 interior the mass for exterior has not gravity which is just we searching dark matter. The mass each part will each other shielding and gravity decrease to less than the pressure of the degenerate neutron gas. The neutron star cannot collapse into a singular point with infinite density, i.e., the black hole with infinite gravity cannot be formed or the neutron star is jest the black hole in observational meaning. By the gravity accrete of N1S1 the neutron star may enlarge its shell radii but thickness keep. Only a shell gravity may be not less than any a observed value which to be deemed as black hole. The neutron star has powerful gravity certainly accompany with great surface negative charge and it may rapidly to rotate, so that there is a powerful magnetic field surround it. The accreting neutron star is as a slowly expand empty shell with fixed thickness of 1 km, its spin period depend on its radii or total accretion mass.

  20. Neutron scattering residual stress measurements on gray cast iron brake discs

    Energy Technology Data Exchange (ETDEWEB)

    Spooner, S.; Payzant, E.A.; Hubbard, C.R. [and others

    1996-11-01

    Neutron diffraction was used to investigate the effects of a heat treatment designed to remove internal residual stresses in brake discs. It is believed that residual stresses may change the rate of deformation of the discs during severe braking conditions when the disc temperature is increased significantly. Neutron diffraction was used to map out residual strain distributions in a production disc before and after a stress-relieving heat treatment. Results from these neutron diffraction experiments show that some residual strains were reduced by as much as 400 microstrain by stress relieving. 5 refs., 5 figs., 1 tab.

  1. FORMING AN O STAR VIA DISK ACCRETION?

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Keping [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Zhang Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Beuther, Henrik; Fallscheer, Cassandra, E-mail: kqiu@mpifr-bonn.mpg.de [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2012-09-10

    We present a study of outflow, infall, and rotation in a {approx}10{sup 5} L{sub Sun} star-forming region, IRAS 18360-0537, with Submillimeter Array and IRAM 30 m observations. The 1.3 mm continuum map shows a 0.5 pc dust ridge, of which the central compact part has a mass of {approx}80 M{sub Sun} and harbors two condensations, MM1 and MM2. The CO (2-1) and SiO (5-4) maps reveal a biconical outflow centered at MM1, which is a hot molecular core (HMC) with a gas temperature of 320 {+-} 50 K and a mass of {approx}13 M{sub Sun }. The outflow has a gas mass of 54 M{sub Sun} and a dynamical timescale of 8 Multiplication-Sign 10{sup 3} yr. The kinematics of the HMC are probed by high-excitation CH{sub 3}OH and CH{sub 3}CN lines, which are detected at subarcsecond resolution and unveil a velocity gradient perpendicular to the outflow axis, suggesting a disk-like rotation of the HMC. An infalling envelope around the HMC is evidenced by CN lines exhibiting a profound inverse P Cygni profile, and the estimated mass infall rate, 1.5 Multiplication-Sign 10{sup -3} M{sub Sun} yr{sup -1}, is well comparable to that inferred from the mass outflow rate. A more detailed investigation of the kinematics of the dense gas around the HMC is obtained from the {sup 13}CO and C{sup 18}O (2-1) lines; the position-velocity diagrams of the two lines are consistent with the model of a free-falling and Keplerian-like rotating envelope. The observations suggest that the protostar of a current mass {approx}10 M{sub Sun} embedded within MM1 will develop into an O star via disk accretion and envelope infall.

  2. Numerical model of crustal accretion and cooling rates of fast-spreading mid-ocean ridges

    Directory of Open Access Journals (Sweden)

    P. Machetel

    2013-10-01

    Full Text Available We designed a thermo-mechanical numerical model for fast-spreading mid-ocean ridge with variable viscosity, hydrothermal cooling, latent heat release, sheeted dyke layer, and variable melt intrusion possibilities. The model allows for modulating several accretion possibilities such as the "gabbro glacier" (G, the "sheeted sills" (S or the "mixed shallow and MTZ lenses" (M. These three crustal accretion modes have been explored assuming viscosity contrasts of 2 to 3 orders of magnitude between strong and weak phases and various hydrothermal cooling conditions depending on the cracking temperatures value. Mass conservation (stream-function, momentum (vorticity and temperature equations are solved in 2-D cartesian geometry using 2-D, alternate direction, implicit and semi-implicit finite-difference scheme. In a first step, an Eulerian approach is used solving iteratively the motion and temperature equations until reaching steady states. With this procedure, the temperature patterns and motions that are obtained for the various crustal intrusion modes and hydrothermal cooling hypotheses display significant differences near the mid-ocean ridge axis. In a second step, a Lagrangian approach is used, recording the thermal histories and cooling rates of tracers travelling from the ridge axis to their final emplacements in the crust far from the mid-ocean ridge axis. The results show that the tracer's thermal histories are depending on the temperature patterns and the crustal accretion modes near the mid-ocean ridge axis. The instantaneous cooling rates obtained from these thermal histories betray these discrepancies and might therefore be used to characterize the crustal accretion mode at the ridge axis. These deciphering effects are even more pronounced if we consider the average cooling rates occurring over a prescribed temperature range. Two situations were tested at 1275–1125 °C and 1050–850 °C. The first temperature range covers mainly the

  3. Design and analysis of Air flow duct for improving the thermal performance of disc brake rotor

    Science.gov (United States)

    Raja, T.; Mathiselvan, G.; Sreenivasulureddy, M.; Goldwin Xavier, X.

    2017-05-01

    safety in automotive engineering has been considered as a number one priority in development of new vehicle. A brake system is one of the most critical systems in the vehicle, without which the vehicle will put a passenger in an unsafe position. Temperature distribution on disc rotor brake and the performance brake of disc rotor is influenced by the air flow around the disc rotor. In this paper, the effect of air flow over the disc rotor is analyzed using the CFD software. The air flow over the disc rotor is increased by using a duct to supply more air flow over the disc rotor. The duct is designed to supply more air to the rotor surface and it can be placed in front of the vehicle for better performance. Increasing the air flow around the rotor will maximize the heat convection from the rotor surface. The rotor life and the performance can be improved.

  4. Gas Accretion and Star Formation Rates

    Science.gov (United States)

    Sánchez Almeida, Jorge

    Cosmological numerical simulations of galaxy evolution show that accretion of metal-poor gas from the cosmic web drives the star formation in galaxy disks. Unfortunately, the observational support for this theoretical prediction is still indirect, and modeling and analysis are required to identify hints as actual signs of star formation feeding from metal-poor gas accretion. Thus, a meticulous interpretation of the observations is crucial, and this observational review begins with a simple theoretical description of the physical process and the key ingredients it involves, including the properties of the accreted gas and of the star formation that it induces. A number of observations pointing out the connection between metal-poor gas accretion and star formation are analyzed, specifically, the short gas-consumption time-scale compared to the age of the stellar populations, the fundamental metallicity relationship, the relationship between disk morphology and gas metallicity, the existence of metallicity drops in starbursts of star-forming galaxies, the so-called G dwarf problem, the existence of a minimum metallicity for the star-forming gas in the local universe, the origin of the α-enhanced gas forming stars in the local universe, the metallicity of the quiescent BCDs, and the direct measurements of gas accretion onto galaxies. A final section discusses intrinsic difficulties to obtain direct observational evidence, and points out alternative observational pathways to further consolidate the current ideas.

  5. Aerodynamic Simulation of Ice Accretion on Airfoils

    Science.gov (United States)

    Broeren, Andy P.; Addy, Harold E., Jr.; Bragg, Michael B.; Busch, Greg T.; Montreuil, Emmanuel

    2011-01-01

    This report describes recent improvements in aerodynamic scaling and simulation of ice accretion on airfoils. Ice accretions were classified into four types on the basis of aerodynamic effects: roughness, horn, streamwise, and spanwise ridge. The NASA Icing Research Tunnel (IRT) was used to generate ice accretions within these four types using both subscale and full-scale models. Large-scale, pressurized windtunnel testing was performed using a 72-in.- (1.83-m-) chord, NACA 23012 airfoil model with high-fidelity, three-dimensional castings of the IRT ice accretions. Performance data were recorded over Reynolds numbers from 4.5 x 10(exp 6) to 15.9 x 10(exp 6) and Mach numbers from 0.10 to 0.28. Lower fidelity ice-accretion simulation methods were developed and tested on an 18-in.- (0.46-m-) chord NACA 23012 airfoil model in a small-scale wind tunnel at a lower Reynolds number. The aerodynamic accuracy of the lower fidelity, subscale ice simulations was validated against the full-scale results for a factor of 4 reduction in model scale and a factor of 8 reduction in Reynolds number. This research has defined the level of geometric fidelity required for artificial ice shapes to yield aerodynamic performance results to within a known level of uncertainty and has culminated in a proposed methodology for subscale iced-airfoil aerodynamic simulation.

  6. Magnetically gated accretion in an accreting ‘non-magnetic’ white dwarf

    Science.gov (United States)

    Scaringi, S.; Maccarone, T. J.; D’Angelo, C.; Knigge, C.; Groot, P. J.

    2017-12-01

    White dwarfs are often found in binary systems with orbital periods ranging from tens of minutes to hours in which they can accrete gas from their companion stars. In about 15 per cent of these binaries, the magnetic field of the white dwarf is strong enough (at 106 gauss or more) to channel the accreted matter along field lines onto the magnetic poles. The remaining systems are referred to as ‘non-magnetic’, because until now there has been no evidence that they have a magnetic field that is strong enough to affect the accretion dynamics. Here we report an analysis of archival optical observations of the ‘non-magnetic’ accreting white dwarf in the binary system MV Lyrae, whose light curve displays quasi-periodic bursts of about 30 minutes duration roughly every 2 hours. The timescale and amplitude of these bursts indicate the presence of an unstable, magnetically regulated accretion mode, which in turn implies the existence of magnetically gated accretion, in which disk material builds up around the magnetospheric boundary (at the co-rotation radius) and then accretes onto the white dwarf, producing bursts powered by the release of gravitational potential energy. We infer a surface magnetic field strength for the white dwarf in MV Lyrae of between 2 × 104 gauss and 1 × 105 gauss, too low to be detectable by other current methods. Our discovery provides a new way of studying the strength and evolution of magnetic fields in accreting white dwarfs and extends the connections between accretion onto white dwarfs, young stellar objects and neutron stars, for which similar magnetically gated accretion cycles have been identified.

  7. Multicolor imaging in optic disc swelling

    Science.gov (United States)

    Thomas, Nicey Roy; Ghosh, Prachi Subhedar; Chowdhury, Maitreyi; Saurabh, Kumar; Roy, Rupak

    2017-01-01

    Differentiating optic disc edema (ODE) from pseudo optic disc edema (PODE) continues to pose a diagnostic dilemma. Current report highlights the role of multicolor imaging (MC) in differentiating ODE from PODE. Composite multicolor images of the disc in ODE show greenish hyperreflectance that extends beyond the optic disc margins with irregular blurry margins and obscured disc vasculature whereas PODE shows a greenish hyperreflectance with clear and distinct margins and well delineated disc vasculature. MC imaging adds to the present armamentarium of imaging modalities obviating needless neurological evaluation mandatory in a case of true disc edema. PMID:29133670

  8. Multicolor imaging in optic disc swelling

    Directory of Open Access Journals (Sweden)

    Nicey Roy Thomas

    2017-01-01

    Full Text Available Differentiating optic disc edema (ODE from pseudo optic disc edema (PODE continues to pose a diagnostic dilemma. Current report highlights the role of multicolor imaging (MC in differentiating ODE from PODE. Composite multicolor images of the disc in ODE show greenish hyperreflectance that extends beyond the optic disc margins with irregular blurry margins and obscured disc vasculature whereas PODE shows a greenish hyperreflectance with clear and distinct margins and well delineated disc vasculature. MC imaging adds to the present armamentarium of imaging modalities obviating needless neurological evaluation mandatory in a case of true disc edema.

  9. Accretion-powered Compact Binaries

    Science.gov (United States)

    Mauche, Christopher W.

    2003-12-01

    Preface; The workshop logo; A short history of the CV workshop F. A. Córdova; Part I. Observations: 1. Low mass x-ray binaries A. P. Cowley, P. C. Schmidtke, D. Crampton, J. B. Hutchings, C. A. Haswell, E. L. Robinson, K. D. Horne, H. M. Johnston, S. R. Kulkarni, S. Kitamoto, X. Han, R. M. Hjellming, R. M. Wagner, S. L. Morris, P. Hertz, A. N. Parmar, L. Stella, P. Giommi, P. J. Callanan, T. Naylor, P. A. Charles, C. D. Bailyn, J. N. Imamura, T. Steiman-Cameron, J. Kristian, J. Middleditch, L. Angelini and J. P. Noris; 2. Nonmagnetic cataclysmic variables R. S. Polidan, C. W. Mauche, R. A. Wade, R. H. Kaitchuck, E. M. Schlegel, P. A. Hantzios, R. C. Smith, J. H. Wood, F. Hessman, A. Fiedler, D. H. P. Jones, J. Casares, P. A. Charles, J. van Paradijs, E. Harlaftis, T. Naylor, G. Sonneborn, B. J. M. Hassall, K. Horne, C. A. la Dous, A. W. Shafter, N. A. Hawkins, D. A. H. Buckley, D. J. Sullivan, F. V. Hessman, V. S. Dhillon, T. R. Marsh, J. Singh, S. Seetha, F. Giovannelli, A. Bianchini, E. M. Sion, D. J. Mullan, H. L. Shipman, G. Machin, P. J. Callanan, S. B. Howell, P. Szkody, E. M. Schlegel and R. F. Webbink; 3. Magnetic cataclysmic variables C. Hellier, K. O. Mason, C. W. Mauche, G. S. Miller, J. C. Raymond, F. K. Lamb, J. Patterson, A. J. Norton, M. G. Watson, A. R. King, I. M. McHardy, H. Lehto, J. P. Osborne, E. L. Robinson, A. W. Shafter, S. Balachandran, S. R. Rosen, J. Krautter, W. Buchholz, D. A. H. Buckley, I. R. Tuoly, D. Crampton, B. Warner, R. M. Prestage, B. N. Ashoka, M. Mouchet, J. M. Bonnet-Bidaud, J. M. Hameury, P. Szkody, P. Garnavich, S. Howell, T. Kii, M. Cropper, K. Mason, J. Bailey, D. T. Wickramasinghe, L. Ferrario, K. Beuermann, A. D. Schwope, H.-C. Thomas, S. Jordan, J. Schachter, A. V. Filippenko, S. M. Kahn, F. B. S. Paerels, K. Mukai, M. L. Edgar, S. Larsson, R. F. Jameson, A. R. King, A. Silber, R. Remillard, H. Bradt, M. Ishida, T. Ohashi and G. D. Schmidt; Part II. Accretion Theory: 4. Nonmagnetic W. Kley, F. Geyer, H. Herold, H

  10. Magnetohydrodynamic Simulations of Black Hole Accretion

    Science.gov (United States)

    Avara, Mark J.

    Black holes embody one of the few, simple, solutions to the Einstein field equations that describe our modern understanding of gravitation. In isolation they are small, dark, and elusive. However, when a gas cloud or star wanders too close, they light up our universe in a way no other cosmic object can. The processes of magnetohydrodynamics which describe the accretion inflow and outflows of plasma around black holes are highly coupled and nonlinear and so require numerical experiments for elucidation. These processes are at the heart of astrophysics since black holes, once they somehow reach super-massive status, influence the evolution of the largest structures in the universe. It has been my goal, with the body of work comprising this thesis, to explore the ways in which the influence of black holes on their surroundings differs from the predictions of standard accretion models. I have especially focused on how magnetization of the greater black hole environment can impact accretion systems.

  11. Supermassive blackholes without super Eddington accretion

    Science.gov (United States)

    Christian, Damian Joseph; Kim, Matt I.; Garofalo, David; D'Avanzo, Jaclyn; Torres, John

    2017-08-01

    We explore the X-ray luminosity function at high redshift for active galactic nuclei using an albeit simplified model for mass build-up using a combination of mergers and mass accretion in the gap paradigm (Garofalo et al. 2010). Using a retrograde-dominated configuration we find an interesting low probability channel for the growth of one billion solar mass black holes within hundreds of millions of years of the big bang without appealing to super Eddington accretion (Kim et al. 2016). This result is made more compelling by the connection between this channel and an end product involving active galaxies with FRI radio morphology but weaker jet powers in mildly sub-Eddington accretion regimes. We will discuss our connection between the unexplained paucity of a given family of AGNs and the rapid growth of supermassive black holes, two heretofore seemingly unrelated aspects of the physics of AGNs that will help further understand their properties and evolution.

  12. Simulating a Thin Accretion Disk Using PLUTO

    Science.gov (United States)

    Phillipson, Rebecca; Vogeley, Michael S.; Boyd, Patricia T.

    2017-08-01

    Accreting black hole systems such as X-ray binaries and active galactic nuclei exhibit variability in their luminosity on many timescales ranging from milliseconds to tens of days, and even hundreds of days. The mechanism(s) driving this variability and the relationship between short- and long-term variability is poorly understood. Current studies on accretion disks seek to determine how the changes in black hole mass, the rate at which mass accretes onto the central black hole, and the external environment affect the variability on scales ranging from stellar-mass black holes to supermassive black holes. Traditionally, the fluid mechanics equations governing accretion disks have been simplified by considering only the kinematics of the disk, and perhaps magnetic fields, in order for their phenomenological behavior to be predicted analytically. We seek to employ numerical techniques to study accretion disks including more complicated physics traditionally ignored in order to more accurately understand their behavior over time. We present a proof-of-concept three dimensional, global simulation using the astrophysical hydrodynamic code PLUTO of a simplified thin disk model about a central black hole which will serve as the basis for development of more complicated models including external effects such as radiation and magnetic fields. We also develop a tool to generate a synthetic light curve that displays the variability in luminosity of the simulation over time. The preliminary simulation and accompanying synthetic light curve demonstrate that PLUTO is a reliable code to perform sophisticated simulations of accretion disk systems which can then be compared to observational results.

  13. Lumbar disc excision through fenestration

    Directory of Open Access Journals (Sweden)

    Sangwan S

    2006-01-01

    Full Text Available Background : Lumbar disc herniation often causes sciatica. Many different techniques have been advocated with the aim of least possible damage to other structures while dealing with prolapsed disc surgically in the properly selected and indicated cases. Methods : Twenty six patients with clinical symptoms and signs of prolapsed lumbar intervertebral disc having radiological correlation by MRI study were subjected to disc excision by interlaminar fenestration method. Results : The assessment at follow-up showed excellent results in 17 patients, good in 6 patients, fair in 2 patients and poor in 1 patient. The mean preoperative and postoperative Visual Analogue Scores were 9.34 ±0.84 and 2.19 ±0.84 on scale of 0-10 respectively. These were statistically significant (p value< 0.001, paired t test. No significant complications were recorded. Conclusion : Procedures of interlaminar fenestration and open disc excision under direct vision offers sufficient adequate exposure for lumbar disc excision with a smaller incision, lesser morbidity, shorter convalescence, early return to work and comparable overall results in the centers where recent laser and endoscopy facilities are not available.

  14. Pouring 'Cold Water' on Hot Accretion

    Science.gov (United States)

    Rubin, A. E.

    1995-09-01

    The extensive recrystallization of type-6 OC has been interpreted as having resulted either from prograde thermal metamorphism of initially cold, unequilibrated material [1,2] or from autometamorphism due to slow cooling of material that accreted while still hot (1000-1200 K). Although the physical implausibility of hot accretion has been addressed [3], no comprehensive evaluation has been made of arguments in its favor. As shown below, these arguments are based on incomplete data, flawed experiments or improbable interpretations. Correlation between petrologic type and Ca in low-Ca pyroxene. Models of prograde metamorphism assume that, with increasing temperature, opx acquires Ca at the expense of diopside. Analyses of pyroxene in 10 H chondrites showed no correlation between Ca in pyroxene cores and increasing petrologic type [4], but more extensive data sets show such correlations [1,5,6]. A review of data for 51 OC [7] shows a progressive increase in the Wo content of low-Ca pyroxene with petrologic type: Wo 0.4-1.2 in type-3 and -4; Wo 1.2-1.6 in type-5; and Wo 1.6-2.2 in type-6. Striated opx. Undeformed striated opx were interpreted as having formed from inverted protopyroxene during slow cooling [8]; striated opx from H4 Quenggouk were found to convert into normal opx within 1 week during annealing at 1100 K [9]. Because prograde metamorphism probably lasted ~60 Ma [10], there should be no striated opx remaining in type-4 or -5 OC. However, samples of 99% twinned clinopyroxene (analogous to that in chondrules in type-3 OC) annealed for >3 weeks at Conquista could not have formed during single stage cooling as expected in autometamorphism; a two-stage cooling history involving rapid cooling during chondrule formation followed by parent-body annealing is more plausible. Polycrystalline taenite. Polycrystalline taenite in H/L3 Tieschitz was interpreted as a relict solidification structure that failed to anneal into monocrystalline taenite because of rapid

  15. Evolving Nonthermal Electrons in Simulations of Black Hole Accretion

    Science.gov (United States)

    Chael, Andrew; Narayan, Ramesh; Sadowski, Aleksander

    2017-06-01

    Current simulations of hot accretion flows around black holes assume either a single-temperature gas or, at best, a two-temperature gas with thermal ions and electrons. However, processes like magnetic reconnection and shocks can accelerate electrons into a nonthermal distribution, which will not quickly thermalise at the very low densities found in many systems. Such nonthermal electrons have been invoked to explain the infrared and X-ray spectra and strong variability of Sagittarius A* (Sgr A*), the black hole at the Galactic Center. We present a method for self-consistent evolution of a nonthermal electron population in the GRMHD code KORAL. The electron distribution is tracked across Lorentz factor space and is evolved in space and time, in parallel with thermal electrons, thermal ions, and radiation. At present, for simplicity, energy injection into the nonthermal distribution is taken as a fixed fraction of the local electron viscous heating rate. Numerical results are presented for a model with a low mass accretion rate similar to Sgr A*. We find that the presence of a nonthermal population of electrons has negligible effect on the overall dynamics of the system. Relative to a purely thermal simulation, the radiative power in the nonthermal simulation is enhanced at large radii and at high frequencies. The energy distribution of the nonthermal electrons shows a synchrotron cooling break, with the break Lorentz factor varying with location and time, reflecting the complex interplay between the local viscous heating rate, magnetic field strength, and fluid velocity.

  16. New results on Super-Eddington Accretion Flow in NLS1s from XMM-Newton Observations

    Science.gov (United States)

    Jin, C.; Done, C.; Ward, M.; Gardner, E.

    2017-10-01

    Narrow Line Seyfert 1 Galaxies (NLS1s) have small black hole masses and high, sometimes super-Eddington, mass accretion rates. The physical mechanism of their X-ray emission, especially the soft X-ray excess, has been a controversial topic for many years. We have conducted deep XMM-Newton observations of some bright unobscured super-Eddington NLS1s. Their multi-wavelength properties can be well understood in a unified accretion flow scenario, which contains a standard outer disc, a puffed-up inner disc with strong disc wind, an extended soft X-ray region and a compact hard X-ray region. By considering the inclination angle effect, such a scenario can also explain NLS1s with more complex X-ray properties such as 1H 0707-495, without requiring a large spin parameter. I will also show that these super-Eddington NLS1s are probably the best low-redshift analogies of weak emission-line quasars at high redshifts.

  17. Galactic fountains and the rotation of disc-galaxy coronae

    NARCIS (Netherlands)

    Marinacci, Federico; Fraternali, Filippo; Nipoti, Carlo; Binney, James; Ciotti, Luca; Londrillo, Pasquale

    In galaxies like the Milky Way, cold (˜104 K) gas ejected from the disc by stellar activity (the so-called galactic-fountain gas) is expected to interact with the virial-temperature (˜106 K) gas of the corona. The associated transfer of momentum between cold and hot gas has important consequences

  18. Stress analysis in a functionally graded disc under mechanical loads ...

    Indian Academy of Sciences (India)

    Stress analysis in a functionally graded disc under mechanical loads and a steady state temperature distribution. HASAN ÇALLIO ˘GLU. Department of Mechanical Engineering, Pamukkale University, 20070,. Denizli, Turkey e-mail: hcallioglu@pau.edu.tr. MS received 25 November 2009; revised 12 August 2010; accepted.

  19. Sensitivities of Earth's core and mantle compositions to accretion and differentiation processes

    Science.gov (United States)

    Fischer, Rebecca A.; Campbell, Andrew J.; Ciesla, Fred J.

    2017-01-01

    The Earth and other terrestrial planets formed through the accretion of smaller bodies, with their core and mantle compositions primarily set by metal-silicate interactions during accretion. The conditions of these interactions are poorly understood, but could provide insight into the mechanisms of planetary core formation and the composition of Earth's core. Here we present modeling of Earth's core formation, combining results of 100 N-body accretion simulations with high pressure-temperature metal-silicate partitioning experiments. We explored how various aspects of accretion and core formation influence the resulting core and mantle chemistry: depth of equilibration, amounts of metal and silicate that equilibrate, initial distribution of oxidation states in the disk, temperature distribution in the planet, and target:impactor ratio of equilibrating silicate. Virtually all sets of model parameters that are able to reproduce the Earth's mantle composition result in at least several weight percent of both silicon and oxygen in the core, with more silicon than oxygen. This implies that the core's light element budget may be dominated by these elements, and is consistent with ≤1-2 wt% of other light elements. Reproducing geochemical and geophysical constraints requires that Earth formed from reduced materials that equilibrated at temperatures near or slightly above the mantle liquidus during accretion. The results indicate a strong tradeoff between the compositional effects of the depth of equilibration and the amounts of metal and silicate that equilibrate, so these aspects should be targeted in future studies aiming to better understand core formation conditions. Over the range of allowed parameter space, core and mantle compositions are most sensitive to these factors as well as stochastic variations in what the planet accreted as a function of time, so tighter constraints on these parameters will lead to an improved understanding of Earth's core composition.

  20. Initiation of continental accretion in the Betic-Rif domain

    Science.gov (United States)

    Maxime, Daudet; Frederic, Mouthereau; Stéphanie, Brichau; Ana, Crespo-Blanc; Arnaud, Vacherat

    2017-04-01

    The Betic - Rif cordillera in southern Spain and northern Morocco, respectively, form one of the tightest orogenic arc on Earth. The formation of this arcuate orogenic belt resulted from the westward migration of the Alboran crustal domain, constituted by the internal zone of the orogeny and the basement of the Alboran back-arc basin, that collided with the rifted margins of Iberia and Africa at least since the early Miocene. This collision is intimately linked to the post-35-30Ma regional slab roll-back and back-arc extension in the western Mediterranean region. The geodynamics of the Betic-Rif domain, which is of great importance for the paleogeographic reconstructions of the Tethys-Altantic and the Mediterranean sea, is still largely debated. Answers will come from a more detailed structural analyses, including refinement of the time-temperature paths and kinematics of the main structural units, which is one of the main objectives of the OROGEN research project, co-financed by BRGM, TOTAL & CNRS. In this study, we focus on the well-developed flysch-type sediments now accreted in the Betics-Rif but initially deposited in a basin, north of the african margin and on the iberian margin from the Early Cretaceous to the Early Miocene. Using low-temperature thermochronology (fission-track and (U-Th)/He analyses) combined with zircon U-Pb geochronology on the flyschs deposited on the most distal part of the margin, we aim to constrain the thermal history of both the source rocks and accreted thrust sheets at the earliest stages of continental accretion. Sample have been collected in flyschs series ranging from Mesozoic, Paleogene to Neogene ages. Additional samples have been collected in the Rif where Cretaceous series are more developed. Combined with a detailed structural analysis, LT thermochronological constraints will refine the kinematics of thrust units when continental accretion started before the final thrust emplacement occurred in the Early Miocene

  1. Evolution of eccentricity and inclination of hot protoplanets embedded in radiative discs

    Science.gov (United States)

    Eklund, Henrik; Masset, Frédéric S.

    2017-07-01

    We study the evolution of the eccentricity and inclination of protoplanetary embryos and low-mass protoplanets (from a fraction of an Earth mass to a few Earth masses) embedded in a protoplanetary disc, by means of three-dimensional hydrodynamics calculations with radiative transfer in the diffusion limit. When the protoplanets radiate in the surrounding disc the energy released by the accretion of solids, their eccentricity and inclination experience a growth towards values that depend on the luminosity-to-mass ratio of the planet, which are comparable to the disc's aspect ratio and which are reached over time-scales of a few thousand years. This growth is triggered by the appearance of a hot, underdense region in the vicinity of the planet. The growth rate of the eccentricity is typically three times larger than that of the inclination. In long-term calculations, we find that the excitation of eccentricity and the excitation of inclination are not independent. In the particular case in which a planet has initially a very small eccentricity and inclination, the eccentricity largely overruns the inclination. When the eccentricity reaches its asymptotic value, the growth of inclination is quenched, yielding an eccentric orbit with a very low inclination. As a side result, we find that the eccentricity and inclination of non-luminous planets are damped more vigorously in radiative discs than in isothermal discs.

  2. Study of heat transfer on front– and back-vented brake discs

    Directory of Open Access Journals (Sweden)

    Supachai Lakkam

    2013-12-01

    Full Text Available A brake disc plays an important role in the automotive industry since it concerns directly with safety. In order to develop proper heat ventilation a wide range of brake discs have been designed. Different types of physical brake disc geometries, as front- and back-vented brake discs, affect the heat ventilation directly. This is a vital factor of the brake’s capability. We recognized the importance of this circumstance and therefore attempted to create a test to investigate the temperature gradient of the brake disc in order to evaluate the coefficients of heat convection. The coefficients were modified by the change of temperature distribution in both brake discs under the forced heat convection in steady state conditions. However, the heat radiation value does not take into account that the heat convection is dominated by the physical geometry of the brake disc. To set up the experimental test for investigating the heat transfer by convection the JASO C406 standard is adopted. The experimental results in terms of heat convection coefficients are used in the numerical simulation via the finite element method in order to study the temperature diffusion and heat ventilation of front and back-vented brake discs. Conse-quently, the experimental results reveal that the overall heat convection coefficients of the front-vented brake disc are higher than these of the back-vented one. In other words the simulation yields that the front-vented brake disc allows stronger heat ventilation than its compared object, leading to larger temperature differences between outboard and inboard rotors, resulting in more thermal stress. This makes it more susceptible to be damaged during operation.

