WorldWideScience

Sample records for temelin nuclear power

  1. Manmade radionuclide vector in Austrian soil and vegetation near Temelin nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Sinojmeri, M.; Ringer, V. [Oesterreichische Agentur fuer Gesundheit und Ernaehrungssicherheit - AGES (Austria)

    2014-07-01

    Since Chernobyl NPP accident an environmental monitoring program concerning the Upper Austrian region near Czech Republic Nuclear Power Plant, NPP Temelin, is in progress between AGES and BMLFUV, the Austrian Federal Ministry of Agriculture, Forestry, Environment, Water and Food, in Austria. This paper presents the results obtained during the sampling campaign over biennial period of 2010-2011. Soil samples, grass and different cereal species were collected. Beside Cs-134, Cs-137 and Sr-89, Sr-90 isotopes, at this phase the number of isotopes determined was extended with plutonium isotopes Pu-238, Pu-239, Pu-240, Pu-241 and Am-241. A comparison of these results with the existing data so far is presented. New knowledge was obtained related the bio-kinetic parameters of these elements in the environment. Document available in abstract form only. (authors)

  2. Irradiation of Population in the Surrounding Area of Nuclear Power Plant Temelin

    Science.gov (United States)

    Thinova, Lenka; Kluson, Jaroslav

    2008-08-01

    In monitoring the impact of nuclear facilities operation on ecosystem, it is necessary to consider, what part of biota irradiation can be caused by an artificial source. For the estimation of an effective dose from natural sources were used measurements of dosimetric and gamma spectrometric characteristics of photon fields, (performed in the area of NPP Temelin since year 2000) and data from the Czech Republic radiometric chart, including the results from radon volume activity measurements in dwellings. For gamma spectrometric measurements in situ were selected two methodologies and for measurement were used corresponding types of equipment (Tesla NB3201 and spectrometer NaI(TI) 3"x3") at selected locations within the monitored area: i) determination of air kerma rate (through direct measurement and by calculationfrom spectrometric data); ii) measurement of photon spectra by an scintillating spectrometer. For a dose assessment from artificial sources resulting from past or present operation of NPP Temelin, were used records from all so far performed laboratory and field measurements of NPP releases, food baskets and also results of a 6 year ecosystem monitoring in the surrounding area of NPP Temelin. The ecosystem monitoring is based on studying the contamination of the following bioindicators: forest humus, Pine bark, Schreber's Moss, the Bay Bolete (mushroom) and forest berries. Each year 220 samples are collected and mass activity (Bq/kg) for eventual contaminants is determined using laboratory gamma spectroscopy. For measurements is used a coaxial HPGe detector, with samples in the geometry of "Marinelli" container. For evaluation of the laboratory results obtained is used trend analysis. The above described monitoring has been performed from the year 2000 until now (the year 2000 is pre-operational). In all measured laboratory spectra, of all analyzed samples, were not identified any non-natural radionuclides, with the exception of 137Cs, for which maesured

  3. Possible genetic damage in the Czech nuclear power plant workers

    Energy Technology Data Exchange (ETDEWEB)

    Sram, Radim J. [Laboratory of Genetic Ecotoxicology, Health Institute of Central Bohemia and Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Praha 4 (Czech Republic)]. E-mail: sram@biomed.cas.cz; Roessner, Pavel [Laboratory of Genetic Ecotoxicology, Health Institute of Central Bohemia and Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Praha 4 (Czech Republic); Rubes, Jiri [Veterinary Research Institute, Hudcova 70, 621 32 Brno (Czech Republic); Beskid, Olena [Laboratory of Genetic Ecotoxicology, Health Institute of Central Bohemia and Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Praha 4 (Czech Republic); Dusek, Zdik [Laboratory of Genetic Ecotoxicology, Health Institute of Central Bohemia and Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Praha 4 (Czech Republic); Chvatalova, Irena [Laboratory of Genetic Ecotoxicology, Health Institute of Central Bohemia and Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Praha 4 (Czech Republic); Schmuczerova, Jana [Laboratory of Genetic Ecotoxicology, Health Institute of Central Bohemia and Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Praha 4 (Czech Republic); Milcova, Alena [Laboratory of Genetic Ecotoxicology, Health Institute of Central Bohemia and Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Praha 4 (Czech Republic); Solansky, Ivo [Laboratory of Genetic Ecotoxicology, Health Institute of Central Bohemia and Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Praha 4 (Czech Republic); Bavorova, Hana [National Institute of Public Health, Srobarova 48, 100 42 Praha 10 (Czech Republic); Ocadlikova, Dana [National Institute of Public Health, Srobarova 48, 100 42 Praha 10 (Czech Republic); Kopecna, Olga [Veterinary Research Institute, Hudcova 70, 621 32 Brno (Czech Republic); Musilova, Petra [Veterinary Research Institute, Hudcova 70, 621 32 Brno (Czech Republic)

    2006-01-29

    The aim of our study was to identify occupational risk of irradiation exposure in the Czech nuclear power plant workers. We analyzed levels of chromosomal aberrations, a well-known biomarker of early biological effects and a predictor of cancer risk. We applied the conventional method of cytogenetic analysis and fluorescence in situ hybridization (FISH, whole chromosome painting for chromosomes 1 and 4, combined with a pancentromeric probe) to three groups: 123 subjects in the Temelin nuclear power plant (2 years in use), 114 subjects in the Dukovany nuclear power plant (20 years in use), and 53 matched controls from Ceske Budejovice. Nuclear power plant workers were divided into two groups: subjects with admittance into the monitored zone, and others. Following factors were also analyzed: GSTM1, GSTT1, GSTP1, XPD, XRCC1, hOGG1, p53, MTHFR, and MS gene polymorphisms, levels of vitamins A, C, E, and folate in plasma, and level of cotinine in urine. Long-term exposure to ionizing radiation in the monitored zone was 0.47 {+-} 1.50 mSv (miliSievert) in the Temelin nuclear power plant and 5.74 {+-} 9.57 mSv in the Dukovany nuclear power plant. Using the conventional cytogenetic analysis, we observed 1.90 {+-} 0.95 and 1.82 {+-} 1.19% AB.C. (percent of aberrant cells) in the Temelin nuclear power plant, and 2.39 {+-} 1.01 and 2.33 {+-} 1.04% AB.C. in the Dukovany nuclear power plant, for monitored zone workers and others, respectively. In the control group, we found 2.25 {+-} 0.82% AB.C. Genomic frequency of translocations F {sub G}/100 measured by FISH was 1.89 {+-} 1.40 and 2.01 {+-} 1.68 in the Temelin nuclear power plant, and 2.48 {+-} 1.93 and 2.14 {+-} 1.62 in the Dukovany nuclear power plant for monitored zone workers and others, respectively. In the control group, F {sub G}/100 was 1.83 {+-} 1.19. Following factors were identified as potential confounders by the conventional cytogenetic analysis: XPD-6, by the FISH: age, GSTP1 and p53Bst genotypes, long-term use

  4. Membrane systems and their use in nuclear power plants. Treatment of primary coolant

    Energy Technology Data Exchange (ETDEWEB)

    Kus, Pavel; Bartova, Sarka; Skala, Martin; Vonkova, Katerina [Research Centre Rez, Husinec-Rez (Czech Republic). Technological Circuits Innovation Dept.; Zach, Vaclav; Kopa, Roman [CEZ a.s., Temelin (Czech Republic). Nuclear Power Plant Temelin

    2016-03-15

    In nuclear power plants, drained primary coolant containing boric acid is currently treated in the system of evaporators and by ion exchangers. Replacement of the system of evaporators by membrane system (MS) will result in lower operating cost mainly due to lower operation temperature. In membrane systems the feed primary coolant is separated into two output streams: retentate and permeate. Retentate stream consists of the concentrated boric acid solution together with other components, while permeate stream consists of purified water. Results are presented achieved by testing a pilot-plant unit of reverse osmosis in nuclear power plant (NPP) Temelin.

  5. The use of reverse osmosis at nuclear power plants. Replacement of evaporator

    Energy Technology Data Exchange (ETDEWEB)

    Kus, Pavel; Bartova, Sarka; Kunesova, Katerina; Smejdova, Vladena; Vonkova, Katerina [Research Centre Rez, Husinec-Rez (Czech Republic). Technological Circuits

    2015-06-01

    Evaporators are being used in nuclear power plants for the treatment of primary coolant containing H3BO3 for neutron absorption and other components for adjusting water chemistry. The aim is to achieve a concentrated H3BO3 solution, which is further purified by ion exchangers and then recycled into the primary cycle. Operation of evaporators is expensive, therefore reverse osmosis was proposed as one promising alternative. A pilot-plant RO unit was used for the experiments performed with feed solution. The successful technology is now being implemented at Temelin NPP.

  6. Nuclear Power Plants. Revised.

    Science.gov (United States)

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  7. Nuclear Power Plant Technician

    Science.gov (United States)

    Randall, George A.

    1975-01-01

    The author recognizes a body of basic knowledge in nuclear power plant technoogy that can be taught in school programs, and lists the various courses, aiming to fill the anticipated need for nuclear-trained manpower--persons holding an associate degree in engineering technology. (Author/BP)

  8. Nuclear-Powered Debate.

    Science.gov (United States)

    Arce, Gary

    1992-01-01

    Describes an exercise to develop interest and understanding about nuclear energy in which students make presentations regarding a proposal to build a hypothetical nuclear power plant. Students spend two weeks researching the topic; give testimony before a "Senate Energy Committee"; and vote on the proposal. Background information is…

  9. Experimental studies into the fluid dynamic performance of the coolant flow in the mixed core of the Temelin NPP VVER-1000 reactor

    Directory of Open Access Journals (Sweden)

    S.M. Dmitriev

    2015-11-01

    Full Text Available The paper presents the results of studies into the interassembly coolant interaction in the Temelin nuclear power plant (NPP VVER-1000 reactor core. An aerodynamic test bench was used to study the coolant flow processes in a TVSA-type fuel assembly bundle. To obtain more detailed information on the coolant flow dynamics, a VVER-1000 reactor core fragment was selected as the test model, which comprised two segments of a TVSA-12 PLUS fuel assembly and one segment of a TVSA-T assembly with stiffening angles and an interassembly gap. The studies into the coolant fluid dynamics consisted in measuring the velocity vector both in representative TVSA regions and inside the interassembly gap using a five-channel pneumometric probe. An analysis into the spatial distribution of the absolute flow velocity projections made it possible to detail the TVSA spacer, mixing and combined spacer grid flow pattern, identify the regions with the maximum transverse coolant flow, and determine the depth of the coolant flow disturbance propagation and redistribution in adjacent TVSA assemblies. The results of the studies into the interassembly coolant interaction among the adjacent TVSA assemblies are used at OKBM Afrikantov to update the VVER-1000 core thermal-hydraulic analysis procedures and have been added to the database for verification of computational fluid dynamics (CFD codes and for detailed cellwise analyses of the VVER-100 reactor cores.

  10. New nuclear power sources

    Science.gov (United States)

    Nuclear electric-power generation sources for the future include two viable candidates as viewed now: the fast breeder and the nuclear fusion reactors. Breeder reactors, which produce more radioactive fuels than they consume, are in the realm of existing technology. They are also categorized as potentially most harmful to the environment. Nuclear fusion reactors, on the other hand, will not be available in this century, based on current levels of development. However, they will be categorized as inherently much safer and thus potentially least harmful to the environment of all fueled electric-power generators.

  11. Nuclear power economics

    Energy Technology Data Exchange (ETDEWEB)

    Emsley, Ian; Cobb, Jonathan [World Nuclear Association, London (United Kingdom)

    2017-04-15

    Many countries recognize the substantial role which nuclear power has played in providing energy security of supply, reducing import dependence and reducing greenhouse gas and polluting emissions. Nevertheless, as such considerations are far from being fully accounted for in liberalized or deregulated power markets, nuclear plants must demonstrate their viability in these markets on commercial criteria as well as their lifecycle advantages. Nuclear plants are operating more efficiently than in the past and unit operating costs are low relative to those of alternative generating technologies. The political risk facing the economic functioning of nuclear in a number of countries has increased with the imposition of nuclear-specific taxes that in some cases have deprived operators of the economic incentive to continue to operate existing plants.

  12. Czech young generation activities in nuclear training and education framework in the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Matejkova, J.; Foral, S.; Varmuza, J.; Katovsky, K.

    2014-07-01

    The Czech Republic has a long tradition in nuclear power production. One third of Czech electricity production is generated in two nuclear power plants, Dukovany and Temelin, totaling six power reactors. There are also three non-power, research reactors: two zero power reactors for education and research support, and one material testing reactor (MTR) used mainly for radioisotopes production. One of zero power reactors is employed by the Czech Technical University in Prague for education and research purposes, other zero power reactor and MTR are situated at nuclear research complex in Rez. (Author)

  13. Commercial nuclear power 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-28

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

  14. Nuclear power industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-28

    This press dossier presented in Shanghai (China) in April 1999, describes first the activities of the Framatome group in the people`s republic of China with a short presentation of the Daya Bay power plant and of the future Ling Ao project, and with a description of the technological cooperation with China in the nuclear domain (technology transfers, nuclear fuels) and in other industrial domains (mechanics, oil and gas, connectors, food and agriculture, paper industry etc..). The general activities of the Framatome group in the domain of energy (nuclear realizations in France, EPR project, export activities, nuclear services, nuclear fuels, nuclear equipments, industrial equipments) and of connectors engineering are presented in a second and third part with the 1998 performances. (J.S.)

  15. Beloyarsk Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    The Beloyarsk Nuclear Power Plant (BNPP) is located in Zarechny, approximately 60 km east of Ekaterinberg along the Trans-Siberian Highway. Zarechny, a small city of approximately 30,000 residents, was built to support BNPP operations. It is a closed city to unescorted visitors. Residents must show identification for entry. BNPP is one of the first and oldest commercial nuclear power plants in Russia and began operations in 1964. As for most nuclear power plants in the Russian Federation, BNPP is operated by Rosenergoatom, which is subordinated to the Ministry of Atomic Energy of the Russian Federation (Minatom). BNPP is the site of three nuclear reactors, Units 1, 2, and 3. Units 1 and 2, which have been shut-down and defueled, were graphite moderated reactors. The units were shut-down in 1981 and 1989. Unit 3, a BN-600 reactor, is a 600 MW(electric) sodium-cooled fast breeder reactor. Unit 3 went on-line in April 1980 and produces electric power which is fed into a distribution grid and thermal power which provides heat to Zarechny. The paper also discusses the SF NIKIET, the Sverdiovsk Branch of NIKIET, Moscow, which is the research and development branch of the parent NIKEIT and is primarily a design institute responsible for reactor design. Central to its operations is a 15 megawatt IVV research reactor. The paper discusses general security and fissile material control and accountability at these two facilities.

  16. Nuclear power plant maintainability.

    Science.gov (United States)

    Seminara, J L; Parsons, S O

    1982-09-01

    In the mid-1970s a general awareness of human factors engineering deficiencies associated with power plant control rooms took shape and the Electric Power Research Institute (EPRI) awarded the Lockheed Corporation a contract to review the human factors aspects of five representative operational control rooms and their associated simulators. This investigation revealed a host of major and minor deficiencies that assumed unforeseen dimensions in the post- Three Mile Island accident period. In the course of examining operational problems (Seminara et al, 1976) and subsequently the methods for overcoming such problems (Seminara et al, 1979, 1980) indications surfaced that power plants were far from ideal in meeting the needs of maintenance personnel. Accordingly, EPRI sponsored an investigation of the human factors aspects of power plant maintainability (Seminara, 1981). This paper provides an overview of the maintainability problems and issues encountered in the course of reviewing five nuclear power plants.

  17. Space Nuclear Power Systems

    Science.gov (United States)

    Houts, Michael G.

    2012-01-01

    Fission power and propulsion systems can enable exciting space exploration missions. These include bases on the moon and Mars; and the exploration, development, and utilization of the solar system. In the near-term, fission surface power systems could provide abundant, constant, cost-effective power anywhere on the surface of the Moon or Mars, independent of available sunlight. Affordable access to Mars, the asteroid belt, or other destinations could be provided by nuclear thermal rockets. In the further term, high performance fission power supplies could enable both extremely high power levels on planetary surfaces and fission electric propulsion vehicles for rapid, efficient cargo and crew transfer. Advanced fission propulsion systems could eventually allow routine access to the entire solar system. Fission systems could also enable the utilization of resources within the solar system.

  18. Nuclear eclectic power.

    Science.gov (United States)

    Rose, D J

    1974-04-19

    The uranium and thorium resources, the technology, and the social impacts all seem to presage an even sharper increase in nuclear power for electric generation than had hitherto been predicted. There are more future consequences. The "hydrogen economy." Nuclear power plants operate best at constant power and full load. Thus, a largely nuclear electric economy has the problem of utilizing substantial off-peak capacity; the additional energy generation can typically be half the normal daily demand. Thus, the option of generating hydrogen as a nonpolluting fuel receives two boosts: excess nuclear capacity to produce it, plus much higher future costs for oil and natural gas. However, the so-called "hydrogen economy" must await the excess capacity, which will not occur until the end of the century. Nonelectric uses. By analyses similar to those performed here, raw nuclear heat can be shown to be cheaper than heat from many other fuel sources, especially nonpolluting ones. This will be particularly true as domestic natural gas supplies become more scarce. Nuclear heat becomes attractive for industrial purposes, and even for urban district heating, provided (i) the temperature is high enough (this is no problem for district heating, but could be for industry; the HTGR's and breeders, with 600 degrees C or more available, have the advantage); (ii) there is a market for large quantities (a heat rate of 3800 Mw thermal, the reactor size permitted today, will heat Boston, with some to spare); and (iii) the social costs become more definitely resolved in favor of nuclear power. Capital requirements. Nuclear-electric installations are very capital-intensive. One trillion dollars for the plants, backup industry, and so forth is only 2 percent of the total gross national product (GNP) between 1974 and 2000, at a growth rate of 4 percent per year. But capital accumulation tends to run at about 10 percent of the GNP, so the nuclear requirements make a sizable perturbation. Also

  19. Overview paper on nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Spiewak, I.; Cope, D.F.

    1980-09-01

    This paper was prepared as an input to ORNL's Strategic Planning Activity, ORNL National Energy Perspective (ONEP). It is intended to provide historical background on nuclear power, an analysis of the mission of nuclear power, a discussion of the issues, the technology choices, and the suggestion of a strategy for encouraging further growth of nuclear power.

  20. Nuclear Security for Floating Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Skiba, James M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scherer, Carolynn P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  1. Nuclear power renaissance or demise?

    Energy Technology Data Exchange (ETDEWEB)

    Dossani, Umair

    2010-09-15

    Nuclear power is going through a renaissance or demise is widely debated around the world keeping in mind the facts that there are risks related to nuclear technology and at the same time that is it environmentally friendly. My part of the argument is that there is no better alternative than Nuclear power. Firstly Nuclear Power in comparison to all other alternative fuels is environmentally sustainable. Second Nuclear power at present is at the dawn of a new era with new designs and technologies. Third part of the debate is renovation in the nuclear fuel production, reprocessing and disposal.

  2. Let us learn nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Wan Sang

    2006-08-15

    This book teach us nuclear power through nine chapters with recommendation and a prolog. The contents of this book are how did Formi become a scientist? what does atom look like? discover of neutron, what is an isotope?, power in the nuclear, various radiation, artificial nuclear transformation, nuclear fission and clinging atomic nucleus. It also has an appendix on SF story ; an atom bomb war. It explains basic nuclear physic in easy way with pictures.

  3. HOMOGENEOUS NUCLEAR POWER REACTOR

    Science.gov (United States)

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  4. Making nuclear power work

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, K.; Gyftopoulos, E.P.; Golay, M.; Lester, R.; Winje, D.; Beckjord, E.

    1989-02-01

    Utility managers and outside analysts alike often say that the U.S. nuclear industry is in trouble because of the grave disadvantages it faces compared with it counterparts abroad. In this view. overzealous safety regulators and public critics hamper U.S. managers' ability to run their plants. The large number of utilities, reactor vendors, and suppliers results in a fragmented industry that prevents operators from learning from one another's mistakes. This study of nuclear operations from 1975 to 1984 shows that these factors are not unique to the United States. Utilities in Japan, Sweden, France, Switzerland, and West Germany outperformed those in the United States despite strict regulatory climates as well as great variety in reactor design, utility ownership, and relationships with suppliers. And although public opinion can affect the overall climate for nuclear power, public opposition is not unique to the United States and did not influence reactor performance during the decade of the study. The authors found that the best U.S. reactors performed as well as any of their counterparts abroad. But the worst did significantly worse, dragging down the overall average performance of the U.S. industry. Moreover, many other countries experienced difficulties with their reactors and were able to turn their records around.

  5. Nuclear power generation modern power station practice

    CERN Document Server

    1971-01-01

    Nuclear Power Generation focuses on the use of nuclear reactors as heat sources for electricity generation. This volume explains how nuclear energy can be harnessed to produce power by discussing the fundamental physical facts and the properties of matter underlying the operation of a reactor. This book is comprised of five chapters and opens with an overview of nuclear physics, first by considering the structure of matter and basic physical concepts such as atomic structure and nuclear reactions. The second chapter deals with the requirements of a reactor as a heat source, along with the diff

  6. Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Analia Bonelli

    2012-01-01

    Full Text Available A description of the results for a Station Black-Out analysis for Atucha 2 Nuclear Power Plant is presented here. Calculations were performed with MELCOR 1.8.6 YV3165 Code. Atucha 2 is a pressurized heavy water reactor, cooled and moderated with heavy water, by two separate systems, presently under final construction in Argentina. The initiating event is loss of power, accompanied by the failure of four out of four diesel generators. All remaining plant safety systems are supposed to be available. It is assumed that during the Station Black-Out sequence the first pressurizer safety valve fails stuck open after 3 cycles of water release, respectively, 17 cycles in total. During the transient, the water in the fuel channels evaporates first while the moderator tank is still partially full. The moderator tank inventory acts as a temporary heat sink for the decay heat, which is evacuated through conduction and radiation heat transfer, delaying core degradation. This feature, together with the large volume of the steel filler pieces in the lower plenum and a high primary system volume to thermal power ratio, derives in a very slow transient in which RPV failure time is four to five times larger than that of other German PWRs.

  7. Nuclear Power Plant Module, NPP-1: Nuclear Power Cost Analysis.

    Science.gov (United States)

    Whitelaw, Robert L.

    The purpose of the Nuclear Power Plant Modules, NPP-1, is to determine the total cost of electricity from a nuclear power plant in terms of all the components contributing to cost. The plan of analysis is in five parts: (1) general formulation of the cost equation; (2) capital cost and fixed charges thereon; (3) operational cost for labor,…

  8. New approaches to nuclear power

    KAUST Repository

    Dewan, Leslie

    2018-01-21

    The world needs a cheap, carbon-free alternative to fossil fuels to feed its growing electricity demand. Nuclear power can be a good solution to the problem, but is hindered by issues of safety, waste, proliferation, and cost. But what if we could try a new approach to nuclear power, one that solves these problems? In this lecture, the CEO of Transatomic Power will talk about how their company is advancing the design of a compact molten salt reactor to support the future of carbon-free energy production. Can the designs of new reactor push the boundaries of nuclear technology to allow for a safe, clean, and affordable answer to humanityメs energy needs? Nuclear power involves capturing the energy produced in nuclear fission reactions, which emerges as heat. This heat is most frequently used to boil water into steam, which then drives a turbine to produce electricity in a nuclear power plant. Worldwide, there is a renaissance of new nuclear technology development -- a new generation of young engineers are racing to develop more advanced nuclear reactors for a better form of power generation. Transatomic Power, specifically, is advancing the design of an easily contained and controlled, atmospheric pressure, high power density molten salt reactor that can be built at low cost. The road to commercialization is long, and poses many challenges, but the benefits are enormous. These new reactors push the boundaries of technology to allow for better, safer ways to power the world.

  9. Revitalization of Nuclear Powered Flight

    Science.gov (United States)

    2016-05-01

    developing a response in the event a nuclear aircraft crashed . For this, marines would fly in a chase plane, and in the event of a crash would...September 17, 1955 the first of 47 test flights were made. These test flight never used the nuclear reactor to propel the aircraft , but tested the...2 Nuclear Powered Aircraft History

  10. Global Protest Against Nuclear Power

    DEFF Research Database (Denmark)

    Protest against nuclear power plants, uranium mining and nuclear testing was a major mobilizing force in the rise of mass environmental movements in the 1970s and 1980s around the globe. Nevertheless, the historiography of anti-nuclear protest remains largely limited to national stories about...

  11. Competitive economics of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, R.

    1981-03-02

    Some 12 components of a valid study of the competitive economics of a newly ordered nuclear power plant are identified and explicated. These are then used to adjust the original cost projections of four authoritative studies of nuclear and coal power economics.

  12. Nuclear power: Unexpected health benefits

    Science.gov (United States)

    Shellenberger, Michael

    2017-04-01

    Public fears of nuclear power are widespread, especially in the aftermath of accidents, yet their benefits are rarely fully considered. A new study shows how the closure of two nuclear power plants in the 1980s increased air pollution and led to a measurable reduction in birth weights, a key indicator of future health outcomes.

  13. Solid-State Nuclear Power

    Science.gov (United States)

    George, Jeffrey A.

    2012-01-01

    A strategy for "Solid-State" Nuclear Power is proposed to guide development of technologies and systems into the second 50 years of nuclear spaceflight. The strategy emphasizes a simple and highly integrated system architecture with few moving parts or fluid loops; the leverage of modern advances in materials, manufacturing, semiconductors, microelectromechanical and nanotechnology devices; and the targeted advancement of high temperature nuclear fuels, materials and static power conversion to enable high performance from simple system topologies.

  14. Nuclear Power and the Environment

    Energy Technology Data Exchange (ETDEWEB)

    None

    1969-01-01

    Increasing concern is being expressed about the environmental effects of electrical generating plants, both conventional and nuclear. The AEC has prepared this booklet to discuss for nuclear power plants those matters that appear to be the basis for this concern, and, in the process, hopefully to put them into better perspective. This report concentrates on a discussion of the radiological and thermal aspects of the environmental effects of nuclear power plants; on the procedures followed by the AEC to minimize the impact of nuclear plants on man and his environment; and on the research conducted by the AEC and others to further expand our knowledge.

  15. Greenfield nuclear power for Finland

    Energy Technology Data Exchange (ETDEWEB)

    Saarenpaa, Tapio

    2010-09-15

    In Finland, licensing for new nuclear power is ongoing. The political approval is to be completed in 2010. Fennovoima's project is unique in various ways: (i) the company was established only in 2007, (ii) its ownership includes a mixture of local energy companies, electricity-intensive industries and international nuclear competence through E.ON, and (iii) it has two alternative greenfield sites. There are five prerequisites for a successful nuclear power project in a transparent democracy of today: (1) need for additional power capacity, (2) actor prepared to invest, (3) established competence, (4) available site, (5) open communications, and (6) favorable public opinion.

  16. Nuclear Power Plant Simulation Game.

    Science.gov (United States)

    Weiss, Fran

    1979-01-01

    Presents a nuclear power plant simulation game which is designed to involve a class of 30 junior or senior high school students. Scientific, ecological, and social issues covered in the game are also presented. (HM)

  17. History on foundation of Korea nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ik Su

    1999-12-15

    This reports the history on foundation of Korea nuclear power from 1955 to 1980, which is divided ten chapters. The contents of this book are domestic and foreign affairs before foundation of nuclear power center, establishment of nuclear power and research center, early activity and internal conflict about nuclear power center, study for nuclear power business and commercialization of the studying ordeal over nuclear power administration and new phase, dispute for jurisdiction on nuclear power business and the process, permission for nuclear reactor, regulation and local administration, the process of deliberation and decision of reactor 3. 4 in Yonggwang, introduction of nuclear reprocessing facilities and activities for social organization.

  18. Power laws for nuclear observables

    Science.gov (United States)

    Peterson, R. J.

    2018-01-01

    Often mass-dependent nuclear observables are summarized by fits to a power law in the nuclear mass A , as proportional to Aα. In this work a simple justification of this usage is presented, also providing a simple expression for the exponent α , with one known parameter being the beam-nucleon total cross section and another parameter being a nuclear size r0A1 /3 . Measured power-law exponents α for total and reaction cross sections are near this simple formulation using r0=1.6 fm , whereas quasifree observables are near the simple expression using r0=1.2 fm .

  19. Nuclear power - the glittering prizes

    Energy Technology Data Exchange (ETDEWEB)

    Horton, C.C.

    The paper on the benefits of nuclear power is based on a lecture given for the Institution of Nuclear Engineers, London, 1986. Suggestions for short term benefits include a clean environment and a cheap energy source, whereas suggestions for long term benefits include freedom from want in the world and avoidance of 'energy wars'. These benefits are discussed along with alternative energy sources, the financial savings to be saved from nuclear power, world energy wealth, depletion of world energy reserves, and risks due to radiation exposure.

  20. Topics in nuclear power

    Science.gov (United States)

    Budnitz, Robert J.

    2015-03-01

    The 101 nuclear plants operating in the US today are far safer than they were 20-30 years ago. For example, there's been about a 100-fold reduction in the occurrence of "significant events" since the late 1970s. Although the youngest of currently operating US plants was designed in the 1970s, all have been significantly modified over the years. Key contributors to the safety gains are a vigilant culture, much improved equipment reliability, greatly improved training of operators and maintenance workers, worldwide sharing of experience, and the effective use of probabilistic risk assessment. Several manufacturers have submitted high quality new designs for large reactors to the U.S. Nuclear Regulatory Commission (NRC) for design approval, and several companies are vigorously working on designs for smaller, modular reactors. Although the Fukushima reactor accident in March 2011 in Japan has been an almost unmitigated disaster for the local population due to their being displaced from their homes and workplaces and also due to the land contamination, its "lessons learned" have been important for the broader nuclear industry, and will surely result in safer nuclear plants worldwide - indeed, have already done so, with more safety improvements to come.

  1. Nuclear power data; Kernenergie in Zahlen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-05-15

    The report ''nuclear power data'' includes data on the following issues: nuclear power plants in Germany including their operational characteristics, gross data on electricity generation in Germany, primary energy consumption in Germany, nuclear power plants worldwide, top ten nuclear power plants worldwide with respect to electricity generation in 2012.

  2. Nuclear stopping power of antiprotons

    Science.gov (United States)

    Nordlund, Kai; Sundholm, Dage; Pyykkö, Pekka; Zambrano, Daniel Martinez; Djurabekova, Flyura

    2017-10-01

    The slowing down of energetic ions in materials is determined by the nuclear and electronic stopping powers. Both of these have been studied extensively for ordinary-matter ions. For antiprotons, however, there are numerous studies of the electronic stopping power, but none of the nuclear stopping power. Here, we use quantum-chemical methods to calculate interparticle potentials between antiprotons and different atoms, and derive from these the nuclear stopping power of antiprotons in solids. The results show that the antiproton nuclear stopping powers are much stronger than those of protons, and can also be stronger than the electronic stopping power at the lowest energies. The interparticle potentials are also implemented in a molecular dynamics ion range calculation code, which allows us to simulate antiproton transmission through degrader foil materials. Foil transmission simulations carried out at experimentally relevant conditions show that the choice of antiproton-atom interaction model has a large effect on the predicted yield of antiprotons slowed down to low (a few keV) energies.

  3. American acceptance of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, W.

    The characteristic adventurous spirit that built American technology will eventually lead to American acceptance of nuclear power unless an overpowering loss of nerve causes us to reject both nuclear technology and world leadership. The acceptance of new technology by society has always been accompanied by activist opposition to industralization. To resolve the debate between environmental and exploitive extremists, we must accept with humility the basic premise that human accomplishment is a finite part of nature. (DCK)

  4. The future of nuclear power

    CERN Document Server

    Mahaffey, James

    2012-01-01

    Newly conceived, safer reactor designs are being built in the United States (and around the world) to replace the 104 obsolete operating nuclear power reactors in this country alone. The designs--which once seemed exotic and futuristic--are now 40 years old, and one by one these vintage Generation II plants will reach the end of productive service in the next 30 years. The Future of Nuclear Power examines the advanced designs, practical concepts, and fully developed systems that have yet to be used. This book introduces readers to the traditional, American system of units, with some archaic te

  5. Nuclear power generation incorporating modern power system practice

    CERN Document Server

    Myerscough, PB

    1992-01-01

    Nuclear power generation has undergone major expansion and developments in recent years; this third edition contains much revised material in presenting the state-of-the-art of nuclear power station designs currently in operation throughout the world. The volume covers nuclear physics and basic technology, nuclear station design, nuclear station operation, and nuclear safety. Each chapter is independent but with the necessary technical overlap to provide a complete work on the safe and economic design and operation of nuclear power stations.

  6. Global warming and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Wood, L., LLNL

    1998-07-10

    Nuclear fission power reactors represent a potential solution to many aspects of global change possibly induced by inputting of either particulate or carbon or sulfur oxides into the Earth`s atmosphere. Of proven technological feasibility, they presently produce high-grade heat for large-scale electricity generation, space heating and industrial process-energizing around the world, without emitting greenhouse gases or atmospheric particulates; importantly, electricity production costs from the best nuclear plants presently are closely comparable with those of the best fossil-fired plants. However, a substantial number of issues currently stand between nuclear power and widespread substitution for large stationary fossil fuel-fired systems. These include perceptual ones regarding both long-term and acute operational safety, plant decommissioning, fuel reprocessing, radwaste disposal, fissile materials diversion to military purposes and - perhaps most seriously- readily quantifiable concerns regarding long-term fuel supply and total unit electrical energy cost. We sketch a road-map for proceeding from the present situation toward a nuclear power-intensive world, addressing along the way each of the concerns which presently impede widespread nuclear substitution for fossil fuels, particularly for coal in the most populous and rapidly developing portions of the world, e.g., China and India. This `design to societal specifications` approach to large-scale nuclear fission power systems may lead to energy sources meeting essentially all stationary demands for high-temperature heat. Such advanced options offer a human population of ten billion the electricity supply levels currently enjoyed by Americans for 10,000 years. Nuclear power systems tailored to local needs-and-interests and having a common advanced technology base could reduce present-day world-wide C0{sub 2} emissions by two-fold, if universally employed. By application to small mobile demands, a second two

  7. 77 FR 76541 - Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station

    Science.gov (United States)

    2012-12-28

    ... Nuclear Operations, Inc.; Pilgrim Nuclear Power Station AGENCY: Nuclear Regulatory Commission. ACTION... Nuclear Operations, Inc. (the licensee), for operation of the Pilgrim Nuclear Power Station (Pilgrim... Renewal of Nuclear Plants Regarding Pilgrim Nuclear Power Station, Final Report- Appendices,'' published...

  8. Swedish Opinion on Nuclear Power 1986 - 2011

    Energy Technology Data Exchange (ETDEWEB)

    Holmberg, Soeren

    2012-11-01

    This report contains the Swedish opinion on Nuclear Power and European Attitudes on Nuclear Power. It also includes European Attitudes Towards the Future of Three Energy Sources; Nuclear Energy, Wind Power and Solar Power - with a focus on the Swedish opinion. Results from measurements done by the SOM Inst. are presented.

  9. Nuclear power a reference handbook

    CERN Document Server

    Henderson, Harry R

    2014-01-01

    In the 21st century, nuclear power has been identified as a viable alternative to traditional energy sources to stem global climate change, and condemned as risky to human health and environmentally irresponsible. Do the advantages of nuclear energy outweigh the risks, especially in light of the meltdown at the Fukushima plant in 2011? This guide provides both a comprehensive overview of this critical and controversial technology, presenting reference tools that include important facts and statistics, biographical profiles, a chronology, and a glossary. It covers major controversies and proposed solutions in detail and contains contributions by experts and important stakeholders that provide invaluable perspective on the topic.

  10. Sabotage at Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Purvis, James W.

    1999-07-21

    Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.

  11. Other perspectives on nuclear power

    Science.gov (United States)

    McEvoy, Augustin

    2012-09-01

    In his reply to Brian Drummond's letter on "Proper perspective and nuclear power" (August p19), I am surprised that Paul Grant allowed Drummond's reference to the Nestorenko et al. publication (2009 Annals New York Acad. Sciences 1181) to pass unchallenged. This document, with its claim that the Chernobyl accident has already killed several hundred thousand people (the figure of 985,000 is mentioned), was published without peer review and has since been disowned by the New York Academy of Sciences.

  12. Czechoslovakia: nuclear power in a socialist society

    OpenAIRE

    Carter, F. W.

    1988-01-01

    This paper is an evaluation of the impact nuclear power planning policies have had on Czechoslovakia's socialist society, particularly for the post-Chernobyl era. Poor indigenous energy resources and the leading role that nuclear power has played in the COMECON's energy-intensive manufacturing sector has made nuclear power into an attractive proposition from the 1960s onwards. Discussion in this paper centres around nuclear-power plant siting and operation, and media coverage of the industry ...

  13. The economics of nuclear power

    Science.gov (United States)

    Horst, Ronald L.

    We extend economic analysis of the nuclear power industry by developing and employing three tools. They are (1) compilation and unification of operating and accounting data sets for plants and sites, (2) an abstract industry model with major economic agents and features, and (3) a model of nuclear power plant operators. We build a matched data set to combine dissimilar but mutually dependant bodies of information. We match detailed information on the activities and conditions of individual plants to slightly more aggregated financial data. Others have exploited the data separately, but we extend the sets and pool available data sets. The data reveal dramatic changes in the industry over the past thirty years. The 1980s proved unprofitable for the industry. This is evident both in the cost data and in the operator activity data. Productivity then improved dramatically while cost growth stabilized to the point of industry profitability. Relative electricity prices may be rising after nearly two decades of decline. Such demand side trends, together with supply side improvements, suggest a healthy industry. Our microeconomic model of nuclear power plant operators employs a forward-looking component to capture the information set available to decision makers and to model the decision-making process. Our model includes features often overlooked elsewhere, including electricity price equations and liability. Failure to account for changes in electricity price trends perhaps misled earlier scholars, and they attributed to other causes the effects on profits of changing price structures. The model includes potential losses resulting from catastrophic nuclear accidents. Applications include historical simulations and forecasts. Nuclear power involves risk, and accident costs are borne both by plant owners and the public. Authorities regulate the industry and balance conflicting desires for economic gain and safety. We construct an extensible model with regulators, plant

  14. 75 FR 11205 - Entergy Nuclear Operations, Inc; Pilgrim Nuclear Power Station Environmental Assessment and...

    Science.gov (United States)

    2010-03-10

    ... COMMISSION Entergy Nuclear Operations, Inc; Pilgrim Nuclear Power Station Environmental Assessment and... Nuclear Operations, Inc. (Entergy or the licensee), for operation of Pilgrim Nuclear Power Station... Nuclear Power Station,'' NUREG-1437, Supplement 29, published in July 2007 (ADAMS Accession No...

  15. Nuclear reactor power monitoring device

    Energy Technology Data Exchange (ETDEWEB)

    Tarumi, Teruji; Oda, Naotaka; Goto, Yasushi; Ito, Toshiaki [Toshiba Corp., Kawasaki, Kanagawa (Japan); Mitsubori, Minehisa

    1997-07-11

    The present invention provides a nuclear power monitoring device which does not lose a safety protection function even upon occurrence of a single failure in an APRM system of a BWR type reactor. Namely, an APRM for inputting signals of local power region monitors (LPRM) has four channels. Each of the channels is constituted so as to be bypassed. With such a constitution, LPRM detector signals can be inputted one by one to each of the four channels of the APRM from each of the LPRM detector assembly. Accordingly, a common channel for LPRM detectors can be eliminated in a small-sized reactor. The number of signals of the LPRM detectors inputted to each of the channels of the APRM is increased in a large-scaled reactor. Since each of the APRM can be bypassed, even if a single failure of one APRM is caused during a predetermined maintenance, the monitoring can be conducted smoothly by bypassing other channel. As a result, a multiple safe-protection function can be ensured. (I.S.)

  16. Small nuclear power: challenges and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Dragunov, Yu.G.; Shishkin, V.A.; Grechko, G.I.; Goltsov, Ye.N. [NIKIET, Moscow (Russian Federation)

    2013-07-01

    Estimates show that, for remote localities difficult of access, nuclear power technologies offer a reasonable alternative to conventional power based on fossil fuels. Still, the deployment of nuclear power sources in the country's northern and eastern territories with hard climatic and complicated social conditions calls for novel designs that satisfy to the requirements beyond the scope of those for the conventional nuclear plant designs. A small nuclear power plant with a water-cooled water-moderated reactor facility, called Unitherm, is one of the most advanced autonomous nuclear heat and power supply designs that satisfies the best to the above requirements, based on the experience in design, manufacture and operation of nuclear propulsion systems. (author)

  17. 77 FR 18271 - Terrestrial Environmental Studies for Nuclear Power Stations

    Science.gov (United States)

    2012-03-27

    ... COMMISSION Terrestrial Environmental Studies for Nuclear Power Stations AGENCY: Nuclear Regulatory Commission... revision to Regulatory Guide (RG) 4.11, ``Terrestrial Environmental Studies for Nuclear Power Stations... environmental studies and analyses supporting licensing decisions for nuclear power reactors. ADDRESSES: Please...

  18. Space nuclear power system studies in France

    Science.gov (United States)

    Carre, F.; Delaplace, J.; Proust, E.; Tilliette, Z.

    A program is described to investigate the feasibility, development, cost, and lead time of 20-200-kWe space nuclear power system adapted to powering different space missions as space-based radar for earth observation, LEO-GEO orbit-transfer vehicle and space transportation systems using electrical propulsion (200-400 kWe). Several concepts of nuclear power systems are studied including: a 200 kWe power system operating at very high temperatures and needing a long development program; and a 20 kWe power system using available technologies developed for terrestrial nuclear reactors achievable in 10-12 years.

  19. A Basic Guide to Nuclear Power.

    Science.gov (United States)

    Martocci, Barbara; Wilson, Greg

    More than 100 nuclear power plants supply over 17 percent of the electricity in the United States. The basic principles of how nuclear energy works and how it is used to make electricity are explained in this profusely illustrated booklet written for the average sixth grade reader. Discussions include: (1) atomic structure; (2) nuclear fission;…

  20. Teaching About Nuclear Power: A Simulation.

    Science.gov (United States)

    Maxey, Phyllis F.

    1980-01-01

    Recommends that simulation games be used to teach high school students in social studies courses about contemporary and controversial issues such as nuclear power. A simulation is described which involves students in deciding whether to build a nuclear power plant in the California desert. Teaching and debriefing tips are also provided. (DB)

  1. Questions and Answers About Nuclear Power Plants.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC.

    This pamphlet is designed to answer many of the questions that have arisen about nuclear power plants and the environment. It is organized into a question and answer format, with the questions taken from those most often asked by the public. Topics include regulation of nuclear power sources, potential dangers to people's health, whether nuclear…

  2. Global warming and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, P.E. [Nuclear and Particle Physics Laboratory, Department of Physics, Oxford Univ., Oxford (United Kingdom)

    1999-09-01

    The concentration of carbon dioxide in the atmosphere is steadily increasing and it is widely believed that this will lead to global warming that will have serious consequences for life on earth. The Intergovernmental Panel on Climate Change has estimated that the temperature of the earth will increase by between 1 and 3.5 degrees in the next century. This will melt some of the Antarctic ice cap, raise the sea level and flood many low-lying countries, and also produce unpredictable changes in the earth's climate. The possible ways of reducing carbon dioxide emission are discussed. It is essential to reduce the burning of fossil fuels, but then how are we to obtain the energy we need? We can try to reduce energy use, but we will still need to generate large amounts energy. Some possible ways of doing this are by using wind and solar generators, by hydroelectric and tidal plants, and also by nuclear power. These possibilities will be critically examined. (author)

  3. Modelling of nuclear power plant decommissioning financing.

    Science.gov (United States)

    Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J

    2015-06-01

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. 78 FR 61400 - Entergy Nuclear Operations, Inc., Pilgrim Nuclear Power Station, Issuance of Director's Decision

    Science.gov (United States)

    2013-10-03

    ... COMMISSION Entergy Nuclear Operations, Inc., Pilgrim Nuclear Power Station, Issuance of Director's Decision... and ML102210411, respectively), concerns the operation of Pilgrim Nuclear Power Station (Pilgrim... (non- EQ) inaccessible cables at Pilgrim Nuclear Power Station (Pilgrim) are capable of performing...

  5. U.S. Forward Operating Base Applications of Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, George W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    This paper provides a high level overview of current nuclear power technology and the potential use of nuclear power at military bases. The size, power ranges, and applicability of nuclear power units for military base power are reviewed. Previous and current reactor projects are described to further define the potential for nuclear power for military power.

  6. Nuclear Power Sources for Space Systems

    Science.gov (United States)

    Kukharkin, N. E.; Ponomarev-Stepnoi, N. N.; Usov, V. A.

    This chapter contains the information about nuclear power sources for space systems. Reactor nuclear sources are considered that use the energy of heavy nuclei fission generated by controlled chain fission reaction, as well as the isotope ones producing heat due to the energy of nuclei radioactive decay. Power of reactor nuclear sources is determined by the rate of heavy nuclei fission that may be controlled within a wide range from the zero up to the nominal one. Thermal power of isotope sources cannot be controlled. It is determined by the type and quantity of isotopes and decreases in time due to their radioactive decay. Both, in the reactor sources and in the isotope ones, nuclear power is converted into the thermal one that may be consumed for the coolant heating to produce thrust (Nuclear Power Propulsion System, NPPS) or may be converted into electricity (Nuclear Power Source, NPS) dynamically (a turbine generator) or statically (thermoelectric or thermionic converters). Electric power is supplied to the airborne equipment or is used to produce thrust in electric (ionic, plasma) low-thrust engines. A brief description is presented of the different nuclear systems with reactor and isotopic power sources implemented in Russia and the USA. The information is also given about isotopic sources for the ground-based application, mainly for navigation systems.

  7. Public opinion factors regarding nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Benson, B.

    1991-01-01

    This paper is an effort to identify, as comprehensively as possible, public concerns about nuclear power, and to assess, where possible, the relative importance of these concerns as they relate to government regulation of and policy towards nuclear power. It is based on some two dozen in-depth interviews with key communicators representing the nuclear power industry, the environmental community, and government, as well as on the parallel efforts in our research project: (1) review of federal court case law, (2) a selective examination of the Nuclear Regulatory Commission (NRC) administrative process, and (3) the preceding George Mason University research project in this series. The paper synthesizes our findings about public attitudes towards nuclear power as expressed through federal court case law, NRC administrative law, public opinion surveys, and direct personal interviews. In so doing, we describe the public opinion environment in which the nuclear regulatory process must operate. Our premise is that public opinion ultimately underlies the approaches government agencies take towards regulating nuclear power, and that, to the degree that the nuclear power industry's practices are aligned with public opinion, a more favorable regulatory climate is possible.

