Sample records for telophase

  1. APC/C-Cdh1-dependent anaphase and telophase progression during mitotic slippage

    Directory of Open Access Journals (Sweden)

    Toda Kazuhiro


    Full Text Available Abstract Background The spindle assembly checkpoint (SAC inhibits anaphase progression in the presence of insufficient kinetochore-microtubule attachments, but cells can eventually override mitotic arrest by a process known as mitotic slippage or adaptation. This is a problem for cancer chemotherapy using microtubule poisons. Results Here we describe mitotic slippage in yeast bub2Δ mutant cells that are defective in the repression of precocious telophase onset (mitotic exit. Precocious activation of anaphase promoting complex/cyclosome (APC/C-Cdh1 caused mitotic slippage in the presence of nocodazole, while the SAC was still active. APC/C-Cdh1, but not APC/C-Cdc20, triggered anaphase progression (securin degradation, separase-mediated cohesin cleavage, sister-chromatid separation and chromosome missegregation, in addition to telophase onset (mitotic exit, during mitotic slippage. This demonstrates that an inhibitory system not only of APC/C-Cdc20 but also of APC/C-Cdh1 is critical for accurate chromosome segregation in the presence of insufficient kinetochore-microtubule attachments. Conclusions The sequential activation of APC/C-Cdc20 to APC/C-Cdh1 during mitosis is central to accurate mitosis. Precocious activation of APC/C-Cdh1 in metaphase (pre-anaphase causes mitotic slippage in SAC-activated cells. For the prevention of mitotic slippage, concomitant inhibition of APC/C-Cdh1 may be effective for tumor therapy with mitotic spindle poisons in humans.

  2. Oócitos aparentemente maduros injetados em telófase I apresentam piores resultados de reprodução assistida Apparently matured oocytes injected in telophase I have worse outcomes from assisted reproduction

    Directory of Open Access Journals (Sweden)

    Luciana Azôr Dib


    telophase I (TI and metaphase II (MII, and the ones with and without visible meiotic spindle. METHODS: A prospective and controlled study with 106 infertile patients who underwent ovarian stimulation for intracytoplasmic sperm injection purposes. Patients aged 38 years or less, with basal follicle stimulating hormone (FSH less than 10 mIU/mL and body mass index (BMI less than 30 kg/m². Were included patients presenting any systemic diseases, any active infection, smokers or patients who had been using hormonal medications and hormonal and nonhormonal anti-inflammatory drugs for the past two months prior to the assisted reproduction procedure were excluded. The oocytes with the first polar body extruded (in vivo matured oocytes were imaged by polarization microscopy immediately before intracytoplasmic sperm injection and characterized according to nuclear maturation stage (telophase I and metaphase II and to the presence of a meiotic spindle. We analyzed the fertilization rates, cleavage, number of good quality embryos on the second day (D2 from oocytes on telophase I versus those in metaphase II, and metaphase II visible spindle versus non-visible ones. Data were analyzed comparatively by Fisher's exact test. The level of significance was set at 5% in all analyses (p<0.05. RESULTS: The meiotic spindles of 516 oocytes were imaged using polarization microscopy. From the 516 oocytes analyzed, seventeen were in telophase I (3.3% and 499 (96.7% in metaphase II. The oocytes injected in telophase I had significantly lower fertilization rates than those injected in metaphase II (53 and 78%, respectively and produced no good quality embryos on day 2. When the oocytes with and without a visible meiotic spindle were compared, there was no significant difference in the intracytoplasmic sperm injection results. CONCLUSIONS: Oocytes injected in telophase I showed lower fertilization rates when compared to those in metaphase II. It is possible that the analysis of oocyte nuclear


    Directory of Open Access Journals (Sweden)

    Mihaela Florina Axente


    dimethylamino-3-chromanone. The 1/10000 dilution induces the increase of frequency of mitotic dividing cells. The cells with chromosome aberrations are in greater number in treated variants, comparatively with control. The aberration spectrum is enough large and comprises: ana-telophases with bridges, lagging chromosomes, expelled chromosomes, multipolar ana-telophases, as well as binucleate cells and interphases with micronucleuses.

  4. Systematic study of simple-leaved group of Astragalus sect. Incani DC. in Iran

    Directory of Open Access Journals (Sweden)

    Massoud Ranjbar


    Full Text Available In this investigation, morphological pollen characteristics of different populations of 5 species belonging to simple-leaved group of Astragalus sect. Incani DC. in Iran were studied. Results showed that all studied taxa formed two groups. In addition, chromosome number and meiotic behavior were studied in 3 populations belonging to two species of this group. All taxa were diploid and had the basic chromosome number of 2n = 2x = 16. Although the taxa represented regular meiosis, but some abnormalities such as laggard and fragmented chromosomes in anaphase/telophase I and II and diakinesis/methaphase I, cytomixis in anaphase/telophase I and II, multipolar cells in telophase II, binucleouli cells in prophase I and bridges in anaphase I and telophase II were obseved.

  5. Sequence Classification: 894690 [

    Lifescience Database Archive (English)

    Full Text Available by RNA polymerase I and regulates nucleolar structure; Net1p || ... ...NT complex, which is a complex involved in nucleolar silencing and telophase exit; stimulates transcription


    Directory of Open Access Journals (Sweden)

    Felicia Vlad-Rusen


    Full Text Available The analysis of some cytogenetic parameters shows that the caffeine application on Favorit and PR64A83 cultivars of sunflower exercises a light mutagen effect on the cells of the root apex. At same time an intensification of the frequency of the ana-telophases with aberration takes place, especially of those with bridges, with retardatar and expelled chromosomes, but also of those with fragments, demonstrating the perturbation action that caffeine exercises on the division axle. The apparition of a great number of ana-telophases with fragments proves that this alkaloid induces ruptures at the chromosomal level (clastogenic effect.

  7. Presenting Mitosis (United States)

    Roche, Stephanie; Sterling, Donna R.


    When the topic of cell division is introduced in the classroom, students can showcase their interpretations of the stages of mitosis by creating a slide show illustrating prophase, metaphase, anaphase, and telophase (see samples in Figure 1). With the help of a computer, they can create a model of mitosis that will help them distinguish the…

  8. The origins and processing of ultra fine anaphase DNA bridges

    DEFF Research Database (Denmark)

    Liu, Ying; Nielsen, Christian Thomas Friberg; Yao, Qi


    and BLM. UFBs become visible in the anaphase of mitosis, and can persist into telophase in rare cases. There are at least three different types of UFBs that can be distinguished according to the chromosomal loci from which they originate. However, it remains largely unknown how these UFBs are generated...

  9. Morphological Studies of Nucleologenesis in Giardia lamblia. (United States)

    Lara-Martínez, Reyna; De Lourdes Segura-Valdez, María; De La Mora-De La Mora, Ignacio; López-Velázquez, Gabriel; Jiménez-García, Luis Felipe


    The nucleolus is a nuclear organelle involved in ribosome biogenesis. In most eukaryotes this structure disperses during prophase through anaphase and reorganizes at telophase by a process known as nucleologenesis. This process involves new transcription of ribosomal DNA at the nucleolar organizer region and the formation of prenucleolar bodies fusing to it. In Giardia lamblia, for a long time considered the only anucleolated eukaryote, a very small nucleolus has been recently described. In order to evaluate whether nucleologenesis is also present in Giardia, we analyzed the distribution of nucleolar material during telophase using different light and electron microscopy techniques including silver staining for the nucleolar organizer. Results indicate that in G. lamblia, nucleolar elements persist mainly as an intranuclear peripheral organelle during all stages of division, including telophase, however, no prenucleolar bodies are detected in the nucleoplasm. Therefore, in the parasite, nucleolar material is present throughout cell division including telophase and formation of prenucleolar bodies may not be required for nucleologenesis. © 2016 Wiley Periodicals, Inc.

  10. PTP-S2, a nuclear tyrosine phosphatase, is phosphorylated and ...

    Indian Academy of Sciences (India)

    While PTP-S2 was localized exclusively to the nucleus in interphase cells, during metaphase and anaphase it was distributed throughout the cytoplasm and excluded from condensed chromosomes. At telophase PTP-S2 began to associate with chromosomes and at cytokinesis it was associated with chromatin in the newly ...

  11. Genotoxicity of Chlorpyrifos, Alpha-thrin, Efekto virikop and ...

    African Journals Online (AJOL)

    Genotoxicity was measured by comparing the number of cells/1000 in aberrant division stages at each dose with the negative control using the Mann- Whitney test. Chlorpyrifos was genotoxic (P < 0.05), inducing chromosome lagging and bridges, pulverized and stick chromosomes, multipolar anaphase and telophase.

  12. Effect of medium type and luteinizing hormone (LH) on in vitro ...

    African Journals Online (AJOL)

    Maturation rate was assessed by evaluation of degree of cumulus cells expansion and meiotic development. Results indicate that recovery rate ranged between 2.4 to 2.8. Moreover, results revealed that maturation rate, telophase and metaphase II stages were higher for oocytes matured in TCM-199 + LH than oocytes ...

  13. Comparative study of the sensitivities of onion and broad bean root ...

    African Journals Online (AJOL)



    Jul 5, 2010 ... Cytotoxicity was inferred when the mitotic index (MI) of treated cells was 三 ½ of control. All chemicals were toxic to onion cells but only EMS and HgCl2 were toxic to BB. Genotoxicity was determined by analyzing 100 anaphase and telophase cells for chromosome fragments, bridges, vagrant chromosome, ...

  14. Vernonia amygdalina Del

    African Journals Online (AJOL)

    Table 1: Effect of treatment with Vernonia amygdalina and Sniper (2,3 dichlorovinyl dimethyl phosphate) in Allium test. Conc. (%). Root length. (% of control). Mitotic. Index. No of cells. Dividing cells prophase metaphase. Anaphase. Telophase. Chromosomal Aberrations. Total aberration(%) stickiness c- mitosis. Bridges/.


    NARCIS (Netherlands)


    We investigated the maturation divisions of two obligate parthenogenetic natural interspecific hybrids: the diploid B. whitei and the triploid B. lynceorum. B. whitei shows two maturation divisions which produce 4 viable haploid nuclei. At the telophase II two non-sister nuclei come into contact and


    Directory of Open Access Journals (Sweden)

    Elena Rosu


    Full Text Available The paper presents, the caffeine effects in mitotic division at Capsicum annuum L.. The treatment has determined the lessening of the mitotic index (comparative with the control variant, until mitotic division total inhibition, as well as an growth frequency of division aberation in anaphase and telophase.

  17. Differential dynamics of splicing factor SC35 during the cell cycle

    Indian Academy of Sciences (India)

    Pre-mRNA splicing factors are enriched in nuclear domains termed interchromatin granule clusters or nuclear speckles. During mitosis, nuclear speckles are disassembled by metaphase and reassembled in telophase in structures termed mitotic interchromatin granules (MIGs). We analysed the dynamics of the splicing ...

  18. Genotoxicity of hormoban and seven other pesticides to onion root ...

    African Journals Online (AJOL)

    All the pesticides were toxic. Genotoxicity was measured by analyzing 30 to 100 anaphase-telophase cells per dose of chemical for, chromosome fragments, bridges, vagrant chromosome, c-anaphase, multipolarity and stick chromosomes and comparing the percentage of aberrant cells at each dose with that of the ...

  19. On maturation in the eggs of Limnaea stagnalis L

    NARCIS (Netherlands)

    Raven, Chr.P.


    1. The maturation divisions of the egg of Limnaea stagnalis L. have been studied. 2. The haploid number of chromosomes is 18. 3. At the telophase of the first maturation division, the central group of dyads reaches the surface of the inner central body of the first maturation amphiaster. 4. This

  20. Early localization of NPA58, a rat nuclear pore-associated protein, to ...

    Indian Academy of Sciences (India)

    The targeting of NPA58 to the reforming nuclear envelope in early telophase coincides with the recruitment of a well-characterized class of nuclear pore proteins recognized by the antibody mAb 414, and occurs prior to the incorporation of lamin B1 into the envelope. Significant protein import activity is detectable only after ...

  1. Cytotaxonomy study of four populations of Astragalus anserinifolius Boiss. of section Malacothrix Bunge from Iran

    Directory of Open Access Journals (Sweden)

    Massoud Ranjbar


    Full Text Available In this research, meiotic chromosome number and the behavior of four populations of Astragalus anserinifolius Boiss. of Astragalus sect. Malacothrix were studied. All wild populations were diploid and showed 2n=2x=16 chromosome number, consistent with the proposed base number of x=8 from IPCN. Although all taxa displayed regular bivalent pairing and chromosome segregation at meiosis, some meiotic abnormalities included varied degrees of fragmented and sticky chromosomes in metaphase I, polynucleate and a variable number of laggards, forwarded chromosomes and bridges in anaphase I/telophase I, asynchronous nucleus and precocious chromosome migration in metaphase II and laggards, bridges and cytomixis in anaphase II/telophase II were observed.

  2. Lamin A reassembly at the end of mitosis is regulated by its SUMO-interacting motif

    Energy Technology Data Exchange (ETDEWEB)

    Moriuchi, Takanobu; Kuroda, Masaki; Kusumoto, Fumiya; Osumi, Takashi; Hirose, Fumiko, E-mail:


    Modification of proteins with small ubiquitin-related modifier (SUMO; SUMOylation) is involved in the regulation of various biological processes. Recent studies have demonstrated that noncovalent associations between SUMOylated proteins and co-operative proteins containing SUMO-interacting motifs (SIMs) are important for the spatiotemporal organization of many protein complexes. In this study, we demonstrate that interactions between lamin A, a major component of the nuclear lamina, and SUMO isoforms are dependent on one of the four SIMs (SIM3) resided in lamin A polypeptide in vitro. Live cell imaging and immunofluorescence staining showed that SIM3 is required for accumulation of lamin A on the chromosomes during telophase, and subsequent evaluation of a panel of deletion mutants determined that a 156-amino acid region spanning the carboxyl-terminal Ig-fold domain of lamin A is sufficient for this accumulation. Notably, mutation of SIM3 abrogated the dephosphorylation of mitosis-specific phosphorylation at Ser-22 of lamin A, which normally occurs during telophase, and the subsequent nuclear lamina reorganization. Furthermore, expression of a conjugation-defective SUMO2 mutant, which was previously shown to inhibit endogenous SUMOylation in a dominant-negative manner, also impaired the accumulation of wild type lamin A on telophase chromosomes. These findings suggest that interactions between SIM3 of lamin A and a putative SUMO2-modified protein plays an important role in the reorganization of the nuclear lamina at the end of mitosis. - Highlights: • Lamin A interacts with SUMO2 via a SUMO-interacting motif (SIM) in the Ig domain. • SIM3 of lamin A is responsible for chromosomal accumulation during telophase. • A 156-aa region spanning the Ig domain is sufficient for chromosomal accumulation. • Accumulation of lamin A is required for timely dephosphorylation on chromosomes. • A putative SUMO2-modified protein may mediate chromosomal accumulation of lamin

  3. Organization of spindle microtubules in Ochromonas danica



    The entire framework of microtubules (MTs) in the mitotic apparatus of Ochromonas danica is reconstructed (except at the spindle poles) from transverse serial sections. Eleven spindles were sectioned and used for numerical data, but only four were reconstructed: a metaphase, an early anaphase, a late anaphase, and telophase. Four major classes of MTs are observed: (a) free MTs (MTs not attached to either pole); (b) interdigitated MTs (MTs attached to one pole which laterally associate with MT...

  4. Interpolar spindle microtubules in PTK cells



    Spindle microtubules (MTs) in PtK1 cells, fixed at stages from metaphase to telophase, have been reconstructed using serial sections, electron microscopy, and computer image processing. We have studied the class of MTs that form an interdigitating system connecting the two spindle poles (interpolar MTs or ipMTs) and their relationship to the spindle MTs that attach to kinetochores (kMTs). Viewed in cross section, the ipMTs cluster with antiparallel near neighbors throughout mitosis; this bund...

  5. Lamin A reassembly at the end of mitosis is regulated by its SUMO-interacting motif. (United States)

    Moriuchi, Takanobu; Kuroda, Masaki; Kusumoto, Fumiya; Osumi, Takashi; Hirose, Fumiko


    Modification of proteins with small ubiquitin-related modifier (SUMO; SUMOylation) is involved in the regulation of various biological processes. Recent studies have demonstrated that noncovalent associations between SUMOylated proteins and co-operative proteins containing SUMO-interacting motifs (SIMs) are important for the spatiotemporal organization of many protein complexes. In this study, we demonstrate that interactions between lamin A, a major component of the nuclear lamina, and SUMO isoforms are dependent on one of the four SIMs (SIM3) resided in lamin A polypeptide in vitro. Live cell imaging and immunofluorescence staining showed that SIM3 is required for accumulation of lamin A on the chromosomes during telophase, and subsequent evaluation of a panel of deletion mutants determined that a 156-amino acid region spanning the carboxyl-terminal Ig-fold domain of lamin A is sufficient for this accumulation. Notably, mutation of SIM3 abrogated the dephosphorylation of mitosis-specific phosphorylation at Ser-22 of lamin A, which normally occurs during telophase, and the subsequent nuclear lamina reorganization. Furthermore, expression of a conjugation-defective SUMO2 mutant, which was previously shown to inhibit endogenous SUMOylation in a dominant-negative manner, also impaired the accumulation of wild type lamin A on telophase chromosomes. These findings suggest that interactions between SIM3 of lamin A and a putative SUMO2-modified protein plays an important role in the reorganization of the nuclear lamina at the end of mitosis. Copyright © 2016 Elsevier Inc. All rights reserved.


    Directory of Open Access Journals (Sweden)

    Diana-Elena Maftei


    Full Text Available Sea-buckthorn (Hippophaë rhamnoides (2n=24 is a dioecious plant with a very obvious morpho-physiological polymorphism. This species is one of the most valuable fruit-bearing shrubs of the spontaneous and also of the cultivated flora, due to its content of biologically active substances of its leaves, fruit and shoots. The research has been accomplished on root apical meristems from germinated seeds that belong to four genotypes characteristic for Bacău county - Dospineúti, ùerpeni 11, ùerbăneúti 4, Sfiútofca 18, and to one genotype of the Danube Delta - Sfântul Gheorghe 5. Cytogenetical studies evinced that the mitotic index (MI was high, and it varied with the genotype. The highest MI was evinced in the ùerbăneúti 4 genotype (53.13, and the lowest – in ùerpeni 11 (40.08. Cell distribution per mitotic phases is approximately the same, the highest percentage was represented by cells in prophase, followed by metaphases, telophases and anaphases. There is a rather high frequency and a quite large spectrum of  chromosomal aberrations identified in this species (with variations due to the 5 different genotypes. Of all the chromosomal aberrations evinced during the ana-telophases of mitotic root apical meristems (bridges, delayed chromosomes, expelled chromosomes, fragments, micronuclei, the highest frequency was represented by ana-telophases with bridges. There has been noticed the presence of chromosomal abnormalities in metaphasic and prophasic cells.

  7. Mitotic effects of monochromatic ultraviolet radiation at 225, 265, and 280 nm on eleven stages of the cell cycle of the grasshopper neuroblast in culture. I. Overall retardation from the stage irradiated to nuclear membrane breakdown

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, J.G.


    Neuroblasts of Chortophaga viridifasciata (DeGeer) in culture were exposed to different doses of 225, 265, or 280 nm ultraviolet radiations at 11 different stages and substages of the mitotic cycle and individually selected cells were timed to breakdown of the nuclear membrane. Comparisons of the effectiveness of different wavelengths on the different stages were based on the dose that reduced the cell progression rate to 67 percent of normal (D/sub 67/) and the slope of the regression line, i.e., the control to treated time (C/T) ratio change/erg/mm/sup 2/ at the D/sub 67/ level. Cells of the prereplication period (metaphase + anaphase + early telophase) and the S phase (middle and late telophase + interphase + very early prophase) are equally sensitive to uv and contrast sharply with the much lower sensitivity of those in the postreplication period (early and middle prophase). This can best be interpreted if chromosomal DNA is the chromophore for uv-induced mitotic retardation. Cells in the prereplication period at exposure show no wavelength effect. In the S phase all stages except middle telophase and all stages combined are significantly more sensitive to 265 and 280 nm than to 225 nm. Of the postreplication stages, early prophase is retarded significantly more by 280 than by 225 or 265 nm. The C/T ratio/erg/mm/sup 2/ is greater after exposure to 265 nm at all prereplication and replication stages, but exhibits no consistent wavelength pattern during the postreplication period. Evidence based on the orientation of the neuroblast with respect to the uv-source suggests that the chromophore for mitotic retardation does not reside within the centrosome and related structures, but may be present, at least partly, in the nucleolus.

  8. The abnormal spindle-like, microcephaly-associated (ASPM) gene encodes a centrosomal protein. (United States)

    Zhong, Xueyan; Liu, Limin; Zhao, Ailian; Pfeifer, Gerd P; Xu, Xingzhi


    Homozygous mutations in the abnormal spindle-like, microcephaly-associated ASPM gene are the leading cause of autosomal recessive primary microcephaly. ASPM is the putative human ortholog of the Drosophila melanogaster abnormal spindles gene (asp), which is essential for mitotic spindle function. Here, we report that downregulation of endogenous ASPM by siRNA decreases protein levels of endogenous BRCA1. ASPM localizes to the centrosome in interphase and to the spindle poles from prophase through telophase. These findings indicate that ASPM may be involved in mitotic spindle function, possibly, through regulation of BRCA1.


    Directory of Open Access Journals (Sweden)

    Felicia Vlad-Rusen


    Full Text Available The analysis of some cytogenetic parameters shows that the nitrogenous lead application on Favorit and PR64A83 cultivars of sunflower exercises a light mutagenic effect on the cells of the root apex. At same time an intensification of the frequency of the ana-telophases with aberration takes place, especially of those with bridges, with lagging chromosomes, but also of those with fragments, demonstrating the perturbatory action that this substance exercises on the division axle. The apparition of a great number of metaphases with displayed chromosomes proves the perturbation of well function to division axle, effect signalized especially at the Favorit cultivar.