  3. Applying a physical continuum model to describe the broadband X-ray spectra of accreting pulsars at high luminosity

    Science.gov (United States)

    Pottschmidt, Katja; Hemphill, Paul B.; Wolff, Michael T.; Cheatham, Diana M.; Iwakiri, Wataru; Gottlieb, Amy M.; Falkner, Sebastian; Ballhausen, Ralf; Fuerst, Felix; Kuehnel, Matthias; Ferrigno, Carlo; Becker, Peter A.; Wood, Kent S.; Wilms, Joern

    2018-01-01

    A new window for better understanding the accretion onto strongly magnetized neutron stars in X-ray binaries is opening. In these systems the accreted material follows the magnetic field lines as it approaches the neutron star, forming accretion columns above the magnetic poles. The plasma falls toward the neutron star surface at near-relativistic speeds, losing energy by emitting X-rays. The X-ray spectral continua are commonly described using phenomenological models, i.e., power laws with different types of curved cut-offs at higher energies. Here we consider high luminosity pulsars. In these systems the mass transfer rate is high enough that the accreting plasma is thought to be decelerated in a radiation-dominated radiative shock in the accretion columns. While the theory of the emission from such shocks had already been developed by 2007, a model for direct comparison with X-ray continuum spectra in xspec or isis has only recently become available. Characteristic parameters of this model are the accretion column radius and the plasma temperature, among others. Here we analyze the broadband X-ray spectra of the accreting pulsars Centaurus X-3 and 4U 1626-67 obtained with NuSTAR. We present results from traditional empirical modeling as well as successfully apply the radiation-dominated radiative shock model. We also take the opportunity to compare to similar recent analyses of both sources using these and other observations.

  4. Accreting millisecond pulsars: one on each hand

    NARCIS (Netherlands)

    Linares, M.; van der Klis, M.; Wijnands, R.

    2007-01-01

    We report on the X-ray aperiodic timing analysis of two accreting millisecond pulsars: XTE J1807-294 and IGR J00291+5934. On the one hand, we discovered in XTE J1807-294 seven pairs of simultaneous kilohertz quasi-periodic oscillations (kHz QPOs) separated in frequency by nearly the spin frequency

  5. Millisecond phenomena in mass accreting neutron stars

    NARCIS (Netherlands)

    van der Klis, M.; Cohen, L.

    2007-01-01

    The past twelve years have seen the discovery, with NASA's Rossi X-ray Timing Explorer (RXTE), of several long-predicted phenomena associated with the accretion of matter onto a neutron star in a binary (double) star system. These phenomena are observed in the strong X-ray emission produced by these

  6. Massive Star Formation: Accreting from Companion

    Indian Academy of Sciences (India)

    We report the possible accretion from companion in the massive star forming region (G350.69–0.49). This region seems to be a binary system composed of a diffuse object (possible nebulae or UC HII region) and a Massive Young Stellar Object (MYSO) seen in Spitzer IRAC image. The diffuse object and MYSO are ...

  7. Numerical Simulation of SLD Ice Accretions

    NARCIS (Netherlands)

    Hospers, Jacco; Hoeijmakers, Hendrik Willem Marie

    2011-01-01

    In this study, computational methods are presented that compute ice accretion on multiple-element airfoils in specified icing conditions. The ¿Droplerian¿ numerical simulation method used is based on an Eulerian method for predicting droplet trajectories and the resulting droplet catching efficiency

  8. The variability plane of accreting compact objects

    NARCIS (Netherlands)

    Körding, E.G.; Migliari, S.; Fender, R.; Belloni, T.; Knigge, C.; McHardy, I.

    2007-01-01

    Recently, it has been shown that soft-state black hole X-ray binaries and active galactic nuclei populate a plane in the space defined by the black hole mass, accretion rate and characteristic frequency. We show that this plane can be extended to hard-state objects if one allows a constant offset

  9. Accretion of Moon and Earth and the emergence of life

    Science.gov (United States)

    Arrhenius, G.; Lepland, A.

    2000-01-01

    The discrepancy between the impact records on the Earth and Moon in the time period, 4.0-3.5 Ga calls for a re-evaluation of the cause and localization of the late lunar bombardment. As one possible explanation, we propose that the time coverage in the ancient rock record is sufficiently fragmentary, so that the effects of giant, sterilizing impacts throughout the inner solar system, caused by marauding asteroids, could have escaped detection in terrestrial and Martian records. Alternatively, the lunar impact record may reflect collisions of the receding Moon with a series of small, original satellites of the Earth and their debris in the time period about 4.0-3.5 Ga. The effects on Earth of such encounters could have been comparatively small. The location of these tellurian moonlets has been estimated to have been in the region around 40 Earth radii. Calculations presented here, indicate that this is the region that the Moon would traverse at 4.0-3.5 Ga, when the heavy and declining lunar bombardment took place. The ultimate time limit for the emergence of life on Earth is determined by the effects of planetary accretion--existing models offer a variety of scenarios, ranging from low average surface temperature at slow accretion of the mantle, to complete melting of the planet followed by protracted cooling. The choice of accretion model affects the habitability of the planet by dictating the early evolution of the atmosphere and hydrosphere. Further exploration of the sedimentary record on Earth and Mars, and of the chemical composition of impact-generated ejecta on the Moon, may determine the choice between the different interpretations of the late lunar bombardment and cast additional light on the time and conditions for the emergence of life.

  10. NODC Standard Product: World Ocean Atlas 1998 (7 disc set) (NODC Accession 0095184)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The World Ocean Atlas 1998 (WOA98 and WOA98F) consists of 7 CD-ROMs: 3 discs contain objectively analyzed fields of temperature, salinity, dissolved oxygen, derived...

  11. NODC Standard Product: World ocean atlas 2005 (4 disc set) (NODC Accession 0097967)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — World Ocean Atlas 2005 (1 disc) The WOA05 contains data files of objectively analyzed climatologies and related statistical fields of temperature, salinity,...

  12. Friction-Induced Oscillations of a Non-Asbestos Organic Pin Sliding on a Steel Disc

    Directory of Open Access Journals (Sweden)

    Nosko Oleksii

    2015-06-01

    Full Text Available Friction-induced oscillations result in deterioration of performance of disc brakes and are generally undesired. We conduct experimental study of friction-induced oscillations in a non-asbestos organic material / steel pair used in disc brakes of motor vehicles. The tests are done by use of a pin-on-disc machine in which the pin sample is supported on a deformable beam. The adjustable friction parameters are the disc velocity, contact pressure and temperature. The tests show that the friction coefficient decreases with the sliding velocity and increases with the temperature. The friction-induced tangential oscillation of the pin sample occurs with a frequency equal to the first natural frequency of the beam. The effects of the disc velocity and temperature on the oscillation characteristics are investigated. The oscillation amplitude increases with the disc velocity on the interval of velocities below 2 m/s. Temperature changes of several tens of degrees Celsius lead to the oscillation occurrence / decay. The obtained results can be useful for prognostication of friction-induced oscillations in disc brakes with non-asbestos organic pads.

  13. Research on anti crack mechanism of bionic coupling brake disc

    Science.gov (United States)

    Shi, Lifeng; Yang, Xiao; Zheng, Lingnan; Wu, Can; Ni, Jing

    2017-09-01

    According to the biological function of fatigue resistance possessed by biology, this study designed a Bionic Coupling Brake Disc (BCBD) which can inhibit crack propagation as the result of improving fatigue property. Thermal stress field of brake disc was calculated under emergency working condition, and circumferential and radial stress field which lead to fatigue failure of brake disc were investigated simultaneously. Results showed that the maximum temperature of surface reached 890°C and the maximum residual tensile stress was 207 Mpa when the initial velocity of vehicle was 200 km/h. Based on the theory of elastic plastic fracture mechanics, the crack opening displacement and the crack front J integrals of the BCBD and traditional brake disc (TBD) with pre-cracking were calculated, and the strength of crack front was compared. Results revealed the growth behavior of fatigue crack located on surface of brake disc, and proved the anti fatigue resistance of BCBD was better, and the strength of crack resistance of BCBD was much stronger than that of TBD. This simulation research provided significant references for optimization and manufacturing of BCBD.

  14. Infrared characterization of thermal gradients on disc brakes

    Science.gov (United States)

    Panier, Stephane; Dufrenoy, Philippe; Bremond, Pierre

    2003-04-01

    The heat generated in frictional organs like brakes and clutches induces thermal distortions which may lead to localized contact areas and hot spots developments. Hot spots are high thermal gradients on the rubbing surface. They count among the most dangerous phenomena in frictional organs leading to damage, early failure and unacceptable braking performances such as brake fade or undesirable low frequency vibrations called hot judder. In this paper, an experimental study of hot spots occurrence in railway disc brakes is reported on. The aim of this study was to better classify and to explain the thermal gradients appearance on the surface of the disc. Thermograph measurements with an infrared camera have been carried out on the rubbing surface of brake discs on a full-scale test bench. The infrared system was set to take temperature readings in snap shot mode precisely synchronized with the rotation of the disc. Very short integration time allows reducing drastically haziness of thermal images. Based on thermographs, a classification of hot-spots observed in disc brakes is proposed. A detailed investigation of the most damaging thermal gradients, called macroscopic hot spots (MHS) is given. From these experimental researches, a scenario of hot spots occurrence is suggested step by step. Thanks to infrared measurements at high frequency with high resolution, observations give new highlights on the conditions of hot spots appearance. Comparison of the experimental observations with the theoretical approaches is finally discussed.

  15. The ALMA early science view of FUor/EXor objects - V. Continuum disc masses and sizes

    Science.gov (United States)

    Cieza, Lucas A.; Ruíz-Rodríguez, Dary; Perez, Sebastian; Casassus, Simon; Williams, Jonathan P.; Zurlo, Alice; Principe, David A.; Hales, Antonio; Prieto, Jose L.; Tobin, John J.; Zhu, Zhaohuan; Marino, Sebastian

    2018-03-01

    Low-mass stars build a significant fraction of their total mass during short outbursts of enhanced accretion known as FUor and EXor outbursts. FUor objects are characterized by a sudden brightening of ˜5 mag at visible wavelengths within 1 yr and remain bright for decades. EXor objects have lower amplitude outbursts on shorter time-scales. Here we discuss a 1.3 mm Atacama Large Millimeter/submillimeter Array (ALMA) mini-survey of eight outbursting sources (three FUors, four EXors, and the borderline object V1647 Ori) in the Orion Molecular Cloud. While previous papers in this series discuss the remarkable molecular outflows observed in the three FUor objects and V1647 Ori, here we focus on the continuum data and the differences and similarities between the FUor and EXor populations. We find that FUor discs are significantly more massive (˜80-600 MJup) than the EXor objects (˜0.5-40 MJup). We also report that the EXor sources lack the prominent outflows seen in the FUor population. Even though our sample is small, the large differences in disc masses and outflow activity suggest that the two types of objects represent different evolutionary stages. The FUor sources seem to be rather compact (Rc < 20-40 au) and to have a smaller characteristic radius for a given disc mass when compared to T Tauri stars. V1118 Ori, the only known close binary system in our sample, is shown to host a disc around each one of the stellar components. The disc around HBC 494 is asymmetric, hinting at a structure in the outer disc or the presence of a second disc.

  16. Probing neutron star physics using accreting neutron stars

    NARCIS (Netherlands)

    Patruno, A.

    2010-01-01

    We give an obervational overview of the accreting neutron stars systems as probes of neutron star physics. In particular we focus on the results obtained from the periodic timing of accreting millisecond X-ray pulsars in outburst and from the measurement of X-ray spectra of accreting neutron stars

  17. Development of 3D Ice Accretion Measurement Method

    Science.gov (United States)

    Lee, Sam; Broeren, Andy P.; Addy, Harold E., Jr.; Sills, Robert; Pifer, Ellen M.

    2012-01-01

    Icing wind tunnels are designed to simulate in-flight icing environments. The chief product of such facilities is the ice accretion that forms on various test articles. Documentation of the resulting ice accretion key piece of data in icing-wind-tunnel tests. Number of currently used options for documenting ice accretion in icing-wind-tunnel testing.

  18. Power Spectrum Density of Stochastic Oscillating Accretion Disk

    Indian Academy of Sciences (India)

    Keywords. Accretion; accretion disks; black hole physics; instabilities. ... In the model, we assume that there is a relativistic oscillation of thin accretion disks and it interacts with an external thermal bath through a friction force and a random force. ... Department of Physics, Yunnan Normal University, Kunming 650500, China.

  19. Damping of prominence longitudinal oscillations due to mass accretion

    Science.gov (United States)

    Ruderman, Michael S.; Luna, Manuel

    2016-06-01

    We study the damping of longitudinal oscillations of a prominence thread caused by the mass accretion. We suggested a simple model describing this phenomenon. In this model we considered a thin curved magnetic tube filled with the plasma. The prominence thread is in the central part of the tube and it consists of dense cold plasma. The parts of the tube at the two sides of the thread are filled with hot rarefied plasma. We assume that there are flows of rarefied plasma toward the thread caused by the plasma evaporation at the magnetic tube footpoints. Our main assumption is that the hot plasma is instantaneously accommodated by the thread when it arrives at the thread, and its temperature and density become equal to those of the thread. Then we derive the system of ordinary differential equations describing the thread dynamics. We solve this system of ordinary differential equations in two particular cases. In the first case we assume that the magnetic tube is composed of an arc of a circle with two straight lines attached to its ends such that the whole curve is smooth. A very important property of this model is that the equations describing the thread oscillations are linear for any oscillation amplitude. We obtain the analytical solution of the governing equations. Then we obtain the analytical expressions for the oscillation damping time and periods. We find that the damping time is inversely proportional to the accretion rate. The oscillation periods increase with time. We conclude that the oscillations can damp in a few periods if the inclination angle is sufficiently small, not larger that 10°, and the flow speed is sufficiently large, not less that 30 km s-1. In the second model we consider the tube with the shape of an arc of a circle. The thread oscillates with the pendulum frequency dependent exclusively on the radius of curvature of the arc. The damping depends on the mass accretion rate and the initial mass of the threads, that is the mass of the

  20. Spherical Accretion in a Uniformly Expanding Universe

    Science.gov (United States)

    Colpi, Monica; Shapiro, Stuart L.; Wasserman, Ira

    1996-10-01

    We consider spherically symmetric accretion of material from an initially homogeneous, uniformly expanding medium onto a Newtonian point mass M. The gas is assumed to evolve adiabatically with a constant adiabatic index F, which we vary over the range Γ ɛ [1, 5/3]. We use a one-dimensional Lagrangian code to follow the spherical infall of material as a function of time. Outflowing shells gravitationally bound to the point mass fall back, giving rise to a inflow rate that, after a rapid rise, declines as a power law in time. If there were no outflow initially, Bondi accretion would result, with a characteristic accretion time-scale ta,0. For gas initially expanding at a uniform rate, with a radial velocity U = R/t0 at radius R, the behavior of the flow at all subsequent times is determined by ta,0/t0. If ta,0/t0 ≫ 1, the gas has no time to respond to pressure forces, so the fluid motion is nearly collisionless. In this case, only loosely bound shells are influenced by pressure gradients and are pushed outward. The late-time evolution of the mass accretion rate Mdot is close to the result for pure dust, and we develop a semianalytic model that accurately accounts for the small effect of pressure gradients in this limit. In the opposite regime, ta,0/t0 ≪ 1, pressure forces significantly affect the motion of the gas. At sufficiently early times, t ≤ ttr, the flow evolved along a sequence of quasi-stationary, Bondi-like states, with a time-dependent Mdot determined by the slowly varying gas density at large distances. However, at later times, t ≥ ttr, the fluid flow enters a dustllke regime; ttr is the time when the instantaneous Bondi accretion radius reaches the marginally bound radius. The transition time ttr depends sensitively on ta,0/t0 for a given Γ and can greatly exceed t0. We show that there exists a critical value Γ = 11/9, below which the transition from fluid to ballistic motion disappears. As one application of our calculations, we consider the

  1. Laser engineering of spine discs

    Science.gov (United States)

    Sobol, E.; Zakharkina, O.; Baskov, A.; Shekhter, A.; Borschenko, I.; Guller, A.; Baskov, V.; Omelchenko, A.; Sviridov, A.

    2009-04-01

    The laser engineering of intervertebral discs is one of the branch of medical physics aimed at the development of minimally invasive laser medical techniques based on the effect of the controlled (time- and space-modulated) laser radiation on the structure and the field of mechanical stress of biological tissues. A new method for the laser engineering of the intervertebral discs and the differences of this approach from the existing physical methods of medical treatment are considered. The newly formed tissues of animals and humans are hystologically studied. Possible regeneration processes are discussed. A control system that provides for the treatment efficiency and safety is developed. The new laser medical equipment that is designed for the laser engineering of intervertebral discs is described, and the corresponding results of the clinical application are presented.

  2. Pebble Accretion at the Origin of Water in Europa

    Science.gov (United States)

    Ronnet, Thomas; Mousis, Olivier; Vernazza, Pierre

    2017-08-01

    Despite the fact that the observed gradient in water content among the Galilean satellites is globally consistent with a formation in a circum-Jovian disk on both sides of the snowline, the mechanisms that led to a low water mass fraction in Europa (˜8%) are not yet understood. Here, we present new modeling results of solids transport in the circum-Jovian disk accounting for aerodynamic drag, turbulent diffusion, surface temperature evolution, and sublimation of water ice. We find that the water mass fraction of pebbles (e.g., solids with sizes of 10-2-1 m) as they drift inward is globally consistent with the current water content of the Galilean system. This opens the possibility that each satellite could have formed through pebble accretion within a delimited region whose boundaries were defined by the position of the snowline. This further implies that the migration of the forming satellites was tied to the evolution of the snowline so that Europa fully accreted from partially dehydrated material in the region just inside of the snowline.

  3. Vertebral osteomyelitis without disc involvement

    Energy Technology Data Exchange (ETDEWEB)

    Kamani, I.; Syed, I.; Saifuddin, A. E-mail: asaifuddin@aol.com; Green, R.; MacSweeney, F

    2004-10-01

    Vertebral osteomyelitis is most commonly due to pyogenic or granulomatous infection and typically results in the combined involvement of the intervertebral disc and adjacent vertebral bodies. Non-infective causes include the related conditions of chronic recurrent multifocal osteomyelitis (CRMO) and SAPHO (synovitis, acne, pustulosis, hyperostosis, and osteitis) syndrome. Occasionally, these conditions may present purely within the vertebral body, resulting in various combinations of vertebral marrow oedema and sclerosis, destructive lesions of the vertebral body and pathological vertebral collapse, thus mimicking neoplastic disease. This review illustrates the imaging features of vertebral osteomyelitis without disc involvement, with emphasis on magnetic resonance imaging (MRI) findings.

  4. Early Results from NICER Observations of Accreting Neutron Stars

    Science.gov (United States)

    Chakrabarty, Deepto; Ozel, Feryal; Arzoumanian, Zaven; Gendreau, Keith C.; Bult, Peter; Cackett, Ed; Chenevez, Jerome; Fabian, Andy; Guillot, Sebastien; Guver, Tolga; Homan, Jeroen; Keek, Laurens; Lamb, Frederick; Ludlam, Renee; Mahmoodifar, Simin; Markwardt, Craig B.; Miller, Jon M.; Psaltis, Dimitrios; Strohmayer, Tod E.; Wilson-Hodge, Colleen A.; Wolff, Michael T.

    2018-01-01

    The Neutron Star Interior Composition Explorer (NICER) offers significant new capabilities for the study of accreting neuton stars relative to previous X-ray missions including large effective area, low background, and greatly improved low-energy response. The NICER Burst and Accretion Working Group has designed a 2 Ms observation program to study a number of phenomena in accreting neutron stars including type-I X-ray bursts, superbursts, accretion-powered pulsations, quasi-periodic oscillations, and accretion disk reflection spectra. We present some early results from the first six months of the NICER mission.

  5. Helicopter rotor noise investigation during ice accretion

    Science.gov (United States)

    Cheng, Baofeng

    An investigation of helicopter rotor noise during ice accretion is conducted using experimental, theoretical, and numerical methods. This research is the acoustic part of a joint helicopter rotor icing physics, modeling, and detection project at The Pennsylvania State University Vertical Lift Research Center of Excellence (VLRCOE). The current research aims to provide acoustic insight and understanding of the rotor icing physics and investigate the feasibility of detecting rotor icing through noise measurements, especially at the early stage of ice accretion. All helicopter main rotor noise source mechanisms and their change during ice accretion are discussed. Changes of the thickness noise, steady loading noise, and especially the turbulent boundary layer - trailing edge (TBL-TE) noise due to ice accretion are identified and studied. The change of the discrete frequency noise (thickness noise and steady loading noise) due to ice accretion is calculated by using PSU-WOPWOP, an advanced rotorcraft acoustic prediction code. The change is noticeable, but too small to be used in icing detection. The small thickness noise change is due to the small volume of the accreted ice compared to that of the entire blade, although a large iced airfoil shape is used. For the loading noise calculation, two simplified methods are used to generate the loading on the rotor blades, which is the input for the loading noise calculation: 1) compact loading from blade element momentum theory, icing effects are considered by increasing the drag coefficient; and 2) pressure loading from the 2-D CFD simulation, icing effects are considered by using the iced airfoil shape. Comprehensive rotor broadband noise measurements are carried out on rotor blades with different roughness sizes and rotation speeds in two facilities: the Adverse Environment Rotor Test Stand (AERTS) facility at The Pennsylvania State University, and The University of Maryland Acoustic Chamber (UMAC). In both facilities the

  6. Diverse stellar haloes in nearby Milky Way mass disc galaxies

    Science.gov (United States)

    Harmsen, Benjamin; Monachesi, Antonela; Bell, Eric F.; de Jong, Roelof S.; Bailin, Jeremy; Radburn-Smith, David J.; Holwerda, Benne W.

    2017-04-01

    We have examined the resolved stellar populations at large galactocentric distances along the minor axis (from 10 kpc up to between 40 and 75 kpc), with limited major axis coverage, of six nearby highly inclined Milky Way (MW) mass disc galaxies using Hubble Space Telescope data from the Galaxy haloes, Outer discs, Substructure, Thick discs, and Star clusters (GHOSTS) survey. We select red giant branch stars to derive stellar halo density profiles. The projected minor axis density profiles can be approximated by power laws with projected slopes of -2 to -3.7 and a diversity of stellar halo masses of 1-6 × 109 M⊙, or 2-14 per cent of the total galaxy stellar masses. The typical intrinsic scatter around a smooth power-law fit is 0.05-0.1 dex owing to substructure. By comparing the minor and major axis profiles, we infer projected axis ratios c/a at ˜25 kpc between 0.4and0.75. The GHOSTS stellar haloes are diverse, lying between the extremes charted out by the (rather atypical) haloes of the MW and M31. We find a strong correlation between the stellar halo metallicities and the stellar halo masses. We compare our results with cosmological models, finding good agreement between our observations and accretion-only models where the stellar haloes are formed by the disruption of dwarf satellites. In particular, the strong observed correlation between stellar halo metallicity and mass is naturally reproduced. Low-resolution hydrodynamical models have unrealistically high stellar halo masses. Current high-resolution hydrodynamical models appear to predict stellar halo masses somewhat higher than observed but with reasonable metallicities, metallicity gradients, and density profiles.

  7. Numerical investigation of a three-dimensional disc-pad model with and without thermal effects

    Directory of Open Access Journals (Sweden)

    Belhocine Ali

    2015-01-01

    Full Text Available This study aims to identify thermal effects in the structure and the contact behavior of a disc-pad assembly using a finite element approach. The first analysis is performed on the disc-pad model in the absence of thermal effects. The structural performance of the disc-pad model is predicted in terms of factors such as the deformation and Von Mises stress. Next, thermomechanical analysis is performed on the same disc-pad model with the inclusion of convection, adiabatic, and heat flux elements. The predicted temperature distribution, deformation, stress, and contact pressure are presented. The structural performance between the two analyses (mechanical and thermomechanical is compared. This study can assist brake engineers in choosing a suitable analysis method to critically evaluate the structural and contact behavior of the disc brake assembly.

  8. Disk accretion onto a magnetized star

    Directory of Open Access Journals (Sweden)

    Istomin Ya. N.

    2014-01-01

    Full Text Available The problem of interaction of the rotating magnetic field, frozen to a star, with a thin well conducting accretion disk is solved exactly. It is shown that a disk pushes the magnetic field lines towards a star, compressing the stellar dipole magnetic field. At the point of corotation, where the Keplerian rotation frequency coincides with the frequency of the stellar rotation, the loop of the electric current appears. The electric currents flow in the magnetosphere only along two particular magnetic surfaces, which connect the corotation region and the inner edge of a disk with the stellar surface. It is shown that the closed current surface encloses the magnetosphere. Rotation of a disk is stopped at some distance from the stellar surface, which is 0.55 of the corotation radius. Accretion from a disk spins up the stellar rotation. The angular momentum transferred to the star is determined.

  9. Effects of ice accretion on the aerodynamics of bridge cables

    DEFF Research Database (Denmark)

    Demartino, C.; Koss, Holger; Georgakis, Christos T.

    2015-01-01

    Undesirable wind induced vibrations of bridge cables can occur when atmospheric conditions are such to generate ice accretion. This paper contains the results of an extensive investigation of the effects of ice accretion due to in-cloud icing, on the aerodynamic characteristics of bridge hangers...... and stay cables. The aim of this paper is twofold; first, it was investigated the ice accretion process and the final shape of the ice accreted; then the aerodynamics of the ice accreted bridge cables was characterized, and related to the ice shape. Different climatic conditions, i.e. combinations...... of the ice accretions is given in the paper. Only for the bridge hanger case, a short description of the evolution of the ice accretions is given. The aerodynamic force coefficients were then measured with varying yaw angle, angle of attack and wind speed, and are presented and discussed in the paper...

  10. Airfoil Ice-Accretion Aerodynamics Simulation

    Science.gov (United States)

    Bragg, Michael B.; Broeren, Andy P.; Addy, Harold E.; Potapczuk, Mark G.; Guffond, Didier; Montreuil, E.

    2007-01-01

    NASA Glenn Research Center, ONERA, and the University of Illinois are conducting a major research program whose goal is to improve our understanding of the aerodynamic scaling of ice accretions on airfoils. The program when it is completed will result in validated scaled simulation methods that produce the essential aerodynamic features of the full-scale iced-airfoil. This research will provide some of the first, high-fidelity, full-scale, iced-airfoil aerodynamic data. An initial study classified ice accretions based on their aerodynamics into four types: roughness, streamwise ice, horn ice, and spanwise-ridge ice. Subscale testing using a NACA 23012 airfoil was performed in the NASA IRT and University of Illinois wind tunnel to better understand the aerodynamics of these ice types and to test various levels of ice simulation fidelity. These studies are briefly reviewed here and have been presented in more detail in other papers. Based on these results, full-scale testing at the ONERA F1 tunnel using cast ice shapes obtained from molds taken in the IRT will provide full-scale iced airfoil data from full-scale ice accretions. Using these data as a baseline, the final step is to validate the simulation methods in scale in the Illinois wind tunnel. Computational ice accretion methods including LEWICE and ONICE have been used to guide the experiments and are briefly described and results shown. When full-scale and simulation aerodynamic results are available, these data will be used to further develop computational tools. Thus the purpose of the paper is to present an overview of the program and key results to date.

  11. Spontaneous regression of an intraspinal disc cyst

    Energy Technology Data Exchange (ETDEWEB)

    Demaerel, P.; Eerens, I.; Wilms, G. [University Hospital, Leuven (Belgium). Dept. of Radiology; Goffin, J. [Dept. of Neurosurgery, University Hospitals, Leuven (Belgium)

    2001-11-01

    We present a patient with a so-called disc cyst. Its location in the ventrolateral epidural space and its communication with the herniated disc are clearly shown. The disc cyst developed rapidly and regressed spontaneously. This observation, which has not been reported until now, appears to support focal degeneration with cyst formation as the pathogenesis. (orig.)

  12. Morning Glory Disc Anomaly: A Case Report

    African Journals Online (AJOL)

    2017-07-26

    Jul 26, 2017 ... be differentiated from other congenital optic disc anomalies such as optic disc coloboma[12] and peripapillary staphyloma. Typical optic disc coloboma is bilateral and presents as a central crater that may resemble glaucomatous cupping.[12] In peripapillary staphyloma there is developmental weakness of.

  13. Hydrodynamic ablation of protoplanetary discs via supernovae

    Science.gov (United States)

    Close, J. L.; Pittard, J. M.

    2017-07-01

    We present three-dimensional simulations of a protoplanetary disc subject to the effect of a nearby (0.3 pc distant) supernova (SN), using a time-dependent flow from a one-dimensional numerical model of the supernova remnant (SNR), in addition to constant peak ram pressure simulations. Simulations are performed for a variety of disc masses and inclination angles. We find disc mass-loss rates that are typically 10-7-10-6 M⊙ yr-1 (but they peak near 10-5 M⊙ yr-1 during the 'instantaneous' stripping phase) and are sustained for around 200 yr. Inclination angle has little effect on the mass-loss unless the disc is close to edge-on. Inclined discs also strip asymmetrically with the trailing edge ablating more easily. Since the interaction lasts less than one outer rotation period, there is not enough time for the disc to restore its symmetry, leaving the disc asymmetrical after the flow has passed. Of the low-mass discs considered, only the edge-on disc is able to survive interaction with the SNR (with 50 per cent of its initial mass remaining). At the end of the simulations, discs that survive contain fractional masses of SN material up to 5 × 10-6. This is too low to explain the abundance of short-lived radionuclides in the early Solar system, but a larger disc and the inclusion of radiative cooling might allow the disc to capture a higher fraction of SN material.

  14. Numerical simulations of dissipationless disk accretion

    Science.gov (United States)

    Bogovalov, S. V.; Tronin, I. V.