  8. Public opinion factors regarding nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Benson, B.

    1991-12-31

    This paper is an effort to identify, as comprehensively as possible, public concerns about nuclear power, and to assess, where possible, the relative importance of these concerns as they relate to government regulation of and policy towards nuclear power. It is based on some two dozen in-depth interviews with key communicators representing the nuclear power industry, the environmental community, and government, as well as on the parallel efforts in our research project: (1) review of federal court case law, (2) a selective examination of the Nuclear Regulatory Commission (NRC) administrative process, and (3) the preceding George Mason University research project in this series. The paper synthesizes our findings about public attitudes towards nuclear power as expressed through federal court case law, NRC administrative law, public opinion surveys, and direct personal interviews. In so doing, we describe the public opinion environment in which the nuclear regulatory process must operate. Our premise is that public opinion ultimately underlies the approaches government agencies take towards regulating nuclear power, and that, to the degree that the nuclear power industry`s practices are aligned with public opinion, a more favorable regulatory climate is possible.

  9. Space nuclear power: a strategy for tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.; Angelo, J. Jr.

    1981-01-01

    Energy: reliable, portable, abundant and low cost will be a most critical factor, perhaps the sine qua non, for the unfolding of man's permanent presence in space. Space-based nuclear power, in turn, is a key technology for developing such space platforms and the transportation systems necessary to service them. A strategy for meeting space power requirements is the development of a 100-kW(e) nuclear reactor system for high earth orbit missions, transportation from Shuttle orbits to geosynchronous orbit, and for outer planet exploration. The component technology for this nuclear power plant is now underway at the Los Alamos National Laboratory. As permanent settlements are established on the Moon and in space, multimegawatt power plants will be needed. This would involve different technology similar to terrestrial nuclear power plants.

  10. 76 FR 1469 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2011-01-10

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2... Cliffs Nuclear Power Plant, LLC, the licensee, for operation of the Calvert Cliffs Nuclear Power Plant... for light-water nuclear power reactors,'' which requires that the calculated emergency core cooling...

  11. Nuclear Engineering Technologists in the Nuclear Power Era

    Science.gov (United States)

    Wang, C. H.; And Others

    1974-01-01

    Describes manpower needs in nuclear engineering in the areas of research and development, architectural engineering and construction supervision, power reactor operations, and regulatory tasks. Outlines a suitable curriculum to prepare students for the tasks related to construction and operation of power reactors. (GS)

  12. 78 FR 50458 - Entergy Nuclear Operations, Inc., James A. Fitzpatrick Nuclear Power Plant, Vermont Yankee...

    Science.gov (United States)

    2013-08-19

    ... COMMISSION Entergy Nuclear Operations, Inc., James A. Fitzpatrick Nuclear Power Plant, Vermont Yankee Nuclear Power Station, Pilgrim Nuclear Power Station, Request for Action AGENCY: Nuclear Regulatory Commission... petitioners'') has requested that the NRC take action with regard to James A. Fitzpatrick Nuclear Power Plant...

  13. Nuclear power plant cable materials :

    Energy Technology Data Exchange (ETDEWEB)

    Celina, Mathias C.; Gillen, Kenneth T; Lindgren, Eric Richard

    2013-05-01

    A selective literature review was conducted to assess whether currently available accelerated aging and original qualification data could be used to establish operational margins for the continued use of cable insulation and jacketing materials in nuclear power plant environments. The materials are subject to chemical and physical degradation under extended radiationthermal- oxidative conditions. Of particular interest were the circumstances under which existing aging data could be used to predict whether aged materials should pass loss of coolant accident (LOCA) performance requirements. Original LOCA qualification testing usually involved accelerated aging simulations of the 40-year expected ambient aging conditions followed by a LOCA simulation. The accelerated aging simulations were conducted under rapid accelerated aging conditions that did not account for many of the known limitations in accelerated polymer aging and therefore did not correctly simulate actual aging conditions. These highly accelerated aging conditions resulted in insulation materials with mostly inert aging processes as well as jacket materials where oxidative damage dropped quickly away from the air-exposed outside jacket surface. Therefore, for most LOCA performance predictions, testing appears to have relied upon heterogeneous aging behavior with oxidation often limited to the exterior of the cable cross-section a situation which is not comparable with the nearly homogenous oxidative aging that will occur over decades under low dose rate and low temperature plant conditions. The historical aging conditions are therefore insufficient to determine with reasonable confidence the remaining operational margins for these materials. This does not necessarily imply that the existing 40-year-old materials would fail if LOCA conditions occurred, but rather that unambiguous statements about the current aging state and anticipated LOCA performance cannot be provided based on

  14. Fault simulator trainer for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Koerting, K. (Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.))

    1983-03-01

    A new nuclear power plant control simulator, developed at Karlsruhe for training operators, is described, based on an office type minicomputer with visual displays representing the various relevant reactor parameters, commands, controls status and safety arrangements.

  15. The Role of Nuclear Power in Eurpoe

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The World Energy Council has published the results of an in-depth review of the current state of nuclear power in Europe, and the possible role of this energy source in Europe's energy future. This regional study combines policy insights, technical details and an analysis of the potential for nuclear as a part of the energy-mix.

  16. Nuclear Power Plant Lifetime Management Study (I)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Yull; Jeong, Ill Seok; Jang, Chang Heui; Song, Taek Ho; Song, Woo Young [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Jin, Tae Eun [Korea Power Engineering Company Consulting and Architecture Engineers, (Korea, Republic of); Kim, Woo Chul [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    As the operation-year of nuclear power plant increases and finding sites for new nuclear power plant becomes harder, a comprehensive and systematic nuclear plant lifetime management(PLIM) program including life extension has to be established for stable and safe supply of electricity. A feasibility study was conducted to systematically evaluate technical, economic and regulatory aspect of plant lifetime managements and plant life extension for Kori-1 nuclear power plant. For technical evaluation of nuclear power plant, 13 major components were selected for lifetime evaluation by screening system. structure, and components(SSCs) of the plant. It was found that except reactor pressure vessel, which needs detailed integrity analysis, and low pressure turbine, which is scheduled to be replaced, 11 out of 13 major components have sufficient service life, for more than 40 years. Because domestic rules and regulations related to license renewal has not yet been written, review on the regulatory aspect of life extensions was conducted using US NRC rules and regulations. A cooperative effort with nuclear regulatory body is needed for early completion of license renewal rules and regulations. For economic evaluation of plant lifetime extension, a computer program was developed and used. It was found that 10 to 20 year of extension operation of Kori-1 nuclear power plant was proved. Based on the results, next phase of plant lifetime management program for detailed lifetime evaluation and presenting detailed implementation schedule for plant refurbishment for lifetime extension should be followed. (author). 74 refs., figs.

  17. NUCLEAR POWER PLANTS SAFETY IMPROVEMENT PROJECTS RANKING

    OpenAIRE

    Григорян, Анна Сергеевна; Тигран Георгиевич ГРИГОРЯН; Квасневский, Евгений Анатольевич

    2013-01-01

    The ranking nuclear power plants safety improvement projects is the most important task for ensuring the efficiency of NPP project management office work. Total amount of projects in NPP portfolio may reach more than 400. Features of the nuclear power plants safety improvement projects ranking in NPP portfolio determine the choice of the decision verbal analysis as a method of decision-making, as it allows to quickly compare the number of alternatives that are not available at the time of con...

  18. Trade studies for nuclear space power systems

    Science.gov (United States)

    Smith, John M.; Bents, David J.; Bloomfield, Harvey S.

    1991-01-01

    As human visions of space applications expand and as we probe further out into the universe, our needs for power will also expand, and missions will evolve which are enabled by nuclear power. A broad spectrum of missions which are enhanced or enabled by nuclear power sources have been defined. These include Earth orbital platforms, deep space platforms, planetary exploration, and terrestrial resource exploration. The recently proposed Space Exploration Initiative (SEI) to the Moon and Mars has more clearly defined these missions and their power requirements. Presented here are results of recent studies of radioisotope and nuclear reactor energy sources, combined with various energy conversion devices for Earth orbital applications, SEI lunar/Mars rovers, surface power, and planetary exploration.

  19. 75 FR 2164 - Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station; Environmental Assessment and...

    Science.gov (United States)

    2010-01-14

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station; Environmental Assessment and...), for operation of Pilgrim Nuclear Power Station (Pilgrim), located in Plymouth County, MA. Therefore...

  20. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Goldston

    2010-03-03

    Integrated energy, environment and economics modeling suggests electrical energy use will increase from 2.4 TWe today to 12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources. Thus nuclear power may be needed to provide ~30% by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century proliferation risks are much greater, and more resistant to mitigation. The risks of nuclear power should be compared with the risks of the estimated 0.64oC long-term global surface-average temperature rise predicted if nuclear power were replaced with coal-fired power plants without carbon sequestration. Fusion energy, if developed, would provide a source of nuclear power with much lower proliferation risks than fission.

  1. 77 FR 47121 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Units 1 and 2...

    Science.gov (United States)

    2012-08-07

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Units 1 and 2; Exemption 1.0 Background Calvert Cliffs Nuclear Power Plant, LLC (the licensee) is the holder of Renewed..., ``Fatigue Management for Nuclear Power Plant Personnel,'' endorses the Nuclear Energy Institute (NEI) report...

  2. Nuclear power plant security assessment technical manual.

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, Sharon L.; Whitehead, Donnie Wayne; Potter, Claude S., III

    2007-09-01

    This report (Nuclear Power Plant Security Assessment Technical Manual) is a revision to NUREG/CR-1345 (Nuclear Power Plant Design Concepts for Sabotage Protection) that was published in January 1981. It provides conceptual and specific technical guidance for U.S. Nuclear Regulatory Commission nuclear power plant design certification and combined operating license applicants as they: (1) develop the layout of a facility (i.e., how buildings are arranged on the site property and how they are arranged internally) to enhance protection against sabotage and facilitate the use of physical security features; (2) design the physical protection system to be used at the facility; and (3) analyze the effectiveness of the PPS against the design basis threat. It should be used as a technical manual in conjunction with the 'Nuclear Power Plant Security Assessment Format and Content Guide'. The opportunity to optimize physical protection in the design of a nuclear power plant is obtained when an applicant utilizes both documents when performing a security assessment. This document provides a set of best practices that incorporates knowledge gained from more than 30 years of physical protection system design and evaluation activities at Sandia National Laboratories and insights derived from U.S. Nuclear Regulatory Commission technical staff into a manual that describes a development and analysis process of physical protection systems suitable for future nuclear power plants. In addition, selected security system technologies that may be used in a physical protection system are discussed. The scope of this document is limited to the identification of a set of best practices associated with the design and evaluation of physical security at future nuclear power plants in general. As such, it does not provide specific recommendations for the design and evaluation of physical security for any specific reactor design. These best practices should be applicable to the design and

  3. Studies of Fourteen Nuclear-Powered Airplanes

    Energy Technology Data Exchange (ETDEWEB)

    Hutton, J. N.; McCulloch, J. C.; Schmill, W. C.; Ward, W. H.

    1952-09-01

    A representative series of aircraft which could be powered by a relatively low-temperature liquid-coolant-cycle nuclear power plant are described. Present aircraft such as the B-36, B-52, and B-47 bombers as well as new designs were investigated. Design and performance characteristics of all the aircraft are presented.

  4. 77 FR 28407 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Science.gov (United States)

    2012-05-14

    ... COMMISSION Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants AGENCY: Nuclear...-5028, ``Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants.'' In DG-5028... Control and Accounting Systems for Nuclear Power Plants.'' DATES: Submit comments by July 16, 2012...

  5. 78 FR 38739 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Science.gov (United States)

    2013-06-27

    ... COMMISSION Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants AGENCY: Nuclear... Accounting Systems for Nuclear Power Plants.'' This regulatory guide provides guidance on recordkeeping and... nuclear material control and accounting system requirements for nuclear power plants. This guide applies...

  6. 78 FR 784 - Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station; Exemption

    Science.gov (United States)

    2013-01-04

    ... COMMISSION Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station; Exemption 1.0 Background Entergy..., which authorizes operation of the Pilgrim Nuclear Power Station (PNPS). The license provides, among... with the Vermont Yankee Nuclear Power Plant and Seabrook Nuclear Power Plant, on February 9, 2011 and...

  7. Multimegawatt nuclear power systems for nuclear electric propulsion

    Science.gov (United States)

    George, Jeffrey A.

    1991-01-01

    Results from systems analysis studies of multimegawatt nuclear power systems are presented for application to nuclear electric propulsion. Specific mass estimates are presented for nearer term SP-100 reactor-based potassium Rankine and Brayton power systems for piloted and cargo missions. Growth SP-100/Rankine systems were found to range from roughly 7 to 10 kg/kWe specific mass depending on full power life requirements. The SP-100/Rankine systems were also found to result in a 4-kg/kWe savings in specific mass over SP-100/Brayton systems. The potential of advanced, higher temperature reactor and power conversion technologies for achieving reduced mass Rankine and Brayton systems was also investigated. A target goal of 5 kg/kWe specific mass was deemed reasonable given either 1400 K potassium Rankine with 1500 K lithium-cooled reactors or 2000 K gas cooled reactors with Brayton conversion.

  8. Nuclear power as a feminist issue

    Energy Technology Data Exchange (ETDEWEB)

    Nelkin, D.

    1981-01-01

    Women consistently show more opposition to nuclear power than men in public opinion polls, and they participate more in antinuclear organizations. Their concerns range from the health effects of radiation on women and on future generations to ideological and political matters. The diversity of their concern is reflected in the wide spectrum of women's organizations opposing nuclear power and how their positions are translated into political action. Women's publications and organizations which represent a national constituency have increased women's participation as informed educators and intervenors in hearings to raise health and safety questions, while the feminists groups use a shock approach in their moral crusade to establish a separate women's culture. The feminists have had an impact on the nuclear industry, which responded by promoting pro-nuclear women to public relations positions. (DCK)

  9. Commentary: childhood cancer near nuclear power stations.

    Science.gov (United States)

    Fairlie, Ian

    2009-09-23

    In 2008, the KiKK study in Germany reported a 1.6-fold increase in solid cancers and a 2.2-fold increase in leukemias among children living within 5 km of all German nuclear power stations. The study has triggered debates as to the cause(s) of these increased cancers. This article reports on the findings of the KiKK study; discusses past and more recent epidemiological studies of leukemias near nuclear installations around the world, and outlines a possible biological mechanism to explain the increased cancers. This suggests that the observed high rates of infant leukemias may be a teratogenic effect from incorporated radionuclides. Doses from environmental emissions from nuclear reactors to embryos and fetuses in pregnant women near nuclear power stations may be larger than suspected. Hematopoietic tissues appear to be considerably more radiosensitive in embryos/fetuses than in newborn babies. Recommendations for advice to local residents and for further research are made.

  10. Future of nuclear power in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Sailor, V.L.; Shore, F.J.

    1976-03-30

    As of July 1975, there were 15 operable nuclear power plants in the Northeast, representing approximately 11 percent of the regional electric generating capability. Construction plans for the next two decades show a strong preference for nuclear units, there being 18 new units under construction and 33 additional units announced. Three projections (scenarios) covering the period from 1976 to 2000 are presented. The Base Case Nuclear Scenario assumes that the construction schedules as of August 31, 1975 are implemented. A Nuclear Moratorium Scenario assumes that no new plants are undertaken after January 1, 1977. Finally, a Maximum Nuclear Growth Scenario postulates a concerted effort to add additional nuclear capacity beginning in 1982, but constrained by the ability of industry to expand the capabilities needed to supply the components and fuel. Appreciable differences in the three scenarios do not appear until about 1985, a consequence of the long lead time in making plans and completing construction. The cumulative incremental costs of the Nuclear Moratorium Scenario postulated in this study exceed $160 billion by the year 2000. Despite the present favorable economics and performance of the nuclear units, and despite the strong preference of the planners for nuclear capacity to meet future demands, there are many factors which cast doubt on whether these plans will be executed. Cost escalation, combined with difficulties in raising capital funds, have forced many units to be deferred or canceled.

  11. Human Factors in Nuclear Power Engineering in Polish Conditions

    OpenAIRE

    Agnieszka Kaczmarek-Kacprzak; Martin Catlow

    2014-01-01

    The paper “Human factors in nuclear power engineering in Polish conditions” focuses on analysis of dynamics of preparing Polish society to build fi rst nuclear power plant in XXI century in Poland. Authors compare experience from constructing nuclear power plant Sizewell B (Great Britain) and Sizewell C, which is in preparation phase with polish nuclear power program. Paper includes aspects e.g. of creating nuclear safety culture and social opinion about investment. Human factors in nuclear p...

  12. Recent Advances in Ocean Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Kang-Heon Lee

    2015-10-01

    Full Text Available In this paper, recent advances in Ocean Nuclear Power Plants (ONPPs are reviewed, including their general arrangement, design parameters, and safety features. The development of ONPP concepts have continued due to initiatives taking place in France, Russia, South Korea, and the United States. Russia’s first floating nuclear power stations utilizing the PWR technology (KLT-40S and the spar-type offshore floating nuclear power plant designed by a research group in United States are considered herein. The APR1400 and SMART mounted Gravity Based Structure (GBS-type ONPPs proposed by a research group in South Korea are also considered. In addition, a submerged-type ONPP designed by DCNS of France is taken into account. Last, issues and challenges related to ONPPs are discussed and summarized.

  13. The Fundamentals and Status of Nuclear Power

    Science.gov (United States)

    Matzie, Regis A.

    2011-11-01

    Nuclear power has enormous potential to provide clean, safe base-load electricity to the world's growing population. Harnessing this potential in an economic and responsible manner is not without challenges. Safety remains the principal tenet of our operating fleet, which currently provides ˜20% of U.S. electricity generated. The performance of this fleet from economic and safety standpoints has improved dramatically over the past several decades. This nuclear generation also represents greater than 70% of the emission free electricity with hydroelectric power providing the majority of the remainder. There have been many lessons learned from the more than 50 years of experience with nuclear power and these have been factored into the new designs now being constructed worldwide. These new designs, which have enhanced safety compared to the operating fleet, have been simplified by employing passive safety systems and modular construction. There are applications for licenses of more than 20 new reactors under review by the U.S. Nuclear Regulatory Commission; the first of these licenses will be completed in early 2012, and the first new U.S. reactor will start operating in 2016. Yet there are still more improvements that can be made and these are being pursued to achieve an even greater deployment of nuclear power technology.

  14. Virtual environments for nuclear power plant design

    Energy Technology Data Exchange (ETDEWEB)

    Brown-VanHoozer, S.A.; Singleterry, R.C. Jr.; King, R.W. [and others

    1996-03-01

    In the design and operation of nuclear power plants, the visualization process inherent in virtual environments (VE) allows for abstract design concepts to be made concrete and simulated without using a physical mock-up. This helps reduce the time and effort required to design and understand the system, thus providing the design team with a less complicated arrangement. Also, the outcome of human interactions with the components and system can be minimized through various testing of scenarios in real-time without the threat of injury to the user or damage to the equipment. If implemented, this will lead to a minimal total design and construction effort for nuclear power plants (NPP).

  15. 76 FR 4391 - Calvert Cliffs Nuclear Power Plant, LLC, Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2011-01-25

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC, Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Exemption 1.0 Background Calvert Cliffs Nuclear Power Plant, LLC, the licensee, is the holder of Facility Operating License Nos. DPR-53 and DPR-69 which authorizes operation of the Calvert Cliffs Nuclear Power...

  16. 75 FR 66802 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2010-10-29

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2... Regulatory Commission (the Commission) has granted the request of Calvert Cliffs Nuclear Power Plant, LLC... Operating License Nos. DPR-53 and DPR-69 for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

  17. 76 FR 39908 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Science.gov (United States)

    2011-07-07

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2.... DPR-53 and DPR-69, for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 (CCNPP), respectively... (ISFSI), currently held by Calvert Cliffs Nuclear Power Plant, LLC as owner and licensed operator...

  18. Satellite nuclear power station: An engineering analysis

    Science.gov (United States)

    Williams, J. R.; Clement, J. D.; Rosa, R. J.; Kirby, K. D.; Yang, Y. Y.

    1973-01-01

    A nuclear-MHD power plant system which uses a compact non-breeder reactor to produce power in the multimegawatt range is analyzed. It is shown that, operated in synchronous orbit, the plant would transmit power safely to the ground by a microwave beam. Fuel reprocessing would take place in space, and no radioactive material would be returned to earth. Even the effect of a disastrous accident would have negligible effect on earth. A hydrogen moderated gas core reactor, or a colloid-core, or NERVA type reactor could also be used. The system is shown to approach closely the ideal of economical power without pollution.

  19. Space nuclear power systems for extraterrestrial basing

    Science.gov (United States)

    Lance, J. R.; Chi, J. W. H.

    1989-01-01

    Comparative analyses reveal that the nuclear power option significantly reduces the logistic burden required to support a lunar base. The paper considers power levels from tens of kWe for early base operation up to 2000 kWe for a self-sustaining base with a CELSS. It is shown that SP-100 and NERVA derivative reactor (NDR) technology for space power can be used effectively for extraterrestrial base power systems. Recent developments in NDR design that result in major reductions in reactor mass are described.

  20. Advanced control system for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ikekita, Iwao; Neda, Toshikatsu (Toshiba Corp., Kawasaki, Kanagawa (Japan))

    1983-08-01

    It is necessary to construct and operate safe nuclear power plants at high rate of operation as nuclear power generation increased and the unit capacity became large, and it is important to achieve it economically. In order to attain these requirments, the role played by the monitoring and control techniques is very large. In this paper, the outline of the recent monitoring and control techniques for BWR power stations is described, centering around the new system for reducing the burden of operators and the improvement to increase the reliability of existing equipment and system. The change of the monitoring and control techniques for nuclear power stations during 15 year period is shown, and the merits realized are explained. The central control system called PODIA (Plant Operation by Displayed Information and Automation) was developed by Toshiba in 1975. The DMS (Display and Monitoring System) with two TOSBAC 7/70 process computers and five colored CRTs has been operated. The SPDS (Safety Parameter Display System) is the system for helping operators at the time of emergency. The analogdigital multiloop integrated control system, the use of ICs for and the digitalizing of control systems and so on have improved the reliability. The techniques for raising the reliability and economical efficiency of nuclear power plants hereafter are digital techniques, light transmission and diagnostic techniques.

  1. What is nuclear power in Japan?

    Science.gov (United States)

    Suzuki, Toshikazu

    2011-03-01

    The aggressive use of such non-fossil energy as the atomic energy with high power density and energy production efficiency is an indispensable choice aiming at the low-carbon society. There is a trial calculation that the carbon dioxide emission of 40000 ton can be suppressed by nuclear power generation by one ton of uranium. The basis of nuclear research after the Second World War in Japan was established by the researchers learnt in Argonne National Laboratory. In 2010, NPPs under operation are 54 units and the total electric generating power is 48.85GW. The amount of nuclear power generation per person of the people is 0.38kW in Japan, and it is near 0.34kW of the United States. However, the TMI accident and the Chernobyl disaster should have greatly stagnated the nuclear industry of Japan although it is not more serious than the United States. A lot of Japanese unconsciously associate a nuclear accident with the atomic bomb. According to the investigation which Science and Technology Agency carried out to the specialist in 1999, ``What will be the field where talent should be emphatically sent in the future?'' the rank of nuclear technology was the lowest in 32 fields. The influence of the nuclear industry stagnation was remarkable in the education. The subject related to the atomic energy of a university existed 19 in 1985 that was the previous year of the Chernobyl disaster decreased to 7 in 2003. In such a situation, we have to rely on the atomic energy because Japan depends for 96% of energy resources on import. The development of the fuel reprocessing and the fast breeder reactor has been continued in spite of a heavy failure. That is the only means left behind for Japan to be released from both fossil fuel and carbon dioxide.

  2. 75 FR 12311 - Entergy Nuclear Operations, Inc; Vermont Yankee Nuclear Power Station Environmental Assessment...

    Science.gov (United States)

    2010-03-15

    ... COMMISSION Entergy Nuclear Operations, Inc; Vermont Yankee Nuclear Power Station Environmental Assessment and... Nuclear Operations, Inc. (Entergy or the licensee), for operation of Vermont Yankee Nuclear Power Station... Statement for Vermont Yankee Nuclear Power Station, Docket No. 50-271, dated July 1972, as supplemented...

  3. 77 FR 35080 - Entergy Nuclear Operations, Inc., Pilgrim Nuclear Power Station; Record of Decision and Issuance...

    Science.gov (United States)

    2012-06-12

    ... COMMISSION Entergy Nuclear Operations, Inc., Pilgrim Nuclear Power Station; Record of Decision and Issuance... Operations Inc. (the licensee), the operator of the Pilgrim Nuclear Power Station (PNPS). Renewed facility... Nuclear Plants Regarding Pilgrim Nuclear Power Station,'' dated July 2007 (ADAMS Accession Nos...

  4. Assessment of nuclear power plant siting methods

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, M.D.; Hobbs, B.F.; Pierce, B.L.; Meier, P.M.

    1979-11-01

    Several different methods have been developed for selecting sites for nuclear power plants. This report summarizes the basic assumptions and formal requirements of each method and evaluates conditions under which each is correctly applied to power plant siting problems. It also describes conditions under which different siting methods can produce different results. Included are criteria for evaluating the skill with which site-selection methods have been applied.

  5. Public participation and trust in nuclear power development in China

    NARCIS (Netherlands)

    He, G.; Mol, A.P.J.; Zhang, L.; Lu, Y.

    2013-01-01

    Rapid expansion of nuclear power in China requires not only increasing institutional capacity to prevent and adequately cope with nuclear risks, but also increasing public trust in governmental agencies and nuclear enterprises managing nuclear risks. Using a case study on Haiyang nuclear power plant

  6. Radiation hardening design of nuclear powered spacecraft

    Science.gov (United States)

    Schmidt, R. E.

    1987-01-01

    The design and operation of space systems utilizing nuclear fueled power systems must consider the radiation environment from the earliest stages of their design. A range of nuclear systems are being considered for present and future satellite systems capable of supplying tens of kilowatts to multimegawatt and generating a corresponding range of radiation environments. The effects of these radiations on electronics and materials can be minimized by implementing early design considerations which maximize the design efficiency and minimize the impact on system mass. Space systems design considerations for the radiation environment must include all sources in addition to the self induced gamma ray and neutron radiation. These include the orbital dependent environment from the high energy electron and protons encountered in natural space. The system trades which the designer must consider in the development of space platforms which utilize nuclear reactor power supplies are discussed.

  7. MODERATOR ELEMENTS FOR UNIFORM POWER NUCLEAR REACTOR

    Science.gov (United States)

    Balent, R.

    1963-03-12

    This patent describes a method of obtaining a flatter flux and more uniform power generation across the core of a nuclear reactor. The method comprises using moderator elements having differing moderating strength. The elements have an increasing amount of the better moderating material as a function of radial and/or axial distance from the reactor core center. (AEC)

  8. Financing strategies for nuclear power decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1980-07-01

    The report analyzes several alternatives for financing the decommissioning of nuclear power plants from the point of view of assurance, cost, equity, and other criteria. Sensitivity analyses are performed on several important variables and possible impacts on representative companies' rates are discussed and illustrated.

  9. Human Mars Surface Mission Nuclear Power Considerations

    Science.gov (United States)

    Rucker, Michelle A.

    2018-01-01

    A key decision facing Mars mission designers is how to power a crewed surface field station. Unlike the solar-powered Mars Exploration Rovers (MER) that could retreat to a very low power state during a Martian dust storm, human Mars surface missions are estimated to need at least 15 kilowatts of electrical (kWe) power simply to maintain critical life support and spacecraft functions. 'Hotel' loads alone for a pressurized crew rover approach two kWe; driving requires another five kWe-well beyond what the Curiosity rover’s Radioisotope Power System (RPS) was designed to deliver. Full operation of a four-crew Mars field station is estimated at about 40 kWe. Clearly, a crewed Mars field station will require a substantial and reliable power source, beyond the scale of robotic mission experience. This paper explores the applications for both fission and RPS nuclear options for Mars.

  10. Performance Parameters Pertinent to Nuclear Powered Aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Ruffman, B.F.

    1952-02-06

    A review of the present design information and studies relating to nuclear power plants indicates that the weight of the power plant components, exclusive of crew shield and nacelles, may at a particular design point be represented by an equation of the form, W{subpp} = W{subo} + K{subt}T. By use of this, a power plant parameter psi is defined as the ratio of the part of the power plant plus nacelle weight that varies with thrust to the net thrust of the power plant less nacelle drag. The funamentall part that this parameter plays in determining the gross weight of a nuclaer powered aircraft is shown. This parameter depends on the design point Mach number and altitude, and the weight and drag increments attributable to the nacelle installation.

  11. 78 FR 55118 - Seismic Instrumentation for Nuclear Power Plants

    Science.gov (United States)

    2013-09-09

    ... COMMISSION Seismic Instrumentation for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION..., ``Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR Edition... Safety Analysis Reports for Nuclear Power Plants: LWR Edition'' (SRP, from the current Revision 2 to a...

  12. 75 FR 13323 - James A. Fitzpatrick Nuclear Power Plant; Exemption

    Science.gov (United States)

    2010-03-19

    ... COMMISSION James A. Fitzpatrick Nuclear Power Plant; Exemption 1.0 Background Entergy Nuclear Operations, Inc... the James A. FitzPatrick Nuclear Power Plant (JAFNPP). The license provides, among other things, that... (10 CFR), Part 50, Section 50.48, requires that nuclear power plants that were licensed before January...

  13. 75 FR 16520 - James A. Fitzpatrick Nuclear Power Plant; Exemption

    Science.gov (United States)

    2010-04-01

    ... COMMISSION James A. Fitzpatrick Nuclear Power Plant; Exemption 1.0 Background Entergy Nuclear Operations, Inc... the James A. FitzPatrick Nuclear Power Plant (JAFNPP). The license provides, among other things, that... physical protection of licensed activities in nuclear power reactors against radiological sabotage...

  14. 78 FR 64028 - Decommissioning of Nuclear Power Reactors

    Science.gov (United States)

    2013-10-25

    ... COMMISSION Decommissioning of Nuclear Power Reactors AGENCY: Nuclear Regulatory Commission. ACTION... regulatory guide (RG) 1.184 ``Decommissioning of Nuclear Power Reactors.'' This guide describes a method NRC... decommissioning process for nuclear power reactors. The revision takes advantage of the 13 years of...

  15. 76 FR 75771 - Emergency Planning Guidance for Nuclear Power Plants

    Science.gov (United States)

    2011-12-05

    ... Part 52 RIN 3150-AI10 Emergency Planning Guidance for Nuclear Power Plants AGENCY: Nuclear Regulatory... Response Plans and Preparedness in Support of Nuclear Power Plants;'' NSIR/DPR-ISG-01, ``Interim Staff Guidance Emergency Planning for Nuclear Power Plants;'' and NUREG/CR-7002, ``Criteria for Development of...

  16. 76 FR 50274 - Terrestrial Environmental Studies for Nuclear Power Stations

    Science.gov (United States)

    2011-08-12

    ... COMMISSION Terrestrial Environmental Studies for Nuclear Power Stations AGENCY: Nuclear Regulatory Commission... Environmental Studies for Nuclear Power Stations.'' This guide provides technical guidance that the NRC staff... nuclear power reactors. DATES: Submit comments by October 11, 2011. Comments received after this date will...

  17. 76 FR 66089 - Access Authorization Program for Nuclear Power Plants

    Science.gov (United States)

    2011-10-25

    ... COMMISSION Access Authorization Program for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission... revision to Regulatory Guide 5.66, ``Access Authorization Program for Nuclear Power Plants.'' This guide... Authorization Requirements for Nuclear Power Plants,'' and 10 CFR part 26, ``Fitness for Duty Programs.'' The RG...

  18. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Goldston

    2011-04-28

    Integrated energy, environment and economics modeling suggests that worldwide electrical energy use will increase from 2.4 TWe today to ~12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources derived from natural energy flows. Thus nuclear power may be needed to provide ~30%, 3600 GWe, by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century global nuclear proliferation risks are much greater, and more resistant to mitigation. Fusion energy, if successfully demonstrated to be economically competitive, would provide a source of nuclear power with much lower proliferation risks than fission.

  19. Nuclear-Powered GPS Spacecraft Design Study

    Energy Technology Data Exchange (ETDEWEB)

    Raab, Bernard

    1977-05-01

    This is the final report of a study to investigate the potential benefits of a nuclear (radioisotope) - powered satellite for advanced phases of the Global Positioning System (GPS) program. The critical parameters were: power to user; mean mission duration; orbital predictability; thermal control of on-board frequency standards; and vulnerability. The reference design approach is described, and input data are given for two power systems that are under development: an organic Rankine system and a Brayton cycle system. Reference design details are provided and structural design and analysis are discussed, as well as thermal design and analysis. A higher altitude version is also considered.

  20. Transactions of the fifth symposium on space nuclear power systems

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Hoover, M.D. (eds.)

    1988-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these paper include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  1. Transactions of the fourth symposium on space nuclear power systems

    Energy Technology Data Exchange (ETDEWEB)

    El-Genk, M.S.; Hoover, M.D. (eds.)

    1987-01-01

    This paper contains the presented papers at the fourth symposium on space nuclear power systems. Topics of these papers include: space nuclear missions and applications, reactors and shielding, nuclear electric and nuclear propulsion, refractory alloys and high-temperature materials, instrumentation and control, energy conversion and storage, space nuclear fuels, thermal management, nuclear safety, simulation and modeling, and multimegawatt system concepts. (LSP)

  2. Science opportunities through nuclear power in space

    Science.gov (United States)

    Harris, Henry M.

    1995-01-01

    With the downsizing or outright elimination of nuclear power capability in space in progress, it is important to understand what this means to science in therms of capability cost. This paper is a survey of the scientific possibilities inherent in the potential availability of between 15 to 30 kW through electrical nuclear power in space. The approach taken has been to interview scientists involved in space-research, especially those whose results are dependent or proportional to power availability and to survey previous work in high-power spacecraft and space-based science instruments. In addition high level studies were done to gather metrics about what kind and quantity of science could be achieved throughout the entire solar system assuming the availability in the power amounts quoted above. It is concluded that: (1) Sustained high power using a 10-30 kW reactor would allow the capture of an unprecedented amount of data on planetary objects through the entire solar system. (2) High power science means high qualtiy data through higher resolution of radars, optics and the sensitivity of many types of instruments. (3) In general, high power in the range of 10-30 kW provides for an order-of-magnitude increase of resolution of synthetic aperture radars over other planetary radars. (4) High power makes possible the use of particle accelerators to probe the atomic structure of planetary surface, particularly in the dim, outer regions of the solar system. (5) High power means active cooling is possible for devices that must operate at low temperature under adverse conditions. (6) High power with electric propulsion provides the mission flexibility to vary observational viewpoints and select targets of opportunity.

  3. Intelligent Component Monitoring for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lefteri Tsoukalas

    2010-07-30

    Reliability and economy are two major concerns for a nuclear power generation system. Next generation nuclear power reactors are being developed to be more reliable and economic. An effective and efficient surveillance system can generously contribute toward this goal. Recent progress in computer systems and computational tools has made it necessary and possible to upgrade current surveillance/monitoring strategy for better performance. For example, intelligent computing techniques can be applied to develop algorithm that help people better understand the information collected from sensors and thus reduce human error to a new low level. Incidents incurred from human error in nuclear industry are not rare and have been proven costly. The goal of this project is to develop and test an intelligent prognostics methodology for predicting aging effects impacting long-term performance of nuclear components and systems. The approach is particularly suitable for predicting the performance of nuclear reactor systems which have low failure probabilities (e.g., less than 10-6 year-). Such components and systems are often perceived as peripheral to the reactor and are left somewhat unattended. That is, even when inspected, if they are not perceived to be causing some immediate problem, they may not be paid due attention. Attention to such systems normally involves long term monitoring and possibly reasoning with multiple features and evidence, requirements that are not best suited for humans.

  4. Photovoltaic cost reduction powered by nuclear spending

    Science.gov (United States)

    Smith, Timothy; Deinert, Mark

    2013-04-01

    Between 1975 to 2010, Japan has spent an average of 2700 Million per year on nuclear R&D and 74 Million per year on solar energy R&D (2010 dollars). While the cost of photovoltaics dropped by a factor of 30 during that time, the overnight cost to build a nuclear power plant has doubled between 2003 and 2009. The price of commercially available photovoltaics has been shown to follow a power law reduction with the number of units produced. This begs the question as to what the current price of these systems would be had some of the available funds used for nuclear R&D been spent on the acquisition of photovoltaics. Here we show the reduction in price for single crystal photovoltaic panels if the Japanese government spent some of their nuclear R&D funds on the installation of these systems. We use historical cost and cumulative production for the world and Japan to build a learning curve model for PV. If the government had spent only 0.07% of its nuclear R&D budget toward PV technology since 1975, photovoltaics would now have reached 1/Watt, the point at which they are cost competitive with conventional resources.

  5. Management of National Nuclear Power Programs for assured safety

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, T.J. (ed.)

    1985-01-01

    Topics discussed in this report include: nuclear utility organization; before the Florida Public Service Commission in re: St. Lucie Unit No. 2 cost recovery; nuclear reliability improvement and safety operations; nuclear utility management; training of nuclear facility personnel; US experience in key areas of nuclear safety; the US Nuclear Regulatory Commission - function and process; regulatory considerations of the risk of nuclear power plants; overview of the processes of reliability and risk management; management significance of risk analysis; international and domestic institutional issues for peaceful nuclear uses; the role of the Institute of Nuclear Power Operations (INPO); and nuclear safety activities of the International Atomic Energy Agency (IAEA).

  6. Autonomous Control of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Basher, H.

    2003-10-20

    A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that may be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.

  7. Design and construction of nuclear power plants

    CERN Document Server

    Schnell, Jürgen; Meiswinkel, Rüdiger; Bergmeister, Konrad; Fingerloos, Frank; Wörner, Johann-Dietrich

    2013-01-01

    Despite all the efforts being put into expanding renewable energy sources, large-scale power stations will be essential as part of a reliable energy supply strategy for a longer period. Given that they are low on CO2 emissions, many countries are moving into or expanding nuclear energy to cover their baseload supply.Building structures required for nuclear installations whose protective function means they are classified as safety-related, have to meet particular construction requirements more stringent than those involved in conventional construction. This book gives a comprehensive overv

  8. Analysis of nuclear power plant component failures

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Items are shown that have caused 90% of the nuclear unit outages and/or deratings between 1971 and 1980 and the magnitude of the problem indicated by an estimate of power replacement cost when the units are out of service or derated. The funding EPRI has provided on these specific items for R and D and technology transfer in the past and the funding planned in the future (1982 to 1986) are shown. EPRI's R and D may help the utilities on only a small part of their nuclear unit outage problems. For example, refueling is the major cause for nuclear unit outages or deratings and the steam turbine is the second major cause for nuclear unit outages; however, these two items have been ranked fairly low on the EPRI priority list for R and D funding. Other items such as nuclear safety (NRC requirements), reactor general, reactor and safety valves and piping, and reactor fuel appear to be receiving more priority than is necessary as determined by analysis of nuclear unit outage causes.

  9. 75 FR 14638 - FirstEnergy Nuclear Operating Company; Perry Nuclear Power Plant; Environmental Assessment and...

    Science.gov (United States)

    2010-03-26

    ... COMMISSION FirstEnergy Nuclear Operating Company; Perry Nuclear Power Plant; Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory Commission (NRC) is considering issuance of...Energy Nuclear Operating Company (FENOC, the licensee), for operation of the Perry Nuclear Power Plant...

  10. 75 FR 14635 - FirstEnergy Nuclear Operating Company, Davis-Besse Nuclear Power Station; Environmental...

    Science.gov (United States)

    2010-03-26

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION FirstEnergy Nuclear Operating Company, Davis-Besse Nuclear Power Station; Environmental Assessment...Energy Nuclear Operating Company (FENOC, the licensee), for operation of the Davis-Besse Nuclear Power...

  11. Childhood cancer near German nuclear power stations.

    Science.gov (United States)

    Fairlie, Ian

    2010-01-01

    In 2008, the Kinderkrebs in der Umgebung von Kernkraftwerken (KiKK) study in Germany reported a 60% increase in solid cancers and a 120% increase in leukemias among children living within 5 km of all German nuclear power stations. The study has triggered debates as to the cause(s) of these increased cancers. This article reports on the findings of the KiKK study; discusses past and more recent epidemiological studies of leukemias near nuclear installations around the world, and outlines a possible biological mechanism to explain the increased cancers. This suggests that the observed high rates of infant leukemias may be a teratogenic effect from radionuclides incorporated by pregnant women living near nuclear reactors. Doses and risks from environmental emissions to embryos and fetuses may be larger than suspected. Hematopoietic tissues appear to be considerably more radiosensitive in embryos/fetuses than in newborn babies. Recommendations for advice to local residents and for further research are made.

  12. Construct ability Improvement for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae Soo; Lee, Jong Rim; Kim, Jong Ku [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    The purpose of this study was to identify methods for improving the construct ability of nuclear power plants. This study reviewed several references of current construction practices of domestic and overseas nuclear plants in order to identify potential methods for improving construct ability. The identified methods for improving construct ability were then evaluated based on the applicability to domestic nuclear plant construction. The selected methods are expected to reduce the construction period, improve the quality of construction, cost, safety, and productivity. Selection of which methods should be implemented will require further evaluation of construction modifications, design changes, contract revisions. Among construction methods studied, platform construction methods can be applied through construction sequence modification without significant design changes, and Over the Top construction method of the NSSS, automatic welding of RCL pipes, CLP modularization, etc., are considered to be applied after design modification and adjustment of material lead time. (author). 49 refs., figs., tabs.

  13. 75 FR 14209 - Entergy Nuclear Operations, Inc.; Vermont Yankee Nuclear Power Station; Exemption

    Science.gov (United States)

    2010-03-24

    ... COMMISSION Entergy Nuclear Operations, Inc.; Vermont Yankee Nuclear Power Station; Exemption 1.0 Background.... DPR-28, which authorizes operation of the Vermont Yankee Nuclear Power Station (VY). The license....55, ``Requirements for physical protection of licensed activities in nuclear power reactors against...

  14. 75 FR 14208 - Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station; Exemption

    Science.gov (United States)

    2010-03-24

    ... COMMISSION Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station; Exemption 1.0 Background Entergy..., which authorizes operation of the Pilgrim Nuclear Power Station (Pilgrim). The license provides, among..., ``Requirements for physical protection of licensed activities in nuclear power reactors against radiological...

  15. 75 FR 16524 - FirstEnergy Nuclear Operating Company, Perry Nuclear Power Plant; Exemption

    Science.gov (United States)

    2010-04-01

    ... COMMISSION FirstEnergy Nuclear Operating Company, Perry Nuclear Power Plant; Exemption 1.0 Background First.... NFP-58, which authorizes operation of the Perry Nuclear Power Plant, Unit 1 (PNPP). The license..., ``Requirements for physical protection of licensed activities in nuclear power reactors against radiological...

  16. 76 FR 30204 - Exelon Nuclear, Dresden Nuclear Power Station, Unit 1; Exemption From Certain Security Requirements

    Science.gov (United States)

    2011-05-24

    ... COMMISSION Exelon Nuclear, Dresden Nuclear Power Station, Unit 1; Exemption From Certain Security... issued for Dresden Nuclear Power Station (DNPS), Unit 1, located in Grundy County, Illinois. DNPS Unit 1... ``Requirements for physical protection of licensed activities in nuclear power reactors against radiological...

  17. 75 FR 38147 - FirstEnergy Nuclear Operating Company; Davis-Besse Nuclear Power Station; Exemption

    Science.gov (United States)

    2010-07-01

    ... COMMISSION FirstEnergy Nuclear Operating Company; Davis-Besse Nuclear Power Station; Exemption 1.0 Background... No. NFP-3, which authorizes operation of the Davis-Besse Nuclear Power Station, Unit 1 (DBNPS). The... regulations. Therefore, the exemption is authorized by law. Davis-Besse Nuclear Power Station Exemption...

  18. 75 FR 16523 - FirstEnergy Nuclear Operating Company; Davis-Besse Nuclear Power Station; Exemption

    Science.gov (United States)

    2010-04-01

    ... COMMISSION FirstEnergy Nuclear Operating Company; Davis-Besse Nuclear Power Station; Exemption 1.0 Background... No. NFP-3, which authorizes operation of the Davis-Besse Nuclear Power Station, Unit 1 (DBNPS). The...,'' section 73.55, ``Requirements for physical protection of licensed activities in nuclear power reactors...

  19. 75 FR 75706 - Dresden Nuclear Power Station, Units 2 and 3 and Quad Cities Nuclear Power Station, Unit Nos. 1...

    Science.gov (United States)

    2010-12-06

    ... Power Station, Units 2 and 3 and Quad Cities Nuclear Power Station, Unit Nos. 1 and 2; Notice of... Nuclear Power Station, Units 2 and 3, respectively, located in Grundy County, Illinois, and to Renewed Facility Operating License Nos. DPR-29 and DPR-30 for Quad Cities Nuclear Power Station, Unit Nos. 1 and 2...

  20. U.S. Nuclear Power Reactor Plant Status

    Data.gov (United States)

    Nuclear Regulatory Commission — Demographic data on U.S. commercial nuclear power reactors, including: plant name/unit number, docket number, location, licensee, reactor/containment type, nuclear...

  1. Dose reduction at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Baum, J.W.; Dionne, B.J.

    1983-01-01

    The collective dose equivalent at nuclear power plants increased from 1250 rem in 1969 to nearly 54,000 rem in 1980. This rise is attributable primarily to an increase in nuclear generated power from 1289 MW-y to 29,155 MW-y; and secondly, to increased average plant age. However, considerable variation in exposure occurs from plant to plant depending on plant type, refueling, maintenance, etc. In order to understand the factors influencing these differences, an investigation was initiated to study dose-reduction techniques and effectiveness of as low as reasonably achievable (ALARA) planning at light water plants. Objectives are to: identify high-dose maintenance tasks and related dose-reduction techniques; investigate utilization of high-reliability, low-maintenance equipment; recommend improved radioactive waste handling equipment and procedures; examine incentives for dose reduction; and compile an ALARA handbook.

  2. Community conflict in the nuclear power issue

    Energy Technology Data Exchange (ETDEWEB)

    Burt, R.S.