  10. KIF20A regulates porcine oocyte maturation and early embryo development.

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    Full Text Available KIF20A (Kinesin-like family member 20A, also called mitotic kinesin-like proteins 2 (MKLP2, is a mammalian mitotic kinesin-like motor protein of the Kinesin superfamily proteins (KIFs, which was originally involved in Golgi apparatus dynamics and thought to essential for cell cycle regulation during successful cytokinesis. In the present study, we investigated whether KIF20A has roles on porcine oocyte meiotic maturation and subsequent early embryo development. By immunofluorescence staining, KIF20A was found to exhibit a dynamic localization pattern during meiosis. KIF20A was restricted to centromeres after germinal vesicle breakdown (GVBD, transferred to the midbody at telophase I (TI, and again associated with centromeres at metaphase II (MII. Inhibition of endogenous KIF20A via a specific inhibitor, Paprotrain, resulted in failure of polar body extrusion. Further cell cycle analysis showed that the percentage of oocytes that arrested at early metaphase I (MI stage increased after KIF20A activity inhibition; however, the proportion of oocytes at anaphase/telophase I (ATI and MII stages decreased significantly. Our results also showed that KIF20A inhibition did not affect spindle morphology. In addition, KIF20A was localized at the nucleus of early embryos, and KIF20A inhibition resulted in failure of early parthenogenetic embryo development. These results demonstrated that KIF20A is critical for porcine oocyte meiotic maturation and subsequent early embryo development.

  11. Cell Cycle Synchronization of HeLa Cells to Assay EGFR Pathway Activation. (United States)

    Wee, Ping; Wang, Zhixiang


    Progression through the cell cycle causes changes in the cell's signaling pathways that can alter EGFR signal transduction. Here, we describe drug-derived protocols to synchronize HeLa cells in various phases of the cell cycle, including G1 phase, S phase, G2 phase, and mitosis, specifically in the mitotic stages of prometaphase, metaphase, and anaphase/telophase. The synchronization procedures are designed to allow synchronized cells to be treated for EGF and collected for the purpose of Western blotting for EGFR signal transduction components.S phase synchronization is performed by thymidine block, G2 phase with roscovitine, prometaphase with nocodazole, metaphase with MG132, and anaphase/telophase with blebbistatin. G1 phase synchronization is performed by culturing synchronized mitotic cells obtained by mitotic shake-off. We also provide methods to validate the synchronization methods. For validation by Western blotting, we provide the temporal expression of various cell cycle markers that are used to check the quality of the synchronization. For validation of mitotic synchronization by microscopy, we provide a guide that describes the physical properties of each mitotic stage, using their cellular morphology and DNA appearance. For validation by flow cytometry, we describe the use of imaging flow cytometry to distinguish between the phases of the cell cycle, including between each stage of mitosis.

  12. Late mitotic functions of Aurora kinases. (United States)

    Afonso, Olga; Figueiredo, Ana C; Maiato, Helder


    The coordination between late mitotic events such as poleward chromosome motion, spindle elongation, DNA decondensation, and nuclear envelope reformation (NER) is crucial for the completion of chromosome segregation at the anaphase-telophase transition. Mitotic exit is driven by a decrease of Cdk1 kinase activity and an increase of PP1/PP2A phosphatase activities. More recently, Aurora kinases have also emerged as master regulators of late mitotic events and cytokinesis. Aurora A is mainly associated with spindle poles throughout mitosis and midbody during telophase, whereas Aurora B re-localizes from centromeres in early mitosis to the spindle midzone and midbody as cells progress from anaphase to the completion of cytokinesis. Functional studies, together with the identification of a phosphorylation gradient during anaphase, established Aurora B as a major player in the organization of the spindle midzone and in the spatiotemporal coordination between chromosome segregation and NER. Aurora A has been less explored, but a cooperative role in spindle midzone stability has also been proposed, implying that both Aurora A and B contribute to accurate chromosome segregation during mitotic exit. Here, we review the roles of the Aurora kinases in the regulation of late mitotic events and discuss how they work together with other mitotic players to ensure an error-free mitosis.

  13. Transformations of sperm nuclei incorporated into sea urchin (Arbacia punctulata) embryos at different stages of the cell cycle. (United States)

    Longo, F J


    In order to test the hypothesis that regulators of male pronuclear development may have a more general role, sharing some relation to factors involved with the cell cycle, Arbacia zygotes and 2- to 8-cell stage embryos were inseminated during different phases of the cell cycle and examined by light and electron microscopy. Differences in the development and morphology of fertilization cones and sperm asters were observed in embryos inseminated during different stages of the cell cycle. Extremely large fertilization cones, approximately four times the length of those found in fertilized eggs, formed in embryos inseminated during metaphase to telophase. Sperm asters developed only in embryos inseminated during prophase to anaphase. These variations are believed to reflect changes in the status of the cortex and cytoskeletal system of the embryo. Although sperm nuclei underwent morphological changes subsequent to incorporation, in general, they failed to develop into male pronuclei. There was a consistent correlation in sperm nuclear transformations and the cell cycle which was expressed in two patterns of morphogenesis: (1) sperm nuclei incorporated into embryos just prior to prophase and at telophase failed, for the most part, to disperse and transformed into aggregations of chromatin granules approximately 40 nm in diameter; and (2) sperm nuclei incorporated into prometaphase-anaphase embryos dispersed and then condensed into chromatin masses, morphologically similar to chromosomes of the embryo. Evidence is discussed which indicates that following the normal period of fertilization changes occur in the zygote, rendering it unable to fully support the transformation of sperm nuclei into male pronuclei.

  14. Monitoring the elasticity changes of HeLa cells during mitosis by atomic force microscopy (United States)

    Jiang, Ningcheng; Wang, Yuhua; Zeng, Jinshu; Ding, Xuemei; Xie, Shusen; Yang, Hongqin


    Cell mitosis plays a crucial role in cell life activity, which is one of the important phases in cell division cycle. During the mitosis, the cytoskeleton micro-structure of the cell changed and the biomechanical properties of the cell may vary depending upon different mitosis stages. In this study, the elasticity property of HeLa cells during mitosis was monitored by atomic force microscopy. Also, the actin filaments in different mitosis stages of the cells were observed by confocal imaging. Our results show that the cell in anaphase is stiffer than that in metaphase and telophase. Furthermore, lots of actin filaments gathered in cells' center area in anaphase, which contributes to the rigidity of the cell in this phase. Our findings demonstrate that the nano-biomechanics of living cells could provide a new index for characterizing cell physiological states.

  15. ATP level and caffeine efficiency on cytokinesis inhibition in plants. (United States)

    López-Sáez, J F; Mingo, R; González-Fernández, A


    Plant cytokinesis appears to be a topographically organized process of exocytosis. Golgi vesicles which contain cell wall precursors are translocated during telophase, by interzonal microtubules, to the equatorial region of the mitotic apparatus where they fuse with each other giving rise to the new cell wall. Caffeine inhibits cytokinesis by hindering Golgi vesicle coalescence. The present results demonstrate that treatments which increase the cellular ATP level (adenosine, cycloheximide and anisomycin) counteract caffein-induced cytokinesis inhibition in meristem cells of onion root tips (Allium cepa L.), while treatments which decrease ATP level potentiate this caffeine effect (dinitrophenol, fluoroacetate, low oxygen tensions, etc.). We postulate that caffeine, in competition with the cellular ATP level, blocks cell plate formation by inhibiting a certain ATPase activity required for membrane fusion of Golgi vesicles.

  16. Abnormal spindle orientation during microsporogenesis in an interspecific Brachiaria (Gramineae hybrid

    Directory of Open Access Journals (Sweden)

    Andréa Beatriz Mendes-Bonato


    Full Text Available This paper reports a case of abnormal spindle orientation during microsporogenesis in an interspecific hybrid of the tropical grass Brachiaria. In the affected plant, prophase I was normal. In metaphase I, bivalents were regularly co-oriented but distantly positioned and spread over the equatorial plate. In anaphase I, chromosomes failed to converge into focused poles due to parallel spindle fibers. As a consequence, in telophase I, an elongated nucleus or several micronuclei were observed in each pole. In the second division, the behavior was the same, leading to polyads with several micronuclei. A total of 40% of meiotic products were affected. The use of this hybrid in production systems needing good-quality seeds is discussed.

  17. Cell elongation is an adaptive response for clearing long chromatid arms from the cleavage plane (United States)

    Kotadia, Shaila; Montembault, Emilie; Sullivan, William


    Chromosome segregation must be coordinated with cell cleavage to ensure correct transmission of the genome to daughter cells. Here we identify a novel mechanism by which Drosophila melanogaster neuronal stem cells coordinate sister chromatid segregation with cleavage furrow ingression. Cells adapted to a dramatic increase in chromatid arm length by transiently elongating during anaphase/telophase. The degree of cell elongation correlated with the length of the trailing chromatid arms and was concomitant with a slight increase in spindle length and an enlargement of the zone of cortical myosin distribution. Rho guanine-nucleotide exchange factor (Pebble)–depleted cells failed to elongate during segregation of long chromatids. As a result, Pebble-depleted adult flies exhibited morphological defects likely caused by cell death during development. These studies reveal a novel pathway linking trailing chromatid arms and cortical myosin that ensures the clearance of chromatids from the cleavage plane at the appropriate time during cytokinesis, thus preserving genome integrity. PMID:23185030

  18. Evaluation of genotoxic and mutagenic effects of aqueous extract from aerial parts of Linaria genistifolia subsp. genistifolia

    Directory of Open Access Journals (Sweden)

    Recep Liman

    Full Text Available Genotoxic and mutagenic effects of aqueous extract from aerial parts Linaria genistifolia (L. Mill. subsp. genistifolia, Plantaginaceae (Lg-ext were investigated by using both Allium cepa root meristematic cells and bacterial reverse mutation assay in Salmonella typhimurium TA98 and TA100 with or without metabolic activation system (S9, respectively. In Allium root growth inhibition test, EC50 value was determined approximately 15 g/L and 0.5xEC50, EC50 and 2xEC50 concentrations of Lg-ext were introduced to onion tuber roots and distilled water and methyl methane sulfonate (MMS, 10 ppm used as a negative and positive control, respectively. The characteristic effect caused by tested preparations was an increase of mitotic index (MI in 7.5 g/L and 15 g/L (except 24 and 96 h and simultaneous decrease of MI in 30 g/L and in MMS. While stickiness, bridges, chromosome laggards and disturbed anaphase-telophase were observed in anaphase-telophase cells, c-metaphase, pro-metaphase, polyploidy and binuclear cells were observed in other cells. Lg-ext was not found to be mutagenic on S. typhimurium TA 98 and TA100 with or without S9. The results were also analyzed statistically by using SPSS for Windows, and Duncan's multiple range tests were performed respectively. These results indicate that Lg-ext exhibits genotoxic activity in A. cepa root meristematic cells but not mutagenic activity in Ames test system

  19. Involvement of slingshot in the Rho-mediated dephosphorylation of ADF/cofilin during Xenopus cleavage. (United States)

    Tanaka, Kenji; Okubo, Yoshiko; Abe, Hiroshi


    ADF/cofilin is a key regulator for actin dynamics during cytokinesis. Its activity is suppressed by phosphorylation and reactivated by dephosphorylation. Little is known, however, about regulatory mechanisms of ADF/cofilin function during formation of contractile ring actin filaments. Using Xenopus cycling extracts, we found that ADF/cofilin was dephosphorylated at prophase and telophase. In addition, constitutively active Rho GTPase induced dephosphorylation of ADF/cofilin in the egg extracts. This dephosphorylation was inhibited by Na(3)VO (4) but not by other conventional phosphatase-inhibitors. We cloned a Xenopus homologue of Slingshot phosphatase (XSSH), originally identified in Drosophila and human as an ADF/cofilin phosphatase, and raised antibody specific for the catalytic domain of XSSH. This inhibitory antibody significantly suppressed the Rho-induced dephosphorylation of ADF/cofilin in extracts, suggesting that the dephosphorylation at telophase is dependent on XSSH. XSSH bound to actin filaments with a dissociation constant of 0.4 microM, and the ADF/cofilin phosphatase activity was increased in the presence of F-actin. When latrunculin A, a G-actin-sequestering drug, was added to extracts, both Rho-induced actin polymerization and dephosphorylation of ADF/cofilin were markedly inhibited. Jasplakinolide, an actin-stabilizing drug, alone induced actin polymerization in the extracts and lead to dephosphorylation of ADF/cofilin. These results suggest that Rho-induced dephosphorylation of ADF/cofilin is dependent on the XSSH activation that is caused by increase in the amount of F-actin induced by Rho signaling. XSSH colocalized with both actin filaments and ADF/cofilin in the actin patches formed on the surface of the early cleavage furrow. Injection of inhibitory antibody blocked cleavage of blastomeres. Thus, XSSH may reorganize actin filaments through dephosphorylation and reactivation of ADF/cofilin at early stage of contractile ring formation.

  20. Dynamics of a novel centromeric histone variant CenH3 reveals the evolutionary ancestral timing of centromere biogenesis. (United States)

    Dubin, Manu; Fuchs, Jörg; Gräf, Ralph; Schubert, Ingo; Nellen, Wolfgang


    The centromeric histone H3 variant (CenH3) serves to target the kinetochore to the centromeres and thus ensures correct chromosome segregation during mitosis and meiosis. The Dictyostelium H3-like variant H3v1 was identified as the CenH3 ortholog. Dictyostelium CenH3 has an extended N-terminal domain with no similarity to any other known proteins and a histone fold domain at its C-terminus. Within the histone fold, α-helix 2 (α2) and an extended loop 1 (L1) have been shown to be required for targeting CenH3 to centromeres. Compared to other known and putative CenH3 histones, Dictyostelium CenH3 has a shorter L1, suggesting that the extension is not an obligatory feature. Through ChIP analysis and fluorescence microscopy of live and fixed cells, we provide here the first survey of centromere structure in amoebozoa. The six telocentric centromeres were found to mostly consist of all the DIRS-1 elements and to associate with H3K9me3. During interphase, the centromeres remain attached to the centrosome forming a single CenH3-containing cluster. Loading of Dictyostelium CenH3 onto centromeres occurs at the G2/prophase transition, in contrast to the anaphase/telophase loading of CenH3 observed in metazoans. This suggests that loading during G2/prophase is the ancestral eukaryotic mechanism and that anaphase/telophase loading of CenH3 has evolved more recently after the amoebozoa diverged from the animal linage.

  1. Non-SMC condensin I complex proteins control chromosome segregation and survival of proliferating cells in the zebrafish neural retina

    Directory of Open Access Journals (Sweden)

    Harris William A


    Full Text Available Abstract Background The condensation of chromosomes and correct sister chromatid segregation during cell division is an essential feature of all proliferative cells. Structural maintenance of chromosomes (SMC and non-SMC proteins form the condensin I complex and regulate chromosome condensation and segregation during mitosis. However, due to the lack of appropriate mutants, the function of the condensin I complex during vertebrate development has not been described. Results Here, we report the positional cloning and detailed characterization of retinal phenotypes of a zebrafish mutation at the cap-g locus. High resolution live imaging reveals that the progression of mitosis between prometa- to telophase is delayed and that sister chromatid segregation is impaired upon loss of CAP-G. CAP-G associates with chromosomes between prometa- and telophase of the cell cycle. Loss of the interaction partners CAP-H and CAP-D2 causes cytoplasmic mislocalization of CAP-G throughout mitosis. DNA content analysis reveals increased genomic imbalances upon loss of non-SMC condensin I subunits. Within the retina, loss of condensin I function causes increased rates of apoptosis among cells within the proliferative ciliary marginal zone (CMZ whereas postmitotic retinal cells are viable. Inhibition of p53-mediated apoptosis partially rescues cell numbers in cap-g mutant retinae and allows normal layering of retinal cell types without alleviating their aberrant nuclear sizes. Conclusion Our findings indicate that the condensin I complex is particularly important within rapidly amplifying progenitor cell populations to ensure faithful chromosome segregation. In contrast, differentiation of postmitotic retinal cells is not impaired upon polyploidization.

  2. The new system of shorter porcine oocyte in vitro maturation (18 hours) using ≥8 mm follicles derived from cumulus-oocyte complexes. (United States)

    Kwak, Seong-Sung; Yoon, Junchul David; Cheong, Seung-A; Jeon, Yubyeol; Lee, Eunsong; Hyun, Sang-Hwan


    Despite recent efforts to improve in vitro maturation (IVM) systems for porcine oocytes, developmental competence of in vitro-matured oocytes is still suboptimal compared with those matured in vivo. In this study, we compared oocytes obtained from large (≥8 mm; LF) and medium (3-7 mm; MF) sized follicles in terms of nuclear maturation, intracellular glutathione and reactive oxygen species levels, gene expression, and embryo developmental competence after IVM. In the control group, cumulus-oocyte complexes (COCs) were aspirated from MF and matured for 22 hours with hormones and subsequently matured for 18 to 20 hours without hormones at 39 °C, 5% CO2 in vitro. In the LF group, COCs were obtained from follicles larger than 8 mm and were subjected to IVM for only 18 hours. The ovaries have LF were averagely obtained with 1.7% per day during 2012 and it was significantly higher in the winter season. The results of the nuclear stage assessment of the COCs from the LFs are as follows: before IVM (0 hours); germinal vesicle stage (15.2%), metaphase I (MI) stage (55.4%), anaphase and telophase I stages (15.8%), and metaphase II (MII) stage (13.6%). After 6 hours IVM; germinal vesicle (4.2%), MI (43.6%), anaphase and telophase I (9.4%), and MII (42.8%). After 18-hour IVM; MI (9.7%) and MII (90.3%). Oocytes from LF showed a significant (P numbers in blastocysts) compared with the control group. In conclusion, oocytes from LFs require only 18 hours to complete oocyte maturation in vitro and their developmental competence is significantly greater than those obtained from MFs. Although their numbers are limited, oocytes from LFs might offer an alternative source for the efficient production of transgenic pigs using SCNT. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. PRR11 regulates late-S to G2/M phase progression and induces premature chromatin condensation (PCC)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chundong; Zhang, Ying; Li, Yi; Zhu, Huifang; Wang, Yitao; Cai, Wei [Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016 (China); Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016 (China); Zhu, Jiang [Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016 (China); Ozaki, Toshinori [Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuohku, Chiba 260-8717 (Japan); Bu, Youquan, E-mail: [Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016 (China); Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016 (China)


    Recently, we have demonstrated that proline-rich protein 11 (PRR11) is a novel tumor-related gene product likely implicated in the regulation of cell cycle progression as well as lung cancer development. However, its precise role in cell cycle progression remains unclear. In the present study, we have further investigated the expression pattern and functional implication of PRR11 during cell cycle in detail in human lung carcinoma-derived H1299 cells. According to our immunofluorescence study, PRR11 was expressed largely in cytoplasm, the amount of PRR11 started to increase in the late S phase, and was retained until just before mitotic telophase. Consistent with those observations, siRNA-mediated knockdown of PRR11 caused a significant cell cycle arrest in the late S phase. Intriguingly, the treatment with dNTPs further augmented PRR11 silencing-mediated S phase arrest. Moreover, knockdown of PRR11 also resulted in a remarkable retardation of G2/M progression, and PRR11-knockdown cells subsequently underwent G2 phase cell cycle arrest accompanied by obvious mitotic defects such as multipolar spindles and multiple nuclei. In addition, forced expression of PRR11 promoted the premature Chromatin condensation (PCC), and then proliferation of PRR11-expressing cells was massively attenuated and induced apoptosis. Taken together, our current observations strongly suggest that PRR11, which is strictly regulated during cell cycle progression, plays a pivotal role in the regulation of accurate cell cycle progression through the late S phase to mitosis. - Highlights: • PRR11 started to increase in the late S phase and was retained until just before mitotic telophase. • PRR11-knockdown caused a significant cell cycle arrest in the late S phase and G2 phase. • The treatment with dNTPs further augmented PRR11 silencing-mediated S phase arrest. • PRR11-knockdown led to multipolar spindles and multiple nuclei. • Forced expression of PRR11 promoted the PCC and inhibited

  4. Anomalias meióticas de oócitos de pacientes com endometriose submetidas à estimulação ovariana Meiotic abnormalities of oocytes from patients with endometriosis submitted to ovarian stimulation

    Directory of Open Access Journals (Sweden)

    Ionara Diniz Evangelista Santos Barcelos


    : there was no significant difference in the IVM rates between the two groups evaluated (45.6 and 54.5% for the Endometriosis and Control Groups, respectively. The chromosome and meiotic spindle organization was observed in 18 and 11 oocytes from the Endometriosis and Control Groups, respectively. In the Endometriosis Group, eight oocytes (44.4% presented themselves as normal metaphase II (MII, three (16.7% as abnormal MII, five (27.8% were in telophase stage I and two (11.1% underwent parthenogenetic activation. In the Control Group, five oocytes (45.4% presented themselves as normal MII, three (27.3% as abnormal MII, one (9.1% was in telophase stage I and two (18.2% underwent parthenogenetic activation. There was no significant difference in meiotic anomaly rate between the oocytes in MII from both groups. CONCLUSIONS: the present study data did not show significant differences in the IVM or in the meiotic anomalies rate between the IVM oocytes from stimulated cycles of patients with endometriosis, as compared with controls. Nevertheless, they have suggested a delay in the outcome of oocyte meiosis I from patients with endometriosis, shown by the higher proportion of oocytes in telophase I observed in this group.