    2017-09-01

    Our goal is to study the regime of disk accretion in which almost all of the angular momentum and energy is carried away by the wind outflowing from the disk in numerical experiments. For this type of accretion the kinetic energy flux in the outflowing wind can exceed considerably the bolometric luminosity of the accretion disk, what is observed in the plasma flow from galactic nuclei in a number of cases. In this paper we consider the nonrelativistic case of an outflow from a cold Keplerian disk. All of the conclusions derived previously for such a system in the self-similar approximation are shown to be correct. The numerical results agree well with the analytical predictions. The inclination angle of the magnetic field lines in the disk is less than 60°, which ensures a free wind outflow from the disk, while the energy flux per wind particle is greater than the particle rotation energy in its Keplerian orbit by several orders of magnitude, provided that the ratio r A/ r ≫ 1, where r A is the Alfvénic radius and r is the radius of the Keplerian orbit. In this case, the particle kinetic energy reaches half the maximum possible energy in the simulation region. The magnetic field collimates the outflowing wind near the rotation axis and decollimates appreciably the wind outflowing from the outer disk periphery.

  15. Highly Accreting Quasars at High Redshift

    Directory of Open Access Journals (Sweden)

    Mary L. Martínez-Aldama

    2018-01-01

    Full Text Available We present preliminary results of a spectroscopic analysis for a sample of type 1 highly accreting quasars (L/LEdd ~ 1.0 at high redshift, z ~2–3. The quasars were observed with the OSIRIS spectrograph on the GTC 10.4 m telescope located at the Observatorio del Roque de los Muchachos in La Palma. The highly accreting quasars were identified using the 4D Eigenvector 1 formalism, which is able to organize type 1 quasars over a broad range of redshift and luminosity. The kinematic and physical properties of the broad line region have been derived by fitting the profiles of strong UV emission lines such as Aliiiλ1860, Siiii]λ1892 and Ciii]λ1909. The majority of our sources show strong blueshifts in the high-ionization lines and high Eddington ratios which are related with the productions of outflows. The importance of highly accreting quasars goes beyond a detailed understanding of their physics: their extreme Eddington ratio makes them candidates standard candles for cosmological studies.

  16. Intervertebral disc degeneration in dogs

    NARCIS (Netherlands)

    Bergknut, N.

    2011-01-01

    Back pain is common in both dogs and humans, and is often associated with intervertebral disc (IVD) degeneration. The IVDs are essential structures of the spine and degeneration can ultimately result in diseases such as IVD herniation or spinal instability. In order to design new treatments halting

  17. Intervertebral disc degeneration in dogs

    NARCIS (Netherlands)

    Bergknut, Niklas

    Back pain is common in both dogs and humans, and is often associated with intervertebral disc (IVD) degeneration. The IVDs are essential structures of the spine and degeneration can ultimately result in diseases such as IVD herniation or spinal instability. In order to design new treatments halting

  18. Electromagnetic Levitation of a Disc

    Science.gov (United States)

    Valle, R.; Neves, F.; de Andrade, R., Jr.; Stephan, R. M.

    2012-01-01

    This paper presents a teaching experiment that explores the levitation of a disc of ferromagnetic material in the presence of the magnetic field produced by a single electromagnet. In comparison to the classical experiment of the levitation of a sphere, the main advantage of the proposed laboratory bench is that the uniform magnetic field…

  19. Disc heating in NGC 2985

    NARCIS (Netherlands)

    Gerssen, J; Kuijken, K; Merrifield, MR

    2000-01-01

    Various processes have been proposed to explain how galaxy discs acquire their thickness. A simple diagnostic for ascertaining this 'heating' mechanism is provided by the ratio of the vertical to radial velocity dispersion components. In a previous paper we have developed a technique for measuring

  20. Stress and deformation of rocket gas turbine disc under different loads using finite element modelling

    Directory of Open Access Journals (Sweden)

    Amr Elhefny

    2013-03-01

    Full Text Available Gas turbine discs have numerous applications in the aerospace industry, such as in liquid rocket engines. In this study, the stresses and deformations of a turbine disc were studied. The goal was to highlight the stress and deformation distribution to assist in the design of a disc as well as to demonstrate the importance of using finite element (FE analysis in simulating an actual design case. Then, to present the real model, a two-dimensional (2D axisymmetric model for a non-uniform disc was analysed using FE analysis. The stresses and deformations developed as a result of the disc operating conditions at high rotational speeds and thermal gradients were evaluated using two types of heat transfer modes—conduction and convection, taking into consideration the material behaviour at elevated temperatures. The FE model revealed that the weight of the disc should be reduced optimally by using a non-uniform thickness because this results in a huge increase in the applied stresses. The greatest stresses in the disc result from the thermal load caused by conduction, and they are located at the centre of the disc. In addition, an analytical method was used to evaluate and predict the stresses along the disc, and it gave a good estimate of the stress values compared to the FE model. Based on this estimate, a parametric study was conducted for a range of rotational velocities under high temperature loads for a series of disc radii. Finally, it was found that this method can be used for the preliminary design of different turbines.

  1. A New Model for Thermal and Bulk Comptonization in Accretion-Powered X-ray Pulsars

    Science.gov (United States)

    Becker, Peter A.; Wolff, Michael T.

    2018-01-01

    The theory of spectral formation in accretion-powered X-ray pulsars has advanced considerably in the past decade, with the development of new models for the continuum and the cyclotron line formation processes. In many sources, the cyclotron line centroid energy is observed to vary as a function of source luminosity (and therefore accretion rate). In some cases, the variations in the luminosity seem to indicate a change in the structure of the accretion column, as the source passes from the sub-critical to the super-critical regime. With the recent launches of NuSTAR and NICER, observations of accreting X-ray pulsars are entering a new era, with large effective areas, broadband energy coverage, and good temporal resolution. These observations are already presenting new challenges to the theory, requiring the development of a new generation of more sophisticated physical models. In this paper, we discuss an improved model for bulk and thermal Comptonization in X-ray pulsars that will allow greater self-consistency in the data analysis process than current models, leading to more rigorous determinations of source parameters such as magnetic field strength, temperature, etc. The model improvements include (1) a more realistic geometry for the accretion column; (2) a more rigorous accretion velocity profile that merges smoothly with Newtonian free-fall as r → ∞ and (3) a more realistic free-streaming radiative boundary condition at the top of the column. This latter improvement means that we can now compute the pencil and fan beam components separately, which is necessary in order to analyze phase-dependent spectral data. We discuss applications of the new model to Her X-1, LMC X-4, and Cen X-3, and also to the Be X-ray binary 4U 0115+63.

  2. Episodic cauda equina compression from an intradural lumbar herniated disc: a case of 'floppy disc'.

    Science.gov (United States)

    Nagaria, J; Chan, Cc; Kamel, Mh; McEvoy, L; Bolger, C

    2011-09-01

    Intradural disc herniation (IDDH) is a rare complication of intervertebral disc disease and comprises 0.26-0.30% of all herniated discs, with 92% of them located in the lumbar region (1). We present a case of IDDH that presented with intermittent symptoms and signs of cauda equina compression. We were unable to find in the literature, any previously described cases of intermittent cauda equina compression from a herniated intradural disc fragment leading to a "floppy disc syndrome". © JSCR.

  3. Spontaneous Regression of Herniated Lumbar Disc with New Disc Protrusion in the Adjacent Level

    OpenAIRE

    Hakan, Tayfun; G?rcan, Serkan

    2016-01-01

    Spontaneous regression of herniated lumbar discs was reported occasionally. The mechanisms proposed for regression of disc herniation are still incomplete. This paper describes and discusses a case of spontaneous regression of herniated lumbar discs with a new disc protrusion in the adjacent level. A 41-year-old man was admitted with radiating pain and numbness in the left lower extremity with a left posterolateral disc extrusion at L5-S1 level. He was admitted to hospital with low back pain ...

  4. Intervertebral disc calcifications in children.

    Science.gov (United States)

    Beluffi, G; Fiori, P; Sileo, C

    2009-03-01

    This study was done to assess the presence of both asymptomatic and symptomatic intervertebral disc calcifications in a large paediatric population. We retrospectively reviewed the radiographs taken during the past 26 years in children (age 0-18 years) undergoing imaging of the spine or of other body segments in which the spine was adequately depicted, to determine possible intervertebral disc calcifications. The following clinical evaluation was extrapolated from the patients' charts: presence of spinal symptoms, history of trauma, suspected or clinically evident scoliosis, suspected or clinically evident syndromes, bone dysplasias, and pre- or postoperative chest or abdominal X-rays. We detected intervertebral disc calcifications in six patients only. Five calcifications were asymptomatic (one newborn baby with Patau syndrome; three patients studied to rule out scoliosis, hypochondroplasia and syndromic traits; one for dyspnoea due to sunflower seeds inhalation). Only one was symptomatic, with acute neck pain. Calcifications varied in number from one in one patient to two to five in the others. Apart from the calcification in the patient with cervical pain, all calcifications were asymptomatic and constituted an incidental finding (particularly those detected at the thoracic level in the patient studied for sunflower-seed inhalation). Calcification shapes were either linear or round. Our series confirms that intervertebral disc calcifications are a rare finding in childhood and should not be a source of concern: symptomatic calcifications tend to regress spontaneously within a short time with or without therapy and immobilisation, whereas asymptomatic calcifications may last for years but disappear before the age of 20 years. Only very few cases, such as those of medullary compression or severe dysphagia due to anterior herniation of cervical discs, may require surgical procedures.

  5. Exoplanet recycling in massive white-dwarf debris discs

    Science.gov (United States)

    Van Lieshout, Rik

    2017-06-01

    When a star evolves into a white dwarf, the planetary system it hosts can become unstable. Planets in such systems may then be scattered onto star-grazing orbits, leading to their tidal disruption as they pass within the white dwarf’s Roche limit. We study the massive, compact debris discs that may arrise from this process using a combination of analytical estimates and numerical modelling. The discs are gravitationally unstable, resulting in an enhanced effective viscosity due to angular momentum transport associated with self-gravity wakes. For disc masses greater than ~1026 g (corresponding to progenitor objects comparable to the Galilean moons), viscous spreading dominates over Poynting-Robertson drag in the outer parts of the disc. In such massive discs, mass is transported both in- and outwards. When the outward-flowing material spreads beyond the Roche limit, it coagulates into new (minor) planets in a process analogous to the ongoing formation of Saturn’s innermost moonlets. This process recycles a substantial fraction of the original disc mass (tens of percents), with the bulk of the mass locked in a single large body orbitting in a 2:1 mean-motion resonance with the Roche limit. As such, the recycling of a tidally disrupted super-Earth could yield an Earth-mass planet on a 10--20 hr orbit. For white dwarfs with a temperature below 6000-7000 K (corresponding to a cooling age of >1--2 Gyr), this orbit is located in the white dwarf’s habitable zone. The recycling process also creates a string of smaller bodies just outside the Roche limit. These may account for the collection of minor planets postulated to orbit white dwarf WD 1145+017.

  6. On the Origin of Banded Structure in Dusty Protoplanetary Discs: HL Tau and TW Hya

    Science.gov (United States)

    Boley, Aaron C.

    2017-10-01

    We present simulations of planet-planetesimal interactions that can reproduce major and minor banded structure in the HL Tau and TW Hya discs provided that small grains trace the dynamically cold planetesimal population. The consequences of the model and its limitations will be discussed. In particular, the model requires that planetesimals form throughout the disc at early times, that planetesimal-planetesimal collisions are predominately among the cold population, and that pebble accretion leads to mass redistribution of the small grains onto planetesimals before the grains can undergo significant radial drift. The meteortic record may suggest that a similar process occurred in the Solar System. The model implies that grain size distributions inferred from submm/mm studies may reflect early debris processes rather than grain growth.

  7. Accretion shock stability on a dynamically heated YSO atmosphere with radiative transfer

    Science.gov (United States)

    de Sá, Lionel; Chièze, Jean-Pierre; Stehlé, Chantal; Matsakos, Titos; Ibgui, Laurent; Lanz, Thierry; Hubeny, Ivan

    2014-01-01

    Theory and simulations predict Quasi-Periodic Oscillations of shocks which develop in magnetically driven accretion funnels connecting the stellar disc to the photosphere of Young Stellar Objects (YSO). X-ray observations however do not show evidence of the expected periodicity. We examine here, in a first attempt, the influence of radiative transfer on the evolution of material impinging on a dynamically heated stellar atmosphere, using the 1D ALE-RHD code ASTROLABE. The mechanical shock heating mechanism of the chromosphere only slightly perturbs the flow. We also show that, since the impacting flow, and especially the part which penetrates into the chromosphere, is not treated as a purely radiating transparent medium, a sufficiently efficient coupling between gas and radiation may affect or even suppress the oscillations of the shocked column. This study shows the importance of the description of the radiation effects in the hydrodynamics and of the accuracy of the opacities for an adequate modeling.

  8. MR imaging findings of a sequestered disc in the lumbar spine: a comparison with an extruded disc

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Su Youn; Park, Ji Seon; Ryu, Kyung Nam [Kyung Hee University Medical Center, Seoul (Korea, Republic of); Jin, Wook [Kyung Hee University East-west Neo Medical Center, Seoul (Korea, Republic of)

    2007-10-15

    To compare the MR findings of a sequestered disc with an extruded disc. MR images of 28 patients with a sequestered disc and 18 patients with an extruded disc were retrospectively reviewed. Patients with sequestered discs were divided into two groups whether definite separation from the parent disc was or was not seen. In the latter group (definite separation not seen) and the extruded disc group of patients, the signal intensities of the herniated discs were compared with the signal intensities of the parent discs and were evaluated on T1-and T2-weighted images. We also assessed the presence of a notch within the herniated disc. In the sequestered disc group of patients (28 discs), only 5 discs (18%) showed obvious separation from the parent disc. Among the remaining 23 discs with indefinite separation, the notch was visible in 14 discs (61%) and 9 discs (39%) had no notch. In the extruded disc group (18 discs), the notch was visible in 2 (11%) discs and the difference between the two groups was statistically significant ({rho} 0.0002). The signal intensities of the herniated discs on T1-weighted images were isointense in both the sequestered and extruded discs. The difference of incidence of high signal intensities on T2-weighted images was not statistically significant ({rho} = 0.125). It is necessary to consider the possibility of the presence of a sequestered disc when a herniated disc material shows a notch.

  9. [Optic disc granuloma secondary to sarcoidosis].

    Science.gov (United States)

    Qu-Knafo, L; Auregan-Giocanti, A

    2017-02-01

    We report a case of optic disc granuloma due to sarcoidosis. A 64-year-old, caucasian female with a history of pulmonary sarcoidosis presented with a vision loss on her left eye. The ophthalmologic examination revealed a discrete optic disc infiltrate compatible with the diagnosis of optic disc granuloma. Fluorescein angiography showed diffusion and impregnation of the granuloma without vascularitis. The optical coherence tomography demonstrated a homogenous and isoreflective lesion at the optic disc. The patient recovered her visual acuity after systemic corticosteroid treatment. Isolated optic disc granuloma is a rare condition of ocular sarcoidosis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Net Reaction Rate and Neutrino Cooling Rate for the Urca Process in Departure from Chemical Equilibrium in the Crust of Fast-accreting Neutron Stars

    Science.gov (United States)

    Wang, Wei-Hua; Huang, Xi; Zheng, Xiao-Ping

    We discuss the effect of compression on Urca shells in the ocean and crust of accreting neutron stars, especially in superbursting sources. We find that Urca shells may be deviated from chemical equilibrium in neutron stars which accrete at several tenths of the local Eddington accretion rate. The deviation depends on the energy threshold of the parent and daughter nuclei, the transition strength, the temperature, and the local accretion rate. In a typical crust model of accreting neutron stars, the chemical departures range from a few tenths of kBT to tens of kBT for various Urca pairs. If the Urca shell can exist in crusts of accreting neutron stars, compression may enhance the net neutrino cooling rate by a factor of about 1-2 relative to the neutrino emissivity in chemical equilibrium. For some cases, such as Urca pairs with small energy thresholds and/or weak transition strength, the large chemical departure may result in net heating rather than cooling, although the released heat can be small. Strong Urca pairs in the deep crust are hard to be deviated even in neutron stars accreting at the local Eddington accretion rate.

  11. The transiting dust clumps in the evolved disc of the Sun-like UXor RZ Psc.

    Science.gov (United States)

    Kennedy, Grant M; Kenworthy, Matthew A; Pepper, Joshua; Rodriguez, Joseph E; Siverd, Robert J; Stassun, Keivan G; Wyatt, Mark C

    2017-01-01

    RZ Psc is a young Sun-like star, long associated with the UXor class of variable stars, which is partially or wholly dimmed by dust clumps several times each year. The system has a bright and variable infrared excess, which has been interpreted as evidence that the dimming events are the passage of asteroidal fragments in front of the host star. Here, we present a decade of optical photometry of RZ Psc and take a critical look at the asteroid belt interpretation. We show that the distribution of light curve gradients is non-uniform for deep events, which we interpret as possible evidence for an asteroidal fragment-like clump structure. However, the clumps are very likely seen above a high optical depth midplane, so the disc's bulk clumpiness is not revealed. While circumstantial evidence suggests an asteroid belt is more plausible than a gas-rich transition disc, the evolutionary status remains uncertain. We suggest that the rarity of Sun-like stars showing disc-related variability may arise because (i) any accretion streams are transparent and/or (ii) turbulence above the inner rim is normally shadowed by a flared outer disc.

  12. Three-level cervical disc herniation

    Directory of Open Access Journals (Sweden)

    St. Iencean Andrei

    2015-09-01

    Full Text Available Multilevel cervical degenerative disc disease is well known in the cervical spine pathology, with radicular syndromes or cervical myelopathy. One or two level cervical herniated disc is common in adult and multilevel cervical degenerative disc herniation is common in the elderly, with spinal stenosis, and have the same cause: the gradual degeneration of the disc. We report the case of a patient with two level cervical disc herniation (C4 – C5 and C5 – C6 treated by anterior cervical microdiscectomy both levels and fusion at C5 – C6; after five years the patient returned with left C7 radiculopathy and MRI provided the image of a left C6 – C7 disc herniation, he underwent an anterior microsurgical discectomy with rapid relief of symptoms. Three-level cervical herniated disc are rare in adults, and the anterior microdiscectomy with or without fusion solve this pathology.

  13. Retina image–based optic disc segmentation

    Directory of Open Access Journals (Sweden)

    Ching-Lin Wang

    2016-05-01

    Full Text Available The change of optic disc can be used to diagnose many eye diseases, such as glaucoma, diabetic retinopathy and macular degeneration. Moreover, retinal blood vessel pattern is unique for human beings even for identical twins. It is a highly stable pattern in biometric identification. Since optic disc is the beginning of the optic nerve and main blood vessels in retina, it can be used as a reference point of identification. Therefore, optic disc segmentation is an important technique for developing a human identity recognition system and eye disease diagnostic system. This article hence presents an optic disc segmentation method to extract the optic disc from a retina image. The experimental results show that the optic disc segmentation method can give impressive results in segmenting the optic disc from a retina image.

  14. Numerical solution of the radiative transfer equation: X-ray spectral formation from cylindrical accretion onto a magnetized neutron star

    Science.gov (United States)

    Farinelli, R.; Ceccobello, C.; Romano, P.; Titarchuk, L.

    2012-02-01

    Context. Predicting the emerging X-ray spectra in several astrophysical objects is of great importance, in particular when the observational data are compared with theoretical models. This requires developing numerical routines for the solution of the radiative equation according to the expected physical conditions of the systems under study. Aims: We have developed an algorithm solving the radiative transfer equation in the Fokker-Planck approximation when both thermal and bulk Comptonization take place. The algorithm is essentially a relaxation method, where stable solutions are obtained when the system has reached its steady-state equilibrium. Methods: We obtained the solution of the radiative transfer equation in the two-dimensional domain defined by the photon energy E and optical depth of the system τ using finite-differences for the partial derivatives, and imposing specific boundary conditions for the solutions. We treated the case of cylindrical accretion onto a magnetized neutron star. Results: We considered a blackbody seed spectrum of photons with exponential distribution across the accretion column and for an accretion where the velocity reaches its maximum at the stellar surface and at the top of the accretion column, respectively. In both cases higher values of the electron temperature and of the optical depth τ produce flatter and harder spectra. Other parameters contributing to the spectral formation are the steepness of the vertical velocity profile, the albedo at the star surface, and the radius of the accretion column. The latter parameter modifies the emerging spectra in a specular way for the two assumed accretion profiles. Conclusions: The algorithm has been implemented in the xspec package for X-ray spectral fitting and is specifically dedicated to the physical framework of accretion at the polar cap of a neutron star with a high magnetic field (≳ 1012 G). This latter case is expected to be typical of accreting systems such as X

  15. Numerical Solution of the Radiative Transfer Equation: X-Ray Spectral Formation from Cylindrical Accretion onto a Magnetized Neutron Star

    Science.gov (United States)

    Fairnelli, R.; Ceccobello, C.; Romano, P.; Titarchuk, L.

    2011-01-01

    Predicting the emerging X-ray spectra in several astrophysical objects is of great importance, in particular when the observational data are compared with theoretical models. This requires developing numerical routines for the solution of the radiative transfer equation according to the expected physical conditions of the systems under study. Aims. We have developed an algorithm solving the radiative transfer equation in the Fokker-Planck approximation when both thermal and bulk Comptonization take place. The algorithm is essentially a relaxation method, where stable solutions are obtained when the system has reached its steady-state equilibrium. Methods. We obtained the solution of the radiative transfer equation in the two-dimensional domain defined by the photon energy E and optical depth of the system pi using finite-differences for the partial derivatives, and imposing specific boundary conditions for the solutions. We treated the case of cylindrical accretion onto a magnetized neutron star. Results. We considered a blackbody seed spectrum of photons with exponential distribution across the accretion column and for an accretion where the velocity reaches its maximum at the stellar surface and at the top of the accretion column, respectively. In both cases higher values of the electron temperature and of the optical depth pi produce flatter and harder spectra. Other parameters contributing to the spectral formation are the steepness of the vertical velocity profile, the albedo at the star surface, and the radius of the accretion column. The latter parameter modifies the emerging spectra in a specular way for the two assumed accretion profiles. Conclusions. The algorithm has been implemented in the XPEC package for X-ray fitting and is specifically dedicated to the physical framework of accretion at the polar cap of a neutron star with a high magnetic field (approx > 10(exp 12) G). This latter case is expected to be of typical accreting systems such as X

  16. Impact analysis of different chemical pre-treatments on colour of apple discs during drying process

    OpenAIRE

    D. Magdić; Lukinac, Jasmina; Jokić, Stela; F. Čačić-Kenjerić; Bilić, M.; D. Velić

    2009-01-01

    The main purpose of this study was to compare colour changes of chemically pre-treated dried apple discs. Changes were observed by chromameter in L*a*b* colour model by using Minolta chromameter CR-400 and by image analysis system in RGB colour model. Apple discs variety "Gold Rush" were pre-treated and dried in laboratory tray drier at drying temperature 70 °C and at airflow velocity of 1.5 ms-1. Different chemical pre-treatments were applied on apple discs (dipping in 0.5% ascorbic acid sol...

  17. Bilateral disc drusen in a diabetic patient simulating diabetic papillopathy as a cause of disc edema

    Directory of Open Access Journals (Sweden)

    Rohan Chawla

    2017-01-01

    Full Text Available Bilateral optic disc edema in a diabetic patient may be caused by diabetic papillopathy. We herein report on a patient with bilateral optic disc drusen simulating diabetic papillopathy. A 55-year-old patient with type 2 diabetes presented with decreased vision of 1-month. Diabetic papillopathy was initially considered as there was disc edema in both eyes with focal hemorrhages at the disc margin and mild visual loss. Ultrasound of the optic nerve head revealed optic disc drusen in both eyes and this was also confirmed by the control photograph. Optic nerve head drusen should be considered in the differential diagnosis of a diabetic patient presenting with disc edema.

  18. Accretion of a relativistic, collisionless kinetic gas into a Schwarzschild black hole

    CERN Document Server

    Rioseco, Paola

    2016-01-01

    We provide a systematic study for the accretion of a collisionless, relativistic kinetic gas into a nonrotating black hole. To this end, we first solve the relativistic Liouville equation on a Schwarzschild background spacetime. The most general solution for the distribution function is given in terms of appropriate symplectic coordinates on the cotangent bundle, and the associated observables, including the particle current density and stress energy-momentum tensor, are determined. Next, we explore the case where the flow is steady-state and spherically symmetric. Assuming that in the asymptotic region the gas is described by an equilibrium distribution function, we determine the relevant parameters of the accretion flow as a function of the particle density and the temperature of the gas at infinity. In particular, we find that in the low temperature limit the tangential pressure at the horizon is about an order of magnitude larger than the radial one, showing explicitly that a collisionless gas, despite ex...

  19. Propagating mass accretion rate fluctuations in black hole X-ray binaries: quantitative tests

    Science.gov (United States)

    Rapisarda, S.; Ingram, A.; van der Klis, M.

    2017-10-01

    Over the past 20 years, a consistent phenomenology has been established to describe the variability properties of Black Hole X-ray Binaries (BHBs). However, the physics behind the observational data is still poorly understood. The recently proposed model PROPFLUC assumes a truncated disc/hot inner flow geometry, with mass accretion rate fluctuations propagating through a precessing inner flow. These two processes give rise respectively to broad band variability and QPO. Because of propagation, the emission from different regions of the disc/hot flow geometry is correlated. In our study we applied the model PROPFLUC on different BHBs (including XTE J1550-564 and Cygnus X-1) in different spectral states, fitting jointly the power spectra in two energy bands and the cross-spectrum between these two bands. This represents the first study to utilize quantitive fitting of a physical model simultaneously to observed power and cross-spectra. For the case of XTE J1550-564, which displays a strong QPO, we found quantitative and qualitative discrepancies between model predictions and data, whereas we find a good fit for the Cygnus X-1 data, which does not display a QPO. We conclude that the discrepancies are generic to the propagating fluctuations paradigm, and may be related to the mechanism originating the QPO.

  20. The Aerodynamics of a Flying Sports Disc

    Science.gov (United States)

    Potts, Jonathan R.; Crowther, William J.

    2001-11-01

    The flying sports disc is a spin-stabilised axi-symmetric wing of quite remarkable design. A typical disc has an approximate elliptical cross-section and hollowed out under-side cavity, such as the Frisbee(TM) disc. An experimental study of flying disc aerodynamics, including both spinning and non-spinning tests, has been carried out in the wind tunnel. Load measurements, pressure data and flow visualisation techniques have enabled an explanation of the flow physics and provided data for free-flight simulations. A computer simulation that predicts free-flight trajectories from a given set of initial conditions was used to investigate the dynamics of a flying disc. This includes a six-degree of freedom mathematical model of disc flight mechanics, with aerodynamic coefficients derived from experimental data. A flying sports disc generates lift through forward velocity just like a conventional wing. The lift contributed by spin is insignificant and does not provide nearly enough down force to support hover. Without spin, the disc tumbles ground-ward under the influence of an unstable aerodynamic pitching moment. From a backhand throw however, spin is naturally given to the disc. The unchanged pitching moment now results in roll, due to gyroscopic precession, stabilising the disc in free-flight.

  1. X-shooter spectroscopy of young stellar objects in Lupus. Accretion properties of class II and transitional objects

    Science.gov (United States)

    Alcalá, J. M.; Manara, C. F.; Natta, A.; Frasca, A.; Testi, L.; Nisini, B.; Stelzer, B.; Williams, J. P.; Antoniucci, S.; Biazzo, K.; Covino, E.; Esposito, M.; Getman, F.; Rigliaco, E.

    2017-04-01

    The mass accretion rate, Ṁacc, is a key quantity for the understanding of the physical processes governing the evolution of accretion discs around young low-mass (M⋆ ≲ 2.0 M⊙) stars and substellar objects (YSOs). We present here the results of a study of the stellar and accretion properties of the (almost) complete sample of class II and transitional YSOs in the Lupus I, II, III and IV clouds, based on spectroscopic data acquired with the VLT/X-shooter spectrograph. Our study combines the dataset from our previous work with new observations of 55 additional objects. We have investigated 92 YSO candidates in total, 11 of which have been definitely identified with giant stars unrelated to Lupus. The stellar and accretion properties of the 81 bona fide YSOs, which represent more than 90% of the whole class II and transition disc YSO population in the aforementioned Lupus clouds, have been homogeneously and self-consistently derived, allowing for an unbiased study of accretion and its relationship with stellar parameters. The accretion luminosity, Lacc, increases with the stellar luminosity, L⋆, with an overall slope of 1.6, similar but with a smaller scatter than in previous studies. There is a significant lack of strong accretors below L⋆ ≈ 0.1 L⊙, where Lacc is always lower than 0.01 L⋆. We argue that the Lacc - L⋆ slope is not due to observational biases, but is a true property of the Lupus YSOs. The log Ṁacc - log M⋆ correlation shows a statistically significant evidence of a break, with a steeper relation for M⋆ ≲ 0.2 M⊙ and a flatter slope for higher masses. The bimodality of the Ṁacc - M⋆ relation is confirmed with four different evolutionary models used to derive the stellar mass. The bimodal behaviour of the observed relationship supports the importance of modelling self-gravity in the early evolution of the more massive discs, but other processes, such as photo-evaporation and planet formation during the YSO's lifetime, may

  2. Accretion processes in magnetically and tidally perturbed Schwarzschild black holes

    CERN Document Server

    Kovács, Zoltán; Vasúth, Mátyás

    2011-01-01

    We study the accretion process in the region of the Preston-Poisson space-time describing a Schwarzschild black hole perturbed by asymptotically uniform magnetic field and axisymmetric tidal structures. We find that the accretion disk shrinks and the marginally stable orbit shifts towards the black hole with the perturbation. The radiation intensity of the accretion disk increases, while the radius where radiation is maximal remains unchanged. The spectrum is blue-shifted. Finally, the conversion efficiency of accreting mass into radiation is decreased by both the magnetic and the tidal perturbations.