    1978-05-01

    This is the first of a two part discussion the purpose of which is to demonstrate that a frankly structural, or network, approach to the analysis of community decision-making allows an observer to anticipate and manage community response to specific policies. Here I am concerned with anticipating community response. In part two (Burt, 1978), I am concerned with conflict resolution strategies. The specific policy used as illustration is siting nuclear power facilities. Published accounts of siting nuclear facilities are used to identify basic social parameters of the nuclear power issue as a community conflict. Changes in the form and content of relations in the network among opponents and proponents of a facility are described. Subsequently, the description is used to specify a causal model of the manner in which conflict escalation is promoted or inhibited by the characteristics and leadership structure of a community in which a nuclear facility is proposed. Hypotheses are derived predicting what types of communities can be expected to become embroiled in conflict and the process that conflict escalation will follow.

  3. Environmental and Safety Concerns for Nuclear Power Generation in Ghana

    OpenAIRE

    Emmanuel Ampomah-Amoako; Edward H. K. Akaho; Nyarko, Benjamin J. B.; Isaac Ennison; Odoi, Henry C.; Abrefah, Rex G.; Sogbadji, Robert B. M.; Sylvester A. Birikorang; Aboh, Innocent J. K.; Danso, Kwaku A.; Ekua Mensimah; Kwame Gyamfi

    2011-01-01

    Misconception about nuclear reactor safety has led several nuclear power projects to be abandoned. Safety was taken into consideration even before the first fission chain reaction was initiated. These safety precautions coupled with half a century of experience in nuclear power generation have made nuclear power the best choice for base load electricity generation in several countries across the globe. The storage of nuclear waste has been extensively studied over the years and several opport...

  4. Key issues in space nuclear power

    Science.gov (United States)

    Brandhorst, Henry W.

    1991-01-01

    The future appears rich in missions that will extend the frontiers of knowledge, human presence in space, and opportunities for profitable commerce. Key to the success of these ventures is the availability of plentiful, cost effective electric power and assured, low cost access to space. While forecasts of space power needs are problematic, an assessment of future needs based on terrestrial experience has been made. These needs fall into three broad categories: survival, self sufficiency, and industrialization. The cost of delivering payloads to orbital locations from LEO to Mars has been determined and future launch cost reductions projected. From these factors, then, projections of the performance necessary for future solar and nuclear space power options has been made. These goals are largely dependent upon orbital location and energy storage needs. Finally the cost of present space power systems has been determined and projections made for future systems.

  5. Power conditioning for space nuclear reactor systems

    Science.gov (United States)

    Berman, Baruch

    1987-01-01

    This paper addresses the power conditioning subsystem for both Stirling and Brayton conversion of space nuclear reactor systems. Included are the requirements summary, trade results related to subsystem implementation, subsystem description, voltage level versus weight, efficiency and operational integrity, components selection, and shielding considerations. The discussion is supported by pertinent circuit and block diagrams. Summary conclusions and recommendations derived from the above studies are included.

  6. Nuclear power: Is the renaissance real or a mirage?

    Energy Technology Data Exchange (ETDEWEB)

    Rogner, H.-Holger; McDonald, Alan

    2010-09-15

    In 2009, in the midst of the global financial and economic crises that began in 2008, and as the nuclear power industry posted its first two-year decline in installed capacity in history, the IAEA revised its projections for future nuclear power growth upwards. This paper summarizes the status of nuclear power in the world today and the status of all steps in the nuclear fuel cycle. It summarizes nuclear power's prospects and important trends in key factors. It explains the reasons for optimism and rising expectations about nuclear power's future, and it acknowledges that there is, nonetheless, much uncertainty.

  7. Nuclear Power Plants | RadTown USA | US EPA

    Science.gov (United States)

    2017-08-07

    Nuclear power plants produce electricity from the heat created by splitting uranium atoms. In the event of a nuclear power plant emergency, follow instructions from emergency responders and public officials.

  8. Accidents at Nuclear Power Plants and Cancer Risk

    Science.gov (United States)

    ... Services Directory Cancer Prevention Overview Research Accidents at Nuclear Power Plants and Cancer Risk On This Page What ... ionizing radiation? What cancer risks are associated with nuclear power plant accidents? How have researchers learned about cancer ...

  9. Electromagnetic Compatibility in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, P.D.; Kercel, S.W.; Korsah, K.; Wood, R.T.

    1999-08-29

    Electromagnetic compatibility (EMC) has long been a key element of qualification for mission critical instrumentation and control (I&C) systems used by the U.S. military. The potential for disruption of safety-related I&C systems by electromagnetic interference (EMI), radio-frequency interference (RFI), or power surges is also an issue of concern for the nuclear industry. Experimental investigations of the potential vulnerability of advanced safety systems to EMI/RFI, coupled with studies of reported events at nuclear power plants (NPPs) that are attributed to EMI/RFI, confirm the safety significance of EMC for both analog and digital technology. As a result, Oak Ridge National Laboratory has been engaged in the development of the technical basis for guidance that addresses EMC for safety-related I&C systems in NPPs. This research has involved the identification of engineering practices to minimize the potential impact of EMI/RFI and power surges and an evaluation of the ambient electromagnetic environment at NPPs to tailor those practices for use by the nuclear industry. Recommendations for EMC guidance have been derived from these research findings and are summarized in this paper.

  10. Nuclear Propulsion and Power Non-Nuclear Test Facility (NP2NTF): Preliminary Analysis and Feasibility Assessment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nuclear reactors, which power nuclear propulsion and power systems, and the nuclear radiation and residual radioactivity associated with these systems, impose...

  11. Social and Ethical Considerations of Nuclear Power Development

    OpenAIRE

    John R. Parkins; Haluza-DeLay, Randolph

    2011-01-01

    A new urgency is emerging around nuclear power development and this urgency is accentuated by the post-tsunami events at the Fukushima Daiichi nuclear power plant in Japan. This urgency extends beyond these dramatic events in Japan, however, to many other regions of the world and situations where nuclear power development is receiving renewed attention as an alternative to carbon-based energy sources. As a contribution to the growing public debate about nuclear power development, this paper o...

  12. Nuclear power generation and fuel cycle report 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

  13. Risks of potential accidents of nuclear power plants in Europe

    NARCIS (Netherlands)

    Slaper H; Eggink GJ; Blaauboer RO

    1993-01-01

    Over 200 nuclear power plants for commercial electricity production are presently operational in Europe. The 1986 accident with the nuclear power plant in Chernobyl has shown that severe accidents with a nuclear power plant can lead to a large scale contamination of Europe. This report is focussed

  14. Nuclear Power: The Market Test. Worldwatch Paper 57.

    Science.gov (United States)

    Flavin, Christopher

    Nuclear power was considered vital to humanity's future until just a short time ago. Since the late seventies, economic viability has joined a list of such issues as waste disposal and radiation hazards which call into question the future of nuclear power. This document discusses (in separate sections): (1) the selling of nuclear power, including…

  15. 76 FR 40403 - R.E. Ginna Nuclear Power Plant, LLC, R.E. Ginna Nuclear Power Plant, R.E. Ginna Independent Spent...

    Science.gov (United States)

    2011-07-08

    ... COMMISSION R.E. Ginna Nuclear Power Plant, LLC, R.E. Ginna Nuclear Power Plant, R.E. Ginna Independent Spent.... Ginna Nuclear Power Plant (Ginna), currently held by R.E. Ginna Nuclear Power Plant, LLC as owner and licensed operator. R.E. Ginna Nuclear Power Plant, LLC is owned by Constellation Energy Nuclear Group, LLC...

  16. The fourth nuclear power plant in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Nogarin, Mauro

    2017-01-15

    Since 2006 the nuclear sector in Argentina has aimed at recovering and strengthening its capabilities and facilities. Part of the challenge posed by this revival has been to also accompany the development of activities with a higher level of responsibility for safety and the environment. Among the strategic decisions taken in recent years, one main highlight is the construction of the nuclear power plant CAREM25 entirely with Argentine technology and design under the responsibility of the National Atomic Energy Commission. On February 4, 2015, the Ministry of Federal Planning and the National Energy Administration (NEA) signed the agreement for cooperation and construction of pressurized water reactor (PWR) with ACP-1000 technology, developed in the Peoples Republic of China.

  17. 78 FR 66785 - Korea Hydro and Nuclear Power Co., Ltd., and Korea Electric Power Corporation

    Science.gov (United States)

    2013-11-06

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Korea Hydro and Nuclear Power Co., Ltd., and Korea Electric Power Corporation AGENCY: Nuclear... APR1400 Standard Plant Design submitted by Korea Hydro and Nuclear Power Co., Ltd. (KHNP) and Korea...

  18. 77 FR 47680 - Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station Receipt of Request for Action

    Science.gov (United States)

    2012-08-09

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station Receipt of Request for Action... (NRC or the Commission) take action with regard to the Pilgrim Nuclear Power Station (Pilgrim). The...

  19. Nuclear power generation and fuel cycle report 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  20. Alternative Shutdown Panel. Amaraz Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Saenz de Santa Maria Valin, J.

    2016-07-01

    Between 2010 and 2014 the Nuclear Power Plant of Almaraz conducted one of the most complex projects in its history: The installation of an Alternative Shutdown Panel with the capability to stop the plant in case of fire in the Control room or in the Cable room. This project represented a great economic and organizational effort for the plant, but at the same time has been a great improvement in the safety of the installation, which was demonstrated by the achievement of a major milestone in the history of Almaraz: The actual shutdown from outside of the Control room. (Author)

  1. Nuclear power plants. Safe and efficient decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Huger, Helmut [TUEV SUED Energietechnik GmbH, Filderstadt (Germany). Div. of Radiation Protection, Waste Management and Decommissioning; Woodcock, Richard [TUEV SUED Nuclear Technologies, Warrington, Cheshire (United Kingdom). Environment and Radioactive Waste Management

    2016-02-15

    The process of dismantling a nuclear power plant consists of several phases that involve significant challenges along the way for authorities, operators, and suppliers. It is necessary to ensure safety at all times and to achieve certainty in respect of key project parameters, especially time and cost. Therefore, careful planning as well as detailed knowledge of local standards and regulations, best available techniques and practical implementation strategies are crucial. Independent expertise and knowledge service can be utilised for demanding projects worldwide. This guarantees safety for people and the environment in every phase of decommissioning. The article gives an overview on different decommissioning options and their challenges.

  2. Topaz II Nuclear Powered SAR Satellite

    OpenAIRE

    Feuerstein, M.; Agrawal, B.N.

    1994-01-01

    The article of record as published may be found at http://dx.doi.org/10.2514/6.1994-4688 The AA4871 Spacecraft Design course is the capstone class for the M.S. in Astronautics at the Naval Postgraduate School. Thc design team integrated a Topaz If nuclear power system with an EOS Synthetic Aperture Radar to design a low Earth orbit, three axis stabilized satellite flying in a gravity gradient stable orientation. The SAR is a high resolution, electronically stecrable, Earth scie...

  3. Neutron measurements at nuclear power reactors [55

    CERN Document Server

    Scherpelz, R I

    2002-01-01

    Staff from the Pacific Northwest National Laboratory (operated by Battelle Memorial Institute), have performed neutron measurements at a number of commercial nuclear power plants in the United States. Neutron radiation fields at light water reactor (LWR) power plants are typically characterized by low-energy distributions due to the presence of large amounts of scattering material such as water and concrete. These low-energy distributions make it difficult to accurately monitor personnel exposures, since most survey meters and dosimeters are calibrated to higher-energy fields such as those produced by bare or D sub 2 O-moderated sup 2 sup 5 sup 2 Cf sources. Commercial plants typically use thermoluminescent dosimeters in an albedo configuration for personnel dosimetry and survey meters based on a thermal-neutron detector inside a cylindrical or spherical moderator for dose rate assessment, so their methods of routine monitoring are highly dependent on the energy of the neutron fields. Battelle has participate...

  4. 75 FR 77919 - Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1; Environmental...

    Science.gov (United States)

    2010-12-14

    ... COMMISSION Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1; Environmental... Progress Energy Carolinas, Inc., for operation of the Shearon Harris Nuclear Power Plant (HNP), Unit 1...: Regarding Shearon Harris Nuclear Power Plant, Unit 1--Final Report (NUREG-1437, Supplement 33).'' Agencies...

  5. 75 FR 9958 - Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit 1; Exemption

    Science.gov (United States)

    2010-03-04

    ... COMMISSION Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit 1; Exemption 1.0... of the Shearon Harris Nuclear Power Plant, Unit 1 (HNP). The license provides, among other things... for physical protection of licensed activities in nuclear power reactors against radiological sabotage...

  6. 77 FR 13156 - Carolina Power & Light Company; Shearon Harris Nuclear Power Plant, Unit 1; Exemption

    Science.gov (United States)

    2012-03-05

    ... COMMISSION Carolina Power & Light Company; Shearon Harris Nuclear Power Plant, Unit 1; Exemption 1.0... Harris Nuclear Power Plant (HNP), Unit 1. The license provides, among other things, that the facility is...) 50.46, ``Acceptance criteria for emergency core cooling systems for light- water nuclear power...

  7. 75 FR 80547 - Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit No. 1; Exemption

    Science.gov (United States)

    2010-12-22

    ... COMMISSION Carolina Power & Light Company, Shearon Harris Nuclear Power Plant, Unit No. 1; Exemption 1.0... License No. NPF-63, which authorizes operation of the Shearon Harris Nuclear Power Plant (HNP), Unit 1... nuclear power reactors against radiological sabotage,'' published as a final rule in the Federal Register...

  8. Cofrentes nuclear power plant 110% extended power up-rate

    Energy Technology Data Exchange (ETDEWEB)

    Merino, A.; Cerezo, L.; Segura, A. [Iberdrola Ingenieria y Consultoria, Madrid (Spain); Herrero, A. [Iberdrola, Madrid (Spain)

    2001-07-01

    As part of Cofrentes Technological Plan, IBERDROLA is developing the 110% Extended Power Up-rate Project (EPU 110%) in Cofrentes Nuclear Power Plant (CNC). The project's aim is to perform the studies and implement the design modifications required to license, before the regulatory authorities, a thermal power up-rate in Cofrentes from the current value of 104,2% (3015 MWt) to 110% (3184 MWt), and operate in this new power level after year 2002 refuelling outage. Since 1995, CNC-IBERINCO is carrying out the 110% Extended Power Up-rate project. In 1998, the technical and economical feasibility studies were concluded (Phase I), and the second phase detailed evaluation, has been developed during last year, now we are developing the plant change modifications. A description of the studies that are being performed within the 110% EPU project, focusing on NSSS (nuclear steam supply systems) areas and special studies, as well as the main conclusions reached so far, is included in this communication. Additionally, the tasks' schedule to the project's successful conclusion is shown in this communication. As part of the project's tasks, systems, equipment and components affected by EPU are being looked into in detail, both from the NSSS and BOP (balance of plant) as well as from the turbine-generator. Is planned to modified the High Pressure Turbine for the new condition. The results obtained from the studies performed so far confirm the technical feasibility study conclusions are confirmed by, showing that required safety margins are maintained and that operation capacity is guaranteed.

  9. International nuclear power status 2002; International kernekraftstatus 2002

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L. (eds.)

    2003-03-01

    This report is the ninth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2002, the report contains: 1) General trends in the development of nuclear power; 2) Decommissioning of the nuclear facilities at Risoe National Laboratory: 3) Statistical information on nuclear power production (in 2001); 4) An overview of safety-relevant incidents in 2002; 5) The development in West Europe; 6) The development in East Europe; 7) The development in the rest of the world; 8) Development of reactor types; 9) The nuclear fuel cycle; 10) International nuclear organisations. (au)

  10. International nuclear power status 2001; International kernekraftstatus 2001

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L. (eds.)

    2002-04-01

    This report is the eighth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2001, the report contains: 1) General trends in the development of nuclear power; 2) Nuclear terrorism; 3) Statistical information on nuclear power production (in 2000); 4) An overview of safety-relevant incidents in 2001; 5) The development in West Europe; 6) The development in East Europe; 7) The development in the rest of the world; 8) Development of reactor types; 9) The nuclear fuel cycle; 10) International nuclear organisations. (au)

  11. Power generation from nuclear reactors in aerospace applications

    Energy Technology Data Exchange (ETDEWEB)

    English, R.E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  12. Power Generation from Nuclear Reactors in Aerospace Applications

    Science.gov (United States)

    English, Robert E.

    1982-01-01

    Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere; a program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

  13. [Chernobyl nuclear power plant accident and Tokaimura criticality accident].

    Science.gov (United States)

    Takada, Jun

    2012-03-01

    It is clear from inspection of historical incidents that the scale of disasters in a nuclear power plant accident is quite low level overwhelmingly compared with a nuclear explosion in nuclear war. Two cities of Hiroshima and Nagasaki were destroyed by nuclear blast with about 20 kt TNT equivalent and then approximately 100,000 people have died respectively. On the other hand, the number of acute death is 30 in the Chernobyl nuclear reactor accident. In this chapter, we review health hazards and doses in two historical nuclear incidents of Chernobyl and Tokaimura criticality accident and then understand the feature of the radiation accident in peaceful utilization of nuclear power.

  14. No nuclear power. No disposal facility?

    Energy Technology Data Exchange (ETDEWEB)

    Feinhals, J. [DMT GmbH und Co.KG, Hamburg (Germany)

    2016-07-01

    Countries with a nuclear power programme are making strong efforts to guarantee the safe disposal of radioactive waste. The solutions in those countries are large disposal facilities near surface or in deep geological layers depending on the activity and half-life of the nuclides in the waste. But what will happen with the radioactive waste in countries that do not have NPPs but have only low amounts of radioactive waste from medical, industrial and research facilities as well as from research reactors? Countries producing only low amounts of radioactive waste need convincing solutions for the safe and affordable disposal of their radioactive waste. As they do not have a fund by an operator of nuclear power plants, those countries need an appropriate and commensurate solution for the disposal of their waste. In a first overview five solutions seem to be appropriate: (i) the development of multinational disposal facilities by using the existing international knowhow; (ii) common disposal with hazardous waste; (iii) permanent storage; (iv) use of an existing mine or tunnel; (v) extension of the borehole disposal concept for all the categories of radioactive wastes.

  15. Analysis of nuclear power plant construction costs

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The objective of this report is to present the results of a statistical analysis of nuclear power plant construction costs and lead-times (where lead-time is defined as the duration of the construction period), using a sample of units that entered construction during the 1966-1977 period. For more than a decade, analysts have been attempting to understand the reasons for the divergence between predicted and actual construction costs and lead-times. More importantly, it is rapidly being recognized that the future of the nuclear power industry rests precariously on an improvement in the cost and lead-time situation. Thus, it is important to study the historical information on completed plants, not only to understand what has occurred to also to improve the ability to evaluate the economics of future plants. This requires an examination of the factors that have affected both the realized costs and lead-times and the expectations about these factors that have been formed during the construction process. 5 figs., 22 tabs.

  16. Safety in nuclear power plants in India.

    Science.gov (United States)

    Deolalikar, R

    2008-12-01

    Safety in nuclear power plants (NPPs) in India is a very important topic and it is necessary to dissipate correct information to all the readers and the public at large. In this article, I have briefly described how the safety in our NPPs is maintained. Safety is accorded overriding priority in all the activities. NPPs in India are not only safe but are also well regulated, have proper radiological protection of workers and the public, regular surveillance, dosimetry, approved standard operating and maintenance procedures, a well-defined waste management methodology, proper well documented and periodically rehearsed emergency preparedness and disaster management plans. The NPPs have occupational health policies covering periodic medical examinations, dosimetry and bioassay and are backed-up by fully equipped Personnel Decontamination Centers manned by doctors qualified in Occupational and Industrial Health. All the operating plants are ISO 14001 and IS 18001 certified plants. The Nuclear Power Corporation of India Limited today has 17 operating plants and five plants under construction, and our scientists and engineers are fully geared to take up many more in order to meet the national requirements.

  17. International nuclear power status 1999; International kernekraftstatus 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hoejerup, C.F.; Oelgaard, P.L. [eds.

    2000-03-01

    This report isthe sixth in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 1999, the report contains: General trends in the development of nuclear power; The past and possible future of Barsebaeck Nuclear Power Plant; Statistical information on nuclear power production (in 1998); An overview of safety-relevant incidents in 1999; The development in Sweden; The development in Eastern Europe; The development in the rest of the world; Trends in the development of reactor types; Trends in the development of the nuclear fuel cycle. (au)

  18. Nuclear power (Breaking the Climate Deadlock Briefing Paper)

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, S.J.A. [ECN Policy Studies, Petten (Netherlands)

    2008-07-15

    This paper explores the role of nuclear energy, the research and development and initial steps desirable to secure the viability of its full potential. It covers: The potential of nuclear power; Benefits and barriers in connection with nuclear energy; Costs of nuclear energy; Prospects for supporting new generation technologies; and the role of international initiatives and of governments.

  19. Nuclear power and the public: an update of collected survey research on nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Rankin, W.L.; Melber, B.D.; Overcast, T.D.; Nealey, S.M.

    1981-12-01

    The purpose of this research was to collect, analyze, and summarize all of the nuclear power-related surveys conducted in the United States through June 1981, that we could obtain. The surveys collected were national, statewide, and areawide in scope. Slightly over 100 surveys were collected for an earlier, similar effort carried out in 1977. About 130 new surveys were added to the earlier survey data. Thus, about 230 surveys were screened for inclusion in this report. Because of space limitations, national surveys were used most frequently in this report, followed distantly by state surveys. In drawing our conclusions about public beliefs and attitudes toward nuclear power, we placed most of our confidence in survey questions that were used by national polling firms at several points in time. A summary of the research findings is presented, beginning with general attitudes toward nuclear power, followed by a summary of beliefs and attitudes about nuclear power issues, and ended by a summary of beliefs and attitudes regarding more general energy issues.

  20. Economics of nuclear power and climate change mitigation policies

    Science.gov (United States)

    Bauer, Nico; Brecha, Robert J.; Luderer, Gunnar

    2012-01-01

    The events of March 2011 at the nuclear power complex in Fukushima, Japan, raised questions about the safe operation of nuclear power plants, with early retirement of existing nuclear power plants being debated in the policy arena and considered by regulators. Also, the future of building new nuclear power plants is highly uncertain. Should nuclear power policies become more restrictive, one potential option for climate change mitigation will be less available. However, a systematic analysis of nuclear power policies, including early retirement, has been missing in the climate change mitigation literature. We apply an energy economy model framework to derive scenarios and analyze the interactions and tradeoffs between these two policy fields. Our results indicate that early retirement of nuclear power plants leads to discounted cumulative global GDP losses of 0.07% by 2020. If, in addition, new nuclear investments are excluded, total losses will double. The effect of climate policies imposed by an intertemporal carbon budget on incremental costs of policies restricting nuclear power use is small. However, climate policies have much larger impacts than policies restricting the use of nuclear power. The carbon budget leads to cumulative discounted near term reductions of global GDP of 0.64% until 2020. Intertemporal flexibility of the carbon budget approach enables higher near-term emissions as a result of increased power generation from natural gas to fill the emerging gap in electricity supply, while still remaining within the overall carbon budget. Demand reductions and efficiency improvements are the second major response strategy. PMID:23027963

  1. Nuclear power plants in China's coastal zone: risk and safety

    Science.gov (United States)

    Lu, Qingshui; Gao, Zhiqiang; Ning, Jicai; Bi, Xiaoli; Gao, Wei

    2014-10-01

    Nuclear power plants are used as an option to meet the demands for electricity due to the low emission of CO2 and other contaminants. The accident at the Fukushima nuclear power plant in 2011 has forced the Chinese government to adjust its original plans for nuclear power. The construction of inland nuclear power plants was stopped, and construction is currently only permitted in coastal zones. However, one obstacle of those plants is that the elevation of those plants is notably low, ranging from 2 to 9 meters and a number of the nuclear power plants are located in or near geological fault zones. In addition, the population density is very high in the coastal zones of China. To reduce those risks of nuclear power plants, central government should close the nuclear power plants within the fault zones, evaluate the combined effects of storm surges, inland floods and tidal waves on nuclear power plants and build closed dams around nuclear power plants to prevent damage from storm surges and tidal waves. The areas without fault zones and with low elevation should be considered to be possible sites for future nuclear power plants if the elevation can be increased using soil or civil materials.

  2. Economics of nuclear power and climate change mitigation policies.

    Science.gov (United States)

    Bauer, Nico; Brecha, Robert J; Luderer, Gunnar

    2012-10-16

    The events of March 2011 at the nuclear power complex in Fukushima, Japan, raised questions about the safe operation of nuclear power plants, with early retirement of existing nuclear power plants being debated in the policy arena and considered by regulators. Also, the future of building new nuclear power plants is highly uncertain. Should nuclear power policies become more restrictive, one potential option for climate change mitigation will be less available. However, a systematic analysis of nuclear power policies, including early retirement, has been missing in the climate change mitigation literature. We apply an energy economy model framework to derive scenarios and analyze the interactions and tradeoffs between these two policy fields. Our results indicate that early retirement of nuclear power plants leads to discounted cumulative global GDP losses of 0.07% by 2020. If, in addition, new nuclear investments are excluded, total losses will double. The effect of climate policies imposed by an intertemporal carbon budget on incremental costs of policies restricting nuclear power use is small. However, climate policies have much larger impacts than policies restricting the use of nuclear power. The carbon budget leads to cumulative discounted near term reductions of global GDP of 0.64% until 2020. Intertemporal flexibility of the carbon budget approach enables higher near-term emissions as a result of increased power generation from natural gas to fill the emerging gap in electricity supply, while still remaining within the overall carbon budget. Demand reductions and efficiency improvements are the second major response strategy.

  3. Affective imagery and acceptance of replacing nuclear power plants.

    Science.gov (United States)

    Keller, Carmen; Visschers, Vivianne; Siegrist, Michael

    2012-03-01

    This study examined the relationship between the content of spontaneous associations with nuclear power plants and the acceptance of using new-generation nuclear power plants to replace old ones. The study also considered gender as a variable. A representative sample of the German- and French-speaking population of Switzerland (N= 1,221) was used. Log-linear models revealed significant two-way interactions between the association content and acceptance, association content and gender, and gender and acceptance. Correspondence analysis revealed that participants who were opposed to nuclear power plants mainly associated nuclear power plants with risk, negative feelings, accidents, radioactivity, waste disposal, military use, and negative consequences for health and environment; whereas participants favoring nuclear power plants mainly associated them with energy, appearance descriptions of nuclear power plants, and necessity. Thus, individuals opposing nuclear power plants had both more concrete and more diverse associations with them than people who were in favor of nuclear power plants. In addition, participants who were undecided often mentioned similar associations to those participants who were in favor. Males more often expressed associations with energy, waste disposal, and negative health effects. Females more often made associations with appearance descriptions, negative feelings, and negative environmental effects. The results further suggest that acceptance of replacing nuclear power plants was higher in the German-speaking part of the country, where all of the Swiss nuclear power plants are physically located. Practical implications for risk communication are discussed. © 2011 Society for Risk Analysis.

  4. A concept of space nuclear power development in Russia

    Science.gov (United States)

    Menshikov, Valery A.; Kuzin, Anatoly I.; Pavlov, Konstantin A.; Zatserkovny, Sergey P.; Kalmykov, Alexander V.; Sorokin, Alexander N.; Bulavatsky, Andrey Ya.; Vasilkovsky, Vladimir S.; Andreev, Pavel V.; Zrodnikov, Anatoly V.; Ponomarev-Stepnoi, Nikolai N.; Nikolaev, Yuri V.; Bezzubtsev, Valery S.; Adamov, Evgueni O.

    1997-01-01

    The purpose of developing space nuclear power in Russia is to establish an advanced scientific and technological base on unified key components of samples of space nuclear power and propulsion engineering products. Establishment of said base will reduce time required for development of nuclear power and power/propulsion systems (NPS and NPPS) in the future, should a decision is made on deployment of space complexes that require nuclear power sources. The paper presents the authors' point of view with regard to the following major issues of the Concept of Space Nuclear Power Development in Russia: purposes and missions for development of space nuclear power, safety of space NPS and NPPS, direction of work, international cooperation, expected results of work on space NPS and NPPS in the period of 1996-2000.

  5. Economics of Nuclear Power Plant and the development of nuclear power in Viet Nam

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, Thuy Nguyen Thi; Song, JinHo [University of Science and Technology, Daejeon (Korea, Republic of); Ha, Kwang Soon [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    There are many factors affecting the capital costs like: increased plant size, multiple unit construction, improved construct methods, increase the lifetime of plant and so on, and beside is technical to enhancing the safety for NPPs. For the question that whether building a NPP is really economic than other energy resources or not, we will find the answer by comparing the USD per kWh of different energy sources as: nuclear power, coal, oil, hydro natural energy sources. The situation of energy in Vietnam was also mentioned in this paper. Vietnam has an abundant natural resources likes: coal, gas, hydro power etc, but from year 2013 to now Vietnam facing of electricity shortage and to solve the problem, Vietnam Government has chosen nuclear power energy to achieve energy balance between the rate of energy consumption and the ability to energy supply. Eight units will be built in Vietnam and in October 2014 Vietnamese officials have chosen Rosatom's AES-2006 design with VVER-1200/v-491 reactors for country's first nuclear power plant at Ninh Thuan and a second plant should follow based on a partnership with Japan. In this paper, the breakdown of NPP costs is considered. All the costs for building a NPP includes: the investment costs are the largest components (about 60%), fuel costs (15%), O and M costs (25%) and external costs are lower than 1% of the kWh costs. The situation for energy in Vietnam was mentioned with increase annually by 5.5 %, and now the shortage electricity is the big problem in power section. The purpose of this report is to give a general picture to consider the cost of nuclear power. It includes all the costs for building a nuclear power plant like total capital investment costs, production costs, external costs in which the capital investment costs is the largest component of the kWh cost. Nuclear energy Power was chosen to deal with situation of diminishing resources shortages.

  6. Nuclear reactor power for an electrically powered orbital transfer vehicle

    Science.gov (United States)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Kia, T.; Nesmith, B.

    1987-01-01

    To help determine the systems requirements for a 300-kWe space nuclear reactor power system, a mission and spacecraft have been examined which utilize electric propulsion and this nuclear reactor power for multiple transfers of cargo between low earth orbit (LEO) and geosynchronous earth orbit (GEO). A propulsion system employing ion thrusters and xenon propellant was selected. Propellant and thrusters are replaced after each sortie to GEO. The mass of the Orbital Transfer Vehicle (OTV), empty and dry, is 11,000 kg; nominal propellant load is 5000 kg. The OTV operates between a circular orbit at 925 km altitude, 28.5 deg inclination, and GEO. Cargo is brought to the OTV by Shuttle and an Orbital Maneuvering Vehicle (OMV); the OTV then takes it to GEO. The OTV can also bring cargo back from GEO, for transfer by OMV to the Shuttle. OTV propellant is resupplied and the ion thrusters are replaced by the OMV before each trip to GEO. At the end of mission life, the OTV's electric propulsion is used to place it in a heliocentric orbit so that the reactor will not return to earth. The nominal cargo capability to GEO is 6000 kg with a transit time of 120 days; 1350 kg can be transferred in 90 days, and 14,300 kg in 240 days. These capabilities can be considerably increased by using separate Shuttle launches to bring up propellant and cargo, or by changing to mercury propellant.

  7. Nuclear power and nuclear safety 2008; Kernekraft og nuklear sikkerhed 2008

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, B.; OElgaard, P.L. (eds.); Nonboel, E. (Risoe DTU, Roskilde (Denmark)); Kampmann, D. (Beredskabsstyrelsen, Birkeroed (Denmark))

    2009-06-15

    The report is the fifth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2008 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events of nuclear power, and international relations and conflicts. (LN)

  8. Nuclear power and nuclear safety 2005; Kernekraft of nuklear sikkerhed 2005

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, B.; Oelgaard, P.L.; Kampman, D.; Majborn, B.; Nonboel, E.; Nystrup, P.E.

    2006-03-15

    The report is the third report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2005 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power and international relations and conflicts. (ln)

  9. Nuclear power and nuclear safety 2004; Kernekraft og nuklear sikkerhed 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-03-01

    The report is the second report in a new series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2004 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power and international relations and conflicts. (ln)

  10. Nuclear power and nuclear safety 2006; Kernekraft og nuklear sikkerhed 2006

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, B.; Oelgaard, P.L. (eds.); Kampmann, D.; Majborn, B.; Nonboel, E.; Nystrup, P.E.

    2007-04-15

    The report is the fourth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency. The report for 2006 covers the following topics: status of nuclear power production, regional trends, reactor development and development of emergency management systems, safety related events of nuclear power, and international relations and conflicts. (LN)

  11. Nuclear power and nuclear safety 2007; Kernekraft og nuklear sikkerhed 2007

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, B.; OElgaard, P.L. (eds.); Kampmann, D.; Majborn, B.; Nonboel, E.; Nystrup, P.E.

    2008-05-15

    The report is the fifth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2007 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events of nuclear power, and international relations and conflicts. (LN)

  12. Reframing nuclear power in the UK energy debate: nuclear power, climate change mitigation and radioactive waste.

    Science.gov (United States)

    Bickerstaff, K; Lorenzoni, I; Pidgeon, N F; Poortinga, W; Simmons, P

    2008-04-01

    In the past decade, human influence on the climate through increased use of fossil fuels has become widely acknowledged as one of the most pressing issues for the global community. For the United Kingdom, we suggest that these concerns have increasingly become manifest in a new strand of political debate around energy policy, which reframes nuclear power as part of the solution to the need for low-carbon energy options. A mixed-methods analysis of citizen views of climate change and radioactive waste is presented, integrating focus group data and a nationally representative survey. The data allow us to explore how UK citizens might now and in the future interpret and make sense of this new framing of nuclear power--which ultimately centers on a risk-risk trade-off scenario. We use the term "reluctant acceptance" to describe how, in complex ways, many focus group participants discursively re-negotiated their position on nuclear energy when it was positioned alongside climate change. In the concluding section of the paper, we reflect on the societal implications of the emerging discourse of new nuclear build as a means of delivering climate change mitigation and set an agenda for future research regarding the (re)framing of the nuclear energy debate in the UK and beyond.

  13. Configuration management in nuclear power plants

    CERN Document Server

    2003-01-01

    Configuration management (CM) is the process of identifying and documenting the characteristics of a facility's structures, systems and components of a facility, and of ensuring that changes to these characteristics are properly developed, assessed, approved, issued, implemented, verified, recorded and incorporated into the facility documentation. The need for a CM system is a result of the long term operation of any nuclear power plant. The main challenges are caused particularly by ageing plant technology, plant modifications, the application of new safety and operational requirements, and in general by human factors arising from migration of plant personnel and possible human failures. The IAEA Incident Reporting System (IRS) shows that on average 25% of recorded events could be caused by configuration errors or deficiencies. CM processes correctly applied ensure that the construction, operation, maintenance and testing of a physical facility are in accordance with design requirements as expressed in the d...

  14. Decommissioning at Trawsfynydd nuclear power station

    Energy Technology Data Exchange (ETDEWEB)

    Bindon, F.J.L.

    1997-01-01

    The Trawsfynndd nuclear power station in North Wales was formally closed on July 20th 1993 on economic grounds. Radiation effects in the steel pressure vessels of the two Magnox units required high cost modifications if the reactors were to continue operation. Defuelling of the reactors was completed by August 1995. The Deferred Safestore Strategy has been selected as the decommissioning option. This does not involve any significant active dismantling until about 135 years from shutdown. Three main aspects of the decommissioning are discussed. These are: public consultation which focussed on the socio-economic implications of the reduction in the workforce and the visual impact of the safestore building design which was reduced in height in response to public opinion; technical considerations relating to waste management and electrical plant decommissioning; the conversion of the reactor buildings to provide safe storage for activated and contaminated material for a long period yet requiring only minimal maintenance. (UK).

  15. Seismic analysis of nuclear power plant structures

    Science.gov (United States)

    Go, J. C.

    1973-01-01

    Primary structures for nuclear power plants are designed to resist expected earthquakes of the site. Two intensities are referred to as Operating Basis Earthquake and Design Basis Earthquake. These structures are required to accommodate these seismic loadings without loss of their functional integrity. Thus, no plastic yield is allowed. The application of NASTRAN in analyzing some of these seismic induced structural dynamic problems is described. NASTRAN, with some modifications, can be used to analyze most structures that are subjected to seismic loads. A brief review of the formulation of seismic-induced structural dynamics is also presented. Two typical structural problems were selected to illustrate the application of the various methods of seismic structural analysis by the NASTRAN system.

  16. Nuclear power's mysterious afterlife

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1991-10-10

    As the number of nuclear reactors which have reached the end of their service life or will do so by the end of the 1990s grows, nuclear power plant decommissioning is becoming a major issue. A table shows more than thirty reactors in Germany, France, Italy, Spain and the UK are candidates for decommissioning. Definite plans and cost estimates are being demanded of the plant owners. However it is becoming clear that even the USA, which has the greatest decommissioning experience, has not had to deal with the large reactors which now have to be dealt with. The experience and progress of decommissioning in the UK, France, Germany and the rest of Europe is reviewed. Problems of disposing of the mainly low-level radio-active wastes generated by decommissioning are discussed. The estimation of costs has become complicated by the idea of discounting costs which means relatively small sums set aside now will be sufficient to pay for the decommissioning in the decades to come. (UK).

  17. Emotional consequences of nuclear power plant disasters.

    Science.gov (United States)

    Bromet, Evelyn J

    2014-02-01

    The emotional consequences of nuclear power plant disasters include depression, anxiety, post-traumatic stress disorder, and medically unexplained somatic symptoms. These effects are often long term and associated with fears about developing cancer. Research on disasters involving radiation, particularly evidence from Chernobyl, indicates that mothers of young children and cleanup workers are the highest risk groups. The emotional consequences occur independently of the actual exposure received. In contrast, studies of children raised in the shadows of the Three Mile Island (TMI) and Chernobyl accidents suggest that although their self-rated health is less satisfactory than that of their peers, their emotional, academic, and psychosocial development is comparable. The importance of the psychological impact is underscored by its chronicity and by several studies showing that poor mental health is associated with physical health conditions, early mortality, disability, and overuse of medical services. Given the established increase in mental health problems following TMI and Chernobyl, it is likely that the same pattern will occur in residents and evacuees affected by the Fukushima meltdowns. Preliminary data from Fukushima indeed suggest that workers and mothers of young children are at risk of depression, anxiety, psychosomatic, and post-traumatic symptoms both as a direct result of their fears about radiation exposure and an indirect result of societal stigma. Thus, it is important that non-mental health providers learn to recognize and manage psychological symptoms and that medical programs be designed to reduce stigma and alleviate psychological suffering by integrating psychiatric and medical treatment within the walls of their clinics.Introduction of Emotional Consequences of Nuclear Power Plant Disasters (Video 2:15, http://links.lww.com/HP/A34).

  18. Nuclear Power and Sustainable Energy Policy : Promises and Perils

    OpenAIRE

    Kessides, Ioannis N.

    2010-01-01

    The author examines the challenges and opportunities of nuclear power in meeting the projected large absolute increase in energy demand, especially electricity, throughout the industrialized and developing world, while helping to mitigate the threat of climate change. A significant global nuclear power deployment would engender serious risks related to proliferation, safety, and waste disposal. Unlike renewable sources of energy, nuclear power is an unforgiving technology because human lapses...

  19. Nuclear Power and Sustainable Energy Policy: Promises and Perils

    OpenAIRE

    Kessides, Ioannis N.

    2010-01-01

    The author examines the challenges and opportunities of nuclear power in meeting the projected large absolute increase in energy demand, especially electricity, throughout the industrialized and developing world, while helping to mitigate the threat of climate change. A significant global nuclear power deployment would engender serious risks related to proliferation, safety, and waste disposal. Unlike renewable sources of energy, nuclear power is an unforgiving technology because human lapses...

  20. Future NASA mission applications of space nuclear power

    Science.gov (United States)

    Bennett, Gary L.; Mankins, John; Mcconnell, Dudley G.; Reck, Gregory M.

    1990-01-01

    Recent studies sponsored by NASA show a continuing need for space nuclear power. A recently completed study considered missions (such as a Jovian grand tour, a Uranus or Neptune orbiter and probe, and a Pluto flyby) that can only be done with nuclear power. There are also studies for missions beyond the outer boundaries of the solar system at distances of 100 to 1000 astronomical units. The NASA 90-day study on the Space Exploration Initiative identified a need for nuclear reactors to power lunar surface bases and radioisotope power sources for use in lunar or Martian rovers, as well as considering options for advanced, nuclear propulsion systems for human missions to Mars.

  1. Nuclear power systems for lunar and Mars exploration

    Science.gov (United States)

    Sovie, R. J.; Bozek, J. M.

    1990-01-01

    Initial studies of a variety of mission scenarios for the new Space Exploration Initiative, and the technologies necessary to enable or significantly enhance them, have identified the development of advanced space power systems whether solar, chemical or nuclear to be of prime importance. Lightweight, compact, reliable power systems for planetary rovers and a variety of surface vehicles, utility surface power, and power for advanced propulsion systems have been identified as critical needs for these missions. These mission scenarios, the concomitant power system requirements, and the power system options considered are discussed. The significant potential benefits of nuclear power are identified for meeting the power needs of the above applications.

  2. Nuclear power in human medicine; Kernenergie in der Humanmedizin

    Energy Technology Data Exchange (ETDEWEB)

    Kuczera, Bernhard

    2012-01-15

    The public widely associate nuclear power with the megawatt dimensions of nuclear power plants in which nuclear power is released and used for electricity production. While this use of nuclear power for electricity generation is rejected by part of the population adopting the polemic attitude of ''opting out of nuclear,'' the application of nuclear power in medicine is generally accepted. The appreciative, positive term used in this case is nuclear medicine. Both areas, nuclear medicine and environmentally friendly nuclear electricity production, can be traced back to one common origin, i.e. the ''Atoms for Peace'' speech by U.S. President Eisenhower to the U.N. Plenary Assembly on December 8, 1953. The methods of examination and treatment in nuclear medicine are illustrated in a few examples from the perspective of a nuclear engineer. Nuclear medicine is a medical discipline dealing with the use of radionuclides in humans for medical purposes. This is based on 2 principles, namely that the human organism is unable to distinguish among different isotopes in metabolic processes, and the radioactive substances are employed in amounts so small that metabolic processes will not be influenced. As in classical medicine, the application of these principles serves two complementary purposes: diagnosis and therapy. (orig.)

  3. Human Factors in Nuclear Power Engineering in Polish Conditions

    Directory of Open Access Journals (Sweden)

    Agnieszka Kaczmarek-Kacprzak

    2014-09-01

    Full Text Available The paper “Human factors in nuclear power engineering in Polish conditions” focuses on analysis of dynamics of preparing Polish society to build fi rst nuclear power plant in XXI century in Poland. Authors compare experience from constructing nuclear power plant Sizewell B (Great Britain and Sizewell C, which is in preparation phase with polish nuclear power program. Paper includes aspects e.g. of creating nuclear safety culture and social opinion about investment. Human factors in nuclear power engineering are as well important as relevant economical and technical factors, but very often negligible. In Poland where history about Czarnobyl is still alive, and social opinion is created on emotions after accident in Fukushima, human factors are crucial and should be under comprehensive consideration.

  4. Knowledge of and Attitude to Nuclear Power among Residents around Tianwan Nuclear Power Plant in Jiangsu of China

    OpenAIRE

    Yu, Ningle; Zhang, Yimei; Wang, Jin; Cao, Xingjiang; Fan, Xiangyong; Xu, Xiaosan; Wang, Furu

    2012-01-01

    Aims: The aims of this paper were to determine the level of knowledge of and attitude to nuclear power among residents around Tianwan Nuclear power plant in Jiangsu of China. Design: A descriptive, cross-sectional design was adopted. Participants: 1,616 eligible participants who lived around the Tianwan nuclear power plant within a radius of 30km and at least 18 years old were recruited into our study and accepted epidemiological survey. Methods: Data were collected through self-administered ...

  5. [Risk communication in construction of new nuclear power plant].

    Science.gov (United States)

    He, Gui-Zhen; Lü, Yong-Long

    2013-03-01

    Accompanied by construction of new nuclear power plants in the coming decades in China, risk management has become increasingly politicized and contentious. Nuclear risk communication is a critical component in helping individuals prepare for, respond to, and recover from nuclear power emergencies. It was discussed that awareness of trust and public attitudes are important determinants in nuclear power risk communication and management. However, there is limited knowledge about how to best communicate with at-risk populations around nuclear power plant in China. To bridge this gap, this study presented the attitudinal data from a field survey in under-building Haiyang nuclear power plant, Shandong Province to measure public support for and opposition to the local construction of nuclear power plant. The paper discussed the structure of the communication process from a descriptive point of view, recognizing the importance of trust and understanding the information openness. The results showed that decision-making on nuclear power was dominated by a closed "iron nuclear triangle" of national governmental agencies, state-owned nuclear enterprises and scientific experts. Public participation and public access to information on nuclear constructions and assessments have been marginal and media was a key information source. As information on nuclear power and related risks is very restricted in China, Chinese citizens (51%) tend to choose the government as the most trustworthy source. More respondents took the negative attitudes toward nuclear power plant construction around home. It drew on studies about risk communication to develop some guidelines for successful risk communication. The conclusions have vast implications for how we approach risk management in the future. The findings should be of interest to state and local emergency managers, community-based organizations, public health researchers, and policy makers.

  6. Nuclear Systems (NS): Kilopower Small Fission Power Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nuclear power systems enable human and robotic exploration missions to solar system locations where other power system alternatives are infeasible,...

  7. Nuclear power and nuclear safety 2003 (in Danish); Kernekraft og nuklear sikkerhed 2003

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L. (eds.)