  5. Genotoxicity assessment of water sampled from R-11 reservoir by means of allium test

    Energy Technology Data Exchange (ETDEWEB)

    Bukatich, E.; Pryakhin, E. [Urals Research Center for Radiation Medicine (Russian Federation); Geraskin, S. [Russian Institute of Agricultural Radiology and Agroecology (Russian Federation)


    slides of root tips meristem were dyed with aceto-orcein. Approximately 150 ana-telophases were scored for each root. 20-40 roots were analyzed for each water sample. In total 3000 - 6000 ana-telophases for each water sample were analyzed. Chromosome aberrations in ana-telophases (chromatid and chromosomal bridges and fragments), mitotic abnormalities (multipolar mitosis and laggards) were scored. The data analysis was arranged using R statistics. Aberration frequency in water samples from the natural control reservoir (0.46 ± 0.12%) exceeded insignificantly the frequency of aberrations in distilled (0.15 ± 0.08%) and bottled waters (0.33 ± 0.08%). Average frequency of aberrant cells in root meristem of onion germinated in water samples from R-11 reservoir (1.36 ± 0.24%) was about 3 times higher compared to control ones. Mitotic activity in root meristem was slightly inhibited in bulbs germinated in R-11 sample, but this effect was statistically insignificant. There was no difference in types of aberrations among all water samples but only in the frequency of abnormalities. So genotoxicity assessment of water sampled from R-11 reservoir by means of allium test shows the presence of genotoxic factor in water from the reservoir. Document available in abstract form only. (authors)

  6. The effect of radioactive contamination of the Yenisei river on cytogenetic characteristics of aquatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Bolsunovsky, A.; Medvedeva, M. [Institute of Biophysics SB Russian Academy of Sciences (Russian Federation); Muratova, E. [Institute of Forest SB Russian Academy of Sciences (Russian Federation)


    The Yenisei River, one of the world's largest rivers, is contaminated with artificial radionuclides released by one of the Russian facilities producing weapons-grade plutonium (the Mining-and-Chemical Combine, MCC), which has been in operation for many years. Aquatic plants are an important component of water ecosystems, which can accumulate high levels of radionuclides and, thus, can be used in bio-monitoring and bioremediation. The purpose of the study was to assess levels of radionuclides and to evaluate the frequency of chromosomal aberrations in samples of submerged plants collected in different parts of the Yenisei River. The following species were studied: Fontinalis antipyretica, Batrachium kauffmanii, Myriophyllum spicatum, Elodea canadensis, Ceratophyllum demersum and various Potamogeton species. Samples were collected at positions in the vicinity of the MCC discharge point, at a distance of 330 km downstream of Krasnoyarsk, and upstream of the MCC, during sampling campaigns in 2003-2012. Detailed analysis of radioactive contamination of aquatic plants of the Yenisei River revealed large-scale contamination of aquatic plants as far as 250 km downstream of the MCC. Before the last MCC reactor was shut down in 2010, about 30 radionuclides, including uranium and transuranium elements, were detected in the biomass of aquatic plants. The highest concentration factors of the major radionuclides were obtained for Fontinalis antipyretica and Potamogeton lucens. Samples of the plants collected after the shutdown of the reactor contained considerably lower activity levels of artificial radionuclides, and their diversity was significantly decreased. Results of cytogenetic investigations of aquatic plants collected when the reactor was still operating (2003-2009) suggest that at the MCC discharge site and downstream the occurrence of chromosomal aberrations in ana-telophase and metaphase cells of the plants was considerably higher (up to 30%) than in the control

  7. A mutagenicity and cytotoxicity study of limonium effusum aqueous extracts by Allium, Ames and MTT tests. (United States)

    Eren, Y; Ozata, A; Konuk, M; Akyil, D; Liman, R


    Nowadays plants or plant extracts have become very important for alternative medicine. Plants and their extracts have many therapeutical advantages but some of them are potentially toxic, mutagenic, carcinogenic and teratogenic. Root, stem and leafparts of Limonium effusum were used in this study and this species is an endemic species for Turkey. Mutagenic and cytotoxic effects of root, stem and leaf aqueous extracts were observed with Allium, Ames and MTT tests. Allium root growth inhibition test and mitotic index studies showed that aqueous extracts have dose-dependent toxic effects. Chromosome aberration studies indicated that especially sticky chromosome, anaphase-telophase disorder and laggard chromosome anomalies were highly observed. Ames test performed with Limonium effusum root aqueous extracts, showed weak mutagenic effects in Salmonella typhimurium TA98 strain with S9. MTT test based on mitochondrial activity indicated that most of the aqueous extracts have cytotoxic effects. This study aimed to determine the possible mutagenic and cytotoxic effects of L. effusum aqueous extracts by using bacterial, plant and mammalian cells. This research showed that some low concentrations of the L. effusum extracts have inhibited cytotoxic effects but high concentrations have induced cytotoxicity. On the other hand only a weak mutagenic activity was identified by Ames test with TA98 S9(+).

  8. Determination of mutagenic and cytotoxic effects of Limonium globuliferum aqueous extracts by Allium, Ames, and MTT tests

    Directory of Open Access Journals (Sweden)

    Yasin Eren

    Full Text Available Mutagenic and cytotoxic effects of roots, stems and leaves of Limonium globuliferum Kuntze, Plumbaginaceae, aqueous extracts were studied by Allium, Ames, and MTT tests. These are plant, bacterial and mammalian cell assays, respectively. The Allium test analyses showed that aqueous extracts of this species have dose-dependent toxicity and induce chromosomal anomalies based on defects in the spindle fibers. EC50 values of root stem and leaf aqueous extracts were 32.5, 50, and 50 g/l, respectively. It was observed that there was an inverse correlation between root growth and extract concentration. The lowest mitotic index value (22.72 % was found in L. globuliferum root extract. As a result of the chromosome aberrations test, sticky chromosomes, anaphase bridges, laggard chromosomes, and anaphase-telophase disorders were highly detected especially in high concentration of the extract. In the Ames test, mutagenic effects were determined at all concentrations of stem and leaf aqueous extracts and only two concentrations of root extracts of L. globuliferum. Most of the extracts induced cytotoxic effects by the MTT test based on mitochondrial activity. Nevertheless, some of the extracts induced t cell proliferation.

  9. Both Chromosome Decondensation and Condensation Are Dependent on DNA Replication in C. elegans Embryos (United States)

    Sonneville, Remi; Craig, Gillian; Labib, Karim; Gartner, Anton; Blow, J. Julian


    Summary During cell division, chromatin alternates between a condensed state to facilitate chromosome segregation and a decondensed form when DNA replicates. In most tissues, S phase and mitosis are separated by defined G1 and G2 gap phases, but early embryogenesis involves rapid oscillations between replication and mitosis. Using Caenorhabditis elegans embryos as a model system, we show that chromosome condensation and condensin II concentration on chromosomal axes require replicated DNA. In addition, we found that, during late telophase, replication initiates on condensed chromosomes and promotes the rapid decondensation of the chromatin. Upon replication initiation, the CDC-45-MCM-GINS (CMG) DNA helicase drives the release of condensin I complexes from chromatin and the activation or displacement of inactive MCM-2–7 complexes, which together with the nucleoporin MEL-28/ELYS tethers condensed chromatin to the nuclear envelope, thereby promoting chromatin decondensation. Our results show how, in an early embryo, the chromosome-condensation cycle is functionally linked with DNA replication. PMID:26166571

  10. Partitioning and Exocytosis of Secretory Granules during Division of PC12 Cells

    Directory of Open Access Journals (Sweden)

    Nickolay Vassilev Bukoreshtliev


    Full Text Available The biogenesis, maturation, and exocytosis of secretory granules in interphase cells have been well documented, whereas the distribution and exocytosis of these hormone-storing organelles during cell division have received little attention. By combining ultrastructural analyses and time-lapse microscopy, we here show that, in dividing PC12 cells, the prominent peripheral localization of secretory granules is retained during prophase but clearly reduced during prometaphase, ending up with only few peripherally localized secretory granules in metaphase cells. During anaphase and telophase, secretory granules exhibited a pronounced movement towards the cell midzone and, evidently, their tracks colocalized with spindle microtubules. During cytokinesis, secretory granules were excluded from the midbody and accumulated at the bases of the intercellular bridge. Furthermore, by measuring exocytosis at the single granule level, we showed, that during all stages of cell division, secretory granules were competent for regulated exocytosis. In conclusion, our data shed new light on the complex molecular machinery of secretory granule redistribution during cell division, which facilitates their release from the F-actin-rich cortex and active transport along spindle microtubules.

  11. Structural changes of in vitro matured buffalo and bovine oocytes following cryopreservation

    Directory of Open Access Journals (Sweden)

    Marina De Blasi


    Full Text Available The aim of this work was to evaluate chromatin and spindle organization of buffalo and bovine in vitro matured oocytes after vitrification/warming by Cryotop and after their exposure to cryoprotectants (CP. In vitro matured oocytes were vitrified/warmed and exposed to the vitrification/warming solutions containing ethylene glycol (EG, dimethyl sulfoxide (DMSO and sucrose as CP. Two hours after warming, oocytes were fixed and immunostained for microtubules and nuclei and examined by fluorescence microscopy. Data were analyzed by Chi Square test. A higher percentage of Telophase II stage oocytes was found in the toxicity (26 and 34% in bovine and buffalo and the vitrification groups (13 and 7% in bovine and buffalo compared to the control, indicating occurrence of activation. An increased percentage of oocytes with abnormal spindle and chromosome organization was found in oocytes exposed to CP (24 and 13% in bovine; 32 and 30% in buffalo respectively and in those vitrified (26 and 31% in bovine; 26 and 29% in buffalo respectively compared to the control (0 in bovine and 2.5 % in buffalo.

  12. Live cell imaging of the cancer-related transcription factor RUNX2 during mitotic progression. (United States)

    Pockwinse, Shirwin M; Kota, Krishna P; Quaresma, Alexandre J C; Imbalzano, Anthony N; Lian, Jane B; van Wijnen, Andre J; Stein, Janet L; Stein, Gary S; Nickerson, Jeffrey A


    The nuclear matrix bound transcription factor RUNX2 is a lineage-specific developmental regulator that is linked to cancer. We have previously shown that RUNX2 controls transcription of both RNA polymerase II genes and RNA polymerase I-dependent ribosomal RNA genes. RUNX2 is epigenetically retained through mitosis on both classes of target genes in condensed chromosomes. We have used fluorescence recovery after photobleaching to measure the relative binding kinetics of enhanced green fluorescent protein (EGFP)-RUNX2 at transcription sites in the nucleus and nucleoli during interphase, as well as on mitotic chromosomes. RUNX2 becomes more strongly bound as cells go from interphase through prophase, with a doubling of the most tightly bound "immobile fraction." RUNX2 exchange then becomes much more facile during metaphase to telophase. During interphase the less tightly bound pool of RUNX2 exchanges more slowly at nucleoli than at subnuclear foci, and the non-exchanging immobile fraction is greater in nucleoli. These results are consistent with a model in which the molecular mechanism of RUNX2 binding is different at protein-coding and ribosomal RNA genes. The binding interactions of RUNX2 change as cells go through mitosis, with binding affinity increasing as chromosomes condense and then decreasing through subsequent mitotic phases. The increased binding affinity of RUNX2 at mitotic chromosomes may reflect its epigenetic function in "bookmarking" of target genes in cancer cells. Copyright © 2010 Wiley-Liss, Inc.

  13. Action of Aqueous Extracts of Phyllanthus niruri L. (Euphorbiaceae leaves on Meristematic Root Cells of Allium cepa L.

    Directory of Open Access Journals (Sweden)



    Full Text Available This study aimed to evaluate the effects of aqueous extracts of dried Phyllanthus niruri L. (stonebreaker leaves on Allium cepa L. root meristem cells at four concentrations, 0.02 (usual concentration, 0.04, 0.06 and 0.08mg/mL and exposure times of 24 and 48 hours. For each concentration we used a group of five onion bulbs that were first embedded in distilled water and then transferred to their respective concentrations. The radicles were collected and fixed in acetic acid (3:1 for 24 hours. The slides were prepared by the crushing technique and stained with 2% acetic orcein. Cells were analyzed throughout the cell cycle, totaling 5000 for each control and exposure time. The calculated mitotic indices were subjected to the Chi-squared statistical analysis (p<0.05. From the results obtained it was observed that all four concentrations tested had significant antiproliferative effect on the cell cycle of this test system. We also found the presence of cellular aberrations such as colchicined metaphases, anaphasic and telophasic bridges, and micronuclei in the two exposure times for all concentrations evaluated. Therefore, under the conditions studied the concentrations of aqueous extracts of leaves of P. niruri showed to be cytotoxic and genotoxic.

  14. Global mitotic phosphorylation of C2H2 zinc finger protein linker peptides. (United States)

    Rizkallah, Raed; Alexander, Karen E; Hurt, Myra M


    Cessation of transcriptional activity is a hallmark of cell division. Many biochemical pathways have been shown and proposed over the past few decades to explain the silence of this phase. In particular, many individual transcription factors have been shown to be inactivated by phosphorylation. In this report, we show the simultaneous phosphorylation and mitotic redistribution of a whole class of modified transcription factors. C(2)H(2) zinc finger proteins (ZFPs) represent the largest group of gene expression regulators in the human genome. Despite their diversity, C(2)H(2) ZFPs display striking conservation of small linker peptides joining their adjacent zinc finger modules. These linkers are critical for DNA binding activity. It has been proposed that conserved phosphorylation of these linker peptides could be a common mechanism for the inactivation of the DNA binding activity of C(2)H(2) ZFPs, during mitosis. Using a novel antibody, raised against the phosphorylated form of the most conserved linker peptide sequence, we are able to visualize the massive and simultaneous mitotic phosphorylation of hundreds of these proteins. We show that this wave of phosphorylation is tightly synchronized, starting in mid-prophase right after DNA condensation and before the breakdown of the nuclear envelope. This global phosphorylation is completely reversed in telophase. In addition, the exclusion of the phospho-linker signal from condensed DNA clearly demonstrates a common mechanism for the mitotic inactivation of C(2)H(2) ZFPs. © 2011 Landes Bioscience

  15. Conformation of cytoskeletal elements during the division of infected Lupinus albus L. nodule cells. (United States)

    Fedorova, Elena E; de Felipe, María R; Pueyo, José J; Lucas, M Mercedes


    Lupin nodule cells maintain their ability to divide for several cycles after being infected by endosymbiotic rhizobia. The conformation of the cytoskeletal elements of nodule cells was studied by fluorescence labelling, immunocytochemistry, and laser confocal and transmission electron microscopy. The dividing infected cells showed the normal microtubule and actin patterns of dividing plant cells. The clustered symbiosomes were tethered to the spindle-pole regions and moved to the cell poles during spindle elongation. In metaphase, anaphase, and early telophase, the symbiosomes were found at opposite cell poles where they did not interfere with the spindle filaments or phragmoplast. This symbiosome positioning was comparable with that of the organelles (which ensures organelle inheritance during plant cell mitosis). Tubulin microtubules and actin microfilaments appeared to be in contact with the symbiosomes. The possible presence of actin molecular motor myosin in nodules was analysed using a monoclonal antibody against the myosin light chain. The antigen was detected in protein extracts of nodule and root cytosol as bands of approximately 20 kDa (the size expected). In the nodules, an additional polypeptide of 65 kDa was found. Immunogold techniques revealed the antigen to be localized over thin microfilaments linked to the cell wall, as well as over the thicker microfilament bundles and surrounding the symbiosomes. The pattern of cytoskeleton rearrangement in dividing infected cells, along with the presence of myosin antigen, suggests that the positioning of symbiosomes in lupin nodule cells might depend on the same mechanisms used to partition genuine plant cell organelles during mitosis.

  16. Autophagy is required for G₁/G₀ quiescence in response to nitrogen starvation in Saccharomyces cerevisiae. (United States)

    An, Zhenyi; Tassa, Amina; Thomas, Collin; Zhong, Rui; Xiao, Guanghua; Fotedar, Rati; Tu, Benjamin P; Klionsky, Daniel J; Levine, Beth


    In response to starvation, cells undergo increased levels of autophagy and cell cycle arrest but the role of autophagy in starvation-induced cell cycle arrest is not fully understood. Here we show that autophagy genes regulate cell cycle arrest in the budding yeast Saccharomyces cerevisiae during nitrogen starvation. While exponentially growing wild-type yeasts preferentially arrest in G₁/G₀ in response to starvation, yeasts carrying null mutations in autophagy genes show a significantly higher percentage of cells in G₂/M. In these autophagy-deficient yeast strains, starvation elicits physiological properties associated with quiescence, such as Snf1 activation, glycogen and trehalose accumulation as well as heat-shock resistance. However, while nutrient-starved wild-type yeasts finish the G₂/M transition and arrest in G₁/G 0₀ autophagy-deficient yeasts arrest in telophase. Our results suggest that autophagy is crucial for mitotic exit during starvation and appropriate entry into a G₁/G₀ quiescent state.

  17. Polyploidization mechanisms: temperature environment can induce diploid gamete formation in Rosa sp. (United States)

    Pécrix, Yann; Rallo, Géraldine; Folzer, Hélène; Cigna, Mireille; Gudin, Serge; Le Bris, Manuel


    Polyploidy is an important evolutionary phenomenon but the mechanisms by which polyploidy arises still remain underexplored. There may be an environmental component to polyploidization. This study aimed to clarify how temperature may promote diploid gamete formation considered an essential element for sexual polyploidization. First of all, a detailed cytological analysis of microsporogenesis and microgametogenesis was performed to target precisely the key developmental stages which are the most sensitive to temperature. Then, heat-induced modifications in sporad and pollen characteristics were analysed through an exposition of high temperature gradient. Rosa plants are sensitive to high temperatures with a developmental sensitivity window limited to meiosis. Moreover, the range of efficient temperatures is actually narrow. 36 °C at early meiosis led to a decrease in pollen viability, pollen ectexine defects but especially the appearance of numerous diploid pollen grains. They resulted from dyads or triads mainly formed following heat-induced spindle misorientations in telophase II. A high temperature environment has the potential to increase gamete ploidy level. The high frequencies of diplogametes obtained at some extreme temperatures support the hypothesis that polyploidization events could have occurred in adverse conditions and suggest polyploidization facilitating in a global change context.

  18. Phosphorylation statuses at different residues of lamin B2, B1, and A/C dynamically and independently change throughout the cell cycle

    Energy Technology Data Exchange (ETDEWEB)

    Kuga, Takahisa, E-mail: [Laboratory of Proteome Research, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085 (Japan); Department of Molecular Diagnosis (F8), Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670 (Japan); Nozaki, Naohito [Department of Biochemistry and Molecular Biology, Kanagawa Dental College, Yokosuka, Kanagawa 238-8580 (Japan); Matsushita, Kazuyuki; Nomura, Fumio [Department of Molecular Diagnosis (F8), Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670 (Japan); Tomonaga, Takeshi, E-mail: [Laboratory of Proteome Research, National Institute of Biomedical Innovation, Ibaraki, Osaka 567-0085 (Japan); Department of Molecular Diagnosis (F8), Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670 (Japan)


    Lamins, major components of the nuclear lamina, undergo phosphorylation at multiple residues during cell cycle progression, but their detailed phosphorylation kinetics remain largely undetermined. Here, we examined changes in the phosphorylation of major phosphorylation residues (Thr14, Ser17, Ser385, Ser387, and Ser401) of lamin B2 and the homologous residues of lamin B1, A/C during the cell cycle using novel antibodies to the site-specific phosphorylation. The phosphorylation levels of these residues independently changed during the cell cycle. Thr14 and Ser17 were phosphorylated during G{sub 2}/M phase to anaphase/telophase. Ser385 was persistently phosphorylated during mitosis to G{sub 1} phase, whereas Ser387 was phosphorylated discontinuously in prophase and G{sub 1} phase. Ser401 phosphorylation was enhanced in the G{sub 1}/S boundary. Immunoprecipitation using the phospho-antibodies suggested that metaphase-phosphorylation at Thr14, Ser17, and Ser385 of lamins occurred simultaneously, whereas G{sub 1}-phase phosphorylation at Ser385 and Ser387 occurred in distinct pools or with different timings. Additionally, we showed that lamin B2 phosphorylated at Ser17, but not Ser385, Ser387 and Ser401, was exclusively non-ionic detergent soluble, depolymerized forms in growing cells, implicating specific involvement of Ser17 phosphorylation in lamin depolymerization and nuclear envelope breakdown. These results suggest that the phosphorylations at different residues of lamins might play specific roles throughout the cell cycle.

  19. Selective disruption of aurora C kinase reveals distinct functions from aurora B kinase during meiosis in mouse oocytes.

    Directory of Open Access Journals (Sweden)

    Ahmed Z Balboula


    Full Text Available Aurora B kinase (AURKB is the catalytic subunit of the chromosomal passenger complex (CPC, an essential regulator of chromosome segregation. In mitosis, the CPC is required to regulate kinetochore microtubule (K-MT attachments, the spindle assembly checkpoint, and cytokinesis. Germ cells express an AURKB homolog, AURKC, which can also function in the CPC. Separation of AURKB and AURKC function during meiosis in oocytes by conventional approaches has not been successful. Therefore, the meiotic function of AURKC is still not fully understood. Here, we describe an ATP-binding-pocket-AURKC mutant, that when expressed in mouse oocytes specifically perturbs AURKC-CPC and not AURKB-CPC function. Using this mutant we show for the first time that AURKC has functions that do not overlap with AURKB. These functions include regulating localized CPC activity and regulating chromosome alignment and K-MT attachments at metaphase of meiosis I (Met I. We find that AURKC-CPC is not the sole CPC complex that regulates the spindle assembly checkpoint in meiosis, and as a result most AURKC-perturbed oocytes arrest at Met I. A small subset of oocytes do proceed through cytokinesis normally, suggesting that AURKC-CPC is not the sole CPC complex during telophase I. But, the resulting eggs are aneuploid, indicating that AURKC is a critical regulator of meiotic chromosome segregation in female gametes. Taken together, these data suggest that mammalian oocytes contain AURKC to efficiently execute meiosis I and ensure high-quality eggs necessary for sexual reproduction.