  3. Analysis of surface roughness generation in aircraft ice accretion

    Science.gov (United States)

    Hansman, R. J., Jr.; Reehorst, Andrew; Sims, James

    1992-01-01

    Patterns of roughness evolution have been studied analysis of high magnification video observations of accreting ice surfaces provided by the NASA Lewis Research Center. Three distinct patterns of surface roughness generation have been identified within the parametric regions studied. They include: Rime, Multi-Zone Glaze, and Uniform Glaze. Under most icing conditions, a brief period of transient rime ice growth was observed caused by heat conduction into the body. The resulting thin rime layer explains previously observed insensitivity of some ice accretions to substrate insensitivity of some ice accretions to substrate surface chemistry and may provide justification for simplifying assumptions in ice accretion sailing and modeling effects.

  4. Bondi-Hoyle accretion in a turbulent, magnetized medium

    Science.gov (United States)

    Burleigh, Kaylan J.; McKee, Christopher F.; Cunningham, Andrew J.; Lee, Aaron T.; Klein, Richard I.

    2017-06-01

    We present simulations of accretion on to point masses embedded in an isothermal gas that is magnetized and supersonically turbulent, as occurs for protostars in molecular clouds. We use the orion2 adaptive mesh refinement (AMR) code to carry out ideal magnetohydrodynamic simulations for an rms Mach number M_{rms}=5 and a wide range of Alfvén Mach numbers. We find that the probability density functions for accretion rates in all models are very wide (±0.5 dex) and asymmetric, tilted to low accretion rates; the mean accretion rate is about twice the median. We find that the results of Lee et al. for magnetized Bondi-Hoyle accretion with the relative velocity parallel to the field describe our results to within a factor of 2, and we suggest that this should be valid at least for M_{rms}≲ 10. Our results show that turbulent magnetic fields of the strength observed in molecular clouds reduce the accretion rate relative to the classical Bondi-Hoyle rate by a factor of a few for Alfvén Mach numbers of order unity, but this is comparable to the reduction due to supersonic hydrodynamic turbulence alone. This reduction in accretion rates should be taken into account in analytic models of competitive accretion and analytic estimates of the accretion luminosities of young stellar objects in molecular clouds.

  5. Squeal and chatter phenomena generated in a mountain bike disc brake

    Science.gov (United States)

    Nakae, Takashi; Ryu, Takahiro; Sueoka, Atsuo; Nakano, Yutaka; Inoue, Takumi

    2011-05-01

    This paper examines squeal and chatter phenomena generated experimentally in mountain bike disc brakes. There are two kinds of frictional self-excited vibrations in the bike disc brakes, called squeal with frequency of 1 kHz and chatter with frequency of 500 Hz. In order to reproduce the squeal and chatter, a bench test apparatus using an actual bike was set up to determine the associated frequency characteristics experimentally. The results show the frequencies to be independent of pad temperature and disc rotating speed. Squeal is shown to be in-plane vibration in the direction of the disc surface which is caused by the frictional characteristics having negative slope with respect to the relative velocity in the vibrating system, which includes brake unit, spokes and hub. Chatter is generated within a limited high temperature region. Again, it is frictional vibration in which the squeal and out-of-plane vibration of the disc due to Coulomb friction combine through the internal resonance relation between in-plane and out-of-plane nonlinear vibration caused by the temperature increase of the disc during braking.

  6. NuSTAR and Swift joint view of neutron star X-ray binary 4U 1728-34: disc reflection in the island and lower banana states

    Science.gov (United States)

    Mondal, Aditya S.; Pahari, Mayukh; Dewangan, G. C.; Misra, R.; Raychaudhuri, B.

    2017-04-01

    We analyse two simultaneous NuSTAR and Swift data of the Atoll-type neutron star (NS) X-ray binary 4U 1728-34 observed on 2013 October 1 and 3. We infer that the first and the second observations belong to the island state and the lower banana state, respectively. During island state, four type-I X-ray bursts are observed within 60 ks exposure. From the time-resolved spectral analysis of each burst with NuSTAR, the blackbody temperature kTbb are found to vary between 1.3 and 3.0 keV, while the blackbody normalizations (km/10 kpc)2 vary in the range 20-200, which translates to blackbody radii of 3.5-7.4 km for an assumed distance of 5 kpc. The persistent, joint energy spectra from Swift and NuSTAR for both observations in the energy band 1-79 keV are well described with thermal emission from the NS surface (kTbb ≃ 1-2.5 keV), Comptonized emission of thermal seed photons from the hot boundary layer/corona and the strong reflection component from the accretion disc. We detect a broad iron line in the 5-8 keV band and reflection hump in the 15-30 keV band modelled by the relxill reflection model. Joint spectral fitting constrains the inclination angle of the binary system and inner disc radius to be 22°-40° and (2.0-4.3) × RISCO, respectively. We estimate the magnetic field to be (1.8-6.5) × 108 G. The X-ray luminosity of the source during the island and lower banana states are found to be LX = 1.1 and 1.6 × 1037 erg s-1, respectively, which correspond to ˜6 per cent and ˜9 per cent of the Eddington luminosity.

  7. Radiative Magnetic Reconnection Near Accreting Black Holes

    Science.gov (United States)

    Beloborodov, Andrei M.

    2017-12-01

    A radiative mechanism is proposed for magnetic flares near luminous accreting black holes. It is based on recent first-principle simulations of magnetic reconnection, which show a hierarchical chain of fast-moving plasmoids. The reconnection occurs in a compact region (comparable to the black hole radius), and the chain experiences fast Compton cooling accompanied by electron-positron pair creation. The distribution of plasmoid speeds is shaped by radiative losses, and the self-regulated chain radiates its energy in hard X-rays. The mechanism is illustrated by Monte-Carlo simulations of the transfer of seed soft photons through the reconnection layer. The emerging radiation spectrum has a cutoff near 100 keV similar to the hard-state spectra of X-ray binaries and AGN. We discuss how the chain cooling differs from previous phenomenological emission models, and suggest that it can explain the hard X-ray activity of accreting black holes from first principles. Particles accelerated at the X-points of the chain produce an additional high-energy component, explaining the “hybrid Comptonization” observed in Cyg X-1.

  8. Spontaneously disappearing large herniated lumbar disc fragment

    Directory of Open Access Journals (Sweden)

    Umamaheswara V. Reddy

    2014-01-01

    Full Text Available There are reports of spontaneous regression of large extruded disc; however, the exact underlying mechanism and management of such cases remains controversial. We report a 40-year-old female who opted for conservative management for a large extruded lumbar disc. Follow-up magnetic resonance imaging (MRI showed complete disappearance of the disc fragment; however, there were degenerative changes in the upper and lower adjacent margins of the vertebral body. Spine surgeons should be aware of spontaneous regression of the disc phenomenon as a patient with a large extruded disc who opted for the conservative management initially can have persistence pain, but there may not be an underlying protruded disc.

  9. Optic Disc Identification Methods for Retinal Images

    Directory of Open Access Journals (Sweden)

    Florin Rotaru

    2014-07-01

    Full Text Available Presented are the methods proposed by authors to identify and model the optic disc in colour retinal images. The first three our approaches localized the optic disc in two steps: a in the green component of RGB image the optic disc area is detected based on texture indicators and pixel intensity variance analysis; b on the segmented area the optic disc edges are extracted and the resulted boundary is approximated by a Hough transform. The last implemented method identifies the optic disc area by analysis of blood vessels network extracted in the green channel of the original image. In the segmented area the optic disc edges are obtained by an iterative Canny algorithm and are approximated by a circle Hough transform.

  10. Optic disc size in ocular hypertension

    Directory of Open Access Journals (Sweden)

    Chandra Sekhar G

    1999-01-01

    Full Text Available Purpose: To study the optic disc size in eyes with ocular hypertension (OHT in comparison to primary open-angle glaucoma (POAG and normals. Methods: Optic disc photographs obtained with the Nidek 3dx NM camera were digitized (Nikon™ coolscan and disc area calculated using Littmann correction in a randomly chosen eye of 28 OHT, 42 POAG and 30 normal subjects. OHT was defined as increased intraocular pressure with no disc or field changes suggestive of glaucoma with open angles. Results: The optic disc area in OHT was 9.47 ± 1.09 mm2; 12.27 ± 2.87mm2 in POAG; and 12.11 ± 2.83 mm2 in normal individuals. Conclusion: Using magnification corrected morphometry and the criteria for OHT diagnosis, the optic disc area in OHT was significantly smaller (p<0.0001 in POAG and normals.

  11. Effects of cryogenic treatment on the wear properties of brake discs

    Science.gov (United States)

    Nadig, D. S.; Shivakumar, P.; Anoop, S.; Chinmay, Kulkarni; Divine, P. V.; Harsha, H. P.

    2017-02-01

    Disc brakes are invariably used in all the automobiles either to reduce the rotational speed of the wheel or to hold the vehicle stationary. During the braking action, the kinetic energy is converted into heat which can result in high temperatures resulting in fading of brake effects. Brake discs produced out of martensite stainless steel (SS410) are expected to exhibit high wear resistance properties with low value of coefficient of friction. These factors increase the useful life of the brake discs with minimal possibilities of brake fade. To study the effects of cryogenic treatment on the wear behaviour, two types of brake discs were cryotreated at 98K for 8 and 24 hours in a specially developed cryotreatment system using liquid nitrogen. Wear properties of the untreated and cryotreated test specimens were experimentally determined using the pin on disc type tribometer (ASTM G99-95). Similarly, the Rockwell hardness (HRC) of the specimens were tested in a hardness tester in accordance with ASTM E18. In this paper, the effects of cryotreatment on the wear and hardness properties of untreated and cryotreated brake discs are presented. Results indicate enhancement of wear properties and hardness after cryogenic treatment compared with the normal brakes discs.

  12. Microendoscopic discectomy for prolapsed lumbar intervertebral disc

    OpenAIRE

    Ranjan Alok; Lath Rahul

    2006-01-01

    Background: Lumbar disc prolapse is a common problem and the current surgical standard for its treatment is a microsurgical discectomy. Microendoscopic discectomy (MED) is a minimally invasive spinal procedure being done successfully for prolapsed intervertebral disc disease. Aims: We report the technique, outcome and complications seen in 107 cases of prolapsed lumbar intervertebral disc who underwent MED. Setting and Design: The study was carried out at the Department of Neurosurgery, ...

  13. Growth and evolution of satellites in a Jovian massive disc

    Science.gov (United States)

    Moraes, R. A.; Kley, W.; Vieira Neto, E.

    2018-03-01

    The formation of satellite systems in circum-planetary discs is considered to be similar to the formation of rocky planets in a proto-planetary disc, especially super-Earths. Thus, it is possible to use systems with large satellites to test formation theories that are also applicable to extrasolar planets. Furthermore, a better understanding of the origin of satellites might yield important information about the environment near the growing planet during the last stages of planet formation. In this work, we investigate the formation and migration of the Jovian satellites through N-body simulations. We simulated a massive, static, low-viscosity, circum-planetary disc in agreement with the minimum mass sub-nebula model prescriptions for its total mass. In hydrodynamic simulations, we found no signs of gaps, therefore type II migration is not expected. Hence, we used analytic prescriptions for type I migration, eccentricity and inclination damping, and performed N-body simulations with damping forces added. Detailed parameter studies showed that the number of final satellites is strong influenced by the initial distribution of embryos, the disc temperature, and the initial gas density profile. For steeper initial density profiles, it is possible to form systems with multiple satellites in resonance while a flatter profile favours the formation of satellites close to the region of the Galilean satellites. We show that the formation of massive satellites such as Ganymede and Callisto can be achieved for hotter discs with an aspect ratio of H/r ˜ 0.15 for which the ice line was located around 30RJ.

  14. Computed tomography in the diagnosis of the lumbar disc herniation

    Energy Technology Data Exchange (ETDEWEB)

    Iwakura, Yuichiro (Yatsushiro General Hospital, Kumamoto (Japan)); Hayashi, Yasuo; Suzuki, Mutsuaki; Uemura, Mitsuharu; Fukuda, Kazuyuki; Koito, Hirofumi

    1984-06-01

    In this study, effectiveness of computed tomography (CT) in diagnosing lumbar disc herniation was evaluated. Twenty CT examinations which were interpreted as positive for a herniated disc, and were comfirmed by myelography, were reviewed. In 19 patients, CT demonstrated posterior protrusion of the disc but in one normal disc. Three typical cases were described. This study suggests that CT accurately demonstrates lumbar disc herniation.

  15. Optic Disc Coloboma in Two Nigerian Siblings: Case Report and ...

    African Journals Online (AJOL)

    eye and counting fingers in the left eye. Dilated binocular indirect ophthalmoscopy revealed a right large excavated colobomatous disc and a left small disc with infero‑temporal disc coloboma. Keywords: Optic disc coloboma, cognitive deficit, Nigeria. Optic Disc Coloboma in Two Nigerian Siblings: Case Report and. Review ...

  16. Accretion Disk Signatures in Type I X-Ray Bursts: Prospects for Future Missions

    Science.gov (United States)

    Keek, L.; Wolf, Z.; Ballantyne, D. R.

    2016-07-01

    Type I X-ray bursts and superbursts from accreting neutron stars illuminate the accretion disk and produce a reflection signal that evolves as the burst fades. Examining the evolution of reflection features in the spectra will provide insight into the burst-disk interaction, a potentially powerful probe of accretion disk physics. At present, reflection has been observed during only two bursts of exceptional duration. We investigate the detectability of reflection signatures with four of the latest well-studied X-ray observatory concepts: Hitomi, Neutron Star Interior Composition Explorer (NICER), Athena, and Large Observatory For X-ray Timing (LOFT). Burst spectra are modeled for different values for the flux, temperature, and the disk ionization parameter, which are representative for most known bursts and sources. The effective area and throughput of a Hitomi-like telescope are insufficient for characterizing burst reflection features. NICER and Athena will detect reflection signatures in Type I bursts with peak fluxes ≳10-7.5 erg cm-2 s-1 and also effectively constrain the reflection parameters for bright bursts with fluxes of ˜10-7 erg cm-2 s-1 in exposures of several seconds. Thus, these observatories will provide crucial new insight into the interaction of accretion flows and X-ray bursts. For sources with low line-of-sight absorption, the wide bandpass of these instruments allows for the detection of soft X-ray reflection features, which are sensitive to the disk metallicity and density. The large collecting area that is part of the LOFT design would revolutionize the field by tracing the evolution of the accretion geometry in detail throughout short bursts.

  17. Testing Models of Circum-Binary-AGN Accretion for PSO J334.2028+01.4075

    Science.gov (United States)

    Foord, Adi; Gultekin, Kayhan; Reynolds, Mark

    2017-08-01

    We present analysis of new Chandra data of PSO J334.2028+01.4075 (PSO J334 hereafter), a strong binary AGN candidate discovered by Liu et al. (2015) based on periodic variation of the optical flux. Recent radio coverage presented in Mooley et al. (2017) further supports that PSO J334 is a binary black hole system, as the quasar was found to be lobe-dominated with a twisted radio structure, possibly due to a precessing jet. With no prior X-ray coverage for PSO J334, our new 50 ksec Chandra observation allows for the unique opportunity to differentiate between a single or binary-AGN system, and if a binary, can characterize the mode of accretion. The two most basic sets of predictions via simulations of circum-binary accretion model are a “cavity”, where the inner region of the accretion disk is mostly empty and emission is truncated blueward of the wavelength associated with the temperature of the innermost ring, or “minidisks”, where there is substantial accretion onto one or both of the members of the binary, each with their own shock-heated thin-disk accretion system. We find the X-ray emission to be well-fit with a heavily absorbed power-law, incompatible with the cavity scenario. Further, we construct an SED of PSO J334 by combining radio through X-ray observations and compare it to standard QSO SEDs. We discuss the implications of the comparison between the SED of PSO J334 and that of a single AGN, and assess the likelihood of the binary model for PSO J334.

  18. BOOK REVIEW: Rotation and Accretion Powered Pulsars

    Science.gov (United States)

    Kaspi, V. M.

    2008-03-01

    Pulsar astrophysics has come a long way in the 40 years since the discovery of the first pulsar by Bell and Hewish. From humble beginnings as bits of 'scruff' on the Cambridge University group's chart recorder paper, the field of pulsars has blossomed into a major area of mainstream astrophysics, with an unparalleled diversity of astrophysical applications. These range from Nobel-celebrated testing of general relativity in the strong-field regime to constraining the equation-of-state of ultradense matter; from probing the winds of massive stars to globular cluster evolution. Previous notable books on the subject of pulsars have tended to focus on some particular topic in the field. The classic text Pulsars by Manchester and Taylor (1977 San Francisco, CA: Freeman) targeted almost exclusively rotation-powered radio pulsars, while the Mészáros book High-Energy Radiation from Magnetized Neutron Stars (1992 Chicago, IL: University of Chicago Press) considered both rotation- and accretion-powered neutron stars, but focused on their radiation at x-ray energies and above. The recent book Neutron Stars 1 by Haensel et al (2007 Berlin: Springer) considers only the equation of state and neutron-star structure. Into this context appears Rotation and Accretion Powered Pulsars, by Pranab Ghosh. In contrast to other books, here the author takes an encyclopedic approach and attempts to synthesize practically all of the major aspects of the two main types of neutron star. This is ambitious. The only comparable undertaking is the useful but more elementary Lyne and Graham-Smith text Pulsar Astronomy (1998 Cambridge: Cambridge University Press), or Compact Stellar X-ray Sources (eds Lewin and van der Klis, 2006 Cambridge: Cambridge University Press), an anthology of technical review articles that also includes black hole topics. Rotation and Accretion Powered Pulsars thus fills a clear void in the field, providing a readable, graduate-level book that covers nearly everything you

  19. Articular disc displacement in mandibular asymmetry patients

    National Research Council Canada - National Science Library

    Boonsiva Buranastidporn; Hisano, Masataka; Soma, Kunimichi

    2004-01-01

    ...) inmandibular asymmetry have not been clearlydefined. This study examines the degree anddirection of disc displacement and their relationshipwith vertical asymmetry in terms of both clinicaland biomechanical aspects...

  20. Computed tomography in lumbar herniated disc

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chul Soon; Chang, Kee Hyun; Han, Man Chung [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1984-09-15

    197 spine CTs were performed from 29th , March 1982 to 7th March, 1984. Among them, 39 patients preoperatively diagnosed as herniated nucleus pulposus or bulging disc with CT and myelography were operated. 43 disc spaces of disc disease are analysed in true positive and false negative cases. Finally the accuracy, sensitivity and specificity of spine CT and myelography are calculated. The results are as follows: 1. The CT findings of disc diseases are in order of frequency, asymmetrical obliteration of epidural fat (82%) , ventral indentation or compression on dural sac (72%), focal protrusion of disc (64%), root changes - obliteration, displacement, compression, non-filling of metrizamide - (54%), diffuse disc bulging (36%), disc at body level (31%), disc calcifications (26%), disc vacuum (10%) and other associated findings - spinal stenosis, foraminal stenosis, ligament flavum thickening, facet joint hypertrophy (26%). 2. Sensitivities of spine CT and myelography are 95% and 94%, specificities are 67%, 50% and overall accuracies 93%, 87%, respectively. 3. Therefore, it is recommended that the spine CT be used as a primary diagnostic method and the myelography as a secondary complementary study when the CT gives no conclusive findings.

  1. Debris disc constraints on planetesimal formation

    Science.gov (United States)

    Krivov, Alexander V.; Ide, Aljoscha; Löhne, Torsten; Johansen, Anders; Blum, Jürgen

    2018-02-01

    Two basic routes for planetesimal formation have been proposed over the last decades. One is a classical `slow-growth' scenario. Another one is particle concentration models, in which small pebbles are concentrated locally and then collapse gravitationally to form planetesimals. Both types of models make certain predictions for the size spectrum and internal structure of newly born planetesimals. We use these predictions as input to simulate collisional evolution of debris discs left after the gas dispersal. The debris disc emission as a function of a system's age computed in these simulations is compared with several Spitzer and Herschel debris disc surveys around A-type stars. We confirm that the observed brightness evolution for the majority of discs can be reproduced by classical models. Further, we find that it is equally consistent with the size distribution of planetesimals predicted by particle concentration models - provided the objects are loosely bound `pebble piles' as these models also predict. Regardless of the assumed planetesimal formation mechanism, explaining the brightest debris discs in the samples uncovers a `disc mass problem'. To reproduce such discs by collisional simulations, a total mass of planetesimals of up to ˜1000 Earth masses is required, which exceeds the total mass of solids available in the protoplanetary progenitors of debris discs. This may indicate that stirring was delayed in some of the bright discs, that giant impacts occurred recently in some of them, that some systems may be younger than previously thought or that non-collisional processes contribute significantly to the dust production.

  2. Modified viscosity in accretion disks. Application to Galactic black hole binaries, intermediate mass black holes, and active galactic nuclei

    Science.gov (United States)

    Grzędzielski, Mikołaj; Janiuk, Agnieszka; Czerny, Bożena; Wu, Qingwen

    2017-07-01

    Aims: Black holes (BHs) surrounded by accretion disks are present in the Universe at different scales of masses, from microquasars up to the active galactic nuclei (AGNs). Since the work of Shakura & Sunyaev (1973, A&A, 24, 337) and their α-disk model, various prescriptions for the heat-production rate are used to describe the accretion process. The current picture remains ad hoc due the complexity of the magnetic field action. In addition, accretion disks at high Eddington rates can be radiation-pressure dominated and, according to some of the heating prescriptions, thermally unstable. The observational verification of their resulting variability patterns may shed light on both the role of radiation pressure and magnetic fields in the accretion process. Methods: We compute the structure and time evolution of an accretion disk, using the code GLADIS (which models the global accretion disk instability). We supplement this model with a modified viscosity prescription, which can to some extent describe the magnetisation of the disk. We study the results for a large grid of models, to cover the whole parameter space, and we derive conclusions separately for different scales of black hole masses, which are characteristic for various types of cosmic sources. We show the dependencies between the flare or outburst duration, its amplitude, and period, on the accretion rate and viscosity scaling. Results: We present the results for the three grids of models, designed for different black hole systems (X-ray binaries, intermediate mass black holes, and galaxy centres). We show that if the heating rate in the accretion disk grows more rapidly with the total pressure and temperature, the instability results in longer and sharper flares. In general, we confirm that the disks around the supermassive black holes are more radiation-pressure dominated and present relatively brighter bursts. Our method can also be used as an independent tool for the black hole mass determination

  3. Lyman α emission from the first galaxies: signatures of accretion and infall in the presence of line trapping

    NARCIS (Netherlands)

    Latif, M. A.; Schleicher, Dominik R. G.; Spaans, M.; Zaroubi, S.

    The formation of the first galaxies is accompanied by large accretion flows and virialization shocks, during which the gas is shock heated to temperatures of similar to 10(4) K, leading to potentially strong fluxes in the Lyman alpha line. Indeed, a number of Lyman alpha blobs have been detected at

  4. Halogens in chondritic meteorites and terrestrial accretion

    Science.gov (United States)

    Clay, Patricia L.; Burgess, Ray; Busemann, Henner; Ruzié-Hamilton, Lorraine; Joachim, Bastian; Day, James M. D.; Ballentine, Christopher J.

    2017-11-01

    Volatile element delivery and retention played a fundamental part in Earth’s formation and subsequent chemical differentiation. The heavy halogens—chlorine (Cl), bromine (Br) and iodine (I)—are key tracers of accretionary processes owing to their high volatility and incompatibility, but have low abundances in most geological and planetary materials. However, noble gas proxy isotopes produced during neutron irradiation provide a high-sensitivity tool for the determination of heavy halogen abundances. Using such isotopes, here we show that Cl, Br and I abundances in carbonaceous, enstatite, Rumuruti and primitive ordinary chondrites are about 6 times, 9 times and 15-37 times lower, respectively, than previously reported and usually accepted estimates. This is independent of the oxidation state or petrological type of the chondrites. The ratios Br/Cl and I/Cl in all studied chondrites show a limited range, indistinguishable from bulk silicate Earth estimates. Our results demonstrate that the halogen depletion of bulk silicate Earth relative to primitive meteorites is consistent with the depletion of lithophile elements of similar volatility. These results for carbonaceous chondrites reveal that late accretion, constrained to a maximum of 0.5 ± 0.2 per cent of Earth’s silicate mass, cannot solely account for present-day terrestrial halogen inventories. It is estimated that 80-90 per cent of heavy halogens are concentrated in Earth’s surface reservoirs and have not undergone the extreme early loss observed in atmosphere-forming elements. Therefore, in addition to late-stage terrestrial accretion of halogens and mantle degassing, which has removed less than half of Earth’s dissolved mantle gases, the efficient extraction of halogen-rich fluids from the solid Earth during the earliest stages of terrestrial differentiation is also required to explain the presence of these heavy halogens at the surface. The hydropilic nature of halogens, whereby they track

  5. The importance of Urca-process cooling in accreting ONe white dwarfs

    Science.gov (United States)

    Schwab, Josiah; Bildsten, Lars; Quataert, Eliot

    2017-12-01

    We study the evolution of accreting oxygen-neon (ONe) white dwarfs (WDs), with a particular emphasis on the effects of the presence of the carbon-burning products 23Na and 25Mg. These isotopes lead to substantial cooling of the WD via the 25Mg-25Na, 23Na-23Ne and 25Na-25Ne Urca pairs. We derive an analytic formula for the peak Urca-process cooling rate and use it to obtain a simple expression for the temperature to which the Urca process cools the WD. Our estimates are equally applicable to accreting carbon-oxygen WDs. We use the Modules for Experiments in Stellar Astrophysics (MESA) stellar evolution code to evolve a suite of models that confirm these analytic results and demonstrate that Urca-process cooling substantially modifies the thermal evolution of accreting ONe WDs. Most importantly, we show that MESA models with lower temperatures at the onset of the 24Mg and 24Na electron captures develop convectively unstable regions, even when using the Ledoux criterion. We discuss the difficulties that we encounter in modelling these convective regions and outline the potential effects of this convection on the subsequent WD evolution. For models in which we do not allow convection to operate, we find that oxygen ignites around a density of log(ρc/g cm-3) ≈ 9.95, very similar to the value without Urca cooling. Nonetheless, the inclusion of the effects of Urca-process cooling is an important step in producing progenitor models with more realistic temperature and composition profiles which are needed for the evolution of the subsequent oxygen deflagration and hence for studies of the signature of accretion-induced collapse.

  6. Enhancing the rate of tidal disruptions of stars by a self-gravitating disc around a massive central black hole

    Directory of Open Access Journals (Sweden)

    Šubr L.

    2012-12-01

    Full Text Available We further study the idea that a self-gravitating accretion disc around a supermassive black hole can increase the rate of gradual orbital decay of stellar trajectories (and hence tidal disruption events by setting some stars on eccentric trajectories. Cooperation between the gravitational field of the disc and the dissipative environment can provide a mechanism explaining the origin of stars that become bound tightly to the central black hole. We examine this process as a function of the black hole mass and conclude that it is most efficient for intermediate central masses of the order of ∼ 104Mʘ. Members of the cluster experience the stage of orbital decay via collisions with an accretion disc and by other dissipative processes, such as tidal effects, dynamical friction and the emission of gravitational waves. Our attention is concentrated on the region of gravitational dominance of the central body. Mutual interaction between stars and the surrounding environment establishes a non-spherical shape and anisotropy of the nuclear cluster. In some cases, the stellar sub-system acquires ring-type geometry. Stars of the nuclear cluster undergo a tidal disruption event as they plunge below the tidal radius of the supermassive black hole.

  7. Relations Between Timing Features and Colors in Accreting Millisecond Pulsars

    NARCIS (Netherlands)

    van Straaten, S.; van der Klis, M.; Wijnands, R.A.D.

    2005-01-01

    We have studied the aperiodic X-ray timing and color behavior of the accreting millisecond pulsars SAX J1808.4-3658, XTE J1751-305, XTE J0929-314, and XTE J1814-338 using large data sets obtained with the Rossi X-Ray Timing Explorer. We find that the accreting millisecond pulsars have timing

  8. Does mass accretion lead to field decay in neutron stars?

    Science.gov (United States)

    Shibazaki, N.; Murakami, T.; Shaham, J.; Nomoto, K.

    1989-01-01

    Adopting the hypothesis of accretion-induced magnetic field decay in neutron stars, the consequent evolution of a neutron star's spin and magnetic field are calculated. The results are consistent with observations of binary and millisecond radio pulsars. Thermomagnetic effects could provide a possible physical mechanism for such accretion-induced field decay.

  9. Equilibrium and stability of tokamak plasmas and accretion disks

    NARCIS (Netherlands)

    Blokland, J.W.S.

    2007-01-01

    In both fusion research as well in astrophysics, plasmas are widely studied. These plasmas can be found in different geometric configurations, such as in a tokamak, stellarator or in astrophysical jets, accretion disks, etc. In this thesis we focus on plasmas found in tokamaks or accretion disks. In

  10. Continuum and line modelling of discs around young stars - I. 300000 disc models for HERSCHEL/GASPS

    NARCIS (Netherlands)

    Woitke, P.; Pinte, C.; Tilling, I.; Ménard, F.; Kamp, I.; Thi, W.-F.; Duchêne, G.; Augereau, J.-C.

    We have combined the thermo-chemical disc code ProDiMo with the Monte Carlo radiative transfer code MCFOST to calculate a grid of ~300000 circumstellar disc models, systematically varying 11 stellar, disc and dust parameters including the total disc mass, several disc shape parameters and the

  11. Continuum and line modelling of discs around young stars : I. 300 000 disc models for HERSCHEL/GASPS

    NARCIS (Netherlands)

    Woitke, P.; Pinte, C.; Tilling, I.; Menard, F.; Kamp, I.; Thi, W. -F.; Duchene, G.; Augereau, J. -C.