    2004-03-01

    The report, 'Kernekraft og nuklear sikkerhed 2003' (Nuclear power and nuclear safe-ty 2003) is the first report in a new series of annual reports on the international devel-opment of nuclear power production, with special emphasis on safety issues and nu-clear emergency preparedness. The report series is written in collaboration between Risoe National Laboratory and the Danish Emergency Management Agency and re-places the previous series, 'International kernekraftstatus' (International Nuclear Po-wer Status). The report for 2003 covers the following topics: status of nuclear power production and regional trends, development of reactors and emergency management systems, safety-related events with nuclear power production, and international rela-tions and conflicts. (au)

  8. Fukushima nuclear power plant accident was preventable

    Science.gov (United States)

    Kanoglu, Utku; Synolakis, Costas

    2015-04-01

    On 11 March 2011, the fourth largest earthquake in recorded history triggered a large tsunami, which will probably be remembered from the dramatic live pictures in a country, which is possibly the most tsunami-prepared in the world. The earthquake and tsunami caused a major nuclear power plant (NPP) accident at the Fukushima Dai-ichi, owned by Tokyo Electric Power Company (TEPCO). The accident was likely more severe than the 1979 Three Mile Island and less severe than the Chernobyl 1986 accidents. Yet, after the 26 December 2004 Indian Ocean tsunami had hit the Madras Atomic Power Station there had been renewed interest in the resilience of NPPs to tsunamis. The 11 March 2011 tsunami hit the Onagawa, Fukushima Dai-ichi, Fukushima Dai-ni, and Tokai Dai-ni NPPs, all located approximately in a 230km stretch along the east coast of Honshu. The Onagawa NPP was the closest to the source and was hit by an approximately height of 13m tsunami, of the same height as the one that hit the Fukushima Dai-ichi. Even though the Onagawa site also subsided by 1m, the tsunami did not reach to the main critical facilities. As the International Atomic Energy Agency put it, the Onagawa NPP survived the event "remarkably undamaged." At Fukushima Dai-ichi, the three reactors in operation were shut down due to strong ground shaking. The earthquake damaged all offsite electric transmission facilities. Emergency diesel generators (EDGs) provided back up power and started cooling down the reactors. However, the tsunami flooded the facilities damaging 12 of its 13 EDGs and caused a blackout. Among the consequences were hydrogen explosions that released radioactive material in the environment. It is unfortunately clear that TEPCO and Japan's principal regulator Nuclear and Industrial Safety Agency (NISA) had failed in providing a professional hazard analysis for the plant, even though their last assessment had taken place only months before the accident. The main reasons are the following. One

  9. Inspection of Nuclear Power Plant Containment Structures

    Energy Technology Data Exchange (ETDEWEB)

    Graves, H.L.; Naus, D.J.; Norris, W.E.

    1998-12-01

    Safety-related nuclear power plant (NPP) structures are designed to withstand loadings from a number of low-probability external and interval events, such as earthquakes, tornadoes, and loss-of-coolant accidents. Loadings incurred during normal plant operation therefore generally are not significant enough to cause appreciable degradation. However, these structures are susceptible to aging by various processes depending on the operating environment and service conditions. The effects of these processes may accumulate within these structures over time to cause failure under design conditions, or lead to costly repair. In the late 1980s and early 1990s several occurrences of degradation of NPP structures were discovered at various facilities (e.g., corrosion of pressure boundary components, freeze- thaw damage of concrete, and larger than anticipated loss of prestressing force). Despite these degradation occurrences and a trend for an increasing rate of occurrence, in-service inspection of the safety-related structures continued to be performed in a somewhat cursory manner. Starting in 1991, the U.S. Nuclear Regulatory Commission (USNRC) published the first of several new requirements to help ensure that adequate in-service inspection of these structures is performed. Current regulatory in-service inspection requirements are reviewed and a summary of degradation experience presented. Nondestructive examination techniques commonly used to inspect the NPP steel and concrete structures to identify and quantify the amount of damage present are reviewed. Finally, areas where nondestructive evaluation techniques require development (i.e., inaccessible portions of the containment pressure boundary, and thick heavily reinforced concrete sections are discussed.

  10. Integrated safety assessment of Indian nuclear power plants for ...

    Indian Academy of Sciences (India)

    Abstract. Nuclear energy professionals need to understand and address the catas- trophe syndrome that of late seems to be increasingly at work in public mind in the context of nuclear energy. Classically the nuclear power reactor design and system evolution has been based on the logic of minimization of risk to an ...

  11. The Mighty Atom? The Development of Nuclear Power Technology

    Science.gov (United States)

    Harris, Frank

    2014-01-01

    The use of nuclear energy for the generation of electricity started in the 1950s and was viewed, at the time, as a source of virtually free power. Development flourished and some countries adopted the nuclear option as their principal source for producing electrical energy. However, a series of nuclear incidents and concern about the treatment of…

  12. Nuclear power - up and down like a yoyo

    Energy Technology Data Exchange (ETDEWEB)

    Pilarski, J.; Hellman, C.

    1984-01-01

    The following questions were answered. What are some of the more significant factors affecting nuclear power's failure in the marketplace. What accounts for the gap between the design and performance of nuclear plants. Has the nuclear industry exhibited learning during its years of operating nuclear plants. The yoyo factor is a new analysis, taking capacity factor one step further. What is its economic impact and how can it be used to judge a plant's performance. What was discovered when the cost of nuclear and coal plants were compared. Does the present analysis take into account the social risks of using coal. Doesn't coal also have scaling problems like nuclear power. What about the industry's charge that the cost of nuclear power is so excessive because of licensing regulations. Time taken to license and to construct and the capacity of specific plants are discussed.

  13. International nuclear power status 2000; International kernekraftstatus 2000

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, B.; Majborn, B.; Nonboel, E.; Oelgaard, P.L. [eds.

    2001-03-01

    This report is the seventh in a series of annual reports on the international development of nuclear power with special emphasis on reactor safety. For 2000, the report contains: 1. General trends in the development of nuclear power. 2. Deposition of low-level radioactive waste. 3. Statistical information on nuclear power production (in 1999). 4. An overview of safety-relevant incidents in 2000. 5. The development in Sweden. 6. The development in Eastern Europe. 7. The development in the rest of the world. 8. Trends in the development of reactor types. 9. Trends in the development of the nuclear fuel cycle. (au)

  14. Nuclear Power and the Environment--Questions and Answers.

    Science.gov (United States)

    Campana, Robert J.; Langer, Sidney

    This booklet has been developed to help the layman understand and evaluate the various efforts being undertaken to utilize nuclear power for the benefit of mankind. The question and answer format is utilized. Among the topics discussed are: Our Needs for Electricity; Sources of Radiation; Radiation from Nuclear Power Plants; Biological Effects of…

  15. From the first nuclear power plant to fourth-generation nuclear power installations [on the 60th anniversary of the World's First nuclear power plant

    Science.gov (United States)

    Rachkov, V. I.; Kalyakin, S. G.; Kukharchuk, O. F.; Orlov, Yu. I.; Sorokin, A. P.

    2014-05-01

    Successful commissioning in the 1954 of the World's First nuclear power plant constructed at the Institute for Physics and Power Engineering (IPPE) in Obninsk signaled a turn from military programs to peaceful utilization of atomic energy. Up to the decommissioning of this plant, the AM reactor served as one of the main reactor bases on which neutron-physical investigations and investigations in solid state physics were carried out, fuel rods and electricity generating channels were tested, and isotope products were bred. The plant served as a center for training Soviet and foreign specialists on nuclear power plants, the personnel of the Lenin nuclear-powered icebreaker, and others. The IPPE development history is linked with the names of I.V. Kurchatov, A.I. Leipunskii, D.I. Blokhintsev, A.P. Aleksandrov, and E.P. Slavskii. More than 120 projects of various nuclear power installations were developed under the scientific leadership of the IPPE for submarine, terrestrial, and space applications, including two water-cooled power units at the Beloyarsk NPP in Ural, the Bilibino nuclear cogeneration station in Chukotka, crawler-mounted transportable TES-3 power station, the BN-350 reactor in Kazakhstan, and the BN-600 power unit at the Beloyarsk NPP. Owing to efforts taken on implementing the program for developing fast-neutron reactors, Russia occupied leading positions around the world in this field. All this time, IPPE specialists worked on elaborating the principles of energy supertechnologies of the 21st century. New large experimental installations have been put in operation, including the nuclear-laser setup B, the EGP-15 accelerator, the large physical setup BFS, the high-pressure setup SVD-2; scientific, engineering, and technological schools have been established in the field of high- and intermediate-energy nuclear physics, electrostatic accelerators of multicharge ions, plasma processes in thermionic converters and nuclear-pumped lasers, physics of compact

  16. Operating experience with nuclear power plants 2015. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2016-07-01

    The VGB Technical Committee ''Nuclear Plant Operation'' has been exchanging operating experience about nuclear power plants for more than 30 years. Plant operators from several European countries are participating in the exchange. A report is given on the operating results achieved in 2015, events important to plant safety, special and relevant repair, and retrofit measures from Germany. The second part of this report will focus on nuclear power plant in Belgium, Finland, the Netherlands, Switzerland, and Spain.

  17. INTEGRATED DIAGNOSTIC TECHNIQUE FOR NUCLEAR POWER PLANTS

    Directory of Open Access Journals (Sweden)

    AKIO GOFUKU

    2014-12-01

    Full Text Available It is very important to detect and identify small anomalies and component failures for the safe operation of complex and large-scale artifacts such as nuclear power plants. Each diagnostic technique has its own advantages and limitations. These facts inspire us not only to enhance the capability of diagnostic techniques but also to integrate the results of diagnostic subsystems in order to obtain more accurate diagnostic results. The article describes the outline of four diagnostic techniques developed for the condition monitoring of the fast breeder reactor “Monju”. The techniques are (1 estimation technique of important state variables based on a physical model of the component, (2 a state identification technique by non-linear discrimination function applying SVM (Support Vector Machine, (3 a diagnostic technique applying WT (Wavelet Transformation to detect changes in the characteristics of measurement signals, and (4 a state identification technique effectively using past cases. In addition, a hybrid diagnostic system in which a final diagnostic result is given by integrating the results from subsystems is introduced, where two sets of values called confidence values and trust values are used. A technique to determine the trust value is investigated under the condition that the confidence value is determined by each subsystem.

  18. Proliferation risks from nuclear power infrastructure

    Science.gov (United States)

    Squassoni, Sharon

    2017-11-01

    Certain elements of nuclear energy infrastructure are inherently dual-use, which makes the promotion of nuclear energy fraught with uncertainty. Are current restraints on the materials, equipment, and technology that can be used either to produce fuel for nuclear electricity generation or material for nuclear explosive devices adequate? Technology controls, supply side restrictions, and fuel market assurances have been used to dissuade countries from developing sensitive technologies but the lack of legal restrictions is a continued barrier to permanent reduction of nuclear proliferation risks.

  19. Applications of Neutron Radiography for the Nuclear Power Industry

    Science.gov (United States)

    Craft, Aaron E.; Barton, John P.

    The World Conference on Neutron Radiography (WCNR) and International Topical Meeting on Neutron Radiography (ITMNR) series have been running over 35 years. The most recent event, ITMNR-8, focused on industrial applications and was the first time this series was hosted in China. In China, more than twenty new nuclear power plants are under construction and plans have been announced to increase the nuclear capacity by a factor of three within fifteen years. There are additional prospects in many other nations. Neutron tests were vital during previous developments of materials and components for nuclear power applications, as reported in the WCNR and ITMNR conference series. For example a majority of the 140 papers in the Proceedings of the First WCNR are for the benefit of the nuclear power industry. Many of those techniques are being utilized and advanced to the present time. Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Applications include examination of nuclear waste, nuclear fuels, cladding, control elements, and other critical components. In this paper, applications of neutron radiography techniques developed and applied internationally for the nuclear power industry since the earliest years are reviewed, and the question is asked whether neutron test techniques, in general, can be of value in development of the present and future generations of nuclear power plants world-wide.

  20. Applications of neutron radiography for the nuclear power industry

    Energy Technology Data Exchange (ETDEWEB)

    Craft, Aaron E.; Barton, John P.

    2016-11-01

    The World Conference on Neutron Radiography (WCNR) and International Topical Meeting on Neutron Radiography (ITMNR) series have been running over 35 years. The most recent event, ITMNR-8, focused on industrial applications and was the first time this series was hosted in China. In China, more than twenty new nuclear power plants are in construction and plans have been announced to increase the nuclear capacity further by a factor of three within fifteen years. There are additional prospects in many other nations. Neutron tests were vital during previous developments of materials and components for nuclear power applications, as reported in this conference series. For example a majority of the 140 papers in the Proceedings of the First WCNR are for the benefit of the nuclear power industry. Included are reviews of the diverse techniques being applied in Europe, Japan, the United States, and at many other centers. Many of those techniques are being utilized and advanced to the present time. Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Applications include examination of nuclear waste, nuclear fuels, cladding, control elements, and other critical components. In this paper, the techniques developed and applied internationally for the nuclear power industry since the earliest years are reviewed, and the question is asked whether neutron test techniques can be of value in development of the present and future generations of nuclear power plants world-wide.

  1. Nuclear electric power safety, operation, and control aspects

    CERN Document Server

    Knowles, J Brian

    2013-01-01

    Assesses the engineering of renewable sources for commercial power generation and discusses the safety, operation, and control aspects of nuclear electric power From an expert who advised the European Commission and UK government in the aftermath of Three Mile Island and Chernobyl comes a book that contains experienced engineering assessments of the options for replacing the existing, aged, fossil-fired power stations with renewable, gas-fired, or nuclear plants. From geothermal, solar, and wind to tidal and hydro generation, Nuclear Electric Power: Safety, Operation, and Control Aspects ass

  2. Introduction to the neutron kinetics of nuclear power reactors

    CERN Document Server

    Tyror, J G; Grant, P J

    2013-01-01

    An Introduction to the Neutron Kinetics of Nuclear Power Reactors introduces the reader to the neutron kinetics of nuclear power reactors. Topics covered include the neutron physics of reactor kinetics, feedback effects, water-moderated reactors, fast reactors, and methods of plant control. The reactor transients following faults are also discussed, along with the use of computers in the study of power reactor kinetics. This book is comprised of eight chapters and begins with an overview of the reactor physics characteristics of a nuclear power reactor and their influence on system design and

  3. The radiochemistry of nuclear power plants with light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Neeb, K.H.

    1997-12-31

    In this book, radioactivity and the chemical reactions of radionuclides within the different areas of a nucler power plant are discussed. The text concentrates on commercially operated light water reactors which currently represent the greatest fraction by far of the world`s nuclear power capacity. This book is not only intended for experts working in the various fields of radiochemistry in nuclear power plants. It also provides an overview of the topics dealt with for the operators of nuclear power plants, for people working in design and development and safety-related areas, as well as for those working in licensing and supervision. (orig.)

  4. Status of nuclear power programs in South America

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-10-15

    Analysis of nuclear power plants construction in four South American countries - Argentina, Brazil, Chile and Uruguay - is made based on programs set up by government specialized agencies. In Argentina, in a time-span up to 2023, the nuclear power program considers a five-fold increase of the current installed capacity reaching some 5,000 M We. The Brazilian reference scenario will install additional 4,000 M We, up to 2030, to reach a total installed capacity of about 6,000 M We. Other scenarios could bring this total to some 8,000 - 10,000 M We. Chile and Uruguay have started strategic studies to place the nuclear power option in the future energy matrix of the country. The government of Chile set up, in 2007, a Task Group to determine whether nuclear power could be considered a viable option. This Group concluded that nuclear power is a mature, safe competitive, and low carbon emitter technology that could be considered a viable option. A Nuclear Advisory Group was created who made studies to install a nuclear power plant in the 2016-2021 time-span. In December 2008, the Uruguayan Government created a high level Working Group to establish the feasibility conditions for Nuclear Power Generation in the country. (Author)

  5. The outlook for application of powerful nuclear thermionic reactor - powered space electric jet propulsion engines

    Energy Technology Data Exchange (ETDEWEB)

    Semyonov, Y.P.; Bakanov, Y.A.; Synyavsky, V.V.; Yuditsky, V.D. [Rocket-Space Corp. `Energia`, Moscow (Russian Federation)

    1997-12-31

    This paper summarizes main study results for application of powerful space electric jet propulsion unit (EJPUs) which is powered by Nuclear Thermionic Power Unit (NTPU). They are combined in Nuclear Power/Propulsion Unit (NPPU) which serves as means of spacecraft equipment power supply and spacecraft movement. Problems the paper deals with are the following: information satellites delivery and their on-orbit power supply during 10-15 years, removal of especially hazardous nuclear wastes, mining of asteroid resources and others. Evaluations on power/time/mass relationship for this type of mission are given. EJPU parameters are compatible with Russian existent or being under development launch vehicle. (author)

  6. Expanding Science Knowledge: Enabled by Nuclear Power

    Science.gov (United States)

    Clark, Karla B.

    2011-01-01

    The availability of Radioisotope Power Sources (RPSs) power opens up new and exciting mission concepts (1) New trajectories available (2) Power for long term science and operations Astonishing science value associated with these previously non-viable missions

  7. Positioning Nuclear Power in the Low-Carbon Electricity Transition

    Directory of Open Access Journals (Sweden)

    Aviel Verbruggen

    2017-01-01

    Full Text Available Addressing climate change requires de-carbonizing future energy supplies in an increasingly energy-dependent world. The IEA and the IPCC (2014 mention the following as low-carbon energy supply options: ‘renewable energy, nuclear power and fossil fuels with carbon capture and storage’. Positioning nuclear power in the decarbonization transition is a problematic issue and is overridden by ill-conceived axioms. Before probing these axioms, we provide an overview of five major, postwar energy-related legacies and some insight into who is engaged in nuclear activities. We check whether low-carbon nuclear power passes the full sustainability test and whether it is compatible with the unfettered deployment of variable renewable power sourced from the sun and from wind and water currents, which delivers two negative answers. We show that the best approach of the sustainable energy transition was Germany’s 2011 decision to phase out nuclear power for a fast development and full deployment of renewable power. This is the best approach for the sustainable energy transition. We offer five practical suggestions to strengthen and accelerate carbon- and nuclear-free transitions. They are related to institutional issues like the role of cost-benefit analysis and the mission of the International Atomic Energy Agency, to the costs of nuclear risks and catastrophes, and to the historical record of nuclear technology and business.

  8. EMOTIONAL CONSEQUENCES OF NUCLEAR POWER PLANT DISASTERS

    Science.gov (United States)

    Bromet, Evelyn J.

    2014-01-01

    The emotional consequences of nuclear power plant disasters include depression, anxiety, post-traumatic stress disorder, and medically unexplained somatic symptoms. These effects are often long term and associated with fears about developing cancer. Research on disasters involving radiation, particularly evidence from Chernobyl, indicates that mothers of young children and cleanup workers are the highest risk groups. The emotional consequences occur independently of the actual exposure received. In contrast, studies of children raised in the shadows of the Three Mile Island (TMI) and Chernobyl accidents suggest that although their self-rated health is less satisfactory than that of their peers, their emotional, academic, and psychosocial development is comparable. The importance of the psychological impact is underscored by its chronicity and by several studies showing that poor mental health is associated with physical health conditions, early mortality, disability, and over-utilization of medical services. Given the established increase in mental health problems following TMI and Chernobyl, it is likely that the same pattern will occur in residents and evacuees affected by the Fukushima meltdowns. Preliminary data from Fukushima indeed suggest that workers and mothers of young children are at risk of depression, anxiety, psychosomatic, and post-traumatic symptoms both as a direct result of their fears about radiation exposure and an indirect result of societal stigma. Thus, it is important that nonmental health providers learn to recognize and manage psychological symptoms and that medical programs be designed to reduce stigma and alleviate psychological suffering by integrating psychiatric and medical treatment within the walls of their clinics. PMID:24378494

  9. Predictive Trip Detection for Nuclear Power Plants

    Science.gov (United States)

    Rankin, Drew J.; Jiang, Jin

    2016-08-01

    This paper investigates the use of a Kalman filter (KF) to predict, within the shutdown system (SDS) of a nuclear power plant (NPP), whether safety parameter measurements have reached a trip set-point. In addition, least squares (LS) estimation compensates for prediction error due to system-model mismatch. The motivation behind predictive shutdown is to reduce the amount of time between the occurrence of a fault or failure and the time of trip detection, referred to as time-to-trip. These reductions in time-to-trip can ultimately lead to increases in safety and productivity margins. The proposed predictive SDS differs from conventional SDSs in that it compares point-predictions of the measurements, rather than sensor measurements, against trip set-points. The predictive SDS is validated through simulation and experiments for the steam generator water level safety parameter. Performance of the proposed predictive SDS is compared against benchmark conventional SDS with respect to time-to-trip. In addition, this paper analyzes: prediction uncertainty, as well as; the conditions under which it is possible to achieve reduced time-to-trip. Simulation results demonstrate that on average the predictive SDS reduces time-to-trip by an amount of time equal to the length of the prediction horizon and that the distribution of times-to-trip is approximately Gaussian. Experimental results reveal that a reduced time-to-trip can be achieved in a real-world system with unknown system-model mismatch and that the predictive SDS can be implemented with a scan time of under 100ms. Thus, this paper is a proof of concept for KF/LS-based predictive trip detection.

  10. Knowledge of and attitude to nuclear power among residents around Tianwan Nuclear Power Plant in Jiangsu of China.

    Science.gov (United States)

    Yu, Ningle; Zhang, Yimei; Wang, Jin; Cao, Xingjiang; Fan, Xiangyong; Xu, Xiaosan; Wang, Furu

    2012-01-01

    The aims of this paper were to determine the level of knowledge of and attitude to nuclear power among residents around Tianwan Nuclear power plant in Jiangsu of China. A descriptive, cross-sectional design was adopted. 1,616 eligible participants who lived around the Tianwan nuclear power plant within a radius of 30km and at least 18 years old were recruited into our study and accepted epidemiological survey. Data were collected through self-administered questionnaires consisting of a socio-demographic sheet. Inferential statistics, t-test, ANOVA test and multivariate regression analysis were used to compare the differences between each subgroup and correlation analysis was conducted to understand the relationship between different factors and dependent variables. Our investigation found that the level of awareness and acceptance of nuclear power was generally not high. Respondents' gender, age, marital status, residence, educational level, family income and the distance away from the nuclear power plant are important effect factors to the knowledge of and attitude to nuclear power. The public concerns about nuclear energy's impact are widespread. The level of awareness and acceptance of nuclear power needs to be improved urgently.

  11. Effect of nuclear power on CO₂ emission from power plant sector in Iran.

    Science.gov (United States)

    Kargari, Nargess; Mastouri, Reza

    2011-01-01

    It is predicted that demand for electricity in Islamic Republic of Iran will continue to increase dramatically in the future due to the rapid pace of economic development leading to construction of new power plants. At the present time, most of electricity is generated by burning fossil fuels which result in emission of great deal of pollutants and greenhouse gases (GHG) such as SO₂, NOx, and CO₂. The power industry is the largest contributor to these emissions. Due to minimal emission of GHG by renewable and nuclear power plants, they are most suitable replacements for the fossil-fueled power plants. However, the nuclear power plants are more suitable than renewable power plants in providing baseload electricity. The Bushehr Nuclear Power Plant, the only nuclear power plant of Iran, is expected to start operation in 2010. This paper attempts to interpret the role of Bushehr nuclear power plant (BNPP) in CO₂ emission trend of power plant sector in Iran. In order to calculate CO₂ emissions from power plants, National CO₂ coefficients have been used. The National CO₂ emission coefficients are according to different fuels (natural gas, fuels gas, fuel oil). By operating Bushehr Nuclear Power Plant in 2010, nominal capacity of electricity generation in Iran will increase by about 1,000 MW, which increases the electricity generation by almost 7,000 MWh/year (it is calculated according to availability factor and nominal capacity of BNPP). Bushehr Nuclear Power Plant will decrease the CO₂ emission in Iran power sector, by about 3% in 2010.

  12. Nuclear Power from Fission Reactors. An Introduction.

    Science.gov (United States)

    Department of Energy, Washington, DC. Technical Information Center.

    The purpose of this booklet is to provide a basic understanding of nuclear fission energy and different fission reaction concepts. Topics discussed are: energy use and production, current uses of fuels, oil and gas consumption, alternative energy sources, fossil fuel plants, nuclear plants, boiling water and pressurized water reactors, the light…

  13. 75 FR 61779 - R.E. Ginna Nuclear Power Plant, LLC; R.E. Ginna Nuclear Power Plant Environmental Assessment and...

    Science.gov (United States)

    2010-10-06

    ... COMMISSION R.E. Ginna Nuclear Power Plant, LLC; R.E. Ginna Nuclear Power Plant Environmental Assessment and... Operating License No. DPR-18, issued to R.E. Ginna Nuclear Power Plant, LLC (the licensee), for operation of the R.E. Ginna Nuclear Power Plant (Ginna), located in Ontario, New York. In accordance with 10 CFR 51...

  14. Civilian Nuclear Power. A report to the President, 1962

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T. [United States Atomic Energy Commission, Washington, DC (United States)

    1962-11-20

    This overarching report on the role of nuclear power in the U.S. economy was requested by U.S. President John F. Kennedy in March, 1962. The U.S. Atomic Energy Commission was charged with producing the report, gaining input from individuals inside and outside government, including the Department of Interior, the Federal Power Commission, and the National Academy of Sciences Committee on Natural Resources. The study was to identify the objectives, scope, and content of a nuclear power development program in light of prospective energy needs and resources. It should recommend appropriate steps to assure the proper timing of development and construction of nuclear power projects, including the construction of necessary prototypes and continued cooperation between government and industry. There should also be an evaluation of the extent to which the U.S. nuclear power program will further international objectives in the peaceful uses of atomic energy.

  15. Nuclear power and nuclear safety 2010; Kernekraft og nuklear sikkerhed 2010

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, B.; OElgaard, P.L. (eds.); Nonboel, E. (Risoe DTU, Roskilde (Denmark)); Kampmann, D.; Nystrup, P.E. (Beredskabsstyrelsen, Birkeroed (Denmark))

    2011-07-15

    The report is the eighth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2010 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations, and conflicts and the Fukushima accident. (LN)

  16. Nuclear power and nuclear safety 2011; Kernekraft og nuklear sikkerhed 2011

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, B.; OElgaard, P.L. (eds.); Hedemann Jensen, P.; Nonboel, E. (Technical Univ. of Denmark. DTU Risoe Campus, Roskilde (Denmark)); Aage, H.K.; Kampmann, D.; Nystrup, P.E.; Thomsen, J. (Beredskabsstyrelsen, Birkeroed (Denmark))

    2012-07-15

    The report is the ninth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2011 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations and conflicts, and the Fukushima accident. (LN)

  17. Nuclear power and nuclear safety 2012; Kernekraft og nuklear sikkerhed 2012

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, B.; Nonboel, E. (eds.); Oelgaard, P.L. [Technical Univ. of Denmark. DTU Risoe Campus, Roskilde (Denmark); Israelson, C.; Kampmann, D.; Nystrup, P.E.; Thomsen, J. [Beredskabsstyrelsen, Birkeroed (Denmark)

    2013-11-15

    The report is the tenth report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is prepared in collaboration between DTU Nutech and the Danish Emergency Management Agency. The report for 2012 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations and conflicts, and the results of the EU stress test. (LN)

  18. Nuclear power and nuclear safety 2009; Kernekraft og nuklear sikkerhed 2009

    Energy Technology Data Exchange (ETDEWEB)

    Lauritzen, B.; OElgaard, P.L. (eds.); Nonboel, E. (Risoe DTU, Roskilde (Denmark)); Kampmann, D.; Nystrup, P.E.; Thorlaksen, B. (Beredskabsstyrelsen, Birkeroed (Denmark))

    2010-05-15

    The report is the seventh report in a series of annual reports on the international development of nuclear power production, with special emphasis on safety issues and nuclear emergency preparedness. The report is written in collaboration between Risoe DTU and the Danish Emergency Management Agency. The report for 2009 covers the following topics: status of nuclear power production, regional trends, reactor development, safety related events, international relations, conflicts and the European safety directive. (LN)

  19. Managing the Nuclear Fuel Cycle: Policy Implications of Expanding Global Access to Nuclear Power

    Science.gov (United States)

    2010-03-05

    Nucleonics Week, March 5, 2009, p. 1. 15 Nuclear Engineering International, November 2005, p. 37. 16 Uranium Information Centre, The Economics of...Nuclear Power, Briefing Paper 8, January 2006, p. 3. 17 “U.S. Utility Operating Costs, 2008,” Nucleonics Week, December 24, 2009. 18 CRS Report...Point (NY) Submitted 9/30/08 Areva EPR 1 Licensing suspended 12/1/09 Total Units 29 Sources: NRC, Nucleonics Week, Nuclear News, Nuclear Energy

  20. Valuing modular nuclear power plants in finite time decision horizon

    NARCIS (Netherlands)

    S. Jain (Shashi); F Roelofs; C.W. Oosterlee (Cornelis)

    2013-01-01

    htmlabstractSmall and medium sized reactors, SMRs, (according to IAEA, ‘small’ refers to reactors with power less than 300 MWe, and ‘medium’ with power less than 700 MWe) are considered as an attractive option for investment in nuclear power plants. SMRs may benefit from flexibility of investment,

  1. Computer Security for Commercial Nuclear Power Plants - Literature Review for Korea Hydro Nuclear Power Central Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Duran, Felicia Angelica [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Security Systems Analysis Dept.; Waymire, Russell L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Security Systems Analysis Dept.

    2013-10-01

    Sandia National Laboratories (SNL) is providing training and consultation activities on security planning and design for the Korea Hydro and Nuclear Power Central Research Institute (KHNPCRI). As part of this effort, SNL performed a literature review on computer security requirements, guidance and best practices that are applicable to an advanced nuclear power plant. This report documents the review of reports generated by SNL and other organizations [U.S. Nuclear Regulatory Commission, Nuclear Energy Institute, and International Atomic Energy Agency] related to protection of information technology resources, primarily digital controls and computer resources and their data networks. Copies of the key documents have also been provided to KHNP-CRI.

  2. Malaysian public perception towards nuclear power energy-related issues

    Science.gov (United States)

    Misnon, Fauzan Amin; Hu, Yeoh Siong; Rahman, Irman Abd.; Yasir, Muhamad Samudi

    2017-01-01

    Malaysia had considered nuclear energy as an option for future electricity generation during the 9th Malaysia Development Plan. Since 2009, Malaysia had implemented a number of important preparatory steps towards this goal, including the establishment of Nuclear Power Corporation of Malaysia (MNPC) as first Nuclear Energy Programme Implementing Organization (NEPIO) in Malaysia. In light of the establishment of MNPC, the National Nuclear Policy was formulated in 2010 and a new comprehensive nuclear law to replace the existing Atomic Energy Licensing Act (Act 304) is currently in the pipeline. Internationally, public acceptance is generally used to gauge the acceptance of nuclear energy by the public whenever a government decides to engage in nuclear energy. A public survey was conducted in between 14 March 2016 to 10 May 2016 focusing on the Malaysian public acceptance and perception towards the implementation of nuclear energy in Malaysia. The methodology of this research was aim on finding an overview of the general knowledge, public-relation recommendation, perception and acceptance of Malaysian towards the nuclear power development program. The combination of information gathered from this study can be interpreted as an indication of the complexity surrounding the development of nuclear energy and its relationship with the unique background of Malaysian demography. This paper will focus mainly on energy-related section in the survey in comparison with nuclear energy.

  3. Moving Beyond Pretense: Nuclear Power and Nonproliferation

    Science.gov (United States)

    2014-06-01

    to Karl Marx , bestow magical qualities on money, she argues that leaders and na- tional security experts do the same thing to nuclear weapons...France (which tested their first devices in 1952 and 1960, respective- ly), there was little additional fear of breaking the ta- boo on nuclear use in...of operationally usable devices , began in 1945, less than 70 years ago, less than the age of an old man. The fact that there has been no

  4. Limitations of Nuclear Power as a Sustainable Energy Source

    OpenAIRE

    Pearce, Joshua M.

    2012-01-01

    This paper provides a review and analysis of the challenges that nuclear power must overcome in order to be considered sustainable. The results make it clear that not only do innovative technical solutions need to be generated for the fundamental inherent environmental burdens of nuclear energy technology, but the nuclear industry must also address difficult issues of equity both in the present and for future generations. The results show that if the concept of just sustainability&l...

  5. Knowledge of and Attitude to Nuclear Power among Residents around Tianwan Nuclear Power Plant in Jiangsu of China

    OpenAIRE

    Ningle Yu, Yimei Zhang, Jin Wang, Xingjiang Cao, Xiangyong Fan, Xiaosan Xu, Furu Wang

    2012-01-01

    Aims: The aims of this paper were to determine the level of knowledge of and attitude to nuclear power among residents around Tianwan Nuclear power plant in Jiangsu of China.Design: A descriptive, cross-sectional design was adopted.Participants: 1,616 eligible participants who lived around the Tianwan nuclear power plant within a radius of 30km and at least 18 years old were recruited into our study and accepted epidemiological survey.Methods: Data were collected through self-administered que...

  6. Population Exposure Estimates in Proximity to Nuclear Power Plants, Locations

    Data.gov (United States)

    National Aeronautics and Space Administration — The Population Exposure Estimates in Proximity to Nuclear Power Plants, Locations data set combines information from a global data set developed by Declan Butler of...

  7. Construction, Maintenance and Demolition of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Smet, Camiel de [Hilti Corporation, P.O. Box 333, FL-9494 Schaan (Liechtenstein)

    2008-07-01

    Hilti is your reliable partner in nuclear power plant construction, maintenance and demolition worldwide. Professional advice and innovative solutions for virtually every phase of construction and supply technologically leading products and systems to increase your productivity and help to create and maintain safe and lasting plants is offered. The solutions for nuclear power plants construction, maintenance and demolition have been employed with great success in many different countries on a wide variety of projects due in no small way to their worldwide availability. An unbroken, international exchange of experience upholds a permanent innovation process. This assures our customers that they always receive products on the very latest technological standard. This paper is not intended to cover all topics related to nuclear power plants. The idea is more to give a kind of an overview. The paper covers briefly the following topics: safety (corrosion and fire), fastenings, measuring and finally decommissioning of nuclear power plants. (author)

  8. Multilevel Flow Modeling for Nuclear Power Plant Diagnosis

    DEFF Research Database (Denmark)

    Gola, G; Lind, Morten; Thunem, Harald P-J

    2012-01-01

    As complexity and safety requirements of current and future nuclear power plants increase, innovative methods are being investigated to perform accurate and reliable system diagnoses. Detecting malfunctions, identifying their causes and possibly predicting their consequences are major challenges...

  9. Applying Functional Modeling for Accident Management of Nuclear Power Plant

    DEFF Research Database (Denmark)

    Lind, Morten; Zhang, Xinxin

    2014-01-01

    The paper investigate applications of functional modeling for accident management in complex industrial plant with special reference to nuclear power production. Main applications for information sharing among decision makers and decision support are identified. An overview of Multilevel Flow...

  10. KOREAN STUDENTS' BEHAVIORAL CHANGE TOWARD NUCLEAR POWER GENERATION THROUGH EDUCATION

    Directory of Open Access Journals (Sweden)

    EUN OK HAN

    2014-10-01

    Full Text Available As a result of conducting a 45 minute-long seminar on the principles, state of use, advantages, and disadvantages of nuclear power generation for Korean elementary, middle, and high school students, the levels of perception including the necessity (p<0.017, safety (p<0.000, information acquisition (p<0.000, and subjective knowledge (p<0.000, objective knowledge (p<0.000, attitude (p<0.000, and behavior (p<0.000 were all significantly higher. This indicates that education can be effective in promoting widespread social acceptance of nuclear power and its continued use. In order to induce behavior change toward positive judgments on nuclear power generation, it is necessary to focus on attitude improvement while providing the information in all areas related to the perception, knowledge, attitude, and behavior. Here, the positive message on the convenience and the safety of nuclear power generation should be highlighted.

  11. Nuclear Power Programme in India—Past, Present and Future

    Indian Academy of Sciences (India)

    Since India has an elaborate nuclear power programme based on closed fuel cycle, development of skilled nuclear scientists and engineers is an impor- tant aspect, who not only should be ready to take present responsibility but also can dream for a better tomorrow. The special issue brings out this aspect of development ...

  12. Core safety of Indian nuclear power plants (NPPs) under extreme ...

    Indian Academy of Sciences (India)

    Nuclear power is currently the fourth largest source of electricity production in India after thermal, hydro and renewable sources of electricity. Currently, India has 20 nuclear reactors in operation and seven other reactors are under construction. Most of these reactors are indigenously designed and built Heavy Water ...

  13. Reassessing Nuclear Power: The Fallout from Chernobyl. Worldwatch Paper 75.

    Science.gov (United States)

    Flavin, Christopher

    The Chernobyl nuclear plant explosion on April 26, 1986, was the world's most serious nuclear power accident to date. This document examines the accident's impact on the world from a variety of perspectives. The first major section of the book provides a step-by-step account of the accident itself, beginning with the special testing that…

  14. Nuclear Power: The Fifth Horseman. Worldwatch Paper 6.

    Science.gov (United States)

    Hayes, Denis

    This publication is the sixth in a series of papers on global environmental issues. This paper evaluates the future of nuclear power, subjecting it to several tests: (1) economics; (2) safety; (3) adequacy of fuel supplies; (4) environmental impact; and (5) both national and international security. Section headings include: (1) The nuclear fuel…

  15. Operational experience with nuclear power plants. Betriebserfahrungen mit Kernkraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-04-01

    The exchange of experience within the VGB Specialist Committee 'Exchange of Operational Experience' (ABE) (Nuclear Technology) embraces nuclear power stations in the following countries: Germany, Finland, France, The Netherlands, Sweden, Switzerland and Spain. This paper reports on the operating results achieved in 1990, incidents relevant to safety technology, important modifications and annual discharge rates of radioactivity. (orig.).

  16. 76 FR 81994 - UniStar Nuclear Energy; Combined License Application for Calvert Cliffs Nuclear Power Plant, Unit...

    Science.gov (United States)

    2011-12-29

    ... COMMISSION UniStar Nuclear Energy; Combined License Application for Calvert Cliffs Nuclear Power Plant, Unit...), Subpart C of part 52, ``Licenses, Certifications, and Approvals for Nuclear Power Plants.'' This reactor is to be identified as Calvert Cliffs Nuclear Power Plant Unit 3 (CCNPP3) and located at a site in...

  17. 75 FR 69711 - STP Nuclear Operating Company, South Texas Project Nuclear Power Plant, Units 3 and 4; Exemption

    Science.gov (United States)

    2010-11-15

    ...] STP Nuclear Operating Company, South Texas Project Nuclear Power Plant, Units 3 and 4; Exemption 1.0...: 1. RG 1.132, ``Site Investigations for Foundations of Nuclear Power Plants.'' 2. RG 1.138 ``Laboratory Investigations of Soils and Rocks for Engineering Analysis and Design of Nuclear Power Plants...

  18. International nuclear power status 1994; International kernekraftstatus 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hoejerup, C.F.; Majborn, B.; Oelgaard, P.L. [eds.

    1995-02-01

    This report is the first in a planned series of annual reports covering the international development in the field of nuclear power. The report deals with: statistical information on the electricity produced by nuclear power plants; major safety-related incidents in 1994; the development in Sweden, Eastern Europe, and the rest of the world; the trends of development of a number of reactor types; the trends of development in the fuel cycle. (au).

  19. Technical Basis for Flood Protection at Nuclear Power Plants

    Science.gov (United States)

    2015-07-01

    allowed to dry, and any damaged components replaced. Fabric sections, if present, should be inspected for areas weakened by ultraviolet rays . The...ER D C/ CH L SR -1 5- 3 Technical Basis for Flood Protection at Nuclear Power Plants Co as ta l a nd H yd ra ul ic s La bo ra to ry...2015 Technical Basis for Flood Protection at Nuclear Power Plants James R. Leech, Loren L. Wehmeyer, David A. Margo, Landris T. Lee, Aaron R. Byrd

  20. Russian nuclear power plants for marine applications

    Energy Technology Data Exchange (ETDEWEB)

    Reistad, O. [Norwegian Radiation Protection Authority (Norway); Oelgaard, P.L. [Risoe National Lab. (Denmark)

    2006-04-15

    In order to establish a systematic approach for future proliferation and environmental analyses of Russia's marine nuclear reactor systems, this paper summarizes and analyzes the available open-source information on the design properties of reactor systems and nuclear fuels. The most distinctive features of Russian marine reactor development are pointed out, and similarities and differences between Russian military and civilian reactor systems and fuel are discussed. Relevant updated information on all Russian vessels using nuclear propulsion is presented in Annex I. The basic analytic division in this paper follows vessel generations first to third generation; and reactor types PWR and LMC technology. Most of the available information is related to nuclear icebreakers. This information is systematically analyzed in order to identify stages in the development of Russia's civilian naval nuclear reactors. Three different reactor models are discussed: OK-150, OK-900 and KLT-40, together with several versions of these. Concerning military reactors, it is not possible to identify characteristics for the individual reactor models, so the basic division follows vessel generations first to third generation. From the information available, however, it is possible to identify the main lines along which the design of submarines of especially the first and the second generation has been made. The conclusions contain a discussion of possible implications of the results, in addition to suggestions for further work. (au)

  1. Cyber Norms for Civilian Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Spirito, Christopher

    2016-11-01

    The international community agrees that the safe operation of civilian nuclear infrastructure is in every population’s best interest. One challenge each government must address is defining and agreeing to a set of acceptable norms of behavior in cyberspace as they relate to these facilities. The introduction of digital systems and networking technologies into these environments has led to the possibility that control and supporting computer systems are now accessible and exploitable, especially where interconnections to global information and communications technology (ICT) networks exist. The need for norms of behavior in cyberspace includes what is expected of system architects and cyber defenders as well as adversaries who should abide by rules of engagement even while conducting acts that violate national and international laws. The goal of this paper is to offer three behavioral cyber norms to improve the overall security of the ICT and Operational Technology (OT) networks and systems that underlie the operations of nuclear facilities. These norms of behavior will be specifically defined with the goals of reducing the threats associated to the theft of nuclear materials, accidental release of radiation and sabotage of nuclear processes. These norms would also include instances where an unwitting attacker or intelligence collection entity inadvertently makes their way into a nuclear facility network or system and can recognize they are in a protected zone and an approach to ensuring that these zones are not exploitable by bad actors to place their sensitive cyber effect delivery systems.

  2. Global power and Brazilian nuclear decisions

    Energy Technology Data Exchange (ETDEWEB)

    Metri, Paulo, E-mail: pmetri@terra.com.br [Clube de Engenharia, Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Brazilian society declares no intention to development a nuclear artifact. This is on its Constitution. The submarine of nuclear propulsion may be used as a weapon of defense and, therefore, has a peaceful objective. Nationalism must be applied only to benefit the society. Nationalist attention has always been devoted, at various occasions, to the Brazilian nuclear sector. However, since Brazilian society has many needs and the Brazilian government always had numerous energy options, this sector has not been developed as it could be. Other successful applications of nuclear technology, besides electric generation, are not considered here. At present, the country is experiencing a moment of harassment of liberal forces. It is difficult to know if the population understands what is going on, due to the traditional media control. This media belongs to the capital. The rise and the fall of the nationalist strand in a country follow a global tendency and also depend of actions of the international capital. In nationalist periods, more decisions with positive social impact are taken. Therefore, sovereignty is necessary to increase the benefits to society. Unfortunately, the Brazilians deceived by the companies of mass communication and corrupt political leaderships allow the country to be dominated. Even the armed forces had their projects paralyzed. The nuclear sector, as all other, suffers with the low budget and the future is difficult to predict. (author)

  3. Nuclear power plant safety improvement based on hydrogen technologies

    OpenAIRE

    R.Z. Aminov; Yurin, V.E.

    2015-01-01

    An effective application for hydrogen technologies at nuclear power plants is proposed, which improves the plant maneuverability during normal operation, and provides for in-house power supply during the plant blackout. The reliability of the NPP's emergency power supply was assessed probabilistically for the plant blackout conditions with the simultaneous use of an auxiliary full-time operating steam turbine and the emergency power supply system channels with diesel generators. The proposed ...

  4. Emerging Environmental Justice Issues in Nuclear Power and Radioactive Contamination

    Directory of Open Access Journals (Sweden)

    Dean Kyne

    2016-07-01

    Full Text Available Nuclear hazards, linked to both U.S. weapons programs and civilian nuclear power, pose substantial environment justice issues. Nuclear power plant (NPP reactors produce low-level ionizing radiation, high level nuclear waste, and are subject to catastrophic contamination events. Justice concerns include plant locations and the large potentially exposed populations, as well as issues in siting, nuclear safety, and barriers to public participation. Other justice issues relate to extensive contamination in the U.S. nuclear weapons complex, and the mining and processing industries that have supported it. To approach the topic, first we discuss distributional justice issues of NPP sites in the U.S. and related procedural injustices in siting, operation, and emergency preparedness. Then we discuss justice concerns involving the U.S. nuclear weapons complex and the ways that uranium mining, processing, and weapons development have affected those living downwind, including a substantial American Indian population. Next we examine the problem of high-level nuclear waste and the risk implications of the lack of secure long-term storage. The handling and deposition of toxic nuclear wastes pose new transgenerational justice issues of unprecedented duration, in comparison to any other industry. Finally, we discuss the persistent risks of nuclear technologies and renewable energy alternatives.

  5. Problems and prospects of nuclear power plants construction

    OpenAIRE

    Pergamenshhik Boris Klimentyevich

    2014-01-01

    60 years ago, in July 1954 in the city of Obninsk near Moscow the world's first nuclear power plant was commissioned with a capacity of 5 MW. Today more than 430 nuclear units with a total capacity of almost 375000 MW are in operation in dozens of the countries worldwide. 72 electrical power units are currently under construction, 8 of them are located in the Russian Federation. There will be no alternative to nuclear energy in the coming decades. Among the factors contributing to the constru...

  6. Material development for India's nuclear power programme

    Indian Academy of Sciences (India)

    The focus of the materials programme of this centre is to provide materials, processes and processing solutions to the emerging needs of evolving indigenous nuclear energy systems by proactive research and development on a continuing basis. The initial stage of our activities was formulated around three stage Indian ...

  7. Laser applications in nuclear power plants

    Indian Academy of Sciences (India)

    2014-01-09

    Jan 9, 2014 ... This paper reports the state of the art of using a solid-state Nd:YAG laser for material processing applications such as cutting, welding and drilling of several components of operational nuclear reactors in radioactive environment. We have demonstrated several advantages of laserbased material processing ...

  8. Laser applications in nuclear power plants

    Indian Academy of Sciences (India)

    2014-01-09

    Jan 9, 2014 ... Abstract. This paper reports the state of the art of using a solid-state Nd:YAG laser for material processing applications such as cutting, welding and drilling of several components of operational nuclear reactors in radioactive environment. We have demonstrated several advantages of laser- based material ...

  9. Operating experience from Swedish nuclear power plants 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    2004 was somewhat of a record year for the Swedish nuclear power stations. No serious faults occurred, and production exceeded previous record outputs. Total output from the eleven nuclear power units during the year amounted to 75 TWh, which is the largest amount of power ever produced by nuclear power in Sweden. Corresponding figures for earlier years are 59 TWh (2003), 65 TWh (2002) and 69 TWh (2001). An important reason for this excellent result was the very high energy availability. Forsmark 1, for example, exceeded 97 % availability, while Forsmark 2 just reached 97 %. For all the Swedish nuclear power stations as a whole, availability in 2004 amounted to 91 %. In addition to the connection between production and energy availability, there is also a connection with safety. During the year, safety in the Swedish power stations has been high, not only in absolute terms but also in an international perspective. One measure of safety is to be found in the number of accidents, incidents, anomalies or deviations reported to the IAEA on a scale known as the International Nuclear Event Scale (INES). Sweden has undertaken to report all events in accordance with this international system. Three reports were submitted by the Swedish Nuclear Power Inspectorate, which is responsible for national reporting, during the year. None of them had any significance for reactor safety: all were categorised as incidents or minor deviations from the regulations. Summarising, 2004 has been an excellent year for nuclear power safety, which is also reflected by the record electricity production during the year.