  20. GISH and AFLP analyses of novel Brassica napus lines derived from one hybrid between B. napus and Orychophragmus violaceus. (United States)

    Ma, Ni; Li, Zai-Yun; Cartagena, J A; Fukui, K


    New Brassica napus inbred lines with different petal colors and with canola quality and increased levels of oleic (approximately 70%, 10% higher than that of B. napus parent) and linoleic (28%) acids have been developed in the progenies of one B. napus cv. Oro x Orychophragmus violaceus F5 hybrid plant (2n = 31). Their genetic constituents were analyzed by using the methods of genomic in situ hybridization (GISH) and amplified fragments length polymorphism (AFLP). No intact chromosomes of O. violaceus origin were detected by GISH in their somatic cells of ovaries and root tips (2n = 38) and pollen mother cells (PMCs) with normal chromosome pairing (19 bivalents) and segregation (19:19), though signals of variable sizes and intensities were located mainly at terminal and centromeric parts of some mitotic chromosomes and meiotic bivalents at diakinesis or chromosomes in anaphase I groups and one large patch of chromatin was intensively labeled and separated spatially in some telophase I nuclei and metaphase II PMCs. AFLP analysis revealed that substantial genomic changes have occurred in these lines and O. violaceus-specific bands, deleted bands in 'Oro' and novel bands for two parents were detected. The possible mechanisms for these results were discussed.

  1. Chromosome Missegregation Associated with RUVBL1 Deficiency.

    Directory of Open Access Journals (Sweden)

    Christian Gentili

    Full Text Available RUVBL1 (RuvB-like1 and RUVBL2 (RuvB-like 2 are integral components of multisubunit protein complexes involved in processes ranging from cellular metabolism, transcription and chromatin remodeling to DNA repair. Here, we show that although RUVBL1 and RUVBL2 are known to form heterodimeric complexes in which they stabilize each other, the subunits separate during cytokinesis. In anaphase-to-telophase transition, RUVBL1 localizes to structures of the mitotic spindle apparatus, where it partially co-localizes with polo-like kinase 1 (PLK1. The ability of PLK1 to phosphorylate RUVBL1-but not RUVBL2-in vitro and their physical association in vivo suggest that this kinase differentially regulates the function of the RuvB-like proteins during mitosis. We further show that siRNA-mediated knock-down of RuvB-like proteins causes severe defects in chromosome alignment and segregation. In addition, we show that the ATPase activity of RUVBL1 is indispensable for cell proliferation. Our data thus demonstrate that RUVBL1 is essential for efficient mitosis and proliferation.

  2. Chromosome Missegregation Associated with RUVBL1 Deficiency. (United States)

    Gentili, Christian; Castor, Dennis; Kaden, Svenja; Lauterbach, David; Gysi, Mario; Steigemann, Patrick; Gerlich, Daniel W; Jiricny, Josef; Ferrari, Stefano


    RUVBL1 (RuvB-like1) and RUVBL2 (RuvB-like 2) are integral components of multisubunit protein complexes involved in processes ranging from cellular metabolism, transcription and chromatin remodeling to DNA repair. Here, we show that although RUVBL1 and RUVBL2 are known to form heterodimeric complexes in which they stabilize each other, the subunits separate during cytokinesis. In anaphase-to-telophase transition, RUVBL1 localizes to structures of the mitotic spindle apparatus, where it partially co-localizes with polo-like kinase 1 (PLK1). The ability of PLK1 to phosphorylate RUVBL1-but not RUVBL2-in vitro and their physical association in vivo suggest that this kinase differentially regulates the function of the RuvB-like proteins during mitosis. We further show that siRNA-mediated knock-down of RuvB-like proteins causes severe defects in chromosome alignment and segregation. In addition, we show that the ATPase activity of RUVBL1 is indispensable for cell proliferation. Our data thus demonstrate that RUVBL1 is essential for efficient mitosis and proliferation.

  3. Morphological assessment of the development of multinucleated giant cells in glioma by using mitosis-specific phosphorylated antibodies. (United States)

    Maeda, Kenkou; Mizuno, Masaaki; Wakabayashi, Toshihiko; Takasu, Syuntarou; Nagasaka, Tetsurou; Inagaki, Masaki; Yoshida, Jun


    The nature and origin of multinucleated giant cells in glioma have not been made clear. To investigate the phosphorylation of intermediate filaments, the authors studied multinucleated giant cells in vitro and in vivo by using mitosis-specific phosphorylated antibodies. Cultured human glioma cells were immunostained with monoclonal antibodies (mAbs) 4A4, KT13, and TM71, which recognized the phosphorylation of vimentin at Ser55, glial fibrillary acidic protein at Serl3, and vimentin at Ser71, respectively. Subsequently, the nature of multinucleated giant cells was investigated using laser scanning confocal microscopy. In addition, paraffin-embedded tissue sections obtained in three patients with giant cell glioblastoma were also investigated. Multinucleated giant cells were immunoreacted with the mAb 4A4 and not with KT13 and TM71 in vitro and in vivo. In addition, the authors obtained these results in multinucleated giant cells under natural conditions, without drug treatments. Findings in this investigation indicated that multinucleated giant cells are those remaining in mitosis between metaphase and telophase, undergoing neither fusion nor degeneration.

  4. Biosynthesis of copper nanoparticles and its effect on actively dividing cells of mitosis in Allium cepa. (United States)

    Nagaonkar, Dipali; Shende, Sudhir; Rai, Mahendra


    Nanobiotechnological application of copper nanoparticles has paved the way for advancement in agriculture owing to its bactericidal and fungicidal activities. Recently, researchers have focussed on bioinspired synthesis of copper nanoparticles as a viable alternative to existing physicochemical techniques. For the commercialization of nanocopper, the toxicity evaluation is a major issue. In this context, Citrus medica (L.) fruit extract-mediated copper nanoparticles were synthesized and its different concentrations (10, 20, 40, 60, 80, and 100 µg mL(-1) ) were evaluated for its effect on actively dividing cells of Allium cepa. The study clearly revealed that copper nanoparticles increased mitotic index up to the concentration of 20 µg mL(-1) . In addition, a gradual decline in mitotic index and increase in abnormality index was observed as the concentration of copper nanoparticles and treatment duration were increased. Aberrations in chromosomal behavior such as sticky and disturbed chromosomes in metaphase and anaphase, c-metaphase, bridges, laggard, disturbed telophase, and vacuolated nucleus were also observed. © 2015 American Institute of Chemical Engineers.

  5. Cytotoxicity of erythrosine (E-127, brilliant blue (E-133 and red 40 (E-129 food dyes in a plant test system - doi: 10.4025/actascibiolsci.v35i4.18419

    Directory of Open Access Journals (Sweden)

    Maria Virna Aguiar de Oliveira


    Full Text Available The objective of this work was to evaluate the cytotoxic effect of the food dyes erythrosine, brilliant blue and red 40 on the cell cycle of Allium cepa L. Each dye was evaluated at doses of 0.4 and 4.0 ml, at exposure times of 24 and 48 hours, in onion root tip cells. Cells and the presence of chromosomal aberrations were analyzed throughout the whole cell cycle, totaling 5,000 cells for each group of bulbs. The mitotic index was calculated and the statistical analysis was conducted through the Chi-square test (p < 0.05. From the obtained results, it was verified that the food additives erythrosine and brilliant blue were not cytotoxic to the cells of the test system. However, the red 40 dye, at the two evaluated doses and the two exposure times used in this bioassay have promoted a significant reduction in cell division and induced the emergence of anaphasic and telophasic bridge aberrations and micronucleated cells. Additional cytotoxicity studies should be conducted to add information to these and other previously obtained results in order to evaluate, with property, the action of these three dyes on a cellular level.

  6. The spatio-temporal dynamics of PKA activity profile during mitosis and its correlation to chromosome segregation. (United States)

    Vandame, Pauline; Spriet, Corentin; Trinel, Dave; Gelaude, Armance; Caillau, Katia; Bompard, Coralie; Biondi, Emanuele; Bodart, Jean-François


    The cyclic adenosine monophosphate dependent kinase protein (PKA) controls a variety of cellular processes including cell cycle regulation. Here, we took advantages of genetically encoded FRET-based biosensors, using an AKAR-derived biosensor to characterize PKA activity during mitosis in living HeLa cells using a single-cell approach. We measured PKA activity changes during mitosis. HeLa cells exhibit a substantial increase during mitosis, which ends with telophase. An AKAREV T>A inactive form of the biosensor and H89 inhibitor were used to ascertain for the specificity of the PKA activity measured. On a spatial point of view, high levels of activity near to chromosomal plate during metaphase and anaphase were detected. By using the PKA inhibitor H89, we assessed the role of PKA in the maintenance of a proper division phenotype. While this treatment in our hands did not impaired cell cycle progression in a drastic manner, inhibition of PKA leads to a dramatic increase in chromososme misalignement on the spindle during metaphase that could result in aneuploidies. Our study emphasizes the insights that can be gained with genetically encoded FRET-based biosensors, which enable to overcome the shortcomings of classical methologies and unveil in vivo PKA spatiotemporal profiles in HeLa cells.

  7. Clathrin-mediated endocytosis is inhibited during mitosis (United States)

    Fielding, Andrew B.; Willox, Anna K.; Okeke, Emmanuel; Royle, Stephen J.


    A long-standing paradigm in cell biology is the shutdown of endocytosis during mitosis. There is consensus that transferrin uptake is inhibited after entry into prophase and that it resumes in telophase. A recent study proposed that endocytosis is continuous throughout the cell cycle and that the observed inhibition of transferrin uptake is due to a decrease in available transferrin receptor at the cell surface, and not to a shutdown of endocytosis. This challenge to the established view is gradually becoming accepted. Because of this controversy, we revisited the question of endocytic activity during mitosis. Using an antibody uptake assay and controlling for potential changes in surface receptor density, we demonstrate the strong inhibition of endocytosis in mitosis of CD8 chimeras containing any of the three major internalization motifs for clathrin-mediated endocytosis (YXXΦ, [DE]XXXL[LI], or FXNPXY) or a CD8 protein with the cytoplasmic tail of the cation-independent mannose 6-phosphate receptor. The shutdown is not gradual: We describe a binary switch from endocytosis being “on” in interphase to “off” in mitosis as cells traverse the G2/M checkpoint. In addition, we show that the inhibition of transferrin uptake in mitosis occurs despite abundant transferrin receptor at the surface of HeLa cells. Our study finds no support for the recent idea that endocytosis continues during mitosis, and we conclude that endocytosis is temporarily shutdown during early mitosis. PMID:22493256

  8. A hyperactive transcriptional state marks genome reactivation at the mitosis-G1 transition. (United States)

    Hsiung, Chris C-S; Bartman, Caroline R; Huang, Peng; Ginart, Paul; Stonestrom, Aaron J; Keller, Cheryl A; Face, Carolyne; Jahn, Kristen S; Evans, Perry; Sankaranarayanan, Laavanya; Giardine, Belinda; Hardison, Ross C; Raj, Arjun; Blobel, Gerd A


    During mitosis, RNA polymerase II (Pol II) and many transcription factors dissociate from chromatin, and transcription ceases globally. Transcription is known to restart in bulk by telophase, but whether de novo transcription at the mitosis-G1 transition is in any way distinct from later in interphase remains unknown. We tracked Pol II occupancy genome-wide in mammalian cells progressing from mitosis through late G1. Unexpectedly, during the earliest rounds of transcription at the mitosis-G1 transition, ∼50% of active genes and distal enhancers exhibit a spike in transcription, exceeding levels observed later in G1 phase. Enhancer-promoter chromatin contacts are depleted during mitosis and restored rapidly upon G1 entry but do not spike. Of the chromatin-associated features examined, histone H3 Lys27 acetylation levels at individual loci in mitosis best predict the mitosis-G1 transcriptional spike. Single-molecule RNA imaging supports that the mitosis-G1 transcriptional spike can constitute the maximum transcriptional activity per DNA copy throughout the cell division cycle. The transcriptional spike occurs heterogeneously and propagates to cell-to-cell differences in mature mRNA expression. Our results raise the possibility that passage through the mitosis-G1 transition might predispose cells to diverge in gene expression states. © 2016 Hsiung et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Are salty liquid food flavorings in vitro antitumor substances?

    Directory of Open Access Journals (Sweden)


    Full Text Available ABSTRACT The objective of this study was to evaluate the antiproliferative, cytotoxic and genotoxic potential of salty liquid synthetic flavorings of Butter, Cheddar Cheese and Onion. The antiproliferative potential (2.9-1500 µg/mL was assessed by MTT assay after 72h using the human tumor lines SF-295 (glioblastoma, OVCAR-8 (ovarian, HCT-116 (colon and HL-60 (promyelocytic leukemia and primary cultures of murine Sarcoma 180 (S180 and peripheral blood mononuclear cells (PBMC. Allium cepa bulbs were exposed to growing respective doses (1 mL and 2 mL. Only Butter and Cheddar flavorings revealed cytotoxic activity on cancer cells, with IC50 values ranging from 125.4 µg/mL (Cheddar - HCT-116 to 402.6 µg/mL (Butter - OVCAR-8. Butter flavoring was the most cytotoxic on PBMC (136.3 µg/mL and increased cell division rate in relation to the mitotic index but did not cause cellular aberrations. Onion and Cheddar flavorings reduced the mitotic index after 24h and 48h exposure, but only Onion flavoring resulted in cellular aberrations and mitotic spindle abnormalities, such as anaphase and telophase bridges, micronucleated cells, conchicine-metaphases and amplifications. So, Butter, Onion and/or Cheddar flavorings caused significant changes in the division of meristematic cells of A. cepa and presented cytotoxic action even on decontrolled proliferating human tumor cells.

  10. TBCD links centriologenesis, spindle microtubule dynamics, and midbody abscission in human cells.

    Directory of Open Access Journals (Sweden)

    Mónica López Fanarraga

    Full Text Available Microtubule-organizing centers recruit alpha- and beta-tubulin polypeptides for microtubule nucleation. Tubulin synthesis is complex, requiring five specific cofactors, designated tubulin cofactors (TBCs A-E, which contribute to various aspects of microtubule dynamics in vivo. Here, we show that tubulin cofactor D (TBCD is concentrated at the centrosome and midbody, where it participates in centriologenesis, spindle organization, and cell abscission. TBCD exhibits a cell-cycle-specific pattern, localizing on the daughter centriole at G1 and on procentrioles by S, and disappearing from older centrioles at telophase as the protein is recruited to the midbody. Our data show that TBCD overexpression results in microtubule release from the centrosome and G1 arrest, whereas its depletion produces mitotic aberrations and incomplete microtubule retraction at the midbody during cytokinesis. TBCD is recruited to the centriole replication site at the onset of the centrosome duplication cycle. A role in centriologenesis is further supported in differentiating ciliated cells, where TBCD is organized into "centriolar rosettes". These data suggest that TBCD participates in both canonical and de novo centriolar assembly pathways.

  11. Phenolic acid allelochemicals induced morphological, ultrastructural, and cytological modification on Cassia sophera L. and Allium cepa L. (United States)

    Gulzar, Aasifa; Siddiqui, M B; Bi, Shazia


    The allelopathic potential of leaf aqueous extract (LAE) of Calotropis procera on growth behavior, ultrastructural changes on Cassia sophera L., and cytological changes on Allium cepa L. was investigated. LAE at different concentrations (0.5, 1, 2, and 4 %) significantly reduced the root length, shoot length, and dry biomass of C. sophera. Besides, the ultrastructural changes (through scanning electron microscopy, SEM) induced in epidermal cells of 15-day-old seedlings of Cassia leaf were also noticed. The changes induced were shrinking and contraction of epidermal cells along with the formation of major grooves, canals, and cyst-like structures. The treated samples of epidermal cells no longer seem to be smooth as compared to control. LAE at different concentrations induces chromosomal aberrations and variation in shape of the interphase and prophase nucleus in A. cepa root tip cells when compared with control groups. The mitotic index in treated onion root tips decreased with increasing concentrations of the extracts. The most frequent aberrations were despiralization at prophase with the formation of micronuclei, sticky anaphase with bridges, sticky telophase, C-metaphase, etc. The results also show the induction of ghost cells, cells with membrane damage, and cells with heterochromatic nuclei by extract treatment. Upon HPLC analysis, nine phenolic acids (caffeic acid, gentisic acid, catechol, gallic acid, syringic acid, ellagic acid, resorcinol, p-coumaric acid, and p-hydroxy benzoic acid) were identified. Thus, the phenolic acids are mainly responsible for the allelopathic behavior of C. procera.

  12. Sorcin Links Calcium Signaling to Vesicle Trafficking, Regulates Polo-Like Kinase 1 and Is Necessary for Mitosis (United States)

    Lalioti, Vasiliki S.; Ilari, Andrea; O'Connell, David J.; Poser, Elena; Sandoval, Ignacio V.; Colotti, Gianni


    Sorcin, a protein overexpressed in many multi-drug resistant cancers, dynamically localizes to distinct subcellular sites in 3T3-L1 fibroblasts during cell-cycle progression. During interphase sorcin is in the nucleus, in the plasma membrane, in endoplasmic reticulum (ER) cisternae, and in ER-derived vesicles localized along the microtubules. These vesicles are positive to RyR, SERCA, calreticulin and Rab10. At the beginning of mitosis, sorcin-containing vesicles associate with the mitotic spindle, and during telophase are concentrated in the cleavage furrow and, subsequently, in the midbody. Sorcin regulates dimensions and calcium load of the ER vesicles by inhibiting RYR and activating SERCA. Analysis of sorcin interactome reveals calcium-dependent interactions with many proteins, including Polo-like kinase 1 (PLK1), Aurora A and Aurora B kinases. Sorcin interacts physically with PLK1, is phosphorylated by PLK1 and induces PLK1 autophosphorylation, thereby regulating kinase activity. Knockdown of sorcin results in major defects in mitosis and cytokinesis, increase in the number of rounded polynucleated cells, blockage of cell progression in G2/M, apoptosis and cell death. Sorcin regulates calcium homeostasis and is necessary for the activation of mitosis and cytokinesis. PMID:24427308

  13. Identifying mitosis deep in tissue using dynamic light scattering fluctuation spectroscopy (United States)

    An, Ran; Jeong, Kwan; Turek, John; Nolte, David


    In the cell cycle, mitosis is the most dramatic phase, especially in Telophase and Cytokinesis. For single cells and cell monolayer, there are precise microscopic studies of mitosis, while for 3-D tissue such as tumor spheroids the light signal is obscured by the high background of diffusely scattered light. Therefore, the mitosis phase cannot be detected deep inside 3-D tissue using conventional microscopic techniques. In this work, we detect mitosis in living tissue using Tissue Dynamic Imaging (TDI). We trace depth-gated dynamic speckles from a tumor spheroid (up to 1mm in diameter) using coherence-gated digital holography imaging. Frequency-versus-time spectrograms depend on specific types of perturbation such as cell shape change, membrane undulation and cell organelles movements. By using these spectral responses as functional finger prints, we can identify mitosis events from different voxels at a specified depth inside tumor spheroids. By performing B-scans of the tumor spheroid, we generate 3-D mitosis maps (or movies) for the entire tumor spheroids. We show that for healthy tumor spheroids, the mitosis events only happen within the proliferating shell. We also compare results when anti-cancer drugs are applied to arrest, release and synchronize mitosis. This shows the application of TDI for drug screening. The technique can identify and monitor complex motilities inside 3-D tissue with a strong potential for drug diagnosis and developmental biology studies.

  14. Mitotic protein kinase CDK1 phosphorylation of mRNA translation regulator 4E-BP1 Ser83 may contribute to cell transformation

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez, Celestino; Cheng, Erdong; Shuda, Masahiro; Lee-Oesterreich, Paula J.; Pogge von Strandmann, Lisa; Gritsenko, Marina A.; Jacobs, Jon M.; Moore, Patrick S.; Chang, Yuan


    mTOR-directed 4E-BP1 phosphorylation promotes cap-dependent translation and tumorigen-esis. During mitosis, CDK1 substitutes for mTOR and fully phosphorylates 4E-BP1 at canoni-cal as well a non-canonical S83 site resulting in a mitosis-specific hyperphosphorylated δ isoform. Colocalization studies with a phospho-S83 specific antibody indicate that 4E-BP1 S83 phosphorylation accumulates at centrosomes during prophase, peaks at metaphase, and decreases through telophase. While S83 phosphorylation of 4E-BP1 does not affect in vitro cap-dependent translation, nor eIF4G/4E-BP1 cap-binding, expression of an alanine substitution mutant 4E-BP1.S83A partially reverses rodent cell transformation induced by Merkel cell polyomavirus (MCV) small T (sT) antigen viral oncoprotein. In contrast to inhibitory mTOR 4E-BP1 phosphorylation, these findings suggest that mitotic CDK1-directed phosphorylation of δ-4E-BP1 may yield a gain-of-function, distinct from translation regulation, that may be important in tumorigenesis and mitotic centrosome function.