    2010-01-01

    We have combined the thermo-chemical disc code ProDiMo with the Monte Carlo radiative transfer code MCFOST to calculate a grid of similar to 300 000 circumstellar disc models, systematically varying 11 stellar, disc and dust parameters including the total disc mass, several disc shape parameters and

  12. Accretion and gas flows near Sagittarius A*: Toward an understanding of the central parsec of the Milky Way

    Science.gov (United States)

    Coker, Robert Francis

    1999-12-01

    The strong radio emission from Sgr A*, an object located at the dynamical center of the Milky Way, has been attributed to accretion of interstellar gas by a supermassive compact object or dense cluster of objects. We show that any dynamically stable cluster of objects cannot compress the ambient magnetic field or heat the accreting gas sufficiently to reproduce the spectrum of Sgr A*, reaffirming the paradigm that Sgr A* is a single supermassive black hole. We investigate how such a black hole would interact with its surroundings and attempt to determine observational consequences of this interaction. The complexity of the gas, dust, and stellar dynamics of the central parsec of the Galaxy complicates this problem, however. Focusing our attention on the black hole itself but being constrained by observations of the surrounding gas and stars, we have constructed models of the accretion process. We examine two types of accretion models. The first, involving a cold, massive, fossilized accretion disk, is found to generate too much infrared radiation as infalling gas impacts the disk. The second model is spherical accretion, in which the radio emission from Sgr A* is dominated by magnetic bremsstrahlung. Such a model requires accurate emissivities for a wide range of temperatures and field strengths. In this work, we derive the magnetic bremsstrahlung emissivities and apply them to the spherical accretion model, yielding a spectrum that is fully consistent with the radio emission from Sgr A*. We empirically determine a magnetic field profile that suggests the presence of other phenomena, such as a central magnetic dynamo. In addition, the model predicts that the observed high energy emission from the Galactic Center region is not dominated by emission from the central black hole and its environs.

  13. Flux Accretion and Coronal Mass Ejection Dynamics

    Science.gov (United States)

    Welsch, Brian

    2017-08-01

    Coronal mass ejections (CMEs) are the primary drivers of severe space weather disturbances in the heliosphere. The equations of ideal magnetohydrodynamics (MHD) have been used to model the onset and, in some cases, the subsequent acceleration of ejections. Both observations and numerical modeling, however, suggest that magnetic reconnection likely plays a major role in most, if not all, fast CMEs. Here, we theoretically investigate the dynamical effects of accretion of magnetic flux onto a rising ejection by reconnection involving the ejection's background field. This reconnection alters the magnetic structure of the ejection and its environment, thereby modifying forces acting during the eruption, generically leading to faster acceleration of the CME. Our ultimate aim is to characterize changes in CME acceleration in terms of observable properties of magnetic reconnection, such as the amount of reconnected flux, deduced from observations of flare ribbons and photospheric magnetic fields.

  14. Accreting Millisecond Pulsars and Fundamental Physics

    Science.gov (United States)

    Strohmayer, Tod

    2005-01-01

    X-ray emission from the surfaces of rapidly rotating neutron stars encodes information about their global properties as well as physical conditions locally. Detailed modelling of, for example, the energy dependent pulse profiles observed from accreting millisecond pulsars and thermonuclear burst oscillations can be used to derive constraints on the masses and radii of neutron stars. These measurements provide direct information on the properties of the dense matter equation of state of the supranuclear density matter in their interiors. Study of absorption lines created in the surface layers can also provide measurements of masses and radii, and may be able to probe aspects of relativistic gravity, such as frame dragging. I will discuss the results of recent efforts to carry out such measurements and their implications for the properties of dense matter.

  15. Thermal continua of AGN accretion disks

    Science.gov (United States)

    Shields, G. A.; Coleman, H. H.

    1994-01-01

    We have computed the thermal continuum energy distribution of thermal radiation from the atmospheres of supermassive accretion disks around supermassive black holes. Non-LTE radiative transfer is combined with a model of the vertical structure at each radius appropriate to the low effective gravities of these disks. Locally, the Lyman edge of H can be in emission or absorption. When the emission is summed over the disk with Doppler and gravitational redshifts taken into account, the observed continuum typically shows little sign of a discontinuity near the Lyman edge. For relatively cool disks, the Lyman edge is in absorption, but it appears as a slope change extending over several hundred angstroms, rather than an abrupt discontinuity. Disks around Kerr black holes can explain the observed range of soft X-ray luminosities of AGN, but disks around Schwarzschild holes are much too faint in soft X-rays.

  16. Dead Zone Accretion Flows in Protostellar Disks

    Science.gov (United States)

    Turner, Neal; Sano, T.

    2008-01-01

    Planets form inside protostellar disks in a dead zone where the electrical resistivity of the gas is too high for magnetic forces to drive turbulence. We show that much of the dead zone nevertheless is active and flows toward the star while smooth, large-scale magnetic fields transfer the orbital angular momentum radially outward. Stellar X-ray and radionuclide ionization sustain a weak coupling of the dead zone gas to the magnetic fields, despite the rapid recombination of free charges on dust grains. Net radial magnetic fields are generated in the magnetorotational turbulence in the electrically conducting top and bottom surface layers of the disk, and reach the midplane by ohmic diffusion. A toroidal component to the fields is produced near the midplane by the orbital shear. The process is similar to the magnetization of the solar tachocline. The result is a laminar, magnetically driven accretion flow in the region where the planets form.

  17. Energetic particle acceleration in spherically symmetric accretion flows and shocks

    Science.gov (United States)

    Webb, G. M.; Bogdan, T. J.

    1987-01-01

    Steady state, spherically symmetric solutions of the cosmic-ray transport equation describing the acceleration of energetic particles in galactic accretion flows onto neutron stars, black holes, white dwarfs, and protostars are studied. The results indicate that astrophysical accretion flows can be partitioned into distinct classes depending upon whether the accretion rate lies above or below a critical value of a few times 10 to the -7th stellar masses/yr. When the particle transport is convection-dominated, both classes of accretion flows exhibit a spectral index appropriate for first-order Fermi acceleration at a plane shock in the absence of losses. As the particle transport becomes diffusion-dominated, both classes show a break and precipitous falloff in the particle spectrum due to the escape of these particles from the accretion flow. The precise nature of the spectrum depends on the relationship between the particle momentum and the spatial diffusion coefficient.

  18. tavg3_3d_tdt_Cp: MERRA 3D IAU Tendency, Temperature, Time average 3-hourly 1.25 x 1.25 degree V5.2.0 (MAT3CPTDT) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The MAT3CPTDT or tavg3_3d_tdt_Cp data product is the MERRA Data Assimilation System 3-Dimensional temperature tendencies that is time averaged on pressure levels at...

  19. Observing the On-going Formation of Planets and its Effects on Their Parent Discs

    Science.gov (United States)

    Willson, Matthew Alexander

    2017-06-01

    immediately outside of a ring of dusty material largely responsible for the NIR comment of the disc SED, similar to TW Hya b located in a shallow gap in the dust disc outside another ring of over-dense dusty material which bounds a deep but narrow gap. Both of these companion candidates maybe migrating cores which are feeding from the enriched ring of material. I conducted a more extensive study of the pre-transitional disc, V1247 Ori, covering three epochs and the H-, K- and L-wavebands. Complementary observations with VLT/SPHERE in Hα and continuum plus SMA observations in CO (2-1) and continuum were performed. The orientation and geometry of the outer disc was recovered with the SMA data and determine the direction of rotation. We image the inner rim of the outer disc in L-band SAM data, recovering the rim in all three epochs. Combining all three data sets together we form a detailed image of the rim. In H- and K-band SAM data we observe the motion of a close-in companion candidate. This motion was found to be too large to be adequately explained through a near-circular Keplerian orbit within the plane of the disc around the central star. Hence an alternate hypothesis had to be developed. I postulated that the fitted position of the companion maybe influenced by the emission from the disc rim seen in the L-band SAM data. I constructed a suite of model SAM data sets of a companion and a disc rim and found that under the right conditions the fitted separation of a companion will be larger than the true separation. Under these conditions we find the motion of the companion candidate to be consistent with a near-circular Keplerian orbit within the plane of the disc at a semi-major axis of ˜6 au. The Hα data lack the necessary resolution to confirm the companion as an accreting body, but through the high contrast sensitivities enabled by the state of the art SPHERE instrument I was able to rule out any other accreting body within the gap, unless deeply embedded by the sparse

  20. Cervical disc herniation manifesting as a Brown-Sequard syndrome

    Directory of Open Access Journals (Sweden)

    Kunio Yokoyama

    2012-01-01

    Full Text Available Brown-Sequard syndrome is commonly seen in the setting of spinal trauma or an extramedullary spinal neoplasm. The clinical picture reflects hemisection of the spinal cord. We report a rare case of Brown-Sequard syndrome caused by a large cervical herniated disc. A 63-year-old man presented with progressive right hemiparesis and disruption of pain and temperature sensation on the left side of the body. Magnetic resonance imaging showed large C3-C4 disc herniation compressing the spinal cord at that level, with severe canal stenosis from C4 through C7. Decompressive cervical laminoplasty was performed. After surgery, complete sensory function was restored and a marked improvement in motor power was obtained.

  1. Evolution and precession of accretion disk in tidal disruption events

    Directory of Open Access Journals (Sweden)

    Matzner C.D.

    2012-12-01

    Full Text Available In a supermassive black hole (BH tidal disruption event (TDE, the tidally disrupted star feeds the BH via an accretion disk. Most often it is assumed that the accretion rate history, hence the emission light curve, tracks the rate at which new debris mass falls back onto the disk, notably the t−5/3 power law. But this is not the case when the disk evolution due to viscous spreading - the driving force for accretion - is carefully considered. We construct a simple analytical model that comprehensively describes the accretion rate history across 4 different phases of the disk evolution, in the presence of mass fallback and disk wind loss. Accretion rate evolves differently in those phases which are governed by how the disk heat energy is carried away, early on by advection and later by radiation. The accretion rate can decline as steeply as t−5/3 only if copious disk wind loss is present during the early advection-cooled phase. Later, the accretion rate history is t−8/7 or shallower. These have great implications on the TDE flare light curve. A TDE accretion disk is most likely misaligned with the equatorial plane of the spinning BH. Moreover, in the TDE the accretion rate is super- or near-Eddington thus the disk is geometrically thick, for which case the BH’s frame dragging effect may cause the disk precess as a solid body, which may manifest itself as quasi-periodic signal in the TDE light curve. Our disk evolution model predicts the disk precession period increases with time, typically as ∝ t. The results are applied to the recently jetted TDE flare Swift transient J1644 + 57 which shows numerous, quasi-periodic dips in its long-term X-ray light curve. As the current TDE sample increases, the identification of the disk precession signature provides a unique way of measuring BH spin and studying BH accretion physics.

  2. Use NASA GES DISC Data in ArcGIS

    Science.gov (United States)

    Yang, Wenli; Pham, Long B.; Kempler, Steve

    2015-01-01

    This presentation describes GIS relevant data at NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), GES DISC Services and Support for GIS Users, and use cases of GES DISC data in ArcGIS.

  3. Coherence of burst oscillations and accretion-powered pulsations in the accreting millisecond pulsar XTE J1814-338

    NARCIS (Netherlands)

    Watts, A.L.; Patruno, A.; van der Klis, M.

    2008-01-01

    X-ray timing of the accretion-powered pulsations during the 2003 outburst of the accreting millisecond pulsar XTE J1814-338 has revealed variation in the pulse time of arrival residuals. These can be interpreted in several ways, including spin-down and wandering of the fuel impact point around the

  4. Optic Disc Drusen in Children

    DEFF Research Database (Denmark)

    Malmqvist, Lasse; Li, Xiao Qiang; Eckmann, Christina L

    2017-01-01

    diameter and fetal birth and pubertal parameters are associated with the presence of ODD. METHODS: This observational, longitudinal population-based birth cohort study, with a nested case-control, included 1,406 children. Eye examinations were performed when the children were between 11 and 12 years of age....... Assessment was performed of optical coherence tomography (OCT) scans from 1,304 children with gradable enhanced depth imaging scans of the optic disc. RESULTS: ODD in one or both eyes were found in 13 (1.0%) of all children. All but one of the cases were found in children with scleral canal diameter...... in the lowest quartile (1,182-1,399 μm) in the nested case-control study. Children with ODD had a mean disc diameter of 1,339 μm (interquartile range, 30 μm), whereas it was 1,508 μm (interquartile range, 196 μm) in the 130 controls without ODD (P

  5. Efficiency of thermal relaxation by radiative processes in protoplanetary discs: constraints on hydrodynamic turbulence

    Science.gov (United States)

    Malygin, M. G.; Klahr, H.; Semenov, D.; Henning, Th.; Dullemond, C. P.

    2017-09-01

    Context. Hydrodynamic, non-magnetic instabilities can provide turbulent stress in the regions of protoplanetary discs, where the magneto-rotational instability can not develop. The induced motions influence the grain growth, from which formation of planetesimals begins. Thermal relaxation of the gas constrains origins of the identified hydrodynamic sources of turbulence in discs. Aims: We aim to estimate the radiative relaxation timescale of temperature perturbations in protoplanetary discs. We study the dependence of the thermal relaxation on the perturbation wavelength, the location within the disc, the disc mass, and the dust-to-gas mass ratio. We then apply thermal relaxation criteria to localise modes of the convective overstability, the vertical shear instability, and the zombie vortex instability. Methods: For a given temperature perturbation, we estimated two timescales: the radiative diffusion timescale tthick and the optically thin emission timescale tthin. The longest of these timescales governs the relaxation: trelax = max (tthick, tthin). We additionally accounted for the collisional coupling to the emitting species. Our calculations employed the latest tabulated dust and gas mean opacities. Results: The relaxation criterion defines the bulk of a typical T Tauri disc as unstable to the development of linear hydrodynamic instabilities. The midplane is unstable to the convective overstability from at most 2au and up to 40au, as well as beyond 140au. The vertical shear instability can develop between 15au and 180au. The successive generation of (zombie) vortices from a seeded noise can work within the inner 0.8au. Conclusions: A map of relaxation timescale constrains the origins of the identified hydrodynamic turbulence-driving mechanisms in protoplanetary discs. Dynamic disc modelling with the evolution of dust and gas opacities is required to clearly localise the hydrodynamic turbulence, and especially its non-linear phase.

  6. A Magma Accretion Model for the Formation of Oceanic Lithosphere: Implications for Global Heat Loss

    CERN Document Server

    Hamza, V M; Alexandrino, C H

    2010-01-01

    A simple magma accretion model of the oceanic lithosphere is proposed and its implications for understanding the thermal field of oceanic lithosphere examined. The new model (designated VBA) assumes existence of lateral variations in magma accretion rates and temperatures at the boundary zone between the lithosphere and the asthenosphere. Heat flow and bathymetry variations calculated on the basis of the VBA model provide vastly improved fits to respective observational datasets. The improved fits have been achieved for the entire age range and without the need to invoke the ad-hoc hypothesis of large-scale hydrothermal circulation in stable ocean crust. The results suggest that estimates of global heat loss need to be downsized by at least 25%.

  7. A long look at V1309 Ori: Towards an understand of the 'blobby' accretion proces

    Science.gov (United States)

    Schwarz, Robert

    2011-10-01

    The eclipsing, long-period polar V1309 Ori is one of the most peculiar magnetic CVs. Most of its luminosity is radiated as flared soft X-rays, with no domintating contribution of a hot thermal plasma from the shock column above the white dwarf. Therefore V1309 Ori is the only clear-cut case of 'pure' blobby accretion, where the impact mechanisms and radiation processs of a single accretion 'blob' can be studied in detail. We propose one pointing of 60 ksec to cover two orbital cycles to collect data for around 300-600 flares.Primary aim is to derive a significant correlation between several important blob parameters like mass, temperature and length. Using this we will be able to discern between different impact mechanisms.

  8. Thermal analysis of both ventilated and full disc brake rotors with frictional heat generation

    Directory of Open Access Journals (Sweden)

    Belhocine A.

    2014-06-01

    Full Text Available In automotive engineering, the safety aspect has been considered as a number one priority in development of a new vehicle. Each single system has been studied and developed in order to meet safety requirements. Instead of having air bags, good suspension systems, good handling and safe cornering, one of the most critical systems in a vehicle is the brake system. The objective of this work is to investigate and analyze the temperature distribution of rotor disc during braking operation using ANSYS Multiphysics. The work uses the finite element analysis techniques to predict the temperature distribution on the full and ventilated brake discs and to identify the critical temperature of the rotor. The analysis also gives us the heat flux distribution for the two discs.

  9. Genetic association studies in lumbar disc degeneration

    DEFF Research Database (Denmark)

    Eskola, Pasi J; Lemmelä, Susanna; Kjaer, Per

    2012-01-01

    Low back pain is associated with lumbar disc degeneration, which is mainly due to genetic predisposition. The objective of this study was to perform a systematic review to evaluate genetic association studies in lumbar disc degeneration as defined on magnetic resonance imaging (MRI) in humans....

  10. Intervertebral disc herniation: prevalence and association with ...

    African Journals Online (AJOL)

    Background: Low back pain is one of the common health problems encountered in life with intervertebral disc herniation being a common cause of its occurrence. Magnetic resonance imaging has emerged the gold standard for diagnosing a herniated disc. Aims and Objectives: To assess the frequency and pattern of ...

  11. Clinical characteristics of nonglaucomatous optic disc cupping.

    Science.gov (United States)

    Zhang, Yi-Xin; Huang, Hou-Bin; Wei, Shi-Hui

    2014-04-01

    Pathological optic disc cupping (ODC) is predominantly referred to as glaucoma; however, it is not only glaucoma that leads to pathological optic disc excavation. A number of other nonglaucomatous diseases also result in optic atrophy and excavation of the optic disc. Therefore, in the present study, the etiology of nonglaucomatous optic disc cupping (NGODC) was analyzed and differentiated from glaucomatous optic disc cupping (GODC). The morphology and clinical data of 19 eyes, from 12 patients exhibiting NGODC, were analyzed. Of the 12 cases, none were diagnosed with glaucoma, four presented with optic neuritis, one with Devic's disease, one with Leber's hereditary optic neuropathy, two with pituitary adenoma, one with basal ganglia cerebral hemorrhage, one with cilioretinal artery occlusion associated with central retinal vein occlusion, one with central retinal artery occlusion and the remaining patient exhibited optic nerve injuries. The key features that differentiated NGODC from GODC were the color of the optic disc rim and the correlation between visual field defects and the disc appearance. The focally notched disc also aided in distinguishing between the two disorders. The results of the present study indicated that it is critical to acknowledge that nonglaucomatous diseases also lead to ODC and that distinguishing between them is necessary.

  12. Morning Glory Disc Anomaly: A Case Report

    African Journals Online (AJOL)

    disc area 2.56 mm2) with enlarged C:D ratio and loss of neuroretinal rim with reduced retinal nerve fibre layer thickness in superior, nasal and temporal quadrant. Three-dimensional reconstructed view of the optic disc cube showed central.

  13. Feature Based Control of Compact Disc Players

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh

    Two servo control loops are used to keep the Optical Pick-up Unit focused and radially on the information track of the Compact Disc. These control servos have problems handling surface faults on the Compact Disc. In this Ph.D thesis a method is proposed to improve the handling of these surface...

  14. Bondi-Hoyle accretion in an isothermal magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Aaron T.; McKee, Christopher F.; Klein, Richard I. [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720 (United States); Cunningham, Andrew J., E-mail: a.t.lee@berkeley.edu [Lawrence Livermore National Laboratory, P.O. Box 808, L-23, Livermore, CA 94550 (United States)

    2014-03-01

    In regions of star formation, protostars and newborn stars will accrete mass from their natal clouds. These clouds are threaded by magnetic fields with a strength characterized by the plasma β—the ratio of thermal and magnetic pressures. Observations show that molecular clouds have β ≲ 1, so magnetic fields have the potential to play a significant role in the accretion process. We have carried out a numerical study of the effect of large-scale magnetic fields on the rate of accretion onto a uniformly moving point particle from a uniform, non-self-gravitating, isothermal gas. We consider gas moving with sonic Mach numbers of up to M≈45; magnetic fields that are either parallel, perpendicular, or oriented 45° to the flow; and β as low as 0.01. Our simulations utilize adaptive mesh refinement in order to obtain high spatial resolution where it is needed; this also allows the boundaries to be far from the accreting object to avoid unphysical effects arising from boundary conditions. Additionally, we show that our results are independent of our exact prescription for accreting mass in the sink particle. We give simple expressions for the steady-state accretion rate as a function of β and M for the parallel and perpendicular orientations. Using typical molecular cloud values of M∼5 and β ∼ 0.04 from the literature, our fits suggest that a 0.4 M {sub ☉} star accretes ∼4 × 10{sup –9} M {sub ☉} yr{sup –1}, almost a factor of two less than accretion rates predicted by hydrodynamic models. This disparity can grow to orders of magnitude for stronger fields and lower Mach numbers. We also discuss the applicability of these accretion rates versus accretion rates expected from gravitational collapse, and under what conditions a steady state is possible. The reduction in the accretion rate in a magnetized medium leads to an increase in the time required to form stars in competitive accretion models, making such models less efficient than predicted by

  15. Regression of a symptomatic thoracic disc herniation with a calcified intervertebral disc component

    Directory of Open Access Journals (Sweden)

    Hidayet Sari

    2016-12-01

    Full Text Available There were only a few cases describing spontaneous regression of calcified thoracic disc herniation in the literature. We present a 38-year-old male office worker who had left paramedian-foraminal extruded disc at T7–T8 with calcifications of the T7–T8 and T8–T9 intervertebral discs. This case was unique in that the non-calcified extruded disc material regressed almost completely in 5 months while the calcified intervertebral discs remained the same during the process of regression. This report stresses that regression of the herniated material of the thoracic discs with subsidence of the symptoms is still possible even if the disc material is calcified.

  16. Magnetic resonance imaging of intervertebral disc degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Hiroshi; Noguchi, Masao (Kitakyushu City Yahata Hospital, Fukuoka (Japan)); Kira, Hideaki; Fujiki, Hiroshi; Shimokawa, Isao; Hinoue, Kaichi

    1993-02-01

    The aim of this study was to correlate the degree of lumbar intervertebral disc degeneration with findings of magnetic resonance imaging (MRI). Seventeen autopsied (from 7 patients) and 21 surgical (from 20 patients) intervertebral discs were used as specimens for histopathological examination. In addition, 21 intervertebral discs were examined on T2-weighted images. Histopathological findings from both autopsied and surgical specimens were well correlated with MRI findings. In particular, T2-weighted images reflected increased collagen fibers and rupture within the fibrous ring accurately. However, when severely degenerated intervertebral discs and hernia protruding the posterior longitudinal ligament existed, histological findings were not concordant well with T2-weighted images. Morphological appearances of autopsy specimens, divided into four on T2-weighted images, were well consistent with histological degeneration. This morphological classification, as shown on T2-weighted images, could also be used in the evaluation of intervertebral disc degeneration. (N.K.).

  17. Spontaneous Regression of Lumbar Herniated Disc

    Directory of Open Access Journals (Sweden)

    Chun-Wei Chang

    2009-12-01

    Full Text Available Intervertebral disc herniation of the lumbar spine is a common disease presenting with low back pain and involving nerve root radiculopathy. Some neurological symptoms in the majority of patients frequently improve after a period of conservative treatment. This has been regarded as the result of a decrease of pressure exerted from the herniated disc on neighboring neurostructures and a gradual regression of inflammation. Recently, with advances in magnetic resonance imaging, many reports have demonstrated that the herniated disc has the potential for spontaneous regression. Regression coincided with the improvement of associated symptoms. However, the exact regression mechanism remains unclear. Here, we present 2 cases of lumbar intervertebral disc herniation with spontaneous regression. We review the literature and discuss the possible mechanisms, the precipitating factors of spontaneous disc regression and the proper timing of surgical intervention.

  18. Lumbar disc cyst with contralateral radiculopathy

    Directory of Open Access Journals (Sweden)

    Kishore Tourani

    2012-08-01

    Full Text Available Disc cysts are uncommon intraspinal cystic lesions located in the ventrolateral epidural space. They communicate with the nucleus pulposus of the intervertebral disc and cause symptoms by radicular compression. We report a unique case of lumbar disc cyst that was associated with disc herniation and contralateral radiculopathy. A 22 year old male presented with one month history of back-ache radiating to the left leg. Magnetic Resonance Imaging (MRI showed L3-L4 disc herniation with annular tear and cystic lesion in the extradural space anterior to the thecal sac on right side, which increased in size over a period of 3 weeks. L3 laminectomy and bilateral discectomy and cyst excision was done with partial improvement of patients symptoms.

  19. White Dwarf Pollution by Disk Accretion of Tidally Disrupted Rocky Bodies

    Science.gov (United States)

    Feng, Wanda; Desch, Steven

    2017-01-01

    Approximately 30% of cool white dwarfs (WDs) show heavy elements which should otherwise sediment out of their atmospheres (Koester et al. 2014; Zuckerman et al. 2010). The prevailing model for the pollution of white dwarf photospheres invokes the formation of a solid disk upon a rocky body falling within the WD Roche radius, which is then transported inward by Poynting-Robertson drag (e.g., Metzger et al. 2012, Rafikov 2011). At high temperatures close to the WD, solid particles sublimate to gas that accretes onto the WD and viscously spreads outward. This concept is supported by observations of Ca II emission from WD disks (e.g., Manser et al. 2016). The model by Metzger et al. (2012) successfully explains the range in inferred mass accretion rates (10^10 g/s, Farihi et al. 2010), provided the gaseous disks viscously spread at rates consistent with a partially suppressed magnetorotational instability (MRI). However, Metzger et al. (2012) do not consider disk chemistry or dust-to-gas mixing in their model, and do not calculate the degree of ionization to explore the extent of MRI in WD disks.We present a 1-D model of a gaseous WD disk accretion, to assess the extent of the magnetorotational instability in WD disks. The disk composition is considered with changes in sublimation rate by pressure. The degree of ionization is determined by considering UV, X-ray, and high-temperature ionization. We calculate the rate of viscous spreading and accretion rates of metals onto WDs.

  20. Structural and Contact Analysis of a 3-Dimensional Disc-Pad Model with and without Thermal Effects

    Directory of Open Access Journals (Sweden)

    A. Belhocine

    2014-12-01

    Full Text Available The motivation of this work is to identify thermal effects on the structural and contact behaviour of a disc-pad assembly using a finite element approach. The first analysis is performed on the disc-pad model without the presence of thermal properties. Structural performance of the disc-pad model such as deformation and Von Mises stress is predicted. Next, thermomechanical analysis is performed on the same disc-pad model with the inclusion of convection, adiabatic and heat flux elements. The prediction results of temperature distribution, deformation, stress and contact pressure are presented. Comparison of the structural performance between the two analyses (mechanical and thermomechanical is also made. From this study, it can assist brake engineers to choose a suitable analysis in order to critically evaluate structural and contact behaviour of the disc brake assembly.

  1. Magnetorotational instability and dynamo action in gravito-turbulent astrophysical discs

    Science.gov (United States)

    Riols, A.; Latter, H.

    2018-02-01

    Though usually treated in isolation, the magnetorotational and gravitational instabilities (MRI and GI) may coincide at certain radii and evolutionary stages of protoplanetary discs and active galactic nuclei. Their mutual interactions could profoundly influence several important processes, such as accretion variability and outbursts, fragmentation and disc truncation, or large-scale magnetic field production. Direct numerical simulations of both instabilities are computationally challenging and remain relatively unexplored. In this paper, we aim to redress this neglect via a set of 3D vertically stratified shearing-box simulations, combining self-gravity and magnetic fields. We show that gravito-turbulence greatly weakens the zero-net-flux MRI. In the limit of efficient cooling (and thus enhanced GI), the MRI is completely suppressed, and yet strong magnetic fields are sustained by the gravito-turbulence. This turbulent `spiral wave' dynamo may have widespread application, especially in galactic discs. Finally, we present preliminary work showing that a strong net-vertical-flux revives the MRI and supports a magnetically dominated state in which the GI is secondary.

  2. FUSE Spectroscopy of the Accreting Hot Components in Symbiotic Variables.

    Science.gov (United States)

    Sion, Edward M; Godon, Patrick; Mikolajewska, Joanna; Sabra, Bassem; Kolobow, Craig

    2017-04-01

    We have conducted a spectroscopic analysis of the far ultraviolet archival spectra of four symbiotic variables, EG And, AE Ara, CQ Dra and RW Hya. RW Hya and EG And have never had a recorded outburst while CQ Dra and AE Ara have outburst histories. We analyze these systems while they are in quiescence in order to help reveal the physical properties of their hot components via comparisons of the observations with optically thick accretion disk models and NLTE model white dwarf photospheres. We have extended the wavelength coverage down to the Lyman Limit with FUSE spectra. We find that the hot component in RW Hya is a low mass white dwarf with a surface temperature of 160,000K. We re-examine whether or not the symbiotic system CQ Dra is a triple system with a red giant transferring matter to a hot component made up of a cataclysmic variable in which the white dwarf has a surface temperature as low as ∼20,000K. The very small size of the hot component contributing to the shortest wavelengths of the FUSE spectrum of CQ Dra agrees with an optically thick and geometrically thin (∼4% of the WD surface) hot (∼ 120, 000K) boundary layer. Our analysis of EG And reveals that its hot component is a hot, bare, low mass white dwarf with a surface temperature of 80-95,000K, with a surface gravity log( g ) = 7.5. For AE Ara, we also find that a low gravity (log( g ) ∼ 6) hot ( T ∼ 130, 000K) WD accounts for the hot component.

  3. Do we see accreting magnetars in X-ray pulsars?

    Directory of Open Access Journals (Sweden)

    Postnov K.A.

    2014-01-01

    Full Text Available Strong magnetic field of accreting neutron stars (1014 G is hard to probe by Xray spectroscopy but can be indirectly inferred from spin-up/spin-down measurement in X-ray pulsars. The existing observations of slowly rotating X-ray pulsars are discussed. It is shown that magnetic fields of neutron stars derived from these observations (or lower limits in some cases fall within the standard 1012-1013 G range. Claims about the evidence for accreting magnetars are critically discussed in the light of recent progress in understanding of accretion onto slowly rotating neutron stars in the subsonic regime.

  4. Does mass accretion lead to field decay in neutron stars

    Science.gov (United States)

    Shibazaki, N.; Murakami, T.; Shaham, Jacob; Nomoto, K.

    1989-01-01

    The recent discovery of cyclotron lines from gamma-ray bursts indicates that the strong magnetic fields of isolated neutron stars might not decay. The possible inverse correlation between the strength of the magnetic field and the mass accreted by the neutron star suggests that mass accretion itself may lead to the decay of the magnetic field. The spin and magnetic field evolution of the neutron star was calculated under the hypothesis of the accretion-induced field decay. It is shown that the calculated results are consistent with the observations of binary and millisecond radio pulsars.