  10. Global radioxenon emission inventory based on nuclear power reactor reports.

    Science.gov (United States)

    Kalinowski, Martin B; Tuma, Matthias P

    2009-01-01

    Atmospheric radioactivity is monitored for the verification of the Comprehensive Nuclear-Test-Ban Treaty, with xenon isotopes 131mXe, 133Xe, 133mXe and 135Xe serving as important indicators of nuclear explosions. The treaty-relevant interpretation of atmospheric concentrations of radioxenon is enhanced by quantifying radioxenon emissions released from civilian facilities. This paper presents the first global radioxenon emission inventory for nuclear power plants, based on North American and European emission reports for the years 1995-2005. Estimations were made for all power plant sites for which emission data were unavailable. According to this inventory, a total of 1.3PBq of radioxenon isotopes are released by nuclear power plants as continuous or pulsed emissions in a generic year.

  11. Limitations of Nuclear Power as a Sustainable Energy Source

    Directory of Open Access Journals (Sweden)

    Joshua M. Pearce

    2012-06-01

    Full Text Available This paper provides a review and analysis of the challenges that nuclear power must overcome in order to be considered sustainable. The results make it clear that not only do innovative technical solutions need to be generated for the fundamental inherent environmental burdens of nuclear energy technology, but the nuclear industry must also address difficult issues of equity both in the present and for future generations. The results show that if the concept of just sustainability is applied to the nuclear energy sector a global large-scale sustainable nuclear energy system to replace fossil fuel combustion requires the following: (i a radical improvement in greenhouse gas emissions intensity by improved technology and efficiency through the entire life cycle to prevent energy cannibalism during rapid growth; (ii the elimination of nuclear insecurity to reduce the risks associated with nuclear power so that the free market can indemnify it without substantial public nuclear energy insurance subsidies; (iii the elimination of radioactive waste at the end of life and minimization of environmental impact during mining and operations; and (iv the nuclear industry must regain public trust or face obsolescence as a swarm of renewable energy technologies quickly improve both technical and economic performance.

  12. Nuclear Waste Management, Nuclear Power, and Energy Choices Public Preferences, Perceptions, and Trust

    CERN Document Server

    Greenberg, Michael

    2013-01-01

    Hundreds of studies have investigated public perceptions and preferences about nuclear power, waste management, and technology. However there is clear lack of uniformity in the style, aims and methods applied.  Consequently, the body of results is inconsistent and it is difficult to isolate relevant patterns or interpretations. Nuclear Waste Management, Nuclear Power and Energy Choices: Public Preferences, Perceptions and Trust presents a theoretical base for public reactions then classifies and reviews the large body of surveys carried out over the past decade.   Particular focus is placed on residents within 50 miles US nuclear waste facilities due to the disproportionate presence of nuclear factors in their lives such as the legacy of nuclear waste disposal and job dependency. The motivations and reasons for their views such as fear, attraction to the economic benefits, trust of site managers and federal agencies, cultural views, personal history, and demographic attributes of the people are also conside...

  13. Advanced materials for space nuclear power systems

    Science.gov (United States)

    Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.

    1991-01-01

    The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  14. SEISMIC ISOLATION OF NUCLEAR POWER PLANTS

    Directory of Open Access Journals (Sweden)

    ANDREW S. WHITTAKER

    2014-10-01

    The funding by the United States Nuclear Regulatory Commission of a research project to the Lawrence Berkeley National Laboratory and MCEER/University at Buffalo facilitated the writing of a soon-to-be-published NUREG on seismic isolation. Funding of MCEER by the National Science Foundation led to research products that provide the technical basis for a new section in ASCE Standard 4 on the seismic isolation of safety-related nuclear facilities. The performance expectations identified in the NUREG and ASCE 4 for seismic isolation systems, and superstructures and substructures are described in the paper. Robust numerical models capable of capturing isolator behaviors under extreme loadings, which have been verified and validated following ASME protocols, and implemented in the open source code OpenSees, are introduced.

  15. Power Spectrum Analyses of Nuclear Decay Rates

    CERN Document Server

    Javorsek, D; Lasenby, R N; Lasenby, A N; Buncher, J B; Fischbach, E; Gruenwald, J T; Hoft, A W; Horan, T J; Jenkins, J H; Kerford, J L; Lee, R H; Longman, A; Mattes, J J; Morreale, B L; Morris, D B; Mudry, R N; Newport, J R; O'Keefe, D; Petrelli, M A; Silver, M A; Stewart, C A; Terry, B; 10.1016/j.astropartphys.2010.06.011

    2010-01-01

    We provide the results from a spectral analysis of nuclear decay data displaying annually varying periodic fluctuations. The analyzed data were obtained from three distinct data sets: 32Si and 36Cl decays reported by an experiment performed at the Brookhaven National Laboratory (BNL), 56Mn decay reported by the Children's Nutrition Research Center (CNRC), but also performed at BNL, and 226Ra decay reported by an experiment performed at the Physikalisch-Technische Bundesanstalt (PTB) in Germany. All three data sets exhibit the same primary frequency mode consisting of an annual period. Additional spectral comparisons of the data to local ambient temperature, atmospheric pressure, relative humidity, Earth-Sun distance, and their reciprocals were performed. No common phases were found between the factors investigated and those exhibited by the nuclear decay data. This suggests that either a combination of factors was responsible, or that, if it was a single factor, its effects on the decay rate experiments are n...

  16. Public opinion and nuclear power decision-making

    Energy Technology Data Exchange (ETDEWEB)

    Benson, B.

    1991-08-06

    This document discusses public opinion regarding nuclear power which is particularly difficult to tie down because of five important paradoxes that characterize it: it can be based on sound reason, but also on intense emotion; it is both national and local in perspective; at varying times it has seen nuclear power as both clean'' and dirty''; it believes nuclear power is both economic, and uneconomic; and nuclear power is perceived as having a fairly safe record, but being potentially unsafe. Equally as complex as the process by which public opinion is formed is the process by which it is converted into public policy. The American political system has numerous checks and balances designed to moderate the power of public opinion. A complex series of legislative, judicial, and executive branch hurdles must be cleared before any idea, however popular, can become day-to-day operating reality in government. As a result, major changes in policy or programs are difficult, and we may expect that nuclear power will be no different; radical change in one direction or the other is unlikely. Nevertheless, carefully focused programs could achieve modest progress, and carefully designed public opinion surveys could support such programs.

  17. Public opinion and nuclear power decision-making

    Energy Technology Data Exchange (ETDEWEB)

    Benson, B.

    1991-08-06

    This document discusses public opinion regarding nuclear power which is particularly difficult to tie down because of five important paradoxes that characterize it: it can be based on sound reason, but also on intense emotion; it is both national and local in perspective; at varying times it has seen nuclear power as both ``clean`` and ``dirty``; it believes nuclear power is both economic, and uneconomic; and nuclear power is perceived as having a fairly safe record, but being potentially unsafe. Equally as complex as the process by which public opinion is formed is the process by which it is converted into public policy. The American political system has numerous checks and balances designed to moderate the power of public opinion. A complex series of legislative, judicial, and executive branch hurdles must be cleared before any idea, however popular, can become day-to-day operating reality in government. As a result, major changes in policy or programs are difficult, and we may expect that nuclear power will be no different; radical change in one direction or the other is unlikely. Nevertheless, carefully focused programs could achieve modest progress, and carefully designed public opinion surveys could support such programs.

  18. Power Spectrum Analyses of Nuclear Decay Rates

    OpenAIRE

    Javorsek, D.; Sturrock, P. A.; Lasenby, R. N.; Lasenby, A. N.; Buncher, J. B.; Fischbach, E.; Gruenwald, J. T.; Hoft, A. W.; Horan, T. J.; Jenkins, J. H.; Kerford, J. L.; Lee, R.H.; Longman, A.; Mattes, J. J.; Morreale, B. L.

    2010-01-01

    We provide the results from a spectral analysis of nuclear decay data displaying annually varying periodic fluctuations. The analyzed data were obtained from three distinct data sets: Si-32 and (CI)-C-36 decays reported by an experiment performed at the Brookhaven National Laboratory (BNL), Mn-56 decay reported by the Children's Nutrition Research Center (CNRC), but also performed at BNL, and Ra-226 decay reported...

  19. Assessment of nuclear reactor concepts for low power space applications

    Science.gov (United States)

    Klein, Andrew C.; Gedeon, Stephen R.; Morey, Dennis C.

    1988-01-01

    The results of a preliminary small reactor concepts feasibility and safety evaluation designed to provide a first order validation of the nuclear feasibility and safety of six small reactor concepts are given. These small reactor concepts have potential space applications for missions in the 1 to 20 kWe power output range. It was concluded that low power concepts are available from the U.S. nuclear industry that have the potential for meeting both the operational and launch safety space mission requirements. However, each design has its uncertainties, and further work is required. The reactor concepts must be mated to a power conversion technology that can offer safe and reliable operation.

  20. Economic analysis of nuclear power reactor dissemination to less developed nations with implications for nuclear proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Gustavson, R.L.; Howard, J.S. II

    1979-09-01

    An economic model is applied to the transfer of nuclear-power reactors from industrialized nations to the less developed nations. The model includes demand and supply factors and predicts the success of US nonproliferation positions and policies. It is concluded that economic forces dominate the transfer of power reactors to less developed nations. Our study shows that attempts to either restrict or promote the spread of nuclear-power technology by ignoring natural economic incentives would have only limited effect. If US policy is too restrictive, less developed nations will seek other suppliers and thereby lower US Influence substantially. Allowing less developed nations to develop nuclear-power technology as dictated by economic forces will result in a modest rate of transfer that should comply with nuclear-proliferation objectives.

  1. Advanced materials for space nuclear power systems

    Energy Technology Data Exchange (ETDEWEB)

    Titran, R.H.; Grobstein, T.L. (National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center); Ellis, D.L. (Case Western Reserve Univ., Cleveland, OH (United States))

    1991-01-01

    Research on monolithic refractory metal alloys and on metal matrix composites is being conducted at the NASA Lewis Research Center, Cleveland, Ohio, in support of advanced space power systems. The overall philosophy of the research is to develop and characterize new high-temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites (Gr/Cu) for heat rejection fins, and tungsten fiber reinforced niobium matrix composites (W/NB) for fuel containment and structural supports) considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  2. Micronuclei Frequencies and Nuclear Abnormalities in Oral Exfoliated Cells of Nuclear Power Plant Workers

    OpenAIRE

    Sagari, Shitalkumar G; Babannavar, Roopa; Lohra, Abhishek; Kodgi, Ashwin; Bapure, Sunil; Rao, Yogesh; J., Arun; Malghan, Manjunath

    2014-01-01

    Aim: Biomonitoring provides a useful tool to estimate the genetic risk from exposure to genotoxic agents. The aim of this study was to evaluate the frequencies of Micronuclei (MN) and other Nuclear abnormalities (NA) from exfoliated oral mucosal cells in Nuclear Power Station (NPS) workers.

  3. Nuclear power: key to man's extraterrestrial civilization

    Energy Technology Data Exchange (ETDEWEB)

    Angelo, J.A. Jr.; Buden, D.

    1982-01-01

    The start of the Third Millennium will be highlighted by the establishment of man's extraterrestrial civilization with three technical cornerstones leading to the off-planet expansion of the human resource base. These are (1) the availability of compact energy sources for power and propulsion, (2) the creation of permanent manned habitats in space, and (3) the ability to process materials anywhere in the Solar System. In the 1990s and beyond, nuclear reactors could represent the prime source of both space power and propulsion. The manned and unmanned space missions of tomorrow will demand first kilowatt and then megawatt levels of power. Various nuclear power plant technologies will be discussed, with emphasis on derivatives from the nuclear rocket technology.

  4. Multimegawatt nuclear power system for lunar base applications

    Science.gov (United States)

    Trueblood, B.; Pressentin, R.; Bruckner, A. P.; Hertzberg, A.

    1987-01-01

    A multimegawatt nuclear power system for lunar surface applications is presented. The design requirements were to produce 3 MWe on the Moon for an operational lifetime of 10 years without human intervention. The system uses an inert-gas-cooled fuel pin reactor as the heat source, a regenerative Brayton cycle as the power converter and a liquid droplet radiator as the thermal management system, and has a specific power of 66 W/kg.

  5. Design Concept for a Nuclear Reactor-Powered Mars Rover

    Science.gov (United States)

    Elliott, John; Poston, Dave; Lipinski, Ron

    2007-01-01

    A report presents a design concept for an instrumented robotic vehicle (rover) to be used on a future mission of exploration of the planet Mars. The design incorporates a nuclear fission power system to provide long range, long life, and high power capabilities unachievable through the use of alternative solar or radioisotope power systems. The concept described in the report draws on previous rover designs developed for the 2009 Mars Science laboratory (MSL) mission to minimize the need for new technology developments.

  6. Converting Maturing Nuclear Sites to Integrated Power Production Islands

    Directory of Open Access Journals (Sweden)

    Charles W. Solbrig

    2011-01-01

    plutonium. A nuclear island, an evolution of the integral fast reactor, utilizes all the Transuranics (Pu plus minor actinides produced in power production, and it eliminates all spent fuel shipments to and from the site. This latter attribute requires that fuel reprocessing occur on each site and that fast reactors be built on-site to utilize the TRU. All commercial spent fuel shipments could be eliminated by converting all LWR nuclear power sites to nuclear islands. Existing LWR sites have the added advantage of already possessing a license to produce nuclear power. Each could contribute to an increase in the nuclear power production by adding one or more fast reactors. Both the TRU and the depleted uranium obtained in reprocessing would be used on-site for fast fuel manufacture. Only fission products would be shipped to a repository for storage. The nuclear island concept could be used to alleviate the strain of LWR plant sites currently approaching or exceeding their spent fuel pool storage capacity. Fast reactor breeding ratio could be designed to convert existing sites to all fast reactors, or keep the majority thermal.

  7. New reactor technology: safety improvements in nuclear power systems.

    Science.gov (United States)

    Corradini, M L

    2007-11-01

    Almost 450 nuclear power plants are currently operating throughout the world and supplying about 17% of the world's electricity. These plants perform safely, reliably, and have no free-release of byproducts to the environment. Given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power can only satisfy the need for electricity and other energy-intensive products if it can demonstrate (1) enhanced safety and system reliability, (2) minimal environmental impact via sustainable system designs, and (3) competitive economics. The U.S. Department of Energy with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market by 2030 or earlier, and that can offer significant advances toward these challenging goals; in particular, six candidate reactor system designs have been identified. These future nuclear power systems will require advances in materials, reactor physics, as well as thermal-hydraulics to realize their full potential. However, all of these designs must demonstrate enhanced safety above and beyond current light water reactor systems if the next generation of nuclear power plants is to grow in number far beyond the current population. This paper reviews the advanced Generation-IV reactor systems and the key safety phenomena that must be considered to guarantee that enhanced safety can be assured in future nuclear reactor systems.

  8. Tecnatom support to new nuclear power plant projects

    Energy Technology Data Exchange (ETDEWEB)

    Manrique, A. B. [TECNATOM, S. A., Av. Montes de Oca 1, 28709 San Sebastian de los Reyes, Madrid (Spain)], e-mail: amanrique@tecnatom.es

    2009-10-15

    Tecnatom is a Spanish engineering company with more than 50 years of experience working for the nuclear industry all over the world. It has worked in over 30 countries in activities related to the operation and maintenance of nuclear power plants. Along this half century of history. Tecnatom has been providing its services to nuclear utilities, regulators, NPP vendors, NPP owners / operators and nuclear fuel manufacturers not only in Spain but also abroad. It started to work in the design of new nuclear power plants in the early 90 s and since then has continued collaborating with different suppliers in the design and licensing of new reactors especially in the areas of plant systems design, man-machine interface design, main control room simulators building, training, qualification of equipment and PSI/ISI engineering services. Some challenges to the reactivation of nuclear power plants construction are common worldwide, including: regulatory processes, workforce availability, construction project management, etc. Being some keys to success the following: apply qualified resources, enough resources for early planning, project leadership, organization and integration, establish a strong integrated management team. The goal of this paper is to inform regarding the capabilities of Tecnatom in the construction of new power plants. (Author)

  9. A Conceptual Study on the Sustainability of Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Won Il; Kwon, Eun Ha; Choi, Hang Bok; Lim, Chae Young; Yoon, Ji Sup; Park, Seong Won

    2007-06-15

    Due to the current population growth and industrialization, energy consumption is increasing continuously. The world population and energy consumption were 2.5 billion and 1.5 billion tons of equivalent oil in 1950, but they are expected to be 9.2 billion and 60 tons, respectively, in 2100. This amount of energy consumption will result in an exhaustion of fossil resources and cause a serious environmental problem such as global warming. Therefore it is necessary to develop sustainable energy resources that maintain current economic growth and social welfare level without burdening a next generation's life style. Nuclear energy has an excellent competitiveness from the viewpoint of a sustainability. Especially nuclear power can effectively reduce greenhouse gas emissions and can be developed in a complementary way with a new and renewable energy, such as solar and wind power, and hydrogen energy. It is expected that nuclear power will maintain its sustainability in the following directions: Implementation of a fast reactor fuel cycle with a high uranium utilization efficiency, Implementation of a pyro-process with an excellent proliferation-resistance, Activity on the enhancement of a domestic social acceptance for nuclear power, International cooperation and joint research for the enhancement of an international nuclear transparency, Optimization of a nuclear grid structure through an accommodation of new and renewable energy resources, Application to a mass production of hydrogen energy.

  10. 77 FR 30030 - Monitoring the Effectiveness of Maintenance at Nuclear Power Plants

    Science.gov (United States)

    2012-05-21

    ... COMMISSION Monitoring the Effectiveness of Maintenance at Nuclear Power Plants AGENCY: Nuclear Regulatory... Maintenance at Nuclear Power Plants.'' This guide endorses Revision 4A to Nuclear Management and Resources... Effectiveness of Maintenance at Nuclear Power Plants,'' Part 50, ``Domestic Licensing of Production and...

  11. A Program for Cultivating Nuclear Talent at Engineering Educational Institute in a Remote Area from Nuclear Power Plants

    Science.gov (United States)

    Takahashi, Tsuyoshi

    Recently, in Japan, the number of students who hope for finding employment at the nuclear power company has decreased as students‧ concern for the nuclear power industry decreases. To improve the situation, Ministry of Education, Culture, Sports, Science and Technology launched the program of cultivating talent for nuclear power which supports research and education of nuclear power in the academic year of 2007. Supported by the program, Kushiro College of Technology conducted several activities concerning nuclear power for about a year. The students came to be interested in nuclear engineering through these activities and its results.

  12. HIGH TEMPERATURE, HIGH POWER HETEROGENEOUS NUCLEAR REACTOR

    Science.gov (United States)

    Hammond, R.P.; Wykoff, W.R.; Busey, H.M.

    1960-06-14

    A heterogeneous nuclear reactor is designed comprising a stationary housing and a rotatable annular core being supported for rotation about a vertical axis in the housing, the core containing a plurality of radial fuel- element supporting channels, the cylindrical empty space along the axis of the core providing a central plenum for the disposal of spent fuel elements, the core cross section outer periphery being vertically gradated in radius one end from the other to provide a coolant duct between the core and the housing, and means for inserting fresh fuel elements in the supporting channels under pressure and while the reactor is in operation.

  13. Insights into the Societal Risk of Nuclear Power Plant Accidents.

    Science.gov (United States)

    Denning, Richard; Mubayi, Vinod

    2017-01-01

    The elements of societal risk from a nuclear power plant accident are clearly illustrated by the Fukushima accident: land contamination, long-term relocation of large numbers of people, loss of productive farm area, loss of industrial production, and significant loss of electric capacity. NUREG-1150 and other studies have provided compelling evidence that the individual health risk of nuclear power plant accidents is effectively negligible relative to other comparable risks, even for people living in close proximity to a plant. The objective of this study is to compare the societal risk of nuclear power plant accidents to that of other events to which the public is exposed. We have characterized the monetized societal risk in the United States from major societally disruptive events, such as hurricanes, in the form of a complementary cumulative distribution function. These risks are compared with nuclear power plant risks, based on NUREG-1150 analyses and new MACCS code calculations to account for differences in source terms determined in the more recent SOARCA study. A candidate quantitative societal objective is discussed for potential adoption by the NRC. The results are also interpreted with regard to the acceptability of nuclear power as a major source of future energy supply. © 2016 Society for Risk Analysis.

  14. Improving the general and ecological image of nuclear power

    Directory of Open Access Journals (Sweden)

    A.L. Suzdaleva

    2017-06-01

    Full Text Available The purpose of this publication is to familiarize a wide range of experts with effective ways to improve the image of nuclear power installations in Russia. The negative attitude towards such installations is explained not by the danger actually posed by them but by the insufficient effectiveness of the activities for the formation of public opinion and by the already formed implicit memory. There is a traditionally negative stereotype people have about increased dangers caused by nuclear power plants. It is suggested that passive information struggle between the advocates of and opponents to the evolution of nuclear power should be replaced by active efforts to destroy the negative stereotype existing in public consciousness. The objective of active image-making is to form people's psychological attitude regarding the importance of nuclear power evolution as a life improving factor. Ways for the practical application of active image-making methods have been proposed. It is recommended to conduct an integrated analysis of the population's mass frustrations and deprivations with respect to the moral, economic and environmental aspects of social life. A conclusion has been made on the necessity of the state's participation in improving the image of nuclear power installations.

  15. 75 FR 10833 - In the Matter of Entergy Nuclear Operations; Vermont Yankee Nuclear Power Station; Demand for...

    Science.gov (United States)

    2010-03-09

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION In the Matter of Entergy Nuclear Operations; Vermont Yankee Nuclear Power Station; Demand for.... The license authorizes the operation of the Vermont Yankee Nuclear Power Station (Vermont Yankee) in...

  16. Nuclear power plant construction activity, 1984

    Energy Technology Data Exchange (ETDEWEB)

    None

    1985-07-01

    This report presents cost estimates, chronological data on construction progress, and the physical characteristics of nuclear units in commercial operation and units in the construction pipeline as of December 31, 1984. Also presented are data on units that were canceled during 1984. Three types of information are included: plant characteristics and ownership; construction costs; construction schedules; and milestone dates. The reactor-specific cost data presented include estimated final costs for plants in construction and disbursed costs for each unit (funds already expended and funds committed but not yet expended) as of December 31, 1984, as reported by the utilities. In EIA's last report on nuclear construction costs, published in November 1984, 43 units were reported to be under construction or completed but not in commercial operation as of March 31, 1984; 12 units were reported to be deferred as of March 31, 1984; and 2 units were planned. The status of those units as of December 31, 1984, is summarized. Of the 43 units under construction, 4 entered commercial operation, 38 were still under construction, and 1 was reported as deferred. Of the 12 units deferred as of March 31, 1984, 6 remained in deferred status, and 6 were canceled. The 2 planned units remained in the planning stage as of December 31, 1984.

  17. Nuclear Archeology for CANDU Power Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Broadhead, Bryan L [ORNL

    2011-01-01

    The goal of this work is the development of so-called 'nuclear archeology' techniques to predict the irradiation history of both fuel-related and non-fuel-related materials irradiated in the CANDU (CANada Deuterium Uranium) family of nuclear reactors. In this application to CANDU-type reactors, two different scenarios for the collection of the appropriate data for use in these procedures will be assumed: the first scenario is the removal of the pressure tubes, calandria tubes, or fuel cladding and destructive analysis of the activation products contained in these structural materials; the second scenario is the nondestructive analysis (NDA) of the same hardware items via high-resolution gamma ray scans. There are obvious advantages and disadvantages for each approach; however, the NDA approach is the central focus of this work because of its simplicity and lack of invasiveness. The use of these techniques along with a previously developed inverse capability is expected to allow for the prediction of average flux levels and irradiation time, and the total fluence for samples where the values of selected isotopes can be measured.

  18. 77 FR 3009 - Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors

    Science.gov (United States)

    2012-01-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors..., ``Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors.'' DATES...

  19. Regenerating the U.S. nuclear power program

    Energy Technology Data Exchange (ETDEWEB)

    Rowden, Marcus A.; Kraemer, Jay R.; Koehn, Mark R. [Fried, Frank, Harris, Shriver and Jacobson, Washington, DC (United States)

    1995-12-31

    Through industry planning initiatives, new licensing regulations, favorable court decisions and supportive legislation, the U.A. nuclear community - in both its private and governmental sectors - has, during the last five years, produced fundamental changes in the approach to planning, ordering, licensing and operating future nuclear power plants. Integrated and well-planned initiatives are leading to a more hospitable and promising institutional framework for regeneration of the U.S. nuclear option. While demonstrable progress has been made on many fronts - a streamlined plant licensing framework and standardized design development to name the most apparent - other critical path obstacles must still be surmounted to transform current progress into an order for a new nuclear power plant or a family of plants. Early signs are encouraging, but much work remains to be done. (author).

  20. Development of Northeast Asia Nuclear Power Plant Accident Simulator.

    Science.gov (United States)

    Kim, Juyub; Kim, Juyoul; Po, Li-Chi Cliff

    2017-06-15

    A conclusion from the lessons learned after the March 2011 Fukushima Daiichi accident was that Korea needs a tool to estimate consequences from a major accident that could occur at a nuclear power plant located in a neighboring country. This paper describes a suite of computer-based codes to be used by Korea's nuclear emergency response staff for training and potentially operational support in Korea's national emergency preparedness and response program. The systems of codes, Northeast Asia Nuclear Accident Simulator (NANAS), consist of three modules: source-term estimation, atmospheric dispersion prediction and dose assessment. To quickly assess potential doses to the public in Korea, NANAS includes specific reactor data from the nuclear power plants in China, Japan and Taiwan. The completed simulator is demonstrated using data for a hypothetical release. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. 10 CFR 73.56 - Personnel access authorization requirements for nuclear power plants.

    Science.gov (United States)

    2010-01-01

    ... power plants. 73.56 Section 73.56 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... authorization requirements for nuclear power plants. (a) Introduction. (1) By March 31, 2010, each nuclear power... grant unescorted access to nuclear power plant protected or vital areas or any individual for whom a...

  2. The United States Naval Nuclear Propulsion Program - Over 151 Million Miles Safely Steamed on Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-03-01

    NNSA’s third mission pillar is supporting the U.S. Navy’s ability to protect and defend American interests across the globe. The Naval Reactors Program remains at the forefront of technological developments in naval nuclear propulsion and ensures a commanding edge in warfighting capabilities by advancing new technologies and improvements in naval reactor performance and reliability. In 2015, the Naval Nuclear Propulsion Program pioneered advances in nuclear reactor and warship design – such as increasing reactor lifetimes, improving submarine operational effectiveness, and reducing propulsion plant crewing. The Naval Reactors Program continued its record of operational excellence by providing the technical expertise required to resolve emergent issues in the Nation’s nuclear-powered fleet, enabling the Fleet to safely steam more than two million miles. Naval Reactors safely maintains, operates, and oversees the reactors on the Navy’s 82 nuclear-powered warships, constituting more than 45 percent of the Navy’s major combatants.

  3. Space nuclear power, propulsion, and related technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Marshall

    1992-01-01

    Sandia National Laboratories (Sandia) is one of the nation's largest research and development (R&D) facilities, with headquarters at Albuquerque, New Mexico; a laboratory at Livermore, California; and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia was operated by the University of California until 1949, when, at the request of President Truman, Sandia Corporation was formed as a subsidiary of Bell Lab's Western Electric Company to operate Sandia as a service to the U.S. Government without profit or fee. Sandia is currently operated for the U.S. Department of Energy (DOE) by AT&T Technologies, Inc., a wholly-owned subsidiary of AT&T. Sandia's responsibility is national security programs in defense and energy with primary emphasis on nuclear weapon research and development (R&D). However, Sandia also supports a wide variety of projects ranging from basic materials research to the design of specialized parachutes. Assets, owned by DOE and valued at more than $1.2 billion, include about 600 major buildings containing about 372,000 square meters (m2) (4 million square feet [ft2]) of floor space, located on land totalling approximately 1460 square kilometers (km2) (562 square miles [mi]). Sandia employs about 8500 people, the majority in Albuquerque, with about 1000 in Livermore. Approximately 60% of Sandia's employees are in technical and scientific positions, and the remainder are in crafts, skilled labor, and administrative positions. As a multiprogram national laboratory, Sandia has much to offer both industrial and government customers in pursuing space nuclear technologies. The purpose of this brochure is to provide the reader with a brief summary of Sandia's technical capabilities, test facilities, and example programs that relate to military and civilian objectives in space. Sandia is interested in forming partnerships with industry and government

  4. Critical review of the national action plans (NAcP) of the EU stress tests on nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Oda; Lorenz, Patricia

    2013-04-15

    The Fukushima catastrophe was the horrible result of decades of mistaken safety philosophy, a very lax safety regulation under strong industry influence on the regulators - not only in Japan. The first shock led to the honest attempt to change this, to also involve events which are definitely possible but were kept out of the safety cases by using probabilities. When it was possible to ''prove'' an event as having too low probability, it could be ignored. On 12 October 2012, Tokyo Electric Power Co (TEPCO) admitted that the company had failed to prevent the Fukushima accident, reversing its earlier statement that the accident could not have been foreseen. A TEPCO task force has identified several factors that had led to the accident in March 2011 [NW 18/10/2012]: TEPCO did not learn a lesson from the incident in France of loss of off-site power due to flooding at the Blayais NPP on December 27, 1999, furthermore no safety measures aimed at preventing and mitigating a severe accident had been adopted since 2002. The task force attributed those facts to multiple root causes: - First, the management assumed a severe accident was extremely unlikely in Japan, and feared that retrofitting safety systems would increase anxiety among the public, especially among the residents near the plant. - TEPCO also feared safety retrofitting would require a costly shutdown period. The TEPCO task force also underlined that there were not enough engineers at the site who were familiar with safety systems' designs, operation manuals and their locations. Basically all circumstances leading to the Fukushima accident exist for the European NPP as well - only the tsunami risk does not apply for all NPP but e.g. for several UK NPPs. However the risk of flooding events or of earthquakes exists to a different extent for all NPPs. Also common to all NPPs: the operators insist on the low probabilities to avoid high investments and anti-nuclear activities of the public

  5. Impact of tritium around EDF nuclear power plants.

    Science.gov (United States)

    Le Guen, B

    2009-06-01

    Although the radionuclide tritium is found in its natural state, its presence in the environment is often associated with nuclear power generation. With the construction of the new EPR reactor at Flamanville under way, and the renewal of release permits for existing sites, this paper seeks to provide a summary of scientific facts, measurements taken around nuclear sites and impact studies regarding the impact assessment of this radionuclide on humans and the environment.

  6. Nuclear power and the public: analysis of collected survey research

    Energy Technology Data Exchange (ETDEWEB)

    Melber, B.D.; Nealey, S.M.; Hammersla, J.; Rankin, W.L.

    1977-11-01

    This executive summary highlights the major findings of a comprehensive synthesis and analysis of over 100 existing surveys dealing with public attitudes toward nuclear power issues. Questions of immediate policy relevance to the nuclear debate are posed and answered on the basis of these major findings. For each issue area, those sections of the report in which more-detailed discussion and presentation of relevant data may be found are indicated.

  7. Modular Lead-Bismuth Fast Reactors in Nuclear Power

    OpenAIRE

    Georgy Toshinsky; Vladimir Petrochenko

    2012-01-01

    On the basis of the unique experience of operating reactors with heavy liquid metal coolant–eutectic lead-bismuth alloy in nuclear submarines, the concept of modular small fast reactors SVBR-100 for civilian nuclear power has been developed and validated. The features of this innovative technology are as follows: a monoblock (integral) design of the reactor with fast neutron spectrum, which can operate using different types of fuel in various fuel cycles including MOX fuel in a self-providing...

  8. Heat pipe nuclear reactor for space power

    Science.gov (United States)

    Koening, D. R.

    1976-01-01

    A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.

  9. POWER GENERATION FROM LIQUID METAL NUCLEAR FUEL

    Science.gov (United States)

    Dwyer, O.E.

    1958-12-23

    A nuclear reactor system is described wherein the reactor is the type using a liquid metal fuel, such as a dispersion of fissile material in bismuth. The reactor is designed ln the form of a closed loop having a core sectlon and heat exchanger sections. The liquid fuel is clrculated through the loop undergoing flssion in the core section to produce heat energy and transferrlng this heat energy to secondary fluids in the heat exchanger sections. The fission in the core may be produced by a separate neutron source or by a selfsustained chain reaction of the liquid fuel present in the core section. Additional auxiliary heat exchangers are used in the system to convert water into steam which drives a turbine.

  10. Operating experience from Swedish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    During 1997 the PWRs in Ringhals performed extremely well (capability factors 85-90%), the unit Ringhals 2 reached the best capability factor since commercial operation started in 1976. The BWRs made an average 76% capability, which is somewhat less than in 1996. The slightly reduced capability derives from ongoing modernization projects at several units. At the youngest plants, Forsmark 3 and Oskarshamn 3, capability and utilization were very high. Events and data for 1997 are given for each reactor, together with operational statistics for the years 1990-1997. A number of safety-related events are reported, which occurred st the Swedish plants during 1997. These events are classified as level 1 or higher on the international nuclear event scale (INES).

  11. Propagation of nuclear data uncertainties for fusion power measurements

    Directory of Open Access Journals (Sweden)

    Sjöstrand Henrik

    2017-01-01

    Full Text Available Neutron measurements using neutron activation systems are an essential part of the diagnostic system at large fusion machines such as JET and ITER. Nuclear data is used to infer the neutron yield. Consequently, high-quality nuclear data is essential for the proper determination of the neutron yield and fusion power. However, uncertainties due to nuclear data are not fully taken into account in uncertainty analysis for neutron yield calibrations using activation foils. This paper investigates the neutron yield uncertainty due to nuclear data using the so-called Total Monte Carlo Method. The work is performed using a detailed MCNP model of the JET fusion machine; the uncertainties due to the cross-sections and angular distributions in JET structural materials, as well as the activation cross-sections in the activation foils, are analysed. It is found that a significant contribution to the neutron yield uncertainty can come from uncertainties in the nuclear data.

  12. Propagation of nuclear data uncertainties for fusion power measurements

    Science.gov (United States)

    Sjöstrand, Henrik; Conroy, Sean; Helgesson, Petter; Hernandez, Solis Augusto; Koning, Arjan; Pomp, Stephan; Rochman, Dimitri

    2017-09-01

    Neutron measurements using neutron activation systems are an essential part of the diagnostic system at large fusion machines such as JET and ITER. Nuclear data is used to infer the neutron yield. Consequently, high-quality nuclear data is essential for the proper determination of the neutron yield and fusion power. However, uncertainties due to nuclear data are not fully taken into account in uncertainty analysis for neutron yield calibrations using activation foils. This paper investigates the neutron yield uncertainty due to nuclear data using the so-called Total Monte Carlo Method. The work is performed using a detailed MCNP model of the JET fusion machine; the uncertainties due to the cross-sections and angular distributions in JET structural materials, as well as the activation cross-sections in the activation foils, are analysed. It is found that a significant contribution to the neutron yield uncertainty can come from uncertainties in the nuclear data.

  13. Innovative nuclear power plant building arragement in consideration of decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Won Jun; Roh, Myung Sub; Kim, Chang Lak [Dept. of Nuclear Power Plant Engineering, KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2017-04-15

    A new concept termed the Innovative Nuclear Power Plant Building Arrangement (INBA) strategy is a new nuclear power plant building arrangement method which encompasses upfront consideration of more efficient decommissioning. Although existing decommissioning strategies such as immediate dismantling and differed dismantling has the advantage of either early site restoration or radioactive decommissioning waste reduction, the INBA strategy has the advantages of both strategies. In this research paper, the concept and the implementation method of the INBA strategy will be described. Two primary benefits will be further described: (1) early site restoration; and (2) radioactive waste reduction. Several other potential benefits will also be identified. For the estimation of economic benefit, the INBA strategy, with two primary benefits, will be compared with the immediate dismantling strategy. The effect of a short life cycle nuclear power plant in combination with the INBA strategy will be reviewed. Finally, some of the major impediments to the realization of this strategy will be discussed.

  14. Innovative Nuclear Power Plant Building Arrangement in Consideration of Decommissioning

    Directory of Open Access Journals (Sweden)

    Won-Jun Choi

    2017-04-01

    Full Text Available A new concept termed the Innovative Nuclear Power Plant Building Arrangement (INBA strategy is a new nuclear power plant building arrangement method which encompasses upfront consideration of more efficient decommissioning. Although existing decommissioning strategies such as immediate dismantling and differed dismantling has the advantage of either early site restoration or radioactive decommissioning waste reduction, the INBA strategy has the advantages of both strategies. In this research paper, the concept and the implementation method of the INBA strategy will be described. Two primary benefits will be further described: (1 early site restoration; and (2 radioactive waste reduction. Several other potential benefits will also be identified. For the estimation of economic benefit, the INBA strategy, with two primary benefits, will be compared with the immediate dismantling strategy. The effect of a short life cycle nuclear power plant in combination with the INBA strategy will be reviewed. Finally, some of the major impediments to the realization of this strategy will be discussed.

  15. Dynamic testing of nuclear power plant structures: an evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, H.J.

    1980-02-01

    Lawrence Livermore Laboratory (LLL) evaluated the applications of system identification techniques to the dynamic testing of nuclear power plant structures and subsystems. These experimental techniques involve exciting a structure and measuring, digitizing, and processing the time-history motions that result. The data can be compared to parameters calculated using finite element or other models of the test systems to validate the model and to verify the seismic analysis. This report summarizes work in three main areas: (1) analytical qualification of a set of computer programs developed at LLL to extract model parameters from the time histories; (2) examination of the feasibility of safely exciting nuclear power plant structures and accurately recording the resulting time-history motions; (3) study of how the model parameters that are extracted from the data be used best to evaluate structural integrity and analyze nuclear power plants.

  16. Consequences and countermeasures in a nuclear power accident: Chernobyl experience.

    Science.gov (United States)

    Kirichenko, Vladimir A; Kirichenko, Alexander V; Werts, Day E

    2012-09-01

    Despite the tragic accidents in Fukushima and Chernobyl, the nuclear power industry will continue to contribute to the production of electric energy worldwide until there are efficient and sustainable alternative sources of energy. The Chernobyl nuclear accident, which occurred 26 years ago in the former Soviet Union, released an immense amount of radioactivity over vast territories of Belarus, Ukraine, and the Russian Federation, extending into northern Europe, and became the most severe accident in the history of the nuclear industry. This disaster was a result of numerous factors including inadequate nuclear power plant design, human errors, and violation of safety measures. The lessons learned from nuclear accidents will continue to strengthen the safety design of new reactor installations, but with more than 400 active nuclear power stations worldwide and 104 reactors in the Unites States, it is essential to reassess fundamental issues related to the Chernobyl experience as it continues to evolve. This article summarizes early and late events of the incident, the impact on thyroid health, and attempts to reduce agricultural radioactive contamination.

  17. The Adoption of Nuclear Power Generation

    OpenAIRE

    Paul Sommers

    1980-01-01

    This article develops a model of the innovation adoption decision. The model allows the economic situation of a utility and its perception of uncertainty associated with an innovation to affect the probability of adopting it. This model is useful when uncertainties affecting decisions about adoption persist throughout the diffusion process, thereby making the usual adoption model implicit in rate-of-diffusion studies inappropriate. An empirical test of the model finds that firm size, power po...

  18. Energy market impacts of nuclear power phase-out policies

    Energy Technology Data Exchange (ETDEWEB)

    Glomsroed, Solveig; Taoyuan, Wei; Mideksa, Torben; Samset, Bjoern H.

    2013-03-01

    After the Fukushima disaster in March 2011 safety concerns have escalated and policies towards nuclear power are being reconsidered in several countries. This article presents a study of the effect of nuclear power phase-out on regional electricity prices. We consider 4 scenarios with various levels of ambition to scale down the nuclear industry using a multiple region, multiple sector global general equilibrium model. Non-nuclear power production follows the New Policies scenario of the World Energy Outlook (IEA, 2010). Phase-out in Germany and Switzerland increases electricity prices of OECD-Europe moderately by 2-3 per cent early on to 4-5 per cent by 2035 if transmission capacity within the region is sufficient. If all regions shut down old plants built before 2011, North America, OECD-Europe and Japan face increasing electricity prices in the range of 23-28 per cent in 2035. These price increases illustrate the incentives for further investments in renewable electricity or improved technologies in nuclear power production. (Author)

  19. Report on aging of nuclear power plant reinforced concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Naus, D.J.; Oland, C.B. [Oak Ridge National Lab., TN (United States); Ellingwood, B.R. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Civil Engineering

    1996-03-01

    The Structural Aging Program provides the US Nuclear Regulatory Commission with potential structural safety issues and acceptance criteria for use in continued service assessments of nuclear power plant safety-related concrete structures. The program was organized under four task areas: Program Management, Materials Property Data Base, Structural Component Assessment/Repair Technology, and Quantitative Methodology for Continued Service Determinations. Under these tasks, over 90 papers and reports were prepared addressing pertinent aspects associated with aging management of nuclear power plant reinforced concrete structures. Contained in this report is a summary of program results in the form of information related to longevity of nuclear power plant reinforced concrete structures, a Structural Materials Information Center presenting data and information on the time variation of concrete materials under the influence of environmental stressors and aging factors, in-service inspection and condition assessments techniques, repair materials and methods, evaluation of nuclear power plant reinforced concrete structures, and a reliability-based methodology for current and future condition assessments. Recommendations for future activities are also provided. 308 refs., 61 figs., 50 tabs.

  20. Information management for nuclear power stations: project description

    Energy Technology Data Exchange (ETDEWEB)

    Halpin, D.W.

    1978-03-01

    A study of the information management structure required to support nuclear power plant construction was performed by a joint university-industry group under the sponsorship of the Department of Energy (DOE), formerly the Energy Research and Development Administration (ERDA). The purpose of this study was (1) to study methods for the control of information during the construction and start-up of nuclear power plants, and (2) identify those data elements intrinsic to nuclear power plants which must be maintained in a structured format for quick access and retrieval. Maintenance of the massive amount of data needed for control of a nuclear project during design, procurement, construction, start-up/testing, and operational phases requires a structuring which allows immediate update and retrieval based on a wide variety of access criteria. The objective of the research described has been to identify design concepts which support the development of an information control system responsive to these requirements. A conceptual design of a Management Information Data Base System which can meet the project control and information exchange needs of today's large nuclear power plant construction projects has been completed and an approach recommended for development and implementation of a complete operational system.

  1. Information management for nuclear power stations: System Design Concept

    Energy Technology Data Exchange (ETDEWEB)

    Halpin, D.W.

    1978-03-01

    A study of the information management structure required to support nuclear power plant construction was performed by a joint university-industry group under the sponsorship of the Department of Energy (DOE), formerly the Energy Research and Development Administration (ERDA). The purpose of this study was (1) to study methods for the control of information during the construction and start-up of nuclear power plants, and (2) identify those data elements intrinsic to nuclear power plants which must be maintained in a structured format for quick access and retrieval. Maintenance of the massive amount of data needed for control of a nuclear project during design, procurement, construction, start-up/testing, and operational phases requires a structuring which allows immediate update and retrieval based on a wide variety of access criteria. The objective of the research described has been to identify design concepts which support the development of an information control system responsive to these requirements. A conceptual design of a Management Information Data Base System which can meet the project control and information exchange needs of today's large nuclear power plant construction projects has been completed and an approach recommended for development and implementation of a complete operational system.

  2. Power counting and Wilsonian renormalization in nuclear effective field theory

    Science.gov (United States)

    Valderrama, Manuel Pavón

    2016-05-01

    Effective field theories are the most general tool for the description of low energy phenomena. They are universal and systematic: they can be formulated for any low energy systems we can think of and offer a clear guide on how to calculate predictions with reliable error estimates, a feature that is called power counting. These properties can be easily understood in Wilsonian renormalization, in which effective field theories are the low energy renormalization group evolution of a more fundamental — perhaps unknown or unsolvable — high energy theory. In nuclear physics they provide the possibility of a theoretically sound derivation of nuclear forces without having to solve quantum chromodynamics explicitly. However there is the problem of how to organize calculations within nuclear effective field theory: the traditional knowledge about power counting is perturbative but nuclear physics is not. Yet power counting can be derived in Wilsonian renormalization and there is already a fairly good understanding of how to apply these ideas to non-perturbative phenomena and in particular to nuclear physics. Here we review a few of these ideas, explain power counting in two-nucleon scattering and reactions with external probes and hint at how to extend the present analysis beyond the two-body problem.

  3. The Acceptance Strategy for Nuclear Power Plant In Indonesia

    Science.gov (United States)

    Suhaemi, Tjipta; Syaukat, Achmad

    2010-06-01

    THE ACCEPTANCE STRATEGY FOR NUCLEAR POWER PLANT IN INDONESIA. Indonesia has planned to build nuclear power plants. Some feasibility studies have been conducted intensively. However, the processes of NPP introduction are still uncertain. National Energy Plan in Indonesia, which has been made by some governmental agencies, does not yet give positive impact to the government decision to construct the nuclear power plant (NPP). This paper discusses the process of NPP introduction in Indonesia, which has been colored with debate of stakeholder and has delayed decision for go-nuclear. The technology paradigm is used to promote NPP as an alternative of reliable energy resources. This paradigm should be complemented with international politic-economic point of view. The international politic-economic point of view shows that structural powers, consisting of security, production, finance, and knowledge structures, within which the NPP is introduced, have dynamic characteristics. The process of NPP introduction in Indonesia contains some infrastructure development (R&D, legislation, regulation, energy planning, site study, public acceptance efforts, etc), but they need a better coherent NPP implementation program and NPP Acceptance Program. Strategic patterns for NPP acceptance described in this paper are made by considering nuclear regulation development and the interest of basic domestic participation. The first NPP program in Indonesia having proven technology and basic domestic participation is and important milestone toward and optimal national energy-mix.