  15. MICROTUBULE-ASSOCIATED PROTEIN65 is essential for maintenance of phragmoplast bipolarity and formation of the cell plate in Physcomitrella patens. (United States)

    Kosetsu, Ken; de Keijzer, Jeroen; Janson, Marcel E; Goshima, Gohta


    The phragmoplast, a plant-specific apparatus that mediates cytokinesis, mainly consists of microtubules (MTs) arranged in a bipolar fashion, such that their plus ends interdigitate at the equator. Membrane vesicles are thought to move along the MTs toward the equator and fuse to form the cell plate. Although several genes required for phragmoplast MT organization have been identified, the mechanisms that maintain the bipolarity of phragmoplasts remain poorly understood. Here, we show that engaging phragmoplast MTs in a bipolar fashion in protonemal cells of the moss Physcomitrella patens requires the conserved MT cross-linking protein MICROTUBULE-ASSOCIATED PROTEIN65 (MAP65). Simultaneous knockdown of the three MAP65s expressed in those cells severely compromised MT interdigitation at the phragmoplast equator after anaphase onset, resulting in the collapse of the phragmoplast in telophase. Cytokinetic vesicles initially localized to the anaphase midzone as normal but failed to further accumulate in the next several minutes, although the bipolarity of the MT array was preserved. Our data indicate that the presence of bipolar MT arrays is insufficient for vesicle accumulation at the equator and further suggest that MAP65-mediated MT interdigitation is a prerequisite for maintenance of bipolarity of the phragmoplast and accumulation and/or fusion of cell plate-destined vesicles at the equatorial plane.

  16. MICROTUBULE-ASSOCIATED PROTEIN65 Is Essential for Maintenance of Phragmoplast Bipolarity and Formation of the Cell Plate in Physcomitrella patens[C][W (United States)

    Kosetsu, Ken; de Keijzer, Jeroen; Janson, Marcel E.; Goshima, Gohta


    The phragmoplast, a plant-specific apparatus that mediates cytokinesis, mainly consists of microtubules (MTs) arranged in a bipolar fashion, such that their plus ends interdigitate at the equator. Membrane vesicles are thought to move along the MTs toward the equator and fuse to form the cell plate. Although several genes required for phragmoplast MT organization have been identified, the mechanisms that maintain the bipolarity of phragmoplasts remain poorly understood. Here, we show that engaging phragmoplast MTs in a bipolar fashion in protonemal cells of the moss Physcomitrella patens requires the conserved MT cross-linking protein MICROTUBULE-ASSOCIATED PROTEIN65 (MAP65). Simultaneous knockdown of the three MAP65s expressed in those cells severely compromised MT interdigitation at the phragmoplast equator after anaphase onset, resulting in the collapse of the phragmoplast in telophase. Cytokinetic vesicles initially localized to the anaphase midzone as normal but failed to further accumulate in the next several minutes, although the bipolarity of the MT array was preserved. Our data indicate that the presence of bipolar MT arrays is insufficient for vesicle accumulation at the equator and further suggest that MAP65-mediated MT interdigitation is a prerequisite for maintenance of bipolarity of the phragmoplast and accumulation and/or fusion of cell plate–destined vesicles at the equatorial plane. PMID:24272487

  17. Characterization of Actin Filament Dynamics during Mitosis in Wheat Protoplasts under UV-B Radiation (United States)

    Chen, Huize; Han, Rong


    Enhanced ultraviolet-B (UV-B) radiation is caused by the thinning ozone and affects photosynthesis and crop yield. Recently, UV-B radiation has been considered as an environmental signal that regulates plant growth. Elucidating the downstream effectors in UV-B-triggered pathways is of particular interest. Previous studies have shown that actin filaments (AFs) play many roles during cell physiological processes. However, the underlying response of AFs to UV-B radiation remains unclear. In this study, wheat protoplasts were isolated from 7-d-old leaves. The dynamics of AFs during mitosis were observed under different treatments. The protoplasts were treated with UV-B radiation, cytochalasin B (CB) and jasplakinolide (JAS). Ph-FITC labelling results revealed typical actin filament structures in the control group; AFs were rearranged under UV-B radiation. AFs polymerized into bundles during interphase, the preprophase band (PPB) structure was destroyed during prophase, and the AFs gathered into plaques during metaphase in response to UV-B radiation. During anaphase and telophase, the distribution of AFs was dispersed. Pharmacologic experiments revealed that CB induced apoptosis and JAS induced nuclear division without cytokinesis in wheat protoplasts. These results indicated that AFs respond to UV-B radiation during mitosis, supplying evidence of UV-B signal transduction in plants. PMID:26823006

  18. Noninvasive three-dimensional live imaging methodology for the spindles at meiosis and mitosis (United States)

    Zheng, Jing-gao; Huo, Tiancheng; Tian, Ning; Chen, Tianyuan; Wang, Chengming; Zhang, Ning; Zhao, Fengying; Lu, Danyu; Chen, Dieyan; Ma, Wanyun; Sun, Jia-lin; Xue, Ping


    The spindle plays a crucial role in normal chromosome alignment and segregation during meiosis and mitosis. Studying spindles in living cells noninvasively is of great value in assisted reproduction technology (ART). Here, we present a novel spindle imaging methodology, full-field optical coherence tomography (FF-OCT). Without any dye labeling and fixation, we demonstrate the first successful application of FF-OCT to noninvasive three-dimensional (3-D) live imaging of the meiotic spindles within the mouse living oocytes at metaphase II as well as the mitotic spindles in the living zygotes at metaphase and telophase. By post-processing of the 3-D dataset obtained with FF-OCT, the important morphological and spatial parameters of the spindles, such as short and long axes, spatial localization, and the angle of meiotic spindle deviation from the first polar body in the oocyte were precisely measured with the spatial resolution of 0.7 μm. Our results reveal the potential of FF-OCT as an imaging tool capable of noninvasive 3-D live morphological analysis for spindles, which might be useful to ART related procedures and many other spindle related studies.

  19. Tingkat Maturasi in vitro Oosit Kambing dalam Medium dengan Suplementasi Serum dan Albumin

    Directory of Open Access Journals (Sweden)

    Sri Gustari


    Full Text Available The present study aimed to study the effect of ?maturation media? on maturation rate of goat oocytesafter in vitro maturation. Goat ovaries were collected from a slaughter house in Godean, Sleman. Immediatelyafter slaughter the ovaries were collected, rinsed with physiological NaCl three times then placed in aflask containing the NaCl solutions and hept at 36-370C before transportaion to the laboratory. Oocyteswere observed under stereo microscope and its quality was classified into A, B, and C. Oocytes in vitromaturaion (IVM was performed in TCM-199 media suplemented with : a 0.4 mg/ml bovine serum albumin(BSA; and b 10% newborn calf serum (NCS then incubated at 38.50C with 5% CO2 for 24-27 h. Followingthis, oocytes were observed under inverted microscope for first polar body extrusion, then stained withaceto-orcein in order to evaluate nuck or maturation. The nuclear maturation stages including : germinalvesicles (GV, germinal vesicles break down (GVBD, metaphase I, apaphase I, telophase I and metaphaseII, respectivelly. The overall results showed that 74-74%, 52-66.6% and 21.5-23.8% of oocytes quality A, B,and C reached maturation at metaphase II, respectivelly. There were no significant differences in oocytesmaturation using media supplemented with either BSA or NCS.

  20. [Cytogenetic investigations of bone marrow cells from mice exposed onboard biosatellite "Bion-M1"]. (United States)

    Dorozhkina, O V; Ivanov, A A


    The results of studying the mitotic activities and chromosomal aberrations in bone marrow cells from C57/BL6N mice with the help of the anaphase technique in 12 hours after completion of the 30-day "Bion-M1" mission and ground-based experiment using flight equipment are presented. A statistically reliable decline of the mitotic activity (0.74%) was found in cells taken from the space flown animals. In the ground-based experiment, a statistically reliable downward trend in proliferative activity (1.37%) was revealed after the comparison with groups of vivarium control (1.46-1.53%). In both experiments mice increased the number of initial mitotic phases (prophase + metaphase) relative to the sum of anaphases and telophases. The number of aberrant mitoses grew reliably in the group of flight animals by 29.7%, whereas in the ground-based experiment an upward trend was insignificant as their number increased up to 2.3% only. In the vivarium controls aberrant mitoses constituted 1.75-1.8%. An increase in chromosomal aberrations was largely due to such abnormalities as fragments. These findings seem to have been a result of summation of the effects of radiation and other stressful factors in space flight.

  1. Description of the pre-reductional sex chromosome during male meiosis of Pachylis laticornis (Heteroptera: Coreidae). (United States)

    Banho, C A; Alevi, K C C; Pereira, L L V; Souza-Firmino, T S; Itoyama, M M


    In Heteroptera, the division of sex chromosomes is well defined as post-reductional for most of species, i.e., the first meiotic division is equational and the second is reductional. However, in some species pre-reductional division has been observed, whereby the first meiotic division is reductional and the second is equational. These include Anisops fieberi (Notonectidae), Ectrychotes disparate (Reduviidae), Dictyonota tricornis (Tingidae), and Archimerus alternatus (Coreidae), as well as other species of the genus Pachylis, in the family Coreidae. Thus, this study aimed to characterize the meiotic behavior of Pachylis laticornis, in order to consider whether this species also undergoes pre-reduction division for the sex chromosomes. Cytogenetic analysis of meiosis in P. laticornis made it possible to characterize the holocentric nature of the chromosomes, the chromosome number of this species [2n = 15 (2m + 12A + X0)], the chromosomal system of sex X0 type, and the presence of m-chromosomes. Furthermore, the analysis of anaphase I, telophase I and II allowed pre-reductional meiotic behavior to be observed for this sex chromosome. Thus, this meiotic behavior was confirmed for another species of Heteroptera, stressing the importance of more cytogenetic studies of meiosis to increase our understanding of variation in the behavior of sex chromosomes during spermatogenesis in heteropterans. Therefore, the present study describes the chromosomal number, the system of sex determination, and meiotic behavior of P. laticornis, corroborating the relationship of this species with others of the same genus.

  2. Type B lamins remain associated with the integral nuclear envelope protein p58 during mitosis: implications for nuclear reassembly. (United States)

    Meier, J; Georgatos, S D


    p58 (also referred to as the lamin B receptor) is an integral membrane protein of the nuclear envelope known to form a multimeric complex with the lamins and other nuclear proteins during interphase. To examine the fate of this complex during mitosis, we have investigated the partitioning and the molecular interactions of p58 in dividing chicken hepatoma (DU249) cells. Using confocal microscopy and double immunolabelling, we show here that lamins B1 and B2 co-localize with p58 during all phases of mitosis and co-assemble around reforming nuclei. A close juxtaposition of p58/lamin B-containing vesicles and chromosomes is already detectable in metaphase; however, p58 and lamin reassembly proceeds slowly and is completed in late telophase--G1. Flotation of mitotic membranes in sucrose density gradients and analysis of mitotic vesicles by immunoelectron microscopy confirms that p58 and most of the type B lamins reside in the same compartment. Co-immunoprecipitation of both proteins by affinity-purified anti-p58 antibodies shows that they are physically associated in the context of a mitotic p58 'sub-complex'. This sub-assembly does not include the type A lamins which are fully solubilized during mitosis. Our data provide direct, in vivo and in vitro evidence that the majority of type B lamins remain connected to nuclear membrane 'receptors' during mitosis. The implications of these findings in nuclear envelope reassembly are discussed below.

  3. LAP2alpha and BAF transiently localize to telomeres and specific regions on chromatin during nuclear assembly. (United States)

    Dechat, Thomas; Gajewski, Andreas; Korbei, Barbara; Gerlich, Daniel; Daigle, Nathalie; Haraguchi, Tokuko; Furukawa, Kazuhiro; Ellenberg, Jan; Foisner, Roland


    Lamina-associated polypeptide (LAP) 2alpha is a LEM (lamina-associated polypeptide emerin MAN1) family protein associated with nucleoplasmic A-type lamins and chromatin. Using live cell imaging and fluorescence microscopy we demonstrate that LAP2alpha was mostly cytoplasmic in metaphase and associated with telomeres in anaphase. Telomeric LAP2alpha clusters grew in size, formed 'core' structures on chromatin adjacent to the spindle in telophase, and translocated to the nucleoplasm in G1 phase. A subfraction of lamin C and emerin followed LAP2alpha to the core region early on, whereas LAP2beta, lamin B receptor and lamin B initially bound to more peripheral regions of chromatin, before they spread to core structures with different kinetics. Furthermore, the DNA-crosslinking protein barrier-to-autointegration factor (BAF) bound to LAP2alpha in vitro and in mitotic extracts, and subfractions of BAF relocalized to core structures with LAP2alpha. We propose that LAP2alpha and a subfraction of BAF form defined complexes in chromatin core regions and may be involved in chromatin reorganization during early stages of nuclear assembly.

  4. Sensitivity of Bidens laevis L. to mutagenic compounds. Use of chromosomal aberrations as biomarkers of genotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Perez, D.J. [Laboratorio de Genetica, Estacion Experimental Agropecuaria Balcarce (INTA), Facultad de Ciencias Agrarias, UNMdP, CC 276, 7620 Balcarce (Argentina); Laboratorio de Ecotoxicologia, Departamento de Ciencias Marinas, Facultad de Ciencias Exactas y Naturales, UNMdP, Funes 3350, 7600 Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Rivadavia 1917, 1033 Buenos Aires (Argentina); Lukaszewicz, G. [Laboratorio de Ecotoxicologia, Departamento de Ciencias Marinas, Facultad de Ciencias Exactas y Naturales, UNMdP, Funes 3350, 7600 Mar del Plata (Argentina); Menone, M.L., E-mail: [Laboratorio de Ecotoxicologia, Departamento de Ciencias Marinas, Facultad de Ciencias Exactas y Naturales, UNMdP, Funes 3350, 7600 Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Rivadavia 1917, 1033 Buenos Aires (Argentina); Camadro, E.L. [Laboratorio de Genetica, Estacion Experimental Agropecuaria Balcarce (INTA), Facultad de Ciencias Agrarias, UNMdP, CC 276, 7620 Balcarce (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Rivadavia 1917, 1033 Buenos Aires (Argentina)


    The wetland macrophyte Bidens laevis possesses suitable cytological characteristics for genotoxicity testing. To test its sensitivity as compared to terrestrial plants species currently in use in standardized assays, Methyl Methanesulfonate (MMS), N-ethyl-N-nitrosourea (ENU) and Maleic Hydrazide (HM) were used. On the other hand, the insecticide Endosulfan (ES) - an environmentally relevant contaminant - was assayed in seeds and two-month old plants. Mitotic Index (MI), frequency of Chromosome Aberrations in Anaphase-Telophase (CAAT) and frequency of Abnormal Metaphases (AM) were analyzed. MH, MMS and ENU caused a significant decrease of the MI. MMS was aneugenic whereas MH and ENU were both aneugenic and clastogenic. ES caused a significant concentration-dependent increase of total- and aneugenic-CAAT in roots and a significant high frequency of AM at high concentrations. Because of its sensitivity to mutagenic substances, B. laevis can be regarded as a reliable and convenient species for genotoxicity assays especially if aquatic contaminants are evaluated. - The wetland macrophyte Bidens laevis is sensitive to genotoxic compounds similarly to terrestrial standardized species.

  5. Cytological changes in meristematic cells of Allium cepa L. root tip treated with extracts from callus of Catharanthus roseus (L. G. Don

    Directory of Open Access Journals (Sweden)

    Agnieszka Pietrosiuk


    Full Text Available The effect of an ethanolic extract from callus of Catharanthus roseus on Allium cepa root cells divisions was investigated. Two lines: white and green callus, were established on solid B5 medium with IAA 1 mg/l and kinetin 0.1 mg/l. The HPLC analysis of callus extracts showed the presence of indole alkaloids, however not known pharmacologically active alkaloids or derivatives used in semisynthesis (vinblastine, ajmalicine, serpentine, yohimbine, vindoline and catharanthine have been found. The ethanolic extract of C. roseus callus inhibited the number of mitoses in Allium cepa root tip cells. Short (1-3 hours treatment resulted in an increase in the index of late prophases, with characteristic light spaces, and the index of metaphases with twisted chromosomes forming an equatorial plate or irregular structures of c-metaphases. At the same time, the percentage of anaphases and telophases decreased significantly. Longer treatment of the root tip inhibited mitotic activity, stopping it completely already after 12 hours. Interphase nuclei became at first denser and homogeneous, eventually their structure became , partitioned into zones and formation of chromatin territories, with distinct large nucleoli has been observed. Electron microscope observations revealed well developed rough endoplasmic reticulum and thick, invaginating cell membrane.

  6. Katanin p60 contributes to microtubule instability around the midbody and facilitates cytokinesis in rat cells.

    Directory of Open Access Journals (Sweden)

    Moe Matsuo

    Full Text Available The completion of cytokinesis is crucial for mitotic cell division. Cleavage furrow ingression is followed by the breaking and resealing of the intercellular bridge, but the detailed mechanism underlying this phenomenon remains unknown. Katanin is a microtubule-severing protein comprised of an AAA ATPase subunit and an accessory subunit designated as p60 and p80, respectively. Localization of katanin p60 was observed at the midzone to midbody from anaphase to cytokinesis in rat cells, and showed a ring-shaped distribution in the gap between the inside of the contractile ring and the central spindle bundle in telophase. Katanin p60 did not bind with p80 at the midzone or midbody, and localization was shown to be dependent on microtubules. At the central spindle and the midbody, no microtubule growth plus termini were seen with katanin p60, and microtubule density was inversely correlated with katanin p60 density in the region of katanin p60 localization that seemed to lead to microtubule destabilization at the midbody. Inhibition of katanin p60 resulted in incomplete cytokinesis by regression and thus caused the appearance of binucleate cells. These results suggest that katanin p60 contributes to microtubule instability at the midzone and midbody and facilitates cytokinesis in rat cells.

  7. Bio-efficacy of the essential oil of oregano (Origanum vulgare Lamiaceae. Ssp. Hirtum). (United States)

    Grondona, Ezequiel; Gatti, Gerardo; López, Abel G; Sánchez, Leonardo Rodolfo; Rivero, Virginia; Pessah, Oscar; Zunino, María P; Ponce, Andrés A


    The aim of this study was to investigate the bioactivity of the essential oil isolated from Origanum vulgare L. (EOv). We analyzed the in vivo anti-inflammatory properties in a mouse-airway inflammation model and the in vitro antimicrobial activity, genotoxicity over the anaphase-telophase with the Allium cepa strain and its cytotoxicity/viability in A549 culture cells. In vivo, EOv modified the levels of tumor necrosis factor -α and viable activated macrophages and was capable to mitigate the effects of degradation of conjugated dienes. In vitro, EOv reduced the viability of cultured A549 cells as well as the mitotic index and a number of chromosomal aberrations; however, it did not change the number of phases. We found that EOv presents antimicrobial activity against different Gram (-) and (+) strains, measured by disc-diffusion test and confirmed with a more accurate method, the AutoCad software. We postulate that EOv presents antibacterial, antioxidant and chemopreventive properties and could be play an important role as bioprotector agent.

  8. Sequential assembly of centromeric proteins in male mouse meiosis.

    Directory of Open Access Journals (Sweden)

    María Teresa Parra


    Full Text Available The assembly of the mitotic centromere has been extensively studied in recent years, revealing the sequence and regulation of protein loading to this chromosome domain. However, few studies have analyzed centromere assembly during mammalian meiosis. This study specifically targets this approach on mouse spermatocytes. We have found that during prophase I, the proteins of the chromosomal passenger complex Borealin, INCENP, and Aurora-B load sequentially to the inner centromere before Shugoshin 2 and MCAK. The last proteins to be assembled are the outer kinetochore proteins BubR1 and CENP-E. All these proteins are not detected at the centromere during anaphase/telophase I and are then reloaded during interkinesis. The loading sequence of the analyzed proteins is similar during prophase I and interkinesis. These findings demonstrate that the interkinesis stage, regularly overlooked, is essential for centromere and kinetochore maturation and reorganization previous to the second meiotic division. We also demonstrate that Shugoshin 2 is necessary for the loading of MCAK at the inner centromere, but is dispensable for the loading of the outer kinetochore proteins BubR1 and CENP-E.

  9. Spermatogenesis and nucleolar activity in Triatoma klugi (triatomine, Heteroptera

    Directory of Open Access Journals (Sweden)

    Laiana Cristina da Costa


    Full Text Available Triatoma klugi is a Chagas disease vector in the Rio Grande do Sul State. Triatominae chromosomes are holocentric and sex chromosomes segregation is post-reductional. In this paper we describe the karyotype of male T. klugi and a meiotic analysis including the nucleolar behavior during spermatogenesis. Testis cells were analyzed after lacto-acetic orcein and silver nitrate staining. Two autosomes and the heterochromosomes presented nucleolar activity (Ag-NORs during diplotene-diakinesis. The analysis of metaphase I and II revealed a karyotype with 2n = 20+XY. In metaphase I a prominent nucleolar mass was observed in the cell periphery and small silver grains were detected in metaphase II. During anaphase, the chromosomes segregated in parallel and a typical holocentric late migration behavior was observed. The restoration of the nucleolus was an important feature in this phase. During telophase nucleolar masses persisted and in early spermiogenesis the spermatids presented a small peripheral mass until elongation. The present study is a contribution to the study of chromatin behavior and nucleolar persistence in meiosis.

  10. Cytogenetic study of hexaploid species Helianthus tuberosus and its F1 and BC1F1 hybrids with cultivated sunflower, H. annuus

    Directory of Open Access Journals (Sweden)

    Atlagić Jovanka


    Full Text Available Helianthus tuberosus is a potential source of resistance to many disease-provoking pathogens. Three accessions of H. tuberosus were used in this research and they were crossed with cultivated sunflower. Six F] and two BC1F1 hybrid combinations were obtained. Analysis of meiosis was performed using aceto-carmine method (GEORGIEVA-TODOROVA, 1976 and pollen viability was determined by staining method of ALEXANDER (1969. Meiosis was regular in cultivated sunflower and the pollen viability was high (96.8-98.9%. Low percent of irregularities was found in the meiosis of H. tuberosus. Pollen viability was high (97.2-98.7%. Chromosome pairing was mostly regular in F1 hybrids (34 bivalents, but some meiocytes contained 28-32 bivalents with uni- and quadrivalents present. The percent of meiocytes with fast chromosomes in metaphase was 24.6-87.2, with lagging chromosomes in anaphase I 10.5-81.0 and in telophase 25.0-33.3. Chromosome bridges were detected in 0-9.9% of meiocytes in anaphase. Pollen viability in F1 hybrids ranged from 27.0 to 47.9%. In BC1F1 hybrids number of bivalents was 16-25, univalent 2-18 and multivalent 0-1. Although a triploid set of chromosomes (51 was expected in BC1F1 hybrids, number of chromosomes was 45-57. Pollen viability varied from 0 to 54.3%.