  5. Accreting fluids onto regular black holes via Hamiltonian approach

    Energy Technology Data Exchange (ETDEWEB)

    Jawad, Abdul [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Shahzad, M.U. [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); University of Central Punjab, CAMS, UCP Business School, Lahore (Pakistan)

    2017-08-15

    We investigate the accretion of test fluids onto regular black holes such as Kehagias-Sfetsos black holes and regular black holes with Dagum distribution function. We analyze the accretion process when different test fluids are falling onto these regular black holes. The accreting fluid is being classified through the equation of state according to the features of regular black holes. The behavior of fluid flow and the existence of sonic points is being checked for these regular black holes. It is noted that the three-velocity depends on critical points and the equation of state parameter on phase space. (orig.)

  6. [Physiotherapy in lumbar disc herniation ].

    Science.gov (United States)

    Stoll, T; Germann, D; Hagmann, H

    2001-08-01

    Physiotherapy is the treatment of choice in patients with symptoms caused by a lumbar disc herniation. In clinical practice a broad range of physiotherapeutic modalities has been revealed to be helpful. During the acute stage the efficacy of the McKenzie-concept, mobilisation therapies and traction has been demonstrated in randomized controlled trials with a blind assessor. In addition, pain reducing physical therapies such as cold or electrotherapy and non-steroidal anti-inflammatory drugs, analgesics and/or muscle relaxants are sensible initial accompanying treatments. The effectiveness of active physiotherapies such as training of local strength endurance of back and abdominal muscles has been proven in patients during the chronic stage. The indications for a in-patient rehabilitation programme, for surgery and the danger of developing chronic low back pain are discussed.

  7. Lumbar herniated disc: spontaneous regression.

    Science.gov (United States)

    Altun, Idiris; Yüksel, Kasım Zafer

    2017-01-01

    Low back pain is a frequent condition that results in substantial disability and causes admission of patients to neurosurgery clinics. To evaluate and present the therapeutic outcomes in lumbar disc hernia (LDH) patients treated by means of a conservative approach, consisting of bed rest and medical therapy. This retrospective cohort was carried out in the neurosurgery departments of hospitals in Kahramanmaraş city and 23 patients diagnosed with LDH at the levels of L3-L4, L4-L5 or L5-S1 were enrolled. The average age was 38.4 ± 8.0 and the chief complaint was low back pain and sciatica radiating to one or both lower extremities. Conservative treatment was administered. Neurological examination findings, durations of treatment and intervals until symptomatic recovery were recorded. Laségue tests and neurosensory examination revealed that mild neurological deficits existed in 16 of our patients. Previously, 5 patients had received physiotherapy and 7 patients had been on medical treatment. The number of patients with LDH at the level of L3-L4, L4-L5, and L5-S1 were 1, 13, and 9, respectively. All patients reported that they had benefit from medical treatment and bed rest, and radiologic improvement was observed simultaneously on MRI scans. The average duration until symptomatic recovery and/or regression of LDH symptoms was 13.6 ± 5.4 months (range: 5-22). It should be kept in mind that lumbar disc hernias could regress with medical treatment and rest without surgery, and there should be an awareness that these patients could recover radiologically. This condition must be taken into account during decision making for surgical intervention in LDH patients devoid of indications for emergent surgery.

  8. Spontaneous Regression of Herniated Lumbar Disc with New Disc Protrusion in the Adjacent Level.

    Science.gov (United States)

    Hakan, Tayfun; Gürcan, Serkan

    2016-01-01

    Spontaneous regression of herniated lumbar discs was reported occasionally. The mechanisms proposed for regression of disc herniation are still incomplete. This paper describes and discusses a case of spontaneous regression of herniated lumbar discs with a new disc protrusion in the adjacent level. A 41-year-old man was admitted with radiating pain and numbness in the left lower extremity with a left posterolateral disc extrusion at L5-S1 level. He was admitted to hospital with low back pain due to disc herniation caudally immigrating at L4-5 level three years ago. He refused the surgical intervention that was offered and was treated conservatively at that time. He had no neurological deficit and a history of spontaneous regression of the extruded lumbar disc; so, a conservative therapy, including bed rest, physical therapy, nonsteroidal anti-inflammatory drugs, and analgesics, was advised. In conclusion, herniated lumbar disc fragments may regress spontaneously. Reports are prone to advise conservative treatment for extruded or sequestrated lumbar disc herniations. However, these patients should be followed up closely; new herniation at adjacent/different level may occur. Furthermore, it is important to know which herniated disk should be removed and which should be treated conservatively, because disc herniation may cause serious complications as muscle weakness and cauda equine syndrome.

  9. Spontaneous Regression of Herniated Lumbar Disc with New Disc Protrusion in the Adjacent Level

    Directory of Open Access Journals (Sweden)

    Tayfun Hakan

    2016-01-01

    Full Text Available Spontaneous regression of herniated lumbar discs was reported occasionally. The mechanisms proposed for regression of disc herniation are still incomplete. This paper describes and discusses a case of spontaneous regression of herniated lumbar discs with a new disc protrusion in the adjacent level. A 41-year-old man was admitted with radiating pain and numbness in the left lower extremity with a left posterolateral disc extrusion at L5-S1 level. He was admitted to hospital with low back pain due to disc herniation caudally immigrating at L4-5 level three years ago. He refused the surgical intervention that was offered and was treated conservatively at that time. He had no neurological deficit and a history of spontaneous regression of the extruded lumbar disc; so, a conservative therapy, including bed rest, physical therapy, nonsteroidal anti-inflammatory drugs, and analgesics, was advised. In conclusion, herniated lumbar disc fragments may regress spontaneously. Reports are prone to advise conservative treatment for extruded or sequestrated lumbar disc herniations. However, these patients should be followed up closely; new herniation at adjacent/different level may occur. Furthermore, it is important to know which herniated disk should be removed and which should be treated conservatively, because disc herniation may cause serious complications as muscle weakness and cauda equine syndrome.

  10. Modes of Accretion at Slower Spreading Ocean Ridges

    Science.gov (United States)

    Dick, H. J.

    2010-12-01

    Over two decades of drilling, sampling and seafloor mapping at oceanic core complexes in the Atlantic and Indian Oceans has overturned the conventional models for accretion of the ocean crust. Today crustal architecture at slow and ultraslow spreading ridges is viewed as highly varied, ranging from crustal sections that resemble the Penrose model of lavas, dikes and gabbros believed to characterize most Pacific crust, sections comprised of lava flows and scattered dikes overlying small intrusions in serpentinized mantle, to direct emplacement of serpentinized mantle peridotite to the seafloor as originally envisaged by Harry Hess. The concept of large magma chambers, as originally postulated by the Penrose model gave way early on due to a lack of seismic evidence and as the more direct result of drilling long gabbro sections consisting of innumerable small intrusions in oceanic core complexes at Hole 735B on the SWIR and in the MARK area at Sites 921-924. Evidence for large scale upward melt percolation through the lower crust by permeable flow, best seen in ODP Hole 735B, mechanical rafting of hybridized mantle rock from the crust-mantle boundary, first identified in IODP Hole U1309D, and evidence for vertical rafting of small crustal intrusions as documented by mapping and sampling high-temperature dynamically-deformed gabbros intercalated with undeformed greenschist-facies dikes at Atlantis Bank and Kane Megamullion, all represent previously unsuspected major modes of mass transfer and accretion of the lower crust. Thus, at slower spreading ridges, corner flow of the lithosphere may extend through the zone of intrusion up to the base of the sheeted dikes rather than having the crust built by simple intrusion over the upwelling mantle. These observations have major implications for mass transfer between the deep earth, crust, oceans, and atmospheres. Previously, it has been supposed that the bulk composition of the crust would be equal to that of primary magmas

  11. Chemical enrichment and accretion of nitrogen-loud quasars

    Science.gov (United States)

    Matsuoka, K.; Nagao, T.; Maiolino, R.; Marconi, A.; Park, D.; Taniguchi, Y.

    2017-12-01

    We present rest-frame optical spectra of 12 "nitrogen-loud" quasars at z 2.2, whose rest-frame ultraviolet (UV) spectra show strong nitrogen broad emission lines. To investigate their narrow-line region (NLR) metallicities, we measure the equivalent width (EW) of the [O III]λ5007 emission line: if the NLR metallicity is remarkably high, as suggested by the strong UV nitrogen lines, the [O III]λ5007 line flux should be very weak due to the low equilibrium temperature of the ionized gas owing to significant metal cooling. In the result we found that our spectra show moderate EW of the [O III]λ5007 line similar to general quasars. This indicates that nitrogen-loud quasars do not have extremely metal-rich gas clouds in NLRs. This suggests that strong nitrogen lines from broad-line regions (BLRs) originate from exceptionally high abundances of nitrogen relative to oxygen without very high BLR metallicities. This result indicates that broad emission lines of nitrogen are not good indicators of the BLR metallicity in some cases. On the other hand, we also investigate virial black hole masses and Eddington ratios by using the Hβ and C IVλ1549 lines for our sample. As a result, we found that black hole masses and Eddington ratios of nitrogen-loud quasars tend to be low and high relative to normal quasars, suggesting that nitrogen-loud quasars seem to be in a rapidly accreting phase. This can be explained in terms of a positive correlation between Eddington ratios and nitrogen abundances of quasars, which is probably caused by the connection between the mass accretion onto black holes and nuclear star formation. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 088.B-0191(A), and at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.Reduced spectra (FITS files) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130

  12. Black Hole Accretion in Gamma Ray Bursts

    Directory of Open Access Journals (Sweden)

    Agnieszka Janiuk

    2017-02-01

    Full Text Available We study the structure and evolution of the hyperaccreting disks and outflows in the gamma ray bursts central engines. The torus around a stellar mass black hole is composed of free nucleons, Helium, electron-positron pairs, and is cooled by neutrino emission. Accretion of matter powers the relativistic jets, responsible for the gamma ray prompt emission. The significant number density of neutrons in the disk and outflowing material will cause subsequent formation of heavier nuclei. We study the process of nucleosynthesis and its possible observational consequences. We also apply our scenario to the recent observation of the gravitational wave signal, detected on 14 September 2015 by the two Advanced LIGO detectors, and related to an inspiral and merger of a binary black hole system. A gamma ray burst that could possibly be related with the GW150914 event was observed by the Fermi satellite. It had a duration of about 1 s and appeared about 0.4 s after the gravitational-wave signal. We propose that a collapsing massive star and a black hole in a close binary could lead to the event. The gamma ray burst was powered by a weak neutrino flux produced in the star remnant’s matter. Low spin and kick velocity of the merged black hole are reproduced in our simulations. Coincident gravitational-wave emission originates from the merger of the collapsed core and the companion black hole.

  13. Accreting Binary Populations in the Earlier Universe

    Science.gov (United States)

    Hornschemeier, Ann

    2010-01-01

    It is now understood that X-ray binaries dominate the hard X-ray emission from normal star-forming galaxies. Thanks to the deepest (2-4 Ms) Chandra surveys, such galaxies are now being studied in X-rays out to z approximates 4. Interesting X-ray stacking results (based on 30+ galaxies per redshift bin) suggest that the mean rest-frame 2-10 keV luminosity from z=3-4 Lyman break galaxies (LBGs), is comparable to the most powerful starburst galaxies in the local Universe. This result possibly indicates a similar production mechanism for accreting binaries over large cosmological timescales. To understand and constrain better the production of X-ray binaries in high-redshift LBGs, we have utilized XMM-Newton observations of a small sample of z approximates 0.1 GALEX-selected Ultraviolet-Luminous Galaxies (UVLGs); local analogs to high-redshift LBGs. Our observations enable us to study the X-ray emission from LBG-like galaxies on an individual basis, thus allowing us to constrain object-to-object variances in this population. We supplement these results with X-ray stacking constraints using the new 3.2 Ms Chandra Deep Field-South (completed spring 2010) and LBG candidates selected from HST, Swift UVOT, and ground-based data. These measurements provide new X-ray constraints that sample well the entire z=0-4 baseline

  14. Accretion Dynamics on Wet Granular Materials

    Science.gov (United States)

    Saingier, Guillaume; Sauret, Alban; Jop, Pierre

    2017-05-01

    Wet granular aggregates are common precursors of construction materials, food, and health care products. The physical mechanisms involved in the mixing of dry grains with a wet substrate are not well understood and difficult to control. Here, we study experimentally the accretion of dry grains on a wet granular substrate by measuring the growth dynamics of the wet aggregate. We show that this aggregate is fully saturated and its cohesion is ensured by the capillary depression at the air-liquid interface. The growth dynamics is controlled by the liquid fraction at the surface of the aggregate and exhibits two regimes. In the viscous regime, the growth dynamics is limited by the capillary-driven flow of liquid through the granular packing to the surface of the aggregate. In the capture regime, the capture probability depends on the availability of the liquid at the saturated interface, which is controlled by the hydrostatic depression in the material. We propose a model that rationalizes our observations and captures both dynamics based on the evolution of the capture probability with the hydrostatic depression.

  15. Intervertebral Disc Characteristic on Progressive Neurological Deficit

    Directory of Open Access Journals (Sweden)

    Farid Yudoyono

    2017-09-01

    Full Text Available Objective: To examine the intervertebral disc characteristic on magnetic resonance imaging (MRI in lumbar herniated disc (LHD patients with progressive neurological deficit. Methods: Patients were collected retrospectively from Dr. Hasan Sadikin General Hospital Database from 2011–2013 with LHD, had neurological deficit such as radiculopathy and cauda equine syndrome for less than four weeks with a positive sign confirmed by neurological examination and confirmatory with MRI examination. Results: A total of 14 patients with lumbar herniated disc disease (10 males, 4 females suffered from progressive neurological deficit with an average age of (52.07±10.9 years old. Early disc height was 9.38±0.5 mm and progressive neurological deficit state disc height was 4.03±0.53 mm, which were significantly different statisticaly (p<0.01. Symptoms of radiculopathy were seen in 11 patients and cauda equine syndrome in three patients. Modic changes grade 1 was found in five patients, grade 2 in eight patients,grade 3 in one patient, Pfirmman grade 2 in eleven patients and grade 3 in three patients. Thecal sac compression 1/3 compression was seen in four patients and 2/3 compression in ten patients. Conclusions: Neurosurgeon should raise concerns on the characteristic changes of intervertebral disc in magnetic resonance imaging examination to avoid further neural injury in lumbar herniated disc patients.

  16. The formation of planets in circumbinary discs

    Science.gov (United States)

    Pelupessy, F. I.; Portegies Zwart, S.

    2013-02-01

    We examine the formation of planets around binary stars in light of the recently discovered systems Kepler 16, 34 and 35. We conduct hydrodynamical simulations of self-gravitating discs around binary systems. The selected binary and disc parameters are chosen consistent with observed systems. The discs are evolved until they settle in a quasi-equilibrium and the resulting systems are compared with the parameters of Kepler 16, 34 and 35. We find a close correspondence of the peak density at the inner disc gap and the orbit of the observed planets. We conclude, based on our simulations, that the orbits of the observed Kepler planets are determined by the size of the inner disc gap which for these systems results from the binary driving. This mediates planet formation either through the density enhancement or through planetary trapping at the density gradient inversion in the inner disc. For all three systems the current eccentricity of the planetary orbit is less than the disc eccentricity in the simulations. This, together with the long-term stability of the orbits argues against in situ formation (e.g. a direct collapse scenario of the material in the ring). Conducting additional simulations of systems with a wider range of parameters (taken from a survey of eclipsing binaries), we find that the planet semimajor axis and binary eccentricity in such a scenario should be tightly correlated providing an observational test of this formation mechanism.

  17. Microendoscopic discectomy for prolapsed lumbar intervertebral disc.

    Science.gov (United States)

    Ranjan, Alok; Lath, Rahul

    2006-06-01

    Lumbar disc prolapse is a common problem and the current surgical standard for its treatment is a microsurgical discectomy. Microendoscopic discectomy (MED) is a minimally invasive spinal procedure being done successfully for prolapsed intervertebral disc disease. We report the technique, outcome and complications seen in 107 cases of prolapsed lumbar intervertebral disc who underwent MED. The study was carried out at the Department of Neurosurgery, at a tertiary hospital in South India and the data was collected prospectively. 107 patients with prolapsed lumbar intervertebral disc who were seen at our institution between November 2002 and January 2006 were included in the study. Data was collected prospectively. The METRx system (Medtronic Sofamor Danek, Memphis,TN) was used to perform MED. Outcome assessment was done by the modified Macnab criteria. 107 patients (67 males, 40 females) underwent MED for prolapsed lumbar intervertebral disc. Follow up ranged from 2 to 40 months with a mean follow up 12.9 months. Seventy six patients had an excellent outcome, 22 patients had a good outcome, 5 patients had a fair outcome and 3 patients had a poor outcome. One patient with a long dural tear required conversion to a standard microdiscectomy and was excluded from outcome assessment. Complications included dural puncture with K-wire (1), dural tear (2), superficial wound infection (1), discitis (1) and recurrent disc prolapse (2). Microendoscopic Discectomy (MED) is a safe and effective procedure for the treatment of prolapsed lumbar intervertebral disc.

  18. Carbon production on accreting neutron stars in a new regime of stable nuclear burning

    Science.gov (United States)

    Keek, L.; Heger, A.

    2016-02-01

    Accreting neutron stars exhibit Type I X-ray bursts from both frequent hydrogen/helium flashes as well as rare carbon flashes. The latter (superbursts) ignite in the ashes of the former. Hydrogen/helium bursts, however, are thought to produce insufficient carbon to power superbursts. Stable burning could create the required carbon, but this was predicted to only occur at much larger accretion rates than where superbursts are observed. We present models of a new steady-state regime of stable hydrogen and helium burning that produces pure carbon ashes. Hot CNO burning of hydrogen heats the neutron star envelope and causes helium to burn before the conditions of a helium flash are reached. This takes place when the mass accretion rate is around 10 per cent of the Eddington limit: close to the rate where most superbursts occur. We find that increased heating at the base of the envelope sustains steady-state burning by steepening the temperature profile, which increases the amount of helium that burns before a runaway can ensue.

  19. Neutrino-dominated accretion flows as the central engine of gamma-ray bursts

    Science.gov (United States)

    Liu, Tong; Gu, Wei-Min; Zhang, Bing

    2017-11-01

    Neutrino-dominated accretion flows (NDAFs) around rotating stellar-mass black holes (BHs) are plausible candidates for the central engines of gamma-ray bursts (GRBs). NDAFs are hyperaccretion disks with accretion rates in the range of around 0.001-10 M⊙s-1 , which have high density and temperature and therefore are extremely optically thick and geometrically slim or even thick. We review the theoretical progresses in studying the properties of NDAFs as well as their applications to the GRB phenomenology. The topics include: the steady radial and vertical structure of NDAFs and the implications for calculating neutrino luminosity and annihilation luminosity, jet power due to neutrino-antineutrino annihilation and Blandford-Znajek mechanism and their dependences on parameters such as BH mass, spin, and accretion rate, time evolution of NDAFs, effect of magnetic fields, applications of NDAF theories to the GRB phenomenology such as lightcurve variability, extended emission, X-ray flares, kilonovae, etc., as well as probing NDAFs using multi-messenger signals such as MeV neutrinos and gravitational waves.

  20. X-Ray Spectra from MHD Simulations of Accreting Black Holes

    Science.gov (United States)

    Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.

    2012-01-01

    We present the results of a new global radiation transport code coupled to a general relativistic magneto-hydrodynamic simulation of an accreting, nonrotating black hole. For the first time, we are able to explain from first principles in a self-consistent way the X-ray spectra observed from stellar-mass black holes, including a thermal peak, Compton reflection hump, power-law tail, and broad iron line. Varying only the mass accretion rate, we are able to reproduce the low/hard, steep power-law, and thermal-dominant states seen in most galactic black hole sources. The temperature in the corona is T(sub e) 10 keV in a boundary layer near the disk and rises smoothly to T(sub e) greater than or approximately 100 keV in low-density regions far above the disk. Even as the disk's reflection edge varies from the horizon out to approximately equal to 6M as the accretion rate decreases, we find that the shape of the Fe Ka line is remarkably constant. This is because photons emitted from the plunging region are strongly beamed into the horizon and never reach the observer. We have also carried out a basic timing analysis of the spectra and find that the fractional variability increases with photon energy and viewer inclination angle, consistent with the coronal hot spot model for X-ray fluctuations.

  1. Quasar Accretion Disk Sizes With Continuum Reverberation Mapping From the Dark Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Mudd, D.; et al.

    2017-11-30

    We present accretion disk size measurements for 15 luminous quasars at $0.7 \\leq z \\leq 1.9$ derived from $griz$ light curves from the Dark Energy Survey. We measure the disk sizes with continuum reverberation mapping using two methods, both of which are derived from the expectation that accretion disks have a radial temperature gradient and the continuum emission at a given radius is well-described by a single blackbody. In the first method we measure the relative lags between the multiband light curves, which provides the relative time lag between shorter and longer wavelength variations. The second method fits the model parameters for the canonical Shakura-Sunyaev thin disk directly rather than solving for the individual time lags between the light curves. Our measurements demonstrate good agreement with the sizes predicted by this model for accretion rates between 0.3-1 times the Eddington rate. These results are also in reasonable agreement with disk size measurements from gravitational microlensing studies of strongly lensed quasars, as well as other photometric reverberation mapping results.

  2. Hydrodynamic Models of Line-Driven Accretion Disk Winds III: Local Ionization Equilibrium

    Science.gov (United States)

    Pereyra, Nicolas Antonio; Kallman, Timothy R.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present time-dependent numerical hydrodynamic models of line-driven accretion disk winds in cataclysmic variable systems and calculate wind mass-loss rates and terminal velocities. The models are 2.5-dimensional, include an energy balance condition with radiative heating and cooling processes, and includes local ionization equilibrium introducing time dependence and spatial dependence on the line radiation force parameters. The radiation field is assumed to originate in an optically thick accretion disk. Wind ion populations are calculated under the assumption that local ionization equilibrium is determined by photoionization and radiative recombination, similar to a photoionized nebula. We find a steady wind flowing from the accretion disk. Radiative heating tends to maintain the temperature in the higher density wind regions near the disk surface, rather than cooling adiabatically. For a disk luminosity L (sub disk) = solar luminosity, white dwarf mass M(sub wd) = 0.6 solar mass, and white dwarf radii R(sub wd) = 0.01 solar radius, we obtain a wind mass-loss rate of M(sub wind) = 4 x 10(exp -12) solar mass yr(exp -1) and a terminal velocity of approximately 3000 km per second. These results confirm the general velocity and density structures found in our earlier constant ionization equilibrium adiabatic CV wind models. Further we establish here 2.5D numerical models that can be extended to QSO/AGN winds where the local ionization equilibrium will play a crucial role in the overall dynamics.

  3. Basal accretion, a major mechanism for mountain building in Taiwan revealed in rock thermal history

    Science.gov (United States)

    Chen, Chih-Tung; Chan, Yu-Chang; Lo, Ching-Hua; Malavieille, Jacques; Lu, Chia-Yu; Tang, Jui-Ting; Lee, Yuan-Hsi

    2018-02-01

    Deep tectonic processes are key integral components in the evolution of mountain belts, while observations of their temporal development are generally obscured by thermal resetting, retrograde alteration and structural overprinting. Here we recorded an integrated rock time-temperature history for the first time in the pro-wedge part of the active Taiwan arc-continent collision starting from sedimentation through cleavage-forming state to its final exhumation. The integrated thermal and age results from the Raman Spectroscopy of Carbonaceous Material (RSCM) method, zircon U-Pb laser ablation dating, and in-situ40Ar/39Ar laser microprobe dating suggest that the basal accretion process was crucial to the development of the Taiwanese orogenic wedge. The basal accretion process commenced early in the mountain building history (∼6 Ma) and gradually migrated to greater depths, as constrained by persistent plate convergence and cleavage formation under nearly isothermal state at similar depths until ∼ 2.5 Ma recorded in the early-accreted units. Such development essentially contributed to mountain root growth by the increased depth of the wedge detachment and the downward wedge thickening during the incipient to full collision stages in the Taiwan mountain belt.

  4. Accretion Disks Around Binary Black Holes of Unequal Mass: GRMHD Simulations Near Decoupling

    Science.gov (United States)

    Gold, Roman; Paschalidis, Vasileios; Etienne, Zachariah B.; Shapiro, Stuart L.; Pfeiffer, Harald, P.

    2013-01-01

    We report on simulations in general relativity of magnetized disks onto black hole binaries. We vary the binary mass ratio from 1:1 to 1:10 and evolve the systems when they orbit near the binary disk decoupling radius. We compare (surface) density profiles, accretion rates (relative to a single, non-spinning black hole), variability, effective alpha-stress levels and luminosities as functions of the mass ratio. We treat the disks in two limiting regimes: rapid radiative cooling and no radiative cooling. The magnetic field lines clearly reveal jets emerging from both black hole horizons and merging into one common jet at large distances. The magnetic fields give rise to much stronger shock heating than the pure hydrodynamic flows, completely alter the disk structure, and boost accretion rates and luminosities. Accretion streams near the horizons are among the densest structures; in fact, the 1:10 no-cooling evolution results in a refilling of the cavity. The typical effective temperature in the bulk of the disk is approx. 10(exp5) (M / 10(exp 8)M solar mass (exp -1/4(L/L(sub edd) (exp 1/4K) yielding characteristic thermal frequencies approx. 10 (exp 15) (M /10(exp 8)M solar mass) (exp -1/4(L/L (sub edd) (1+z) (exp -1)Hz. These systems are thus promising targets for many extragalactic optical surveys, such as LSST, WFIRST, and PanSTARRS.

  5. A Systems-Level Perspective on Engine Ice Accretion

    Science.gov (United States)

    May, Ryan David; Guo, Ten-Huei; Simon, Donald L.

    2012-01-01

    Talk covers: (1) Problem of Engine Power Loss;(2) Modeling Engine Icing Effects; (3) Simulation of Engine Rollback; (4) Icing/Engine Control System Interaction; (5) Detection of Ice Accretion; (6) Potential Mitigation Strategies.

  6. Dynamically important magnetic fields near accreting supermassive black holes.

    Science.gov (United States)

    Zamaninasab, M; Clausen-Brown, E; Savolainen, T; Tchekhovskoy, A

    2014-06-05

    Accreting supermassive black holes at the centres of active galaxies often produce 'jets'--collimated bipolar outflows of relativistic particles. Magnetic fields probably play a critical role in jet formation and in accretion disk physics. A dynamically important magnetic field was recently found near the Galactic Centre black hole. If this is common and if the field continues to near the black hole event horizon, disk structures will be affected, invalidating assumptions made in standard models. Here we report that jet magnetic field and accretion disk luminosity are tightly correlated over seven orders of magnitude for a sample of 76 radio-loud active galaxies. We conclude that the jet-launching regions of these radio-loud galaxies are threaded by dynamically important fields, which will affect the disk properties. These fields obstruct gas infall, compress the accretion disk vertically, slow down the disk rotation by carrying away its angular momentum in an outflow and determine the directionality of jets.

  7. Spectroscopic Parameters of Lumbar Intervertebral Disc Material

    Science.gov (United States)

    Terbetas, G.; Kozlovskaja, A.; Varanius, D.; Graziene, V.; Vaitkus, J.; Vaitkuviene, A.

    2009-06-01

    There are numerous methods of investigating intervertebral disc. Visualization methods are widely used in clinical practice. Histological, imunohistochemical and biochemical methods are more used in scientific research. We propose that a new spectroscopic investigation would be useful in determining intervertebral disc material, especially when no histological specimens are available. Purpose: to determine spectroscopic parameters of intervertebral disc material; to determine emission spectra common for all intervertebral discs; to create a background for further spectroscopic investigation where no histological specimen will be available. Material and Methods: 20 patients, 68 frozen sections of 20 μm thickness from operatively removed intervertebral disc hernia were excited by Nd:YAG microlaser STA-01-TH third harmonic 355 nm light throw 0, 1 mm fiber. Spectrophotometer OceanOptics USB2000 was used for spectra collection. Mathematical analysis of spectra was performed by ORIGIN multiple Gaussian peaks analysis. Results: In each specimen of disc hernia were found distinct maximal spectral peaks of 4 types supporting the histological evaluation of mixture content of the hernia. Fluorescence in the spectral regions 370-700 nm was detected in the disc hernias. The main spectral component was at 494 nm and the contribution of the components with the peak wavelength values at 388 nm, 412 nm and 435±5 nm were varying in the different groups of samples. In comparison to average spectrum of all cases, there are 4 groups of different spectral signatures in the region 400-500 nm in the patient groups, supporting a clinical data on different clinical features of the patients. Discussion and Conclusion: besides the classical open discectomy, new minimally invasive techniques of treating intervertebral disc emerge (PLDD). Intervertebral disc in these techniques is assessed by needle, no histological specimen is taken. Spectroscopic investigation via fiber optics through the

  8. Likelihood inference for unions of interacting discs

    DEFF Research Database (Denmark)

    Møller, Jesper; Helisova, K.

    2010-01-01

    This is probably the first paper which discusses likelihood inference for a random set using a germ-grain model, where the individual grains are unobservable, edge effects occur and other complications appear. We consider the case where the grains form a disc process modelled by a marked point...... process, where the germs are the centres and the marks are the associated radii of the discs. We propose to use a recent parametric class of interacting disc process models, where the minimal sufficient statistic depends on various geometric properties of the random set, and the density is specified...

  9. Signatures of hypermassive neutron star lifetimes on r-process nucleosynthesis in the disc ejecta from neutron star mergers

    Science.gov (United States)

    Lippuner, Jonas; Fernández, Rodrigo; Roberts, Luke F.; Foucart, Francois; Kasen, Daniel; Metzger, Brian D.; Ott, Christian D.