  4. Dangers associated with civil nuclear power programmes: weaponization and nuclear waste.

    Science.gov (United States)

    Boulton, Frank

    2015-07-24

    The number of nuclear power plants in the world rose exponentially to 420 by 1990 and peaked at 438 in 2002; but by 2014, as closed plants were not replaced, there were just 388. In spite of using more renewable energy, the world still relies on fossil fuels, but some countries plan to develop new nuclear programmes. Spent nuclear fuel, one of the most dangerous and toxic materials known, can be reprocessed into fresh fuel or into weapons-grade materials, and generates large amounts of highly active waste. This article reviews available literature on government and industry websites and from independent analysts on world energy production, the aspirations of the 'new nuclear build' programmes in China and the UK, and the difficulties in keeping the environment safe over an immense timescale while minimizing adverse health impacts and production of greenhouse gases, and preventing weaponization by non-nuclear-weapons states acquiring civil nuclear technology.

  5. Design data and safety features of commerical nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Heddleson, F.A.

    1976-06-01

    Design data, safety features, and site characteristics are summarized for 34 nuclear power units in 17 power stations in the United States. Six pages of data are presented for each plant, consisting of thermal-hydraulic and nuclear factors, containment features, emergency-core-cooling systems, site features, circulating water system data, and miscellaneous factors. An aerial perspective is also presented for each plant. This volume covers Light Water Reactors (LWRs) with dockets 50-508 through 50-549, four HTGRs--50-171, 50-267, 50-450/451, 50-463/464, the Atlantic Floating Station 50-477/478, and the Clinch River Breeder 50-537.

  6. Cable fire risk of a nuclear power plant; Ydinvoimalaitoksen kaapelipaloriski

    Energy Technology Data Exchange (ETDEWEB)

    Aulamo, H.

    1998-02-01

    The aim of the study is to carry out a comprehensive review of cable fire risk issues of nuclear power plants (NPP) taking into account latest fire and risk assessment research results. A special emphasis is put on considering the fire risk analysis of cable rooms in the framework of TVO Olkiluoto NPP probabilistic safety assessment. The assumptions made in the analysis are assessed. The literature study section considers significant fire events at nuclear power plants, the most severe of which have nearly led to a reactor core damage (Browns Ferry, Greifswald, Armenia, Belojarsk, Narora). Cable fire research results are also examined. 62 refs.

  7. Contracting and subcontracting by the French nuclear power industry.

    Science.gov (United States)

    Thébaud-Mony, A

    1999-01-01

    The French nuclear power industry contracts out 80% of the maintenance work in its plants to independent companies. The workers in these companies are seldom protected by unions or by government regulations. The average dose of radiation received by such a worker is four times that received by a permanent employee of the contracting entity. As the contract worker approaches a specified dose limit, he is laid off, with no support other than welfare and no compensation for medical expenses that may arise as a result of the radiation exposure or occupational stress. There is a danger that this pattern of worker exploitation will spread as nuclear power plants proliferate around the world.

  8. Nuclear power plant alarm systems: Problems and issues

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, J.M.; Brown, W.S.

    1991-01-01

    Despite the incorporation of advanced technology into nuclear power plant alarm systems, human factors problems remain. This paper identifies to be addressed in order to allow advanced technology to be used effectively in the design of nuclear power plant alarm systems. The operator's use and processing of alarm system information will be considered. Based upon a review of alarm system research, issues related to general system design, alarm processing, display and control are discussed. It is concluded that the design of effective alarm systems depends on an understanding of the information processing capabilities and limitations of the operator. 39 refs.

  9. Coaxial ring cyclotron as a perspective nuclear power engineering machine

    CERN Document Server

    Tumanyan, A R; Mkrtchyan, R L; Amatuni, T A; Avakian, R O; Khudaverdian, A G

    1995-01-01

    Coaxial Ring Cyclotron (CRC) is described, and its main advantages, such as simple injection technique, several injected beams summation option, high efficiency, are considered. The proposed proton accelerator is a perspective machine for the solution of the main problems of the present day nuclear power engineering as well as for the next-generation nuclear power plants, representing a combination of subcritical reactors and particle accelerators. The possibility of installation of CRCs into ring accelerators with an average diameter from 60 to 100m, e.g., the Yerevan electron synchrotron, is considered.

  10. Tritium release during nuclear power operation in China.

    Science.gov (United States)

    Yang, D J; Chen, X Q; Li, B

    2012-06-01

    Overviews were evaluated of tritium releases and related doses to the public from airborne and liquid effluents from nuclear power plants on the mainland of China before 2009. The differences between tritium releases from various nuclear power plants were also evaluated. The tritium releases are mainly from liquid pathways for pressurised water reactors, but tritium releases between airborne and liquid effluents are comparable for heavy water reactors. The airborne release from a heavy water reactor is obviously higher than that from a pressurised water reactor.

  11. Development of an Integrity Evaluation System for Nuclear Power Plants

    Science.gov (United States)

    Kim, Young-Jin; Choi, Jae-Boong; Lee, Joon-Seong; Jun, Hyun-Kyu; Park, Youn-Won

    This paper describes the structure and development strategy for integrity evaluation system for nuclear power plants called NPP-KINS/SAFE. NPP-KINS/SAFE consists of three different programs covering the integrity assessment of reactor pressure vessel, pipings, and pressure tubes, respectively. The system has been developed based on currently available codes and standards, and includes a number of databases, expert systems, and numerical analysis schemes. NPP-KINS/SAFE is applicable for various types of nuclear power plants constructed in Korea with the aid of attached database systems including plant specific data. Case studies for the developed system are also provided.

  12. Recent control and instrumentation systems for BWR nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Hiroaki; Higashikawa, Yuichi; Sato, Hideyuki (Hitachi Ltd., Tokyo (Japan))

    1990-10-01

    For the needs of the more stable operation of nuclear power stations, the upgrading of the measurement and control system for BWRs has been promoted by positively introducing remarkably advancing electronic technology. Further, it is aimed at to construct the synthetic digitized measurement and control system for nuclear power stations to heighten the operation reliability in ABWRs. As the first step of the development in the synthetic digitization, the monitoring and control system for radioactive waste treatment was put in practical use for No.5 plant of Kashiwazaki, Kariwa Nuclear Power Station, Tokyo Electric Power Co., Inc. Hitachi Ltd. has promoted the development and the application to actual plants of the measurement and control system for BWRs, in which digital control technology, optical information transmission technology and the operation-supporting technology using a computer were utilized. Hereafter, it is intended to expand the application of digital measurement and control aiming at improving the reliability, operation performance and maintainability. The nuclear power plant control complex with advanced man-machine interface-90 (NUCAMM-90) was developed, and its application to actual plants is planned. (K.I.).

  13. Silicon Carbide Based Power Mangement and Distribution for Space Nuclear Power Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, APEI, Inc. is proposing to develop a high efficiency, rad-hard, 100's kWe power management and distribution (PMAD) system for space nuclear...

  14. Problems and prospects of nuclear power plants construction

    Directory of Open Access Journals (Sweden)

    Pergamenshhik Boris Klimentyevich

    2014-02-01

    Full Text Available 60 years ago, in July 1954 in the city of Obninsk near Moscow the world's first nuclear power plant was commissioned with a capacity of 5 MW. Today more than 430 nuclear units with a total capacity of almost 375000 MW are in operation in dozens of the countries worldwide. 72 electrical power units are currently under construction, 8 of them are located in the Russian Federation. There will be no alternative to nuclear energy in the coming decades. Among the factors contributing to the construction of nuclear power plants reckon limited fossil fuel supply, lack of air and primarily carbon dioxide emissions. The holding back factors are breakdown, hazard, radioactive wastes, high construction costs and long construction period. Nuclear accidents in the power plant of «Three-Mile-Island» in the USA, in Chernobyl and in Japan have resulted in termination of construction projects and closure of several nuclear power plants in the Western Europe. The safety systems have become more complex, material consumption and construction costs have significantly increased. The success of modern competing projects like EPR-1600, AP1000, ABWR, national ones AES-2006 and VVER-TOI, as well as several others, depends not only on structural and configuration but also on construction and technological solutions. The increase of the construction term by one year leads to growth of estimated total costs by 3—10 %. The main improvement potentials include external plate reinforcement, pre-fabricated large-block assembly, production and installation of the equipment packages and other. One of the crucial success factors is highly skilled civil engineers training.

  15. Nuclear power plant waste heat utilization

    Energy Technology Data Exchange (ETDEWEB)

    Ryther, J.H.; Huke, R.E.; Archer, J.C.; Price, D.R.; Jewell, W.J.; Hayes, T.D.; Witherby, H.R.

    1977-09-01

    The possibility of using Vermont Yankee condenser effluent for commercial food growth enhancement was examined. It was concluded that for the Vermont Yankee Nuclear Station, commercial success, both for horticulture and aquaculture endeavors, could not be assured without additional research in both areas. This is due primarily to two problems. First, the particularly low heat quality of our condenser discharge, being nominally 72 +- 2/sup 0/F; and second, to the capital intensive support systems. The capital needed for the support systems include costs of pumps, piping and controls to move the heated water to growing facilities and the costs of large, efficient heat exchangers that may be necessary to avoid regulatory difficulties due to the 1958 Delaney Amendment to the U.S. Food, Drug and Cosmetics Act. Recommendations for further work include construction of a permanent aquaculture research laboratory and a test greenhouse complex based on a greenhouse wherein a variety of heating configurations would be installed and tested. One greenhouse would be heated with biogas from an adjacent anaerobic digester thermally boosted during winter months by Vermont Yankee condenser effluent. The aquaculture laboratory would initially be dedicated to the Atlantic salmon restoration program. It appears possible to raise fingerling salmon to smolt size within 7 months using water warmed to about 60/sup 0/F. The growth rate by this technique is increased by a factor of 2 to 3. A system concept has been developed which includes an aqua-laboratory, producing 25,000 salmon smolt annually, a 4-unit greenhouse test horticulture complex and an 18,000 square foot commercial fish-rearing facility producing 100,000 pounds of wet fish (brook trout) per year. The aqualab and horticulture test complex would form the initial phase of construction. The trout-rearing facility would be delayed pending results of laboratory studies confirming its commercial viability.

  16. Preparedness organisations at Nordic nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Droeivoldsmo, A.; Porsmyr, J.; Nystad, E. (Institute for Energy Technology (IFE), Halden (Norway))

    2011-08-15

    The report presents an overview of Emergency Preparedness Organisations (EPO) in Sweden, Finland and Norway and presentations of insights from a study of the staff positions' work instructions in the command centre in an emergency situation. The results indicate potential for improvement in several areas. A number of the improvements are related to introduction of new technology and they should be seen in connection with ensuring safe and reliable communication lines and power supply. Analysis of the data identified four main categories where further studies could contribute to improvement: 1) Communication and exchange of information. 2) Tools and technology. 3) Staffing and organisation. 4) Procedures. The usefulness of the Man Technology and Organisation method in analysing the emergency management decision-making process within the authorities was considered as an interesting issue for continuation of the project. The interface between utility and authorities was pointed out as an important area for continuation. (Author)

  17. Systems aspects of a space nuclear reactor power system

    Science.gov (United States)

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Bloomfield, H.; Heller, J.

    1988-01-01

    Various system aspects of a 300-kW nuclear reactor power system for spacecraft have been investigated. Special attention is given to the cases of a reusable OTV and a space-based radar. It is demonstrated that the stowed length of the power system is important to mission design, and that orbital storage for months to years may be needed for missions involving orbital assembly.

  18. US nuclear power plant operating cost and experience summaries

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, W.E.; Reid, R.L.; White, V.S.

    1998-02-01

    NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov).

  19. Recognition of Instrumentation Gauge in the Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Jeong, Kyung Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Nuclear emergency robots were developed in 2001 as the countermeasure following the criticality accident at the JCO (uranium refinery facility) in Tokaimura, Japan in 1999. We assumed that these nuclear emergency robots were deployed (or put into) for a mitigation (or management) of severe accident, for example, occurred at Fukushima Daiichi nuclear power plant. In the case, the image understanding using a color CCD camera, loaded on the nuclear emergency robot, is important. We proposed an image processing technique to read indication value of the IC water level gauges using the structural characteristics of the instrumentation panels (water level gauges) located inside the reactor building. At first, we recognized the scales on the instrumentation panel using the geometric shape of the panel. And then, we could read the values of the instrumentation gauge by calculating the slope of the needle on the gauge. Using the proposed algorithm, we deciphered instrumentation panels for the four water level gauges and indicators shown on the IC video released by TEPCO and Japanese Nuclear Regulatory Commission of Japan. In this paper, recognition of the instrumentation gauges inside reactor building of the nuclear power plant by an image processing technology is described.

  20. Nuclear power in the 21st century: Challenges and possibilities.

    Science.gov (United States)

    Horvath, Akos; Rachlew, Elisabeth

    2016-01-01

    The current situation and possible future developments for nuclear power--including fission and fusion processes--is presented. The fission nuclear power continues to be an essential part of the low-carbon electricity generation in the world for decades to come. There are breakthrough possibilities in the development of new generation nuclear reactors where the life-time of the nuclear waste can be reduced to some hundreds of years instead of the present time-scales of hundred thousand of years. Research on the fourth generation reactors is needed for the realisation of this development. For the fast nuclear reactors, a substantial research and development effort is required in many fields--from material sciences to safety demonstration--to attain the envisaged goals. Fusion provides a long-term vision for an efficient energy production. The fusion option for a nuclear reactor for efficient production of electricity has been set out in a focussed European programme including the international project of ITER after which a fusion electricity DEMO reactor is envisaged.

  1. Adaptive Neural Network Algorithm for Power Control in Nuclear Power Plants

    Science.gov (United States)

    Masri Husam Fayiz, Al

    2017-01-01

    The aim of this paper is to design, test and evaluate a prototype of an adaptive neural network algorithm for the power controlling system of a nuclear power plant. The task of power control in nuclear reactors is one of the fundamental tasks in this field. Therefore, researches are constantly conducted to ameliorate the power reactor control process. Currently, in the Department of Automation in the National Research Nuclear University (NRNU) MEPhI, numerous studies are utilizing various methodologies of artificial intelligence (expert systems, neural networks, fuzzy systems and genetic algorithms) to enhance the performance, safety, efficiency and reliability of nuclear power plants. In particular, a study of an adaptive artificial intelligent power regulator in the control systems of nuclear power reactors is being undertaken to enhance performance and to minimize the output error of the Automatic Power Controller (APC) on the grounds of a multifunctional computer analyzer (simulator) of the Water-Water Energetic Reactor known as Vodo-Vodyanoi Energetichesky Reaktor (VVER) in Russian. In this paper, a block diagram of an adaptive reactor power controller was built on the basis of an intelligent control algorithm. When implementing intelligent neural network principles, it is possible to improve the quality and dynamic of any control system in accordance with the principles of adaptive control. It is common knowledge that an adaptive control system permits adjusting the controller’s parameters according to the transitions in the characteristics of the control object or external disturbances. In this project, it is demonstrated that the propitious options for an automatic power controller in nuclear power plants is a control system constructed on intelligent neural network algorithms.

  2. Nuclear Power Options Viability Study. Volume 4. Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Trauger, D B; White, J D; Sims, J W [eds.

    1986-09-01

    Documents in the Nuclear Power Options Viability Study (NPOVS) bibliography are classified under one of four headings or categories as follows: nuclear options; light water reactors; liquid metal reactors; and high temperature reactors. The collection and selection of these documents, beginning early in 1984 and continuing through March of 1986, was carried out in support of the study's objective: to explore the viabilities of several nuclear electric power generation options for commercial deployment in the United States between 2000 and 2010. There are approximately 550 articles, papers, reports, and books in the bibliography that have been selected from some 2000 surveyed. The citations have been made computer accessible to facilitate rapid on-line retrieval by keyword, author, corporate author, title, journal name, or document number.

  3. Hypothesis to explain childhood cancer near nuclear power plants.

    Science.gov (United States)

    Fairlie, Ian

    2010-01-01

    As reported in this journal in 2009, the 2008 KiKK study in Germany found a 60% increase in all cancers and a 120% increase in leukemias among children living within 5 km of all German nuclear power stations. The KiKK study has triggered debates as to the cause(s) of these increased cancers. This article discusses the available evidence of leukemias near nuclear installations around the world. Over 60 epidemiological studies exist, the large majority of which indicate increases in leukemia incidence. The article also outlines a possible biological mechanism to explain the increased cancers, suggesting that doses from environmental nuclear power plant emissions to embryos/ fetuses in pregnant women near the plants may be larger than suspected, and that hemopoietic tissues may be considerably more radiosensitive in embryos/ fetuses than in newborn babies. The article concludes with recommendations for further research.

  4. Human factor engineering applied to nuclear power plant design

    Energy Technology Data Exchange (ETDEWEB)

    Manrique, A. [TECNATOM SA, BWR General Electric Business Manager, Madrid (Spain); Valdivia, J.C. [TECNATOM SA, Operation Engineering Project Manager, Madrid (Spain); Jimenez, A. [TECNATOM SA, Operation Engineering Div. Manager, Madrid (Spain)

    2001-07-01

    For the design and construction of new nuclear power plants as well as for maintenance and operation of the existing ones new man-machine interface designs and modifications are been produced. For these new designs Human Factor Engineering must be applied the same as for any other traditional engineering discipline. Advantages of implementing adequate Human Factor Engineering techniques in the design of nuclear reactors have become not only a fact recognized by the majority of engineers and operators but also an explicit requirement regulated and mandatory for the new designs of the so called advanced reactors. Additionally, the big saving achieved by a nuclear power plant having an operating methodology which significantly decreases the risk of operating errors makes it necessary and almost vital its implementation. The first step for this is preparing a plan to incorporate all the Human Factor Engineering principles and developing an integral design of the Instrumentation and Control and Man-machine interface systems. (author)

  5. The japan a nuclear power?; Le Japon puissance nucleaire?

    Energy Technology Data Exchange (ETDEWEB)

    Cumin, D.; Joubert, J.P. [Universite Jean Moulon Lyon-3, Centre Lyonnais d' Etudes de Securite Internationale et de Defense, 69 - Lyon (France)

    2003-07-01

    This work analyzes the Japan nuclear policy, in the frame of its foreign and safety policy in Pacific Asia, since the end of the cold war, especially the relations with the Usa and China. The Japan is a civil power because it has submitted the military institution to juridical restrictions and because it does not rely on the armed force to promote its national interests. The anti nuclear speech is joined with the acknowledgement of the dissuasion necessity, of the control of industrial processes and energy channels susceptible of military applications. Cultivating the ambiguity, the Japanese government can send a dissuasive message, perfectly legible, kind of communication of latent intimidation constituted by the virtual nuclear power of a state that takes part to the non proliferation treaty. (N.C.)

  6. Integrated safety assessment of Indian nuclear power plants for ...

    Indian Academy of Sciences (India)

    Classically the nuclear power reactor design and system evolution has been based on the logic of minimization of risk to an acceptable level and its quantification based on a deterministic approach and backed up by a further assessment based on the probabilistic methodology. However, in spite of minimization of risk, the ...

  7. Delays in nuclear power plant construction. Volume II. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mason, G.E.; Larew, R.E.; Borcherding, J.D.; Okes, S.R. Jr.; Rad, P.F.

    1977-12-14

    The report identifies barriers to shortening nuclear power plant construction schedules and recommends research efforts which should minimize or eliminate the identified barriers. The identified barriers include (1) Design and Construction Interfacing Problems; (2) Problems Relating to the Selection and Use of Permanent Materials and Construction Methods; (3) Construction Coordination and Communication Problems; and (4) Problems Associated with Manpower Availability and Productivity.

  8. Commercial Nuclear Steam-Electric Power Plants, Part II

    Science.gov (United States)

    Shore, Ferdinand J.

    1974-01-01

    Presents the pros and cons of nuclear power systems. Includes a discussion of the institutional status of the AEC, AEC regulatory record, routine low-level radiation hazards, transport of radioactive materials, storage of wastes, and uranium resources and economics of supply. (GS)

  9. Radioactive Effluents from Nuclear Power Plants Annual Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

    2010-12-10

    This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2008. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

  10. Radioactive Effluents from Nuclear Power Plants Annual Report 2007

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

    2010-12-10

    This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2007. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

  11. Know Nukes: A Nuclear Power Issues Curriculum Project.

    Science.gov (United States)

    Butterfield, Charlie; McCandless, Marjorie

    Classroom activities are presented to help teachers introduce general controversial issues and specific issues on nuclear power in their high school science, social studies, and English classes. Objectives are to help students understand the various techniques of persuasion; the relationship between bias, persuasion, and fact; how these techniques…

  12. Determination of 93Zr in nuclear power plant wastes

    DEFF Research Database (Denmark)

    Osváth, Szabolcs; Vajda, Nora; Molnar, Zsuzsa

    2017-01-01

    A radioanalytical method (based on separation using UTEVA columns and ICP-MS measurement) has been used for determination of 93Zr in 37 nuclear power plant samples. As 93Nb might affect the detection of 93Zr, Monte Carlo activation model was used to calculate the expected 93Zr/natZr mass ratio...

  13. Emergy Evaluation of a Swedish Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kindberg, Anna

    2007-03-15

    Today it is common to evaluate and compare energy systems in terms of emission of greenhouse gases. However, energy systems should not only reduce their pollution but also give a large energy return. One method used to measure energy efficiency is emergy (embodied energy, energy memory) evaluation, which was developed by the system ecologist Howard T. Odum. Odum defines emergy as the available energy of one kind previously used up directly and indirectly to make a service or product. Both work of nature and work of human economy in generating products and services are calculated in terms of emergy. Work of nature takes the form of natural resources and work of human economy includes labour, services and products used to transform natural resources into something of value to the economy. The quotient between work of nature and work of human economy gives the emergy return on investment of the investigated product. With this in mind the present work is an attempt to make an emergy evaluation of a Swedish nuclear power plant to estimate its emergy return on investment. The emergy return on investment ratio of a Swedish nuclear power plant is calculated to approximately 11 in this diploma thesis. This means that for all emergy the Swedish economy has invested in the nuclear power plant it gets 11 times more emergy in return in the form of electricity generated by nuclear power. The method used in this work may facilitate future emergy evaluations of other energy systems.

  14. Regulatory practices for nuclear power plants in India

    Indian Academy of Sciences (India)

    Today, AERB faces new challenges like simultaneous review of a large number of new projects of diverse designs, a fast growing nuclear power program and functioning of operating plants in a competitive environment. This paper delineates how AERB is gearing up to meet these challenges in an effective manner.

  15. Nuclear power plant sensor fault detection using singular value ...

    Indian Academy of Sciences (India)

    In a nuclear power plant, periodic sensor calibration is necessary to ensure the correctness of measurements. Those sensors which have gone out of calibration can lead to malfunction of the plant, possibly causing a loss in revenue or damage to equipment. Continuous sensor status monitoring is desirable to assure ...

  16. The Role of Nuclear Power in Reducing Greenhouse Gas Emissions

    Science.gov (United States)

    For Frank Princiotta’s book, Global Climate Change—The Technology Challenge As this chapter will point out, nuclear energy is a low greenhouse gas emitter and is capable of providing large amounts of power using proven technology. In the immediate future, it can contribute to gr...

  17. Internal exposure in French nuclear power plants : 10 years on

    Energy Technology Data Exchange (ETDEWEB)

    Chevalier, C.; Gonin, M. [Laboratoire d' Analyses de Biologie Medicale et de Radiotoxicologie, Service General de Medecine du Travail, Saint-Denis (France)

    1992-07-01

    Collectively speaking, internal exposure in French nuclear power plants is negligible. However, some quite high individual doses have been recorded. The details of cases of significant contamination are presented here in table form. A brief discussion of a few particular cases underscores the problems involved. (author)

  18. Maintenance of process instrumentation in nuclear power plants

    CERN Document Server

    Hashemian, H M

    2006-01-01

    Compiles 30 years of practical knowledge gained by the author and his staff in testing the I and C systems of nuclear power plants around the world. This book focuses on process temperature and pressure sensors and the verification of these sensors' calibration and response time.

  19. Evaluation and assessment of nuclear power plant seismic methodology

    Energy Technology Data Exchange (ETDEWEB)

    Bernreuter, D.; Tokarz, F.; Wight, L.; Smith, P.; Wells, J.; Barlow, R.

    1977-03-01

    The major emphasis of this study is to develop a methodology that can be used to assess the current methods used for assuring the seismic safety of nuclear power plants. The proposed methodology makes use of system-analysis techniques and Monte Carlo schemes. Also, in this study, we evaluate previous assessments of the current seismic-design methodology.

  20. Investment decisions under uncertainties : A case of nuclear power plants

    NARCIS (Netherlands)

    Jain, S.

    2014-01-01

    This thesis discusses the role of flexibility of decisions when investing in projects that are affected by economic uncertainties. It uses the theory of real options to value such investment decisions. The thesis focuses on investment decisions related to nuclear power plants, which usually are

  1. Personality Factors and Nuclear Power Plant Operators: Initial License Success

    Science.gov (United States)

    DeVita-Cochrane, Cynthia

    Commercial nuclear power utilities are under pressure to effectively recruit and retain licensed reactor operators in light of poor candidate training completion rates and recent candidate failures on the Nuclear Regulatory Commission (NRC) license exam. One candidate failure can cost a utility over $400,000, making the successful licensing of new operators a critical path to operational excellence. This study was designed to discover if the NEO-PI-3, a 5-factor measure of personality, could improve selection in nuclear utilities by identifying personality factors that predict license candidate success. Two large U.S. commercial nuclear power corporations provided potential participant contact information and candidate results on the 2014 NRC exam from their nuclear power units nation-wide. License candidates who participated (n = 75) completed the NEO-PI-3 personality test and results were compared to 3 outcomes on the NRC exam: written exam, simulated operating exam, and overall exam result. Significant correlations were found between several personality factors and both written and operating exam outcomes on the NRC exam. Further, a regression analysis indicated that personality factors, particularly Conscientiousness, predicted simulated operating exam scores. The results of this study may be used to support the use of the NEO-PI-3 to improve operator selection as an addition to the current selection protocol. Positive social change implications from this study include support for the use of a personality measure by utilities to improve their return-on-investment in candidates and by individual candidates to avoid career failures. The results of this study may also positively impact the public by supporting the safe and reliable operation of commercial nuclear power utilities in the United States.

  2. 78 FR 55117 - Ultimate Heat Sink for Nuclear Power Plants; Draft Regulatory Guide

    Science.gov (United States)

    2013-09-09

    ... effects for consideration when designing ultimate heat sinks for safety-related systems at nuclear power... ultimate heat sink features of nuclear power plant systems. This draft regulatory guide, if finalized... COMMISSION Ultimate Heat Sink for Nuclear Power Plants; Draft Regulatory Guide AGENCY: Nuclear Regulatory...

  3. 78 FR 67206 - Qualification Tests for Safety-Related Actuators in Nuclear Power Plants

    Science.gov (United States)

    2013-11-08

    ... COMMISSION Qualification Tests for Safety-Related Actuators in Nuclear Power Plants AGENCY: Nuclear...-Related Actuators in Nuclear Power Plants.'' This RG is being revised to provide applicants and licensees with the most current information on testing safety-related actuators in nuclear power plants. This RG...

  4. 10 CFR 73.58 - Safety/security interface requirements for nuclear power reactors.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Safety/security interface requirements for nuclear power reactors. 73.58 Section 73.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF... requirements for nuclear power reactors. (a) Each operating nuclear power reactor licensee with a license...

  5. 78 FR 25488 - Qualification Tests for Safety-Related Actuators in Nuclear Power Plants

    Science.gov (United States)

    2013-05-01

    ... COMMISSION Qualification Tests for Safety-Related Actuators in Nuclear Power Plants AGENCY: Nuclear..., ``Qualification Tests for Safety-Related Actuators in Nuclear Power Plants.'' DG-1235 is proposed Revision 1 of RG... practices for qualifying safety-related actuators, and actuator components, in Nuclear Power Generating...

  6. 76 FR 65753 - Monitoring the Effectiveness of Maintenance at Nuclear Power Plants

    Science.gov (United States)

    2011-10-24

    ... COMMISSION Monitoring the Effectiveness of Maintenance at Nuclear Power Plants AGENCY: Nuclear Regulatory..., ``Monitoring the Effectiveness of Maintenance at Nuclear Power Plants,'' in the Federal Register for a 60 day... (NUMARC) 93-01, ``Industry Guideline for Monitoring the Effectiveness of Maintenance at Nuclear Power...

  7. 78 FR 35330 - Initial Test Programs for Water-Cooled Nuclear Power Plants

    Science.gov (United States)

    2013-06-12

    ... COMMISSION Initial Test Programs for Water-Cooled Nuclear Power Plants AGENCY: Nuclear Regulatory Commission... revision to Regulatory Guide (RG), 1.68, ``Initial Test Programs for Water-Cooled Nuclear Power Plants... Initial Test Programs (ITPs) for light water cooled nuclear power plants. ADDRESSES: Please refer to...

  8. 75 FR 11575 - James A. Fitzpatrick Nuclear Power Plant Environmental Assessment and Finding of No Significant...

    Science.gov (United States)

    2010-03-11

    ... COMMISSION James A. Fitzpatrick Nuclear Power Plant Environmental Assessment and Finding of No Significant... Program for Nuclear Power Facilities Operating Prior to January 1, 1979,'' issued to Entergy Nuclear Operations, Inc. (the licensee), for the operation of the James A. FitzPatrick Nuclear Power Plant (JAFNPP...

  9. 77 FR 34093 - License Renewal for Calvert Cliffs Nuclear Power Plant, LLC's

    Science.gov (United States)

    2012-06-08

    ... COMMISSION License Renewal for Calvert Cliffs Nuclear Power Plant, LLC's AGENCY: Nuclear Regulatory... Cliffs Nuclear Power Plant site near Lusby, Maryland. The NRC has prepared an Environmental Assessment... dated September 17, 2010, Calvert Cliffs Nuclear Power Plant, LLC (CCNPP) submitted an application to...

  10. 10 CFR 50.65 - Requirements for monitoring the effectiveness of maintenance at nuclear power plants.

    Science.gov (United States)

    2010-01-01

    ... maintenance at nuclear power plants. 50.65 Section 50.65 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Construction Permits § 50.65 Requirements for monitoring the effectiveness of maintenance at nuclear power..., including normal shutdown operations. (a)(1) Each holder of an operating license for a nuclear power plant...

  11. 76 FR 55137 - Monitoring the Effectiveness of Maintenance at Nuclear Power Plants

    Science.gov (United States)

    2011-09-06

    ... COMMISSION Monitoring the Effectiveness of Maintenance at Nuclear Power Plants AGENCY: Nuclear Regulatory..., ``Monitoring the Effectiveness of Maintenance at Nuclear Power Plants.'' This guide endorses Revision 4A to... Effectiveness of Maintenance at Nuclear Power Plants,'' which provides methods that are acceptable to the NRC...

  12. 77 FR 73056 - Initial Test Programs for Water-Cooled Nuclear Power Plants

    Science.gov (United States)

    2012-12-07

    ... COMMISSION Initial Test Programs for Water-Cooled Nuclear Power Plants AGENCY: Nuclear Regulatory Commission...-Cooled Nuclear Power Plants.'' This guide describes the general scope and depth that the staff of the NRC considers acceptable for Initial Test Programs (ITPs) for light water cooled nuclear power plants. DATES...

  13. 78 FR 71675 - License Amendment Application for Vermont Yankee Nuclear Power Station

    Science.gov (United States)

    2013-11-29

    ... COMMISSION License Amendment Application for Vermont Yankee Nuclear Power Station AGENCY: Nuclear Regulatory... Operating License No. DPR-28 for the Vermont Yankee Nuclear Power Station, located in Windham County, VT... proposed amendment to Facility Operating License No. DPR-28 for the Vermont Yankee Nuclear Power Station...

  14. 78 FR 23684 - Personnel Access Authorization Requirements for Nuclear Power Plants

    Science.gov (United States)

    2013-04-22

    ...; ] NUCLEAR REGULATORY COMMISSION 10 CFR Part 73 Personnel Access Authorization Requirements for Nuclear Power... regulations at 10 CFR part 73, ``Physical protection of plants and materials,'' require a nuclear power plant... unescorted access to nuclear power plants ``are trustworthy and reliable, such that they do not constitute an...

  15. 76 FR 46856 - Qualification of Connection Assemblies for Nuclear Power Plants

    Science.gov (United States)

    2011-08-03

    ... COMMISSION Qualification of Connection Assemblies for Nuclear Power Plants AGENCY: Nuclear Regulatory... for Nuclear Power Plants.'' This guide describes a method that the NRC considers acceptable for... environmental seals in combination with cables or wires as assemblies for service in nuclear power plants. The...

  16. 77 FR 24228 - Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants

    Science.gov (United States)

    2012-04-23

    ... COMMISSION Condition Monitoring Techniques for Electric Cables Used in Nuclear Power Plants AGENCY: Nuclear... Techniques for Electric Cables Used in Nuclear Power Plants.'' This guide describes techniques that the staff of the NRC considers acceptable for condition monitoring of electric cables for nuclear power plants...

  17. 78 FR 4477 - Review of Safety Analysis Reports for Nuclear Power Plants, Introduction

    Science.gov (United States)

    2013-01-22

    ... COMMISSION Review of Safety Analysis Reports for Nuclear Power Plants, Introduction AGENCY: Nuclear... subsection to NUREG-0800, ``Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power..., Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants: Integral...

  18. 78 FR 45984 - Yankee Atomic Electric Company, Yankee Nuclear Power Station

    Science.gov (United States)

    2013-07-30

    ... COMMISSION Yankee Atomic Electric Company, Yankee Nuclear Power Station AGENCY: Nuclear Regulatory Commission... on the site of any nuclear power reactor. In its Statement of Considerations (SOC) for the Final Rule... the site of a nuclear power reactor licensed for operation by the Commission, the emergency plan...

  19. 76 FR 63541 - Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants

    Science.gov (United States)

    2011-10-13

    ...-2010-0288] Design-Basis Hurricane and Hurricane Missiles for Nuclear Power Plants AGENCY: Nuclear... Hurricane Missiles for Nuclear Power Plants.'' This regulatory guide provides licensees and applicants with... hurricane and design-basis hurricane-generated missiles that a nuclear power plant should be designed to...

  20. 78 FR 56749 - Site Characteristics and Site Parameters for Nuclear Power Plants

    Science.gov (United States)

    2013-09-13

    ... COMMISSION Site Characteristics and Site Parameters for Nuclear Power Plants AGENCY: Nuclear Regulatory... NUREG-0800, ``Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants... Review of Safety Analysis Reports for Nuclear Power Plants: LWR Edition. The proposed changes to the SRP...

  1. Ground acceleration in a nuclear power plant; Aceleracion del suelo en una central nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Pena G, P.; Balcazar, M.; Vega R, E., E-mail: pablo.pena@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    A methodology that adopts the recommendations of international organizations for determining the ground acceleration at a nuclear power plant is outlined. Systematic presented here emphasizes the type of geological, geophysical and geotechnical studies in different areas of influence, culminating in assessments of Design Basis earthquake and the earthquake Operating Base. The methodology indicates that in regional areas where the site of the nuclear power plant is located, failures are identified in geological structures, and seismic histories of the region are documented. In the area of detail geophysical tools to generate effects to determine subsurface propagation velocities and spectra of the induced seismic waves are used. The mechanical analysis of drill cores allows estimating the efforts that generate and earthquake postulate. Studies show that the magnitude of the Fukushima earthquake, did not affect the integrity of nuclear power plants due to the rocky settlement found. (Author)

  2. A Review of Tribomaterial Technology for Space Nuclear Power Systems

    Science.gov (United States)

    Stanford, Malcolm K.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) has recently proposed a nuclear closed-cycle electric power conversion system for generation of 100-kW of electrical power for space exploration missions. A critical issue is the tribological performance of sliding components within the power conversion unit that will be exposed to neutron radiation. This paper presents a review of the main considerations that have been made in the selection of solid lubricants for similar applications in the past as well as a recommendations for continuing development of the technology.

  3. Multilevel flow modeling of Monju Nuclear Power Plant

    DEFF Research Database (Denmark)

    Lind, Morten; Yoshikawa, Hidekazu; Jørgensen, Sten Bay

    2011-01-01

    functions and structure. The paper will describe how MFM can be used to represent the goals and functions of the Japanese Monju Nuclear Power Plant. A detailed explanation will be given of the model describing the relations between levels of goal, function and structural. Furthermore, it will be explained......Multilevel Flow Modeling is a method for modeling complex processes on multiple levels of means-end and part-whole abstraction. The modeling method has been applied on a wide range of processes including power plants, chemical engineering plants and power systems. The modeling method is supported...

  4. Valuing modular nuclear power plants in finite time decision horizon

    OpenAIRE

    Jain, Shashi; Roelofs, F; Oosterlee, Cornelis

    2013-01-01

    htmlabstractSmall and medium sized reactors, SMRs, (according to IAEA, ‘small’ refers to reactors with power less than 300 MWe, and ‘medium’ with power less than 700 MWe) are considered as an attractive option for investment in nuclear power plants. SMRs may benefit from flexibility of investment, reduced upfront expenditure, enhanced safety, and easy integrationwith small sized grids. Large reactors on the other hand have been an attractive option due to the economy of scale. In this paper w...

  5. Study for wireless power transmission of nuclear robot system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongseog [Central Research Institute of Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2013-05-15

    Gasoline engine or electric motor is generally used for driving power of working. Gasoline tank is uncomfortable to carry. Battery capacity does not sustain long time working. Frequent moving back of robot to power charger or refueling tank is inconvenient. Long power cable connection occur winding problem if there are complex structures in walking way. We need some solution for continuous supply of robot energy at the free moving condition of robot. 'Wireless power transmission' is one of the solutions. Some experiment result to transmit wireless power to moving robot is described herein. To find possible wireless power transmission method for nuclear robot, wireless power transmission tests were performed. As result of these tests, it was confirmed that wireless power transmission by using dipole and mat type magnetic induction were possible. As result of flying robot experiment, it was realized that development of light weight core for receiver and wave reflection device for high directional transmitter are necessary for practical use of the dipole type wireless power transmission. Small size core and high directional transmitter will be next target. Mat type wireless power transmission is regarded as useful for robot power charging station in the inside containment.

  6. Liquid Metal Pump Technologies for Nuclear Surface Power

    Science.gov (United States)

    Polzin, Kurt A.

    2007-01-01

    Multiple liquid metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to rest prototypical space nuclear surface power system components. Conduction, induction and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated with incorporation into a reactor system. A thermoelectric electromagnetic pump is selected as the best option for use in NASA-MSFC's Fission Surface Power-Primary Test Circuit reactor simulator based on its relative simplicity, low power supply mass penalty, flight heritage, and the promise of increased pump efficiency over those earlier pump designs through the use of skutterudite thermoelectric elements.

  7. Proposed advanced satellite applications utilizing space nuclear power systems

    Science.gov (United States)

    Bailey, Patrick G.; Isenberg, Lon

    1990-01-01

    A review of the status of space nuclear reactor systems and their possible applications is presented. Such systems have been developed over the past twenty years and are capable of use in various military and civilian applications in the 5-1000-kWe power range. The capabilities and limitations of the currently proposed nuclear reactor systems are summarized. Statements of need are presented from DoD, DOE, and NASA. Safety issues are identified, and if they are properly addressed they should not pose a hindrance. Applications are summarized for the DoD, DOE, NASA, and the civilian community. These applications include both low- and high-altitude satellite surveillance missions, communications satellites, planetary probes, low- and high-power lunar and planetary base power systems, broadband global telecommunications, air traffic control, and high-definition television.

  8. Effect of the Fukushima nuclear accident on the risk perception of residents near a nuclear power plant in China.

    Science.gov (United States)

    Huang, Lei; Zhou, Ying; Han, Yuting; Hammitt, James K; Bi, Jun; Liu, Yang

    2013-12-03

    We assessed the influence of the Fukushima nuclear accident (FNA) on the Chinese public's attitude and acceptance of nuclear power plants in China. Two surveys (before and after the FNA) were administered to separate subsamples of residents near the Tianwan nuclear power plant in Lianyungang, China. A structural equation model was constructed to describe the public acceptance of nuclear power and four risk perception factors: knowledge, perceived risk, benefit, and trust. Regression analysis was conducted to estimate the relationship between acceptance of nuclear power and the risk perception factors while controlling for demographic variables. Meanwhile, we assessed the median public acceptable frequencies for three levels of nuclear events. The FNA had a significant impact on risk perception of the Chinese public, especially on the factor of perceived risk, which increased from limited risk to great risk. Public acceptance of nuclear power decreased significantly after the FNA. The most sensitive groups include females, those not in public service, those with lower income, and those living close to the Tianwan nuclear power plant. Fifty percent of the survey respondents considered it acceptable to have a nuclear anomaly no more than once in 50 y. For nuclear incidents and serious incidents, the frequencies are once in 100 y and 150 y, respectively. The change in risk perception and acceptance may be attributed to the FNA. Decreased acceptance of nuclear power after the FNA among the Chinese public creates additional obstacles to further development of nuclear power in China and require effective communication strategies.

  9. Preventive maintenance instrumentation results in Spanish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Curiel, M. [Logistica y Acondicionamientos Industriales SAU, Sorolla Center, local 10, Av. de las Cortes Valencianas No. 58, 46015 Valencia (Spain); Palomo, M. J.; Verdu, G. [ISIRYM, Universidad Politecnica de Valencia, Camino de Vera s/n, Valencia (Spain); Arnaldos, A., E-mail: m.curiel@lainsa.co [TITANIA Servicios Tecnologicos SL, Sorolla Center, local 10, Av. de las Cortes Valencianas No. 58, 46015 Valencia (Spain)

    2010-10-15

    This paper is a recompilation of the most significance results in relation to the researching in preventive and predictive maintenance in critical nuclear instrumentation for power plant operation, which it is being developed by Logistica y Acondicionamientos Industriales and the Isirym Institute of the Polytechnic University of Valencia. Instrumentation verification and test, it is a priority of the power plants control and instrumentation department's technicians. These procedures are necessary information for the daily power plant work. It is performed according to different procedures and in different moments of the fuel cycle depending on the instrumentation critical state and the monitoring process. Normally, this study is developed taking into account the instantaneous values of the instrumentation measures and, after their conversion to physical magnitude, they are analyzed according to the power plant operation point. Moreover, redundant sensors measurements are taken into consideration to the equipment and/or power plant monitoring. This work goes forward and it is in advanced to the instrument analysis as it is, independently of the operation point, using specific signal analysis techniques for preventive and predictive maintenance, with the object to obtain not only information about possible malfunctions, but the degradation scale presented in the instrument or in the system measured. We present seven real case studies of Spanish nuclear power plants each of them shall give a significant contribution to problem resolution and power plant performance. (Author)

  10. 75 FR 3942 - Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1 Environmental...

    Science.gov (United States)

    2010-01-25

    ... COMMISSION Carolina Power & Light Company Shearon Harris Nuclear Power Plant, Unit 1 Environmental Assessment... plant safety and would not have a significant adverse effect on the probability of an accident occurring..., ``Physical Protection of Plants and Materials,'' for Renewed Facility Operating License No. NPF-63, issued to...

  11. The Net Contribution of Nuclear Power to the National Economy in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Manki; Kim, Seung-su; Lee, Jong Hee; Kim, Soo-eun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The objective of the study is to quantify the net contribution of nuclear power to the national economy in Korea focusing on the operating phase of nuclear power. This study is to see what would have happened to the Korean national economy, if all the nuclear power had been completely replaced with its substitute, coal power, providing a mechanism addressing a possible feedback between price and output on a national economy, triggered by the structural change in power sector. The role of nuclear power is estimated to be significant in terms of total output, GDP, price level, and labor employment in Korean economy. The net contribution of nuclear power estimated in this study can be recognized as positive externalities of nuclear power, which can be used to balance between positive externalities and negative externalities in the estimation of social cost of nuclear power, on which public concerns are substantially growing in the wake of the Fukushima nuclear power accident in Japan.

  12. Review on studies for external cost of nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung Heung [Korea National University of Transportation, Chungju (Korea, Republic of); Ko, Won Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    External cost is cost imposed on a third party when producing or consuming a good or service. Since the 1990s, the external costs of nuclear powered electricity production have been studied. Costs are a very important factor in policy decision and the external cost is considered for cost comparison on electricity production. As for nuclear fuel cycle, a chosen technology will determine the external cost. However, there has been little research on this issue. For this study, methods for external cost on nuclear power production have been surveyed and analyzed to develop an approach for evaluating external cost on nuclear fuel cycles. Before the Fukushima accident, external cost research had focused on damage costs during normal operation of a fuel cycle. However, accident cost becomes a major concern after the accident. Various considerations for external cost including accident cost have been used to different studies, and different methods have been applied corresponding to the considerations. In this study, the results of the evaluation were compared and analyzed to identify methodological applicability to the external cost estimation with nuclear fuel cycles.

  13. 78 FR 22347 - GPU Nuclear Inc., Three Mile Island Nuclear Power Station, Unit 2, Exemption From Certain...

    Science.gov (United States)

    2013-04-15

    ... COMMISSION GPU Nuclear Inc., Three Mile Island Nuclear Power Station, Unit 2, Exemption From Certain Security... . SUPPLEMENTARY INFORMATION: 1.0 Background GPU Nuclear, Inc. (GPUN, the licensee) is the licensee and holder of... responsibility of the licensee. Therefore, the Commission hereby grants GPU Nuclear, Inc., an exemption from the...

  14. Tangible interfaces for virtual nuclear power plant control desk

    Energy Technology Data Exchange (ETDEWEB)

    Aghina, Mauricio Alves C.; Mol, Antonio Carlos A.; Jorge, Carlos Alexandre F.; Lapa, Celso M.F. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Nomiya, Diogo [Engenharia Eletrica (UFRJ), Universidade Federal do Rio de Janeiro, RJ (Brazil); Cunha, Gerson G.; Landau, Luiz [Programa de Engenharia Civil (PEC/COPPE/UFRJ), Universidade Federal do Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Due to the high safety requirements for nuclear power plant operation, control desks must be designed in such a way operators can take all the procedures safely, with a good overview of all variable indicators and easy access to actuator controls. Also, operators must see alarms indication in a way they can easily identify any abnormal conditions and bring the NPP back to normal operation. The ergonomics and human factors fields have helped evaluations to improve the design of nuclear power plant control systems. Lately, the use of virtual control desks have helped even more such evaluations, by integrating in one platform both nuclear power plant dynamics simulator with a high visual fidelity control desk proto typing. Operators can interact with these virtual control desks in a similar way as with real ones. Such a virtual control desk has been under development at Instituto de Engenharia Nuclear, IEN/CNEN. This paper reports the latest improvements, with the use of more interaction modes, to turn operation a friendlier task. An automatic speech recognition interface has been implemented as a self-contained system, by accessing directly MS Windows Application Interface, and with online neural network training for spoken commend recognition. Thus, operators can switch among different desk views. Besides this, head tracking interfaces have been integrated with the virtual control desk, to move within desk views according to users head movements. Both marker and markerless-based head tracking interfaces have been implemented. Results are shown and commented. (author)

  15. Expansion potential for existing nuclear power station sites

    Energy Technology Data Exchange (ETDEWEB)

    Cope, D. F.; Bauman, H. F.