  11. Downregulation of Protein 4.1R impairs centrosome function,bipolar spindle organization and anaphase

    Energy Technology Data Exchange (ETDEWEB)

    Spence, Jeffrey R.; Go, Minjoung M.; Bahmanyar, S.; Barth,A.I.M.; Krauss, Sharon Wald


    Centrosomes nucleate and organize interphase MTs and areinstrumental in the assembly of the mitotic bipolar spindle. Here wereport that two members of the multifunctional protein 4.1 family havedistinct distributions at centrosomes. Protein 4.1R localizes to maturecentrioles whereas 4.1G is a component of the pericentriolar matrixsurrounding centrioles. To selectively probe 4.1R function, we used RNAinterference-mediated depletion of 4.1R without decreasing 4.1Gexpression. 4.1R downregulation reduces MT anchoring and organization atinterphase and impairs centrosome separation during prometaphase.Metaphase chromosomes fail to properly condense/align and spindleorganization is aberrant. Notably 4.1R depletion causes mislocalizationof its binding partner NuMA (Nuclear Mitotic Apparatus Protein),essential for spindle pole focusing, and disrupts ninein. Duringanaphase/telophase, 4.1R-depleted cells have lagging chromosomes andaberrant MT bridges. Our data provide functional evidence that 4.1R makescrucial contributions to centrosome integrity and to mitotic spindlestructure enabling mitosis and anaphase to proceed with the coordinatedprecision required to avoid pathological events.

  12. Histone H2AX phosphorylation is associated with most meiotic events in grasshopper. (United States)

    Cabrero, J; Teruel, M; Carmona, F D; Camacho, J P M


    It is widely accepted that the H2AX histone in its phosphorylated form (gamma-H2AX) is related to the repair of DNA double-strand breaks (DSBs). In several organisms, gamma-H2AX presence has been demonstrated in meiotic processes such as recombination and sex chromosome inactivation during prophase I (from leptotene to pachytene). To test whether gamma-H2AX is present beyond pachytene, we have analysed the complete sequence of changes in H2AX phosphorylation during meiosis in grasshopper, a model organism for meiotic studies at the cytological level. We show the presence of phosphorylated H2AX during most of meiosis, with the exception only of diplotene and the end of each meiotic division. During the first meiotic division, gamma-H2AX is associated with i) recombination, as deduced from its presence in leptotene-zygotene over all chromosome length, ii) X chromosome inactivation, since at pachytene gamma-H2AX is present in the X chromosome only, and iii) chromosome segregation, as deduced from gamma-H2AX presence in centromere regions at first metaphase-anaphase. During second meiotic division, gamma-H2AX was very abundant at most chromosome lengths from metaphase to telophase, suggesting its possible association with the maintenance of chromosome condensation and segregation. Copyright 2007 S. Karger AG, Basel.

  13. Meiose e viabilidade polínica na família Araceae Meiosis and pollen viability in Araceae family

    Directory of Open Access Journals (Sweden)

    Maria Goreti Senna Corrêa


    Full Text Available O objetivo deste trabalho foi analisar a microsporogênese e a viabilidade dos grãos de pólen em 17 espécies de aráceas coletadas no Rio Grande do Sul, Brasil. Nove espécies foram analisadas quanto à ocorrência de células mãe de pólen (CMP normais e anormais nas fases de metáfase, anáfase e telófase, tanto da meiose I (M I como da meiose II (M II; 10 espécies foram estudadas quanto à presença de tétrades com número normal ou anormal de micrósporos e 17 espécies quanto à viabilidade dos grãos de pólen. As CMP anormais apresentaram, tanto em M I quanto em M II, cromossomos fora da placa metafásica ou cromossomos retardatários em anáfase e/ou telófase. As freqüências de CMP normais/anormais encontradas na microsporogênese salientam a grande variação existente entre as espécies. Ressalta-se a ausência de CMP com anomalias na microsporogênese de Monstera deliciosa Adans., assim como em M I de Anthurium scandens (Aubl Engl. e em M II de Caladium hortulanum Birdsey. O número observado de CMP anômalas, em M I e M II, nas espécies Syngonium podophyllum Schott e Zantedeschia aethiopica Spreng, foi maior que o esperado. A freqüência média de tétrades normais em dez espécies de aráceas, assim como a de grãos de pólen viáveis em 17 espécies, foi significativamente superior à freqüência média de anormais e de inviáveis, respectivamente.The objective of this work was to analyze microsporogenesis and pollen viability in 17 species of the Araceae family collected at Rio Grande do Sul, Brazil. Occurrence of normal and abnormal pollen mother cells (PMC was analyzed in metaphase, anaphase and telophase, in meiosis I (M I and meiosis II (M II of nine species; tetrads with normal or abnormal number of microspores was observed in 10 species, and pollen grain viability, in 17 species. Abnormal PMC presented chromosomes outside the metaphasic plate or laggard chromosomes in anaphase and/or telophase in both M I and M

  14. Mechanisms involved in the induction of aneuploidy: the significance of chromosome loss

    Directory of Open Access Journals (Sweden)

    A.I. Seoane


    Full Text Available The induction of aneuploidy by physical and chemical agents using different test systems was evaluated. The effect of X-rays, caffeine, acetaldehyde, ethanol, diethylstilbestrol, propionaldehyde, and chloral hydrate was studied by chromosome counting in Chinese hamster embryonic diploid cells. Aneugenic ability of cadmium chloride, cadmium sulfate, potassium dichromate, chromium chloride, nickel chloride, and nickel sulfate was assessed by means of anaphase-telophase analysis in Chinese hamster ovary cells. Chromosome counting in human fibroblasts (MRC-5 cell line was employed to evaluate the effect of cacodilic acid, cadmium chloride, cadmium sulfate, and potassium dichromate. Finally, the induction of kinetochore-positive and kinetochore negative micronuclei by cadmium chloride, cadmium sulfate, potassium dichromate, chromium chloride, and nickel chloride was studied using CREST antibodies. When the effect of different agents was determined by chromosome counting, an increase of hypoploid but not of hyperploid cells was observed. Anaphase-telophase analysis showed that metal salts increased the frequency of lagging chromosomes. This finding has been confirmed by the increment of kinetochore-positive micronuclei using CREST antibodies. Therefore, chromosome loss could be considered as the main cause of induced aneuploidy.A indução de aneuploidia por agentes físicos e químicos usando diferentes sistemas de teste foi avaliada. O efeito de raios-X, cafeína, acetaldeído, etanol, dietilestilbestrol, propionaldeído e hidrato de cloral foi estudado por contagem cromossômica em células diplóides embriônicas de hamster chinês. A habilidade aneugênica de cloreto de cádmio, sulfato de cádmio, dicromato de potássio, cloreto de crômio, cloreto de níquel e sulfato de níquel foi avaliada por meio de análise de anáfase-telófase em células de ovário de hamster chinês. A contagem cromossômica em fibroblastos humanos (linhagem celular

  15. Binomial mitotic segregation of MYCN-carrying double minutes in neuroblastoma illustrates the role of randomness in oncogene amplification.

    Directory of Open Access Journals (Sweden)

    Gisela Lundberg


    Full Text Available Amplification of the oncogene MYCN in double minutes (DMs is a common finding in neuroblastoma (NB. Because DMs lack centromeric sequences it has been unclear how NB cells retain and amplify extrachromosomal MYCN copies during tumour development.We show that MYCN-carrying DMs in NB cells translocate from the nuclear interior to the periphery of the condensing chromatin at transition from interphase to prophase and are preferentially located adjacent to the telomere repeat sequences of the chromosomes throughout cell division. However, DM segregation was not affected by disruption of the telosome nucleoprotein complex and DMs readily migrated from human to murine chromatin in human/mouse cell hybrids, indicating that they do not bind to specific positional elements in human chromosomes. Scoring DM copy-numbers in ana/telophase cells revealed that DM segregation could be closely approximated by a binomial random distribution. Colony-forming assay demonstrated a strong growth-advantage for NB cells with high DM (MYCN copy-numbers, compared to NB cells with lower copy-numbers. In fact, the overall distribution of DMs in growing NB cell populations could be readily reproduced by a mathematical model assuming binomial segregation at cell division combined with a proliferative advantage for cells with high DM copy-numbers.Binomial segregation at cell division explains the high degree of MYCN copy-number variability in NB. Our findings also provide a proof-of-principle for oncogene amplification through creation of genetic diversity by random events followed by Darwinian selection.

  16. The fate of chrysotile-induced multipolar mitosis and aneuploid population in cultured lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Beatriz de Araujo Cortez

    Full Text Available Chrysotile is one of the six types of asbestos, and it is the only one that can still be commercialized in many countries. Exposure to other types of asbestos has been associated with serious diseases, such as lung carcinomas and pleural mesotheliomas. The association of chrysotile exposure with disease is controversial. However, in vitro studies show the mutagenic potential of chrysotile, which can induce DNA and cell damage. The present work aimed to analyze alterations in lung small cell carcinoma cultures after 48 h of chrysotile exposure, followed by 2, 4 and 8 days of recovery in fiber-free culture medium. Some alterations, such as aneuploid cell formation, increased number of cells in G2/M phase and cells in multipolar mitosis were observed even after 8 days of recovery. The presence of chrysotile fibers in the cell cultures was detected and cell morphology was observed by laser scanning confocal microscopy. After 4 and 8 days of recovery, only a few chrysotile fragments were present in some cells, and the cellular morphology was similar to that of control cells. Cells transfected with the GFP-tagged α-tubulin plasmid were treated with chrysotile for 24 or 48 h and cells in multipolar mitosis were observed by time-lapse microscopy. Fates of these cells were established: retention in metaphase, cell death, progression through M phase generating more than two daughter cells or cell fusion during telophase or cytokinesis. Some of them were related to the formation of aneuploid cells and cells with abnormal number of centrosomes.

  17. Association of the RENT complex with nontranscribed and coding regions of rDNA and a regional requirement for the replication fork block protein Fob1 in rDNA silencing (United States)

    Huang, Julie; Moazed, Danesh


    Silencing within the yeast rDNA repeats inhibits hyperrecombination, represses transcription from foreign promoters, and extends replicative life span. rDNA silencing is mediated by a Sir2-containing complex called RENT (regulator of nucleolar silencing and telophase exit). We show that the Net1 (also called Cfi1) and Sir2 subunits of RENT localize primarily to two distinct regions within rDNA: in one of the nontranscribed spacers (NTS1) and around the Pol I promoter, extending into the 35S rRNA coding region. Binding to NTS1 overlaps the recombination hotspot and replication fork barrier elements, which have been shown previously to require the Fob1 protein for their activities. In cells lacking Fob1, silencing and the association of RENT subunits are abolished specifically at NTS1, while silencing and association at the Pol I promoter region are unaffected or increased. We find that Net1 and Sir2 are physically associated with Fob1 and subunits of RNA polymerase I. Together with the localization data, these results suggest the existence of two distinct modes for the recruitment of the RENT complex to rDNA and reveal a role for Fob1 in rDNA silencing and in the recruitment of the RENT complex. Furthermore, the Fob1-dependent associations of Net1 and Sir2 with the recombination hotspot region strongly suggest that Sir2 acts directly at this region to carry out its inhibitory effect on rDNA recombination and accelerated aging. PMID:12923057

  18. Short telomeres in an oral precancerous lesion: Q-FISH analysis of leukoplakia. (United States)

    Aida, Junko; Kobayashi, Takanori; Saku, Takashi; Yamaguchi, Masatsune; Shimomura, Naotaka; Nakamura, Ken-Ichi; Ishikawa, Naoshi; Maruyama, Satoshi; Cheng, Jun; Poon, Steven S S; Sawabe, Motoji; Arai, Tomio; Takubo, Kaiyo


    A precancerous condition is a lesion that, if left untreated, leads to cancer or can be induced to become malignant. In the oral region, leukoplakia is a lesion that has been regarded as precancerous. In cases of oral carcinoma, we have frequently noticed that a type of leukoplakia histologically demonstrating hyper-orthokeratosis and mild atypia (ortho-keratotic dysplasia; OKD) is often associated with carcinoma, either synchronously or metachronously. Therefore, we consider OKD-type leukoplakia to be a true precancerous lesion. In an attempt to clarify the relationship between OKD as a precancerous condition in the oral mucosa and telomere length, we estimated telomere lengths in this type of leukoplakia using quantitative fluorescence in situ hybridization, and also quantified the frequency of anaphase-telophase bridges (ATBs) in comparison with squamous cell carcinoma in situ (CIS) and the background tissues of CIS and OKD. Ortho-keratotic dysplasia was frequently associated with squamous cell carcinoma (45.0%) and showed significantly shorter telomeres than normal control epithelium, CIS, or the background of CIS or OKD. The frequency of ATBs was much higher in OKD than in control epithelium or CIS. Ortho-keratotic dysplasia appears to be frequently associated with carcinoma, chromosomal instability, and excessively shortened telomeres, not only in the lesion itself but also in the surrounding background. Therefore, when this type of leukoplakia is recognized in the oral region, strict follow-up for oral squamous cell carcinoma is necessary, focusing not only on the areas of leukoplakia, but also the surrounding background. © 2011 John Wiley & Sons A/S.

  19. Distribution and morphological changes of the Golgi apparatus during Drosophila spermatogenesis. (United States)

    Yasuno, Yusaku; Kawano, Jun-ichi; Inoue, Yoshihiro H; Yamamoto, Masa-Toshi


    In spermatogenesis, the Golgi apparatus is important for the formation of the acrosome, which is a sperm-specific organelle essential for fertilization. Comprehensive examinations of the spatiotemporal distribution and morphological characterizations of the Golgi in various cells during spermatogenesis are necessary for functional analyses and mutant screenings in the model eukaryote Drosophila. Here, we examined the distribution and morphology of the Golgi during Drosophila spermatogenesis with immunofluorescence and electron microscopy. In pre-meiotic germ cells, the Golgi apparatuses were distributed evenly in the cytoplasm. In contrast, they were located exclusively in two regions near the poles during the meiotic metaphase, where they were segregated prior to the chromosomes. In cells in anaphase to telophase, the Golgi were predominantly left behind in the equatorial region between the separating daughter nuclei. After completion of meiosis, the dispersed Golgi were assembled at the apical side of the spermatid nucleus to form the acrosome. Further investigation of the Golgi distribution in β2-tubulin mutants showed aberrant and uneven distributions of the Golgi among sister cells in the meiotic spermatocytes and in the post-meiotic spermatids. At the ultrastructural level, the Golgi apparatus in pre-meiotic spermatocytes comprised a pair of stacks. The two stacks were situated adjacent to each other, as if they had duplicated before entering into meiotic division. These results highlight the dynamic nature of the Golgi during spermatogenesis and provide a framework for analyzing the correlations between the dynamics of the Golgi and its function in sperm development. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  20. Golgi twins in late mitosis revealed by genetically encoded tags for live cell imaging and correlated electron microscopy (United States)

    Gaietta, Guido M.; Giepmans, Ben N. G.; Deerinck, Thomas J.; Smith, W. Bryan; Ngan, Lucy; Llopis, Juan; Adams, Stephen R.; Tsien, Roger Y.; Ellisman, Mark H.


    Combinations of molecular tags visible in light and electron microscopes become particularly advantageous in the analysis of dynamic cellular components like the Golgi apparatus. This organelle disassembles at the onset of mitosis and, after a sequence of poorly understood events, reassembles after cytokinesis. The precise location of Golgi membranes and resident proteins during mitosis remains unclear, partly due to limitations of molecular markers and the resolution of light microscopy. We generated a fusion consisting of the first 117 residues of α-mannosidase II tagged with a fluorescent protein and a tetracysteine motif. The mannosidase component guarantees docking into the Golgi membrane, with the tags exposed in the lumen. The fluorescent protein is optically visible without further treatment, whereas the tetracysteine tag can be reduced acutely with a membrane-permeant phosphine, labeled with ReAsH, monitored in the light microscope, and used to trigger the photoconversion of diaminobenzidine, allowing 4D optical recording on live cells and correlated ultrastructural analysis by electron microscopy. These methods reveal that Golgi reassembly is preceded by the formation of four colinear clusters at telophase, two per daughter cell. Within each daughter, the smaller cluster near the midbody gradually migrates to rejoin the major cluster on the far side of the nucleus and asymmetrically reconstitutes a single Golgi apparatus, first in one daughter cell and then in the other. Our studies provide previously undescribed insights into Golgi disassociation and reassembly during mitosis and offer a powerful approach to follow recombinant protein distribution in 4D imaging and correlated high-resolution analysis. PMID:17101980

  1. Origin of nuclear buds and micronuclei in normal and folate-deprived human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, Hanna K. [New Technologies and Risks, Work Environment Development, Finnish Institute of Occupational Health, Topeliuksenkatu 41aA, FI-00250 Helsinki (Finland); Wang Xu [Genome Health and Nutrigenomics Project, CSIRO Human Nutrition, Adelaide BC, SA 5000 (Australia); School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650092 (China); Jaerventaus, Hilkka [New Technologies and Risks, Work Environment Development, Finnish Institute of Occupational Health, Topeliuksenkatu 41aA, FI-00250 Helsinki (Finland); Falck, Ghita C.-M. [New Technologies and Risks, Work Environment Development, Finnish Institute of Occupational Health, Topeliuksenkatu 41aA, FI-00250 Helsinki (Finland); Norppa, Hannu [New Technologies and Risks, Work Environment Development, Finnish Institute of Occupational Health, Topeliuksenkatu 41aA, FI-00250 Helsinki (Finland)]. E-mail:; Fenech, Michael [Genome Health and Nutrigenomics Project, CSIRO Human Nutrition, Adelaide BC, SA 5000 (Australia)


    Micronuclei are formed from chromosomes and chromosomal fragments that lag behind in anaphase and are left outside daughter nuclei in telophase. They may also be derived from broken anaphase bridges. Nuclear buds, micronucleus-like bodies attached to the nucleus by a thin nucleoplasmic connection, have been proposed to be generated similarly to micronuclei during nuclear division or in S-phase as a stage in the extrusion of extra DNA, possibly giving rise to micronuclei. To better understand these phenomena, we have characterized the contents of 894 nuclear buds and 1392 micronuclei in normal and folate-deprived 9-day cultures of human lymphocytes using fluorescence in situ hybridization with pancentromeric and pantelomeric DNA probes. Such information has not earlier been available for human primary cells. Surprisingly, there appears to be no previous data on the occurrence of telomeres in micronuclei (or buds) of normal human cells in general. Our results suggest that nuclear buds and micronuclei have partly different mechanistic origin. Interstitial DNA without centromere or telomere label was clearly more prevalent in nuclear buds (43%) than in micronuclei (13%). DNA with only telomere label or with both centromere and telomere label was more frequent in micronuclei (62% and 22%, respectively) than in nuclear buds (44% and 10%, respectively). Folate deprivation especially increased the frequency of nuclear buds and micronuclei harboring telomeric DNA and nuclear buds harboring interstitial DNA but also buds and micronuclei with both centromeric and telomeric DNA. According to the model we propose, that micronuclei in binucleate lymphocytes primarily derive from lagging chromosomes and terminal acentric fragments during mitosis. Most nuclear buds, however, are suggested to originate from interstitial or terminal acentric fragments, possibly representing nuclear membrane entrapment of DNA that has been left in cytoplasm after nuclear division or excess DNA that

  2. Effects of different activation treatments on fertilization of horse oocytes by intracytoplasmic sperm injection. (United States)

    Li, X; Morris, L H; Allen, W R


    The effects of four reagents on the activation and subsequent fertilization of equine oocytes, and the development of these after intracytoplasmic sperm injection, were investigated. Cumulus-oocyte complexes collected from equine ovaries obtained from an abattoir were matured in vitro for 40-44 h in TCM199 medium before being injected, when in metaphase II, with an immobilized stallion spermatozoon. The cumulus-oocyte complexes were then subjected to one of five activation treatments: (a) 10 micromol ionomycin l(-1) for 10 min; (b) 7% (v/v) ethanol for 10 min; (c) 100 micromol thimerosal l(-1) for 10 min; (d) 250 micromol inositol 1,4, 5-triphosphate l(-1) injection; and (e) no treatment (control). After 18-20 h further culture, the cumulus-oocyte complexes were assessed for activation by observing whether they had progressed through second anaphase-telophase and had formed a female pronucleus. The proportions of oocytes activated after each treatment were: 16/27 (59%) for ionomycin; 14/25 (56%) for ethanol; 22/28 (79%) for thimerosal; 15/27 (56%) for inositol 1,4,5-triphosphate; and 0/20 (0%) for the untreated controls. Thus, significantly more oocytes (P fertilization was observed in 2/7 (29%), 2/5 (40%) and 7/11 (64%) of the oocytes treated with ionomycin, ethanol and thimerosal, respectively. These results demonstrated that: (a) it is possible to activate equine oocytes with the chemical stimulants, ionomycin, ethanol, thimerosal and inositol 1,4,5-triphosphate; (b) thimerosal is more effective than the other three reagents in facilitating both meiotic activation and normal fertilization of equine oocytes; and (c) chemical activation may also stimulate parthenogenetic cleavage of oocytes without concurrent changes in the head of the spermatozoon.