    2017-11-01

    We investigate the nucleosynthesis of heavy elements in the winds ejected by accretion discs formed in neutron star mergers. We compute the element formation in disc outflows from hypermassive neutron star (HMNS) remnants of variable lifetime, including the effect of angular momentum transport in the disc evolution. We employ long-term axisymmetric hydrodynamic disc simulations to model the ejecta, and compute r-process nucleosynthesis with tracer particles using a nuclear reaction network containing ˜8000 species. We find that the previously known strong correlation between HMNS lifetime, ejected mass and average electron fraction in the outflow is directly related to the amount of neutrino irradiation on the disc, which dominates mass ejection at early times in the form of a neutrino-driven wind. Production of lanthanides and actinides saturates at short HMNS lifetimes (≲10 ms), with additional ejecta contributing to a blue optical kilonova component for longer-lived HMNSs. We find good agreement between the abundances from the disc outflow alone and the solar r-process distribution only for short HMNS lifetimes (≲10 ms). For longer lifetimes, the rare-earth and third r-process peaks are significantly underproduced compared to the solar pattern, requiring additional contributions from the dynamical ejecta. The nucleosynthesis signature from a spinning black hole (BH) can only overlap with that from an HMNS of moderate lifetime (≲60 ms). Finally, we show that angular momentum transport not only contributes with a late-time outflow component, but that it also enhances the neutrino-driven component by moving material to shallower regions of the gravitational potential, in addition to providing additional heating.

  10. How Does Lumbar Degenerative Disc Disease Affect the Disc Deformation at the Cephalic Levels In Vivo?

    Science.gov (United States)

    Wang, Shaobai; Xia, Qun; Passias, Peter; Li, Weishi; Wood, Kirkham; Li, Guoan

    2013-01-01

    Study Design Case-control study. Objective . To evaluate the effect of lumbar degenerative disc disease (DDD) on the disc deformation at the adjacent level and at the level one above the adjacent level during end ranges of lumbar motion. Summary of Background Data It has been reported that in patients with DDD, the intervertebral discs adjacent to the diseased levels have a greater tendency to degenerate. Although altered biomechanics have been suggested to be the causative factors, few data have been reported on the deformation characteristics of the adjacent discs in patients with DDD. Methods Ten symptomatic patients with discogenic low back pain between L4 and S1 and with healthy discs at the cephalic segments were involved. Eight healthy subjects recruited in our previous studies were used as a reference comparison. The in vivo kinematics of L3–L4 (the cephalic adjacent level to the degenerated discs) and L2–L3 (the level one above the adjacent level) lumbar discs of both groups were obtained using a combined magnetic resonance imaging and dual fluoroscopic imaging technique at functional postures. Deformation characteristics, in terms of areas of minimal deformation (defined as less than 5%), deformations at the center of the discs, and maximum tensile and shear deformations, were compared between the two groups at the two disc levels. Results In the patients with DDD, there were significantly smaller areas of minimal disc deformation at L3–L4 and L2–L3 than the healthy subjects (18% compared with 45% of the total disc area, on average). Both L2–L3 and L3–L4 discs underwent larger tensile and shear deformations in all postures than the healthy subjects. The maximum tensile deformations were higher by up to 23% (of the local disc height in standing) and the maximum shear deformations were higher by approximately 25% to 40% (of the local disc height in standing) compared with those of the healthy subjects. Conclusion Both the discs of the adjacent

  11. Cosmic Rays and Non-thermal Emission Induced by Accretion of Cool Gas onto the Galactic Disk

    Science.gov (United States)

    Inoue, Susumu; Uchiyama, Yasunobu; Arakawa, Masanori; Renaud, Matthieu; Wada, Keiichi

    2017-11-01

    On both observational and theoretical grounds, the disk of our Galaxy should be accreting cool gas with temperature ≲ {10}5 K via the halo at a rate ˜1 {{M}⊙ {yr}}-1. At least some of this accretion is mediated by high-velocity clouds (HVCs), observed to be traveling in the halo with velocities of a few 100 km s-1 and occasionally impacting the disk at such velocities, especially in the outer regions of the Galaxy. We address the possibility of particle acceleration in shocks triggered by such HVC accretion events, and the detectability of consequent non-thermal emission in the radio to gamma-ray bands and high-energy neutrinos. For plausible shock velocities ˜ 300 {km} {{{s}}}-1 and magnetic field strengths ˜ 0.3{--}10 μ {{G}}, electrons and protons may be accelerated up to ˜1-10 TeV and ˜ 30{--}{10}3 TeV, respectively, in sufficiently strong adiabatic shocks during their lifetime of ˜ {10}6 {{yr}}. The resultant pion decay and inverse Compton gamma-rays may be the origin of some unidentified Galactic GeV-TeV sources, particularly the “dark” source HESS J1503-582 that is spatially coincident with the anomalous H I structure known as “forbidden-velocity wings.” Correlation of their locations with star-forming regions may be weak, absent, or even opposite. Non-thermal radio and X-ray emission from primary and/or secondary electrons may be detectable with deeper observations. The contribution of HVC accretion to Galactic cosmic rays is subdominant, but could be non-negligible in the outer Galaxy. As the thermal emission induced by HVC accretion is likely difficult to detect, observations of such phenomena may offer a unique perspective on probing gas accretion onto the Milky Way and other galaxies.

  12. Advective accretion flow properties around rotating black holes ...

    Indian Academy of Sciences (India)

    RAMIZ AKTAR

    2018-02-10

    Feb 10, 2018 ... in black hole source GRO J1655-40. While doing this, we attempt to constrain the range of ak based on observed. HFQPOs (∼300 Hz and ∼450 Hz) for the black hole source GRO J1655-40. Keywords. Accretion: accretion disc—black hole physics—shock waves—ISM: jets and outflows—X-ray: binaries. 1.

  13. On the accretion of phantom energy onto wormholes

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Diaz, Pedro F. [Colina de los Chopos, Centro de Fisica ' Miguel A. Catalan' , Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain)]. E-mail: p.gonzalezdiaz@imaff.cfmac.csic.es

    2006-01-12

    By using a properly generalized accretion formalism it is argued that the accretion of phantom energy onto a wormhole does not make the size of the wormhole throat to comovingly scale with the scale factor of the universe, but instead induces an increase of that size so big that the wormhole can engulf the universe itself before it reaches the big rip singularity, at least relative to an asymptotic observer.

  14. [Treatment of temporomandibular joint disc perforation with injection of hyaluronic acid or disc repair].

    Science.gov (United States)

    Lu, Jinbiao; Long, Xing; Deng, Mohong; Cheng, Yong; Li, Bo

    2014-08-01

    To assess the efficacy of injection of sodium hyaluronate in the treatment of patients with disc perforation by using cone- beam computed tomography (CBCT) and temporomandibular joint (TMJ) function. Twenty- eight patients (38 joints) with disc perforation observed through arthrography who received injection of sodium hyaluronate and other 20 patients (29 joints) who received disc repair were included in this study. Pain (visual analog scale, scores 0 to 100), maximal mouth opening, modified Helkimo's clinical dysfunction index and TMJ examinations with CBCT were obtained before and 3, 9 months after treatment. A statistically significant increase (P joints) of patients after HA injection and 55% (16 of 29 joints) of patients appeared bone remodeling after disc repair. Both injection of hyaluronic acid and disc repair are effective for treatment of temporomandibular joint disc perforation.

  15. Stellar irradiated discs and implications on migration of embedded planets. III. Viscosity transitions

    Science.gov (United States)

    Bitsch, Bertram; Morbidelli, Alessandro; Lega, Elena; Kretke, Katherine; Crida, Aurélien

    2014-10-01

    Context. The migration strength and direction of embedded low-mass planets depends on the disc structure. In discs with an efficient radiative transport, the migration can be directed outwards for planets with more than 3-5 Earth masses. This is due to the entropy-driven corotation torque, a process that extends the lifetimes of growing planetary embryos. However, smaller mass planets are still migrating inwards and might be lost to the central star. Aims: We investigate the influence on the disc structure caused by a jump in the α parameter of the viscosity to model a dead-zone structure in the disc. We focus on Ṁ discs, which have a constant net mass flux. Using the resulting disc structure, we investigate the consequences for the formation of planetesimals and determine the regions of outward migration for proto-planets. Methods: We performed numerical hydrosimulations of Ṁ discs in the r - z-plane. We used the explicit/implicit hydrodynamical code FARGOCA that includes a full tensor viscosity and stellar irradiation as well as a two-temperature solver that includes radiation transport in the flux-limited diffusion approximation. The migration of embedded planets was studied by using torque formulae. Results: Viscosity transitions inside the disc create transitions in density that stop inward migration for small planets through the so-called "planet trap" mechanism. This mechanism also works for planets down to MP > 0.5 MEarth, while in radiative discs with no viscosity transition the lowest mass with which inward migration can be avoided is 3-5 Earth masses. Additionally, the viscosity transitions change the pressure gradient in the disc, which facilitates planetesimal formation via the streaming instability. However, a very steep transition in viscosity is needed to achieve in a pressure bump in the disc. Conclusions: The transition in viscosity facilitates planetesimal formation and can stop the migration of small-mass planets (MP > 0.5 MEarth), but

  16. Squeeze Film Behaviour in Rotating Porous Annular Discs ...

    African Journals Online (AJOL)

    The squeeze film behaviour between rotating annular discs, when the upper disc with a porous facing approached the parallel lower disc, was theoretically analysed. The lubricant was a magnetic fluid and the external magnetic field was oblique to the lower disc. Expressions were obtained for pressure, load capacity and ...

  17. Inclination evolution of protoplanetary discs around eccentric binaries

    Science.gov (United States)

    Zanazzi, J. J.; Lai, Dong

    2018-01-01

    It is usually thought that viscous torque works to align a circumbinary disc with the binary's orbital plane. However, recent numerical simulations suggest that the disc may evolve to a configuration perpendicular to the binary orbit ('polar alignment) if the binary is eccentric and the initial disc-binary inclination is sufficiently large. We carry out a theoretical study on the long-term evolution of inclined discs around eccentric binaries, calculating the disc warp profile and dissipative torque acting on the disc. For discs with aspect ratio H/r larger than the viscosity parameter α, bending wave propagation effectively makes the disc precess as a quasi-rigid body, while viscosity acts on the disc warp and twist to drive secular evolution of the disc-binary inclination. We derive a simple analytic criterion (in terms of the binary eccentricity and initial disc orientation) for the disc to evolve towards polar alignment with the eccentric binary. When the disc has a non-negligible angular momentum compared to the binary, the final 'polar alignment' inclination angle is reduced from 90°. For typical protoplanetary disc parameters, the time-scale of the inclination evolution is shorter than the disc lifetime, suggesting that highly inclined discs and planets may exist orbiting eccentric binaries.

  18. Burned-out discs stop hurting: fact or fiction?

    DEFF Research Database (Denmark)

    Bendix, Tom; Kjær, Per; Korsholm, Lars

    2008-01-01

    of black disc). The risk for LBP during the past year attributed to black discs was 11%. CONCLUSION: The data could not support the hypothesis that severely degenerated discs are "burned out" and become less painful. People with black discs had a higher prevalence of LBP compared to those with grey...

  19. Accretion Disks and Coronae in the X-Ray Flashlight

    Science.gov (United States)

    Degenaar, Nathalie; Ballantyne, David R.; Belloni, Tomaso; Chakraborty, Manoneeta; Chen, Yu-Peng; Ji, Long; Kretschmar, Peter; Kuulkers, Erik; Li, Jian; Maccarone, Thomas J.; Malzac, Julien; Zhang, Shu; Zhang, Shuang-Nan

    2018-02-01

    Plasma accreted onto the surface of a neutron star can ignite due to unstable thermonuclear burning and produce a bright flash of X-ray emission called a Type-I X-ray burst. Such events are very common; thousands have been observed to date from over a hundred accreting neutron stars. The intense, often Eddington-limited, radiation generated in these thermonuclear explosions can have a discernible effect on the surrounding accretion flow that consists of an accretion disk and a hot electron corona. Type-I X-ray bursts can therefore serve as direct, repeating probes of the internal dynamics of the accretion process. In this work we review and interpret the observational evidence for the impact that Type-I X-ray bursts have on accretion disks and coronae. We also provide an outlook of how to make further progress in this research field with prospective experiments and analysis techniques, and by exploiting the technical capabilities of the new and concept X-ray missions ASTROSAT, NICER, Insight-HXMT, eXTP, and STROBE-X.

  20. Turbulent Mixing on Helium-accreting White Dwarfs

    Science.gov (United States)

    Piro, Anthony L.

    2015-03-01

    An attractive scenario for producing Type Ia supernovae (SNe Ia) is a double detonation, where detonation of an accreted helium layer triggers ignition of a C/O core. Whether or not such a mechanism can explain some or most SNe Ia depends on the properties of the helium burning, which in turn is set by the composition of the surface material. Using a combination of semi-analytic and simple numerical models, I explore when turbulent mixing due to hydrodynamic instabilities during the accretion process can mix C/O core material up into the accreted helium. Mixing is strongest at high accretion rates, large white dwarf (WD) masses, and slow spin rates. The mixing would result in subsequent helium burning that better matches the observed properties of SNe Ia. In some cases, there is considerable mixing that can lead to more than 50% C/O in the accreted layer at the time of ignition. These results will hopefully motivate future theoretical studies of such strongly mixed conditions. Mixing also has implications for other types of WD surface explosions, including the so-called .Ia supernovae, the calcium-rich transients (if they arise from accreting WDs), and metal-enriched classical novae.

  1. Probing neutron star physics using accreting neutron stars

    Directory of Open Access Journals (Sweden)

    Patruno A.

    2010-10-01

    Full Text Available We give an obervational overview of the accreting neutron stars systems as probes of neutron star physics. In particular we focus on the results obtained from the periodic timing of accreting millisecond X-ray pulsars in outburst and from the measurement of X-ray spectra of accreting neutron stars during quiescence. In the first part of this overview we show that the X-ray pulses are contaminated by a large amount of noise of uncertain origin, and that all these neutron stars do not show evidence of spin variations during the outburst. We present also some recent developments on the presence of intermittency in three accreting millisecond X-ray pulsars and investigate the reason why only a small number of accreting neutron stars show X-ray pulsations and why none of these pulsars shows sub-millisecond spin periods. In the second part of the overview we introduce the observational technique that allows the study of neutron star cooling in accreting systems as probes of neutron star internal composition and equation of state. We explain the phenomenon of the deep crustal heating and present some recent developments on several quasi persistent X-ray sources where a cooling neutron star has been observed.

  2. Freddi: Fast Rise Exponential Decay accretion Disk model Implementation

    Science.gov (United States)

    Malanchev, K. L.; Lipunova, G. V.

    2016-10-01

    Freddi (Fast Rise Exponential Decay: accretion Disk model Implementation) solves 1-D evolution equations of the Shakura-Sunyaev accretion disk. It simulates fast rise exponential decay (FRED) light curves of low mass X-ray binaries (LMXBs). The basic equation of the viscous evolution relates the surface density and viscous stresses and is of diffusion type; evolution of the accretion rate can be found on solving the equation. The distribution of viscous stresses defines the emission from the source. The standard model for the accretion disk is implied; the inner boundary of the disk is at the ISCO or can be explicitely set. The boundary conditions in the disk are the zero stress at the inner boundary and the zero accretion rate at the outer boundary. The conditions are suitable during the outbursts in X-ray binary transients with black holes. In a binary system, the accretion disk is radially confined. In Freddi, the outer radius of the disk can be set explicitely or calculated as the position of the tidal truncation radius.

  3. Implementation and Validation of 3-D Ice Accretion Measurement Methodology

    Science.gov (United States)

    Lee, Sam; Broeren, Andy P.; Kreeger, Richard E.; Potapczuk, Mark; Utt, Lloyd

    2014-01-01

    A research program has been implemented to develop and validate the use of a commercial 3-D laser scanning system to record ice accretion geometry in the NASA Icing Research Tunnel. A main component of the program was the geometric assessment of the 3- D laser scanning system on a 2-D (straight wing) and a 3-D (swept wing) airfoil geometries. This exercise consisted of comparison of scanned ice accretion to castings of the same ice accretion. The scan data were also used to create rapid prototype artificial ice shapes that were scanned and compared to the original ice accretion. The results from geometric comparisons on the straight wing showed that the ice shape models generated through the scan/rapid prototype process compared reasonably well with the cast shapes. Similar results were obtained with the geometric comparisons on the swept wing. It was difficult to precisely compare the scans of the cast shapes to the original ice accretion scans because the cast shapes appear to have shrunk during the mold/casting process by as much as 0.10-inch. However the comparison of the local ice-shape features were possible and produced better results. The rapid prototype manufacturing process was shown to reproduce the original ice accretion scan normally within 0.01-inch.

  4. Is that lumbar disc symptomatic? Herniated lumbar disc associated with contralateral radiculopathy.

    Science.gov (United States)

    Abdul Jalil, Muhammad Fahmi; Lam, Miu Fei; Wang, Yi Yuen

    2014-05-07

    Herniated lumbar disc may be asymptomatic or associated with lower limb radiculopathy. Most spinal surgeons would offer surgery following a period of conservative measures if the radiological and clinical findings correlate. However, the existing dictum that lumbar radiculopathy should correlate with ipsilateral lumbar disc herniation may not be accurate as it can rarely present with contralateral sciatica. Literature regarding this phenomenon is scarce. Therefore, we report a patient with herniated lumbar disc presenting with predominantly contralateral motor weakness radiculopathy, which resolved after discectomy.

  5. Archival-grade optical disc design and international standards

    Science.gov (United States)

    Fujii, Toru; Kojyo, Shinichi; Endo, Akihisa; Kodaira, Takuo; Mori, Fumi; Shimizu, Atsuo

    2015-09-01

    Optical discs currently on the market exhibit large variations in life span among discs, making them unsuitable for certain business applications. To assess and potentially mitigate this problem, we performed accelerated degradation testing under standard ISO conditions, determined the probable disc failure mechanisms, and identified the essential criteria necessary for a stable disc composition. With these criteria as necessary conditions, we analyzed the physical and chemical changes that occur in the disc components, on the basis of which we determined technological measures to reduce these degradation processes. By applying these measures to disc fabrication, we were able to develop highly stable optical discs.

  6. Temporomandibular Joint Disc Repositioning Using an Orthopedic Suture Anchor: A Modified Disc Anchoring Technique.

    Science.gov (United States)

    Rajkumar, K; Mukhopadhyay, P; Sinha, Ramen

    2016-09-01

    The study assessed the efficacy of orthopedic suture anchor as a modified suture anchor for disc repositioning in case of a closed lock of TMJ. Disc repositioning was undertaken via a mini preauricular approach. The disc was repositioned on the surface of the condyle and stabilized using an orthopedic suture anchor. Postoperatively functional outcomes were assessed in terms of reduction in pain, joint movement and absence of joint noise and clicking sounds. Postoperative MRI was used to assess the disc position and morphological changes in the disc and arthritic changes in the condyle at the end of six months. Patients were post surgically followed up at regular intervals of 1, 3 and 6 months. Patient experienced significant improvement in mouth opening with good functional outcomes and stable repositioning of disc as noticed By MRI at the end of six months. We describe a modified technique of disc repositioning using an orthopedic suture anchor for more favorable disc position and joint function. However the long term functional sequel of the procedure and changes in the articular disc needs to be assessed.

  7. Transradicular lumbar disc herniation: An extreme variant of intraradicular disc herniation

    Directory of Open Access Journals (Sweden)

    Manish K Kasliwal

    2015-01-01

    Full Text Available Intradural or intraradicular lumbar disc herniation (IDH is a relatively rare condition often diagnosed intraoperatively. We encountered an extreme variant of IDH - a transradicular herniation as the disc material extruded through the lumbar nerve root through a split essentially transecting the nerve root. While failure to recognize intradural and intraradicular disc herniation can lead to failed back surgery, the variant described in the present case could lead to iatrogenic injury and complication if not recognized. A unique case of transradicular lumbar disc herniation in a 25-year-old patient is presented with the depiction of intraoperative images supplementing the text.

  8. Axial T2* mapping in intervertebral discs: a new technique for assessment of intervertebral disc degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Hoppe, Sven; Quirbach, Sebastian; Krause, Fabian G.; Benneker, Lorin M. [Inselspital, Berne University Hospital, Department of Orthopaedic Surgery, Berne (Switzerland); Mamisch, Tallal C. [Inselspital, Berne University Hospital, Department of Radiology, Berne (Switzerland); Werlen, Stefan [Clinic Sonnenhof, Department of Radiology, Berne (Switzerland)

    2012-09-15

    To demonstrate the potential benefits of biochemical axial T2* mapping of intervertebral discs (IVDs) regarding the detection and grading of early stages of degenerative disc disease using 1.5-Tesla magnetic resonance imaging (MRI) in a clinical setting. Ninety-three patients suffering from lumbar spine problems were examined using standard MRI protocols including an axial T2* mapping protocol. All discs were classified morphologically and grouped as ''healthy'' or ''abnormal''. Differences between groups were analysed regarding to the specific T2* pattern at different regions of interest (ROIs). Healthy intervertebral discs revealed a distinct cross-sectional T2* value profile: T2* values were significantly lower in the annulus fibrosus compared with the nucleus pulposus (P = 0.01). In abnormal IVDs, T2* values were significantly lower, especially towards the centre of the disc representing the expected decreased water content of the nucleus (P = 0.01). In herniated discs, ROIs within the nucleus pulposus and ROIs covering the annulus fibrosus showed decreased T2* values. Axial T2* mapping is effective to detect early stages of degenerative disc disease. There is a potential benefit of axial T2* mapping as a diagnostic tool, allowing the quantitative assessment of intervertebral disc degeneration. circle Axial T2* mapping effective in detecting early degenerative disc disease. (orig.)

  9. The radiological symptoms of lumbar disc herniation and degenerative changes of the lumbar intervertebral discs.

    Science.gov (United States)

    Łebkowski, Wojciech J; Łebkowska, Urszula; Niedźwiecka, Maria; Dziecioł, Janusz

    2004-06-01

    The x-ray examination is one of the fundamental diagnostic modalities in patients with low-back-pain. The aim of study was to establish relation between radiological findings and herniation type and its localization. As well, we looked for relation between radiological findings and progression of disc degeneration. The study enrolled 187 individuals operated due to lumbar disc herniation. In each case the x-ray examination of lumbar spine was performed. Herniation was classified as protrusion, prolapse or disc sequestration. According to localization, herniation was defined as central, lateral or intermediate. Removed discs were histologically evaluated to determine degeneration symptoms. The radiological picture was related to the degeneration of the intervertebral discs. The statistical analysis revealed the only one relation -between traction osteophytes and herniation classified as disc prolapse (pintervertebral space, diminished lordosis, scoliosis) and herniation and its localization within the spinal canal. Also there is no relation between disc degeneration and radiological findings. Classic x-ray examination presents low value in diagnostics of lumbar disc degeneration and its herniation. There is no relation between radiological picture and intensity of degenerative changes within the lumbar discs.

  10. Probing the Evolving X-ray Sources of Accreting Black Holes

    Science.gov (United States)

    Wilkins, Dan

    2013-04-01

    Material spiralling into black holes powers some of the most luminous objects we see in the Unviverse; AGN and galactic black hole binaries. X-rays are emitted from a corona of energetic particles around the black hole and are seen to reflect off of the accretion disc. As well as being impressive objects in their own right, the black holes in AGN can emit such large amounts of energy that they are important in governing the growth of galaxies and clusters. Through detailed analysis of the observed reflection features in the X-ray spectrum and the variability of the detected emission showing reverberation time lags between the directly observed continuum and the reflection, it is possible to detect the emission from material right down to the innermost stable orbit around the black hole. Comparing these observations to the results of general relativistic ray tracing simulations allows them to be analysed in the context of the geometry of the X-ray emitting region and it has been possible to constrain the locations of the X-ray sources in a number of AGN including 1H 0707-495, IRAS 13224-3809 and MCG-6-30-15. With high quality data from long X-ray observations of these sources, it has, for the first time, been possible to follow the evolution of the coronal X-ray source as the luminosity of the source goes up and down. We are able to find evidence that the size and other properties of the X-ray source changes on the timescale of a few hours, giving rise to the extreme variability seen in these sources with the source increasing in size as the luminosity increases. Such detailed analysis of observations (both of spectra and variability) and studies of how the X-ray source is changing is paving the way to the science that will be possible with the next generation of X-ray instruments (NuStar and Astro-H) and will allow us to understand the processes at work in the innermost regions of accretion black holes, releasing energy from the accretion flow to power some of the

  11. Ice-Accretion Test Results for Three Large-Scale Swept-Wing Models in the NASA Icing Research Tunnel

    Science.gov (United States)

    Broeren, Andy P.; Potapczuk, Mark G.; Lee, Sam; Malone, Adam M.; Paul, Bernard P., Jr.; Woodard, Brian S.

    2016-01-01

    Icing simulation tools and computational fluid dynamics codes are reaching levels of maturity such that they are being proposed by manufacturers for use in certification of aircraft for flight in icing conditions with increasingly less reliance on natural-icing flight testing and icing-wind-tunnel testing. Sufficient high-quality data to evaluate the performance of these tools is not currently available. The objective of this work was to generate a database of ice-accretion geometry that can be used for development and validation of icing simulation tools as well as for aerodynamic testing. Three large-scale swept wing models were built and tested at the NASA Glenn Icing Research Tunnel (IRT). The models represented the Inboard (20 percent semispan), Midspan (64 percent semispan) and Outboard stations (83 percent semispan) of a wing based upon a 65 percent scale version of the Common Research Model (CRM). The IRT models utilized a hybrid design that maintained the full-scale leading-edge geometry with a truncated afterbody and flap. The models were instrumented with surface pressure taps in order to acquire sufficient aerodynamic data to verify the hybrid model design capability to simulate the full-scale wing section. A series of ice-accretion tests were conducted over a range of total temperatures from -23.8 to -1.4 C with all other conditions held constant. The results showed the changing ice-accretion morphology from rime ice at the colder temperatures to highly 3-D scallop ice in the range of -11.2 to -6.3 C. Warmer temperatures generated highly 3-D ice accretion with glaze ice characteristics. The results indicated that the general scallop ice morphology was similar for all three models. Icing results were documented for limited parametric variations in angle of attack, drop size and cloud liquid-water content (LWC). The effect of velocity on ice accretion was documented for the Midspan and Outboard models for a limited number of test cases. The data suggest

  12. Computing Decoupled Residuals for Compact Disc Players

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle

    2006-01-01

    In order to improve Compact Disc Players playability regarding playing Compact Discs with surface faults, like scratches and fingerprints etc, the attention has been put on fault tolerant control schemes. Almost every of those methods are based on fault detection. The standard approach is to use ...... based on iterative methods. In this paper an algebraic solution is presented. The algebraic algorithm do only use two thirds of the number of multiplication and additions as the iterative method uses per iteration....

  13. Kinematic structures in galactic disc simulations

    Science.gov (United States)

    Roca-Fàbrega, S.; Romero-Gómez, M.; Figueras, F.; Antoja, T.; Valenzuela, O.

    2011-10-01

    N-body and test particle simulations have been used to characterize the stellar streams in the galactic discs of Milky Way type galaxies. Tools such as the second and third order moments of the velocity ellipsoid and clustering methods -EM-WEKA and FoF- allow characterizing these kinematic structures and linking them to the stellar overdensities and to the resonant regions all through the disc.

  14. Activ C cervical disc replacement for myelopathy

    Directory of Open Access Journals (Sweden)

    L McGonagle

    2011-01-01

    Full Text Available Background: Cervical disc replacement is becoming an increasingly popular treatment option for cervical myelopathy. It retains motion at the affected segment, unlike anterior cervical discectomy and fusion. The aim of this study is to assess the outcomes of a series of patients who underwent Activ C disc replacement for cervical myelopathy. Materials and Methods: A series of patients at the above Trust with clinical and radiological evidence of cervical myelopathy who were suitable for cervical disc replacement from 2007 to 2009 were included. Implants were inserted by one of two consultant surgeons {IMS, MO′M}. Patients were assessed preoperatively and at six, 12 and 24 months, postoperatively, with a visual analogue score (VAS for neck and arm pain severity and frequency, the Neck Disability Index questionnaire (NDI and the Centre for Epidemiologic Studies Depression questionnaire (CES-D. Results: Ten patients underwent surgery between May 2007 and July 2009, 6 women, and 4 men. Average age was 54 years (40-64. Disc levels replaced were: four at C4-5; eight at C5-6; seven at C6-7. Three patients had one disc replaced, five patients had two discs replaced, and two patients had three discs replaced. The VAS for neck pain improved from 5.9 pre-operatively to 1.4-24 months postoperatively and the VAS arm pain improved from 5.4 to 2.6. The NDI improved from 51% preoperatively to 26.8% at 24 months postoperatively. The CES-D showed a slight increase from 19.5 preoperatively to 21.7 at 24 months, postoperatively. Conclusion: Cervical decompression and disc replacement improves pain and function in patients with cervical myelopathy. This benefit is maintained at 24 months post op, with no cases requiring revision.

  15. CT findings of calcified herniated lumbar disc

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hyo Kun; Lee, Jun Hyung [Chang Dong Armed Forces Evacuation Hospital, Seoul (Korea, Republic of)

    1987-12-15

    Computed tomography (CT) of 10 calcified herniated lumber discs among 46 operated cases were analysed at the aspects of incidence, location, shape, etc. The results are as follows: 1. The incidence of calcification is 22% (10/46). 2. Among 10 cases, 3 cases are at the level of L4-5 disc space and 7 cases are at the level of L5-S1 disc space. 3. Central herniation (8 cases) are more common than posterolateral herniation (2 cases). 4. Linear or band-like calcifications in the periphery of herniated disc (annulus fibrosus type) are 6 cases and dense patchy calcification in the central portion of herniated disc (nucleus pulposus type) are 4 cases. 5. Two cases (50%) of 4 cases with nucleus pulposus type calcification were found to be ruptured at operation, but none of 6 annulus fibrous calcification types showed rupture. 6. Because more wide operation field and invasive exploration were required in calcified cases than non-calcified cases, it is suggested to evaluate the presence, location, and type of calcification in herniated disc in detail.