    1977-09-26

    This report is a preliminary analysis of the expansion potential of the existing nuclear power sites, in particular their potential for development into nuclear energy centers (NECs) of 10 (GW(e) or greater. The analysis is based primarily on matching the most important physical characteristics of a site against the dominating site criteria. Sites reviewed consist mainly of those in the 1974 through 1976 ERDA Nuclear Power Stations listings without regard to the present status of reactor construction plans. Also a small number of potential NEC sites that are not associated with existing power stations were reviewed. Each site was categorized in terms of its potential as: a dispersed site of 5 GW(e) or less; a mini-NEC of 5 to 10 GW(e); NECs of 10 to 20 GW(e); and large NECs of more than 20 GW(e). The sites were categorized on their ultimate potential without regard to political considerations that might restrain their development. The analysis indicates that nearly 40 percent of existing sites have potential for expansion to nuclear energy centers.

  16. Regional projections of nuclear and fossil electric power generation costs

    Energy Technology Data Exchange (ETDEWEB)

    Smolen, G.R.; Delene, J.G.; Fuller, L.C.; Bowers, H.I.

    1983-12-01

    The total busbar electric generating costs were estimated for locations in ten regions of the United States for base load nuclear and coal-fired power plants with a startup date of January 1995. A complete data set is supplied which specifies each parameter used to obtain the comparative results. When the comparison is based on reference cost parameters, nuclear- and coal-fired generation costs are found to be very close in most regions of the country. Nuclear power is favored in the South Atlantic region where coal must be transported over long distances, while coal-fired generation is favored in the Central and North Central regions where large reserves of cheaply mineable coal exist. The reference data set reflects recent electric utility construction experience. Significantly lower nuclear capital investment costs would result if regulatory reform and improved construction practices were instituted. The electric power generation costs for base load oil- and natural gas-fired plants were also estimated. These plants were found to be noncompetitive in all regions for those scenarios most likely to develop. Generation cost sensitivity to changes in various parameters was examined at a reference location. The sensitivity parameters included capital investment costs, lead times, capacity factors, costs of money, and coal and uranium prices. In addition to the levelized lifetime costs, year-by-year cash flows and revenue requirements are presented. The report concludes with an analysis of the economic merits of recycling spent fuel in light-water reactors.

  17. Anthology of disaster at Japanese nuclear power plant Fukushima-1

    Directory of Open Access Journals (Sweden)

    M.N. Tikhonov

    2015-03-01

    Full Text Available The extensive material about the origin and deepening up to turning into a disaster and the elimination of an emergency at the nuclear power plant Fukushima-1 is systematized and generalized based on the analysis of public government data and results of scientific researches. The events that have resulted in the destruction of buildings and structures, loss of life, evacuation of the population from the zone of radioactive contamination are presented chronologically. The article demonstrates the large scale and complexity of problems existing in the field of ensuring the nuclear and radiation safety of the population. The ways to minimize the risk of accidents and reduce the risk of negative impacts on the environment and public health are described. The ideas about the different approaches of the countries of the world to the prospects of the nuclear power development taking into account the consequences of the accident at the nuclear power plant Fukushima-1 are specified. The comparative characteristics of different types of technical solutions in terms of safety are provided.

  18. Reliability methods in nuclear power plant ageing management

    Energy Technology Data Exchange (ETDEWEB)

    Simola, K. [VTT Automation, Espoo (Finland). Industrial Automation

    1999-07-01

    The aim of nuclear power plant ageing management is to maintain an adequate safety level throughout the lifetime of the plant. In ageing studies, the reliability of components, systems and structures is evaluated taking into account the possible time-dependent degradation. The phases of ageing analyses are generally the identification of critical components, identification and evaluation of ageing effects, and development of mitigation methods. This thesis focuses on the use of reliability methods and analyses of plant- specific operating experience in nuclear power plant ageing studies. The presented applications and method development have been related to nuclear power plants, but many of the approaches can also be applied outside the nuclear industry. The thesis consists of a summary and seven publications. The summary provides an overview of ageing management and discusses the role of reliability methods in ageing analyses. In the publications, practical applications and method development are described in more detail. The application areas at component and system level are motor-operated valves and protection automation systems, for which experience-based ageing analyses have been demonstrated. Furthermore, Bayesian ageing models for repairable components have been developed, and the management of ageing by improving maintenance practices is discussed. Recommendations for improvement of plant information management in order to facilitate ageing analyses are also given. The evaluation and mitigation of ageing effects on structural components is addressed by promoting the use of probabilistic modelling of crack growth, and developing models for evaluation of the reliability of inspection results. (orig.)

  19. Elecnuc. Nuclear power plants in the world; Elecnuc. Les centrales nucleaires dans le monde

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This 2003 version of Elecnuc contents information, data and charts on the nuclear power plants in the world and general information on the national perspectives concerning the electric power industry. The following topics are presented: 2002 highlights; characteristics of main reactor types and on order; map of the French nuclear power plants; the worldwide status of nuclear power plants on 2002/12/3; units distributed by countries; nuclear power plants connected to the Grid by reactor type groups; nuclear power plants under construction; capacity of the nuclear power plants on the grid; first electric generations supplied by a nuclear unit; electrical generation from nuclear plants by country at the end 2002; performance indicator of french PWR units; trends of the generation indicator worldwide from 1960 to 2002; 2002 cumulative Load Factor by owners; nuclear power plants connected to the grid by countries; status of license renewal applications in Usa; nuclear power plants under construction; Shutdown nuclear power plants; exported nuclear power plants by type; exported nuclear power plants by countries; nuclear power plants under construction or order; steam generator replacements; recycling of Plutonium in LWR; projects of MOX fuel use in reactors; electricity needs of Germany, Belgium, Spain, Finland, United Kingdom; electricity indicators of the five countries. (A.L.B.)

  20. Hydro and nuclear power for African less-carbon development

    Energy Technology Data Exchange (ETDEWEB)

    El-Gazzar, Mohamed; Ibrahim, Yassin Mohamed; Bedrous, Maher Aziz

    2007-07-01

    Though the overall picture reveal availability of enormous energy resources which far exceed energy requirements of Africa, most of these resources are grossly underutilized, particularly hydro and nuclear resources. It suggests that Africa's problem is not lack of energy resources but its development and utilization. The region will remain a major net exporter of energy for several decades to com. In dealing with its energy problems Africa faces a unique set of initial conditions, defined mainly by its level and pattern of economic growth, social and demographic characteristics, energy resource endowment, location distances between supply sources and consumption areas, technological underdevelopment, and poverty-driven energy-environment conflict. A key challenge is the optimal utilization of the Africa's energy resources to facilitate both individual country and regional energy and economic development. Stronger emphasis on a more integrated energy supply network based on more widespread regional initiatives, particularly in electricity is essential to sustainable energy development in Africa. This paper discusses the prospects for hydro and nuclear power in Africa. The continent is the poorest in the world. The lack of reliable, accessible and affordable energy hinders its development. Hydro and nuclear power promises to be the least-carbon energy sources, while being the cheapest and most reliable among all. The role the hydropower can play in securing a sustainable energy future for Africa is highly emphasized. Also, nuclear power has many advantages to Africa. Opportunities for hydropower and nuclear power in Africa are all considered. Advantages and disadvantages are also all discussed. (auth)

  1. Liquid-Metal Pump Technologies for Nuclear Surface Power

    Science.gov (United States)

    Polzin, K. A.

    2007-01-01

    Multiple liquid-metal pump options are reviewed for the purpose of determining the technologies that are best suited for inclusion in a nuclear reactor thermal simulator intended to test prototypical space nuclear system components. Conduction, induction, and thermoelectric electromagnetic pumps are evaluated based on their performance characteristics and the technical issues associated with incorporation into a reactor system. The thermoelectric pump is recommended for inclusion in the planned system at NASA MSFC based on its relative simplicity, low power supply mass penalty, flight heritage, and the promise of increased pump efficiency over earlier flight pump designs through the use of skutterudite thermoelectric elements.

  2. Review of maintenance personnel practices at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Chockie, A.D.; Badalamente, R.V.; Hostick, C.J.; Vickroy, S.C.; Bryant, J.L.; Imhoff, C.H.

    1984-05-01

    As part of the Nuclear Regulatory Commission (NRC) sponsored Maintenance Qualifications and Staffing Project, the Pacific Northwest Laboratory (PNL) has conducted a preliminary assessment of nuclear power plant (NPP) maintenance practices. As requested by the NRC, the following areas within the maintenance function were examined: personnel qualifications, maintenance training, overtime, shiftwork and staffing levels. The purpose of the assessment was to identify the primary safety-related problems that required further analysis before specific recommendations can be made on the regulations affecting NPP maintenance operations.

  3. Use of neurals networks in nuclear power plant diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Uhrig, R.E. (Tennessee Univ., Knoxville, TN (USA). Dept. of Nuclear Engineering Oak Ridge National Lab., TN (USA))

    1989-01-01

    A technique using neural networks as a means of diagnosing transients or abnormal conditions in nuclear power plants is investigated and found to be feasible. The technique is based on the fact that each physical state of the plant can be represented by a unique pattern of sensor outputs or instrument readings that can be related to the condition of the plant. Neural networks are used to relate this pattern to the fault, problem, or transient condition of the plant. A demonstration of the ability of this technique to identify causes of perturbations in the steam generator of a nuclear plant is presented. 3 refs., 4 figs.

  4. Nuclear power plants making a comeback in Japan; El retorno de la centrales nucleares en Japon

    Energy Technology Data Exchange (ETDEWEB)

    Torralbo, J. R.

    2016-08-01

    We reproduce in this magazine the interesting article published by the president of the SNE in issue 46 of Cuadernos de Energia in October 2015, which describes the events that have taken place since the March 11, 2011 earthquake in Japan, the largest in its history, and the subsequent tsunami, which affected the Fukushima power plant, as well as the measures implemented since then and how some of this country nuclear power plants are being started up again. (Author)

  5. Coping with nuclear power risks: the electric utility incentives

    Energy Technology Data Exchange (ETDEWEB)

    Starr, C.; Whipple, C.

    1982-01-01

    The financial risks associated with nuclear power accidents are estimated by interpolating between frequency-vs.-severity data from routine outages and the frequency-vs.-severity estimates from the Nuclear Regulatory Commission's (NRC's) Reactor Safety Study (WASH-1400). This analysis indicates that the expected costs of plant damage and lost power production are large compared to the public risks estimated in WASH-1400, using values from An Approach to Quantitative Safety Goals for Nuclear Power Plants (NUREG-0739), prepared by the NRC Advisory Committee on Reactor Safeguards. Analyses of the cost-effectiveness of accident-prevention investments that include only anticipated public safety benefits will underestimate the value of such investments if reductions in power plant damage risk are not included. The analysis also suggests that utility self-interest and the public interest in safety are generally coincident. It is argued that greater use could be made of this self-interest in regulation if the relationship between the NRC and the industry were more cooperative, less adversary in nature.

  6. Coal and nuclear power: Illinois' energy future

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

  7. Nuclear powered Mars cargo transport mission utilizing advanced ion propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Galecki, D.L.; Patterson, M.J.

    1987-01-01

    Nuclear-powered ion propulsion technology was combined with detailed trajectory analysis to determine propulsion system and trajectory options for an unmanned cargo mission to Mars in support of manned Mars missions. A total of 96 mission scenarios were identified by combining two power levels, two propellants, four values of specific impulse per propellant, three starting altitudes, and two starting velocities. Sixty of these scenarios were selected for a detailed trajectory analysis; a complete propulsion system study was then conducted for 20 of these trajectories. Trip times ranged from 344 days for a xenon propulsion system operating at 300 kW total power and starting from lunar orbit with escape velocity, to 770 days for an argon propulsion system operating at 300 kW total power and starting from nuclear start orbit with circular velocity. Trip times for the 3 MW cases studied ranged from 356 to 413 days. Payload masses ranged from 5700 to 12,300 kg for the 300 kW power level, and from 72,200 to 81,500 kg for the 3 MW power level.

  8. Operating Experience at the Aagesta Nuclear Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, S. (ed.)

    1966-09-15

    Sweden's first nuclear power reactor Agesta, achieved criticality on July 17, 1963. Full power (65 MW{sub t}) was attained on March 20, 1964. Aagesta is a heavy water cooled and moderated pressure vessel reactor used for production of electricity as well as for district heating. The design, assembly and construction etc, of the reactor was described in detail in a staff report by AB Atomenergi, 'The Aagesta Nuclear Power Station' edited by B McHugh, which was published in September, 1964. In the book experiences from the commissioning and the first operation of the reactor were reported as well as findings from the extensive reactor physics studies made during this period. The report now presented is written by members of the operating team at Aagesta since its start. It reflects in general the experiences up to the end of 1965. The Aagesta Log, however, covers the period up to the normal summer stop 1966. The reactor has hitherto produced 506,000 MWh power of which 48,700 MWh have been electric power. In July 1965 the responsibility for the reactor operation was taken over by the Swedish State Power Board from AB Atomenergi, which company had started the reactor and operated it until the summer break 1965.

  9. Challenges of deploying nuclear energy for power generation in Malaysia

    Science.gov (United States)

    Jaafar, Mohd Zamzam; Nazaruddin, Nurul Huda; Lye, Jonathan Tan Thiam

    2017-01-01

    Under the 10th Malaysia Plan (2010-2015) and the Economic Transformation Programme (ETP), nuclear energy was identified as a potential long-term option to be explored for electricity generation in Peninsular Malaysia. The energy sector in Malaysia currently faces several concerns including depleting domestic gas supply which will affect security and reliability of supply as well as overdependance on fossil fuels - mainly gas and imported coal, and nuclear energy may offer a possible solution to these issues as well as global climate change concern. Pursuing the nuclear option, Malaysia Nuclear Power Corporation (MNPC) is undertaking a series of comprehensive studies to facilitate an informed Government decision on the matter. This paper aims to discuss the many challenges towards the peaceful use of nuclear energy for electricity generation in the context of the New Energy Policy 2010 to achieve a balanced and sustainable energy mix. This effort will continue in the 11th Malaysia Plan (2016-2020) with emphasis on implementing a comprehensive communications plan and public awareness programme for the potential use of nuclear energy in the future. In analysing the challenges for the development of nuclear energy in Malaysia, the traditional triple bottom line (TBL) framework for sustainability, encompassing economic, social and environmental objectives is utilized. An additional factor, technical, is also included in the analysis to provide a more holistic view. It is opined that the main challenges of developing nuclear energy for electricity generation in a newcomer country like Malaysia can be attributed primarily to domestic non-technical factors compared to the technical factor.

  10. Elecnuc. Nuclear power plants in the world; Elecnuc. Les centrales nucleaires dans le monde

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    This small booklet summarizes in tables all the numerical data relative to the nuclear power plants worldwide. These data come from the French CEA/DSE/SEE Elecnuc database. The following aspects are reviewed: 1997 highlights; main characteristics of the reactor types in operation, under construction or on order; map of the French nuclear power plants; worldwide status of nuclear power plants at the end of 1997; nuclear power plants in operation, under construction and on order; capacity of nuclear power plants in operation; net and gross capacity of nuclear power plants on the grid and in commercial operation; forecasts; first power generation of nuclear origin per country, achieved or expected; performance indicator of PWR units in France; worldwide trend of the power generation indicator; nuclear power plants in operation, under construction, on order, planned, cancelled, shutdown, and exported; planning of steam generators replacement; MOX fuel program for plutonium recycling. (J.S.)

  11. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume II. Proliferation resistance

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The purpose of this volume is limited to an assessment of the relative effects that particular choices of nuclear-power systems, for whatever reasons, may have on the possible spread of nuclear-weapons capabilities. This volume addresses the concern that non-nuclear-weapons states may be able to initiate efforts to acquire or to improve nuclear-weapons capabilities through civilian nuclear-power programs; it also addresses the concern that subnational groups may obtain and abuse the nuclear materials or facilities of such programs, whether in nuclear-weapons states (NWS's) or nonnuclear-weapons states (NNW's). Accordingly, this volume emphasizes one important factor in such decisions, the resistance of nuclear-power systems to the proliferation of nuclear-weapons capabilities.

  12. Development of life evaluation technology for nuclear power plant components

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Kim, Yun Jae; Choi, Jae Boong [Sungkyunkwan Univ., Seoul (Korea, Republic of)] (and others)

    2002-03-15

    This project focuses on developing reliable life evaluation technology for nuclear power plant components, and is divided into two parts, development of a life evaluation system for nuclear pressure vessels and evaluation of applicability of emerging technology to operating plants. For the development of life evaluation system for nuclear pressure vessels, the following seven topics are covered in this project: defect assessment method for steam generator tubes, development of fatigue monitoring system, assessment of corroded pipes, domestic round robin analysis for constructing P-T limit curve for RPV, development of probabilistic integrity assessment technique, effect of aging on strength of dissimilar welds, applicability of LBB to cast stainless steel, and development of probabilistic piping fracture mechanics.

  13. Epidemiological evidence of childhood leukaemia around nuclear power plants.

    Science.gov (United States)

    Janiak, Marek K

    2014-07-01

    A few reports of increased numbers of leukaemia cases (clusters) in children living in the vicinity of nuclear power plants (NPP) and other nuclear installations have triggered a heated debate over the possible causes of the disease. In this review the most important cases of childhood leukaemia clusters around NPPs are described and analyzed with special emphasis on the relationship between the environmental exposure to ionizing radiation and the risk of leukaemia. Since, as indicated, a lifetime residency in the proximity of an NPP does not pose any specific health risk to people and the emitted ionizing radiation is too small to cause cancer, a number of hypotheses have been proposed to explain the childhood leukaemia clusters. The most likely explanation for the clusters is 'population mixing', i.e., the influx of outside workers to rural regions where nuclear installations are being set up and where local people are not immune to pathogens brought along with the incomers.

  14. Elecnuc. Nuclear power plants in the world; Elecnuc. Les centrales nucleaires dans le monde

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This small booklet summarizes in tables all data relative to the nuclear power plants worldwide. These data come from the IAEA's PRIS and AREVA-CEA's GAIA databases. The following aspects are reviewed: 2007 highlights; Main characteristics of reactor types; Map of the French nuclear power plants on 2007/01/01; Worldwide status of nuclear power plants (12/31/2007); Units distributed by countries; Nuclear power plants connected to the Grid- by reactor type groups; Nuclear power plants under construction on 2007; Evolution of nuclear power plants capacities connected to the grid; First electric generations supplied by a nuclear unit in each country; Electrical generation from nuclear power plants by country at the end 2007; Performance indicator of French PWR units; Evolution of the generation indicators worldwide by type; Nuclear operator ranking according to their installed capacity; Units connected to the grid by countries at 12/31/2007; Status of licence renewal applications in USA; Nuclear power plants under construction at 12/31/2007; Shutdown reactors; Exported nuclear capacity in net MWe; Exported and national nuclear capacity connected to the grid; Exported nuclear power plants under construction; Exported and national nuclear capacity under construction; Nuclear power plants ordered at 12/31/2007; Long term shutdown units at 12/31/2007; COL (combined licences) applications in the USA; Recycling of Plutonium in reactors and experiences; Mox licence plants projects; Appendix - historical development; Meaning of the used acronyms; Glossary.

  15. Climate change and the competitiveness of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung Hyuk; Oh, Jin Ho [KHNP, Seoul (Korea, Republic of)

    2007-04-15

    Global atmospheric concentrations of carbon dioxide have increased remarkably as a result of human activities since the Industrial Revolution. According to the 4th Assessment Report of the IPCC (Intergovernmental Panel on Climate Change), dated February 2007, many scientific and technical facts show that the primary source of the increased atmospheric concentration of carbon dioxide results from 'fossil fuel use'. with land use change providing another significant but smaller contribution. And the report says that the global average temperature will rise 1.8{approx}4.deg.C in the 21st century, which has the probability of above 90%. Also there was an important announcement in COP12 meeting which was held in Kenya on November 2006, where the Stern Review revealed that the overall costs and risks of Climate Change would be equivalent to loss at least 5% of global GDP each year, now and after. These are risks of major disruption to economic and social activity, on a scale similar to those associated with the great wars and the economic depression of the first half of the 20th century. Natural gas dispute of Russia Ukraine in 2006 and oil pipeline dispute of Russia Belarus in the beginning of 2007 provided the important message to the world as well as European countries with respect to energy security which means the stability of energy supply. Annex I nations have duties to cut GHG emissions about 5.2% according to the Kyoto Protocol. As worldwide energy environment is changing, nuclear power industries have met the new situation after TMI accident in 1979 and Chernovyl accident in 1986 which made the nuclear power industries frozen for 30 years. There also have been technical developments and cost saving efforts to strengthen competitiveness of the nuclear power industries. However, nuclear power did not acquire its validity in cost based competitiveness compared to fossil fuels but just keeps its advantage of stability in fuel supply. This study describes

  16. Powerful nuclear technology, anywhere, requires functioning system of free elections

    Science.gov (United States)

    Synek, Miroslav

    2000-03-01

    Historical development on our planet, utilizing the knowledge of physics, has reached a powerful technology of nuclear intercontinental ballistic missiles, conceivably controllable through a computerized ``push-button". Whenever this technology falls under the control of an irresponsible, miscalculating, or, insane, dictator, with powerful means of a mass-produced nuclear built-up, anywhere on our planet, the very survival of all humanity on our planet could be threatened. Therefore, it is a historical urgency that this technology is under the control by a government of the people, by the people and for the people, based on a sufficiently secure system of free elections, in any country on our planet, wherever and whenever such a threatening possibility exists.

  17. Increasing nuclear power at liberalised energy markets- case Finland

    Science.gov (United States)

    Syri, S.; Kurki-Suonio, T.; Satka, V.

    2012-10-01

    Several Finnish projections for future electricity demand and the need for peak load capacity indicate a demand growth of about 2 GW from the present to the year 2030. The retirement of existing fossil fuel plants and old nuclear power plants will cause increased net import needs during 2020's, even when assuming additional energy efficiency measures and the commissioning of two new nuclear power plants recently approved by the Finnish Parliament. By the year 2030, the need for additional new capacity will be about 6 GW. The increased dependence on import is in contradiction with the official Government targets. This situation is not unique to Finland, but rather is likely to be the case in many other European countries as well. Both the energy company Fortum and energy-intensive industry in Finland see nuclear energy as a viable future generation technology. We describe the « Mankala » concept which is successfully used to build new nuclear capacity at liberalised electricity market in Finland.

  18. European Clearinghouse for Nuclear Power Plants Operational Experience Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Martin Ramos, M.; Noel, M.

    2010-07-01

    In the European Union, in order to support the Community activities on operational experience, a centralized regional network on nuclear power plants operational experience feedback (European Clearinghouse on Operational Experience Feedback for Nuclear Power Plants) was established in 2008 at the EC JRC-IE, Petten (The Netherlands) on request of nuclear Safety Authorities of several Member States. Its main goal is to improve the communication and information sharing on OEF, to promote regional collaboration on analyses of operational experience and dissemination of the lessons learned. The enlarged EU Clearinghouse was launched in April 2010, and it is currently gathering the Regulatory Authorities of Finland, Hungary, Lithuania, the Netherlands, Romania, Slovenia, Switzerland, Bulgaria, Czec Republic, France, Germany, Slovak Republic, and Spain (these last six countries as observers). The OECD Nuclear Energy Agency, the IAEA, the EC Directorates General of the JRC and ENER are also part of the network. Recently, collaboration between some European Technical Support Organizations (such IRSN and GRS) and the EU Clearinghouse has been initiated. This paper explains in detail the objectives and organization of the EU Clearinghouse, as well as the most relevant activities carried out, like research work in trend analysis of events ocurred in NPP, topical reports on particular events, dissemination of the results, quarterly reports on events reported publicly and operational experience support to the members of the EU Clearinghouse. (Author)

  19. Key issues in space nuclear power challenges for the future

    Science.gov (United States)

    Brandhorst, Henry W., Jr.

    1991-01-01

    The future appears rich in missions that will extend the frontiers of knowledge, human presence in space, and opportunities for profitable commerce. Key to the success of these ventures is the availability of plentiful, cost effective electric power and assured, low cost access to space. While forecasts of space power needs are problematic, an assessment of future needs based on terrestrial experience has been made. These needs fall into three broad categories: survival, self sufficiency, and industrialization. The cost of delivering payloads to orbital locations from LEO to Mars has been determined and future launch cost reductions projected. From these factors, then, projections of the performance necessary for future solar and nuclear space power options has been made. These goals are largely dependent upon orbital location and energy storage needs. Finally the cost of present space power systems has been determined and projections made for future systems.

  20. The virtual digital nuclear power plant: A modern tool for supporting the lifecycle of VVER-based nuclear power units

    Science.gov (United States)

    Arkadov, G. V.; Zhukavin, A. P.; Kroshilin, A. E.; Parshikov, I. A.; Solov'ev, S. L.; Shishov, A. V.

    2014-10-01

    The article describes the "Virtual Digital VVER-Based Nuclear Power Plant" computerized system comprising a totality of verified initial data (sets of input data for a model intended for describing the behavior of nuclear power plant (NPP) systems in design and emergency modes of their operation) and a unified system of new-generation computation codes intended for carrying out coordinated computation of the variety of physical processes in the reactor core and NPP equipment. Experiments with the demonstration version of the "Virtual Digital VVER-Based NPP" computerized system has shown that it is in principle possible to set up a unified system of computation codes in a common software environment for carrying out interconnected calculations of various physical phenomena at NPPs constructed according to the standard AES-2006 project. With the full-scale version of the "Virtual Digital VVER-Based NPP" computerized system put in operation, the concerned engineering, design, construction, and operating organizations will have access to all necessary information relating to the NPP power unit project throughout its entire lifecycle. The domestically developed commercial-grade software product set to operate as an independently operating application to the project will bring about additional competitive advantages in the modern market of nuclear power technologies.

  1. Dynamic Computer Model of a Stirling Space Nuclear Power System

    Science.gov (United States)

    2006-05-04

    mean temperature difference Λ neutron generation time cp average specific heat, constant pressure cpr radiator specific heat cv average...coefficient αm coolant temperature coefficient β delayed neutron fraction β regenerator porosity βw wick porosity ε radiator emissivity εr...the Systems for Nuclear Auxiliary Power ( SNAP ) program. This program resulted in the only reactor flown in space by the United States. Also, Russia

  2. Use of waste heat from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, M.

    1978-01-01

    The paper details the Department of Energy (DOE) program concerning utilization of power plant reject heat conducted by the Oak Ridge National Laboratory (ORNL). A brief description of the historical development of the program is given and results of recent studies are outlined to indicate the scope of present efforts. A description of a DOE-sponsored project assessing uses for reject heat from the Vermont Yankee Nuclear Station is also given.

  3. Nuclear Power Plant Mechanical Component Flooding Fragility Experiments Status

    Energy Technology Data Exchange (ETDEWEB)

    Pope, C. L. [Idaho State Univ., Pocatello, ID (United States); Savage, B. [Idaho State Univ., Pocatello, ID (United States); Johnson, B. [Idaho State Univ., Pocatello, ID (United States); Muchmore, C. [Idaho State Univ., Pocatello, ID (United States); Nichols, L. [Idaho State Univ., Pocatello, ID (United States); Roberts, G. [Idaho State Univ., Pocatello, ID (United States); Ryan, E. [Idaho State Univ., Pocatello, ID (United States); Suresh, S. [Idaho State Univ., Pocatello, ID (United States); Tahhan, A. [Idaho State Univ., Pocatello, ID (United States); Tuladhar, R. [Idaho State Univ., Pocatello, ID (United States); Wells, A. [Idaho State Univ., Pocatello, ID (United States); Smith, C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-24

    This report describes progress on Nuclear Power Plant mechanical component flooding fragility experiments and supporting research. The progress includes execution of full scale fragility experiments using hollow-core doors, design of improvements to the Portal Evaluation Tank, equipment procurement and initial installation of PET improvements, designation of experiments exploiting the improved PET capabilities, fragility mathematical model development, Smoothed Particle Hydrodynamic simulations, wave impact simulation device research, and pipe rupture mechanics research.

  4. Improving automated load flexibility of nuclear power plants with ALFC

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Andreas [AREVA GmbH, Karlstein (Germany). Section Manager Training; Klaus, Peter [Preussenelektra NPP, Essenbach (Germany). Production Engineering

    2017-03-15

    In several German and Swiss Nuclear Power Plants with Pressurized Water Reactor (PWR) the control of the reactor power was and will be improved in order to be able to support the energy transition with increasing volatile renewable energy in the grid by flexible load operation according to the need of the load dispatcher (power system stability). Especially regarding the mentioned German NPPs with a nominal electric power of approx. 1500 MW, the general objectives are several automated grid relevant operation modes. The new possibilities of digital I and C (as TELEPERM {sup registered} XS) enable the automation of this operating modes provided that manual support is no longer necessary. These possibilities were and will be implemented by AREVA within the ALFC-projects. Manifold adaption algorithms to the reactor physical variations during the nuclear load cycle enable a precise control of the axial power density distribution and of the reactivity manage - ment in the reactor core. Finally this is the basis for a highly automated load flexibility with the parallel respect and surveillance of the operational limits of a PWR.

  5. Improving automated load flexibility of nuclear power plants with ALFC

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Andreas [AREVA GmbH, Karlstein (Germany). Plant Control/Training; Klaus, Peter [E.ON NPP Isar 2, Essenbach (Germany). Plant Operation/Production Engineering

    2016-07-01

    In several German and Swiss Nuclear Power Plants with Pressurized Water Reactor (PWR) the control of the reactor power was and will be improved in order to be able to support the energy transition with increasing volatile renewable energy in the grid by flexible load operation according to the need of the load dispatcher (power system stability). Especially regarding the mentioned German NPPs with a nominal electric power of approx. 1,500 MW, the general objectives are the main automated grid relevant operation modes. The new possibilities of digital I and C (as TELEPERM {sup registered} XS) enable the automation of the operating modes provided that manual support is no longer necessary. These possibilities were and will be implemented by AREVA within the ALFC-projects. Manifold adaption algorithms to the reactor physical variations during the nuclear load cycle enable a precise control of the axial power density distribution and of the reactivity management in the reactor core. Finally this is the basis for a highly automated load flexibility with the parallel respect and surveillance of the operational limits of a PWR.

  6. Evaluation of the feasibility, economic impact, and effectiveness of underground nuclear power plants. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    1978-05-01

    Information on underground nuclear power plants is presented concerning underground nuclear power plant concepts; public health impacts; technical feasibility of underground concepts; economic impacts of underground construction; and evaluation of related issues.

  7. Nuclear power plant maintenance optimisation SENUF network activity

    Energy Technology Data Exchange (ETDEWEB)

    Ahlstrand, R.; Bieth, M.; Pla, P.; Rieg, C.; Trampus, P. [Inst. for Energy, EC DG Joint Research Centre, Petten (Netherlands)

    2004-07-01

    During providing scientific and technical support to TACIS and PHARE nuclear safety programs a large amount of knowledge related to Russian design reactor systems has accumulated and led to creation of a new Network concerning Nuclear Safety in Central and Eastern Europe called ''Safety of Eastern European type Nuclear Facilities'' (SENUF). SENUF contributes to bring together all stakeholders of TACIS and PHARE: beneficiaries, end users, Eastern und Western nuclear industries, and thus, to favour fruitful technical exchanges and feedback of experience. At present the main focus of SENUF is the nuclear power plant maintenance as substantial element of plant operational safety as well as life management. A Working Group has been established on plant maintenance. One of its major tasks in 2004 is to prepare a status report on advanced strategies to optimise maintenance. Optimisation projects have an interface with the plant's overall life management program. Today, almost all plants involved in SENUF network have an explicit policy to extend their service life, thus, component ageing management, modernization and refurbishment actions became much more important. A database is also under development, which intends to help sharing the available knowledge and specific equipment and tools. (orig.)

  8. Nuclear Power: Is It a New Clear Choice for Malaysia

    Science.gov (United States)

    Besar, Idris B.

    2008-05-01

    Energy is essential for socio-economic development. Any nation's standard of living is closely related to its access to energy. To put into perspective, the per capita electricity consumptions in developed countries of the Organisation for Economic Cooperation and Development (OECD) is currently estimated at 8600 kilowatts-hour per year as compared to the consumption rates in Malaysia and some African countries of 3300 and 50 kilowatts-hour per year, respectively. Energy is therefore an important pre-requisite for achieving the Malaysian vision of becoming a developed nation by the year 2020, in that it is needed not only for industrialization programme but also in maintaining quality of life. In Malaysia, the main concern currently is still on the supply in term of adequacy, reliability and quality; and moving slowly but steadily towards security, sustainability, environmentally friendly and contribution to climate change. With this new dimension, nuclear power emerged as a good match to a possible alternative in the comprehensive national energy policy. Many studies presented the positive aspects of nuclear power while others indicated the bad sides and potential risks. This paper will highlight some of those pros and cons as well as the potential risks beside a discussion on relevant requirements for a nuclear power programme in particular those of interest to the professionals in the physical sciences.

  9. Safety Assessment of Nuclear Power Plants for Liquefaction Consequences

    Directory of Open Access Journals (Sweden)

    Tamás János Katona

    2015-01-01

    Full Text Available In case of some nuclear power plants constructed at the soft soil sites, liquefaction should be analysed as beyond design basis hazard. The aim of the analysis is to define the postevent condition of the plant, definition of plant vulnerabilities, and identification of the necessary measures for accident management. In the paper, the methodology of the analysis of liquefaction effects for nuclear power plants is outlined. The procedure includes identification of the scope of the safety analysis and the acceptable limit cases for plant structures having different role from accident management point of view. Considerations are made for identification of dominating effects of liquefaction. The possibility of the decoupling of the analysis of liquefaction effects from the analysis of vibratory ground motion is discussed. It is shown in the paper that the practicable empirical methods for definition of liquefaction susceptibility provide rather controversial results. Selection of method for assessment of soil behaviour that affects the integrity of structures requires specific considerations. The case of nuclear power plant at Paks, Hungary, is used as an example for demonstration of practical importance of the presented results and considerations.

  10. Revised seismic and geologic siting regulations for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, A.J.; Chokshi, N.C. [Office of Nuclear Regulatory Research, Washington, DC (United States)

    1997-02-01

    The primary regulatory basis governing the seismic design of nuclear power plants is contained in Appendix A to Part 50, General Design Criteria for Nuclear Power Plants, of Title 10 of the Code of Federal Regulations (CFR). General Design Criteria (GDC) 2 defines requirements for design bases for protection against natural phenomena. GDC 2 states the performance criterion that {open_quotes}Structures, systems, and components important to safety shall be designed to withstand the effects of natural phenomena such as earthquakes, . . . without loss of capability to perform their safety functions. . .{close_quotes}. Appendix A to Part 100, Seismic and Geologic Siting Criteria for Nuclear Power Plants, has been the principal document which provided detailed criteria to evaluate the suitability of proposed sites and suitability of the plant design basis established in consideration of the seismic and geologic characteristics of the proposed sites. Appendix A defines required seismological and geological investigations and requirements for other design conditions such as soil stability, slope stability, and seismically induced floods and water waves, and requirements for seismic instrumentation. The NRC staff is in the process of revising Appendix A. The NRC has recently revised seismic siting and design regulations for future applications. These revisions are discussed in detail in this paper.

  11. Developing the concept of maintenance and repairs in projects of power units for new-generation nuclear power stations

    Science.gov (United States)

    Gurinovich, V. D.; Yanchenko, Yu. A.

    2012-05-01

    Results from conceptual elaboration of individual requirements for the system of maintenance and repairs that must be implemented in the projects of new-generation nuclear power stations are presented taking as an example the power unit project for a nuclear power station equipped with a standard optimized VVER reactor with enhanced information support (the so-called VVER TOI reactor). Implementation of these concepts will help to achieve competitiveness of such nuclear power stations in the domestic and international markets.

  12. Implementation of a radiological emergency monitoring system for Bruce Power nuclear power plant (Canada); Implementierung eines radiologischen Umgebungsueberwachungsmesssystems fuer das Kernkraftwerk Bruce Power (Kanada)

    Energy Technology Data Exchange (ETDEWEB)

    Madaric, M. [Saphymo GmbH, Frankfurt (Germany)

    2016-07-01

    The Bruce Power nuclear power plant (BP NPP) in Ontario, Canada, is the largest nuclear generating station in the world, operating 8 nuclear reactors producing 6300 MW. In correlation with Bruce Power's safety culture, ''Safety first'' and continuous improvements are essential and substantial parts of the Bruce Power philosophy and management system. After the Fukushima nuclear accident the existing radiological emergency monitoring was analyzed and improved.

  13. Nuclear Power as a Basis for Future Electricity Generation

    Science.gov (United States)

    Pioro, Igor; Buruchenko, Sergey

    2017-12-01

    It is well known that electrical-power generation is the key factor for advances in industry, agriculture, technology and the level of living. Also, strong power industry with diverse energy sources is very important for country independence. In general, electrical energy can be generated from: 1) burning mined and refined energy sources such as coal, natural gas, oil, and nuclear; and 2) harnessing energy sources such as hydro, biomass, wind, geothermal, solar, and wave power. Today, the main sources for electrical-energy generation are: 1) thermal power – primarily using coal and secondarily - natural gas; 2) “large” hydro power from dams and rivers and 3) nuclear power from various reactor designs. The balance of the energy sources is from using oil, biomass, wind, geothermal and solar, and have visible impact just in some countries. In spite of significant emphasis in the world on using renewables sources of energy, in particular, wind and solar, they have quite significant disadvantages compared to “traditional” sources for electricity generation such as thermal, hydro, and nuclear. These disadvantages include low density of energy, which requires large areas to be covered with wind turbines or photovoltaic panels or heliostats, and dependence of these sources on Mother Nature, i.e., to be unreliable ones and to have low (20 – 40%) or very low (5 – 15%) capacity factors. Fossil-fueled power plants represent concentrated and reliable source of energy. Also, they operate usually as “fast-response” plants to follow rapidly changing electrical-energy consumption during a day. However, due to combustion process they emit a lot of carbon dioxide, which contribute to the climate change in the world. Moreover, coal-fired power plants, as the most popular ones, create huge amount of slag and ash, and, eventually, emit other dangerous and harmful gases. Therefore, Nuclear Power Plants (NPPs), which are also concentrated and reliable source of energy

  14. An Evaluation of Energy Storage Options for Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dufek, Eric J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-01

    Energy supply, distribution, and demand are continuing to evolve as new generation sources come online and new appliances are installed. A larger percentage of the United States (U.S.) energy mix is provided by variable energy sources such as wind and solar each year, and distributed generation is becoming more common. In parallel, an evolution in consumer products such as electrical vehicles, information technology devices for residential and industrial applications, and appliances is changing how energy is consumed. As a result of these trends, nuclear power plants (NPPs) are being called upon to operate more flexibly than ever before. Furthermore, advanced nuclear power plants (A-NPPs) might operate as part of an electricity system that looks very different than when the current NPP fleet was constructed. A-NPPs face the possibility that they will need to operate in an environment where flexibility (e.g., fast ramping) is more highly valued than stability (e.g., baseload generation for conventional demand curves). The current fleet of NPPs is struggling to remain economical in competitive markets in an era of historically low natural gas prices and renewable sources with very low marginal costs. These factors, overlaid with an ambiguous national policy related to nuclear energy and a decision-making context that struggles with multi-decade capital investments, raise key questions and present significant challenges to the economics of nuclear power in the evolving grid. Multiple factors could improve the economics of A-NPPs, including: (1) minimizing the need for active safety systems, (2) minimizing adoption of one-off reactor designs, (3) establishing policies that credit low carbon emitting technologies, and (4) integrating energy storage technologies that increase revenue and reduce costs through a combination of ancillary services, market hedging, and reduced costs via stable operation. This report focuses on Item (4), containing an overview, synthesis, and

  15. The (de)politicisation of nuclear power: The Finnish discussion after Fukushima.

    Science.gov (United States)

    Ylönen, Marja; Litmanen, Tapio; Kojo, Matti; Lindell, Pirita

    2017-04-01

    When the Fukushima accident occurred in March 2011, Finland was at the height of a nuclear renaissance, with the Government's decision-in-principle in 2010 to allow construction of two new nuclear reactors. This article examines the nuclear power debate in Finland after Fukushima. We deploy the concepts of (de)politicisation and hyperpoliticisation in the analysis of articles in the country's main newspaper. Our analysis indicates that Finnish nuclear exceptionalism manifested in the safety-related depoliticising and the nation's prosperity-related hyperpoliticisation arguments of the pro-nuclear camp. The anti-nuclear camp used politicisation strategies, such as economic arguments, to show the unprofitability of nuclear power. The Fukushima accident had a clear effect on Finnish nuclear policy: the government programme of 2011 excluded the nuclear new build. However, in 2014 the majority of Parliament again supported nuclear power. Hence, the period after Fukushima until 2014 could be described as continued but undermined loyalty to nuclear power.

  16. Human Reliability Analysis for Digitized Nuclear Power Plants: Case Study on the LingAo II Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Yanhua Zou

    2017-03-01

    Full Text Available The main control room (MCR in advanced nuclear power plants (NPPs has changed from analog to digital control system (DCS. Operation and control have become more automated, centralized, and accurate due to the digitalization of NPPs, which has improved the efficiency and security of the system. New issues associated with human reliability inevitably arise due to the adoption of new accident procedures and digitalization of main control rooms in NPPs. The LingAo II NPP is the first digital NPP in China to apply the state-oriented procedure. In order to address issues related to human reliability analysis for DCS and DCS + state-oriented procedure, the Hunan Institute of Technology conducted a research project based on a cooperative agreement with the LingDong Nuclear Power Co. Ltd. This paper is a brief introduction to the project.

  17. Preventive maintenance instrumentation results in Spanish nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Palomo Anaya, M. Jose; Verdu Martin, Gumersindo, E-mail: mpalomo@iqn.upv.es, E-mail: gverdu@iqn.upv.es [ISIRYM Universidad Politecnica de Valencia, Valencia (Spain); Arnaldos Gonzalvez, Adoracion, E-mail: a.arnaldos@titaniast.com [TITANIA Servicios Tecnologicos SL, Valencia (Spain); Nieva, Marcelino Curiel, E-mail: m.curiel@lainsa.com [Logistica y Acondicionamientos Industriales SAU (LAINSA), Valencia (Spain)

    2011-07-01

    This paper is a recompilation of the most significant results in relation to the researching in Preventive and Predictive Maintenance in critical nuclear instrumentation for power plant operation, which it is being developed by Logistica y Acondicionamientos Industriales and The Isirym Institute of the Polytechnic University of Valencia. Instrumentation verification and test, it is a priority of the Power Plants Control and Instrumentation Department technicians. These procedures are necessary information for the daily power plant work. It is performed according to different procedures and in different moments of the fuel cycle depending on the instrumentation critical state and the monitoring process. Normally, this study is developed taking into account the instantaneous values of the instrumentation measures and, after their conversion to physical magnitude, they are analyzed according to the power plant operation point. Moreover, redundant sensors measurements are taken into consideration to the equipment and/or power plant monitoring. This work goes forward and it is in advanced to the instrument analysis as it is, independently of the operation point, using specific signal analysis techniques for preventive and predictive maintenance, with the aim to obtain not only information about possible malfunctions, but the degradation scale presented in the instrument or in the system measured. We present seven real case studies of Spanish Nuclear Power Plants each of them shall give a significant contribution to problem resolution and power plant performance: Fluctuations in sensor lines (case 1), Air presence in feed water lines (case 2), Root valve partially closed (case 3), Sensor malfunctions (case 4), Electrical source malfunctions (case 5), RTD malfunctions (case 6) and LPRM malfunctions (case 7). (author)

  18. Self-consistent model of nuclear power and nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Adamov, E.O. [Ministry of Russian Federation of Atomic Energy, Moscow (Russian Federation); Ganev, I.K.; Lopatkin, A.V.; Orlov, V.V.; Smirnov, V.S. [Research and Development Institute of Power Engineering, 101000, P.O.B. 788, Moscow (Russian Federation)

    2000-06-01

    Under discussion are such major aspects of the nuclear energy sector as cost effectiveness, nuclear and environmental safety of reactors and nuclear fuel cycle facilities, sustained fuel supply, and proven feasibility of a proliferation-resistant technology. These requirements can be met, for instance, by a two-circuit nuclear facility with an inherently safe fast reactor of the BREST type which is expected to produce electricity at a cost not higher than that at modern LWRs. Fuel supply to such facilities and to a relatively small number of thermal reactors with BR<1, could be provided by fast reactors using depleted uranium as makeup fuel and having a small breeding gain in the core (CBR{approx}1.05) and bottom blanket (full BR{approx}1.1). Use of a high-boiling metallic coolant (lead) affords deterministic nuclear, technical and environmental safety of the plants in design-basis and hypothetical accidents. Introduction of a transmutational NFC is viewed as one of the avenues to global environmental safety, when the equivalent activity of long-lived high-level waste is made lower or close to the activity of the source material going into energy production. With such a balance in place, nuclear power could be regarded, in a sense, as waste-free. (orig.)

  19. RAMONA analysis of BWR stability at nuclear power plant Brunsbuettel

    Energy Technology Data Exchange (ETDEWEB)

    Kappes, C.; Velten, R.; Wehle, F. [AREVA NP GmbH, Erlangen (Germany); Huettmann, A.; Schuster, R. [Vattenfall Europe GmbH, Hamburg (Germany)

    2010-05-15

    For high power/low flow operating conditions associated with unfavorable core power distributions, BWR operation requires attention with respect to potential power and flow oscillations. Beside stability analyses based on highly validated methodology as RAMONA, also stability measurements are performed in BWR plants. Such measurements usually cover the evaluation of Average Power Range Monitor (APRM) and Local Power Range Monitor (LPRM) signals of the BWR core at several operating conditions. This paper presents the numerical simulation of stability phenomena which were recorded in the frame of a stability measurement at the nuclear power plant Brunsbuettel (KKB) on December 12{sup th} 2004 (Cycle 18). The measurement showed a local instability at most investigated operating points and a temporal global instability when the reactor was operated at conditions where four of the eight recirculation pumps were running. The numerical investigation with RAMONA-3 focuses on the operating point with four recirculation pumps when a temporal global instability has been measured. It will be shown that a local destabilization of a single Fuel Assembly (FA) can yield a global instability mode when the reactor is operating under high power and low flow conditions. Such phenomena have already been observed and analyzed for other BWR plants as e.g. Forsmark-1. (orig.)