  3. Phospho-Bcl-xL(Ser62) influences spindle assembly and chromosome segregation during mitosis. (United States)

    Wang, Jianfang; Beauchemin, Myriam; Bertrand, Richard


    Functional analysis of a series of phosphorylation mutants reveals that Bcl-xL(Ser62Ala) influences cell entry into anaphase and mitotic exit in taxol-exposed cells compared with cells expressing wild-type Bcl-xL or a series of other phosphorylation mutants, an effect that appears to be independent of its anti-apoptotic activity. During normal mitosis progression, Bcl-xL(Ser62) is strongly phosphorylated by PLK1 and MAPK14/SAPKp38α at the prometaphase, metaphase, and the anaphase boundaries, while it is de-phosphorylated at telophase and cytokinesis. Phospho-Bcl-xL(Ser62) localizes in centrosomes with γ-tubulin and in the mitotic cytosol with some spindle-assembly checkpoint signaling components, including PLK1, BubR1, and Mad2. In taxol- and nocodazole-exposed cells, phospho-Bcl-xL(Ser62) also binds to Cdc20- Mad2-, BubR1-, and Bub3-bound complexes, while Bcl-xL(Ser62Ala) does not. Silencing Bcl-xL expression and expressing the phosphorylation mutant Bcl-xL(Ser62Ala) lead to an increased number of cells harboring mitotic spindle defects including multipolar spindle, chromosome lagging and bridging, aneuploidy with micro-, bi-, or multi-nucleated cells, and cells that fail to resolve undergo mitosis within 6 h. Together, the data indicate that during mitosis, Bcl-xL(Ser62) phosphorylation impacts on spindle assembly and chromosome segregation, influencing chromosome stability. Observations of mitotic cells harboring aneuploidy with micro-, bi-, or multi-nucleated cells, and cells that fail to resolve undergo mitosis within 6 h were also made with cells expressing the phosphorylation mutant Bcl-xL(Ser49Ala) and dual mutant Bcl-xL(Ser49/62Ala).

  4. The nuclear and developmental competence of cumulus-oocyte complexes is enhanced by three-dimensional coculture with conspecific denuded oocytes during in vitro maturation in the domestic cat model. (United States)

    Morselli, M G; Luvoni, G C; Comizzoli, P


    The objective of the study was to assess the efficacy of coculture with conspecific cumulus-denuded oocytes (CDOs) during in vitro maturation in a three-dimensional system of barium alginate microcapsules on the in vitro embryo development of domestic cat cumulus-oocyte complexes (COCs). In Experiment I, COCs were cocultured with conspecific CDOs or cultured separately in a 3D system for 24 hr of in vitro maturation, before assessing the meiotic progression. In Experiment II, the in vitro fertilization of COCs and CDOs was carried out with chilled epididymal spermatozoa and the presumptive zygotes were cultured in vitro separately for 7 days in 3D microcapsules before assesment of embryonic development. The results showed that the viability was maintained and that meiosis was resumed in the 3D culture system. The presence of CDOs during in vitro maturation improved the meiotic competence of the COCs, since the proportions of telophase I/metaphase II were higher than that in the groups cultured separately. The enrichment of the maturation system by companion oocytes also enhanced the ability of COCs to develop into embryos, and increased the percentages of morula and blastoycst stages. The COCs cocultured with CDOs developed at higher rates than the COCs cultured separately and the CDOs themselves. The beneficial effects of coculture with conspecific CDOs were presumably due to the paracrine action of some secreted factors that enhanced many molecular patterns related to the complex of cumulus oophorous cells. Further investigations to understand how the 3D microenvironment can influence the features of oocytes and embryos are required. © 2016 Blackwell Verlag GmbH.

  5. UV microbeam irradiations of the mitotic spindle. II. Spindle fiber dynamics and force production

    Energy Technology Data Exchange (ETDEWEB)

    Spurck, T.P.; Stonington, O.G.; Snyder, J.A.; Pickett-Heaps, J.D.; Bajer, A.; Mole-Bajer, J. (Univ. of Colorado, Boulder (USA))


    Metaphase and anaphase spindles in cultured newt and PtK1 cells were irradiated with a UV microbeam (285 nM), creating areas of reduced birefringence (ARBs) in 3 s that selectively either severed a few fibers or cut across the half spindle. In either case, the birefringence at the polewards edge of the ARB rapidly faded polewards, while it remained fairly constant at the other, kinetochore edge. Shorter astral fibers, however, remained present in the enlarged ARB; presumably these had not been cut by the irradiation. After this enlargement of the ARB, metaphase spindles recovered rapidly as the detached pole moved back towards the chromosomes, reestablishing spindle fibers as the ARB closed; this happened when the ARB cut a few fibers or across the entire half spindle. We never detected elongation of the cut kinetochore fibers. Rather, astral fibers growing from the pole appeared to bridge and then close the ARB, just before the movement of the pole toward the chromosomes. When a second irradiation was directed into the closing ARB, the polewards movement again stopped before it restarted. In all metaphase cells, once the pole had reestablished connection with the chromosomes, the unirradiated half spindle then also shortened to create a smaller symmetrical spindle capable of normal anaphase later. Anaphase cells did not recover this way; the severed pole remained detached but the chromosomes continued a modified form of movement, clumping into a telophase-like group. The results are discussed in terms of controls operating on spindle microtubule stability and mechanisms of mitotic force generation.

  6. Topoisomerase 3alpha and RMI1 suppress somatic crossovers and are essential for resolution of meiotic recombination intermediates in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Frank Hartung


    Full Text Available Topoisomerases are enzymes with crucial functions in DNA metabolism. They are ubiquitously present in prokaryotes and eukaryotes and modify the steady-state level of DNA supercoiling. Biochemical analyses indicate that Topoisomerase 3alpha (TOP3alpha functions together with a RecQ DNA helicase and a third partner, RMI1/BLAP75, in the resolution step of homologous recombination in a process called Holliday Junction dissolution in eukaryotes. Apart from that, little is known about the role of TOP3alpha in higher eukaryotes, as knockout mutants show early lethality or strong developmental defects. Using a hypomorphic insertion mutant of Arabidopsis thaliana (top3alpha-2, which is viable but completely sterile, we were able to define three different functions of the protein in mitosis and meiosis. The top3alpha-2 line exhibits fragmented chromosomes during mitosis and sensitivity to camptothecin, suggesting an important role in chromosome segregation partly overlapping with that of type IB topoisomerases. Furthermore, AtTOP3alpha, together with AtRECQ4A and AtRMI1, is involved in the suppression of crossover recombination in somatic cells as well as DNA repair in both mammals and A. thaliana. Surprisingly, AtTOP3alpha is also essential for meiosis. The phenotype of chromosome fragmentation, bridges, and telophase I arrest can be suppressed by AtSPO11 and AtRAD51 mutations, indicating that the protein is required for the resolution of recombination intermediates. As Atrmi1 mutants have a similar meiotic phenotype to Attop3alpha mutants, both proteins seem to be involved in a mechanism safeguarding the entangling of homologous chromosomes during meiosis. The requirement of AtTOP3alpha and AtRMI1 in a late step of meiotic recombination strongly hints at the possibility that the dissolution of double Holliday Junctions via a hemicatenane intermediate is indeed an indispensable step of meiotic recombination.

  7. Drosophila Xpd regulates Cdk7 localization, mitotic kinase activity, spindle dynamics, and chromosome segregation.

    Directory of Open Access Journals (Sweden)

    Xiaoming Li


    Full Text Available The trimeric CAK complex functions in cell cycle control by phosphorylating and activating Cdks while TFIIH-linked CAK functions in transcription. CAK also associates into a tetramer with Xpd, and our analysis of young Drosophila embryos that do not require transcription now suggests a cell cycle function for this interaction. xpd is essential for the coordination and rapid progression of the mitotic divisions during the late nuclear division cycles. Lack of Xpd also causes defects in the dynamics of the mitotic spindle and chromosomal instability as seen in the failure to segregate chromosomes properly during ana- and telophase. These defects appear to be also nucleotide excision repair (NER-independent. In the absence of Xpd, misrouted spindle microtubules attach to chromosomes of neighboring mitotic figures, removing them from their normal location and causing multipolar spindles and aneuploidy. Lack of Xpd also causes changes in the dynamics of subcellular and temporal distribution of the CAK component Cdk7 and local mitotic kinase activity. xpd thus functions normally to re-localize Cdk7(CAK to different subcellular compartments, apparently removing it from its cell cycle substrate, the mitotic Cdk. This work proves that the multitask protein Xpd also plays an essential role in cell cycle regulation that appears to be independent of transcription or NER. Xpd dynamically localizes Cdk7/CAK to and away from subcellular substrates, thereby controlling local mitotic kinase activity. Possibly through this activity, xpd controls spindle dynamics and chromosome segregation in our model system. This novel role of xpd should also lead to new insights into the understanding of the neurological and cancer aspects of the human XPD disease phenotypes.

  8. The Cell Cycle Timing of Centromeric Chromatin Assembly in Drosophila Meiosis Is Distinct from Mitosis Yet Requires CAL1 and CENP-C (United States)

    Gorgescu, Walter; Tang, Jonathan; Costes, Sylvain V.; Karpen, Gary H.


    CENP-A (CID in flies) is the histone H3 variant essential for centromere specification, kinetochore formation, and chromosome segregation during cell division. Recent studies have elucidated major cell cycle mechanisms and factors critical for CENP-A incorporation in mitosis, predominantly in cultured cells. However, we do not understand the roles, regulation, and cell cycle timing of CENP-A assembly in somatic tissues in multicellular organisms and in meiosis, the specialized cell division cycle that gives rise to haploid gametes. Here we investigate the timing and requirements for CID assembly in mitotic tissues and male and female meiosis in Drosophila melanogaster, using fixed and live imaging combined with genetic approaches. We find that CID assembly initiates at late telophase and continues during G1 phase in somatic tissues in the organism, later than the metaphase assembly observed in cultured cells. Furthermore, CID assembly occurs at two distinct cell cycle phases during male meiosis: prophase of meiosis I and after exit from meiosis II, in spermatids. CID assembly in prophase I is also conserved in female meiosis. Interestingly, we observe a novel decrease in CID levels after the end of meiosis I and before meiosis II, which correlates temporally with changes in kinetochore organization and orientation. We also demonstrate that CID is retained on mature sperm despite the gross chromatin remodeling that occurs during protamine exchange. Finally, we show that the centromere proteins CAL1 and CENP-C are both required for CID assembly in meiosis and normal progression through spermatogenesis. We conclude that the cell cycle timing of CID assembly in meiosis is different from mitosis and that the efficient propagation of CID through meiotic divisions and on sperm is likely to be important for centromere specification in the developing zygote. PMID:23300382

  9. The effects of macromolecular and serum supplements and oxygen tension during bovine in vitro procedures on kinetics of oocyte maturation and embryo development. (United States)

    Mingoti, Gisele Zoccal; Castro, Viviane Sggobi Dias Caiado; Méo, Simone Cristina; Sá Barretto, Letícia Siqueira; Garcia, Joaquim Mansano


    Aiming to standardize in vitro production of bovine embryos and to obtain supplements to replace serum in culture media, this study evaluated the nuclear maturation kinetics and embryonic development in bovine after in vitro maturation (IVM) and culture (IVC) with several macromolecules (animal origin: bovine serum albumin (BSA), fetal calf serum (FCS); synthetic: polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), Ficoll, and Knockout) at two oxygen tensions (20% and 5% O(2)). Regarding nuclear kinetics, neither the presence of the expected stage (metaphase I, transition anaphase to telophase, and metaphase II) at each evaluation moment (6, 18, and 24 h after IVM, respectively) nor the accelerated polar body emission (at 18 h after IVM) related developmental competence to blastocyst stage when different supplements were compared. Independently of supplement, cleavage rates at 20% O(2) (61.6-79.2%) were higher than at 5% O(2) (38.9-58.7%). At 20% O(2), higher blastocyst and hatching rates, respectively, were obtained in treatments BSA, FCS, Knockout, and control group (IVM with FCS and IVC with BSA + FCS, 14.0-23.5% and 6.8-15.4%) in comparison to PVA, PVP, and Ficoll (0%). The same was observed at 5% O(2) for blastocyst rates with BSA, FCS, Knockout, and control (5.4-16.8%) and for hatching rates with BSA, FCS, and control (2.0-11.1%). We can conclude that producing bovine embryos at 20% O(2) during the entire IVP process resulted in higher developmental rates than at 5% O(2). In addition, while defined macromolecules PVA, PVP, and Ficoll were not suitable for embryonic development, the synthetic serum Knockout was able to replace serum and albumin for IVP in bovine at 20% O(2).

  10. Male meiosis, morphometric analysis and distribution pattern of 2× and 4× cytotypes of Ranunculus hirtellus Royle, 1834 (Ranunculaceae from the cold regions of northwest Himalayas (India

    Directory of Open Access Journals (Sweden)

    Puneet Kumar


    Full Text Available In this study, we examined the chromosome number, detailed male meiosis, microsporogenesis, pollen fertility and morphological features and distribution of 2× and 4× cytotypes of Ranunculus hirtellus Royle, 1834. The majority of the populations scored now from cold regions of the northwest Himalayas showed tetraploid (n=16 meiotic chromosome count and one of the populations studied from the Manimahesh hills existed at diploid level (n=8. The individuals of diploid cytotype exhibited perfectly normal meiotic course resulting in 100% pollen fertility and pollen grains of uniform sizes. On the other hand, the plants of the tetraploid cytotype from all the populations in spite of showing normal bivalent formation and equal distribution to the opposite poles at anaphases showed various meiotic abnormalities. The most prominent among these meiotic abnormalities was the cytomixis which involved inter PMC (pollen mother cell chromatin material transfer at different stages of meiosis-I. The phenomenon of cytomixis induced various meiotic abnormalities which include chromatin stickiness, pycnotic chromatin, laggards and chromatin bridges, out of plate bivalents at metaphase-I, disoriented chromatin material at anaphase/telophase and micronuclei. Consequently, these populations exhibited varying percentages of pollen sterility (24 - 77 % and pollen grains of heterogeneous sizes. Analysis of various morphometric features including the stomata in 2× and 4× cytotypes showed that increase in ploidy level in the species is correlated with gigantism of vegetative and floral characters and the two cytotypes can be distinguished from each other on the basis of morphological characters. The distribution patterns of the 2× and 4× cytotypes now detected and 2×, 3×, 4× cytotypes detected earlier by workers from other regions of the Indian Himalayas have also been discussed.

  11. Triploid Production from Interspecific Crosses of Two Diploid Perennial Helianthus with Diploid Cultivated Sunflower (Helianthus annuus L.). (United States)

    Liu, Zhao; Seiler, Gerald J; Gulya, Thomas J; Feng, Jiuhuan; Rashid, Khalid Y; Cai, Xiwen; Jan, Chao-Chien


    Wild Helianthus species are a valuable genetic resource for the improvement of cultivated sunflower. We report the discovery and characterization of a unique high frequency production of triploids when cultivated sunflower was pollinated by specific accessions of diploid Helianthus nuttallii T. & G. and H. maximiliani Schr. Genomic in situ hybridization (GISH) analyses indicated that the triploid F1s had two genomes from the wild pollen sources and one from the cultivated line. Mitotic chromosome analyses indicated that the frequency of triploid progenies from the crosses of cultivated lines × H. nuttallii accession 102 (N102) was significantly higher than those of unexpected polyploid progenies from the crosses of wild perennial species × N102, and no unexpected polyploids were obtained from the reverse crosses. Pollen stainability analysis suggested the existence of a low percentage of unreduced (2n) male gametes in some accessions, especially N102 and H. maximiliani accession 1113 (M1113), which were generated at the telophase II and tetrad stages of meiosis. The triploid F1s could be the results of preferred fertilization of the low frequency of 2n male gametes with the female gametes of the cultivated sunflower, due to the dosage factors related to recognition and rejection of foreign pollen during fertilization. The triploids have been used to produce amphiploids and aneuploids. Future studies of the male gametes' fate from pollination through fertilization will further uncover the mechanism of this whole genome transmission. Studies of the genetic control of this trait will facilitate research on sunflower polyploidy speciation and evolution, and the utilization of this trait in sunflower breeding. Copyright © 2017 Liu et al.

  12. The behavior of fibroblasts from the developing avian cornea. Morphology and movement in situ and in vitro. (United States)

    Bard, J B; Hay, E D


    The early chick cornea is composed of an acellular collagenous stroma lined with an anterior epithelium and a posterior endothelium. At stage 27-28 of development (5 1/2 days), this stroma swells so that the cornea is 75-120 mum thick. At the same time, fibroblasts that originate from the neural crest begin to invade this stroma. Using Nomarski light microscopy, we have compared the behavior of moving cells in isolated corneas with the migratory activities of the same cells in artificial collagen lattices and on glass. In situ, fibroblasts have cyclindrical bodies from which extend several thick pseudopodia and/or finer filopodia. Movement is accompanied by activity in these cytoplasmic processes. The flat ruffling lamelli-podia that characterize these cells on glass are not seen in situ, but the general mechanism of cell movement seems to be the same as that observed in vitro: either gross contraction or recoil of the cell body (now pear shaped) into the forward cell process, or more subtle "flowing" of cytoplasm into the forward cell process without immediate loss of the trailing cell process. We filmed collisions between cells in situ and in three-dimensional collagen lattices. These fibroblasts show, in their pair-wise collisions, the classical contact inhibition of movement (CIM) exhibited in vitro even though they lack ruffled borders. On glass these cells multi-layer, showing that, while CIM affects cell movement, fibroblasts can use one another as a substratum. Postmitotic cells show CIM in moving away from each other. Interestingly, dividing cells in situ do not exhibit surface blebbing, but do extend filopodia at telophase. The role of CIM in controlling cell movement in vivo and in vitro is stressed in the discussion.

  13. Mitotic control of human papillomavirus genome-containing cells is regulated by the function of the PDZ-binding motif of the E6 oncoprotein. (United States)

    Marsh, Elizabeth K; Delury, Craig P; Davies, Nicholas J; Weston, Christopher J; Miah, Mohammed A L; Banks, Lawrence; Parish, Joanna L; Higgs, Martin R; Roberts, Sally


    The function of a conserved PDS95/DLG1/ZO1 (PDZ) binding motif (E6 PBM) at the C-termini of E6 oncoproteins of high-risk human papillomavirus (HPV) types contributes to the development of HPV-associated malignancies. Here, using a primary human keratinocyte-based model of the high-risk HPV18 life cycle, we identify a novel link between the E6 PBM and mitotic stability. In cultures containing a mutant genome in which the E6 PBM was deleted there was an increase in the frequency of abnormal mitoses, including multinucleation, compared to cells harboring the wild type HPV18 genome. The loss of the E6 PBM was associated with a significant increase in the frequency of mitotic spindle defects associated with anaphase and telophase. Furthermore, cells carrying this mutant genome had increased chromosome segregation defects and they also exhibited greater levels of genomic instability, as shown by an elevated level of centromere-positive micronuclei. In wild type HPV18 genome-containing organotypic cultures, the majority of mitotic cells reside in the suprabasal layers, in keeping with the hyperplastic morphology of the structures. However, in mutant genome-containing structures a greater proportion of mitotic cells were retained in the basal layer, which were often of undefined polarity, thus correlating with their reduced thickness. We conclude that the ability of E6 to target cellular PDZ proteins plays a critical role in maintaining mitotic stability of HPV infected cells, ensuring stable episome persistence and vegetative amplification.

  14. Dual modified antiphospho (Ser10)-acetyl (Lys14)-histone H3 predominantly mark the pericentromeric chromatin during mitosis in monokinetic plants. (United States)

    Sharma, Santosh Kumar; Yamamoto, Maki; Mukai, Yasuhiko


    Epigenetic regulatory posttranslational histone modification marks not only function individually but also capable to act in combination as a unique pattern. A total of 16 plant species belonging to 11 genera of eight families (five dicots and three monocots) including land plants, epiphytes (orchids) and the holokinetic taxa (Drosera spp.) were analysed for chromosomal distribution of dual modified antiphospho (Ser10)-acetyl (K14)-histone H3 (H3S10phK14ac) to understand the combinatorial chromatin dynamics during mitotic cell division in plants. The anti-H3S10phK14ac evidently mark the pericentromeric chromatin on mitotic chromosomes of the plants excluding the holokinetic Drosera species, which revealed the immunolabelling of whole chromosomes all along the arms. The dual modified immunosignals were absent during early stages of mitosis, appeared intensively at metaphase and remained visible until late-anaphase/telophase however, labelled the whole chromosomes during meiotic metaphase I. Colocalization of anti-H3S10phK14ac with an onion's CENH3 antibody on mitotic chromosomes of Allium revealed the chromosomal location of anti-H3S10phK14ac in the region between signals for CENH3 detection. Overall analysis suggests that the unique localization of combinatorial histone modification mark at pericentromeric chromatin might have attributed through 'phospho-acetyl' cross talk that ultimately facilitate the sister chromatid cohesion at pericentromeres following condensation events in mitotic chromosomes. Here, we propose that dual modified H3S10phK14ac histone may serve as an additional cytogenetic landmark to identify pericentromeric chromatin during mitosis in plants. The plausible role of histone cross talk and future perspectives of combinatorial histone modification marks in plant cytogenetics with special reference to chromatin dynamics have been discussed.