  16. Turbulent drag reduction through oscillating discs

    CERN Document Server

    Wise, Daniel J

    2014-01-01

    The changes of a turbulent channel flow subjected to oscillations of wall flush-mounted rigid discs are studied by means of direct numerical simulations. The Reynolds number is $R_\\tau$=$180$, based on the friction velocity of the stationary-wall case and the half channel height. The primary effect of the wall forcing is the sustained reduction of wall-shear stress, which reaches a maximum of 20%. A parametric study on the disc diameter, maximum tip velocity, and oscillation period is presented, with the aim to identify the optimal parameters which guarantee maximum drag reduction and maximum net energy saving, computed by taking into account the power spent to actuate the discs. This may be positive and reaches 6%. The Rosenblat viscous pump flow is used to predict the power spent for disc motion in the turbulent channel flow and to estimate localized and transient regions over the disc surface subjected to the turbulent regenerative braking effect, for which the wall turbulence exerts work on the discs. The...

  17. Shock vaporization and the accretion of the icy satellites of Jupiter and Saturn

    Science.gov (United States)

    Ahrens, T. J.; Okeefe, J. D.

    1985-01-01

    The known properties of water and ice over a wide range of pressures and temperatures are applied to describe constraints on the shock vaporization processes for water and ice in the solar system. In particular, the role of impact vaporization acting during the formation of the Jovian and Saturnian satellites is examined in an attempt to explain the observed density in terms of composition of these rock and ice objects. A possible model of accretion of icy satellites is considered which predicts that the amount of ice devolatilization is related to planetary size.

  18. The accretion of solar material onto white dwarfs: No mixing with core material implies that the mass of the white dwarf is increasing

    Directory of Open Access Journals (Sweden)

    Sumner Starrfield

    2014-02-01

    , the mass of the ejecta is far less than the mass of the accreted material. Therefore, all the WDs are growing in mass. It is also found that the accretion time to explosion can be sufficiently short for a 1.0M⊙ WD that recurrent novae can occur on a low mass WD. This mass is lower than typically assumed for the WDs in recurrent nova systems. Finally, the predicted surface temperatures when the WD is near the peak of the explosion imply that only the most massive WDs will be significant X-ray emitters at this time.

  19. Radiation-driven Turbulent Accretion onto Massive Black Holes

    Science.gov (United States)

    Park, KwangHo; Wise, John H.; Bogdanović, Tamara

    2017-09-01

    Accretion of gas and interaction of matter and radiation are at the heart of many questions pertaining to black hole (BH) growth and coevolution of massive BHs and their host galaxies. To answer them, it is critical to quantify how the ionizing radiation that emanates from the innermost regions of the BH accretion flow couples to the surrounding medium and how it regulates the BH fueling. In this work, we use high-resolution three-dimensional (3D) radiation-hydrodynamic simulations with the code Enzo, equipped with adaptive ray-tracing module Moray, to investigate radiation-regulated BH accretion of cold gas. Our simulations reproduce findings from an earlier generation of 1D/2D simulations: the accretion-powered UV and X-ray radiation forms a highly ionized bubble, which leads to suppression of BH accretion rate characterized by quasi-periodic outbursts. A new feature revealed by the 3D simulations is the highly turbulent nature of the gas flow in vicinity of the ionization front. During quiescent periods between accretion outbursts, the ionized bubble shrinks in size and the gas density that precedes the ionization front increases. Consequently, the 3D simulations show oscillations in the accretion rate of only ˜2-3 orders of magnitude, significantly smaller than 1D/2D models. We calculate the energy budget of the gas flow and find that turbulence is the main contributor to the kinetic energy of the gas but corresponds to less than 10% of its thermal energy and thus does not contribute significantly to the pressure support of the gas.

  20. Quasi-static transient thermal stresses in a thick annular disc

    Indian Academy of Sciences (India)

    thermal stresses in annular fins with temperature-dependent conductivity under periodic heat transfer boundary condition is analysed by the Adomians decomposition method. ... where k is the thermal diffusivity of the material of the disc. The displacement function in the cylindrical coordinate system are represented by the.

  1. Simulation numerique de l'accretion de glace sur une pale d'eolienne

    Science.gov (United States)

    Fernando, Villalpando

    The wind energy industry is growing steadily, and an excellent place for the construction of wind farms is northern Quebec. This region has huge wind energy production potential, as the cold temperatures increase air density and with it the available wind energy. However, some issues associated with arctic climates cause production losses on wind farms. Icing conditions occur frequently, as high air humidity and freezing temperatures cause ice to build up on the blades, resulting in wind turbines operating suboptimally. One of the negative consequences of ice accretion is degradation of the blade's aerodynamics, in the form of a decrease in lift and an increase in drag. Also, the ice grows unevenly, which unbalances the blades and induces vibration. This reduces the expected life of some of the turbine components. If the ice accretion continues, the ice can reach a mass that endangers the wind turbine structure, and operation must be suspended in order to prevent mechanical failure. To evaluate the impact of ice on the profits of wind farms, it is important to understand how ice builds up and how much it can affect blade aerodynamics. In response, researchers in the wind energy field have attempted to simulate ice accretion on airfoils in refrigerated wind tunnels. Unfortunately, this is an expensive endeavor, and researchers' budgets are limited. However, ice accretion can be simulated more cost-effectively and with fewer limitations on airfoil size and air speed using numerical methods. Numerical simulation is an approach that can help researchers acquire knowledge in the field of wind energy more quickly. For years, the aviation industry has invested time and money developing computer codes to simulate ice accretion on aircraft wings. Nearly all these codes are restricted to use by aircraft developers, and so they are not accessible to researchers in the wind engineering field. Moreover, these codes have been developed to meet aeronautical industry

  2. Synthesis of Organic Matter of Prebiotic Chemistry at the Protoplanetary Disc

    Science.gov (United States)

    Snytnikov, Valeriy; Stoynovskaya, Olga; Rudina, Nina

    pressure inside the disc from tens to hundred atmospheres. We simulated unsteady processes in massive circumstellar discs around YSO class O and I. In the computational experiments, we have shown that at a certain stage of its evolution the circumstellar discs of gas and solids produces local areas of high pressure. According to the classical heterogeneous catalysis, a wide range of organic and prebiotic compounds could have been synthesized in these areas. Can we capture these areas of high pressure synthesis in observation of circumstellar discs? Due to the small sizes of such areas they can be hardly ever resolved even with the modern telescopes such as ALMA. However, we can try to detect their signatures in the disc, since the gas of the disc keep the set of organic synthesis products. The idea is to define the signature of the process using laboratory experiments. Varying gas temperature and pressure in laboratory setup we can carry out the catalytic high pressure syntheses and specify the set of gaseous products. These sets of organic compounds observed in the discs may serve as indicators of the emergence of high-pressure areas of prebiotic chemistry. Thus, there is a special interest to the study of YSO class 0 and I by means of observational astronomy. For these objects, first data on the presence of individual organic compounds in massive hydrogen-helium component of the discs appear. The origin of the organic compounds that are associated with chemical reactions in the discs should be separated from the set of organic compounds of the initial molecular cloud.

  3. The Late Triassic bivalve Monotis in accreted terranes of Alaska

    Science.gov (United States)

    Silberling, Norman J.; Grant-Mackie, J. A.; Nichols, K.M.

    1997-01-01

    Late Triassic bivalves of the genus Monotis occur in at least 16 of the lithotectonic terranes and subterranes that together comprise nearly all of Alaska, and they also occur in the Upper Yukon region of Alaska where Triassic strata are regarded as representing non-accretionary North America. On the basis of collections made thus far, 14 kinds of Monotis that differ at the species or subspecies level can be recognized from alaska. These are grouped into the subgenera Monotis (Monotis), M. (Pacimonotis), M. (Entomonotis), and M. (Eomonotis). In places, Monotis shells of one kind or another occur in rock-forming abundance. On the basis of superpositional data from Alaska, as well as from elsewhere in North America and Far Eastern Russia, at least four distince biostratigraphic levels can be discriminated utilizing Monotis species. Different species of M. (Eomonotis) characterize two middle Norian levels, both probably within the supper middle Norian Columbianus Ammonite Zone. Two additional levels are recognized in the lower upper Norian Cordilleranus Ammonite Zone utilizing species of M. (Monotis) or M. (Entomonotis), both of which subgenera are restricted to the late Norian. An attached-floating mode of life is commonly attributed to Monotis; thus, these bivalves would have been pseudoplanktonic surface dwellers that were sensitive to surface-water temperature and paleolatitude. Distinctly different kinds of Monotis occur at different paleolatitudes along the Pacific and Arctic margins of the North American craton inboard of the accreted terranes. Comparison between thse craton-bound Monotis faunas and those of the Alaskan terranes in southern Alaska south of the Denali fault were paleoequatorial in latitude during Late Triassic time. Among these terranes, the Alexander terrane was possibly in the southern hemisphere at that time. Terranes of northern Alaska, on the other hand, represent middle, possibly high-middle, northern paleolatitudes.

  4. MR imaging of patients with temporomandibular disorders. Relationship between anterior disc displacement and disc deformity

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Masahiro; Honda, Kazuya; Satomi, Reiko; Sawada, Kunihiko; Arai, Yoshinori; Araki, Masao; Iwai, Kazuo; Hashimoto, Koji; Shinoda, Koji [Nihon Univ., Tokyo (Japan). School of Dentistry

    1998-09-01

    The purpose of this study was to examine the relationship between anterior disc displacement and disc deformity in patients with temporomandibular disorder (TMD). We studied 50 temporomandibular joints (TMJs) in 50 patients with TMD. MR images were taken by the spin echo method using spin echo (T{sub 1}-weight: sagittal and coronal) and fast spin echo (T{sub 2}-weight: sagittal) sequences. These MR images were evaluated by two dental radiologists. The results obtained were as follows: The cases of anterior disc displacement were classified as slight in 13 (26%), moderate in 18 (36%) and severe in 6 (12%). With regard to disc configuration, 22 were biconcave (44%) which thought to be normal, 6 were E-type (12%), 6 were biplanar (12%) and 16 were biconvex (32%) in terms of deformity. Among 37 anterior disc displacement cases, 10 were moderate (56%) and 4 were severe (67%) cases showing a biconvex type of disc. There results suggest that anterior disc displacement is related to disc deformity, especially in cases of severe anterior displacement. (author)

  5. Total disc replacement surgery for symptomatic degenerative lumbar disc disease: a systematic review of the literature

    NARCIS (Netherlands)

    van den Eerenbeemt, K.D.M.; Ostelo, R.W.J.G.; van Royen, B.J.; Peul, W.C.; van Tulder, M.W.

    2010-01-01

    The objective of this study is to evaluate the effectiveness and safety of total disc replacement surgery compared with spinal fusion in patients with symptomatic lumbar disc degeneration. Low back pain (LBP), a major health problem in Western countries, can be caused by a variety of pathologies,

  6. Spontaneous regression of herniated lumbar discs.

    Science.gov (United States)

    Kim, Eric S; Oladunjoye, Azeem O; Li, Jay A; Kim, Kee D

    2014-06-01

    The spontaneous regression of a lumbar herniated disc is a common occurrence. Studies using imaging techniques as well as immunohistologic analyses have attempted to explain the mechanism for regression. However, the exact mechanism remains elusive. Understanding the process by which herniated discs disappear in the absence of surgery may better guide treatment. Recent case reports, radiographic and immunohistologic studies show that the extent of extrusion of the nucleus pulposus is related to a higher likelihood of regression. To our knowledge, Patient 3 is the first report of spontaneous regression occurring within 2 months. This occurrence was discovered intraoperatively. We present three illustrative patients. Patient 1, a 53-year-old man, presented with a large L2-L3 disc herniation. His 2 year follow-up MRI revealed a complete regression of the extruded fragment. Patient 2, a 58-year-old man, presented with an L3-L4 disc herniation with cephalad migration of a free fragment. MRI 9 months later showed no free fragment but progression of a disc bulge. Intraoperative exploration during the L3-L4 microdiscectomy confirmed the absence of the free fragment. Patient 3, a 58-year-old woman, presented with a large L2-L3 disc extrusion with cephalad migration. An imaging study performed 2 months after the initial study revealed an absence of the free fragment. Our case reports demonstrate the temporal variance in disc regression. While the time course and extent of regression vary widely, the rapid time in which regression can occur should caution surgeons contemplating discectomy based on an MRI performed a significant period prior to surgery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Cervical disc hernia operations through posterior laminoforaminotomy

    Science.gov (United States)

    Yolas, Coskun; Ozdemir, Nuriye Guzin; Okay, Hilmi Onder; Kanat, Ayhan; Senol, Mehmet; Atci, Ibrahim Burak; Yilmaz, Hakan; Coban, Mustafa Kemal; Yuksel, Mehmet Onur; Kahraman, Umit

    2016-01-01

    Objective: The most common used technique for posterolateral cervical disc herniations is anterior approach. However, posterior cervical laminotoforaminomy can provide excellent results in appropriately selected patients with foraminal stenosis in either soft disc prolapse or cervical spondylosis. The purpose of this study was to present the clinical outcomes following posterior laminoforaminotomy in patients with radiculopathy. Materials and Methods: We retrospectively evaluated 35 patients diagnosed with posterolateral cervical disc herniation and cervical spondylosis with foraminal stenosis causing radiculopathy operated by the posterior cervical keyhole laminoforaminotomy between the years 2010 and 2015. Results: The file records and the radiographic images of the 35 patients were assessed retrospectively. The mean age was 46.4 years (range: 34-66 years). Of the patients, 19 were males and 16 were females. In all of the patients, the neurologic deficit observed was radiculopathy. The posterolaterally localized disc herniations and the osteophytic structures were on the left side in 18 cases and on the right in 17 cases. In 10 of the patients, the disc level was at C5-6, in 18 at C6-7, in 2 at C3-4, in 2 at C4-5, in 1 at C7-T1, in 1 patient at both C5-6 and C6-7, and in 1 at both C4-5 and C5-6. In 14 of these 35 patients, both osteophytic structures and protruded disc herniation were present. Intervertebral foramen stenosis was present in all of the patients with osteophytes. Postoperatively, in 31 patients the complaints were relieved completely and four patients had complaints of neck pain and paresthesia radiating to the arm (the success of operation was 88.5%). On control examinations, there was no finding of instability or cervical kyphosis. Conclusion: Posterior cervical laminoforaminotomy is an alternative appropriate choice in both cervical soft disc herniations and cervical stenosis. PMID:27217655

  8. [Imaging study of lumbar intervertebral disc herniation and asymptomatic lumbar intervertebral disc herniation].

    Science.gov (United States)

    Yu, Qing-yang; Yang, Cun-rui; Yu, Lang-tao

    2009-04-01

    Using regional assignment to forked method to study lumbar intervertebral disc hemiation (bugle, hernia, prolapse) dependablity and reason of lumbar intervertebral disc herniation and asymptomatic lumbar intervertebral disc herniation. From March 2005 to October 2006, 120 patients of match condition from orthopaedics dept and rehabilitative dept of the Boai hospital of Longyan were studied. All patients were equally divided into two groups according to whether or not accompany with symptom of lumbar intervertebral disc herniation. There was not statistical difference in sex, age, course of disease, segment of intervertebral disc between two groups. Sixty patients of symptomatic lumbar intervertebral disc herniation were equally divided into three groups according to (bugle, hernia, prolapse) image on CT. Sixty patients of asymptomatic lumbar intervertebral disc herniation were equally divided into three groups according to (bugle, hernia, prolapse) image on CT. The age was 20-59 years old with an average of 38.5 years. Using regional assignment to give a mark respectively for every group. The sagittal diameter index (SI), anterior diastema of flaval ligaments, the width of superior outlet of latero-crypt, anteroposterior diameter of dura sac were respectively measured by sliding caliper. CT value and protrusible areas were respectively evaluated by computer tomography. Adopting mean value to measure three times. (1) There were not statistical difference in SI, CT value, hernia areas, anteroposterior diameter of dura sac between two groups (symptomatic lumbar intervertebral disc herniation and asymptomatic lumbar intervertebral disc herniation). There were statistical difference in the width of superior outlet of latero-crypt, anterior diastema of flaval ligaments between two groups (symptomatic lumbar intervertebral disc herniation and asymptomatic lumbar intervertebral disc herniation). (2) There were statistical difference in protrusible type,protrusible segment

  9. ELECTROMAGNETIC SPINDOWN OF A TRANSIENT ACCRETING MILLISECOND PULSAR DURING QUIESCENCE

    Energy Technology Data Exchange (ETDEWEB)

    Melatos, A.; Mastrano, A., E-mail: amelatos@unimelb.edu.au, E-mail: alpham@unimelb.edu.au [School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia)

    2016-02-10

    The measured spindown rates in quiescence of the transient accreting millisecond pulsars IGR J00291+5934, XTE J1751–305, SAX J1808.4–3658, and Swift J1756.9–2508 have been used to estimate the magnetic moments of these objects assuming standard magnetic dipole braking. It is shown that this approach leads to an overestimate if the amount of residual accretion is enough to distort the magnetosphere away from a force-free configuration through magnetospheric mass loading or crushing, so that the lever arm of the braking torque migrates inside the light cylinder. We derive an alternative spindown formula and calculate the residual accretion rates where the formula is applicable. As a demonstration we apply the alternative spindown formula to produce updated magnetic moment estimates for the four objects above. We note that based on current uncertain observations of quiescent accretion rates, magnetospheric mass loading and crushing are neither firmly indicated nor ruled out in these four objects. Because quiescent accretion rates are not measured directly (only upper limits are placed), without more data it is impossible to be confident about whether the thresholds for magnetospheric mass loading or crushing are reached or not.

  10. CMB bounds on disk-accreting massive primordial black holes

    Science.gov (United States)

    Poulin, Vivian; Serpico, Pasquale D.; Calore, Francesca; Clesse, Sébastien; Kohri, Kazunori

    2017-10-01

    Stellar-mass primordial black holes (PBH) have been recently reconsidered as a dark matter (DM) candidate after the aLIGO discovery of several binary black hole (BH) mergers with masses of tens of M⊙ . Matter accretion on such massive objects leads to the emission of high-energy photons, capable of altering the ionization and thermal history of the universe. This, in turn, affects the statistical properties of the cosmic microwave background (CMB) anisotropies. Previous analyses have assumed spherical accretion. We argue that this approximation likely breaks down and that an accretion disk should form in the dark ages. Using the most up-to-date tools to compute the energy deposition in the medium, we derive constraints on the fraction of DM in PBH. Provided that disks form early on, even under conservative assumptions for accretion, these constraints exclude a monochromatic distribution of PBH with masses above ˜2 M⊙ as the dominant form of DM. The bound on the median PBH mass gets more stringent if a broad, log-normal mass function is considered. A deepened understanding of nonlinear clustering properties and BH accretion disk physics would permit an improved treatment and possibly lead to more stringent constraints.

  11. Dry Friction Clutch Disc of an Automobile under Transient Thermal Load: A Comparison of Friction Lining Materials

    Directory of Open Access Journals (Sweden)

    Ali Anosh

    2017-01-01

    Full Text Available This paper shows the comparison of temperatures produced in a dry friction clutch disc with different materials during a single engagement to assist in clutch plate design and analysis. A study of usage of different materials for friction lining of clutch disc is required, which will provide improved performance and enhanced life. This investigation is modelled mathematically and solved numerically using finite element method. ANSYS® 15.0 is a dedicated finite element package used for determining the temperature distribution across a clutch disc. In the present work, an investigation of a conventionally used harmful friction lining material asbestos is compared with carbon-carbon composite, S2-glass fibre and aluminium metal matrix composite. The transient thermal analysis of a clutch disc with different materials is performed and the temperature distribution on the clutch system is compared. Simulation results indicate that all the values of the temperature obtained from the analysis of aluminium metal matrix are less than those of asbestos based lining material, therefore clutch disc made up of aluminium metal matrix composite will assure the extended service life and the longer stability due to the fact that the temperature responsible for the wear and tear has been reduced. Furthermore, the slipping time is also considered in this investigation.

  12. Circumbinary discs: Numerical and physical behaviour

    Science.gov (United States)

    Thun, Daniel; Kley, Wilhelm; Picogna, Giovanni

    2017-08-01

    Aims: Discs around a central binary system play an important role in star and planet formation and in the evolution of galactic discs. These circumbinary discs are strongly disturbed by the time varying potential of the binary system and display a complex dynamical evolution that is not well understood. Our goal is to investigate the impact of disc and binary parameters on the dynamical aspects of the disc. Methods: We study the evolution of circumbinary discs under the gravitational influence of the binary using two-dimensional hydrodynamical simulations. To distinguish between physical and numerical effects we apply three hydrodynamical codes. First we analyse in detail numerical issues concerning the conditions at the boundaries and grid resolution. We then perform a series of simulations with different binary parameters (eccentricity, mass ratio) and disc parameters (viscosity, aspect ratio) starting from a reference model with Kepler-16 parameters. Results: Concerning the numerical aspects we find that the length of the inner grid radius and the binary semi-major axis must be comparable, with free outflow conditions applied such that mass can flow onto the central binary. A closed inner boundary leads to unstable evolutions. We find that the inner disc turns eccentric and precesses for all investigated physical parameters. The precession rate is slow with periods (Tprec) starting at around 500 binary orbits (Tbin) for high viscosity and a high aspect ratio H/R where the inner hole is smaller and more circular. Reducing α and H/R increases the gap size and Tprec reaches 2500 Tbin. For varying binary mass ratios qbin the gap size remains constant, whereas Tprec decreases with increasing qbin. For varying binary eccentricities ebin we find two separate branches in the gap size and eccentricity diagram. The bifurcation occurs at around ecrit ≈ 0.18 where the gap is smallest with the shortest Tprec. For ebin lower and higher than ecrit, the gap size and Tprec

  13. Active Galactic Nuclei outflows in galaxy discs

    Science.gov (United States)

    Hartwig, Tilman; Volonteri, Marta; Dashyan, Gohar

    2018-01-01

    Galactic outflows, driven by active galactic nuclei (AGN), play a crucial role in galaxy formation and in the self-regulated growth of supermassive black holes. AGN feedback couples to and affects gas, rather than stars, and in many, if not most, gas-rich galaxies cold gas is rotationally supported and settles in a disc. We present a 2D analytical model for AGN-driven outflows in a gaseous disc and demonstrate the main improvements, compared to existing 1D solutions. We find significant differences for the outflow dynamics and wind efficiency. The outflow is energy-driven due to inefficient cooling up to a certain AGN luminosity (˜1043 erg s-1 in our fiducial model), above which the outflow remains momentum-driven in the disc up to galactic scales. We reproduce results of 3D simulations that gas is preferentially ejected perpendicular to the disc and find that the fraction of ejected interstellar medium is lower than in 1D models. The recovery time of gas in the disc, defined as the freefall time from the radius to which the AGN pushes the ISM at most, is remarkably short, of the order 1 Myr. This indicates that AGN-driven winds cannot suppress BH growth for long. Without the inclusion of supernova feedback, we find a scaling of the black hole mass with the halo velocity dispersion of MBH∝σ4.8.

  14. Crystallization of Self-Propelled Hard Discs

    Science.gov (United States)

    Briand, G.; Dauchot, O.

    2016-08-01

    We experimentally study the crystallization of a monolayer of vibrated discs with a built-in polar asymmetry, a model system of active liquids, and contrast it with that of vibrated isotropic discs. Increasing the packing fraction ϕ , the quasicontinuous crystallization reported for isotropic discs is replaced by a transition, or a crossover, towards a "self-melting" crystal. Starting from the liquid phase and increasing the packing fraction, clusters of dense hexagonal-ordered packed discs spontaneously form, melt, split, and merge, leading to a highly intermittent and heterogeneous dynamics. For a packing fraction larger than ϕ*, a few large clusters span the system size. The cluster size distribution is monotonically decreasing for ϕ ϕ*, and is a power law at the transition. The system is, however, never dynamically arrested. The clusters permanently melt from place to place, forming droplets of an active liquid which rapidly propagate across the system. This self-melting crystalline state subsists up to the highest possible packing fraction, questioning the stability of the crystal for active discs unless it is at ordered close packing.

  15. The formation of massive star systems by accretion.

    Science.gov (United States)

    Krumholz, Mark R; Klein, Richard I; McKee, Christopher F; Offner, Stella S R; Cunningham, Andrew J

    2009-02-06

    Massive stars produce so much light that the radiation pressure they exert on the gas and dust around them is stronger than their gravitational attraction, a condition that has long been expected to prevent them from growing by accretion. We present three-dimensional radiation-hydrodynamic simulations of the collapse of a massive prestellar core and find that radiation pressure does not halt accretion. Instead, gravitational and Rayleigh-Taylor instabilities channel gas onto the star system through nonaxisymmetric disks and filaments that self-shield against radiation while allowing radiation to escape through optically thin bubbles. Gravitational instabilities cause the disk to fragment and form a massive companion to the primary star. Radiation pressure does not limit stellar masses, but the instabilities that allow accretion to continue lead to small multiple systems.

  16. Laboratory unraveling of matter accretion in young stars.

    Science.gov (United States)

    Revet, Guilhem; Chen, Sophia N; Bonito, Rosaria; Khiar, Benjamin; Filippov, Evgeny; Argiroffi, Costanza; Higginson, Drew P; Orlando, Salvatore; Béard, Jérôme; Blecher, Marius; Borghesi, Marco; Burdonov, Konstantin; Khaghani, Dimitri; Naughton, Kealan; Pépin, Henri; Portugall, Oliver; Riquier, Raphael; Rodriguez, Rafael; Ryazantsev, Sergei N; Yu Skobelev, Igor; Soloviev, Alexander; Willi, Oswald; Pikuz, Sergey; Ciardi, Andrea; Fuchs, Julien

    2017-11-01

    Accretion dynamics in the formation of young stars is still a matter of debate because of limitations in observations and modeling. Through scaled laboratory experiments of collimated plasma accretion onto a solid in the presence of a magnetic field, we open a first window on this phenomenon by tracking, with spatial and temporal resolution, the dynamics of the system and simultaneously measuring multiband emissions. We observe in these experiments that matter, upon impact, is ejected laterally from the solid surface and then refocused by the magnetic field toward the incoming stream. This ejected matter forms a plasma shell that envelops the shocked core, reducing escaped x-ray emission. This finding demonstrates one possible structure reconciling current discrepancies between mass accretion rates derived from x-ray and optical observations, respectively.

  17. Grinding Down Stars and Stellar Remnants Into Accretion Disks

    Science.gov (United States)

    Sadika Nasim, Syeda; Fabj, Gaia; McKernan, Barry; Ford, K. E. Saavik

    2018-01-01

    Active galactic nuclei (AGN) are powered by the accretion of matter onto supermassive black holes (SMBH). Most accretion models take the form of disks of gas around the SMBH. Stars and stellar remnants also orbit the SMBH. Orbiting objects plunging through the disk experience a drag force, and through repeated passage, orbiters can have their orbits ground-down into the plane of the disk. Using two different accretion disk models, TQM (Thompson, Quataert & Murray), and SG (Sirko & Goodman), we determine the grind-down time for stars and stellar remnants, as a function of initial inclination angle, and initial radius. Orbital grind-down time is important because stellar-mass black holes (sBH) within AGN disks are likely to merge at a higher rate than in the field. Accurate estimates of orbital grind-down time can help constrain predictions of the AGN channel for LIGO.

  18. Laboratory unravelling of matter accretion in young stars

    Science.gov (United States)

    Revet, G.; Chen, S. N.; Bonito, R.; Khiar, B.; Filippov, E.; Argiroffi, C.; Higginson, D. P.; Orlando, S.; Béard, J.; Blecher, M.; Borghesi, M.; Burdonov, K.; Khaghani, D.; Naughton, K.; Pépin, H.; Portugall, O.; Riquier, R.; Rodriguez, R.; Ryazantsev, S. N.; Skobelev, I. Yu.; Soloviev, A.; Willi, O.; Pikuz, S.; Ciardi, A.; Fuchs, J.

    2017-11-01

    Accretion dynamics in the forming of young stars is still object of debate because of limitations in observations and modelling. Through scaled laboratory experiments of collimated plasma accretion onto a solid in the presence of a magnetic field, we open first window on this phenomenon by tracking, with spatial and temporal resolution, the dynamics of the system and simultaneously measuring multiband emissions. We observe in these experiments that matter, upon impact, is laterally ejected from the solid surface, then refocused by the magnetic field toward the incoming stream. Such ejected matter forms a plasma shell that envelops the shocked core, reducing escaped X-ray emission. This demonstrates one possible structure reconciling current discrepancies between mass accretion rates derived from X-ray and optical observations.

  19. Safety of winder disc brakes - a structural approach

    Energy Technology Data Exchange (ETDEWEB)

    Brodzinski, S.

    1986-01-01

    Analyzes reliability and safety of ASEA disc brakes installed in Polish mine hoist winding units. A theoretical assessment of disc brake safety is made; reliability diagrams for disc brake systems are established. A calculation example of safety assessment is also given, i.e. probability of brake failure of systems equipped with one or two pairs of brake discs. Furthermore, dangerous brake failures are explained as due to oil contaminations originating from hydraulic element leakage. Probability of failure of one-disk or two-disc brake systems is also determined. Schemes of the ASEA hydraulic disc brake system as well as working assembly and control assembly reliability diagrams are provided. 11 refs.

  20. Impact analysis of different chemical pre-treatments on colour of apple discs during drying process

    Directory of Open Access Journals (Sweden)

    Jasmina Lukinac

    2009-01-01

    Full Text Available The main purpose of this study was to compare colour changes of chemically pre-treated dried apple discs. Changes were observed by chromameter in L*a*b* colour model by using Minolta chromameter CR-400 and by image analysis system in RGB colour model. Apple discs variety "Gold Rush" were pre-treated and dried in laboratory tray drier at drying temperature 70 °C and at airflow velocity of 1.5 ms-1. Different chemical pre-treatments were applied on apple discs (dipping in 0.5% ascorbic acid solution; 0.3% L–cysteine solution; 0.1% 4–hexyl resorcinol solution and 1% sodium metabisulphite solution. Mean values of colour parameters, colour changes and correlation coefficients for apple discs were calculated for both colour models. The analysis showed statistically significant influence of pre-treatment method on total colour changes for both chosen colour models of dried apples. Calculated correlation coefficient between colour changes for used models was found to be 0.894. According to colour characteristics the best results were achieved when samples were pre-treated with 0.5% ascorbic acid solution. According to calculated results it was found that image analysis method as well as colorimetric method can be used to observe the colour changes on dried apple discs.