  20. Refractory metal alloys and composites for space nuclear power systems

    Science.gov (United States)

    Titran, Robert H.; Stephens, Joseph R.; Petrasek, Donald W.

    1988-01-01

    Space power requirements for future NASA and other U.S. missions will range from a few kilowatts to megawatts of electricity. Maximum efficiency is a key goal of any power system in order to minimize weight and size so that the Space Shuttle may be used a minimum number of times to put the power supply into orbit. Nuclear power has been identified as the primary power source to meet these high levels of electrical demand. One method to achieve maximum efficiency is to operate the power supply, energy conservation system, and related components at relatively high temperatures. For systems now in the planning stages, design temperatures range from 1300 K for the immediate future to as high as 1700 K for the advanced systems. NASA Lewis Research Center has undertaken a research program on advanced technology of refractory metal alloys and composites that will provide baseline information for space power systems in the 1900's and the 21st century. Special emphasis is focused on the refractory metal alloys of niobium and on the refractory metal composites which utilize tungsten alloy wires for reinforcement. Basic research on the creep and creep-rupture properties of wires, matrices, and composites are discussed.

  1. Nuclear power plant safety improvement based on hydrogen technologies

    Directory of Open Access Journals (Sweden)

    R.Z. Aminov

    2015-09-01

    Full Text Available An effective application for hydrogen technologies at nuclear power plants is proposed, which improves the plant maneuverability during normal operation, and provides for in-house power supply during the plant blackout. The reliability of the NPP's emergency power supply was assessed probabilistically for the plant blackout conditions with the simultaneous use of an auxiliary full-time operating steam turbine and the emergency power supply system channels with diesel generators. The proposed system with an additional steam turbine makes it possible to use the reactor core decay heat for the reactor shutdown for 72 h. During the blackout at a plant with several units, the additional steam turbine power required for the unit cool down is maintained by additional steam generated by the combustion of hydrogen in oxygen. It has been shown that the proposed flowchart with an auxiliary full-time operating small-power steam turbine installed at the NPP, combined with an integrated hydrogen facility, improves the reliability of the NPP in-house power supply during blackout accidents.

  2. 33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.

    Science.gov (United States)

    2010-07-01

    ... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position 35...

  3. 33 CFR 165.106 - Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire.

    Science.gov (United States)

    2010-07-01

    ... Guard District § 165.106 Security Zone: Seabrook Nuclear Power Plant, Seabrook, New Hampshire. (a... property boundary of Seabrook Nuclear Power Plant identified as follows: beginning at position 42°53′58″ N, 070°51′06″ W then running along the property boundaries of Seabrook Nuclear Power Plant to position 42...

  4. Fault-tolerant adaptive control for load-following in static space nuclear power systems

    Science.gov (United States)

    Parlos, Alexander G.; Onbasioglu, Fetiye O.; Peddicord, Kenneth L.; Metzger, John D.

    1992-01-01

    The possible use of a dual-loop model-based adaptive control system for load following in static space nuclear power systems is investigated. The proposed approach has thus far been applied only to a thermoelectric space nuclear power system but is equally applicable to other static space nuclear power systems such as thermionic systems.

  5. 78 FR 37325 - License Renewal of Nuclear Power Plants; Generic Environmental Impact Statement and Standard...

    Science.gov (United States)

    2013-06-20

    ... COMMISSION 10 CFR Part 51 RIN 3150-AI42 License Renewal of Nuclear Power Plants; Generic Environmental Impact... 1, ``Standard Review Plans for Environmental Reviews for Nuclear Power Plants, Supplement 1... for Renewal of Nuclear Power Plant Operating Licenses'' (RIN 3150-AI42), that is amending its...

  6. 10 CFR 50.44 - Combustible gas control for nuclear power reactors.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Combustible gas control for nuclear power reactors. 50.44... for nuclear power reactors. (a) Definitions—(1) Inerted atmosphere means a containment atmosphere with... pressurized water nuclear power reactor with an operating license on October 16, 2003, except for those...

  7. 10 CFR Appendix C to Part 73 - Nuclear Power Plant Safeguards Contingency Plans

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear Power Plant Safeguards Contingency Plans C... MATERIALS Pt. 73, App. C Appendix C to Part 73—Nuclear Power Plant Safeguards Contingency Plans I.... For nuclear power reactor licensees subject to the requirements of § 73.55, the licensee shall provide...

  8. 78 FR 47012 - Developing Software Life Cycle Processes Used in Safety Systems of Nuclear Power Plants

    Science.gov (United States)

    2013-08-02

    ... COMMISSION Developing Software Life Cycle Processes Used in Safety Systems of Nuclear Power Plants AGENCY... Software Life Cycle Processes for Digital Computer Software used in Safety Systems of Nuclear Power Plants... design quality in software used in safety systems in nuclear power plants. ADDRESSES: Please refer to...

  9. 76 FR 39134 - ZIONSOLUTIONS, LLC; Zion Nuclear Power Station, Units 1 and 2 Exemption From Recordkeeping...

    Science.gov (United States)

    2011-07-05

    ... COMMISSION ZIONSOLUTIONS, LLC; Zion Nuclear Power Station, Units 1 and 2 Exemption From Recordkeeping Requirements 1.0 Background Zion Nuclear Power Station (ZNPS or Zion), Unit 1, is a Westinghouse 3250 MWt... licensing basis requirements previously applicable to the nuclear power units and associated systems...

  10. 10 CFR 50.120 - Training and qualification of nuclear power plant personnel.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Training and qualification of nuclear power plant... Training and qualification of nuclear power plant personnel. (a) Applicability. The requirements of this... each holder of a combined license issued under part 52 of this chapter for a nuclear power plant of the...

  11. 76 FR 82201 - General Site Suitability Criteria for Nuclear Power Stations

    Science.gov (United States)

    2011-12-30

    ... Power Stations AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide; request for... regulatory guide DG-4021, ``General Site Suitability Criteria for Nuclear Power Stations.'' This guide... for nuclear power stations. DATES: Submit comments by February 25, 2012. Comments received after this...

  12. 10 CFR Appendix S to Part 50 - Earthquake Engineering Criteria for Nuclear Power Plants

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Earthquake Engineering Criteria for Nuclear Power Plants S... FACILITIES Pt. 50, App. S Appendix S to Part 50—Earthquake Engineering Criteria for Nuclear Power Plants... nuclear power plant structures, systems, and components important to safety to withstand the effects of...

  13. 77 FR 8902 - Draft Regulatory Guide: Issuance, Availability Decommissioning of Nuclear Power Reactors

    Science.gov (United States)

    2012-02-15

    ... COMMISSION Draft Regulatory Guide: Issuance, Availability Decommissioning of Nuclear Power Reactors AGENCY... ``Decommissioning of Nuclear Power Reactors.'' This guide describes a method NRC considers acceptable for use in... Revision 1 of Regulatory Guide 1.184, ``Decommissioning of Nuclear Power Reactors,'' dated July 2000. This...

  14. 10 CFR 50.36a - Technical specifications on effluents from nuclear power reactors.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Technical specifications on effluents from nuclear power...; Ineligibility of Certain Applicants § 50.36a Technical specifications on effluents from nuclear power reactors..., including expected occurrences, as low as is reasonably achievable, each licensee of a nuclear power reactor...

  15. 10 CFR Appendix A to Part 100 - Seismic and Geologic Siting Criteria for Nuclear Power Plants

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Seismic and Geologic Siting Criteria for Nuclear Power.... 100, App. A Appendix A to Part 100—Seismic and Geologic Siting Criteria for Nuclear Power Plants i. purpose General Design Criterion 2 of Appendix A to part 50 of this chapter requires that nuclear power...

  16. Basic strategies of public protection in a nuclear power plant beyond—Design basis accident

    Directory of Open Access Journals (Sweden)

    V.A. Kutkov

    2016-03-01

    The Russian Federation takes an active part in the construction of nuclear power plants in those countries that are just embarking on a nuclear power programme, therefore, new international requirements should be considered in the design and construction of the NPPs abroad. Those requirements should be also considered in training of national personnel for the implementation of nuclear power programme.

  17. Safety and Radiation Protection at Swedish Nuclear Power Plants 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-15

    In 2005, no severe events occurred which challenged the safety at the Swedish nuclear power plants. However, some events have been given a special focus. The 'Gudrun' storm, which occurred in January 2005, affected the operation of the reactors at Ringhals and Barsebaeck 2. At Ringhals, the switchyards were affected by salt deposits and, at Barsebaeck, the 400kV grid was subjected to interruptions. The long-term trend is that the total number of fuel defects in Swedish reactors is decreasing. The damage that occurs nowadays has mainly been caused by small objects entering the fuel via the coolant and fretting holes in the cladding. To reduce the number of defects of this type, fuel with filters is successively being introduced to prevent debris from entering the fuel assemblies and cyclone filters in the facility which cleans the coolant. Since the mid-nineties, the pressurised water reactors, Ringhals 2, 3 and 4, have had problems with fuel rod bowing in excess of the safety analysis calculations. Ringhals AB (RAB) has adopted measures to rectify the bowing. Follow-up work shows that the fuel rod bowing is decreasing. The followup in 2005 of damaged tubes in the Ringhals 4 steam generators indicates a continued slow damage propagation. Tubes with defects of such a limited extent that there are adequate margins to rupture and loosening have been kept in operation. Damaged tubes with insufficient margins have plugged. During the year, previously observed minor leakage from the reactor containment in Ringhals 2 was investigated in greater detail and repaired. The investigations showed extensive corrosion attack caused by deficiencies in connection with containment construction. The ageing of electrical cables and other equipment in the I-C systems has been examined by SKI. Regulatory supervision has so far shown that these issues are largely handled in a satisfactory manner by the licensees but that certain supplementary investigations and other measures

  18. Human Factors Considerations in New Nuclear Power Plants: Detailed Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    OHara,J.; Higgins, J.; Brown, W.; Fink, R.

    2008-02-14

    This Nuclear Regulatory Commission (NRC) sponsored study has identified human-performance issues in new and advanced nuclear power plants. To identify the issues, current industry developments and trends were evaluated in the areas of reactor technology, instrumentation and control technology, human-system integration technology, and human factors engineering (HFE) methods and tools. The issues were organized into seven high-level HFE topic areas: Role of Personnel and Automation, Staffing and Training, Normal Operations Management, Disturbance and Emergency Management, Maintenance and Change Management, Plant Design and Construction, and HFE Methods and Tools. The issues where then prioritized into four categories using a 'Phenomena Identification and Ranking Table' methodology based on evaluations provided by 14 independent subject matter experts. The subject matter experts were knowledgeable in a variety of disciplines. Vendors, utilities, research organizations and regulators all participated. Twenty issues were categorized into the top priority category. This Brookhaven National Laboratory (BNL) technical report provides the detailed methodology, issue analysis, and results. A summary of the results of this study can be found in NUREG/CR-6947. The research performed for this project has identified a large number of human-performance issues for new control stations and new nuclear power plant designs. The information gathered in this project can serve as input to the development of a long-term strategy and plan for addressing human performance in these areas through regulatory research. Addressing human-performance issues will provide the technical basis from which regulatory review guidance can be developed to meet these challenges. The availability of this review guidance will help set clear expectations for how the NRC staff will evaluate new designs, reduce regulatory uncertainty, and provide a well-defined path to new nuclear power plant

  19. A novel power amplification scheme for nuclear magnetic resonance/nuclear quadrupole resonance systems.

    Science.gov (United States)

    Zhang, Xinwang; Schemm, Nathan; Balkır, Sina

    2011-03-01

    Nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR)-based chemical analysis systems have been widely utilized in various areas such as medicine, security, and academic research. In these applications, the power amplifier stage plays a key role in generating the required oscillating magnetic fields within a radio frequency coil that serves as the probe. However, the bulky size and relatively low efficiency of the traditional power amplification schemes employed present a bottleneck for the realization of compact sized and portable NMR and NQR systems. To address this problem, this work presents a class D voltage-switching power amplification scheme with novel fast-start and fast-stop functions that are suitable for generating ideal NMR and NQR excitation signals. Compared to the traditional analog power amplifiers (PAs), the proposed switched-mode PA can achieve significant improvement on the power efficiency as well as the physical volume. A PA circuit for portable NQR-based explosive detection systems has been designed and built using the proposed scheme with 1 kW possible maximum output power and 10 MHz maximum operating frequency. Test results show that the presented PA achieves more than 60% measured efficiency within a highly compact volume while sustaining fast start and stop of excitation signals in the order of microseconds.

  20. Elecnuc. Nuclear power plants worldwide; Elecnuc. Les centrales nucleaires dans le monde

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    This small folder presents a digest of some useful information concerning the nuclear power plants worldwide and the situation of nuclear industry at the end of 1997: power production of nuclear origin, distribution of reactor types, number of installed units, evolution and prediction of reactor orders, connections to the grid and decommissioning, worldwide development of nuclear power, evolution of power production of nuclear origin, the installed power per reactor type, market shares and exports of the main nuclear engineering companies, power plants constructions and orders situation, evolution of reactors performances during the last 10 years, know-how and development of nuclear safety, the remarkable facts of 1997, the future of nuclear power and the energy policy trends. (J.S.)

  1. Study of reactor Brayton power systems for nuclear electric spacecraft

    Science.gov (United States)

    1979-01-01

    The feasibility of using Brayton power systems for nuclear electric spacecraft was investigated. The primary performance parameters of systems mass and radiator area were determined for systems from 100 to 1000 kW sub e. Mathematical models of all system components were used to determine masses and volumes. Two completely independent systems provide propulsion power so that no single-point failure can jeopardize a mission. The waste heat radiators utilize armored heat pipes to limit meteorite puncture. The armor thickness was statistically determined to achieve the required probability of survival. A 400 kW sub e reference system received primary attention as required by the contract. The components of this system were defined and a conceptual layout was developed with encouraging results. An arrangement with redundant Brayton power systems having a 1500 K (2240 F) turbine inlet temperature was shown to be compatible with the dimensions of the space shuttle orbiter payload bay.

  2. Operating experience from Swedish nuclear power plants 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The total production of electricity from Swedish nuclear power plants was 65.6 TWh during 2002, which is a decrease compared to 2001. The energy capability factor for the 11 Swedish reactors averaged 80.8%. The PWRs at Ringhals averaged 87.6%, while the BWRs, not counting Oskarshamn 1, reached 89.2%. No events, which in accordance to conventions should be reported to IAEA, have occurred during 2002. Operational statistics are presented for each Swedish reactor. The hydroelectric power was 66 TWh, 16% lower than 2000. Wind power contributed 0.5 TWh, and remaining production sources, mainly from solid fuel plants combined with district heating, contributed 10.9 TWh. The electricity generation totalled 143 TWh, considerably less than the record high 2001 figure of 158.7 TWh. The preliminary figures for export were 14.8 TWh and and for import 20.1 TWh.

  3. Summary of operating experience in Swiss nuclear power plants 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    In 1994 the Swiss nuclear power plants produced their highest-ever combined annual output. Their contribution to total electricity generation in the country was 36%. At Muehleberg the power uprate, undertaken in 1993, was effective for the first time for an entire year. The larger capacity of the new steam generators installed in 1993 in unit 1 of the Beznau NPP allows for an electric output of 103% of nominal power. The plant efficiency of the Goesgen and Leibstadt units was increased by replacing the low pressure turbines by the new ones with a modern design. The application for a power uprate of the Leibstadt reactor is still pending. For the first time in Switzerland, one of the reactor units, Beznau 2, operated on an extended cycle of one and a half years, with no refuelling outage in 1994. In spite of the replacements of two of its three low pressure turbines, Goesgen had the shortest refuelling shutdown since the start of commercial operation. The average number of reactor scrams at the Swiss plants remained stable, at less than one scram per reactor year. Re-inspection of crack indications detected in 1990 in the core shroud of the Muehleberg reactor revealed no significant changes. A crack indication was found in one of the other welds inspected. The Swiss government issued a limited operating licence for Beznau 2 for the next ten years, i.e. until the end of 2004. The only other unit with a limited operating licence (until 2003) is Muehleberg. The remaining three reactor units, have no time limits on their operating licences, in accordance with the Atomic Law. Goesgen is the first Swiss nuclear power plant having now produced more than 100 billion kWh. As from January 1, 1995, the nominal net power of the largest Swiss reactor unit, Leibstadt, has been fixed at 1030 MW; that of the Goesgen NPP has been increased by 25 MW to 965 MW. (author) figs., tabs.

  4. Upgrading of seismic design of nuclear power plant building

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Hiroshi [Tokyo Univ. (Japan). Faculty of Engineering; Kitada, Yoshio

    1997-03-01

    In Japan seismic design methodology of nuclear power plant (NPP) structures has been established as introduced in the previous session. And yet efforts have been continued to date to upgrade the methodology, because of conservative nature given to the methodology in regard to unknown phenomena and technically-limited modeling involved in design analyses. The conservative nature tends to produce excessive safety margins, and inevitably send NPP construction cost up. Moreover, excessive seismic design can increase the burden on normal plant operation, though not necessarily contributing to overall plant safety. Therefore, seismic engineering has put to many tests and simulation analyses in hopes to rationalize seismic design and enhance reliability of seismic safety of NPPs. In this paper, we describe some studies on structural seismic design of NPP underway as part of Japan`s effort to upgrade existing seismic design methodology. Most studies described here are carried out by NUPEC (Nuclear Power Engineering Company) funded by MITI (the Ministry of International Trade and Industry Japan), though, similar studies with the same motive are also carrying out by nuclear industries such as utilities, NPP equipment and system manufacturers and building constructors. This paper consists of three sections, each introducing studies relating to NPP structural seismic design, new siting technology, and upgrading of the methodology of structural design analyses. (J.P.N.)

  5. Construction of APR1000 nuclear power information management system based on international standards

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seung Hwan [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Song, Deok Yong; Han, Byung Sub [Enesys Co., Daejeon (Korea, Republic of); An, Kyung Ik; Hwang, Jin Sang [PartDB Co., Daejeon (Korea, Republic of)

    2010-10-15

    In recent years, due to speedy rise of international oil prices, orders of nuclear power plant construction have been in progress by many countries to solve the stable supply of power. Our country has continued to perform nuclear power construction. As only a few developed countries like Japan and European countries have its own nuclear power construction technology, competition among them is keen. Our country has awarded the contract of UAE nuclear power plants based on the accumulated nuclear power plant construction technologies so far. In this regard, KEPCO has recognized the needs of information management system to manage nuclear power information and proceeded the implementation of nuclear power information management system for export-model

  6. Nuclear emergency buildings of Asco and Vandellos II nuclear power plants; Centros alternativos de emergencias de las centrales nucleares de Asco y Vandellos II

    Energy Technology Data Exchange (ETDEWEB)

    Massuet, J.; Sabater, J.; Mirallas Esteban, S.

    2016-08-01

    The Nuclear Emergency Buildings sited at Asco and Vandellos II Nuclear Power Plants (NPP) are designed to safety manage emergencies in extreme situations, beyond the design basis of the Nuclear Power Plants. Designed in accordance with the requirements of the Spanish Nuclear Regulator (Consejo de Seguridad Nuclear-CSN) these buildings are ready to operate over a period of 72 hours without external assistance and ensure habitability for crews of 120 and 70 people respectively. This article describes the architectural conception, features and major systems of the Nuclear Emergency Buildings sited at Asco and Vandellos II. (Author)

  7. About the automated instrumentation in nuclear power plants; Sobre la instrumentacion automatizada en plantas nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Segovia de los Rios, J. A.; Benitez R, J. S. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Garduno G, M P., E-mail: armando.segovia@inin.gob.mx [Instituto Tecnologica de Toluca, Av. Tecnologico s/n, 52140 Metepec, Estado de Mexico (Mexico)

    2011-11-15

    The automation of the inspection processes and monitoring in nuclear facilities have as main objective the reduction of acquired radiation dose for the operators of the diverse work programs. For example, a typical maintenance task is the problems correction of leaks in the hydraulic facilities of the vapor circuits where is necessary the repair of pipes, measuring and control elements, as the valves. A program of effective maintenance should contemplate strategies of appropriate monitoring for the immediate detection of possible failures, with the purpose of the remedy them opportunely. For this function of failures detection is necessary to have instruments that allow the measuring of the parameters that facilitate their characterization. Given the prevailing conditions in the nuclear facilities, such instruments should possess special characteristics, reason why is necessary a study of them, as well as a careful selection of the susceptible apparatuses of being used. For this reason, this work presents a discussion about some of the existent conditions in the nuclear power plants, as well as the aspects to consider for the automated instrumentation of some places of a nuclear power plant. (Author)

  8. Engineering for new-built nuclear power plant projects; Ingenieria para proyectos de nuevas centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Lopez, A.

    2012-11-01

    This article reviews the opportunities existing in the market (electrical utilities and reactor vendors) for an engineering company with the profile of Empresarios Agrupados (EA) in new-built nuclear power plant projects. To do this, reference is made to some representative examples of projects in which EA has been participating recently. the article concludes sharing with the reader some lessons learned from this participation. (Author)

  9. Development of the SPACE code for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Sang Jun [Korea Electric Power Corporation Research Institute, Daejeon (Korea, Republic of); Park, Chan Eok [KEPCO Engineering and Construction Company Inc, Daejeon (Korea, Republic of); Kim, Kyung Doo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ban, Chang Hwan [Korea Nuclear Fuel, Daejeon (Korea, Republic of)

    2011-02-15

    The Korean nuclear industry is developing a thermal-hydraulic analysis code for safety analysis of pressurized water reactors (PWRs). The new code is called the Safety and Performance Analysis Code for Nuclear Power Plants (SPACE). The SPACE code adopts advanced physical modeling of two-phase flows, mainly two-fluid three-field models which comprise gas, continuous liquid, and droplet fields and has the capability to simulate 3D effects by the use of structured and/or nonstructured meshes. The programming language for the SPACE code is C++ for object-oriented code architecture. The SPACE code will replace outdated vendor supplied codes and will be used for the safety analysis of operating PWRs and the design of advanced reactors. This paper describes the overall features of the SPACE code and shows the code assessment results for several conceptual and separate effect test problems

  10. Potential civil mission applications for space nuclear power systems

    Science.gov (United States)

    Ambrus, J. H.; Beatty, R. G. G.

    1985-01-01

    It is pointed out that the energy needs of spacecraft over the last 25 years have been met by photovoltaic arrays with batteries, primary fuel cells, and radioisotope thermoelectric generators (RTG). However, it might be difficult to satisfy energy requirements for the next generation of space missions with the currently used energy sources. Applications studies have emphasized the need for a lighter, cheaper, and more compact high-energy source than the scaling up of current technologies would permit. These requirements could be satisfied by a nuclear reactor power system. The joint NASA/DOD/DOE SP-100 program is to explore and evaluate this option. Critical elements of the technology are also to be developed, taking into account space reactor systems of the 100 kW class. The present paper is concerned with some of the civil mission categories and concepts which are enabled or significantly enhanced by the performance characteristics of a nuclear reactor energy system.

  11. Guidelines for inservice testing at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, P.

    1995-04-01

    The staff of the U.S. Nuclear Regulatory Commission (NRC) gives licensees guidelines and recommendations for developing and implementing programs for the inservice testing of pumps and valves at commercial nuclear power plants. The staff discusses the regulations; the components to be included in an inservice testing program; and the preparation and content of cold shutdown justifications, refueling outage justifications, and requests for relief from the American Society of Mechanical Engineers Code requirements. The staff also gives specific guidance on relief acceptable to the NRC and advises licensees in the use of this information at their facilities. The staff discusses the revised standard technical specifications for the inservice testing program requirements and gives guidance on the process a licensee may follow upon finding an instance of noncompliance with the Code.

  12. Refractory alloy technology for space nuclear power applications

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.H. Jr.; Hoffman, E.E. (eds.)

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys. (DLC)

  13. 15 years after Chernobyl. Nuclear power and climate change?

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M

    2001-04-01

    Fifteen years after two massive explosions and a subsequent fire released a giant radioactive cloud into the atmosphere over the Chernobyl nuclear power plant located in what used to be the USSR, 388 farms with 230,000 sheep in Wales, England and Scotland are still subject to restriction orders. The contamination levels stand at several hundred Becquerels of cesium per kilogram of meat, too much to be consumed by human beings. The sheep have to be moved for some time to low or non-contaminated pastures in order to allow the bodies to loose some of their radioactivity before they can be slaughtered. For many countries the 1986 Chernobyl catastrophe came a public turning point for the future of nuclear energy. (author)

  14. A study on the development and application of expert system for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Hee Gon; Kim, Seong Bok [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1995-12-31

    It is a final report of the research that is a study on the development and application of expert system for nuclear power plants and development of the schemes computing environments and user interfaces for the expert system, which is a systematic and efficient development of expert system for nuclear power plants in the future. This report is consisted of -Development trends of expert system for nuclear power plants. -Classification of expert system applications for nuclear power plants. -Systematic and efficient developments schemes of expert system for nuclear power plants, and -Suitable computing environments and user interfaces for the expert systems. (author). 113 refs., 85 figs.

  15. Seismic design of equipment and piping systems for nuclear power plants in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Minematsu, Akiyoshi [Tokyo Electric Power Co., Inc. (Japan)

    1997-03-01

    The philosophy of seismic design for nuclear power plant facilities in Japan is based on `Examination Guide for Seismic Design of Nuclear Power Reactor Facilities: Nuclear Power Safety Committee, July 20, 1981` (referred to as `Examination Guide` hereinafter) and the present design criteria have been established based on the survey of governmental improvement and standardization program. The detailed design implementation procedure is further described in `Technical Guidelines for Aseismic Design of Nuclear Power Plants, JEAG4601-1987: Japan Electric Association`. This report describes the principles and design procedure of the seismic design of equipment/piping systems for nuclear power plant in Japan. (J.P.N.)

  16. Nuclear Science Symposium, 19th, and Nuclear Power Systems Symposium, 4th, Miami, Fla., December 6-8, 1972, Proceedings.

    Science.gov (United States)

    1973-01-01

    Major topics covered include radiation monitoring instrumentation, nuclear circuits and systems, biomedical applications of nuclear radiation in diagnosis and therapy, plasma research for fusion power, reactor control and instrumentation, nuclear power standards, and applications of digital computers in nuclear power plants. Systems and devices for space applications are described, including the Apollo alpha spectrometer, a position sensitive detection system for UV and X-ray photons, a 4500-volt electron multiplier bias supply for satellite use, spark chamber systems, proportional counters, and other devices. Individual items are announced in this issue.

  17. Quality Assurance in Nuclear Power Plants; La garantia de calidad en la Centrales Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Zamarron Casinello, J. M. (CC.AA. Almaraz-Trillo); Gasca Pinilla, R. (Asociacion Nuclear Asco-Vandellos II); Sala Candela, A. (IBERDROLA); Valle Pena (NUCLENOR); Ruiz Rodriguez, C. (UNION FENOSA)

    2000-07-01

    In 1970, 10CFR50 Appendix B. Quality Assurance Criteria for Nuclear Power Plants & Fuel Reprocessing Plants, was approved in USA. This is based on 18 criteria and requires American nuclear power plants to establish as quickly as possible a Quality Assurance Program (QAP) specifying how to comply with the criteria contained in this Appendix. The Ministry of Industry required that this standard be observed in Spanish plants. In The first-generation plants (Jose Cabrera, Santa Maria de Garona and Vandellos 1), which were built before this new standard was developed, the concept of Quality Assurance has only been applied to the operating phase, whereas in second-generation plants (Almaraz, Asco3 and Cofrentes) and third-generation plants (Vandellos 2 and Trillo), the concept was applied from the very beginning of the project: design phases, construction and finally plant operation. In 1979, the IAEA publihed practical code 50-C-QA as an international reference document. It contains 13 criteria that coincide with and complement those established in Appendex B of 10CFR50. As a result, the nuclear power plants in all neighboring countries will be enforcing similar Quality Assurance criteria. (Author)

  18. Severe Accident Simulation of the Laguna Verde Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Gilberto Espinosa-Paredes

    2012-01-01

    Full Text Available The loss-of-coolant accident (LOCA simulation in the boiling water reactor (BWR of Laguna Verde Nuclear Power Plant (LVNPP at 105% of rated power is analyzed in this work. The LVNPP model was developed using RELAP/SCDAPSIM code. The lack of cooling water after the LOCA gets to the LVNPP to melting of the core that exceeds the design basis of the nuclear power plant (NPP sufficiently to cause failure of structures, materials, and systems that are needed to ensure proper cooling of the reactor core by normal means. Faced with a severe accident, the first response is to maintain the reactor core cooling by any means available, but in order to carry out such an attempt is necessary to understand fully the progression of core damage, since such action has effects that may be decisive in accident progression. The simulation considers a LOCA in the recirculation loop of the reactor with and without cooling water injection. During the progression of core damage, we analyze the cooling water injection at different times and the results show that there are significant differences in the level of core damage and hydrogen production, among other variables analyzed such as maximum surface temperature, fission products released, and debris bed height.

  19. Dynamic model of nuclear power plant steam turbine

    Directory of Open Access Journals (Sweden)

    Kulkowski Karol

    2015-03-01

    Full Text Available The paper presents the dynamic multivariable model of Nuclear Power Plant steam turbine. Nature of the processes occurring in a steam turbine causes a task of modeling it very difficult, especially when this model is intended to be used for on-line optimal process control (model based over wide range of operating conditions caused by changing power demand. Particular property of developed model is that it enables calculations evaluated directly from the input to the output, including pressure drop at the stages. As the input, model takes opening degree of valve and steam properties: mass flow and pressure. Moreover, it allows access to many internal variables (besides input and output describing processes within the turbine. The model is compared with the static steam turbine model and then verified by using archive data gained from researches within previous Polish Nuclear Power Programme. Presented case study concerns the WWER-440 steam turbine that was supposed to be used in Żarnowiec. Simulation carried out shows compliance of the static and dynamic models with the benchmark data, in a steady state conditions. Dynamic model also shows good behavior over the transient conditions.

  20. Dictionary of nuclear power. upd. ed. January 2013; Lexikon zur Kernenergie

    Energy Technology Data Exchange (ETDEWEB)

    Koelzer, Winfried

    2013-02-01

    The actualized version (January 2013) of the dictionary on nuclear power includes all actualizations and new inputs since the last version of 2001. The original publication dates from 1980. The dictionary includes definitions, terms, measuring units and helpful information on the actual knowledge concerning nuclear power, nuclear fuel cycle, nuclear facilities, radioactive waste management, nuclear physics, reactor physics, isotope production, biological radiation effects, and radiation protection.

  1. Exploring Students' Ideas About Risks and Benefits of Nuclear Power Using Risk Perception Theories

    Science.gov (United States)

    Kılınç, Ahmet; Boyes, Edward; Stanisstreet, Martin

    2013-06-01

    Due to increased energy demand, Turkey is continuing to explore the possibilities of introducing nuclear power. Gaining acceptance from local populations, however, may be problematic because nuclear power has a negative image and risk perceptions are complicated by a range of psychological and cultural factors. In this study, we explore the views about nuclear power of school students from three locations in Turkey, two of which have been proposed as sites suitable for nuclear power plants. About half of the student cohort believed that nuclear power can supply continuous and sufficient electricity, but approximately three quarters thought that nuclear power stations could harm organisms, including humans, living nearby. Rather few students realized that adoption of nuclear power would help to reduce global warming and thereby limit climate change; indeed, three quarters thought that nuclear power would make global warming worse. There was a tendency for more students from the location most likely to have a nuclear power plant to believe negative characteristics of nuclear power, and for fewer students to believe positive characteristics. Exploration of the possible nuclear power programmes by Turkey offers an educational opportunity to understand the risk perceptions of students that affect their decision-making processes.

  2. Compare and Contrast Major Nuclear Power Plant Disasters: Lessons Learned from the Past

    OpenAIRE

    Mukhopadhyay, Sayanti; Hastak, Makarand; Halligan, Jessica

    2014-01-01

    The construction of nuclear power plants is a major step towards reducing greenhouse gas emissions compared to the conventional coal-fired or oil-fired power plants. However, some of the major nuclear accidents in the past have raised questions about the safety and reliability of nuclear power plants. This paper compares and contrasts the major nuclear accidents of the past for example, the Chernobyl disaster (USSR), the Fukushima Daiichi disaster (Japan), and the Three Mile Island incident (...

  3. Differentiated influences of risk perceptions on nuclear power acceptance according to acceptance targets: Evidence from Korea

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Seung Kook [Policy Research Center, Korea Atomic Energy Research Institute (KAERI), Daejeon (Korea, Republic of); Lee, Jin Won [School of Management, Xiamen University, Xiamen (China)

    2017-08-15

    The determinants of the public's nuclear power acceptance have received considerable attention as decisive factors regarding nuclear power policy. However, the contingency of the relative importance of different determinants has been less explored. Building on the literature of psychological distance between the individual and the object, the present study demonstrates that the relative effects of different types of perceived risks regarding nuclear power generation differ across acceptance targets. Using a sample of Korea, our results show that, regarding national acceptance of nuclear power generation, perceived risk from nuclear power plants exerts a stronger negative effect than that from radioactive waste management; however, the latter exerts a stronger negative effect than the former on local acceptance of a nuclear power plant. This finding provides implications for efficient public communication strategy to raise nuclear power acceptance.

  4. Differentiated influences of risk perceptions on nuclear power acceptance according to acceptance targets: Evidence from Korea

    Directory of Open Access Journals (Sweden)

    Seungkook Roh

    2017-08-01

    Full Text Available The determinants of the public's nuclear power acceptance have received considerable attention as decisive factors regarding nuclear power policy. However, the contingency of the relative importance of different determinants has been less explored. Building on the literature of psychological distance between the individual and the object, the present study demonstrates that the relative effects of different types of perceived risks regarding nuclear power generation differ across acceptance targets. Using a sample of Korea, our results show that, regarding national acceptance of nuclear power generation, perceived risk from nuclear power plants exerts a stronger negative effect than that from radioactive waste management; however, the latter exerts a stronger negative effect than the former on local acceptance of a nuclear power plant. This finding provides implications for efficient public communication strategy to raise nuclear power acceptance.

  5. Nuclear power systems for the First Lunar Outpost

    Science.gov (United States)

    Mason, Lee S.; Cataldo, Robert L.

    1993-01-01

    A recent study effort at NASA has developed a preliminary reference mission description for a human return to the Moon by the end of this decade. The First Lunar Outpost (FLO) would provide the framework for establishing a permanent human presence on the Moon and a necessary step toward eventual piloted trips to Mars. The primary objectives of FLO are to sustain a crew of four on the lunar surface for 45 days during which local roving, surface science, and demonstration-level resource extraction would be accomplished. Power systems capable of meeting the diverse requirements of FLO are a significant engineering challenge. Power requirements range from 10's of watts for small science packages to 10's of kilowatts for the crew habitat. The guidelines imposed on power systems include that they be lightweight, easily deployable, and cost efficient. Nuclear systems such as radioisotope thermoelectric generators (RTGs), dynamic isotope power systems (DIPS), and small reactor power systems offer distinct advantages over solar and electrochemical alternatives. Concepts for modular RTGs and DIPS, and deployable reactor systems relevant to the FLO mission and its evolution are described and compared.

  6. Power Conditioning System Modelling for Nuclear Electric Propulsion

    Science.gov (United States)

    Metcalf, Kenneth J.

    1993-01-01

    NASA LeRC is currently developing a Fortran based model of a complete nuclear electric propulsion (NEP) vehicle that would be used for piloted and cargo missions to the Moon or Mars. The proposed vehicle design will use either a Brayton or K-Rankine power conversion cycle to drive a turbine coupled with a rotary alternator. Two thruster types are also being studied, ion and magnetoplasmadynamic (MPD). In support of this NEP model, Rocketdyne developed a power management and distribution (PMAD) subroutine that provides parametric outputs for selected alternator operating voltages and frequencies, thruster types, system power levels, and electronics coldplate temperatures. The end-to-end PMAD model described is based on the direct use of the alternator voltage and frequency for transmitting power to either ion or MPD thrusters. This low frequency transmission approach was compared with dc and high frequency ac designs, and determined to have the lowest mass, highest efficiency, highest reliability and lowest development costs. While its power quality is not as good as that provided by a high frequency system, it was considered adequate for both ion and MPD engine applications. The low frequency architecture will be used as the reference in future NEP PMAD studies.

  7. Advanced power plant training simulator for VVER-440/V230 nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Shier, W.; Kennett, R. [Brookhaven National Lab., Upton, NY (United States); Vaclav, E.; Gieci, A. [Nuclear Power Research Inst. Trnava, Inc. (Slovakia)

    1996-11-01

    An advanced, workstation based, nuclear power plant simulator has been developed for use in training the operational staff of the Bohunice Nuclear Power Plant. This training simulator uses state-of- the-art computer hardware and software and provides the capability to simultaneously include six members of the power plant operating staff in the training sessions. A detailed reactor model has been developed, representing the Bohunice VVER-44O/V230 plants, for use with the RELAP5 simulation software. In addition, a comprehensive validation program has been completed that compares the simulation results of the advanced simulator with the results from a current VVER-44O/V230 simulator. A summary of the training features and capabilities of the simulator is also provided.

  8. Avian radioecology on a nuclear power station site. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Levy, C.K.; Maletskos, C.J.; Youngstrom, K.A.

    1975-01-01

    A summary of a six-year avian radioecology study at the site of a nuclear power plant in Massachusetts is reported. A completed historical summary is followed by a description of mathematical models developed to calculate the effects on bird body burdens of various changes in environmental radionuclide levels. Examples are presented. Radionuclide metabolism studies in which acute doses of /sup 131/I and /sup 137/Cs were administered to four species of wild birds are presented. Radionuclides were administered both intravenously and orally; no apparent differences in uptake or elimination rates were observed between the two methods.

  9. Surveys of organizational culture and safety culture in nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Walter S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2000-07-30

    The results of a survey of organizational culture at a nuclear power plant are summarized and compared with those of a similar survey which has been described in the literature on ''high-reliability organizations''. A general-purpose cultural inventory showed a profile of organizational style similar to that reported in the literature; the factor structure for the styles was also similar to that of the plant previously described. A specialized scale designed to measure ''safety culture'' did not distinguished among groups within the organization that would be expected to differ.

  10. Antineutrino Flux from the Laguna Verde Nuclear Power Plant

    OpenAIRE

    Chavez-Estrada, Marisol; Aguilar-Arevalo, Alexis A.

    2015-01-01

    We present a calculation of the antineutrino flux produced by the reactors at the Laguna Verde Nuclear Power Plant in M\\'exico, based on the antineutrino spectra produced in the decay chains of the fission fragments of the main isotopes in the reactor core, and their fission rates, that have been calculated using the DRAGON simulation code. We also present an estimate of the number of expected events in a detector made of plastic scintillator with a mass of 1 ton, at 100 m from the reactor co...

  11. Antineutrino Flux from the Laguna Verde Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Marisol Chavez-Estrada

    2015-01-01

    Full Text Available We present a calculation of the antineutrino flux produced by the reactors at the Laguna Verde Nuclear Power Plant in México, based on the antineutrino spectra produced in the decay chains of the fission fragments of the main isotopes in the reactor core, and their fission rates, which have been calculated using the DRAGON simulation code. We also present an estimate of the number of expected events in a detector made of plastic scintillator with a mass of 1 ton, at 100 m from the reactor cores.

  12. Aging management guideline for commercial nuclear power plants - heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Booker, S.; Lehnert, D.; Daavettila, N.; Palop, E.

    1994-06-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in commercial nuclear power plant heat exchangers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  13. Nuclear power plant with a containment. Kernkraftwerk mit einer Sicherheitshuelle

    Energy Technology Data Exchange (ETDEWEB)

    Barthelmes, C.P.

    1982-03-25

    In nuclear power plants there is usually a containment incorporating components bearing activity. If in the cladding free hydrogen develops, controlled oxidation must be ensured by means of a recombination device, in order to prevent oxyhydrogen explosions. For this purpose, a permanent thorough mixing of the gases in the containment is required. This can be achieved by vertical shafts reaching to at least half the height of the containment and provided with heating devices to initiate the gas circulation by the stack effect. These heating devices mainly serve as a thermal recombinator.

  14. Impact of the Bohunice Nuclear Power Plant on atmospheric radiocarbon.

    Science.gov (United States)

    Povinec, P P; Sivo, A; Simon, J; Holý, K; Chudý, M; Richtáriková, M; Morávek, J

    2008-11-01

    Radiocarbon variations in the atmospheric CO(2) have been observed at two localities in Slovakia (Bratislava and Zlkovce). Zlkovce is situated about 60 km NE from Bratislava, and only 5 km from the Bohunice Nuclear Power Plant (NPP). The observed Delta(14)C levels provide a unique evidence of the long-term impact of the Bohunice NPP on the Bratislava region, as well as on the decreased fossil fuel CO(2) emissions. The radiation doses estimated to the local public have been around 3 microSv/year, 20% of the dose from global fallout (14)C present in the environment.

  15. Development of RCM analysis software for Korean nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Ho; Choi, Kwang Hee; Jeong, Hyeong Jong [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A software called KEPCO RCM workstation (KRCM) has been developed to optimize the maintenance strategies of Korean nuclear power plants. The program modules of the KRCM were designed in a manner that combines EPRI methodologies and KEPRI analysis technique. The KRCM is being applied to the three pilot system, chemical and volume control system, main steam system, and compressed air system of Yonggwang Units 1 and 2. In addition, the KRCM can be utilized as a tool to meet a part of the requirements of maintenance rule (MR) imposed by U.S. NRC. 3 refs., 4 figs. (Author)

  16. A new MV bus transfer scheme for nuclear power plants

    Directory of Open Access Journals (Sweden)

    Chang Choong-Koo

    2015-01-01

    Full Text Available Fast bus transfer method is the most popular and residual voltage transfer method that is used as a backup in medium voltage buses in general. The use of the advanced technology like open circuit voltage prediction and digital signal processing algorithms can improve the reliability of fast transfer scheme. However, according to the survey results of the recent operation records in nuclear power plants, there were many instances where the fast transfer scheme has failed. To assure bus transfer in any conditions and circumstances, uninterruptible bus transfer scheme utilizing the state of the art medium voltage UPS is discussed and elaborated.

  17. Summary of space nuclear reactor power systems, 1983--1992

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.

    1993-08-11

    This report summarizes major developments in the last ten years which have greatly expanded the space nuclear reactor power systems technology base. In the SP-100 program, after a competition between liquid-metal, gas-cooled, thermionic, and heat pipe reactors integrated with various combinations of thermoelectric thermionic, Brayton, Rankine, and Stirling energy conversion systems, three concepts:were selected for further evaluation. In 1985, the high-temperature (1,350 K), lithium-cooled reactor with thermoelectric conversion was selected for full scale development. Since then, significant progress has been achieved including the demonstration of a 7-y-life uranium nitride fuel pin. Progress on the lithium-cooled reactor with thermoelectrics has progressed from a concept, through a generic flight system design, to the design, development, and testing of specific components. Meanwhile, the USSR in 1987--88 orbited a new generation of nuclear power systems beyond the, thermoelectric plants on the RORSAT satellites. The US has continued to advance its own thermionic fuel element development, concentrating on a multicell fuel element configuration. Experimental work has demonstrated a single cell operating time of about 1 1/2-y. Technology advances have also been made in the Stirling engine; an advanced engine that operates at 1,050 K is ready for testing. Additional concepts have been studied and experiments have been performed on a variety of systems to meet changing needs; such as powers of tens-to-hundreds of megawatts and highly survivable systems of tens-of-kilowatts power.

  18. Interaction of electromagnetic pulse with commercial nuclear-power-plant systems

    Energy Technology Data Exchange (ETDEWEB)

    Ericson, D.M. Jr.; Strawe, D.F.; Sandberg, S.J.; Jones, V.K.; Rensner, G.D.; Shoup, R.W.; Hanson, R.J.; Williams, C.B.

    1983-02-01

    This study examines the interaction of the electromagnetic pulse from a high altitude nuclear burst with commercial nuclear power plant systems. The potential vulnerability of systems required for safe shutdown of a specific nuclear power plant are explored. EMP signal coupling, induced plant response and component damage thresholds are established using techniques developed over several decades under Defense Nuclear Agency sponsorship. A limited test program was conducted to verify the coupling analysis technique as applied to a nuclear power plant. The results are extended, insofar as possible, to other nuclear plants.

  19. NUCLEAR POWERED CO2 CAPTURE FROM THE ATMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, S

    2008-09-22

    A process for capturing CO{sub 2} from the atmosphere was recently proposed. This process uses a closed cycle of sodium and calcium hydroxide, carbonate, and oxide transformations to capture dilute CO{sub 2} from the atmosphere and to generate a concentrated stream of CO{sub 2} that is amenable to sequestration or subsequent chemical transformations. In one of the process steps, a fossil-fueled lime kiln is needed, which reduces the net CO{sub 2} capture of the process. It is proposed to replace the fossil-fueled lime kiln with a modified kiln heated by a high-temperature nuclear reactor. This will have the effect of eliminating the use of fossil fuels for the process and increasing the net CO{sub 2} capture. Although the process is suitable to support sequestration, the use of a nuclear power source for the process provides additional capabilities, and the captured CO{sub 2} may be combined with nuclear-produced hydrogen to produce liquid fuels via Fischer-Tropsch synthesis or other technologies. Conceivably, such plants would be carbon-neutral, and could be placed virtually anywhere without being tied to fossil fuel sources or geological sequestration sites.

  20. Synergistic Use of IEEE and IEC Nuclear Power Plant Standards

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G

    2001-12-19

    Many organizations worldwide develop standards that affect nuclear instrumentation and control (I and C). Two of the primary standards organizations are the US IEEE's Nuclear Power Engineering Committee (NPEC), and the IEC subcommittee on Reactor Instrumentation (SC45A). This paper surveys the contents of the two sets of standards. Opportunities for complementary use of IEEE and IEC standards are discussed. The collections of IEEE. and IEC standards have some overlap, but in many cases cover significantly different topics. For example, IEEE standards go to great depth on environmental qualification of many specific types of components, while IEC covers the topic only at the general level. Conversely, certain IEC standards deal with specific instrumentation and control functions, a topic area where IEEE standards are largely mute. This paper considers how the two sets of standards may be used in a complementary fashion to achieve broader topic coverage than is possible using only one or the other standard suite. To understand the similarities and differences between IEC and IEEE nuclear standards layer diagrams were developed for each set of standards. Another paper [Johnson, 2001] used the same layer diagrams to investigate where coordination between the two sets of standards is most critical.