  15. Involvement of synaptonemal complex proteins in sex chromosome segregation during marsupial male meiosis.

    Directory of Open Access Journals (Sweden)

    Jesús Page


    Full Text Available Marsupial sex chromosomes break the rule that recombination during first meiotic prophase is necessary to ensure reductional segregation during first meiotic division. It is widely accepted that in marsupials X and Y chromosomes do not share homologous regions, and during male first meiotic prophase the synaptonemal complex is absent between them. Although these sex chromosomes do not recombine, they segregate reductionally in anaphase I. We have investigated the nature of sex chromosome association in spermatocytes of the marsupial Thylamys elegans, in order to discern the mechanisms involved in ensuring their proper segregation. We focused on the localization of the axial/lateral element protein SCP3 and the cohesin subunit STAG3. Our results show that X and Y chromosomes never appear as univalents in metaphase I, but they remain associated until they orientate and segregate to opposite poles. However, they must not be tied by a chiasma since their separation precedes the release of the sister chromatid cohesion. Instead, we show they are associated by the dense plate, a SCP3-rich structure that is organized during the first meiotic prophase and that is still present at metaphase I. Surprisingly, the dense plate incorporates SCP1, the main protein of the central element of the synaptonemal complex, from diplotene until telophase I. Once sex chromosomes are under spindle tension, they move to opposite poles losing contact with the dense plate and undergoing early segregation. Thus, the segregation of the achiasmatic T. elegans sex chromosomes seems to be ensured by the presence in metaphase I of a synaptonemal complex-derived structure. This feature, unique among vertebrates, indicates that synaptonemal complex elements may play a role in chromosome segregation.

  16. Identification of G1-regulated genes in normally cycling human cells.

    Directory of Open Access Journals (Sweden)

    Maroun J Beyrouthy

    Full Text Available BACKGROUND: Obtaining synchronous cell populations is essential for cell-cycle studies. Methods such as serum withdrawal or use of drugs which block cells at specific points in the cell cycle alter cellular events upon re-entry into the cell cycle. Regulatory events occurring in early G1 phase of a new cell cycle could have been overlooked. METHODOLOGY AND FINDINGS: We used a robotic mitotic shake-off apparatus to select cells in late mitosis for genome-wide gene expression studies. Two separate microarray experiments were conducted, one which involved isolation of RNA hourly for several hours from synchronous cell populations, and one experiment which examined gene activity every 15 minutes from late telophase of mitosis into G1 phase. To verify synchrony of the cell populations under study, we utilized methods including BrdU uptake, FACS, and microarray analyses of histone gene activity. We also examined stress response gene activity. Our analysis enabled identification of 200 early G1-regulated genes, many of which currently have unknown functions. We also confirmed the expression of a set of genes candidates (fos, atf3 and tceb by qPCR to further validate the newly identified genes. CONCLUSION AND SIGNIFICANCE: Genome-scale expression analyses of the first two hours of G1 in naturally cycling cells enabled the discovery of a unique set of G1-regulated genes, many of which currently have unknown functions, in cells progressing normally through the cell division cycle. This group of genes may contain future targets for drug development and treatment of human disease.

  17. The effect of field strength on glioblastoma multiforme response in patients treated with the NovoTTF™-100A system. (United States)

    Turner, Scott G; Gergel, Thomas; Wu, Hueizhi; Lacroix, Michel; Toms, Steven A


    The NovoTTF™-100A system is a portable device that delivers intermediate frequency alternating electric fields (TTFields, tumor treating fields) through transducer arrays arranged on the scalp. An ongoing trial is assessing its efficacy for newly diagnosed glioblastoma multiforme (GBM) and it has been FDA-approved for recurrent GBM.The fields are believed to interfere with formation of the mitotic spindle as well as to affect polar molecules at telophase, thus preventing cell division. The position of the four arrays is unique to each patient and optimized based on the patient's imaging. We present three patients with GBM in whom the fields were adjusted at recurrence and the effects of each adjustment. We believe there may be a higher risk of treatment failure on the edges of the field where the field strength may be lower. The first patient underwent subtotal resection, radiotherapy with temozolomide (TMZ), and then began NovoTTF Therapy with metronomic TMZ. She had good control for nine months; however, new bifrontal lesions developed, and her fields were adjusted with a subsequent radiographic response. Over the next five months, her tumor burden increased and death was preceded by a right insular recurrence. A second patient underwent two resections followed by radiotherapy/TMZ and NovoTTF Therapy/TMZ. Six months later, two new distal lesions were noted, and he underwent further resection with adjustment of his fields. He remained stable over the subsequent year on NovoTTF Therapy and bevacizumab. A third patient on NovoTTF Therapy/TMZ remained stable for two years but developed a small, slow growing enhancing lesion, which was resected, and his fields were adjusted accordingly. Interestingly, the pathology showed giant cell GBM with multiple syncitial-type cells. Based on these observations, we believe that field strength may play a role in 'out of field' recurrences and that either the presence of a certain field strength may select for cells that are of a

  18. Meiotic arrest maintained by cAMP during the initiation of maturation enhances meiotic potential and developmental competence and reduces polyspermy of IVM/IVF porcine oocytes. (United States)

    Somfai, Tamás; Kikuchi, Kazuhiro; Onishi, Akira; Iwamoto, Masaki; Fuchimoto, Dai-ichiro; Papp, Agnes Bali; Sato, Eimei; Nagai, Takashi


    We investigated effects of invasive adenylate cyclase (iAC), 3-isobutyl-1-methylxanthine (IBMX) and dibutyryl cyclic AMP (dbcAMP) on porcine oocyte in vitro maturation (IVM), in vitro fertilisation (IVF) and subsequent embryonic development. Porcine oocytes were collected in Hepes-buffered NCSU-37 supplemented with or without 0.1 microg/ml iAC and 0.5 mM IBMX. IVM was performed in a modified NCSU-37 supplemented with or without 1 mM dbcAMP for 22 h and then without dbcAMP for an additional 24 h. After IVF, oocytes were cultured in vitro for 6 days. After 12 h of IVM, no difference in nuclear status was observed irrespective of supplementation with these chemicals during collection and IVM. At 22 h, most (95%) of the oocytes cultured with dbcAMP remained at the germinal vesicle (GV) stage, whereas 44.3% of the oocytes cultured without dbcAMP underwent GV breakdown. At 36 h, oocytes cultured with dbcAMP had progressed to prometaphase I or metaphase I (MI) (32.6% and 49.3%, respectively), whereas non-treated oocytes had progressed further to anaphase I, telophase I or metaphase II (MII) (13.6%, 14.3% and 38.0%, respectively). At 46 h, the rate of matured oocytes at MII was higher in oocytes cultured with dbcAMP (81%) than without dbcAMP (57%), while the proportion of oocytes arrested at MI was lower when cultured with dbcAMP (15%) than without dbcAMP (31%). The rate of monospermic fertilisation was higher when oocytes were cultured with dbcAMP (21%) than without dbcAMP (9%), with no difference in total penetration rates (58% and 52%, respectively). The blastocyst rate was higher in oocytes cultured with dbcAMP (32%) than without dbcAMP (19%). These results suggest that a change in intracellular level of cAMP during oocyte collection does not affect maturational and developmental competence of porcine oocytes and that synchronisation of meiotic maturation using dbcAMP enhances the meiotic potential of oocytes by promoting the MI to MII transition and results in high

  19. An S/T-Q cluster domain census unveils new putative targets under Tel1/Mec1 control

    Directory of Open Access Journals (Sweden)

    Cheung Hannah C


    Full Text Available Abstract Background The cellular response to DNA damage is immediate and highly coordinated in order to maintain genome integrity and proper cell division. During the DNA damage response (DDR, the sensor kinases Tel1 and Mec1 in Saccharomyces cerevisiae and ATM and ATR in human, phosphorylate multiple mediators which activate effector proteins to initiate cell cycle checkpoints and DNA repair. A subset of kinase substrates are recognized by the S/T-Q cluster domain (SCD, which contains motifs of serine (S or threonine (T followed by a glutamine (Q. However, the full repertoire of proteins and pathways controlled by Tel1 and Mec1 is unknown. Results To identify all putative SCD-containing proteins, we analyzed the distribution of S/T-Q motifs within verified Tel1/Mec1 targets and arrived at a unifying SCD definition of at least 3 S/T-Q within a stretch of 50 residues. This new SCD definition was used in a custom bioinformatics pipeline to generate a census of SCD-containing proteins in both yeast and human. In yeast, 436 proteins were identified, a significantly larger number of hits than were expected by chance. These SCD-containing proteins did not distribute equally across GO-ontology terms, but were significantly enriched for those involved in processes related to the DDR. We also found a significant enrichment of proteins involved in telophase and cytokinesis, protein transport and endocytosis suggesting possible novel Tel1/Mec1 targets in these pathways. In the human proteome, a wide range of similar proteins were identified, including homologs of some SCD-containing proteins found in yeast. This list also included high concentrations of proteins in the Mediator, spindle pole body/centrosome and actin cytoskeleton complexes. Conclusions Using a bioinformatic approach, we have generated a census of SCD-containing proteins that are involved not only in known DDR pathways but several other pathways under Tel1/Mec1 control suggesting new

  20. Microcystin-LR induces abnormal root development by altering microtubule organization in tissue-cultured common reed (Phragmites australis) plantlets. (United States)

    Máthé, Csaba; Beyer, Dániel; Erdodi, Ferenc; Serfozo, Zoltán; Székvölgyi, Lóránt; Vasas, Gábor; M-Hamvas, Márta; Jámbrik, Katalin; Gonda, Sándor; Kiss, Andrea; Szigeti, Zsuzsa M; Surányi, Gyula


    Microcystin-LR (MC-LR) is a heptapeptide cyanotoxin, known to be a potent inhibitor of type 1 and 2A protein phosphatases in eukaryotes. Our aim was to investigate the effect of MC-LR on the organization of microtubules and mitotic chromatin in relation to its possible effects on cell and whole organ morphology in roots of common reed (Phragmites australis). P. australis is a widespread freshwater and brackish water aquatic macrophyte, frequently exposed to phytotoxins in eutrophic waters. Reed plantlets regenerated from embryogenic calli were treated with 0.001-40 microg ml(-1) (0.001-40.2 microM) MC-LR for 2-20 days. At 0.5 microg ml(-1) MC-LR and at higher cyanotoxin concentrations, the inhibition of protein phosphatase activity by MC-LR induced alterations in reed root growth and morphology, including abnormal lateral root development and the radial swelling of cells in the elongation zone of primary and lateral roots. Both short-term (2-5 days) and long-term (10-20 days) of cyanotoxin treatment induced microtubule disruption in meristems and in the elongation and differentiation zones. Microtubule disruption was accompanied by root cell shape alteration. At concentrations of 0.5-5 microg ml(-1), MC-LR increased mitotic index at long-term exposure and induced the increase of the percentage of meristematic cells in prophase as well as telophase and cytokinesis of late mitosis. High cyanotoxin concentrations (10-40 microg ml(-1)) inhibited mitosis at as short as 2 days of exposure. The alteration of microtubule organization was observed in mitotic cells at all exposure periods studied, at cyanotoxin concentrations of 0.5-40 microg ml(-1). MC-LR induced spindle anomalies at the metaphase-anaphase transition, the formation of asymmetric anaphase spindles and abnormal sister chromatid separation. This paper reports for the first time that MC-LR induces cytoskeletal changes that lead to alterations of root architecture and development in common reed and generally, in

  1. Um estudo citológico comparativo de Thalictrum e Ilex

    Directory of Open Access Journals (Sweden)

    Henry Wilhelm Jensen


    dioecious habit. Heterochromosome Complex Division in first seen Choromatin ejected Other diagnostic hybrid characteristics Species Type of Chromosome I.. decidua Medium Homeotypic One choromatid during second anaphase Laggards anaphase bridges I. monticola. Smallest member of complement Heterotypic One chormatid during first anaphase. Left in cytoplasm Lagging Precocious chorm I. opaca Medium Heterotypic Whole chorm. One chromatid sometimes accepted by complement in second div. Lagging chrom I. verticillata Two types. One tripartite X-- X1Y2 small Other medium Heterotypic Yes. Degenerates during first telophase. Yes Degenerates during first telophase. I. vomitoria Medium sized tripartite complex Heterotypic None found A number of laggards dur-first division 3. Heterochromosomes were found in microsporogenesis of all five species of Ilex, along with other meiotic peculiarities of suggested hybrid origin, but no two were alike. Behavior of the heterochromosomes was not found to be consistent and in approximately 5 0% of the PMCs. meiosis was normal. Findings are summarized in following table.8 4. In view of the generally ¡rabie chromosome number for the five species of Ilex investigated, only such pollen as arises from PMCs. which possess the normal meiosis may produce the gametes which effect fertilization. This presents the problem of explaining how the ability to produce meiotic abnormalities is inherited through cells which dcnot exhibit it or through the female side and its significance on the whole question of the evolution of sex chromosomes from various types of heterochromosomes. 5. A comparison of the cytology or species of Thalictrum and Ilex adds support to the author's earlier contention that so-called sex chromosomes in higher plants have their origin in special types of heterochromosomes which in turn owe their appearance to meiotic disturbances induced by previous hybridization of the species and preserved through the more or less simultaneous advent of the

  2. Chromosome stickiness during meiotic behavior analysis of Passiflora serrato-digitata L. (PassifloraCEAE Aderência cromossômica durante a análise do comportamento meiótico de Passiflora serrato-digitata L (PassifloraCEAE

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Peres Kiihl


    Full Text Available Almost 90% of species of the genus Passiflora are native to the American continent, with high commercial value due to the fact that some species are used for human food while others have ornamental and medical qualities. Passiflora serrato-digitata is one of the species that integrates the Paraná Agronomic Institute germoplasm bank at its experimental base in Londrina, PR, Brazil. Collected flower buds were fixed in ethanol/acetic acid (3:1 v/v for 24h, transferred to 70% alcohol and stored under refrigeration. Slides were prepared by the squashing technique and stained with 1.0% propionic carmine; they were analyzed under an optic microscope. Irregularities in the chromosome segregation process of P. serrato-digitata have been verified by meiotic behavior analysis. These comprised precocious migration to poles in metaphase I and II, non-oriented chromosomes in metaphase plate in metaphase I and II, laggard chromosomes in anaphase I and II towards the formation of micronucleus in telophase I and II, and microspores in tetrads. Chromosome stickiness was another irregularity reported in the Passiflora genus for the first time. These irregularities which also contributed to the formation of monads, dyads and triads, resulted in normal imbalanced 2n and 4n microspores. According to the observed Meiotic Index of 71.83%, this species is not meiotically stable.Cerca de 90% das espécies do gênero Passiflora são nativas das Américas, sendo que aproximadamente 200 espécies são nativas do Brasil. Possuem grande importância comercial, pois algumas espécies são utilizadas na alimentação humana, outras apresentam propriedades medicinais e ornamentais. A espécie Passiflora serrato-digitata faz parte do banco de germoplasma do Instituto Agronômico do Paraná - IAPAR, estação experimental de Londrina, PR. Botões florais colhidos foram fixados em etanol/ácido acético (3:1 v/v por 24 horas, transferidos para álcool a 70% e acondicionado sob

  3. Bio-indication-based estimates as an integral part of the environment quality assessment on an example of allium-test application

    Energy Technology Data Exchange (ETDEWEB)

    Oudalova, A.; Geras' kin, S.; Dikarev, V.; Dikareva, N. [Russian Institute of Agricultural Radiology and Agroecology, Obninsk (Russian Federation); Michalik, B.; Chalupnik, S.; Wysocka, M. [Central Mining Institute, Katowice (Poland); Evseeva, T. [Institute of Biology, Komi Scientific Center, Syktyvkar (Russian Federation); Kozmin, G. [State Technical University of Atomic Energy, Obninsk (Russian Federation)


    , there is a capability for a mutual intensification of the effects from environmental factors that actually occur in situations of low-level exposure, as demonstrated earlier (Evseeva et al., 2001; Geras kin et al., 2005). It is therefore impossible to estimate biological risk from combined action based on the only contaminants levels in the environment. This conclusion emphasizes the need to update some current principles of ecological standardization, which are still in use nowadays. Measurements of dose and concentrations of contaminants provide detailed information on the acting agents but only indirectly indicate potential biological consequences. A biological assay, in turn, provides an integrative estimation of toxicity and genotoxicity of environmental pollutants. A combination of these two techniques allows identifying the major sources of risk which require continuous biological monitoring. An adequate assessment of the risk to the environment from contamination needs to be based on the simultaneous use of toxicity and genotoxicity tests. As a genotoxicity test, the Allium-based assay of chromosome aberration in anaphase-telophase is for many reasons especially useful for the rapid screening of chemicals involved in environmental hazards. In addition,mitotic index is a good toxicity indicator as well. The high sensitivity of the Allium- test (Fiskesjo, 1985) ensures that contaminants will not be overlooked, which may be of special importance when complex mixtures are to be tested. Therefore, positive results in the Allium-test should be considered as a warning and also an indication that the tested compounds may cause a risk to human health and to our environment. Complex issues are involved in evaluating environmental risk, and an effectively linking of bio indication screening assays to the well-established environmental pollution monitoring system is a way of improving and upgrading an existing system of the public and the environment protection to meet

  4. Sôbre a meiose de Dysdercus mendesi bloete (1937 - Hemiptera, pyrrhocoridæ

    Directory of Open Access Journals (Sweden)

    Luiz O. T. Mendes


    Full Text Available 1 - The spermatogonia of Dysdercus mendesi Bloete have 16 chromosomes : 7 pairs of autosomes and 2 sex-chromosomes. 2 - After the last spermatogonia! division, the chromatin of the autosomes diffuses and the nucleoplasm assumes an uniform granulai- aspect ; each sex-chromosome is involved by a vesicle and stands well colored. 3 - While the chromatin of the autosomes starts to condense again, to form the long threads (that finnally are seen in a paired condition the cycle of the sex-chromosomes is as follows : a yet contained in the vesicles, they grow in size and become long rods ; b the vesicles disappear, the sex-chromosomes move inside the nucleoplasm and come to be disposed longitudinally, close together. c they touch each other, become fissured, and a tetradlike chromatic element is formed, which contracts itself, remaining always well colored. 4 - The hetero-pycnosis of the sex-chromosomes is observed through the whole grow phase of the spermatocyte I. 5 - The separation of the sex-chromosome tetrad, originating two independent sex-chromosomes, is observed in the early grow phase of the spermatocyte as well as during any other period of this phase. The latest separation is observed during the diffuse stage of the nucleus. 6 - When the autosomes are in diakinesis, the sex-chromosomes assume the aspect of chromosomes in pachytene. 7 - In metaphase I the autosomic tetrads are in a more condensed and colored condition than the sex-chromosomes. The sex-chromosomes move to the center of the autosome-forming circle, but there is no contact between them. 8 - In anaphase I it is observed 2 interzonal connections between each autosomic dyad ; some exceptions are observed. Only one interzonal connection is observed between the separating sex-chromosomes. Moving to the poles the sex-chromosomes also approximate one to the other. 9 - In telophase I the sex-chromosome touch each other, and fuse side-by-side, forming only one chromatic element. The line

  5. Observações citológicas em Coffea: XV - Microsporogênese em Coffea arabica L.

    Directory of Open Access Journals (Sweden)

    A. J. T. Mendes


    semperflorens and 1.67 in caturra. In anaphase I the 22 pairs of chromosomes were normally separated and in telophase I the chromosomes did not stain well, again making detailed observations difficult. Practically no interkinesis was observed. Following telophase I the chromosomes were observed to contract and entered into anaphase II, that was observed to be normal. The formation of microspores appeared to be normal. After separation of the microspores there occured a division of the nucleus giving origin to two nuclei with 22 chromosomes each. This was observed ot occur three to four days before opening of the flowers. The vegetative nucleus was observed to be large, round, homogeneous, and stain only faintly. The reproductive nucleus was observed to be small, reticulated ; it stained well, and was located at the periphery of the cell. The reproductive nucleus was usually found to be surrounded by a small amount of cytoplasm in a lenticular shape. The division of the reproductive nucleus usually takes place in the pollen tube. Both vegetative and reproductive nuclei were observed to occur in the extremity of pollen tube.

  6. Meiotic behavior of interspecific hybrids between artificially tetraploidized sexual Brachiaria ruziziensis and tetraploid apomictic B. brizantha (Poaceae Comportamento meiótico de híbridos interespecíficos entre tetraplóides artificiais de Brachiaria ruziziensis e tetraplóides apomíticos de B. brizantha (Poaceae

    Directory of Open Access Journals (Sweden)

    Mariana Ferrari Felismino


    Full Text Available The meiotic behavior of four interspecific promising hybrids was evaluated by conventional cytological methods. The female genitors were two artificially tetraploidized sexual accessions of B. ruziziensis (R41 and R44, 2n = 4χ = 36, which were crossed to an agronomically superior natural tetraploid apomictic genotype of B. brizantha (B140 - BRA003395. Three of them (HBGC313, HBGC 315, and HBGC324 were sexual and one (HBGC325 apomictic. Analyses of some cells in diakinesis revealed multivalent chromosome configurations, suggesting that genetic recombination and introgression of some genes could be present. The four hybrids had different types of meiotic abnormalities at various frequencies. Abnormalities related to irregular chromosome segregation due to polyploidy were common among these hybrids, and characterized by precocious chromosome migration to the poles, laggard chromosomes, both generating micronuclei in telophases and tetrads and, as a consequence, unbalanced gametes. One abnormality genotype-specific, related to spindle orientation (a putative divergent spindle mutation, was recorded for the first time in two of the hybrids, HBGC313 and HBGC325. The sexual hybrid HBGC324 had the lower rate of abnormalities, and it could be used as a female genitor in future crosses in the breeding program. The abnormalities present in these hybrids may impact fertility and affect seed production. Based on the results, HBGC324 is the single hybrid recommended to the breeding program. Hybrids must produce a good amount of viable seeds, besides good overall dry matter production and nutritive value, in order to be widely utilized and adopted in production systems. Due to pseudogamy, the desirable superior apomictic hybrids need viable pollen grains to fertilize the secondary nucleus of the embryo sac and thus ensure normal and vigorous endosperm development and plenty of seed set.O comportamento meiótico de quatro híbridos interespec